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Lay Abstract 
 
Recently, abnormal event detection has attracted increasing attention in the field of 

surveillance video. However, it is still a big challenge to build an automatic and reliable 

abnormal event detection system to review a surveillance video containing hundreds of 

frames and mask the frames with abnormal objects or events. In this thesis, we build a 

model and teach it to memorize the structure of normal frames. Then the model is able to 

tell which frames are normal. Any other frames that appear in the surveillance video will 

be classified as abnormal frames. Moreover, we design a new method to evaluate the 

performance of our model and compare it with other models’ results. 
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Abstract 
 
Anomaly event detection has become increasingly important and is of great significance 

for real-time monitoring systems. However, developing a reliable anomaly detection and 

localization model still requires overcoming many challenging problems considering the 

ambiguity in the definition of an abnormal event and the lack of ground truth datasets for 

training. In this thesis, we propose a Two-way Multi-input Generative Neural Network 

(TMGNN), which is an unsupervised anomaly events detection and localization method 

based on Generative Adversarial Network (GAN). TMGNN is composed of two neural 

networks, an appearance generation neural network and a motion generation neural 

network. These two networks are trained on normal frames and their corresponding 

motion and mosaic frames respectively. In the testing steps, the trained model cannot 

properly reconstruct the anomalous objects since the network is trained only on normal 

frames and has not learned patterns of anomalous cases. With the help of our new patch-

based evaluation method, we utilize the reconstruction error to detect and localize 

possible anomalous objects. Our experiments show that on the UCSD Pedestrain2 dataset, 

our approach achieves 96.5% Area Under Curve (AUC) and 94.1% AUC for the frame-

level and pixel-level criteria, respectively, reaching the best classification results 
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compared to other traditional and deep learning methods. 
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1 Introduction 
 
1.1 Current Challenge 

 

Over the past 20 years, as technology has evolved and computer vision algorithms have 

improved, real-time surveillance systems have been installed extensively to protect 

personal safety and property. Many companies and schools are interested in having a 

video surveillance system on their premises and installing a surveillance camera at 

residential properties has become popular as well. 

It is a waste of time and labor to go through the entire surveillance video to locate 

anomalies. More importantly, it would be helpful if we can determine which frame 

contains anomaly objects automatically in real-time. Therefore, many researchers and 

scientists are working on the design of an automatic real-time anomaly event detection 

system based on deep learning. 

There are still some critical challenges to be addressed in the area of anomaly event 

detection. The most important is our inability to collect enough abnormal videos or 

images as our ground truth dataset. Moreover, there is no consistent and objective 

definition of what an anomalous event is. Abnormal objects differ depending on the 
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context. An object or event can have different attributes (normal or abnormal) in different 

environments. For example, riding a motorcycle on a sidewalk is abnormal but riding it 

on the road is normal. Also, it is much easier to collect enough normal videos or frames in 

our daily life, since the number of abnormal videos is much less than the number of 

normal videos. 

Nowadays, most anomaly event detection methods could be broadly grouped into 

three categories: (1) object trajectory methods [1][2], (2) handcraft methods [3][4][5], and 

(3) deep learning methods [6][7][8]. The main idea of the object trajectory method is 

modelling the normal trajectory of all objects on each image and learning the specific 

parameters of object trajectories. Any object with an abnormal trajectory will be detected 

as an anomalous event. However, this method requires computing the trajectories of all 

objects, which is usually time-consuming and computationally expensive. It is hard to 

deploy these methods in crowded scenes with multiple objects. Handcraft method is more 

robust and efficient. A scene descriptor is constructed from optical flow frames [4], 

Histograms of Oriented Gradients (HOG) or Histograms of Oriented Swarms (HOS) [3]. 

The scene descriptor learns a distribution of normal behaviors that allows the method to 

identify abnormal events. Compared with the object trajectory method, the handcraft 

method is computationally less expensive and performs better in anomalous event 

detection tasks for complex and crowded scenes because the scene descriptors reflect 
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more high-level information about the objects and their motion characteristics. 

Nevertheless, the handcraft method relies on appropriate and specific scene descriptors 

and it is not able to be extended to other anomaly event detection tasks. 

Convolutional neural networks have been widely used in natural language 

processing and computer vision areas, such as speech recognition [9][10] and super 

resolution [11][12], in the past 20 years. Some recent works have attempted to take 

advantage of convolutional neural networks to tackle the anomaly event detection 

problem. Generative adversarial networks have been proposed in [13] and are frequently 

applied to improve the performance of anomaly event detection algorithms due to their 

powerful reconstruction capabilities. It consists of two neural networks, a generator (G) 

and a discriminator (D). The generator is designed to generate “fake” images to deceive 

the discriminator, while the discriminator acts as a supervisor to select these “fake” 

images from a large number of “real” images. In the training process, more and more 

realistic images are generated from the generator, and the discriminator is optimized to 

identify which inputs are “fake” images and which are “real” data. 

Even though generative adversarial networks have shown many advantages in 

building a generic anomaly event detection system, there are still some challenges in 

training a perfect generator and discriminator. Since the training process for generators is 

much more difficult than the discriminator’s training process, we have to make sure that 
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the generator is synchronized well with the discriminator in order to avoid “the Helvetica 

scenario” [13]. If the discriminator is more powerful than the generator, it will be able to 

distinguish all generated frames, and the neurons inside the generator will stop learning 

any reconstruction patterns and vice versa. Many recent works are still struggling to find 

the best way to maintain the balance between the generator and discriminator. 

[8] proposed a bidirectional convolutional long short-term memory (ConvLSTM) 

[14] with a generative adversarial network (GAN) to predict the future frame and utilized 

the reconstruction errors between predicted frames and ground truth frames to identify 

which frame is anomalous. [6] built a FlowNet based on GAN and used the optical flow 

images and video prediction framework to detect anomaly events. 

 

1.2 Thesis Outline 

 

This thesis consists of 5 chapters. Chapter 2 provides the background of convolutional 

neural networks and generative adversarial networks and introduces two traditional 

anomaly event detection methods and one deep learning method. Chapter 3 represents the 

architecture of our proposed two-way multi-input generative neural network, the details 

of the patch-based evaluation method and the loss functions used in the training steps. 

Chapter 4 introduces a few evaluation metrics designed to evaluate the performance of 
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classification models and shows the experimental results at the frame-level and pixel-

level criteria. Chapter 5 demonstrates the conclusion of the thesis and future works. 

 

1.3 Thesis Contributions 

 

In this thesis, we propose a two-way multi-input generative neural network (TMGNN) for 

anomaly event detection and localization tasks and a new patch-based evaluation method. 

