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Lay Abstract

Digital programs and hardware record data over time for quality assurance and

monitoring purposes. Anomalies are often present in such data for various rea-

sons, including recording or storage errors. Many programs and environments

are inherently dynamic and experience changes in their pattern of behavior

and subsequently in the data they produce. Such fluctuations are referred to

as concept drifts. In this study, we propose and implement a framework that is

able to identify anomalies in data recorded over time in dynamic environments.
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Abstract

Digital applications and devices record data over time to enable the users and

managers to monitor their activity. Errors occur in data, including the time

series data, for various reasons including software system failures and human

errors. The problem of identifying errors, also referred to as anomaly detection,

in time series data is a well studied topic by the data management and systems

researchers. Such data are often recorded in dynamic environments where a

change in the standard or the recording hardware can result in different and

novel patterns arising in the data. Such novel patterns are caused by what

is referred to as concept drifts. Concept drift occurs when there is a pattern

change in the statistical properties of the data, e.g. the distribution of the data,

over time. The problem of identifying anomalies in time series data recorded

and stored in dynamic environments has not been extensively studied. In

this study, we focus on this problem. We propose and implement a unified

framework that is able to identify drifts in univariate time series data and

incorporate information gained from the data to train a learning model that

is able to detect anomalies in unseen univariate time series data.
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Chapter 1

Introduction

Expansion of data driven applications and digital devices that constantly and

continuously record data leads to a higher risk of errors being present in the

data. Errors might be present in the data due to possible mistakes in reading,

storing, analyzing or transferring. For instance, consider a sensor recording

the temperature of a conference room every ten minutes and sends it to an

embedded software to be stored on a disk locally. At the end of the day,

the software also computes the average temperature and sends the data to a

remote server that manages and analyzes the data. A dataset on the remote

management server could have errors due to following reasons:

• The sensor is defective and records erroneous temperature readings.

• The local storage disk is defective and the numbers are prone to errors

upon the saving operation.

• The embedded software has a bug in its program, and experiences an
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arithmetic overflow when computing the average temperature at the end

of the day.

• The network hardware is defective or the network software requires an

update for its checksum algorithm, and it results in wrong data being

transmitted to the remote server.

• The remote server’s analysis software has a bug in its conversion from

Celsius to Kelvin, required for further statistical analysis.

As portrayed in the possible scenarios above, errors are an inseparable

part of computer systems that read, analyze, and write data. Time Series

data is not an exception. A time series is defined as a sequence of orderly

recorded data points in which every point of data has a time step associated

with it, i.e. chronically ordered sequence of data. Formally, a time series T

of length n is defined as a sequence of data points with a chronological order

{T (i)| i ∈ [1, n]} where i represents the time step and T (i) represents the value

of the time series at time step i. If the data is being recorded indefinitely and

in an online fashion, then there is no limit for i to grow.

Errors in a time series data, also referred to as anomalies, are single data

point or a consecutive sequence of data points that are known to be abnormal-

ities, i.e. data points that do not have a normal value. Abnormalities could

be manually identified by domain experts or automatically identified based on

a set of rules.

Some studies refer to and treat anomalies the same way as outliers. In their

book on outlier analysis, (Aggarwal, 2016) defines outliers and anomalies as

2
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the same concept: “Outliers are also referred to as abnormalities, discordants,

deviants, or anomalies in the data mining and statistics literature.”

In order to establish a scientific method to detect such errors in time se-

ries data, we need a coherent and single definition. One of the most common

definitions of anomalies is given by (Chandola et al., 2009): “Anomalies are

patterns in data that do not conform to a well defined notion of normal be-

havior”. Based on this definition, the main goal of this study is to identify

such abnormal behavior and in turn, specific points in time series data that

are labeled as anomalies.

The first outcome of the above definition is that most of a time series data

must be regarded as normal, so that a few points can be regarded as abnormal.

The notion of abnormality finds its meaning when the majority of the data

is normal. The second outcome is that not all changes in the patterns or the

values of data points in a time series are necessarily abnormalities, i.e. a factor

of ill-defined or malicious behavior must be present to consider a portion of the

time series as anomalous. A change in pattern of the time series that emerges

after a period of stability is different from an anomalous pattern. These new

patterns, also known as novelties [(Chandola et al., 2009), (Pimentel et al.,

2014)], are normal yet unprecedented or rare, but not abnormal. Therefore,

we need to distinguish them in our study of anomalies.

Time series data can be modelled via random variables operating as un-

derlying data generation processes, i.e. at each time step the value of the time

series is drawn from the random variable. A change in the probability distri-

bution of the underlying data generation process results in novel patterns in

3
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the data (Webb et al., 2016). Novel patterns emerge in time series data due to

various reasons. A change in season for temperature data, a change in climate

conditions for water level data, or a job promotion for bank account balance

data are some examples of possible scenarios leading to a novel pattern in

data. Such dynamic and non-stationary environments often experience a drift

in their data distribution. Concept drift is a phenomenon that is attributed to

a significant change in the distribution of data, in a way that models applied

on old data are no longer as accurate as they were upon the emergence of such

drifts.

1.1 Our Contributions

The goal of this study is to design an anomaly detector for univariate time

series data that explicitly considers the effects of concept drift on anomaly

detection. We first provide an extended set of formal definitions to characterize

concept drift and then we provide an algorithm that detects concept drift in

(univariate) time series data. The extension is done on the definitions and

parameters provided by (Webb et al., 2016). The definitions and parameters

provided by (Webb et al., 2016) were not sufficient to develop a concept drift

detection algorithm. We explain what are the revisited definitions and how and

why we extend them in details in the Chapter 3. We then analyze and observe

the effect of the detected concept drifts in the process of anomaly detection

and show its impact on the performance of the anomaly detector. We use the

publicly available Yahoo! dataset (Laptev et al., 2015) that is manually labeled
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by domain experts, the publicly available light (Zhu, 2010) and power (Zhu,

2010) datasets with injected anomalies, and a set of synthetically generated

datasets with injected anomalies using MOA tool (Bifet et al., 2010). The

followings are a list of contributions of this study:

1. An extended set of definitions to formalize and characterize the notion

of concept drift, its various types, and its effects on time series data

analysis.

2. An algorithm that effectively detects abrupt, gradual, and incremental

drifts.

3. A classifier in the form of an anomaly detector that effectively uses de-

tected concept drifts to identify anomalous data points in time series

data more accurately compared to a baseline study.

It is noted that we revisit and extend some of the definitions and parameters

introduced by (Webb et al., 2016) to provide a more complete and integrated

set of definitions according to the first contribution point listed above. We

explain such definitions in details in the next chapter.

Figure 1.1 demonstrates the architecture of our proposed framework. Specif-

ically, for each time series, we first identify concept drifts and extract a set of

features based on their location, length, and type. We then extract a set of

statistical features from the time series. Finally, we feed the extracted features,

i.e. concept drift and statistical features, to a trained feed forward neural net-

work to identify anomalies. It is noted that the steps in Figure 1.1 shows the

flow for the anomaly detection using a trained neural network. However, there

5
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is a training step that uses the labeled time series data with known anomalies

to train the model. The training step has an identical structure as depicted in

Figure 1.1.

Figure 1.1: Structure and flow of our framework.

In Chapter 2, we provide an extensive review of the existing works and how

they studied related problems as well as their limitations. We also explain how

our study overcomes such limitations. In Chapter 3, we study the problem of

concept drift detection and propose our algorithm to identify concept drifts.

Chapter 3 discusses step 1 in the Figure 1.1 . In Chapter 4, we study the

problem of anomaly detection and introduce the features (both concept drift

based and statistical based), the datasets, and the classifier we use to model

and detect anomalies. Chapter 4 discusses steps 2 and 3 in the Figure 1.1.

In Chapter 5, we demonstrate the results and discuss the performance of our

framework. Chapter 5 discusses step 4 in the Figure 1.1. Finally, in Chapter

6, we conclude this study and provide a groundwork for future studies.
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Chapter 2

Related Works

In this chapter we dig deeper in the problem of anomaly detection and con-

cept drift detection by introducing several related and background studies and

explaining how they have studied these problems. We then explain what are

some of the limitations of these studies and how that motivated us to conduct

this study. We finish this chapter by explaining our contributions and how we

try to address the existing limitations.

Anomaly detection in time series data is a well studied topic in the liter-

ature [(Kumar et al., 2009), Rousseeuw and Leroy (1987), (Aggarwal, 2016),

(Box and Jenkins, 1976), (yf et al., 2014), (Yairi et al., 2001), (Çelik et al.,

2011), (Oehmcke et al., 2015)]. However, most of the existing studies lack an

explicit consideration and analysis of novel patterns and its coexistence with,

influence, and impacts on the anomalous data and anomaly detectors.

In the context of time series data, concept drift is often defined as a signif-

icant change in the rolling mean of the data. We provide formal definitions in
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the next section.

In the next two sections, we explore the existing studies of anomaly detec-

tion and concept drift detection problem, respectively.

2.1 Anomaly Detection

In order to categorize our related work review of anomaly detection in a more

aligned way with the approach of our framework, we break down the review

into two subsections. In the first subsection, we review the related works in

anomaly detection based on whether the true labels of data are available or not,

i.e. normal and abnormal data points are known. In the next subsection, we

review the related works based on the method that is used to study anomaly

detection. Specifically, we review the statistical approaches versus the the

machine learning based approaches.

2.1.1 Supervised vs. Semi-Supervised vs. Unsuper-

vised

One way of breaking down anomaly detection in time series data is based on

whether or not the anomaly detector is trained on labeled data. Depending

on the supervision of the domain, i.e. whether anomalies are automatically or

manually labeled and identified by domain experts, there are supervised, semi-

supervised and unsupervised anomaly detectors. For completely labeled data a

supervised model, e.g. K Nearest Neighbors or Neural Network could be used

[(Saurav et al., 2018), (Xu et al., 2020)]. For partially labeled data, e.g. not

8
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enough identified anomalous data points exist to be fed to a fully supervised

detector, semi-supervised learning or active learning methods are used. Semi-

supervised learning methods are used when both labelled and unlabeled data

coexist (Zhu and Goldberg, 2009). Active learning is a learning method used

in similar environments where the learner chooses which part of unlabeled data

should be labelled and then it asks an oracle, e.g. a domain expert, to label

that part of data. (Le and Papotti, 2020) recently proposed a distance based

anomaly detection algorithm for time series data that uses active learning. In

cases where there is no labeled data available, unsupervised methods are used.

(Munir et al., 2019) proposed a predictive Deep Convolutional Neural Network

(CNN) model named DeepAnT that uses its predictions to identify anomalies,

i.e. comparing the predicted value for a specific time step with the actual time

series value in that time step.

2.1.2 Statistical vs. Machine Learning

(Braei and Wagner, 2020) breaks down the study of anomaly detection in

time series data into two main categories: Statistical methods and Machine

Learning based methods. Statistical methods are based on the assumption

that the time series data points are generated by an underlying data generation

process according to a distribution. The goal is to estimate the distribution

and model the underlying data generator so that we can predict and analyze

the time series data. As opposed to statistical approaches, Machine Learning

based approaches consider the data generation process a black box and only

focus on and try to learn from the time series data. (Breiman, 2001) takes this

9



M.Sc. Thesis – S. Z. Alavijeh McMaster University – Computer Science

discussion to the next level and describes this categorization as two different

cultures and recommends the machine learning based approaches for time

series analysis.

