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Lay Abstract

In everyday life, from doctors diagnosing illnesses to mechanics inspecting cars, we
encounter the need for fault detection and diagnosis (FDD). Advances in technology,
like powerful computers and sensors, are making it possible to automate fault
diagnosis processes and take corrective actions in real-time when something goes
wrong. The first step in fault detection and diagnosis is to precisely identify system
faults, ensuring they can be properly separated from normal variations caused by

uncertainties, disruptions, and measurement errors.

This thesis explores model-based approaches, which utilizes prior knowledge
about how a normal system behaves, to detect abnormalities or faults in the system.
New algorithms are introduced to enhance the efficiency and flexibility of this process.
Additionally, a new strategy is proposed for extracting information from a robust

filter, when used for identifying faults in the system.
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Abstract

Fault Detection and Diagnosis (FDD) constitutes an essential aspect of modern life,
with far-reaching implications spanning various domains such as healthcare,
maintenance of industrial machinery, and cybersecurity. A comprehensive approach
to FDD entails addressing facets related to detection, invariance, isolation,
identification, and supervision. In FDD, there are two main perspectives: model-
based and data-driven approaches. This thesis centers on model-based methodologies,
particularly within the context of control and industrial applications. It introduces
novel estimation strategies aimed at enhancing computational efficiency, addressing

fault discretization, and considering robustness in fault detection strategies.

In cases where the system's behavior can vary over time, particularly in contexts like
fault detection, presenting multiple scenarios is essential for accurately describing the
system. This forms the underlying principle in Multiple Model Adaptive Estimation
(MMAE) like well-established Interacting Multiple Model (IMM) strategy. In this
research, an exploration of an efficient version of the IMM framework, named
Updated IMM (UIMM), is conducted. UIMM is applied for the identification of
irreversible faults, such as leakage and friction faults, within an Electro-Hydraulic
Actuator (EHA). It reduces computational complexity and enhances fault detection
and isolation, which is very important in real-time applications such as Fault-Tolerant
Control Systems (FTCS). Employing robust estimation strategies such as the Smooth
Variable Structure Filter (SVSF) in the filter bank of this algorithm will significantly
enhance its performance, particularly in the presence of system uncertainties. To

relax the irreversible assumption used in UIMM algorithm and thereby expanding its
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application to a broader range of problems, the thesis introduces the Moving Window
Interacting Multiple Model (MWIMM) algorithm. MWIMM enhances efficiency by
focusing on a subset of possible models, making it particularly valuable for fault

intensity and Remaining Useful Life (RUL) estimation.

Additionally, this thesis delves into exploring chattering signals generated by the
SVSF filter as potential indicators of system faults. Chattering, arising from model
mismatch or faults, is analyzed for spectral content, enabling the identification of
anomalies. The efficacy of this framework is verified through case studies, including
the detection and measurement of leakage and friction faults in an Electro-Hydraulic
Actuator (EHA).

Keywords: Model-based Fault Detection and Diagnosis, State Estimation,

Adaptive Filtering, Variable Structure Filter, Information Extraction, Spectral

Analysis.
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1. Introduction

Fault Detection and Diagnosis (FDD) is an integral part of our daily lives, from
medical practitioners diagnosing patients to mechanics inspecting car engines, all
seeking to address this matter to some extent. According to industrial statistics,
approximately 70% of industrial accidents are attributed to human errors, leading to
notable economic, safety, and environmental consequences [1]. The continuous
advancement of technology, characterized by high-speed computational power and a
diverse range of sensors for system behavior measurement, opens up significant
opportunities for automating the FDD process and enables real-time automated
corrective actions to maintain system performance post-fault occurrence. The initial
step in the FDD process involves accurately defining the faults within the system to
effectively distinguish them from other acceptable changes that may arise due to
uncertainties, disturbances, and measurement noise under normal conditions. This
thesis focuses on FDD within the context of control and industrial applications,
thereby most of the definitions and terminologies are borrowed from the International

Federation of Automatic Control (IFAC) technical committees.

An effective diagnostic approach should be capable of addressing the following

aspects:

e Detection: Determine whether faults are observable based on the available
measurements.

e Invariance: Distinguish between faults and other variations in observations
caused by uncertainties, disturbances, or measurement noise, to prevent false

alarms.
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e Isolation: Determine the specific type of fault, its location, and the time of
occurrence.

e Identification: Determine the magnitude and dynamic behavior of the faults.

A meaningful fault detection process needs both detection and invariance, whereas
the isolation and identification further enhance the efficacy of the diagnostic

approach.

In the literature, fault detection and diagnosis are perceived from two different
perspectives: the model-based approach, which relies on prior knowledge describing
the system's behavior, and the data-driven approach, which seeks to extract patterns
or model directly from data when an effective model cannot be generated or does not
exist. This thesis is focused on model-based approaches, where innovative estimation
strategies are explored to enhance the performance of the diagnosis process. The
thesis introduces new algorithms aimed at improving computational efficiency and
relaxing fault discretization in adaptive estimation methods. Additionally, it proposes
a fault detection strategy by extracting information from a system using a robust
filter, using its robustness to accurately estimate states even after a fault occurs. This
chapter starts with a presentation of the problem statement, followed by an
exploration of the relevant literature. Subsequently, it delves into the distinctive
contributions and novel aspects of the research. The final section outlines the thesis

structure and organization.

1.1. Problem Statement

Fault detection plays a crucial role in control and industrial applications, given
its ability to maintain system integrity, optimize performance, and ensure safety.

2
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According to the IFAC technical committees, a fault is defined as “an unpermitted
deviation of at least one characteristic property or parameter of the system from the
acceptable/usual /standard condition”. Fault detection allows for the early
identification of abnormalities, such as sensor or actuator faults, process
malfunctions, or parameter variations. By promptly detecting and diagnosing faults,
control systems can initiate appropriate corrective actions, thereby minimizing the
impact on system performance and preventing catastrophic failures. Industrial
applications heavily rely on fault detection to uphold the reliability and efficiency of
complex processes and machineries. By timely identifying faults in industrial
equipment, unexpected shutdowns can be prevented, downtime can be reduced, and
maintenance schedules can be optimized. Incorporation of robust fault detection
strategies in control and industrial applications leads to significant enhancements in

system performance, productivity, and overall operational effectiveness.

The issue of fault management has various levels, which are outlined below using

widely recognized terminology employed by IFAC technical committees [2], [3]:

e Fault detection: This level involves determining the presence of faults in a
system and identifying the time of detection. It can be represented in binary
form, such as a simple label indicating fault/no-fault, or based on a scoring
system.

e Fault isolation: At this level, the objective is to determine the specific type
of fault, its location, and the time of detection. Fault isolation follows fault

detection and aims to narrow down the potential causes of the detected fault.
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e Fault identification: In this stage, the focus shifts to determining the
magnitude and time-varying behavior of a fault. It follows fault isolation and
provides additional information about the characteristics and dynamics of the
detected fault.

e Fault diagnosis: Fault diagnosis encompasses the comprehensive
determination of the type, magnitude, location, and time of detection of a
fault. It includes the processes of fault detection, isolation, and identification.

e Monitoring: This level involves the continuous, real-time task of observing
and recording information about the conditions of a physical system. The aim
is to recognize and indicate any anomalies or deviations in the system's
behavior.

e Supervision: Supervision entails actively monitoring a physical system and
taking appropriate actions to maintain its operation in the event of faults. It
involves implementing strategies to mitigate the impact of faults and ensure
the overall functioning and stability of the system. Fault Tolerable Control

Systems (FTCS) can be considered part of this level.

These distinct levels of fault management provide a structured framework for

addressing fault-related challenges in various domains.

The fault diagnosis process typically involves a sequence of fundamental stages
aimed at transforming measurement or observation data into practical insights. The
initial step involves collecting data from sensors or observations within the system
which serves as the foundation for subsequent analysis. The next step, which varies

based on the chosen diagnosis method, involves either feature extraction (in data-
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based approaches) or residual generation (in model-based approaches). This step
entails extracting relevant features from the data or residuals by comparing the data
to a prior model. These features or residuals capture the characteristics or deviations
that indicate the presence of faults. Following this, decision-making techniques are
employed to interpret the extracted features or residuals and make informed
judgments about the occurrence of faults. Algorithms or models are utilized in this
step to analyze the data and determine the likelihood or severity of a fault. Finally,
fault classification is performed, where the identified faults are categorized into
specific fault types or classes. The flowchart illustrating these steps is presented in

Figure 1-1.

It is important to note that these steps are not always performed independently;
they are often combined or interconnected. For example, feature extraction and
decision-making techniques can be integrated, or fault classification can be
incorporated into the decision-making process. Such combinations typically yield a
more comprehensive and efficient fault diagnosis process, enabling accurate
identification and effective mitigation of faults, or reducing computational

requirements.

Measurement Space/ Pl Feature Extraction/ - . T
. . . Decision Makin Fault Classification
Observation Space Residual Generation 15! ing Y !

Figure 1-1. The fault diagnosis steps flowchart.

Fault diagnosis poses several challenges that need to be addressed for effective
and reliable fault detection and identification. One crucial challenge is maintaining

an invariance relation or minimizing false alarms. Robustness plays a key role here,
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as the algorithm's performance should remain unaffected by noise, disturbances, and
uncertainties in the system model. Another challenge is ensuring high detectability,
which involves the sensitivity of the algorithm in detecting faults. It is essential to
design diagnostic techniques that can accurately detect faults, even in the presence
of various system conditions and operational scenarios. Identifiability is another
challenge, focusing on the ability to decouple and differentiate between multiple faults
occurring simultaneously. Fault diagnosis algorithms should aim to provide distinct
and reliable information about individual faults. The diagnostic response time, or
mean detection delay, is another critical factor to consider. Timely fault detection
and response are crucial for minimizing the impact of faults on system performance
and avoiding potential hazards. Moreover, addressing storage and computation
requirements is vital. The fault diagnosis system should compromise between the
amount of data storage necessary for fault analysis and the computational resources
needed for efficient and real-time fault diagnosis. Overcoming these challenges is
essential for developing robust fault diagnosis methodologies that deliver accurate,

timely, and efficient fault detection and identification.

This thesis is centered around model-based approaches for fault diagnosis,
presenting innovative estimation strategies to enhance the diagnostic process. The
research primarily focuses on utilizing estimation techniques rooted in stochastic
filter-based methods, specifically the Kalman Filter (KF), to effectively handle
process and measurement noise. Robust filtering techniques, such as the Smooth
Variable Structure Filters (SVSF) [4], developed using variable structure theory, are
also employed to address uncertainties encountered during fault diagnosis. A key

contribution of this thesis is the introduction of a computationally efficient version
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of Multiple Model Adaptive Estimation (MMEA). This approach combines residual
generation, decision-making, and classification steps to create an efficient diagnostic
process. To demonstrate the real-time application of this strategy, a Fault-Tolerant
Control System (FTCS) is developed. Furthermore, the thesis extends the application
of this approach by introducing a more general algorithm that can be applied to
estimating the Remaining Useful Life (RUL) and parameter estimation in a broader
context. Additionally, the thesis explores the potential of extracting information from
robust SVSF filters for use in the diagnostic process. By addressing these topics, the
thesis aims to contribute to advancements in fault diagnosis methodologies and

improve the accuracy, efficiency, and applicability of fault diagnosis systems.

1.2. Background

Fault detection has been approached from various perspectives in different fields.
In the control engineering community, fault detection is regarded as a subset of
change detection, which also encompasses surveillance, parameter tracking, adaptive
estimation, adaptive control, and hybrid systems [1], [5], [6], in addition to fault
detection. In this context, the primary focus lies in identifying deviations in system
behavior, often compared to a predefined model, that could indicate the presence of
faults. The aim is to detect and address faults by providing relevant residuals. On
the other hand, the Artificial Intelligence (AI) community treats fault detection as
part of anomaly detection methodologies [7], [8]. Anomaly detection is applied in
diverse domains, such as intrusion detection, fraud detection, and medical informatics
[8]. Within this framework, fault detection involves identifying abnormal behavior

that may suggest the existence of faults via utilizing AI algorithms and machine
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learning techniques to detect deviations from expected patterns. These patterns are
extracted through feature extraction from observed or measured data. As a result,
terminologies may differ across the various fields. This study aligns more closely with
the first approach, namely fault detection from a control engineering perspective, and

borrows IFAC technical committees’ terminologies.

Fault Detection and Diagnosis methods can be broadly categorized into two main
approaches: model-based and data-driven. Model-based methods leverage physics of
the failure of the system to detect and diagnose faults. This approach can be further
classified into quantitative and qualitative techniques. The quantitative model
employs static and dynamic interactions between system variables and parameters to
mathematically describe the behavior of the system [1]. Conversely, the qualitative
model utilizes static and dynamic relationships among system variables and
parameters to describe the system's behavior using qualitative measures such as
cause-effect relationships or conditional rules, such as if-then statements [1]. On the
other hand, data-driven methods do not require prior knowledge of the system's
physics. Instead, they directly analyze input and output signals to detect and
diagnose faults, without relying on explicit mathematical models. These methods rely
on statistical analysis, pattern recognition, or data-driven algorithms to identify
anomalies or deviations in the signals, which may indicate the presence of faults.
Figure 1-2 presents a tree diagram that provides a detailed breakdown of the various
categories within the diagnosis process. This tree diagram is constructed based on a
comprehensive study of the most popular categorizations found in the literature [1],

[6]-[11].