TMGNN includes two neural networks: (1) an appearance generation neural network and 

(2) a motion generation neural network. In the training steps, only normal frames are fed 

into the two neural networks. During testing, since the model has only learned the 

patterns of normal objects, it cannot reconstruct abnormal objects and fails to generate 

abnormal frames. We compute the absolute difference between reconstructions and 

ground truth images and utilize this reconstruction error to detect anomalous events. To 

train a balanced generative adversarial network, we adopt multiple inputs to the 

appearance generation neural network, which provides the generator with sufficient 

grayscale and shape information to improve the ability of generating more realistic-

looking images. Experiments demonstrate that our approach achieves the best results on 

the UCSD Pedestrian2 dataset. 
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1.4 Dataset 

 

The UCSD Anomaly Detection Dataset was acquired with a fixed camera mounted at a 

higher location overlooking a sidewalk [15]. The density of pedestrians varies from sparse 

to very crowded. The UCSD  Pedestrian2 dataset contains 16 training and 12 testing 

video clips, respectively. Each video clip is composed of approximately 150 image frames. 

Thus, the training dataset consists of a total of 2550 normal frames, which are analyzed 

by the two neural networks to learn the normal patterns of pedestrians. The testing dataset 

contains 2010 frames comprised of normal and abnormal frames. These testing frames are 

fed into the pre-trained model to detect anomalous events. The dataset contains masked 

images highlighting the abnormal objects suitable for evaluating the performance of 

different models.  All training and testing frames are resized to 256256. Some examples 

are shown in Figure 1.1. 
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Figure 1.1: Examples of the UCSD Pedestrian2 dataset. Training dataset only contains 
normal frames, while testing dataset is composed of both normal and abnormal frames. 

Masked testing dataset highlights all abnormal objects 
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2 Background 
 
In this chapter, we briefly review convolutional neural networks and generative 

adversarial networks. Then, we introduce several traditional and deep learning based 

anomaly detection methods. 

 

2.1 Artificial Neural Networks 

 

Artificial Neural Networks (ANN), also called neural networks, are becoming more and 

more popular in various applications, such as classification, clustering, object detection 

and image segmentation. 

ANN is inspired by the biological neural system. In most cases, artificial neural 

networks are self-adaptive systems and they are able to optimize their internal structures 

based on external information, which is commonly known as learning abilities. In 1943, 

psychologist McCulloch and mathematical logician Pitts [16] firstly proposed the 

artificial neural network. It is composed of a large number of neurons connected to each 

other, each neuron receives multiple input signals including output signals from the other 

neurons and processes these signals by performing multiplication and addition. Multiple 
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neurons work together to learn the specific patterns inside the input data. The output of 

the network performs a task such as classification or regression.  

Multi-layer perceptron (MLP) is one of the most famous artificial neural networks. 

Any MLP includes at least three different types of layers: one input layer, at least one 

hidden layer and one output layer. A hidden layer is located between the input and output 

layers, which extracts important features from input signals. The neurons inside each 

hidden layer transform the input low-level information into high-level features and output 

the predicted results through a specific activation function. The insertion of hidden layers 

improves the ability of artificial neural networks and enables a neural network to learn 

more complex patterns in different tasks. MLP provided a basic artificial neural network 

architecture for future neural networks. However, the network complexity and the training 

computation are huge in large networks due to the fully-connected neurons architecture. It 

is impractical to train a complex and deep artificial neural network when the input data is 

high dimensional such as images. 

 

2.2 Convolutional Neural Networks 

 

With the development of artificial neural networks and scientists' further research on the 

human visual system, in 1989, LeCun combined the back-propagation algorithm with the 
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weight-sharing convolutional neural layer and proposed the convolutional neural network 

(CNN) [17]. He first applied the convolutional neural network to a zip code recognition 

system. CNN is a feed-forward neural network and it is comprised of input layers, 

convolutional layers, pooling layers, activation layers, fully connected layers and output 

layers. In most cases, multiple convolutional layers and pooling layers are connected 

alternately, e.g., one pooling layer is added after a convolutional layer and the pooling 

layer is followed by another convolutional layer. This structure allows convolutional 

neural networks to effectively analyze and extract critical abstract features from the input 

images. Moreover, it reduces the size of the data and feeds useful information into the 

activation and fully connected layers, ensuring the network delivers those high-level 

image features to the output even for a CNN with many layers and a deep structure. In 

1998, based on the Fukushima’s research work [18], LeCun trained a CNN using the 

gradient back-propagation algorithm. This CNN called LeNet-5 is one of the earliest and 

most classic convolutional neural networks, and it achieved great success on the 

handwritten digits recognition task [19]. A basic LeNet-5 is shown in Figure 2.1. 

In Figure 2.1, convolution is the convolution layer, and Rectified Linear Unit (ReLU) 

is the activation layer. M and N are constants. Generally, if M and N become larger, the 

convolutional layers will become deeper, which enables the network to capture more 

high-level features and improve performance on different tasks. 
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Figure 2.1: The architecture of LeNet-5 
 

Each convolutional layer consists of several different convolutional kernels which 

are weighing matrices with different sizes, typically 11, 33 and 55. Different 

convolution kernels are used to extract different latent spatial information from the 

images. The first several convolution layers aim at capturing low-level local features such 

as edges or circles, while the following deeper layers are devised to capture high-level 

features such as hairstyles of humans or eyebrows of cats. The pooling layer provides an 

approach to reduce the dimension of feature maps and only selects the important data. 

With the help of convolution and pooling layers, only useful spatial features are retained 

and fed into the activation layer. The activation layer provides a nonlinear transformation 

to the neural network, which helps the network learn a non-linear relationship between 
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inputs and outputs. The current most popular activation functions shown in Figure 2.2 

include ReLU, Sigmoid and Tanh functions. ReLU is widely used in many convolutional 

neural networks. 
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Compared with other activation functions, ReLU has several advantages: (1) The 

derivatives of ReLU are more easily computed, which speeds up the network’s training 

process. (2) Any value less than 0 is set to 0. This enables the ReLU to sparse the neural 

network and filter out features, which improves the generalization capability and reduces 

the risk of overfitting. (3) Effectively reduce the probability of the vanishing gradient 

problem. 
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Figure 2.2: ReLU, Sigmoid and Tanh activation functions 



M.A.Sc. Thesis – Mingchen Yang; McMaster University – Electrical and Computer Engineering 

14 

 

Figure 2.3 shows a fully connected neural network implemented by a multilayer 

perceptron. The high-level image features extracted from the convolutional and pooling 

layers are converted into a one-dimensional vector as the input to the fully connected 

neural network. After several nonlinear transformations of hidden layers and the Softmax 

function, we can obtain the probability of each handwritten digit and use it to complete 

the classification task. 

