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Abstract

With the desired deployment of Artificial Intelligence (AI), concerns over whether AI

can “communicate” why it has made its decisions is of particular importance. In this

thesis, we utilize predictive entropy (PE) as an surrogate for predictive uncertainty

and report it for various test-time conditions that alter the testing distribution. This

is done to evaluate the potential for PE to indicate when users should trust or dis-

trust model predictions under dataset shift or out-of-distribution (OOD) conditions,

two scenarios that are prevalent in real-world settings. Specifically, we trained an

ensemble of three 2D-UNet architectures to segment synthetically damaged regions

in fractional anisotropy scalar maps, a widely used diffusion metric to indicate mi-

crostructural white-matter damage. Baseline ensemble statistics report that the true

positive rate, false negative rate, false positive rate, true negative rate, Dice score, and

precision are 0.91, 0.091, 0.23, 0.77, 0.85, and 0.80, respectively. Test-time PE was re-

ported before and after the ensemble was exposed to increasing geometric distortions

(OOD), adversarial examples (OOD), and decreasing signal-to-noise ratios (dataset

shift). We observed that even though PE shows a strong negative correlation with

model performance for increasing adversarial severity (ρAE = −1), this correlation is

not seen under distortion or SNR conditions (ρD = −0.26, ρSNR = −0.30). How-

ever, the PE variability (PE-Std) between individual model predictions was shown

to be a better indicator of uncertainty as strong negative correlations between model

performance and PE-Std were seen during geometric distortions and adversarial ex-

amples (ρD = −0.83, ρAE = −1). Unfortunately, PE fails to report large absolute
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uncertainties during these conditions, thus restricting the analysis to correlative re-

lationships. Finally, determining an uncertainty threshold between “certain” and

“uncertain” model predictions was seen to be heavily dependant on model calibra-

tion. For augmentation conditions close to the training distribution, a single threshold

could be hypothesized. However, caution must be taken if such a technique is clini-

cally applied, as model miscalibration could nullify such a threshold for samples far

from the distribution. To ensure that PE or PE-Std could be used more broadly for

uncertainty estimation, further work must be completed.
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Chapter 1

Introduction

1.1 Background

Since the inception of statistical learning, otherwise known as machine learning (ML),

its use has become increasingly ubiquitous. The ability to derive important conclu-

sions from multivariate datasets through robust statistical methods has unequivocally

improved our quality of life [4]. With information becoming more accessible, we have

entered into the age of “Big Data,” and as such, many are in the pursuit to lever-

age large datasets for scientific discovery and industrial purposes. An application of

particular interest is medical imaging, where ML research has led to improved image

reconstruction qualities, faster acquisition speeds, and the automated detection and

diagnoses of abnormalities and disease. However, there can be an absence of true

model understanding once models become increasingly complex. This becomes of

particular importance with the advent of deep learning (DL), a method for learning

representations within data with multiple levels of abstraction [5]. DL has revolution-

ized the fields of computer vision [6], natural language processing [7], and biochem-

istry [8], to name a few. Along with their unprecedented value, ML models can drive

increases in inequality [9], produce spurious outputs [10], and result in unfavourable

medical diagnoses for the most vulnerable [11]. As such, it has lead to professionals,
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users, and the general public to acquire a source of reasonable doubt that machine

learning models do not always have their best interests at heart. Therefore, a small

group of researchers have decided to dedicate their careers to Explainable Artificial

Intelligence (XAI) [12], developing new models, metrics, and frameworks to derive

a deeper understanding of these inherently complicated, non-linear, self-optimizing

models.

For the purposes of the following thesis, we narrow our focus of XAI to the applica-

tion of supervised segmentation and uncertainty estimation with magnetic resonance

imaging (MRI) data. A completely non-invasive, non-ionizing imaging modality, MRI

can be used to acquire spatial and geometric information of the human body with

excellent soft-tissue contrast. This makes MRI a technology of choice for radiologists

who want to image even some of the smallest structures with no risk to the patient.

Radiologists have an invested interest in wanting to accelerate their workflow in order

to provide streamlined healthcare pipelines for their patients. In time-sensitive sce-

narios, radiologists can be asked to interpret an MRI scan with only a few minutes to

make a decision. This can lead to errors which manifest in poorer clinical outcomes.

Therefore, there is a clear need to implement ML techniques into the clinical space to

augment the radiologist’s workflow in order to improve both the speed and quality of

medical image analysis.

The proper clinical implementation of ML systems comes with an important as-

sumption that these models will provide accurate, reliable, and trustworthy predic-

tions. A key component of a medical professional’s workflow is the documentation of

what they are able to interpret within the image. If an implemented model is unable

to communicate why it arrived at a particular predictive outcome, it provides no use

to the user when they must use them in high-risk scenarios. Furthermore, a model

that produces an output that opposes the radiologist leads to a crossroads - should

2
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the clinician trust their initial opinion, default to the algorithm, or bring in additional

human supervision? The action made by the clinician will ultimately rest on the trust

they have in the algorithm and their experience within the field [13].

We attempt to build upon the current body of work focused on utilizing inter-

pretability methods for DL segmentation tasks in the context of neuroimaging. In-

terpretable predictive models are models in which their reasoning processes are un-

derstandable by humans [14]. In this thesis, we utilize the work done by Lakshmi-

narayanan et al. [15] to derive predictive uncertainty estimates through an ensemble

of deep neural networks to foster a notion of trust in the ML model. We apply this

technique to detect and segment microstructural white-matter (WM) brain damage

in patients who experience mild traumatic brain injury (mTBI). We employ an MR

imaging technique known as diffusion tensor imaging (DTI) to measure changes in

the patient’s water diffusion along anatomically determined WM tracts. Models were

trained using synthetic mTBI patient data, whereby local reductions in a patient’s

fractional anisotropy (FA) scalar map was applied within small WM regions, a topic

further discussed in chapter 5. The goal was to train models to segment difficult to

find damaged regions in FA maps, a task that cannot currently be done by radiol-

ogists. Finally, we report the predictive entropy (PE) associated to each prediction

to give an overall indication of the model’s predictive confidence and showcase how

PE changes under various test-time augmentation conditions. Test-time refers to

experiments conducted after training is complete.

1.2 Motivation

The motivation for developing models that aggregate sources of error lies in the pur-

pose of such a system. These systems can be used in a wide variety of areas, one of

which includes medical imaging. The hypothesis is that aggregated predictions will

3
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improve medical AI models and reduce medical errors when predictions are coupled

with estimates of uncertainty. For the purposes of this thesis, we attempt to under-

stand how an uncertainty metric such as PE can give the user an indication of model

confidence under test-time conditions that alter the testing (clinical) distribution, a

scenario that is likely to occur in the real-world. Though the applications in which

this methodology could be used are variable, we attempt to answer this hypothesis in

the context of mTBI.

In North America alone, over 1.7 million people are affected by mTBI each year [16].

Typically, victims are left with a vague diagnosis of their condition since there is no

quantifiable way to understand the patient’s injury clinically. In this work, we explore

an uncommon application of deep learning in neuroimaging with the intent to arrive at

reliable predictive estimates of WM microstructural damage. Currently, microstruc-

tural WM abnormalities are completely undetected by current radiology workflows.

With this information, patients can potentially undergo targeted rehabilitation plans

to accelerate their recovery process. This thesis provides a stepping stone in the

direction for improved clinical outcomes for mTBI patients.

1.3 Contributions

The author has contributed to the field of medical image analysis and XAI in the

following ways:

1. Provided a review of the available predictive uncertainty methods that can be

applied to deep learning and medical imaging for segmentation tasks through

the publication: B. McCrindle, K. Zukotynski, T.E. Doyle, M.D. Noseworthy.

A Radiology Focused Review of Predictive Uncertainty for AI Interpretability in

Computer-Assisted Segmentation. Radiology: Artificial Intelligence.Accepted

August 25th, 2021.
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2. Actively engaged with the research community through the following accepted

conference submissions:

(a) B. McCrindle, N. Simard, T.E. Doyle, M.D. Noseworthy. Applying Deep

Ensemble Learning to Quantify Model Uncertainty for mTBI Brain Seg-

mentation. St. Joseph’s Healthcare, Celebrate Research Day, 2020.

Hamilton, Ontario [Accepted Abstract, Poster, Oral Presentation].

(b) B. McCrindle, N. Simard, T.E. Doyle, M.D. Noseworthy. A Deep 2D-

UNet Ensemble for the Segmentation of Microstructural White Matter Dam-

age in mTBI Patients using Diffusion Tensor Imaging. Imaging Network

of Ontario (ImNO), 2021. [Accepted Abstract, Pitch Presenta-

tion].

(c) B. McCrindle, N. Simard, E. Samson, E. Danielli, T.E. Doyle, M.D. Nose-

worthy. Microstructural White Matter Segmentation in Mild Traumatic

Brain Injury Patients using DTI and a Deep 2D-UNet Ensemble. Inter-

national Society for Magnetic Resoance in Medicine (ISMRM),

2021. [Poster Presentation].

1.4 Outline of Thesis

This thesis presents the work done to apply ensemble networks and predictive uncer-

tainty for improved predictive performance and model trust in the context of medical

image analysis.

Chapter 2 discusses the technical aspects of magnetic resonance imaging and fo-

cuses on introducing diffusion tensor imaging. Specifically, we discuss how information

is moved from voxel-space to pixel-space and the necessary steps taken for proper data

preparation.
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Chapter 3 touches briefly on the history of statistical learning to the development of

deep learning. We provide the reader with the technical aspects of convolutional neu-

ral networks (CNNs), the backbone of all modern computer vision systems. Further,

we dive into various CNN architectures that can be used for biomedical segmentation

tasks.

Chapter 4 discusses the difference between interpretability and explainability and

how this distinction is not widely used within the current literature. Post-hoc inter-

pretability is introduced, leading to a literature review focused on current methods to

estimate uncertainty from neural network predictions in the context of segmentation.

Lastly, an uncertainty metric known as predictive entropy (PE) is discussed.

Chapter 5 describes the pre-processing methodologies designed to generate syn-

thetic mTBI data and prepare such data for model training, validation, and testing.

Chapter 6 outlines the experiments completed for in-domain dataset shift and out-

of-distribution testing. Results for each experiment are communicated through the

correlations between ensemble performance, PE, and PE-Std.

Chapter 7 provides a discussion to interpret the results reported in chapter 6. A

summary indicating the main takeaways from the thesis are included.

Chapter 8 concludes the thesis with a discussion for future work.
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Chapter 2

Magnetic Resonance Imaging

2.1 Background

Magnetic Resonance Imaging (MRI) is a non-invasive, non-ionizing radiological imag-

ing modality that leverages the quantum mechanical property of spin angular mo-

mentum of an atomic nucleus. The term “magnetic” refers to the use of external

and internal magnetic fields, where “resonance” indicates the requirement to match

radiofrequency pulses to the precessional frequency of the spin of the atom of interest

in order to obtain a signal. This signal is spatially encoded into three orthogonal mag-

netic field gradients which are then used to reconstruct the measured physiological

environment.

The phenomenon that takes place during acquisition can be interpreted using two

popular descriptions: quantum mechanics or classical Newtonian physics. The former

can describe the entirety of the measurement process, while the latter abstracts and

simplifies the phenomena in a way that relates to the understandable physical world

around us. The majority of MRI can be understood using the Newtonian perspective.

In the absence of an external magnetic field ( ~Bo), the spin (J) of an atomic nucleus

7
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will be in a random orientation relative to all other nuclei in the system. With ~Bo

present, nuclei will tend to align with this external field to minimize its potential

energy. The interaction of a nuclei’s spin with ~Bo produces a torque causing the it

to precess about the direction of ~Bo. This produces a magnetic moment vector ( ~µo)

proportional to the spin. Quantum mechanically, ~Bo will cause two discrete spin-

states corresponding to parallel (+1
2
) and anti-parallel (−1

2
) directions relative to ~Bo

for dipolar nuclei, such as an 1H (proton) atom. This splitting is known as the Zeeman

Effect and derives the energy difference between these two states as

∆E = ~γ ~Bo = ~ωo (2.1.1)

where ~ is the reduced Plank’s constant (h/2π) [J · s], γ is the gyromagnetic ratio

[Rad
s·T ], and ωo is the precessional angular frequency [Rad

s
]. The number of spins that

are in the parallel or anti-parallel state is governed by the Boltzmann probability

distribution that relates state population to the temperature of the system.

N+

N−
= e−~γ

~Bo/kT (2.1.2)

N− and N+ are the number of spins in the anti-parallel and parallel states, respec-

tively, k is the Boltzmann constant [J · K−1], and T is the temperature [K]. With

these relationships, we can determine that there is a net magnetization ( ~Mo) in the

direction of ~Bo

~Mo =
ρoγ

2~2

4kT
Bo (2.1.3)

where ρo is the density of protons per unit volume, otherwise known as the spin

density. The derivation of this net magnetization is left out for brevity. The pertur-

bation of the net magnetization vector through an external electro-magnetic radiofre-

quency (RF) pulse is what generates the measured signal to be reconstructed.

8
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2.2 Radiofrequency Pulses

RF pulses are generated using the RF body coil, which is built in to the MR sys-

tem. The frequency generated by the coil coincides with the precessional (Larmor)

frequency of the desired nuclei, thus satisfying a resonance condition. ~Mo is thus

tipped away from its alignment with ~Bo (also known as the z-axis or longitudinal

direction) by the second external magnetic field known as the ~B+
1 field. Typically, ~Mo

is pulsed 90◦ onto the transverse plane where the relaxation (return to the z-axis) of

~Mo is described by the Bloch equation.

d ~M

dt
= γ ~M × ~Bext +

1

T1

(Mo −Mz)ẑ −
1

T2

~M⊥ (2.2.1)

The solutions for the x, y, and z components of the magnetization are as follows,

Mx(t) = e−t/T2 (Mx(0) cosωot+My(0) sinωot) (2.2.2)

My(t) = e−t/T2 (My(0) cosωot−Mx(0) sinωot) (2.2.3)

Mz(t) = Mz(0)e−t/T1 +Mo(1− et/T1) (2.2.4)

where T1 and T2 are tissue-specific constants known as relaxation times that derive

from the interaction of the spins with their surroundings. T1, also known as the

longitudinal relaxation time, describes the regrowth of ~Mo to the low energy state

parallel to ~Bo. This is governed by spin-lattice interactions. T2 describes the loss

of phase coherence between the various spins in the system during relaxation. The

dephasing of spins represents a spin-spin decay of the transverse magnetization. As

such, the relaxation terms describe the magnetization vector’s return to the low energy

equilibrium state. The longitudinal and transverse magnetization as a function of time

are shown in figure 2.1 below.
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Figure. 2.1. Regrowth and decay of Mz and Mxy quantities, respectively. Mo is the
initial magnetization before tipping. This is set to 1 for illustration purposes.

2.3 Image Reconstruction

Since the magnetization of aggregate nuclei spins has an associated EM-field, temporal

or spatial changes to the ~B or ~E fields, respectively, causes an electromotive force (ε)

in the receive coil. This phenomenon is governed by Faraday’s Law of Induction

(2.3.1) and will cause the receive coil to generate a current that opposes the change

in magnetic flux according to Lenz’s Law (2.3.2),

∇× E = −∂
~B

∂t
(2.3.1)

ε = −N
~BA

∆t
(2.3.2)

where A is the cross-sectional area of the coil. Unfortunately, measuring a single

signal is not enough to generate an image.

Therefore, the reconstruction of a 3D volume measured in MR scanner requires

the spatial localization of the set of discretized signals in all three dimensions. In

order to do so, three orthogonal spatially varying magnetic field gradients (Gx, Gy,

Gz) are applied to encode frequency and phase deviations in the excited nuclei.
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Gx =
δ ~Bz

δx
,Gy =

δ ~Bz

δy
,Gz =

δ ~Bz

δz
(2.3.3)

ωlarmor = γ( ~Bo + ∆iGi) (2.3.4)

where i can represent either the x, y, or z directions for a discrete step ∆i. The

discretization of signals into voxels encoded by frequency and phase enables the use

of reconstruction algorithms to produce an image. During acquisition, the digitized

signals are measured in k-space, a formalism that describes the range of spatial fre-

quencies encoded by the scanning procedure. The final image is constructed by taking

the inverse 2D or 3D Fourier-transform of k-space.

Clinically, there are always trade-offs when tuning the imaging parameters for a

particular scan. The relationships between the voxel size, echo time (TE), repetition

time (TR), flip angle, field-of-view (FOV), signal-to-noise ratio (SNR), contrast-to-

noise ratio (CNR), and receiver bandwidth (to name a few) ultimately governs the

properties of the final image. Practically, noise corrupting the final image can never

be fully removed, but its minimization is crucial for high SNR and CNR. Furthermore,

minimizing artifacts such as ghosting (aliasing) by sampling much higher than Nyquist

during acquisition is also of high priority to avoid wrap-around effects due to the

improper spatial encoding of voxel signals.

2.4 Diffusion Tensor Imaging

Diffusion MRI (dMRI) is an MR imaging technique used to measure and characterize

the diffusion of water within tissues. The diffusion of water can exhibit either an

isotropic or restricted behaviour determined by the orientations of cell membranes

and other cellular structures. The diffusion profiles of water in each of these cases is
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Gaussian and non-Gaussian, respectively.

In diffusion-weighted imaging (DWI), the measured loss in signal intensity due to

diffusion is controlled through bi-polar dephasing and rephasing gradients, as shown

in figure 2.2.

Figure. 2.2. DWI encoding gradients. Dephasing and rephasing gradients are blue and
orange, respectively.

The parameters that govern the signal loss are the duration of the gradient (δ),

the time between the start of each gradient (∆), and the amplitude of the gradients

(G). By knowing both the phase (2.4.1) and proton (2.4.2) distributions, the resulting

signal (2.4.3) can be determined.

φ(x) = eiγδGx (2.4.1)

p(x, t) =
e−x

2/4Dt

√
4πDt

(2.4.2)

S =

∫ ∫
p(x, t)φ(t)dxdt

= Soe
−γ2G2δ2(∆−δ/3)D

= Soe
−bD

ln(S) = ln(So)− bD

(2.4.3)

Where the intrinsic diffusion constant (D) is determined through the fit. There-

fore, the amount of diffusion weighting is controlled through the b-value. A minimum

of two b-values must be used to determine the slope, D of the curve, where b-values
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can range from 0s/mm2 to upwards of 3000s/mm2. The initial signal intensity So is

the signal with a b-value equal to 0s/mm2.

In diffusion tensor imaging (DTI), water diffusion is encoded along a minimum

of 6 spatial directions and is highly sensitive to minor changes in microsctructural

WM integrity. The shape of water diffusion can be described as a rank-2 tensor

(3x3 positive-definite matrix, 2.4.4) with three mutually orthogonal eigenvectors with

corresponding eigenvalues shown in figure 2.3 .

¯̄D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.4.4)

Figure. 2.3. Anisotropic diffusion profile with the three eigenvectors coloured in green
and corresponding eigenvalues, λ1, λ2, λ3.

The major eigenvector signifies the principle direction of diffusion and the mea-

sured macroscopic diffusion anisotropy is due to microstructural tissue heterogeneity.

Combinations of these eigenvalues derive the four spatial mappings of diffusion: ax-

ial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), and fractional
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anisotropy (FA),

AD = λ1 (2.4.5)

RD =
λ2 + λ3

2
(2.4.6)

MD =
λ1 + λ2 + λ3

3
(2.4.7)

FA =

√
1

2

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2√

(λ2
1 + λ2

2 + λ2
3)

(2.4.8)

For patients who have been subjected to a form of brain injury, there tends to

be a measurable change in the individual’s WM diffusion. This damage can occur

in brain myelin, the primary structure of WM tracts. Therefore, the characteristic

anisotropic diffusion of fluid along a WM tract can suddenly become more isotropic

due to the microstructural damage. Damaged regions correlate with decreased FA

and increased RD (relative to AD), and increased MD [17]. FA is bounded between

0-1 due to the
√

(λ2
1 + λ2

2 + λ2
3) normalization factor, where realistic diffusion values

are between 0.30 to 0.70. FA is also the most characteristic parameter for quantifying

diffusion, thus making it the most common mapping for statistical analyses.

Like all MR imaging modalities, dMRI is susceptible to partial volume effects,

whereby the diffusion model assumes that there is only a single tissue type in a voxel,

where in reality, voxels are likely to hold a mixture of tissues. The proportionality of

each tissue within the voxel alters the final encoded signal and results in systematic

error. Therefore, there is reduced sensitivity within the measurement that cannot be

easily accounted for in a traditional 6-direction scan. This leads researchers to apply

as many as 180 scanning directions to improve diffusion modelling results.

Detecting and quantifying microstructural damage has the potential to be an in-

credibly useful clinical tool. However, these changes cannot be visually identified by
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a human interpreter alone. Therefore, there is a necessity to implement sophisticated

statistical tools such as Artificial Intelligence to uncover this unseen information.

15



Chapter 3

Artificial Intelligence

3.1 Machine Learning to Deep Learning

In the field of machine learning, mathematical algorithms are developed to make

data-driven predictions. Algorithms are given a set of data and are optimized to learn

the important features that characterize a particular dataset through a defined loss

function. The generalizability of a machine learning model depends not only on the

amount of data the algorithm has been trained on, but the diversity of samples within

the dataset. A dataset is randomly decomposed into training, validation, and testing

sets, where the performance of the model is evaluated on the unseen data within the

test set and reported through a variety of metrics.

Machine learning models can be broken down into three subsets known as Super-

vised, Unsupervised, and Semi-Supervised learning. Most of the established machine

learning frameworks today are supervised, meaning that models are trained with a

dataset where each data point has an associated label (binary, multi-label, and/or

multi-class). Supervised techniques are largely used for tasks such as classification

and segmentation, where the model is trained to classify the data into groups or seg-

ment regions of interest within an image, for example. Popular algorithms include
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linear regression, neural networks, and random forests. Unsupervised learning ap-

proaches are situations where the model is trained with unlabelled data, forcing the

model to learn associations within the data that it deems suitable based on the loss

function. In the absence of labels, unsupervised models are typically employed for

clustering, dimentionality reduction, and anomaly detection [18]. Examples include

k-nearest-neighbours, Gaussian mixture models, and variational autoencoders. Fi-

nally, there are situations where the class labels are incomplete. While wanting to

use this information, techniques of semi-supervised learning have been developed to

make use of the available labels to increase potential task accuracy. Compared to tra-

ditional supervised and unsupervised frameworks, semi-supervised methods are much

less common in practice.

Neural networks, the stepping stone to deep learning, are frameworks that were

developed in this pursuit for scalable models. Composed of layers of neurons that are

connected in ways to learn abstract representations of the input data, the empirically

shown capabilities of neural networks to learn important features and perform exceed-

ingly well in its prediction task has been the main reason for its growth in the machine

learning community. Figure 3.1 illustrates the relationship between the inputs and

output of a single neuron in a neural network.

