
DISPLAYING PARAMETRIC CURVES AND SURFACES

USING UNIGRAFIX

DISPLAYING PARAMETRIC CURVES AND SURFACES

USING

BERKELEY UNIGRAFIX

By

HENRY CHEUNG, B.Sc.

A Report

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

(c) Copyright by Henry Cheung, August 1988

MASTER OF SCIENCE (1988)
(Computation)

McMASTER UNIVERSITY
Hamilton, Ontario

TITLE: Displaying parametric curves and surfaces using
Berkeley UNIGRAFIX

AUTHOR: Henry Cheung, B.Sc.Hons. (Queen's University)

SUPERVISOR: Professor Patrick J. Ryan

NUMBER OF PAGES: vii, 180

ABSTRACT

Henry Cheung: Displaying parametric curves and surfaces using
Berkeley UNIGRAFIX. M.Sc. report, McMaster University at
Hamilton, August, 1988.

Berkeley UNIGRAFIX is a graphics system that runs under
the UNIX operating system. It comprises a collection of rendering
programs and scene generating programs. Scenes of objects are
described in a terse, human-readable format called the UNIGRAFIX
descriptive language.

In order to display parametric curves and surfaces using
UNIGRAFIX, we developed a scene generator called UGTRACE. It
traces a set of parametric equations and generates a scene file
written in the UNIGRAFIX format. Two tracing modes as well as two
displaying modes were designed.

The Berkeley UNIGRAFIX system was installed in the
McMaster environment. For our purpose, we also modified the
various device drivers of UGDISP, the latest version of the
renderers. Available output devices include the AED colour
graphics terminal, the IMAGEN laser printer and the IBM PC
emulating a Tektronix 4010 terminal. UGDISP is used to display
scene files generated by UGTRACE.

iii

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge my gratitude to my project
supervisor. Professor Patrick J. Ryan of the Department of
Computer Science and Systems. Professor Ryan suggested the
problem, and his encouragement and friendly guidance in the ways
of the project made the work a rare educational experience.

I would also like to express my appreciation to my wife
Betty for unflagging patience and support.

And above all, to God, from whom all good and perfect gifts
come, be my thanksgiving.

iv

CONTENTS

1. INTRODUCTION

1.1 The Berkeley UNIGRAFIX system 1
1.2 UGTRACE: a UNIGRAFIX generator for parametric curves

and surfaces.. 4
1.3 Project profile 7

2. DESIGN

2.1 Device independent plotting 10
2.2 The abstract command set................................ 12
2.3 The AED 512 colour graphics terminal..................... 13
2.4 The IMAGEN 3320 laser printer............................ 17
2.5 The TEK 4010 terminal.................................... 18

3. UGTRACE: A GENERATOR

3.1 Overview.. 21
3.2 Input section.. 22
3.3 Tracing section.. 33
3.4 Output section....................................... 3 6

4. SUMMARY.. 41

BIBLIOGRAPHY .. 44

Appendix A. USER'S MANUAL

A.l ugdisp.. 46
A. 2 ugtrace.. 52

Appendix B. TUTORIAL 54

Appendix C. EXAMPLES 61

v

Appendix D. ALGORITHMS AND DATA STRUCTURES FOR UGTRACE

D.1 Overview
D.l.l Control flow................................. 72
D.1.2 Source files...................................... 73

D.2 Input section
D.2.1 Scanning command line [phase 1] 74
D.2.2 Loading specification [phase 2] 76
D.2.3 Parsing specification [phase 3] 76

D.2.3.1 Parsing Shell 76
D.2.3.1.1 Parsing a CONSTANT statement 77
D.2.3.1.2 Parsing a PARAMETER statement 78
D.2.3.1.3 Parsing a VARIABLE statement 79
D.2.3.1.4 Parsing a DOMAIN statement 81
D.2.3.1.5 Parsing an equation 82
D.2.3.1.6 Parsing an expression 83
D.2.3.2 Overall checking 88

D.3 Tracing section
D.3.1 Tracing [phase 4] 89

D.3.1.1 Unit-step tracing 91
D.3.1.2 Unit-length tracing 93
D.3.1.3 Expression evaluation 95

D.4 Output section
D.4.1 Exporting to UNIGRAFIX format [phase 5] 95

D.5 Function directory 98

Appendix E. SOURCE CODE FOR UGTRACE 100

FIGURES

1.1 Displaying objects using Berkeley UNIGRAFIX 2

1.2 Illustration of tracing modes using a sine curve 6

2.1 UNIGRAFIX output interface 11

2.2 UNIGRAFIX plotting modes 15

2.3 PC/UNIGRAFIX interface 19

3.1 Command line switches............................... 23

3.2 Syntax of input text.................................2 5

3.3 Grammar used for expression......................... 30

3.4 An example of UGTRACE internal representation, tracing
section 32

3.5 Scenario for unit length tracing of parametric surfaces . 37

3.6 UGTRACE internal representation, output section 37

3.7 UNIGRAFIX syntax, abridged summary 39

3.8 UGTRACE display modes 40

C.l Unit-step tracing versus unit-length tracing 63

C.2 Varying tracing magnitude and using multiple domains . . 67

C.3 Mesh display versus Patch display 70

vii

Chapter 1

INTRODUCTION

1.1 The Berkeley UNIGRAFIX system

The UNIGRAFIX system [SEQU83a-c] is a batch-oriented

graphics system running under the UNIX operating system [1]. It

was started in 1981 at the University of California, Berkeley

campus [2]. Since then it has been a constant focus for master's

theses and course projects. The purpose for developing such a

system is to provide some rendering tools for geometric modeling

under UNIX. The desired goal is to produce scenes of two or three

dimensional polyhedral objects in the style of engineering

drawings. Output is primarily a high resolution, black and white,

dot raster.

The current system comprises several renderers, and a

collection of object generators and modifiers. Object scenes can

be rendered, basically, in two different ways. Under the wire­

frame format, skeletons of the objects are shown by displaying all

the edges, giving an X-ray view of the scene (Figure 1.1(a)). And

for a more natural appearance, scenes can be displayed with hidden

[1] UNIX is a trademark of Bell Laboratories.
[2] The U. C. Berkeley UNIGRAFIX system has been sup­

ported by Tektronix, Inc. and by the Semiconductor
Research Corporation.

1

2

(a) Wire frame format

(b) Hidden parts and
overlappings removed

Figure 1.1 Displaying objects using
Berkeley UNIGRAFIX

3

edges and surfaces removed (Figure 1.1(b)). Light sources are

used to give shades, providing an artistic finish to the display.

In addition to the displaying modes, viewing parameters such as

eye point coordinates and viewing direction can also be adjusted

at run-time. The renderers support a wide range of plotters and

graphics terminals.

The generators provide the means to design objects such as

mechanical parts [3] or architectural elements [4], as well as

purely geometrical objects in three and four dimensions. The

modifiers provide the means to manipulate simple objects. Complex

scenes are constructed from simple primitive objects either by

truncating them, by tessellating their faces, or by cutting holes

into them. In the fields of robotics and computer vision, some of

these utilities may be found useful.

Since UNIGRAFIX is designed to be developed over a period

of time and contributed to by different people at different

stages, it is important to maintain the coherency and the

consistency of individual work. For this purpose, the UNIGRAFIX

descriptive language was developed. The language is a powerful

yet simple descriptive format in ASCII text used to describe an

object or a scene. All modules of the UNIGRAFIX system use this

as a common format for specifying scenes. Thus the UNIGRAFIX

language provides a standard interface between modules which glues

[3] eg. gear wheels and robot arms
[4] eg. staircases and houses

4

the whole system together. As a result, each module is allowed to

be developed independently and to be replaced or upgraded when

newer and better ones are available. For technical details of

UNIGRAFIX, see the publications listed in the BIBLIOGRAPHY

section.

1.2 UGTRACE: a UNGRAFIX generator

for parametric curves and surfaces

The prime objective of developing UGTRACE is to provide a

tool for displaying mathematical curves and surfaces given in

parametric form. In keeping with the UNIGRAFIX design philosophy,

this is done by adding a new generator UGTRACE. For parametric

curves in three dimensional space, the format in general is as

follows:

x = f(u)
y = g(u)
z = h(u)

where u ranges over some parameter domains. If the variable z is

dropped, then the curve is confined to two dimensional space only.

On the other hand, surfaces require two parameters:

x = f(u,v)
y = 9(u,v)
z = h(u,v) .

For more background on parametric curves and surfaces, see Foley

and Van Dam pp.514 and/or any multivariable calculus text.

5

Given a set of parametric equations and their parameter

domains, the program computes a representative set of vertices,

edges, and faces, and then produces a description of this scene in

the UNIGRAFIX language. Although this script in the UNIGRAFIX

language is readable, it is basically a list of numbers and hardly

gives the impression of a pictorial scene. It must be fed into

one of the UNIGRAFIX renderers before the scene can be visualized.

An infinite number of points exists on any curve or

surface theoretically. Tracing each and every one of them would

be impossible. In practice, a sampling of points must be chosen.

UGTRACE is capable of sampling points using two different

algorithms. One method is called unit-step tracing. Parameters

are changed at an uniform step size to get the points. Depending

on the characteristics of the functions, distances between

successive points may not be uniform (Figure 1.2(a)).

Another method used is called unit-length tracing. Under

this method, the distance between successive points is required to

be the same for all intervals. Instead of keeping the step size

unchanged, trial sizes are used and adjusted repeatedly until the

distance equals the required length. In the end, a set of equally

spaced points is gathered (Figure 1.2(b)). This method, in

comparison to unit-step tracing, requires more computing effort.

6

(a) Unit step tracing, parameter
step size at PI/6

(b) Unit length tracing, points
equally spaced at 0.75 unit of length

Figure 1.2 Illustration of tracing modes using
a sine curve whose equations are x = t and y ≈
sin(t).

7

The set of points generated using either method gives an

approximate representation of the curve or surface. The tracing

process is iterative. If the approximation is considered not

satisfactory, then the user can always change the step size or

length magnitude and run the program again. However, there is a

trade off between the degree of accuracy and the amount of

computing time.

UGTRACE works on continuous curves or surfaces only.

Tracing is stopped if the program encounters: 1) division by zero,

or 2) values larger than the maximum value representable by the

computer. Present implementation produces a partial scene

description which UGTRACE has built up to the halting point. A

separate logging algorithm is also available for debugging

purposes.

1-2 Project profile

The UNIGRAFIX system is given "as is" without much

programming documentation. It had to be installed in the McMaster

environment [5], and required some minor tuning, before it was

fully functional. Among the various supported output devices,

those which are available at McMaster had to be configured and

tested. These include the AED 512 colour graphics terminal, the

IMAGEN laser printer and the IBM PC, which emulates a Tektronix

[5] BSD 4.3 UNIX running on the Computer Science and
Systems VAX. Abbreviated CSSVAX hereafter.

8

4010 graphics terminal [6]. A general understanding of device

independent graphics and the working principles of each device was

necessary.

The rest of the project focused on the development of

UGTRACE, the generator. It was concerned with translating a

mathematical specification of a curve or surface into a UNIGRAFIX

scene. Instead of delving into aspects like display algorithms

and device interfaces, the development effort was spent on

designing an input grammar, parsing algorithms, design and

manipulation of transitional data objects, and tracing strategies.

The user interface is required to be simple and straight forward.

All the code is written in the C programming language.

The final version was compiled and run under the BSD 4.3 UNIX

operating system on the department's VAX 11/780 computer. As for

developing and testing, a micro-computer was also used. Code was

mostly developed on the PC running under DOS [7] using the Lattice

C compiler. After uploading to the mainframe, source codes were

compiled using the CC compiler. For this reason, system

dependencies of programs have been kept to a minimum.

A general introduction to the project is presented in this

chapter. The rest of the report will be geared towards the

[6] The emulation is supported by QK-kermit, a com­
munication package used at Queen's University, Kings­
ton .

[7] DOS is a short form for Disk Operating System

9

software development activities. The concept of multi-device

support and modifications done on the UNIGRAFIX system are

discussed in Chapter 2. In Chapter 3, the design and

implementation of UGTRACE is described. A brief summary on the

project and recommendations on further development is presented in

Chapter 4.

Chapter 2

MULTI-DEVICES OUTPUT SUPPORT

2.1 Device independent plotting

All renderers of the UNIGRAFIX system support multi-device

output. A scene can be sent to a wide variety of output devices,

ranging from plotters to CRT terminals. Whenever a renderer is

called, the type of output device is specified as one of the run­

time arguments. But this information is not used until the very

final stage, when the picture is plotted to the display medium

[1]. Data representation and manipulation, such as 3D to 2D view

volume projection, rotations and other transformations, and hidden

features removal, are done in a device independent co-ordinate

system. In the final plotting stage, the proper device driver is

selected from a library of drivers. The picture is mapped from

device independent co-ordinates to device co-ordinates, and

plotted to the display medium.

Conceptually, there are two levels of plotting (See figure

2.1). Since plotting mechanisms and command protocols differ from

device to device, direct plotting would be difficult not only to

implement but also to debug, to modify and to expand. Under such

[1] E.g. plotter paper and CRT screen.

10

11

Figure 2.1 UNIGRAFIX output interface

considerations, another level is added on top of the device

interface. In the higher level, plotting is done in a set of

abstract functions. Each of these functions is a general command

requesting a certain plotting action to be done. But the

underlying mechanics of how the request is being achieved are

transparent to the function. Specific information about the

output device is not relevant on the abstract level. The

interface level is basically a collection of device drivers. For

every output device the renderer supports, there is a

corresponding device driver. The drivers consist of concrete and

device specific functions. These functions cause all the actions

12

which are required to complete an abstract request. In this two

level plotting scheme, new devices are supported readily as soon

as the driver is available.

2.2 The abstract command set

The abstract command set contains five commands, three of

which cause plotting actions. The other two are initializing and

closing procedures. Similar to a file, a device has to be opened

before any information can be sent, and closed after the plotting

is completed. In between the opening and closing commands the

viewport is drawn in a series of straight line segments. Curves

are approximated by continuous short segments. Two of the

plotting commands are defined to draw line segments. Character

strings can also be placed in the picture for labeling purposes.

However, the current version of UNIGRAFIX has no freedom on text

orientation and character attributes yet.

Although the commands are capable of drawing only line

segments, the viewport can be plotted in two different ways. In

the first method, the viewport contents are broken down into a

sequence of vectors. Each vector is defined by a starting co­

ordinate, an ending co-ordinate and a set of line attributes such

as colour and style. This method is suitable for describing

points, edges, and boundaries. Wire frame pictures are plotted

easily and efficiently under this method because they consist of

only points and edges (See figure 2.2 (a)). In the second method,

13

the viewport is stripped into a set of horizontal lines. Each

line is partitioned in segments of different attributes. The

entire viewport is scanned out sequentially from top to bottom,

and horizontally from left to right. Because this continuous

scanning format, solid displays, with hidden feature removed,

shades, and colours are best plotted under this method (See figure

2.2 (b)). Although the two methods described are principally

different from each other, they can be used simultaneously on one

plotting. A picture, for example, can be plotted in solid

display, while the edges are being highlighted in a different

colour (See figure 2.2 (c)).

2.3 The AED 512

colour graphics terminal

The AED [2] 512 colour terminal is a powerful, stand

alone, graphics workstation with keyboard and joystick integrated

into it. Display resolution is 512 by 512 pixels with a total of

256 colours available. It comes with 21 Kilobytes of RAM [3] and

a built-in 6502A microprocessor. When connected to a host

computer, it can be used either as a telecommunications terminal

or as a graphics peripheral. In the Interpreter Mode, graphics

commands are encoded according to the AED Terminal Command

Protocol [4]. Each alphanumeric character received at the

[2] AED is a short form for Advanced Electronic
Design

[3] RAM is a short form for Random Access Memory
[4] Also known as AED Terminal Control Protocol. Ab­

14

terminal represents a request to perform some actions on the

screen. If arguments such as co-ordinates and drawing colours are

required, then they are given in binary numerals following the

command code.

The AED terminal at McMaster is connected to the CSSVAX as

a telecommunications terminal. Under UNIX, logged on terminals

are assigned a logical device address. It is by this address the

AED terminal is identified, and by this address TCP commands are

sent. However, under the architecture of UNIX, a user may logon

at several terminals at the same time. A user may want to run

UNIGRAFIX on a control terminal and sent the output to another

display terminal. It is, therefore, necessary to determine where

the AED terminal is. UNIGRAFIX makes use of an environment

variable called GRTERM, to store the address of the AED terminal.

TCP commands are sent in raw mode [5] to the address at GRTERM

instead of the address of the running terminal. However, it is

the user's responsibility to set GRTERM to the correct device

address. A small utility program called 'wtty' has been written

to report all terminal addresses under the user's id.

The AED driver consist of five routines. Terminal

communication is set to raw mode so that bytes received and sent

are not inspected at the operating system level. During the

breviated TCP hereafter.
[5] In raw mode, bytes sent and received are not fil­

tered and not interpreted by UNIX.

15

(a) Vector mode

(b) Raster mode

(c) Combined mode

Figure 2.2 UNIGRAFIX plotting modes

16

opening procedure, the AED terminal is reset to the Interpreter

Mode. The colour map used by UNIGRAFIX is downloaded, and the

raster size is initialized. Mapping and scaling constants are

also initialized. Coordinates, if out of range, are clipped

instead of wrapped around. Raster scanning commands and vector

plotting commands may be interleaved. The exact situation depends

on how the image is plotted and what underlying algorithm is used.

Only the areas of interest are scanned out. Spaces in between are

filled with the background colour. Two global variables are used

to remember the scanner position. This position is used to

determine the amount of background filling and to resume scanning

after a vector plotting request is serviced. Texts are written by

temporarily returning to Alphanumeric Mode. When imaging is

finished, the closing procedure restores the AED terminal to a

telecommunications terminal.

The original driver works well in most situations. Two

terminal status inquiry routines, gtty() and stty(), were replaced

by an equivalent updated version, ioctl(). It also happens that

direct interleaving of raster scanning and vector plotting caused

the image to distort, apparently due to byte loss during the

interleaving. Solely raster scanning or vector plotting ran well

without this problem. To correct the situation, vector plotting

commands are now redirected to a temporary file instead of sending

them directly to the AED terminal. Since the commands are

alphanumerics, they are simply stored transitionally to an ASCII

17

file. Text labelling is redirected as well. After raster

scanning is completed, the file is piped to the terminal and is

deleted afterwards. In this schema, raster scanning is given a

higher priority with other interruptions suppressed.

2.4 The IMAGEN 3320

laser printer

The IMAGEN 3320 laser printer is a 20 page/min high speed,

graphics printer. The command protocol used to drive the machine

is called the ImPress language. Similar to AED's TCP, ImPress

commands are also coded in 8-bit bytes. Each print job is an

ImPress script made up of two parts. A job header is required to

specify all kinds of parameters ranging from pen width to paper

size. Fonts, styles and glyphs are selected from the printer's

library. They can also be defined by the user. Following the

header is the main body of the print. Besides running on ImPress,

the printer also comes with several emulators. Command protocols

of other types of printers, such as the Tektronix, are also

allowed. However, UNIGRAFIX used ImPress.

Unlike a terminal, which belongs only to the logged on

user, the printer is shared publicly with all users. Since the

printer queue is maintained on the operating system level,

UNIGRAFIX renderers do not drive the machine directly. All the

plotting commands issued by UNIGRAFIX renderers ars written to a

sequential file. When plotting is completed, UNIGRAFIX requests

18

UNIX to queue the script file for printing. The concrete set of

commands for IMAGEN consists of opening and closing procedures,

and one vector plotting command. Although IMAGEN has families of

glyphs for shading and grey scales, the current version of

UNIGRAFIX does not make use of this capacity.

The original version of the IMAGEN driver worked well

except for minor errors in the job header section. The syntax of

some initializing commands was not correct. These errors were

corrected accordingly.

2.5 The TEK4010 terminal

The Tektronix graphics command protocol is popular for its

simplicity. Many graphics peripherals, besides their own command

sets, also emulate the Tektronix standard. Both AED and IMAGEN

support Tektronix commands.

The Tektronix standard consist of two modes, alpha (text)

and graphics. Under alpha mode, a Tektronix terminal receives and

displays 8-bit bytes as ASCII characters. However, there are

several non-displayable, control characters which switch the

terminal in and out of alpha mode. GS, Group Separator, is the

ASCII character 29. All the bytes received following GS are

interpreted as point co-ordinates. The cursor is positioned to

the first point. All successive points are linked together,

resulting in a path on the screen. The path terminates upon

19

receipt of another GS which means the opening of a new path, or

upon receipt of another control character US, Unit Separator. The

Tektronix protocol does not support colour variation,- a pixel can

only be on or off.

One bug was found in the original TEK4010 driver. When

bringing the cursor to home position at the end of the plotting, a

tail was always drawn from the last point to the home position.

Upon investigation, it was discovered that an US control character

was missing between the last point and the homing command. Thus

the path was extended for an undesired section. This error was

corrected by inserting the US character.

Figure 2.3 PC/UNIGRAFIX interface

20

In this project, IBM PCs are used to emulate Tek40I0

terminals using OK-Kermit [6] (See figure 2.3). The software runs

on the DOS operating system. Connection to UNIX is made via local

area networks (LANs), or via modem by telephone dial-in. Although

the PCs were able to receive Tektronix commands, resolution is

being downgraded from Tektronix's 1024 by 780 to the PC's 200 by

640.

[6] A communication.package developed by Mr. Victor
Lee at Queen's University, Kingston.

Chapter 3

UGTRACE: A GENERATOR

2-1 Overview

The development of UGTRACE is made up of three sections.

The input section consists of designing procedures to load and to

parse instruction commands and trace specifications. The tracing

section consists of designing procedures to sample parameter

values and to calculate the corresponding point coordinates . And

lastly, the output section consists of designing procedures to

file the sampling of points in UNIGRAFIX plot description format.

From input to output, information is expanded and carried

from one form to another. Highlights of internal data structures

are binary tree representation of parametric equations and

hierarchical linked list representation of curve and surface loci.

Others include composite constructs from basic elements such as

pointers and arrays. In the output section, temporary files are

used to help reduce heap memory.

The program runs in batch mode. All information needed

must be fed at the initial step. Specification text can either be

read from a file or typed at the terminal. However, UGTRACE does

not prompt the user for missing information. In case of errors,

21

22

it reports the status and the corrective action. There is also an

optional logging scheme implemented to facilitate the debug

process.

3^.^ Input section

UGTRACE has two levels of input, command line input and

trace specification input. Trace specification is processed in

two steps: a loading step and a parsing step. Beyond the input

section, no user interaction is expected.

Since there are different modes in which UGTRACE runs, it

is necessary that the user be able to select the mode he desires.

In order to provide such freedom, UGTRACE accepts UNIX-Iike

arguments given at the command line level. These arguments are

interpreted as switches to turn running modes on and off. For

example, the following command:

maccs 4 > ugtrace -fi sincurve -fo singraph -a

specifies the input file to be sincurve and the output file to be

singraph. A frame of reference is also requested. The order of

these switches are not important. Each switch has a default

position. If a switch is not mentioned in the command line, the

default is applied. Hence the user includes only the non-default

switches of those modes he desired. Figure 3.1 is a summary of

all available switches and their default positions.

23

-fi <filename> pathname of specification text.
Default input mode uses STDIN.

-fo <filename> pathname of output file. Default
output mode uses STDOUT.

-us unit step tracing. Default tracing mode.

-ul unit length tracing.

-dp display patch (surface only). Default display
mode for surfaces.

-dm display mesh (surfaces or curves). Default
display mode for curves.

-a show axis. Default axis mode shows no axis.

-1 logging. Default log mode is no logging.

If switch is not included in command line, default
is a pplied.

Figure 3.1 Command line switches

The trace specification is a text file prepared using any

text editor. The text includes the set of parametric equations to

be traced and limits of the trace. Special keywords are placed at

the beginning of each line to direct UGTRACE how to treat the line

of text received. The following fragment gives a specification of

one complete cycle of the sine function. Refer to figure 3.2 for

the complete input syntax.

24

{ This is an example illustrating UGTRACE input)

constant PI = 3.141592654
constant TWOPI - 2 * PI

parameter s, t
variable x, y, z

x = t
y = sin (2 * PI + t) [This is a sine curve)

domain 0 <= t <= PI
domain PI <- t <= TWOPI

Comments are enclosed by "[" and ")". UGTRACE skips

whatever text following "[", until it reads a matching ")".

Comment text may embedded anywhere in the text or span several

lines. Nesting of comments is accepted as long as the number of

parenthesis match. Nested comments are kept track of using a

counter. Unmatched opening or closing comment parenthesis results

in a non-zero counter value.

The first category of information is constant macros.

Special values or heavily used numbers are given "names", called

identifiers. These identifiers are then used in the parametric

equations. UGTRACE looks up the values of these identifiers, and

uses them for evaluation. With this notion, lengthy constant

expressions can be shortened in appearance, special values can be

assigned meaningful names, and heavily used numbers can be

modified or replaced easily. When used in an expression, names

like "PI" are certainly more meaningful than 3.141592654. The

CONSTANT statement declares and defines a constant identifier.

25

The following syntax is recognized by UGTRACE. Key­
words are case insensitive and must be placed in the
beginning of a line. Anything enclosed by [] is optional.

∣ CONSTANT [identifier) = [token ∣ expression)

∣ PARAMETER [identifier) [[, [identifier)] ...]
I
I DOMAIN [token) [lim) [parameter identifier) [lim) [token]
∣ [, [[token]] [, [[token)]]]

∣ VARIABLE [identifier) [[, [identifier]] ...]

∣ [variable identifier) = [expression)

∣ where

∣ [identifier) is the placeholder of an alphanumeric character
∣ string starting with a character,

∣ [token] is the placeholder of a numeric value or a constant
∣ identifier,

∣ [expression) is the placeholder of an unambiguous in-order
) expression (see figure 3.3 for detail), and

[lim) is the placeholder for one of one of the inequality
∣ signs "<" , "<=" , ">" or ">="

Figure 3.2 Syntax of input text

The declaration part causes an identifier to be reserved for

assigning only constant values. The definition part assigns the

identifier a numeric value. There are three ways of doing this.

It can explicitly be a numeric value, an integer or a real number,

as shown in the first constant statement in the input fragment.

Or it can be another constant identifier whose value is already

26

defined. Thirdly, it can be any mathematical expression whose

format is described in figure 3.3. The expression may contain

constant identifiers, as shown in the second constant statement in

the input fragment. Other identifiers, such as parameter

identifiers and variable identifiers which will be introduced

shortly, are not allowed. Each CONSTANT statement initializes

only one constant identifier. However, as many as sixty four

CONSTANT Statments are allowed in the current version.

The second category is parameter information. Each

parameter is denoted by an identifier, and is given a domain of

values. Tracing is in essence incrementing the parameter value

within the given domain to obtain the locus of points. Both the

PARAMETER statement and the DOMAIN statement are used to specify

parameter information. The PARAMETER statement declares an

identifier to be a parameter. The identifier is used later in the

parametric equations. However, not all the declared parameters

have to be used. In the input fragment, two parameters are

declared but only one is used. For every used parameter, there

must be at least one domain specified. With this set up,

parameters used in the equations can be changed easily without

significant modification of the input file. One PARAMETER

statement may declare several parameters, or alternatively,

several PARAMETER statements, each declaring one parameter, can be

used. Up to eight parameters may be declared; however, only two

of them may be used since a surface cannot have more than 2

27

parameters.