Ph.D. Thesis — Ahsan Saeedzadeh McMaster University — Mechanical Engineering

Full State Observer

Unknown Input Observer ]

Kalman Filter
Particle Filter

Observer-Based
Parity Relation

Optimization based
Quantitative

Stochastic Filter Based

Adaptive
Filter

Discrete Event Systems ]

IMM-SVSF

Model-based

Parameter Estimation/
System |dentification

Fault Tree
Structural

Abstract Hierarchy EyEvr—
Qualitative
Diagraph

Bondgraph

Diagnosis
Methods

Gaussian Model-based ]

Parametric Regression Model-based ]

Mixture of Parametric Distribution-based ]

Histogram-based

Kernel Function based ]

Statistical

Non-Parametric

Neural Networks

Bayesian Networks

Support Vector Machine (SVM) ]

Classification

Rule-based

K™ nearest neighbors |

Distance-Based
Relative Density

Robust Clustering (ROCK) ]

Shared Nearest Neighbor (SNN) ]

K-means
Clustering

Expectation Maximization (EM) ]

Cluster-Based Local Outlier Factor (CBLOF) ]

DBSCAN
Autoencoders (AE)

Generative Adversarial Networks (GAN) ]

Generic Normality
Feature Learning

Predictability Modeling ]

Fourier Transform (FT) ]

Short-Time Fourier Transform (STFT) ]

Spectral
Wavelet Transform

Principle Components Analysis (PCA) ]

Figure 1-2. The tree diagram of different diagnosis approaches.
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The distinction between these approaches may not always be well-defined, and in
some cases, a combination of these methods is utilized. For example, chapter 3 utilizes
spectral analysis on the chattering signal obtained from the quantitative model-based
SVSF filter for fault diagnosis of a system. This approach can be considered as the
combination of a model-based system with a data-driven method. This study lies in

the specialization of quantitative model-based FDD approaches.

Faults in a dynamic system can manifest in various forms, including actuator,
sensor, and component faults [6]. Actuator faults introduce additional disturbances
or errors into the system, exhibiting an additive nature. Similarly, sensor faults
commonly cause additive effects, resulting in inaccuracies or biases in the measured
data. On the other hand, component faults, also referred to as parameter changes,
have a multiplicative impact on the system. These faults alter the parameters or
characteristics of the system components, leading to overall changes in system
behavior. Modeling such component faults can be challenging for model-based FDD

approaches.

FDD methods, in general, employ the redundancy concept, which can be achieved
through hardware-based or analytical approaches [6]. Hardware redundancy involves
comparing duplicate signals generated by different hardware components. For
example, one can identify a faulty sensor by comparing the same signal from two or
more sensors. In contrast, analytical redundancy utilizes multiple non-identical
approaches, including mathematical process models in analytic form [2]. Analytical

redundancy plays a critical role in the residual generation and diagnosis process for

model-based FDD methods.
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1.2.1. Residual Generation

The process of residual generation, serving as the initial step (depicted in Figure
1-1), plays a crucial role in quantitative model-based FDD approaches. As defined by
the IFAC technical committees, a residual is a fault indicator that results from the
deviation between measurements and computations derived from model equations
[2], [3]. The objective of a residual generator is to produce a residual vector, denoted
as r(t), which satisfies the following relationship [12]:

o 1r(t) =0 if f(t) =0, for invariance.

e r(t) =0 if f(t) # 0, for fault detection.

o 1;(t) #0 if f;(t) # 0, for fault isolation.

o tlim [r(t) — f(t)] = 0, for fault identification.

I fault and r;(t) is the corresponding subset of residuals.

where f;(t) represents the i
The prevailing techniques utilized for residual generation include observer-based
methods, parity relations, optimization-based approaches, adaptive filter-based

techniques, and system identification methods [6].

Observer-based methods involve generating residuals through an observer, where
the observer tracks the actual plant’s state and yields residuals with a zero mean,
when no fault is present. Additionally, these observers are designed to facilitate fault
isolation. On the other hand, the parity relations approach involves converting the
input-output transfer function or state-space models of the plant to directly generate
directional or structural residual vectors. Both the observer-based methods and the

parity relations approach wusually overlook multiplicative faults or model
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uncertainties. Moreover, they are typically restricted to Linear Time-Invariant (LTT)

systems [6].

In order to be able to isolate all possible faults, it is necessary to decouple the
impact of each fault on the residual from the influences of other faults. Full decoupling
is not feasible in most of the situations because of restrictive conditions, which are
governed by the number of faults to be isolated, and the number of available sensor
signals. To address this problem, approximate decoupling has been proposed using
optimization based residual generation [12]-[14]. The basic concept is to enhance the
effect of faults on the residuals, while minimizing the effect of unknown inputs and
uncertainties on them.

The Kalman filter is a well-known algorithm, which is used in stochastic filter-
based methods for fault detection and diagnosis. It can be seen as a specific instance
of stochastic optimization employing linear quadratic techniques. In this approach,
faults are identified through statistical assessments regarding the residuals' whiteness
as well as their mean and covariance. The typical statistical approaches for evaluating
Kalman filter residuals encompass the Maximum Likelihood approach or the
Generalized Likelihood Ratio (GLR) test [8]. Filter-based approaches are usually
implemented in an adaptive format using Multiple Model Adaptive Estimation
(MMAE) structure [8], [15]. The implementation of adaptive filter-based methods is
significantly more complex compared to observer-based or parity relations methods,
especially in situations involving numerous fault conditions. However, the adaptive
filter-based approach offers the advantage of achieving optimal filtering by combining
Interacting Multiple Model with Kalman Filter (IMM-KF). To enhance estimator

robustness, the IMM with Smooth Variable Structure Filter (IMM-SVSF) has been
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introduced [16]. The parallel structure of these filters enables rapid adaptation,
leading to accurate state estimation following a fault occurrence. To extend this
multiple model approach to nonlinear or time-varying systems, nonlinear filters like
the Extended Kalman Filters (EKF), Unscented Kalman Filters (UKF'), and Particle
Filter (PF) [17], also known as the sequential Monte Carlo method [18] have been
employed. The adaptive filter-based approach is suitable for detecting both
multiplicative (component) faults and additive faults.

Despite its advantages, MMAE approach exhibits two main drawbacks: it is
computationally intensive; and it assumes that fault parameters take discrete values
from a finite set [6], [19]. In order to enhance computational efficiency, this thesis
introduces a more computationally efficient version of adaptive filtering by combining
the Updated Interacting Multiple Model (UIMM) with a robust SVSF filter. This
improved approach is employed to detect leakage and friction faults in an Electro-
Hydraulic Actuator (EHA), a well-known FDD problem in aircrafts [6]. Regarding
the second issue, for certain faults with continuous fault parameters, several fault
models may be needed to describe a single fault with a varying level of intensity. This
introduces additional complexity and may result in potentially higher false alarm
rates. To address this challenge, a novel variation of IMM, known as Moving Window
IMM (MWIMM), is proposed in this thesis specifically for FDD problems involving
continuous faults.

System identification methods have broad applicability, extending to both linear
and nonlinear systems. These approaches prove particularly valuable for detecting

small or incipient faults. Nonetheless, the effectiveness of the system identification
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method is highly dependent on the statistical decision-making techniques utilized to

identify changes in parameters.
1.2.2. Decision-Making Tools

Once residuals are generated, the subsequent important step in the quantitative
FDD process involves decision making as depicted in the flowchart shown in Figure
1-1. Various methods can be employed to make decisions based on the generated
residuals. One commonly approach is the fixed threshold method, where a fault is
identified if the residual exceeds a pre-established threshold. Alternatively, the
adaptive threshold approach dynamically adjusts the threshold based on the system's

operating conditions or statistical properties of the residuals.

Introduced by Wald in 1947, the Sequential Probability Ratio Test (SPRT)
continuously monitors the likelihood of a fault based on the generated residual and
updates the decision accordingly [6]. The Cumulative Sum (CUSUM) algorithm, also
known as the Page-Hinkley Stopping Rule, was proposed by Page [20] to detect a
change in the mean of the residuals by analyzing a weighted sum of recent
observations. Page noted that this rule is equivalent to conducting an SPRT [6]. In
[21], Lorden established the asymptotic minimax optimality, or the worst-case
optimality, of the CUSUM algorithm. Lorden derived a lower bound for the worst
mean delay for detection and demonstrated that the CUSUM algorithm achieves this
lower bound. Extending the capabilities of the CUSUM algorithm, Nikiforov
addressed both the change detection and isolation problem in [22]. This extension
involved multiple hypotheses testing, and the statistical properties of the algorithm

were thoroughly examined.
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The Generalized Likelihood Ratio Test (GLRT) utilizes statistical likelihood
ratios to make decisions based on the observed residuals [8]. It involves comparing
the likelihood of the observed data under two competing hypotheses: one assumes a
fault-free system, while the other considers a faulty system. The GLRT calculates a
likelihood ratio to assess the relative likelihood of these hypotheses based on the
observed data. Willsky and Jones [23] developed an iterative algorithm for the GLR
test on the residual (or innovation) produced by a Kalman filter by leveraging the
linear system property, the Gaussian noise characteristics, and the additive effect of
faults on the system. Basseville and Benveniste [24] proposed a modified algorithm
that utilizes the Maximum Likelihood Estimate (MLE) of the innovation instead of
the likelihood ratio. Li and Kadirkamanathan [25] applied the GLR test in
conjunction with a particle filter method to address the FDI problem in general

nonlinear and non-Gaussian systems.

The local approach, first introduced by Nikiforov [26], adopts a Taylor's series
expansion of the log likelihood function instead of conducting a direct test based on
measurements. The test relies on the first-order derivative term in the Taylor's series
expansion, which is known as the efficient score. Using the Central Limit Theorem,
it can be demonstrated that the efficient score is asymptotically distributed as
Gaussian Probability Density Function (PDF). This property allows a wide range of
change detection problems to be transformed into the fundamental task of testing for

a change in the mean value of a Gaussian vector [6].

The widely recognized statistical decision techniques, such as SPRT and CUSUM

algorithms, are easily implementable. It is also relatively straightforward to

15



Ph.D. Thesis — Ahsan Saeedzadeh McMaster University — Mechanical Engineering

implement the GLR test, which is effective in detecting additive and component
faults. Although more intricate, the local approach has shown a promising

performance in detecting small or incipient faults [6].

1.2.3. Fault Supervision

The ultimate objective of fault detection is to effectively manage system faults
that may occur during its operation. To achieve this, supervision involves actively
monitoring the physical system and taking appropriate actions to ensure its continued
functioning even in the presence of faults. For certain critical applications like flight
control systems, it becomes crucial to identify the most suitable control actions
following a fault in order to maintain the system's safe operation without
interruption. This can be accomplished through reconfiguration control, which
involves adjusting the controllers in real-time in response to faults, leading to the

development of fault-tolerant control systems.

A well-known approach for fault supervision involves the utilization of multiple-
model methods. These methods employ a collection of parallel models that describe
the system's behavior under normal conditions and various fault scenarios.
Corresponding controllers are designed for each model, and a switching mechanism
is chosen to determine the system's mode at each time step. This enables the selection
of the appropriate controller designed for that particular mode, resulting in improved
performance and robustness across different operating conditions. The multiple-
model control approaches are derived from multiple-model fault detection schemes
such as IMM-KF and IMM-SVSF. In this thesis, a fault-tolerant control system based

on the UIMM-SVSF strategy was devised to control the position of an Electro-
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Hydraulic Actuator (EHA) — widely used in flight surface control — in the presence

of leakage and friction faults [27].

Another commonly used approach for fault supervision is the utilization of an
adaptive controller. This approach aims to ensure robust or acceptable performance
levels in the face of sudden changes in system parameters. Adaptive control is
generally classified into two methods: indirect adaptive control, which involves a
parameter isolation process, and direct adaptive control, which does not require
explicit parameter isolation. Adaptive control has been widely applied to design a
fault tolerant control solution for flight surface control problems. For instance, in one
study [28], adaptive flight control laws were devised to compensate for actuator faults
or surface damage. Additionally, a joint effort between Honeywell Labs and NASA
Langley Research Center led to the development of a Control Upset Prevention and
Recovery System. This system provided reconfiguration of control laws, fault
supervision, fault detection, fault isolation, and pilot cueing. Its performance was
evaluated through piloted simulations on a civil transport aircraft [29], [30].
Moreover, Kim et al. [31] developed an indirect adaptive control algorithm for aircraft
flight control systems to address unknown system parameters and actuator faults.
The system parameters were estimated in an online manner using Fourier

transformation and then used in the design of the control gain.

Recently, there has been a surge in the popularity of the online learning approach
for fault supervision. This method involves the utilization of machine learning
algorithms to continuously learn from the system's real-time behavior and adapt to

changes induced by faults [32]. One prominent example of an online learning approach
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for fault supervision is reinforcement learning [32]-[34]. Reinforcement learning is a
form of machine learning in which an agent learns to make decisions by interacting
with an environment and receiving feedback in the form of rewards or penalties. In
the context of fault supervision, reinforcement learning can be employed to acquire
a control policy that remains robust in the presence of faults by optimizing a reward
function considering both the system's performance and the occurrence of faults [32]-
[34]. Another notable example of an online learning approach for fault supervision is
resilient learning [34]. Resilient learning entails using machine learning algorithms to
learn from the system's behavior during fault occurrences and adapt to changes
induced by these faults. It can be employed to acquire a control policy that exhibits
resilience to faults by optimizing a cost function that considers both the system's
performance and the occurrence of faults [34]. Nevertheless, it is important to
acknowledge that implementing online learning for fault-tolerant control poses
challenges, such as ensuring stability during the learning process, avoiding overfitting
to specific fault scenarios, and managing computational complexity in real-time

applications.

1.3.Thesis Outlines

The structure of this thesis is as follows: In Chapter 2, there is a comprehensive
review of existing quantitative model-based fault detection and diagnosis methods,
including a comparative analysis aimed at identifying areas where further research is

needed and contributions of this thesis.

Chapter 3 delves into the exploration of information extraction from chattering,

with the aim of identifying model mismatch based on the spectral characteristics of
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the chattering signal. To assess the effectiveness of the developed framework for
chattering analysis, two case studies are undertaken. First, the power spectrum of
the chattering signal has been employed to identify mismatch and the potential of
recovering the temporal information of the model mismatch from the spectrogram is
studied, using Short Time Fourier Transform (STFT) for an underdamped second-
order system. Then, the proposed strategy is applied to detect and measure the
severity of leakage and friction faults as well as the bulk modulus mismatch in an

electro-hydraulic actuator.

Chapter 4 introduces the UIMM-SVSF algorithm as an innovative approach for
detecting and isolating leakage and friction faults within a standard EHA system. In
this chapter, a Fault Tolerant Control System (FTCS) has been developed to show
the application of the proposed Fault Detection and Diagnosis (FDD) strategy for

managing faults within a closed-loop system.