Figure. 3.1. Representation of a computational neuron used in deep learning.

Three weighted inputs ω0x0, ω1x1, and ω2x2 are fed into the neuron. Each x is

the input to the current neuron from a neuron in the previous layer and each weight
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ω associated to each input will be updated through an optimization training process

known as stochastic gradient decent [19]. The inputs are summed together along with

an optional bias term b. The summation is transformed using a non-linear activa-

tion function, f, traditionally a sigmoid, rectified linear-unit (ReLU), or hyperbolic

tangent (tanh) function [19]. Introducing such non-linearities allow for the network

to increase its ability to learn complex functional mappings within the data. If, for

example, this non-linear step were to be omitted, multi-layered neural networks could

be mathematically reduced to the simplest case of a single-layer perceptron1, thus

dramatically reducing the ability of the model to generalize over the non-linear data

distribution [19].

The way in which neurons are connected between/within layers and how the lay-

ers are structured ultimately determines network properties such as the number of

parameters and the types of tasks optimal for the network. As the number of net-

work layers increase, we arrive at the concept of deep learning : a neural network

architecture with an arbitrary number of hidden layers2 with the purpose of creating

a model with state-of-the-art performance on complicated tasks. Deep networks are

empirically shown to have improved predictive performance compared to traditional

statistical learning approaches because the self-optimization process removes the need

for explicit feature engineering [19]. These hand-made features limit the flexibility of

a particular model to concentrate onto other minute features that could potentially

have more discriminative power within the dataset.

In the field of computer vision where imagery comes with significant variation, it

becomes difficult to pinpoint and mathematically define a discrete number of features

that will generalize to the entire distribution. Features could include estimates of

1Perceptron: An algorithm used for binary classification.
2Strictly speaking, the output of the input layer is not directly observed, but this is not considered

a hidden layer
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the image’s fractal dimension, histogram distribution, or the size of circular blobs, for

example, but rarely does feature engineering result in predictive performances compa-

rable to deep learning on the same multi-class dataset. Most notably, this was demon-

strated during the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) in

2012, where a deep convolutional neural network architecture halved the second place

error rate and lead to the “deep learning revolution” we have seen today [20].

3.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are the backbone of all modern computer vi-

sion systems. Spanning areas of study from autonomous driving to medical imaging,

the millions of convolutional kernels that are generated and optimized through the

training procedure is what makes this type of framework so powerful. The in the

following discussion, we outline the necessary components for CNNs and the various

ways they are constructed together to produce classification and segmentation models.

Before the advent of CNNs, if a typical feed-forward neural network architecture

was applied for the task of image classification, each pixel would represent a single

input to only one neuron in the input layer. For a 60x60x3 (60px wide, 60px tall,

3 colour channels) image, this would lead to an input layer with 10800 neurons,

where the network has an N number of hidden layers, leading to 10800N parameters

(excluding bias terms). With even larger, more respectable images (256x256x3), the

number of parameters quickly blows up and would lead to huge computation times

and overfitting [19]. The way CNNs have circumvented this problem is by defining

a set of layers that “compress” a local receptive field within the image into a single

number representing the bulk information within the field. CNNs are built upon these

most basic layers and are outlined in the following sections.
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3.2.1 Convolutional Layers

The convolutional layer within the network is what does most of the heavy computa-

tional work. These layers are composed of a set of trainable filters (or kernels) that

operate on only a small portion of the input image. For example, a single filter could

be of size 6×6×3 acting on an image of size 256×256×3. The depth of the filter will

always match the channel depth of the input image. The filter will convolve along the

height and width of the image, computing the dot product of the filter values and the

image input values within the filter’s receptive field, F . This convolutional procedure

thus produces a single 2D activation map for a single filter. With a set of K filters,

the convolutional layer thus creates a stack of K activation maps. This processes is

shown in figure 3.2.

Figure. 3.2. A set of convolutional filters applied to an input image of size 256x256x3
with receptive fields of 6x6x3, generating 4 activation maps.

In the situation illustrated above, there are four independently trained convolu-

tional filters that are applied to the input image. The receptive field of each filter is

6x6x3 and computes a single number on the corresponding output activation map for

a single filter location. Ideally, each activation map is an n × n square matrix but
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this does not always have to be the case. Square matrices are easier to work with due

to their shape, thus making it desirable to ensure equal dimensions along the height

and width of the activation map. Formally, a pixel value, yij, is produced from a

convolutional operator through the following,

yij =
K∑
k=0

( ∑
i=0,j=0

(xijω
k
ij)

)
+ b (3.2.1)

where i, j are row and column indices within the receptive field, xij is the pixel

value, ωkij is the filter weight for at index i, j for the kth filter, and b is the optional

bias term.

To ensure the convolutional operation can occur without error, other hyperpa-

rameters known as the convolutional stride (S ) and zero-padding (P) must be used.

S is defined as the number of pixels the filter moves after each computation, where

S = Sheight = Swidth. P adds a border of zeros to the input image to ensure square

output activation. To calculate the activation output size, the following relationships

are used

Wo =
Wi − F + 2P

S
+ 1 (3.2.2)

Ho =
Hi − F + 2P

S
+ 1 (3.2.3)

Do = K (3.2.4)

where Wo, Wi, Ho, Hi, Do are the output and input dimensions of the width,

height, and depth, respectively [21]. It should be explicitly noted that this operation

reduces the size of the input image and thus, cannot be applied indefinitely. Interest-

ingly, once the training procedure is completed, filters earlier in the model have been
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shown to pinpoint “lower-level features”, such as edges, blobs, and contrast, where

deeper filters continually become more abstract and look for “higher-level features”,

such as facial features or shapes. Due to the convolutional action the filters undergo,

they possess a property known as translation invariance. As such, if a filter has been

optimized to detect a specific orientation of an edge, the filter will have a maximum

output when it encounters that edge regardless of the feature’s location within the

image.

3.2.2 Transposed Convolution

An image can be up-sampled using a method known as transposed convolution (TC).

Unlike a traditional interpolation method, TC has tunable parameters that govern the

up-sampling. Mathematically, TC is not the same as deconvolution, but the results are

identical. To understand TC, consider how a convolutional operator can be performed

using matrix multiplication. The input image used during the convolutional process is

turned into an (n×n)×1 column vector, where the filter is subsequently transformed

into an (n × n2) convolutional matrix with added zeros to account for the receptive

field. n represents the number of rows (or columns) for a square input image.

Figure. 3.3. Convolution operator using matrix mathematics. Filter is zero-padded to
account for striding during normal convolution.

As seen in figure 3.3, the input image has been reduced from a size of (4x4) to (2x2).
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In the reverse case where we desire a (4x4) output from a lower resolution (2x2) input,

the transpose of the proper convolutional matrix will result in the desired output.

Using the transpose of the matrix shown above, we show the following transpose

convolution in figure 3.4,

Figure. 3.4. Transpose of a convolutional matrix is able to produce the same effect as
deconvolution by up-sampling a (2x2) image into a (4x4) output.

3.2.3 Pooling

Pooling layers are typically placed periodically after convolutional layers with the

intention of further reducing the spatial representation of the image, thus reducing

the number of overall parameters controlling overfitting. Similar to a convolutional

filter, a pooling operator has a square receptive field on the order of single pixels and

strides along the image. It applies either a MAX, MIN, or AVERAGE operation to

the values in the receptive field and places this into the correct pixel location within

the compressed image.

Pooling layers were a previously successful operation that improved CNN perfor-

mance but has been slowly phased out since many researchers dislike the explicit

removal of information. Newer models that include attention and transformers have

continued to improve in the absence of pooling layers [22, 23].
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3.2.4 Full-Connected Layers

Once the image has been reduced to an abstract representation after many convo-

lutional layers, the representation is known to be in a “latent space”. The image

is typically reformatted into a (N xN xK )x1 column vector and fed through a set of

fully-connected layers, as shown in figure 3.5.

Figure. 3.5. Fully-connected layer at the end of a convolutional neural network
framework. All final activation maps are re-represented as a single 1D vector and is the
input to the fully-connected layer. Not all arrows are drawn to reduce image clutter. In

this case, there is only one hidden layer prior to the final classification layer (5-class
output).

At the end of the fully-connected layer, the output can be represented as a column

vector with a length equal to the number of classes it has been trained to classify.

The vector is typically passed through a sigmoid activation function to compress each

probability between 0 and 1.

σ(x) =
1

1 + e−x
(3.2.5)
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3.3 Transfer Learning

It is important to recognize all CNN architectures have the commonality of reducing

the complexity of the input image and learning convolutional filters that end up rep-

resenting characteristic features that represent the dataset. Furthermore, the filter

weights are tuned specifically for the task it has been trained to do. But, transfer

learning approaches may be implemented to borrow weights from previously trained

models to accelerate the training process for a new task on a different dataset. As

previously eluded, the earlier filters tended to learn features that may be ubiquitous to

all imagery. Therefore, transfer learning techniques have shown to provide significant

improvements to model training time, depending on the task [24]. With that said,

there is an ongoing debate as to whether or not ImageNet-trained weights are a valu-

able tool for transfer learning in medical imaging domains. This is likely due to the

domain mismatch between the naturally occurring images seen in ImageNet compared

to the vastly different images that can be obtained through medical imaging modal-

ities. New work has proposed that ImageNet transfer learning can indeed improve

DL models made for biomedical imaging tasks, but the performance boosts depend

on both the scale of the model’s capacity (very large networks) and the size of the

pre-training dataset [25]. Typically, early model weights are initialized using transfer

learning, later weights are randomly initialized, and the whole model is fine-tuned to

acquire optimal task performance.

3.4 Make Deep Learning Work!

Along side the various network layers that compose CNNs, there are a set of considera-

tions and tools that are needed in order to actually train a model. These considerations

are needed regardless of the model’s architecture or the task type.
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3.4.1 Loss Functions

The loss function, E(x, y), determines the discrepancy between the prediction of a

model and the desired output. Based on the value computed by the loss function,

the network weights are updated through a processes known as backpropagation and

stochastic gradient descent. In the simplest form, a learning problem adjusts the

weights within the model to minimize E(x, y).

Popular loss functions include the Mean-Squared Error (MSE)

E(x, y) =
1

n

∑
i

(xi − yi)2 (3.4.1)

where xi is either a single or a set of predictions, yi are the corresponding class labels

in a supervised learning problem.

Binary Cross-Entropy measures the performance of a classification model when

outputs are between 0 and 1.

E(x, y) = −
∑
i

(
yi log(

1

1− e−xi
) + (1− yi) log(1− 1

1− e−xi
)

)
(3.4.2)

The loss function can be adapted to account for class imbalanced datasets by weighting

the observation by its proportion within the dataset.

E(x, y) = −
∑
i

(
ωpyi log(

1

1− e−xi
) + ωn(1− yi) log(1− 1

1− e−xi
)

)
(3.4.3)

Where ωp and ωn are the positive and negative weighted proportions, respectively.

For a 2D or 3D image, this would correspond to weightings of ωp = NumZeros
Resolution

and

ωn = 1− ωp.

Dice Loss optimizes the weights based on the overlap between two classes A and
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B.

E(A,B) = 2 ∗ |A ∩B|
|A|+ |B|

(3.4.4)

When not using it as an explicit loss function, E(A,B) is known as the Dice

Similarity Coefficient, or Dice Score, (DSC). An evaluation metric used to measure

the performance of a segmentation model, it can also be calculated through the true

positive (TP), false positive (FP), and false negative (FN) rates reported through a

confusion matrix,

DSC =
2TP

2TP + FP + FN
(3.4.5)

Mathematically, this formulation is identical to the well-known F1-score in binary

classification problems.

F1 =
2

1
precision

+ 1
recall

=
2

TP+FP
TP

+ TP+FN
TP

=
2TP

2TP + FP + FN
(3.4.6)

3.4.2 Gradient Descent

After determining the loss associated to the model’s prediction, there needs to be a

way to update the weights of the network to minimize the loss of future predictions.

This is done through a method known as backpropogation. Loss function minimiza-

tion must also work in conjunction with the network’s ability to generalize to new

data. The model’s performance on the training and validation sets are ultimately

unimportant and the model must not overfit to the training data. An overfit model

would show low loss during training but poor performance during test-time.

Propagating the loss through the network to update the model weights and move
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through the loss landscape is most successfully done through gradient-based meth-

ods. Backpropogation is typically very slow with large models that tend to have

highly non-convex, high dimensional loss spaces with many local maxima/minima

and/or flat regions [26]. As such, there is no guarantee that the model will converge

to the global minimum, that this convergence would be quick, or if convergence would

even occur. However, it has been shown empirically that gradient descent methods

can often find good solutions within the loss landscape when using the gradients cal-

culated through backpropagation.

Stochastic gradient descent refers to a descent process that uses the loss of a

single random observation, selected with replacement, to update the network param-

eters, θ.

θ(t+ 1) = θ(t)− η∂E
t

∂θ
(3.4.7)

where η is the learning rate for gradient descent. This rate is typically dynamic and

changes depending on how the loss stagnates during training. Large η promote faster

movements and can improve convergence speed early in the training process, but can

cause overshooting and prevent convergence as training progresses. Similarly, small

η can prevent convergence within a reasonable computation time. Typically, η starts

around 10−4 and is reduced by an order of magnitude as the loss stagnates.

Batch stochastic gradient descent is the same update procedure but instead

of a single observation, the entire dataset is used to acquire a direction of average

loss. These steps will often be much larger than that of stochastic gradient descent,

which can reduce computation times, but can lead to worse results [26].

θ(t+ 1) = θ(t)− η∂E
s

∂θ
(3.4.8)

Where Es is the loss on the entire set.
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Mini-batch stochastic gradient descent is a hybrid method between the two

discussed previously. The dataset for DL problems is often very large and it is im-

practical to determine the loss of the entire training set in a single computation.

Furthermore, computing the loss on single observations is often prohibitively slow.

Therefore, mini-batch stochastic gradient descent takes mini-batches of the training

set, computes the loss, and updates the weights. The amount of data that is placed

in the mini-batch is limited by the memory capabilities of the computer facilitating

model training and is typically equal to a power of 2n.

3.4.3 Regularization

DL models have the capacity to “memorize” (overfit) data if improperly trained.

Regularization methods have been developed to prevent the model from overfitting to

the training dataset. Popular regularization methods are:

L1 and L2 Regularization: Includes a second factor to the loss function.

L1 = E(x, y) + λ
∑
i

|θi| (3.4.9)

L2 = E(x, y) + λ
∑
i

θ2
i (3.4.10)

where λ is the regularization parameter. L1 and L2 regularization methods can be

applied in tandem with the weighted loss functions described previously.

Data Shuffling and Augmentation: Networks learn the quickest when exposed

to an unexpected sample. That is, each subsequent observation should be of a differ-

ent class, if possible [26]. Therefore, to maximize the chance of this occurring, data

shuffling is highly advisable. Furthermore, each observation can be subjected to a set

of random affine transformations such as rotations, flipping, and scaling to promote
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diversity within the dataset.

Dropout: Dropout refers to a training procedure that randomly suppresses a

subset of nodes and their corresponding connections within the network to reduce the

chance of co-adaptation between layers [27]. Effectively, dropout forces the network

to learn more relevant features, reduces overfitting, and thus improves generalization

ability. Most implementations of DL use dropout for performative improvements. The

figure below illustrates dropout in a simple network.

Figure. 3.6. a: Simple fully-connected neural network. b: Neural network with dropout.
All nodes and corresponding neural connections have a dropout probability of 0 < p < 1

3.4.4 Normalization

Normalization is a crucial pre-processing step that has shown to improve the stability

of neural networks, promoting faster convergence [26]. With MR images, there is no

universal intensity scale that is invariant of the scanner or the image (unlike CT).

Therefore, normalization is mandatory if one is looking to have directly comparable

histogram distributions.
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Different from regularization, normalization scales the data so each observation

has comparable statistics. In a computer vision problem, the set of data can be glob-

ally normalized or have an intra-image normalization using a variety of methods, but

simple options include:

Standardization (Z-score Normalization):

yi =
xi − µ
σ

(3.4.11)

where µ and σ are the mean and standard deviation of the image x, respectively,

resulting in pixel value yi.

Min-Max Normalization:

yi =
xi − xmin
xmax − xmin

(3.4.12)

where every observation xi is shifted by the minimum value xmin and normalized

by the range of observation values xmax−xmin. This will fix the range of observations

in a particular feature between 0 and 1 exactly, while standardization has no guarantee

that such a condition will occur.

3.5 CNN Architectures

Applications of DL for computer vision problems have been widely successful with the

use of CNNs. While the property of translation invariance on convolutional kernels

is advantageous for these tasks, the ways in which various computation layers are

connected also significantly influence the model’s ability to learn complex representa-

tions. As such, researchers have developed various models which has lead to a huge
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variety of CNN-based architectures for visual learning tasks. Models such as Vgg [28],

ResNet [29], and DenseNet [30] are popular options for classification and have easy-

to-use implementations in both PyTorch and Tensorflow. Reconstruction approaches

for segmentation include unsupervised autoencoders [31], fully-convolutional networks

(FCNs) [32], and U-Nets [33]. These are employed in situations where feature detec-

tion and localization are both relevant. Here, we discuss the differences between all

of these networks, leading to a discussion on the 2D U-Net.

3.5.1 Vgg

Introduced by Simonyan et al., very deep convolutional networks (Vgg) demonstrated

the empirical benefits of using a larger quantity of smaller convolutional filters (3x3)

to improve computational performance and learning ability for large-scale recognition

tasks [28]. They further showed that adding many more deep layers was only feasible

if the receptive fields of the convolutional kernels were small. The number of layers

within a model architecture is typically denoted by the number following the model

name, such as Vgg16 or Vgg19, for example. Max-pooling layers placed after convo-

lutional layers are interspersed within the model architecture, eventually leading to a

fully-connected (FC) sigmoid layer for multi-class classification.

3.5.2 ResNet

Introduced by He et al., the residual network (ResNet) featured the addition of skip-

connections between layers to improve learning performance for deeper models [29].

The skip connections explicitly reformulate traditional learning layers as learning

residual functions with reference to the layer input(s). The non-linear mapping at

the output of each residual block is defined through equation 3.5.1.

y = H(x) = F(x) + x (3.5.1)
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where F(x) is the residual function and (x,y) are the input and output, respec-

tively. Training the block to learn a residual function provides extra flexibility when

the desired functional relationship needs to approximate an identity function [29].

Figure. 3.7. Residual learning block [29].

The skip connections were empirically shown to improve the learning capacity of

deep networks and provide a solution to previously impossible optimization on such

large networks. ResNet52, 101, and 152 are popular variants of the architecture.

ResNet architectures are built with classification in mind and terminate with a FC

sigmoid layer.

3.5.3 DenseNet

Introduced by Huang et al., DenseNets were developed using the methodology of

residual networks in mind [30]. Rather than summing the input and output of a single

functional block repeatedly over many blocks, DenseNets both concatenate the input

to the output of a block and propagate the output through skip-connections to every

subsequent layer. The architecture was designed to remove the vanishing-gradient

dilemma that occurs with large networks. Furthermore, the architecture shows that

it requires fewer parameters to achieve impressive task performance compared to other

larger networks. A schematic of a DenseNet is shown in figure 3.8.
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Figure. 3.8. DenseNet Architecture [30]. Bn represents a block in the network.

3.5.4 Unsupervised Autoencoders

Introduced by Ballard et al. in 1987, autoencoders are unsupervised models that

were designed for the purposes of image reconstruction by compressing the input into

a latent representation and reconstructing the image using the latent representations

of the input [31]. Through a desired loss function, the difference between the input

image and output reconstruction is sought to be minimized. The latent space can

be interpreted as a dimensionality reduction scheme similar to principal component

analysis (PCA) but in a non-linear regime. The initial autoencoder networks were

simple fully-connected networks with 1-2 hidden layers, similar to the network illus-

trated in figure 3.6. Autoencoders have provided the foundation of all modern DL

segmentation models.

3.5.5 Fully-Convolutional Networks

Introduced by Long et al., Fully-Convolutional Networks (FCNs) transform traditional

fully-connected layers in classification networks to convolutional layers for semantic

segmentation [32]. The model is able to output a classification heatmap (activation

map) on an image by implementing a spatial loss between the output and correspond-

ing label map. At its incecption, FCNs were the first end-to-end model for pixelwise

prediction.
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Figure. 3.9. Fully-Convolutional Network for semantic segmentation. Input image is
reduced to a smaller spatial representation through convolutional operations and

up-sampled to the output activation map [32].

FCNs utilize batch-normalization, dropout, and pooling layers for computational

considerations and overfitting. The up-sampling step is done through a bi-linear

interpolation and thus, only up-samples once. Therefore, the process of up-sampling

cannot be optimized explicitly through model training.

3.5.6 U-Net

Introduced by Ronneberger et al., the U-Net has become the most popular option for

semantic segmentation tasks, particularly in biomedical imaging [33]. The network

is composed of three main branches: the encoder, latent space, and decoder. The

formation of the three of these building blocks illustrate a U-like structure, as seen in

figure 3.10.
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Figure. 3.10. Illustration of a simple U-Net architecture [33]. Each block is a set of
activation maps from filters trained through backprop.

The U-Net architecture heavily borrows the properties of the unsupervised au-

toencoder by taking its input and encoding it into a latent feature representation.

The decoding pathway applies a set of successive trainable transpose convolutional

operations (otherwise known as deconvolution) to reconstruct a pixel-wise activation

map. In binary segmentation, a test-time threshold is applied to the activation map

to obtain an estimate of the test-time performance. The maps that can be obtained

from a U-Net architecture have been shown to be superior to FCNs due to the longer

reconstruction decoding pathway.

The architecture takes advantage of dropout and max-pooling layers to optimize

performance. Max-pooling layers are replaced with transpose convolutional opera-

tions during decoding. For segmentation of images with arbitrary dimensions, the

architecture employs an overlap-tile strategy that enables the efficient prediction of

pixels at the border region [33]. Further, the model has an additional concatenation

step that bridges corresponding encoding/decoding blocks. This reinforces the model

to take advantage of nuanced information learned earlier in the pipeline that could

have been lost during compression. The large number of decoding feature maps, along
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with the representative encoding feature map, enables localization of high resolution

features for improved segmentation performance.

In its initial implementation, the architecture was optimized for 2D spatial learn-

ing (hxwxc), where c are the number of colour channels. Therefore, models of this

type are typically denoted as a 2D U-Net. The architecture has since been extended

and applied for 3D learning to take advantage of the extra depth component that is

present in many biomedical imaging datasets, thus making the 3D U-Net [34]. This

architecture has the same base layer layout as a 2D U-Net with 3D convolutional

operators. With the additional depth information, 3D U-Nets can be seen to have

either comparable or greater volumetric segmentation performance [34, 35, 36, 37, 38].