Domains are defined by the DOMAIN statement. Each

statement defines only one domain which must be an interval.

Besides the lower bound and the upper bound values, there are two

other optional values in each statement. These values are used in

controlling the tracing process. If they are not specified,

default values deduced from the lower and upper bounds will be

used.

The first optional value is a magnitude value. It is

interpreted as the parameter step size under unit-step tracing,

and as the required inter-point distance under unit-length

tracing. Default magnitude for unit-step tracing is set to one

percent of the current domain width. For unit-length tracing,

this value is the distance associated with the first one percent

of the domain. The second optional value is a tolerance value

used only in unit-length tracing. For every trial step size, the

distance between the projected point and the current point is

calculated. If the difference between this distance and the

required distance is smaller than this tolerance value, then the

projected point is selected. Otherwise, a new trial value is

tested. Tolerance is being set to one percent of trace magnitude

if no override is given.

The current version of UGTRACE does not support

discontinuity of curves and surfaces. In order to allow skipping

28

over discontinuous areas, one parameter is allowed to have more

than one domain associated with it. For example, if the curve or

surface is discontinuous at t = 1, then this point can be skipped

by defining two domain intervals,

domain 0 C= t C= 0.999
domain 1.001 C= t C= 2

This method of partitioning intervals is also useful for changing

of tracing pace. For example,

domain 0 C= t <= PI, SIXTHPI
domain PI <= t <= TWOPI, THIRDPI

is equivalent to

domain 0 <= t C= TW0_PI, SIXTHPI

except that the tracing pace is changed from SIXTHPI to THIRDPI.

See Appendix C for an example of different tracing pace for same

curve/surface.

Another way of skipping discontinuous areas is to specify

open intervals instead of close intervals. Using the same example

from the preceding paragraph, the domains can be specified

domain 0 C= t < 1
domain 1 C t C= 2

In tracing open intervals, UGTRACE shifts the actual tracing

limits by 0.1 percent of the domain width. Thus in the example,

the effect will be the same as using the previous method.

29

For each parameter, UGTRACE accepts up to thirty two

DOMAIN statements. There is no checking against overlapping of

intervals. Domains are traced in the order they are defined with

no regard to their limits. Overlap areas are traced more than

once .

The final category is variable information. Similar to

the previous two categories, variables require declaration and

definition. The declaration statement begins with the keyword

VARIABLE. Several variables may be declared within one VARIABLE

statement. Or equally good, several VARIABLE statements, each

declaring one variable, may be used. Up to eight variables are

accepted by UGTRACE, but only three can be defined. There is no

keyword used for the definition of a variable,- the parametric

equation is used. However, the variable identifier must reside on

the left hand side of the equation, and the expression on the

right. Layout of the expression obeys exactly the same rules as

an in-order expression. It can be a combination of numeric

values, constants and parameters. The grammar of a valid

expression is shown in figure 3.3. Operators are given the

following precedence:

1) power "^",
2) trigonometric and exponential functions,
3) multiplication "*" and division "/",
4) addition "+" and subtraction

with association from right to left. Parentheses are required.

30

<expr>
<term>
<factl>
<fact2>
<argu>
<iden>
<lit>
<addop>
<multop>
<func>

Il
Il

Il
Il

Il
Il

Il
Il

Il
Il

<term>] <term><addop><expr>
<fact>] <fact><multop><term>
<func><fact2> ∣ <fact2>
<argu>] <argu><powop><fact2>
<lit> ∣ <iden> ∣ "("<expr)-")"
<alphanumeric string>
real] integer

" "] M — "
H * t!] tt ∕ H

"sin"] "cos" ∣ "tan" ∣"asin" j "acos" ∣ "atan" ∣

"sinh" t "cosh" ∣ "tanh" ("asinh" j "acosh" ∣ "atanh"]
"exp" j "log" ∣ "logl0" ∣

"sqrt"

< powop > : — !t "" t!

Figure 3.3 Grammar used for expression

The order of the lines is not important. For example, a

PARAMETER statement may precede a CONSTANT statement. However, an

identifier must be declared before it is used. Keywords are not

case sensitive. They also are not required to be typed out in

full. The initial three letters are enough for PARAMETER, DOMAIN,

and VARIABLE. For CONSTANT the initial five letters are required.

The complete specification text is read into memory

buffers before any parsing is done. System I/O errors such as

file nonexistence or unauthorized access are trapped. UGTRACE

halts without wasting further computation efforts. Comments

31

embedded in specification text are not relevant to the parsing

step. They are filtered out in a pre-parsing process in order to

reduce complexity of specification parsing.

Parsing is performed on a line by line basis. Each line

of text is broken down into an array of words and mathematical

symbols headed by a keyword. The keyword is used to denote the

kind of information a line carries. For example, a line headed

with the word "CONSTANT" means that the words in the current line

are used to declare and define a constant identifier. Four other

keywords are used for a complete plot specification. Input

grammar is discussed in the next section. When a line is being

analyzed, not only the syntax is parsed but also the content is

validated against previous lines. The specification built is

always a logical and consistent one. Mathematical expressions are

represented by binary trees. Operators and functions are stored

in parent nodes while operands and arguments are stored in

children nodes. Before leaving this step, a general check is made

to see whether there is information missing. Information

specified but not used will also be dropped so that minimal

information is passed on to the plotting step. It is designed in

this way so that the input can be easily modified without a lot of

retyping.

Figure 3.4 shows the domain lists and the expression trees

built from the example fragment discussed earlier. Notice that

unused information such as parameter t and variable z are removed

32

Figure 3.4 An example of UGTRACE internal
representation, tracing section

33

upon exit from the parsing level. Macro constants are referred to

their values via use of pointers. Records created in this section

are heavily used in the tracing section.

3.Tracing section

Tracing is in essence the looping through given parametric

domains, the evaluation of expression trees, and the recording of

captured points. There are two different modes of looping. They

are referred to as unit-step tracing and unit-length tracing from

this point on.

In the first mode, unit-step tracing, the parameter is

changed at uniform step size from one end of the domain to the

other, until all the domains are traced.

for parameterl = Iowerboundl , Upperboundl , Stepsizel

In case of a surface where two parameters are involved,

each parameter has its own step size. UGTRACE treats the surface

as a family of curves. For example, if parameter u and v are

used, then UGTRACE considers the surface as a family of curves

whose parameter is v. Each member in the family has a unique

value of u. Hence tracing becomes twofold: 1) picking of a member

in the family, and 2) unit-step tracing of the selected curve.

The process resembles two nested loops as follows:

34

for parameterl = Iowerboundl , Upperboundl ,
for parameter2 = lowerbound2 , upperbound2

Stepsizel
, stepsize2

The size of increment is by default one percent of local domain

width [1]. However, the user can override this default by

specifying another value in an optional field in the DOMAIN

statement.

Unit-length tracing is more complicated. It is also more

time consuming. The step size, instead of remaining constant, is

adjusted at every step so that the edges between successive points

are of uniform length. Given the first point, the second point is

located by trial and error. If the step size from the previous

pair of points is available, it is used as the initial trial

value. If no such value is available, then an arbitrary trial

value is used. A point is located and the distance is computed.

For sufficiently small trial step size, it is reasonable to assume

that the distance to the trial point increases as the trial step

size increases. Thus the trial step can be adjusted accordingly

[2] by comparing the computed distance and the required length.

Within several trials, the point is expected to home in to the

correct position. However, the assumption is not guaranteed to be

[1] The width of a domain is defined as the differ­
ence between the upper bound and the lower bound.

[2] Trial steps are adjusted using the binary subdi­
vision or expansion method.

35

true for all situations. It is possible for the step size to

oscillate without converging. In some cases, it may even diverge.

To provide an escape from these situations, UGTRACE imposed a

limit on the number of trials for one step. Once the maximum

number is reached, UGTRACE automatically stops tracing the current

domain but continues with the next one, if there is any. In this

way, a partial picture will be generated even if a total one is

not possible. The required edge length is automatically set to

one percent of the domain width. The user can override this

default length by specifying another value in an optional field in

the DOMAIN statement.

Unit-length tracing of surfaces is slightly different from

unit-length tracing of curves. For curves, there is one parameter

whose step size has to be adjusted in order to locate a point.

The algorithm can be summarized as follows:

Set parameterl = Iowerboundl
Compute current point
Set initial trial step
While (parameterl < upperboundl) do

Repeat
Compute trial point
If (trial point distance != required edge length) then

Adjust trial step size
by binary subdivision or expansion

If (no. of trials > max. no. of trials allowed) then
Abort current domain of parameterl

Until (trial point distance = required edge length)
Increase parameterl by trial step size

As for surfaces, two parameters are used. Similar to

unit-step tracing, UGTRACE also sees the surfaces as families of

36

curves, each member having an unique value of the first parameter.

The criteria used to select the members to be traced is that the

distances between the first points of successive members must be

constant (Figure 3.5). The algorithm can be summarized as

follows:

Set parameter 1 = Iowerboundl *
Unit-length trace parameters, keeping parameterl constant
Set initial trial step size for parameterl
While (parameterl < upperboundl) do

Set parameters = IowerboundS
Repeat

Compute trial point
If (trial point distance != required edge length) then

Adjust trial step size
by binary subdivision or expansion

If (no. of trials > max. no. of trials allowed) then
Abort current domain of parameterl

Until (trial point distance = required edge length)
Unit-length trace parameters, keeping parameterl constant
Increase parameterl by trial step size

3 . .4 Output section

The tracing procedures do not produce the points directly

in UNIGRAFIX format, but rather, a hierarchy of records is built

(See figure 3.6). This structure is then converted to UNIGRAFIX

format in output section.

The hierarchy results from surface tracing consists of

three levels. At the highest level is a linked list of surface

records (Si, S2, ... in figure 3.6). Each surface record

represents a patch which is determined by one combination of

domains of the two parameters. Associated to each surface node is

37

Figure 3.6 UGTRACE internal representation,
output section

38

a linked list of wire records (CU, C12, ... in figure 3.6). Each

wire record represents a curve in the second parameter, with the

first parameter constant. At the lowest level, each curve is

represented by a linked list of point records (Pill, P112, P113,

... in figure 3.6). Each point record contains the geometric

coordinates and their corresponding parameter values.

The hierarchy for curves has only two levels. Each domain

interval is represented by a wire record, with which a list of

point records associated. If more than one interval is traced,

then the curve is represented by a list of wire records.

Records of all three levels have a special tag for error

indication. In case of a partial plot where some domains are not

completed, tags are flagged from the point level up to the surface

level.

Three UNIGRAFIX entities, vertices, wires and faces, are

used. A vertex is the coordinate description of a point in three

space. Wires and faces are both lists of vertices, but the

vertices of a face have to be coplanar. Since vertices are

referenced by wires and faces, each of them is given a unique

label. UGTRACE assigns labels in hexadecimal numbers. Detailed

discussion of vertex, wire and face will not be pursued here. A

general syntax is shown in figure 3.7.

Conversion is made patch by patch, one at a time. Two

display modes, mesh mode (-dm) and patch mode (-dp), are

39

vertices: v ID x y z ,-

wires: W [ID] (vl v2 ... vn) (...) [colorID] ,

faces: f [ID] (vl v2 ... vn) (...) [ColorID] ,-

color: C ColorID intensity [hue [saturation]]

comments: { [anything [nesting is OK)
but unmatched [or)])

Figure 3.7 UNIGRAFIX syntax, abridged summary

available. Under mesh mode, the surface is converted to a

framework of wires. There are no hidden elements. All vertices

are shown. This is not the same when the surface is converted

under patch mode. Stripes of surfaces between successive contours

are cut into triangular patches. Since vertices of all triangular

patches are coplanar. Surfaces of any curvature can be converted

to a collection of faces. The picture under patch mode is a solid

one. Faces blocked from view point by other faces will not be

shown. Lighting and shading provides even more depth to the

picture. Figure 3.8 shows a surface displayed under the two

modes, and hence contrasts the difference. Patch mode is not

available for displaying curves.

40

(a) Mesh displays

(b) Patch displays

Figure 3.B UGTRACE display modes

Chapter 4

SUMMARY

The work of this project was divided into two parts: 1)

testing and debugging of UGDISP, the latest renderer of UNIGRAFIX,

and 2) designing and coding of UGTRACE. Combined together, these

two parts form a displaying tool for parametric curves and

surfaces.

The Berkeley UNIGRAFIX renderer, UGDISP, consists of over

12,000 lines of C code in 44 files. The size of the executable

file is about 234 kilobytes. The various drivers are

approximately 2,000 lines of C code. For part one, the UNIGRAFIX

language and the UGDISP input/output interface were studied, the

AED, the IMAGEN and the TEK4010 device drivers were tested for

performance. Bugs discovered were corrected. It was also found

that although the UNIGRAFIX language supports colour and light

source specification, some device drivers were not completely

developed to handle these entities. For example, if a surface is

displayed on the IMAGEN printer, the faces are always left blank

disregarding colour and light source. Other than this, UGDISP

performs satisfactorily.

For part two, a piece of software UGTRACE was developed.

UGTRACE is about 3,500 lines of C code. The size of the

41

42

executable file is approximately 65 kilobytes. From an initial

thought to the final product, the software engineering approach

was followed closely. Objectives were defined in the analysis

stage. After that, a blueprint of the solution was drafted. Then

different sections were functionally outlined. The input section

was built first, following by the tracing section and the output

section. Testing was performed on an incremental basis. Whenever

a section was finished, it was integrated into the existing system

for testing. Enhancement and modifications were constantly made

as new insights were discovered along the building and testing

process. As a result, the blueprint changed from time to time.

However, the objectives were not changed.

When both parts were completed, a set of trial runs were

used to verify program correctness. Curves and surfaces with

known shapes and forms were fed to UGTRACE. Output was piped to

UGDISP for display. If debugging was necessary, a logfile was

available through log mode for tracing of all intermediate values.

The rendering of curves and surfaces with UGTRACE and

UGDISP is an iterative process. The user plays an important role

in selecting domains, iteration step size, view points, view

directions, and so on. By carefully choosing several views of the

same curve or surface, the user can get a better idea of its

actual shape.

The scope of this project covers up to three dimensional

43

curves and surfaces given in parametric forms. The current

version of UGTRACE accepts one specification at a time and

generates one scene file for every specification. For future

enhancements, a tracing shell can be developed so that it is

possible to generate scene files of multi-curves and surfaces.

Another potential development is to allow input of curves and

surfaces given in implicit forms f(x,y,z), such as

x^2 + y^2 + z^2 = r^2

rather than in parametric forms

x = r * sin(a) * cos(b)
y = r * cos(a) * cos(b)
z = r * sin(b)

The restriction of three dimensional space can also be extended to

four dimensional space. In such case, projections of four

dimensional forms will be traced and displayed.

BIBLIOGRAPHY

COMPUTER GRAPHICS

[FOLE84] Foley, J.D. and Van Dam, A., Fundamentals of Interactive
Computer Graphics. Addison-Wesley, July 1984.

UNIGRAFIX

[SEQU83a] Sequin, C.H. and Strauss, P.S., UNIGRAFIX. Proc. 20th
Design Automation Conf.(pp.374-381), Miami Beach, FL,
June 1983.

[SEQU83b] Sequin, C.H., et al, UNIGRAFIX 2.0 User's Manual and
Tutorial. Tech. Report (UCB/CSD 83/161), U.C. Berkeley,
Dec. 1983.

[SEQU83c] Sequin, C.H., Creative Geometric Modeling with UNIGRAFIX
Tech. Report (UCB/CSD 83/162), U.C. Berkeley, Dec. 1983.

[SEQU85] Sequin, C.H. , The Berkeley UNIGRAFIX Tools Version 2^ ft.
Technical Report (UCB/CSD 86/281), U.C. Berkeley, Dec.
1985.

PROGRAMMING

[KERN78a] Kernighan, B.W. and Plauger, P.J., The Elements of
Programming Style (2nd ed.). McGraw-Hill, 1978.

[KERN78b] Kernighan, B.W. and Ritchie, D.M., The C Programming
Language. Prentice-Hall, 1978.

[JAME77] James, M.L., et al, Applied Numerical Methods for
Digital Computation (2nd ed.). Harper & Row, 1977.

[MCGI83] McGilton, H. and Morgan, R., Introducing the UNIX System
McGraw-Hill, 1983.

[MYER79] Myers, G.L., The Art of Software Testing. Wiley, 1979.

[SAHN85] Sahni, S., Software Development in Pascal (1st ed.).
The Camelot Publishing Co., 1985.

[TREM84] Tremblay, J.P. and Sorenson, P.G., An Introduction to

44

45

Data Structures with Applications (2nd ed.). McGraw-Hill,
1984 .

[AED]

[IMAG]

[LATT85]

[TEK83]

[TURA67]

[BROO75]

MANUALS

AED 512 Color Graphics Terminal, Terminal Control
Protocol.

ImageServer XP Programmer's Guide, Part I and II.

Lattice C Compiler for 8086/8088 Series Microprocessor,
Document Revision 2.15A. Lattice Inc., 1985.

Tektronix 4105 Programmer's Guide. Sep. 1983.

THESIS WRITING

Turabian, K.L., A Manual for Writers of Term Papers,
Theses, and Dissertations (3rd ed. revised). University
of Chicago Press, 1967.

Brooks, F.P.Jr., The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley, 1975.

Appendix A

USER MANUAL

A.1 ugdisp

NAME
ugdisp - render a UNIGRAFIX scene on a screen or plotter

SYNOPSIS
ugdisp [options] [< scene]

DESCRIPTION
Ugdisp can render a scene on many possible output devices.
Scene description is read from standard input, unless the
-fi option was specified. The display is controlled by the
following groups of options:

Viewing Geometry
- ep x y z

Eye point for perspective view from this point.

- ed x y z
Eye direction for parallel projection.

- vc x y z
View center for a perspective view,- i.e., the display
is centered at that point in the scene.

- va angle
View angle for a perspective view,- must be between 0
and 180, exclusively. It defines the maximum angle of
a square-based viewing pyramid, anchored at the eye
point. The default view angle is 90 degrees.

- vr angle
View rotation. By default the y-axis points up,- the
displayed scene is rotated CCW around the viewing
direction by angle degrees.

Ugdisp centers the scene and scales it to the maximal size
that would still fit in the rectangle of the screen or plot.
Specifying view center or view angle for a perspective view
overrides this auto scaling, and the picture may occupy only

46

47

part of the screen or plot. If no eye direction or eye
point is specified, the default view is -ed 0 0 -1, i.e.,
an orthogonal projection from the negative z-axis.
Clipping is not performed with hidden feature removal, so
the user should be careful when specifying a perspective
view not to position the eye point too close (or inside) the
scene. This will hopefully be remedied in the future.

Display Modes
- hn Hide nothing, make no visibility checks (Default).

- hb Hide back-faces, i.e., faces with face normal pointing
away from eye.

- ho Hide overlaps,- remove all features hidden by overlaps.
Implies -hb.

- ab Add back-faces. Overrides any specific or implied -hb.

- se Show edges and wires only (Default).

- sf Show only faces without edges or wires. Implies -ho and
-hb.

- sa Show faces and edges. Implies -ho and -hb.

- fw x y z dl d2
Fade against white background in the interval dl - d2 .

- fb x y z dl d2
Fade against black background in the interval dl - d2 .
x, y and z specify the eye point; dl and d2 are dis­
tances from this eye point.

- sg Show smoothly shaded faces (with Gouraud shading).
Implies -sf.

If the -sa option is combined with gouraud shading then only
a subset of the edges is displayed,- those edges are wires,
contour edges (edges with faces on one side only), intersec­
tion edges, and edges with one face on each side and with a
dihedral angle that is less then the value of some specified
corner angle. This corner angle defaults to IOO degrees, and
can be changed with the following option:

-ca angle
The corner angle is set to angle degrees. The default
is 100 degrees.

-st Show text. The first text statement in the input scene

48

is executed.

-sc Show coordinate axes.

-in Detect and correctly display intersecting faces.

-w Perform extra checks to display warped (non-planar)
faces.

Labeling
-Iv Label vertices. The vertex identifier is printed next

to the vertex position. If -hb was specified (or
implied) then vertices that belong to back-faces are
not labeled.

-If Label faces. The face identifier is printed on the
center of gravity of the face. Faces are not labeled if
hidden features are removed.

-Iw Label wires. The wire identifier is printed on the
center of gravity of the wire.

-Ie Label edges with their length.

-Ia Label all (vertices, faces, wires, edges).

Identifiers starting with the character '⅛' are not printed.
If an identifier contains a then only the suffix follow­
ing the last is printed. Some devices do not support
labeling.

Output Devices
-dv Output device is a Benson Varian plotter.

-dw Versatec 36'' wide-bodied plotter.

-dm Imagen printer.

-da AED 512 color display (set GRTERM to appropriate
/dev/tty??).

-dx Vectrix color display (set GRTERM to appropriate
/dev/tty??).

-dr IRIS graphics terminal (set GRTERM to appropriate
/dev/tty??).

-di Ikonas frame buffer. A raster file called "rast.iv''
is created, and can be displayed with the iv program.

49

Output is also sent to a variety of display terminals that
usually serve as the user's console or tty. If the environ­
ment parameter TERM is set to the terminal's name then no
device option is necessary. Otherwise (or when ugdisp is
used from ugi with a permanent device option different from
the console) the terminal type should be specified:

-dt Tektronix 4115 (TERM = 4115).

-dT Tektronix 4691 plotter.

-dk Tektronix 4010 (TERM = 4010).

-dK Tektronix 4107 (TERM = 4107).

-dh Hp 2648a (TERM = hp2648a).

-dS Sun microsystems workstation (Default, TERM = sun). If
hidden feature removal is performed the picture is sent
to the screen in 10 or more equal chunks. If only edges
and wires are plotted then the picture is sent to the
screen only when it is complete.

-ds Sun microsystems workstation. If hidden feature remo­
val is performed the picture is sent to the screen
scanline by scanline (it is slower than with the
default -dS and useful only for debugging purposes).
If only edges and wires are plotted then the picture is
sent to the screen line by line; this is useful to pre­
view complicated scenes before doing the hidden feature
removal.

-df frame-file
Sun microsystems workstation. Frame-file is a name of
a raster file that will contain the picture. The raster
dimensions are 256 x 256 and it is meant to be an input
for the framedemo program. The Uganimate program allows
easy creation of simple animations with framedemo.

If no device option is specified, and the TERM parameter is
not set to any of the above terminals then a dumb terminal
is assumed; the output is in a crude form of ascii charac­
ters .
The output to the plotters and to some of the terminals can
further be controlled by setting its size:

-sx number
x-size of the plot is adjusted to fit into number
inches. The default is the width of the display device.

50

-sy number
y-size of the plot is adjusted to fit into number
inches. The default is the height of the display dev­
ice. On the Varian and Versatec plotters the default
is 8'' and 36'' respectively; specified y-size can be
up to twice the default.

Files
-fi input-file

Read input scene from file input-file.

-fc command-file
Read options from file command-file.

-cm colormap-file
Read color map description from file colormap-file.

-fr raster-file
Put raster file in file raster-file. Raster files are
named "∕usr∕tmp∕ug??????'' by default. This is useful
if there is not enough space in /usr/tmp on your
machine.

-kf Keep raster file. By default raster files are deleted
after plotting; with this option the raster file name
is printed on standard error and the file is not
deleted. This is useful if you want to plot several
copies of the same scene.

-kt Keep the temporary files that are created during the
processing of a text statement. Those files are
"/usr/tmp/ug?????.tex'', "ug?????.log'' and
ug?????.dvi''. The default is to delete them.

-np No plot. The raster file is not sent to the plotter.

File-names can be expressed with all the csh conventions
except globbing, i.e., start with user/...'' or

/...'', contain environment parameters like "$W0RKDIR'',
contain $$'' etc. If the file is not found in the current
directory, and the -fi or -cm options are used, then ugdisp
tries to read ""ug∕lib∕input-file''.

The -fr , -kf and -np options apply only to the Varian and
Versatec plots.

EXAMPLE
ugdisp -ep -1 2 -10 -va 30 -sa -in -dw -sy 8 < scenefile

51

FILES
ug/bin/ugdisp
"ug∕src∕ug2∕ugdisp
/usr/tmp/ug??????

SEE ALSO
ugi(UG), ugisect(UG), Ugshow(UG), Ugplot(UG), Uganimate(UG)

DIAGNOSTICS
Ugdisp prints to standard error the elapsed user and system
times (in seconds) after each step in the processing. This
printout is suppressed on some devices where is would inter­
fere with the picture, and when ugdisp is called from ugi.
If the -v option is specified, ugdisp will print more
detailed statistics: number of intersections in -in mode,
number of warped faces in -w mode, and the cpu times of the
hidden feature removal module.

BUGS
Does not clip to the viewing pyramid in perspective view, so
behavior is unpredicted if the eye-point is too close or
inside the scene.
Horizontal edges may be excessive or missing in -ho and -sa
modes.

AUTHOR
Nachshon Gal

A .2 ugtrace

NAME
ugtrace - trace a parametric curve or surface

SYNOPSIS
ugtrace [options] [< source file] [> output file]

DESCRIPTION
Ugtrace can parse a parametric specification of a curve or
surface, and translate it into the UNIGRAFIX scene
descriptive language. Specification is read from standard
input, unless -fi option was used. The following run-time
options are implemented.

Input and Output
- fi source filename

Read specification from source file. This switch should
not be used in combination with input redirection.
Default is stdin.

- fo output filename
Write scene description to output file. This switch
should not be used when output redirection is used.
Default is stdout.

Tracing Mode
- us unit step tracing. Parameter is changed at uniform step

size. Default tracing mode.

- ul unit length tracing. Also known as unit speed tracing.
Successive points plotted will be at equal distance apart.

Display Mode
- dp display patch. Surface only. Solid view of surface is

shown. Hidden features are removed under this mode.
Default for surface display.

- dm display mesh. Function is displayed as a wire mesh.

Miscellaneous Options
- a show axis. Include coordinate axes into scene description.

Default is no axis.

- 1 logging. Mainly for debugging during development.

52

53

Values of internal data variables at selected checkpoints
are logging to a temporary file. Default is no logging.

EXAMPLE
ugtrace -a -fo spec.out < specification

SEE ALSO
ugdisp(UG)

DIAGNOSTICS
Execution is divided into five blocks. UGTRACE reports on the
control terminal the execution status. Statistical data on
each block is also printed. If UGTRACE is not able to complete
a trace, then the reason for failure will be reported.

BUGS
A surface patch generated by UGTRACE may not be always visible
even if nothing is blocking the view. This is because UNIGRAFIX
considers one side of a face as inside and the other side as
outside. Only the outside is visible. Therefore, if the
viewpoint is looking at the inside of a face. It will not be
displayed.

AUTHOR
Henri Cheung

Appendix B

TUTORIAL

Introduction

The purpose of this tutorial is to teach the user how to
display parametric curves and surfaces using the UNIGRAFIX system.
We will go through an example of a spiral about the z axis,

x = u * sin(u)
y = u * cos(u)
z = 10 * u

for 0 C= u <= (10 * pi)

in doing so. We will learn to use the generator UGTRACE and the
renderer UGDISP. The user is assumed to have a general knowledge
of the UNIX operating system, and the authority to access the
UNIGRAFIX files. A graphics terminal is also required if the user
intends to display the scene to the screen.