Chapter 5 presents an innovative adaptive estimation technique known as the
Moving Window Interacting Multiple Model (MWIMM). This chapter begins by
offering an overview of adaptive estimation methods and proceeds to explain the
MWIMM formulation for estimating fault intensity and Remaining Useful Life
(RUL). Furthermore, it delves into the examination of the parameter estimation
challenge. Comparative analysis with the augmented state Extended Kalman Filter
(EKF) estimation is conducted, demonstrating that the MWIMM approach
introduced in this study presents a viable and promising alternative for effectively
managing significant parameter uncertainties and adapting to gradual changes in

system parameters.
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Chapter 6 is dedicated to summarizing concluding remarks and providing

suggestions for future research.
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2. Preliminary Analysis of Quantitative Model-based
Fault Detection and Diagnosis Approach

Model-based approaches involve creating a system model using either a
fundamental understanding of the system's physics or system identification. By
utilizing the analytical redundancy concept, this model serves as a reference to
establish mathematical relationships between inputs and measurements. In an FDD
context the models can be used in conjunction with measurements from the system
for, generating residuals that carry fault signatures. These residuals are then
processed through a decision-making tool for diagnostic purposes. The physical
meaning associated with each state and parameter of the model greatly aids the

diagnostic procedure in this approach.

The fault diagnosis analytical redundancy schemes basically rely on signal
processing techniques, such as state estimation, parameter estimation, adaptive

filtering, and other related methods. consider a general system model as follows:
y(@® = f(u@®),d®),x(t),0(1)) (2.1)

where the measurable output and input vectors are denoted as y(t) and wu(t)
respectively, x(t) is the state vector, d(t) represents unknown inputs (or
disturbances) and uncertainties, and 0(t) is the system parameter vector. To estimate
the unmeasured elements of x(t) and/or 8(t) based on the observed y(t) and u(t),
state estimation and parameter estimation methods are employed, with widely used
techniques such as Kalman filters or observers [13] and least squares methods for

online monitoring of parameter variation [9]. The residuals generated from these
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estimation strategies are then utilized to diagnose and manage faults within the
system. Figure 2-1 illustrates the fault diagnosis and supervision flowchart of a typical
quantitative model-based approach. This section delves into the most frequently
utilized model-based methods, providing discussions on their applications, and

explaining the research gap and contributions of this study.

Unknown Input/
Fault Disturbanced(t)  Sensor

Noisew(t)  _. Fault Diagnosis

Input Output Sensor; | Residual Generation |Residuals | Fault Indicator

tual Syst Decision Maki
u(t)T Actual System y(t) Signal - | Filter/Observer/... r(t) ecision Making
|

Fault Supervision

Corrective Action

Figure 2-1. Quantitative model-based fault diagnosis and supervision flowchart.

2.1.Observer-Based Methods

In the field of diagnostics, observer-based approaches play an important role in
comparing model-predicted values to actual measurement signals to obtain residuals.
It is important to note that diagnosis observers, distinct from classical state observers
utilized for control purposes, primarily serve as output observers and often operate
in an open-loop configuration [12]. This configuration makes them more susceptible
to modeling errors and uncertainties. Therefore, ensuring robustness is essential for
reliable fault detection and accurate diagnosis, as cited in the literature [12], [13],
[35]-[37]. Two widely recognized types of diagnostic observers are the full-state
observer-based and the unknown input observer-based, which are briefly discussed in

the forthcoming sections.
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2.1.1. Full-State Observer-based FDD

In this part, the examination centers around exploring a simplified linear
interpretation of the fault model. The aim is to clarify the foundational structure of
the diagnosis method rooted in the full-state observer approach. Let us consider a
linear additive fault model that does not account for measurement noise and

disregards sensor anomalies, as depicted below:

x(k + 1) = Ax(k) + Bu(k) + Ed(k) + Ff,(k), (2.2)

z(k) = Cx(k). (2.3)

where, x(k) is the state vector, u(k) denotes the input vector, d(k) represents the
unknown inputs (or disturbance) and uncertainties, f, (k) is the actuator fault vector,
and z(k) stands for the measurement vector. These entities are all evaluated at time

k. The full-state observer is derived as follows:

%(k + 1) = A%(k) + Bu(k) + L(z(k) — 2(k)), (2.4)

2(k) = cx(k). (2.5)

Here, X represents the estimated state and L is the matrix of observer gains. The
subsequent step involves establishing the residuals by comparing the estimated state
against the measured state, based on the redundancy concept. This is defined as

follows:

r(k) 2 W,(z(k) — 2(k)) = W,Ce(k), (2.6)

where, W, is the weighting matrix of the residuals and e(k) £ z(k) — Z(k) represents

the error in estimation. The dynamics of the error are expressed as follows:
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e(k+1) = (A—LC)e(k) + Ed(k) + Ff (k). (2.7)

The selection of gains L and W, is conducted in a manner that ensures the
asymptotic stability of A — LC and imparts certain desired attributes to the residual.
Two common strategies to obtain these weights are the methods related to eigen-

structure assignment [38], [39] and the utilization of a fault detection filter [40].

In the context of eigen-structure assignment technique, the objective is to
diminish the residual's susceptibility to disturbances by nullifying the transfer
function matrix connecting d(k) to r(k). The transfer function is deduced from

equations (2.6) and (2.7), resulting in the following expression:
W,ClzI — (A— LC) ']E = 0. (2.8)

where z represents the z-transform, and I denotes the identity matrix. The aim is to
select appropriate values for W, and L to satisfy equation (2.8). The procedures for
designing the eigen-structure assignments are explained in [39]. This approach can
also be harnessed to generate structural residuals. As an illustration, assume f;(k)
represents a distinct fault component (namely, where f;(k) constitutes an element of
fa(k)). By regarding it as a disturbance d(k), the residual r(k) can be engineered

to be impervious to the f;(k) fault.

The concept of the fault detection filter was initially introduced by Beard [40]
and later enhanced through a geometric interpretation by Jones and Massoumnia
[41], [42]. Examining the error dynamics presented in equation (2.7), let us consider
fi as a specific fault component. The influence of the f;(k) fault on the estimation

error can be expressed as follows:
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e(k +1) = (A—LC)e(k) + F.f,(k). (2.9)

Within a fault detection filter, the selection of gain L is directed towards ensuring
the stability of A — LC, and concurrently, the error e(k) linked to the fault f; is
confined to a consistent subspace, denoted as U;. Consequently, the correlated
orientation of the residual aligns with W,LU;. Moreover, when each subspace of the
residuals corresponding to different faults remains distinct, the potential to achieve
fault isolation emerges. Notably, it is important to recognize that fault detection

filters typically do not consider the impact of disturbances or noise.

2.1.2. Unknown Input Observer

The Unknown Input Observer (UIO) develops a set of observers each one of them is
sensitive to a subset of faults while insensitive to the remaining faults and the
unknown inputs. The set of these residuals is used to detect and isolate different
faults. These residuals should be robust so that the decisions are not corrupted by
unknown inputs like unstructured uncertainties. In a case with no fault, the observers
track the process output closely and the residuals from the unknown inputs are
designed to be small. If a fault occurs, all observers, which are made insensitive to
the fault by design, continue to develop small residuals, while observers, which are
designed to be sensitive to the fault, will have significant residuals. This approach
was introduced by Watanabe and Himmelblau [43], and has subsequently been
refined by Frank and Wiinnenberg [44]. To illustrate the basic idea of the unknown

input observer, consider a linear system similar to (2.2) and (2.3) as below:

x(k + 1) = Ax(k) + Bu(k) + Ed(k) + Ff(k), (2.10)

z(k) = Cx(k) + w(k). (2.11)
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Here, f(k) is the general additive fault vector including component and actuator
fault, and w(k) is measurement noise. Assuming x(k) € R" and z(k) € R™, a pth

order unknown input observer can be obtained using the following transformation:

x,(k) = Tx(k), (2.12)

X,(k+1)=Lx,(k) + Lyu(k) + Lyz(k), (2.13)
where, x,(k) € R, n —m < p < n, and the matrices T, L;, L, and L3 are chosen such
that the system residual is independent from both system input u(k) and unknown
input d(k). Based on this observer, the system error and residual are defined as

follows:

e,(k) =x,(k) — Tx(k) (2.14)

r(k) =W, e,(k) + W, ,w(k) (2.15)
Here, e, (k) is the estimation error of the unknown input observer, r(k) is the vector
of the residuals, and W, and W,, are the matrix weights of the residuals. In the
observer design, some of the degrees of freedom are taken up by the condition TE =
0 for rejecting modelling uncertainties. The lost degrees of freedom depend on the
size and structure of the matrix E. The other degrees of freedom can be utilized in
decoupling fault effects for isolation and multiple fault identifiability. More detail

about diagnostic observer design can be found in [23].

In their work, Chen et al. [45] put forth a structured approach for the selection
of matrices T, Ly, L,, and L3 intended for a full-ordered unknown input observer.
The paper also outlines the necessary and sufficient conditions for existence of this
observer. The strength of the full-order observer lies in its capacity to grant designers

the liberty to craft directed residuals to aid in isolating faults. Moreover, opting for
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a full-order observer provides enhanced flexibility in attaining diverse design aims,
encompassing aspects such as adjusting the convergence rate and the containment of

estimation errors' variance.

As indicated in [45], an unknown input observer's existence relies on specific rank
requirements. In instances where these conditions are not met, full decoupling
between the residual and the unknown input is not attainable. Amato and Mattei
[46] introduced an unknown input observer that decouples faults when it is

achievable, while diminishing residual disturbances through H,, optimization.

2.2. Parity Relation Approach

At the core of the fault detection method based on parity relations is the generation
of residuals through subtracting system outputs from model outputs. These residuals
undergo a linear transformation, forming a residual generator for desired fault
diagnosis properties. Various strategies exist for designing such residual generation
filters (expressed as parity equations) to meet response criteria. These filters are
intended to improve fault isolation, demonstrating directional properties for specific
faults, while remaining robust to noise, disturbances, and model errors. The parity
relations can be designed with transfer function or state-space models [6]. The state-
space scheme, also known as Chow-Willsky scheme is introduced in [47]. For a simple

example, consider a state-space model as follows:

x(k + 1) = Ax(k) + Bf ,(k),

(2.16)
z(k) = Cx(k) + fs(k),

where, f, is the actuator faults vector and fg is sensor faults vector. Using this
equation, the parity vector p(k) is obtained as:
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p(k) = Tz(k) = TCx(k) + Tf(k). (2.17)

By selecting the matrix T in a way that TC = 0, we obtain,

p(k) = Tf,(k). (2.18)

jth

The direction of the parity vector p(k) caused by the i sensor fault corresponds to
the i column of T. This approach is expanded upon by Chow and Willsky when
they consider the output equations in the following manner:

ztk—n)=Cx(k—0D+ fs(k—1),

z(k—n+1) = CAx(k — 1) + CBf(k — 1) + fs(k — | + 1),
(2.19)

z(k) = CA'x(k — 1)+ CA" 'Bf ,(k — 1) + -+ CBf ,(k — 1) + f. (k).

Assuming the parity vector to be p(k) = T[z"(k—1) --- Zz']", the i® column of the
parity vector will become independent from the state vector, if for the i row of T (¢;)

in the following equation is true:

tlc - call'=o. (2.20)
Knowing that the dimension of t; is (Il + 1) X m and the number of equations in
(2.20) is equal to dimension of the state vector (n), the remaining degrees of freedom

of t; can be leveraged to separate the response from specific faults or disturbances.

Designing parity relation-based residual generation involves a trade-off: lower-
order parity spaces mean simpler online implementation but reduced performance,
while higher-order spaces improve performance but increase computation. To address
this, Ye et al. [48] introduced stationary wavelet transforms to traditional parity

filters. They demonstrated that using the same-order parity vectors, this approach
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delivers an optimal performance compared to traditional methods. This enhances

fault detection performance without any extra computational cost.

Ding et al. [49] examined fault detection based on parity relations with temporal
redundancy. They demonstrated that enhancing the parity relation's order raises the
parity space dimension (the parity vector's size), offering greater flexibility for
designing residual generation filters and thereby enhancing the performance of the

fault detector based on parity relations.

2.3. Optimization-Based Approach

Complete isolation is often impractical due to constraints related to the number of
faults that must be separated and the number of available sensor signals. To tackle
this issue, an alternative to complete isolation, known as approximate decoupling,
has been introduced through optimization-driven residual generation [12]-[14]. The
underlying idea is to amplify the influence of faults (f) on the residuals (r), while
minimizing the impact of unknown inputs and uncertainties (d) on the residuals. To
put it in the form of an optimization problem, the goal is to maximize the cost

function (J) defined as follows:

_ llor/ofll (2.21)
[or/adl’

Stoustrup and Niemann's work [50] surveyed this approach from a control-
theoretic standpoint, highlighting the trade-off between effective fault detection and
optimal closed-loop system performance under uncertainties. Song and Collins [51]
tackled fault detection in uncertain linear systems through an estimator based on

parameter-dependent bounding and multiplier theory [52]. This method is less
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conservative compared to those relying on the small gain theorem and fixed Lyapunov
function theory. The robust estimation problem is formulated as a parameter
optimization problem, minimizing an upper bound while adhering to a Riccati
equation constraint. Furthermore, a Broyden-Fletcher-Goldfarb-Shanno (BFGS)
continuation algorithm is developed for problem resolution. This fault diagnosis

technique has been deployed in a longitudinal flight control system.

Stoorvogel et al. [53] addressed fault detection and isolation by framing it as an
optimal estimation problem. Their aim was to devise an optimal estimator that
remains unaffected by disturbances, while ensuring the fault signal estimate is as
accurate as possible, assessed through either an H2 or an H1 norm. Wang and Lam
[54] tackled a similar problem in a linear time-invariant system with additive output
uncertainty and system matrix uncertainty. They transformed the problem into a
multi-objective optimization task, minimizing a linear combination of sensitivity to
uncertainties and faults, observer gain size, and numerical conditioning. The
optimization was facilitated through explicit gradient equations. This fault detection
technique was showcased with applications in a robotic manipulator and a vertical

takeoff and landing aircraft.

In [55], a fault detection filter was adapted for linear time-varying systems via a
least-squares method. This problem was redefined as a min-max strategy, leveraging
the Kalman filter's least-square derivation. For linear time-invariant systems, the
filter aligns with an unknown input observer, effectively extending it to the time-
varying domain. In a similar vein, Chen et al. introduced a detection filter in [56].

This filter maximizes transmission from the target fault to the projected output error,
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while minimizing transmission from nuisance faults. Additionally, it minimizes

transmission from process and sensor noise to residuals for enhanced robustness.