Within medical imaging, scanning procedures that are able to acquire sequential slices

of patient anatomy, such as MRI and CT, are posed well to take advantage of the

depth dimension during 3D processing. The performance improvements unavoidably

come with increased computational demands due to the dramatic increase in the total

number of model parameters.

The encoder of the 2D/3D U-Net is often referred to as the backbone. Various

encoding backbones can be chosen depending on the target task. The optimal encod-

ing backbone must be empirically determined by observing the test-time performance.

Structurally, DL models are build upon thousands to millions of parameters, which

is why they are often considered to be black-boxes. In the following sections, the

discussion surrounding Explainable Artificial Intelligence is covered with a particular

focus on its application in clinical settings.
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Chapter 4

Explainable Artificial Intelligence

1 As machine learning (ML) permeates through many facets of society, it is not surpris-

ing that there has been interest from users and stakeholders to make these algorithms

more understandable [39]. While there have been many attempts to do so, there is

no consistent distinction between interpretability and explainability, two key themes

for understandable ML. Depending on the literature, these terms are either used syn-

onymously or with explicit distinction [39, 40, 41, 42, 43, 44]. An explainable model

would be one that describes, in detail, how it arrived at a prediction, outlining the

relationship between the feature space and data domain. With this perspective, no

black-box model can be explainable, and we should be in the pursuit to implement

either:

1. inherently interpretable decision platforms, or

2. to apply post-hoc methods to promote case-based reasoning within complicated

domains [43].

The former points to implementations of simpler, potentially non-ML models,

where the latter acknowledges the predictive power of ML/DL and emphasizes the

need to implement tools for interpretable DL. It goes without saying that computer

1Chapter 4 includes many components that are in the revision process for publication.
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vision applications have benefited greatly from neural networks, but a universal def-

inition of “interpretability” in the computer vision domain does not exist [43]. In

the following sections, we focus on explaining post-hoc methods that provide inter-

pretability to black-box DL models, leading to a metric known as predictive entropy

(PE) that is heavily used in chapter 6.

4.1 Post-Hoc Interpretability

As Lipton [45] states in The Mythos of Model Interpretability, the preceding literature

addressing interpretability typically have diverse and conflicting objectives. While

there is a general notion that model “transparency” confers interpretability, post-hoc

methods have been derived as to align better with human expectations [45]. Post-

hoc methods for interpretability do not explicitly state how the model works, but

rather provide the end user with additional information that elucidates reasoning.

One major advantage of post-hoc methods is that models can be interpreted after the

prediction without sacrificing predictive performance. Post-hoc methods include text

explanations to explain a model’s state, explanations through example, and the popu-

lar method of local explanations through gradient-based saliency/attention maps [45].

An additional metric that could further assist model interpretability is uncertainty.

Providing users with uncertainty estimates and corresponding visualizations to quan-

tify the degree of belief the model has in its prediction could be a useful addition to

current post-hoc interpretability tools. For the purposes of this thesis, we employ pre-

dictive uncertainty in efforts to increase user confidence during test-time and improve

trust in the ML model.
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4.2 Trust and Interpretability

While acquiring interpretable predictions from ML models is a desired attribute for

their successful deployment in high-risk applications (medicine, finance, criminal jus-

tice), trust also plays a critical role. As trust is a subjective concept, its definition is

malleable depending on the context of the situation. Some argue that model inter-

pretability is a precursor to trust [46]. The cultivation of trust in ML models could

benefit from an externalist epistemological perspective, where trust is rationally justi-

fied through proven, repetitive, and reproducible experiences [47]. This is in contrast

to the internalist epistemology that defines the justification of trust through social

determinants or goodwill.

Generally, in order to develop trust in a relationship, there must be an accepted

amount of risk. This risk manifests through an expectation that the model will com-

plete the desired request, but we must acknowledge that there is no comprehensive

solution for the model to be competent in every way [47]. Trust cannot be built if

the trustor cannot will themselves to accept this risk. In these situations, hesitation

to accept AI technology is expected, but experiential interaction is paramount. In

the absence of this exploratory experience, clinical implementations would likely be

costly, cumbersome, and ultimately ineffective.

The 2018 Radiological Society of North America (RSNA) summit on AI makes it

apparent that building trust is a key component for the practical implementation of

AI [48]. The RSNA indicates that initiatives such as AI education and data curation

are of top priority in order to build this trust. With an emphasis on gaining personal

experiences with AI, providing clinicians with post-hoc interpretability tools, such as

predictive uncertainty estimation, could assist the integration of this technology into

the clinical workflow.
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4.3 Post-Hoc Predictive Uncertainty

As of today, popular DL algorithms do not provide native uncertainty estimates in

regard to output predictions. This seems counter-intuitive since traditionally, clas-

sification or segmentation (i.e. pixel-wise classification) tasks output a probability

that a particular object or pixel corresponds to 1 of the K number of classes that the

network has been trained to identify. This probability is often erroneously interpreted

as model confidence which leads to confusion for the clinician [49]. To understand this

concretely, consider an extreme case where a sophisticated DL model has randomly

initialized weights and has not been trained. In a tumour segmentation task, for ex-

ample, the sum of the probabilities for a pixel belonging to either of the two possible

classes (tumour, not tumour) must sum to 1. Therefore, there can be instances where

an untrained network can output high class-wise probability where there is no basis

to do so. Figure 4.1 provides an illustration of such a segmentation output. In these

cases, predictive uncertainty methods can provide a way to evaluate model confidence

at the output.

Figure. 4.1. An example of a pixel-wise classification output fused to a sample
T2-weighted MR axial slice from the 2018 MICCAI BraTS dataset [50, 51]. The ground
truth abnormality is shown in blue. The prediction from the untrained network classifies

the abnormal and healthy brain tissues as blue and yellow, respectively.
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To provide the end user with additional information that could alleviate the dis-

crepancy between the prediction probability and model confidence, figure 4.1 should

be coupled with an uncertainty estimate. The uncertainty should be high in a scenario

such as this.

The description of uncertainty becomes clear with an illustrative example. Con-

sider a hypothetical model that has been trained on a large dataset of routine brain

MR scans with the goal of being able to determine the volume’s scanning sequence

(T1-weighted, T2-weighted, T2-FLAIR, etc.). Presumably, if the model has been

trained well, it will correctly distinguish the sequence with high confidence. What

would happen if the model were to be exposed to a modality it was not trained with?

As Gal et al. [52] describes, this is an example of out-of-distribution (OOD) data. The

desired behaviour of the model in this case would be to try and provide a reasonable

prediction, and also report the lack of confidence the model has on its output.

The uncertainty associated with a model’s prediction can be broken down into

three main factors:

• Sources of random noise within the data (otherwise known as aleatoric uncer-

tainty)

• Parameter uncertainty (uncertainty in the model’s weights)

• Structure uncertainty (what is the best model for the job)

The combination of the latter two points is defined as epistemic uncertainty, where

predictive uncertainty is derived from the addition of the aleatoric and epistemic

uncertainties. Epistemic uncertainty can be minimized by training the model with a

diverse set of data that covers the range of possibilities the model could be exposed

to. Alternatively, aleatoric uncertainty has a fundamental limit to which it can be

reduced, since noise can never be fully characterized. With these two quantities, the
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user can identify if the data quality or the model itself is causing shortcomings in

performance [53]. In situations where uncertainty is provided, indications of over or

under confidence can directly benefit from human intervention while still providing

value to the clinician. These uncertainties become particularly useful when visually

displayed, as shown in figure 4.2.

Figure. 4.2. A simulated example of the aleatoric, epistemic, and predictive uncertainties
for a pixel-wise classification task. Brighter pixels indicate larger uncertainty. (a) A
T2-weighted axial MR slice from the 2018 MICCAI BraTS dataset [50, 51]. (b) The
hypothetical segmentation output. (c) The ground truth segmentation. (d) Aleatoric

uncertainty localized to the boundaries of the segmentation. (e) Epistemic uncertainty
localized to the boundary of the segmentation with less ambiguity compared to the

aleatoric uncertainty. (f) Predictive uncertainty, which is the addition of (d) and (e). We
notice that the model is confident within the interior of the segmented lesion and less so at

the boundary.

Uncertainty can be represented in a variety of different ways depending on the

application. In a segmentation task, visualizations can quickly communicate areas in

which the model has low or high uncertainty and act as a proxy for the quality of the

segmentation [54]. If desired, these values could be aggregated together to report a

single numeric uncertainty estimate to enable clinicians to directly compare predic-

tions. Whether a reported value, or set of values, is given within a numeric range, as a
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confidence interval, or a standard deviation, the representation of uncertainty should

be malleable depending on the task and the individuals interpreting the model’s pre-

diction. As such, uncertainty estimates can be standardized in relation to the task or

discipline as clinicians see fit.

Estimating predictive uncertainty is indispensable in the case of DL and there

has been significant work to integrate these methods into prediction pipelines. Some

models incorporate prior information (what is known about the data) and likelihood

probabilities (how likely this data is to occur) to obtain predictions, other models act

in the absence of explicit distributional information. These methods are known as

Bayesian and Frequentist statistics, respectively, and both have been used in devel-

opment of DL predictive uncertainty tools.

4.3.1 Bayesian Neural Networks

Since the inception of ML models for inference tasks, the increase in data complexity

has led to the development of more complex models to obtain state-of-the-art predic-

tive performance. As a result, the number of total model parameters has generally

increased along with this complexity. In Bayesian inference, the model parameters are

seen as a set of random variables, each possessing an intrinsic probability distribution

around its mean.

In this formulation, we are ultimately looking to compute a Bayesian model average

to determine the probability of the outcome, y, given the data D. This is defined as

the predictive probability distribution and is shown below.

p(y|D) =

∫
p(y|ω)p(ω|D)dω (4.3.1)

This probability is unconditional of the network weights, ω, since the integral
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is marginalizing over ω. Therefore, rather than using a single setting of model pa-

rameters, Bayesian inference uses all settings of parameters weighted by their prior

probabilities p(ω|D). The likelihood of the outcome, y, given a specific setting of

weights, ω, is denoted as p(y|ω).

This integral is intractable with a large number of parameters and impractical for

neural networks (NNs) [52]. As such, methods such as variational inference (VI) have

been developed to approximate the optimal predictive distribution through optimiza-

tion rather than marginalization.

In order to estimate p(y|D), VI postulates an approximate distribution q(ω|D)

that should be distributionally similar to p(ω|D). To ensure that the approximate

distribution is optimal, the difference between q(ω|D) and p(ω|D) is measured and

iteratively minimized during network training through a metric known as Kullback-

Leibler (KL) Divergence.

DKL(P || Q) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx (4.3.2)

Once optimized, the epistemic and aleatoric uncertainties are derived through the

variance of the estimated predictive distribution, p(y|D) [55].

A noteworthy limitation of Bayesian modelling is the requirement to inject the

necessary prior and likelihood information into the model when determining q(ω|D).

The designer of the model needs to make assumptions about the characteristics of the

output distribution, where a Gaussian approximation is typically used [56]. These

assumptions typically hinder the optimization process which often results in underes-

timating the predictive uncertainty [57].
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VI has been used for regression, classification, and segmentation tasks with vary-

ing degrees of success. Kwon et al. [55] demonstrated this technique by applying it to

two multi-sequence MR datasets from the 2015 Ischemic Stroke Lesion Segmentation

challenge. With VI, Kwon et al. were able to build on the initial work completed

by Kendall et al. [58] and proposed a new way to obtain and decompose predictive

uncertainty without incorporating additional parameters into the model. The method

is able to provide voxel-wise estimations of the aleatoric and epistemic uncertainties

which can then be formed into corresponding visualizations.

VI is a promising Bayesian technique, but it is noted that applications of VI

are not frequently used in the area of medical image interpretation (there are few

publications of such an application). With the associated complexity of medical image

data, optimizing the parameters of the network can be difficult using VI [59]. To

obtain similar results without estimating a posterior distribution, methods such as

Monte-Carlo (MC) dropout have been formulated to provide a simple way to obtain

Bayesian-like uncertainty estimates.

4.3.2 Monte-Carlo Dropout

Initially proposed by Gal et al. [49], MC-dropout utilizes this concept during both

the training and testing procedures of the network. The primary goal of MC-dropout

is to generate random predictions and interpret the results as samples acquired from

the predictive distribution. The randomness in the prediction is a direct result of

the dropout process. In order to acquire estimates of the epistemic and aleatoric

uncertainties, each input sample is put through an N number of stochastic forward

passes. The mean and variance of the set of N predictions is used to determine the

uncertainties [52].

Conversely to VI, MC-dropout requires no prior information to be injected into
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the model and can obtain an approximation of the output distribution without ad-

ditional bias. As such, MC-dropout can be seen as a Frequentist type of solution

to estimating predictive uncertainty. With the comparative ease of implementation

with Bayesian-like outputs, MC-dropout has gained more traction within the medical

image analysis community compared to its Bayesian counterparts. Nair et al. [60]

presented the first exploration of multiple uncertainty estimates using MC-dropout

with a 3D multiple-sclerosis (MS) lesion segmentation CNN. The network was trained

with a proprietary, large-scale, multi-site, multi-scanner, MS dataset where voxel-wise

uncertainty measures were reported. Nair et al. showed that by filtering predictions

based on its uncertainty, the model’s detection accuracy was greatly improved, par-

ticularly in the case of small lesions.

Roy et al. [61] utilized MC-dropout for full brain segmentation with structure-

wise uncertainty. Wang et al. [62] derived aleatoric uncertainties with MC-dropout

and test-time augmentation for fetal brain tumour segmentation. In both cases, the

uncertainty estimates resulted in improved predictive performance by accounting for

predictions with low confidence. Although MC-dropout provides a simplistic method

for obtaining uncertainty, deep ensembles attempt to obtain even better estimates by

aggregating models that have been optimized in different areas in the loss landscape.

4.3.3 Ensemble Methods

The popular method of ensemble-based DL has shown great success for a variety of

prediction tasks. By training numerous models, the implementation allows for robust

prediction ability in tandem with out-of-distribution stability [63].

A DL ensemble aggregates the results from multiple deterministic NNs trained

on different parameter initializations. The framework of the NNs can be identical

or different as long as the predictive output is of the same form, such as object-wise
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or pixel-wise classification. Due to the random initialization, the model starts at a

different point within the parameter space and can potentially optimize to different

locations within the loss landscape. This is highly advantageous if the purpose is model

aggregation over a non-convex loss space [56]. Following Bayesian language, each

model should ideally concentrate to different basins of attraction which fundamentally

supports diversity within the end prediction. The mean and variance of the prediction

can be calculated if the ensemble is treated as a uniformly-weighted Gaussian mixture

model.

p(y|x) =
1

M

M∑
m=1

pθm(y|x, θm) (4.3.3)

Where M represents the number of models used and pθm is the probability of

prediction y given the input x and the model parameters θm. For classification, this

corresponds to averaging the predictive probabilities. In regression, the ensemble is

further approximated as Gaussian with mean and variance equal to the ensemble

defined below [15].

µ∗(x) =
1

M

∑
m

µθm(x) (4.3.4)

σ2
∗(x) =

1

M

∑
m

(σ2
θm(x)− µ2

θm(x))− µ∗(x) (4.3.5)

The generalization ability of an ensemble is often stronger than any of the in-

dividual models that compose the framework [15]. Therefore, ensembles derive im-

provements in performance and natively include uncertainty measures at the cost of

training multiple large networks. Compared to its Bayesian counterparts, the lack of

prior assumptions allows for more flexible parameter optimization enabling models to

optimize into different areas of the loss landscape.

Ensembling DL predictions was popularized by Lakshminarayanan et al. [15] and
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was evaluated through a series of non-medical regression and classification bench-

marks. Since its inception, the method has been extended for other DL applications.

De Fauw et al. [16] presented the first clinical application of this method on a large

set of optical coherence tomography scans, showing an ensemble was able to achieve

comparable expert level segmentation performance. Mehrash et al. [64] applied this

process to 2D brain, heart, and prostate segmentation tasks for confidence calibration,

showing that ensembles performed better in whole volume and sub-volume cases com-

pared to a non-ensemble framework. In both publications, the uncertainty estimates

were used to improve segmentation in ambiguous regions.

4.4 Reliability of Uncertainty Methods

When applying uncertainty metrics to a DL model, how can we evaluate which method

is superior? In real-world applications, well calibrated uncertainty estimates are cru-

cial in order to determine if a model’s output should be trusted. In this case, proper

calibration means that the model should output inference probabilities representative

of the true likelihood of occurrence [65]. Further, good uncertainty estimates quantify

when we can trust a model’s predictions [66].

It is critically important to know which methods work most reliably under dataset

shift, a common problem in medical data. Dataset shift means that something has

changed between the training, testing, and clinical distributions, where these shifts are

normally attributed to changes in population type, acquisition protocols, and/or an-

notation inconsistencies. Formally, this means that ptest(y|x) 6= ptrain(y|x), as opposed

to the independent and identically distributed (IID) case where ptest(y|x) = ptrain(y|x)

holds. As with any machine, imaging systems need regular quality assurance and up-

grades to ensure that the image quality is consistent and reliable over the system’s
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lifespan. In effect, this attempts to reduce systematic drifts in the clinical distribution.

Therefore, the evaluation of predictive uncertainty is most meaningful during dataset

shift and when models are exposed to OOD samples. These situations should arrive

at increasing test-time uncertainty.

There has been specific work done in attempt to determine how different meth-

ods behave with in-domain and OOD data. Ovadia et al. [67] presented a large-scale

benchmark for a variety of classification problems to investigate dataset shift and OOD

samples on accuracy and uncertainty calibration for VI, MC-dropout, and ensemble

networks. Trained with non-medical data, the quality of the uncertainty degraded

with increasing dataset shift independent of the model used. Overall, ensembles were

consistently seen to perform the best across all of the tested datasets while being the

most robust to shifting, even when using a small number of classification models.

Jungo et al. [68] suggests that uncertainty estimates should be coupled with an

evaluation of model calibration to ensure that the estimates are sensitive to dataset

shift. In a recent study evaluating ML accuracy on ImageNet, Shankar et al. [69] stated

that robustness to small, naturally occurring dataset shifts is a performance dimension

that is not addressed by current benchmarks but is easily handled by humans. In order

to move towards clinical translation, considerable work must be done to ensure that

interpretability metrics, such as predictive uncertainty, can capture these shifts.

4.5 Communicating Predictive Uncertainty

Figure 4.2 illustrates a scenario where the user is provided with a representation

of a voxel-wise predictive uncertainty measure. Uncertainty on a per-voxel basis

can be communicated through the variance of model predictions (obtained through

Ensemble methods, for example) or through a more generalized metric known as

50



M.A.Sc. Thesis – B. McCrindle McMaster – Electrical and Computer Engineering

predictive entropy (PE). Inspired from information theory, PE attempts to capture

the uncertainty of the overall prediction by measuring how close a prediction is to the

mid-point of the activation range (0-1). Entropy measures the expected amount of

information from an event that has an associated probability of occurrence, p, and

mathematically, PE is defined through equation 4.5.1.

PE =
∑
pixels

∑
c

(−p(y∗ = c|x) log2(p(y∗ = c|x))) (4.5.1)

y∗, c, and x are the class activation, the binary class 0 or 1, and the input, respec-

tively. In computer vision, this corresponds to summing the PE for each pixel (event)

in the activation map and reporting a single aggregate PE value. Based on the rela-

tionship in equation 4.5.1, the PE is a symmetric function centered at an activation

probability of 0.50, as shown in figure 4.3.

Figure. 4.3. Predictive entropy vs prediction probability for a binary classification
problem.

Therefore, the largest predictive entropy for an image is where all pixels are given

an activation probability of 0.50, where the output would say “I don’t know what to
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predict”, as this produces the largest entropy. After pixel-wise summation, the PE

can be normalized by the size of the image to report a value bounded between 0 and 1,

indicating certain and uncertain predictions, respectively. As such, PE is an estimate

of the image-level uncertainty [54], rather than a voxel-wise level of uncertainty, as

illustrated in figure 4.2. In combination with an accuracy metric, such as Dice score,

we can observe instances where the structural form of the activation at a particular

test-time threshold produces a representative segmentation, but also estimate how

confident the model is in that prediction. The combination of structural accuracy

and image-wise uncertainty will be the basis of evaluating model performance under

a variety of conditions discussed in chapter 6.
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Chapter 5

Pre-Processing Methodology

In this chapter, the data pre-processing pipelines and chosen model architectures are

discussed. The goal was to implement a pipeline that is able to generate synthetic

damage data from normal patient brains and generate voxel-wise labels for the su-

pervised learning task from a large normative dataset for each synthetically damaged

brain.

5.1 Synthetic Data Generation

To produce well performing DL models for both in-domain and out-of-domain tasks,

a significant amount of data and clever data augmentation techniques during training

are needed. Although there are many open-source healthy brain data repositories that

one can access, there is a lack of accessible scans of mTBI patients. Furthermore, even

if the data are available, the quantity and quality of the data is lacking. Therefore, we

developed a pipeline to generate fractional anisotropy volumes from DTI scans and

apply synthetic damage comparable to true damaged brains only within WM-regions.

For the purposes of data generation, we make the important assumption that a

patient experiencing mTBI will showcase a localized, radiative reduction

in small sub-volumes within the original FA scalar volume. Though real
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damage may deviate away from such an assumption, this will provide a foundation

for the following work. The pipeline below outlines the steps taken to generate such

data. The information specific to MR standardized spaces used for the pipeline are

presented afterwards.

1. Determine a global anatomical WM map for all brains in the dataset. To do so,

all data must be taken into a standard space.

2. From open-source data repositories [1, 2], collect a large set of normal1 brain

MRI DTI data from both male and female populations, with varied ages. Table

5.1 reports the descriptive statistics for the cohort collected. After collection,

process all data to determine FA maps.

Sex Age Range Total Scans

Female 26-30 198

Male 26-30 198

Table 5.1: Set of descriptive statistics describing the collected data used for synthetic
damage generation and modelling. All volumes collected were age-anonymized prior

to access and were placed in the 26-30 age bin on the repositories [1, 2] itself.

3. Remove and set aside a random subset of brains from this normal dataset to be

used for creation of the damaged dataset. The subset was assumed to come from

the same distribution as the normal data. The subset was removed to ensure

that the damaged data is independent of the generated statistical volume (point

4).