The tutorial is divided into three parts:

1) creating the specification file,
2) generating the scene file using UGTRACE, and
3) viewing the scene file using UGDISP.

Creating the Specification File

The specification file has to be prepared manually by the
user. Any text editor can be used. The syntax and semantics of
the specification is simple and straight forward. Five types of
statements are used. We shall discuss them in the order that they
appeared in the specification. Individual statements must be
completed within one line.

The PARAMETER Statments

In our example, the parameter is named u. The PARAMETER
statement is used to declare one or several parameter names. In
other words, we are reserving the names as parameter identifiers.
Any alphanumeric string starting with an alpha character can be

54

55

used as a parameter name. Unlike the leading keyword, names are
case sensitive. The name u is not the same as the name U. To
declare u, we enter the following line:

parameter u

If more than one identifier is declared within one
statement, then the identifiers are separated by a comma. The
leading keyword "parameter" can be typed either in lowercase or
uppercase (like all other keywords discussed later). A short form
"par" is also acceptable. Although only two parameters are used
in surface specifications, each specification file accepts up to 8
parameter declarations.

PARAMETER pl,p2,p3,p4,p5,p6,p7,p8

parameter pl,p2,p3,p4,p5,p6,p7,p8

parameter pl, p2, p3, p4
PAR p5, p6, p7, p8

par pl
par p2
par p3
par p4
par p5
par p6
par p7
par p8

All of the above four groups of PARAMETER statements are
correct and semantically identical. There are no restrictions on
how many times the PARAMETER Statment can be used in one
specification. However, a parameter must be declared before it
can be used in the equations and the DOMAIN Statments discussed
later.

The VARIABLE Statments

Next, we have to declare the variables in our example.
They denote the Cartesian coordinates of the points being plotted
in 2-space or 3-space. Declaration of variable names is identical
to that of the parameters, except that the leading keyword is
changed to "variable" (or "var" in short). In our example, we
enter

variable x, y, z
or

var x, y, z

56

Although only two variables are used in curves
specifications, and three in surfaces, each specification file
accepts up to 8 variable declarations. The user must be careful
not to use names that are already declared.

The parametric equations

After all the parameters and variables are declared, we
can define the parametric equations for the curves or surfaces
which we want to display. No special keywords or particular
grammars are required. The equation itself is entered into the
specification file. However, parentheses should be used to avoid
ambiguities. Each specification allows up to 3 parametric
equations. For our example, we copy directly from the equations
above,

x = u * sin(u)
y = u * cos(u)
z = 10 * u

Note that a declared variable must be in the leading
position followed by an equal sign " = ". The expression on the
right consists of operands and operators. Operands can be
integers, real numbers or declared parameters. The operators are
listed in decreasing precedence as follows:

power operator
pre-defined functions sin(), cos(), tan(),

asin(), acos(), atan(),
sinh(), cosh(), tanh(),
asinh(), acosh(), atanh(),
exp(), log(), loglO() and sqrt()

multiplication and division
addition and subtraction +

The DOMAIN Statments

Now that we have declared and defined the variables and
the equations, we specify the domains of the parameters. Each
DOMAIN statement starts with the keyword "domain" (or "dom"),
followed by the bounds of the domain. In our example, we want to
display parameter change for u from 0 to ten pi. The required
DOMAIN statement would be:

dom 0 <= u <= 31.41592654

The bounds can be in decreasing order. The following
statement is equally valid:

dom 31.41592654 >= u >= 0

57

For open intervals which do not include end points, inequality
symbols "<" and ">" are used instead of "<=" and ">=" shown.

In the DOMAIN statements, there are two other optional
fields whose values are used to control of the trace process. The
first field is used as a magnitude value. In unit-step tracing,
this value is interpreted as the step size for parametric
increment. In unit-length tracing, the value is used as the
required edge length for the scene to be generated. The second
value is used in unit-length tracing only. It is the tolerance
value for the required edge length. In most cases, the user need
not worry about these values. The system will calculate a default
based on the domain's upper and lower bounds. However, if we
enter values into these optional fields, the default values will
be overridden. For example,

dom 0 <= u <= 31.41592654 , 0.25 , 0.005

In the above statement, we specify the magnitude of u to
be 0.25 and the tolerance to 0.005. In unit-step tracing, the
value of u will be increased from 0 at steps of 0.25 until ten pi,
and 0.005 is ignored. In unit-length tracing, all the edges in
the scene will be with the range (0.25 + 0.005) and (0.25 -
0.005).

The CONSTANT Statments

The previous four types of statements are sufficient to
define a specification file for UGTRACE. However, we notice that
some numerical values such as pi and e have special mathematical
meanings, and are used more often than others. It is more
appropriate and more readable to use their names than to use their
values. The CONSTANT statements are designed for such purposes.
Each CONSTANT statement starts with a leading keyword "constant"
(or "const" in short), followed by a constant name and the
equivalent value. pi and e would be defined by the following
statements,

const pi = 3.141592654
const e = 2.7182818

Note that both declaration and definition of a constant name is
included in the same statement. Each statement can declare and
define only one constant. The value on the right hand side of the
equal sign can be expressed in an expression format similar to
that of the parametric equations. However, parameter names are
not allowed in the expressions. In our example, we may define pi
and ten pi to be constants:

const pi = 3.141592654

58

const tenpi = 10 * pi

With the above constants defined, our specification file becomes

x = u * sin(u)
y = u * cos(u)
z = 10 * u

dom 0 <= u <= tenpi

The comments

Comments are any text enclosed by "{" and ")". They can
appear anywhere within the specification. Nesting of comments is
allowed, but the number of ")" must match the numbers of "{".
With this feature, we can place explanatory notes in the
specification file. Comments can also be used cross out
information from the specification without deleting the text from
the file. In practical application, the specification file of our
example may look like this:

[it***}
[This is an example used for tutoring purpose.)
{ File name of this file is called "scene.spec")

const pi = 3.141592654
par u
var x, y, z

{ constant used)
[parameter used)
[variables used]

x = u * sin(u)
y = u * COS(U)
t
z = 10 * u
) _
z - (pi - u)^2

[original version of z)

[modified version of z)

^**}
const tenpi = 10 * pi [constant used)
const a =0.25 [constant used)
const b = 0.005 [constant used)
{it***}
dom 0 <= u <= tenpi{, a, b) [uncomment }

[for override)
^**************************************⅛*******⅛⅛^

Generating the Scene File

After the specification file has been created, we use

59

UGTRACE to generate the scene file. We will go through this
section by giving some examples:

ugtrace -fi scene.spec -fo scene.script

The above command specifies an input specification file
called "scene.spec" and generates a scene file called
"scene.script". Since no tracing mode is specified, UGTRACE uses
unit-step automatically. Under this mode, points generated are at
equal parameter step size. Since "scene.spec" contains a surface
specification, default display mode is patch display.

ugtrace -a -ul -dm < scene.spec > scene.script

The above command uses redirection instead of I/O
arguments. It specifies the axes to be included into the scene
file. Since -dm is used, display mode will be display mesh.
Tracing mode is overridden to be unit-length tracing. Under
unit-length tracing, all the edges generated in the scene file
will be of equal length.

The usage of UGTRACE is like other UNIX system commands.
The command name is followed by a list of arguments. Each
argument starts with For a summary of the arguments, the
user can refer to the UGTRACE user manual for detail.

Viewing the Scene File

After the scene file has been generated, we are finally in
a position to display the curves or surfaces we started with. We
use UGDISP to view the scene. Three display devices are available
at McMaster University. They are the AED terminal, the IMAGEN
laser printer, and the IBM PC's which emulate a Tektronix 4010
terminal using QK-Kermit. In this section we will focus on how to
send output to these devices. For a complete tutorial on how to
use ugdisp, see UNIGRAFIX 2.0 User's Manual and Tutorial by
C. H. Sequin, and also the UGDISP user manual.

Using the AED 512 terminal

First, we log on at the AED terminal. Then, we find out
the system address of the AED terminal. Type, on the AED
terminal, the command

tty

and the system will display the address of the terminal, for
example:

60

∕dev∕ttyA4

Ugdisp make use of a system variable called GRTERM to
identify the address of the AED terminal. Therefore, we have to
set GRTERM before we run ugdisp. To set GRTERM, type the command

setenv GRTERM=∕dev∕ttyA4

Once GRTERM is set, we can run ugdisp on either the AED
terminal or another control terminal. Ugdisp will send the output
to the address obtained from GRTERM. However, we must specify
that the output device is an AED terminal using the "-da" switch.
To display scene.script, type the following command,

ugdisp -da < scene.script

and the output will be sent to the AED terminal.

Using the IBM PC's

In order to use the PC's as a display terminal, we must
obtain a copy of QK-Kermit, a communication software package
running under DOS. After booting the PC using a DOS system disk,
we run QK-Kermit to dial in CSSVAX and log on. Terminal type is
VT100. Once logged on, we run ugdisp by typing the following
command

ugdisp -dk < scene.script

and the output will be sent to the PC. The "—dk" switch specifies
a Tektronix terminal. Under this setting, the control terminal
and the display terminal must be the same terminal.

Using the IMAGEN printer

Any logged on terminal can be used to send the scene
output to the IMAGEN printer. The "-dm" is used. To obtain a
hardcopy of the scene, type the following command,

ugdisp -dm < scene.script

and the output will be sent to the IMAGEN printer linked to the
CSSVAX.

Appendix C

EXAMPLES

61

62

Example Cl Unit-step Versus Unit-length

This example demonstrates the difference
between unit-step tracing (-us) and unit­
length tracing (-ul)

)

par u, v
var x, y, z

x = u
y = sin(u) * sin(u) * sin(u) * sin(u)
Z = V

const pi = 3.141592654
const pi2 = 2 * pi

[Use this block for unit-step tracing)
[
const ustep = pi ∕ 6
dom 0.0 <= u <= pi2, ustep
dom 0.0 <=v <= 6.0, 0.6
}
[Use this block for unit-length tracing)

dom 0.0 <= u <= pi2, 0.4
dom 0.0 <= v <= 6.0, 0.6

[
Comment:

Note that the grid sizes are more regular
on the plotting resulted from unit-length trace

)

63

Figure C.l (a) Unit-step tracing
ugtrace -us -dm -fo example.cl.out < example.cl
ugdisp -dm -ed 2.5 4 -5 < example.out

64

Figure Cl (b) Unit-length tracing
ugtrace -ul -dm -fo example.cl.out < example.cl
ugdisp -dm -ed 2.5 4 -5 < example.out

http:example.cl

65

[
Example C.2 Varying Tracing Magnitude
and Using Multiple Domains

)

par s, t
var x, y, z

x = t
y = tan(t)
z = s

dom 0 <= s <= 5, 1

const pi = 3.141592654

[setting up constants for defining multiple domains)

const Rl =
const R2 =
const R3 =

const R4 =
const R5 =
const R6 =

const R7 =
const R8 =
const R9 =

pi ∕ 10
2 * pi ∕ 10
3 * pi ∕ 8

pi - R3
pi - R2
pi - Rl

Rl - pi
R2 - pi
R3 - pi

[Use this block rough plotting)
[
dom -pi <= t <= R7, 0.10 [plot from -pi to -pi∕2)
dom R7 <= t <= R8, 0.20
dom R8 <= t <= R9, 0.25

dom -R3 <= t <= -R2, 0.25
dom -R2 <= t <= -Rl, 0.20
dom -Rl <= t <= Rl, 0.10
dom Rl <= t <= R2, 0.20
dom R2 <= t <= R3, 0.25

[plot from -pi∕2 to pi/2)

dom R4 <= t <= R5, 0.10 [plot from pi/2 to pi)
dom R5 <= t <= R6, 0.20
dom R6 <= t <= pi, 0.25
)
{ Use this block detail plotting)

66

dom -pi <= t <= R7, 0.05 { plot from -pi to -pi∕2)
dom R7 <= t <= R8, 0.10
dom R8 <= t <= R9, 0.15

dom -R3 < = t <= -R2, 0.15 [plot from -pi∕2 to pi/2)
dom -R2 <= t <= -Rl, 0.10
dom -Rl <= t <= Rl, 0.05
dom Rl <= t <= R2, 0.10
dom R2 <= t <= R3, 0.15

dom R4 <= t <= R5, 0.05 [plot from pi/2 to pi)
dom R5 <= t <= R6, 0.10
dom R6 <= t <= pi, 0.15

[
Comment:

As t approaches multiples of half pi, rate of change
of tan(t) increases. Therefore, decreasing the step
size of t Stablizes the distance between the points
traced. Changing of step size is done by splitting
the domain into smaller intervals where each interval
has its step size.

C?

68

69

[
Example C.3 Mesh Display Versus Patch Display

This example demonstrates the difference
between the two displaying modes

)

par u, v
var x, y, z

x = sin(v) * cos(u)
y = sin(v) * sin(u)
z = cos(v)

const

const
const
const

pi =

Lu =
Ru =
du =

3.141592654

O
2 * pi
pi ∕ 6

const Lv = -pi
const Rv = Pi
const dv = pi ∕ 6

dom Lu <= U <= Ru, du
dom Lv <= V < = Rv, dv

70

Figure C.3 (a) Mesh display
ugtrace -us -dm -fo example.c3.out < example.c3
ugdisp -dm -ed 1 1 -1 < example.c3.out

http:example.c3

71

Figure C.3 (b) Patch display
ugtrace -us -dm -fo example.c3.out < example.c3
ugdisp -dm -ho -ed 1 1 -1 < example.c3.out

Appendix D

ALGORITHMS AND DATA STRUCTURES

FOR UGTRACE

D.1 Overview

D.1.1 CONTROL FLOW

Main control flow is reflected in the leading module main().
There are 5 processing phases. Each phase is initiated by one or
more leading sub-modules in main(). The control flow is shown as
follow:

Phase 1 - Scanning Command Line [Input Section]
Command line is scanned for run-time options. Getcmdln() sets
various switches for run-time options. Chkcmdln() checks for
error conditions and logical conflicts on switches set. If the
log option is set, then a logfile is created with a system
generated filename.

Phase 2 - Loading Specification [Input Section]
Getspec() reads the specification from the specified source input
to a memory file. Upon successful completion, getspec() returns
the number of lines it has read to the memory file. Comments in
the specification is also replaced with blanks by getspec(). If
getspec() cannot open the file or if the file is empty or too
large, then the program will be aborted without returning to
main().

Phase 3 - Parsing Specification [Input Section]
Intrspec() is a leading sub-module to the parsing process. The
memory file is parsed line by line. The specification is
transformed from text form to internal data structures.
Information records and expression trees are built during this
parsing process. Following intrspec(), chkspec() and audit() are
called to perform checking and auditing functions on the resulting
data structures. Missing information is detected and default
values are applied at this stage.

Phase 4 - Tracing [Tracing Section]
Plotspec() is the leading sub-module to the tracing process. It
takes the expression trees and various information records and
plots some points in the given domains. Upon successful

72

73

completion, plotspec() returns the number of points plotted and a
hierarchy of point records.

Phase 5 - Exporting to UNIGRAFIX format [Output Section]
Export() is the leading sub-module to the exporting process. The
hierarchy of records generated from plotspec() is transformed to
the UNIGRAFIX format. Each point is given a unique vertex name.
Vertices of a curve or a patch are then referenced using the
vertex names. Curves and patches are also given unique names for
identifying purposes. Two files are used, one to store the
vertices and the other to store the curves or patches. When all
the records in the hierarchy structure are visited, the second
file is appended to the first to produce one output file.

D.1.2 SOURCE FILES

UGTRACE has 11 files of C source code:

ugtrace.c — leading module: main()

cmdln.c — miscellaneous functions for parsing command line:
getcmdln(), chkcmdln()

input.c — miscellaneous functions for getting input:
getspec(), intrspec(), getarg()

parse.c — miscellaneous functions for parsing input:
getconst(), getvar(), getpar(), getdom(),
geteqt(), geto⅛en(), chkspec(), namegood(),
nameused(), isconstant(), isparameter(),
isvariable(), isdomain(), isletter(), findulen()

expr.c — miscellaneous functions for parsing expressions:
isform(), isexpr(), isterm(), isfactl(),
isfact2(), isargu(), isiden(), islit(),
isfunc(), isaddop(), ismultop(), ispowop()

evalu.c — miscellaneous functions for evaluating expression:
evalu(), evalu2()

unitstep.c — miscellaneous functions for unit step tracing:
plotspec(), plotsurfaces(), plotlsurface(),
plotcurves(), plotlcurve(), mkpoint(),
mkcurve(), mksurface()

unitlen.c — miscellaneous functions for unit length tracing:
unitlsurface(), unitlcurve(), homein()

export.c — miscellaneous functions for exporting to UNIGRAFIX
format: export(), putsurface(), putcurve(),

74

putlimit(), putaxis(), putcmap(), nextid()

message.c -- miscellaneous functions for displaying messages:
message()

audit.c — miscellaneous functions for auditing:
audit(), logsurface(), logcurve(), logpoint(),
prtexpr(), prtop()

All the functions are listed in alphabetical order at the end of
this appendix.

D . 2 Input section

D.2.1 SCANNING COMMAND LINE [PHASE 1]

The command line arguments are stored in an array of strings, one
per string. The pointer to this array, called argv, and the
number of arguments the program was invoked with, called argc, are
passed to main() when it begins executing. Argc and argv are then
passed to getcmdln().

Getcmdln() looks at the argument strings sequentially, and
compares them with the valid switches set. If a match is found,
then the flag for that switch is raised. A flag is an integer
whose value is either 0 or 1. For switches like "-fi" and "-fo",
the next argument is interpreted as a filename instead. If no
match is found for the argument string, then the error flag for
unresolved switch is raised.

Algorithm for getcmdln():

1 Set all switches to their default values

2 If no more argument, then goto 11

3 If match "-fi" switch, then
3.1 if next argument is a valid filename, then

- copy next argument to input filename
- skip next argument

else raise "fi" error flag
3.2 goto 2

4 If match "-fo" switch, then
4.1 if next argument is a valid filename, then

- copy next argument to output filename
- skip next argument

else raise "fo" error flag

75

4.2 goto 2

5 If match "-us" switch, then
5.1 turn unit-length tracing mode off
5.2 goto 2

6 If match "-ul" switch, then
6.1 turn unit-length tracing mode on
6.2 goto 2

7 If match "-dp" switch, then
7.1 turn mesh display mode off
7.2 goto 2

8 If match "-dm" switch, then
8.1 turn mesh display mode on
8.2 goto 2

9 If match "-a" switch, then
9.1 turn axis mode on
9.2 goto 2

10 If match "-1" switch, then
10.1 turn log mode on
10.2 goto 2

11 Raise unresolved switch error flag

12 Return

Note that it is possible in the above algorithm to set a switch
more than once. If a switch is set more than once, then the
previous setting is overwritten by the new one.

Chkcmdln() is called after getcmdln() to check the status of
various switches.

Algorithm for chkcmdln():

1 Check status of all switches and report their settings

2 Check whether input path is accessible

3 Check whether output path is accessible

4 Return

Any checking and validating of command line arguments should be
included in chkcmdln().

76

D.2.2 LOADING SPECIFICATION [PHASE 2]

After the scanning of command line arguments, the plot
specification is read from the input stream. Getspec() takes the
input filename, loads the complete file to a temporary memory
buffer and returns the number of lines of the file. Comments in
the file are also substituted with white spaces.

Algorithm for getspec():

1 Allocate memory buffer for an array of lines

2 Open input stream

3 While (not EOF) and (buffer not full) do
3.1 read one line of text to buffer
3.2 increment line counter by 1

4 Close input stream

5 Filter out comments

6 Return total number of lines

Nesting of comments is allowed. A counter is used to count the
level of comments. The counter is initially set to 0. The buffer
is examined character by character. If a "[" is encountered, then
the counter is increased by 1. On the other hand, if a "}" is
encountered, the counter is decreased by 1. When the counter has
a positive value, the characters examined are substituted by white
spaces. An exception is the newline characters. They are not
replaced even if the counter has a value larger than zero. An
error occurs whenever the counter becomes negative, or when all
the characters are examined and the counter does not equal to 0.

D.2.3 PARSING SPECIFICATION [PHASE 3]

D.2.3.1 Parsing Shell

Parsing of a line is performed according to the category of
information the line contains. Intrspec() is a shell which looks
at the buffer of lines from phase 2 and determines the required
parsing module for each line. Each line from the buffer, when
processes by intrspec, is split into an array of words.

Algorithm for intrspec():

1 Allocate memory for an array of words

2 While there is a line to process do

77

2.1 Split line into an array of words
2.2 If first word indicates CONSTANT statement then

parse a CONSTANT statement
2.3 If first word indicates PARAMETER statement then

parse a PARAMETER statement
2.4 If first word indicates VARIABLE statement then

parse a VARIABLE statement
2.5 If first word indicates DOMAIN statement then

parse a DOMAIN statement
2.6 Otherwise parse an equation

3 Release memory space for word array

4 Release memory space for line array

5 Return

A word is alphanumeric string of characters terminated with a
white space or a newline character. The string cannot contain any
of the special characters: "*", "/", "^", "(", ")", "<",
">", "=", and Each special character, except "<" and ">",
stands alone as a word and does not require white space or newline
delimiters. "<" or ">" may be followed by "=" to form one word
"<=" or ">=". Each word when copied from the line buffer to the
word array is stripped of leading and trailing blanks, and
appended with a null character " ". The end of the word array is
marked by a null string "" which consists of a single null
character.

Note that and "." are not special characters and can be used
as part of a word.

D. 2.3.1.1 Parsing a CONSTANT Statement

Called by intrspec(), getconst() takes an array of words and
builds an internal record for a constant identifier. The record
is of type identifier:

struct identifier
[

int itype ,- ∕* type CONSTANT *
char nam[WORDSIZ]; ∕* constant name *
double valu; ∕* constant value *
double vmin, vmax; ∕* not used *
struct expr *f; ∕* expression, if any *

Type identifier is also used by parameter identifiers and variable
identifiers. The integer value of field itype determines the
content of the record. Field nam store the character string which
denotes the constant. Field valu store the numeric value of the

78

constant. If an expression is used to define the value, then the
expression is referred to by pointer field f. Expressions are
discussed in D.2.3.7.

An array of pointers,

struct identifier *const[NUMCONST]

are used to keep track of the constant records. NUMCONST is the
size of the array. For each successful invocation of getconst(),
a new constant record is added to *const[].

Algorithm for getconst():

1 Verify that the second word in the array is an
identifier

2 Verify that the identifier is not previously declared
as constant, parameter or variable

3 Verify that *const[] is not full yet

4 Verify that the third word in the array is an equal
sign, "="

5 Create an expression from the rest of the words

6 Create an identifier record

7 7.1 set field itype to CONSTANT
7.2 copy the second word to field nam
7.3 point field f to expression created
7.4 evalu expression and store value to field valu

8 Return

Note that the above algorithm does not allow a constant to be
redeclared or redefined.

D. 2.3.1.2 Parsing a PARAMETER Statement

Called by intrspec(), getpar() takes an array of words and builds
an internal record for a parameter identifier. The record is of
type identifier:

struct identifier
f
int itype,-
char nam[WORDSIZ] ,-
double valu;
double vmin;

∕* type PARAMETER */
∕* parameter name */
∕* instantaneous par. value */
∕* not used */

79

double vmax,- ∕* number of domains */
struct expr *f; ∕* not used */

)

Field itype is set to PARAMETER. Field nam stores the character
string which denotes the parameter. Field valu and field vmax are
not used in declaration. Field valu is used to store the
instantaneous value of the parameter during the tracing. Field
vmax is used to count the number of domain ranges.

An array of pointers,

struct identifier *param[NUMPARAM]

are used to keep track of the parameter records. NUMPARAM is the
size of the array. For each successful invocation of getpar(), a
new parameter record is added to *param[]. The number of
parameter records allowed is arbitrary and not necessarily two.

Algorithm for getpar():

1 Verify that the second word in the array is an
identifier

2 Verify that the identifier is not previously declared
as constant, parameter or variable

3 Verify that *param[] is not full yet

4 Create an identifier record

5 5.1 set field itype to PARAMETER
5.2 copy the identifier to field nam
5.3 Create an domain array (see D.2.3.5)

6 If next word equal then goto step 1
else if next word not equal "" then error

7 Return

Note that the above algorithm does not allow a parameter to be
redeclared.

Each parameter record may have more than one domain interval. The
information about domains are stored in another array called dom.
The number of elements in dom is stored in field vmax of the
parameter record. Domains are discussed in section D.2.3.5.

D.2.3.1.3 Parsing a VARIABLE Statement

Called by intrspec(), getvar() takes an array of words and builds

80

an internal record for a variable identifier. The record is of
type identifier:

struct identifier

int itype,- ∕* type VARIABLE V
char nam[WORDSIZ]; ∕* variable name */
double valu ; ∕* instantaneous var. value */
double vmin ; ∕* min recorded value */
double vmax,- ∕* max recorded value */
struct expr *f,- ∕* expression for variable */

Field itype is set to VARIABLE. Field nam stores the character
string which denotes the variable. Field valu, field vmin, field
vmax and field f are not used in declaration. Field valu is used
to store the instantaneous value of the variable during the
tracing. Field vmin and field vmax are used to stored the minimum
and maximum value of the variable. Field f is the expression used
to evaluate the instantaneous value of the variable.

An array of pointers,

struct identifier *var[NUMVAR]

are used to keep track of the parameter records. NUMVAR is the
size of the array. For each successful invocation of getvar(), a
new variable record is added to *var[]. The number of variable
records allowed is arbitrary and not necessarily three.

Algorithm for getvar():

1 Verify that the second word in the array is an
identifier

2 Verify that the identifier is not previously declared
as constant, parameter or variable

3 Verify that *var[] is not full yet

4 Create an identifier record

5 5.1 set field itype to VARIABLE
5.2 copy the identifier to field nam

6 If next word equal then goto step 1
else if next word not equal "" then error

7 Return

Note that the above algorithm does not allow a variable to be

81

redeclared .

D.2.3.1.4 Parsing a DOMAIN Statement

Called by intrspec(), getdom() takes an array of words and builds
an internal record for a domain interval. The record is of type
domain:

struct domain
[
int flag,-
double dmin,-
double dmax,-
double trace,
double precision

∕* inequality flag code */
∕* lower limit of domain interval */
∕* upper limit of domain interval */
∕* trace magnitude */
∕* unit length trace precision */

Field flag is used to indicate interval type. There are 4 types
of intervals:

Type 1: (dmin , dmax) Type 3: (dmin , dmax]
Type 2: [dmin , dmax] Type 4: [dmin , dmax)

where "(" and ")" denote an open end of a interval, "[" and "]"
denote a closed end of a interval. Field dmin and field dmax
store the lower and upper limit of the domain interval. Field
trace stores the trace magnitude. Field precision is used only in
unit length mode.

An array,

struct domain (*dom[NUMPARAM])[NUMDOM]

is used to store domain information. Each member of the array is
a pointer to an array of domain record. The size of the array of
pointers is NUMPARAM. When a parameter record is created and
referred to by a slot in "param", an array of domain records is
created as well. The array index used in "param" is also used in
"dom" to index the array of domain record for that parameter.

NUMDOM is the maximum number of intervals allowed for each
parameter. For each successful invocation of getdom(), a new
domain record is initialized.