As for the statistical approaches, (Kumar et al., 2009) uses Autoregressive

Models (AR) to model the underlying data generation process. AR is a model

that assumes each data point nt is computed based on the linear combination

of the points before it n1, n2, n3, . . . , nt−1. (Rousseeuw and Leroy, 1987) uses

Moving Average Models (MA) to model the underlying data generation pro-

cess. Similar to AR, MA also tries to predict the value at each data point nt

using the information from the previous data points. But instead of using the

actual observed values of previous points, MA uses a linear combination of the

errors of previous predictions for data points to predict the value of the current

data point. (Box and Jenkins, 1976) uses a combination of both AR and MA

methods to predict the value at each data point, i.e. a linear combination of

the observed previous points and the prediction errors of the previous points.

(Boracchi and Roveri, 2014) proposes an approach that exploits self-similarity

of a change-free portion of a time series as a means to identify unexpected

changes in the other portion of the time series. They consider a batch of data

points to be anomalous if it is not statistically similar enough to at least one

batch in the change-free portion.

On the other hand, machine learning approaches with a black box treat-

ment of the data generation process only rely on time series data itself. (Yairi

et al., 2001) and (Dunning and Friedman, 2014) use K-Means Clustering

method to categorize time series points into normal and abnormal. (Çelik

10
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et al., 2011) uses Density-Based Spatial Clustering of Application with Noise

algorithm (DBSCAN) to categorize time series data points into one of the fol-

lowing three classes, core points, border points, and anomaly points. As for

the Neural Network based classification, (Haselsteiner and Pfurtscheller, 2000)

uses Multi Layer Perceptron (MLP) models which are basically fully connected

feed-forward neural networks for the time series classification problem. (Munir

et al., 2019) uses a convolutional neural network (CNN) architecture to predict

and forecast the future values of a time series and identify anomalies based

on how off the time series value is from the predicted one. (Wu et al., 2019)

used Gated Recurrent Unit networks (GRU), which belongs to the category of

Recurrent Neural Networks (RNN) to detect anomalies in time series.

Statistical-based methods and machine learning based methods mentioned

above lack a thorough and explicit integration and consideration of various

types of concept drift in their studies. Deep learning models, especially RNNs

which are known to consider historical data in the decisions they make, may

implicitly learn the behaviors of concept drift in time series data, given their

black box and unexplainable nature. However, a lack of concept drift analysis

is still present in those studies.

2.2 Concept Drift Detection

Concept drift has been extensively explored in the context of classification

problems [(Wang et al., 2017), (Zhang et al., 2008), (Masud et al., 2011)].

In dynamic environments, the distribution of the input data to a classifier

11
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evolves over time. Studies assume that such evolutions are unexpected and

unpredictable and could happen at any given time. Though, in some cases a

change may be predictable, e.g. the temperature level is expected to fluctuate

upon seasonal changes. In the context of classification, concept drift and

dynamicity in the distribution of data result in performance deterioration of

the models working with that data, if models are not prepared to recognise and

adapt the change. (Bifet and Gavaldà, 2007) proposes ADWIN2, an algorithm

that utilizes a window based approach to detect concept drift in data using

the error rate of a classification model. They use two side-by-side sliding

sub-windows, one scanning new data as it slides and one keeping history.

They monitor the difference of the mean value of both windows and declare

a drift upon significant difference. Recently, (Raab et al., 2020) proposed a

window based approach similar to (Bifet and Gavaldà, 2007) that uses two

sliding sub-windows to detect concept drift. They use a statistical test named

Kolmogorov-Smirnov test to compare the distribution of the data within each

of the sub-windows to compute their difference. Upon significant difference,

they declare the emergence of a drift period.

In the context of time series data analysis, (Cavalcante et al., 2016) pro-

poses a feature extraction method as well as a classifier that utilizes those

extracted statistical features to identify concept drift in time series data. It

is important to note that they define a drift period as anywhere in the time

series where those extracted features evolve and their classifier of choice rec-

ognizes that change. In a more implicit study of concept drift in time series

12
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data, (Guajardo et al., 2010) proposes a strategy to update time series fore-

casters based on the Support Vector Regressor (SVR) models, to adapt the

drift and improve their performance. Their proposed strategy tunes the selec-

tion of train, test, and validation sets as well as model and feature selection

parameters.

2.2.1 Types of concept drift

There are several types of concept drift studied in the literature, e.g. Abrupt

drift, Gradual drift, and Incremental drift. Some researchers have studied and

identified different types of concept drifts in the context of the classification

problem [(Widmer and Kubat, 1994), (Gama and Rodrigues, 2009), (Žliobaite,

2011), (Hoens et al., 2012), (Moreno-Torres et al., 2012), (Gama et al., 2014)].

Many of the given definitions for various types of concept drifts in the above

studies are qualitative or informal. In the context of time series forecasting,

(H. F. M. Oliveira et al., 2017) proposed a particle swarm optimization based

approach that is able to forecast time series while detecting and considering

concept drift. PSO is essentially an optimization method that is used to opti-

mize a model in the training and validation phase.

In their study, (Webb et al., 2016) provided formal definitions for various

types of concept drift in an effort to characterize and formalize concept drift.

They mention in their study that the provided definitions are probability based

and it is not clear as to how they can be used in real world applications (such

as time series classification). They also do not provide an algorithm or a

method to actually detect concept drift as their study is limited to definitions

13
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and characterizations. For this study, we use some of the basic definitions

proposed by (Webb et al., 2016) to construct a complete set of formalizations

required to accurately and formally identify concept drifts for the purpose of

using them in the context of time series applications. Our work is unique in

the sense that it provides formal definitions for concept and various drift types

in the context of time series anomaly detection.

2.3 Motivations

The problem of anomaly detection in non stationary environments with con-

cept drift has not been extensively studied. (Zambon et al., 2017) studied

the problem of concept drift and anomaly detection in graph streams which is

inherently different from time series data. (Saurav et al., 2018) and (Xu et al.,

2020) studied the problem of anomaly detection with concept drift adaptation

using a temporally enhanced deep neural network called Recurrent Neural

Networks (RNN). Deep neural network models are considered as merely black

boxes with limited explainability. Concept drift presence is only considered

implicitly by the features extracted from the time series data by the deep neu-

ral network model. Therefore, the influence of it is not quantifiable with this

approach. (Amarasinghe et al., 2018) proposed an explainable RNN model for

anomaly detection, but their work lacks discussion and analysis of the role of

concept drift and they mostly focus on anomaly detection.

To the best of our knowledge, there are two published studies that explore
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the problem of anomaly detection in time series data while explicitly consid-

ering concept drift in a more explainable way compared to the deep neural

networks. (Ma et al., 2018) proposed StepWise which is a framework that

helps anomaly detection models (anomaly detectors) to adapt themselves in

the event of emergence of a concept drift. It is the first study to explicitly and

directly consider concept drift detection for the purpose of anomaly detection

in time series data. However, their study is limited in two ways. First, they do

not discuss or consider various types of concept drift that have been studied in

the literature, e.g. Abrupt, Gradual, and Incremental Concept Drifts. Rather,

they consider all types of drift as a general concept drift. As we will study

in this research, various types of concept drift have different effects on the

anomaly detectors. Second, they do not propose a specific anomaly detection

algorithm for time series data. Rather, they propose a means to help with such

detectors by providing them with information about concept drift. However,

various anomaly detection models work in different ways and given the differ-

ent standards of input and output, models are not necessarily flexible enough

to accept additional concept drift information from the StepWise framework

to adapt themselves with the novel patterns emerging.

Very recently, (Yu et al., 2020) studied the similar problem and proposed

DDCOL, an algorithm that identifies abrupt anomalous changes in time series

data with the adaptation of concept drifts. Similar to (Ma et al., 2018), their

work also lacks a thorough analysis of various types of drifts and their effects

on the performance of anomaly detectors.

Previous studies suggest that non-stationary time series data experience
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various types of fluctuations over time. A dynamic underlying data generator

changes its data generation patterns over time and it results in what is known

as concept drift in the literature. Studies also suggest that time series anomaly

detectors are affected by concept drifts and their performance deteriorates over

time if they are not adaptive towards concept drift. A lack of formal definition

and integration of concept drift and anomaly detection in time series data

is the main incentive of this work. A few previous studies that also explore

and address the effects and impacts of concept drift on anomaly detection

in time series data have limitations in at least one of these three categories:

1. Implicitly considering concept drift adaptation through black box deep

learning neural network models that cannot quantitatively explain the effects

of concept drift on anomaly detection. 2. Not formally defining various types

of concept drift and their effects on anomaly detection. 3. No concept drift

detection algorithm or an integrated anomaly detector with explicit integration

of concept drift is provided. Our study addresses all three issues as we explain

in the next section.
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Chapter 3

Concept Drift Detection

This chapter contains the following sections:

1. A set of parameters used in the definition of concept drifts, the concept

drift detection algorithm, and the preliminary functions.

2. A set of preliminary functions used as helper functions to develop the

concept drift detection algorithm.

3. A set of definitions provided to create a concrete foundation to define

concept drift.

4. An algorithm to detect various types of concept drifts in univariate time

series data.

5. A discussion on how various types of concept drift impact anomaly de-

tection.

Before we continue, it is worth noting that we use “drift” as a shorter

term to refer to “concept drift”. Also, we will define “concept” as a period of
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stability in the time series as opposed to “drift” which represents a period of

instability. Between every two consecutive periods of stability, “concepts”, lies

a period of instability, “drift”, which we categorize into three types, i.e. abrupt,

gradual, and incremental drifts. We will define the notion of stability and

instability with concrete definitions in this chapter. Figure 3.1 shows a period

of stability, followed by an abrupt drift that marks a period of instability,

followed by the next period of stability.

Figure 3.1: An example of concept drift. The marked interval demonstrates a
period of instability known as a concept drift and specifically, an abrupt drift.

It is also worth noting that we identify the specific type of a drift after

its starting and ending points are identified. We do so by checking the drift

characteristics against each of the drift type definitions and matching them.

Finally, it is noted that we revisit some of the parameters in the coming

sections of this chapter introduced by (Webb et al., 2016) in their study of

characterizing concept drifts. We introduce more parameters to build the

ground for our concept drift detection algorithm. Specifically, (Webb et al.,

2016) introduced the notion of the following parameters which we revisit and
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base some of our definitions on:

• Minimum duration for concept drift. We revisit this parameter as φ in

the next section.

• Maximum duration for abrupt drift. We revisit this parameter as δ in

the next section.

• Gradual drift window period. We revisit this parameter as ν in the next

section.

• Maximum allowed fluctuation during the gradual drift period. We revisit

this parameter as µ in the next section.

3.1 Symbols and Parameters

In this section we provide a list of the parameters we use for both definitions

and the concept drift detection algorithm. It is noted that our framework has

the flexibility to compute these parameters based on the statistical properties

of the time series if they are not given by the user. We propose our default

parameter calculation approach in the Appendix A. We report the impact of

changing the value of the novel parameters we introduce (Wb and ∆) on the

performance of anomaly detection in Appendix A.

3.1.1 Base Window Size, Wb ∈ N

In our definition of concept and in our concept drift detection algorithm, we

track a certain amount of “history” to account for context and historical data
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points leading to the current state of the time series. Wb is the size of the

window leading to the current point we want to calculate the concept value

for.

In Figure 3.2, Wb is set to 10 and for determining whether time step 25

marks the beginning or end of a stable concept, all of the 10 points leading to

it are considered. We explain how this parameter and these “history” points

are taken into account in the next section.