2.4. Stochastic Filter-Based Methods

Within the existing literature, Kalman filter stands out as a prominent filtering
technique employed for fault detection and diagnosis. It can be considered as a
particular type of stochastic optimization utilizing linear quadratic methods. In this
strategy, faults are detected by subjecting the residuals to statistical evaluations
related to their whiteness, mean, and covariance. General Likelihood Ratio (GLR)
and Maximum Likelihood (ML) are the common statistical methods used to evaluate
the residuals. To circumvent the prerequisites of linearity, Gaussian noise
distribution, and a mostly familiar model, alternative versions of the Kalman filter
such as Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF)
have been introduced [57]. For general nonlinear systems characterized by non-
Gaussian Probability Density Functions (PDFs), a recursive Bayesian filter was
proposed, known as the Particle Filter (PF) [17] or the sequential Monte Carlo
method [18]. However, the effectiveness of this approach is tied to the quantity of

particles used, reflecting computational requirements.

When the model does not match the real system, i.e., when a fault occurs in the
system [58], the KF loses its effectiveness and can become unstable. Similar concerns
apply to other Bayesian filters such as UKF and PF, which require solid knowledge
of the system model [59]. Remedies include Cholesky and UD factorizations [60], [61],
and introducing higher process noise [62]. An alternative is the Variable Structure

Filter (VSF), a sliding mode-based predictor-corrector method, offering robust
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estimation [63]. Extending VSF, the Smooth Variable Structure Filter (SVSF)
combats sliding mode chattering with a smoothing boundary layer, while ensuring
convergence of the estimated state trajectory to a neighborhood around the true state

trajectory [64]. Figure 2-2 illustrates the convergence and chattering dynamics

associated with VSF and SVSF filters schematically.
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Figure 2-2. Variable structure filter estimation concept: (a) VSF; (b) SVSF.
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A stochastic version of SVSF, optimized for linear systems to obtain a Variable
Boundary Layer (VBL), reduces estimation error for systems with Gaussian noise
using the newly formulated error covariance [16]. This approach is reported to
outperform SVSF with a fixed boundary layer. Furthermore, due to its robustness,
this method exhibits better performance compared to the Kalman filter. Further
details on the method's development and its superiority over the Kalman filter are
discussed in Chapter 4. There, the application of the SVSF-VBL filter and KF within
an adaptive Multiple Model Adaptive Estimation (MMAE) framework is studied for

real-time fault detection in an Electro-Hydraulic Actuator (EHA).

In the context of fault detection and diagnosis problems, the selection of the
smoothing boundary layer has a significant impact. For a small boundary layer, faults

will cause chattering, which can be used for detection purposes. Conversely, a large
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boundary layer smoothens the estimation, but increases the risk of missing the faults
in FDD algorithms. This implies that chattering carries footprints of mismatches that
can be exploited to detect system faults and assess their magnitude. In Chapter 3,
the exploration of extracting information from chattering is undertaken to identify
the model mismatch through analysis of the chattering signal's spectral
characteristics. This proposed approach is applied to detect and measure the severity
of faults like leakage, friction faults, and bulk modulus mismatch within an electro-

hydraulic actuator.

2.4.1. Adaptive Filter

Adaptive filtering approaches provide an alternative perspective that addresses large
uncertainties and facilitates the estimation of abrupt changes in a system. This is
particularly relevant in cases involving hybrid systems and fault detection scenarios.
These approaches involve utilizing multiple models for hypothesis testing, referred to
as Multiple Model Adaptive Estimation (MMAE), which is well-suited for managing
large parameter uncertainties and hybrid systems characterized by different system
models with distinct parameter configurations [15]. In fault diagnosis scenarios, each
model corresponds to a specific fault condition, and the algorithm assigns mode

probabilities to these models, which can serve as fault indicators [65]-[68].

Two distinct MMAE approaches are: static and dynamic methods. Static MMAE
adheres to one model throughout the entire process, lacking transitions or jumps
between the models. Therefore, it is not suitable for time-varying systems marked by
parameter changes or model switches. Conversely, dynamic MMAE is designed for

time-varying systems and finds application in online fault diagnosis scenarios [19],
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[66]. Three prominent dynamic MMAE strategies are: General Pseudo-Bayesian
estimator of first order (GPB1), General Pseudo-Bayesian estimator of second order
(GPB2) and Interacting Multiple Model (IMM). While theoretically opting for higher
orders should enhance estimation performance, it leads to an exponential increase in
the number of filters that must be run in parallel. This becomes computationally
impractical [66]. Of these, IMM has garnered attention due to its computational
efficiency, while maintaining performance comparable to GPB2 [66]. Consequently,
IMM presents a promising option for dynamic MMAE applications and serves as the

basis for the proposed method in this thesis.

In the IMM approach, the occurrence or resolution of a failure within a dynamic
system has been explicitly represented as a finite-state Markov chain with known
transition probabilities. The IMM algorithm handles system structural changes using
Gaussian approximations and a hypothesis merging technique known as "mixing."
Integrating Kalman filters in an IMM structure, referred to as IMM-KF, is a widely
recognized adaptive filter technique for fault detection and diagnosis, extensively
explored in the literature [69]-[71]. To enhance robustness, IMM-SVSF has been
recently introduced and demonstrated superior effectiveness compared to IMM-KF
in the presence of system uncertainties [16], [67]. The growing computational power
facilitates the practicality of these adaptive strategies for real-time fault diagnosis
and supervision, leading to increased research in recent years. Chapters 4 and 5 of
this thesis delve into adaptive filtering methods for fault diagnosis in greater detail

and present novel contributions to enhance the performance of this approach.
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2.5. Discrete Event and Hybrid Systems

Some researchers have explored fault detection and diagnosis problem for discrete-
event or hybrid systems. One approach considers it as a hybrid state estimation
problem, similar to the multiple model technique described for adaptive filtering.
Here, the faulty modes of a plant or process are represented as the discrete states
within a hybrid system framework. Solving the Fault Detection and Diagnosis (FDD)
problem then involves estimating the hybrid state, which includes both continuous
and discrete components. If the continuous state dynamics in each discrete state (or
mode) are linear, the solution can be approached using MMAE or IMM algorithms.
For situations where the continuous state dynamics in each mode are nonlinear,

particle filters become a viable option [72], [73].

A technique for tracking and diagnosis of hybrid systems in real-time was
introduced by Narasimhan and Biswas in [74]. Their approach involved creating
parameterized plant models, where faults manifest as sudden changes in system
parameters. They applied model-based diagnosis techniques, leveraging the analytical
redundancy between the model and system measurements to address hybrid systems.
In [75], Wang and Gao tackled FDD problem for uncertain continuous-time state
delayed systems with Markovian jump parameters. They designed a fault detection
filter as a Markovian jump system, which exhibited robustness to modeling
inaccuracies, unknown inputs, and control inputs. The existence of these filters was
established using linear matrix inequalities. Additionally, in another study [76],

researchers addressed critical modeling and computational challenges that combine
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model-based diagnosis methods with signature analysis, facilitating the effective

detection and isolation of emerging and abrupt faults in hybrid systems.

In their work [77], Zhong and colleagues addressed the challenge of robust fault
detection in a class of discrete-time linear Markovian jump systems with an unknown
input. They developed an observer-based residual generation filter for fault detection,
with matrices tailored to the specific system mode. In [78], Zhang and team delved
into fault detection in periodic systems, resolving it through the solution of a
difference periodic Riccati system. This approach strikes a balance between resilience
against unknown disturbances and sensitivity to faults, ultimately leading to the

design of an optimal fault detection system for linear discrete-time periodic systems.

Baroni et al. [79], explored model-based diagnosis within the realm of distributed
discrete-event systems, specifically focusing on a category referred to as 'active
systems.' These active systems are conceptualized as networks comprising
communicating automata, where each automaton characterizes the behavior of an
individual system component by responding to potential external threats. This
diagnostic approach pertains to asynchronous events that do not necessitate the
incorporation of a global diagnosis. Instead, it employs a method of online, step-by-
step reconstruction of the active system's behavior guided by available observations.
This technique demonstrates its efficacy when applied to large-scale active systems.
It encompasses various phases, including planning for reconstruction, the actual

reconstruction of behavior, and the generation of diagnostics.
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2.6. System Identification Methods

Faults cause a change in the physical parameters of a system. Consequently,
employing parameter estimation is an effective approach for identifying, isolating,
and even measuring the magnitude of faults within a system. In this methodology,
one seeks to construct a model of the normal operational state of the physical system,
either offline or online. The underlying assumption is that any fault within the system
would manifest itself as a change in the parameters within this model. Therefore, the
task of identifying such changes in the system's parameters falls under the scope of
the problem of fault detection and diagnosis. Isermann established that diagnosing
process problems could potentially be performed by estimating unobservable process
parameters and /or state variables in a review paper [80]. Comprehensive insights into
fault diagnosis utilizing system identification are provided in a book authored by

Simani et al. [81] and Isermann's survey paper [82].

Joint state and parameter estimation, which views the changing parameters as
an augmented state and estimates that using state estimation techniques such as
EKF, is a well-known method to estimate the faulty parameter [68], [83]-[88].
However, this method has certain drawbacks because it relies on nonlinear filtering,
which calls for solving challenging nonlinear Partial Differential Equations (PDEs) in
order to obtain the best answer. The use of the augmented state EKF offers a
suboptimal solution, which is vulnerable to bias estimation and divergence for the

following reasons [89]:

e Augmented states lack meaningful dynamics, hence, determining the

artificially introduced noise through engineering judgment is challenging [15].
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e Reliability of the covariance linearization employed in the EKF would be
compromised when significant parameter uncertainty is present.

e Inclusion of augmented states has the potential to make the system
unobservable [89].

e Discriminative training methods used to obtain the process noise covariance
matrix rely on measured states, and the incorporation of augmented states

will have a negative impact on the training process [90], [91].

Another approach involves utilization of subspace-based techniques for both
system identification and detection of faults [92], [93]. These subspace-based methods
[94] are linear algorithms for identifying systems, relying on measurements in the
time domain or covariance matrices of system outputs, where different subspaces of
Gaussian random vectors play a pivotal role. A system identification-driven FDD
method is introduced, tailored for monitoring structures that experience rapid
unmeasured environmental fluctuations alongside gradual changes in their modal
(vibrational) characteristics. The paper explores various applications, including

development of an online monitoring system for aeroelastic flutter in aircraft.

2.7. Comparative Analysis: Identifying Research Opportunities

In this section, a comparison is made between various model-based FDD methods
discussed in this chapter, with a focus on their performance, residual characteristics,
complexity, and robustness. The identification of research gaps addressed in this
thesis relies on the foundation provided by this comparative analysis. Performance of
a fault detection algorithm is typically assessed in terms of the trade-offs between

the false alarm rate and the mean detection delay [6].
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Observer-based techniques, such as eigen-structure assignments and unknown
input observers, yield the same residuals as an equivalent parity relation method, as
outlined in [6]. However, the key distinction lies in how these methods generate
residuals for direct use in the fault detection and diagnosis process. Observer-based
methods create residuals using observers, while the parity relation method transforms
the input-output transfer function or state-space models of the system to derive the
directional or structural residual vector directly, allowing for fault isolation capability
before the design phase. Despite their ease of implementation and computational
efficiency, both observer-based and parity relation approaches have well-documented

limitations:

They operate deterministically without considering noise distributions and

their impact on the system.

e They are designed primarily for additive faults and do not account for
multiplicative faults or model uncertainties [6].

e They are typically suitable for linear time-invariant systems.

e In scenarios involving unmodeled disturbances or model uncertainties, the
fault detection algorithm may fail to produce zero-mean residuals in the
absence of faults. This discrepancy can be addressed by raising the detection
threshold in the statistical decision test for the residual, albeit at the cost of
longer detection delays.

e Due to limited measurement availability, achieving complete fault isolation is

often impossible.
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Optimization-based approaches tackle the challenge of fault isolability by utilizing
a cost function that accentuates the influence of faults, while minimizing the impact
of noise, disturbances, and model uncertainties on the residuals. The optimization-
based technique has been applied to extend the fault detection filter or unknown
input observer to nonlinear or time-varying systems. However, the effectiveness of
these methods can vary significantly depending on the specific case, when
implementing them in practical applications. Generally, they offer solutions to FDD
issues by optimizing specific mathematical objective functions, but there is no
assurance of the effectiveness and performance of these solutions in practical
applications. In certain cases, formulating the optimization approach, including the

choice of design parameters within the objective functions, can become challenging.

System identification techniques can be applied to both linear and nonlinear
systems. They are capable of detecting minor or incipient faults using joint state and
parameter estimation. However, solving the partial differential equations required for
parameter estimation can be exceedingly difficult. Additionally, introduction of
augmented states has the potential to make the system unobservable [89]. To address
the observability challenge, one approach is to employ Multiple Model Adaptive

Estimation (MMAE) methods, which are discussed in Chapter 4 and Chapter 5.

2.8. Research Contributions

The rise in computational power has opened up new possibilities for devising
advanced algorithms in fault detection. Consequently, there is increased interest in
recent years in use of stochastic filters. This thesis focuses on these techniques for

fault detection and diagnosis. An advantage of stochastic filters is their consideration
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of the system noise distribution. However, these filters rely on the availability of a
system model that is largely known. When the system dynamics deviates from this

model, due to a fault, modeling uncertainties can cause instability.

When the behaviour of a system is subject to change over time, particularly in
contexts like fault detection, it is important to either have a robust estimation
strategy or present various scenarios to adaptively characterize the system. The first
contribution of this thesis, discussed in Chapter 3, is grounded in the former
approach, using the smooth variable structure filter as a robust estimation strategy
for addressing fault diagnosis problems. The latter approach forms the underlying
concept of Multiple Model Adaptive Estimation (MMAE) which is a widely
recognized framework for fault detection and diagnosis problems. This serves as the
basis for the second and third contributions of this research that have been presented
in chapters 4 and 5. In the following subsections, a brief overview of each of these
contributions is provided before delving into more detailed explanations in the

subsequent chapters.