4. Determine the voxel-wise FA mean and standard deviation for both male and

female normal data by observing the voxel value at the same (x,y,z) spatial

location for all sex-relevant brains. Each voxel-wise distribution was assumed

1What does “normal” mean? Natural human variability is large and knowing when a sample is
“abnormal” can be difficult. We assume that non-damaged brains are normal, but this might not
always be the case.

54



M.A.Sc. Thesis – B. McCrindle McMaster – Electrical and Computer Engineering

to be Gaussian. 198 female and 198 male brains were used for the generation of

each male/female statistical volume.

5. Randomly select a number of square sub-volumes (bounded between 1-5) and

randomly determine the dimension for each direction (bounded between 10-30

voxels). “Bounded” indicates that the value must be equal to or between the

range specified. Upper and lower bound values are chosen arbitrarily but are

restricted to be smaller than the patient volume and small enough to indicate

localized damage.

6. For each sub-volume, apply an inverted 3D-Gaussian probability density func-

tion with random standard deviations in the x, y, and z-directions. The am-

plitude of the distribution is modulated through the standard deviation, where

the applied damage is bounded such that we apply a 5% to 20% reduction of

the initial FA value. This is a liberal damage estimate but consistent with the

literature [70]. The multivariate normal density distribution used for damage

generation is reported in equation 5.1.1,

fX(x1, ..., xk) = 1− 1√
2πkdet(Σ)

e−
1
2

(x−µ)T Σ−1(x−µ) (5.1.1)

where Σ is a positive-definite covariance matrix, x is a real k -dimensional column

vector, and µ is a k -dimensional mean vector. The amplitude of the distribution

can be modulated through Σ because the integral within an n-sigma interval is

constant and thus, the distribution must sharpen or widen depending on Σ.

7. The set of damage sub-volumes is applied to a single brain from the excluded

normal dataset. Each sub-volume index Vijk is multiplied with the corresponding

FA index FAijk, such that

FA
′

ijk = FAijkVijk (5.1.2)
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where FA
′

ijk < FAijk and for integers 0 ≤ i, j, k ≤ 192.

The damage is applied only to corresponding i, j, k indices of WM in the normal

brain, thus creating a new damaged brain. To ensure that all other tissue is

ignored within the sub-volumes, the WM mask determined in step 1 is utilized.

Sub-volumes are permitted to overlap.

8. Using the mean and standard deviation statistical FA volumes produced in step

4, each voxel within the augmented brain is checked to determine if its value is

greater or less than 2σ from the sex-relevant normal mean. If so, this voxel is

labelled as damaged. By using this construction, not all voxels that experience

a reduction in FA are considered to be statistically significant. After checking

all voxels in the FA volume, a single binary labelled volume is created for the

supervised learning task.

9. Repeat steps 5-8 ten times for each brain in the excluded dataset to increase

the size of the damaged dataset by 10x. During model training, samples from

the same patient will either lie in the training, validation, or testing sets, thus

removing the chance of memorization and artificially boosting test-time perfor-

mance.

The generation of the global WM mask used in the aforementioned pipeline was

constructed using 18 different regions-of-interests (ROIs) related to the global struc-

ture of WM tracts throughout the brain. The ROIs are as follows:
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Brain Regions Associated Symptoms

Left Acoustic Radiation Deficits in speech related comprehension, along

with environmental and verbal auditory agnosia.Right Acoustic Radiation

Callosal Body
Deficits in language, visual, and tactile information

processing. Behavioural changes.

Left Cingulum Deficits in executive control and episodic memory.

Sensations of pain and depression.Right Cingulum

Left Corticospinal Tract Reduced control of voluntary movements. Bilateral pain.

Ipsilateral paralysis, paresis, hypertonia.Right Corticospinal Tract

Fornix Deficits in verbal, declarative, and episodic memory.

Left Inferior Occipito-Frontal

Fascicle
Deficits in social cognition, decision-making, empathy,

attention, multi-tasking, episodic memory, and executive

function.
Right Inferior Occipito-Frontal

Fascicle

Left Optic Radiation Reduced visual field, sensitivity to light, dizziness,

anopsias, scotomasRight Optic Radiation

Left Superior Longitudinal Fascicle Deficits in attention, working memory, theory of mind.

Visuospatial disfunction.Right Superior Longitudinal

Fascicle

Left Superior Occipito-Frontal

Fascicle
Deficits in visual and cognitive processing, reduced

peripheral visual field, difficult grasping objects.
Right Superior Occipito-Frontal

Fascicle

Left Uncinate Fascicle Behavioural changes, social deprivation. Alterations in

risk taking, social conduct, and substance abuse.Right Uncinate Fascicle

Table 5.2: List of Structural Brain Regions, based on the Juelich Histological
probabilistic brain atlas. [3]

The anatomic ROIs were determined using the Juelich Histological probabilistic

brain atlas based on cyto- and myelo-architectonic segmentations [3]. The micro-

scopic and quantitative histological examination of ten human post-mortem brains
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were used in the construction of the atlas. The atlas is transformed into the Montreal

Neurological Institute (MNI)-space for co-registration of new data [1]. Due to the

probabilistic nature of the mapping (i.e. every brain is different), each brain voxel

is given a probability that the voxel is included within a particular ROI. As such,

an inclusion criterion of > 0.9 (90%) is used to classify a voxel into various ROIs.

The combination of all of the ROIs listed creates the desired WM mask. Figure 5.1

shows the WM mask used for damage sub-volumes where brighter regions indicate

ROI overlap due to the inclusion criterion.

Figure. 5.1. Axial, sagittal, and coronal slices of the WM mask generated through the
Juelich Histological Atlas. All WM ROIs indicated through table 5.2 are shown. Brighter

regions indicate ROI overlap based on the 90% inclusion criterion.

Normal, healthy control subjects (ages 26-30, 198 female and 198 male) were

sourced from the following open-source repositories [1, 2].

• The Human Connectome Project (HCP)

• International Consortium for Brain Mapping (ICBM)

• Parkinson’s Progression Markers Initiative (PPMI)
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Inclusion criteria required data to be from either GE or Siemens 3T machines with

b-values = 1000s/mm2. All DWI volumes underwent the following pre-processing,

1. Convert DICOM images to NiFTi files using dcm2niix [71]. This is a lossless

conversion and no (additional) artifacts should be present after conversion.

2. Eddy-current correction using FSL command eddy correct [72].

3. Skull-stripping using the Brain Extraction Tool (FSL-BET2) [72].

4. Co-registration into the MNI152-space. The reference volume is a 1mm isotropic

T1-weighted scan. All DWI volumes were registered into 182x182x218 volumes

using 12 degrees-of-freedom and trilinear interpolation.

5. FSL DTIFit to create the corresponding FA, MD, RD, AD tensor maps [72].

At the end of this pipeline, DTI scans have been used to calculate FA scalar vol-

umes and are ready for data manipulation and statistical analyses. DTI processing

and damage pre-processing was done using FSL and MATLAB. Nicholas Simard, a

PhD student in Electrical and Computer Engineering supervised by Dr. Michael

Noseworthy, kindly developed the entirety of the aforementioned pipeline.

An example image of a FA volume with synthetic damage and its corresponding

label are shown in figure 5.2.
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Figure. 5.2. Example of a FA map from a healthy brain with the addition of the
corresponding label map. Average FA reduction in labelled voxels is 7.2%± 0.6%.

During data generation, 13 female and 13 male brains were set aside from the large

normal dataset for damage augmentation, where the normative dataset was only used

for the construction of voxel-wise labels per brain. Since an assumption was made

that the FA value at an (x,y,z) spatial location across all sex-relevant patients in the

normal dataset was Gaussian, the normal dataset should be as large as possible. By

generating 10x the data from a single brain, 13 brains/sex was chosen as to maintain

a balance between having a large normative dataset and creating a dataset of reason-

able size for training NNs.

With volume dimensions of 182x182x218, there are 218 slices per brain when sliced

in the axial direction. However, a typical MR scan will have empty space above and

below the brain, resulting in images that have no signal. For the purposes of the

analysis, we remove 20% of the slices above and below to avoid having a significant

amount of empty slices within the datasets that would redundantly increase compu-

tation times. When removing 40% of each volume (86 slices), on average 10.2±1.7
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slices contained non-zero values with non-zero proportions of 3.1%±0.7% over all re-

moved slices. The variation in the number of slices with non-zero values is due to

varying morphology over the patient population. With a nominal computation time

across models of 3.43ms per image while on the GPU, the total computation time for

models trained with and without the removed empty slices are 0.054n and 0.033n,

respectively, where n is the number of EPOCHS. As such, removing 40% of the data

results in complete model training 1.6x faster2. With this rational, the middle 60%

of the brain is saved, resulting in 131 slices per registered brain. By increasing the

amount of initial data by 10x through augmentation, the total amount of damaged

brain data available for training, validation, and testing are 17030 images for both

female and male brains (34060 total).

5.2 Model Training, Validation, and Testing

An open-source Github repository called Segmentation Models PyTorch for instantiat-

ing many 2D-UNet architectures with various encoding backbones was utilized [73]. As

such, all model training, validation, and testing was completed using PyTorch 1.4.0,

CUDA 10.1, and a GPU computing cluster with an Intel Core i9-9820X 3.30GHz

CPU, 64GB RAM, and an NVIDIA GeForce RTX 2080 Ti with 12GB of memory.

We instantiate three 2D-UNet models with Resnet101 (total params: 51,506,961),

Vgg19 (total params: 29,056,785), and Densenet121 (total params: 6,320,721) encod-

ing backbones. This was done to observe the differences in performance depending on

how the model encoded information into the latent space. Model results were ensem-

bled and test-time performance was evaluated for each model and ensemble.

With a 2D-UNet architecture, the model is only capable of processing 2D spatial

images with an arbitrary number of colour channels. Furthermore, feeding data into

2timewithout = 0.00343s
3600s (34060)n = 0.033n. timewith = 0.00343s

3600s (56680)n = 0.054n
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the model becomes difficult if the data are stored in a non-standard format. As such,

instead of creating custom PyTorch data loaders that naively take NiFTi volumes,

all NIfTis were converted into tiff slices using Python and Pillow prior to data in-

gestion. This conversion is lossless3. Each image has a unique identifier that relates

the image back to a particular patient (such as 10-img1.tiff, 10-img2.tiff, 20-img1.tiff,

20-img2.tiff, to indicate patients 10 and 20, respectively, where img1 and img2 refer

to two sequential slices within the MR volume). Slices from the same patient were not

used across the training/validation/testing splits and we ensure an equal male/female

balance for each split.

Synthetic damaged patient data was split into training, validation, and testing

sets based a user defined fraction. We utilized a 60/15/25 train/val/test split (20960,

5240, 7860 images), where the data in each set was unique to a subset of patients.

We trained each model with 80 EPOCHS. An initial learning rate of α = 10−4 was

used and reduced by an order of magnitude every 10 EPOCHS if the average training

loss stagnated with a difference of 0.5% compared to the loss at the beginning of the

10 EPOCHS. Adam optimization was used during stochastic gradient descent with

weighted binary cross-entropy loss [75]. Dropout probability of 0.40 was used since

this showed the best test-time results. We chose a batch size of 16.

During training and validation procedures, data were exposed to a set of random

affine transformations including rotation between [-45o, 45o], scaling from [1, 1.3], and

horizontal flipping with probability 0.50. All images were zero-padded to 192x192 to

meet geometric image constrains (i.e. need to be integer sizes of 64*n) for proper CNN

processing [73]. To ensure that models were comparable, the training/validation/test

sets contained proper subject partitions and these sets were the same across models,

but data augmentation during training was kept random to reinforce diversity. A

3Loading a NiFTi image using nibabel [74], extracting the data using nib.get fdata(), and com-
paring the stack of tiffs to the NiFTi image using numpy.allclose(nifti, tiffs) produces equality.
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global seed of 1234 was set to ensure reproducibility. Data augmentation was applied

during test-time under specific conditions and discussed in section 5.3. Each of the

training, validation, and testing pipelines can be seen in smp main.py, Appendix A.

Test-time performance was evaluated through the Dice score with various test-time

threshold conditions ranging from 0-1 with increments of 0.1.

5.3 Baseline Model Performance

The training / validation BCE loss as a function of the epoch for the three models

used for the ensemble is shown in figure 5.3. Validation loss is expected to be noisy

compared to training loss as we are optimizing on the training set explicitly. Tempo-

rary spikes in the validation loss, as seen in Densenet121 at epoch 63, can occur if the

local minima at the current epoch does not generalize as well as the minima at the

previous epoch. If the validation loss continues to follow the training loss after such

a spike, the model has deviated away from this sub-optimal minima.
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Figure. 5.3. BCE Loss vs Epoch for ResNet101, Vgg19, and Densenet121 models for 80
EPOCHS. All models are shown to have trained well as training and validation loss agree

over all EPOCHS.

To succinctly communicate Dice score performance of each model and the ensem-

ble during test-time, the peak mean Dice score (PMDSC) for each distortion value

can be reported. The PMDSC is the largest average Dice score evaluated over the

entire test-set after checking the [0-1] probability threshold range. The threshold is

applied to convert the output activation maps to a binary prediction and thus, a single

threshold must be chosen in order to compare the model prediction to its correspond-

ing label. The PMDSC provides a simple way to communicate model performance

independent of threshold. This rationale is based on the ideal that if a model were to
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be clinically deployed, we would either fix the test-time threshold value where we ob-

tain optimal segmentation accuracy during testing, or implement a threshold slider for

the user during inference. Further discussion regarding the derivation of the PMDSC

is reported in Appendix B.

The DSC of each model and the ensemble as a function of the test-time threshold

prior to augmentation is shown in figure 5.4. Model DSC performance at a particular

threshold is calculated by taking the mean DSC over the entire test-set. Normalized

baseline true positive rate (TPR), false negative rate (FNR), false positive rate (FPR),

true negative rate (TNR), Dice Score, and precision results for all models are reported

in table 5.3. Numbers in the table that have been bolded indicate the best value within

the column. The DSC reported in table 5.3 is the peak DSC for each model illustrated

in figure 5.4. Absolute pixel quantities are provided in table 5.4, where it should be

noted that the number of FPs greatly exceeds the number of TP for all models. This

is hypothesized to be attributed to the models over-predicting lesion size for small

lesions, but further work should investigate this result.
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Figure. 5.4. The DSC score for each model and the ensemble as a function of test-time
threshold prior to augmentation. The threshold chosen is the one that provides the highest
performance. Thresholds for Vgg, Resnet, Densenet, and Ensemble models are 0.45, 0.40,

0.40, 0.40, respectively. Peak DSC is reported in table 5.3.

Models TPR (Recall) FNR FPR TNR PMDSC Precision

Vgg19 0.87 0.13 0.22 0.78 0.83 0.79

Resnet101 0.81 0.19 0.15 0.85 0.81 0.84

Densenet121 0.84 0.16 0.25 0.75 0.80 0.77

Ensemble 0.91 0.091 0.23 0.77 0.85 0.80

Table 5.3: Normalized confusion matricies for each model. Columns report
pre-augmentation (baseline) true positive rate (TPR), false negative rate (FNR),

false positive rate (FPR), true negative rate (TNR), Peak Mean Dice Score
(PMDSC), and precision results. Bolded values indicate the best scoring model in

the column. Baseline ensemble results indicate that it obtains the best performance
for TPR, FNR, FPR, and PMDSC.
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Models TP FN FP TN

Vgg19 11513771 1720447 60833700 215683120

Resnet101 10719718 2514501 41477523 235039296

Densenet121 11116744 2117475 69129204 207387615

Ensemble 12043138 1191080 63598868 212917952

Table 5.4: Baseline confusion matrices with absolute pixel values for each model.
Columns report the TP, FN, FP, and TN values. It should be noted that the

number of FPs is much larger than the number of TPs.
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Chapter 6

Experiments and Results

In this chapter, the experiments conducted to illustrate the effect of in-domain dataset

shift and OOD samples are described. In particular, we are interested in the following

questions:

1. Does predictive uncertainty increase with dataset shift and/or OOD samples?

2. Can predictive uncertainty indicate model prediction confidence for a new test-

time sample?

In the pursuit to answer these questions, we evaluate an ensemble though condi-

tions that alter the testing distribution, a situation that is likely to occur during model

deployment. This is done through various levels of geometric distortions, adversarial

perturbations, and decreasing signal-to-noise ratios. The results are communicated

through the overall accuracy of the segmentation, the PE, and the variation in PE

across models for the same test-time image. The correlations between each of these

metrics are reported through the Spearman rank coefficient, ρ, to account for poten-

tial non-linear relationships.

Varying the SNR is understood as an in-domain dataset shift, where adversarial

perturbations and image distortion are true OOD augmentations applied to in-domain
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data. It should be noted again that these augmentations were not applied during the

training / validation procedures of the network. It is hypothesized that decreased

Dice scores, increased PE, and increased PE variability with more extreme

test-time augmentations should be observed.

To illustrate the output from the set of models used in the ensemble, figure 6.1

reports the pixel-wise activation maps for each model, the PE of the activation map,

and the binarized image after thresholding. All models were given the same FA slice.

Figure. 6.1. Model predictions for a single FA slice to illustrate the variability that can
occur between Resnet101, Vgg19, Densenet121, and ensemble models. PE for the

prediction is reported in the title of the binary outputs. Results reported in table 6.1.
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Model Dice Score
PE

(Non-Norm)

PE-Std

(Non-Norm)

Resnet101 0.54 319.15 N/A

Vgg19 0.54 342.35 N/A

Densenet121 0.32 437.93 N/A

Ensemble 0.48 376.29 51.41

Table 6.1: Dice Score, PE, and PE-Std for all models shown in figure 6.1. The
ensemble reports a mean Dice Score over individual model predictions and a PE

value slightly higher than the PEmean = 366.48 < 376.29.

6.1 Distortion

Distortion was applied by using the torchvision.transforms.RandomPerspective func-

tion with various degrees of distortion scaling set to 0.10, 0.30, 0.50, 0.70, or 1. The

function performs a random perspective transformation with probability p, where we

choose p = 1. This is a linear projection in 3D space and any interpolation needed is

done using bi-linear interpolation. The deformation of brain slices with these varying

degrees of distortion is shown in figure 6.2.

Figure. 6.2. A single coronal slice showing FA with increasing distortion scaling.

As the scaling becomes large, the distortion observed becomes characteristically
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unrealistic in the context of imaging. However, we are interested in observing the

results in situations where the distortion is exacerbated even if this is outside of a

physical regime. The PMDSC for all models and PE histograms for the ensemble for

the chosen distortion conditions are shown in figures 6.3 and 6.4 below.

Figure. 6.3. Peak Mean Dice Score (PMDSC) for increasing levels of test-time distortion.
ρensemble = −0.94. A linear trend towards decreasing PMDSC with increasing distortion is
observed. 2σ confidence intervals indicate the variability in Dice score over all samples in

the test set at the threshold that obtains the highest mean segmentation accuracy.
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Figure. 6.4. Histograms of the non-normalized predictive entropy (PE) with increasing
distortion for the ensembled model. x and y axes are the PE and number of counts,

respectively. As the distributions are broad, the median is reported as it is more robust to
outliers.
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Figure. 6.5. Histograms of the non-normalized predictive entropy variability (PE-Std)
with increasing distortion for the ensembled model. x and y axes are the PE and number of
counts, respectively. PE Std values are determined by taking standard deviation of the PE
values produced from the Resnet, Vgg, and Densenet predictions for each image in the test
set. As the distributions are broad, the median is reported as it is more robust to outliers.
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Figure. 6.6. Normalized PE-distortion whisker plot summarizing median values with
boxes extending to the upper and lower quartiles of the data. Whiskers extend to show the

data range. Outliers are shown as points. ρ = 0.20

Figure. 6.7. Normalized PE-distortion Std whisker plots summarizing median values
with boxes extending to the upper and lower quartiles of the data. Whiskers extend to

show the data range. Outliers are shown as points. ρ = 0.94
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Distortion Peak Mean DSC (Std)
Median PE

[Norm, Non-Norm]

Normalized Median PE

[Lower, Upper Quartile]

Median PE Std

[Norm, Non-Norm]

Normalized Median PE Std

[Lower, Upper Quartile]

0 0.851(0.164) 0.00982, 362.0 0.00415, 0.0143 0.00131, 48.29 0.000635, 0.00222

0.10 0.649(0.0604)∗ 0.00811, 299.04∗ 0.00361, 0.0114 0.00128, 47.37∗ 0.000579, 0.00207

0.30 0.683(0.0844)∗ 0.00799, 294.91∗ 0.00350, 0.0113 0.00150, 55.46∗ 0.000702, 0.00255

0.50 0.465(0.0309)∗ 0.00765, 282.18∗ 0.00448, 0.0122 0.00214, 79.07∗ 0.00134, 0.00304

0.70 0.352(0.0148)∗ 0.00849, 313.02∗ 0.00549, 0.0113 0.00265, 108.68∗ 0.00183, 0.00415

1 0.195(0.0122)∗ 0.0192, 710.85∗ 0.0141, 0.0227 0.00570, 210.19∗ 0.00455, 0.00755

Table 6.2: Ensemble segmentation performance and predictive entropy with
increasing distortion. *: difference relative to baseline is statistically different
(one-sample t-test, p < 0.05/N , N = 7860). Image normalization [192x192].

To determine if the ensemble results for each distortion are statistically significant,

we take the difference between each distortion dataset and the baseline to ensure in-

dependence. Using a one sample t-test with the Bonferroni correction of α/N for each

of the PMDSC and PE difference, distortion values that result in a rejection of the

null hypothesis is indicated with an asterisk (*), as seen in table 6.2.

As seen in figure 6.4, we observe an strong linear trend towards poorer PMDSC

with increasing distortion (ρensemble = -0.94). Interestingly, there is a flat relation-

ship between the ensemble PE and increasing distortion (until a distortion value of

1) which was not expected. We can qualitatively observe that the PE distributions

become broadened with increasing distortion, but this is not captured by the median

value alone. Therefore, a PE value should be coupled with an estimation of the varia-

tion between all model predictions prior to aggregation. When reporting the PE-Std

between Resnet101, Vgg19, and Densenet121 U-Net models for each image during

test-time, as seen in Figure 6.7, we begin to observe that the set of models show in-

creasing prediction variability with increasing distortion. This follows the expectation

that each model will have optimized to learn particular features within the dataset

which manifest in performance variability during these test-time augmentations. With

increasing distortion, models are expected to perform inconsistently with each other

on the same test-time image.
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It is key to note that the absolute value of the PE is low regardless of the distortion,

indicating that voxel-wise activation maps for all model predictions lie close to either

0 or 1, as shown in figure 4.3. With image sizes of 192 × 192, the maximum non-

normalized PE would be 36864. Therefore, in the most extreme distortion case, we

only observe an absolute PE of 1.9% of the total range. When reporting the median

PE and PE-Std percentage changes relative to their respective baseline values, we can

arrive at important trends independent of the absolute PE values, as reported in table

6.3.