 

 
Figure 2.3: The architecture of the fully connected neural network 

 

In the past decade, convolutional neural networks have been widely used in many 

image processing areas. AlexNet model [20], GoogLeNet model [21] and VGG model [22] 

have achieved good results in ImageNet competition, and ResNet model [23] has solved 

models’ degradation problem. A large number of deep learning methods based on 
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convolutional neural networks have been proposed to solve difficult problems in different 

areas and they have achieved better results than traditional machine learning algorithms. 

 

2.3 Generative Adversarial Networks 

 

Generative adversarial network (GAN), originally proposed by Ian Goodfellow and his 

colleagues in 2014 [13], is a two-player generative model where the core idea comes from 

the zero-sum game. The model architecture of GAN is quite different from that of most 

CNNs, GAN consists of two neural networks, a generative neural network and a 

discriminative neural network. The entire network is like a two-player adversarial game, 

the generator tries to learn the distribution of real data as closely as possible and it 

converts a one-dimension noise into a generated sample. The discriminator, on the other 

hand, is a simple binary classifier designed to discriminate whether the input data is from 

real samples or samples simulated by the generator. In order to win this two-player game, 

both the generator and the discriminator need to optimize their parameters as much as 

possible to improve their generative and discriminative abilities, respectively. This 

learning and optimization process is called finding the Nash Equilibrium between the 

generator and the discriminator. After several rounds of training, the generator can 

generate samples almost identical to the real samples, while the discriminator cannot 
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distinguish the difference between the generated samples and the real samples. 

 

2.3.1 Basic GAN 

 

The main structure of a generative adversarial network is shown in Figure 2.4. The input 

to the generator is random noise z. The inputs to the discriminator are the real samples x, 

and the output of the generator is G(z). Assume that the real data obeys the distribution of 

Χ. The discriminator outputs 1 if the input of the discriminator is the real sample x, and 0 

if it is the generated sample G(z).  

During the training process, the generator aims to generate fake images G(z) that 

cannot be distinguished from the real images, while the discriminator is used as a 

supervisor to distinguish which input is the real sample or the generated sample. The 

generator tries to generate images as real as possible to deceive the discriminator, and the 

discriminator keeps optimizing itself to distinguish the real images from the fake ones. 

Based on this design idea, the objective function of GAN is shown as follows.  

 ( ) ( ) ( )( ) ( )( )( )1GAN x X z Z
G D

L G,D min maxV G,D log D x log D G z ,E EÎ Î
é ùé ù= = + -ê ú ê úë û ë û  (2.4) 

where V(G, D) is a cross-entropy function of the binary classification. The objective of 

this loss function is to find a generator that minimizes the Kullback-Leibler Divergence 

(KL divergence) between the generated distribution and the real distribution, and 
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discriminator minimizes the cross-entropy loss of the binary classifier. The KL divergence 

is defined as: 

 ( ) ( )
( )
( )x X

P x
KL P Q P x log ,

Q xÎ

æ ö÷ç ÷= ç ÷ç ÷÷çè ø
å  (2.5) 

where P(x) and Q(x) are two distributions. The KL divergence measures the similarity 

between two distributions and its value is greater than or equal to 0 where 0 means P(x) 

and Q(x) are the same distribution. 

 
 

Figure 2.4: The architecture of the generative adversarial network 
 

In the process of optimizing D, D tries to minimize the output if the input is from the 

real sample x and maximize the output if the input is from the generated sample G(z). On 

the contrary, G has to minimize the loss function V(G, D) when the generated data G(z) is 
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fed into D. However the discriminator is more prone to overfitting since the generating 

process of the original GAN is too simple. For improving the performance of GAN and 

making it robust to more generative tasks, researchers have proposed many improved 

neural networks based on GAN, such as conditional GAN (CGAN) [24], deep 

convolutional GAN (DCGAN) [25] and Wasserstein GAN (WGAN) [26], etc. 

 

2.3.2 Conditional Generative Adversarial Network 

 

The original GAN has almost no constraints on the generator. Since the generation 

process is composed of a series of simple upsampling operations from vectors to images, 

the generator tends to generate some repetitive but safe samples, which causes the 

generated images to lack diversity. Moreover, we have no control over the generated 

results and cannot decide which image to generate. CGAN allows us to control the output 

of GAN with additional restrictions such as the label of categories. The structure of 

CGAN is shown in Figure 2.5. 
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Figure 2.5: The architecture of the conditional generative adversarial network 

 

 

2.3.3 Pix2pix Network 

 

The input of the previous GANs is random noise, so these networks cannot map images to 

images. In order to extend GAN to end-to-end tasks and fix this issue, Phillip Isola 

proposed pix2pix network [27], which is an image-to-image translation network based on 
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GAN. Pix2pix network uses an encoder-decoder as the network structure of the generator 

and adds skip connections between the encoder and decoder since pix2pix network needs 

to map one high-resolution image to another high-resolution image with different spatial 

features and/or complex color information. Pix2pix network also proposed a new 

discriminator architecture - which we term a PatchGAN - that only penalizes structure at 

the scale of patches [27]. It divides each image into NN patches with equal sizes, then 

the discriminator distinguishes whether each patch is from the real image or the generated 

image separately. Finally, the network averages these patches’ results as the final output 

of the discriminator. The objective of pix2pix network is shown as follows: 

 ( ) ( ) ( )2 1pix pix CGAN LL G,D L G,D L G ,l= +  (2.6) 

where this objective function consists of two parts, the CGAN loss function and the L1 

loss function. To ensure the generated images with high resolution and sufficient low-

frequency features, pix2pix network adds the L1 loss function to penalize the difference 

between the generated image and the ground truth. 

Pix2pix network cleverly uses the GAN framework to provide a general image-to-

image translation framework, which is widely used in semantic segmentation, image 

reconstruction, anomaly detection and other areas. 
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2.4 Anomaly Detection Methods 

 

2.4.1 Object Trajectory Methods 

 

Object trajectory detection methods are designed to detect different trajectories of moving 

objects since the motion patterns of pedestrians are quite different from those of vehicles.  

