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Lay Abstract

Drasil is a framework for generating software artifacts, such as code and documentation,
that has great potential for improving software quality. Drasil focuses on generating
Scientific Computing Software (SCS) from a Software Requirements Specification (SRS)
template where it has been shown to improve software traceability, verifiability, and re-
producibility, and knowledge reusability. However, Drasil faces issues with using inputted
scientific theories for code generation, handling invalid mathematical expressions, and
carrying all the different types of data we want to input into it. This work focuses on
4 areas in Drasil to help it realize its full potential: (1) making theories more usable for
code generation by defining their structure, (2) splitting up the expression language so
that we can restrict terms to specific contexts (such as code, computation, and general
discussion), (3) create a system of type rules and automatically check certain expressions
against them, and (4) unlock Drasil’s database to store all kinds of data.
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Abstract

Drasil is a software suite for generating software, with a particular focus on generating
Scientific Computing Software (SCS) following the requirements described in an abstract
Software Requirements Specification (SRS) template. The template breaks up scientific
knowledge into various categories, and the abstracted variant of the template makes it
digestible for Drasil. A series of DSLs are used to “fill in” the template, from which
Drasil is able to interpret an instance of, and configure a generation procedure to generate
software. The template’s theory encodings contain a shallow depth of knowledge, limiting
how many ways we can interpret them. To begin strengthening this depth, we create a
structure that concretely outlines Drasil’s currently encoded theory kinds, allowing us to
create more domain-specific interpretation opportunities for them. Similarly, each theory
kind contains a particular subset of mathematical language that is relevant to them, and
we act on this information to restrict usable expression terms to their related contexts.
To further enrich the admissibility of expressions, we also make one of the most critical
subsets, that for concrete theory transcription, type-safe by building a bidirectional type-
checker and system of type rules. The type-checker shows considerable success highlighting
previously undiscovered instances of ill-typed expressions in Drasil’s case studies. Finally,
as Drasil relies on a plethora of different types of knowledge, it needs a place to store
them. Thus, we create a system to store any instance of any type of knowledge in Drasil’s
memory bank of knowledge by creating a universal type carrier.
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Reading Notes

Before reading this thesis, I encourage you to read through these notes, keeping them in
mind while reading.

• Drasil’s source code is publicly available on GitHub, and Drasil’s documentation
(user-facing, and internal) is available on the Drasil project homepage. Drasil’s
public wiki is hosted on the same GitHub repository, containing information on
potential future Drasil projects, Drasil-related papers, a developer workspace con-
figuration and “quick start” guide, and a guide for building your own project with
Drasil. Similarly, the source code for this thesis is also publicly available.

• “Source Code” snippets with “Original” in their title show code snippets as they
appeared before this work. All other snippets are either pseudocode or a view of
the actual code at a particular git blob.

• The source code related to the prototyped ChunkDB relevant to Chapter 8 is also
publicly available.

• Please note that blue coloured text in a monospaced font (such as ExampleText)
refers to names you can find in Drasil’s source code.

• At times, we will refer to “software artifacts” as just “artifacts.”

• When we refer to “Haskell,” we are referring to the Haskell 2010 specification [1]
and/or Haskell code compiled by GHC 8.8.4 [2].

• This report is available in two (2) flavours: one intended for viewing on a computer
(the default), and one intended for printing. The one intended for viewing on a
computer will have hyperlinks coloured in red and does not show website references
explicitly. In particular, all “Source Code” content will link directly to a snippet
of code. The copy intended for printing will show website references explicitly by
adding footnotes to hyperlinks.
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Chapter 1

Introduction

Software developers pull on their understanding of problems to build software solutions,
and working together, developers similarly pull their understanding from a shared pool
of knowledge. Often, developers share their knowledge through documentation, keep-
ing every product owner1 “in the loop.” As knowledge and requirements change, software
implementations trail behind the current needs and understandings, until developers man-
ually update the code. By applying generative techniques to software development, we
may have some, or all, of the manual updates performed for us.

Drasil [3] is an exploration of applying generative techniques to well-understood do-
mains to create an alternative way of developing software. Focused on building Scientific
Computing Software (SCS), Drasil allows users to describe scientific problems using an
abstracted Software Requirements Specification (SRS) template to automatically build a
software solution conforming to the specifications outlined. However, Drasil is only ca-
pable of generating software for the problems that it has sufficiently “understood” (i.e.,
ones that have been sufficiently dissected and encoded in Drasil).

With a focus on scientific theories and mathematical expressions, in this thesis, we aim
to make some improvements to how Drasil captures certain kinds of knowledge. However,
we will also make improvements to how Drasil stores knowledge in general.

1.1 Background: Drasil
Drasil is a software suite for generating software from well-formed, principled “stories”2.
Focused on Scientific Computing Software (SCS), Drasil allows users to “fill in the blanks”
to describe their scientific problems using a precise Software Requirements Specification
(SRS) format [4]. By providing sufficient information in the “blanks,” Drasil is able to
use the information to generate various software artifacts, including whole programs (in
various supported languages, such as Java and C#), build tools, and documentation.
The “blanks” are holes for domain-specific knowledge and are filled in using one of many
Domain-Specific Languages (DSLs). Each individual fragment of knowledge in Drasil
is known as a “chunk,” and we encode each useful idea necessary to discuss/build our

1For our purposes, defining a “product owner” as all people that have any responsibility in the devel-
opment of a software artifact.

2For our purposes, “stories” being an abstraction of the requirements of the generated software.

1
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desired software artifacts as chunks. For example, if we wanted to encode a variable, θc,
representing the firing angle of a cannon3, we might write:

Source Code 1.1: Pseudocode: Example Angle Variable Encoding

firingAngle = makeUCWDS "desiredFiringAngle"
(cn "desired firing angle")
(S "needed firing angle for a cannon to hit a target")
(sub lTheta lC)
radian

Source Code 1.1 encodes the variable with a UID (“desiredFiringAngle”), a short name
(“desired firing angle”), long name (“needed firing angle for a cannon to hit a target”), a
symbol (θc), and a unit (radians). The many used chunks and DSLs make up a network of
domains [5], which allow Drasil to make domain-specific transformations, such as the one
most desired in Drasil: generating computation software conforming to a precise SRS.

Figure 1.1: Rough Sketch of Network of Domains Relevant to the Smith et al. SCS
Generator

Scientific Knowledge

Coherent SRS Abstraction

Generic Document Language Generic Object-Oriented Language

HTML LATEX Python Java Swift C# C++

Roughly, Figure 1.1 shows how Drasil’s Smith et al. knowledge transformer works, with
each node representing a domain of knowledge, and each arrow representing a mapping
between them. Drasil users mostly enter in their scientific knowledge near the “top” of
the diagram to form a coherent SRS abstraction using relevant DSLs. Drasil takes their
SRS abstraction, audits it, and allows the user to pick from a series of options to generate
software that conforming to the scientific problem encoded.

The “scientific knowledge” at the top of the diagram is not necessarily a complete
capture of all scientific knowledge, of course. Rather, it is a “bubble”/collection of the
scientific knowledge. Drasil’s development follows the needs of a series of manually built
case studies, using them as “seedling” data to navigate development. As Drasil is “taught”
more information4, Drasil’s span of producible artifacts widens. Unfortunately, at the
moment, Drasil is not able to generate code for all of its case studies.

Some case studies are currently in-progress (i.e., incomplete) and won’t be a focus of
this work, but left for future work by others. Instead, we will focus on those which we

3Running example based on Drasil’s Projectile case study.
4By providing it with a means of discussing relevant ideas through DSLs.
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understand how to manually produce code for. Specifically, we will largely focus on a
common denominator: strengthening mathematical knowledge capture, but we will also
spend time learning how to scale Drasil’s knowledge (chunk) database against expansion
in further chunk type creation. Additionally, we will primarily pull examples from the
Projectile, GlassBR, and DblPendulum case studies.

1.1.1 Theories and Expressions
One of the most important aspects of understanding and describing scientific problems is
the underlying theories. Drasil relies on users describing theory knowledge using relations
through a single universal untyped mathematical expression language. To be clear, this
means that Drasil relies on on-demand interpretation and comprehension of terms from
this expression language. Equations, relations, derivations, constraints, and definitions
are all described using this single language. However, the language does not contain
sufficient “depth” to adequately make use of its encoded information. In other words,
this expression language is a “lower-level” view of the information we really need to make
domain-specific transformations.

Drasil attempts to use the theories gathered from a user-filled SRS to understand what
problem they intended to describe (i.e., calculating the inputs and outputs, and a sequence
of calculation steps that go from the former to the latter). Each theory needs to be suffi-
ciently understood to produce calculation steps that we can use. For example, if we wanted
to define our firing angle variable (Source Code 1.1) in terms of the distance of the tar-
get, gravity, and the initial velocity5, we might write: arcsin (targetDistanceFromCannon ·
g/v2)/2. In Drasil, we might encode this as Source Code 1.2, where an InstanceModel6

carries information about the theory (e.g., a derivation, a defined quantity, and a defining
relation of the quantity).

Source Code 1.2: Pseudocode: Example Angle Equation Encoding

firingAngleIM :: InstanceModel
firingAngleIM = imNoRefs firingAngleEqn

[] (qw firingAngle) [UpFrom (Exc, dbl 0)]
(Just firingAngleEqnDerivation)
"firingAngleFormula" []

firingAngleEqn :: RelationConcept
firingAngleEqn = makeRC "firingAngleEqn"

(nounPhraseSP "firing angle formula")
(sy firingAngle $= arcsin (sy targetDistanceFromCannon * sy gravity /
square (sy v)) / dbl 2)↪→

5Assuming no air drag or resistance.
6An instance of a concrete theory usable in the solution to a scientific problem, modelled after “in-

stanced models” [4].
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With this theory encoding, we have enough information to generate a visually pleasing
description box for the SRS LATEX and HTML documents (Source Code A.1). Converting
to typesetting languages is reasonably unproblematic because they only use the theory
knowledge in a shallow light (displaying) and we can create any glyph we might need.
More importantly (and relevant to this thesis), we can also convert this theory to Python
code as well, using the encoded defining relation of the firing angle in Source Code 1.2:

Source Code 1.3: Pseudocode: Example Angle Equation Python Conversion

## \brief Calculates desired firing angle: needed firing angle from a
cannon to hit a target (radians)↪→

# \param inParams structure holding the input values
# \param g gravitational acceleration (m/s^2)
# \return desired firing angle: needed firing angle from a cannon to hit

a target (radians)↪→

def func_theta_c(inParams, g):
return math.asin(inParams.targetDistanceFromCannon * g / (inParams.v

** 2)) / 2↪→

However, this example is reasonably simple. If we were handed an equation of this
ν = f(x, y, z) form, it’s somewhat reasonable, but perhaps dubious to assume that one
way to define ν is f(x, y, z). However, if we were handed an equivalent, implicit version of
it, then we can assume less information about it. For example, if we re-wrote the equation
for Source Code 1.2 as targetDistanceFromCannon · g = v2 sin (2θc), then we’ve lost the
critical definition assumption that we used to write the python code. Automatically
isolating for θc is possible, but we’re interested in the definitional information, and we want
it as readily-available as possible. Now, with this scrambled variant as well, we similarly
can’t typeset it in the expected definitional form we desired, even though the relation is
equivalent. With more complex theories, more issues arise. For example, defining theories
with multiple definitions lacks information about which definition to “pick” for software
implementations, ODEs lack information about solving methods, and some theories may
be purely abstract and entirely unusable for code generation. In other words, the current
encoding of theories lacks information about the structure of the theories. Additionally, we
also lack information about when expression terms are usable in the context of code (e.g.,
expressions involving derivatives are not always directly usable in code), where we expect
them to be directly translatable to programming languages. As a result, knowing how to
and when you can transform captured theories into other forms (such as executable code)
is a complex task (similar to the complexity associated with transpiling a general-purpose
program into another — an exercise in futility!).

With the theory encoding above, we also never discussed what targetDistanceFromCannon,
g, nor v were. On paper and pencil, it’s fairly reasonable to assume that they are all some
numeric type. However, when we generate software, we expect it to be executed, and hence
undergo a type-checking phase by compilers/interpreters. As the expression language is
currently untyped, Drasil currently allows software generation with “ill-typed” (according
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to the respective compilers and interpreters) expressions. In particular, for example, this
poses problem for Swift code generation because Swift doesn’t allow numeric addition if
both operants are not of the same type, while Java uses implicit type coercion to mask
these issues. Ultimately, this means that more time is spent developing and debugging
generated artifacts than we would like. We would prefer that generated software come
with an assurance of correctness.

1.1.2 Capturing (& Remembering) Everything
Knowledge capture is at the heart of Drasil. It is what allows Drasil to make domain-
specific interpretations that we’re interested in, to ultimately generate software artifacts.
Chunks are unique instances of knowledge, tagged with a UID for referencing them, and
a type for understanding their structure. The chunk is unique with respect to a global
“chunk database” that Drasil registers all chunks into. At the moment, Drasil’s chunk
database uses a series of typed maps (Source Code 8.1) with UID keys and typed chunk
values. This means that as we create new types of chunks in Drasil, the list of maps in
the database will grow. Additionally, the list of types will have to be known before using
Drasil, which means that extending the list of chunks is difficult for users. In other words,
the current chunk database is not extensible because of its typed nature.

1.2 Problem Statement
Drasil isn’t able to adequately make domain-specific interpretations of encoded theories
because it lacks structural information about them. They also don’t provide static in-
formation about the contexts in which they are usable, partially because the underlying
expression language exposes little information about this too. Additionally, Drasil’s lack
of type information stops us from reliably generating usable software (in particular, there
is no assurance of type checking). Together, these issues affect our ability to reliably
and flexibly generate software. Finally, Drasil’s chunk database is not extensible, limiting
admissible chunk types to only those that exist in core Drasil.

Research Questions:

RQ1 Drasil’s current encoding of “theories” are essentially black boxes. We would like
to use structural information present in the short list of the “kinds” of theories that
show up in scientific computing. How do we codify that?

RQ2 Drasil’s theory encodings rely on a single mathematical expression language, which
does not expose information about applicability to different contexts. In each con-
text (e.g., code, theories, and common arithmetic), certain terms of the expression
language should be treated differently or are simply inapplicable. How can we re-
strict term usage by context?

RQ3 How can we ensure that our mathematical expression language admits only valid
expressions?
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RQ4 Our current “typed” approach to collecting different kinds of data is difficult to
extend. How can we make it easier to extend?

1.3 Contributions of the Author
In listed code snippets with “Original” in their titles, I’m referring to code that existed
in full before I started contributing to Drasil. As such, I claim no authorship in those
snippets. Unless otherwise stated, all other snippets, excluding excerpts from generated
artifact snippets, includes some of my work, but might also include the work of others
who were also contributing to the project while I was also actively contributing. The
work of others might include, but is not limited to, code formatting, code commenting,
and extensions.

My notable contributions include:

• Implementing ModelKinds to expose theory structure knowledge, creating oppor-
tunity for new domain-specific interpretation of theory knowledge (resolving RQ1).
The solution builds on a prototype by Dr. Jacques Carette7.

• Splitting the mathematical expression language into 3, each with their own intended
area of usage, but using a TTF [6] to keep same user-friendliness in expression
transcription (resolving RQ2).

• Adding type checking and inference to mathematical expression languages (resolving
RQ3).

• Creating an extensible chunk database prototype that can register chunks with types
external to core Drasil and chunks with type parameters (resolving RQ4).

1.4 Thesis Outline
In Chapter 2, we discuss what we can learn from the source code of general software, and
specifically, how we can abstract over them to form similar software, varying over certain
aspects of the software to make the background knowledge reusable. Chapter 3 discusses
Drasil, a software suite for generating software from coherent descriptions of scientific
problems. Chapter 4 discusses how Drasil captures and uses theories to generate code,
and how we improved theory capture to create more opportunity for domain-specific in-
terpretation of the theories (RQ1). Chapter 5 discusses how Drasil encodes mathematical
expressions and associated issues (RQ2). Chapter 6 revisits the existing captured the-
ories in Drasil, rebuilding them with specialized encodings for others to use as needed.
Chapter 7 discusses issues associated with the formation of mathematical expressions and
what it means for expressions to be “well-typed” (RQ3). Chapter 8 focuses on how Drasil
stores information, and how it can scale against future development of Drasil and libraries
(RQ4). Chapter 9 discusses future work. Finally, Chapter 10 sums up the achievements
of this work.

7Unfortunately, the code associated with the prototype had been deleted. However, Source Code 4.8
is, if memory serves me correctly, nearly identical.
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Chapter 2

Ideology1

“Generation” is at the heart of this work. However, unlike GitHub and OpenAI’s Copilot
[7], we don’t delve into artificial intelligence. Copilot uses AI to autocomplete code us-
ing smaller snippets and comments, while we focus on capturing the meaning of specific
subsets of language to generate software artifacts through description of their require-
ments. In other words, we focus on encoding the important bits of information that
we use to discuss requirements of software and how they relate to the software artifacts
we would normally manually write. We focus on capturing knowledge through codifying
well-understood fragments with DSLs to capture the harmonious relationship between
knowledge and software artifacts to improve software maintainability and knowledge com-
munication and reusability.

2.1 On Developing Software
As software developers, we encode “stories” through software. As an example, programs
made to process CSV files tell a story of how data can be entered, adjusted, and output.
Compilers tell a story of how human-readable programs can translate to various assembly
languages. In these stories, we commonly use similar terminology and ideas. Thankfully,
we avoid writing “a lot of the same code” by abstracting over variables and sharing
reusable code through libraries. With libraries, we’re able to share our knowledge with
our future selves and others alike. Once we’ve reasonably stabilized our libraries, it
becomes a large gain in the reusability of our efforts —we don’t need to worry about
making the same bugs twice! However, a few issues arise: the code might become out-of-
date (or out-of-sync), others might not understand what we wrote (and thus not trust/use
it), or we might need to use the same conceptual ideas but in a different programming
language. If our understanding of key ideas changes, we might need to perform large,
manual refactoring of our code, and also update our documentation too. While we might
write “idiomatic” code, reverse engineering code is tedious, and even then, we can only
analyze the code we see, and not what knowledge it took to write that code. Finally,
we might be able to write a Foreign Function Interface (FFI), but they’re often brittle
and demanding of our time, due to initial and repeated complex analysis for each library

1Or, at least, my understanding of a software development ideology I believe to be relevant to this
work and Drasil.
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update. We might even be forced to use particular programming languages.
Often, we look to using mature libraries and frameworks to underpin our projects, but

usually without a guarantee that how we use and connect libraries is “safe.” For example,
the sinking of the Vasa ship [8] was partially caused by different teams working together
but using different “feet” units (the Swedish foot is 12” while the Amsterdam foot is 11”)
resulting in unbalanced weight distribution, contributing to its demise. Similarly, when
the Mars Climate Orbiter travelled to Mars, it met an early demise due to a navigation
issue [9]. Lockheed Martin built the orbiter ground controller software, but it didn’t
conform to NASAs Software Interface Specification (SIS). The commands sent from Earth
used English units (specifically, pound-seconds) while the orbiter assumed that it would
receive commands using the metric system (Newton-seconds). As such, the orbiter missed
its intended target orbit altitude, falling into the Martian atmosphere, and ultimately
disintegrating due to atmospheric stress.

Experts had an in-depth understanding of the “story” of each project, with sound
rationale for how things worked and should have worked, and yet both ended in misfortune.
Of course, most software is not critical, and issues in most software will not result in an
orbiter disintegrating in Martian atmosphere or a ship sinking, but there is something
that we can learn: communication and synchronization of development efforts is vital for
building reliable solutions.

While we as developers don’t often build and connect physical things, we do connect
pieces of code2, and misunderstandings of tacit project knowledge occur too. Thus, we
believe we need to revisit our original sensation when we recognized code duplication and
decided to make reusable components.

The reason is obvious3! We felt this sensation because we already had a mental model
that connected some key concepts to some code we wrote, so we decided to make reusable
views (code) of our knowledge. However, the code is only a shallow view of our knowledge,
containing very little discussion of the conceptual underpinnings and the role they play in
the greater “story.” Shallow views of implicit, unwritten knowledge, unfortunately, does
not come with guarantee of harmony with the way it’s used.

2.2 Dreams of Generation
Unlike the Vasa, for stories where the desired end-product somehow involves software, we
can remedy the communication issue partially by unifying it under one cohesive story.
Software Requirements Specifications (SRSs) play a large role in unifying communication
of software needs. However, the communication and maintained synchronization of the
software requirements into the final software product is still brittle (as evidenced by the
Mars orbiter), as it remains heavily reliant on manual labour to translate it into software
artifacts. In other words, the translation from our knowledge (the important part) is
laborious and prone to error, and hence, not simple enough. So, now we wonder: how
can we simplify the process?

2Though robotics is a field too.
3Ignoring the more obvious reasons, such as copy-pasting code, or mere awareness of textual similari-

ties.
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Our end-goal should be “assembly-line” style engineering of software [10], free of logical
issues. To attain this, we need to have clear criteria for what it means for our software
artifacts to be free of logical issues. However, to do this, we need to discuss relevant
models. For example, if we’re interested in the accuracy of a bank accounts cached
balance, we discuss the user, the relevant transactions, and then a validation algorithm.
Realizing this example in code might have us retrieve a user’s bank transactions, calculate
the expected balance, and compare it with a cached balance. The code only contains one
dimension of this discussion: the actions. It has no understanding of the substance, nor
how it can be similarly used in other scenarios. To audit the code, we analyze the code
ourselves, potentially with extra testing tools to make things quicker, but in general, it
relies on us and our understanding. To remedy this, we look to describing software as
we’ve done here: as a “view” of some story or discussion. In other words, we want to build
software artifacts through description as opposed to manual conversion of description to
artifact.