Algorithm for getdom():

1 Verify that the second word in the array is a number or
a constant

2 Verify that the next word is an inequality sign, "<",
">", "<=" or ">="

82

"<" and ">"

3 Verify that
identifier

the next word is a declared parameter

4 Verify that
M < ≈ M

the
or "

next
> = "

word is an inequality sign, "<",

5 Verify that the next word is a number or a constant

6 Verify that the two signs are not contradicting, e.g.

7 If next word is then
get a number or constant for trace magnitude,

else if tracing mode is unit step then
apply default for trace magnitude: 1¾ of interval

else
left trace magnitude blank

8 If next word is then
get a number or constant for trace precision,-

else
left trace magnitude blank

9 9.1

9.2

Copy all the values to correct parameter domain
array slot

Increase the vmax field in the parameter record
by 1

10 Return

For unit length tracing, default trace magnitude and trace
precision cannot be determined until all the variables are
defined. There are more checks on the integrity of the domain
intervals in chkspec().

Note that the above algorithm cannot detect overlapping of
intervals. The intervals remain in the order that they are
presented in the specification.

D. 2.3.1.5 Parsing an Equation

Called by intrspec(), geteqt() takes an array of words and scans
for an equation. There is no internal record for an equation.
The expression on the right hand side of an equation is
represented by a binary tree structure. Field f in a variable
record is the pointer to the root of an expression tree.
Expressions are discussed in section D.2.3.7.

Algorithm for geteqt():

1 Verify that the second word in the array is a declared

83

variable

2 Verify that the next word is an equal sign "="

3 Create an expression from the rest of the words

4 Verify that field f of the variable record is not used

5 Assign field f to the pointer value to new expression

6 Return

D.2.3.1.6 Parsing an Expression

An expression is represented by a binary tree structure. Each
node is of type expr:

struct expr
[

int ctype,-
union cell info,-
struct expr *1, *r;

)

Each node of either an operator or an operand. Field ctype is
used to indicate the content of field cell. Valid values of ctype
is defined by the following constants:

⅛define INTEGER OxOl
#define REAL 0x02
⅛define OPERATOR 0x08
⅛define FUNCTION 0x10
#define CONSTID 0x20
⅛define PARAMID 0x40
#define VARID 0x80

Field info is a variant record which can be an integer, a double,
a string, or a pointer:

union cell
{

int ival,-
double rval;
struct identifier *ptr;
char sval[WORDSIZ]; "

)

The process of parsing an array of words to build an expression
tree consist of a set of recursive functions. The functions
resemble the various level of the grammar which defines an
expression .

84

The grammar:

<expr> ; = <term> ∣ <term> <addop> <expr>
<term> : = < factl> ∣ <factl><multop><term>
<factl> : = <func><fact2> ∣ <fact2>
<fact2> . = <argu> ∣ <argu> <powop> <fact2>
<argu> : = <lit> ∣ <iden>) "("<expr>")"
< iden> : ≈ <string>
<lit> : - <real> ∣ <int>
<addop> : = !!
<multop> : = " ⅛" ∣ " ∕
<func> : = "sin" ∣ "cos" I "tan" I

"asin" ∣ "acos" ∣ "atan" ∣
"sinh" ∣ "cosh" j "tanh" ∣

"asinh" j "acosh" ∣ "atanh" j
"exp" ∣ "log" j "IoglO" ∣ "

< powop > : = n ft
sqrt

The functions:

isform() — lead module
isexpr() — check for an <expr>
isterm() — check for a <term>
isfactl() — check for a <factl>
isfact2() — check for a <fact2>
isargu() — check for a <argu>
isiden() — check for an <iden>
islit() — check for a <lit>
isfunc() — check for a <func>
isaddop() — check for an <addop>
ismultop() — check for a <multop>
ispowop() — check for a <powop>

All the functions share a global pointer, "bufp" which points to
the word currently being processed. If the word is used, "bufp"
is advanced to the next word. If the array of words is not
syntactically correct, then an error exit will occur at the level
the error is detected. On successful return, each function
returns a node of type expr.

The algorithms of the functions are described as follow:

Algorithm for isform():

1 1.1 Set "bufp" to the first word of the given array,-
1.2 Stop if no first word is found

2 2.1 Call isexpr() to check for an <expr>
2.2 If yes, return the tree structure isexpr() returned

3 Otherwise return NULL

85

Algorithm for isexpr():

1 Return NULL if no word is found

2 2.1 Call isterm() to check for a <term>
2.2 If no, return NULL

3 3.1 Call isaddop() to check for a <addop>
3.2 If no, goto step 6

4 4.1 Call isterm() to check for another <term>
4.2 If no, error exit

5 5.1 Append the two <term> subtree as left and right
child of the <addop> node

5.2 Repeat step 3

6 Return the <expr> subtree build

Algorithm for isterm():

1 Return NULL if no word is found

2 2.1 Call isfactl() to check for a <factl>
2.2 If no, return NULL

3 3.1 Call ismultop() to check for a <multop>
3.2 If no, goto step 6

4 4.1 Call isfactl() to check for another <factl>
4.2 If no, error exit

5 5.1 Append the two <factl> subtrees as left and right
children of the <multop> node

5.2 Repeat step 3

6 Return the <term> subtree build

Algorithm for isfactl():

1 Return NULL if no word is found

2 2.1 Call isfunc() to check for a <func>
2.2 If yes, call isfact2() to check for a <fact2)

2.2.1 If yes, goto step 4
2.2.2 If no, error exit

3 3.1 Call isfact2() to check for a <fact2)
3.2 If yes, goto step 4
3.2 If no, return NULL

86

6 Return the <factl> subtree build

Algorithm for isfact2():

1 Return NULL if no word is found

2 2.1 Call isargu() to check for an <argu>
2.2 If no, return NULL

3 3.1 Call ispowop() to check for a <powop>
3.2 If no, goto step 6

4 4.1 Call isargu() to check for another <argu>
4.2 If no, error exit

5 5.1 Append the two <argu> subtree as left and right
child of the <powop> node

5.2 Repeat step 3

6 Return the <fact2> subtree build

Algorithm for isargu():

1 Return NULL if no word is found

2 2.1 Call islit() to check for a <lit>
2.2 If yes, goto step 5

3 3.1 Call isiden() to check for an <iden>
3.2 If yes, goto step 5

4 If "bufp" points to a "(", then
4.1 Advance "bufp" to point at the next word
4.2 Call isexpr() to check for an <expr>

4.2.1 If no, error exit
4.2.2 If yes, then

if "bufp" points to a ")",
then goto step 5
else error exit

5 Return the <argu> subtree build

Algorithm for isiden():

1 Return NULL if no word is found

2 If "bufp" points to
then sign = -1 and advance "bufp"

3 Return NULL if no word is found

87

4 If "bufp" points to declared constant or
parameter identifier,

then create and initialize a node

5 Return the <iden> subtree build

Algorithm for islit():

1 Return NULL if no word is found

2 If "bufp" points to
then sign = -1 and advance "bufp"

3 Return NULL if no word is found

4 If "bufp" points to an integer value or a real number,
then create and initialize a node

5 Return the <lit> subtree build

Algorithm for isfunc():

1 Return NULL if no word is found

2 If "bufp" points to a word which matches
any of the defined mathematical functions

then create and initialize a node

3 Return the <func> subtree build

Algorithm for isaddop():

1 Return NULL if no word is found

2 If "bufp" points to a "+" or "-"
then create and initialize a node

3 Return the <addop> subtree build

Algorithm for ismultop():

1 Return NULL if no word is found

2 If "bufp" points to a "*" or "∕"
then create and initialize a node

3 Return the <multop> subtree build

Algorithm for ispowop():

1 Return NULL if no word is found

88

2 If "bufp" points to a " "
then create and initialize a node

3 Return the <powop> subtree build

D.2.3.2 Overall Checking

The focus of the parsing shell is on the syntax of text. Missing
or contradicting informations are not detected. Chkspec() applies
series of checks to detect error situations getspec() failed to
trap. Default tracing values for unit length tracing is
determined in chkspec() as well.

Algorithm for chkspec():

1 Detect and drop constants which have been declared
but not used

2 2.1 Verify that at least 1 parameter has been declared
2.2 Detect and drop parameters which have been

declared but not used in any equation
2.3 Verify that no more than 2 parameter are declared
2.4 Verify that for all parameters which are declared

and used, at least one domain is associated
with the parameter

3 3.1 Verify that at least 1 variable has been declared
3.2 Detect and drop variables which have been declared

but not used in any equation
3.3 Verify that no more than 3 variables are declared
3.4 Verify that for all variables which are declared

and used, some expression is defined for the
variable

4 For every domain record, verify that
4.1 the trace magnitude for that interval is not

negative,- otherwise multiply by -1
4.2 the precision value for that interval is not

negative,- otherwise multiply by -1

4.3 the trace magnitude for that interval is non-zero;
otherwise if tracing mode is unit-step, then
change magnitude to default: 1% of (upper limit
- lower limit)

5 For every domain record, adjust lower and upper limits
5.1 Find delta = 0.1% of (upper limit - lower limit)
5.2 If upper end is open, then

decrease upper limit by delta
5.3 If lower end is open, then

increase lower limit by delta

89

6 If tracing mode is unit-length, then
for every domain record,
if tracing magnitude is zero, then
(Curve)
6.1.1 Find a point when parameter equals lower limit
6.1.2 Increment parameter by 1% of interval
6.1.3 Find second point
6.1.4 Set tracing magnitude to distance between 2

points
(Surface)
(If domain record specifies an interval of
parameterl)
6.2.1 Set value of parameter2 to lower limit of

first domain interval of parameter2
6.2.2 Find a point when parameterl equals lower

limit
6.2.3 Increment parameterl by 1% of interval
6.2.4 Find second point
6.2.5 Set tracing magnitude to distance between 2

points
(If domain record specifies an interval of
parameter2)
6.3.1 Set value of parameterl to lower limit of

first domain interval of parameterl
6.3.2 Find a point when parameter2 equals lower

limit
6.3.3 Increment parameter2 by 1⅛ of interval
6.3.4 Find second point
6.3.5 Set tracing magnitude to distance between 2

points

A successful completion of the input section should have at least
1 parameter record and 2 variable records created. Each parameter
record has at least 1 domain record associated. Each variable
record has a valid expression tree built.

P. 3^ Tracing section

D.3.1 TRACING [PHASE 4]

In the tracing section, parameter values are advanced according to
the tracing magnitude. The expression trees are then evaluated to
yield the corresponding variable values. There are two modes,
unit-step tracing and unit-length tracing. Unit-step routines are
"us" prefixed, while unit-length routines are "ul" prefixed.

The output of this phase is an hierarchy structure of coordinates
records. Each combination of domains is represented by a surface

90

node of type:

struct surface
[
int sflag,- ∕* error flag */
int il; ∕* domain index to 1st parameter */
int i2; ∕* domain index to 2nd parameter */
double nump,- ∕* # of points in this patch */
double numc; ∕* # of curves in this patch */
struct curve *root,- ∕* pointer to first curve node */
struct surface *ns; ∕* pointer to next surface node */

)

Each surface consists of a collection of curves. The first curve
is pointed to by field root. Curve nodes are the next level of
records:

struct curve
{
int cflag,-
int il;
int i2;
double nump,-
struct point *head;
struct curve *nc,-

∕* error flag */
∕* index to parameter */
∕* index to domain */
∕* # of points in this curve */
∕* pointer to first point node */
∕* pointer to next curve node */

Each curve consists of a collection of points. The first point is
pointed to by field head. Point nodes are the third level of
records:

struct point

int pflag,-
double u[2];
double x[2];
struct point *np,-

∕* error flag
∕* parameter values
∕* variable values
∕* pointer to next curve node */

Field x is an array of real numbers which stores the coordinates
of a point. Field u is an array of real numbers which stores the
corresponding parameter values.

The hierarchy does not need to start with a surface node. If the
geometric form traced is a curve, then the hierarchy begins at the
curve node level. Either one of the three global variables
"cur2d", "cur3d" and "sur3d" is used to represent the curve or
surface being trace. Prefix "cur" means curve and prefix "sur"
means surface. Suffix "2d" means 2 dimensions and suffix "3d"
means 3 dimensions. "Cur2d" and "cur3d" are pointers to a curve
node, while "sur3d" is a pointer to a surface node.

91

Plotspec() is the leading module to the tracing section. It takes
all the parameter and variable records, initiates the required
plotting shell, and returns the number of points plotted.

Algorithm for plotspec():

1 If number of variables equals to 2, then
plot a curve in 2 dimensional space

else if number of parameters equals to 1, then
plot a curve in 3 dimensional space

else
plot a surface in 3 dimensional space

2 Count number of points plotted

3 Return number of points plotted

Plotcurves() is the lead module of the plotting shell for curves.
An index to the parameter it should trace is passed as an
argument. It then traces a curve for each domain interval of the
indexed parameter.

Algorithm for plotcurves():

1 While there is more domains do
if unit-length mode is mode, then
plot 1 curve in unit length mode

else
plot 1 curve in unit step mode

2 Return sequence of curve nodes

The surface plotting shell is similar to the curve plotting shell.
However, there is an extra loop to control the domain index of the
second parameter. Plotsurfaces() is the lead module to the
surface plotting shell.

Algorithm for plotsurfaces():

1 While there is more first parameter domains do
while there is more second parameter domains do

if unit-length mode is mode, then
plot 1 surface in unit length mode

else
plot 1 surface in unit step mode

2 Return sequence of surface nodes

D.3.1.1 Unit-Step Tracing

Uslcurve() unit-step traces a curve on the parameter and the

92

domain requested. Indices to the parameter and the domain it
should trace are passed as arguments.

Algorithm for uslcurve():

1 Create a new curve node, error exit if failure

2 Set current value of indexed parameter to lower limit
of indexed domain

3 3.1 evaluate the variables
3.2 create a point record
3.3 append to the point nodes of current curve

4 Increment parameter value by trace magnitude

5 If parameter value >= upper limit, then
5.1 set quit flag
5.2 if parameter value > upper limit, then

set to upper limit

6 If quit flag is raised, then
goto step 7

else
goto step 3

7 Return current curve node

The philosophy of uslsurface() is similar to uslcurve().

Algorithm for uslsurface():

1 Create a new surface node, error exit if failure

2 Set current value of second parameter to lower limit of
the indexed domain of second parameter

3 3.1 plot one curve by varying value of first parameter
3.2 append to the curve nodes of current surface

4 Increment value of second parameter by trace magnitude
of second parameter

5 If second parameter value >= upper limit, then
5.1 set quit flag
5.2 if parameter value > upper limit, then

set to upper limit

6 If quit flag is raised, then
goto step 7

else

93

goto step 3

7 Return current surface node

D.3.1.2 Unit-Length Tracing

Ullcurve() unit-length traces a curve on the parameter and the
domain requested. Indices to the parameter and the domain it
should trace are passed as arguments. Initial trial incremental
step size is arbitrary. Currently it is set to one percent of
domain interval.

Algorithm for ullcurve():

1 Create a new curve node, error exit if failure

2 Set current value of indexed parameter to lower limit
of indexed domain

3 3.1 evaluate the variables
3.2 create a point record
3.3 append to the point nodes of current curve

4 Set trial incremental step size of indexed parameter to
1⅛ of the indexed domain interval

5 Call homein() to find the actual incremental step size
which yields a point whose distance is (trace
magnitude +/- trace precision) from current point,
error exit if failure

6 If parameter value >= upper limit, then
6.1 set quit flag
6.2 if parameter value > upper limit, then

set to upper limit

7 7.1 Evaluate the variables
7.2 Create a point record
7.3 Append to the point nodes of current curve

8 If quit flag is raised, then
8.1 goto step 9
else
8.2.1 set trial incremental step size of indexed

parameter to current actual step size
8.2.2 goto step 5

9 Return current curve node

The philosophy of ullsurface() is similar to ullcurve().

94

Algorithm for ullsurface():

1 Create a new surface node, error exit if failure

2 Set current value of second parameter to lower limit of
the indexed domain of second parameter

3 3.1 plot one curve by varying value of first parameter
3.2 append to the curve nodes of current surface

4 Set trial incremental step size of second parameter to
1⅜ of the indexed domain interval

5 5.1 set first parameter to its lower limit
5.2 call homein() to find the actual incremental step

size which yields a point whose distance is
(trace magnitude +/- trace precision) from
current point, error exit if failure

6 6.1 increase second parameter value by actual step size
6.2 if parameter value >= upper limit, then

6.2.1 set quit flag
6.2.2 if parameter value > upper limit, then

set to upper limit

7 Call ullcurve to trace the curve where current value
of second parameter is kept unchanged, error exit if
failure

8 If quit flag is raised, then
8.1 goto step 9
else
8.2.1 set trial incremental step size of second

parameter to current actual step size
8.2.2 goto step 5

9 Return current surface node

Both uslcurve and uslsurface use the routine homein() to find the
actual step size of a parameter. Homein() takes the index values
of a parameter and its current domain, and performs a binary
expansion and contraction on the trial step size until the
required point is located. The resulting point must lie within a
distance of the trace magnitude from the current point. Since the
parameter and the domain are indexed, homein() can perform the
search on any of the domains of any of the parameters.

Algorithm for homein():

1 Set indexed parameter value to (base value + step size)

95

2 2.1 evaluate the variables
2.2 calculate the distance from base point

3 If abs(distance - magnitude) <= precision then
goto step 6

4 If (distance > magnitude then) then
perform a binary contraction on step size

else
perform a binary expansion on step size

5 If looping counter reaches its limit then
error exit

else
increase counter value and goto step 2

6 Return the value of current step size

Note that step 5 in the above algorithm is a control mechanism
which limits the number of loops homein() can go through. If the
step size is not found within the limit, then an error exit is
forced.

D.3.1.3 Expression Evaluation

Evaluation of an expression is also recursive. The current node
is considered first. If it is a leaf node, then the value of the
node is returned. Otherwise the values of the left and right
subtrees are evaluated. Then the result of the operation is
returned. For example, it current node is a "addop" node, then
the sum or difference of the values of the two subtrees are
returned. Evalu() is the lead module to expression evaluation and
evalu2() is the recursive routine which evaluate expression
subtrees.

D. Output section

D.4.1 EXPORTING TO UNIGRAFIX FORMAT [PHASE 5]

After the tracing section is completed, the leading curve node or
the leading surface node is returned to main(). Main() passes
this node to the leading module of the output section, export().
Export() translates the hierarchy structure into UNIGRAFIX
descriptive format and puts the translated script into files. Two
files are used. Points (UNIGRAFIX vertices) are written to one.
Curves and surfaces (UNIGRAFIX wires and faces) are written to
another. After the translation is completed, the second file is
appended to the first, giving one output file ready for display.

96

Algorithm for export():

1 Open two files, error exit if failure

2 Initialize all counters

3 Write to file 1, the min and max of each variable

4 Translate the hierarchy structure:
if it is a curve
4.1 while there is a curve node do

call putcurve()
else if it is a surface
4.2 while there is a surface node do

call putsurface()

5 If axis mode is on, define the axes in terms of the min
and max of the variables, and write to file 1

6 Append file 2 to file 1

The counters are used to assign unique names for vertices, wires
and faces. The counters are hexadecimal. Vertex names are
prefixed with 'V, wire names are prefixed with 'W', and face
names are prefixed with 'F'.

Putcurve() is given a sequence of curve nodes. The sequence of
points in each curve node is written out in UNIGRAFIX format. The
coordinates of the points are written to file 1, while the
sequencing of the points which forms a curve is written to file 2.

Algorithm for putcurve():

1 If there are no more points, then goto step 4

2 Write a VERTEX statement to file 1 defining the
coordinates of current point

3 If the WIRE statement is not too long, then
3.1.1 append the current vertex name to the current

wire Statment
3.1.2 increase number of segments in current wire by 1
else
3.2.1 close current WIRE statement
3.2.2 open a new WIRE statement
3.2.3 append the current vertex name to the current

wire
3.1.4 reset number of segments in current wire to 0

4 4.1 if number of segments in current wire is 0, then
append again current vertex name to wire

97

4.2 close current WIRE statement

5 Return

The maximum number of segments a wire contains is arbitrary. Any
number between 5 to 20 is sound and reasonable.

A surface consists of a sequence of curve nodes. Two successive
curve nodes, referred to as low and high, are considered each
time. The sequences of points on the two curves form either
meshes or patches that make up the surface.

Putsurface() is given a sequence of surface nodes. The
coordinates of the points are written to file 1, while the
sequencing of the points which forms the meshes or the patches are
written to file 2.

Algorithm for putsurface():

1 If there are no more curves, then
goto step 9

else
set low curve to current curve

2 Dump points in low curve to file 1

3 Set high curve to low curve

4 If there is no curve following high curve, then
goto step 9

else
set high curve to curve following high curve

5 Dump points in high curve to file 1

6 If mesh display mode, then
display low curve as UNIGRAFIX wires, and dump to

file 2
else
display low curve and high curve as UNIGRAFIX faces,

and dump to file 2

7 7.1 set low curve to current high curve
7.2 goto step 4

8 If mesh display mode, then
display last curve as UNIGRAFIX wires, and dump to

file 2

9 Return

98

p.5 Function directory

audit()
chkcmdln()
chkspec()
evalu()
evalu2()
export()
findulen()
getarg()
getcmdln()
getconst()
getdom()
geteqt()
getpar()
getspec()
getoken()
getvar()
homein()
intrspec()
isaddop()
isargu()
isconstant()
isdomain()
isexpr()
isfactl()
isfact2()
isform()
isfunc()
isiden()
isletter()
islit()
ismultop()
isparameter()
ispowop()
isterm()
isvariable()
logcurve()
logpoint()
logsurface()
main()
message()
Ittkcurve
mkpoint
Ittksurface
namegood()
nameused()
nextid()
plotcurves()
plotspec()

— dump to logfile values of identifier records
— report the status of various switches
— apply overall checking to specification
— lead module to expression evaluation
— evaluate expression subtrees

lead module of output section
find default tracing magnitude for each domain
take a line & split it into an array of words
take an array of string & scan its contents

— get constant declaration & definition
— get domain declaration & definition
— get equation definition
— get parameter declaration
— read specification from input stream
— get a constant or a number
— get variable declaration
— find the actual step size in unit-length tracing
— interpret shell for specification parsing
— check for an addition operator
— check for an argument
— check if the given word is "constant"
— check if the given word is "domain"
— check for an expression
— check for a level one factor
— check for a level two factor
— lead module to expression parsing
— check for a function
— check for an identifier
— check if given 2 characters are identical
— check for a literal
— check for a multiplication operator
— check if the given word is "parameter"
— check for a power operator
— check for a term
— check if the given word is "variable"

— main module

— dump to logfile the contents of a curve node
— dump to logfile the contents of a point node
— dump to logfile the contents of a surface node

— lead module to error exit
— make a curve record
— make a point record
— make a surface record
— verify that the syntax of an identifier
— verify that an identifier is declared or not
— advance the given counter
— curve plot shell
— lead module of plot shell

99

plotsurfaces()
prtexpr()
prtop()
putaxis()
putcmap()
putcurve()
putlimit()
putsurface()
ullcurve()
ullsurface()
uslcurve()
Uslsurface()

surface plot shell
dump to logfile the layout of an expression tree
dump to logfile the contents of a tree node
include axes to the UNIGRAFIX output file
include an UNIGRAFIX colour definition
put curve into UNIGRAFIX format
put limits of the variables in UNIGRAFIX format
put surface into UNIGRAFIX format
unit length trace 1 domain interval
unit length trace 1 domain combination
unit step trace 1 domain interval
unit step trace 1 domain combination

Appendix E

SOURCE CODE

FOR UGTRACE

100

IOl

*
* cmdln.h — header file for command line parsing

* Author: Henri Cheung at McMaster University, Hamilton, Ontario
*

∕* optflags value */

Rdefine OPTON OxOOl ∕* 0000 0000 0000 0001 option encountered
Rdefine ARGOK 0x002 ∕* 0000 0000 0000 0010 argument received
Rdefine 0PT0N2 0x004 ∕* 0000 0000 0000 0100 more than once

Rdefine SYNERR 0x100 ∕* 0000 0001 0000 0000 unresolved syntax

102

evalu.h header file for evaluating of expression

* Author: Henri Cheung at McMaster University, Hamilton, Ontario *

∕* flags for tolerable errors */

Hdefine ENEGP 0x004

Hdefine ENUL 0x100
Hdefine EZERO 0x200

∕* 0000 0000 0000 0100 -ve H raised to real power */

∕* flags for intolerable errors: program must stop

∕* 0000 0001 0000 0000
∕* 0000 0010 0000 0000

null pointer encountered
zero divisor

Hdefine SPLIM IOElO ∕* [system dependent] max representable real number */
Hdefine SNLIM 1.0E-10 ∕* [system dependent] min representable real number */

103

* export.h — header file for generating of UNIGRAFIX format file
*

Author: Henri Cheung at McMaster University, Hamilton, Ontario

{(define IDZERO "00

#define
⅛define

IDWIDTH
WSEGLEN

8
8

104

* global.h -- header file for global definitions *
* ⅛
* Author: Henri Cheung at McMaster University, Hamilton, Ontario *

*********^********************w**

⅛define LATTICE 0 ∕* Lattice C compiler on PC */
⅛def ine UNIX 1 ∕* CC compiler on UNIX */
⅛define VER UNIX ∕* compiler flag */

#define VERSION 1.0 ∕* version number */

⅛define WORDSIZ 32 ∕* max. word size defined for parsing */
#define WORDBUFF 128 ∕* array dimension defined for parsing */

#define STRSIZ 256 ∕* max. string length defined for parsing */
⅛define STRBUFF 128 ∕* array dimension defined for parsing */

#define NUMCONST 64 ∕* max # of constants allowed [arbitrary] */
#define NUMPARAM 8 ∕* max # of parameters allowed */
#define NUMVAR 8 ∕* max # of variables allowed V
#define NUMDOM 32 ∕* max # of partitions allowed for each parameters */

#define OFF 0
#define ON 1

#define NO 0
#define YES 1

#define FALSE 0
#define TRUE 1

105zγ--------... .
* message.h — header file for message *

* Author: Henri Cheung at McMaster University, Hamilton, Ontario *

Rdefine MSGXXX "∖n...aborted, ∖n"
Rdefine MSGYYY "∖n∖t : unknown message number, ∖n"

∕* Phase 1 Messages */

Rdefine MSGOOl "∖n∖t :source filename missing, ∖n"
#define MSG002 "∖n∖t :output filename missing, ∖n"
Rdefine MSG003 "∖n∖t :unresolved argument(s) ignored, ∖n"
Rdefine MSG004 "∖n∖t :fi option encountered again, previous one forgotten, ∖n"
Rdefine MSG005 "∖n∖t :fo option encountered again, previous one forgotten, ∖n"
Rdefine MSG006 "∖n∖t -logging is on. ∖n"
Rdefine MSG007 "∖n∖t -unit length tracing, ∖n"
Rdefine MSG009 "∖n∖t -mesh display, ∖n"
Rdefine MSGOlO "∖n∖t -axis are plotted, ∖n"

∕* Phase 2 and 3 Messages */

Rdefine MSG008 "∖n∖t word too long, truncated to WORDSIZ. ∖n"
Rdefine
Rdefine
Rdefine
Rdefine
Rdefine
Rdefine
Rdefine
Rdefine
Rdefine
Rdefine
Rdefine