[1] proposes a novel framework to learn semantic scene models by object 

classification and trajectory clustering. The flowchart of this object trajectory method is 

shown in Figure 2.6. This approach is composed of two parts, (1) a co-training framework 

for object detection, and (2) a clustering algorithm based on trajectories’ features of 

different objects. The co-training framework is a two-classifier system, including a Linear 

Discriminant Analysis (LDA)-based classifier and an Adaptive Boosting (AdaBoost) 

classifier, which are trained and optimized using independent features. 

Firstly, they prepare two groups of unrelated features, namely scene context features 

and appearance features. Scene context features represent objects’ characteristics such as 

coordinates and velocity. The LDA-based classifier is trained using these features to 

distinguish different objects. On the other hand,  they build a binary classifier based on 

the Adaboost Algorithm to learn specific representations of each object’s appearance 
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features and to recognize objects. With the help of these two techniques, the co-training 

algorithm provides a convenient and effective way to build a perfect classifier that is used 

to make predictions on unlabelled images and to scale up the training dataset. 

Secondly, to further cluster each class, they propose a clustering method based on 

object motion trajectories. Each image is divided into several small patches of the same 

size. Depending on the parameters and moving patterns of trajectories, different types of 

trajectories will be grouped into different clusters.  

Lastly, after generating each cluster of trajectories, a Mean-shift algorithm is 

introduced to create a semantic scene model which can draw every main trajectory on 

each image. Any object with an abnormal trajectory will be detected as an anomalous 

event.  

 
 

Figure 2.6: The flowchart of the object trajectory method 
 

 

2.4.2 Handcraft Methods 

 

[4] proposes a classification method for detecting and locating abnormal crowd behaviors 
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using Social Force model. Social Force model describes crowd behavior as the result of 

individual interactions, therefore, abnormal crowd behavior is an eccentric state of the 

crowd interactions [4]. Detecting abnormal social forces will help us find abnormal 

behaviors and events on each frame. 

Normally, tracking the interaction forces of each object is time-consuming and labor-

intensive, so they decide to replace each object with a grid of particles that are placed 

over each image frame. Then they calculate the interaction forces between each particle. 

During training steps, only normal videos are fed into this method and they collect 

enough normal crowd behaviors. Finally, they use a bag of words approach to identify 

which image frame contains abnormal interaction forces. 

 

2.4.3 Deep Learning Methods 

 

In the past 10 years, deep learning algorithms have become more and more popular and 

successful in many research areas. Scientists and researchers have started to build various 

CNN-based anomaly event detection methods. 

[6] presents a video prediction framework based on GAN to solve anomaly detection 

tasks. The pipeline is shown in Figure 2.7. This framework includes two components, (1) 

predicted image reconstruction and (2) optical flow image comparison. The input of the 
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generator is a short video clip ( 1 2 3 tI ,I ,I , ,I ) that includes a set of consecutive image 

frames. For each short video clip, the ground truth is the next frame ( tI ), and the target of 

the generator is to reconstruct an image frame ( 1tÎ + ) which is trained to be as similar as 

possible to the ground truth image. On the other hand, they compute the ground truth 

optical flow images and the predicted optical flow images, respectively. Since only 

normal frames are used to train and finetune the generator and discriminator, any 

abnormal object cannot be well reconstructed in the testing steps. Therefore, this method 

utilizes the difference between predicted frames and corresponding ground truth frames to 

detect anomaly events. 

 

 
Figure 2.7: The pipeline of the video future prediction network 
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3 Anomaly Detection on Two-way Multi-

input Generative Neural Network 
 
In this chapter, we introduce the architecture of our neural networks, three different loss 

functions and a patch-based evaluation method. An overview of our neural networks is 

shown in Figure 3.1. Our model is composed of two neural networks: appearance 

generation neural network ( appeN ) and motion generation neural network ( motionN ). These 

two neural networks use almost the same network structure, and the biggest difference is 

the input and label image dataset used in the training steps. In the appearance generation 

neural network, the network receives a concatenation of two preprocessed frames as input 

and generates an appearance frame. At the same time, in the motion generation neural 

network, a motion frame is generated from the input frame which is one of the frames in 

the original dataset. Then, we detect and locate anomalous events using the generated 

frames from two neural networks using a new patch-based evaluation method. 
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Figure 3.1: An overview of two-way multi-input generative neural network 
 

 

3.1 Two-way Multi-input Generative Neural Network 

 

3.1.1 Multi-input 

 

Although GAN has proven to be the most successful generative model in many areas, the 

training process of GAN, especially the generator, is quite hard and prone to overfitting. It 

is much harder to obtain an acceptable result for a generative model than for a 

discriminative model. In most cases, the generative model requires more prior knowledge, 
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such as the distribution of target signals. For example, if we want to build a handwritten 

digits image classification model, then following Bayes’ Theorem, 

 ( )
( )
( )

( ) ( )
( )

P A,B P A| B P A
P B | A

P A P A
= =  (3.1) 

 Discriminative Model Target ( ): P B | A  (3.2) 

 Generative Model Target
( )
( )

P A,B
:

P A
 (3.3) 

As shown in  Figure 3.2, the discriminative model is designed to draw a line to 

distinguish handwritten 0’s and 1’s. It aims to figure out what’s the most optimal solution, 

e.g. ( )P B | A , to tell the difference between 0’s and 1’s, while the generative model has to 

learn the distribution of all 0 and 1 samples throughout the whole data space, e.g. ( )P A,B . 

 
 

Figure 3.2: The difference between the generative and discriminative model 
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Figure 3.3: Mosaic frames & 84 patches 
 

For solving this issue and improving the performance of the generator, the multi-

input is added to the appearance generative neural network. The multi-input consists of 

motion frames and mosaic frames. Mosaic frames are used to provide the grayscale 
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information of frames to the generator but discard the edge and the shape features of 

objects, such as humans and cars, in the pictures. Simultaneously, motion frames aim at 

keeping the motion details and shape features of any object while removing all object-

related grayscale data.  

As shown in Figure 3.3, all frames are divided into multiple patches with the size of 

84 and we compute the average pixel intensity of each patch. Then all pixels in each 

patch are assigned this mean value so that every mosaic frame looks like one low-

resolution image. The generator is only able to receive the grayscale level information 

from mosaic inputs. 

The process of forming motion frames is a bit more complex than the process of 

generating mosaic frames. Figure 3.4 illustrates the details of the process.  