Figure 3.2: Wb is set to 10. Upon examining the point at time step 25, all of
the 10 points leading to it are considered.

3.1.2 Minimum Stability Period, φ ∈ N

For each continuous portion of time series to be considered as a stable concept,

a minimum period of stability of length φ points is required. It ensures that

each concept has a minimum period of stability required by the drift detection

algorithm to function and efficiently detect drifts.
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3.1.3 Maximum Tolerable Fluctuation, ε ∈ R+

During each concept a tolerable amount of fluctuation in value is allowed.

Time series values do not necessarily remain unchanged as time passes by.

Room temperature might change by one or a fraction of one Celsius degree

and still be considered as stable. In the next subsection, we demonstrate

how we calculate the fluctuation with the help of Stat function defined in

Algorithm 1.

3.1.4 Maximum Abrupt Drift Duration, δ ∈ N

Abrupt drift is a specific category of concept drift. A sudden and “abrupt”

transition from one stable concept to another stable concept is considered as

an abrupt drift. For a drift (i.e. a transition) to be considered abrupt, it must

happen in a short period of time, i.e. less than δ time points.

It is important to note that we do not measure time in seconds or minutes,

but rather in orderly and chronic points in time. The scale used for time series

could be from a fraction of a second to days or even years depending on the

basis the time series data are recorded.

3.1.5 Minimum Gradual Drift Period, ∆ ∈ N

Gradual drift is another type of concept drift. A “gradual” transition from

one stable concept to another stable concept is characterized and known as

gradual drift. For a drift to be considered as gradual, there must be a minimum

transition time, i.e. minimum drift period. Otherwise, a quick gradual drift
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could be considered as abrupt drift as well if it is shorter than δ.

The minimum drift period that must be satisfied for a drift to be considered

as gradual is defined by parameter ∆. Similar to δ and φ, ∆ is measured by

time points.

3.1.6 Maximum Gradual Drift Stat Fluctuation, µ ∈ R+

A gradual drift, as the name implies, must encompass the idea of graduality.

To enforce that, we introduce the maximum gradual drift stat fluctuation, µ,

as a cap for fluctuation of stat value (defined in the next subsection) at any

point during the drift period for it to be considered as gradual. It is measured

in the same metric used for the values of time series, e.g. Celsius, meter, etc.

3.1.7 Gradual Drift Graduality Period, ν ∈ N

The maximum gradual drift concept fluctuation, µ, is validated within every

continuous ν points of time within the drift period. Concretely, the fluctuation

of concept value within every continuous ν points of a gradual drift must be

less than or equal to µ. As we will show in the definitions section, this will

ensure the “graduality” aspect of gradual drifts.

3.2 Preliminary Functions

We provide definitions for the main and helper functions we use to detect

concept drift in a univariate time series. We use the symbol T to represent

time series and T (t) returns the value of time series T at point t in time. We

22



M.Sc. Thesis – S. Z. Alavijeh McMaster University – Computer Science

proceed in the next section with the formal definitions for concept and drift.

3.2.1 Stat Function, Stat : N→ R

Stat receives a positive integer as its input that represents the time step at

which we want to calculate the statistical property (rolling mean) value. It

returns a real number that represents the rolling mean at the given point while

considering a window of Wb points as history. As discussed before, we consider

mean as the criterion and statistical property to measure concept stability.

The rolling part is added to account for historical changes and values that led

the time series to the specific point we are interested in. Concretely, the inner

body of Stat function is defined in Algorithm 1.

For example, Figure 3.2 shows the Wb history points considered in the

computation of the Stat function for point t = 25 when Wb is set to 10.

Algorithm 1 Stat Function

Require: Time Series T and pre-defined parameters
1: function Stat(t)
2: if t < Wb then
3: return -1 . Min Wb points of history required

4: sum← 0
5: for i = t−Wb to t do
6: sum← sum+ T (i)

7: res← sum/Wb

8: return res

The time complexity of the Algorithm 1 is O(1). This is because the

number of iterations of the loop at line 5 in the Stat function is upper bounded

by a constant value, Wb.
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3.2.2 Distance function, Distance : (N,N)→ R+

Distance receives two positive integers as its input that represent the time

steps at which we want to calculate the difference in stat (rolling mean) value.

It returns a positive real number that represents the size of the difference in

stat value at the two given points. Distance function is defined in Algorithm 2

Algorithm 2 Distance Function

Require: Time Series T and pre-defined parameters
1: function Distance(t1, t2)
2: if t1 < Wb or t2 < Wb then
3: return -1 . Min Wb points of history required

4: s1 ← Stat(t1)
5: s2 ← Stat(t2)
6: diff ← abs(s2 − s1)
7: return diff

For the similar reason to the Algorithm 1, the time complexity of the

Algorithm 2 is also O(1).

3.3 Definitions

In this section, we first provide the definitions of stable concept. We then

proceed with introducing the notations we use to define drifts. We then follow

up with introducing and defining three categories of drift, i.e. abrupt, gradual,

and incremental.
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3.3.1 (Stable) Concept

A concept refers to a period of stability in time series during which the time

series values do not fluctuate enough to make it “unstable” and start a drifting

period. Concretely, given φ and ε as we defined them, the time interval [t1, t2]

of a given time series T is considered to be “stable” and constructing a stable

concept if the following expression holds true.

t2 ≥ t1 + φ ∧ ∀i∈[1, t2−t1] Distance(t1, t1 + i) ≤ ε

This definition first ensures that the minimum period of stability, φ, is

respected. It also ensures that the fluctuation of Stat value for every point in

the interval do not deviate more than ε when compared to the beginning of

the concept, t1. It is important to note that we only compare the Stat value

of each point to the very beginning point of the concept. This is to ensure

that a subtle and gradual drift through a long interval does not go unnoticed.

Therefore, t1 remains as the base comparison point.

Figure 3.3 demonstrates how using φ as a lower bound for the duration of

a stable concept helps our algorithm to avoid identifying short periods of time

with relative stability compared to their before and after as stable concepts.

3.3.2 Concept and Drift Notations

The ith identified stable concept, Ci, has a starting and ending point associated

with it, Ci.S and Ci.E, respectively. What comes after Ci.E and before Ci+1.S

is a drift. The ith drift, written as Di takes place between the ith and and
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Figure 3.3: If φ parameter is set to 10 or a larger number, then the marked
period cannot be identified as a stable concept.

(i+ 1)th concepts. Similarly, a drift has a starting and ending point associated

to it. The starting and ending points of the ith drift are noted as Di.S and

Di.E, respectively.

For example, Figure 3.4 shows part of a time series that includes the fol-

lowing periods:

• Third stable concept of the time series starting at T1 = 2040 and ending

at T2 = 2480.

• Third drift period of the time series starting at 2481 and ending at 2602.

• Fourth stable concept of the time series starting at T3 = 2603 and ending

at T4 = 2945.

Table ?? shows how we denote the introduced parameters for this example.
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Figure 3.4: A stable concept followed by a drift period followed by another
stable concept.

3.3.3 Abrupt Drift

The first type of drift is known and defined here as abrupt drift. It is informally

characterized as a sudden change in the statistical properties used as criteria

for concept (Stat value as defined in our study), i.e. a sudden transition from

one stable concept to another.

Given δ as defined, Ci as the trailing concept, i.e. the concept that ends

when the abrupt drift starts, and Ci+1 as the leading concept, i.e. the concept

that begins when the abrupt drift ends, the ith drift noted as Di is considered

to be abrupt if the following expression holds true.

Ci+1.S − Ci.E ≤ δ

Figure 3.5 shows an example of abrupt drift. It demonstrate how the drift

period must be shorter than or equal to δ for a drift to be considered abrupt.
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Figure 3.5: A drift that occurs between time steps T1 and T2. In order to be
considered as abrupt, T2− T1 must be less than or equal to δ.

3.3.4 Gradual Drift

The second type of drift is known and defined here as gradual drift. It is

informally characterized as a gradual change in the Stat value over time. It is

noted that this change does not have to be monotonic and steady during the

drift period. But the overall trend must express a deviation from one concept

to another.

Given ∆, µ, and ν as defined, Ci as the trailing concept, and Ci+1 as the

leading concept, the ith drift noted as Di is considered to be gradual if the

following expression holds true.

Ci+1.S − Ci.E > ∆ ∧ ∀t ∈ [Ci.E, Ci+1.S − ν] Distance(t, t+ ν) ≤ µ

Figure 3.6 shows how the parameters µ and ν are used. Specifically, during

the drift period between T1 and T2, the fluctuation of stat value within every
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ν time steps must be lower than µ.

Figure 3.6: An example of gradual drift. Note that during the drift period,
time series values can fluctuate as long as the fluctuation within a window of

ν points is limited by at most µ.

3.3.5 Incremental Drift

The third type of drift is known and defined here as incremental drift. It

is informally characterized as a unidirectional change in the Stat value over

time. Unlike gradual drift in which only the overall direction of change must

be from one concept towards another, in incremental drift the change must be

unidirectional during the drift time.

Given Ci as the trailing concept and Ci+1 as the leading concept, the ith

drift noted as Di is considered to be incremental if the following expression
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holds true.

∀t ∈ [Ci.E, Ci+1.S]∀u ∈ [t, Ci+1.S]Distance(Ci.E, t) ≤ Distance(Ci.E, u)

∧Distance(t, Ci+1.S) ≥ Distance(u,Ci+1.S)

(3.3.1)

The above definition ensures an incremental property of the drifting period,

i.e., as time passes through the drift period, the Distance value between each

drift point and the end point of the drift must decrease. In Figure 3.7 for each

time step t and u such that t < u < Di.E, the expression 3.3.1 must hold true

for the drift to be considered as incremental.

Figure 3.7: An example of incremental drift. Note that throughout the drift
period, the Distance value between each point and the drift end point keeps
decreasing. Also, the Distance value between each point and the drift start

point keeps increasing.

3.4 Concept Drift Detection Algorithm

In this section we propose our concept detection algorithm that is able to

identify all stable concepts in a given time series. In the next section, we
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propose the drift identification algorithm that categorizes the identified drifts

into one of the introduced drift types.

Given the fact that stability in time series data is subject to relative histor-

ical context for each period of time, and that the Stat value is derived from Wb

historical points leading to the point we are interested in, we mark the Wb
th

point as the beginning of the first stable concept. This is because the very

first few points of a time series data does not convey much history, nor does it

tell anything about the scale of fluctuation in the time series data. Therefore,

as a starting point, we mark the Wb
th point as C0.S and the algorithm begins

with looking for an end to the first stable concept, i.e. C0.E.

We first introduce some helper functions and then build our algorithm

using them.

3.4.1 Concept End Detection Function, FindConceptEnd :

N→ N

This function is used to find the end of a stable concept by giving it the starting

point of the concept. It looks for any fluctuation of Stat value that comes after

the first φ points of the minimum stability period.

Algorithm 3 Concept End Detection

Require: Time Series T and pre-defined parameters
1: function FindConceptEnd(Start)
2: for i = Start+ φ+ 1 to T.length do
3: if Distance(Start, i) > ε then
4: return i . i is the end of concept started at Start

5: return -1 . Reached the end of time series
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It is noted that in the Algorithm 3, we do not compare the first φ points of

concept to see if it satisfies the condition for ending the concept. It is because

we only mark a period of time as stable concept if it has at least a minimum

of φ points with stability in the Stat value, i.e. it has already been confirmed

that the first φ points satisfy the stability condition.