2.2.1 The Goal
If we think of a Java compiler as a sort of generator of JVM bytecode, we can think of
the Java programs as the instructions and inputs to the generator. We rarely look at the
actual bytecode ourselves, but we do have confidence in knowing what it will do when
executed. Now, we look to go one “level” up. In other words, we look to inputting our
understanding of particular applications through another generator (an abstraction level
up) to somehow obtain code for it.

Especially in the cases where everything is “well-understood” [10]4, we want to focus
on communicating problems and how solutions solve them so that we can generate usable
solutions (a software artifact), and keep them up-to-date through re-generation.

2.2.2 Reconciliation
By focusing on capturing well-understood [10] knowledge, we can use (and re-use) knowl-
edge across specialized generators to generate software for specific kinds of problems. For
example, statisticians frequently use and discuss various kinds of distributions, such as
“Poisson,” “Uniform,” and “Normal,” and when they do, they’re typically familiar with
their parameters, expectations functions, and how to use them to estimate likelihoods.
Hence, by focusing on using DSLs, we can build specialized interpreters for them. Fur-
thermore, by connecting them in precise manners (with similar precise languages), we can
form large meaningful networks of domains [5] that form our well-understood problem
spaces. For well-understood problem spaces, we can compose a series of domain-specific
interpreters. With enough effort, we could take a whole “problem description” that draws
in multiple fields, and generate software that somehow “solves” it.

By switching our focus of manual software development to manual problem descrip-
tion and relationships to “solutions,” we shift where we can make bugs, and how they
propagate. Namely, logical bugs will occur more than once so as long as the same knowl-
edge pulled from is drawn more than once. Thus, each logical bug should be more visible

4Irrelevant of rarity!
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and easier to spot. Additionally, the generated software becomes directly traceable to its
logical foundations. Hopefully, with adequate dissection of related concepts, bugs should
also be less intricate. Furthermore, generated artifacts are simpler to maintain (i.e.,
kept in synchronization) with its related knowledge-base and story by regenerating it.
Finally, as opposed to sharing code, in this paradigm, we communicate knowledge, achiev-
ing language-agnostic reusability, focusing on sharing meanings and families of problems
rather than solutions. Thus, by focusing on generating from meaningful descriptions,
we obtain knowledge reusability (as opposed to code reusability), and increased software
maintainability, reliability, and traceability. Of course, generating all software artifacts
appears grandiose, and, perhaps, reductive or ignorant of many difficulties in software
development. Thus, we must discuss feasibility5.

2.2.3 Feasibility
For us to discuss feasibility of this idealized development paradigm, we must discuss the
depth and breadth of knowledge we need to make this feasible6. Depth of knowledge refers
to the vertical knowledge understood about a specific fragment of knowledge, and its
preciseness. For example, we may have a low-depth of knowledge and claim that English
sentences are a sequence of characters. Alternatively, we might have a slightly “deeper”
depth/understanding of sentences by describing them as a language that follows a specific
syntax rule set and using a specific set of words. Breadth of knowledge is the horizontal
domain of knowledge, it is the various kinds of knowledge we have in a wide variety of
subjects and domains.

Low Depth & Narrow Breadth

At a shallow depth and narrow breadth of knowledge capture, this paradigm is very prac-
tical, and already heavily used. Widely used Content Management Systems (CMSs), such
as WordPress [11] and Drupal [12], and web frameworks, such as Django [13] and Laravel
[14], are arguably also following similar ideals as this ideology. Notably, they deeply embed
[6] knowledge in their frameworks and libraries using their host programming languages
basic features. They all typically provide a basic understanding of “user’s” of a hosted
website, facilities to write HTML content in one way or another (e.g., WYSIWYG editors,
templates, and plugins). While some might be, these listed above are not specific to one
specific use-case. They’re versatile products, usable for a wide variety of use-cases because
they ship with low but sufficient depth of knowledge7 such that you can use them for a
wide variety of different applications (e.g., blogging, ticketing, booking, accounting, etc.).
Out of the box, these web technologies listed come with simple, common, functionality
(features) and powerful extensibility through either plugins or through software extension
and usage. With the basic tooling provided, users are able to rapidly deploy websites
with content. Through extending the website’s knowledge-base (e.g., plugins or software
extension), they are able to obtain a wider breadth and deeper depth to the knowledge

5You may skip the remainder of this chapter if you so wish, it is not strictly required to understand
the rest of my work, but it doesn’t hurt.

6Note that “knowledge” is captured through codifying DSLs.
7They might call it “features.”
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contained within them. Through this, end-users may encode increasingly complex and
different kinds of data into the systems to ultimately obtain increasingly specialized web-
sites, such as technical blogs, eCommerce websites, online accounting software, online
discussion forums, and more.

The mechanized generation-related components of the ideology is also fairly shallow
in this area, but still, highly feasible. In some sense, almost any individual instance of
“generation” is an area of low depth and breadth as well.

At the lowest depth and narrowest breadth of knowledge capture, we aren’t really
capturing any meaning. Rather, we are programming our software artifacts directly.
Hence, this area is already very feasible, evidenced by the usefulness of software in usage
today, and the way said software was made.

Specialized Tools: Deep Depth & Narrow Breadth

We might think of software that captures deep knowledge about a specific topic as spe-
cialized tools. Tailored to specific needs, they come with extra features for highly specific,
potentially niche, categories of problems8. These already exist, and are similar to the
“Bottom,” highly practical. For example, Algebraic Modelling Languages (AMLs) (such
as HashedExpression [15]) allow you to describe complex mathematical algorithms and
generate optimized software tools for solving them. Another example is parser generators
(such as Happy [16]). They capture complex information about grammars and allow users
to generate specialized parsers for them. When needed, specialty tools provide greater
functionality than general-purpose programming languages for solving specific problems.

Off-the-shelf Solutions: Low Depth & Wide Breadth

Orthogonal to the “specialized tools,” a capture of low depth and wide breadth of knowl-
edge is seemingly a jack of all trades, master of none. For example, most modern program-
ming languages come with a standard library that provide many off-the-shelf solutions
to well-understood problems, but sticking to very common generic problems. Most users
typically pull in a library that provides extra specialization for certain problems because
the standard library didn’t go deep enough for their needs. Similar to the categories
before, these are widely used and similarly practical.

Utopia: Deep Depth & Wide Breadth

Finally, we’ve reached the category of “deep depth and wide breadth” of knowledge cap-
ture. Here, we capture the meanings of key ideas and concepts we need to build software,
making as many conscious decisions explicit and visible as possible. Imagine using the
specialized tools to develop every aspect of some software artifact, but for every facet
of the artifact, from start to finish. This is an idealized method of developing software,
where knowledge is strongly reusable and composable. Of course, this relies on heavy re-
search on tooling. As long as developers have infinite patience and can invest infinite time

8Think of this category as sharp tools, such as kitchen knives. We can generally get away with using
basic kitchen knives, but specialty knives help us out for particular use-cases, such as serrated or filleting
knives.
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into transcribing and researching to fill in gaps, anything is possible, and this ideology
is very practical! Unfortunately, that situation is not quite realistic. As such, we should
restrict our scope of captured knowledge to “well-understood” domains [10]. For areas of
“well-understood” knowledge, this should be more feasible, merely because the discussion
of key ideas is already coherent and sufficiently codified.

Here, you might use a series of DSLs to create a coherent discussion (a “story”). With
it, you would have specialized interpreters built, which process it, and draw out meaning-
ful byproducts you’re interested in (such as usable software). This story can be relatively
far removed from produced artifacts generating (containing potentially little to no discus-
sion of the desired artifacts at all), or a precise description (where you might be manually
writing out the final artifacts yourself). Through creating a story as a composition of
many other smaller fragments of knowledge and stories, and defining interpreters as com-
positions of other, smaller interpreters, this is feasible. Hopefully, with enough effort,
this should alleviate considerable stress associated with manual software development, by
moving the focus to the important bits: the story the artifacts tell. The “quality” of the
generated artifacts become a traceable reflection of the “quality” (depth and breadth) of
the captured knowledge.

2.3 A Prospective Workflow
In theory, all “development” should occur in a Knowledge Management System (KMS),
where knowledge and transformations between fragments of knowledge are transcribed.
“Users” would use a system of pre-filled knowledge to piece together a template story that
fits their narrative, or they would adapt an existing one to fit theirs.

Ideally, the workflow associated with building some product artifact will have each
knowledge/product owner (e.g., actual property “owner”, developers, managers, design-
ers, etc.) work on strictly the components that are related to them, and nothing else.
At the “bottom”, the final end-user is tasked merely with providing feedback that can
improve the quality of the artifact(s). They are the ones that have an issue that can be
resolved with some sort of software artifact. At the “top,” product owners designate a
basic set of requirements of the artifacts using a coherent formal description. Product
designers/orchestrators will take the requirements and convert them into a coherent story
for how the requirements may be translated into a final product. The story builds on
well-understood knowledge of various domains encoded by domain experts. The product
designer is tasked primarily with translation, while the domain developers and product
owners are tasked with encoding knowledge and instances of knowledge, respectively.

Through product owners describing their requirements coherently (e.g., via some for-
mal language), completely non-technical product owners may, and will, still be key figures
in the production of the product.

As the stress load/burden becomes shared under this paradigm, the sum of the parts
should be less than the whole. In other words, the cumulative stress of associated with cre-
ating the whole is greater than the approximate sum of each individual’s stress associated
with focusing on their respective domain.

Following this ideology, there will be at least 3 key roles associated with developing
artifacts: the knowledge encoder, the knowledge user, and the end-user of the
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produced software artifact.

2.3.1 Knowledge Encoder (Domain Expert)
The knowledge encoder should be a master of a particular domain. They are expected to
encode the knowledge discussed in their respective domain in such a way that is accessible
to those without knowledge of their domain. Additionally, they should encode information
about the ways in which the knowledge can be transformed into other forms of knowledge
(including that which is interdisciplinary). The knowledge they would be encoding should
be as well-known and globally standardized as possible. As discussed in Section 2.2.2, it
is likely that the knowledge encoder will focus on writing a series of highly specific DSLs,
where the languages may be restricted to as specific as one term or a handful.

As a domain expert transcribing knowledge encodings of some well-understood do-
main, one will largely be discussing the ways in which pieces of knowledge are constructed
and relate to each other. For the abstract knowledge encodings to be usable in some way,
it is vital to have “names” (types) for the knowledge encodings. In working to capture
the working knowledge of a domain, it’s of utmost importance to ensure that all “in-
stances” of your “names” (types) are always usable in some meaningful way and that the
knowledge is exposed in a usable way (e.g., sufficiently through some sort of API). In
other words, all knowledge encodings should create a stringent, explicit set of rules for
which all “instances” should conform to, and, arguably, also creates a justification for the
need to create that particular knowledge/data type. As such, optimally, a domain expert
would write their knowledge encodings and renderers in a general purpose programming
language with a sound type system (e.g., Haskell [1], Agda [17], etc.) — preferring ones
with a type system based on formal type theories for their feature richness.

2.3.2 Knowledge / Domain User & Orchestrator
The knowledge user/orchestrator is tasked with connecting the work of the domain experts
into “plug-n-play” stories (arguably, compilers for the end-users to use). They should also
have a working understanding of what the end-user needs, and how the needs relate to
domains of knowledge. As such, they should be able to encode and reduce friction between
knowledge encoded by domain experts and the goals of product owners.

2.3.3 End-user
The final end-user should find the most delight from this ideology. They are the actual
users of the software artifacts, perhaps tweaking the final build of the software artifacts to
be accustomed to their workflow. If the tasks assigned to the knowledge encoders and the
knowledge users are performed correctly, then the end-user should have strong confidence
in the artifacts as they were built with strict adherence to the knowledge captured at every
step of the way. As such, one should confidently expect the final software artifacts to be
completely devoid of unexpected things (including errors, unconformities to specifications,
etc.).

Any of the three (3) user types may use the “plug-n-play” stories to describe problems
and generate solutions based on them.
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2.4 Drasil
To my understanding, Drasil [3] explores this ideology, focusing on generating scientific
software from user-described scientific problems using Drasil-understood terminology (i.e.,
ones that a scientific domain expert previously encoded).

14



Chapter 3

Drasil

In this chapter, we will discuss the project this work contributes to, Drasil. Specifically,
we will discuss at a high-level what Drasil is capable of, and how it works.

Figure 3.1: Drasil’s Logo

3.1 What is it? What can it do?
Principally investigated by Dr. Jacques Carette and Dr. Spencer Smith, Drasil is a soft-
ware suite for generating software for well-understood problems through a knowledge-first
approach [3]. Drasil captures the background knowledge involved with software develop-
ment to make it reusable, improve maintainability of software, and strengthen traceability
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between desired “software artifacts”1 and the background knowledge [18]. Currently,
Drasil focuses on generating software artifacts for Scientific Computing Software (SCS),
where it has been shown to improve software qualities, such as verifiability, reliability, and
usability [19].

Table 3.1: Drasil Case Studies

Case Study Focus
Glass Breaking (GlassBR) Predicting likelihood of a glass slab resisting a

specified blast.
Projectile (Projectile) Determining if a launched projectile hits a

target, assuming no flight collisions.
Single Pendulum
(SglPendulum)

Observing the motion of a single pendulum.

Double Pendulum
(DblPendulum)

Observing the motion of a double pendulum.

Game Physics
(GamePhysics)

Modelling of an open source 2D rigid body
physics library used for games.

Heat Transfer Coefficients
Between Fuel And
Cladding In Fuel Rods
(HGHC )

Examining the heat transfer coefficients related
to clad.

Proportional Derivative
Controller (PDController)

Examining the output of a “Power Plant”
(Process Variable) over time.

Solar Water Heating
System (SWHS)

Modelling of a solar water heating system with
phase change material, predicting temperatures
and change in heat energy of water and the
PCM over time.

Solar Water Heating
System Without PCM
(NoPCM )

Modelling of a solar water heating system
without phase change material, predicting
temperatures and change in heat energy of
water and the PCM over time.

Slope Stability Analysis
Program (SSP)

Assessment of the safety of a slope (composed
of rock and soil) subject to gravity, identifying
the surface most likely to experience slip and an
index of its relative stability (factor of safety).

Drasil’s knowledge-capture approach to software development allows users to remove
themselves from the discussion of “code” and focus on the important bits: the problem the
code solves and how “code” ultimately relates to it2. Drasil’s development is navigated
through a series of case studies: Table 3.1. Each case study has users input scientific prob-
lems using DSLs that build up an abstract Software Requirements Specification (SRS)

1“Software artifacts” being any file with a well-defined structure, such as plaintext files, Python code,
LATEX code, HTML, or JSON.

2Drasil allows users to “keep at a safe distance” from software, but only so far as Drasil has encoded
the terminology the users rely on for conveying their problem to Drasil.
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[4]. The SRS decomposes scientific problems into small structured fragments of knowledge
that have direct relations to “code” and can be used flexibly as part of code generation.
Through abstracting sufficient depth and breadth of the knowledge in an SRS (e.g., in-
cluding the inputs, outputs, and calculation scheme), Drasil is able to generate software
artifacts that satisfy the designated SRS3 (Table 3.2). Drasil relies on the capture of a
network of domains [5] to generate artifacts. Roughly, the network of domains related to
the code generated related to an abstracted SRS is as per Figure 3.24, where nodes are
the major categories of domains5 and arrows are mappings between them. The current
network is built according to the needs of Drasil’s case studies. One notable success of
the knowledge capture is the reusability of it to regenerate artifacts in different, but sim-
ilarly applicable, languages. For example, the GlassBR case study had software artifacts
manually built. Once the knowledge was codified in Drasil, the same knowledge allows
re-creation in other languages.

Figure 3.2: Rough Sketch of Network of Domains in Drasil

Scientific Knowledge

Coherent SRS Abstraction

Generic Document Language Generic Object-Oriented Language

HTML LATEX Python Java Swift C# C++

Drasil is able to generate a host of Object-Oriented (OO) programming language
source codes through compiling to Generic Object-Oriented Language (GOOL) [20, 21],
which compiles to several OO languages (such as Java, Python, C/C++, C#, and Swift6).
Drasil also contains renderers for printing HTML files, Makefiles, basic Markdown (enough
for “READMEs”), GraphViz DOT [22] diagrams, and plaintext, LATEX documents. SRS
abstractions are renderable in either LATEX or HTML.

Table 3.2: Drasil Case Studies Artifacts Generated

Case Study SRS C/C++ Java C# Python Swift
GlassBR X X X X X X
Projectile X X X X X X
SglPendulum X
DblPendulum X
GamePhysics X
HGHC X
PDController X X

3It is helpful to think of the SRS as a sort of “recipe” that Drasil follows to navigate the generation.
4Note that this is not representative of all knowledge captured in Drasil, but only that which is relevant

to generating code for a given SRS abstraction.
5In other words, each node contains its own subdomain as well
6Note that Swift was not discussed in [21], but the renderer was built by Brooks as well.
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SWHS X
NoPCM X X X X X
SSP X

3.2 How does it work? How is it used?
As mentioned in Section 3.1, Drasil relies on building a tree of knowledge that contains
sufficient information such that software artifacts can be “grown” from them. The in-
dividual pieces of knowledge are known as chunks and are encoded as either Algebraic
DataTypes (ADTs) or Generalized Algebraic DataTypes (GADTs). Drasil, and all knowl-
edge captured in Drasil, is deeply embedded in Haskell [1] source code7. Each chunk has
a type which defines its structural information. Chunks contain information encoded with
various Domain-Specific Languages (DSLs). The network of domains (roughly, Figure 3.2)
is made up of a series of chunks connecting and discussing one another, similar to how we
might discuss abstract concepts.

The “coherent SRS abstraction” of Figure 3.2 is modelled after the Smith et al. formal
SRS template [4], while the “scientific knowledge” higher up is a set of interconnected
chunks (and, hence, DSLs). The “scientific knowledge” chunks are used to fill in the “gaps”
of the SRS template. For example, if we wanted to encode a variable, q̂tol, representing a
real number, “Tolerable load,” we might write it as Source Code 3.1, where it is of type
QuantityDict (Source Code 3.28), the type of variable encodings.

Source Code 3.1: Original Example Encoded Quantity: Tolerable Load

tolLoad = vc "tolLoad" (nounPhraseSP "tolerable load")
(sub (eqSymb dimlessLoad) lTol) Real

Source Code 3.2: Original Definition of “Quantities” (QuantityDicts)

data QuantityDict = QD { _id' :: IdeaDict
, _typ' :: Space
, _symb' :: Stage -> Symbol
, _unit' :: Maybe UnitDefn
}

7The source code compiles against GHC 8.8.4 [2] and uses GHC language extensions.
8Note that IdeaDict, Space, Symbol (for all Stages), and UnitDefn are coupled together to create the

quantity. The components respectively define the term, type, symbol (dependent on the usage context
[equational or software implementation]), and unit of the quantity.
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Notably, in Source Code 3.1, the symbol, q̂tol, is built using a Symbol DSL. The capture
of domain-specific knowledge is what sets DSLs apart from general-purpose programming
languages. Domain-specific abstractions create opportunities for domain-specific inter-
pretation and transformation (e.g., optimization, analysis, error checking, tool support,
etc.) [5]. For example, with the symbol for “tolerable load,” we have information about
the structure of the symbol itself: that “q” has a “hat” and a subscript “tol.” From this,
we can output the same information in alternative flavours if we desired, such as plain
text, or with Java-compatible naming convention (e.g., “qHatTol”).

Drasil’s SRS template contains more “holes”9 for other information necessary to cre-
ating a whole “story” about how output variables can be calculated according to a set
of input variables and algorithm derived through a series of theories. With sufficient
knowledge depth10 for each relevant fragment, Drasil is able to automatically “check” it
for consistency and coherence, and generate representational code11.

Unfortunately, not all of Drasil’s case studies are capable of generating representational
code (Table 3.2). Some case studies (GamePhysics, HGHC, and SSP) are still actively
being developed, but are left incomplete at the time of writing. NoPCM is usable in all
languages supported by GOOL except for Swift due to the lack of a Drasil-supported
ODE solving library for the Swift GOOL renderer. PDController was built [23] outside
the normal means of Drasil’s case study development. Code generation for PDController
is not impossible (it’s done for Python), it just requires more investigation by a domain
expert for the needs of compiling to more languages. However, both the issues related
to NoPCM and PDController are outside the scope of this work. In this work, we will
focus on a critical common denominator between all examples: capturing mathematical
knowledge for reliable SRS artifact generation. In particular, we will focus on 2 primary
aspects of mathematical knowledge: the theories and the expressions.

9Or “blanks” if you think of the template as a “fill-in-the-blanks” puzzle.
10Note that the SRS template provides the breadth needed by design!
11“Representational code” meaning software that solves the problem the related SRS abstraction de-

scribes, using the algorithm outlined.
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Chapter 4

Theories

In this chapter, we will focus on improving inspection and interpretation capabilities of
theories in Drasil. Specifically, with focus on interpreting them for generating software
artifacts.

4.1 Transforming Theories to Code
As already mentioned in Chapter 3, the SRS template [4] breaks up software requirements
and problems into a series of well-understood components, providing developers with
concrete solution requirements they must satisfy, and domain experts with justification
for problem solutions. Notably, the SRS relates a programs inputs to a set of outputs
using a set of theories. The inputs and outputs are sets of variables, with data that need
to be somehow fed into the program, or calculated and output by the program. The
theories connect the input variables to the output by forming a solution/calculation path.
Notably, the Instance Model (IM) [4] theories together largely form the calculation path,
while other background theories provide justification for them.

4.1.1 An Example
For example, Drasil’s Projectile case study describes how to estimate if a launcher, aligned
at a particular angle, will hit a target from a specific distance. The SRS requires users to
fill in the:

1. input variables:

(a) ptarget , the targets distance from the launcher,
(b) vlaunch, the projectile launch speed,
(c) and θ, the launch angle.