 24t tConvF F K= Ä  (3.4) 

 ( )( )1t t tR mean abs ConvF F+= -  (3.5) 

 ( )( )( )t tMt MedianFilter Close Open R=  (3.6) 
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Figure 3.4: The process of constructing motion frames 
 

Inspired by [28], a fixed kernel set ( 24K ) comprised of 24 kernels is pre-constructed 

and all kernels are concatenated with each other. Each original image ( tF ) is convolved 

with these 24 kernels and extracts 24 feature maps. The feature maps are subtracted from 

the next frame ( 1tF+ ) separately to obtain 24 residual maps. Then we compute the 

absolute pixel intensity of each residual map and average these residual maps to get one 

averaged residual map ( tR ). Finally, for generating images ( tMt ) with smooth motion, we 

apply the open and close algorithm and 55 median filter on the averaged residual map. 
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Figure 3.5: Examples of pre-constructed kernel set 
 

Convolutions with a fixed kernel set are designed to simulate small pixels movement 

following [28]. Some kernels are shown in Figure 3.5. Kernel (a) corresponds to no 

moving, it is used to capture the static features, kernel (b) means the object moves 0.8 

step to the figure’s lower right corner, kernel (c) means the object moves 0.5 step to the 

figure’s bottom, and kernel (d) means the object moves 0.2 step to the figure’s upper right 

corner, respectively. With the help of convolutional kernels and the image processing 

techniques, the generated motion frames are able to detect any static features and all 
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possible motion steps and directions. 

 

3.1.2 Generators 

 

The generator is used to build well reconstructions of normal objects and poor 

reconstructions of abnormal objects. Before training, all input images are normalized to -1 

and 1. appeG  is the multi-input generator in the appearance generation network, while 

motionG  is the generator in the motion generation network. Figure 3.6 shows the overall 

structure of the two generators.  

The input of appeG  is the multi-input composed of mosaic frames and motion frames. 

Mosaic frames are designed to represent the grayscale level of different objects, such as 

humans and bikers, while motion frames are mainly focusing on capturing the shape and 

motion features of objects. Compared to single optical flow images, the multi-input 

ensures the generator receives enough information to reconstruct frames. motionG  takes an 

original frame as input and outputs a motion generation. UNet is set to be the architecture 

of these two generators, and the details of the generator are shown in Figure 3.7. 
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Figure 3.6: The overall structure of the two generators 

 

Specifically, tMs  and tMt  are the t-th frame of the mosaic and motion images, 

respectively, and tF  is the t-th frame of the original images. tMt  is generated through the 

fixed kernel set and several image processing algorithms. 

In the appearance generation neural network, the multi-input appe
tI  is the 

concatenation of tMs  and tMt . The output is appe
tP . 

 appe
t t tI Ms Mt= Å  (3.7) 

 ( )appe appe appe
t tP G I ,z=  (3.8) 

where Å  means concatenation operation and z is random noise. 

In the motion generation neural network, the original image ( tF ) is fed into the 
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generator and the output is motion
tP . 

 ( )motion motion
t tP G F ,z=  (3.9) 

As shown in Figure 3.7, the generator has an encoder-decoder structure and skip 

connections are designed to connect encoder layers with the corresponding decoder layers 

which have the same-sized feature maps. The encoder is a convolutional neural network 

with several similar modules, each module consists of convolutional layers, activation 

layers and batch normalization layers. Following [27], the batch normalization layer is not 

added to the first module. Instead of using pooling layers to downsample the feature maps’ 

sizes, we use the strided convolutional layers, since pooling layers will remove some 

important spatial or shape features, which is quite harmful to the decoder’s image 

reconstruction. The activation function is Leaky ReLU shown in Figure 3.8. 

 Leaky ReLU
[ ]

0

0 0 1

x, x
: y

ax, x ,a ,

ì ³ïï=íï < Îïî
 (3.10) 

In our network, a is set to 0.2. Moreover, Leaky ReLU is used to avoid weights 

becoming zero since ReLU activation function will sparse the weights and filter out 

useful weights. 
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Figure 3.7: The details of the generator architecture 
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Figure 3.8: Leaky ReLU activation function 

 

As for the decoder, it is composed of deconvolutional layers, activation layers, 

dropout layers and batch normalization layers. Dropout layers not only reduce the risk of 

overfitting but also produce some random noises in the generator. ReLU is set as the 

activation function and it is used to accelerate the speed of convergence and quickly filter 

out features. 

 
0

0 0

x, x
Re LU : y

, x

ì ³ïï=íï <ïî
 (3.11) 

Skip connections are one of the most important components in our network. With the 

help of skip connections, local information and some lower-level features are passed from 

the downsampling layers to the upsampling layers, which helps the decoder layers and 

improves the quality of generated images. Specifically, layer il  is concatenated with layer



M.A.Sc. Thesis – Mingchen Yang; McMaster University – Electrical and Computer Engineering 

37 

 

n il - , where n is the total number of modules in the generator and i is the i-th module. 

 

3.1.3 Discriminators 

 

Let appeD  and motionD  be the discriminator of appeN  and motionN , these two discriminators 

have the same structure shown in Figure 3.9. We use a basic binary classifier to 

distinguish generated images from realistic images. This binary classifier is composed of 

several convolutional layers and fully connected layers, the output is a scalar between 0 

and 1 representing the input image as normal or abnormal. 

appeD  or motionD  takes realistic images or generated images as input. An output larger 

than 0.5 means the input is a “real” image with a higher probability, if not,  the input is 

recognized as a “fake” image produced by the generator. 

 ( ) 0 5

0 5
appe appe appe
t t t

. , normal
S D P ,F

. , abnormal

ì>ïï= íï£ïî
 (3.12) 

 ( ) 0 5

0 5
motion motion motion
t t t

. , normal
S D P ,Mt

. , abnormal

ì>ïï= íï£ïî
 (3.13) 

appe
tP  and motion

tP  are the output of appeG  and motionG  respectively. appe
tS  and motion

tS  

are the output of appeD  and motionD  respectively.  
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Figure 3.9: The details of the discriminator architecture 
 

 

3.2 Loss Function 

 

The loss function is composed of three parts, the objective of a conditional GAN, L1 loss 

function and Structural Similarity Index Measure (SSIM) loss function.  

The objective of a conditional GAN is expressed as follows: 

 
( ) ( )

( )( ) ( )( )( )1

CGAN
G D

x X z Z

L G,D min maxV G,D

log D x | y log D G z | y ,E EÎ Î

=

é ùé ù= + -ê ú ê úë û ë û

 (3.14) 

where X is the dataset of realistic images and Z is the dataset of generated images (also 
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called fake images). This function could be divided into two parts: (1) the optimization of 

the discriminator is achieved by ( )
D

maxV G,D , ( )V G,D  is the objective function of D. 