2.8.1. Chapter 3: Information Extraction Using Spectral Analysis of the

Chattering Signal of the Smooth Variable Structure Filter

The smooth variable structure filter enhances robustness and ensures stability,
particularly in cases of bounded system uncertainties, making it an ideal choice for
fault detection problems. Additionally, beyond the innovation vector used in filtering
algorithms to adjust the predicted state vector, SVSF provides an additional set of
indicators that can be used for information extraction, namely the chattering signals
associated with various state variables. In the event of model mismatch due to factors
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such as a fault condition, SVSF ensures stability through corrective actions, albeit
leading to chattering as shown in Figure 2-3 [95]. This unique characteristic makes

SVSF a suitable option for FDD problems.

Fault Detection From

Chattering
A Priori Existence 7
Amplitude Boundary () Actual State
Trajectory
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Estimation S A Priori Estimated
T State Trajectory
Smoothing
Boundary (V)
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Inject Fault

Figure 2-3. Fault detection from chattering signal of smooth variable structure filter[95].
As outlined in section 2.4, the SVSF employs a robust estimation technique through
the utilization of a sliding mode-based predictor-corrector method. However, this
robustness comes with the expense of chattering. The chattering occurs when a priori

estimation error is larger than the boundary layer [95].

R ( lexChlk — DI <
Chattering,( )_{(Iei(klk—l)l—q;i)sgn(ei(klk—l)) leiCklle = DI 2 g (2:22)

where Chattering;(k) denotes the chattering, e;(k|k — 1) is the a priori estimation
error, and {; is the smoothing boundary layer for state i.

The chattering phenomenon within SVSF contains distinctive change footprints
that can be effectively utilized for identifying system faults and assessing their
severity through spectral analysis. This forms the foundation for the first contribution

of the thesis, built upon the following hypothesis:
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e Hypothesis 1: information contained within the chattering of the robust
Smooth Variable Structure Filter can be utilized to identify changes in system

behavior, applicable in FDD problems.

Spectral analysis provides a powerful tool for extracting information from the
noisy chattering signal through techniques like Fast Fourier Transform (FFT), Short-
Time Fourier Transform (STFT) and wavelet transforms. Examining the spectrogram
of the chattering signal proves to be highly insightful in this context. The spectrogram
illustrates the frequency distribution of the chattering signal as it changes over time,
offering insights into events like faults that impact the system and result in model
mismatch. Three distinct approaches can be employed for fault diagnosis through
spectral analysis.

1. Expected value of spectral density of the chattering signal.

The spectral density of the chattering signal reveals information about the
frequency content of the system fault. In a healthy system, the power spectral density
contains no information and should align with the expected value, as indicated by
the dashed red line in Figure 2-4. Nevertheless, there will be some inherent random
fluctuations attributed to system noise. When a fault occurs in the system, the
distinctive signature of that fault manifests as alterations in the frequency content of
the power spectral density of the chattering signal. However, in many cases this
information is buried under the system noise and cannot be achieved from a single
realization, specially when the system noise is large compared to the effect of the

fault. For example, Figure 2-4 shows the power spectrum of the chattering signal for
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a faulty system, featuring a spike at a specific low frequency. Yet, this characteristic
is not easily discernible from a single realization due to the presence of noise.
Considering the characteristics of process and measurement noise, the expected
power spectrum of the chattering signal can be calculated under normal conditions.
Building on the concept of Monte Carlo simulation, one can compare the average of
power spectrum of chattering signal for fault diagnosis, using the law of large
numbers. This method requires multiple realizations to derive the expected value, as
depicted in Figure 2-4. Consequently, it is not suitable for real-time applications.

Also, temporal information cannot be extracted using this approach.

Converging To Mean

1 realization

Average of 2 realization

Average of 4 realization

Average of 6 realization

= = Expected

Chattering Power Spectrum

7Frequenéy
Figure 2-4. Fault detection based on expected chattering power spectrum.
2. Find a threshold for spectral density of the chattering signal.

In this approach, it is necessary to derive the Probability Distribution Function
(PDF) of the power spectrum of the chattering signal for normal condition,

considering both measurement and process noise. Under the faulty condition the PDF
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of the chattering power spectral density will change accordingly. Following that, a
threshold can be determined within a specific confidence interval.

Figure 2-5 provides a conceptual representation of the threshold selection process,
depicting a balance aimed at minimizing the risk of missed detection while avoiding
false alarms. Under normal conditions, a higher noise levels contributes to a heavier
tail in the PDF', thereby increases the probability of missed detection or false alarm.
On the other hand, a higher level of fault result in a more substantial shift in the
PDF, which makes detection easier. The benefit of this method lies in its reliance on
a single realization, making it well-suited for near real-time applications. However, it
is more susceptible to false alarms or missed detections, especially when the impact

of the fault is small compared to noise.

A

Normal Condition

Threshold ..
, Faulty Condition

Missed Detection

False Alarm

11

Chattering Power Spectrum

Probability Density Function

A

Figure 2-5. Fault detection using a threshold based on the confidence interval

obtained from PDF of the chattering's power spectrum.

3. Spectrogram Analysis

Changes in the frequency content of the chattering signal indicate the occurrence
of a system mismatch or fault. Consequently, it is advantageous for fault detection

to capture temporal information regarding the frequency content of nonstationary
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signals. The time-varying spectrum, commonly known as the spectrogram, is a tool
for extracting both temporal and spectral information from the signal. Two
established techniques, namely the Short-Time Fourier Transform (STFT) and the
wavelet transform, can be employed to generate the spectrogram. This approach
offers the benefit of not only recovering temporal details related to the fault but also
reducing the likelihood of false alarms and missed detections due to the inherent
averaging process in spectrogram calculation. However, there exists a trade-off
between the periodic and temporal information attainable from the spectrogram,
governed by the Heisenberg-Gabor limit.

In chapter 3, mathematical expressions are formulated to describe the chattering
signal of the SVSF in scenarios involving both full-state and partial-state
measurements. An investigation is conducted into the spectrogram of the chattering
signal to extract both temporal and spectral information. Leveraging the concept of
Monte Carlo simulation and considering the characteristics of process and
measurement noise, the expected power spectrum of the chattering signal is derived
under normal conditions. A proposal is made to select a threshold for Fault
identification, balancing the avoidance of false alarms with the minimization of the
risk of overlooking the faults. This threshold selection strategy takes into account the
probability distribution of the chattering signal's power spectrum, establishing a
confidence interval that facilitates real-time fault detection using a single realization
of the event sequence. Additionally, for retrieval of temporal information related to a
mismatch, the short-time Fourier transform of the chattering signal is studied. The

efficacy of the proposed method for fault detection and mismatch identification is
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demonstrated across various scenarios involving a typical second-order system and

an electro-hydraulic actuator.

2.8.2. Chapter 4: A Robust Model-based Strategy for Real-time Fault
Detection and Diagnosis in an EHA Using Updated Interacting Multiple

Model Smooth Variable Structure Filter.

As mentioned at section 2.4.1 the dynamic MMAE approaches are for time-
varying systems such as online fault diagnosis scenarios. The parallel structure
inherent in MMAE algorithm enables rapid adaptation of the system, ensuring
precise state estimation following a fault occurrence. Additionally, it tackles the
observability challenge encountered in alternative strategies like observer-based,
parity relation-based, and joint state and parameter estimation (i.e., system
identification) approaches. Consider a general multiple model process governed by a

hybrid system as below:
x(k) = fuqo (xUe = 1, uk — 1), v(k - 1)),
z(k) = hy oy (x (), u(k), w(k)).

Where the subscript M(k) describes which system model and which measurement model

(2.23)

is active in the time interval (k — 1,k]. The active model in this interval is assumed to be

among the r total possible model.

M(k) € {M;}i-,, (2.24)
Where M; stands for i model which corresponds to a pair of specific models, namely
the system model fy, and the measurement model hy,. Assuming the possibility of a
Markov jump between different models at any time step, number of regime histories
grows exponentially over time, as shown in Figure 2-6. Therefore, the conceptual

solution to the MMAE algorithm becomes infeasible in practice.
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Figure 2-6. Model hypothesis tree for two-model jump-Markov MMAE algorithm. In the
figure, it is assumed that M, is valid at time k=0. For a general system with r model the
number of regime histories (number of tree branches), is 7* which grows exponentially with

time.

One strategy to reduce the number of regime sequences is hypothesis merging.
The Interacting Multiple Model (IMM) serves as a popular sub-optimal solution for
MMAE, utilizing merging to reduce the branches in the model hypothesis tree. It
utilizes and merges the regime histories from only the two preceding time steps.
Therefore, when the total number of the possible models is r, the number of regime
histories remains proportional to 72, preventing exponential growth over time [66].
However, it's crucial to note that even IMM filter-based methods can be notably
complex to implement, particularly when dealing with a high number of fault modes

(e.g. large 7).
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The second contribution of this thesis aims to address this complexity within the
context of the fault detection and diagnosis problem, guided by the following

hypothesis:

e Hypothesis 2: Assuming that faults are irreversible in an FDD problem and
modifying the IMM algorithm to account for this information can improve the

computational efficiency and reduce the rate of false alarm.

Filter-based IMM is a well-known adaptive estimation method widely utilized in
model-based FDD problems. Specifically, in IMM-SVSF approach, employing a
robust bank of SVSF filters has proven to be efficient in detecting faults even in the
presence of modeling uncertainties and has been used to detect leakage and friction
faults in an EHA system [16]. However, as the number of models running in parallel
(representing the number of faults studied) increases, the IMM method faces two

main challenges: computational intensity and combinatorial explosion.

Chapter 4 introduces an efficient variant of IMM called Updated IMM (UIMM),
which is integrated with the SVSF filter to establish a robust model-based approach
for real-time fault detection and diagnosis. The UIMM method progresses through a
subset of the fault condition-related models, rather than considering all models
concurrently as in IMM. This is achieved by updating the filter bank when a fault is
detected in the system, assuming the faults are irreversible. This update
accommodates the alterations in the bank of potential model scenarios, describing
the system's behavior specifically influenced by the detected fault, as illustrated in
Figure 2-7. Consequently, the UIMM algorithm operates with significantly fewer
models running in parallel compared to the IMM algorithm, as indicated in Table
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2-1. This approach offers two key advantages: improved computational efficiency and

avoidance of combinatorial complexity [67].

Filter Bank Update the filter bank

Mode probability
at time k
» Fault Detector n----- >
Use in fault management

Estimated states and error
covariance at time k

Estimated states and error
covariance at time k -1

Use in control, monitoring,...

Figure 2-7. UIMM algorithm flow diagram.

Table 2-1: Comparing the number of filters in IMM and UIMM algorithms [67].

Number of Faults 1 2 3 4 r
Number of Filters in IMM 2 4 8 16 27
Number of Filters in UIMM 2 3 4 5 r+1

In chapter 4, the performance of the UIMM-SVSF method is validated through
fault condition simulations for a typical Electro-Hydraulic Actuator (EHA).
Leveraging the computational efficiency of the proposed algorithm for fault diagnosis,
a Fault Tolerable Control System (FTCS) is developed in chapter 4, according to the
flow diagram shown in Figure 2-8, to illustrate the application of this strategy in

managing faults within a closed-loop system.
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Tracking
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—| Controller Plant —
Estimated Measurements
States
UIMM-
SVSEF-VBL

Mode Probabilities

Update Controller
For FTCS

e = = —— - ]

- FDD

Figure 2-8. Block diagram of the UIMM-SVSF-VBL in a closed-loop application for fault-
tolerant control system [67].

2.8.3. Chapter 5: Adaptive Estimation Using Interacting Multiple Model with

Moving Window

Apart from its inherent complexity, another constraint of the IMM-based
approach is its dependence on the assumption that fault parameters adhere to
discrete values from a finite set. In cases where certain faults involve fault parameters
with continuously drifting values, it may be necessary to employ multiple fault models
to describe a single fault. Accounting for all the possible fault levels for a single fault
simultaneously, introduces greater complexity and the potential for higher false alarm
rates. A similar approach is needed for addressing problems characterized by a
gradual progression of faults, where the set of models used in the multiple model
approach have an inherent chronological order. In these circumstances, equation
(2.24) can be regarded as having leveled member [95]:

N-1

M(k) € {ML[l-]}i=0 . (2.25)
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In this context, M(k) shows the active model in the time interval (k —1,k] and M
represents the model corresponding to progression level “i”.

The third contribution of this thesis is an effort to resolve this problem which forms

the basis of the following hypothesis:

e Hypothesis 3: Directing attention to a neighboring subset of the IMM in
each cycle will enhance the algorithm's performance and computational

efficiency.

In Chapter 5, a novel adaptive estimation strategy called the Moving Window
Interacting Multiple Model (MWIMM) is introduced based on this hypothesis. Unlike
the IMM strategy, the MWIMM approach employs a filter bank containing only the
adjacent models to the active model, integrating information in chronological order.
Therefore, the number of filters running concurrently is determined by the selected
size of the moving window that defines the neighborhood. As depicted in Figure 2-9,
when there is a model transition indicating a change in the active model, the moving

window adjusts accordingly.

MWIMM can be considered as an extension of UIMM algorithm which relaxes
the irreversibility assumption and allows for the estimation of gradual or continuous
changes within the system. This extends the application domain of the multiple
model strategies for systems that are experiencing gradual changes, which is more
common in physical systems, including fault intensity assessment and Remaining
Useful Life (RUL) estimation. By utilizing a moving window, MWIMM enhances the

identifiability and computational efficiency of multiple model algorithms by
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concentrating on a subset of potential models at each stage, rather than considering

all models simultaneously.

.+ Filter Bank at Time (k)

e

Window Slides at Time (k+1)

y 2 B e
=<
IS
=

Active Model at Time (k) e Window Size

<

=

aaag;

Jump Due to Model Change

A

Active Model at Time (k+1) # My s

Filter Bank at Time (k+1)

Figure 2-9. Flow diagram illustrating the MWIMM algorithm.

2.8.4. List of Primary and Secondary Contributions

The primary contributions of this thesis are outlined as follows:

1. Enhancing the computational efficiency and decreasing the false alarm rate
through the modification of the IMM algorithm using UIMM-SVSF.

2. Information extraction from the chattering signal of the SVSF using spectral
analysis.

3. Introduction of the Moving Window IMM (MWIMM) to improve
identifiability and computational efficiency of IMM algorithm by narrowing

down the search space for the true model.
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The subsequent secondary contributions become possible due to the primary

contributions:

1. Developing a fault-tolerant control system for an electro-hydraulic actuator
utilizing the UIMM-SVSF-VBL diagnosis approach.