Rdefine
Rdefine
Rdefine
Rdefine
Rdefine

MSG500
MSG501
MSG502
MSG503
MSG504
MSG505
MSG506
MSG507
MSG508
MSG509
MSG510

MSG511
MSG512
MSG513
MSG514
MSG515

"∖n∖t
"∖n∖t
"∖n∖t
"∖n∖t
"∖n∖t
"∖n∖t
"∖n∖t
"∖n∖t
"∖n∖t
"∖n∖t
"∖n∖t

"∖n∖t
"∖n∖t
"∖n∖t
"∖n∖t
"∖n∖t

cannot open temporary work file, ∖n"
too many lines, ∖n"
cannot open source file, ∖n"
cannot open output file, ∖n"
insufficient memory, ∖n"
fail to release memory block, ∖n"
too few lines, ∖n"
matching '[' not found, ∖n"
matching ')' not found, ∖n"
too many words, ∖n"
cannot open log file, ∖n"

constant definition syntax, ∖n"
bad constant name, ∖n"
invalid expression(s). ∖n"
too many constant(s) defined, ∖n"
declaring constant already declared as variable. ∖n"

Rdefine MSG516 "∖n∖t declaring constant already declared as parameter ∖n"
Rdefine MSG517 "∖n∖t declaring constant already previously declared. '^n "

Rdefine
Rdefine
Rdefine
Rdefine

MSG521
MSG522
MSG523
MSG524

"∖n∖t
"∖n∖t
"∖n∖t
"∖n∖t

variable declaration syntax, ∖n"
invalid Identifier(S). ∖n"
too many variable(s). ∖n"
declaring variable already declared as constant. ∖n"

Rdefine MSG525 "∖n∖t declaring variable already declared as parameter ∖n"
Rdefine MSG526 "∖n∖t declaring variable already previously declared. '
Rdef ine MSG527 "∖n∖t variable already previously defined. ∖n"

Rdefine MSG531 "∖n∖t :parameter declaration syntax, ∖n"

106
Wdefine MSG532 "∖n∖t :invalid identifier(s). ∖n"
Wdefinc MSG533 "∖n∖t :too many parameter(s). ∖n"
Wdefine MSG534 "∖n∖t :declaring parameter already declared as constant, ∖n"
Wdefine MSG535 "∖n∖t !declaring parameter already declared as variable, ∖n"
Wdefine MSG536 "∖n∖t !declaring parameter already previously declared, ∖n"

Wdefine MSG541 "∖n∖t !domain specification syntax, ∖n"
Wdcfine MSG542 "∖n∖t !invalid domain range, ∖n"
Wdefine MSG543 "∖n∖t !undefined parameter(s). ∖n"
Wdefine MSG544 "∖n∖t :too many domain(s). ∖n"
Wdefine MSG545 "∖n∖t :point domain(s). ∖n"

Wdefine MSG551 "∖n∖t !invalid formula(s). ∖n"
Wdefine MSG552 "∖n∖t !invalid expression(s). ∖n"
Wdefine MSG553 "∖n∖t !invalid term(s). ∖n"
Wdefine MSG554 "∖n∖t !invalid factor(s). ∖n"
Wdefine MSG555 "∖n∖t !invalid argument(s). ∖n"
Wdefine MSG556 "∖n∖t !invalid identifier(s). ∖n"
Wdefine MSG557 "∖n∖t :missing ')'. ∖n"

Wdefine MSG561 "∖n∖t !tracing specification syntax.∖n"
Wdefine MSG571 "∖n∖t !display specification syntax.∖n"

Wdefine MSG581 "∖n∖t !equation syntax, ∖n"
Wdefine MSG582 "∖n∖t !unresolved symbol(s). ∖n"
Wdefine MSG583 "∖n∖t !invalid expression(s). ∖n"

Wdefine MSG591 "∖n∖t !precision specification syntax, ∖n"
Wdefine MSG592 "∖n∖t !sensitivity syntax, ∖n"

Wdefine MSGlOl "∖n∖t
Wdefine MSG102 "∖n∖t
Wdefine MSG103 "∖n∖t
Wdefine MSG104 "∖n∖t
Wdefine MSG105 "∖n∖t
Wdefine MSG106 "∖n∖t
Wdefine MSG107 "∖n∖t
Wdefine MSG108 "∖n∖t
Wdefine MSG601 "∖n∖t
Wdefine MSG602 "∖n∖t
Wdefine MSG603 "∖n∖t
Wdefine MSG604 "∖n∖t
Wdefine MSG605 "∖n∖t
Wdefine MSG606 "∖n∖t
Wdefine MSG607 "∖n∖t

!absolute of trace speed taken, ∖n"
!absolute of display interval taken, ∖n"
!absolute of precision taken, ∖n"
!absolute of sensitivity taken, ∖n"
-trace interval set to default value, ∖n"
-display interval set to trace speed, ∖n"
-precision set to default: 1%% of trace, ∖n"
-sensitivity set to default: 0.1%% of domain range, ∖n"
:no parameter declared, ∖n"
:param(s) more than var(s). ∖n"
:missing parameter domain(s). ∖n"
:missing equation(s). ∖n"
:no variable declared, ∖n"
:too many parameter declared, ∖n"
:too many variable declared, ∖n"

∕* Phase 4 and 5 Messages */

Wdefine MSG201 "∖n∖t !incomplete trace - cannot get closer to asymptotes, ∖n"

Wdefine MSG251 "∖n∖t :too many loops, probably oscillating, ∖n"
Wdefine MSG252 "∖n∖t :exit conditions not met even increment is zero, ∖n"

Wdefine MSG701 "∖n∖t
Wdefine MSG702 "∖n∖t
Wdefine MSG703 "∖n∖t

:unable to calculate first point, ∖n"
!expand IDWIDTH and try again, ∖n"
error in calculating expression, ∖n"

107

Sdefine MSG751 "∖∏∖t current curve is partial, ∖n"
Sdefine MSG752 "∖n∖t :current surface is partial, ∖n"

108

* struct.h — header file for misc. structure definitions

* Author: Henri Cheung at McMaster University, Hamilton, Ontario

information node for an expression tree

union cell
{

int ival;
double rval,-
struct identifier *ptr,
char sval[WOROSIZ],

∕* integer value */
∕* real value */
∕* pointer to constant/parameter */
∕* symbol value */

tree structure for an expression & related flags

#define EXPRSIZ sizeof(struct expr)

#define INTEGER OxOl ∕* 0000 0000 0000 0001 */
#define REAL 0x02 ∕* 0000 0000 0000 0010 */
#define OPERATOR 0x08 ∕* 0000 0000 0000 1000 */
#define FUNCTION 0x10 ∕* 0000 0000 0001 0000 */
#define CONSTID 0x20 ∕* 0000 0000 0010 0000 */
#define PARAMID 0x40 ∕* 0000 0000 0100 0000 */
#define VARID 0x80 ∕* 0000 0000 1000 0000 */

struct expr
(

int
union cell

ctype
info ; ∕*

cell
cell

type indicator
content

*/
*/

struct
);

expr *1, *r ; ∕* left & right pointer */

record for an identifier definition & related flags
- -

109

Odefine CONSTANT 0x01 ∕* 0000 0000 0000 0001 declared
Odefine PARAMETER 0x02 ∕* 0000 0000 0000 0010 declared
Odefine VARIABLE 0x04 ∕* 0000 0000 0000 0100 declared

Odefine USEDFLAG 0x10 ∕* 0000 0000 0001 0000 used
Odefine DOMFLAG 0x20 ∕* 0000 0000 0010 0000 domained

struct identifier
[

int itype
char nam[WORDSIZ]
double valu
double vmin, vmax
struct expr *f

∕* identifier type */
∕* identifier name */
∕* current value */
∕* min value, max value */
∕* equivalent expression, if any */

⅛define IDENSIZ sizeof(struct identifier)

* record for a parameter partition & related flags
*

#define LESSTHAN Oxl ∕* 0000 0000 0000 0001 (<) *
#define GREATERTHAN 0x2 ∕* 0000 0000 0000 0010 (>) *.
#define EQUALTO 0x4 ∕* 0000 0000 0000 0100 (=) *

struct domain
[

int flag ,-
double dmin, dmax ;
double trace ,-
double display ;
double precision ;
double sensitivity ,-

∕* V
∕* min value, max value */
∕* trace interval */
∕* display interval */
∕* precision */
∕* sensitivity */

typedef struct domain domarr[NUMDOM],- ∕* array of domain record */

⅛define DOMSIZ sizeof(struct domain)

IlO

* struct2.h — header file for structure definitions used in plotting

* Author: Henri Cheung at McMaster University, Hamilton, Ontario
*

Kdefine LOOPMAX 127
Kdefine ERRLOOP 1
Kdefine ERRINCR 2
Kdefine ERRMEM 3

* record for a point in space *
* *

Kdefine PARMAX 2
Kdefine VARMAX 3

struct point
{

int pflag ,-
double u[PARMAX] ;
double x[VARMAX] ;
struct point *np ;

);

Kdefine PTSIZ sizeof(struct point)

record for a curve in space

struct curve
[

int cflag ,-
int il,i2 ,- ∕* il-th parameter, i2-th domain */
double nump ,-
struct point *head ,-
struct curve *nc ;

),-

Kdefine CURVESIZ sizeof(struct curve)

Ill

* record for a surface in space

W**/

struct surface
{

int sflag ;
int il,i2 ,- ∕* il-th domain of Oth parameter, i2-th of 1st */
double nump, numc ;
struct curve *root ;
struct surface *ns ,-

},-

⅛define SURFASIZ sizeof(struct surface)

112
/***

* ugtrace.c — driver of UGTRACE *
* *
* The program consists of 5 phases: *
* *
* [Phase U Getting command line & setting i/o streams *
* [Phase 2] Reading plot specifications ** [Phase 3] Parsing plot specifications *
* [Phase 4] Generating points *

*
[Phase 5] Converting points to UNIGRAFIX format [curves & surfaces] *

*
* Author: Henri Cheung at McMaster University, Hamilton, Ontario *
* *

⅛include <stdio.h>
#include "global.h"

extern int nparam, nvar ,-
extern char infile[], outfile[] ,-

extern int optlog,
extern FILE *logf,

char *logID,-

main (argc,argv)
int argc ,-
char *argv [] ,­
[int nl = 0 ,
char *mktemp(), *malloc() ,-
double np = 0.0, plotspec() ;

∕* PHASE 0 : SETTING THINGS UP */

if (argc == 1)
[
fprintf(stderr,"∖nUsage: ugtrace [-a] [-us)-ul] [-dm∣-dp] [-fi file] [-fo file]∖n"
goto ugx,

]

fprintf(stderr,"∖nUGTRACE Version ⅛3.1f ∖n",VERSION),
fprintf(stderr,"∖nProgram Running... ∖n");

if ((IogID = malloc(STRSIZ)) == NULL) message(5O4),
tfif VER == LATTICE

strcpy(logID, "logfile") ,-
#endif
#if VER == UNIX

strcpy(logID, "IogXXXXXX") ,-
IogID = mktemp(logID);

ffendi f

113

∕* PHASE 1 : SCANNING COMMAND LINE */

fprintf(stderr,"∖nPhase 1 : Scanning Command Line ∖n"),

getcmdln (argc , argv) ,-

if (optlog == ON)
[

if ((Iogf = fopen(logID,"w")) == NULL) message(510);
fprintf(logf,"∖nUGTRACE Version ⅛3.1f ∖n",VERSION),
fprintf(logf,"∖nProgram Running... ∖n"),
fprintf(logf,"∖nPhase 1 : Scanning Command Line ∖n"); fflush(Iogf),

chkcmdln(),

∕* PHASE 2 : LOADING SPECIFICATION */

fprintf(stderr,"∖nPhase 2 : Loading Specification [from ⅛s] ∖n",infile).

if (optlog == ON)
[
fprintf(Iogf,"∖nPhase 2
f flush (Iogf)

Loading Specification [from ⅛s] ∖n",infile).

nl = getspec(infile),-

∕* PHASE 3 : PARSING SPECIFICATION */

fprintf(stderr,"∖nPhase 3 : Parsing Specification [%d line(s)] ∖n",nl),

if (optlog == ON)
[
fprintf(logf,"∖nPhase 3
fflush(Iogf),

Parsing Specification [⅛d line(s)] ∖n",nl),

intrspec (nl) ,-
chkspec(),
audit(),

∕* PHASE 4 : TRACING */

f printf(stderr, "∖nPhase 4 : "),
fprintf(stderr,"Tracing [¾d degree, ⅛d dimension] ∖n",nparam,nvar),

if (optlog = ON)
[
fprintf (logf, "∖nPhase 4 : "),-
fprintf(lt)gf,"Tracing [%d degree, ⅛d dimension] ∖n",nparam,nvar),
f f lush(log f),

114
)

np = plotspec();

fprintf(stderr,"∖n —> ⅛10.1f point(s) in memory ∖n",np),-

if (optlog == ON)
[
fprintf(logf,"∖n —> %10.1f point(s) in memory ∖n",np),-

)

∕* PHASE 5 : EXPORTING TO UNIGRAFIX FORMAT */

fprintf (stderr, "∖nPhase 5 : Exporting in UNIGRAFIX format [to %s] ∖n",outfile),

if (optlog == ON)
(
fprintf (logf, "∖nPhase 5 : Exporting in UNIGRAFIX format [to %s] ∖n",outfile),-
f f lush(Iogf) ,-

}

export(Outfile) ,-

∕* PHASE 6 : CLOSING PROCEDURES */

fprintf (stderr, "∖n. . . Completed. ∖n∖n") ,-

if (optlog == ON)
[
fprintf(stderr,"[Logfile is ⅛s]∖n∖n",logID);
fprintf(logf,"∖n...Completed. ∖n∖n[Logfile is %s].∖n∖n",logID);
f close(Iogf) ,-

ugx:

115

* ctndln. c -- misc functions for command line parsing

* Author: Henri Cheung at McMaster University, Hamilton, Ontario

⅛include
include
include

<stdio. h>
"global.h
"cmdln.h"

char infile [f;TRSIZ]
char OUtfilefSTRSIZ]
int optfi — OFF ;
int optfo = OFF ,-
int optulen — OFF ,-
int optmesh — OFF ,-
int optaxis — OFF ;
int optsyn — OFF ,-
int optlog OFF ;
FILE *logf

∕* character string for input source name */
∕* character string for output target name */

* getcmdln — parse command line argument, set input & output stream

getcmdln (argc,argv)
int argc ;
char *argv[] ,
{ int i = 0 ,-
FILE *fi, *fo;

gll:

treat command line parameters */

if (++i > = argc) goto gl2 ;

if (strcmp(argv[i],"-fi") == 0)
{
strcpy(infile,"stdin");
optfi ∣= ((optfi & OPTON) != OFF) ? OPTON2 : 0 ,-
optfi ∣= OPTON ,-

if (i+l >= argc)
else if (argv[i+l][0] == '-')
else
C
strcpy(infile,argv[++i]) ,

)

optfi &= ^ARG0K,
optfi &= "ARGOK,

optfi ∣= ARGOK;

116
goto gll;

if (strcmp(argv[i],"-fo") == 0)
[
Strcpy(outfile,"stdout"),
optfo]= ((optfo & OPTON) != OFF) ? 0PT0N2 : 0 ,-
optfo ∣= OPTON ,-

if (i+l >= argc) optfo &= ARGOK;
else if (argv[i+l∏0] == '-') optfo &= ARGOK;
else
{
strcpy(outfile,argv[++i]) ,- optfo ∣= ARG0K;

}
goto gll;

if (strcmp(argv[i],"-nl") == 0)

optlog = OFF ,- goto gll;

if (strcmp(argv[i],"-l") == 0)
{
optlog = ON ,- goto gll,-

if (strcmp(argv[i],"-na") == 0)

optaxis = OFF; goto gll,

if (strcmp(argv[i],"-a") == 0)
[
optaxis = ON , goto gll;

if (strcmp(argv[i],"-us") == 0)

optulen = OFF; goto gll,-

if (strcmp(argv[i],"-ul") == 0)
[
optulen = ON ; goto gll;

if (strcmp(argv[i],"-dp") == 0)

optmesh = OFF; goto gll;

if (strcmp(argv[i],"-dm") == 0)
[
optmesh = ON , goto gll,

117

optsyn ∣= SYNERR; ∕* syntax error */

goto gll ,

gl2:

∕****⅛*******t***t**************t***************************⅛*****************

* chkcmdln — check command line argument *

chkcmdln ()
[FILE *fi, *fo;

if (optulen == ON) message(7),
if (optmesh == ON) message(9);
if (optaxis == ON) message(10);
if (optlog == ON) message(6);

∕* error treatment */

if ((optsyn & SYNERR) != OFF) message(3);

if ((optfi & 0PT0N2) ! = OFF) message(4),
if(((optfi & OPTON) ! = OFF) && ((optfi & ARGOK) == OFF)) message(l),

if ((optfo & 0PT0N2) != OFF) message(5);
if(((optfo & OPTON) != OFF) && ((optfo & ARGOK) == OFF)) message(2),

if ((optfi & ARGOK) == OFF) strcpy(infile, "stdin"),
if ((optfo & ARGOK) == OFF) strcpy(outfile,"stdout");

∕* try to access of i/o files */

if (strcmp(infile,"stdin") != 0)
if ((fi = fopen(infile,"r")) == NULL) message(502),-
else fclose(fi);

if (strcmp(outfile,"stdout") != 0)
if ((fo = fopen(outfile,"a+")) == NULL) message(503);
else fclose(fo);

118
∕***
* *
* input.c -- misc functions for input parsing *
* *
* Author: Henri Cheung at McMaster University, Hamilton, Ontario *
* *
***/

⅛ include
include
include

<stdio.h>
<ctype.h>
"global.h"

extern FILE *logf ;
extern int optlog;

char *buffer
char *argument

∕* buffer is an array of lines
∕* argument is an array of words */

∕***

* getspec — read from input stream *
* *
***/

getspec (fn)
char f n [] ,­
[int j, k, nc, nl = 0, flag ≈ OFF ,-
char *1, *c, *calloc() ,-
FILE *fin ;

∕* allocate transitional memory buffer */

if ((buffer = calloc(STRBUFF,STRSIZ)) == NULL) message(504);

∕* prepare source stream, proceed no further if cannot open */
∕* obtain whole file into memory buffer: STRBUFF x STRSIZ */

fin = (strcmp(fn,"stdin") == 0) ? stdin : fopen(fn,"r") ;
if (fin == NULL) message(502) ,­

1 = buffer ;
while ((nl < STRBUFF) && (fgets(l,STRSIZ,fin) != NULL))
{

1 += STRSIZ ; ++nl ,­
)
fclose(fin) ,-

if (nl >= STRBUFF) message(501) ;
if (nl <= 0) message(506) ,-

∕* replace comment block by blanks */

for (j = 0; j < nl; j++)
{

119
nc = strlen(buffer + j * STRSIZ) ,-
for (k = 0, k < nc, k++)
switch (*(c = buffer+j*STRSIZ+k))
(
case '{' : flag += 0N,- *C = ' ' break,
case ')' : if (flag != OFF) { flag - = 0N,- *c = ' ')

else message(507); break,-
case '∖t': *c = ' ' break ,-
case '∖n': break,
default : if (flag != OFF) = ' * break,

)
)
if (flag ! = OFF) message(508);

return (nl) ,-

* intrspec — parse input

intrspec (nl)
int nl,-
{ char *calloc() ,-

int j, k, nw, flag = OFF ,-

if (nl == 0) message(506),-

∕* allocate transitional memory buffer */

if ((argument ≈ calloc(WORDBUFF,WORDSIZ)) == NULL) message(504),-

∕* break down into arguments & parse */

for (j = 0; j < nl; j++)
if ((nw = getarg(argument,buffer+j*STRSIZ)) > 0)
[

if (optlog == ON)
[

for (k =0,- k < nw,- k++) fprintf(logf,"]%s",argument+k*WORDSIZ),
fprintf (Iogf, " [⅛d] ∖n" , nw),- fflush (Iogf) ,­

)

if (isconstant(argument) ! = FALSE) (getconst(nw,argument); goto spl,-)
if (isparameter(argument) != FALSE) [getpar(nw,argument), goto spl,-)
if (isvariable(argument) != FALSE) { getvar(nw,argument), goto spl, }
if (isdomain(argument) != FALSE) [getdom(nw,argument), goto spl,)
geteqt (nw, argument) ,-

spl:

∕* release transitional memory block */

120

⅛if VER =- LATTICE ∕* Lattice C version */
if (free(buffer) != 0) message(505),

*argvec = *s; k++ ,
*(argvec+k) = '∖0', k = 0 ,
argvec += WORDSIZ , nw++ ,
break,

if (free(argument) != 0) message(505),
⅛endif
#if VER =≈ UNIX ∕* Unix version */

if (free(buffer) != 239) message(505),-
if (free(argument) != 239) message(505),-

#endif
)

∕**^******^***^*******^*********************************^********^******^
* *
* getarg — split string [%s∖0] into an array of words,
* a null string is appended as the last array element

***/

getarg (argvec,s)
char *argvec, *s;
[int inword = NO, k = 0, nw = 0,-

gal:

if (nw >= WORDBUFF) message(509),

if (*s == '∖0') goto ga2;

switch (*s)
(
case ' ': case '∖t': case '∖n': ∕* these characters are skipped */

if (inword == YES)
[
*(argvec+k) = '∖0', k = 0 ,
argvec += WORDSIZ , nw++ ;
inword = NO ;

)
break,-

case '+': case case '*': case case ' ':
case '(': case ')':
case '=': case ∕* these characters forced a separate word */

if (inword == YES)
[
*(argvec+k) = '∖0', k = 0 ,
argvec += WORDSIZ ,- nw++
inword = NO,

}

121

case '<': case '>': ∕* these characters forced a separate word */

it (inword - YES)
{
* (argvectk) = '∖0'; k 0 ;
argvec I = WORDSIZ ; nw++ ,
Inword NO;

)

* argvec = *s,- k + + ;
if (*(s+l) == ' = ')
(

s + +;
* (argvec+k) = *s ; k++ ;

}
* (argvec+k) = '∖0'; k = O ;
argvec += WORDSIZ ,- nw++ ,-
break,-

case '.': case ' ' : ∕* acceptable non-alphanumerics for word */
if (k < WORDSIZ)
C
* (argvec+k) = *s ,- k++ ;
inword = YES;

)
else message(8);
break;

default:

if (isalnum(*s) == FALSE)
{

if (inword == YES)

*(argvec+k) = '∖0';
argvec += WORDSIZ ;
inword = NO;

)

∕* force a new word */

k -- O ;
nw++ ;

*argvec = *s,-
*(argvec+k) = '∖0';
argvec += WORDSIZ ;

)
else if (k < WORDSIZ)
[
*(argvec+k) = *s ;
inword = YES;

)
else message(8);
break,-

k++ ;
k = O ;
nw++ ;

k++

S + +;
goto gal,

122
ga2 :

if (inword YES)
{
*(argvec<k) = '∖0',
argveπ ' WORDS)Z ; nwil ;

)

i) (nw >= WOR])BU)'t') message(509),
*aιgvec '∖0';

return(nw);

123

* *
* parse.c -- misc functions for specification parsing *

* Author: Henri Cheung at McMaster University, Hamilton, Ontario *

⅛include <stdio.h>
ftinclude <ctype.h>
⅛include <math.h>
#include "global.h"
#include "struct.h"

extern FILE *logf ,-
extern int optlog, optulen;

int nconst = 0,-
int nparam = 0,
int nvar = 0;

struct identifier *const [NUMCONST],-
struct identifier *param[NUMPARAM] ,-
struct identifier *var[NUMVAR] ,

struct domain (*dom[NUMPARAM])[NUMDOM];

∕* total # of const defined & used */
∕* total # of par defined & used */
∕* total # of var defined & used */

∕* array for constant definitions */
∕* array for parameter definitions */
∕* array for variable definitions */

∕* array for domain partitions */

∕***

* getconst — get constant declaration & definition *

***/

getconst (n,bufp)
int n ;
char *bufp ,
[struct expr *f, *isform(), *reclaim() ,
char *w, *malloc() ;
double evalu() ,
int j, flags ,-

if (n < 4) message(511); ∕* check # of arguments */

∕* is identifier syntax valid ? */

w = (bufp += WORDSIZ);
if (namegood(w) != TRUE) message(512),-

∕* is the name already declared ? */

switch(nameused(w))
[
case CONSTANT : message(517), break,-
case PARAMETER: message(516); break,

124
case VARIABLE : message(515), break;
default: ∕* name not declared *∕break,

)

if (nconst >= NUMCONST) message(514),-

∕* check existence of '=' */

if (*(bufp+=WORDSIZ) ! = ' = ') message(511),

∕* check if specified expression is valid */

if ((f = isform(bufp+=WORDSIZ)) = = NULL) message(513),

∕* allocate new slot in the "const" array */

j = nconst ; nconst++ ,-

if ((const[j] = (struct identifier *) malloc(IDENSIZ)) == NULL)
message(504),-

strcpy(const[j]->nam,w) ;
const[j]->itype = CONSTANT ;
const[j]->f = f ,-
const [j]->valu = evalu(f) ,-
const[j]->vmin = const[j]->vmax = 0.0 ,-

if (optlog =≈ ON)
(
fprintf(logf,"[%d]⅛s = %f∖n",j,const[j]->nam,const[j)->valu),
fflush(logf);

)

* *
* getvar — get variable declaration *
* *
***/

getvar (n,bufp)
int n ,-
char *bufp ;
{ int j, flags = OFF ;
char *w, *malloc() ,-
struct expr *reclaim() ;

if (n < 2) message(521); ∕* check ⅛ of arguments */

gvl:

∕* is identifier syntax valid ? */

w = (bufp += WORDSIZ),-

125
if (namegood(w) ! = TRUE) message(522);

∕* is the name already declared ? */

switch(nameused(w)) { case CONSTANT : case PARAMETER: case VARIABLE : default: ∕* name
message(524); break
message(525); break
message(526), break
not declared *∕break

∕* allocate new slot in the "var" array */

if (nvar >= NUMVAR) message(523);

j = nvar ; nvar++ ;

if ((var[j] = (struct identifier *) malloc(IDENSIZ)) == NULL)
message(504);

strcpy(var[j]->nam,w) ;
var[j]->itype = VARIABLE
var[j]-> f = NULL
var[j]->valu = 0.0
var[j]->vmin = var[j]->vmax = 0.0

if (optlog == ON)
[
fprintf(logf,"[⅛d]⅛s = %f∖n",j,var[j]->nam,var[j]->valu), fflush(logf),

)

bufp += WORDSIZ
if (strcmp(bufp,"") != 0)
if (strcmp(bufp,",") != 0) message(521) ;
else goto gvl ;

∕**************t***********************W*********⅛*********^******************

* getpar — get parameter declaration *
* *

getpar (n,bufp)
int n ;
char *bufp ,
[int j, flags = OFF ,-
struct expr *reclaim() ,
char *w, *malloc(), *calloc() ,

if (n < 2) message(531); ∕* check # of arguments */

gpl:

126
∕* is identifier syntax valid ? */

w = (bufp += WORDSIZ);
if (namegood(w) ! = TRUE) message(532);