Distortion
Relative PE %

Change

Relative PE-Std %

Change

0 N/A N/A

0.10 -17.4% -1.8%

0.30 -18.8% 14.8%

0.50 -22.0% 63.7%

0.70 -13.5% 125.2%

1 96.4% 335.3%

Table 6.3: Percentage change of the median PE and PE-Std relative to baseline
values for increasing distortion.

These results suggest that even though we have a weak relationship of increasing

PE, the relative PE-Std percentage indicates that we can observe significant changes

in the median value once the distortion becomes geometrically noticeable (0.30), as

seen in Figure 6.2. Therefore, a single PE value alone cannot indicate whether or not

the ensemble is uncertain or not, but rather, the variability between model predictions

provides valuable insight as to how we should interpret the ensembled prediction for

OOD data.
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6.2 Adversarial Perturbations

ML models have been shown to perform particularly poor when exposed to adver-

sarial examples – in-domain data that has been corrupted by some perturbation that

explicitly increases the loss function. The magnitude of the adversarial perturbation

is bounded such that the L∞-norm is less than some user-defined hyperparameter ε.

Mathematically, ||X − X̂||∞ < ε. Epsilon should be chosen to cause an imperceptible

perturbation of the input image X. During test-time, an in-domain image is propa-

gated through the network and the gradient of the loss function with respect to the

input image is determined through back-propagation. Here the Fast-Gradient Sign

Method (FGSM) [76] is employed to generate an adversarial example, X̂, through

X̂ = X + ε sign(∇XE(X, Ytrue)) (6.2.1)

An example X̂ with ε = 0.01 along with the perturbation map is shown in figure

6.8.

Figure. 6.8. Coronal slice of FA with adversarial perturbation ε = 0.01. The adversarial
perturbation map adds or subtracts the value of ε on a per-voxel basis from the original

FA map based on the gradients calculated through equation 6.2.1 to create X̂.

Perfect adversarial perturbations are augmentation conditions that one would not

expect to find in “in the wild”. However, machine learning systems are vulnerable

to such conditions and their performance in these situations is of interest. We apply
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ε = 0.01, 0.03, and 0.05 and evaluate the performance of the ensemble under these

conditions. The PMDSC and PE histograms for these conditions are shown below.

Figure. 6.9. Peak Mean Dice Score (PMDSC) vs increasing test-time ε via FGSM.
ρ = −0.20. 2σ confidence intervals indicate the variability in Dice score over all samples in

the test set at the threshold that obtains the highest mean segmentation accuracy.
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Figure. 6.10. Histograms of the non-normalized predictive entropy (PE) with increasing
ε for the ensembled model. x and y axes are the PE and number of counts, respectively.
As the distributions are broad, the median is reported as it is more robust to outliers.
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Figure. 6.11. Histograms of the non-normalized predictive entropy variability (PE-Std)
with increasing ε for the ensembled model. x and y axes are the PE and number of counts,
respectively. PE Std values are determined by taking standard deviation of the PE values
produced from the Resnet, Vgg, and Densenet predictions for each image in the test set.
As the distributions are broad, the median is reported as it is more robust to outliers.

Figure. 6.12. Normalized PE-ε whisker plot summarizing median values with boxes
extending to the upper and lower quartiles of the data. Whiskers extend to show the data

range. Outliers are shown as points. ρ = 1.0
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Figure. 6.13. Normalized PE-ε Std whisker plot summarizing median values with boxes
extending to the upper and lower quartiles of the data. Whiskers extend to show the data

range. Outliers are shown as points. ρ = 1.0

ε Peak Mean DSC (Std)
Median PE

[Norm, Non-Norm]

Normalized Median PE

[Lower, Upper Quartile]

Median PE Std

[Norm, Non-Norm]

Normalized Median PE Std

[Lower, Upper Quartile]

0.01 0.0216(0.0730)* 0.0224, 825.75* 0.0112, 0.0333 0.0032, 126.08* 0.00168, 0.00620

0.03 0.0230(0.0695)* 0.0377, 1389.77* 0.0273, 0.0475 0.00571, 210.49* 0.00304, 0.00927

0.05 0.0295(0.0761)* 0.0463, 1706.80* 0.0404, 0.0549 0.00822, 325.14* 0.00594, 0.0127

Table 6.4: Ensemble segmentation performance and predictive entropy with
increasing ε. *: difference relative to baseline is statistically different (one-sample

t-test, p < 0.05/N , N = 7860). Image normalization [192x192].

As seen in figure 6.9, the PMDSC drastically decreases with small ε, leading to a

correlation of ρ = −0.20. Since adversarial examples were not used during training, it

comes of no surprise that the models are not robust to these during test-time. While

the slight increase in PMDSC with increasing ε was not expected, obtaining 2σ con-

fidence intervals at each ε shows that we include zero, leading to the assumption that

the model performs equally poor at all ε. Interestingly, even with similar test-time

performance, both the PE and PE-Std increase along with increasing ε, each with

a perfect Spearman rank correlation, ρ = 1. This is consistent with our hypothesis

that the model should become uncertain with OOD samples, but it is important to
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see increasing PE and PE-Std in the absence of continually decreasing PMDSC. This

observation is in contrast to the test-time PE distortion trend shown in figure 6.7,

where PE does not clearly increase with increasing distortion.

With these observations, inferring the behaviour of one metric based on the other

is challenging. However, as seen in figures 6.7 and 6.13, the variability in model PE

is apparent regardless of the test-time augmentation that occurs.

The table below reports the percentage change of the median PE and PE-Std for

increasing ε.

ε
Relative PE %

Change

Relative PE-Std %

Change

0 N/A N/A

0.01 128.1% 161.1%

0.03 283.9% 335.9%

0.05 371.5% 573.3%

Table 6.5: Percentage change of the median PE and PE-Std relative to baseline
values for increasing adversarial perturbations. There is both a strong increase in

PE and PE-Std relative to the baseline value.

With greater than 100% change relative to baseline values for all ε, it is clear

that the ensemble is indicating representative uncertainties where there is a drastic

decrease in model performance.

6.3 Signal-to-Noise Ratios

The noise associated with any image is an important factor determining if objects

or features can be discerned from the background. For the following analysis, we

evaluate the ensemble’s performance under decreasing SNR by corrupting the signal

with random Gaussian distributed noise — a form of in-domain dataset shift. SNR

82



M.A.Sc. Thesis – B. McCrindle McMaster – Electrical and Computer Engineering

degradation was applied to each image independently and examples of these SNR

image slices are shown in figure 6.14.

Figure. 6.14. A coronal brain image showing FA corrupted with various levels of random
Gaussian distributed noise. For simplicity it was assumed that noise in parametric

diffusion images is Gaussian, when it may very well not be.

The estimation of the applied SNR degradation is calculated by first determining

the baseline SNR of a T2-weighted image acquired during diffusion imaging (i.e. b =

0s/mm2), since this is the best SNR we can expect to see. Since we are most interested

with the signal of WM, we measure the average signal of an ROI within the corpus-

callosum, a deep WM structure. We divide this signal by the standard deviation of

the noise from an ROI far away from the brain. This is to avoid correlated noise

artifacts present in the background as a result of shifting each line in k-space from

the center since the gradients rasterize the data collection. 2D slices with ROIs and

noise correlation are shown in figure 6.15.
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Figure. 6.15. T2-weighted diffusion scan (b-value = 0s/mm2) with signal and noise ROIs
shown. Brain ROI is the corpus-callosum, a deep WM structure. Regions of the

background noise are shown to be correlated with the brain due to an shifted k-space,
indicated with red arrows.

When measuring the baseline SNR over all 26 volumes, an SNR variability of

30.4 ± 1.3 was seen. During degradation, we apply noise such that the standard

deviation of the additional noise distribution is equal to µBS

n
1, where µBS is the mean

brain signal within an ROI, and n is the degradation value. Therefore, the SNR with

increasing degradation is calculated using the equation below.

SNR =
µBS
µBS

n

= n (6.3.1)

It is important to reiterate that every image is going to have a different mean

signal within the chosen WM ROI. Furthermore, since SNR degredation is applied

to each slice independently during testing, not all slices through the MR volume are

going to contain the corpus-callosum, the ROI used for measuring the baseline SNR.

1BS = Brain Signal
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As such, the calculation of µBS for each slice is done by taking the mean signal of all

WM in the slice. Therefore, the degradation values reported are only estimates of the

true SNR for each image during test-time. An important assumption made is that all

slice used during the following analysis have a similar baseline SNR, but there could

be some unaccounted for SNR variability acting as a confounding variable during the

following analysis.

We choose n = 20, 10, 5, 2.5, and 1 for the analysis. The figures below show the

PMDSC and PE histograms for the ensemble while exposed to these SNR conditions.

Figure. 6.16. Peak Mean Dice Score (PMDSC) vs decreasing test-time SNR via random
Gaussian distributed noise. ρensemble = −0.10. 2σ confidence intervals indicate the

variability in Dice score over all samples in the test set at the threshold that obtains the
highest mean segmentation accuracy. As the distributions are broad, the median is

reported as it is more robust to outliers.
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Figure. 6.17. Histograms of the non-normalized predictive entropy (PE) with decreasing
SNR for the ensembled model. x and y axes are the PE and number of counts, respectively.
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Figure. 6.18. Histograms of the non-normalized predictive entropy variability (PE-Std)
with decreasing SNR for the ensembled model. x and y axes are the PE and number of

counts, respectively. PE Std values are determined by taking standard deviation of the PE
values produced from the Resnet, Vgg, and Densenet predictions for each image in the test

set.
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Figure. 6.19. Normalized PE-SNR whisker plot summarizing median values with boxes
extending to the upper and lower quartiles of the data. Whiskers extend to show the data

range. Outliers are shown as points. ρ = 0.9

Figure. 6.20. Normalized PE-SNR Std whisker plot summarizing median values with
boxes extending to the upper and lower quartiles of the data. Whiskers extend to show the

data range. Outliers are shown as points. ρ = 1.0
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SNR Peak Mean DSC (Std)
Median PE

[Norm, Non-Norm]

Normalized Median PE

[Lower, Upper Quartile]

Median PE Std

[Norm, Non-Norm]

Normalized Median PE Std

[Lower, Upper Quartile]

20 0.804(0.138)* 0.00933, 343.57* 0.00401, 0.0141 0.001289, 47.54* 0.00169, 0.00621

10 0.762(0.113)* 0.008857, 326.50* 0.00388, 0.0149 0.001344, 49.55* 0.00304, 0.00927

5 0.764(0.136)* 0.0109, 401.82* 0.00452, 0.0241 0.001769, 65.22* 0.00594, 0.0127

2.5 0.779(0.0526)* 0.0250, 921.60* 0.0112, 0.0535 0.00447, 165.13* 0.00197, 0.00858

1 0.770(0.0898)* 0.0380, 1400.09* 0.0350, 0.0408 0.0137, 503.97* 0.00890, 0.0169

Table 6.6: Ensemble segmentation performance and predictive entropy with
decreasing SNR. *: difference relative to baseline is statistically different

(one-sample t-test, p < 0.05/N , N = 7860). Image normalization [192x192].

As seen in Figure 6.16, the PMDSC shows a weak relationship with decreasing

SNR (ρ2
ensemble = -0.10), which was not expected. At an SNR of 1, we only observe a

decrease in ensemble performance of 9.4% relative to the baseline PMDSC.

Seen in Figure 6.17, the PE distribution is relatively unaffected until an SNR of

2.5 where we observe a bi-modal behaviour into a complete distribution shift at an

SNR of 1. As such, the median PE value does not clearly increase with decreasing

SNR until an SNR of 2.5, which was not expected. We observe a similar behaviour

in the PE-Std distribution, as seen in Figure 6.20, where the median PE-Std value

does not clearly increase until an SNR of 2.5. Both the PE and PE-Std show strong

Spearman rank correlations of 0.9 and 1, respectively, with respect to SNR. The table

below reports the percentage change of the median PE and PE-Std for decreasing

SNR.

SNR
Relative PE %

Change

Relative PE-Std %

Change

30 N/A N/A

20 -5.1% -1.5%

10 -9.8% 2.6%

5 11.0% 35.1%

2.5 154.6% 242.3%

1 286.7% 943.6%

Table 6.7: Percentage change of the median PE and PE-Std relative to baseline
values for decreasing SNR.
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Similar to previous results, we can obtain useful information regarding the uncer-

tainty of an ensemble prediction irrespective of the PMDSC. In this case, we observe

almost uniform test-time performance over the entire SNR range, but continue to

discover significant inter-model variability at lower SNR values. These results are

promising in that the ensemble could arrive at excellent test-time performance with

large SNR degradation while indicating representative uncertainties when exposed to

in-domain dataset shift.
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Chapter 7

Discussion

In this work, we reported how an uncertainty metric such as PE changes under various

test-time conditions. Here, we summarize the key findings and indicate relationships

that are not initially clear.

Ensembles should be able to derive improvements in test-time performance com-

pared to a single model and report low or high uncertainty for in-domain and out-

of-distribution samples, respectively. As such, the relationships between the PMDSC

and the PE should follow the following logic,

PMDSC PE, PE-Std Relationship

High to Low Low to High In-domain dataset shift.

High Low
In-domain samples.

Model performing well.

Low High OOD samples.

Low Low
In-distribution samples.

Model performing poorly.

Table 7.1: Expected relationships between model performance and PE, PE-Std.

For cases where we know the data are from the training distribution, the model

should perform well and the uncertainty reported by the PE or through the PE vari-

ability should be low. This is an example of a well trained model. This is most
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easily seen at the ε = 0 adversarial perturbation case, where ensemble performance is

high at 0.851, median PE is 0.00982, and median PE-Std is 0.00131, as reported in

tables 6.2 and 6.4. If the model is reporting low uncertainty where we observe poor

test-time performance, this is an example of a poorly trained model. Where these

relationships become complicated are when the model is exposed to either OOD data

or data that is similar to the training distribution but has shifted in some way that

hinders performance (otherwise known as in-domain dataset shift). In the former case,

the model should show both a drastic decrease in performance along with indications

of high uncertainty. In the latter, the test-time performance can range from high to

low depending on how much the distribution has shifted and the uncertainty should

increase with this shift.

While the absolute values of PMDSC, PE, and PE-Std are important for deter-

mining an uncertainty threshold, the correlations between these data can also reveal

interesting relationships. The empirically determined correlations between the re-

ported uncertainty metrics and test-time performance for each of the augmentation

conditions are reported in table 7.2.

Augmentation PMDSC–Aug. (ρ) PMDSC–PE (ρ) PMDSC–PE-Std (ρ) PE–PE-Std (ρ)

Distortion Strong (-0.94) Weak (-0.26) Strong (-0.83) Weak (0.314)

Adversarial Examples Weak (-0.20) Strong (-1) Strong (-1) Strong (1)

SNR Weak (-0.10) Weak (-0.30) Weak (-0.10) Strong (0.90)

Table 7.2: Empirically determined correlations between model performance
(PMDSC), the severity of the augmentation condition (Aug.), PE, and PE-Std.

With increasing distortion, the PE and PE-Std distributions the low correlation

(ρ = 0.314) indicates that these two relationships are weakly related to each other.

With the relative changes reported in table 6.3, we observe that the inter-model vari-

ability is a much stronger uncertainty metric when compared to PE alone since a larger

relative change is seen at smaller distortion values. From this observation, we calculate
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that the the PMDSC–PE correlation is much weaker than the PMDSC–PE-

Std correlation (ρ = −0.26 and ρ = −0.83, respectively). Furthermore, distor-

tion was the only test-time augmentation condition where a progressive decrease in

the PMDSC was observed, but this behaviour was only expected from samples gener-

ated from a shifted distribution. As we have interpreted the distortion data as OOD,

we hypothesize that this trend arises due to potentially similar augmentations dur-

ing training-time. With the inclusion of random affine scaling and rotations during

training, these operations could potentially mimic the random perspective transfor-

mation obtained through less-severe distortions (0.10, 0.30). As distortion becomes

prominent (> 0.50), the test-time data becomes characteristically OOD, but smaller

distortions seem to consist of shifted in-domain data, which would explain the linear

decrease in PMDSC and slow increase in PE-Std.

With adversarial examples, the PMDSC–PE and PMDSC–PE-Std correla-

tions are strong, arriving at a ρ = −1 for both cases. This was expected as the

PE–PE-Std correlation shows a strong positive relationship of ρ = 1. Adversarial ex-

amples showcase the expected relationship indicated in table 7.1, where the PMDSC

is low for all OOD samples and the associated uncertainty shows a strong correlation

with increasing perturbations. Furthermore, adversarial examples arrive at the largest

relative percentage changes for the PE or PE-Std distributions along with the largest

absolute uncertainties (table 6.4, Median PE column) for all augmentation conditions

considered, even for small ε. As such, the ensemble is clearly sensitive to OOD samples

/ adversarial attacks, and reports a representative uncertainty trend for these cases.

However, it would be desirable for the model to output larger absolute uncertainties

(closer to PE = 1) in the OOD cases rather than relying on the relative trend.

Decreasing SNR shows the most interesting relationships out of all of the test-time

augmentation conditions. While the underlying signal is characteristically in-domain,
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the explicit dataset shift does not result in significant reductions in performance. Since

the PMDSC over the SNR range is highly uncorrelated with the severity of degrada-

tion (ρensemble = −0.10), the PE and PE-Std also fail to show any significant

correlation with the PMDSC (ρ = −0.30 and ρ = −0.10, respectively). The

PE–PE-Std correlation is strong (ρ = 0.90) even with close to uniform test-time per-

formance over the SNR range. With these results, we hypothesize that the ensemble

is fairly robust to in-domain shifts that preserve the geometric integrity of the un-

derlying signal (i.e, the ensemble seems to be robust to noise). Similar to the results

discussed previously, the uncertainty clearly increases with increasing shift, which is

a positive result for clinical deployment as many MR scans can be corrupted with

various degrees of systematic or random noise as figure 6.15 clearly illustrates.

Finally, it is important to clearly illustrate the relationship between model perfor-

mance, a chosen uncertainty metric, and a chosen test-time augmentation scheme, as

this could derive uncertainty threshold(s) and observations not initial clear. As the

augmentation condition is easy to quantify, figure 7.1 showcases the PE-SNR relation-

ship with DSC colour coating for the ensemble. Each point is a single image in the

test set.

Figure. 7.1. PE vs increasing SNR for each image in the test set with colour coating
corresponding to model performance (DSC).
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Under SNR 30, 20, and 10, the model performance is high with low PE, indicative

of a well calibrated model. Samples with larger normalized PE start to perform

poorly. For SNR 5 and 2.5, a similar result is seen but samples with low normalized

PE start to showcase poorer performance (moving from yellow to orange). Lastly,

an SNR condition of 1 results in a concentration of well performing samples with

poor performing samples with lower and higher PE around it. This is indicative

of poor model calibration at large augmentation conditions. With these results, an

uncertainty threshold could be determined to indicate when predictions should not be

trusted for conditions close to the training distribution (SNR 30, 20, 10). As model

miscalibration becomes evident during SNR 5, 2.5, and 1 conditions, determining a

singular threshold becomes more difficult. However, this might not be the case for

all augmentation conditions considered and further work must be done to see if this

observation is consistent.

7.1 Summary

The goal of the conducted research was to answer the following questions:

1. Does predictive uncertainty increase with dataset shift and/or OOD samples?

2. Can predictive uncertainty indicate model prediction confidence for a new test-

time sample?

PE alone does not seem to indicate strong correlative relationships between model

performance and uncertainty for all of the test-time conditions presented (as reported

in table 7.2). When compared to the PE-Std, the variability between models often

leads to stronger correlations with respect to model performance, indicating that PE-

Std could potentially be used as a more reliable estimate for uncertainty. Though

PE can increase with increasing dataset shift and/or OOD samples, using

an ensemble of well-trained DL models to report test-time PE variability
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seems like a viable method for the detection of OOD or drastically shifted

data.

However, the surprisingly stable test-time performance of degrading SNR data

brings to question the replicability of such an analysis, as this was a majorly unex-

pected result. Furthermore, all of the distributions that describe the PE with in-

creasing augmentation are heavily right-skewed, which is clearly evident in all of the

whisker plots reported in 6. As we used the median values alone to acquire correlation

estimates, the correlations could change in favour of PMDSC–PE if the distributions

were to heavily concentrate around the mean. This would be particularly useful to

see in distortion cases, where the little to no change in PE seen in figure 6.6 with

increasing distortion could be confounded in these broad distributions.

Finally, as previously mentioned, the absolute values of the PE itself are close

to zero for all of the test-time augmentation conditions that we considered. This

further leads us to the hypothesis that inter-model variability is a more representative

metric for uncertainty as it would be sensitive in the low-PE regime, but further

testing must be done to confirm this hypothesis. However, even within this low-PE

range, an uncertainty decision boundary could be formulated depending on model

calibration, as seen in figure 7.1. As this analysis was only completed for decreasing

SNR conditions, further work must be done to see if this observation is consistent

under other augmentation settings.
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Chapter 8

Conclusion

In this thesis, the application of deep ensembles for uncertainty quantification in

MR diffusion imaging was explored. We hope this thesis provides a stepping stone

and the motivation needed for further work to investigate the use of such a tool for a

wider range of clinical imaging tasks. With robust ML models providing uncertainties

associated to test-time predictions, we are one step closer to the clinical adoption of

the most advanced research in pursuit of improving the health outcomes of those we

love.

Future Work

As with any project, the decisions that are made throughout might not always be op-

timal. For future work that focuses on the detection and segmentation of microstruc-

tural WM damage in mTBI patients, the inclusion of multi-channel information to

utilize the FA, MD, AD, RD scalar maps together might reveal important relation-

ships that were not accounted for in this thesis. Additionally, 3D model architectures

that enforce the localization of signal within space would be highly advantageous to

preserve relationships between brain slices.

Of course, the generation of the synthetic mTBI data is biased, where we assumed
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a localized radiative damage profile within WM regions. Though this was done to

reduce the complexity of the data generation process, a deeper literature review fo-

cused on how brain injuries manifest in WM changes would be necessary if synthetic

data generation were to be applied in the future. Furthermore, since the distribution

was modulated through the covariance matrix Σ, pixel variances much larger than the

bounds of damage sub-volume could arise in artifacts at the boundary of the box, as

there would be non-zero reductions at these boundaries. Ensuring that the distribu-

tion has a smooth transition to zero at the boundaries of the sub-volume is a note for

future work.

Throughout this thesis, we observed the advantages of utilizing and contrasting

an ensemble of deep NNs for prediction. To potentially boost test-time performance,

weighting ensemble predictions by the relative model performances could have proven

to arrive at more stable test-time predictions. Further, more models could have been

used for the ensemble to observe both potential performance improvements and the

threshold of diminishing returns.