The first term ( ( )( )x X log D x | yE Î
é ùê úë û ) represents the expectation of the probability which 

the real images are labelled as “True” by D, so this term should be as close to 1 as 

possible. And the second term ( ( )( )( )1z Z log D G z | yE Î
é ù-ê úë û ) means D should classify all 

fake images generated by G as “False” and ( )( )D G z  should be as close to 0 as possible. 

(2) the generator is optimized through ( )( )
G D

min maxV G,D , which is ( )
G

min optimizedD . G 

tries to generate more realistic images to fool D. 

Some previous research results have found that the mix of the GAN objective and 

some traditional loss functions is beneficial to generate more realistic images. Pix2pix 

network verifies L1 distance encourages less blurring than L2 distance on reconstruction 

[27]. 

 ( )1LL G I J ,= -  (3.15) 

where I and J are the generated image and real image respectively. 

At the same time, L1 loss only focuses on reconstructing less blurry figures, one 

image still has complex luminance, contract and structure features. Therefore, a new loss 

function based on SSIM is added to improve the performance of our generators. 

The SSIM index was firstly proposed by Zhou Wang et. in 2004 [29]. It is composed 

of three main components: luminance (l), contrast (c) and structure (s). 
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 ( ) ( ) ( ) ( )SSIM I ,J l I ,J c I ,J s I ,J ,
a b g

= ⋅ ⋅  (3.16) 

 ( ) 1
2 2

1

2 I J

I J

c
l I ,J ,

c

m m
m m

+
=

+ +
 (3.17) 

 ( ) 2
2 2

2

2 I J

I J

c
c I ,J ,

c

s s
s s

+
=

+ +
 (3.18) 

 ( ) 3

3

I ,J

I J

c
s I ,J ,

c

s
s s

+
=

+
 (3.19) 

where 1c , 2c  and 3c  are constant. We set the weights , ,a b g  to 1, then the SSIM index 

will become: 

 ( )
( )( )

( )( )
1 2

2 2 2 2
1 2

2 2I J I ,J

I J I J

c c
SSIM I ,J ,

c c

m m s

m m s s

+ +
=

+ + + +
 (3.20) 

where Im  and Jm  is the mean value of I and J respectively, Is  and Js  are the variance of 

I and J respectively, I ,Js  is the covariance of I and J. The value of the SSIM index is 

between 0 and 1 where 1 means I and J are the same, while 0 means they are completely 

different. We hope our SSIM loss function is as close to 0 as possible when the 

discriminator cannot distinguish generated frames from realistic images, and vice versa. 

We define the SSIM loss function: 

 ( ) ( )
( )( )

( )( )
1 2

2 2 2 2
1 2

2 2
1 1 I J IJ

SSIM

I J I J

c c
L G SSIM I ,J

c c

m m s

m m s s

+ +
= - = -

+ + + +
 (3.21) 

Our final loss function is shown as follows: 

 ( ) ( ) ( ) ( )1 2 1 3TMGNN CGAN L SSIML G,D L G,D L G L G ,l l l= + +  (3.22) 
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where 1l , 2l  and 3l  are constant, and we assign 1, 10 and 20 to these parameters 

respectively. 

 

3.3 Anomaly Detection Evaluation Method 

 

In this section, we will introduce the pixel-based and image-based evaluation methods 

and propose a new patch-based anomaly events detection and localization method. 

 

3.3.1 Pixel-based and Image-based Evaluation Methods 

 

The pixel-based and image-based evaluation methods are frequently used in anomaly 

events detection and localization tasks. Most evaluation methods could be divided into 

these two categories. 

To identify which frame contains abnormal objects, the pixel-based evaluation 

method is designed to compare the pixel-by-pixel difference between reconstructed 

images and corresponding ground truth images. Let tRe  and tOr  be the t-th frame of 

reconstruction and ground truth respectively. As shown in (3.23), this residual image 

( tDiff ) is merely defined by subtracting the tRe  and tOr . To ensure this method is able to 

capture all abnormal reconstructed pixels, an absolute value operation is added to remove 
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any negative sign of pixels inside tDiff . 

 t t tDiff Re Or= -  (3.23) 

However, each residual image has a different maximum value and it’s not fair to 

directly compare their results, so any residual image should be normalized firstly into the 

range [0, 1] as follows: 

 
1

t t

t

normDiff Diff ,
max

=  (3.24) 

where 
t

max  is the maximum pixel value of the t-th frame. 

In most GANs, the generator cannot reconstruct the images perfectly and the 

generated images still have some errors inside. Therefore, two thresholds are introduced 

in this pixel-based evaluation method, one is the pixel intensity threshold ( valThres ) and 

another one is the total number threshold ( numThres ). If a pixel intensity is higher than or 

equal to valThres , this pixel will be labelled as abnormal. In each residual image, the 

method counts the total number of abnormal pixels. Any image with a total number larger 

than or equal to numThres  will be detected as an abnormal image. 

 valabPixel pixelVal Thres= ³  (3.25) 

 abImage= total number of abPixel numThres³  (3.26) 

Compared with the pixel-based evaluation method, the image-based method is easier 

to compute. It usually computes a regularity score with a threshold to distinguish which 
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frame is abnormal. The reconstruction error ( tE ) of t-th frame of one video sequence is 

defined by the Euclidean distance between tRe  and tOr . 

 
2t t tE Re Or= -  (3.27) 

Then the maximum and minimum reconstruction errors of this video sequence are 

derived. All reconstruction errors are normalized between 0 and 1and the regularity score 

( tS ) is shown as follows: 

 
t t

t
t

t t
t t

E min E
S

max E min E

-
=

-
 (3.28) 

The regularity score is used to detect if this input frame contains any anomalous 

objects. If tS  is higher than or equal to the threshold, then the input frame is labelled as 

abnormal, otherwise, it is a normal frame. 

 

3.3.2 Patch-based Evaluation Method 

 

We propose a new patch-based anomaly events detection and localization method which 

can better capture abnormal frames and localize anomalous objects. 

There are two main benefits to our method: (1) Our method utilizes a patch to 

replace a pixel. Since abnormal objects usually contain tens of hundreds of pixels, it is not 

reliable to judge the input frame with one abnormal pixel as an abnormal frame. Instead 
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of using pixels, we decide to use patches to detect whether there is any abnormal object 

inside each patch. (2) Our method is able to capture abnormal frames and localize the 

anomalies at the same time. The image-based evaluation method could only catch 

abnormal frames, but it cannot indicate the position of abnormal objects. 