∕* is the name already declared ? */

switch(nameused(w))
t
case CONSTANT : message(534); break;
case PARAMETER: message(536),- break;
case VARIABLE : message(535); break,-
default: ∕* name not declared *∕break;

)

∕* allocate new slot in the "param" array */

if (nparam >= NUMPARAM) message(533);

j = nparam ,- nparam++ ,-

if ((param[j] = (struct identifier *) malloc(IDENSIZ)) == NULL)
message(504);

strcpy(param[j]->nam,w) ;
param [j] - > itype = PARAMETER ,-
param[j]->f ≈ NULL ,-
param[j]->valu =0.0 ;
param[j]->vmin = param[j]->vmax = 0.0 ,-

if ((dom[j] = (domarr *) calloc(NUMDOM,DOMSIZ)) == NULL) message(504),

if (optlog == ON)
[
fprintf(logf,"[⅛d]%s = ⅛f∖n",j,param[j]->nam,param[j]->valu);
fflush(Iogf);

)

bufp += WORDSIZ,-
if (strcmp(bufp,"") != 0)
if (strcmp(bufp,",") != 0) message(531) ;
else goto gpl ;

* *
* getdom — get domain declaration & definition *
* *I***************************#***/

getdom (n,bufp)
int n ,
char *bufp ;
{ char *w ,

int i, j, k, found, fl, f2 ,-

127
float xl, x2, x3, x4, x5, x6 ;

if (n < 6) message(541),- ∕* check # of arguments */

∕* 1st bracket value */

bufp t= WORDSIZ ;
if ((i = getoken(bufp,⅛xl)) == 0) message(541);

dmθ: ∕* 1st bracket inequality */

bufp += (i * WORDSIZ) ;
if (strcmp(bufp,"<=") ≈= 0) { fl = LESS_THAN + EQUALTO ; goto dml ,)
if (strcmp(bufp,"<") == 0) (fl = LESS-THAN ; goto dml ;)
if (strcmp(bufp,">=") == 0) [fl = GREATERTHAN t EQUAL_T0 ; goto dml ;)
if (strcmp(bufp,">") == 0) [fl = GREATERTHAN ; goto dml ,)

message(541) ,-

dml: ∕* is identifier syntax valid ? */

w = (bufp t= WORDSIZ);
if (namegood(w) ! = TRUE) message(532);

∕* locate position in "param" array */

for (j = 0, found = OFF; found == OFF && j < nparam,-)
if (strcmp(bufp,param[j]->nam) == 0) found = ON; else jtt,-

if (found == OFF) message(543),-

∕* 2nd bracket inequality */

bufp t= WORDSIZ
if (strcmp(bufp, "<=") == 0) { f2 = LESS-THAN + EQUALTO ; goto dm2 ;)
if (strcmp(bufp, "<") == 0) [f2 = LESS-THAN ; goto dm2 ;)
if (strcmp(bufp, ">=") == 0) [f2 = GREATER-THAN + EQUALJTO ; goto dm2 ;)
if (strcmp(bufp, ">") == 0) [f2 = GREATERTHAN ; goto dm2 ;)

message(541) ,-

dm2: ∕* 2nd bracket value */

bufp += WORDSIZ ;
if ((i = getoken(bufp,⅛x2)) == 0) message(541);

dm3: ∕* range test */

∕* filter out xl=x2, "O" and "><" */

if (xl == x2) message(545),-
if ((fl & f2 & ^*EQUALJΓO) == OFF) message(542);

if ((fl & f2 & "EQUAL_T0) =≈ LESS_THAN)

128
if (xl < x2) goto dm4 ,- ∕* inequality is logical */

if ((fl & f2 & EQUALTO) == EQUALTO)
if (xl <= x2) goto dm4 ,-

message(542) ,­
)
else
[

if (xl > x2) goto dm4 ; ∕* inequality is logical */

if ((fl & f2 & EQUALTO) == EQUALTO)
if (xl >= x2) goto dm4 ,-

message(542) ,­
)

dm4: ∕* get trace value */

bufp += (i * WORDSIZ) ;
if (*bufp == '∖0') goto dma ,-
if (*bufp != ',') message(561) ,-
if ((i = getoken(bufp+=W0RDSIZ,⅛x3)) != 0) goto dm5 ,-

dma: ∕* apply default value for unit-step mode, 1% of domain */
∕* if trace mode is unit-length, default is zero this point */

i = 0,-
if (optulen == OFF)
[

#if VER == LATTICE
x3 = 0.01 * abs(xl - x2),-

#endif
#if VER == UNIX

x3 = 0.01 * fabs(xl - x2),-
#endif

)
else x3 = 0.0,-

dm5: ∕* get display value */
∕*

bufp += (i * WORDSIZ) ;
if (*bufp == '∖0') goto dmb ,-
if (*bufp != ',') message(571) ,-
if ((i = getoken(bufp+=WORDSIZ,⅛x4)) != 0) goto dm6 ,-

*/
dmb: ∕* apply default value, set to trace */

∕*i = 0,-*/
∕*if (optulen == OFF)*/ x4 = x3,-
∕*else x4 = 0.0,-*/

dm6: ∕* get precision value */

bufp +≈ (i * WORDSIZ) ,-
if (*bufp == '∖0') goto dmc

129
if (*bufp ! = ',') message(591) ,
if ((i getoken(bufp+=W0RDSIZ,⅛x5)) !- 0) goto dm7 ,

dmc: ∕* apply default value: 1% of trace */

i - 0;
if (optulen == 0I-'F) x5 = 0.01 * x3,-
else x5 = 0.0,-

dm7: ∕* get sensitivity value */

bufp += (i * WORDSIZ) ;
if (*bufp == '∖0') goto dmd ,-
if (*bufp != message(592) ,-
if ((i = getoken(bufp+=W0RDSIZ,⅛x6)) ! = 0) goto dm8 ,-

dmd: ∕* apply default value: 0.001% of domain interval */

i = 0,-
#if VER == LATTICE

x6 = 0.00001 * abs(xl-x2),
⅛endif
#if VER == UNIX

x6 = 0.00001 * fabs(xl-x2);
#endif

dm8:

bufp += (i * WORDSIZ) ,-
if (^bufp != '∖0')
if ((int) param[j]->vmax >= NUMDOM)

message(541) ,
message(544) ;

k = (int) param[j]->vmax

—(*dom[j])[k].flag
(*dom[j])[k].dmin
(*dom[j])[k].dmax

((f2 & EQUALTO) <<
(fl & LESSTHAN) ?
(fl & LESS_THAN) ?

4) + (fl & EQUAL-TO) ;
(double) xl : (double) x2 ;
(double) x2 : (double) xl ;

(*dom[j])[k].trace = (double) x3 ,-
(*dom[j])[k].display = (double) x4
(*dom[j])[k].precision = (double) x5 ,-
(*dom[j])[k].sensitivity = (double) x6 ,

param[j]->itype]= DOMFLAG ;
param[j]->vmax += 1.0 ;

if (optlog == ON)
C
fprintf(logf,"[%d]%s = ",j,param[j]->nam),
fprintf(logf,"%c%f,",(fl & EQUAL_T0)?'[':'(',(*dom[j])(k].dmin);
fprintf(logf,"%f%c
fprintf(logf,
fprintf(Iogf,
fprintf(Iogf,
fprintf(Iogf,
fflush(Iogf),

[%f]
[⅛f]
[%f]

(*dom[j])[k].dmax,(fl &
(*dom[j]) [k] trace
(*dom[j])[k].display
(*dom[j])[k].precision

EQUALTO)?']':')'),
);
);
) ;

[%f]∖n",(*dom[j])[k].sensitivity);

130))
∕***

* geteqt -- get: defining equation *
* *

geteqt (n,bufp)
int n ,
char *bufp ,
(int j = 0, flag = OFF ;
struct expr *f, *isform() ;

if (n < 3) message(581); ∕* check ⅛ of arguments */

∕* check validity of identifier */

while (flag == OFF && j < nvar)
if (strcmp(bufp,var[j]->nam) == 0) flag = ON; else j++,

if (flag == OFF) message(582),-

∕* check existence of '=' */

if (*(bufp+=WORDSIZ) != ' = ') message(581),-

∕* check if variable already defined */

if ((var[j]->itype & USEDFLAG) != OFF) message(527);

∕* check if specified expression is valid */

if ((f = isform(bufp+=WORDSIZ)) == NULL) message(583);

var[j]->itype [= USEDFLAG
var[j]->f = f ;

if (optlog == ON)
(

f print f (Iogf, " [⅛d] ⅜s∖n" , j , var [j] - >nam) ; f flush (Iogf) ;
)

)

∕***

* getoken — get a token
*

*
*

getoken (bp,xp)
char *bp,
float *xp,

131
[float sign,

Int found, ⅛, n 0,-

i f (*bp -= ' - ')
{
sign 1.0 , n+^ , bp 3= WORDSIZ ;

)
else sign 1.0 ,

if (sscanf(bp,"⅛f",xp) != 0)
[

*xp *= sign , n++ ,- goto gtl ,­
)

for (j = 0, found = OFF,- found == OFF && j < nconst,-)
if (strcmp(bp,const[j]->nam) == 0) found = ON,- else j++,

if (found != OFF)
[

*xp = sign * const[j]->valu ,- n++ ,
)
else n = 0 ,-

gtl:

return(n) ,-

/st**
⅛ *
* chkspec — check misc. logic of plot specification *
* *
***/

chkspec ()
[int i, j, k,-

int uconst = 0, uparam = 0, uvar = 0,-
struct identifier *tmpl,-
domarr *tmp2,-
double delta,

∕* constant check */

for (j = O,- j < nconst,- j++)
if ((const[j]->itype & USEDFLAG) ! = OFF) uconst += 1 ,-

∕* parameter check */

if (nparam <= 0) message(601),

for (j = 0,- j < nparam,-)
if ((param[j]->itype & USEDFLAG) != OFF)
[

if ((param[j]->itype & DOMFLAG) == OFF) message(603),
uparam++ ,- j++ ,-

132
)
clue ∕* not uncd in an equation, pull up one slot */
t

for (r ‰ tmpl paramtj], tmp2 = dom[jt, i < nparaml, it+)
!

pa rant) i] pa rant [ill],
dom[i] = dom}itl];

)
param[nparaml] = tmpl, dom[nparam-l] = tmp2;
npa ram ,

1
if (optlog == ON) fprintf(logf,"upar=¾2d] npar=⅛2d∖n",uparam,nparam),
if (nparam > 2) message(606),-

∕* variable check */

if (nvar <= 0) message(605),-

for (j = 0, j < nvar,-)
if ((var[j]->itype & USEDFLAG) != OFF)
{

if (var[j]->f == NULL) message(604);
uvar++ ,- j++ ,­

)
else

for (i = j, tmpl = var[j]; i < nvar-1; i++) var[i] = var[i+l],
var[nvar-l] = tmpl,
nvar— ,­

)
if (optlog == ON) fprintf(logf,"uvar=⅛2d] nvar=⅛2d∖n",uvar,nvar);
if (nvar > 3) message(607);

if (nparam >= nvar) message(602);

∕* check basic requirements for tracing trace & display interval */

for (j = 0, j < nparam; j++)
for (k = 0; k < (int) param[j]->vmax; k++)
t

if ((*dom[j])[k].trace < 0)
[

(*dom[j])[k].trace *= -1.0; message(101);
)
if ((*dom[j])[k].display < 0)
[
(*dom[j])[k].display *= -1.0; message(102),

)
if ((*dom[j])[k].precision < 0)
{
(*dom[j])[k].precision *= -1.0; message(103),

)
if ((*dom[j])(k].sensitivity < 0)
[

(*dom[j])[k].sensitivity
)

*= -1.0; message(104);

133
if ((*dom[j])[k].trace == 0 ⅛⅛ optulen == OFF)
t

(*domtj])[k].trace = 0.01 * ((*dom[j])[k].dmax - (*dom[j])(k].dmin),
message(105);

)
if ((*dom[j])[k].display < (*dom[j))(k].trace)
t

(*dom[j])[k].display = (*dom[j])[k].trace,
message(106);

)

∕* adjusting domain bracket values */

for (j = 0, j < nparam; j++)
for (k = 0; k < (int) param[j]->vmax, k++)
[
delta = 0.001 * ((*dom[j])[k].dmax - (*dom[j])[k].dmin),
if (((*dom[j])[k].flag & EQUALTO) == OFF)

(*dom[j])[k].dmin += delta,

if ((((*dom[j])[k].flag >> 4) & EQUALTO) == OFF)
(*dom[j])[k].dmax -= delta;

)

∕* calculate default unit length if tracing mode is unit length */

if (optulen == ON) findulen(),-

/***

* namegood — check identifier syntax *

****************^***************⅛^***/

namegood (word)
char *word,
(int j;

∕* is first character alphabet ? */

if (isalpha(*word) == FALSE) return(FALSE);

∕* is the rest alphanumeric */

for (j = strlen(word)-l; j > 0; j—)
if (isalnum(*(word+j)) == FALSE)
{

if (*(word+j) != '_') return(FALSE);
)

∕* is the name a keyword used by UGTRACE */

if (isconstant(word) != FALSE) return(FALSE);

134
if (isparameter(word) FALSE)
if (isdomain(word) FALSE)
if (isvariable(word) FALSE)

return(FALSE),
return(FALSE),
return(FALSE),

ret urn(TRUE);)
nameused -- check identifier used or not

nameused (word)
ciιar *word,-
(int j,

for (j = O; j < nconst,- j++)
if (strcmp(word,const[j]->nam) == O) return(CONSTANT),-

for (j = O; j < nparani,- j++)
if (strcmp(word,param[j]->nam) == O) return(PARAMETER);

for (j = O; j < nvar; j++)
if (strcmp(word,var[j]->nam) == O) return(VARIABLE);

return (O) ,­
)

/***
* isconstant — check if given word is the keyword constant *
* ***************⅛***⅛⅛⅛*⅛*⅛*⅛*⅛⅛*⅛****⅛****⅛*⅛⅛⅛⅛⅛⅛⅛⅛⅛*⅛⅛*⅛⅛⅛⅛⅛⅛******⅛⅛*****⅛⅛/

isconstant(w)
char *w,-
t

if (isletter(*(w+0),'c') == FALSE)
if (isletter(*(w+l),'o') == FALSE)
if (isletter(*(w+2), 'n') == FALSE)
if (isletter(*(w+3), 's') == FALSE)
if (isletter(*(w+4),'t') == FALSE)
if (*(w+5) == ' ∖0 ') return (TRUE) ,-

if (isletter(*(w+5),'⅛') == FALSE)
if (*(w+6) == '∖0') return(TRUE),

if (isletter(*(w+6),'n') == FALSE)
if (*(w+7) == '∖0') return (TRUE),-

if (isletter(*(w+7),'t') == FALSE)
if (*(w+8) == '∖0') return(TRUE),
return(FALSE) ,-

return(FALSE);
return(FALSE),
return(FALSE),-
return(FALSE),-
return (FALSE) ,-

return (FALSE) ,-

return(FALSE),-

return (FALSE) ,-

135
)

* Isparameter — check if given word is the keyword parameter *
*It**/

isparameter(w)
char *w,-

if (isletter(*(w+O),'p') == FALSE)
if (isletter(*(w+l),'a') == FALSE)
if (isletter(*(w+2),'r') == FALSE)
if (*(w+3) == '∖0') return(TRUE);

if (isletter(*(w+3),'a') == FALSE)
if (*(w+4) == '∖0') return(TRUE);

if (isletter(*(w+4),'m') == FALSE)
if (*(w+5) == '∖0') return(TRUE);

if (isletter(*(w+5),'e') == FALSE)
if (*(w+6) == '∖0') return(TRUE),

if (isletter(*(w+6),'t') == FALSE)
if (*(w+7) == '∖0') return(TRUE);

if (isletter(*(w+7),'e') == FALSE)
if (*(w+8) == '∖0') return(TRUE);

if (isletter(*(w+8),'r') == FALSE)
if (*(w+9) == '∖0') return(TRUE),-
return(FALSE);

)

return(FALSE);
return(FALSE);
return(FALSE);

return(FALSE);

return (FALSE) ,-

return(FALSE);

return(FALSE);

return(FALSE);

return(FALSE);

∕**^************⅛^**********************
* isvariable — check if given word is the keyword variable
*

*
*

**************#**************************#***********************************/

isvariable(w)
char *w;
{

if (isletter(*(w+O),
if (isletter(*(w+l),
if (isletter(*(w+2),
if (*(w+3) == '∖0')

v') == FALSE)
a') == FALSE)
r') == FALSE)
return(TRUE),

return (FALSE) ,-
return(FALSE);
return(FALSE);

if (isletter(*(w+3),'i') == FALSE) return(FALSE);
if (*(w+4) == '∖0') return(TRUE);

if (isletter(*(w+4),'a') == FALSE) return(FALSE);

136

return(FALSE),

if (*(w+5) == '∖0') return(TRUE),

if (isletter(''(w+5),'b') == FALSE)
if (*(w+6) == '∖0') return(TRUE),

if (isletter(''(w+6),'1') == FALSE)
if (*(w+7) == '∖0') return(TRUE),

return(FALSE);

if (isletter(*(w+7),'e') == FALSE)
if (*(w+8) == '∖0') return(TRUE),-
return(FALSE) ,-

return(FALSE),

* Isdomain — check if given word is the keyword domain
**************************************⅛*^*************************************/

Isdomain(W)
char *w,-
C

if (isletter(*(w+O),'d') == FALSE)
if (isletter(*(w+l),'o') == FALSE)
if (isletter(*(w+2),'m') == FALSE)
if (*(w+3) =≈ '∖0') return(TRUE);

if (isletter(*(w+3),'a') == FALSE)
if (*(w+4) == '∖0') return(TRUE);

if (isletter(*(w+4),'i') == FALSE)
if (*(w+5) == '∖0') return(TRUE),-

if (isletter(*(w+5),'n') == FALSE)
if (*(w+6) == '∖0') return(TRUE);
return (FALSE) ,­

)

return(FALSE),-
return (FALSE) ,-
return(FALSE) ,-

return (FALSE)

return(FALSE);

return(FALSE),

* isletter — match letter *
* ⅛⅛***<nnnnnm*⅛*⅛*⅛⅛*⅛!⅛*⅛⅛***jn⅛⅛⅛*⅛⅛w**⅛*⅛********⅛**⅛⅛*⅛****************⅛**⅛⅛⅛*/

isletter(cl,c2)
char cl, c2;
{ int bool;

if (isascii(cl) == FALSE)

bool = FALSE,
)
else if (isupper(cl) ≈= FALSE)
{

137
bool = (cl == c2) ? TRUE : FALSE;

)
else(

bool = (tolower(cl) == c2) ? TRUE : FALSE,
)
return(bool),-

* findulen — find default unit length for each domain *
* *it**/

findulen()
[int k;
double evalu();
double xθ, yθ, zθ,-
double xl, yl, zl,-

if (nparam == 2) goto surface;

curve:

for (k = 0; k < (int)param[O]->vmax; k++)
[

if ((*dom[0])[k].trace == 0.0)
C
param[0]->valu = (*dom[0])[k].dmin;
xθ = evalu(var[0]->f),-
yθ = evalu(var[l]->f);

param[0]->valu += 0.01 * ((*dom[0])[k].dmax - (*dom[0])[k].dmin);
xl = evalu(var[0]->f);
yl = evalu(var[l]->f);

(*dom[0])[k].trace = (*dom[0])[k].display
= sqrt((xl-χθ)*(xl-χθ) + (yl^yθ)*(yl-yθ)),

)
if ((*dom[0])[k].precision == 0.0)
(*dom[0])[k].precision = 0.0001 * (*dom[0])[k].trace,

)
return;

surface:

param[l]->valu = (*dom[ll)[0].dmin; ∕* set v to minimum */

for (k = 0,- k < (int)param[0]->vmax, k++)
[

if ((*dom[0])[k].trace == 0.0)
[
param[0]->valu = (*dom[0])[k).dmin,
xθ = evalu(var[0]->f),

138
yθ = evalu(var[l]->f);
zθ = evalu(var}2)->f),

param[O]-)valu += 0.01 * ((*dom[0))[k].dmax (*dom[0])[k).dmin),
xl = evalu(var[0]->f),
yl = evalu(var[l]->f),
zl = evalu(var[2]->f),

(*dom[0])[k].trace = (*dom[0])]k].display
= sqrt((xl-χθ)*(xl-xθ) + (yl-yθ)*(yl-yθ) + (zl-zθ)*(zl-zθ)),

)
if ((*dom[0])[k].precision == 0.0)
(*dom[0])[k].precision = 0.0001 * (*dom[0])[k].trace,-

)

param[0J->valu = (*dom[0])[0].dmin, ∕* set u to minimum */

for (k = O; k < (int)param[l]->vmax,* k++)
[

if ((*dom[l])[k].trace == 0.0)
{
param[l]->valu = (*dom[l])[k).dmin,
xθ = evalu(var[0]->f),-
yθ = evalu(var[l]->f),-
zθ = evalu(var[2]->f),-

param[l]->valu += 0.01 * ((*dom[l])[k].dmax - (*dom[l])[k].dmin);
xl = evalu(var[0]->f),-
yl = evalu(var[l]->f);
zl = evalu(var[2]->f);

(*dom[l])[k].trace = (*dom[l])[k].display
= sqrt((xl-χθ)*(xl-xθ) + (yl**yθ)*(yl-yθ) + (zl-zθ)*(zl-zθ)),­

)
if ((*dom[l])[k].precision == 0.0)
(*dom[l])[k].precision = 0.0001 * (*dom[l])[k].trace,-

)
return,-

139
∕- * *********** *********************** * * * **************** * * * ********

*
*

expr.c - misc Iunctions for expression pars i ng *

t Author: Henri Ciieunq at McMaster University, Hamilton, Ontario
*

*
*

grammer Ui^ed:
*

*

*

*
*
*
*
*
*
*
*
*

<form>
<expr>
<term>
<factl>
<fact2 >
<argu >
<iden>
<lit>
<addop>
<multop>
< func>

= <expr> "∖0"
= <term> ∣ <term><addop><expr>
= <factl> ∣ <factl><multop><term>
= <func><fact2> ∣ <fact2>
= <argu>] <argu><powop><fact2>
= <lit> ∣ <iden> ∣ "("<expr>")"
= <string>] "-"<string>
= <real> { <int>
— M ft tf _ tf
= "*" I --/«
= "sin" I "cos" I "tan")

"asin" ∣ "acos" j "atan" j
"sinh" j "cosh" ∣ "tanh" ∣

"asinh" ∣ "acosh" ∣ "atanh" ∣

"exp"] "log"] "loglO" ∣

"sqrt"

[Unix only]

*

*

*

*

*
*

* <powop> — ft ^ M

*********** *********************** 1
*.

#include
#include
#include
#include

<stdio.h>
<ctype.h>
"global.h"
"struct.h"

extern FILE *logf ,-
extern int optlog;
extern int nconst, nparam;
extern struct identifier *const[], *param[];

char *bufp,

∕***
* *
* isform — is formula ? *

***/

struct expr *
isform (buffer)
char *buffer,
[struct expr *isexpr(), *f = NULL,-

if (*(bufp = buffer) == '∖0') return(NULL);

140

if (() i sexpr()) - NULT.)

it (*bufp -= '∖0')

Feturn(NULL);

return(NULL),

return(f);

isexpr is expression ?**^**************^***t*****************
struct expr *
isexpr ()
(struct expr *isaddop(), *isterm(), *e = NULL, *a = NULL;

if (*bufp == '∖0') return(NULL);

if ((e = isterm()) == NULL) return(NULL);

while (0 == 0)
(
if ((a = isaddop()) == NULL) return(e);
if ((a->r - isterm()) != NULL)
{
a->l = e, e = a ;

)
else message(553),-
)

* isterm — is term ? *
* - *
***/

struct expr *
isterm ()
[struct expr *isfactl(), *ismultop(), *t = NULL, *m = NULL;

if (*bufp == '∖0') return(NULL),-

if ((t = isfactl()) == NULL) return(NULL);

while (0 == 0)
t
if ((m = ismultop()) == NULL) return(t);
if ((m->r = isfactl()) != NULL)
t
m->1 = t; t = m;

}

141
cine message(554),
)

/**********^**#*************************
Istactl is 1st level factor ?

***/

struct expr *
isfactl ()
{ struct expr *isfunc(), *isfact2(), *f = NULL,-

If (*bufp == '∖0') return(NULL),-

if ((f = isfunc()) != NULL)
if ((f->r = isfact2()) != NULL) return(f),-
else message(554),

if ((f = isfact2()) ! = NULL) return(f),-
else return(NULL),-

* isfact2 — is 2nd level factor ? *

W**/

struct expr *
isfact2 ()
[struct expr *isargu(), *ispowop(), *f = NULL, *p = NULL;

if (*bufp == '∖0') return (NULL),-

if ((f = isargu()) == NULL) return(NULL),-

while (0 == 0)

if ((p = ispowop()) -= NULL) return (f),-
if ((p->r = isargu()) ! = NULL)
{

p->1 = f, f = p;
)
else message(554),-
)

∕*************************************⅛*******⅛****w******%***⅛**********w***⅛⅛r
* isargu
*

is argument ?

142
***/

st runt expr * tMΓ<]" ()
{ struct expr *isexpr(), *isiden(), *islit(), *a = NULL;

if (*butp '∖0') return(NULL);

if ((a "= islit()) != NULL) return(a),

i f (*bufp == '(')
{
bufp + = WORDSIZ;
if ((a = isexpr()) != NULL)

if (*bufp == ')')
[
bufp += WORDSIZ,- return(a),

)
else message(557),-

else message(552),-
)

if ((a = isiden()) != NULL) return(a),-

return(NULL);
)

* isiden is identifier ?