Finally, we acknowledge that there is no one model that is universally better

than another. One interesting observation that is seen within this thesis is that

UNet models with different encoding / decoding backbones arrive at similar test-

time performances even with a significantly varying number of parameters. Inline

with a growing body of literature [77], the hyperparameters that define the training

process of the network seem to influence the final result much more significantly than

the architecture itself. As significant time was placed into tuning hyperparameters

for optimal performance behind the scenes, the work completed here continues to

emphasize this point. As such, automating the search for ideal hyperparameters is a

clear direction of future work.
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Appendix A

Code

A.1 Damage Pre-Processing Code

All Python code is available at mccrinbc’s GitHub Repository [78].

A.1.1 main.m

close a l l ;

clear a l l ;

%s c r i p t to de termine voxe l−wise s t a t i s t i c a l i n f o rma t i on f o r normal d a t a s e t .

%Datase t i n c l u d e s Female/Male from 26−30 (267 , 222)

%Brains are a l r e a d y norma l i z ed a t t h e end o f t h e p i p e l i n e because DTI FA

%va l u e s on l y range from 0−1. Any v a l u e s > 1 are a t t r i b u t e d to e i t h e r no i s e

%or subop t ima l s k u l l s t r i p p i n g , t hu s t h ey are t r unca t e d to 1 .

l o ad b ra i n s = true ;

n i f t i d i r = ”/Users / br ianmccr ind le /Documents/Research/Normal Dataset FA 26 −30”;

subd i r = [” Female ” , ”Male ” ] ;

%load in a WM mask t h a t i n c l u d e s 18 s t r u c t u r a l r e g i on s from MNI−152 space

WM mask = n i f t i r e a d (”/ Users / br ianmccr ind le /Documents/Research/Normal Dataset FA 26 −30/ show al l ROIs . n i i . gz ” ) ;

WM mask = WM mask > 0 ; %Make a l l v a l u e s 1 .

rotateDims = [ 1 , 3 , 2 ] ;

WM mask = permute (WM mask, rotateDims ) ; %permute to have s l i c e s o f 182 x182x218

i f l o ad b ra i n s == f a l s e

%Ca l c u l a t e Voxel−Wise Z−Scor ing

for i i = 1 : length ( subdi r )

[mean, var iance , std ] = c a l c u l a t e S t a t s ( n i f t i d i r , subd i r ( i i ) , WM mask, rotateDims ) ; %Ca l l e x t e r n a l f u n c t i o n

i f subdi r ( i i ) == ”Female”

meanF = mean ;
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varianceF = var iance ;

stdF = std ;

else

meanM = mean ;

varianceM = var iance ;

stdM = std ;

end

end

save ( ’ /Users / br ianmccr ind le /Documents/MATLAB/TBI Research/Z−Score /meanF .mat ’ , ’meanF ’ ) ;

save ( ’ /Users / br ianmccr ind le /Documents/MATLAB/TBI Research/Z−Score / var ianceF .mat ’ , ’ var ianceF ’ ) ;

save ( ’ /Users / br ianmccr ind le /Documents/MATLAB/TBI Research/Z−Score / stdF .mat ’ , ’ stdF ’ ) ;

save ( ’ /Users / br ianmccr ind le /Documents/MATLAB/TBI Research/Z−Score /meanM.mat ’ , ’meanM ’ ) ;

save ( ’ /Users / br ianmccr ind le /Documents/MATLAB/TBI Research/Z−Score /varianceM .mat ’ , ’ varianceM ’ ) ;

save ( ’ /Users / br ianmccr ind le /Documents/MATLAB/TBI Research/Z−Score /stdM .mat ’ , ’ stdM ’ ) ;

else

load ( ’ /Users / br ianmccr ind le /Documents/MATLAB/TBI Research/Z−Score /meanF .mat ’ , ’meanF ’ ) ;

load ( ’ /Users / br ianmccr ind le /Documents/MATLAB/TBI Research/Z−Score / var ianceF .mat ’ , ’ var ianceF ’ ) ;

load ( ’ /Users / br ianmccr ind le /Documents/MATLAB/TBI Research/Z−Score / stdF .mat ’ , ’ stdF ’ ) ;

load ( ’ /Users / br ianmccr ind le /Documents/MATLAB/TBI Research/Z−Score /meanM.mat ’ , ’meanM ’ ) ;

load ( ’ /Users / br ianmccr ind le /Documents/MATLAB/TBI Research/Z−Score /varianceM .mat ’ , ’ varianceM ’ ) ;

load ( ’ /Users / br ianmccr ind le /Documents/MATLAB/TBI Research/Z−Score /stdM .mat ’ , ’ stdM ’ ) ;

end

%Here we want to c r e a t e a system where we app l y a s e t o f damage p r o f i l e s to

%a s i n g l e b ra in and have t h e co r r ep sond ing l a b e l .

%We have 25 b r a i n s per se t , so we ’ re a p p l y i n g 40 d i f f e r e n t damage p r o f i l e s

%to each b ra in to have a t o t a l o f 1000 b ra in volumes per s e t :

% 1000 Male

% 1000 Female

b r a i n l o c s = [”/ Users / br ianmccr ind le /Documents/Research/Normal Dataset FA 26 −30/Female beforeDamage ” , . . .

”/Users / br ianmccr ind le /Documents/Research/Normal Dataset FA 26 −30/Male beforeDamage ” ] ;

s a v e l o c s = [”/ Users / br ianmccr ind le /Documents/Research/Normal Dataset FA 26 −30/Female afterDamage ” , . . .

”/Users / br ianmccr ind le /Documents/Research/Normal Dataset FA 26 −30/Male afterDamage ” ] ;

l a b e l l o c s = [”/ Users / br ianmccr ind le /Documents/Research/Normal Dataset FA 26 −30/Female l abe l s ” , . . .

”/Users / br ianmccr ind le /Documents/Research/Normal Dataset FA 26 −30/Ma l e l abe l s ” ] ;

%fo r i i = 1 : l e n g t h ( b r a i n l o c s ) %Loop the 2 d a t a s e t s

for i i = 1 :2

d i r l i s t = dir ( b r a i n l o c s ( i i ) ) ;

b ra in s = d i r l i s t (˜ ismember ({ d i r l i s t . name} , { ’ . ’ , ’ . . ’ , ’ . DS Store ’ } ) ) ;

for j = 1 : length ( b ra in s ) %Loop the data w i t h i n t h e f o l d e r

bra in = n i f t i r e a d ( f u l l f i l e ( b r a i n l o c s ( i i ) , b ra in s ( j ) . name ) ) ;

bra in = permute ( brain , rotateDims ) ; %182 x182x218

%%%%%%%%%%%%%%%%%%%%%

%There are v a l u e s t h a t are > 1 . Supres s and make them 1 .

[ brain row , b ra in co l , bra in depth ] = ind2sub ( s ize ( bra in ) , find ( bra in > 1 ) ) ;

for index = 1 : length ( bra in row ) %The same f o r a l l row , co l , dep th .

bra in ( bra in row ( index ) , b r a i n c o l ( index ) , bra in depth ( index ) ) = 1 ; %Make t h e s e i n d i c i e s 1 .

end

%%%%%%%%%%%%%%%%%%%%%
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for k = 1:10 %Loop 10 t imes to g ene ra t e 40 damage p r o f i l e s . Save each volume

num blobs = randi ( [ 1 5 ] ) ; %Random number o f b l o b s

%d i s p ( num blobs ) %Report number o f b l o b s in t e rm ina l

[ blob , blob volume ] = createDamageVolume (WM mask, num blobs ) ; %re tu rn the l a s t b l o b shape and the s e t .

blob volume onlyWM = blob volume .∗WM mask; %Remove v a l u e s t h a t are NOT on WM.

bra in on lyBlobs = blob volume onlyWM .∗ bra in ; %Apply Damage to WM b l o b l o c a t i o n s

[ row , col , depth ] = ind2sub ( s ize ( bra in on lyBlobs ) , find ( bra in on lyBlobs > 0 ) ) ;

%order o f o p e r a t i o n s mat t e r s ! p r o c e s s f ema le d a t a s e t f i r s t

i f i i == 1

l a b e l = createLabe l ( row , col , depth , meanF , stdF , bra in on lyBlobs ) ;

l a b e l = f i l t e r Sma l lB l o b s ( l abe l , 3 0 ) ; %You on ly need to a l t e r t h e l a b e l where t h e damage

e l s e i f i i == 2

l a b e l = createLabe l ( row , col , depth , meanM, stdM , bra in on lyBlobs ) ;

l a b e l = f i l t e r Sma l lB l o b s ( l abe l , 3 0 ) ;

end

b r a i n o n l yB l o b s f i l t e r e d = l ab e l .∗ bra in on lyBlobs ;

blob mask = ˜( b r a i n o n l yB l o b s f i l t e r e d ) ; %mask o f a l l 1 s e x c l u d i n g b l o b l o c a t i o n s

brain noDamage missingBlobs = bra in .∗ blob mask ; %bra in in format ion , damaged areas are ZERO

brain withDamage = brain noDamage missingBlobs + b r a i n o n l yB l o b s f i l t e r e d ;

brain name = append ( bra in s ( j ) . name (13 : regexp ( bra in s ( j ) . name , [ ’ n i i ’ ] ) −2) , ’ ’ , num2str( k ) , ’ . n i i ’ ) ;

n i f t i w r i t e ( brain withDamage , f u l l f i l e ( s a v e l o c s ( i i ) , brain name ) ) ; %wr i t e b ra in data

labe l name = append ( bra in s ( j ) . name (13 : regexp ( bra in s ( j ) . name , [ ’ n i i ’ ] ) −2) , ’ ’ , . . .

num2str( k ) , ’ ’ , ’ l a b e l ’ , ’ . n i i ’ ) ;

n i f t i w r i t e ( l abe l , f u l l f i l e ( l a b e l l o c s ( i i ) , labe l name ) ) ; %wr i t e l a b e l

disp ( append (”k−value : ” , num2str( k ) ) ) ;

% f i g u r e ( 1 ) ; s l i c eV i ew e r ( b r a i n o n l y B l o b s f i l t e r e d ) ; t i t l e ( ’ Brain Only Blobs ’ ) ;

% f i g u r e ( 2 ) ; s l i c eV i ew e r ( bra in noDamage miss ingB lobs ) ; t i t l e ( ’ Brain NO Damange ’ ) ;

% f i g u r e ( 3 ) ; s l i c eV i ew e r ( brain withDamage ) ; t i t l e ( ’ Brain w i th Damage ’ ) ;

% f i g u r e ( 4 ) ; s l i c eV i ew e r ( b ra in ) ; t i t l e ( ’ Brain ’ ) ;

% f i g u r e ( 5 ) ; s l i c eV i ew e r ( b l o b vo l ume ) ; t i t l e ( ’ b l o b volume ’ ) ;

% f i g u r e ( 7 ) ; s l i c eV i ew e r ( l a b e l ) ; t i t l e ( ’ F i l t e r e d Labe l ’ )

end

end

end

A.1.2 calculateStats.m

function [mean, var iance , std ] = c a l c u l a t e S t a t s ( n i f t i d i r , subdir , WM mask, rotateDims )

%Funct ion to c r e a t e t h e voxe l−wise s t a t i s t i c a l mapping from normal d a t a s e t .

%n i f t i d i r : d i r e c t o r y o f n i f t i f o l d e r s

%su b d i r : sub d i r e c t o r y

%WM mask : Anatomical b i na ry mask o f WM l o c a t i o n s in b ra in

%rota teDims = [ 1 , 2 , 3 ] d iment ions to permute t h e volume

f o l d e r = f u l l f i l e ( n i f t i d i r , subd i r ) ;

d i r l i s t = dir ( f o l d e r ) ;
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d i r l i s t = d i r l i s t (˜ ismember ({ d i r l i s t . name} , { ’ . ’ , ’ . . ’ , ’ . DS Store ’ } ) ) ; %remove th e u s e l e s s h idden f o l d e r s

%Create t h e s t a t i s t i c a l voxe l−wise map t h a t t h e damaged b ra in i s go ing to

%be compared to .

brain volume mean = zeros ( s ize (WM mask ) ) ; %Al l vo lumes are o f t h e same s i z e , so u s ing t h e WM mask i s f i n e .

bra in vo lume var = zeros ( s ize (WM mask ) ) ;

disp (” Ca l cu la t ing S t a t i s t i c s ”)

for i i = 1 : length ( d i r l i s t ) %loop through a l l o f t h e n i f t i f i l e names

%Ca l c u l a t i n g t h e va r i ance and mean in a s i n g l e pass i s adven tageous f o r

%computat ion . We use Besse l ’ s Cor rec t i on f o r an unb ia s ed e s t ima t e o f

%the popu l a t i o n va r i ance from a f i n i t e sample o f n−o b s e r v a t i o n s .

bra in = n i f t i r e a d ( f u l l f i l e ( f o l d e r , d i r l i s t ( i i ) . name ) ) ; %Load in t he b ra in

bra in = permute ( brain , rotateDims ) ;

brain volume mean = bra in + brain volume mean ;

bra in vo lume var = bra in .ˆ2 + bra in vo lume var ;

end

%Normal Datase t Z−Scor ing Values !

mean = brain volume mean . / i i ;

var iance = ( bra in vo lume var . / i i − ( brain volume mean . / i i ) . ˆ 2 ) . / ( i i / ( i i − 1 ) ) ; %Besse l ’ s Cor rec t i on

std = sqrt ( var iance ) ;

end

A.1.3 createDamageVolume.m

function [ blob , blob volume ] = createDamageVolume (WM mask, num blobs )

%Funct ion to c r e a t e a s e t o f 3D Gaussian damage p r o f i l e s t o be a p p l i e d to a

%s i n g l e b ra in FA map .

% WM mask : Anatomical WM Mask from MNI

% A: Ampli tude o f t h e damage

% s t d : s t andard d e v i a t i o n o f t h e Gaussian

% num blobs : number o f Gaussian p r o f i l e s w i t h i n 3D volume

%Step s :

% 1 . S e l e c t , a t random , a s i n g l e p i x e l v a l u e t h a t i s 1 in t h e mask .

% 2 . Make t h i s p i x e l t h e c en t e r o f t h e Gaussian

% 3 . Apply 3D Gaussian to mask o f 1 s ( d e c r e a s i n g p i x e l v a l u e s )

%Side note :

%The amount o f damage t h a t would be con s i d e r e d to be OOD i s 2∗ sigma . We

%know t h a t sigma v a l u e s tend to be on the order o f on l y ˜10% o f t h e t r u e FA

%va lue , so any th ing s i g n i f i c a n t l y l a r g e r than t h i s cou l d be s e v e r e i n j u r y

%or non−r e a l i s t i c f o r mTBI ca s e s . There fore , we can app l y a c o n s e r v a t i v e

%damage dynamic range and app l y amp l i t ude s [ 0 . 2 : 0 . 0 5 : 0 . 5 ] ( 0 . 5 b e in g more

%s e v e r e )

%rng (0 , ’ t w i s t e r ’ ) ;

volume s ize min = 20 ;
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volume size max = 30 ;

std min = 500 ; %This would be in p i x e l v a l u e s ( s p a t i a l s t d )

std max = 1000;

[WM row, WM col , WM depth ] = ind2sub ( s ize (WM mask) , find (WM mask == 1 ) ) ;

blob volume = zeros ( s ize (WM mask ) ) ; %ho ld a l l o f t h e damage b l o b s

for i i = 1 : num blobs

%A = amp min+(amp max−amp min )∗ rand ( 1 , 1 ) ; %Random amp l i t ude

A = 0 . 7 0 ; %Mike s u g g e s t s j u s t a p p l y i n g a s i n g l e a p l i t u d e , bu t we can change t he s t d to modi fy t h e v a r i a t i o n

s td x = std min+(std max−std min )∗rand ( 1 , 1 ) ;

s td y = std min+(std max−std min )∗rand ( 1 , 1 ) ;

s t d z = std min+(std max−std min )∗rand ( 1 , 1 ) ;

%Pick a random index w i t h i n t h e WM mask to c en t e r t h e damage b l o b

random index = randi ( length (WM row) ) ; %l e n g t h ( row ) == l e n g t h ( c o l ) == . . .

vo lume s i ze = ce i l ( vo lume s ize min+(volume size max−volume s ize min )∗rand ( 1 , 1 ) ) ; %same diment ion in a l l d i r e c t i o n s

%under t h e assumpt ion t h a t t h e s e c o n d i t i o n s do not o v e r l a p w i th

%each o t h e r .

vo lume s i z e x = 0 ;

vo lume s i z e y = 0 ;

vo lume s i z e z = 0 ;

%We need t h i s j u s t in case t h a t t h e volume ex t end s out o f t h e t r u e

%bra in volume

i f (WM row( random index ) − vo lume s i ze ) < 1

vo lume s i z e x = WM row( random index ) − 1 ; %The dims o f t h e volume i s e qua l t o t h e p i x e l v a l u e

e l s e i f (WM row( random index ) + vo lume s i ze ) > 182

vo lume s i z e x = 182 − WM row( random index ) ;

e l s e i f (WM col( random index ) − vo lume s i ze ) < 1

vo lume s i z e y = WM col( random index ) − 1 ; %The dims o f t h e volume i s e qua l t o t h e p i x e l v a l u e

e l s e i f (WM col( random index ) + vo lume s i ze ) > 182

vo lume s i z e y = 182 − WM col( random index ) ;

e l s e i f (WM depth( random index ) − vo lume s i ze ) < 1

vo lume s i z e z = WM depth( random index ) − 2 ; %The dims o f t h e volume i s e qua l t o t h e p i x e l v a l u e

e l s e i f (WM depth( random index ) + vo lume s i ze ) > 218

vo lume s i z e z = 218 − WM depth( random index ) ;

end

%d i s p ( append ( ’ volume s i z e : ’ , num2str ( v o l ume s i z e ) ) )

%d i s p ( [ v o l ume s i z e x , v o l ume s i z e y , v o l ume s i z e z ] )

%I f any o f t h e s e are not zero , then we have a volume t h a t e x t end s

%ou t s i d e o f t h e WM mask . Make t he s i z e o f t h e volume to t h e s i z e o f

%the minimum diment ion .

%We use MAX here because u s u a l l y [ 0 , 0 , num > 0 ] . There fore , t h i s

%can t o t a l l y break , bu t u s ing t h i s f o r now .

i f vo lume s i z e x | vo lume s i z e y | vo lume s i z e z

vo lume s i ze = max( [ vo lume s ize x , vo lume s ize y , vo lume s i z e z ] ) ;

end
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%Apply t h e b l o b i n t o t h e volume

disp ( [WM row( random index ) − volume s ize , WM row( random index ) + vo lume s i ze ] )

disp ( [WM col( random index ) − volume s ize , WM col( random index ) + vo lume s i ze ] )

disp ( [WM depth( random index ) − volume s ize , WM depth( random index ) + vo lume s i ze ] )

%Crea t ing t h e 3D Gaussian d i s t r i b u t i o n .

%Large s t d v a l u e s are used to not have t h e damage conc en t r a t e to s i n g l e

%p i x e l s .

mu = [0 , 0 , 0 ] ;

Sigma = [ s td x 1 1 ; 1 s td y 1 ; 1 1 s td z ] ;

%Create damage subvo lume

x1 = −vo lume s i ze : 1 : vo lume s i ze ;

x2 = −vo lume s i ze : 1 : vo lume s i ze ;

x3 = −vo lume s i ze : 1 : vo lume s i ze ;

[X1 ,X2 ,X3 ] = meshgrid ( x1 , x2 , x3 ) ;

X = [X1 ( : ) , X2 ( : ) , X3 ( : ) ] ;

blob = mvnpdf (X,mu, Sigma ) ; %Create mu l t i v a r i a t e p r o b a b i l i t y d i s t .

blob = reshape ( blob , length ( x1 ) , length ( x2 ) , length ( x3 ) ) . /max( blob ) ;

blob = 1 − blob + A; %In v e r t t h e v a l u e s ( l ower v a l u e s mean damage ) , add s c a l a r to modulate damage .

blob volume (WM row( random index ) − vo lume s i ze : WM row( random index ) + volume s ize , . . .

WM col( random index ) − vo lume s i ze : WM col( random index ) + volume s ize , . . .

WM depth( random index ) − vo lume s i ze : WM depth( random index ) + vo lume s i ze ) = blob ;

end

%any v a l u e s t h a t would be i n c r e a s i n g t h e damage , make 1 .

[ blob row , b lob co l , b lob depth ] = ind2sub ( s ize ( blob volume ) , find ( blob volume > 1 ) ) ;

for j = 1 : length ( blob row )

blob volume ( blob row ( j ) , b l ob c o l ( j ) , b lob depth ( j ) ) = 1 ; %Make t h e s e i n d i c i e s 1 .

end

end

A.1.4 createLabel.m

function l a b e l = createLabe l ( row , col , depth , mean, std , bra in )

%Funct ion to c r e a t e t h e OOD l a b e l s based on mean , s td , and b ra in g i v en .

%row , co l , and dep th i n d i c a t e t h e v o x e l s t h a t have undergone damage from

%the s y n t h e t i c p r o c e s s .

%mean , s t d are volume s o f e qua l s i z e o f b ra in .

l a b e l = zeros ( s ize ( bra in ) ) ;

for i i = 1 : length ( row ) %This w i l l be t h e same f o r row , co l , and dep th

[ x , y , z ] = dea l ( row ( i i ) , c o l ( i i ) , depth ( i i ) ) ; %make t h i n g s e a s i e r to see . d e c l a r e mu l t i p l e v a r i a b l e s

i f or ( bra in (x , y , z ) > mean(x , y , z ) + 2∗ std (x , y , x ) , bra in (x , y , z ) < mean(x , y , z ) − 2∗ std (x , y , x ) )

l a b e l (x , y , z ) = 1 ;
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end

end

A.1.5 filterSmallBlobs.m

function l a b e l = f i l t e r Sma l lB l o b s ( l abe l , f i l t e r S i z e )

%f i l t e r t h e b l o b s t h a t are too sma l l f o r t h e neura l network on a per s l i c e

%b a s i s .