2. output variables:

(a) s, a message, explaining if the projectile hit the target, fell short, or went long,
(b) and doffset , the expected distance between the target position and the landing

position.
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3. and theories, connecting the inputs to the outputs:

(a) tflight = 2vlaunch sin(θ)
g , estimating flight time with vlaunch and θ,

(b) pland = 2vlaunch
2 sin(θ) cos(θ)

g , a calculation of the landing position,
(c) doffset = pland − ptarget, calculation of distance between the targets position and

the expected landing position of the projectile,

(d) and s =


“The target was hit.”, | doffset

ptarget
| < ε

“The projectile fell short.”, doffset < 0
“The projectile went long.”, doffset > 0

,

calculating the output message.

From these 3 key bodies of information along with some supporting background knowl-
edge (such as assumptions, constants, etc.), Drasil forms a calculation path, deriving the
output variables from the input variables using the concrete theories1. Together, the the-
ories form a calculation algorithm which Drasil generates representational code of. For
example, Projectiles generates Source Code 4.1 for one of the Java-flavoured artifacts.
In Source Code 4.1, it uses a write_output method to output the calculated output
variables after calculating them using the relevant theories2.

Source Code 4.1: Projectile: Java Main Method

/** \brief Controls the flow of the program
\param args List of command-line arguments

*/
public static void main(String[] args) throws FileNotFoundException,

IOException {↪→

String filename = args[0];
double g_vect = 9.8;
double epsilon = 2.0e-2;
double v_launch;
double theta;
double p_target;
Object[] outputs = get_input(filename);
v_launch = (double)(outputs[0]);
theta = (double)(outputs[1]);
p_target = (double)(outputs[2]);
input_constraints(v_launch, theta, p_target);
double t_flight = func_t_flight(v_launch, theta, g_vect);
double p_land = func_p_land(v_launch, theta, g_vect);

1The “concrete theories” are the “instanced model” and “data definitions” [4] encodings (respectively,
InstanceModels and DataDefinitions) which are somehow usable in the solution of a scientific problem.

2Note: tflight is seemingly unused in the generated code, but it is used in the derivation of pland.
However, it being “unused” is irrelevant to this work.
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double d_offset = func_d_offset(p_target, p_land);
String s = func_s(p_target, epsilon, d_offset);
write_output(s, d_offset);

}

As seen in Source Code 4.1, it relies on a few methods calculating the related “instance
models” on its behalf. Those methods are a specific interpretation3 of the theory knowl-
edge. Specifically, it is a calculation-focused interpretation. For example, to calculate
pland, Source Code 4.1 relies on the method func_p_land to calculate the landing posi-
tion. Source Code 4.2 is one possible exported method for calculating pland given vlaunch,
θ, and g.

Source Code 4.2: Projectile: Java pland Calculation Method

/** \brief Calculates landing position: the distance from the launcher to
the final position of the projectile (m)↪→

\param v_launch launch speed: the initial speed of the projectile
when launched (m/s)↪→

\param theta launch angle: the angle between the launcher and a
straight line from the launcher to the target (rad)↪→

\param g_vect gravitational acceleration (m/s^2)
\return landing position: the distance from the launcher to the final
position of the projectile (m)↪→

*/
public static double func_p_land(double v_launch, double theta, double

g_vect) {↪→

return 2 * Math.pow(v_launch, 2) * Math.sin(theta) * Math.cos(theta)
/ g_vect;↪→

}

Of course, to generate this method in Source Code 4.2, Drasil relies on a sufficient
capture of its underlying knowledge, and a means of transforming said knowledge to
“code” (e.g., sufficient information that answers: What do we want to define? How can it
be converted to code?). This capture of theories is done using Drasil’s representation of
an “Instance Model.” To build it, Drasil uses information gathered from what users fed
in about it, via Source Code 4.3.

Source Code 4.3: Original pland Theory Definition

landPosIM :: InstanceModel
landPosIM = imNoRefs landPosRC

3Or “view.”
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[qwC launSpeed $ UpFrom (Exc, 0),
qwC launAngle $ Bounded (Exc, 0) (Exc, sy pi_ / 2)]

(qw landPos) [UpFrom (Exc, 0)]
(Just landPosDeriv) "calOfLandingDist" [angleConstraintNote,

gravitationalAccelConstNote, landPosConsNote]↪→

landPosExpr :: Expr
landPosExpr = sy landPos $= 2 * square (sy launSpeed) * sin (sy

launAngle) *↪→

cos (sy launAngle) / sy
gravitationalAccelConst↪→

landPosRC :: RelationConcept
landPosRC = makeRC "landPosRC" (nounPhraseSP

"calculation of landing position")↪→

landPosConsNote landPosExpr

landPosDeriv :: Derivation
landPosDeriv = mkDerivName (phrase landPos) (weave [landPosDerivSents,

map E landPosDerivEqns])↪→

landPosDerivSents :: [Sentence]
landPosDerivSents = [landPosDerivSent1, landPosDerivSent2,

landPosDerivSent3, landPosDerivSent4]

Now, let’s unpack Source Code 4.3. landPosIM is an instance of an InstanceModel4,
containing the equational definition component (landPosRC), and meta-level information
about the theory, including constraint ranges, notes, and a derivation5.

To transform Source Code 4.3 into Source Code 4.2, interpretation6 occurs on landPosRC
(Source Code 4.4).

Source Code 4.4: Original relToQD

– Converts a chunk with a defining relation to a QDefinition
relToQD :: ExprRelat c => ChunkDB -> c -> QDefinition
relToQD sm r = convertRel sm (r ^. relat)

– Converts an Expr representing a definition (i.e. an equality where the
left↪→

– side is just a variable) to a QDefinition.
convertRel :: ChunkDB -> Expr -> QDefinition

4Drasil’s encoding of the “Instance Models.”
5Mostly omitted here for the sake of conserving space.
6More accurately, this interpretation is “domain-specific interpretation” [5].
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convertRel sm (BinaryOp Eq (C x) r) = ec (symbResolve sm x) r
convertRel _ _ = error "Conversion failed"

Source Code 4.4 shows the definition of relToQD, a function that attempts to convert
arbitrary relations into coherent “quantity definitions”7 (QDefinition), which Drasil’s
“SRS to code” generator relies on. landPosRC is an instance of a RelationConcept
(Source Code 4.5), a coupled mathematical relation (encoded using Relations8), natural
language description of the relation, and descriptive name.

Source Code 4.5: Original RelationConcept Definition

data RelationConcept = RC { _conc :: ConceptChunk
, _rel :: Relation
}

relToQD is used on all of the captured InstanceModels of a case study to find code
it can generate. However, these InstanceModels carry arbitrary Relations, which are
arbitrary mathematical relations. As such, an issue arises: since relToQD only works with
“variable defining” relations9, we’re limited to only one kind of theory. Even with this
restriction, we’re further limited to only a specific formation of that theory (e.g., relations
of the form x = f(a, b, c, . . . ))!

4.1.2 Problems
In the sense that we really want to be able to use relToQD (or something like it) to trans-
form arbitrary well-understood theories into code fragments for Drasil’s code generator,
it has at least 3 problems:

P1 it only handles one theory kind: variable definitions,

P2 and for those definitions, it requires a specific form, thereby limiting users to very
specific usage, views, and transcription,

P3 and it implicitly assumes that all inputs will be of this theory kind, or else it causes
a panic.

As a result of P1, we aren’t able to encode adequately all the theories we’re interested
in using, and want to generate representational code of. In particular, as Drasil is heavily
guided by physics-focused case studies, ODEs are desired! When we want to use ODEs
in the solution of a problem, extra information is required. For example, we might need

7Or, “variable definitions.”
8Relation is Drasil’s DSL encoding arbitrary mathematical relations. We will talk more about this

later. For now, this is enough.
9In some sense, calling these relations “variable defining” is also an issue of itself. We’re overloading

= to mean definition.
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to give Drasil (and/or developers) information about a desired approximation formula
with particular “settings.” Drasil does circumvent this issue for ODEs, but we would like
to reconcile the half-measures and push all necessary information back in to the theory
encodings.

Assuming we wanted to describe the theory of a line, there are many ways we can
describe the equation: polynomial (ax + by + c = 0), slope-intercept form (y = mx + b),
point-slope form (y1 − y2 = m(x1 − x2)), and so on. However, as a result of P2, we are
forced to use the “simple” slope-intercept form, even though we are aware of other forms
and may prefer to describe it in other forms.

As a result of P3, when Drasil’s users are encoding theories in Drasil, they might
be misled to think that any of their encoded theories is fully-understood to Drasil and
actually usable as part of the generated solution.

Together, these issues arise because of a lack of sufficient depth and breadth in the
contained knowledge of the theory encodings. Because the theory encodings rely on “flat”
information (e.g., the relations), transforming them programmatically is challenging. Of
course, if two programmers were to read this information in the SRS, they might be able
to use it. However, the programmers understand the context of the theory, and are able to
recognize (from any form of a theory) if and how it can be transcribed as a computation.
Now, imagine if we wanted to So, how can we mitigate all of these issues?

Just as we may discuss the specifics of implementing any particular theory in our
manual implementation of a software artifact, we assume prior learned knowledge about
mathematical expressions, such as which ones we know we can somehow translate into
code. To mitigate these issues, we must further capture this background knowledge be-
cause raw relations carry too little information about how to transform into coded. So,
now, more concretely, we ask: how could we have avoided these individual problems?

To avoid . . . we needed . . .
P1 knowledge about more kinds of theories,
P2 to decompose the relations into its set of logical

components and capture information about how
instances can be transformed into various forms,

P3 a signifier for each theory kind we’re interested in.

Succinctly, this means we need a system for classifying and capturing/exposing the
structure of more kinds of theories. This also means RelationConcepts and Relations
are insufficient couriers of “theory knowledge.” In particular, we should be careful to
ensure that the abstractions are capable of reproducing the original knowledge we ab-
stracted them out of10. In other words, we should ensure that we can re-create the
original RelationConcepts from the newly created, structured, theories.

10This also should typically create opportunity for more kinds of interpretation of the abstracted
knowledge too.
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4.2 Classifying Theories
As a result of the inability to enter in complex theories not of the form x = f(a, b, c, . . . )
and the desire to encode theories with ODEs11, Drasil’s existing ODEs has a bit of tem-
porary code to circumvent the “1 Theory Kind” restriction. However, we won’t focus on
ODEs in this work. Since we only have one kind of theory that is processed down the
“normal” route (relToQD) along the path of code generation, we will focus on it.

Continuing to use pland as an example, recall Source Code 4.3, as it is similar to any
one of the other theories in Drasil used for code generation (other than ODEs!). The code
generator currently understands how to convert “quantity definitions” (QDefinitions,
Source Code 4.6) into various snippets of usable code that it can use to generate a whole
software artifact.

Source Code 4.6: “Quantity Definition” Definitions (QDefinitions)

– | A QDefinition is a 'Quantity' with a defining expression, and a
definition↪→

data QDefinition = EC { _qua :: QuantityDict , _defn' :: Sentence,
_equat :: Expr }↪→

QDefinitions are “higher-level” versions of the existing theories. A QDefinition
breaks up an equational theory (i.e., theories of the form x = f(a, b, c, . . . ) into its logical
constituents:

1. a variable to be defined,

2. an expression (formula) defining the variable,

3. and a natural language explanation of the coupling.

For our current needs, this is a sufficient interpretation of “equational theories.” Ad-
ditionally, since all existing instance models are processed by relToQD, we similarly have
a clear path to converting the existing RelationConcepts into QDefinitions where ap-
plicable. Specifically, to convert them, we merely need to hand-process relToQD in the
case studies, where we normally write RelationConcepts12. For example, if we wanted
to convert landPosRC into a QDefinition, we might do it as Source Code 4.7, where
E.landPosExpr is a variable containing the expression (formula) defining the landPos
symbol.

Source Code 4.7: Converting “landPosRC” into a “QDefinition”
11As Drasil’s examples are physics-focused and ODEs are common in physics problems, the ability to

generate software that can solve ODEs is desired.
12Note: since the QDefinitions are merely unpacked copies of the existing RelationConcepts used

in code generation, we can also similarly re-create those RelationConcepts we’re aiming to replace. In
other words, we can also make RelationConcepts a “view” of QDefinition by re-interpreting them while
connecting the formula to the defined variable with an equality.
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landPosQD :: QDefinition
landPosQD = mkQuantDef landPos E.landPosExpr

However, merely replacing all RelationConcepts with QDefinitions is also limiting.
We want to use more kinds of theories too! Thus, ModelKinds 13 (Source Code 4.8) is cre-
ated and propagated through the various theory encodings to replace RelationConcepts
(and Relations).

Source Code 4.8: Enumerating and Classifying Theories

data ModelKinds = EquationalModel QDefinition
| DEModel RelationConcept
| OthModel RelationConcept

ModelKinds is an Algebraic DataType (ADT), enumerating over all currently known14

kinds of theories in Drasil. The constructors of ModelKinds are intended to carry struc-
tured encodings of theory knowledge. By switching to ModelKinds, theories can be cre-
ated using the structural information of theories, and the theories using structured en-
codings are easier to refine and interpret15 than the unstructured copies. At the moment,
ModelKinds has 3 kinds of “models” (theories) that can be created:

1. EquationalModels, for theories that define a variable with some expression

2. DEModels, for theories involve ODEs,

3. and OthModels, for everything else.

Now, with EquationalModel, we may finally rebuild landPosIM (Source Code 4.3)
using the improved structure (Source Code 4.9). At the moment, it does not change
the expected generated artifacts, however, if desired, one can change output types of
theories in the SRS (or code) by adding new kinds of QDefinition and ModelKinds
interpretations.

Source Code 4.9: “landPosIM” Using “QDefinition”

landPosIM :: InstanceModel
landPosIM = imNoRefs (equationalModelN (nounPhraseSP

"calculation of landing position") landPosQD)↪→

13ModelKinds is based on a prototype by Dr. Jacques Carette. Shortly after implementing it, the Drasil
Research Team discussed changing the name of “models” to “theories,” to which, we did, but have not
propagated through the Drasil codebase, pending analysis on how it might affect the SRS template [24].
Thus, “ModelKinds” might change to “TheoryKinds” or the singular “TheoryKind.”

14Criteria for “currently known” being “ones this work has discussed up until this point.”
15Such as for code generation!
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[qwC launSpeed $ UpFrom (Exc, exactDbl 0),
qwC launAngle $ Bounded (Exc, exactDbl 0) (Exc, half $ sy pi_)]

(qw landPos) [UpFrom (Exc, exactDbl 0)]
(Just landPosDeriv) "calOfLandingDist" [angleConstraintNote,

gravitationalAccelConstNote, landPosConsNote]↪→

landPosQD :: QDefinition
landPosQD = mkQuantDef landPos E.landPosExpr

landPosDeriv :: Derivation
landPosDeriv = mkDerivName (phrase landPos) (weave [landPosDerivSents,

map eS landPosDerivEqns])↪→

landPosDerivSents :: [Sentence]
landPosDerivSents = [landPosDerivSent1, landPosDerivSent2,

landPosDerivSent3, landPosDerivSent4]↪→

Continuing, the DEModels still require a bit of manual circumvention, but bringing
some of the information back into the core “theories” to use in the intended flow of
knowledge, should be possible [25]. Drasil also currently has many more kinds of theories,
not all usable in code generation — more than just equational models! However, we won’t
focus on them quite yet, we’ll get back to this Chapter 6.

Finally, as a result of incorporating ModelKinds in Drasil, we:

(a) add a system of classifying theories (through type information and constructors),

(b) change how users enter theories in Drasil (by making them enter in the structural
components into “cookie cutter” shapes),

(c) gain information about theory capabilities (based on type information).

(d) and, ultimately, don’t need relToQD anymore.

Now, on the note of exposing theory capabilities, we mean that we know have static
type information, at the level of the whole Haskell code compilation, about how theories
can be used. For example, if we previously had a function that converts RelationConcepts
into pretty typeset boxes in LATEX, we likely would have had similar troubles (as discussed
above) in adding an alternative printing form of the theory. However, now, we might, for
example, create a sub-kind of EquationalModels that are for equations of lines. Then we
can re-create the printing function for them, adding a parameter for the printing form.
The printing function now is able to more easily make use of the logical constituents of a
theory.

More important than printing to textual artifacts, we are interested in generating
code. Specifically, we are interested in knowing which EquationalModels are usable in
code generation, based on their defining expressions.
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Chapter 5

Expression Language Division

In this chapter, we will discuss how Drasil captures relations and general mathematical
expressions, and the issues associated with the single universal language approach Drasil
takes.

5.1 Relations
In Chapter 4, we discussed how Drasil captures theories. Specifically, we discussed how
Drasil heavily relies on relations for defining them. However, we never discussed the
relation encoding: Relation.

Source Code 5.1: Original Relation

type Relation = Expr

Relation (Source Code 5.1) is actually a type alias for Expr (Source Code 5.2), which
captures general mathematical expressions. As such, Relations aren’t really “relations.”
In fact, Relations can take on any mathematical expression, such as 3x + 2, which is
obviously not a “relation.”

Source Code 5.2: Original Expression language

– | Drasil Expressions
data Expr where

Dbl :: Double -> Expr
Int :: Integer -> Expr
Str :: String -> Expr
Perc :: Integer -> Integer -> Expr
AssocA :: ArithOper -> [Expr] -> Expr
AssocB :: BoolOper -> [Expr] -> Expr
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– | Derivative, syntax is:
– Type (Partial or total) -> principal part of change -> with respect

to↪→

– For example: Deriv Part y x1 would be (dy/dx1)
Deriv :: DerivType -> Expr -> UID -> Expr
– | C stands for "Chunk", for referring to a chunk in an expression.
– Implicitly assumes has a symbol.
C :: UID -> Expr
– | F(x) is (FCall F [x] []) or similar.
– FCall accepts a list of params and a list of named params.
– F(x,y) would be (FCall F [x,y]) or sim.
– F(x,n=y) would be (FCall F [x] [(n,y)]).
FCall :: UID -> [Expr] -> [(UID, Expr)] -> Expr
– | Actor creation given UID and parameters
New :: UID -> [Expr] -> [(UID, Expr)] -> Expr
– | Message an actor:
– 1st UID is the actor,
– 2nd UID is the method
Message :: UID -> UID -> [Expr] -> [(UID, Expr)] -> Expr
– | Access a field of an actor:
– 1st UID is the actor,
– 2nd UID is the field
Field :: UID -> UID -> Expr
– | For multi-case expressions, each pair represents one case
Case :: Completeness -> [(Expr,Relation)] -> Expr
Matrix :: [[Expr]] -> Expr
UnaryOp :: UFunc -> Expr -> Expr
BinaryOp :: BinOp -> Expr -> Expr -> Expr
– | Operators are generalized arithmetic operators over a |DomainDesc|
– of an |Expr|. Could be called |BigOp|.
– ex: Summation is represented via |Add| over a discrete domain
Operator :: ArithOper -> DomainDesc Expr Expr -> Expr -> Expr
– | element of
IsIn :: Expr -> Space -> Expr
– | a different kind of 'element of'
RealI :: UID -> RealInterval Expr Expr -> Expr

5.2 A Mathematical Language
Expr (Source Code 5.2) is an ADT1, representing the Algebraic Syntax Tree (AST) of
a mathematical expression language. It was grown following the needs of encoding the
case studies in Drasil. As such, it contains a wide range of mathematical terms, including
variables, numerics, derivatives, common mathematical operations, and function applica-

1In GADT syntax.
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tions. In addition to the example expression (a relation) from Source Code 4.3, if, for
example, we wanted to transcribe 3 tan (x) = y in Drasil, we might write Source Code 5.3.

Source Code 5.3: Pseudocode: Encoding of Example Expression

theExpr :: Expr
theExpr = dbl 3 $* tan (sy x) $= sy y

Of course, this is great! We’re able to transcribe any expression contained in the
language of Expr. Source Code 5.3 is a great example which we can confidently re-write
as an equational model (as in Chapter 4):

Source Code 5.4: Pseudocode: Example Expression in a QDefinition

theQDef :: QDefinition
theQDef = mkQuantDef y (dbl 3 $* tan (sy x))

With Source Code 5.4, we can create an instance model containing an equational
model as part of the solution of the greater problem. One of the important requirements
of instance models is that we expect them to be unambiguously translatable into some
component of the solution, up to user choices (such as choosing what “code” representation
of integers and reals to use). This is where Expr shows that it is a bit of a double-edged
sword. For example, we can re-write the expression used in Source Code 5.4 using a
trigonometric integral (e.g., using tan (x) + C =

∫ 1
cos2(x)dx [26], we obtain y =

∫ 3
cos2(x)dx

using C = 0, Source Code 5.5), but then the transformation into a naive set of steps to
follow isn’t as simple.

Source Code 5.5: Pseudocode: Example Bad Expression in a QDefinition

theQDef :: QDefinition
theQDef = mkQuantDef y (integAll (eqSymb x) (dbl 3 $/ (cos (x) $^ int

2)))↪→

With Source Code 5.5, which solution to use isn’t clear. Should Drasil generate some-
thing to solve the integral? Should Drasil replace the integral with the original tan? How
would it recognize to convert it into tan without running into a similar problem as relToQD
(Chapter 4)? Should we expect the target generated languages to have functionality for
solving any integral we give it?

We shouldn’t be the ones answering any of these questions2. Rather, we should be
deferring these questions to users, giving them options for choosing answers to these

2We should be imposing the least possible amount of things on users!
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questions. In other words, the transformation from Exprs to “code” is not naively total,
which is problematic. However, these questions are also still too complex to be external
to the SRS, and as such, we would need this theory to be a higher-level theory, which
the user refines with information that would appear in the SRS for domain-experts to
audit. In other words, we don’t want integrals, like in this example, to appear in the
concrete theories (instance models) that are used in code generation, at least without
extra information about how to solve them embedded closely.