2. Employing spectral analysis of the chattering signal from the SVSF to
diagnose leakage, friction fault, and bulk modulus changes in an electro-
hydraulic actuator.

3. Quantifying fault intensity and predicting the remaining useful life (RUL)

using the MWIMM algorithm.

These contributions have been presented in three papers as contained in Chapters

three to five.
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Abstract

SVSF is a model-based robust nonlinear filtering technique, based on the variable
structure concept formulated in a predictor-corrector form. It is used for estimating
the states of a system and is robust against noise and modeling uncertainties. It
ensures stability in the face of model mismatch resulting from a poor model or fault,
at the expense of corrective actions, which cause chattering. The chattering contains
mismatch footprints that can be exploited to identify system faults and determine
their severity. In this paper, information extraction from chattering is investigated to
identify model mismatch based on the spectral contents of the chattering signal. To

verify the effectiveness of the developed framework for chattering analysis, two case
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studies are considered. First, the power spectrum of the chattering signal has been
employed to identify mismatch and the potential of recovering the temporal
information of the model mismatch from the spectrogram is studied, using Short
Time Fourier Transform (STFT) for an underdamped second-order system. Then,
the proposed strategy is applied to detect and measure the severity of leakage and

friction faults as well as the bulk modulus mismatch in an electro-hydraulic actuator.

Keywords: Fault Detection, Information Extraction, Smooth Variable Structure

Filter, Spectral Analysis, STFT.

3.1. Introduction

Estimation is a process to obtain the states or parameters of interest using partial,
noisy, and inaccurate measurements. It can be applied in areas such as tracking,
control, system identification, statistical inference, signal processing, system
monitoring, and fault management [1]. Kalman Filter (KF) is the best-known optimal
state estimation strategy that minimizes the mean square error of the estimation for
a stochastic linear system with zero-mean Gaussian noise. To overcome the
requirement of linearity, gaussian noise distribution, and a fairly known model,
different versions of KF such as the Extended Kalman Filter (EKF) and the
Unscented Kalman Filter (UKF) have been proposed [2]. Later, a more
computationally demanding recursive Bayesian estimator was proposed referred to
as Particle Filter (PF) [3], also known as the sequential Monte Carlo method
[liu1998sequential]. Particle Filters are applicable to general nonlinear systems with
non-Gaussian Probability Density Functions (PDFs), but their performance is

determined by the number of particles, which reflects the computational demand.
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Conceptually, when the number of particles approaches infinity, the estimation error

for a particle filter will converge to zero [4].

State estimation is the cornerstone of model-based Fault Detection and Diagnosis
(FDD) strategies, be it online or offline. Model-based FDD methods involve the
development of a system model through either a fundamental comprehension of the
system's underlying physics or system identification. This model serves as a
benchmark to create mathematical links between inputs and measurements and
generate residuals that contain fault signatures using the concept of analytical
redundancy. These residuals are then processed through a decision-making tool for
diagnostic purposes. The benefit of this approach compared to data-driven methods
lies in the meaningful interpretation of each physical state and parameter of the
model, which significantly enhances the diagnostic process. The major model-based
FDD approaches proposed in literature [5] can be classified into observer-based
methods like full-state observers [6], [7] and unknown input observers [8], [9], parity
relation [6], [10]-[12], optimization-based [13]-[15], stochastic filter-based methods
like Kalman filters [16]-[18] and SVSF [19], [20], adaptive multiple model estimation
[21]-[25], and parameter estimation [26]-[29]. Isolability and robustness (especially
for online FDD) play an important role in the FDD process. Adaptive multiple model
estimation can resolve the isolability problem, where perfect decoupling of estimation
error residual is not possible, or the parameter estimation problem is not observable
[30]. Fault or any other source of uncertainty will cause a model mismatch. Therefore,

the robustness of the estimation is an important property of FDD problems.

The KF becomes sub-optimal and potentially unstable when the model used is

not matching the real system [31]. The same problem exists in other Bayesian filters
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such as UKF and PF, designed under the assumption that the system model is largely
known [32]. The numerical instability of the KF, due to round-off error, can be
resolved with square root forms such as the Cholesky and UD factorizations [33], [34],
or using a larger process noise [4]. Variable Structure Filter (VSF) is a robust
estimation method based on the sliding mode concept, in a predictor-corrector form
[35]. The Smooth Variable Structure Filter (SVSF) is an extension of VSF, applicable
to non-linear systems. Using SVSF, it is desired that the estimated state trajectory
converges to an existence subspace around the ground truth and remains within this
subspace. A large a priori error due to model mismatch or fault condition leads to
chattering. SVSF uses a smoothing boundary layer to eliminate the chattering typical
to sliding mode concept. If the smoothing boundary is larger than the width of the
existence subspace, the estimated state trajectory will be smoothened, and chattering
will not occur [35]. An optimal version of the SVSF has been proposed for linear
systems and uses a Variable Boundary Layer (VBL) to minimize the estimation error
for zero-mean Gaussian additive noise [36]. However, when it comes to FDD, choosing
the smoothing boundary layer is a delicate matter. On one hand, model mismatch or
fault condition may lead to chattering by reducing the effectiveness of the smoothing
boundary layer [37]. Therefore, the chattering signal can be used as an indication of
model mismatch or fault. On the other hand, increasing the width of the smoothing
boundary layer smoothens the estimated state trajectory, which in turn, increases

the chance of missing a fault by the deployed FDD algorithm.

This paper proposes a framework for model mismatch identification and fault
detection based on the information content of the chattering signal obtained from

the SVSF algorithm. The proposed framework relies on spectral analysis of the
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chattering in the estimated state trajectory. To verify the effectiveness of the
proposed strategy, it is applied to a linear stochastic dynamic system as well as an
Electro-Hydraulic Actuator (EHA). It is shown that typical fault conditions seen in
hydraulic systems involving bulk modulus mismatch, leakage, and friction faults can
be identified using the chattering signal of the SVSF. Contributions of the paper can

be summarized as follows:

e Exploration of the novel concept of utilizing chattering signals of the SVSF
for fault diagnosis.

e Information extraction from spectral analysis of the chattering using the
probability distribution of the chattering power spectrum.

e Examination of the ability to capture fault-related temporal details from
chattering spectrogram using short time Fourier transform.

e Implementation of the developed approach to detect and measure the severity
of leakage and friction faults as well as the bulk modulus mismatch within an

electro-hydraulic actuator.

The organization of this paper is as follows. In section 3.2, the chattering signal
of the smooth variable structure filter is defined while briefly outlining the filtering
strategy. Development of the chattering equation based on model mismatch, process
noise, and measurement noise is covered in Section 3.3. The section considers the
information content in chattering for systems with both full and partial state
measurements. In a case study for a second-order system, the potential of applying
the chattering equation to derive information about model mismatch is then
demonstrated. Section 3.4 focuses on spectral analysis of the chattering signal using

the Fast Fourier Transform (FFT) and spectrogram. The proposed approach is
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applied to an EHA system to detect bulk modulus, leakage, and friction faults in

section 3.5. Concluding remarks are provided in section 3.6.

3.2. The Chattering Signal of The Smooth Variable Structure Filter

Consider a general linear stochastic dynamic system with zero-mean Gaussian process
and measurement noise denoted by v(k) and w(k), which are characterized by the

covariance matrices Q(k) and R(k), respectively.

x(k +1) = Ax(k) + Bu(k) + v(k). (3.1)
z(k) = Cx(k) + w(k). (3.2)
Let us assume the modeling uncertainties AA(k), AB(k), and AC(k) to be as

follows:

—~

A =A-A4,
AB =B — B, (3.3)
AC =C-C,

where A, B, and € contain the nominal parameters of the model. The SVSF then

iteratively repeats the following four steps to estimate the states of the system [35].

1) The states are predicted according to the system model and a priori

estimates are obtained.
x(k + 1|k) = Az(k|k) + Bu(kl|k). (3.4)
2(k + 1|k) = Cx(k + 1]k). (3.5)
2) A priori and a posteriori output error estimates are obtained.
e,(k+1lk) =z(k+1)—2z(k + 1|k), (3.6)
e, (klk) = z(k) — z(kl|k). (3.7)

3) The corrective term is calculated.
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o If measurements are available for all states:

K(k +1) = C ' (ley(k + 11k)| + vle,(klk) DO sat(e,(k + 11k), ),  (3.8)
where vy is the convergence rate, P is the smoothing boundary layer,
and © is the Schur product.

o If measurements are not available for some states but the system is
observable, then the corrective term will be calculated based on
Luenberger’s reduced-order observer. For states with associated

measurements, the corrective term is the same as above.

K,(k+1) =Ci'(le,(k + 11k)| + vle,(kIk)DO sat(e,(k + 1]k),¥), (3.9)
K/(k+1)= (|‘$22‘$123z(k + 1|k)|

_ o (3.10)
+y|oite,(klk)|)Osat (P, p1re,(k + 11k), p),
K +1) = II{{?((;: j: 11)) . (3.11)

Assuming the system has n states and m outputs, the measurement
matrix will have two blocks: € = [C; C,], where €, is a full rank
mxm matrix associated with measured states and C, is an mx(m-n)
matrix corresponding to the unmeasured states. Subscript u is used
for state vectors directly linked to measurements, while subscript [

refers to the states without corresponding measurements. Matrix ® =

¢11 ¢12
¢21 ¢22

rearranges the state vector based on the mentioned two subsets of

T'AT = l is calculated using transformation T, which

states [35].
4) The a posteriori state estimate is then updated by refining the a priori

estimate using the corrective term.
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x(k + 1)k + 1) = ®(k + 1k) + K(k + 1). (3.12)

The chattering occurs when a priori estimation error is larger than the

boundary layer as shown below:

. _ (0 le;(klk — 1) <
Chattering;(k) = {(lei(klk — Dl =) sgn(eklk = 1)) ekl — DI = ¢;  (3-13)

where Chattering;(k) denotes the chattering, e;(k|k — 1) is the a priori estimation
error, and {5 is the smoothing boundary layer for state i. To avoid chattering under
the normal condition, the smoothing boundary layer should be larger than the upper
bound of the uncertain dynamics associated with the a priori state estimate (B). This

upper bound is obtained based on system uncertainties and noise as [38]:

B=sup(C (AA (¢ (2(k) - w(k))) + ABu(k) + v(k)) rwk D). (3.14)
For an observable system with fewer measurements, states should be transformed,

then B can be calculated as explained in [38].
d1(k)] [Z(k) [171(/()
=AD + AGu(k) + |_ , 3.15
a,(0) = AP lyao | 260 s, ) (319
B = max((l - V)_llazzll)’_ll(’f’zzl' - )/)_1,]/_1.1)
X SuP(ldz(k) - "Iszzaledﬂk)l + |$Izld1(k - 1)|)
The existence boundary can be determined based on an upper bound on d(k) due

b1 b2 vy (k) —
b2 b2 v, (k)

(3.16)

to uncertain dynamics, <I>=T_1AT=[ ], G=T'B, and [

T1w (k) — [321] w(k +1).

To avoid chattering, ¥ should be larger than f. However, choosing a very large

smoothing boundary layer (¥; » f; for all i) reduces the robustness of the filter.
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The SVSF estimation inside the smoothing boundary layer can be improved by

finding an optimal variable boundary layer [36].

To detect fault conditions from the chattering effect in the SVSF (or SVSF-VBL),
the upper bound on the smoothing boundary layer should be chosen based on system
uncertainties (Figure 2-9(a)). As shown in Figure 2-9(c), when the smoothing
boundary layer is smaller than f, chattering occurs even during normal system
conditions. On the other hand, as shown in Figure 2-9(b), if the smoothing boundary
layer is larger than B, fault cannot be detected. Assuming that matrix C is exactly
known, the existence boundary layer obtained from equation (3.14) can be considered

as an approximate value for the smoothing boundary layer [38].

3.3. Information Extraction from Chattering Signal

When a model mismatch or fault is detected from the chattering signal of the SVSF-
VBL, an auxiliary filter is run in parallel to extract information from the chattering
signal. This auxiliary filter is a variant of the mentioned SVSF that has the same
recursive steps with one exception. In equations (3.8), (3.9), and (3.10), the saturation
function, sat(:, W), is replaced with the sign function, sgn(:). In other words, the

auxiliary filter does not use any smoothing boundary layer.

3.3.1. Chattering Signal for Full Measurement of the State Variables

According to equation (2.22), the chattering for the auxiliary filter that uses sign

function is equal to the a priori error:

chattering(k+1) = e,(k+ 1lk) = z(k+ 1) — z2(k + 1]|k)

R (3.17)
= z(k + 1) — Cx(k + 1|k).
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Figure 3-1. Fault detection from chattering signal of SVSF for different relative values of
existence and smoothing boundary layers.
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Substituting (3.4) and (3.2) into (3.17) yields:
chattering(k+1)=Cx(k+1)+w(k+1)—C (ﬁ’;\?(klk) + Eu(k)). (3.18)
Substituting the states from (3.1) gives:
chattering(k + 1)
= CAx(k) + CBu(k) + Cv(k) +w(k + 1) (3.19)
-C (7152(k|k) + Eu(k)).
The a posteriori state estimate obtained by the auxiliary filter is calculated as
follows:
x(klk) =x(k|lk — 1) + K(k)

x(klk —1)

+C ' (le,(klk — D]

+yle,(k — 11k — DDO sgn(e,(klk — 1))

(3.20)
= ®(k|k — 1)
+T (e, (klk — 1)
+7le,(k — 1lk — DIO sgn(e,(klk — 1)),
where the estimation error decays with rate y [38].
le,(k — 11k — | = yle,(k — 2]k — 2)| = y*"*|e,(0|0)|. (3.21)

Substituting (3.19) into (3.20) and further simplifying it using (3.6), (3.5), and (3.2)

yields:

2(k|k) = Z(k|k — 1) + € *(2z(k) — 2(k|k — 1))
+ C1y*"1e,(0]0)|© sgn(e,(klk — 1))
=C'z(k) + C1y" e, (0]0)| - sgn(e,(klk —1)) (3.22)
=C'Cx(k) + C 'w(k)
+ C1y*1]e,(010)|® sgn(e,(klk — 1)).
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By substituting (3.22) into (3.19) and rearranging it, the chattering can be

formulated as a function of model mismatch and system noise:

chattering(k + 1)
= (CA—CAC*C)x(k) + (CB — CB)u(k) + Cv(k)
—CAC'w(k) +w(k + 1)

+ CAC 'y*1]e,(010)|® sgn(e,(klk — 1)).