During the testing steps, we only use the two generators ( appeG , motionG ). Firstly, the 

residual frames are defined by computing the absolute difference between each ground 

truth frame and corresponding generated frame. The two residual frames ( appe
tDiff , 

motion
tDiff ) are shown as follows: 

 appe appe
t t tDiff P F ,= -  (3.29) 

 motion motion
t t tDiff P Mt ,= -  (3.30) 

where appe
tP  and motion

tP  are the generated output of appeG  and motionG  respectively, tF  and 

tMt  are the original frame and motion frame respectively. 

Secondly, all residual frames should be scaled to the range of [0, 1]. The training and 

testing dataset is composed of several video clips and each video clip (V) contains 

hundreds of frames. For each video clip, we find its maximum pixel value and every 

frame in his video clip should be divided by this maximum value to map all pixel 

intensity to the range of [0, 1]. 

 appe appe
v t

V
m max Diff=  (3.31) 



M.A.Sc. Thesis – Mingchen Yang; McMaster University – Electrical and Computer Engineering 

45 

 

 motion motion
v t

V
m max Diff=  (3.32) 

 
1appe appe

t tappe
v

normDiff Diff
m

=  (3.33) 

 
1motion motion

t tmotion
v

normDiff Diff
m

=  (3.34) 

Since there are two networks appeN  and motionN  in our method, we add them together 

and assign different weights to the two normalized residual frames appe
tnormDiff  and 

motion
tnormDiff . 

 1 2
appe motion

t t tnormDiff normDiff normDiff ,h h= +  (3.35) 

where 1h  and 2h  are the two weights to control the ratio between the two normalized 

residual frames, they are set to 0.2 and 0.8 respectively. 

Thirdly, we prepare a patch with the size of 3216 and move this patch to quickly 

scan each normalized residual frame tnormDiff  column by column and row by row like a 

sliding window shown in Figure 3.10. Then we compute the average pixel intensity of all 

patches in each normalized residual frame. Any patch with an average value higher than 

the pixel intensity threshold ( valThres ) will be recorded as an abnormal patch. After the 

sliding window goes through the entire frame, we count the sum ( abN ) of the number of 

abnormal patches, if abN  is higher than or equal to the total number threshold ( numThres ), 

this frame will be considered an abnormal image. 
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 ab num

ab num

N Thres , abnormal

N Thres , normal

ì ³ïïíï <ïî
 (3.36) 

One patch is too small to cover an abnormal object and it is not enough to 

distinguish whether a frame is normal or abnormal. We set numThres  to 210 to make sure 

our abnormal patches could highlight all abnormal events. 

By using this patch-based evaluation method, any anomaly event in the frame is 

detected and localized. 

 
 

Figure 3.10: Patch-based evaluation method 
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4 Experimental Results 
 
In this chapter, we introduce a few evaluation metrics and the experimental platform and 

parameters which we use to train our model. Then we compare the model performance on 

different evaluation metrics with previous papers’ results. 

 

4.1 Evaluation Metrics 

 

For assessing the performance of classification models, researchers typically utilize the 

confusion matrix which allows visualizing the accuracy of the models. 

 
 

Figure 4.1: Confusion matrix 
 

The confusion matrix is shown in Figure 4.1, it is a table with 4 different 

combinations of the actual and predicted cases. In most classification tasks, the positive 

category is the abnormal class, such as the probability of a future earthquake. 
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Some widely used evaluation metrics are shown as follows: 

 
TP TN

Accuracy
P N

+
=

+
 (3.37) 

 
TP

Pr ecision
TP FP

=
+

 (3.38) 

 
TP

Recall
TP FN

=
+

 (3.39) 

 F1 Score
2 Pr ecision Recall

Pr ecision Recall

´ ´
=

+
 (3.40) 

Accuracy is the most common metric used to explicitly represent the performance of 

a classification model. However, when we have an extremely imbalanced dataset in 

which actual positive cases are rare, for example, only occupying less than 1% of the total 

data, using accuracy will cause a big problem in training the models. As shown in Figure 

4.2, there are 99 instances of Class “N” and only 1 instance of Class “P”. Even if the 

model classifies all cases to Class “N”, we will still get 99% accuracy. This will mislead 

the model to ignore the patterns of Class “P”. 

 
 

Figure 4.2: An example of a confusion matrix 
 

F1 Score is proposed to solve this issue. It provides robust evaluation results for 

imbalanced datasets since it not only considers the precision but also the recall. Following 
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(4.4), if the model classifies all instances to Class “N”, then we will get a 0% F1 Score 

which punishes the model to pay more attention to the skewed class, such as Class “P”. 

To obtain the largest F1 Score, we need to set a threshold as a probability boundary 

between normal and abnormal classes, any input with an output probability lower than 

this threshold will be detected as abnormal and vice versa. 

The Receiver Operating Characteristic Curve (ROC), Area Under the Receiver 

Operating Characteristic Curve (AUC) and Equal Error Rate (ERR) are three additional 

common metrics to evaluate the ability of classification models. As shown in Figure 4.3, 

AUC is calculated as the area underneath ROC which shows the relationship between the 

True Positive Rate (TPR) and False Positive Rate (FPR). A large AUC means the model 

achieves higher accuracy. To plot the ROC, a set of TPR and FPR is computed by 

changing the threshold values. Different thresholds correspond to different TPR and FPR 

values. For each threshold, the TPR and FPR are plotted on the y-axis and x-axis 

respectively. AUC and ERR do not require finding a specific threshold unlike the F1 

Score. 

 
TP TP

TPR
P TP FN

= =
+

 (3.41) 

 
FP FP

FPR
N FP TN

= =
+

 (3.42) 
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4.2 Experimental Platform 

 

All of the training and experiments are completed using an Intel Core i7-8700 CPU and 

an Nvidia GTX 1070 GPU on the Windows 10 platform. All neural networks are written 

in Python using TensorFlow 2.0, Keras, Numpy and OpenCV library. 

 
 

Figure 4.3: An example of ROC, AUC and ERR 
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4.3 Parameter Selection 

 

All training and testing datasets are grayscale frames and resized to 256256 pixels. The 

training process is performed on Adam Optimizer with a learning rate of 0.0001 and 

0.0002 in the generator and discriminator, respectively. The batch size is set to 16. In the 

testing steps, only generators are used for reconstruction. We choose AUC and EER to 

evaluate the anomaly events detection and localization performance of our model. 