**********^**********************tt**/

struct expr *
isiden ()
{ float sign,
int j, found = 0,
struct expr *i = NULL,-
char *localp, s[WORDSIZ], *malloc();

Iocalp = bufp,-

if (*localp == '∖0') return(NULL);

if (*localp == '-')
[
sign = -1.0,- Iocalp += WORDSIZ;

)
else sign = 1.0,

if (*localp == '∖0') return(NULL);

∕* check validity of identifier syntax */

if (namegood(Iocalp) != TRUE) return(NULL),

14 3

∕* check if it is a defined constant: */

j - 0,
while (found == 0 && j < nconst)
if (strcmp(localp,const[j)->nam) == 0) found = CONSTID,- else j + +,

if (fottnd == CONSTID) { const[j]->itype ∣ = USEDFLAG ; goto idl,)

∕* check if it is a defined parameter */

j * 0;
while (found == 0 && j < nparam)
if (strcmp(Iocalp,param[j]->nam) == 0) found = PARAMID; else j++;

if (found == PARAMID) [param[j]->itype ∣= USEDFLAG ; goto idl,-)

message(556) ,-

idl:

if ((i = (struct expr *) malloc(EXPRSIZ)) == NULL) message(504);
if (found == PARAMID)
{
i->ctype = PARAMID;
i->info.ptr = param[j] ;

)
else
[
i->ctype = REAL;
i->info.rval = sign * const[j]->valu,

)
i->l = i->r = NULL ;

if (sign < 0) bufp += WORDSIZ;
bufp += WORDSIZ;

return(i),

/Xxx

X

* islit — is literal ?
*

*

X

X

XXX/

struct expr *
islit ()
[int i ,
float x, sign ;
char *localp, *malloc() ,
struct expr *1 = NULL;

Iocalp = bufp,

14 4
if (*localp == '∖0') return(NULL),

if (*localp == '-')
{
sign = -1.0; Iocalp + = WORDSIZ,

)
cl so sign 1.0;

if (*localp = = '∖0') return(NULL),-

if (sscanf(localp,"%f",&x) == 1)
[

if ((1 = (struct expr *) malloc(EXPRSIZ)) == NULL) message(504);
l->ctype = REAL;
l->info.rval = (double) (sign * x),-
1->1 = l->r = NULL ,

if (sign < 0) bufp += WORDSIZ;
bufp += WORDSIZ,-

)
else if (sscanf(localp,"⅛d",⅛i) == 1)
{

if ((1 = (struct expr *) malloc(EXPRSIZ)) == NULL) message(504),-
l->ctype = INTEGER;
l->info.ival = ((int) sign) * i,-
1->1 = l->r = NULL ;

if (sign < 0) bufp += WORDSIZ;
bufp += WORDSIZ;

return(l);

∕***********^*****⅛***

* isfunc
*

is function ?It**/
struct expr *
isfunc ()
[int flag = 0 ,-
char *malloc() ,-
struct expr *f = NULL ;

if (*bufp == '∖0') return(NULL);

if (strcmp(bufp, " cos") == 0) [flag++; goto fnl;)
if (strcmp(bufp, "sin") == 0) (flag++, goto fnl;)
if (strcmp(bufp, "tan") == 0) { flag++; goto fnl; }
if (strcmp(bufp, "acos") == 0) [flag++; goto fnl;)
if (strcmp(bufp, "asin") ≈= 0) [flag++,- goto fnl;)
if (strcmp(bufp, "atan") == 0) [flag++. goto fnl;)
if (strcmp(bufp, "cosh") == 0) [flag++,- goto fnl;)

14 5
if
if

(strcmp(bufp,"sinh"
(strcmp(bufp,"tanh"

)
)
== 0)
= = 0)

t
t
flag^ +,
flag++,

goto
goto

fnl,
t n 1,

)
)

Ifif VER - UNIX ∕* Unix
if (strcmp(bufp,"acosh"

version
) 0)

only */
[flagt+, goto fnl,)

if (strcmp(bufp,"asinh") == 0) (flag++, goto fnl,)
if (strcmp(bufp,"atanh") = ÷ 0) { flag't, goto f n 1 ,)

Kendi
if

t
(strcmp(bufp,"exp") == 0) [fIagi+, goto fnl ,)

if (strcmp(bufp,"log") == 0) (flag++, goto fnl,-)
if (strcmp(bufp,"loglO") == 0) (flag++,- goto fnl;)
if (strcmp(bufp,"sqrt") == 0) [flag++,- goto fnl; }

fnl:

if (flag != O)
{

if ((f = (struct expr *) malloc(EXPRSIZ)) == NULL) message(5O4),-
strcpy(f->info. sval,bufp) ,-
f->ctype = FUNCTION,-
f->l = f->r = NULL ;
bufp += WORDSIZ,-

)
return (f) ,-

isaddop — is addition operator ?

***/

struct expr *
isaddop ()
(char *malloc() ,-
struct expr *a = NULL ;

if (*bufp == '∖0') return(NULL),-

if (strcmp(bufp,"+") == 0)] strcmp(bufp,"-") == 0)
[

if ((a = (struct expr *) malloc(EXPRSIZ)) == NULL) message(504),
strcpy(a->info.sv⅛l,bufp),
a-> ctype = OPERATOR,-
a->l = a->r = NULL ,-
bufp += WORDSIZ,-

}
return(a),

)

∕***⅛*

* ismultop — is multiplication operator ? *
* *

146

struct expr *
Ismultop ()
[char *malloc() ,
struct expr *m = NULL ,

if (*bufp - '∖0') return(NULL);

if (strcmp(bufp,"*") == O ∣] strcmp(bufp,"/") = = O)
[

if ((m = (struct expr *) Malloc(EXPRSIZ)) == NULL) message(504);
strcpy (m->info. sval, bufp) ,-
M->ctype = OPERATOR;
m->l = m->r = NULL ;
bufp += WORDSIZ;

}
return(m),

}

⅛⅛⅛*******⅛**⅛*****⅛**⅛************⅛**⅛***⅛****⅛⅛************************

* ispowop — is power operator ?
*nr**/

struct expr *
ispowop ()
[char *malloc() ;
struct expr *p = NULL ;

if (*bufp == '∖0') return(NULL);

if (strcmp(bufp," ") == O)
{

if ((P= (struct expr *) Malloc(EXPRSIZ)) == NULL) Message(504);
strcpy(p->info.sval,bufp);
p->ctype = OPERATOR;
p->l = p->r = NULL ;
bufp += WORDSIZ;

)
return(p);

)

* reclaiM — release meMory used by and expression

struct expr *
reclaim(f)
struct expr *f ,
{

if (f == NULL) return(NULL);

147

reclaim(f->l);
reclaim(f->r),

⅛if VER LATTICE ∕* Lattice C Version */
if (free((char *) f) 0) message(50⅛);

ft endif
ft if VER UNIX ∕* Unix version

if (free((char *) f) == 239) message(505);
⅛endif
)

* parsef — parse an expression (auditing) *It**/
parsef (n,f)
int n,
struct expr *f ,­
(

if (f != NULL)
{
parsef(n+l,f->l);
switch(f->ctype)
(
case 1: printf("i]⅛d)level ⅛d∖n",f->info.ival,n),- break;
case 2: printf("r]⅛f)level %d∖n",f->info.rval,n); break;
case 8: printf("s]%s]level %d∖n",f->info.sval,n); break;
case 16: printf("s]%s]level %d∖n",f->info.sval,n); break;
default: printf("s]%f[level %d∖n",f->info.ptr->valu,n),- break;

)
parsef (n+l, f->r),-

148
∕***

* evalu.c - evalu an expression tree built according to parse format *
* *
* Author: Henri Cheung at McMaster University, Hamilton, Ontario *
* *

if include
⅛ include
ff include
ff include
include

<stdio.h>
<math.h >
"global.h"
"struct.h"
"evalu.h"

extern FILE *logf ,
extern int optlog,

∕***

* evalu — evalu an expression tree built according to parse format *
* *
***/

double
evalu (f)
struct expr *f ,­
[int flag = 0,
double result, evalu2();

result = evalu2(f,&flag),-
if (flag > 0) message(703);
return(result),-

∕****************** ***
*

* evalu2 — evalu an expression tree built according to parse format *

***/

double
evalu2 (f,flag)
int *flag,
struct expr *f ,
[double al, a2, evalu2() ;

if (f == NULL) (*flag]= ENUL,- return(0.0),)

switch(f->ctype)
t
case INTEGER: return((double)f->info.ival), break;
case REAL : return(f->info.rval), break,
case OPERATOR:

149
al = evalu2(f->l,flag); a2 = evalu2(f->r,flag);
if (strcmp(f->info.sval,"^") = = 0) return(al+a2);
if (strcmp(f->info.sval,"-") = = 0) return(al a2),
if (strcmp(f->info.sval,"*") == 0) return(al*a2),
if (strcmp(f->info.sval,"/") == 0)
[

if (a2 0) { *flag ∣= EZERO; a2 = 1,- } return(al∕a2),
)
if (strcmp(f->info.sval,"^") = 0)
[

∕* if (al < 0) (*flag ∣ = ENEGP; a2
if (al < 0) a2 = ceil(a2);

)
break;

case FUNCTION:
a2 = evalu2(f->r,flag);
if (strcmp(f->info.sval,"cos") ==
if (strcmp(f->info.sval,"sin") ==
if (strcmp(f->info.sval,"tan") ==
if (strcmp(f->info.sval,"acos") ==
if (strcmp(f->info.sval,"asin") ==
if (strcmp(f->info.sval,"atan") ==
if (strcmp(f->info.sval,"cosh") ==
if (strcmp(f->info.sval,"sinh") ==
if (strcmp(f->info.sval,"tanh") ==

#if VER == UNIX ∕* Unix version only */
if (strcmp(f->info.sval,"acosh") ==
if (strcmp(f->info.sval,"asinh") ==
if (strcmp(f->info.sval,"atanh") ==

⅛endif
if (strcmp(f->info.sval,"exp") ==
if (strcmp(f->info.sval,*log") ==
if (strcmp(f->info.sval,"loglO") ==
if (strcmp(f->info.sval,"sqrt") ==

= ceil(a2),-) return(pow(al,a2));*/
return(pow(al,a2));

0) return(cos(a2));
0) return(sin(a2));
0) return(tan(a2));
0) return(acos(a2)),­
0) return(asin(a2));
0) return (atan(a2)),­
0) return(cosh(a2));
0) return(sinh(a2));
0) return(tanh(a2));

0) return(acosh(a2));
0) return(asinh(a2));
0) return(atanh(a2));

0) return(exp(a2));
0) return(log(a2));
0) return(IoglO(a2));
0) return(sqrt(a2));

break;
case CONSTID:
case PARAMID:
case VARID : return(f-> info, ptr->valu),- break;
default : *flag)= 256; return(0); break;

150

* *
* unitstep.c -- functions used for unit step plotting *
* *
* Author: Henri Cheung at McMaster University, Hamilton, Ontario *
* *
XxxxRxx/

Sinclude
Sinclude
S include
Sinclude
Sinclude

<stdio.h>
<math.h>
"global.h"
"struct.h"
"struct2.h"

extern FILE *logf,-
extern int optlog, optulen,
extern int nconst, nparam, nvar,
extern struct identifier *const[], *param[], *var[];
extern struct domain (*dom[])[NUMD0M],

struct curve *cur2d = NULL,
struct curve *cur3d = NULL,-
struct surface *sur3d = NULL;

∕XX*X*****

X X

* plotspec — lead module of plot shell *
* *
***/

double
plotspec()
{ double t = 0.0;
struct curve *curc, *plotcurves();
struct surface *surf, *plotsurfaces(),

∕* is it parametric ? */

∕* is it 2-D ? */

if (nvar == 2) cur2d = plotcurves(0) ,
else if (nparam == 1) cur3d = plotcurves(0) ;
else sur3d = plotsurfaces(),

if (nvar == 2)

for (cure = cur2d, cure != NULL; cure - curc->nc) t += curc->nump;

if (optlog =≈ ON)
for (cure ≈ cur2d, cure != NULL; cure = curc->nc) logcurve(curc,2),

)
else if (nparam == 1)

151
for (cure = cur3d, cure != NULL; cure = curc->nc) t += curc-inump.

if
for

(optlog = ON)
cur3d, cure != NULL, cure ≈ curc-inc) logcurve(curc,3)

)
el
t

se

for (surf = sur3d, surf != NULL, surf = surf-ins)
for (cure = surf-iroot. cure != NULL; cure = cure- inc)

surf->nump += curc->nump, t += curc->nump,
)
if (optlog = = ON)
for (surf ≈ sur3d, surf != NULL; surf = surf->ns) logsurf⅛ce(surf),

return(t),
)

* plotsurfaces — 3D, 2 parameter @ param[O] & param[1], 3 variables *

struct surface *
plotsurfaces()
[int kθ = O, kl = O,
struct surface *first, *surf, *uslsurface(), *ullsurface(),

first = (optulen == ON) ? ullsurface(kθ,kl) : uslsurface(kθ,kl) ,

if (first == NULL) goto sx;

surf = first,

si: ∕* checking exit conditions */

if ((++kθ) < (int)param[O]->vmax) goto s2,- else kθ = O,
if ((++kl) < (int)param[l]->vmax) goto s2; else goto sx,

s2: ∕* for current combination of kθ & kl */

surf-ins = (optulen == ON) ? ullsurface(kθ,kl) : uslsurface(kθ,kl) ,

if (surf-ins == NULL)
[
surf->sflag = ERRMEM, goto sx,-

)

surf = surf-ins,
goto si,

sx: ∕* exit point */

152
return(first),

∕**************************tt*t*t***⅛***
-ft *
* Uslsurface -- plot one surface *
It It
It***^**************/

struct surface *
Uslsurface(kθ,kl)
Int kθ, kl,-
[int quit = FALSE;
struct curve *curc, *uslcurve(),-
struct surface *surf, *mksurface(),-

if ((surf = mksurface(kθ,kl)) == NULL) goto ps2,-

∕* find first curve */

param[l]->valu = (*dom[l])[kl].dmin ,-

if ((surf->root = uslcurve(O,kO)) == NULL)
[
surf->sflag = ERRMEM, goto ps2,

)
surf->numc t= 1.0,-
curc = surf->root,

psi: ∕* next curve */

if ((param[l]->valu += (*dom[l])[kl].trace) > = (*dom[l])[kl].dmax)

quit = TRUE;
if (param[l]->valu > (*dom[l])[kl].dmax)
param[l]->valu = (*dom[l])[kl].dmax,-

)

if ((curc->nc = uslcurve(O,kO)) == NULL)
[
cure->cflag = ERRMEM,- goto ps2,

)
surf->numc += 1.0;
cure = curc->nc ;

if (quit == TRUE) goto ps2,

goto psl,

ps2: ∕* exit point */

return(surf),

153/nr** * *
* plotcurves — 2D or 3D, 1 parameter Q param[j], 2 or 3 variables *
* *
***/

struct curve *
plotcurves(j)
Int j;
(int k = O,
struct curve *first, *curc, *uslcurve(), *ullcurve(),

∕* plot first domain */

first = (optulen == ON) ? ullcurve(j,k) : uslcurve(j,k),
if (first == NULL) goto ex,

∕* next domain if required, jth parameter, kth domain */

for (cure = first, k = 1,- k < (int) param[j]->vmax, cure = curc->nc, k++)
[
curc->nc = (optulen == ON) ? ullcurve(j,k) : uslcurve(j,k),
if (curc->nc == NULL)
[
cure->oflag = ERRMEM,-
goto ex,

)
)

ex: ∕* exit point */

return(first) ,-
}

/***
* *
* Uslcurve — 2D or 3D, 1 parameter (3 param[j], 2 or 3 variables

^

struct curve *
uslcurve(j,k)
int j, k ,­
(double evalu() ,

int i, quit = FALSE ,-
struct point *curp, *mkpoint()
struct curve *curc, *mkcurve()

if ((cure = mkcurve(j,k)) == NULL) goto pc2,-

∕* for current domain range, set to left bracket value */

param[j]->valu = (*dom[j])[k].dmin,
for (i =0, i < nvar, i++) var[i]->valu = evalu(var[i]->f) ,

154
∕* find 1st point in current domain */

if ((curc-Hιead = mkpoint()) NULL)
[
curc->cflag = ERRMEM,- goto pc2,

)
curc->nump += 1.0,-
curp = curc->head,-

pcl: ∕* find next point in current domain range */

if ((param[j]->valu += (*dom[j])[k].trace) >= (*dom[j])[k].dmax)
t
quit = TRUE;
if (param[j]->valu > (*dom[j])[k].dmax)
param[j]->valu = (*dom[j])[k].dmax,-

)

for (i = 0,- i < nvar,- i++) var[i]->valu = evalu(var[i]->f),

if ((curp->np = mkpoint()) == NULL)
[
curp->pflag = ERRMEM,- goto pc2;

)
curc->nump += 1.0;
curp = curp->np ;

if (quit == TRUE) goto pc2,-

goto pci,

pc2: ∕* exit point */

return (cure),-

/***
* *
* mkpoint — allocate a point record and return its pointer *
* *
***/

struct point *
mkpoint()
[int i ,
char *malloc() ;
struct point *p = NULL ;

if ((p = (struct point *) malloc(PTSIZ)) == NULL) goto ppx,-

p->np = NULL ,-
p->pflag = 0 ,-

for (i = 0, i < PARMAX; i++)
p->u[i] = (i < nparam) ? param[i]->valu : 0.0 ,

155

for (i = O; i < VARMAX; i + i)
p->x(i] = (i < nvar) ? var(i]->valu : 0.0 ,

for (i = 0, i < nvar , i++)
ff (var[i]->vmin > var[i]->valu) var[i]->vmin = var[i]->valu ,
cine if (var[i]->valu > var[i]->vmax) var[i]->vmax = var[i]->valu ,-

ppx:

return(p),
)

H
mkcurve allocate record for a new curve

struct curve *
mkcurve(a,b)
int a, b,-
[char *malloc();
struct curve *c = NULL,-

if ((c = (struct curve *) malloc(CURVESIZ)) == NULL) goto ncx;

c->cflag = 0 ,-
c->il = a ;
c->i2 = b ;
c->nump =0.0 ;
c->head = NULL ;

∕* ath parameter */
∕* bth domain */

c->nc = NULL ;
∕* pointer to 1st point */
∕* pointer to next curve */

ncx:

return (c) ,­
)

∕*⅛^*** Hr
* mksurface — allocate record for a new surface
*

**
struct surface *
mksurface(a,b)
int a, b,
(char *malloc(),
struct surface *s = NULL,-

if ((s = (struct surface *) malloc(SURFASIZ)) == NULL) goto nsx,-

s>sflag = 0 ,

156
s->il =
s-> i 2 =
s->nump =
s->numc =
s->root =S " n S —

tisx :
return(s);

)

3 -
b ,
0.0
0.0

∕* ath domain of Oth parameter */
∕* bth domain of 1st parameter */

NULL , ∕* pointer to 1st curveNULL ∕* pointer to next surface */

157/It**
* unitlen.c -- functions used for unit length plotting *
* *
* Author: Henri Cheung at McMaster University, Hamilton, Ontario *
* *It**/

K include
Kinclude
#include
Kinclude
Kinclude

<stdio.hi
<math.hi
"global.h"
"struct.h"
"struct2.h"

extern FILE *logf ,-
extern int optlog,-
extern int nconst, nparam, nvar;
extern struct identifier *const[], *param[], *var[],-
extern struct domain (*dom[])[NUMDOM],-

* *
* Ullsurface — *

struct surface *
ullsurface(kθ,kl)
int kθ, kl;
[int quit = FALSE,-
double dv, homein(),
struct curve *curc, *ullcurve();
struct surface *surf, *mksurface();

if ((surf = mksurface(kθ,kl)) == NULL) goto us2;

∕* set parameter(s) to left bracket value of current combination */

param[l]-ivalu = (*dom[l])[kl].dmin ,-

∕* first curve */

if ((surf-iroot = ullcurve(0,k0)) == NULL)
[
surf-isflag = ERRMEM, goto us2,

)
surf-inumc += 1.0,
cure = surf-iroot;

∕* set trial dv to tracing interval (starting point already plotted) */

dv = 0.01 * ((*dom[l])[kl].dmax - (*dom[l])[kl].dmin),

usl: ∕* find next curve */

158

param[O] >valu = (*dom[0])[kO].dmin,

id ((dv =)ιomein(curc->head,l.kl,param[l]->valu,dv)) 0.0) goto us2,

ii (param)l]->vaIu >= (*dom[l])[kl].dmax)
{

<]uit = TRUE,-
it (paιam[l]->valu > (*dom[l])[kl].dmax)
param) l] >valu = (*dom[l])[kl].dmax,-

)

it ((curc->nc = ullcurve(O,kO)) == NULL)
[
cure->cflag = ERRMEM,- goto us2,

}
surf->numc += 1.0,-
curc = curc->nc,-

if (quit == TRUE) goto us2,-

if (dv < (*dom[l])[kl].sensitivity) [message(201),- goto us2,-)

goto us1,

us2: ∕* exit point */

return (surf) ,-

/It**

* ullcurve — 2D or 3D, 1 parameter @ param[j], 2 or 3 variables
*

*
*

***/

struct curve *
ullcurve(j,k)
int j, k,
[int i, quit = FALSE,-
double du, homein(), evalu(),
struct point *curp, *mkpoint(),-
struct curve *curc, *mkcurve();

if ((cure = mkcurve(j,k)) == NULL) goto uc2,

param[j]->valu = (*dom[j])[k].dmin;
for (i = 0; i < nvar; i++) var[i]->valu = evalu(var[i]->f),

∕* find 1st point in current domain */

if ((curc->head = mkpoint()) == NULL)
t
curc->cflag = ERRMEM,- goto uc2,

)

1 59
curc->nump += 1.0,-
curp curc->head,

∕* set trial du to tracing interval */

du = 0.01 * ((*dom[j])[k].dmax - (*dom[j])[k].dmin),

ucl: ∕* find next point in curp domain range */

if ((du = homein(curp,j,k,paramtj]->valu,du)) < = 0.0) goto uc2,

if (param[j]->valu > (*dom[j])[k].dmax)
[
quit = TRUE,-
if (param[j]->valu >= (*dom[j])[k].dmax)
param[j]->valu = (*dom[j])[k].dmax,

for (i ≈ 0,- i < nvar,- i++) var[i]->valu = evalu(var[i]->f),
)

if ((curp->np = mkpoint()) == NULL)
{
curp->pflag = ERRMEM,- goto uc2,

)
curc->nump += 1.0,-
curp = curp->np;

if (quit == TRUE) goto uc2;

if (du < (*dom[j])[k].sensitivity) { message(201),- goto uc2,)

goto ucl,-

uc2: ∕* exit point */

return(cure),

/xxx

X X

* homein — from trial du to actual du for required s *

***/

double
homein(p,j,k,u,du)
struct point *p ,-
double u, du ,-
int j, k ,-
t int i, loop = 0 ,-
double c, s, duθ, dul = 0.0, dx[NUMVAR], evalu() ,-

duθ = du ,

hml: ∕* binary search for required du */

160
s = 0.0 .
param[j]->valu = u + du ,
for (i = 0 , i < nvar ,- iι +)
f
dx[i] = (var[i]->valu = evalu(var[i]->f)) - p->x[i] ,
s += dx[i] * dx[i] ;

)
s = sqrt(s) ,

⅛if VER == LATTICE ∕* Lattice C version */
if (abs(s - (*dom[j])[k].trace) <= (*dom[j])[k].precision) goto hmx ,-
c = abs(dul - du) * 0.5

⅛endif
⅛if VER == UNIX ∕* Unix version */

if (fabs(s - (*dom[j])[k].trace) <= (*dom[j])[k].precision) goto hmx ,
c = fabs(dul - du) * 0.5 ,-

⅛endi f

if (loop < LOOPMAX) [loop++;)
else [p->pflag = ERRLOOP, du = 0.0; goto hmx,)

if (s > (*dom[j])[k].trace) (dul = du; du -= c,-) ∕* pulling upperbound */
else if (du < dul) [du += c; } ∕* upperbound is dul */
else f du += duθ,-) ∕* pushing upperbound */

if (du <= 0.0) { p->pflag = ERRINCR; du = 0.0,- goto hmx,)

goto hml,-

hmx: ∕* exit point */

return(du);

161

* *
* export c: - functions used for exporting *

* Author: Henri Cheung at McMaster University, Hamilton, Ontario *
* *
***/

include
⅛ include
include
include
include

<stdio.h>
"global.h"
"struct.h"
"struct2.h
"export.h"

extern FILE *logf ,-
extern int optlog ;
extern int optmesh,
extern int optaxis,
extern int nparam, nvar ,-
extern struct identifier *var[] ;
extern struct domain (*dom[])[NUMDOM] ,-

extern struct curve *cur2d ,-
extern struct curve *cur3d ;
extern struct surface *sur3d ;

FILE *fout, *fw ,-
char vid[IDWIDTH+l], wid[IDWIDTH+l],
char vhiO[IDWIDTH+l], vhil[IDWIDTH+l],
char vloO[IDWIDTH+l], vlol[IDWIDTH+l],

fid[IDWIDTH+l],
vhi[IDWIDTH+1];
vlo[IDWIDTH+1],

* *
* export — lead module of export shell *

***/

export(filename)
char *filename,
[struct curve *c ;
struct surface *s ;
char cmd[STRSIZ], *work, *malloc(), *mktemp() ,

∕* open files */

if ((work = malloc(STRSIZ)) == NULL) message(504);

Mif VER == LATTICE
strcpy(work,"workfile");

Mendif
Mif VER == UNIX
strcpy(work,"∕tmp∕tmpXXXXXX");
work = mktemp(work),

Mendif

162

if ((fw fopen(work,"w")) == NULL) message(500) ;

tout (strcmp(filename,"stdout") -= 0) ? stdout : fopen(fiiename,"w") ;
if (tout = NULL) message(5O3),

∕* initialize all counters */

strncpy(vid,IDZERO,IDWIDTH), vid[0] = 'V; vid[IDWIDTH] - '∖0',
strncpy(wid,IDZERO,IDWIDTH), wid[0] = 'W',- wid[IDWIDTH] - '∖0';
strncpy(fid,IDZERO,IDWIDTH); fid[O] = 'F',- fid[IDWIDTH] - '∖0',

∕* put colour map */

putcmap(),

∕* put axis min and max */

if (optaxis ON) putlimit(),-

∕* put vertices, wires and surfaces */

if (nparam == 1 && nvar == 2)
[
for (c = cur2d,- c != NULL; c = c->nc)
putcurve(c->il,c->i2,c->nump,c->head);

)
else if (nparam == 1 && nvar == 3)
[
for (c = cur3d,- c ! = NULL; c = c->nc)
putcurve(c-> il,c-> i2,c->nump,c->head);

)
else if (nparam == 2 && nvar == 3)
t
for (s = sur3d,- s != NULL; s = s->ns)
putsurface(s->il,s->i2,s->numc,s->root);

)

∕* define axis */

if (optaxis == ON) putaxis(); '

∕* append workfile to outfile, then remove[delete] workfile */

fclose(fw) ,
fflush(fout) ,-
if (strcmp(filename,"stdout") !≈ 0) fclose(fout) ,-

Hif VER == LATTICE ∕* Lattice C version */
strcpy(cmd,"type ");

Hendif
Hif VER == UNIX ∕* Unix version */
strcpy(cmd,"cat "),

Hendif
strcat(cmd,work);
if (strcmp(filename,"stdout") != 0)

163
t
strcat(cmd," >> "), strcat(cmd,filename),

)
strcat(cmd,"∖n"),
system(cmd),

if (optlog == ON) [fprintf(logf,"⅛s∖n",cmd),- fflush(logf),-)

ffif VER = LATTICE ∕* Lattice C version */
strcpy(cmd,"del "),

⅛endif
#if VER == UNIX ∕* Unix version */
strcpy(cmd,"rm "),

⅛endif
strcat(cmd,work) ,- strcat(cmd, "∖n") ,-
system(cmd),

if (optlog == ON) { fprintf(logf,"⅛s∖n",cmd),- fflush(logf),)

⅛ *
* putsurface — put sur3d into UNIGRAFIX format *
* *

putsurface(kθ,kl,z,clo)
int kθ, kl,
double z ,-
struct curve *clo,
{ struct curve *chi,-
struct point *phi, *plo,-
int ugrid, vgrid, ucount, vcount,-
int Iofini = FALSE, hifini = FALSE,-

∕* set grid size of current patch */

ucount = ugrid = (int)
vcount = vgrid = (int)