(3.23)

3.3.2. Chattering Signal for Fewer Measurements Than State Variables

For an observable system, the chattering of the state estimates of the auxiliary filter
can be obtained based on Luenberger’s reduced order observer [38]. Applying

Luenberger’s transformation, equation (3.19) can be written as follows:

chattering,(k + 1)
= C,®PTx(k) — C,®Tx(k|k) + (€C,6 — C,G)u(k)  (3.24)
+ v, (k),

where subscript u refers to the states that are measured. The a posteriori state

estimate can be obtained from (3.9), (3.10), and (3.11):

(k)

2(klk) = ®(klk — 1) + [’;’:(k)

R, (klk = 1) +C; ' (2(k) — 2(klk — 1)) + T v*"11€,(010)|® sgn(e,(klk — 1))
%kl = 1)+ aahrz (200 = 2(KkIk = D) + 74 [, e, 010)| @ 5gn (81 e, (kk— )| (3.25)

' T Cx (k) + €,y e, (010)10 sgn(e, (klk — 1))
%100 + Boare " dale = 1D+ dak = 1)+ 757 1,7, (010)] @ sgn (@0 e, klke — D)

Then, chattering can be obtained by substituting (3.25) into (3.24):
chattering, (k + 1)
= C,®Tx(k) + (€16 — C,G)u(k) + v, (k)

€ Coxy (k) + T, 'yt e, 010)O sgn(e,(klk — 1))
T o - o o
x,(k) + @201 1d1(k —D+dyk—1)+y*? |¢12 1ez(o|0)| O sgn (¢12 1ez(k|k - 1))

] (3.26)
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Ignoring the impact of the initial error, assuming C; = C;, and T being identity,
which can be achieved by rearranging the states, equation (3.26) can be simplified as

follows:

chattering,,(k + 1)

_¢, $12$22$12_1d1(k — 1)+ @ppdy(k—1) _
32,1, di(k — 1) + Pody(k — 1)

The chattering of the states without an associated measurement can be obtained

(3.27)

based on the chattering of the measured states, using Luenberger’s transformation
[38]:
chattering,(k + 1) = e, (k + 1|k)

L L (3.28)
= ¢,,¢7; chattering,(k + 1) — P, P17 dy (k) + dy (k)

where subscript [ refers to the states without an associated measurement.

The modified upper bound of the uncertain dynamics associated with the a

priori state estimate can be calculated from the following equation:

Bestimatea = sup(chattering(k)). (3.29)

To avoid chattering, the smoothing boundary layer (¥) should be larger than

B estimated *

3.3.3. Model Mismatch Detection from Chattering Signal of the SVSF

In this section, the model mismatch detection for a second-order system from the
chattering signal of the SVSF is investigated. The discretized state-space model of a

general second-order system with damping ratio ¢, natural frequency wy,
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measurement noise w(k), and process noise v(k) is given in (3.30), assuming only

the first state has been measured.

{x1(k + 1) = x1(k) + Toxp (k) + vy (k)
x(k + 1) = —Tewgxy (k) + (1 = 2Tg{wn)xz (k) + Tsbu(k) + v2 (k) (3.30)

z(k) = x,(k) + w(k),

where T denotes the time-step and w is the system input. Under normal condition,
let us assume an undamped (zeta=0) system with wy = 2Hz, b = 100, uncorrelated
process noise v1(k)~N(0,1071%) and v,(k)~N(0,1078), measurement noise
w(k)~N(0,1078),and T, = 0.001s. For the estimated parameters being equal to the
normal condition, model matrices are obtained as follows:

A=a=| L ooon

= _ 0 o
—-0.0125 1 B_B_Luy C=C=[1 0]. (33D

If the smoothing boundary layer is chosen to be larger than the SVSF chattering
under normal conditions, then chattering in the SVSF indicates a model mismatch.
For state z;, which is directly measured, width of the smoothing boundary layer can
be calculated by substituting (3.31) and (3.27) into (3.29). Ignoring the effect of initial
error, we obtain:

V1 = B1estimatea = SUP (7_71(k) - $12$22$12_1d1(k -+

(3.32)
EﬁlZdZ (k - 1))

Let us denote the argument of the supremum function in the above equation by

6. Substituting the numerical values of the parameters, we have:

8,(K) = v, (k) — vy (k — 1) — 0.001v,(k — 1) — w(k)

(3.33)
+ (1-1.25e - 5w(k —1).

68



Ph.D. Thesis — Ahsan Saeedzadeh McMaster University — Mechanical Engineering

Considering that the measurement noise and process noise are independent and
white, distribution of §; is obtained as:

81(k)~N (i, () = Hoyk-1) = 0-001 1y, (k—1) = Hw(ie) + Huw(le=1): O, (i)
+ 05, (k-1 T 107°05, ) + 0oy + Tune-1)) (3.34)
~ N(0,2.02 X 1078),

Since §; has a zero-mean normal distribution, if the assigned value to the
smoothing boundary layer is between 30, () and 4ds, x, then chattering will occur
with a probability of 0.2% to 0.01%. Therefore, it would not be necessary to consider
a larger smoothing boundary layer. As mentioned previously, choosing a large
smoothing boundary layer suppresses the chattering, and in effect, therefore,
decreases the sensitivity for model mismatch detection. This increases the chance of
missing faults. On the other hand, choosing a small boundary layer increases the
probability of chattering occurrence even under normal conditions. This will lead to
false alarms. Hence, the smoothing boundary layer must be chosen based on a trade-
off between reducing the probability of missing faults and reducing the probability of
false alarms. Choosing J5; = 5 X 10™* ~ 3.505 L(k)» the probability of the chattering

is calculated as follows according to the normal distribution table:

Pr(V; < Biestimatea) = Pr(5 x 107* < |8, (k)|) ~ 0.067 %. (3.35)
This means that chattering is almost impossible during normal operation and
any chattering reflects a fault or model mismatch in the system. For the unmeasured
state x, the smoothing boundary is obtained by substituting (3.32), (3.28), and (3.21)
into (3.29):
_ e o oo =1
U2 2 By estimated = SUP (1000 (V1(k) —h12P22P12 di(k—1)+
(3.36)
¢,,d,(k — 1)) — 1000v, (k) + 1000w (k) + v, (k) — 12.5w(k)>.
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Similarly, denoting the argument of the supremum function in the above equation

by &,, distribution of §, is calculated as:

8,(k)~N(0,3.0135 x 1072). (3.37)
Sensitivity of the chattering signal to fault or model mismatch depends on the
smoothing boundary layer, which is determined by process and measurement noise.
A higher noise level needs a larger smoothing boundary layer, which will overshadow
the fault or model mismatch. Comparing (3.34) with (3.37), &; has a sharper
distribution than &, due to its lower variance, which reflects a lower level of
uncertainty. This is rational, because x, is not measured directly. Therefore, the

chattering signal of the measured state x; is used to detect the model mismatch here.

The state-space model of the second-order system described in (3.30) includes
two parameters: damping ratio and natural frequency. Hence, in this case, model
mismatch refers to any difference between the values of these two parameters in the
system whose states are estimated and the model of this system, which is used by
the filter that estimates the states. To evaluate the capability of the proposed model
mismatch detection method based on the chattering signal of the SVSF, the following
scenario is considered for creating model mismatch. While the model used by SVSF
remains unchanged, for the system whose states are estimated, during the time
interval [1s, 2s], natural frequency is changed from 2Hz to 3Hz, and during the time
interval [3s, 4s], damping ratio is changed from zero to 0.1. Three different smoothing
boundary layers are selected for the measured state based on §;, while keeping the
smoothing boundary layer of the unmeasured state the same for comparison. As
shown in Figure 3-2, when the smoothing boundary layer is too large (3, = 0.002 >

05,(k)), chattering does not occur. Since chattering signal is used as a secondary
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indicator along with the innovation vector as the primary indicator of model
mismatch, in the absence of chattering in this case, there is not any extra information
that can be used for detecting model mismatch. Conversely, when the smoothing
boundary layer is too small (; = 0.0001 < 05, (x), chattering occurs even under
normal conditions, and again analysis of the chattering signal is not helpful for model-
mismatch detection. Hence, the value of ; must be selected carefully. This figure
also shows that the estimation error increases when there is a model mismatch in the
system. It is more severe for x,, which is not measured directly and relies more on a
correct model. This error is larger for a smaller boundary layer, because it means

that SVSF has more confidence in the model, which is not correct anymore.

¥, =0.0001 < %

(@  |——t,=00005=350,

1L

0
1

¥, =0.002>> o

X, Normalized X, Normalized
Estimated Error Estimated Error

~
o
~

Chattering
Amplitude

W, Mismatch  Time (s) ¢ Mismatch

Figure 3-2. Model mismatch detection from chattering signal of SVSF for a second order
system. Normalized estimation error for (a) measured and (b) unmeasured states. (c)
Chattering signal of the measured state for three different smoothing boundary values. For
a small smoothing boundary layer (black), chattering occurs even during normal conditions.
For a large smoothing boundary layer (red), chattering does not occur when there is model
mismatch. Only for a medium smoothing boundary layer (blue), chattering signal is helpful

for model-mismatch-detection.
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3.4. Spectral Analysis of the Chattering Signal

In state estimation, it is not straightforward to distinguish between noise and model
mismatch based on their effects on the innovation vector. Deploying SVSF for state
estimation, the corresponding chattering signals provide a secondary set of indicators
that can be used for model-mismatch detection. To extract information from the
chattering signal, an auxiliary SVSF without a smoothing boundary layer is used. As
indicated in (3.23), (3.27), and (3.28), the chattering signal contains information
about severity of mismatch between the state-space model used by the SVSF and
dynamics of the actual system whose states are estimated by the filter. Spectral
analysis provides a powerful tool for extracting this information from the noisy
chattering signal using strategies such as Fast Fourier Transform (FFT) and Short-
Time Fourier Transform (STFT). In this regard, looking at the spectrogram of the
chattering signal will be very revealing. Spectrogram represents the frequency content
of the chattering signal as it varies over time. Hence, it provides clues on occurrence
of events such as faults that change the system, and lead to model mismatch. Power
spectrum is defined as squared modulus of the Fourier transform. For a random
signal, the power spectrum will similarly exhibit randomness. In certain contexts,
when studying random signals, the expected power spectrum (or the expected value
of squared modulus of the Fourier transform) is simply referred to as the power
spectrum. In this study, the power spectrum shown by §, is a random variable and
when needed, we explicitly denote the expected power spectrum using the notation
E[S]. Sources of randomness in the system dynamics are process noise and
measurement noise, which are zero-mean white Gaussian processes. To lay the

groundwork for deriving mathematical expressions for power spectrum of the
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chattering signal, first, Lemma 1 presents the probability distribution of the real and
imaginary parts of the discrete Fourier transform coefficients for zero-mean white
Gaussian processes, emphasizing on the orthogonality of these real and imaginary
parts. Building on the results of Lemma 1, Lemma 2 expresses that power spectrum
of a stationary zero-mean white Gaussian noise at each frequency follows a chi-
squared distribution. Result of Lemma 2 is then used to find the distribution of the
power spectrum of the chattering signal. This distribution is needed to calculate the

confidence interval for model mismatch detection.

» Lemma 1. The discrete Fourier transform coefficients of a stationary zero-

mean white Gaussian noise, v(k)~N(0,02), with N samples are independent

. . . . Ng?
and zero-mean white Gaussian with the variance OfT .

2 2

RV ()N <O,NTU> & VM (w,)}~N <O,NTU> & R (w,)}

1 V™M (wy}, (3.38)
for w, = Zﬁnn, where: — {(Nz;l)| sn< ng,

where, V¥ (w,) is discrete Fourier transform of noise signal v at n®
frequency, R and I denote real and imaginary parts respectively, and |x]
denotes the floor function (the largest integer, which is less than or equal to
x).

Proof. Let us define the normalized V™ (w,) as follows:

- 1
V(N)(wn) = —V(N)(wn) =

NoTT v(k)eiwnk, (3.39)

N
=,
2nN =
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According to [39], V™) (w,) is a zero-mean complex Gaussian random variable

with the following distribution:

V™ (wr)~Ne (0, f (wn)), (3.40)
where f is the spectral density function. For white noise, it is flat and equal
2

to Z—n . Since the family of normal distributions is closed under linear

transformation, distribution of V™ (w,) can be obtained from (3.40) as:

VW (w,)~Ng(0,2nNf () = VWV (0,)~N (0, No2). (3.41)

Real and imaginary parts are obtained as a direct consequence of (3.41):

RV (0,)} L VWV (w,)}

RV (w,)}~N <o, N—02>

VN (w,)~N.(0,No?) & < 2 (3.42)
No?
S{VWM (w)}~NV [ 0,—
\ 2
|

Lemma 2. The power spectrum of a stationary zero-mean white Gaussian
noise, v(k)~N(0,02), with N evenly spaced samples follows a central chi-

squared distribution of order 2 with the expected value of 6 :

21
x: & IE[S,EN) (a)n)] =0? forw, = ~

250 wy)
2
g (3.43)
N
where: 0 <n < l?J -1,

where S,SN)(wn) is the power spectrum of noise signal v at n™ frequency.

Proof. Based on the power spectrum definition, the following equation holds:
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5O () = VO @] = 3 (R D) + 3 W @I)). (34

The following is valid because the family of normal distributions is closed

under the linear transformation:

~N(0,1),

2 (N)
m{V(N) (wn)}"’N (0’ No > - \/E%{V ((Un)}

2 VN
N02> . V23V M (w,)}
2 aVN

(3.45)

S{V™ ()}~ <o, ~N(0,1).

Knowing that ER{V(N) (wn)} 1 S{V(N) (wn)} from lemma 1, definition of chi-

squared distribution yields:

2RV V(0 D0}
No? + No? T2

2 (1 2 2
=— <N (SR{V(N) ()} + 3N (wy)} )) ~x;  (3.46)

25 (wy)
=~
0-2

X35

Knowing that the expected value of central chi-squared distribution is
equal to the degrees of freedom, the expected value of the power spectrum is

obtained as:

[
o2

] =2= IE[S&N)(wn)] =02 (3.47)
|

The power spectrum of the chattering signal for each frequency is defined as

follows:
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1
N ,
Sghzl“m.ng (wy) = N |F(chattering;),|®?
E o2
=N Z chattering(k)e~t“nk| | (3.48)
k=1

2 here: N =— and 0< <[NJ1
fora)n—Nn, where: —Tsan sns|5 .