The time complexity of the Algorithm 3 is O(n) where n is the length of

the time series. This is because the maximum number of time points iterated

by the FindConceptEnd function is upper bounded by the number of data

points in the time series.

3.4.2 Concept Start Detection Function, FindConceptStart :

N→ N

This function is used to find the beginning of the next stable concept by giving

it the ending point of the previous concept. When the ending point of a concept

is reached, via the help of Algorithm 3, a drift period starts. A adrift period

ends only when the beginning of the next stable concept is identified. This

step is done via the help of Algorithm 4.

A stable concept is identified at a time point if and only if the next φ points

possess the property of not fluctuating more than ε in Stat value. Therefore,

the Algorithm 4 only marks the starting point of the next stable concept after

it made sure about the minimum period of stability.

The time complexity of the Algorithm 4 is also O(n) where n is the length

of the time series. This is because the outer loop in the FindConceptStart

function at line 3 is upper bounded by the length of the time series and the
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Algorithm 4 Concept Start Detection

Require: Time Series T and pre-defined parameters
1: function FindConceptStart(End)
2: FoundF lag ← True

3: for i = 1 to T.length− End− φ do
4: for j = 1 to φ do
5: if Distance(End+ i, End+ i+ j) > ε then
6: FoundF lag ← False

7: break
8: if FoundF lag then
9: return i

10: return -1 . Reached the end of time series

inner loop at line 4 is upper bounded by a constant value, φ.

3.4.3 Concept Detection Function, DetectConcept

Using the two helper functions 3 and 4 and the fact that the first stable concept

starts at the time step Wb, i.e. C0.S is equal to Wb, we present the concept

detection in Algorithm 5. It is noted that this function, similar to other

functions, has access to the time series T and the pre-defined parameters. It

also does not accept any input. As its output, it returns a list of two-tuples

that contains the starting point and ending point of each concept, as well as

another list of two-tuples that contains the starting point and ending point of

each drift.

In the next section, we present our drift identification algorithm that ana-

lyzes the drifts detected by Algorithm 5 and categorize them into one of the

defined drift groups.

Algorithm 5 has two phases: A stability phase and a drift phase. This

duality is tracked by the variable ConceptPeriod. If ConceptPeriod is True,
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Algorithm 5 Concept Detection

Require: Time Series T and pre-defined parameters
1: function DetectConcept
2: ConceptList← [(Wb,−1)]
3: DriftList← [(−1,−1)]
4: Finished← False

5: while not F inished do
6: ConceptPeriod← True

. -1 as an index returns the last element in a list
7: if ConceptList[−1][1] == −1 & ConceptPeriod then
8: ConceptEnd← FindConceptEnd(ConceptList[−1][0])
9: if ConceptEnd == −1 then

10: ConceptList[−1][1]← T.length− 1
11: Finished← True

12: break
13: else
14: ConceptList[−1][1]← ConceptEnd
15: DriftList.append((ConceptEnd,−1))
16: ConceptPeriod← False

17: if DriftList[−1][1] == −1 & not ConceptPeriod then
18: ConceptStart← FindConceptStart(ConceptList[−1][1])
19: if ConceptStart == −1 then
20: DriftList[−1][1]← T.length− 1
21: Finished← True

22: break
23: else
24: DriftList[−1][1]← ConceptStart
25: ConceptList.append((ConceptStart,−1))
26: ConceptPeriod← True

27: return ConceptList, DriftList
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then we are at a stability period and looking for a possible end of the cur-

rent stable concept, which in turn marks the beginning of the next drift. If

ConceptPeriod is False, then we are at a drift period and looking for a possible

end of the current instability drift period, which in turn marks the beginning

of the next stable concept.

The time complexity of the Algorithm 5 is O(n) where n is the length of

the time series. This function iterates over the time series only once and at

each step identifies the starting and ending point of a concept until the time

series is fully iterated. While the time complexity of the FindConceptStart

and FindConceptEnd functions is O(n), every point on the time series is only

iterated once. This is because at each step of the DetectConcept function

in Algorithm 5, the iteration jumps over the points that are iterated over by

either of the FindConceptStart and FindConceptEnd. Figure 3.8 shows how

all of the time series data points are only processed once.

3.4.4 Drift Identification Function, IdentifyDrift

The Algorithm 5 is able to detect all concept and drift periods. As the next

step, we propose the Algorithm 6 that identifies all the detected drifts and

categorizes them into one of the drift subgroups.

The IdentifyDrift function returns a list of three tuples, (Start, End, Type),

that adds a type identifier to the DriftList. The Type value is categorical.

The value 0 represents abrupt drift, 1 represents gradual drift, and 2 repre-

sents incremental drift. If a drift does not satisfy any of the introduced three

categories of drift, then we assign a value of 3 to it that represents “unknown”
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Figure 3.8: When the concept ending point is determined, the concept
detection algorithm will skip to the next concept start. It continues until the

entire time series is iterated via the FindConceptStart and
FindConceptEnd functions.

type of drift.

The time complexity of the Algorithm 6 is O(n) where n is the length

of the time series. The outer loop on the line 3 and the inner loops on the

lines 11 and 19 in the function IdentifyDrift are together upper bounded by

the length of the time series. This is because each drift is only iterated once

and even if the entire time series consisted of drifts, then all of the n points

are iterated once. Therefore, the number of processed data points is upper

bounded by the length of the time series.

Our unified framework starts by first detecting the position of concept

drifts using the DetectConcept function in Algorithm 5 and then proceeds

to identifying the drift type using the IdentifyDrift function in the Algo-

rithm 6. Each step has a time complexity of O(n). Therefore, our concept
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Algorithm 6 Drift Identification

Require: Time Series T and pre-defined parameters
1: function IdentifyDrift

. First returned value, ConceptList, is ignored
2: Ignored,DriftList← DetectConcept()
3: for drift in DriftList do
4: DriftStart← drift[0]
5: DriftEnd← drift[1]
6: DriftListType← []

. Abrupt Drift
7: if DriftEnd−DriftStart < δ then
8: DriftListType.append((DriftStart,DriftEnd, 0))
9: continue

. Gradual Drift
10: IsGradual← True

11: for t = DriftStart to DriftEnd− ν do
12: if Distance(t, t+ ν) > µ then
13: IsGradual← False

14: break
15: if IsGradual then
16: DriftListType.append((DriftStart,DriftEnd, 1))
17: continue

. Incremental Drift
18: IsIncremental← True

19: for t = DriftStart to DriftEnd do
20: for u = t to DriftEnd do
21: ST ← Distance(DriftStart, t)
22: SU ← Distance(DriftStart, u)
23: TE ← Distance(t,DriftEnd)
24: UE ← Distance(u,DriftEnd)
25: if ST > SU | TE < UE then
26: IsIncremental← False

27: break
28: if IsIncremental then
29: DriftListType.append((DriftStart,DriftEnd, 2))
30: continue

. Unknown Drift
31: DriftListType.append((DriftStart,DriftEnd, 3))

32: return DriftListType
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drift detection module has an overall time complexity of O(n).

3.5 Concept Drift Impact on Anomaly Detec-

tion

Figure 3.9 shows an example of how an abrupt drift can affect the anomaly

detection. The time series is experiencing an abrupt drift between time points

25 and 35. The time point 29 has the same value as the time point 32 (both

are marked). However, the effects of abrupt drift causes the time point 29 to

be considered as anomalous despite its identical value with the normal time

point 32. A similar situation occurs in Figure 3.10 but with gradual drift. The

two marked points during a gradual drift period have close values but both

are considered normal. This is because in gradual drifts, there is enough time

for such scenarios to take place, while in abrupt drift the drifting period is

limited in length by δ.

This example shows how various types of drift can affect the decision that

is made about a point being normal or abnormal. In the next chapter, we

show how we take advantage of distinguishing between different types of drift

to provide the anomaly classification model with adequate information in the

form of concept drift features.
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Figure 3.9: Part of a time series with abrupt drift between time 25 and 35.
While both marked points have same values, the first one is anomalous and

the second one is normal.

Figure 3.10: Part of a time series with gradual drift between time 10000 and
11500. Both time points are normal.
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Chapter 4

Anomaly Detection

In the previous chapter, we presented our concept drift detection algorithm

for univariate time series data. We explained how concept drift affects the

anomaly detectors’ performance and therefore, it is important to consider con-

cept drift for anomaly detection in dynamic settings. We also explained the

shortcomings of the similar studies and how our framework fixes them. In

this chapter, we present the final step of our framework which is the anomaly

detection.

We extract a set of features from the time series data, including several

features extracted through the concept drift detection step, and use them to

train a classifier on labeled time series data. Some of the datasets we use are

already known to have anomalies and are labeled by domain experts. Other

datasets are clean of anomalies and we inject anomalies in them to provide

labeled data.

In the first section of this chapter, we introduce the features and how we
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extract them. In order to study the importance of features and the rela-

tionship they have with each other, we present the datasets we use for our

experiments with detailed explanation in the second section. We then pro-

ceed with Exploratory Data Analysis (EDA) to investigate the datasets. We

examine our features using the datasets introduced in the second section. In

the third section, we explain the details of how we inject anomalies in the

anomaly-free datasets to prepare them for classification. In the fourth and

last section, we introduce the classifier we consider to conduct the anomaly

detection experiments.

In this chapter and the subsequent chapters, we use the terms error and

anomaly interchangeably. Unless explicitly stated, they have the same mean-

ing as anomaly as we defined in the earlier chapters.

4.1 Classification Features

In this section, we introduce the features we extract from the time series

data to use them as inputs to a classifier that identifies anomalous data. We

break down the features into two categories, statistical features and concept

drift features. Statistical features are directly extracted from the time series,

but concept drift features are extracted indirectly by using the concept drift

algorithms presented in the previous chapter.
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4.1.1 Statistical Features

In this section we present seven statistical features that we extract from the

time series for the purpose of anomaly detection, i.e. value, first derivative,

second derivative, rolling mean, rolling variance, rolling skewness, and rolling

kurtosis. For the last four features, we need a window size to compute the

“rolling” value over the time. To find the best rolling size, we fixed all param-

eters and executed the classifier with different rolling sizes ranging from ten to

a hundred. Judging by the recall score (given the inherent extreme imbalance

in anomaly detection problems) we found that twenty as the window size for

rolling features is the best choice. The same approach could be used for new

datasets to find the optimal rolling window size.

In Appendix B we provide the definitions as well as examples for each of

the following statistical features.

Feature 1: Value

The value of the time series point itself is the first feature we extract. All

of the features, either statistical or drift based features, are derived from the

actual time series value. We use the value at each time step as a feature that

represents that time step.

Feature 2: First Derivative

The first derivative at each point of the time series is the next feature we ex-

tract. Our experiments show that the first derivative value has a considerable

correlation with the anomaly label, i.e. the higher the first derivative value
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the higher the chance that point is anomalous.

Feature 3: Second Derivative

The second derivative is calculated by taking the derivative of the first deriva-

tive of the time series. While the first derivative measures the rate of change,

the second derivative measures the acceleration of change, i.e. at what rate

does the change in the values fluctuate.

Feature 4: Rolling Mean

Mean is a very informative statistical feature widely used in many problems

to measure the overall value of the data (Webb et al., 2016). Rolling mean is

the mean of values within a rolling window that slides through the time series.

Feature 5: Rolling Variance

Variance measures the extent of volatility in the data. Rolling variance is the

variance of values within a rolling window that slides through the time series.