Additionally, Expr contains functionality for “actors” and “messages,” concepts in the
world of OO programming. While these are helpful for the translation of mathematical
expressions that might use some functionality from “actors,” users building an SRS should
be relatively removed from the actual programming. In other words, these terms are
inappropriate for usage in the SRS.

As such, we need to be able to restrict expression terms to their appropriate contexts.
At the moment, we lack information about when instances of expressions are actually
usable in code generation. As such, we’re limited to relying on implicit assumptions about
this, and causing Drasil-panics when the assumption is broken. To resolve this, we need to
make the information explicit in Drasil, and use that explicit information appropriately.
However, before we can make it explicit, we need to understand the contexts in which
Drasil needs mathematical expressions and how they are used in those contexts.

Namely, there are at least three focal areas of interest in Drasil where we use mathe-
matical expressions:

1. In the SRS for abstract theories, where we discuss abstract concepts that are ulti-
mately used in the derivations of concrete theories,

2. In the SRS for concrete theories (such as instance models), where we expect them
to be concrete in a sense that they are trivially usable as part of a solution to an
outlined problem,

3. In generated artifacts, where we first need to convert the concrete theories into an
intermediate representation of the generated artifacts and making any necessary
specializations for the target language, before finally outputting them.

5.3 Splitting
To restrict terms to their appropriate contexts, we need to somehow know when users are
using the “wrong” terms. Since Drasil is written in Haskell, we can use Haskell’s type
system to indicate this with relative ease. Namely, we can split up Expr. Thankfully, the
three areas of interest share a subset of expressions: the mathematical expressions usable
in concrete theories. As such, we would like to divide the language using this language as
a base for the other two (Figure 5.1).

Figure 5.1: Mathematical Language Division

Expr ⇒ Expr ∪ ModelExpr ∪ CodeExpr
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After the work, we end up with three languages:

1. Expr, which is the subset of the original Expr where all terms have definite val-
ues (e.g., literals, common unary and binary operations, symbols, and first-order
function applications), and should be the language of the QDefinitions usable in
instance models (Source Code A.6),

2. CodeExpr, which is expected to be related to a total transformation function that re-
writes terms in CodeExpr into GOOL for final rendering in a final software artifact
(Source Code A.10),

3. ModelExpr, which is approximately the Expr with nearly everything from the
original Expr, except without code-oriented terms3 (Source Code A.8). Notably,
ModelExpr contains all indefinite valued terms that were cut out of Expr, such as
derivatives, integrals, quantification, types as values (spaces), and continuous ranges
for summations and products.

Now we have 3 ADTs available for different kinds of expression languages with “math-
ematics” as a common tie. One issue with splitting is that we now force users of the
languages to make a conscious choice about which language they are using, and which
language they need to import into their working files respectively. This can become quite
frustrating given the amount of overlap. Thus, to alleviate the stress involved with writing
out the same expression in different languages, we use a Typed Tagless Final (TTF) [6]
encoding of the smart constructors to build expressions. Using Expr has a “base” shared
language between ModelExpr and CodeExpr, we can write TTF encoding for them indi-
vidually that extends on Expr’s functionality (Source Code A.7, Source Code A.9, Source
Code A.11). The TTF encoding allows us to seamlessly write expressions in any of the
languages at the same time, allowing type variability along the type constraints of any
expression. The typeclasses used in the languages may be used to create constriants on
the language used.

While ModelExprs TTF encoding strictly contains the terms unique to ModelExpr,
it is possible (and typical) to convert Exprs into ModelExprs for usage in generating
the SRS documents. Additionally, since many theories need to be representable as a
single Relation, we may create a typeclass to create enforcement (Source Code 5.6). By
instantiating it for various types, we are explaining how those terms can be interpreted
as a ModelExpr.

Source Code 5.6: Express Typeclass

– | Data that can be expressed using 'ModelExpr'.
class Express c where

express :: c -> ModelExpr

3As they should not be discussed in the SRS documents at all!
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5.4 Back to Theories
Now that we’ve split up the expression languages, we may restrict their usage to appropri-
ate theory contexts (in ModelKinds as per Chapter 4). Approximately, we can “upgrade”
ModelKinds according to Source Code 5.74, creating a type argument in ModelKinds
so that instance models can be restricted to carry “ModelKinds Expr” while the other
theory types may carry “ModelKinds ModelExpr”5. This allows us to ensure that all
expressions written in Drasil for instance models have an semantic counterpart that they
can be translated into for code generation in various OO languages. Furthermore, now we
may return to ModelKinds and continue uncovering the various kinds of theories currently
discussed in Drasil’s case studies.

Source Code 5.7: Pseudocode: Partial Upgrade To ModelKinds

data ModelKinds e where
EquationalModel :: QDefinition e -> ModelKinds e
DEModel :: RelationConcept -> ModelKinds e
OthModel :: RelationConcept -> ModelKinds ModelExpr

4Note that we also need to slightly update QDefinitions: Source Code A.12 to create a type parameter
for the used expression type.

5However, using Expr and ModelExpr is not quite accurately representative of “usable in code” versus
“not,” which we are going to fix [27].
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Chapter 6

More Theory Kinds

In this chapter, we return to examining more of the existing theories in Drasil, and create
alternative, structured versions of them to create further opportunities for domain-specific
interpretation.

6.1 Remaining Theories
As of writing, there are mainly two kinds of theories that are used in code generation: the
equational model and the ODE models. However, they aren’t the only kinds of theories
encoded in Drasil. There are at least two other re-occuring kinds of theories. One of
them is a theory that shows multiple ways to define a quantity. For example, Figure 6.1
is an example from the DblPendulum case study. Meanwhile, the other theory imposes
constraints on a system. For example, Figure 6.2 is an example from the SSP case study.

Figure 6.1 shows an abstract “force” variable, F, which be defined by at least two
different expressions: ma or −T1 sin (θ1) + T2 sin (θ2). This theory, in particular, is used
abstractly, providing reasoning for building different ways to define F, but also creating
opportunity for further specialization in other theories or systems. For example, this
theory is used as part of the derivation of another theory (Figure A.1).

Meanwhile, Figure 6.2 shows a theory that explains that the conditions under which a
body may be considered to be in static equilibrium. This theory was intended to be used
as part of constricting other theories. For example, it was used as part of the development
of another theory (Figure A.2).

Finally, with these theories in mind, we may start to add structured containers to
replace the existing RelationConcepts and Relations, currently used to build them, in
hopes that we can eventually learn how we really want to use these theories.

6.2 “Classify All The Theories”

6.2.1 Equational Realms
Equational realms represent “realms” [28], sets of unique axioms that are equivalently
interpretable, focused on different ways to define a particular variable. They may be spe-
cialized to become equational models. EquationalRealms represent “equational realm”
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Figure 6.1: Multiple Ways to Define a Variable

Figure 6.2: Constraints on a System
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theories in Drasil and are effectively MultiDefns. For example, we may define a theory
with multiple ways to define the horizontal force on an object: Source Code 6.1.

Source Code 6.1: Example of Equational Realm: Horizontal Force

––––––––––––––––––––––––-
– Horizontal force acting on the first object –
––––––––––––––––––––––––-
xForceGD_1 :: GenDefn
xForceGD_1 = gdNoRefs (equationalRealmU "xForce1" xForceMD_1)

(getUnit force) (Just xForceDeriv_1) "xForce1" []

xForceMD_1 :: MultiDefn ModelExpr
xForceMD_1 = mkMultiDefnForQuant quant EmptyS defns

where quant = mkQuant' "force" (horizontalForce `onThe` firstObject)
Nothing Real (symbol force) (getUnit force)

defns = NE.fromList [
mkDefiningExpr "xForceWithMass1"

[] EmptyS $ express $ forceGQD ^. defnExpr,
mkDefiningExpr "xForceWithAngle1"

[] EmptyS E.xForceWithAngle_1]

xForceDeriv_1 :: Derivation
xForceDeriv_1 = mkDerivName (phraseNP (force `onThe` firstObject)) [eS'

xForceMD_1]↪→

Source Code 6.2: “MultiDefinitions” (MultiDefn) Definition

– | 'MultiDefn's are QDefinition factories, used for showing one or more
ways↪→

– we can define a QDefinition.
data MultiDefn e = MultiDefn{

– | UID
_rUid :: UID,
– | Underlying quantity it defines.
_qd :: QuantityDict,
– | Explanation of the different ways we can define a quantity.
_rDesc :: Sentence,
– | All possible ways we can define the related quantity.
_rvs :: NE.NonEmpty (DefiningExpr e)

}
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Source Code 6.3: Definition Possibility

– | 'DefiningExpr' are the data that make up a (quantity) definition,
namely↪→

– the description, the defining (rhs) expression and the context
domain(s).↪→

– These are meant to be 'alternate' but equivalent definitions for a
single concept.↪→

data DefiningExpr e = DefiningExpr {
_deUid :: UID, – ^ UID
_cd :: [UID], – ^ Concept domain
_rvDesc :: Sentence, – ^ Defining description/statement
_expr :: e – ^ Defining expression

}

6.2.2 Equational Constraints
“Equational constraints” are theories that assert certain properties over other theories.
They use ConstraintSets under the hood (Source Code 6.5) to hold a list of relations
for assertion.

Source Code 6.4: Example of Equational Constraints: Equilibrium

equilibrium :: TheoryModel
equilibrium = tm (equationalConstraints' equilibriumCS)

[qw fx] ([] :: [ConceptChunk])
[] (map express equilibriumRels) [] [dRef fredlund1977] "equilibrium"

[eqDesc]↪→

––––––––––––––––––

equilibriumRels :: [ModelExpr]
equilibriumRels = map (($= int 0) . sumAll (variable "i") . sy) [fx, fy,

genericM]↪→

– FIXME: variable "i" is a hack. But we need to sum over something!
equilibriumCS :: ConstraintSet ModelExpr
equilibriumCS = mkConstraintSet

(dccWDS "equilibriumCS" (nounPhraseSP "equilibrium") eqDesc) $
NE.fromList equilibriumRels

– makeRC "equilibriumRC" (nounPhraseSP "equilibrium") eqDesc eqRel
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eqDesc :: Sentence
eqDesc = foldlSent [S "For a body in static equilibrium, the net",

pluralNP (force `and_PP` genericM) +:+. S
"acting on the body will cancel out",↪→

S "Assuming a 2D problem", sParen (refS assumpENSL) `sC` S "the",
getTandS fx `S.and_`↪→

getTandS fy, S "will be equal to" +:+. eS (exactDbl 0), S "All", plural
force,↪→

S "and their", phrase distance, S "from the chosen point of rotation",
S "will create a net", phrase genericM, S "equal to" +:+ eS (exactDbl

0)]↪→

Source Code 6.5: ConstraintSet Definition

– | 'ConstraintSet's are sets of invariants that always hold for
underlying domains.↪→

data ConstraintSet e = CL {
_con :: ConceptChunk,
_invs :: NE.NonEmpty e

}

6.2.3 Differential Equations
The capture of differential equations in Drasil is an active area of research. Dong Chen
continued work here, creating NewDEModel [25] (a new constructor in ModelKinds) to
start capturing information about linear ODE systems. DEModel is left as a temporary
carriage for the remaining theories to be similarly analyzed and re-built with a deeper
depth of knowledge capture, so that we can make better use of the information in them.
Thanks to Dong’s work, Drasil is now able to generate software for the DblPendulum
case study in Java, Python, C/C++, and C# [25]. As such, this research already has
some success in enabling more theories to be encoded in Drasil and appropriately used
for various purposes.

6.2.4 Theories Left Undiscussed
While we have analyzed a few theories and how they’re used, there are still many theories
left undiscussed1. Following Drasil’s methodology, they will only be analyzed and captured
as necessary. Notably, ModelKinds still contains OthModel, meaning that there still exist
theories in Drasil, which are used in justifications, of which we haven’t yet decided how
we want to use yet2.

1ModelKinds is an incomplete enumeration.
2This is “future work” for now.
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Finally, after Chapter 5 and this brief structuring of some existing theories, we end
with ModelKinds appearing as in Source Code 6.63.

Source Code 6.6: ModelKinds

– | Models can be of different kinds:
–
– * 'NewDEModel's represent differential equations as

'DifferentialModel's↪→

– * 'DEModel's represent differential equations as 'RelationConcept's
– * 'EquationalConstraint's represent invariants that will hold in a

system of equations.↪→

– * 'EquationalModel's represent quantities that are calculated via a
single definition/'QDefinition'.↪→

– * 'EquationalRealm's represent MultiDefns; quantities that may be
calculated using any one of many 'DefiningExpr's (e.g., 'x = A = ...
= Z')

↪→

↪→

– * 'FunctionalModel's represent quantity-resulting function
definitions.↪→

– * 'OthModel's are placeholders for models. No new 'OthModel's
should be created, they should be using one of the other kinds.↪→

data ModelKinds e where
NewDEModel :: DifferentialModel -> ModelKinds e
DEModel :: RelationConcept -> ModelKinds e – TODO:

Split into ModelKinds Expr and ModelKinds ModelExpr resulting
variants. The Expr variant should carry enough information that it
can be solved properly.

↪→

↪→

↪→

EquationalConstraints :: ConstraintSet e -> ModelKinds e
EquationalModel :: QDefinition e -> ModelKinds e
EquationalRealm :: MultiDefn e -> ModelKinds e
OthModel :: RelationConcept -> ModelKinds e – TODO:

Remove (after having removed all instances of it).↪→

– | 'ModelKinds' carrier, used to carry commonly overwritten information
from the IMs/TMs/GDs.↪→

data ModelKind e = MK {
_mk :: ModelKinds e,
_mkUID :: UID,
_mkTerm :: NP

}

3In the Source Code 6.6 definition, there are two (2) TO-DO notes that you may disregard. The first
one is merely a note for analyzing “well-understood” copies of our existing ODEs, and the second one
refers to models that haven’t yet been fully analyzed for how they will be used (other than for display).
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Finally, as a result of implementing ModelKinds (Chapter 4) and the expression lan-
guage division (Chapter 5), we are now able to, in at least one way, restrict the terms
we use in different kinds of theories across different contexts. Ultimately, this adds some
assurance that all generated artifacts only contain relevant language in them, because we
have filtered out terms by their context. However, we have yet to discuss well-typedness
of expressions.
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Chapter 7

Typing the Expression Language

In Chapter 5, we discussed Drasil’s single mathematical expression language and split it
into three variants, each specialized for their intended usage context. As a result, users
don’t need to worry about using terms inapplicable in various contexts. However, an
issue remains with expressions: Drasil’s standard mathematical language (Expr) remains
untyped, and thus Drasil does not detect malformed expressions, allowing users to make
errors that affect both the problem descriptions in the SRS and the usability of generated
software. In this chapter, we will focus on mitigating expression typing issues for the most
important context: concrete theories used for code generation.

7.1 Expressions, Instance Models, and Data Defini-
tions

To generate code, Drasil’s code generator relies on a series of concrete theories as part of
its input. There are two kinds of theories that the code generator uses from the abstracted
SRS template: instance models and data definitions. Data definitions are, as the name
suggests, concrete symbol definitions using expressions (similar to the EquationalModel
ModelKind variant, discussed in Chapter 4). On the other hand, instance models may
contain data definitions or any of the other applicable ModelKinds variants (discussed in
Chapter 6, albeit currently limited1). For the expressions they expose/form to be usable
in code generation, the expressions must be representable in GOOL somehow2. Thanks to
Chapter 5, Expr has become the expression language that currently limits mathematical
expressions in both instance models and data definitions to ones with definite values
that can be directly computed on pencil and paper, and in most modern programming
languages. However, translatability to GOOL does not necessarily mean that all the
expressions are actually coherent and usable. At the moment, it is possible to give Drasil’s
instance models and data definitions invalid Exprs and have Drasil generate code.

Source Code 7.1: Pseudocode: Ill-formed Expression Defining pland

1For our purposes, it’s enough to assume that they can expose any number of expressions usable in
code generation.

2Since all code generation for Drasil currently goes through GOOL.
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landPosQD :: SimpleQDef
landPosQD = mkQuantDef landPos (int 1 $+ str "Drasil")

Take Source Code 4.9 for example. The defining expression of pland, E.landPosExpr,
is of type Expr and limited to terms that can be naively translated to GOOL without
external knowledge. If we were to change the defining expression to something incoher-
ent (such as 1 + “Drasil”3, Source Code 7.1), we end up with (a) an algorithm that
doesn’t exactly make sense, and (b) a generated software source code that does what we
wanted it to do (Source Code 7.2), but which isn’t actually compilable software (Source
Code 7.3). Despite the example’s simplicity, assuming it was derived from other theories
that somehow went awry, then we should have caught the type error before we generated
code.

Source Code 7.2: Pseudocode: Ill-formed Expression Defining pland: Generated Java Code

/** \brief Calculates landing position: the distance from the launcher to
the final position of the projectile (m)↪→

\return landing position: the distance from the launcher to the final
position of the projectile (m)↪→

*/
public static double func_p_land() {

return 1 + "Drasil";
}

Source Code 7.3: Pseudocode: Ill-formed Expression Defining pland: Generated Java Code
Compilation Error

Projectile/Projectile.java:52: error: incompatible types: String cannot
be converted to double↪→

return 1 + "Drasil";
^

1 error

Source Code 7.3 provides us with a meaningful error message: “String cannot be
converted to double.” To fix this issue, we would need to change the string to something
valid, a number at least because Java also performs a secret cast, interpreting the 1 as
a double, despite our encoding having it be an integer. All code Drasil generates should
be reliably compilable and usable, and all errors should be noted as Drasil is used. The

3The sum of the number 1 and string “Drasil”.
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issue here lies in that the initial expression was incoherent (and the Java code was ill-
typed). So, now, how can we avoid this situation altogether? We need all expressions to
be well-typed. However, Drasil doesn’t have a working understanding of what it means
for expressions to be well-typed.

Ultimately, the issue lies in that Expr is not type-safe [29] and that we don’t capture
any knowledge about what it means for expressions to be well-typed. In other words, Expr
is not closed under preservation4 and progress5 [29], which means that during evaluation6

of expressions, illegal instructions and type mismatches are possible. Thus, we must make
Expr type-safe.

7.2 Type-Safe Expressions
To make Expr type-safe, we must build a type system for it so that we can obtain in-
formation about which Expr terms are coherent/valid or not. A system of typing rules
that dictate what well-typed expressions will allow us to determine which expressions are
well-typed.

7.2.1 Example: A “Simple” Language
For example, if we had a small “simple” language, L, that contains integer and boolean
values, with functionality for addition, “less than” comparison, conjunction, and if-then-
else (ternary operators)7, we might write the syntax inductively, as follows8:

L(l) ::= n Integers (where n is any integer)
| true True
| false False
| l1 + l2 Addition
| l1 < l2 “Less than” comparison
| l1 ∧ l2 Conjunction
| if l1 then l2 else l3 if-then-else (ternary “if”)

Now, we can form expressions, such as:

10 (7.1)

23 + (400 + 4000) (7.2)

if true then 95 else 96 (7.3)
4Preservation is a rule that evaluation of a language should preserve typing of expressions [29].
5Progress is a rule that says that any well-typed expression is either a value or something that can be

further evaluated [29].
6Of course, “evaluation” here is also related to the evaluation of GOOL-generated code.
7Assume the definitions of the functions be total and understood/used under the conventional sense

that mathematicians so often do.
8Note that I will be using a traditional math-oriented syntax definition here, but if we were to tran-

scribe it in Haskell, we may find differences.
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42 + false (7.4)

if (0 < false) then 1 else true (7.5)

Now, let’s evaluate these expressions. Expressions (7.1) to (7.3) can be calculated
with a conventional understanding of the operations, respectively, as 10, 4423, and 95.
However, Expressions (7.4) and (7.5) are worrisome. Regarding Expression (7.4), we don’t
have any conventional sense of addition on integers with booleans, so evaluation is unclear.
In Expression (7.5), we have two issues: we’re trying to relate an integer with a boolean
value, and our if-then-else construction returns differently-typed values depending on the
condition.

Other than modifying the syntax into a convoluted mess to avoid issues like these
(which won’t be easy, and might not be possible), we look to type systems to make all
expressions of L sound. The key is in understanding that there are different “kinds”
(types) of values (terms), and forming a system of figuring out which ones are valid (well-
typed) or not (ill-typed). Thus, first, we must analyze and capture our universe of types
of L, τ :

T(τ) ::= B Booleans
| Z Integers

Note that we are restricting the numeric-related operations to strictly integers. The re-
striction is only there for simplification of numerics. τ is an enumeration of all permissible
types of terms we can have in L.

Next, we need to add the typing rules. They will restrict our syntax to only those
constructions which are semantically valid. We will do so using inference judgments, as
follows9:

n : Z (where n is any integer.) (7.6)

true : B True (7.7)

false : B False (7.8)

a : Z b : Z
(a + b) : Z Addition (7.9)

a : Z b : Z
(a < b) : B “Less than” comparison (7.10)

a : B b : B
(a ∧ b) : B Conjunction (7.11)

9Note that since there are no variables, there is no need to have a context Γ on the left-hand side of
each typing judgment.
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b : B x : τ y : τ

(if b then x else y) : τ if-then-else (ternary “if”) (7.12)

So as long as we follow these typing rules while we build our expressions, when we
try to evaluate any of these expressions, we should not arrive at invalid expressions where
evaluation cannot be completed. In other words, so as long as expressions conform to
these typing rules, the language is type-safe: preservation and progress hold. As such, we
would like to build a similar system for Expr10.