((*dom[0])[k0].display ∕
((*dom[l])[kl].display ∕

(*dom[0])[kθ].trace);
(*dom[l]) [kl] . trace) ,-

if (clo == NULL)
if ((int) z <= vgrid)

goto es5, ∕* no curve at all */
goto es5,- ∕* not enough grid size */

∕* dump vertex of low curve to file 1 */

strcpy(vloO,vid), ∕* remember where vlo begins */

if (((int) clo->nump) >= ugrid)
for (plo = clo->head, plo ! = NULL; plo = (plo->pflag > O) ? NULL : plo->np)

if (ucount == ugrid ∣] plo->np == NULL)
{
ucount = 1, nextid(vid),
fprintf(fout,"v %s ⅛f ⅛f ⅛f , {⅛f ⅛f)∖n",

vid, plo->x[0] , plo->x [1] , plo->x[2] , plo->u [0] , plo->u [1]) ,-

164
)
else ucount,

strcpy(vlol,vid), ∕* remember where vlo stops */

chi = cl O;

esl: ∕* next hi curve */

it (chi->nc = NULL) goto es4,

while (vcount < vgrid && chi->nc != NULL)
f

+ +vcount, chi = chi->nc,-
)
vcount = O,

∕* dump vertex of high curve to file 1 */

strcpy(vhiθ,vid),- ∕* remember where vhi starts */

if (((int) chi->nump) >= ugrid)
for (ucount=ugrid, phi=chi->head; phi!=NULL,- phi=(phi->pflag>O)?NULL:phi->np)

if (ucount == ugrid]] phi->np == NULL)
t
ucount = 1,- nextid(vid);
fprintf(fout,"v %s ⅛f %f %f ; [⅛f %f)∖n",

vid,phi->x[O],phi->x[l],phi->x[2],phi->u[O],phi->u[l]);
)
else ++ucount,-

strcpy(vhil,vid); ∕* remember where vhi stops */

∕* if either one is empty, get next set of curves */
∕* if vθ = vl, no point at all, skip */
∕* otherwise process */

if (strncmp(vloO,viol,IDWIDTH) == O) goto es3,
if (strncmp(vhiθ,vhil,IDWIDTH) == O) goto es3,

∕* set vertex counters */

strcpy(vlo,vloO); nextid(vlo);
strcpy(vhi,vhiθ),- nextid(vhi),-

es2: ∕* link vertex as face(s) to file 2 */

if (optmesh == OFF)
(

if ((Iofini = (strncmp(vlo,viol,IDWIDTH) < O) ? FALSE : TRUE) != TRUE)
{

nextid(fid),- fprintf(fw,"f ⅛s (%s ⅛s ",fid,vlo,vhi);
nextid(vlo),- fprintf(fw,"⅜s);\n",vlo);

)
if ((hifini = (strncmp(vhi,vhil,IDWIDTH) < O) ? FALSE : TRUE) != TRUE)
t

165
nextid(fid); fprintf(fw,"f ⅛s (⅜s ",fid,vhi),
nextid(vhi); fprintf(fw,"%s %s),∖n",vhi,vlo);

)
)
else ∕* mesh display */
t

* ρutcurve - put cur2d ∕ cur3d into UNIGRAFIX format *
* *
⅛**⅛******⅛⅛⅛⅛**⅛*****⅛***⅛⅛**********⅛**⅛**⅛⅛**⅛*⅛*********⅛⅛⅛⅛*⅛**⅛**/

nextid(wid); fprintf(fw,"w ⅛s (⅛s ⅛s) RED ,∖n",wid,vlo,vtιi),
if ((hifini = (strncmp(vhi,vhil,IDWIDTH) < 0) v FALSE : TRUE) !- TRUE)
t
next i d (vtιi) ,

)
if ((Iofini = (strncmp(vlo,viol,IDWIDTH) < 0) ? FALSE : TRUE) != TRUE)
{
nextid(wid),- fprintf(fw,"w %s (%s ",wid,vlo),-
nextid(vlo) ,- fprintf (fw, "⅛s) ;\n" , vlo) ,-

}
)

if (Iofini != TRUE ∣∣ hifini != TRUE) goto es2;

∕* last vertical segment */

if (optmesh == ON)
{
nextid(wid); fprintf(fw,"w %s (⅛s %s) RED ,∖n",wid,vlo,vhi);

)

es3: ∕* next set of curves */

strcpy (vloO, vhiθ)
strcpy(vlol,vhil),
clo = chi;
goto esl,

es4: ∕* last curve */

if (optmestι == ON)
[
strcpy (vlo,vloO), nextid(vlo),
while (strncmp(vlo,viol,IDWIDTH) < O)
t
nextid(wid); fprintf(fw,"w ⅛s (⅛s ",wid,vlo),-
nextid(vlo),- fprintf (fw, "%s) ,∖n" ,vlo);

)

es5: ∕* exit point */

166

putcurve(j , k, x, p)
int j, k,
double x;
struct point *p,-
(int n, nseg = -1;

int counter, roof ,

counter = roof = (int)((*dom[j])[k].display ∕ (*dom[j])[k].trace) ,

eel:

if (p =÷ = NULL) goto ec2 ,-

if (counter < roof)
t

p = p->np, +tcounter; goto eel,
)
else counter = 1;

∕* dump point as vertex to file 1 */

next id (v id) ,-
fprintf(fout,"v %s %f ⅛f %f ,- [⅛f)∖n",vid,p->x[0],p->x[l],p->x[2],p->u[0]),-
p = p->np,-

∕* link vertex as wire to file 2 */

if (nseg == -1) ∕* first segment */
{
nseg = 0; nextid(wid),- fprintf(fw,"w %s (%s ",wid,vid),

)
else if (nseg < WSEGLEN)
{
nseg++; fprintf(fw,"⅛s ",vid),-

)
else ∕* start a new segment */
[
nseg = 0, fprintf(fw,"%s),∖n",vid),
nextid(wid),- fprintf(fw, "w ⅛s (⅛s ",wid,vid),-

)

if (p->pflag > 0)
switch (p->pflag)
t
case 1: message(751); break,
case 2: message(752),- break,
case 3: message(504),- break,

)

goto eel,

ec2: ∕* wrap up procedures */

if (nseg == 0) fprintf(fw,"%s ",vid),
fprintf (fw, "),∖n"),-

167

* next id increment id counter

nextid(ic)
char ic[),
{ int d, carry = ON ,-

d = IDWIDTH - 1 ;

)

while (carry == ON && d 0)
switch (ic[d])
{
case ' 0 ' : ic [d—] '1' carry = OFF ,- break
case ' 1' : ic [d—] - '2' carry = OFF ; break
case '2': ic[d—] - '3' carry = OFF ; break
case '3': ic[d-] = '4' carry = OFF ,- break
case '4': ic[d—] = '5' carry = OFF ; break
case '5': ic[d—] = '6' carry = OFF ,- break
case '6': ic[d—] ≈ '7' carry = OFF ,- break
case '7': ic[d-] - ' 8 ' carry = OFF ,- break
case '8': ic[d—] = '9' carry = OFF ,- break
case '9': ic[d—] — 'A' carry = OFF ,- break
case 'A': ic[d—] — 'B' carry = OFF ; break
case 'B': ic[d—] — 'C' carry = OFF , break
case 'C ' : ic [d—] — 'D' carry = OFF ; break
case 'D': ic[d—] = 'E' carry = OFF ; break
case ' E' : ic [d—] — 'F' carry = OFF , break
case ' F ' : ic {d—] = '0' carry = ON ; break

if (strncmp(ic,IDZERO,IDWIDTH) == 0) message(702),-
)

* putlimit — put axis min & max
*
*************************⅛⅛****^***⅛*/

putlimit()
t int i, j,-
double z,-

for (i = 0; i < nvar; i++)
{
∕* minimum point */

fprintf(fout,"v x⅛ldmin ",i+l);
for (j = 0, j < i; j++)

168
Iprintf(tout,"O.O "),
fpr i ntf(tout, "⅜f ",var[i J->vmin),
for (j+t, j < VΛRMΛX; jt+)
i pri nt t (font,"0.0 ") ,
fprintf(fout,"; ∖n"),

∕* maximum point */

fprintf(fout,"v x⅛ldmax ",i+l),
for (j = 0; j < i, j++}
fprintf(tout, "0.0 "),
f printf (fout, "¾f " ,var[i]->vmax) ,-
for (j + +; j < VARMAX,- j + +)
fprintf(fout,"0.0 "),-
fprintf(fout,", ∖n"),-

∕* axis marker */

z = var[i]->vmax + 0.05 * (var[i]->vmax - var[i]->vmin),

fprintf(fout,"v x⅛ldplus ",i+l),-
for (j = 0; j < i,- j++)
fprintf(fout,"0.0 "),-
fprintf(fout,"¾f ",z),-
for (j++; j < VARMAX,- j++)
fprintf(fout,"0.0 "),-
fprintf(fout,",- ∖n"),-

/XXX

* putaxis — put axisit**/
putaxis()
[int i,

for (i = 0,- i < nvar,- i++)
fprintf(fout,"w x⅛ldaxis (x⅛ldmin x%ldmax) GREEN, ∖n",i+l,i+l,i+l);

fprintf(fout,"w xlmark (xlmax xlplus)
fprintf(fout,"w x2mark (x2max x2plus)
if (nvar == 3)
fprintf(fout,"w x3mark (x3max x3plus)

RED ; ∖n"),
YELLOW , ∖n") ,-

BLACK ; ∖n"),

/xxx

putcmap — put colour map
X X

xxx/

169
putcmap()
(
fprintf(font,"o BLACK 0.0 0 0 , ∖n")
fprintf(tout,"c RED 1.0 0 1 , ∖"")
fprintf(fout,"c YELLOW 1.0 60 1 . ∖n")
fprint f(fout,"c GREEN 1.0 120 1 , ∖n")
fprintf(font,"c CYAN 1.0 180 1 ; ∖n")
fprintf(font,"c BLUE 1.0 240 1 ; ∖'i")
fprintf(font,"c WHITE 1.0 360 0 . ∖∏"))

170

* ** message.c - message file? *
*

* Author: Henri Cheung at McMaster University, Hamilton, Ontario *
* *

i nc J ude
ff inclmie
⅛f include

<stdio.hi
"global.h"
"message.h"

extern int optlog,-
extern FILE *logf ,
extej n char *logID ;

message (msgcode)
int msgcode ;
{
∕* print appropriate message to screen */

switch (msgcode)
{
case 1: fprintf(stderr,MSG001) ,- break,
case 2: fprintf (stderr,MSG002) ,- break,
case 3 : fprintf (stderr,MSG003) ,- break,-
case 4 : fprintf (stderr,MSG004) ,- break,
case 5: fprintf(stderr,MSG005); break,-
case 6 : fprintf (stderr,MSG006) ,- break,
case 7 : fprintf (stderr,MSG007) ,- break.
case 8: fprintf (stderr,MSG008) ,- break;
case 9: fprintf (stderr,MSG009) ,- break,
case 10: fprintf(stderr,MSG010); break,
case 500: fprintf (stderr,MSG500) ,- break;
case 501: fprintf (stderr,MSG501) ,- break,-
case 502 : fprintf (stderr,MSG502) ,- break;
case 503 : fprintf (stderr,MSG503) ,- break ,-
case 504 : fprintf(stderr,MSG504); break;
case 505: fprintf(stderr,MSG505); break;
case 506 : fprintf(stderr,MSG506), break,
case 507 : fprintf (stderr,MSG507) ,- break,
case 508: fprintf (stderr,MSG508) ,- break;
case 509: f printf (stderr ,MSG509) ,- break,
case 510 : fprintf (stderr,MSG510) ,- break,

case 511 : fprintf (stderr,MSG511) ,- break,
case 512: fprintf(stderr,MSG512), break,
case 513: fprintf (stderr,MSG513) ,- break;
case 514 : fprintf(stderr,MSG514); break,-
case 515: fprintf (stderr, MSG515) ,- break,-
case 516: fprintf (stderr,MSG516) ,- break,
case 517 : fprintf (stderr,MSG517) ,- break;

case 521 : fprintf(stderr,MSG521), break,
case 522 . fprintf(stderr,MSG522), break,

<7 1

case 251: fprintf(stderr,MSG251), break;

case 523 !print t (st derr ,MSG523) break,case 521 !print) (st der r , MSG 5 24) break,case 525 !print f (s!derr,MSG5 2 5) break;case 5 2<ι t pr i nt i (st dcrr,MSG526) break,case 527 t pr i nt t (st derr,MSG527) break,

case 531 !print t (stderr,MSG531) break;case 532 f pt i nt t (st derr,MSG532) break;case 533 !print L (st derr , MSG5 3 3) break,-
case 531 1 pt* i nt t (Stdert , MSG534) break ,-case 535 tpri nt f(st derr,MSG535) break,-
(rase 536 Lpt i nt t(st derr,MSG5 36) break,

case 541 fprintf(stderr,MSG541) break;
case 542 : fprintf(stderr,MSG542) break;
case 543 fprintf(stderr,MSG543) break;
case 544 fprintf(stderr,MSG544) break,-case 545 fprintf(stderr,MSG54 5) break,

case 551 Iprintf(stderr,MSG551) break,
case 552 fprintf(stderr,MSG552) break,-
case 553 fprintf(stderr,MSG553) break;
case 554 fprintf(stderr,MSG554) break;
case 555 fprintf(stderr,MSG555) break,-
case 556 fprintf(stderr,MSG556) break.
case 557 fprintf(stderr,MSG557) break;

case 561 fprintf(stderr,MSG561) break;
case 571 fprintf(stderr,MSG571) break ,-

case 581 fprintf(stderr,MSG581) break;
case 582 fprintf(stderr,MSG582) break;
case 583 fprintf(stderr,MSG583) break,

case 591 fprintf(stderr,MSG591) break ,-
case 592 fprintf(stderr,MSG592), break,

case IOl fprintf(stderr,MSGlOl), break,
case 102 fprintf(stderr,MSGlO2), break,
case 103 fprintf(stderr,MSGl03), break;
case 104 fprintf(stderr,MSG104), break;
case 105 fprintf(stderr,MSG105), break;
case 106 fprintf(stderr,MSGl06), break,-
case 107 fprintf(stderr,MSGl07), break,
case 108 fprintf(stderr,MSG108), break,-
case 601 fprintf(stderr,MSG601), break,
case 602 fprintf (stderr,MSG602) ,- break,
case 603 fprintf (stderr,MSG603) ,- break;
case 604 fprintf(stderr,MSG604), break;
case 605 fprintf(stderr,MSG605), break,
case 606 fprintf (stderr, MSG606) ,- break,
case 607 fprintf(stderr,MSG607),- break

case 201 fprintf(stderr,MSG201), break,

172case 252 . Iprintt(stdorr,MSG252), break,
case 7 0 1 : 1pr i nt f(st dorr,MSG7 01), break.case 702 : fpr i nt t (st dorr,MSG /02) , break,case 7 03 : t pr intf(st dorr,MSG/0 3); break,
case 7 51 : Iprintt(stderr,MSG/51), break,case 752: fpr inti (st dorr,MSG7 52), break.
default: i pr i nt f(stderr,MSGYYY); break,

∕* print appropriate message to logfile */

if (optlog == ON)
switch (msgcode)
{
case 1: fprintf (logf ,MSG001) ,- break.
case 2: f printf (Iogf , MSG002) ,- break,
case 3: f printf (Iogf ,MSG003) ,- break,
case 4 : fprintf (Iogf , MSGO 04) ,- break,
case 5: fprintf (logf ,MSG005) ,- break,
case 6: fprintf (logf ,MSG006) ,- break,-
case 7 : fprintf(Iogf,MSGO07); break,
case 8: fprintf (Iogf ,MSG008) ,- break,
case 9: fprintf (Jogf ,MSG009) ,- break,
case 10: fprintf (Iogf , MSGOlO) ,- break,
case 500: fprintf (Iogf , MSG500) ,- break,
case 501: fprintf(Iogf,MSG501), break,
case 502: fprintf (logf ,MSG502) ,- break,
case 503: fprintf (Iogf ,MSG503) ,- break,
case 504: fprintf(Iogf,MSG504); break;
case 505: fprintf(Iogf,MSG505); break,
case 506: fprintf(Iogf,MSG506); break,
case 507: fprintf(Iogf,MSG507); break;
case 508: fprintf(logf,MSG508); break;
case 509: fprintf(Iogf,MSG509); break,
case 510: fprintf(Iogf,MSG510); break;

case 511: fprintf (logf ,MSG511) ,- break;
case 512: fprintf (Iogf, MSG512) ,- break;
case 513: fprintf(logf,MSG513); break;
case 514: fprintf (Iogf ,MSG514) ,- break,
case 515: fprintf(Iogf,MSG515); break;
case 516: fprintf (Iogf ,MSG 516) ,- break,
case 517: fprintf(Iogf,MSG517); break;

case 521: fprintf (logf ,MSG521) ,- break,
case 522: fprintf (Iogf ,MSG522) ,- break;
case 523: fprintf (Iogf ,MSG523) ,- break,
case 524 : fprintf (Iogf, MSG524) ,- break;
case 525: fprintf (Iogf, MSG525) ,- break;
case 526: fprintf(Iogf,MSG526); break;
case 527: fprintf (Iogf, MSG527) ,- break;

case 531 : fprintf(Iogf,MSG531), break,

173case 532 fpr i ntf(Iogf,MSG5 3 2) break,ease 533 t pr i nt t (1og f,MSG5!3) brea k,case 534 fpι i nt t(log) ,MSG534) brea k,case 535 f pr i nt f(1og f,MSG5 35) break,
case 536 fpr i nt t(1og f,MSGb36) brea k;

case 541 t pri ntf(Iogf,MSG541) break;
case 542 fpri nt t(Iogf,MSG54 2) break,
case 543 fpri ntf(logf,MSG54 3) break,
case 544 fprintf(Iogf,MSG54 4) break,
case 545 f printf(Iogf,MSG54 5) break,

case 551 fprintf(Iogf,MSG551) break;
case 552 fprintf(Iogf,MSG552) break;
case 553 fprintf(Iogf,MSG553) break ;
case 554 fprintf(Iogf,MSG554) break ;
case 555 fprintf(Iogf,MSG555) break ;
case 556 fprintf(logf,MSG556) break,
case 557 fprintf(Iogf,MSG557) break,-

case 561 fprintf(Iogf,MSG561) break;
case 571 fprintf(Iogf,MSG571) break;

case 581 fprintf(Iogf,MSG581) break ,-
case 582 fprintf(Iogf,MSG582) break;
case 583 fprintf(Iogf,MSG583) break;

case 591 fprintf(Iogf,MSG591) break ,-
case 592 fprintf(Iogf,MSG592) break,

case IOl fprintf(Iogf,MSGlOl) break;
case 102 fprintf(Iogf,MSG102) break,
case 103 fprintf(Iogf,MSGl03) break;
case 104 fprintf(Iogf,MSGlO4) break,
case 105 fprintf(Iogf,MSGl05) break;
case 106 fprintf(Iogf,MSGl06) break ,-
case 107 fprintf(Iogf,MSG107) break ,-
case 108 fprintf(Iogf,MSG108) break,-
case 601 fprintf(Iogf,MSG601) break,
case 602 fprintf(Iogf,MSG602) break ,-
case 603 fprintf(Iogf,MSG603) break,-
case 604 fprintf(Iogf,MSG604) break;
case 605 fprintf(Iogf,MSG605) break;
case 606 fprintf(Iogf,MSG606) break;
case 607 fprintf(Iogf,MSG607) break;

case 201 fprintf(Iogf,MSG201) break;

case 251 fprintf(Iogf,MSG251) break;
case 252 fprintf(Iogf,MSG252) break;

case 701 fprintf(Iogf,MSG701) break,
case 702 fprintf(Iogf,MSG702) break,
case 703 fprintf(Iogf,MSG703) break,

case 751 fprint f(Iogf,MSG7 51) break;

fpri.nl

1 7 4
case 752: fprintf(logf,MSG752), break;

default: fprintf(logf,MSGYYY); break;
)
if (optlog == ON) fflush(logf),

∕* abort program if error is fatal */

if (msgcode > 499)
t
fprintf(stderr,MSGXXX);
if (optlog == ON)
{
fprintf(stderr,"∖n [Logfile is %s]∖n",logID),
fprintf(logf,"%s∖n[Logfile is %s]∖n",MSGXXX,IogID),- fclose(logf),-

}
exit(l); ∕* opened files are closed automatically */

1 7 5
* audit.c — print expression tree to screen for error checking *
* *
* Author: Henri Ctieung at McMaster University, Hamilton, Ontario ***⅛^********⅛*******************⅛*******⅛*********⅛***********************⅛**/

⅛f include
⅛ include
⅛ include
(t i nclude

<stdio.h >
"global.h"
"struct.h"
"struct2.h"

extern FILE *logf ,-
extern int optlog,-
extern int nconst, nvar,-
extern struct identifier *const[l, *var[],

* *
* audit — prints all expression from its tree form *

***/

audit ()
[int i,

if (optlog == ON)
[
for (i = 0, i < nconst,- i++)
[
fprintf(logf,"⅛s = ",const[i]->nam),
prtexpr (const [i] - > f) ,-
fprintf(logf," = ⅛f ∖n",const[i]->valu),

)
for (i = 0, i < nvar; i++)
[
fprintf(logf,"⅛s = ",var[i]->nam),
pr texpr (var [i] - > f),
f printf (logf, "∖n") ,­

)
f f lush(Iogf) ,-

/***
* *
* prtexpr — recursive print shell *
* ***^***********************************⅛^*************************************

prtexpr(f)
struct expr *f,-

176

if (f != NUI.f.)
switch(f->ctype)
t
casecase
case

CONSTID
PARAMID
VARID fprintf(Iogf, "⅛s",f->info.ptr->nam), break,

case INTEGER fprintf(Iogf, "⅛d",f->info.ival), break,
case REAL fprintf(logf, "%f",f->info.rval), break,
case OPERATOR prtop(f); break,
case FUNCTION fprintf(Iogf,

prtexpr(f
"⅛s(",f->info.sval),
->r), fputc(')',logf), break,

default: fprintf(Iogf, " ? ") ; break,

/'TrTrTrTrTr^^^TrTrTrTrTr^^Tr⅛rTTrrTTrTr^ιTTrτ⅛TrTrTrTrTr^^TrTrTrTrTrTrTrTrTrTrTrTrTrTrTrTrTTrTr^TrTr^TrTr^TrTrTrTrTrTrTrTrTrTrTrTrTrTrTr^TrTr∖ *
* prtop — print a operator node *Tr Tr
^^************

prtop(f)
struct expr *f,-
[
∕* process left child of current node */

if (f->l->ctype != OPERATOR)
[
prtexpr(f->l),

)
else if (*(f->info.sval) == '^')
[

fputc('(',logf),- prtexpr(f->l), fputc(')',logf),
)
else if (((*(f->info.sval) == '*')]] (*(f->info.sval) == '/')) &&

((*(f->l->info.sval) == '+'))] (*(f->l->info.sval) == '-')))
[
fputc('(',logf),- prtexpr(f->l); fputc(')',logf),

)
else prtexpr(f->l);

∕* print operator */

if (*(f->info.sval) != '^') fputc(' ',logf),
f putc(* (f->info. sval), Iogf) ,-
if (*(f->info.sval) != '^') fputc(' ',logf);

∕* process right child */

if (f->r ! = NULL)
if (f->r->ctype != OPERATOR)
t
prtexpr(f->r),

)

177
else
t
fputc('(',logf), prtcxpr(f >r), fputc(')',logl),

)

* logsurface — log surface to logfile
*
***/

logsurface(s)
struct surface *s,
[struct curve *c,-

fprintf(Iogf,
"Surface has ⅛12.1f curve(s), ⅛12.1f point(s)∖n",s->numc,s->nump),

for (c = s->root; c != NULL,- c = c->nc) logcurve(c,3),
fflush(Iogf),-

logcurve — log curve to logfile *
*

***/

logcurve(c,d)
int d;
struct curve *c,-
[struct point *p;

fprintf(logf,"∖tCurve has ¾12.1f point(s)∖n",c->nump),-
for (p = c->head, p ! = NULL; p = p->np) logpoint(p,d);
fflush(logf),

* logpoint — log point to logfile
* *
⅛***⅛**************⅛⅛*⅛*⅛⅛******⅛*⅛**⅛*⅛⅛⅛⅛⅛*⅛*⅛⅛⅛*⅛**⅛⅛****⅛⅛***⅛*⅛**f/

logpoint(p,d)
int d,
struct point *p;
{
switch (d)
t
case 2: fprintf(logf,"⅛12.5f ∣ %12.5f ⅛12.5f∖n",p->u[0],p->x[0],p->x[l]);

break,-
case 3: fprintf(logf,"⅛12.5f ⅛12.5f ∣ %12.5f %12.5f ⅛12.5f∖n",

http:fprintf%252528logf%25252C%25252522%25252512.5f
http:fprintf%252528logf%25252C%25252522%25252512.5f

17 8
p->u}O),p->u(1],p >x[0],p->x[1],p->x[2]) ,

break;
default:break,

)
switch (p->pflag)
t
case ERRLOOP: message(251); break,
case ERRINCR: message(252),- break,
case ERRMEM: message(504), break,
default: break,­

)

179

* *
* wtty.c -- updates file .server tty at user's home directory *
* *
* user's .login file should contain a line, setenv TTY tty *
* user's .cshrc file should contain a line. *
* alias grterm ' setenv GRTERM cat: user name/ , server tt y ' *

* notes:
*

* - /etc/utmp is a system file which contains information of *
* who's currently login & their terminal file address *

*
(utmp(5)). The
definition:

file is a sequence of record of *

* *
* struct utmp *
* [*
* char utline[8] , *
* char ut name [8] , *
* char ut host[16], *
* long uttime,- *

*
)

*
* However, "/dev" is not included in the field ut line. *
* In other words, the terminal address should be "/dev" *
* + utline *
* *
* - by obtaining user name from the environment variable USER, *
* & another preset environment variable TTY, any server *
* (remote) terminal, if exist can be identified & stored in *
* some data files, e.g. .server tty *
* ^ *
* - possible further expansion: implement an array of tty's; *
* user's choice *
* *

Author:
Henri Cheung at McMaster University, Hamilton, Ontario

Ir***

#include <stdio.h>
#include <utmp.h>

Rdefine STRLEN 32
Rdefine UTMP "/etc/utmp" ∕* system file

which contains login info */

extern char **environ,-

main()
[int i, fd, found = 0;
char fname[STRLEN], username[STRLEN],-
char current tty[STRLEN], other tty[STRLEN],
struct utmp buf;

180

∕* copy environment variable USER */

st rcpy(user name,getenv("USER"));
strcpy(current tty,getenv("TTY")),

∕* get first tty address under user name but not current tty */

id = open(UTMP,0),
while (!found && read(fd,&buf,sizeof(buf)) > 0)
if (strcmp(user name,buf.ut_name) == 0)
[
sprintf(othertty, "∕dev∕⅛s" ,buf .ut line) ,-
if (strcmp(current tty,othertty) != 0) found = 1,

)
close(fd),

∕* update username/.servertty */

if (found)
[
sprintf(fname,"⅛s∕.servertty",getenv("HOME")),
fd = creat(fname,0644);
write(fd,othertty,sizeof(othertty));
close(fd) ,­

)

∕* report status */

printf ("∖n") ,-
printf("Current tty address: ⅛s (⅛s)∖n",currenttty,username);
if (found)
[
printf(" also at: ⅛s∖n",othertty);
printf("To set GRTERM, type grterm<cr> ∖n");

}
printf ("∖n") ,-

for (i=0,- *environ[i] != '∖0',- i++) printf("⅛s∖n",environ[i]);