Feature 6: Rolling Skewness

Skewness is a statistical feature that measures the symmetry in the distribution

of the data. If the dataset exposes some level of symmetry and there are many

anomalous data points on one side of the dataset, then it is likely to expect

some anomalous data points on the other side as well. We compute the rolling

unbiased skewness obtained by the Fisher-Pearson definition (Fisher, 1930).
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Feature 7: Rolling Kurtosis

Kurtosis is a statistical feature that measures to what extent data points are

concentrated on the tails of the data distribution when compared to the normal

distribution. A high kurtosis means heavily tailed distribution which can be

interpreted as tending to have more outliers. This property of the kurtosis

value motivated us to use it as a feature for anomaly detection. We compute

the rolling unbiased kurtosis obtained by the definition given by Fisher (Fisher,

1930).

4.1.2 Concept Drift Features

In this section we present three concept drift related features that we extract

from the results of the proposed concept drift detection algorithm in the pre-

vious chapter.

Feature 8: Concept or Drift

The first concept drift related feature is a categorical feature that represents

whether the data point belongs to a concept (feature value 0), an abrupt drift

(feature value 1), a gradual drift (feature value 2), an incremental drift (feature

value 3), or an unknown drift (feature value 4).

Feature 9: Duration of the Period

This feature measures the duration of the stability or instability period that

each data point belongs to. For instance, if in a time series data points between

time step 231 and 240 belong to an abrupt drift, then the duration feature for
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all of the data points equals to 9. Even though this feature is not distinctive

among many points that belong to the same period, it is distinctive between

the points that belong to different periods. In other words, the lower the value

of this feature means the more volatility is present around it.

Feature 10: Percentile of the Point

This feature measures at what percentile of the period the point lies. For

instance, if in a time series data points between time step 371 and 492 belong

to a stable concept, then the point 490 belongs to the 99th percentile which is

interpreted as the tail of a period. In conjunction with the first concept drift

based feature, ConceptOrDrift, it can determine that a specific data point

belongs to the end of a drift period and this determination could lower the

chance for it to be labeled by the classifier as an anomaly compared to when

a point is on the same percentile of a stable concept period.

4.2 Datasets and Exploratory Data Analysis

In this section we introduce the datasets we use to evaluate our framework with

a detailed Exploratory Data Analysis (EDA) and feature correlation analysis.

EDA is a set of statistical and data analytical techniques employed in order to

gain an in-depth insight and knowledge prior to using data for the analytical

and learning purposes (Tukey et al., 1977). For this study, we use three real

world datasets and a set of synthetically generated datasets. We proceed with

the introduction of each of the four datasets.
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We have the following three objectives for our analyses in this section. We

explain our objectives and how they help with the anomaly detection problem

below.

• Understanding the distribution of anomalies in the datasets helps us

in analyzing the accuracy performance of our model when we perform

experiments. For instance, a time series with highly scarce anomalies

results in highly imbalanced labels that can impact the performance of

the anomaly detector.

• Understanding the length distribution of the datasets helps us to avoid

using classification models with higher time complexity. For instance,

Support Vector Machine (SVM) classifiers have a training time complex-

ity polynomial to the power of two with respect to the dataset length.

Therefore, in order to have a shorter runtime, we need to avoid SVMs if

our datasets are too large.

• Calculating features correlation with each other helps us to analyze how

much our selected feature set are carrying mutual information with re-

spect to each dataset. For instance, if two individual features highly

correlate with each other among all of our datasets, then we should only

proceed with one of them.

4.2.1 Yahoo! Time Series Anomaly Detection Datasets

Yahoo! datasets are the first real world dataset we use for our experiments. It

consists of a set of time series data gathered from the Yahoo! incoming traffic
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to one of their online services. Their online service experienced an abnormal

amount of incoming traffic during a seasonal sports event. They employed

their domain experts to label the traffic data and identify anomalies. (Laptev

et al., 2015)

This dataset has been used as a benchmark for anomaly detection in time

series anomaly detection studies [(Le and Papotti, 2020), (Gao et al., 2020)].

We compare our framework’s performance against, (Le and Papotti, 2020),

the most recent study that reported the highest performance metrics.

EDA

Yahoo! datasets consist of 52 separate time series datasets. Figure 4.1 shows

the distribution of the lengths of the Yahoo! datasets. Except for two datasets

with the length of 741, the other 50 datasets have a length between 1420 and

1461 which are comparable to each other.

Figure 4.2 shows one of the Yahoo! real world datasets. Anomalies identi-

fied by domain experts are marked. Points 400 to 500 are zoomed in to better

observe the annotated anomalies.

We also investigate the percentage of anomalous data points within each of

the 52 Yahoo! datasets. On average, Yahoo! time series have 1.88% anomalies

in them. Figure 4.3 shows the distribution of the percentage of anomalies in

Yahoo! time series datasets.
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Figure 4.1: Yahoo! real world anomaly datasets length distribution. 50 of 52
datasets have a length between 1420 and 1461.

Feature Correlation

In this subsection, we extract the statistical features introduced in the previous

section from the Yahoo! time series datasets to observe how much features are

correlated. High feature correlation is a negative indicator for the chosen

feature set. Highly correlated features are more linearly dependent and have

almost the same effect on the classifier, i.e. classifier can not benefit and

gain knowledge from one of them more or less than it could from the other.

Figure 4.4 shows statistical features correlation heatmap for two randomly

selected Yahoo! datasets. Large negative or large positive correlation is not

desired. Figure 4.4 demonstrates that the features are not highly correlated

with each other.
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(a) Entire dataset with anomalies marked. (b) Points 400 to 500 zoomed in.

Figure 4.2: One of the Yahoo! real world datasets with anomalous points
marked.

Figure 4.3: Distribution of anomaly percentage within time series for Yahoo!
dataset.

4.2.2 Light Sensor Stream Dataset

Light sensor stream dataset is part of a sensor dataset (Zhu, 2010) recorded by

54 sensors deployed at the Intel Berkeley Research Lab. Figure 4.5 shows the

map of the building where sensors were recording data (Zhu, 2010). Sensors

were deployed at various locations in the building recording the light level over

a two month period. Sensors record data every one to three minutes.

Sensor data in this building is affected by many factors, e.g. business

hours, holidays, and special events. These factors result in different patterns
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(a) Statistical features correlation
heatmap for one of the Yahoo! datasets.

(b) Statistical features correlation
heatmap for another Yahoo! datasets.

Figure 4.4: Numbers on or above main diagonal are redundant as correlation
matrix is symmetric, hence removed from plot.

of change in the recorded data and that can cause concept drift. This dataset is

used as a benchmark by concept drift detection studies [(Alves de Souza et al.,

2020), (Cabral and Barros, 2020)] and is known to have concept drift. Though,

given that this dataset is not labeled for concept drift, the exact location of

the drifts are unknown and cannot be agreed upon by various studies defining

concept drift in different ways.

It is worth noting that the light sensor dataset does not contain any known

anomalies. Therefore, we consider it as anomaly-free. We will inject anomalies

into this dataset using the method introduced by (Gierke and Stebner, 2019).

We explain the details of the anomaly injection in the subsequent sections.
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Figure 4.5: Map of the building where sensors were recording data.

EDA

Each of the 54 sensors record data with different rates (1 to 3 minutes) and for

different duration. Light data time series lengths range from 2038 time steps

to 65689 time steps. Figure 4.6 shows the distribution of the length range

of the light time series datasets. Most of the light time series have a range

between 30000 and 40000 time steps.

Figure 4.6: Light time series dataset length range distribution.
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Figure 4.7 shows a light dataset with 32998 time steps. We observe that

the recorded values of the light level change drastically over time. Specifically,

at some points in time there is zero amount of light, and suddenly the light

value jumps to its maximum level over the entire time series. We attribute

that drastic change to the beginning and end of the business hours in the

building the data was recorded.

Figure 4.7: A light time series dataset with 32998 time steps of recorded
light data.

Feature Correlation

Figure 4.8 shows statistical features correlation heatmap for two randomly

selected light datasets. We observe that there is some level of correlation

between the feature pair (rolling mean, value) and feature pair (first derivative,

second derivative). Both of these cases are expected due to the long periods

of stable light level, e.g. zero light after business hours, constant light during

meetings or special events. These periods of stability in light level will be

identified as stable concepts by our concept drift detection algorithm. The
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(a) Statistical features correlation
heatmap for one of the light datasets.

(b) Statistical features correlation
heatmap for another light dataset.

Figure 4.8: Numbers on or above main diagonal are redundant as correlation
matrix is symmetric, hence removed from plot.

anomaly classification model will benefit from concept drift driven features,

i.e. concept or drift, duration of period, and percentile of point, the most

during these periods. We provide detailed discussions on the performance of

the model in such cases in the next chapter.

4.2.3 Power Supply Dataset

Power supply dataset contains the hourly recorded power supply of an elec-

tricity company in Italy gathered from 1995 to 1998 [(Zhu, 2010), (Dau et al.,

2018)]. This dataset is known to have concept drifts caused by many factors

including seasonal change, business hour change, and weather change (Zhu,

2010). It is used as a benchmark dataset for various concept drift detection

studies [(Huang et al., 2015), (Alves de Souza et al., 2020)]. Similar to the light

dataset, power dataset is not labeled for concept drift, i.e. the exact location

53



M.Sc. Thesis – S. Z. Alavijeh McMaster University – Computer Science

of drift occurrences are unknown. Also, similar to the light dataset, power

dataset does not have any known anomalies and we use anomaly injection to

prepare it for anomaly detection model training.

EDA

The power dataset consists of 29928 recorded time steps which accounts for

1247 days or 3.4 years. Figure 4.9 shows the power supply time series. This

figure gives us a broad overview of the power supply dataset and the various

possible drifts that occur in it. The recurrent drops occur approximately

every 8500 hours, which is approximately the duration of a year. We attribute

that drop to new year holidays when the businesses are closed and the power

consumption is lower.

Figure 4.9: Power supply time series dataset recorded hourly over more than
three years.

Figure 4.10 shows the power supply time series over a 8760 hours, i.e. one

year, period. We observe that as months and seasons change throughout a

year, the power consumption and hence the power supply changes.

Figure 4.11 shows the power supply time series over a 744 hours, i.e. one
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Figure 4.10: Power supply time series dataset over a year period.

month, period. As we further zoom in time, we observe that 5-day work weeks

followed by weekends create reoccurring patterns over a short period of time.

However, as observed in Figure 4.10, those patterns change over longer periods

of time too.

Figure 4.11: Power supply time series dataset over a month period.

Figure 4.12 shows the power supply time series daily average. Daily average

is computed by taking average of power supply over a 24 hour period. Daily

average supply chart pattern resembles the original hourly supply chart. This

shows a reoccurring pattern of change that is consistent over time to an extent
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that even the 24-hour average chart has similar change patterns.

Figure 4.12: Power supply time series dataset daily average.

Feature Correlation

Figure 4.13 shows statistical features correlation heatmap for the power supply

time series data. Most of the feature pairs have a low correlation. The pair

(rolling mean, rolling variance) show a slightly higher correlation compared to

other pairs. Figure 4.11 shows that in the business days as the average power

supply increases, the fluctuation (variance) of the supply also increases. This

is because despite the higher power supply during the daytime in business days

that ranges from 150 to 300 compared to the daytime in weekends that ranges

from 125 to 225, the night time supply remains less variable for both business

days and weekends in the range (150, 200). Therefore, more average in power

supply co-occurs with more variance.
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Figure 4.13: Statistical features correlation heatmap for the power supply
dataset.