Initially, when we sought to implement a type system for Expr, we tried to piggyback
on Haskells type system using type parameters in Expr, GADTs, and TTF. We were
hopeful that we would be able to defer manually checking our desired type rules to the
type signatures of expressions, having GHC provide users with elegant error messages and
feedback about typing issues. While we had success with typing Expr, the implementation
didn’t fit in well with the rest of Drasil. Adding it relied on us adding type parameters to
QuantityDicts, having users manually type in the type in the types of variables in the
declarations of quantities. It also required us to use the “data kinds” Haskell extension
[30] leading to difficulties with handling and flexibility of types. Additionally, we weren’t
able to adequately analyze and work with the types of expressions as needed. Thus, we
decided rolling our own type system would be beneficial, and that we would manually
check expressions as needed.

Now the question arises: how should we build it? One of the issues with the traditional
declaration-style is that expressions made without explicit type annotations might have
ambiguous types should we try to infer one [31]. While we don’t expect any of these
scenarios to occur with Expr, we might if we also added type-checking to ModelExpr,
where we would like to have higher-order functions and function abstractions. Thus,
we decided to build the type-checker with a modern, future-proof scheme that will scale
against our expected needs [32]: with bidirectional type-checking.

7.2.2 Bidirectional Type Rules
Bidirectional typing rules break the declarative typing judgments into two typing judg-
ments: a check judgment and an inference judgment [33]. The checking judgment,
Γ ` e ⇐ τ , says that the expression e can be checked to be of the type τ within the
context Γ. The inference judgment, Γ ` e ⇒ τ , says that within the context Γ, we can
infer the type of expression e, τ . Checking and inferencing may be mutually recursive —
this is helpful for type checking in cases where expressions are ambiguous and may take
on many shapes (i.e., may be polymorphic) [31].

7.3 Typing the Expression Language
With our goal in mind and our tools in hand, to add type-checking to Expr, we need to:
(i) capture the type universe its terms belong to, and (ii) build a system of bidirectional
typing rules, and a corresponding type-checker.

10To begin, we will have Expr typed as that is the main entry for user-error, but we will eventually
also add typing to the other expression languages in Drasil.
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7.3.1 Type Universe
Thankfully, there already exists an unused type universe, Space (Source Code A.13), in
Drasil that we can model our type universe after and potentially start using as intended.

Space(s) ::= Z Integers
| Q Rationals
| R Reals
| N Naturals
| B Booleans
| Ch Characters
| String Strings
| Vector(s) Vectors
| Matrix(s) Matrices
| s1 × s2 × . . . × sn → s Functions

7.3.2 Type Rules
We will base our typing rules on the existing Expr language syntax, and focus on enriching
it, not extending it for extra syntax. By applying these typing rules, we will catch any
existing typing issues in the case studies.

Let isNum(s) = s ∈ {Z,Q,R,N }. The following inference rules make up our bidirec-
tional type-checker’s rules:

v : s ∈ Γ
Γ ` v ⇒ s

Symbols

l is a literal of type s

Γ ` l ⇒ s
Literals

⊕ ∈ { +, · } isNum(s)
Γ ` e1 ⇒ s Γ ` e2 ⇒ s . . . Γ ` en ⇒ s

Γ ` (e1 ⊕ e2 ⊕ . . . ⊕ en) ⇒ s
Assoc. Arith. Ops

⊕ ∈ { ∧, ∨ }
Γ ` e1 ⇒ B Γ ` e2 ⇒ B . . . Γ ` en ⇒ B

Γ ` (e1 ⊕ e2 ⊕ . . . ⊕ en) ⇒ B
Assoc. Bool. Ops

f : (s1 × s2 × . . . × sn) → s ∈ Γ
Γ ` e1 ⇒ s1 Γ ` e2 ⇒ s2 . . . Γ ` en ⇒ sn

Γ ` f(e1, e2, . . . , en) ⇒ s
Fun. App.

Γ ` e1 ⇒ s Γ ` c1 ⇒ B
Γ ` e2 ⇒ s Γ ` c2 ⇒ B

...
Γ ` en ⇒ s Γ ` cn ⇒ B

Γ ` Cases(e1, . . . , en, c1, . . . , cn) ⇒ s
Cases
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Γ ` e11 ⇒ s Γ ` e12 ⇒ s . . . Γ ` e1n ⇒ s
Γ ` e21 ⇒ s Γ ` e22 ⇒ s . . . Γ ` e2n ⇒ s

...
Γ ` em1 ⇒ s Γ ` em2 ⇒ s . . . Γ ` emn ⇒ s

Matrix(e11, . . . , emn) ⇒ Matrix(m, n, s)
Matrix

isNum(s) s 6= N Γ ` e ⇒ s

Γ ` |e| ⇒ s
Abs.

isNum(s) s 6= N Γ ` e ⇒ s

Γ ` −e ⇒ s
Neg.

s ∈ {R,Z } Γ ` p ⇒ s

Γ ` ep ⇒ R
Exp.

⊕ ∈ { log, ln, sin, cos, tan, sec, csc, cot, arcsin, arccos, arctan, sqrt }
Γ ` e ⇒ R

Γ ` ⊕e ⇒ R
Un. Ops

Γ ` e ⇒ B
Γ ` ¬e ⇒ B

Logical Neg.

isNum(s) s 6= N Γ ` v ⇒ Vector(s)
Γ ` −v ⇒ Vector(s)

Vec. Neg.

Γ ` v ⇒ Vector(R)
Γ ` ‖v‖ ⇒ R

Vec. Norm

Γ ` v ⇒ Vector(s)
Γ ` dim(v) ⇒ Z

Vec. Dim.

isNum(s) Γ ` l ⇒ s Γ ` r ⇒ s

Γ ` l

r
⇒ s

Frac. Bin. Op

isNum(s) s = r ∨ (s = R ∧ r = Z)
Γ ` b ⇒ s Γ ` e ⇒ r

Γ ` be ⇒ s
Powers

isNum(s) Γ ` l ⇒ s Γ ` r ⇒ s

Γ ` l − r ⇒ s
Sub. Bin. Op

⊕ ∈ { =⇒ , ≡ } Γ ` l ⇒ B Γ ` r ⇒ B
Γ ` l ⊕ r ⇒ B

Bool. Bin. Ops
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⊕ ∈ { =, 6= } Γ ` l ⇒ s Γ ` r ⇒ s

Γ ` l ⊕ r ⇒ B
Eq. Bin. Ops

⊕ ∈ { >, ≥, <, ≤ } isNum(s)
Γ ` l ⇒ s Γ ` r ⇒ s

Γ ` l ⊕ r ⇒ B
Ord. Bin. Ops

Γ ` v ⇒ Vector(s) Γ ` i ⇒ N
Γ ` v[i] ⇒ s

Vec. Proj.

Γ ` l ⇒ Vector(R) Γ ` r ⇒ Vector(R)
Γ ` l × r ⇒ Vector(R)

Vec. Cross Prod.

isNum(s) Γ ` l ⇒ Vector(s) Γ ` r ⇒ Vector(s)
Γ ` l · r ⇒ s

Vec. Dot Prod.

⊕ ∈ { +, · } isNum(s)
Γ ` b ⇒ s Γ ` t ⇒ s Γ ` e ⇒ s

Γ `
t⊕
b

e ⇒ s

“Big” Arith. Op.

x : R ∈ Γ Γ ` b ⇒ R
Γ ` x ∈ (b, ∞) ⇒ B Γ ` x ∈ [b, ∞) ⇒ B

“Is In” Interval (Bottom)

x : R ∈ Γ Γ ` t ⇒ R
Γ ` x ∈ (∞, t) ⇒ B Γ ` x ∈ (∞, t] ⇒ B

“Is In” Interval (Top)

x : R ∈ Γ Γ ` b ⇒ R Γ ` t ⇒ R
Γ ` x ∈ (b, t) ⇒ B Γ ` x ∈ (b, t] ⇒ B
Γ ` x ∈ [b, t) ⇒ B Γ ` x ∈ [b, t] ⇒ B

“Is In” Interval

Γ ` e ⇒ s

Γ ` e ⇐ s
Checked by Inference

Notably, the “check” rule is purely based on type inference because Expr is a relatively
straight-forward language, for which we can reasonably infer the type of any expression.
However, for ModelExpr, this will not be the case. Finally, after having built our type
universe and typing rules, we may implement bidirectional type checking and inferencing
for Expr in Drasil.

7.3.3 Implementation
For a first-pass at adding a type-checker and expression validation in Drasil, it would be
beneficial to be able to check each chunk and expression at once, displaying all typing
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issues at once. In other words, it is helpful to perform type-checking retroactively as
opposed to performing interactively, where we would be forced to create a compiler panic
on sight of the first ill-typed expression. By viewing all typing issues at once, we will be
able to rapidly view what type issues our type-checker implementation causes and revise
accordingly.

Thus, we need to build out the typing context, Γ. Γ is the set of expression terms for
which we already know the type of. While Γ might include whole expressions, the most
important information we need while traversing Exprs is information about the types
associated with UIDs (since Exprs, when referring to chunks, only carry UID information,
such as for symbols and function applications). Since each UID relates to a symbol with
a unique type, we can build a map that carries everything for us.

Source Code 7.4: Typing Context, Γ

– | We can only type check 'UID's within a type context relating 'UID's
to↪→

– types since they don't carry any type information.
type TypingContext t = M.Map UID t

Now we may build our type checker. As we will want to implement type checking
for any expression types (such as for CodeExpr and ModelExpr eventually) with respect
to any type universe (not just Space), we prefer to build the bidirectional type checker
with a typeclass11, instantiated as needed. Using a typeclass with 2 parameters (e and t)
allows us to build out a bidirectional type checker with respect to any language, e, and
type universe, t.

Source Code 7.5: Modelling Bidirectional Type Checking

– | Build a bidirectional type checker for your expression language, e,
with↪→

– respect to a specific type universe, t.
class (Eq t, Show t) => Typed e t where

– | Given a typing context and an expression, infer a unique type or
explain↪→

– what went awry.
infer :: TypingContext t -> e -> Either t TypeError

– | Given a typing context, an expression, and an expected type, check
if the↪→

11Note: we needed to enable the “multi-parameter type-classes” [34] GHC language extension to create
and use this type class, at times with the “flexible contexts” [35] extension too.
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– expression can satisfy the expectation.
check :: TypingContext t -> e -> t -> Either t TypeError

At the moment, TypeError is merely a type alias for a String, for which we manually
typeset in a reasonably okay fashion. Eventually, it should be replaced with a whole
“breadcrumbs”-like system that elegantly displays a traversal over an expression, showing
where type-checking may have gone awry and why an expression is ill-typed.

Now we may build out the bidirectional type-checker for Expr: Source Code A.14.
After which, all that’s left is to actually use the type-checker.

While we would prefer to localize type-checking to the instant applicable chunks are
created (and expressions too), we unfortunately aren’t able to12. As expressions are formed
and symbols are referenced, the whole symbol type context is missing. At the moment,
Drasil gathers all chunks at once, registers them in memory, and then performs various
“checks” and generation steps to produce software artifacts. To build the type context, we
would need to build it manually, in a very tedious fashion, for each expression we build.
However, this does not scale well. To localize type-checking without the extra work,
we would need to make our chunk registration gradual and add a feature for exposing
assertions that needs to be asserted/proven before registration in memory13. To make
a compromise, we will settle for type-checking just before code and SRS generation, so
that we can notify Drasil-users of any issues and stop generation. With this information
in mind, we need to be able to extract all expressions and expected types, and relations
from our InstanceModels and DataDefinitions.

Source Code 7.6: Requiring Type-checking Constraint

– | For all containers, c, which contain typed expressions, e, against a
– specific type universe, t, expose all expressions and relations that

need↪→

– to be type-checked.
class Typed e t => RequiresChecking c e t where

– | All things that need type checking.
requiredChecks :: c -> [(e, t)]

With RequiresChecking, we have a typeclass for any instance of a type, c, which
may contain any number of expressions of type e that are expected to be type-checked
with respect to a specific type from a type universe t. By instantiating this typeclass
for DataDefinitions, we expose a single relation to be type-checked: that a specific
QDefinition is well-formed. Interestingly, by instantiating this typeclass for InstanceModels,
we potentially expose more than one expression, depending on the ModelKind variant.
Recall from Chapter 4 that any of our theories (including InstanceModels) may take on
any of our theory kinds (ModelKinds), and that some of them may work with and expose

12At least not without ease.
13We will take steps towards this in Chapter 8, but this task will largely be left for future work.
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expressions (such as equational realms, Section 6.2.1) in various ways for use. Thus, we
allow them to expose the expressions and relations individually, and we will type-check
them similarly. For other theories, such as the new ODE model variant, NewDEModel
(DifferentialModel), we may also have a solution system of equations [25] that need
to be type-checked. Moving on, we may finally plug in our type-checker!

Source Code 7.7: Type-checking a System

typeCheckSI :: SystemInformation -> IO ()
typeCheckSI

(SI _ _ _ _ _ _ ims dds _ _ _ _ _ _ chks _ _)
= do

– build a variable context (a map of UIDs to "Space"s [types])
let cxt = M.map (\(dict, _) -> dict ^. typ) (symbolTable chks)

– dump out the list of variables
putStr "Symbol Table: "
print $ M.toList cxt

putStrLn "=====[ Start type checking ]====="
let

exprSpaceTups :: (HasUID t, RequiresChecking t Expr Space) => [t]
-> [(UID, [(Expr, Space)])]↪→

exprSpaceTups = map (\t -> (t ^. uid, requiredChecks t))

– grab all type-check-able expressions (w.r.t. Space) from DDs and
IMs↪→

let toChk = exprSpaceTups ims ++ exprSpaceTups dds

– split up theories by "ones that contain things to type check" vs
"not",↪→

– but in reverse
let (notChkd, chkd) = partition (\(_, exsps) -> null exsps) toChk

– note that some theories didn't expose anything to type-check
mapM_

(\(t, _) -> putStrLn $ "WARNING: `" ++ show t ++
"` does not expose any expressions to type check.")↪→

notChkd

– type check them
let chkdd = map (second (map (uncurry (check cxt)))) chkd

– format 'ok' messages and 'type error' messages, as applicable
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let formattedChkd :: [Either [Char] ([Char], [Either Space
TypeError])]↪→

formattedChkd = map
(\(t, tcs) -> if any isRight tcs

then Right ("`" ++ show t ++
"` exposes ill-typed expressions!", filter isRight tcs)↪→

else Left $ "`" ++ show t ++ "` OK!")
chkdd

mapM_ (either
putStrLn
(\(tMsg, tcs) -> do

putStrLn tMsg
mapM_ (\(Right s) -> do

putStr " - ERROR: "
putStrLn $ temporaryIndent " " s) tcs

)
) formattedChkd

putStrLn "=====[ Finished type checking ]====="

By using this function before our code generation step, we are able to type-check all
relations and expressions relevant to code generation. As of writing, we found enough
(approximately 30) typing issues such that we decided it is best to keep type-checking
done en masse, until we’ve cleared through them. Interestingly, we also found that we
had temporary operations used in places where we needed similar variants which didn’t
exist yet. For example, using “absolute value” in a place where we needed vector norm, or
using addition/multiplication when we needed vector addition/scaling. We may enable a
compiler panic for our case studies later, once we’ve cleared through the majority of the
existing found type errors. Notably, by adding type-checking to Drasil, we also bring into
question the coherence of our SRS documents. By forcing the SRS abstraction to provide
sufficiently coherent information to generate code, we also have an equal assurance that
the SRS is sufficiently coherent for developers to manually build similar software artifacts.

To sum up, at this point, we:

• have bidirectional type-checking done for our concrete mathematical language with
respect to a specific type universe, but creating a reusable interface to create similar
type-checkers for other languages with respect to any type universe,

• have type-checking performed after all chunks are gathered and registered in mem-
ory, and

• uncovered many existing typing issues in Drasil’s case studies.

Once the existing typing issues are resolved, we can enable program panics to enable a
“hard” type-checking requirement for all relevant expressions (including, but not limited
to, data definition and instance model theories).
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Chapter 8

“Store All The Things”

In Drasil vernacular, as discussed in Chapter 3, we call encoded fragments of knowledge
“chunks.” In practice, users encode chunks using Haskells basic data types (example
later), tagging it with a Unique Identifier (UID). UIDs are represented by the UID data
type (a string of text, Source Code A.2). For example, Source Code 3.1 has the manually
defined UID: tolLoad.

More importantly, all chunks also have a specific type they belong to. For example,
Source Code 3.1 is a QuantityDict (Source Code 3.2). Drasil leverages Haskells type
system to create a system of reasoning about chunks. As such, when we create instances
of chunks, they are “typed” with a single fully monomorphic type signature. There is no
hard criteria yet for knowing whether data types are chunks or not, but we do have basic
requirements: they must have a UID, they must expose, in some way, what chunks they
depend on, and they must be usable in some way. Commonly, we create chunks to discuss
relations between other chunks. To discuss the relationships, we refer to related chunks
by their UIDs rather than the whole constituent chunk to ensure that all references are
the same with respect to the global set of UIDs.

We call the global set of chunks (and UIDs) the “chunk database.” The chunk database
(ChunkDB, Source Code 8.1) is built using a series of maps (Source Code A.5) that map
UID keys to chunk data. Each map is a map from a UID to a specific data monomorphic
data type. As such, to access a chunk by its UID, the associated type of the chunk must
be known, even if operations we intended to use on the chunk are generic, applicable to
any similar category of chunks (such as those satisfying a particular typeclass constraint
set) or all chunks. Additionally, since there is one map per chunk type, all chunk types
must be known and coded in the ChunkDB beforehand. Of course, this means the set of
types that Drasil can work with is fixed and difficult to extend. For example, if we have
n types (with no type parameters), then there must be n maps in the ChunkDB data type.
However, for each chunk type with type parameters, each argument combination would
need to also be registered. Together, this leads to an ever-growing series of maps, which
scales poorly against new knowledge being “taught” to (encoded in) Drasil. Additionally,
since we have a collection of maps, ensuring UID collisions never occur becomes tedious.

Source Code 8.1: Original Chunk Database (ChunkDB)
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– | Our chunk databases. Should contain all the maps we will need.
data ChunkDB = CDB { symbolTable :: SymbolMap

, termTable :: TermMap
, defTable :: ConceptMap
, _unitTable :: UnitMap
, _traceTable :: TraceMap
, _refbyTable :: RefbyMap
, _dataDefnTable :: DatadefnMap
, _insmodelTable :: InsModelMap
, _gendefTable :: GendefMap
, _theoryModelTable :: TheoryModelMap
, _conceptinsTable :: ConceptInstanceMap
, _sectionTable :: SectionMap
, _labelledcontentTable :: LabelledContentMap
} –TODO: Expand and add more databases

8.1 Scaling Against New Types
Fundamentally, the issue with the ChunkDB is that it caters to each individual type by
creating a map for each type, leading to tedious busy work to make up for inflexibility.

To scale against new types, we need to make the database maps type-agnostic, merg-
ing them all together. It should contain no hard-coded references to any specific type, but
describe what kinds of types are admissible (which should be any valid chunk). However,
this isn’t to say that we should erase all types. Rather, we should mask the type infor-
mation for the purpose of storage and minimum viable usage, but ensure that the type
information can be unmasked for retrieval and normal usage. Thus, the question arises:
how can we achieve this?

To collapse the series of maps into a single one, we need to have a common “box”
data type that can be used as the value, which carries the actual chunk data. Notably,
we need a box that retains type information that we can use to unbox them to use the
chunks as normally.

Source Code 8.2: Pseudocode: First Attempt at a Universal Chunk Carriage

data Chunk t = Chunk t

Now, we have a common data type to wrap our data in: Chunk. The type parameter
exposes type information for us to be able to unpack the Chunk box back to its actual
chunk content, so that we may use it as normal. However, this type parameter is also an
issue for storage, we run into the same issue of needing to create a series of maps, one for
each type:
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Source Code 8.3: Pseudocode: Prospective Chunk Database

– | Our chunk databases. Should contain all the maps we will need.
data ChunkDB = CDB { a :: Map UID (Chunk A)

, b :: Map UID (Chunk B)
, c :: Map UID (Chunk C)
, ...
, ... :: Map UID (Chunk ...)
}

Hence, carrying type information as a parameter is not the solution. We need to have
a single monomorphic data type that we can use to carry all chunk data along with their
type information. The type information allows us to safely attempt to cast the data back
to its original chunk form, before being placed into the ChunkDB.

Thankfully, GHC provides us with the “Existential Quantification” language feature
[36]1. “Existential Quantification” allows us to quantify over the type parameter in
the Chunk constructor while retaining the context (the type information). In particu-
lar, this is useful for heterogeneous lists with elements, sub-typed against a set of con-
straints, in Haskell (which isn’t normally encouraged, nor directly possible). In other
words, it is useful because it allows us to ignore the type while retaining the value
and a common basic functionality to all sub-typed elements through accessing the struc-
tural information through a set of constraints. With this, we can re-create Chunk using
ExistentialQuantification to hide the type parameter:

Source Code 8.4: Pseudocode: Basic Chunk Box (Data Voids)

{-# LANGUAGE ExistentialQuantification #-}
...
data Chunk = forall a. Chunk a

Great! Now we can create a single map for our chunk collection.

Source Code 8.5: Pseudocode: New Chunk Database Map

type ChunkDB = Map UID Chunk

Ok, now we’ve created a mechanism to collapse all of our chunk maps into one, but,
we’ve encountered an issue: we’ve neglected retrieval functionality. Let’s see:

Source Code 8.6: Pseudocode: Broken QuantityDict Chunk Retriever
1We can enable it by placing a small compiler option at the top of our Haskell files (e.g.,

{-## LANGUAGE ExistentialQuantification ##-}), or, in our package.yaml files.
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retrieveQD :: UID -> ChunkDB -> Maybe QuantityDict
retrieveQD u cdb = do

(Chunk expectedQd) <- lookup u cdb
pure expectedQd

Chunks are currently an informational void. We have the type information accessible,
but no way to use that type information to restore the chunk data to its original typed
form. So, this doesn’t quite work yet. For example, in Source Code 8.7, Haskell is unable
to coerce the rigid parameter type a into the QuantityDict type.