%f i l t e r S i z e = i n t e g e r v a l u e

[ ˜ , ˜ , depth ] = s ize ( l a b e l ) ;

for j j = 1 : depth

s l i c e = lab e l ( : , : , j j ) ;

%l o o k i n g f o r a l l o f t h e connec ted componants , g e t c e n t r o i d s

CC = bwconncomp( s l i c e ) ; %us ing t h e image p r o c e s s i n g t o o l b o x

i f ˜isempty (CC. P ix e l I dxL i s t ) %i f t h e r e i s no th ing in t h e image s l i c e , s k i p

for z = 1 : length (CC. P ix e l I dxL i s t )

i f length (CC. P ix e l I dxL i s t {z }) < f i l t e r S i z e

s l i c e (CC. P ix e l I dxL i s t {z }) = 0 ;

l a b e l ( : , : , j j ) = s l i c e ; %rep l a c e t h e l a b e l s l i c e w i th t h e f i l t e r e d s l i c e

end

end

end

end

end

A.1.6 niirearrangeandTif.py

import n ibabe l as nib

import numpy as np

import argparse

import os

from glob import glob as glob

from PIL import Image

import sys

’ ’ ’

This i s a u t i l i t i y s c r i p t t o conve r t your n i i ( . g z ) f i l e s i n t o t i f .

We s p e c i f y a r o t a t i o n a l a s p e c t o f t h e s c r i p t and d e f a u l t s t o sw i t c h i n g t h e volume i n t o 1 , 0 , 2 .

Our data i s a lways r e c e i v e d in [ 182 , 218 , 182 ] , so we rear range t h e s l i c e s . This does not mat ter

f o r p r o c e s s i n g purposes , bu t changes t h e a x i a l s l i c e s to be t h e c o r r e c t o r i e n t a t i o n .

’ ’ ’

def a rg pa r s e r ( ) :

pa r s e r = argparse . ArgumentParser ( d e s c r i p t i o n=’Re−Arrange Dimentions o f 3D ’ )

par s e r . add argument ( ’ img d i r ’ , type=str ,
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help=’ path to n i f t i image d i r e c t o r y ’ )

par s e r . add argument ( ’ ou t d i r ’ , type=str ,

help=’ path to output ’ )

par s e r . add argument ( ’−dims ’ , ’−−dims ’ , type=str , d e f au l t=’ 1 ,0 ,2 ’ , #cu r r e n t l y dims does no th ing

help=’ dimentions to change in to ’ )

par s e r . add argument ( ’− s p l i t ’ , type = int , d e f au l t = 1)

par s e r . add argument ( ’−a ’ , ’−−ax i s ’ , type=int , d e f au l t =0, #This i s t h e argument to us . −−a x i s 1

help=’ ax i s o f the 3d image array on which to sample the s l i c e s ’ )

par s e r . add argument ( ’−p ’ , ’−−pct−range ’ , nargs=2, type=f loat , d e f au l t =(0 . 2 , 0 . 8 ) ,

help=( ’ range o f i nd i c e s , as a percentage , from which to sample ’

’ in each 3d image volume . used to avoid c r e a t i ng blank t i f ’

’ images i f the re i s s ub s t an t i a l empty space along the ends ’

’ o f the chosen ax i s ’ ) )

return par se r

def s p l i t f i l e n ame ( f i l e p a t h ) :

path = os . path . dirname ( f i l e p a t h )

f i l ename = os . path . basename ( f i l e p a t h )

base , ext = os . path . s p l i t e x t ( f i l ename )

i f ext == ’ . gz ’ :

base , ext2 = os . path . s p l i t e x t ( base )

ext = ext2 + ext

return path , base , ext

def n i i t o t i f ( img , base , ext , args ) :

i f img . ndim != 3 :

print ( f ’Only 3D data supported . F i l e {base}{ ext} has dimension { img . ndim } . Skipping . ’ )

s t a r t = int ( args . pct range [ 0 ] ∗ img . shape [ args . ax i s ] )

end = int ( args . pct range [ 1 ] ∗ img . shape [ args . ax i s ] )

for i in range ( s ta r t , end ) :

I = Image . fromarray ( img [ i , : , : ] , mode=’F ’ ) i f args . ax i s == 0 else \

Image . fromarray ( img [ : , i , : ] , mode=’F ’ ) i f args . ax i s == 1 else \

Image . fromarray ( img [ : , : , i ] , mode=’F ’ )

I . save ( os . path . j o i n ( args . out d i r , f ’{base} { i : 0 4} . t i f ’ ) )

return 0

def main ( ) :

try :

a rgs = a rg pa r s e r ( ) . pa r s e a r g s ( )

f i l enames = glob ( os . path . j o i n ( args . img dir , ’ ∗ . n i i ∗ ’ ) )

i f args . dims != None :

dims = l i s t ( args . dims . s p l i t ( ’ , ’ ) )

else :

dims = [ ’ 0 ’ , ’ 1 ’ , ’ 2 ’ ] #I f we don ’ t want to r o t a t e , then do no th ing

for f in f i l enames :

, base , ext = s p l i t f i l e n ame ( f )

img = nib . load ( f ) . g e t f da t a ( ) . astype (np . f l o a t 3 2 ) . squeeze ( )

#img = np . moveaxis ( img , [ 0 , 1 , 2 ] , [ i n t ( dims [ 0 ] ) , i n t ( dims [ 1 ] ) , i n t ( dims [ 2 ] ) ] )

i f args . s p l i t == 1 :

n i i t o t i f ( img , base , ext , args )

except Exception as e :

print ( e )

return 1
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i f name == ” main ” :

sys . e x i t (main ( ) )

A.1.7 smp main.py

import os

import random

import numpy as np

from PIL import Image

from datetime import datetime

import p i c k l e

from tqdm import tqdm #load i n g bar

import torch

import torch . nn as nn

import torch . optim as optim

from torch . u t i l s . data import DataLoader

from torch . u t i l s . data import Dataset as ParentDataset

import t o r chv i s i o n

from t o r chv i s i o n import t rans forms

from t o r chv i s i o n . t rans forms import Compose

import sk l ea rn . metr i c s

import segmentat ion models pytorch as smp #model we ’ re u s ing f o r now .

import evaluateModel

from matp lo t l ib import pyplot as p l t

import b a t c h t e s t i n g s c r i p t #user d e f i n e d .

import imag e i nd i c i e s

#Errors a s s o c i a t e d to p o t a n t i a l randomness / non−d e t e rm i n i s t i c b ehav i ou r i s a VERY common i s s u e in PT.

#Look a t t h e f o l l o w i n g g i t h u b d i s c u s s i o n f o r more in f o rma t i on :

#h t t p s :// g i t h u b . com/ py to r ch / py to r ch / i s s u e s /7068

# s b e l h a r b i commented on Apr 19 , 2019

seed = 1010

#tor ch . manua l seed ( seed )

#to r ch . cuda . manua l seed ( seed )

#to r ch . cuda . manua l s e e d a l l ( s eed ) # i f you are u s ing mul t i−GPU.

np . random . seed ( seed ) # Numpy module .

random . seed ( seed ) # Python random module .

#to r ch . backends . cudnn . benchmark = Fa l s e

#to r ch . backends . cudnn . d e t e rm i n i s t i c = True

class TBI dataset ( ParentDataset ) : #Obtain t h e a t t r i b u t e s o f Paren tDatase t from to r ch . u t i l s . da ta

#Finds Image and Labe l l o c a t i o n s , c r e a t e s random l i s t o f i n d i c i e s f o r t r a i n i n g / v a l / t e s t i n g s e t s t o be c a l l e d

def i n i t (

s e l f ,
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images d i r ,

l a b e l s d i r ,

subset=” t r a i n ” ,

transform = None , #base t r an s f o rma t i on i s i n t o Tensor .

mapping = None #th e r e i s no mapping i n i t i a l l y . model s hou l d s t op i f no mapping p rov i d ed .

#seed=seed , #We’ l l g e t t h e same t h i n g eve ry t ime i f we keep us ing t h e same seed .

) :

#f i l t e r and s o r t t h e l i s t

s e l f . ImageIds = sorted ( l i s t ( f i l t e r ( ( ’ . DS Store ’ ) . n e , os . l i s t d i r ( images d i r ) ) ) )

s e l f . Labe l Ids = sorted ( l i s t ( f i l t e r ( ( ’ . DS Store ’ ) . n e , os . l i s t d i r ( l a b e l s d i r ) ) ) )

s e l f . images fps = [ os . path . j o i n ( images d i r , image id ) for image id in s e l f . ImageIds ] #f u l l p a t h s to s l i c e s

s e l f . l a b e l s f p s = [ os . path . j o i n ( l a b e l s d i r , image id ) for image id in s e l f . Labe l Ids ] #f u l l p a t h s to l a b e l s

i f mapping == None :

print ( ”Mapping Required f o r Model to Run ! ” )

#We d e f i n e a mapping to use when c a l l i n g t h e Datase t l o a d e r based on the parameter ”mapping”

i f subset == ” t r a i n ” :

s e l f . mapping = mapping [ ’ t r a i n ’ ] [ ’ s e t ’ ]

print ( s e l f . mapping )

e l i f subset == ” val ” :

s e l f . mapping = mapping [ ’ va l ’ ] [ ’ s e t ’ ]

print ( s e l f . mapping )

e l i f subset == ” t e s t ” :

s e l f . mapping = mapping [ ’ t e s t ’ ] [ ’ s e t ’ ]

print ( s e l f . mapping )

else :

print ( ” subset parameter r e qu i r e s t ra in , val , or t e s t exac t l y . ” )

s e l f . t ransform = transform #tras f o rm g i v en by t r an s f o rm f un c t i o n

def g e t i t em ( s e l f , i i ) : #i i i s t h e index

#Current imp l emen ta t i ons o f t r ans f o rms on l y use PIL images .

#Apparen t l y we can use np . array ( Image . open ( . . . ) ) t o remove t he e r r o r t h a t happens each epoch

image = Image .open( s e l f . images fps [ s e l f . mapping [ i i ] ] ) #open as PIL image .

l a b e l = Image .open( s e l f . l a b e l s f p s [ s e l f . mapping [ i i ] ] )

image = s e l f . t ransform ( image )

l a b e l = s e l f . t ransform ( l a b e l )

return image , l a b e l #, s e l f . imag e s f p s [ s e l f . mapping [ i i ] ] , s e l f . l a b e l s f p s [ s e l f . mapping [ i i ] ]

def l e n ( s e l f ) :

return len ( s e l f . mapping )

def data s e t s ( images d i r , l a b e l s d i r , t r a i n s i z e , aug angle , aug sca l e , f l i p p r ob , mapping ) :

#mapping = r e t u r n ima g e i n d i c i e s ( image s d i r , l a b e l s d i r , t r a i n s i z e , random sampl ing = True )

t r a i n = TBI dataset (

images d i r = images d i r ,

l a b e l s d i r = l a b e l s d i r ,

subset = ” t r a i n ” ,
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transform = trans f o rm func t i on ( degree s=aug angle , s c a l e=aug sca l e , f l i p p r o b=f l i p p r o b ) ,

mapping = mapping

)

va l i d = TBI dataset (

images d i r = images d i r ,

l a b e l s d i r = l a b e l s d i r ,

subset = ” va l ” ,

transform = trans f o rm func t i on ( degree s=aug angle , s c a l e=aug sca l e , f l i p p r o b=f l i p p r o b ) ,

mapping = mapping

)

t e s t = TBI dataset (

images d i r = images d i r ,

l a b e l s d i r = l a b e l s d i r ,

subset= ” t e s t ” ,

transform = trans f o rm func t i on ( degree s=0, s c a l e = [ 1 , 1 ] , f l i p p r o b = 0) , #make sure no th ing changes .

mapping = mapping

)

return t ra in , va l id , t e s t

def t r an s f o rm func t i on ( degrees , s ca l e , f l i p p r o b ) :

t r a n s f o rm l i s t = [ ]

t r a n s f o rm l i s t . append ( trans forms . RandomAffine ( degrees , s c a l e = s c a l e ) )

t r a n s f o rm l i s t . append ( trans forms . RandomHorizontalFlip (p=f l i p p r o b ) )

t r a n s f o rm l i s t . append ( trans forms . Pad (5 ) ) #a l l images shou l d be 182 x182 b e f o r e padding .

t r a n s f o rm l i s t . append ( trans forms . ToTensor ( ) )

return Compose ( t r a n s f o rm l i s t )

def Weights ( l ab e l s , dev i ce ) :

#exp e c t s an [ b a t c h s i z e , c , n , n ] i npu t

weights = torch . rand ( l a b e l s . shape ) #cr e a t e a random t en so r o f we i gh t v a l u e s .

weights = weights . to ( dev i ce ) #put e v e r y t h i n g onto t h e GPU.

for batch num in range (0 , l a b e l s . shape [ 0 ] ) :

num ones = torch .sum( l a b e l s [ batch num , 0 , : , : ] ) ;

r e s o l u t i o n = l a b e l s . shape [ 2 ] ∗ l a b e l s . shape [ 3 ]

num zeros = r e s o l u t i o n − num ones

#h t t p s :// d i s c u s s . py t o r ch . org / t /how−to−app ly−a−weigh ted−bce−l o s s−to−an−imbalanced−da t a s e t−what−w i l l −the−weigh t−t ensor−con ta in /56823/2

#Weight f o r t h e p o s i t i v e c l a s s

pos weight = num zeros / r e s o l u t i o n #shou l d be c l o s e to 1 .

neg weight = 1 − pos weight

#cr e a t e 1 s t ensor , put to GPU.

ones = torch . ones ( l a b e l s . shape [ 2 ] , l a b e l s . shape [ 3 ] )

ones = ones . to ( dev i ce )

weights [ batch num , 0 , : , : ] = ones ∗neg weight + l a b e l s [ batch num , 0 , : , : ] ∗ pos weight

#t h i s keeps t h e c l a s imba lance in check

return weights , pos weight , neg weight #shou l d be a t en s o r .

class DiceLoss (nn . Module ) :
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def i n i t ( s e l f ) :

super ( DiceLoss , s e l f ) . i n i t ( )

s e l f . smooth = 1 .0

def forward ( s e l f , y pred , y t rue ) :

a s s e r t y pred . s i z e ( ) == y true . s i z e ( )

y pred = y pred [ : , 0 ] . cont iguous ( ) . view (−1)

y t rue = y t rue [ : , 0 ] . cont iguous ( ) . view (−1)

i n t e r s e c t i o n = ( y pred ∗ y t rue ) .sum( )

dsc = ( 2 . ∗ i n t e r s e c t i o n + s e l f . smooth ) / (

y pred .sum( ) + y t rue .sum( ) + s e l f . smooth

)

return 1 . − dsc

def t r a i n v a l i d a t e ( t r a i n da ta s e t , va l i d da ta s e t , l r ) :

e a r l y s t op = False

i f torch . cuda . i s a v a i l a b l e ( ) :

dev =”cuda : 2 ”

else :

dev = ”cpu”

dev = torch . dev i ce ( dev )

#t h i s might break , remove w o r k e r i n i t f n = i n i t f n ( num workers ) ) i f so

t r a i n l o a d e r = DataLoader ( t r a i n da ta s e t , ba t ch s i z e , s h u f f l e = True , num workers = num workers )

v a l i d l o a d e r = DataLoader ( va l i d da ta s e t , ba t ch s i z e , s h u f f l e = True , num workers = num workers )

model . to ( dev ) #ca s t t h e model onto t h e d e v i c e

opt imize r = optim .Adam(model . parameters ( ) , l r = l r ) #l e a r n i n g r a t e s hou l d change

l o s s f u n c t i o n = torch . nn . BCELoss ( ) #t h i s t a k e s in a we i gh t ed inpu t

#l o s s f u n c t i o n = smp . u t i l s . l o s s e s . DiceLoss ( )

#l o s s f u n c t i o n = DiceLoss ( )

#me t r i c s = [ smp . u t i l s . me t r i c s . IoU ( t h r e s h o l d =0.5) ]

l o s s t r a i n = [ ]

l o s s v a l i d = [ ]

l o s s t r a i n b a t c h s e t = [ ]

l o s s v a l i d b a t c h s e t = [ ]

epochLos s t ra in = [ ]

epochLoss va l id = [ ]

for epoch in range (EPOCHS) :

image count = 0

for phase in [ ” t r a i n ” , ” va l ” ] :

print ( l r )

#This de t e rmines which p o r t i o n s o f t h e model w i l l have g r a d i e n t s turned o f f or on .

i f phase == ” t r a i n ” :

model . t r a i n ( ) #put i n t o t r a i n i n g mode

l oade r = t r a i n l o a d e r

else :

model . eval ( ) #ev a l u a t i o n mode .
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l oade r = va l i d l o a d e r

l r f l a g = True #f l a g i s s e t t o Fa l s e i f LR has changed and r e s e t once we go back i n t o t r a i n i n g .

for i i , data in enumerate ( l oade r ) :

b ra in s = data [ 0 ] #[ b a t c h s i z e , channe l s , h e i g h t , w id th ]

l a b e l s = data [ 1 ]

image count += len ( b ra in s )

print ( epoch , phase , i i , image count )

brains , l a b e l s = bra ins . to ( dev ) , l a b e l s . to ( dev ) #put t h e data onto t h e d e v i c e

pred i c t i on s , s i n g l e c l a s s = model ( bra in s ) #s i n g l e c l a s s i s not a u s e f u l ou tpu t .

p r ed i c t i o n s = torch . s igmoid ( p r ed i c t i o n s ) #us ing t h i s so t h a t t h e ou tpu t i s bounded [ 0 , 1 ]

s i n g l e c l a s s = torch . s igmoid ( s i n g l e c l a s s )

weights = Weights ( l ab e l s , dev ) #gene ra t e t h e we i g h t s f o r each s l i c e in t h e ba t ch

l o s s f u n c t i o n . pos weight = weights

#Implement ing BCE Loss

l o s s = l o s s f u n c t i o n ( p r ed i c t i on s , l a b e l s ) #l o s s changes here .

i f phase == ” t r a i n ” :

#employ t h i s so we don ’ t g e t mu l t i p l e s in t h e same l i s t .

i f ( l o s s v a l i d and i i == 0 ) :

#i f l o s s v a l i d i s NOT empty AND i t ’ s t h e f i r s t t ime we see t h i s in t h e l oop

#epo c hLo s s v a l i d . append ( l o s s v a l i d [−1]) #append the l a s t v a l u e in t h e

epochLoss va l id . append (np .mean( l o s s v a l i d b a t c h s e t ) )

l o s s v a l i d b a t c h s e t = [ ]

model . z e ro g rad ( ) #recommended way to perform v a l i d a t i o n

#f o r p in model . parameters ( ) : p . grad = None #This a l s o s e t s t h e g r a d i e n t s to z e ro . b e t t e r ?

l o s s t r a i n . append ( l o s s . item ( ) )

l o s s t r a i n b a t c h s e t . append ( l o s s . item ( ) ) #append to l i s t o f l o s s e s in t h e ba t ch

l o s s . backward ( )

opt imize r . s tep ( )

print ( f ”Phase : {phase } . Epoch : {epoch } . Loss : { l o s s . item ()} ” )

else :

i f ( l o s s t r a i n and i i == 0 ) :#i f l o s s v a l i d i s NOT empty AND i t ’ s t h e f i r s t t ime we see t h i s in t h e l oop

#epo chLo s s t r a i n . append ( l o s s t r a i n [−1]) #append the l a s t v a l u e in t h e l o s s t r a i n l i s t .

epochLos s t ra in . append (np .mean( l o s s t r a i n b a t c h s e t ) )

l o s s t r a i n b a t c h s e t = [ ]

l o s s v a l i d . append ( l o s s . item ( ) )

l o s s v a l i d b a t c h s e t . append ( l o s s . item ( ) )

print ( f ”Phase : {phase } . Epoch : {epoch } . Loss : { l o s s . item ()} ” )

#l e a r n i n g r a t e changes and e a r l y s t o p p i n g

#This on l y occur s dur ing v a l i d a t i o n .

i f epoch > 0 :
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i f ( epoch % 10) == 0 : #i f t h e epoch i s d i v i s a b l e by 10

meanVal = np .mean( l o s s v a l i d [ epoch − 5 : epoch ] )

print (meanVal , np . abs ( ( meanVal − l o s s . item ( ) ) / meanVal ) <= 0 .4 )

i f (np . abs ( ( meanVal − l o s s . item ( ) ) / meanVal ) <= 0.4 and l r f l a g ) :

#i f t h e % d i f f e r e n c e i s sma l l

#i f epoch == 40 and l r f l a g : #doing t h i s f o r now .

l r = l r ∗ 0 .1

l r f l a g = False

for param group in opt imize r . param groups :

#pr i n t ( o p t im i z e r )

print ( ’ Reducing the Learning Rate : ’ , l r )

param group [ ’ l r ’ ] = l r

#pr i n t ( o p t im i z e r )

i f ( epoch % 100) == 0 :

meanVal = np .mean( l o s s v a l i d [ epoch − 50 : epoch ] )

i f np . abs ( ( meanVal − l o s s . item ( ) ) / meanVal ) <= 0 . 0 5 :

e a r l y s t op = True

#Implementa t ion o f e a r l y s t o p p i n g

i f ea r l y s t op == True :

date = datetime . now( )

torch . save (model . s t a t e d i c t ( ) , os . path . j o i n ( os . getcwd ( ) , ’ resu l ts TBI model− ’ + str ( date . date ( ) )

+ ’− ’ + str ( date . hour ) + ’− ’ + str ( date . minute ) + ’−EARLYSTOP. pt ’ ) )

#save t h e model

break

else :

continue

break

else :

#save th e model a t t h e end o f t h i s epoch .

#da te = da t e t ime . now ( )

#to r ch . save ( model . s t a t e d i c t ( ) , os . pa th . j o i n ( os . ge tcwd ( ) , ” Reg i s t e r ed Bra in s FA /mode l s saved ” ,

”TBI model−epoch”

+ str ( epoch ) + ’− ’ + str ( date . date ( ) ) + ’− ’ + str ( date . hour ) + ’− ’ + str ( date . minute ) + ” . pt” ) )

continue

break

#Need to add the l a s t e l ement from l o s s v a l i d to e p o c hLo s s v a l i d to e qua l t h e number o f epochs .

#We cou l d p o t e n t i a l l y make t h i s v a l u e an average o f t h e r e l e v a n t l o s s v a l i d s

#epo c hLo s s v a l i d . append ( l o s s v a l i d [−1])

epochLoss va l id . append (np .mean( l o s s v a l i d b a t c h s e t ) )

print ( ’ F ina l Learning Rate : ’ , l r )

return brains , l ab e l s , p r ed i c t i on s , s i n g l e c l a s s , l o s s t r a i n ,

l o s s v a l i d , epochLoss t ra in , epochLoss va l id , model . s t a t e d i c t ( ) , l r

#This f u n c t i o n e x p e c t s s i n g u l a r images .