4.2.4 Synthetic Datasets

In order to specifically study each type of concept drift influence on the

anomaly detection, we use a tool to synthetically generate such drifts in an

isolated settings. We use the Massive Online Analysis (MOA) tool (Bifet et al.,

2010) to generate datasets with abrupt, gradual, incremental, and mixed (all

three drift types) drifts. Synthetically generated datasets are anomaly-free.

Therefore, we will inject anomalies to them to further study how concept drift

affect anomaly detection.
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EDA

Figure 4.14 shows a synthetic dataset generated with abrupt drifts. It is worth

noting that in order to ensure that only the requested drifts are present in

the dataset, the MOA tool keeps the non-drifting parts of the dataset with

a low variance and smaller fluctuations. Figure 4.15 shows a fraction of the

Figure 4.14 with a zoom on the drifting period.

Figure 4.14: Synthetic MOA dataset with multiple abrupt drifts.

Figure 4.16 shows a synthetic dataset generated with gradual drifts. Fig-

ure 4.17 shows a fraction of the Figure 4.16 with a zoom on the drifting period.

Figure 4.18 shows a synthetic dataset generated with incremental drifts.

Figure 4.19 shows a fraction of the Figure 4.18 with a zoom on the drifting

period.

Feature Correlation

Figure 4.20 shows statistical features correlation heatmap for the MOA datasets

with abrupt and gradual drifts. Most of the feature pairs have a low correla-

tion. The pairs (rolling mean, value) and (first derivative, second derivative)
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Figure 4.15: The drifting period of the synthetic MOA dataset with abrupt
drift.

have a higher correlation. As mentioned, the MOA tool takes extra caution

when generating drift datasets to ensure that only the requested drifts are

present in the dataset. Therefore, most parts of the dataset experience low

variance and maintain high value stability. Therefore, the rolling mean cor-

relates positively with the value feature. The same reasoning is given for the

first derivative and the second derivative.

4.3 Anomaly Injection

We introduced four datasets in the previous section, i.e. Yahoo! datasets, light

datasets, power supply dataset, and synthetically generated MOA datasets.

However, only the Yahoo! datasets are known to have anomalies and labeled

by domain experts. For the purpose of this study, we need anomalies with

known location, i.e. labeled, to train a supervised classifier. Therefore, we
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Figure 4.16: Synthetic MOA dataset with multiple gradual drifts.

Figure 4.17: The drifting period of the synthetic MOA dataset with gradual
drift.

need to manually inject anomalies in those datasets.

In this section, we first introduce the anomaly distributions and the anomaly

rates we use to inject anomalies. Then, we proceed with introducing the tool

we use to inject anomalies in the time series data.

4.3.1 Anomaly Distribution

In order to establish a fair and robust settings to evaluate our anomaly detec-

tion classifier and selection of features, we inject anomalies in the time series
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Figure 4.18: Synthetic MOA dataset with multiple incremental drifts.

Figure 4.19: The drifting period of the synthetic MOA dataset with
incremental drift.

data according to three distributions and ten error rates. Specifically, we

consider uniform (random), Gaussian (normal), and Zipfian distributions for

injected anomalies. We inject anomalies at the following rates, i.e. percentage

of anomalies in the total time series length: 0.5%, 1%, 1.5%, 2%, 2.5%, 3%,

3.5%, 4%, 4.5%, 5%.
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(a) Statistical features correlation
heatmap for the MOA dataset with

abrupt drifts.

(b) Statistical features correlation
heatmap for the MOA dataset with

gradual drifts.

Figure 4.20: Numbers on or above main diagonal are redundant as
correlation matrix is symmetric, hence removed from plot.

4.3.2 Anomaly Injection Method

Once we determine the location of anomalies, we use a technique proposed

by (Gierke and Stebner, 2019) to inject them. They also provided an open

source implementation that we use as a tool to inject anomalies. Provided

with the location or interval at which anomalies must be injected, (Gierke

and Stebner, 2019) analyzes the time series at a locality around that area

and produce outliers. They calculate outlier values based on the statistical

properties of an interval around the designated points where we want to inject

anomalies. Then they replace the existing value at each designated point with

the anomalous value. Recently, (Preuveneers et al., 2020) used this tool in

their study of resource and performance trade-off optimization for anomaly

detection in machine learning systems.
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4.4 Classifier

We use multi-layer-perceptron as our anomaly detector. Multi-Layer Per-

ceptron (MLP) is a supervised neural network based model. It is a class of

Feed-Forward Neural Networks that takes the features as its input, pass them

through one or multiple hidden layers, and outputs the final label computed by

the network. MLPs are able to learn non-linear relations between the features

and the desired output labels. Figure 4.21 shows the architecture of an MLP

model with three hidden layers.1

Figure 4.21: Multi-Layer Perceptron models are a class of Feed-Forward
Neural Networks

During our initial experiments, MLP performed very promising and we

decided to proceed with it. Aside from the MLP, we also tried k nearest

neighbors classification, support vector machine classification, and random

forest classification to evaluate their performance. Based on their accuracy,

we decided to proceed with the MLP model.

We used the randomized hyper-parameter optimization technique (Bergstra

1Figure taken from here: https://www.datacamp.com/community/tutorials/neural-
network-models-r
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and Bengio, 2012) to optimize the hyper-parameters and find the best archi-

tecture. Table 4.1 demonstrates the specific details of the MLP architecture

used after optimization process.

No. of Hidden
Layers

Batch Size
Initial

Learning Rate
Activation
Function

3 128 0.0005 relu

Table 4.1: MLP architecture details

64



Chapter 5

Experiments

In the first section of this chapter we present the specs of the hardware we

use to run the experiments. We then proceed with presenting the details of

the software we programmed to implement the algorithm and analyses. In

the third section, we provide the metrics we use to measure the accuracy of

our approach. In the fourth section, we discuss the baseline study we use to

compare our metric results with. In the fifth section, we provide the metrics

results and a comparison with a baseline study. We conclude this chapter by

discussing the impact of concept drift on anomaly detection in the last section.

5.1 Hardware

For this study, we use an isolated Ubuntu 20.04.2 LTS operating system run-

ning on Linux 5.8.0-63-generic kernel and powered by 8 GB of memory and 8

Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz. We flush the memory and kill

all of the non-critical background processes every time we run an experiment to
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make sure that our runtime environment is fair towards various experiments.

5.2 Software

We implement the program to run the desired experiments using Python pro-

gramming language version 3.8.10. We use some reputable third party libraries

widely used by data science practitioners in both academic and industrial en-

vironments. Some of these libraries are listed here.

• Pandas, an open source data analysis tool for Python.1

• Numpy, an open source library used for scientific computing with Python.2

• Seaborn, an open source data visualization library for Python.3

• Scipy, an open source mathematical and engineering computation library

for Python.4

• Scikit-Learn, an open source classical machine learning library for Python.5

• Keras, an open source neural network based machine learning library for

Python.6

1https://pandas.pydata.org/
2https://numpy.org/
3https://seaborn.pydata.org/
4https://www.scipy.org/
5https://scikit-learn.org/stable/
6https://keras.io/
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5.3 Metrics

Many anomaly detection studies use F1-Score as a metric to evaluate their

methods [(Munir et al., 2019), Maya et al. (2019), (Le and Papotti, 2020)]

while others use Area Under Receiver Operating Characteristic Curve (AUC-

ROC) [(Sakurada and Yairi, 2014), (Malhotra et al., 2015)]. We decide to

proceed with F1-Score for two main reasons. Firstly, the nature of our study

and the observations made in the exploratory data analysis (EDA) section in

the previous chapter requires a metric that is suitable and robust in highly

imbalanced environments. F1-Score is a robust metric often used in such en-

vironments. Secondly, the recent study that reported the best performance

(Le and Papotti, 2020) used F1-Score as their metric. We compare our re-

sults with their reported results. We provide the definition of F1-Score in the

Appendix C.

5.4 Baseline Comparison

We use a recent study by (Le and Papotti, 2020) to compare our results with.

They employ a symmetric and non-parametric version of k nearest neighbors

algorithm called inverse nearest neighbors (INN). INN assigns a clusters of

data points into the same group if and only if all of those points are within

each others nearest neighbors.

As discussed in the previous chapter and earlier in this chapter, we compare

our result metrics with the metrics reported in the recent anomaly detection

in time series study by (Le and Papotti, 2020). However, they only reported
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the performance of their framework on the Yahoo! datasets and we do not

have the performance results of their framework on the other three datasets

we use. We implement their approach to have a baseline for comparison for

the other three datasets we use to evaluate our approach.

Based on our observations, their average reported f1-score for the Yahoo!

datasets is approximately 30% higher than our implementation of their work.

We iterated through the algorithm steps introduced in the original paper (Le

and Papotti, 2020) several times to ensure its accuracy. We also reached out to

the authors for clarifications when needed to ensure an accurate implementa-

tion. After carefully inspecting the algorithm steps and exploring the results,

we can attribute this gap in f1-score to one specific reason. The last step of

the INN algorithm consists of an unsupervised Gaussian Mixture clustering

algorithm that identifies anomalous data points. The details of this step were

not disclosed to us and despite our efforts to tune and optimize this step to

reduce the gap, we could not replicate their results. Therefore, we account for

up to 30% gap in our reported results for the INN algorithm and treat them

as such.

It is noted that the INN algorithm has an active learning mode where the

algorithm asks for human input when it is not confident about its decision.

Given that we are unable to perform active learning mode of their algorithm

on the light, power, and MOA datasets, and in order to establish a fair com-

parison, we evaluate and report the baseline results with its default mode.
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It is also noted that the (Le and Papotti, 2020) reported that their ap-

proach outperforms several existing state-of-the-art anomaly detection meth-

ods, including [(Adams and Mackay, 2007), (Vallis et al., 2014), (Solaimani

et al., 2014)] without active learning. Therefore, (Le and Papotti, 2020) have

reported the highest F1-Score performance and we use their work as the base-

line comparison.

5.5 Results and Comparison

In this section, we report the metric results of performing our anomaly detector

on the four datasets we introduced in the previous chapter. We also provide

a discussion for each of the datasets’ metric results.

5.5.1 Yahoo! Datasets

In the previous chapter, we discussed that we proceed with 52 Yahoo! datasets

for the purpose of this study. In this subsection, we first provide the average

F1-Score and runtime over all of the Yahoo! datasets for our anomaly detection

method, our implementation of the baseline INN algorithm, and the official

reported INN algorithm (Le and Papotti, 2020). We then proceed with detailed

F1-Score and runtime results for each of the Yahoo! datasets individually.

Figure 5.1 demonstrates the average F1-Score and average runtime for the

Yahoo! datasets. As mentioned before, our implementation of the INN ap-

proach is off by approximately 30% compared to what the authors reported

(Le and Papotti, 2020).
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(a) Yahoo! datasets average F1-Score
comparison.

(b) Yahoo! datasets average runtime
comparison.

Figure 5.1: Anomaly detection F1-Score and runtime comparison.

We also report the individual results for Yahoo! datasets. Figure 5.2 shows

the F1-Score and runtime for all of the 52 Yahoo! datasets examined.

Discussion

Figure 5.1a suggests that our algorithm performs better than the baseline

INN algorithm in terms of F1-Score by approximately 20% on average. Also,

Figure 5.2a suggests that our algorithm achieves at least 63% of f1-score con-

sistently among all of the Yahoo! datasets. The baseline algorithm authors

did not report individual Yahoo! dataset f1-score results. If we account for

30% offset we discussed earlier in this section, out algorithm performs better

compared to the baseline algorithm consistently among all Yahoo! datasets.