Source Code 8.7: Retriever Error

· Couldn't match type ‘a’ with ‘QuantityDict’
Expected: Maybe QuantityDict

Actual: Maybe a
‘a’ is a rigid type variable bound by

a pattern with constructor: Chunk :: forall a. a -> Chunk,
in a pattern binding in

a 'do' block
at app/Main.hs:21:4-19

· In a stmt of a 'do' block: pure expectedQd
In the expression:

do (Chunk expectedQd) <- lookup u cdb
pure expectedQd

In an equation for ‘retrieveQD’:
retrieveQD u cdb

= do (Chunk expectedQd) <- lookup u cdb
pure expectedQd

· Relevant bindings include
expectedQd :: a (bound at app/Main.hs:21:10)

|
22 | pure expectedQd

| ^^^^^^^^^^^^^^^

So, how can we try to fix this? Data.Typeable to the rescue! With Data.Typeable,
we’re able to work with any piece of data given to us without being provided any infor-
mation about the data directly. Data.Typeable allows us to create constrained types
with extra functionality for casting (amongst other common reflection operations). First,
we need to alter our Chunk data type to make the contained data satisfy the Typeable
constraint that the Typeable module needs for most of its functionality. As of GHC 7.10
(for which our targeted version of 8+ is newer than), GHC automatically instantiates the
Typeable typeclass for all types.
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Source Code 8.8: Pseudocode: Examinable Chunk Box

{-# LANGUAGE ExistentialQuantification #-}
...
data Chunk = forall a. Typeable a => Chunk a

Ok, now we should be able to retrieve chunks, and cast the chunk value types as
needed.

Source Code 8.9: Pseudocode: Working QuantityDict Chunk Retriever

retrieveQD :: UID -> ChunkDB -> Maybe QuantityDict
retrieveQD u cdb = do

(Chunk expectedQd) <- lookup u cdb
cast expectedQd

To sum up, at this point:

• We were able to mask individual chunk types by hiding them in Chunk boxes,
allowing us to avoid discussing specific chunk types when forming our ChunkDB.

• ChunkDB is now merely a single map that allows us to easily ensure that there are
no UID collisions.

• ChunkDB scales against new chunk type creation because it discusses no specific
types as it only discusses types through constraints. Through this, it scales against
the creation of type parameters for Haskell-level types.

Now, let’s impose restrictions on the admissible chunks, to ensure that they are indeed
“admissible,” namely we desire the following restrictions:

1. They should contain UIDs.

2. They should know what chunks they directly depend on.

One implicit contract we had with the chunks in the past, was that they were all
expected to have UIDs. Now, we can try to make this contract more explicit through
imposing typeclass constraints. For example, Source Code 8.10 is one possible way.

Source Code 8.10: Pseudocode: UID Ownership Contract

class HasUID t where:
uid :: t -> UID

58



M.Sc. Thesis — J. Balaci McMaster University — Computing and Software

Afterwards, we would alter our Chunk definition (Source Code 8.11) to add it.

Source Code 8.11: Pseudocode: Chunks with UID Constraint

data Chunk = forall a. (Typeable a, HasUID a) => Chunk a

Great! Now all chunks must “have a UID” (exposed via their HasUID instances), but
we don’t have a guarantee that they are unique and owned solely by a single instance
of any chunk. This is fine for now, and is left for future work as part of future work
(Section 9.3).

For the last restriction we want to impose, we want to ensure that chunks are always
“understandable” in a sense that all chunks they depend exist and have already been
registered in the chunk database as well. In other words, all information they depend on
should have already been entered before they are entered.

Source Code 8.12: Pseudocode: Chunk Dependencies Contract

class HasReferences t where:
refs :: t -> [UID]

Once again, we would alter our Chunk definition accordingly (Source Code 8.13).

Source Code 8.13: Pseudocode: Chunks with UID and Reference List Constraints

data Chunk = forall a. (Typeable a, HasUID a, HasReferences a) => Chunk
a↪→

Adding restrictions on all chunks is now also considerably simpler2. If we’re interested,
we can add a “dump to X” mechanism, where X is any encoding of our choice (such as
JSON), similarly. This is omitted for brevity, but we chose to add this. For now, this
chunk structure will be our final specification of a chunk: an arbitrary thing that has a
type which indicates how it’s usable, a UID, and a list of things it references (and hence
depends on) to be sufficiently “understood.”

Now, we may return to discussing the ChunkDB structure. We often perform actions
(e.g., generation, validation, etc.) on all chunks of a particular type or belonging to a
set of types. Thus, retrieval by type is a needed feature of ChunkDBs. Originally, this
was done by selecting the right map and using it normally. However, with the upgraded
variant of chunk databases (Source Code 8.15), this is not as simple, albeit more flexible.

2We can also wrap up the constraints together under a single constraint by using the “constraint
kinds” language extension [37] (e.g., Source Code A.17).
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We can re-create this for the new ChunkDB as well by using Data.Typeables TypeRep
signature representation of Haskell types (Source Code 8.14).

Source Code 8.14: Pseudocode: Grabbing All Chunks from the New ChunkDB

findAllByType :: TypeRep -> ChunkDB -> [a]
findAllByType tr cdb = catMaybes $ map (\(_, c) -> if chunkTy c == tr

then Just (unChunk c) else Nothing) (M.toList cdb)↪→

chunkTy :: Chunk -> TypeRep
chunkTy (Chunk c) = typeOf c

unChunk :: Typeable a => Chunk -> Maybe a
unChunk (Chunk c) = cast c

However, this is an expensive operation because it tests every chunk registered in the
chunk database. Since retrieval is a commonly performed task, it will slow down Drasil.
To make the ChunkDB more “industrial-strength,” we can add an extra mechanism for
caching (in various ways) to trade a bit of memory for a frequent and expensive search
operation: Source Code 8.15.

Source Code 8.15: Prototyped Chunk Database

type ReferredBy = [UID]

type ChunkByUID = M.Map UID (Chunk, ReferredBy)

type ChunksByTypeRep = M.Map TypeRep [Chunk]

newtype ChunkDB = ChunkDB (ChunkByUID, ChunksByTypeRep)

Now, we have extra functionality for caching by TypeReps without needing to calculate
it every time we need it, saving CPU time. Additionally, we added a traceability matrix
to quickly find which chunks depend on which (direct ones only, indirect ones can be
calculated later if needed)3.

Source Code 8.16: Prototyped Typed UID References

– | 'TypedUIDRef' represents typed references to chunks using their 'UID'
and↪→

– type.
3i.e., a mechanism for listing which chunks depend on a specific chunk.
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newtype TypedUIDRef typ = TypedUIDRef UID

mkRef :: IsChunk t => t -> TypedUIDRef t
mkRef = TypedUIDRef . uid

typedFind :: IsChunk t => TypedUIDRef t -> ChunkDB -> Maybe t
typedFind (TypedUIDRef u) = find u

typedFindOrErr :: IsChunk t => TypedUIDRef t -> ChunkDB -> t
typedFindOrErr tu cdb = fromMaybe (error "Typed UID dereference failed.")

(typedFind tu cdb)↪→

With this upgraded ChunkDB, we can also now build typed UID references: Source
Code 8.16. These are useful for chunk-level assurance that UIDs relate to something of
an expected type.

ChunkDB is a usable core across Drasil-like projects (ones thriving on the same “knowledge-
based programming” ideology). At the moment, the database prototype lies in a separate
Haskell project. Work on incorporating the database in Drasil has been halted due to
UID conflicts arising in the case studies. The port lies in both a separate repository (in
prototype form) and a separate branch on Drasil’s git repository, but can only be merged
into the stable branch once we resolve some UID conflicts.

Figure 8.1: Matryoshka Russian Dolls, by Marco Verch [38].

The UID conflicts occur because of how they were structured. The chunks follow a
“gradual building” pattern, similar to Matryoshka nesting dolls (Figure 8.1).

Source Code 8.17: Pseudocode: Example of Chunk Nesting
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data A = A {_uid :: UID, ...}
instance HasUID A where uid = _uid

data B = B {_a :: A, ...}
instance HasUID B where uid = uid . _a

data C = C {_b :: B, ...}
instance HasUID C where uid = uid . _b

For example, in Source Code 8.174, chunks rely on a common data type for their
UID. In Drasil, this is a common structure for building up chunks using smaller “inner”
chunks to quickly get some basic features in a chunk, such as a name, short name, or
abbreviation. In the previous generation of ChunkDB, UID sharing across types is allowed
because there was no UID uniqueness checking across types. However, the new ChunkDBs
strictly require UID uniqueness across chunk types because there is only one “chunk” map
under it. Unfortunately, this leads to compatibility issues. As such, the structure of
chunk building comes in to question. They’re currently built in such a way that relies on
assuming that certain chunk types exist and are related to other chunk types that share
a UID with them. In other words, a “whole chunk” is the union of the chunks with the
same UID spread across the other chunk maps. There are many ways that this can be
resolved, all depending on the needs of “chunk building.” For example, there are at least
three (3) possible resolutions:

(i) forcibly/naively changing the UIDs, creating a strict distinction between them,
(ii) forcibly/naively collapsing the chunk structure, and
(iii) restructuring the chunk structure against the chunks, possibly learning how to

re-create the easy chunk building style through other features.
However, a solution has not yet been decided because this issue is largely out of scope,

and requires considerable work.

4Which does not exist in Drasil, but is here purely for explanation purposes.
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Chapter 9

Future Work

While this work does contribute to the Drasil research project and the ideology under-
pinning it, there are still many questions and concerns left unanswered. While this thesis
contributes to Drasil’s theories, expressions, and database, it also uncovers more ques-
tions.

9.1 Theories
While Chapter 4 improves upon the mathematical expression-directed method of encoding
“theory knowledge,” it is not without its own issues. Namely, the current implementation
has two focal problems that we hope to resolve in the future: extensibility, and the
questionable type parameter belonging to ModelKind (Source Code 6.6).

As ModelKinds is written using a GADT, it is difficult to extend its functionality
(similar to the “expression problem” [39]). A work in progress re-design of ModelKinds
[27], relying on GHCs ConstraintKinds [37] language extension, uses Haskell-level type-
classes to describe what a model satisfying the needs of being a “model kind” must provide
to be treated as a “model kind”. These typeclass instances may be thought of as proofs
that satisfy the requirements. The primary benefit to adding extensibility to theory kinds
is exactly that we become able to add any kind of previously unknown to Drasil theorem
without needing to touch too much other code. It also allows us to restrict different types
of theories to particular areas.

Continuing, the type parameter in ModelKinds is peculiar as it is used to indicate
usability of a certain model in code generation through either having an Expr or a
ModelExpr. A ModelKind Expr indicates that a model is usable in code generation,
while a ModelKind ModelExpr indicates that the model is not to be used in code gener-
ation. However, Expr and ModelExpr should not necessarily be used to denote usability
of a model in code generation.

However, these two (2) issues are relatively unimportant for now. The issue of exten-
sibility has a proof of concept solution (as discussed above) already constructed, and the
issue of the type parameter is resolvable as a side effect.

Less importantly, there is also current discussion of renaming ModelKinds to TheoryKind
[24], as “model” is a heavily overloaded term, and “theory” is a guaranteed discussion of
abstraction, unlike “model,” which is typically instantiated to some “theory.”
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9.2 Expressions
In Chapter 7, we had built a type-checker for the expression language Expr, and while
our type errors had been sufficient for us to track down significant errors with relative
ease, they are suboptimal. For example, the current type-error messages shown do not
show a “breadcrumbs”-like path to the root problematic area(s) of an expression. Further-
more, we only added typing to Expr but not to our other related languages, CodeExpr,
ModelExpr, and GOOL. In the near future, we hope to add optional typing for ModelExpr1

and split up the Space type to accommodate the 3 variants. Finally, after having added
type information to CodeExpr, we may begin to also add type rules to GOOL to finally
assure that expression generation will only create well-typed expressions.

9.3 Chunks
While Chapter 8 answers questions regarding storing more kinds of chunks and has created
a basic set of constraints that all chunks must satisfy (HasUID and HasChunkRefs), we’ve
embedded their solutions in Haskell code rather than Drasil itself. For solutions to be
included “in Drasil itself,” we need to encode it such that Drasil allows users to interact
with them fdynamically, without Template Haskell[40] or other things “deep” in Haskell.
Similarly, we have mysterious Typeable usage left unknown, which should eventually be
replaced with something well-understood to us. In the future, we hope to improve chunk
building fundamentally, perhaps by using a DSL instead of leaning on built-in Haskell
functionality. This would allow us to better analyze Drasil and its projects.

Furthermore, while we’ve added requirements that UIDs be unique, we haven’t dis-
cussed how UIDs should be built (e.g., automatically or manually, and how), nor ensured
that UID uniquely refer to the chunks they were intended to link to. We desire for them to
fully be rigid designators [41]. Perhaps these questions will naturally resolve themselves
when we try to switch to using a Drasil DSL to build chunks.

As described in Chapter 8, once we resolve the issue regarding UID collisions, we should
be able to register more of our currently underused chunks in our new ChunkDBs. In doing
this, we will be able to perform a wider range of analysis on our necessary “knowledge”
(chunks). For example, we should be able to better understand how much mental effort
is needed to produce software artifacts.

Addititionally, in Section 7.3.3, we implemented type-checking for our basic mathe-
matical expression language (Expr), but we added it at the database level, checking each
chunk registered. We can abstract over what we did and make type-checking a variant
of what we really did: validated properties about a chunk. Thus, we can extend the
implementation for type-checking at the level of the ChunkDB and create general data
constraints on chunks. By doing so, we will be able to categorize our chunk assertions
and learn more about what was embedded in the Haskell source code.

1It is at times helpful to have malformed expressions for purely demonstrative purposes.
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9.3.1 Math-specific Instances
In Chapters 4 and 7, we discussed how we can improve the reliability of mathematical
language usage in Drasil in different facets. One notable facet in practice is the unit and
dimension of numbers. We hope that we may, in the future, create a strong and reliable
system for units and dimensions for Drasil, allowing users to discuss precision and accuracy
of the generated SCS solver artifacts. Furthermore, in Chapter 7, we neglected to ensure
that symbols referenced by the expression languages are all appropriate for the use-cases.
For example, the Expr should language should only allow for reference of concrete and
usable symbols, while ModelExpr should only allow for referencing of symbols of abstract
symbols. Similarly, CodeExpr should only allow referencing of symbols that belong to
“code” rather than to the mathematical models (for this, a switch from a QuantityDict
is needed as well).

9.3.2 Database
Once the ChunkDB prototype finds its way into Drasil, we may focus on the ways we can
manipulate them. For example, if we consider them sets we should consider implement-
ing “union” and “intersection” operations to assist in importing and analyzing bodies of
chunks. Additionally, if we consider them “tables” (as in common relational databases),
we might benefit from “inner” and “outer” joins, or even using an SQL server as a backend
to inputting (or handling) chunks. Using an SQL server may prove beneficial as there
are already many GUI frontends for inputting RDBMS data. Furthermore, with the new
database structure, “tree shaking” should be a fairly simple operation, reduced to search-
ing for chunks that are unreachable from the universe of references of an input set of
chunks. For example, for the Smith et al. SRS transformer, we may consider tree shaking
against the directly captured instances of inputs and outputs to remove any unnecessary
assumptions, theories, symbols, etc.

Finally, one pain-point in the case studies is inputting the transcribed chunks into the
chunk database. At the moment, it requires manually inputting the data into lists (Source
Code A.15), and then using the lists to form the ChunkDB (Source Code A.16). We could
attempt to automatically register the chunks in the database, either by analyzing Haskell
(meta-linguistic), or de-embedding the chunks from our Haskell code and registering on
parsing them [42].
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Chapter 10

Conclusion

In this thesis, we addressed four (4) research questions, as stated in Section 1.2:

RQ1 Drasil’s current encoding of “theories” are essentially black boxes. We would like to
use structural information present in the short list of the “kinds” of theories that
show up in scientific computing. How do we codify that?

In Chapter 4, we replaced the “black boxes” with structured versions of the same
meaningful theories. In doing so, we opened up opportunities for more domain-specific
interpretation of same theories, such as analysis, flexible printing, and most importantly,
code generation. Chen’s work [25] has anecdotally shown the success of this work. Further-
more in Chapter 6, we began dissecting Drasil’s currently encoded theories, and replaced
their encodings with structured variants in hopes of further usage in code generation in
the future.

RQ2 Drasil’s theory encodings rely on a single mathematical expression language, and
does not expose information about applicability to different contexts. In each con-
text (e.g., code, theories, and common arithmetic), certain terms of the expression
language should be treated differently, or are simply inapplicable. How can we re-
strict term usage by context?

In Chapter 5, we analyzed Drasil’s single mathematical expression language, divided
it according to Drasil’s current needs, and created a means of using the divided variants
seamlessly through creating a TTF encoding of its smart constructors. In doing this, we
were able to restrict the mathematical expressions admitted in concrete theories to only
those with definite values, which we can unambiguously convert into code fragments.

RQ3 How can we ensure that our mathematical expression language admits only valid
expressions?

In Chapter 7, we began creating a system of type-rules that our concrete mathematical
expressions (Expr) must obey. To enforce the type-rules in Drasil, we built a bidirectional
type-checker that runs on a whole SRS and reports any errors it finds. We described the
bidirectional type-checking rules under a typeclass, so that we can later also add typing
rules and enforcement to the other expression languages.
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RQ4 Our current “typed” approach to collecting different kinds of data is difficult to
extend. How can we make it easier to extend?

In Chapter 8, we created a chunk database structure that is capable of collecting
any chunk that conforms to a basic set of requirements (e.g., has UID and references to
required chunks, by UID).

While there is a considerable amount of future work to be done (Chapter 9), I am
certain there will be an endless supply of “future work” after those tasks. Thus, with
those leftover tasks in mind, I pause for reflection.

The entirety of Chapter 2 is one of the most important things I’ve learned by conduct-
ing this research. Another important thing I’ve learned is that actual communication of
knowledge from one to others is far more complicated than it seems, and that any piece
of knowledge has considerable nuance to it. Finally, by attempting to codify, and act on,
our understandings of things, we’re able to test just how “well-understood” [10] they truly
are to us.

67



Bibliography

[1] Simon Marlow et al. Haskell 2010 Language Report. https://www.haskell.org/onli
nereport/haskell2010/. 2010 (cit. on pp. xv, 13, 18).

[2] The Glasgow Haskell Team. Glasgow Haskell Compiler (GHC): GHC 8.8.4 User’s
Guide. https://downloads.haskell.org/~ghc/8.8.4/docs/html/users_guide/index.h
tml. 2020 (cit. on pp. xv, 18).

[3] The Drasil Team. Drasil. Version v0.1-alpha. 2021-02. url: https://github.com/Ja
cquesCarette/Drasil/tree/v0.1-alpha (cit. on pp. 1, 14, 15).

[4] W. Spencer Smith and Lei Lai. “A New Requirements Template for Scientific
Computing”. In: Proceedings of the First International Workshop on Situational
Requirements Engineering Processes – Methods, Techniques and Tools to Support
Situation-Specific Requirements Engineering Processes, SREP’05. In conjunction
with 13th IEEE International Requirements Engineering Conference. Paris, France,
2005, pp. 107–121 (cit. on pp. 1, 3, 17, 18, 20, 21).

[5] Krzysztof Czarnecki. “Overview of Generative Software Development”. In: Uncon-
ventional Programming Paradigms. Ed. by Jean-Pierre Banâtre, Pascal Fradet,
Jean-Louis Giavitto, and Olivier Michel. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2005, pp. 326–341. isbn: 978-3-540-31482-0 (cit. on pp. 2, 9, 17, 19, 23).

[6] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. “Finally tagless, partially
evaluated: Tagless staged interpreters for simpler typed languages”. In: Journal of
Functional Programming 19.5 (2009), pp. 509–543 (cit. on pp. 6, 10, 33).

[7] GitHub ™ and OpenAI ™. Copilot. 2021. url: https://copilot.github.com/ (cit. on
p. 7).

[8] Wikipedia. Vasa (ship) — Wikipedia, The Free Encyclopedia. http://en.wikipedi
a.org/w/index.php?title=Vasa%20(ship)&oldid=1081988142. [Online; accessed
20-April-2022]. 2022 (cit. on p. 8).

[9] Asif A. Siddiqi. Beyond Earth: a chronicle of deep space exploration, 1958-2016.
Second edition. NASA SP 2018-4041. Washington, DC: National Aeronautics and
Space Administration, Office of Communications, NASA History Division, 2018.
393 pp. isbn: 978-1-62683-042-4. url: https://www.nasa.gov/sites/default/files/a
toms/files/beyond-earth-tagged.pdf (cit. on p. 8).

[10] Jacques Carette, Spencer Smith, and Jason Balaci. “When Capturing Knowledge
Improves Productivity”. Submitted Nov 2021 to NIER - New Ideas and Emerging
Results (ICSE 2022). 2021. url: https://github.com/JacquesCarette/Drasil/blob
/master/Papers/WellUnderstood/wu.pdf (cit. on pp. 9, 12, 67).