 

4.4 Experimental Results 

 

For the experiments, we use our new patch-based anomaly events detection and 

localization method to test the ability of TMGNN on the UCSD Ped2 dataset. We 

evaluate our model in two criteria: (1) Frame-level criterion. If the number of abnormal 

patches in one frame is larger than or equal to 210, then this frame will be classified as 

abnormal. (2) Pixel-level criterion. Achieving a higher score on this criterion is harder 

than that on the first one. A frame is a true positive frame, only if it satisfies two 

conditions. The first one is it should be classified as an abnormal image. The second one 

is the evaluation method must identify at least 40% area of anomalous objects. 
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Our training dataset contains 16 video clips and the testing dataset is composed of 12 

video clips. Each video clip is comprised of around 150 frames. Since the training dataset 

only has normal frames, a total of 2550 normal frames are fed into the network. In the 

testing steps, all testing frames are input into the trained generator and we obtain 2010 

generated frames. Then following the detailed process of Section 3.3.2, we utilize the 

patch-based evaluation method on the normalized residual frames to test the performance 

of our trained model. By changing the value of valThres , we are able to draw a Receiver 

Operation Characteristic Curve and compute its corresponding Area Under Curve and 

Equal Error Rate. A lower value in EER and a higher value in AUC represent a better 

performance on a classification model. 

The ROC curves of the two criteria are shown in Figure 4.4. We get 96.5% AUC and 

9.4% EER at the frame-level evaluation criterion, and 94.1% AUC and 12.5% EER in the 

pixel-level evaluation criterion. In our experiment, we select some previous traditional 

methods and deep learning methods for comparison. The comparison results are shown in 

Table 4.1. Our approach achieves the highest AUC and lower EER at both frame-level 

and pixel-level, which proves the capability of the multi-input and patch-based evaluation 

method for anomalous event detection and localization. 

We prepare six sets of pictures in Figure 4.5: (a) are the original frames, (b) are the 

generated appearance frames, (c) are the motion frames, (d) are the generated motion 
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frames and (e) are the anomaly events localization results. The red area in (e) is composed 

of abnormal patches. These figures represent that with the help of the patch-based 

evaluation method, our TMGNN is able to detect and localize all possible anomalous 

objects including bikers, skateboarders and cars. 

 

 
Figure 4.4: Frame-level and Pixel-level ROC curve 
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Method 
frame-level pixel-level 

EER AUC EER AUC 

MPPCA [31] 30% 69.3% N/A N/A 

SR+VAE [32] 18% 89.1% N/A N/A 

AMDN (Double Fusion) [33] 17% 90.8% N/A N/A 

Hybrid model [34] 11.5% 88.9% N/A N/A 

Convolutional AE [35] 21.7% 90% N/A N/A 

3DCNN-GAN [36] 11% 93% N/A N/A 

AbnormalGAN [37] 14% 93.5% N/A N/A 

Future frame prediction [6] N/A 95.4% N/A N/A 

ConvAE-Unet [38] N/A 96.2% N/A N/A 

MPPCA+SF [39] 36% 61.3% 72% N/A 

Social Force (SF) [40] 42% 55.6% 80% N/A 

MDT [39] 25% 82.9% 54% N/A 

AnomalyNet [41] 10.3% 94.9% N/A 52.8% 

GMM-FCN [42] 12.6% 92.2% 19.2% 78.2% 

DSTN [43] 9.4% 95.5% 21.8% 83.1% 

Two-stage [44] 8.9% 96.4% 19.4% 85.9% 

Spatial-temporal CNN [45] 24.4% 86% N/A 88% 

WTA-CAE [46] 8.9% 96.6% 16.9% 89.3% 

Proposed method 9.4% 96.5% 12.5% 94.1% 

 
Table 4.1: Frame level and pixel level performance of multiple traditional and deep 

learning anomaly events detection methods on the UCSD ped2 dataset 
 

To better demonstrate the anomaly detection capability of our model, we build four 

figures (Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9) showing the details of the 

detection process in the 2nd, 4th, 6th and 8th video clips respectively. Each figure is 
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comprised of two parts. The first one is a line chart of the number of abnormal patches vs 

frames, that illustrates how the number of abnormal patches varies throughout the video 

clip. Any frame with greater than or equal to 210 abnormal patches will be classified as 

abnormal.  Another one is a series of anomaly event detection and localization results 

where we selected 4 sets of frames with different timestamps in each video clip. When 

any anomaly intrudes into the surveillance camera, the number of abnormal patches goes 

up rapidly and the anomalous object is detected and localized by our solution. 
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Figure 4.5: Six abnormal event detection and localization examples. (a) original frames, 
(b) generated appearance frames, (c) motion frames, (d) generated motion frames, (e) 

anomaly event localization results 
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Figure 4.6: The detection process in the 2nd video clip 
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Figure 4.7: The detection process in the 4th video clip 
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Figure 4.8: The detection process in the 6th video clip 
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Figure 4.9: The detection process in the 8th video clip 
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5 Conclusion and Future Work 
 
5.1 Conclusion 

 

In this thesis, we propose a generative adversarial network-based framework for anomaly 

event detection and localization. This framework is composed of two neural networks, an 

appearance generation neural network and a motion generation neural network. For 

providing sufficient input features to the generators and improving the reconstruction 

ability, we design a multi-input and feed them into the networks. We decide to use the 

UNet with skip connections as the architecture of two generators and the discriminators 

are two basic binary classifiers. The two networks are trained only on normal video clips. 

During testing, since the two generators never learn any abnormal objects’ features, we 

compute the absolute difference between the generated frames and the corresponding 

input frames, then with the help of our new patch-based evaluation method, we utilize this 

reconstruction error to detect and localize any abnormal object. In contrast to pixel-based 

and image-based evaluation methods, the patch-based method uses patches instead of 

pixels, which not only improves the accuracy of detecting anomalous frames but also 

locates any possible abnormal objects.  We test our approach on the UCSD ped2 dataset. 
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The experiment results represent we reach 96.5% AUC and 9.4% ERR at the frame-level 

criterion, and 94.1% AUC and 12.5% ERR in the pixel-level criterion. Compared to state-

of-the-art deep learning networks, our approach achieves higher accuracy. 

 

5.2 Future Work 

 

Pix2pix has already provided a good idea for generating realistic images, but it still needs 

paired input frames and ground truth images. This means we have to collect enough 

paired images for training and testing, which is quite time-consuming and infeasible. In 

the area of image-to-image translation, researchers propose many new neural networks 

based on GAN to solve this issue, such as CycleGAN [30]. Therefore, it is interesting to 

see if using other networks could improve the performance of video anomaly detection 

beyond pix2pix. 
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