Given the relatively small size of the Yahoo! datasets, the running time
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(a) Yahoo! datasets F1-Score
comparison.

(b) Yahoo! datasets runtime (seconds)
comparison.

Figure 5.2: Yahoo! datasets F1-Score and runtime comparison for all
individual datasets.

difference is negligible. We will discuss the running time results for the light,

power, and MOA datasets which are larger in size compared to the Yahoo!

datasets.

5.5.2 Light Datasets

For the purpose of anomaly detection we inject anomalies in the light datasets

to study the performance of our concept drift aware anomaly detector. We

report the average F1-score and runtime for various error distribution and error

rates. We also report the individual light dataset f1-score and runtime with

a fixed error distribution and rate to observe how consistent our algorithm

performs on each dataset.

Figure 5.3 shows the comparison of average F1-Score for various error dis-

tributions and error rates for light datasets.

Figure 5.4 shows the comparison of average runtime for various error dis-

tributions and error rates for light datasets.
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(a) INN algorithm’s F1-Score for various
anomaly distributions

(b) Our algorithm’s F1-Score for various
anomaly distributions

Figure 5.3: Light datasets F1-Score comparison between our algorithm and
the baseline INN algorithm for various anomaly distributions.

(a) INN algorithm’s runtime for various
anomaly distributions

(b) Our algorithm’s runtime for various
anomaly distributions

Figure 5.4: Light datasets runtime comparison between our algorithm and
the baseline INN algorithm for various anomaly distributions.
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(a) F1-Score for all light datasets with
fixed error rate and distribution.

(b) Runtime for all light datasets with
fixed error rate and distribution.

Figure 5.5: Light datasets F1-Score and runtime comparison between our
algorithm and the baseline INN algorithm. Uniform error distribution with a

3% rate fixed among all datasets.

In order to compare on a single time series basis, as opposed to the average

based comparison where we aggregate the metrics over all time series, we fixed

the error distribution and error rate to be uniform and 3% for all of the light

time series, respectively. We proceeded with running experiments against all

of the datasets to compare our approach with the baseline INN algorithm.

Figure 5.5 shows the f1-score and runtime for all of the 55 light datasets with

a fixed uniform error distribution at 3% rate.

Discussion

Figure 5.3b suggests that for various error distributions and error rates, our

algorithm outperforms the INN results (after adjusting for 30% gap). It is

observed that f1-score improves as the error rate increases. This is expected

as the MLP model has access to more training data points with anomalous

label.

At the individual time series level, Figure 5.5b suggests that our algorithm
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(a) INN algorithm’s F1-Score for various
anomaly distributions

(b) Our algorithm’s F1-Score for various
anomaly distributions

Figure 5.6: Power supply dataset F1-Score comparison between our
algorithm and the baseline INN algorithm for various anomaly distributions.

achieves close to 70% f1-score consistently among all light time series with

various lengths. It outperforms the INN baseline, even after adjusting the

discussed 30% gap.

As for the runtime, both Figure 5.4 and 5.5a suggest that our algorithm

finishes execution faster than the baseline INN algorithm, both on average and

consistently among individual light datasets with various lengths. We discuss

this after we present the results for the power dataset.

5.5.3 Power Supply Dataset

Similar to the light datasets, we inject anomalies in the power dataset to study

the performance of our anomaly detector. Unlike Yahoo! and light datasets

which consist of multiple datasets, power dataset is only one time series.

Figure 5.6 shows the comparison of F1-Score for various error distributions

for the power supply dataset.

Figure 5.7 shows the comparison of runtime for various error distributions
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(a) INN algorithm’s runtime for various
anomaly distributions

(b) Our algorithm’s runtime for various
anomaly distributions

Figure 5.7: Power supply dataset runtime comparison between our algorithm
and the baseline INN algorithm for various anomaly distributions.

for the power supply dataset.

Discussion

Figure 5.6 shows that our algorithm outperforms the baseline INN algorithm

(after 30% gap adjustment). It also suggests that it performs robustly with

different error distributions and error rates with an average of approximately

72% for f1-score.

Figure 5.7 demonstrates that our algorithm outperforms the baseline INN

algorithm in terms of the runtime. The INN algorithm uses the Gaussian

Mixture Model (GMM) as its anomaly detector (Le and Papotti, 2020). GMMs

have a time complexity that is polynomial to the power of 3 with respect to

the feature dimension (Pinto and Engel, 2015). However, we use the MLP

which has a time complexity polynomial to the power of 1 with respect to the

feature dimension. This is why our approach is quicker in execution compared

to the baseline INN approach.
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(a) F1-Score for various drift types in
MOA dataset.

(b) Runtime for various drift types in
MOA dataset.

Figure 5.8: MOA generated datasets with various drift types and fixed error
distribution and error rate. F1-score and runtime comparison.

5.5.4 Synthetic MOA datasets

We use this datasets to evaluate the robustness of our algorithm against various

types of drift. Even though the light and power datasets are known to have

various types of drift, the MOA tool incorporates measurements to ensure that

only the specified drifts are present in the generated dataset. Therefore, we

can evaluate our algorithm’s performance against each specific drift type or a

mixture of them.

It is noted that we use a fixed uniform error distribution with a rate of

3% to establish a comparison basis to evaluate our algorithm’s performance

against various types of drift.

Figure 5.8 shows the comparison of f1-score and runtime for various drift

types in MOA dataset with a fixed uniform error distribution and 3% error

rate.
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Discussion

Figure 5.8a suggests that our algorithm outperforms the baseline INN algo-

rithm (considering 30% gap adjustment). It also shows that our algorithm

performs robustly in the presence of various types of drifts, individually and

mixed. We observe that compared to the previous three datasets, our algo-

rithm performs better on MOA generated datasets. We explored the MOA

datasets in the previous chapter and observed that in order to ensure the drift

presence, the MOA generated datasets have a low variance in the non-drifting

periods. Therefore, anomalies that occur in the non-drifting periods are more

distinguished and hence, easier for the classifier to detect.

In terms of the runtime, Figure 5.8b demonstrates that our algorithm and

the baseline INN algorithm have a similar execution time for the MOA gener-

ated datasets. We attribute this closeness in execution time to the fact that

baseline INN algorithm’s last step is an unsupervised clustering technique that

is able to cluster many of the less fluctuating non-drifting points together. This

will save time on the clustering algorithm by grouping many more points to-

gether compared to a more fluctuating dataset like the light datasets.

5.6 Concept Drift Impact Discussion

Table 5.1 shows the summary of all of the experiments we conducted to eval-

uate our framework’s performance on various type of datasets. We compare

our framework’s performance with the recently published INN algorithm that

we use as a comparison basis (Le and Papotti, 2020). The average F1-Score
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of our approach over the four datasets is 72.7%. The average F1-Score for the

INN approach is 45.7%. As for the runtime, the average over the four datasets

for our approach is 168.5 seconds. While the runtime average for the INN

approach is 212.3 seconds.

Dataset
Our Approach

Baseline INN Approach
(F1-Score Adjusted 30%)

Average
F1-Score

Average
Runtime (S)

Average
F1-Score

Average
Runtime (S)

Yahoo! 67.8 1.5 43.5 (Reported) 0.4
Light 72.9 331.4 44.1 (Adjusted) 446.1
Power 73.5 280.3 45.1 (Adjusted) 347.0

Synthetic 76.8 60.8 50.4 (Adjusted) 55.7

Table 5.1: Complete metric report for our approach and baseline INN
approach. F1-Score for baseline INN approach is adjusted by 30% as

discussed earlier to account for implementation vs. reported F1-Score gap.

In order to study the direct impact of concept drift on our anomaly de-

tector’s performance, we excluded the concept drift features and executed our

experiments with only statistical features. Specifically, Table 5.2 shows the

feature vector we used to perform this experiment. The following concept

drift specific features are excluded.

• Feature 8: Concept or Drift

• Feature 9: Duration of the Period

• Feature 10: Percentile of the Point

We report the average F1-Score over the four datasets in Table 5.3 when

considering all features vs. when excluding concept drift features. It is noted
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that the exclusion of concept drift features has a higher impact on the light,

power supply, and synthetic datasets compared to the Yahoo! dataset. As we

studied in Chapter 4, the Yahoo! datasets are shorter in length compared to

the other three datasets. Given the minimum stable concept length parameter,

φ, there are not enough room in Yahoo! datasets to detect as many stable

concepts and drifts as it is possible in the other three datasets. This is why

the impact of concept drift on the Yahoo! datasets is lower than the other three

datasets. It is also noted in Table 5.3 that the explicit inclusion of concept

drift features has improved the performance of the anomaly detector in terms

of the F1-Score by 12.5% on average among all datasets.

Table 5.2: Statistical feature vector

Value
First
Derivative

Second
Derivative

Rolling
Mean

Rolling
Variance

Rolling
Skewness

Rolling
Kurtosis

Table 5.3: F1-Score report for our approach when considering all of the
features comparison with when excluding concept drift features.

Dataset
Average
F1-Score

With CD
features

Without CD
featues

Yahoo! 67.8 61.2
Light 72.9 59.4
Power 73.5 60.3

Synthetic 76.8 60.2
Average 72.7 60.2
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Chapter 6

Conclusion

In this work, we studied the problem of identifying anomalies in time series

data in the presence of concept drift. We studied how previous works neglected

in whole or in part the impact of concept drift when studying anomaly detec-

tion in time series data. We also studied how concept drift affect time series

data in dynamic settings in which data evolve as time passes. We proposed

our integrated framework in an attempt to overcome the limitations of the

previous studies neglecting the impact of concept drift on anomaly detection

in time series data. We proposed a concept drift detection algorithm that is

able to identify and locate various types of concept drift, i.e. abrupt, grad-

ual, and incremental drift, in univariate time series data. We then used the

information gained from the output of this algorithm in conjunction with a

set of statistical features extracted from the time series to construct a feature

vector. We used this feature vector to train a feed-forward neural network to

learn and model the behavior of anomalies and to be able to identify them. We
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performed experiments on various real world datasets used in the literature

by the previous studies and on a set of synthetic datasets. We showed that

our approach overcomes the recently published baseline study. Specifically,

our approach outperforms the baseline INN method in terms of the average

anomaly detection F1-Score over four datasets by 27%. As for the runtime, for

the same datasets, it is 43.8 seconds faster on average. We also showed that

our integration of concept drift detection in the form of three explicit features

fed as part of the input to the anomaly detector has improved the average

F1-Score over four datasets by 12.5%.

6.1 Future Work

Context aware neural networks such as recurrent neural networks (RNNs) are

able to learn the temporal relationships that exist in data (Sherstinsky, 2020).

One direction to extend this study is to incorporate RNNs with the result of

our concept drift detection algorithm to further study the impact of concept

drift on anomaly detection and improve the its performance. It is a challenge

to ensure that the extracted concept drift features do not neutralize the tem-

poral relationship based mechanism of RNNs and to ensure both concept drift

features and RNN model operate towards the same goal of detecting anomalies

with higher accuracy.

One other direction in which this study can be continued and extended

is to incorporate context-aware neural network models such as Transformer

models (Vaswani et al., 2017) as the anomaly detectors. Transformer models
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are able to consider the historical data that goes back as far as the beginning

of the train data in the decision making process. It is noted that we consider

historical context of the data by incorporating concept drift features in our

feature set and transformer models must be incorporated while considering

this fact. This method can further investigate the impact of historical data on

the anomaly detection problem.