68

https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://downloads.haskell.org/~ghc/8.8.4/docs/html/users_guide/index.html
https://downloads.haskell.org/~ghc/8.8.4/docs/html/users_guide/index.html
https://github.com/JacquesCarette/Drasil/tree/v0.1-alpha
https://github.com/JacquesCarette/Drasil/tree/v0.1-alpha
https://copilot.github.com/
http://en.wikipedia.org/w/index.php?title=Vasa%20(ship)&oldid=1081988142
http://en.wikipedia.org/w/index.php?title=Vasa%20(ship)&oldid=1081988142
https://www.nasa.gov/sites/default/files/atoms/files/beyond-earth-tagged.pdf
https://www.nasa.gov/sites/default/files/atoms/files/beyond-earth-tagged.pdf
https://github.com/JacquesCarette/Drasil/blob/master/Papers/WellUnderstood/wu.pdf
https://github.com/JacquesCarette/Drasil/blob/master/Papers/WellUnderstood/wu.pdf


M.Sc. Thesis — J. Balaci McMaster University — Computing and Software

[11] WordPress Foundation. WordPress. url: https://wordpress.org/ (cit. on p. 10).
[12] Dries Buytaert. Drupal. 2001. url: https://www.drupal.org/ (cit. on p. 10).
[13] Django Software Foundation. Django. 2005. url: https://www.djangoproject.com/

(cit. on p. 10).
[14] Taylor Otwell. Laravel. 2011. url: https://laravel.com/ (cit. on p. 10).
[15] Dr. Christopher Anand Research Group. HashedExpression. 2020. url: https://git

hub.com/McMasterU/HashedExpression (cit. on p. 11).
[16] Andy Gill and Simon Marlow. Happy. The Parser Generator for Haskell. 1997. url:

https://www.haskell.org/happy/ (cit. on p. 11).
[17] Ulf Norell. “Towards a practical programming language based on dependent type

theory”. PhD thesis. Chalmers University of Technology and Göteborg University,
2007 (cit. on p. 13).

[18] Daniel Szymczak, W. Spencer Smith, and Jacques Carette. “Position Paper: A
Knowledge-Based Approach to Scientific Software Development”. In: Proceedings
of SE4Science’16 in conjunction with the International Conference on Software En-
gineering (ICSE). Austin, Texas, United States, 2016-05 (cit. on p. 16).

[19] W. Spencer Smith. “Beyond Software Carpentry”. In: 2018 International Work-
shop on Software Engineering for Science (held in conjunction with ICSE’18). 2018,
pp. 32–39 (cit. on p. 16).

[20] Jacques Carette, Brooks MacLachlan, and W. Spencer Smith. GOOL: A Generic
Object-Oriented Language (extended version). 2019. doi: 10.48550/ARXIV.1911.1
1824. url: https://arxiv.org/abs/1911.11824 (cit. on p. 17).

[21] Brooks MacLachlan. “A Design Language for Scientific Computing Software in
Drasil”. Thesis. McMaster University, 2020-07 (cit. on p. 17).

[22] Emden Gansner, Eleftherios Koutsofios, Stephen North, and Khoi Vo. “A Technique
for Drawing Directed Graphs”. In: Software Engineering, IEEE Transactions on 19
(1993-04), pp. 214–230. doi: 10.1109/32.221135 (cit. on p. 17).

[23] Naveen Ganesh Muralidharan. New example: PD Controller (#2289). GitHub Repos-
itory Pull Request. 2020. url: https://github.com/JacquesCarette/Drasil/pull/22
89 (cit. on p. 19).

[24] The Drasil Team. TM versus GD versus IM versus DD Discussion (#2599). GitHub
Repository Issues. 2021. url: https://github.com/JacquesCarette/Drasil/issues/2
599 (cit. on pp. 27, 63).

[25] Dong Chen. “Solving Higher-Order ODEs in Drasil”. MA thesis. McMaster Univer-
sity, 2022 (cit. on pp. 28, 39, 52, 66).

[26] David Manura. Table of Integrals. url: http://math2.org/math/integrals/tableof
.htm (visited on 2022-12-20) (cit. on p. 31).

[27] The Drasil Team. Alternative ModelKinds design Display Language (#2853). GitHub
Repository Issues. 2021. url: https://github.com/JacquesCarette/Drasil/issues/2
853 (cit. on pp. 34, 63).

69

https://wordpress.org/
https://www.drupal.org/
https://www.djangoproject.com/
https://laravel.com/
https://github.com/McMasterU/HashedExpression
https://github.com/McMasterU/HashedExpression
https://www.haskell.org/happy/
https://doi.org/10.48550/ARXIV.1911.11824
https://doi.org/10.48550/ARXIV.1911.11824
https://arxiv.org/abs/1911.11824
https://doi.org/10.1109/32.221135
https://github.com/JacquesCarette/Drasil/pull/2289
https://github.com/JacquesCarette/Drasil/pull/2289
https://github.com/JacquesCarette/Drasil/issues/2599
https://github.com/JacquesCarette/Drasil/issues/2599
http://math2.org/math/integrals/tableof.htm
http://math2.org/math/integrals/tableof.htm
https://github.com/JacquesCarette/Drasil/issues/2853
https://github.com/JacquesCarette/Drasil/issues/2853


M.Sc. Thesis — J. Balaci McMaster University — Computing and Software

[28] Jacques Carette, William M Farmer, and Michael Kohlhase. “Realms: A structure
for consolidating knowledge about mathematical theories”. In: International Con-
ference on Intelligent Computer Mathematics. Springer. 2014, pp. 252–266 (cit. on
p. 35).

[29] Robert Harper. Practical Foundations for Programming Languages. 2nd. Cambridge
University Press, 2016 (cit. on p. 44).

[30] The Glasgow Haskell Team. Glasgow Haskell Compiler User’s Guide. Datatype pro-
motion. 2020-07. url: https://downloads.haskell.org/~ghc/8.8.4/docs/html/users
_guide/glasgow_exts.html#extension-DataKinds (cit. on p. 46).

[31] nLab authors. bidirectional typechecking. https://ncatlab.org/nlab/show/bidirecti
onal%20typechecking. Revision 9. 2022-11 (cit. on p. 46).

[32] Jacques Carette. Discussion with Jason Balaci. Personal correspondence. 2022 (cit.
on p. 46).

[33] David Raymond Christiansen. “Bidirectional Typing Rules: A Tutorial”. In: (2013),
p. 11 (cit. on p. 46).

[34] The Glasgow Haskell Team. Glasgow Haskell Compiler User’s Guide. Multi-parameter
type classes. 2020-07. url: https://downloads.haskell.org/~ghc/8.8.4/docs/html/u
sers_guide/glasgow_exts.html#extension-MultiParamTypeClasses (cit. on p. 50).

[35] The Glasgow Haskell Team. Glasgow Haskell Compiler User’s Guide. The super-
classes of a class declaration. 2020-07. url: https://downloads.haskell.org/~ghc
/8.8.4/docs/html/users_guide/glasgow_exts.html#extension-FlexibleContexts
(cit. on p. 50).

[36] The Glasgow Haskell Team. Glasgow Haskell Compiler User’s Guide. Existentially
quantified data constructors. 2020-07. url: https://downloads.haskell.org/~ghc/8
.8.4/docs/html/users_guide/glasgow_exts.html#existentially-quantified-data-co
nstructors (cit. on p. 56).

[37] The Glasgow Haskell Team. Glasgow Haskell Compiler User’s Guide. The Con-
straint Kind. 2020-07. url: https://downloads.haskell.org/~ghc/8.8.4/docs/html
/users_guide/glasgow_exts.html#the-constraint-kind (cit. on pp. 59, 63).

[38] Marco Verch. Matryoshka Nesting Dolls. Licensed under Creative Commons 2.0.
2018-04. url: https://foto.wuestenigel .com/matryoshka-russian-dolls/ (cit. on
p. 61).

[39] Philip Wadler. “The Expression Problem”. Message to the java-genericity electronic
mailing list. 1999-11. url: https://homepages.inf.ed.ac.uk/wadler/papers/express
ion/expression.txt (cit. on p. 63).

[40] The Glasgow Haskell Team. Glasgow Haskell Compiler User’s Guide. Template
Haskell. 2020-07. url: https ://downloads .haskell . org/~ghc/8 .8 .4/docs/html
/users_guide/glasgow_exts.html#template-haskell (cit. on p. 64).

[41] Saul A Kripke. “Naming and necessity”. In: Semantics of natural language. Springer,
1972, pp. 253–355 (cit. on p. 64).

70

https://downloads.haskell.org/~ghc/8.8.4/docs/html/users_guide/glasgow_exts.html#extension-DataKinds
https://downloads.haskell.org/~ghc/8.8.4/docs/html/users_guide/glasgow_exts.html#extension-DataKinds
https://ncatlab.org/nlab/show/bidirectional%20typechecking
https://ncatlab.org/nlab/show/bidirectional%20typechecking
https://ncatlab.org/nlab/revision/bidirectional%20typechecking/9
https://downloads.haskell.org/~ghc/8.8.4/docs/html/users_guide/glasgow_exts.html#extension-MultiParamTypeClasses
https://downloads.haskell.org/~ghc/8.8.4/docs/html/users_guide/glasgow_exts.html#extension-MultiParamTypeClasses
https://downloads.haskell.org/~ghc/8.8.4/docs/html/users_guide/glasgow_exts.html#extension-FlexibleContexts
https://downloads.haskell.org/~ghc/8.8.4/docs/html/users_guide/glasgow_exts.html#extension-FlexibleContexts
https://downloads.haskell.org/~ghc/8.8.4/docs/html/users_guide/glasgow_exts.html#existentially-quantified-data-constructors
https://downloads.haskell.org/~ghc/8.8.4/docs/html/users_guide/glasgow_exts.html#existentially-quantified-data-constructors
https://downloads.haskell.org/~ghc/8.8.4/docs/html/users_guide/glasgow_exts.html#existentially-quantified-data-constructors
https://downloads.haskell.org/~ghc/8.8.4/docs/html/users_guide/glasgow_exts.html#the-constraint-kind
https://downloads.haskell.org/~ghc/8.8.4/docs/html/users_guide/glasgow_exts.html#the-constraint-kind
https://foto.wuestenigel.com/matryoshka-russian-dolls/
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://downloads.haskell.org/~ghc/8.8.4/docs/html/users_guide/glasgow_exts.html#template-haskell
https://downloads.haskell.org/~ghc/8.8.4/docs/html/users_guide/glasgow_exts.html#template-haskell


M.Sc. Thesis — J. Balaci McMaster University — Computing and Software

[42] Jacques Carette. Merging chunk maps into a single map via Data.Typeable (#2873).
GitHub Repository Issue Comment. 2021. url: https://github.com/JacquesCaret
te/Drasil/issues/2873#issuecomment-957059049 (cit. on p. 65).

71

https://github.com/JacquesCarette/Drasil/issues/2873#issuecomment-957059049
https://github.com/JacquesCarette/Drasil/issues/2873#issuecomment-957059049


Appendix

Source Code A.1: Pseudocode: Example Angle Equation SRS Conversion

\begin{minipage}{\textwidth}
\begin{tabular}{...}
\toprule \textbf{Refname} & \textbf{IM:firingAngleFormula}
\phantomsection
\label{IM:firingAngleFormula}
\\ \midrule \\
Label & Firing angle formula

\\ \midrule \\
Input & $\textit{targetDistanceFromCannon}$, $v$

\\ \midrule \\
Output & $\theta{}_c$

\\ \midrule \\
Input Constraints & –

\\ \midrule \\
Output Constraints & \begin{displaymath}

{\theta{}_c}\gt{}0
\end{displaymath}

\\ \midrule \\
Equation & \begin{displaymath}

{\theta{}_c} = \frac{\arcsin{}
(\frac{\textit{targetDistanceFromCannon} \cdot{}
\mathbf{g}}{v^{2}})}{2}

↪→

↪→

\end{displaymath}
\\ \midrule \\
Description & \begin{symbDescription}

\item{${\theta{}_c}$ is the firing angle (${\text{rad}}$)}
\item{${v}$ is the launch speed

($\frac{\text{m}}{\text{s}}$)}↪→
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\item{$targetDistanceFromCannon$ is the distance between
the cannon and target (${\text{m}}$)}↪→

\item{$\mathbf{g}$ is the gravitational acceleration
($\frac{\text{m}}{\text{s}^{2}}$)}↪→

\end{symbDescription}
\\ \midrule \\
Notes & –

\\ \midrule \\
Source & –

\\ \midrule \\
RefBy & ...

\\ \bottomrule
\end{tabular}
\end{minipage}
\paragraph{Detailed derivation of landing position:}
...

Source Code A.2: Original UID Definition

type UID = String

Source Code A.3: Original: Snapshot of a few of Exprs Smart Constructors

– | Smart constructor to apply tan to an expression
tan :: Expr -> Expr
tan = UnaryOp Tan

– | Smart constructor to apply sec to an expression
sec :: Expr -> Expr
sec = UnaryOp Sec

– | Smart constructor to apply csc to an expression
csc :: Expr -> Expr
csc = UnaryOp Csc

– | Smart constructor to apply cot to an expression
cot :: Expr -> Expr
cot = UnaryOp Cot
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Source Code A.4: Original ConceptChunk

– | The ConceptChunk datatype is a Concept
data ConceptChunk = ConDict { _idea :: IdeaDict

, _defn' :: Sentence
, cdom' :: [UID]
}

Source Code A.5: Original ChunkDB Type Maps

– The misnomers below are not actually a bad thing, we want to ensure
data can't↪→

– be added to a map if it's not coming from a chunk, and there's no point
confusing↪→

– what the map is for. One is for symbols + their units, and the others
are for↪→

– what they state.
type UMap a = Map.Map UID (a, Int)

– | A bit of a misnomer as it's really a map of all quantities, for
retrieving↪→

– symbols and their units.
type SymbolMap = UMap QuantityDict

– | A map of all concepts, normally used for retrieving definitions.
type ConceptMap = UMap ConceptChunk

– | A map of all the units used. Should be restricted to base
units/synonyms.↪→

type UnitMap = UMap UnitDefn

– | Again a bit of a misnomer as it's really a map of all NamedIdeas.
– Until these are built through automated means, there will
– likely be some 'manual' duplication of terms as this map will contain

all↪→

– quantities, concepts, etc.
type TermMap = UMap IdeaDict
type TraceMap = Map.Map UID [UID]
type RefbyMap = Map.Map UID [UID]
type DatadefnMap = UMap DataDefinition
type InsModelMap = UMap InstanceModel
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type GendefMap = UMap GenDefn
type TheoryModelMap = UMap TheoryModel
type ConceptInstanceMap = UMap ConceptInstance
type SectionMap = UMap Section
type LabelledContentMap = UMap LabelledContent

Source Code A.6: Expression Language

– | Expression language where all terms are supposed to be 'well
understood'↪→

– (i.e., have a definite meaning). Right now, this coincides with
– "having a definite value", but should not be restricted to that.
data Expr where

– | Brings a literal into the expression language.
Lit :: Literal -> Expr
– | Takes an associative arithmetic operator with a list of

expressions.↪→

AssocA :: AssocArithOper -> [Expr] -> Expr
– | Takes an associative boolean operator with a list of expressions.
AssocB :: AssocBoolOper -> [Expr] -> Expr
– | C stands for "Chunk", for referring to a chunk in an expression.
– Implicitly assumes that the chunk has a symbol.
C :: UID -> Expr
– | A function call accepts a list of parameters and a list of named

parameters.↪→

– For example
–
– * F(x) is (FCall F [x] []).
– * F(x,y) would be (FCall F [x,y]).
– * F(x,n=y) would be (FCall F [x] [(n,y)]).
FCall :: UID -> [Expr] -> [(UID, Expr)] -> Expr
– | For multi-case expressions, each pair represents one case.
Case :: Completeness -> [(Expr, Relation)] -> Expr
– | Represents a matrix of expressions.
Matrix :: [[Expr]] -> Expr
– | Unary operation for most functions (eg. sin, cos, log, etc.).
UnaryOp :: UFunc -> Expr -> Expr
– | Unary operation for @Bool -> Bool@ operations.
UnaryOpB :: UFuncB -> Expr -> Expr
– | Unary operation for @Vector -> Vector@ operations.
UnaryOpVV :: UFuncVV -> Expr -> Expr
– | Unary operation for @Vector -> Number@ operations.
UnaryOpVN :: UFuncVN -> Expr -> Expr
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– | Binary operator for arithmetic between expressions (fractional,
power, and subtraction).↪→

ArithBinaryOp :: ArithBinOp -> Expr -> Expr -> Expr
– | Binary operator for boolean operators (implies, iff).
BoolBinaryOp :: BoolBinOp -> Expr -> Expr -> Expr
– | Binary operator for equality between expressions.
EqBinaryOp :: EqBinOp -> Expr -> Expr -> Expr
– | Binary operator for indexing two expressions.
LABinaryOp :: LABinOp -> Expr -> Expr -> Expr
– | Binary operator for ordering expressions (less than, greater than,

etc.).↪→

OrdBinaryOp :: OrdBinOp -> Expr -> Expr -> Expr
– | Binary operator for @Vector x Vector -> Vector@ operations (cross

product).↪→

VVVBinaryOp :: VVVBinOp -> Expr -> Expr -> Expr
– | Binary operator for @Vector x Vector -> Number@ operations (dot

product).↪→

VVNBinaryOp :: VVNBinOp -> Expr -> Expr -> Expr
– | Operators are generalized arithmetic operators over a 'DomainDesc'
– of an 'Expr'. Could be called BigOp.
– ex: Summation is represented via 'Add' over a discrete domain.
Operator :: AssocArithOper -> DiscreteDomainDesc Expr Expr -> Expr ->

Expr↪→

– | A different kind of 'IsIn'. A 'UID' is an element of an interval.
RealI :: UID -> RealInterval Expr Expr -> Expr

Source Code A.7: Expr Constructor Encoding (TTF)

class ExprC r where
infixr 8 $^
infixl 7 $/
infixr 4 $=
infixr 9 $&&
infixr 9 $||

lit :: Literal -> r

– * Binary Operators

($=), ($!=) :: r -> r -> r

– | Smart constructor for ordering two equations.
($<), ($>), ($<=), ($>=) :: r -> r -> r
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– | Smart constructor for the dot product of two equations.
($.) :: r -> r -> r

– | Add two expressions (Integers).
addI :: r -> r -> r

– | Add two expressions (Real numbers).
addRe :: r -> r -> r

– | Multiply two expressions (Integers).
mulI :: r -> r -> r

– | Multiply two expressions (Real numbers).
mulRe :: r -> r -> r

($-), ($/), ($^) :: r -> r -> r

($=>), ($<=>) :: r -> r -> r

($&&), ($||) :: r -> r -> r

– | Smart constructor for taking the absolute value of an expression.
abs_ :: r -> r

– | Smart constructor for negating an expression.
neg :: r -> r

– | Smart constructor to take the log of an expression.
log :: r -> r

– | Smart constructor to take the ln of an expression.
ln :: r -> r

– | Smart constructor to take the square root of an expression.
sqrt :: r -> r

– | Smart constructor to apply sin to an expression.
sin :: r -> r

– | Smart constructor to apply cos to an expression.
cos :: r -> r

– | Smart constructor to apply tan to an expression.
tan :: r -> r
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– | Smart constructor to apply sec to an expression.
sec :: r -> r

– | Smart constructor to apply csc to an expression.
csc :: r -> r

– | Smart constructor to apply cot to an expression.
cot :: r -> r

– | Smart constructor to apply arcsin to an expression.
arcsin :: r -> r

– | Smart constructor to apply arccos to an expression.
arccos :: r -> r

– | Smart constructor to apply arctan to an expression.
arctan :: r -> r

– | Smart constructor for the exponential (base e) function.
exp :: r -> r

– | Smart constructor for calculating the dimension of a vector.
dim :: r -> r

– | Smart constructor for calculating the normal form of a vector.
norm :: r -> r

– | Smart constructor for negating vectors.
negVec :: r -> r

– | Smart constructor for applying logical negation to an expression.
not_ :: r -> r

– | Smart constructor for indexing.
idx :: r -> r -> r

– | Smart constructor for the summation, product, and integral
functions over an interval.↪→

defint, defsum, defprod :: Symbol -> r -> r -> r -> r

– | Smart constructor for 'real interval' membership.
realInterval :: HasUID c => c -> RealInterval r r -> r

– | Euclidean function : takes a vector and returns the sqrt of the
sum-of-squares.↪→

euclidean :: [r] -> r
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– | Smart constructor to cross product two expressions.
cross :: r -> r -> r

– | Smart constructor for case statements with a complete set of cases.
completeCase :: [(r, r)] -> r

– | Smart constructor for case statements with an incomplete set of
cases.↪→

incompleteCase :: [(r, r)] -> r

– | Create a matrix.
matrix :: [[r]] -> r

– | Applies a given function with a list of parameters.
apply :: (HasUID f, HasSymbol f) => f -> [r] -> r

– Note how |sy| 'enforces' having a symbol
– | Create an 'Expr' from a 'Symbol'ic Chunk.
sy :: (HasUID c, HasSymbol c) => c -> r

Source Code A.8: ModelExpr Language

– | Expression language where all terms are supposed to have a meaning,
but↪→

– that meaning may not be that of a definite value. For example,
– specification expressions, especially with quantifiers, belong here.
data ModelExpr where

– | Brings a literal into the expression language.
Lit :: Literal -> ModelExpr

– | Introduce Space values into the expression language.
Spc :: Space -> ModelExpr

– | Takes an associative arithmetic operator with a list of
expressions.↪→

AssocA :: AssocArithOper -> [ModelExpr] -> ModelExpr
– | Takes an associative boolean operator with a list of expressions.
AssocB :: AssocBoolOper -> [ModelExpr] -> ModelExpr
– | Derivative syntax is:
– Type ('Part'ial or 'Total') -> principal part of change -> with

respect to↪→
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– For example: Deriv Part y x1 would be (dy/dx1).
Deriv :: Integer -> DerivType -> ModelExpr -> UID -> ModelExpr
– | C stands for "Chunk", for referring to a chunk in an expression.
– Implicitly assumes that the chunk has a symbol.
C :: UID -> ModelExpr
– | A function call accepts a list of parameters and a list of named

parameters.↪→

– For example
–
– * F(x) is (FCall F [x] []).
– * F(x,y) would be (FCall F [x,y]).
– * F(x,n=y) would be (FCall F [x] [(n,y)]).
FCall :: UID -> [ModelExpr] -> [(UID, ModelExpr)] -> ModelExpr
– | For multi-case expressions, each pair represents one case.
Case :: Completeness -> [(ModelExpr, ModelExpr)] -> ModelExpr
– | Represents a matrix of expressions.
Matrix :: [[ModelExpr]] -> ModelExpr