#Also b i a s e d from h i gh c l a s s imba lance . f u n c t i o n c u r r e n t l y not in use .

def IoU ( pred i c t i on , l a b e l ) :

#Pred i c t i o n IoU

i n t e r s e c t i o n = int ( torch .sum( torch . mul ( p red i c t i on , l a b e l ) ) )

union = int ( torch .sum( p r ed i c t i on ) + torch .sum( l a b e l ) ) − i n t e r s e c t i o n

IOU predicted = i n t e r s e c t i o n / ( union + 0.0001) #fo r s t a b i l i t y

mean IoU = IOU predicted

#Not i n c l u d i n g background IoU
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#Background IoU

#a l l z e r o s = ( p r e d i c t i o n + l a b e l ) > 0 #b e f o r e t h e i n v e r s i o n

#i n t e r s e c t i o n = i n t ( t o r c h . sum(˜ a l l z e r o s ) )

#union = i n t ( t o r c h . sum(˜ ( p r e d i c t i o n > 0) ) + to r ch . sum(˜ ( l a b e l > 0) ) − i n t e r s e c t i o n )

#IOU background = i n t e r s e c t i o n / ( union + 0 .0001)

#mean IOU = ( IOU background + IOU pred i c t ed )/2

return mean IoU

def testModel ( t e s t da t a s e t , modelPath , th re sho ld ) : #model = the model c l a s s = smp . UNet ( )

t o t a l image s = 0

mean IoUs = [ ]

l o s s s e t b a t c h = [ ]

l o s s s e t = [ ]

CM values = [ 0 , 0 , 0 , 0 ] #tp , fn , fp , tn

model . l o a d s t a t e d i c t ( torch . load (modelPath ) )

l o s s f u n c t i o n = torch . nn . BCELoss ( ) #implement ing t h e l o s s f u n c t i o n to show l o s s f o r each t h r e s h o l d .

i f torch . cuda . i s a v a i l a b l e ( ) :

dev =”cuda : 2 ”

else :

dev = ”cpu”

dev = torch . dev i ce ( dev )

model . to ( dev )

model . eval ( ) #ev a l u a t i o n mode to turn o f f t h e g r a d i e n t s / t r a i n i n g .

#turn s h u f f l e o f f

l oade r = DataLoader ( t e s t da t a s e t , b a t ch s i z e = 12 , s h u f f l e = False , num workers = num workers )

for i i , data in tqdm(enumerate ( l oade r ) ) :

b ra in s = data [ 0 ]

l a b e l s = data [ 1 ]

#move the data to t h e GPU

bra ins = bra in s . to ( dev )

l a b e l s = l a b e l s . to ( dev )

t o t a l image s += bra ins . shape [ 0 ] #t h i s would be t h e same i f we used l a b e l s or p r e d i c t i o n s .

#p r i n t ( t o t a l im a g e s )

pred i c t i on s , = model ( b ra in s )

p r ed i c t i o n s = torch . s igmoid ( p r ed i c t i o n s )

weights = Weights ( l ab e l s , dev )

l o s s f u n c t i o n . pos weight = weights

#Implement ing BCE Loss

preds = p r ed i c t i o n s > th r e sho ld

preds = preds . f loat ( ) #ca s t t h e b oo l t e n s o r i n t o f l o a t 3 2 f o r l o s s f u n c t i o n

l o s s = l o s s f u n c t i o n ( preds , l a b e l s ) #l o s s changes here .

l o s s s e t b a t c h . append ( l o s s . item ( ) ) #append the l o s s o f t h e ba t ch

predict ions numpy = pr ed i c t i o n s . cpu ( ) . detach ( ) . numpy( )

labels numpy = l a b e l s . cpu ( ) . detach ( ) . numpy( )
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for j in range ( p r ed i c t i o n s . shape [ 0 ] ) :

CM = sk l ea rn . metr i c s . con fus i on matr ix ( labels numpy [ j , 0 , : , : ] . r av e l ( ) , predict ions numpy [ j , 0 , : , : ] . r av e l ( )

> thresho ld , l a b e l s = [ True , Fa l se ] )

try :

CM values [ 0 ] = CM values [ 0 ] + CM[ 0 ] [ 0 ]

CM values [ 1 ] = CM values [ 1 ] + CM[ 0 ] [ 1 ]

CM values [ 2 ] = CM values [ 2 ] + CM[ 1 ] [ 0 ]

CM values [ 3 ] = CM values [ 3 ] + CM[ 1 ] [ 1 ]

except :

print ( ”Error in Appending” )

return CM, CM values

l o s s s e t . append (np .mean( l o s s s e t b a t c h ) ) #append the mean l o s s o f t h e e n t i r e s e t

del l oade r #d e l e t e l oader , might be wrong to do t h i s

return np . d iv ide ( CM values , ( t o t a l image s ∗ (192∗192) ) ) , np .mean( l o s s s e t )

## Read the t e s t s from b a t c h t e s t i n g s c r i p t ##

t e s t s = b a t c h t e s t i n g s c r i p t . r e p o r t t e s t s ( )

b a t c h r e s u l t s = [ ]

#image s d i r = ”/home/mccrinbc / Da ta Removed Use l e s s S l i c e s / n o rma l i z e d s l i c e s ”

#l a b e l s d i r = ”/home/mccrinbc / Da ta Removed Use l e s s S l i c e s / s l i c e l a b e l s ”

images d i r = ”/home/mccrinbc/ Female a f t e rDamage t i f f s ”

l a b e l s d i r = ”/home/mccrinbc/ F ema l e l a b e l s t i f f s ”

#Train s i z e i s a lways t h e same ( f o r now ) . Implement a b e t t e r s o l u t i o n l a t e r .

t r a i n s i z e = 0.75

da t a s e t i d = ’ Female ’

#We need to run the t r a i n / v a l / t e s t i n d i c i e s s p l i t b e f o r e we go i n t o t h e f o r l oop .

#For t h i s reason , we ’ ve d e v e l o p ed a sma l l s c r i p t t o do t h i s samp l ing f o r us , and to conf i rm t h a t i t ’ s c o n s i s t e n t .

mapping = imag e i nd i c i e s . r e t u r n imag e i nd i c i e s ( images d i r , l a b e l s d i r , t r a i n s i z e , da ta s e t id , seed ,

random sampling = True )

for i i in t e s t s :

b a t ch s i z e = t e s t s [ i i ] [ ’ b a t ch s i z e ’ ]

EPOCHS = t e s t s [ i i ] [ ’EPOCHS’ ]

l r = t e s t s [ i i ] [ ’ l r ’ ]

aug s ca l e = t e s t s [ i i ] [ ’ aug s ca l e ’ ]

aug ang le = t e s t s [ i i ] [ ’ aug ang le ’ ]

f l i p p r o b = t e s t s [ i i ] [ ’ f l i p p r o b ’ ]

num workers = t e s t s [ i i ] [ ’ num workers ’ ]

#image s d i r = ”/Users / b r i anmcc r i nd l e /Documents/Research /TBIFinder Fina l

/Registered Bra ins FA/ t e s t s l i c e s ”

#l a b e l s d i r = ”/Users / br ianmccr ind le /Documents/Research/TBIFinder Final

/Registered Bra ins FA/ t e s t l a b e l s ”

#smp s p e c i f i c v a r i a b l e s

ENCODER = t e s t s [ i i ] [ ’ENCODER ’ ]

aux params=d i c t (

poo l ing=’avg ’ ,

dropout= t e s t s [ i i ] [ ’ dropout ’ ] ,

#ac t i v a t i on=’softmax2d ’ ,
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c l a s s e s =1,

)

#c l a s s e s = 2 f o r the softmax trans fo rmat ion .

# model = ge t a t t r (smp , model arch )

# s e t a t t r (model , ’ encoder name ’ , ENCODER)

# s e t a t t r (model , ’ i n channe l s ’ , 1)

# s e t a t t r (model , ’ c l a s s e s ’ , 1)

# s e t a t t r (model , ’ aux params ’ , aux params )

model = smp . Unet ( encoder name = ENCODER, in channe l s =1, c l a s s e s = 1 , aux params = aux params )

t r a i n da ta s e t , va l i d da ta s e t , t e s t d a t a s e t = data s e t s ( images d i r , l a b e l s d i r , t r a i n s i z e , aug angle , aug sca l e , f l i p p r ob , mapping )

#Training Ce l l

bra ins , l ab e l s , p r ed i c t i on s , s i n g l e c l a s s , l o s s t r a i n , l o s s v a l i d , epochLoss t ra in , epochLoss va l id , model state ,

l r f i n a l , = t r a i n v a l i d a t e ( t r a i n da ta s e t , va l i d da ta s e t , l r )

date = datetime . now( )

base = ” resu lts TBI model−End−” + s t r ( date . date ( ) ) + ’− ’ + s t r ( date . hour ) + ’− ’ + s t r ( date . minute )

f o l d e r pa th = r ’/home/mccrinbc / ’ + base

pkl name = base + ’ . pkl ’

model name = base + ’ . pt ’

p k l l o c a t i o n = os . path . j o i n ( f o lde r pa th , pkl name )

i f not os . path . e x i s t s ( f o l d e r pa th ) :

os . makedirs ( f o l d e r pa th )

torch . save ( model state , os . path . j o i n ( f o lde r pa th , base +” . pt” ) )

# Saving the ob j e c t s :

with open ( pk l l o c a t i on , ’wb ’ ) as f : # Python 3 : open ( . . . , ’wb ’ )

p i c k l e . dump ( [ bra ins , l ab e l s , p r ed i c t i on s , s i n g l e c l a s s ,

l o s s t r a i n , l o s s v a l i d , epochLoss t ra in ,

epochLoss va l id , t e s t d a t a s e t ] , f )

#Look at the t r a i n / va l i d a t i on l o s s

#Pos s i b l e v a r i a b l e s that might cause the va l i d a t i on l o s s to jump are :

# − Learning ra t e i s too high in l a t e r epochs

# − Model could be too big ?

# − Batch s i z e could be too smal l caus ing l o s s in g en e r a l i t y between epochs .

p l t . f i g u r e ( )

p l t . p l o t (np . arange (0 , EPOCHS, 1) , epochLos s t ra in )

p l t . p l o t (np . arange (0 , EPOCHS, 1) , epochLoss va l id )

p l t . y l ab e l ( ’ Per Epoch Loss ’ )

p l t . x l ab e l ( ’ Epoch ’ )

p l t . t i t l e ( ’ BCELoss vs Epochs . I n i t i a l LR = ’

+ s t r ( l r ) + ’ . ’ + ENCODER + ’ : ’ + s t r (EPOCHS) )

p l t . l egend ( [ ’ Train Loss : ’ + s t r ( epochLos s t ra in [ −1 ] ) ,

’ Val id Loss : ’ + s t r ( epochLoss va l id [ −1 ] ) ] ,

l o c = ”upper r i gh t ” )

p l t . ylim ( [ 0 , 0 . 6 ] )

p l t . s a v e f i g ( os . path . j o i n ( f o lde r pa th , ’ Train−Val Loss . png ’ ) )
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#Create names f o r data to be s to red .

model name = base + ’ . pt ’

modelPath = os . path . j o i n ( f o lde r pa th , model name )

#Test ing Loop .

de l model #This removes any c o n f l i c t i o n with an e x i s t i n g model running on the GPU.

# model = ge t a t t r (smp , model arch )

# s e t a t t r (model , ’ encoder name ’ , ENCODER)

# s e t a t t r (model , ’ i n channe l s ’ , 1)

# s e t a t t r (model , ’ c l a s s e s ’ , 1)

# s e t a t t r (model , ’ aux params ’ , aux params )

model = smp . Unet ( encoder name = ENCODER, in channe l s =1, c l a s s e s = 1 , aux params = aux params )

#read p i c k l e

i f ’ p k l l o c a t i o n ’ not in l o c a l s ( ) :

f o l d e r pa th = ’/home/mccrinbc/ resu lts TBI model−End−2020−10−05−11’

p k l l o c a t i o n = ”/home/mccrinbc/ resu l ts TBI model−End−2020−10−05−11/ resu lts TBI model−End−2020−10−05−11. pkl ”

p r in t ( p k l l o c a t i o n )

with open ( pk l l o c a t i on , ’ rb ’ ) as f :

bra ins , l ab e l s , p r ed i c t i on s , s i n g l e c l a s s , l o s s t r a i n , l o s s v a l i d ,

epochLoss t ra in , epochLoss va l id , t e s t d a t a s e t = p i c k l e . load ( f )

i f ’ modelPath ’ not in l o c a l s ( ) :

modelPath = ’ input something ’

#model = model . l o a d s t a t e d i c t ( torch . load (modelPath ) ) #see i f t h i s works .

#modelPath = ”/Users / br ianmccr ind le /Documents/Research

/TBIFinder Final /Registered Bra ins FA/models saved

/TBI model−epoch2−2020−08−27−9−55.pt”

th r e sho ld s = np . arange ( 0 , 1 . 0 5 , 0 . 0 5 ) #sk ipp ing every other element , [ [ 0 . 0 .05 0 .1 . . . 1 ]

#th r e sho ld s = np . arange ( 0 , 0 . 1 5 , 0 . 0 5 ) #sk ipp ing every other element , [ [ 0 . 0 .05 0 .1 . . . 1 ]

#th r e sho ld s = [ 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 ]

TPR list = [ ] #This i s a l s o known as RECALL.

FPR l ist = [ ]

IoUs = [ ]

Dice = [ ]

t o t a l e r r o r = [ ]

p r e c i s i o n = [ ]

BCE loss thresh= [ ]

f o r th r e sho ld in th r e sho ld s :

p r i n t ( th re sho ld )

#t e s t the model to capture performance . Reported in the

Confusion Matrix va lues

CM values , BCE loss = testModel ( t e s t da t a s e t , modelPath ,

th r e sho ld ) #tp , fn , fp , tn , [ mean IoUs ]

BCE loss thresh . append ( BCE loss )

TPR = CM values [ 0 ] / ( CM values [ 0 ] + CM values [ 1 ] )

FPR = CM values [ 2 ] / ( CM values [ 2 ] + CM values [ 3 ] )

TPR list . append (TPR)

FPR list . append (FPR)
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#IoUs , Dice , Total Error , and Pr e c i s i on .

IoUs . append (CM values [ 0 ] / ( CM values [ 0 ] + CM values [ 1 ] + CM values [ 2 ] ) ) #IoU = TP / (TP + FN + FP)

Dice . append (2 ∗ CM values [ 0 ] / (2 ∗ CM values [ 0 ] + CM values [ 1 ] + CM values [ 2 ] ) ) #Dice = 2TP / (2TP + FN + FP)

t o t a l e r r o r . append (CM values [ 1 ] + CM values [ 2 ] ) #Error = FP + FN. Weighted equa l l y f o r now .

p r e c i s i o n . append (CM values [ 0 ] / ( CM values [ 0 ] + CM values [ 2 ] ) )

#Pre c i s i on = TP / (TP + FP)

TPR list = np . nan to num ( TPR list , nan = 0) #Replace any nans with 0 .

FPR l ist = np . nan to num ( FPR list , nan = 0) #Replace any nans with 0 .

IoUs = np . nan to num ( IoUs , nan = 0) #Replace any nans with 0 .

Dice = np . nan to num (Dice , nan = 0) #Replace any nans with 0 .

p r e c i s i o n = np . nan to num ( pr e c i s i on , nan = 0) #Replace any nans with 0 .

#Within the same c e l l . Save the in format ion from t e s t i n g .

d i f f e r e n c e a r r a y = np . array ( TPR list ) − (1−np . array ( FPR l ist ) )

b e s t a c c t h r e s h = thr e sho ld s [ abs ( d i f f e r e n c e a r r a y ) . argmin ( ) ] #Thresholds i s a l r eady de f ined .

be s t I oU thre sh = thr e sho ld s [ np . where ( IoUs == np .max( IoUs ) ) ] [ 0 ]

b e s t D i c e th r e sh = thr e sho ld s [ np . where ( Dice == np .max( Dice ) ) ] [ 0 ]

r e su l t s name = ’ t e s t r e s u l t s . pkl ’

r e s u l t s l o c a t i o n = os . path . j o i n ( f o lde r pa th , r e su l t s name )

#This i s sav ing the t e s t r e s u l t s in to a pkl f i l e

with open ( r e s u l t s l o c a t i o n , ’wb ’ ) as f : # Python 3 : open ( . . . , ’wb ’ )

p i c k l e . dump ( [ENCODER, EPOCHS, l r f i n a l , TPR list , FPR list , p r e c i s i on , thre sho lds , b e s t a c c th r e sh , IoUs ,

Dice , BCE loss thresh ] , f )

#p i c k l e . dump ( [ TPR list , FPR list ,

p r e c i s i on , thre sho lds , b e s t a c c th r e sh , IoUs , Dice ] , f )

## Looking at how we l l the data i s doing ##

d i f f e r e n c e a r r a y = np . array ( TPR list ) − (1−np . array ( FPR l ist ) )

#U t i l i t y to Plot Relavent Informat ion

pr in t (EPOCHS)

#pr in t ( ’ Best IoU Threshold ’ , b e s t I oU thre sh )

p r in t ( ’ Best Accuracy Threshold : ’ , b e s t a c c t h r e s h )

sens = TPR list [ abs ( d i f f e r e n c e a r r a y ) . argmin ( ) ]

spec = 1 − FPR list [ abs ( d i f f e r e n c e a r r a y ) . argmin ( ) ]

p r i n t ( ’ Optimal Accuracy Sens : ’ , s ens )

p r in t ( ’ Optimal Accuracy Spec : ’ , spec )

p r in t ( ’ ’ )

p r e c r e c a l l t h r e s h = abs ( p r e c i s i o n − TPR list ) [ 0 : −2 ] #remove the l a s t element

opt imal index = np . where ( p r e c r e c a l l t h r e s h ==

np . min ( p r e c r e c a l l t h r e s h ) )

op t ima l p r e c r e c t h r e s h = thr e sho ld s [ opt imal index ] [ 0 ]

p r e c th r e sh = p r e c i s i o n [ opt imal index ] [ 0 ]

r e c a l l t h r e s h = TPR list [ opt imal index ] [ 0 ]

#Here i s where we ’ re going to put a l l o f the data in to a txt f i l e .

#base = base name o f the f o l d e r , pkl , and pt f i l e s .

b a t c h r e s u l t s . append ( [ base , t e s t s [ i i ] [ ’ENCODER ’ ] ,
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EPOCHS, epochLos s t ra in [ −1] , epochLos s va l id [ −1] ,

bes t IoU thresh , np .max( IoUs ) , be s t D i c e th r e sh , np .max( Dice ) , op t ima l p r e c r e c th r e sh , prec thre sh ,

r e c a l l t h r e s h , b e s t a c c th r e sh , sens , spec ] )

#Outside o f the for−loop now .

with open ( ’ b a t c h t e s t i n g r e s u l t s . txt ’ , ’w ’ ) as f :

f o r item in ba t c h r e s u l t s :

f . wr i t e ( ”%s\n” % item )

A.1.8 batch testing script.py

def r e p o r t t e s t s ( ) :

t e s t s = {}

t e s t s [ 1 ] = { ’ENCODER’ : ’ r e snet101 ’ ,

’ t r a i n s i z e ’ : 0 .75 ,

’ b a t ch s i z e ’ : 16 ,

’EPOCHS’ : 20 ,

’ l r ’ : 0 .0001 ,

’ aug ang le ’ : 20 ,

’ aug s ca l e ’ : [ 1 , 1 . 3 ] ,

’ f l i p p r o b ’ : 0 .3 ,

’ num workers ’ : 1 ,

’ dropout ’ : 0 . 5

}

t e s t s [ 2 ] = { ’ENCODER’ : ’ densenet121 ’ ,

’ t r a i n s i z e ’ : 0 .75 ,

’ b a t ch s i z e ’ : 16 ,

’EPOCHS’ : 30 ,

’ l r ’ : 0 .0001 ,

’ aug ang le ’ : 20 ,

’ aug s ca l e ’ : [ 1 , 1 . 3 ] ,

’ f l i p p r o b ’ : 0 .3 ,

’ num workers ’ : 1 ,

’ dropout ’ : 0 . 5

}

t e s t s [ 3 ] = { ’ENCODER’ : ’ vgg19 ’ ,

’ t r a i n s i z e ’ : 0 .75 ,

’ b a t ch s i z e ’ : 16 ,

’EPOCHS’ : 30 ,

’ l r ’ : 0 .0001 ,

’ aug ang le ’ : 20 ,

’ aug s ca l e ’ : [ 1 , 1 . 3 ] ,

’ f l i p p r o b ’ : 0 .3 ,

’ num workers ’ : 1 ,

’ dropout ’ : 0 . 5

}

return t e s t s
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Derivations

B.1 Peak Mean Dice Score (PMDSC)

The test-time evaluation of a model is a function of the binary threshold the user

decides to employ. As a result, the applied threshold directly effects the trade-off

between the precision and recall of the model(s). The ML engineer has an option

to either 1) choose a threshold that optimizes the model performance, or 2) choose

a threshold that derives the desired location on the precision - recall curve. For the

purposes of this thesis, we apply the former. In order to do this, we must evaluate

the model performance for each test-time image over a discrete number of thresholds.

The performance of the model at any singular threshold is determined by taking the

mean dice performance over the entire test set. As such, this derives the peak mean

of the test-time performance curve. Mathematically,

DSCτ =
1

N

N∑
i=0

(DSCi|τ) (B.1.1)

where τ is the test-time threshold applied. We apply this for τ = 0 to 1 with

0.05 intervals for the thesis. Throughout the thesis, we assumed that the data for all

thresholds are normally distributed.
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Figure B.1 illustrates each model’s precision - recall curves before and after test-

time augmentation of distortion = 0.50. Figure B.2 shows the corresponding model

performances as a function of threshold at the applied distortion.

Figure. B.1. Precision vs recall for models used in the thesis for both test-time
augmentation (TTA) and non-augmentation. Augmentation applied is distortion at 0.50.

Inception model was not used for data analysis. There is a notable reduction in
precision-recall curves for the augmentation condition, which is expected.
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Figure. B.2. Model Dice Score as a function of threshold for distortion condition 0.50.
The threshold picked is the threshold that optimizes the performance of each model

individually. As a result, each model will lie on different locations on the precision-recall
curve. Vgg19, ResNet101, DenseNet121, and Ensemble thresholds are 0.40, 0.50, 0.25,

0.40, respectively. InceptionV4 model was not used.
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Côté, Ben Cipollini, Paul McCarthy, Dorota Jarecka, Christopher P. Cheng,

Yaroslav O. Halchenko, Michiel Cottaar, Eric Larson, Satrajit Ghosh, Demian

Wassermann, Stephan Gerhard, Gregory R. Lee, Hao-Ting Wang, Erik Kastman,

Jakub Kaczmarzyk, Roberto Guidotti, Or Duek, Jonathan Daniel, Ariel Rokem,

Cindee Madison, Brendan Moloney, Félix C. Morency, Mathias Goncalves,

Ross Markello, Cameron Riddell, Christopher Burns, Jarrod Millman, Alexan-
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