Another direction to extend this study is to incorporate an online anomaly

detection method that is able to process the time series data as it becomes

available and identify anomalies on the go. Online learning models are used

when it is computationally infeasible to process all of the available data at

once or when data is in the form of streams that becomes available over the

time (Hoi et al., 2014).
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Appendix A

Concept Drift Detection

Parameters

In this appendix, we present our default values for the concept drift detection

parameters. Specifically, we recommend the default values for the following

parameters used in the concept drift detection algorithm if they are not pro-

vided by the operator:

1. Base Window Size, Wb

2. Minimum Stability Period, φ

3. Maximum Tolerable Fluctuation, ε

4. Maximum Abrupt Drift Duration, δ

5. Minimum Gradual Drift Period, ∆

6. Maximum Gradual Drift Stat Fluctuation, µ
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7. Gradual Drift Graduality Period, ν

We also study the impact of the novel parameters we introduced to extend

and complete the concept drift definitions in the context of time series data.

Specifically, we report the experimental results on the Yahoo! and the MOA

datasets with varying Wb and ∆ values while other parameters are fixed. We

choose Yahoo! because they are shorter in length and has fewer concept drift

and it enables us to study the influence of Wb and ∆ when there are fewer

drifts. We also choose MOA because they have multiple specific drift types as

opposed to the Yahoo! datasets.

It is noted that we only recommend default values for these parameters

based on the experiments on the datasets we had. Other users of the algorithm

may decide to use customized values based on other datasets instead. We also

assume that a time series has a length of at least 500 points in order to contain

the notions of stability and drift. We conclude this appendix by providing a

discussion on how these parameters are adaptive with new datasets that are

not studied by us.

Given time series T demonstrated as T = {T [1], T [2], ..., T [n]}, we propose

the following default values for the given parameters.

Base Window Size, Wb

Our recommended value for this parameter is:

min(100, b0.01 ∗ nc)
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where the min(a, b) returns the minimum value between a and b. Based on

our experiments, a maximum of 100 points is optimal to incorporate historical

context when identifying concept drift. Increasing this upper bound will reduce

the influence of the current examining points in the concept drift detection

algorithm introduced in Chapter 3. Decreasing this parameter will amplify

the influence of the current examining points and reduce the importance of

historical context.

In order to further study the impact of this parameter on anomaly detec-

tion, we report the experimental results on the Yahoo! and MOA datasets

with Wb values [80, 90, 100, 110, 120] while other parameters are fixed in

Table A.1.

Wb

Yahoo!
Average
F1-Score

MOA
Average
F1-Score

80 66.1 74.9
90 67.2 75.4
100 67.8 76.8
110 67.7 76.7
120 65.9 76.1

Table A.1: Average F1-Score for Yahoo! and MOA datasets for different
values of Wb. Other parameters are fixed.

Table A.1 shows that the value of 100 for Wb is optimal for both Yahoo!

and MOA datasets. It also demonstrates how changing the value of Wb can

impact the performance of anomaly detection.
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Minimum Stability Period, φ

We recommend that this parameter should be at least 2 times larger than

the base window size, Wb. This ensures a complete passage of the examining

window, used in the concept drift detection algorithm, over the stability pe-

riod while only considering the non-drifting points as history for stat function

calculations.

Maximum Tolerable Fluctuation, ε

Our recommended value for this parameter is:

σ

5

where σ is the standard deviation of the time series values. Based on

our experiments, one fifth of the standard deviation of the time series is a

conservative tolerance level for our drift detection algorithm. Increasing this

tolerance results in longer stable concept periods and decreasing it results in

longer drift periods.

Maximum Abrupt Drift Duration, δ

We do not propose a default value for this parameter as it is highly dependent

on the scale of which the time series data are collected. For instance, the notion

of an abrupt drift in a time series consisting of temperature data collected every

hour in an animal shelter is different than the same notion for radioactivity

level data collected every minute in a nuclear power plant. Therefore, the
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domain expert is solely responsible to set up a maximum duration for abrupt

drift based on their knowledge of the application.

Minimum Gradual Drift Period, ∆

We do not recommend a direct value for this parameter for the similar reason

as for the maximum abrupt drift duration. However, we recommend that this

parameter should be at least 10 times larger than the maximum abrupt drift

duration in order to distinguish between gradual and abrupt drifts in terms of

the duration.

In order to further study the impact of this parameter on anomaly detec-

tion, we report the experimental results on the Yahoo! and MOA datasets

with Delta values [8Xδ, 9Xδ, 10Xδ, 11Xδ, 12Xδ] in Table A.2.

∆
Yahoo!
Average
F1-Score

MOA
Average
F1-Score

MOA
Gradual-Only

Dataset F1-Score
8Xδ 67.7 76.1 77.0
9Xδ 67.6 76.3 77.6
10Xδ 67.8 76.8 78.4
11Xδ 67.8 76.8 78.3
12Xδ 67.6 76.7 78.4

Table A.2: Average F1-Score for Yahoo! and MOA datasets for different
values of ∆. Other parameters are fixed.

Table A.2 shows that the value of 10xδ for ∆ is optimal for both Yahoo!

and MOA datasets. Specifically, for the gradual-only MOA dataset, we observe

that the highest F1-Score happens when the value of ∆ is set to 10xδ. It also

demonstrates how changing the value of ∆ can impact the performance of

anomaly detection.
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Maximum Gradual Drift Stat Fluctuation, µ

Our recommended value for this parameter is:

σ

2

where σ is the standard deviation of the time series values. Based on our

experiments, the maximum gradual drift stat fluctuation must be larger than

the maximum tolerable fluctuation in order to justify the drift occurrence. In

other words, the amount of tolerance for stability must be smaller than the

amount of allowed fluctuation during a drift period.

Gradual Drift Graduality Period, ν

Similar to the minimum gradual drift period parameter, we also do not rec-

ommend a direct value for this parameter. Instead, we recommend this value

as 10% of the length of the minimum gradual drift period parameter, specifi-

cally, ∆
10

. With this recommended value, the gradual drift property defined in

Chapter 3 is enforced and checked upon at every 10% of the drifting period.

New Datasets Adaptation

We discussed earlier that why the ultimate decision for the parameter values

is on the domain experts. However, our suggested default values for the pa-

rameters are flexible and adaptive with respect to the statistical properties of

the dataset. Specifically, the parameters Wb, ε, and µ are directly driven from

the statistical properties of the dataset and the parameters φ, ∆, and ν are
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indirectly driven from the statistical properties of the dataset as we explained

earlier in this appendix. We also have optimized these parameter values on four

group of datasets and they consistently performed well in terms of F1-Score.

Lastly, the decision on the parameter δ is solely made the domain experts as

we explained why its value highly depends on the nature of the dataset.
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Appendix B

Statistical Features

This appendix contains the definitions for the following statistical features

we used in Chapter 4 as features for anomaly detection. We also provide an

example for each feature.

1. Value

2. First derivative

3. Second derivative

4. Rolling mean

5. Rolling variance

6. Rolling Skewness

7. Rolling Kurtosis

We define each of the statistical features on a time series T represented as

T = {T [1], T [2], ..., T [n]} which consists of n steps. We also use time series
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TS = {11, 13, 10, 17, 14} with five time steps as an example to calculate each

feature.

Value

The value feature is defined as follows:

V alues = {T (i) | i ≥ 1}

And the example values for TS will be:

V alues = {11, 13, 10, 17, 14}

First Derivative

The first derivative feature is defined as follows:

FirstDerivatives = {T [i]− T [i− 1] | i ≥ 2}

And the example values for TS will be:

FirstDerivatives = {NA, 2,−3, 7,−3}

It is noted that given the derivation step, i.e. dt, is basically one time step

and is equal to 1, the derivative value is translated into the difference of value

between consecutive time steps.
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Second Derivative

The second derivative feature is defined as:

SecondDerivatives = {FirstDerivatives[i]−FirstDerivatives[i−1] | i ≥ 3}

And the example values for TS will be:

SecondDerivatives = {NA,NA,−5, 10,−10}

Rolling Mean

For a rolling window size of W , the rolling mean is defined as:

RollingMean = {
∑i

i−W T [i]

W
| i ≥ W}

And the example values for W = 4 and given TS will be:

RollingMean = {NA,NA,NA, 12.75, 13.5}

Rolling Variance

For a rolling window size of W , the rolling variance is defined as:

RollingV ariance = {
∑i

i−W (T [i]−mean)2

W
| i ≥ W}

where mean is the mean of the points between i−W and i.
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And the example values for W = 4 and given TS will be:

RollingV ariance = {NA,NA,NA, 9.58, 8.33}

Rolling Skewness

Skewness is defined as the third central moment divided by the square root of

the cube of variance:

RollingSkewness = {m3

σ3
| i ≥ W}

where σ is the square root of variance (standard deviation) of the points

between i−W and i. m3 is the third central moment of that range defined as:

m3 =

∑W
i−W (T [i]−mean)3

W

where mean is the mean of the points between i−W and i.

And the example values for W = 4 and given TS will be:

RollingSkewness = {NA,NA,NA, 1.13, 0}

Rolling Kurtosis

Kurtosis is defined as fourth central moment divided by the square of variance

subtracted by three.

RollingKurtosis = {m4

σ4
− 3 | i ≥ W}
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where σ is the square root of variance (standard deviation) of the points

between i −W and i. m4 is the fourth central moment of that range defined

as:

m4 =

∑W
i−W (T [i]−mean)4

W

where mean is the mean of the points between i−W and i.

And the example values for W = 4 and given TS will be:

RollingKurtosis = {NA,NA,NA, 0.75, 0.91}
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Appendix C

Metrics

In this appendix, we provide the definition of the F1-Score, a metric we used to

evaluate the performance of our model. F1-Score is computed as the harmonic

mean of precision and recall. In this section, we first introduce precision and

recall, and then we proceed with the introduction of F1-Score.

Confusion matrix helps better understand and introduce various metrics

used in classification, including precision, recall, and F1-Score. In order to

define F1-Score, both precision and recall must be defined first. Table C.1

shows how a confusion matrix is constructed. As an example for our use case,

if a data point is labeled as anomaly by the classifier (positive label) but in

reality it was not anomalous, it is classified as a false positive.

Predicted Label
Positive (1) Negative (0)

Actual Label
Positive (1) True Positive (TP) False Negative (FN)
Negative (0) False Positive (FP) True Negative (TN)

Table C.1: Confusion Matrix
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Precision

Precision is defined as the ratio of correctly identified positive labels to the

total number of identified positive labels. In our settings, precision is defined

as the ratio of correctly identified anomalies to the total number of identified

anomalies by the classifier.

Pr =
TP

TP + FP

Recall

Recall, also referred to as sensitivity, is defined as the ratio of correctly iden-

tified positive labels to the total number of positive labels regardless of how

they are labeled by the classifier. In our settings, recall is defined as the ratio

of correctly identified anomalies to the total number of anomalies.

Re =
TP

TP + FN

F1-Score

F1-Score is defined as the harmonic average of precision and recall. It takes

both false positives and false negatives into consideration. Therefore, if the

model is biased towards one label, one of the precision or recall metrics will be

high but not both. For instance, if the classifier favors the anomaly class and

mistakenly classifies many data points as anomalies, then the recall score will

be high, but the precision, and consequently the f1-score, will be low. F1-Score

is widely used to evaluate classification models, especially when the dataset in
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highly imbalanced.

F1− Score = 2 ∗ Precision ∗Recall
Precision+Recall
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