– | Unary operation for most functions (eg. sin, cos, log, etc.).
UnaryOp :: UFunc -> ModelExpr -> ModelExpr
– | Unary operation for @Bool -> Bool@ operations.
UnaryOpB :: UFuncB -> ModelExpr -> ModelExpr
– | Unary operation for @Vector -> Vector@ operations.
UnaryOpVV :: UFuncVV -> ModelExpr -> ModelExpr
– | Unary operation for @Vector -> Number@ operations.
UnaryOpVN :: UFuncVN -> ModelExpr -> ModelExpr

– | Binary operator for arithmetic between expressions (fractional,
power, and subtraction).↪→

ArithBinaryOp :: ArithBinOp -> ModelExpr -> ModelExpr -> ModelExpr
– | Binary operator for boolean operators (implies, iff).
BoolBinaryOp :: BoolBinOp -> ModelExpr -> ModelExpr -> ModelExpr
– | Binary operator for equality between expressions.
EqBinaryOp :: EqBinOp -> ModelExpr -> ModelExpr -> ModelExpr
– | Binary operator for indexing two expressions.
LABinaryOp :: LABinOp -> ModelExpr -> ModelExpr -> ModelExpr
– | Binary operator for ordering expressions (less than, greater than,

etc.).↪→

OrdBinaryOp :: OrdBinOp -> ModelExpr -> ModelExpr -> ModelExpr
– | Space-related binary operations.
SpaceBinaryOp :: SpaceBinOp -> ModelExpr -> ModelExpr -> ModelExpr
– | Statement-related binary operations.
StatBinaryOp :: StatBinOp -> ModelExpr -> ModelExpr -> ModelExpr
– | Binary operator for @Vector x Vector -> Vector@ operations (cross

product).↪→
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VVVBinaryOp :: VVVBinOp -> ModelExpr -> ModelExpr -> ModelExpr
– | Binary operator for @Vector x Vector -> Number@ operations (dot

product).↪→

VVNBinaryOp :: VVNBinOp -> ModelExpr -> ModelExpr -> ModelExpr

– | Operators are generalized arithmetic operators over a 'DomainDesc'
– of an 'Expr'. Could be called BigOp.
– ex: Summation is represented via 'Add' over a discrete domain.
Operator :: AssocArithOper -> DomainDesc t ModelExpr ModelExpr ->

ModelExpr -> ModelExpr↪→

– | A different kind of 'IsIn'. A 'UID' is an element of an interval.
RealI :: UID -> RealInterval ModelExpr ModelExpr -> ModelExpr

– | Universal quantification
ForAll :: UID -> Space -> ModelExpr -> ModelExpr

Source Code A.9: ModelExpr Constructor Encoding (TTF)

class ModelExprC r where
– This also wants a symbol constraint.
– | Gets the derivative of an 'ModelExpr' with respect to a 'Symbol'.
deriv, pderiv :: (HasUID c, HasSymbol c) => r -> c -> r

– | Gets the nthderivative of an 'ModelExpr' with respect to a
'Symbol'.↪→

nthderiv, nthpderiv :: (HasUID c, HasSymbol c) => Integer -> r -> c ->
r↪→

– | One expression is "defined" by another.
defines :: r -> r -> r

– | Space literals.
space :: Space -> r

– | Check if a value belongs to a Space.
isIn :: r -> Space -> r

– | Binary associative "Equivalence".
equiv :: [r] -> r

– | Smart constructor for the summation, product, and integral
functions over all Real numbers.↪→

intAll, sumAll, prodAll :: Symbol -> r -> r
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Source Code A.10: CodeExpr Definition

– | Expression language where all terms also denote a term in GOOL
– (i.e. translation is total and meaning preserving).
data CodeExpr where

– | Brings literals into the expression language.
Lit :: Literal -> CodeExpr

– | Takes an associative arithmetic operator with a list of
expressions.↪→

AssocA :: AssocArithOper -> [CodeExpr] -> CodeExpr
– | Takes an associative boolean operator with a list of expressions.
AssocB :: AssocBoolOper -> [CodeExpr] -> CodeExpr
– | C stands for "Chunk", for referring to a chunk in an expression.
– Implicitly assumes that the chunk has a symbol.
C :: UID -> CodeExpr
– | A function call accepts a list of parameters and a list of named

parameters.↪→

– For example
–
– * F(x) is (FCall F [x] []).
– * F(x,y) would be (FCall F [x,y]).
– * F(x,n=y) would be (FCall F [x] [(n,y)]).
FCall :: UID -> [CodeExpr] -> [(UID, CodeExpr)] -> CodeExpr
– | Actor creation given 'UID', parameters, and named parameters.
New :: UID -> [CodeExpr] -> [(UID, CodeExpr)] -> CodeExpr
– | Message an actor:
–
– * 1st 'UID' is the actor,
– * 2nd 'UID' is the method.
Message :: UID -> UID -> [CodeExpr] -> [(UID, CodeExpr)] -> CodeExpr
– | Access a field of an actor:
–
– * 1st 'UID' is the actor,
– * 2nd 'UID' is the field.
Field :: UID -> UID -> CodeExpr
– | For multi-case expressions, each pair represents one case.
Case :: Completeness -> [(CodeExpr, CodeExpr)] -> CodeExpr
– | Represents a matrix of expressions.
Matrix :: [[CodeExpr]] -> CodeExpr
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– | Unary operation for most functions (eg. sin, cos, log, etc.).
UnaryOp :: UFunc -> CodeExpr -> CodeExpr
– | Unary operation for @Bool -> Bool@ operations.
UnaryOpB :: UFuncB -> CodeExpr -> CodeExpr
– | Unary operation for @Vector -> Vector@ operations.
UnaryOpVV :: UFuncVV -> CodeExpr -> CodeExpr
– | Unary operation for @Vector -> Number@ operations.
UnaryOpVN :: UFuncVN -> CodeExpr -> CodeExpr

– | Binary operator for arithmetic between expressions (fractional,
power, and subtraction).↪→

ArithBinaryOp :: ArithBinOp -> CodeExpr -> CodeExpr -> CodeExpr
– | Binary operator for boolean operators (implies, iff).
BoolBinaryOp :: BoolBinOp -> CodeExpr -> CodeExpr -> CodeExpr
– | Binary operator for equality between expressions.
EqBinaryOp :: EqBinOp -> CodeExpr -> CodeExpr -> CodeExpr
– | Binary operator for indexing two expressions.
LABinaryOp :: LABinOp -> CodeExpr -> CodeExpr -> CodeExpr
– | Binary operator for ordering expressions (less than, greater than,

etc.).↪→

OrdBinaryOp :: OrdBinOp -> CodeExpr -> CodeExpr -> CodeExpr
– | Binary operator for @Vector x Vector -> Vector@ operations (cross

product).↪→

VVVBinaryOp :: VVVBinOp -> CodeExpr -> CodeExpr -> CodeExpr
– | Binary operator for @Vector x Vector -> Number@ operations (dot

product).↪→

VVNBinaryOp :: VVNBinOp -> CodeExpr -> CodeExpr -> CodeExpr

– | Operators are generalized arithmetic operators over a 'DomainDesc'
– of an 'Expr'. Could be called BigOp.
– ex: Summation is represented via 'Add' over a discrete domain.
Operator :: AssocArithOper -> DiscreteDomainDesc CodeExpr CodeExpr ->

CodeExpr -> CodeExpr↪→

– | The expression is an element of a space.
– IsIn :: Expr -> Space -> Expr
– | A different kind of 'IsIn'. A 'UID' is an element of an interval.
RealI :: UID -> RealInterval CodeExpr CodeExpr -> CodeExpr

Source Code A.11: CodeExpr TTF Encoding

class CodeExprC r where
– | Constructs a CodeExpr for actor creation (constructor call)
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Figure A.1: Derivation of an Instance Model

new :: (Callable f, HasUID f, CodeIdea f) => f -> [r] -> r

– | Constructs a CodeExpr for actor creation (constructor call) that
uses named arguments↪→

newWithNamedArgs :: (Callable f, HasUID f, CodeIdea f, HasUID a,
IsArgumentName a) => f -> [r] -> [(a, r)] -> r

– | Constructs a CodeExpr for actor messaging (method call)
message :: (Callable f, HasUID f, CodeIdea f, HasUID c, HasSpace c,

CodeIdea c)↪→

=> c -> f -> [r] -> r

– | Constructs a CodeExpr for actor messaging (method call) that uses
named arguments↪→

msgWithNamedArgs :: (Callable f, HasUID f, CodeIdea f, HasUID c,
HasSpace c,↪→

CodeIdea c, HasUID a, IsArgumentName a) => c -> f -> [r] -> [(a, r)]
->↪→

r

– | Constructs a CodeExpr representing the field of an actor
field :: CodeVarChunk -> CodeVarChunk -> r

Source Code A.12: QDefinition Encoding

data QDefinition e where
QD :: DefinedQuantityDict -> [UID] -> e -> QDefinition e

Source Code A.13: Original Space Definition
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Figure A.2: Example of Equilibrium Usage

– | Spaces
data Space =

Integer
| Rational
| Real
| Natural
| Boolean
| Char
| String
| Radians
| Vect Space
| Array Space
| Actor String
| DiscreteI [Int] –ex. let A = {1, 2, 4, 7}
| DiscreteD [Double]
| DiscreteS [String] –ex. let Meal = {"breakfast", "lunch", "dinner"}
| Void
deriving (Eq, Show)

Source Code A.14: Expr’s Bi-directional Type Checking Instance

instance Typed Expr Space where
check :: TypingContext Space -> Expr -> Space -> Either Space

TypeError↪→
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check = typeCheckByInfer

infer :: TypingContext Space -> Expr -> Either Space TypeError
infer cxt (Lit lit) = infer cxt lit

infer cxt (AssocA op exs) = allOfType cxt exs sp sp
$

"Associative arithmetic operation expects all operands to be of the same expected type ("
++ show sp ++ ")."

↪→

↪→

where
sp = assocArithOperToTy op

infer cxt (AssocB _ exs) = allOfType cxt exs S.Boolean S.Boolean
$
"Associative boolean operation expects all operands to be of the same type ("
++ show S.Boolean ++ ")."

↪→

↪→

infer cxt (C uid) = inferFromContext cxt uid

infer cxt (FCall uid exs) = case (inferFromContext cxt uid, map (infer
cxt) exs) of↪→

(Left (S.Function params out), exst) -> if NE.toList params == lefts
exst↪→

then Left out
else Right $ "Function `" ++ show uid ++

"` expects parameters of types: " ++ show params ++
", but received: " ++ show (lefts exst) ++ "."

↪→

↪→

(Left s, _) -> Right $ "Function application on non-function `" ++
show uid ++ "` (" ++ show s ++ ")."↪→

(Right x, _) -> Right x

infer cxt (Case _ ers)
| null ers = Right "Case contains no expressions, no type to infer."
| all (\(ne, _) -> infer cxt ne == eT) (tail ers) = eT
| otherwise = Right
"Expressions in case statement contain different types."↪→

where
(fe, _) = head ers
eT = infer cxt fe

infer cxt (Matrix exss)
| null exss = Right "Matrix has no rows."
| null $ head exss = Right "Matrix has no columns."
| allRowsHaveSameColumnsAndSpace = Left $ S.Matrix rows columns t
| otherwise = Right
"Not all rows have the same number of columns or the same value types."↪→
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where
rows = length exss
columns = if rows > 0 then length $ head exss else 0
sss = map (map (infer cxt)) exss
expT = head $ head sss
allRowsHaveSameColumnsAndSpace

= either
(\_ -> all (\ r -> length r == columns && all (== expT) r)

sss)↪→

(const False) expT
(Left t) = expT

infer cxt (UnaryOp uf ex) = case infer cxt ex of
Left sp -> case uf of

Abs -> if S.isBasicNumSpace sp && sp /= S.Natural
then Left sp
else Right $

"Numeric 'absolute' value operator only applies to, non-natural, numeric types. Received `"
++ show sp ++ "`."

↪→

↪→

Neg -> if S.isBasicNumSpace sp && sp /= S.Natural
then Left sp
else Right $

"Negation only applies to, non-natural, numeric types. Received `" ++
show sp ++ "`."

↪→

↪→

Exp -> if sp == S.Real || sp == S.Integer then Left S.Real else
Right $ show Exp ++ " only applies to reals."↪→

x -> if sp == S.Real
then Left S.Real
else Right $ show x ++ " only applies to Reals. Received `" ++

show sp ++ "`."↪→

x -> x

infer cxt (UnaryOpB Not ex) = case infer cxt ex of
Left S.Boolean -> Left S.Boolean
Left sp -> Right $ "ň on non-boolean operand, " ++ show sp ++
"."↪→

x -> x

infer cxt (UnaryOpVV NegV e) = case infer cxt e of
Left (S.Vect sp) -> if S.isBasicNumSpace sp && sp /= S.Natural

then Left $ S.Vect sp
else Right $

"Vector negation only applies to, non-natural, numbered vectors. Received `"
++ show sp ++ "`."

↪→

↪→
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Left sp -> Right $
"Vector negation should only be applied to numeric vectors. Received `"
++ show sp ++ "`."

↪→

↪→

x -> x

infer cxt (UnaryOpVN Norm e) = case infer cxt e of
Left (S.Vect S.Real) -> Left S.Real
Left sp -> Right $
"Vector norm only applies to vectors of real numbers. Received `" ++
show sp ++ "`."

↪→

↪→

x -> x

infer cxt (UnaryOpVN Dim e) = case infer cxt e of
Left (S.Vect _) -> Left S.Integer – FIXME: I feel like Integer would
be more usable, but S.Natural is the 'real' expectation here↪→

Left sp -> Right $ "Vector 'dim' only applies to vectors. Received `"
++ show sp ++ "`."↪→

x -> x

infer cxt (ArithBinaryOp Frac l r) = case (infer cxt l, infer cxt r) of
(Left lt, Left rt) -> if S.isBasicNumSpace lt && lt == rt

then Left lt
else Right $

"Fractions/divisions should only be applied to the same numeric typed operands. Received `"
++ show lt ++ "` / `" ++ show rt ++ "`."

↪→

↪→

(_ , Right e) -> Right e
(Right e, _ ) -> Right e

infer cxt (ArithBinaryOp Pow l r) = case (infer cxt l, infer cxt r) of
(Left lt, Left rt) -> if S.isBasicNumSpace lt && (lt == rt || (lt ==
S.Real && rt == S.Integer))↪→

then Left lt
else Right $

"Powers should only be applied to the same numeric type in both operands, or real base with integer exponent. Received `"
++ show lt ++ "` ^ `" ++ show rt ++ "`."

↪→

↪→

(_ , Right x) -> Right x
(Right x, _ ) -> Right x

infer cxt (ArithBinaryOp Subt l r) = case (infer cxt l, infer cxt r) of
(Left lt, Left rt) -> if S.isBasicNumSpace lt && lt == rt

then Left lt
else Right $

"Both operands of a subtraction must be the same numeric type. Received `"
++ show lt ++ "` - `" ++ show rt ++ "`."

↪→

↪→

(_, Right re) -> Right re
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(Right le, _) -> Right le

infer cxt (BoolBinaryOp _ l r) = case (infer cxt l, infer cxt r) of
(Left S.Boolean, Left S.Boolean) -> Left S.Boolean
(Left lt, Left rt) -> Right $
"Boolean expression contains non-boolean operand. Received `" ++ show
lt ++ "` & `" ++ show rt ++ "`."

↪→

↪→

(_ , Right er) -> Right er
(Right el, _ ) -> Right el

infer cxt (EqBinaryOp _ l r) = case (infer cxt l, infer cxt r) of
(Left lt, Left rt) -> if lt == rt

then Left S.Boolean
else Right $

"Both operands of an (in)equality (=/ 6=) must be of the same type. Received `"
++ show lt ++ "` & `" ++ show rt ++ "`."

↪→

↪→

(_, Right re) -> Right re
(Right le, _) -> Right le

infer cxt (LABinaryOp Index l n) = case (infer cxt l, infer cxt n) of
(Left (S.Vect lt), Left nt) -> if nt == S.Integer || nt == S.Natural
– I guess we should only want it to be natural numbers, but integers
or naturals is fine for now

↪→

↪→

then Left lt
else Right $

"List accessor not of type Integer nor Natural, but of type `" ++
show nt ++ "`"

↪→

↪→

(Left lt , Left _) -> Right $
"List accessor expects a list/vector, but received `" ++ show lt ++
"`."

↪→

↪→

(_ , Right e) -> Right e
(Right e , _ ) -> Right e

infer cxt (OrdBinaryOp _ l r) = case (infer cxt l, infer cxt r) of
(Left lt, Left rt) -> if S.isBasicNumSpace lt && lt == rt

then Left S.Boolean
else Right $

"Both operands of a numeric comparison must be the same numeric type, got: "
++ show lt ++ ", " ++ show rt ++ "."

↪→

↪→

(_, Right re) -> Right re
(Right le, _) -> Right le

infer cxt (VVVBinaryOp Cross l r) = case (infer cxt l, infer cxt r) of
(Left lTy, Left rTy) -> if lTy == rTy && S.isBasicNumSpace lTy && lTy
/= S.Natural↪→

then Left lTy
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else Right $
"Vector cross product expects both operands to be vectors of non-natural numbers. Received `"
++ show lTy ++ "` X `" ++ show rTy ++ "`."

↪→

↪→

(_ , Right re) -> Right re
(Right le, _ ) -> Right le

infer cxt (VVNBinaryOp Dot l r) = case (infer cxt l, infer cxt r) of
(Left lt@(S.Vect lsp), Left rt@(S.Vect rsp)) -> if lsp == rsp &&
S.isBasicNumSpace lsp↪→

then Left lsp
else Right $

"Vector dot product expects same numeric vector types, but found `"
++ show lt ++ "` ů `" ++ show rt ++ "`."

↪→

↪→

(Left lsp, Left rsp) -> Right $
"Vector dot product expects vector operands. Received `" ++ show lsp
++ "` ů `" ++ show rsp ++ "`."

↪→

↪→

(_, Right rx) -> Right rx
(Right lx, _) -> Right lx

infer cxt (Operator aao (S.BoundedDD _ _ bot top) body) =
let expTy = assocArithOperToTy aao in
case (infer cxt bot, infer cxt top, infer cxt body) of

(Left botTy, Left topTy, Left bodyTy) -> if botTy == S.Integer
then if topTy == S.Integer

then if expTy == bodyTy
then Left expTy
else Right $ "'Big' operator range body not Integer, found: "

++ show bodyTy ++ "."↪→

else Right $ "'Big' operator range top not Integer, found: " ++
show topTy ++ "."↪→

else Right $ "'Big' operator range bottom not of expected type: "
++ show expTy ++ ", found: " ++ show botTy ++ "."↪→

(_ , _ , Right x ) -> Right x
(_ , Right x , _ ) -> Right x
(Right x , _ , _ ) -> Right x

infer cxt (RealI uid ri) =
case (inferFromContext cxt uid, riTy ri) of

(Left S.Real, Left riSp) -> if riSp == S.Real
then Left S.Boolean
else Right $

"Real interval expects interval bounds to be of type Real, but received: "
++ show riSp ++ "."

↪→

↪→

(Left uidSp, _ ) -> Right $
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"Real interval expects variable to be of type Real, but received `"
++ show uid ++ "` of type `" ++ show uidSp ++ "`."

↪→

↪→

(_ , Right x ) -> Right x
(Right x , _ ) -> Right x

where
riTy :: RealInterval Expr Expr -> Either Space TypeError
riTy (S.Bounded (_, lx) (_, rx)) = case (infer cxt lx, infer cxt

rx) of↪→

(Left lt, Left rt) -> if lt == rt
then Left lt
else Right $

"Bounded real interval contains mismatched types for bottom and top. Received `"
++ show lt ++ "` to `" ++ show rt ++ "`."

↪→

↪→

(_ , Right x) -> Right x
(Right x, _ ) -> Right x

riTy (S.UpTo (_, x)) = infer cxt x
riTy (S.UpFrom (_, x)) = infer cxt x

Source Code A.15: Example of Current Chunk Gathering Into A List

dataDefs :: [DataDefinition]
dataDefs = [risk, hFromt, loadDF, strDisFac, nonFL, glaTyFac,

dimLL, tolPre, tolStrDisFac, standOffDis, aspRat, eqTNTWDD,
probOfBreak,↪→

calofCapacity, calofDemand]

Source Code A.16: Example of Current Gathering Chunk Lists Into the Database

symbMap :: ChunkDB
symbMap = cdb thisSymbols (map nw acronyms ++ map nw thisSymbols ++ map

nw con↪→

++ map nw con' ++ map nw terms ++ map nw doccon ++ map nw doccon' ++
map nw educon↪→

++ [nw sciCompS] ++ map nw compcon ++ map nw mathcon ++ map nw mathcon'
++ map nw softwarecon ++ map nw terms ++ [nw lateralLoad, nw

materialProprty]↪→

++ [nw distance, nw algorithm] ++
map nw fundamentals ++ map nw derived ++ map nw physicalcon)
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(map cw symb ++ terms ++ Doc.srsDomains) (map unitWrapper [metre,
second, kilogram]↪→

++ map unitWrapper [pascal, newton]) GB.dataDefs iMods [] tMods concIns
section↪→

labCon []

Source Code A.17: Chunk Constraints, Wrapped Together

– | Constraint for anything that may be considered a valid chunk type.
type IsChunk a = (HasUID a, HasChunkRefs a, Typeable a)
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