Schattering; 15 the power spectrum (only for half of the frequencies because it is
symmetric) of the chattering signal of the state ¢ at n frequency, F denotes the
discrete Fourier transform, N is the number of samples, chattering, =
chattering(1), chattering(2), ..., chattering(N) is a sequence of chattering
vectors, @ is element-wise also known as Schur operation (B = 49% = b;ij = al-zj)7 t
is signal duration, and Ty is sampling time. To obtain frequency in Hz, the following
transformation is applied on w,:

1
w = FKw, where: F, = T (3.49)

N

w is the frequency in Hz and F; is the sampling rate. As shown in (3.48) and (3.49)
the resolution and upper bound of w depends on the signal duration and sampling
frequency, respectively. Hence, the sampling size, N, is a crucial parameter that affects
the spectrogram. Hereafter, the superscript N is removed since it is considered that
the number of samples is fixed. Substituting (3.23) into (3.49) and ignoring the impact
of the initial error, the power spectrum of chattering signal is obtained as follows

using the linearity property of the discrete Fourier transform:
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’Schattering ((‘)n)

PN

= ~|(ca~CATC)F (), + (CB~TBF(w)y  (350)

P o2
+ CF(0y)n — CACIF (Wi )p + FWir | -

Under the normal condition with no model mismatch, equation (3.50) can be

rewritten as:

1 PO 02
Schattering(wn) = N |CT(vk)n — CAC 1?(Wk)n + :F(Wk+1)n|

1 PN .
= < |CF @Y, — CAC F(wy), + elonFw),|” (351
1 . PN
N |CF(0i)y + (e"nd — CAC_l)T(Wk)nlez
Using the shift theorem for discrete Fourier transform, (3.51) is further simplified

as:

1 PO ; ©2
cschattering((ﬂ)n) = N |CT(vk)n — CAC 1T(Wk)n + elwng:(wk)nl

. (3.52)
= = |CF @ + (eiorl = TAT)F (W), |

Let us consider independent stationary white process and measurement noise

with zero mean Gaussian distributions as:
Q(k) = v(l)v(k)" = diag(a?), (3.53)
R(k) = w(k)w(k)" = diag(a3), (3.54)
where Q(k) and R(k) are the covariance matrices of the process and measurement

noise respectively, J,fiis the variance of the process noise for state i, and avzvj is the

variance of measurement noise for measurement j.
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Regarding the predictor-corrector form of the SVSF, at each time instant,
chattering depends on measurement noise for both predictions, w(k — 1), and
correction, w(k). Therefore, as shown in (3.52), the chattering signal exhibits
autocorrelation due to the implicit accumulation of the effect of delayed measurement
noise terms over time. The expected value of the power spectrum of the chattering
signal is obtained using lemmas 1 and 2 (all the cross-correlation terms become zero
due to independence and zero mean condition of discrete Fourier transform from

lemma 1):

E [‘Schattering (wn)]

1
= COE |17 (0,1

: s 1
+ |elwn1_ CAC_1|®2E [ng:(wk)npz] (3.55)

P N

= CO2E[S,] + |eiwnl — CAC1|*°E[S,,]

= C%%¢2 + |ei@n] — fﬁf‘1|®203v,
Due to the exponential term in equation (3.55), which depends on frequency, it can
be concluded that in general, the expected value of the power spectrum of the

chattering signal is not flat under normal conditions (Figure 3-4).

3.4.1.Find the Threshold for Spectral Density of the Chattering
Signal Under Normal Condition

To identify model mismatch, a threshold must be determined for the spectral density
of the chattering signal that reflects normal conditions. This threshold should be
intelligently specified in a way to decrease the chance of missing any model mismatch
while avoiding false alarms. According to (3.52), there is an element of randomness

in the power spectrum of the chattering signal. Therefore, the threshold should be
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obtained by taking account of the probability distribution of the power spectrum of
the chattering signal, using a confidence interval. To be more precise, the following
equation must hold to ensure that the probability of a false alarm is smaller or equal

to a%:

Pr(Schattering,(wn) > threshold;|Normal Condition) < a%, (3.56)

where Scnatering,is the power spectrum of the chattering signal for measured state i,

and threshold; is its corresponding threshold. Let us define the matrices M and A

as follows:
M = —Z'ﬁ’c\‘—l
m;; fOT'.L ;t.] 557
Aij:= mU+1 fOT'L:]andmijZO.

my;;—1  fori=jand m;; <0

Given that —1 < e'®n < 1, the above definition leads to A > (ei“’"l - Eﬁf’l).
This inequality along with independence of process and measurement noise, will lead

to the following inequality:

1 iw ~Ar-1 o2
Schattering(wn) = N |CT(vk)n + (e nl — CAC )T(Wk)nl
(3.58)

|C:F(vk)n + A:F(Wk)an)z '

Z| -

<

Based on the linearity property of the DFT, equation (3.58) can be rewritten as:

1
Schattering(wn) < N |T(Cvk + Avvk)nle2 . (3-59)
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Since v, and wy are mutually independent stationary white zero-mean Gaussian
vectors, their linear combination is also a stationary white zero-mean Gaussian

vector:

Iy = Cv, + Awy, where: T~V (0,Zp(k)) & Zp(k)

(3.60)
= CQ(k)CT + AR(K)AT.
Substituting (3.60) into (3.59), and using lemma 2, we have:
1 28r,
Schattering(wn) = N |:F(rk)n|®2 = SI" where: ?“’X%' (3~61)

where §p, is the power spectrum of the random signal associated with state i, which
has a chi-squared distribution. Therefore, a threshold for the chattering signal under
normal conditions will be obtained based on equation (3.56), using the chi-squared
distribution table. When there is a model mismatch, a spike in the chattering power
spectrum is expected according to the frequency content of the states and input
signals as shown in (3.50). Higher peaks will result from a larger model mismatch,
which can be used to evaluate the severity of the fault. If the chattering signal's
power spectrum exceeds the threshold, it indicates a model mismatch in the system.
Additionally, it is possible to acquire the frequency content of system states (such as

natural frequencies) to be used for mismatch identification.

Since the threshold plays a key role in correctly detecting mismatch, it must be
selected by taking account of system's measurement and process noise levels as well
as the required confidence interval based on the probability distribution of the power
spectrum of chattering signal. Figure 3-3 conceptually illustrates how the threshold
is chosen based on a trade-off between reducing the chance of missing model

mismatches and avoiding false alarms regarding the PDF of the chattering's power
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spectrum for both normal and mismatch conditions. Under normal conditions, a
higher level of noise leads to a heavier tail in the PDF, which in turn, increases the
likelihood of missed detection and false alarm. However, a higher level of mismatch

corresponds to a larger shift in the PDF, which makes detection easier.

Normal Condition

Threshold . ..
— Mismatch Condition

Missed Detection

False Alarm

“% A

7

Probability Density Function

CS‘chattering (wn )

Figure 3-3. PDF of the chattering's power spectrum for normal and mismatched

conditions.

3.4.2. Mismatch Identification in a Second-Order System using Spectral
Analysis of the Chattering Signal
Let us consider a second-order system as (3.30), with the natural frequency of wy =
10Hz, damping ratio { =0.1 , b =100, and T, = 0.001s. The process and
measurement noise are assumed to be independent white zero-mean Gaussian with

the following covariance matrices:

1078 0
0 10°°V

1078 0

107¢ 0 ]
0 10°¢kl

Rugn =" 10-4/

0=| R = |

In order to study the impact of noise level on mismatch identification, two levels
of measurement noise are considered with one being 10 times higher than the other.

Under normal conditions, system matrices are obtained as below:
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A=4= [—3;978 09;9080817 , B=B= [0(.)1]’
S (3.62)
c=c=|, |

A unit step is applied as the input, and system’s behavior is observed for 4
seconds. Since Ty = 0.001s, simulation generates 4000 data points over 4 seconds.
Figure 3-4 displays the power spectrum of the chattering signal for both states under
normal conditions. As shown, the higher noise level requires a higher threshold.
Higher measurement noise skews the power spectrum more, increasing the power
density in high frequencies. The shift property in equation (3.52) is the cause of
skewness. The power spectrum of the chattering signal remains below the threshold
for the 0.1% false alarm level (99.9% confidence interval from chi-squared
distribution), but for the 1% level, there are several false alarms in high frequencies,
which is acceptable for 500 samples. To avoid false alarms completely, the number of
samples (N) should be taken into account when selecting @. A conservative upper
bound for the probability of false alarm in all frequencies is obtained as below:

(Schatteringi(wl) > thresholdl-) U (Schatten-ngi(wl) > thresholdi)

Pr( U U (Senastering, (0n) > threshold;

2

N/2

N
< Z Pr(Schattermgi(wn) > thresholdi|Normal Condition) < Ea%

n=1

Normal Condition)
(3.63)

In Figure 3-5, the power spectrum of the chattering signal for the second state,
chattering,, has been used to identify model mismatch. In this case, a very small
change in natural frequency (wo =11 Hz compared to wy = 10 Hz for normal

condition) is considered, while all other parameters remain unchanged. Accordingly,

1 0.001

the state matrix of the system will change to A = [
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and measurement matrices do not change ( B=B , € = C ). It can be seen from
(3.23) or (3.50) that chattering,will not change when only wy changes. Thus, the

mismatch is not observable in chattering; .
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Figure 3-4. Power spectrum of the chattering signal under normal conditions for (a) low
measurement noise level and (b) high measurement noise level, where a denotes the error
probability.

As shown, the mismatch causes a spike in the spectral density at 11 Hz, which

coincides with the natural frequency of the actual system. For the high measurement
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noise level shown in Figure 3-5(b), this peak is lower than the threshold, which means
it cannot be separated from the noise effect. Using the expected power spectrum is
one strategy to resolve this issue. For this purpose, using the idea of Monte Carlo
simulation, average of the spectrogram is obtained for many realizations of the same
event with the same input and identical conditions. Then, the averaged power
spectrum of the noise will converge to the expected value, while the peak at 11 Hz
remains the same as demonstrated in Figure 3-6. Nevertheless, this approach cannot

be used for real-time mismatch identification.
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Figure 3-5. Power spectrum of the chattering signal with a mismatch (wy = 11Hz) for (a)
low measurement noise level and (b) high measurement noise level, where a denotes the error

probability.

Figure 3-7 depicts the power spectrum of the chattering for different levels of
mismatch, where the natural frequency of the real system is changed to wg =
9Hz,12Hz,and 15 Hz as opposed to the nominal model with wy = 10Hz. Results

demonstrate that the proposed approach is capable of separating various levels of

mismatch and indicating the intensity of the mismatch based on the amplitude of
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the peak. As mentioned previously, frequency resolution of the spectrogram depends

on the duration of data gathering and the sampling rate.
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Figure 3-6. Detection of mismatch by averaging over different realizations.
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Figure 3-7. Power spectrum of the chattering signal for different levels of mismatch.
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3.4.3. Extract Temporal Information of the Mismatch from the
Spectrogram of The Chattering Signal

Frequency content of the chattering signal changes when a mismatch or fault occurs
in a system. Therefore, it would be beneficial for mismatch detection to extract the
temporal information about the frequency content of nonstationary signals. Time-
varying spectrum, also known as the spectrogram, is a powerful tool to recover the
temporal information along with the frequency content of the signal. Two well-known
techniques can be deployed to generate the spectrogram: the Short-Time Fourier
Transform (STFT) and the wavelet transform. The STFT method is used in this part

to identify the mismatch from the chattering signal.

Let us assume the following scenario for the general second-order system

presented in (3.30), where the process and measurement noise are independent white

-8 -6
zero-mean Gaussian with Q = [1% 1(;)_6 and R = [1% 1(?_4 :

e Under normal conditions, the natural frequency of the system is 5 Hz with
no damping ratio.

e For the first 2 seconds, a model mismatch is introduced to the system by
changing the natural frequency to 8Hz.

e Then, for 2 seconds system goes back to the normal condition.

e Then again, for 2 seconds, a model mismatch is introduced, this time by
changing the damping ratio to 0.1.

e Finally, the system becomes normal again until the end of the simulation.

According to the Heisenberg-Gabor limit, the periodical and temporal resolution

of the spectrogram, which are both governed by the STFT window, have an inverse
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relationship. A long window improves the frequency resolution but decreases the
temporal resolution and vice versa. Therefore, the length of the window should be
chosen carefully based on the application at hand. For this problem, the length of
the window has been chosen to be one second, which gives a 1 Hz frequency resolution
and 1 second time resolution. The shift time is set to be 0.2s (or 0.8s overlap) to have
a sharper edge for detecting the start and end of each mismatch period, and the
Hamming window function is used as the taper. The spectrogram of the chattering
signal is shown in Figure 3-8 for two input signals: a unit constant function and a

step function.

Results accurately pinpoint the frequency and damping mismatches as well as
their temporal details. Note that for a constant input, the effect of damping ratio
mismatch fades away after a while, because the system stops moving due to damping.
However, when the system is excited at t=5s, with the step function input, the impact
of the mismatch will become visible in the chattering signal. This shows the

importance of the persistence excitation specially when system has a large damping.
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Figure 3-8. Mismatch identification using the spectrogram of the chattering signal for (a)

a constant unit input and (b) a step function input.

3.5. Simulation Results for Fault Detection in an Electro-Hydraulic

Actuator

The discrete model of the EHA system as described in [40] is used to illustrate the
application of the suggested approach for identifying leakage, friction, and bulk
modulus mismatch faults. The EHA is a third-order system with state variables that
correspond to its position, velocity, and differential pressure, as given in the following

state-space model:

x1(k+1) = x;(k) + Tex, (k) + vl(k)

xa (e + 1) = (1= 58) 0, () + 5302 2, () + 2 ()

)

vl 1) = (1) 00 + 2o - Bete o w0

z,(k) = x,(k) + wy (k)
zy(k) = x,(k) + wy(k),
z3(k) = x3(k) + w3 (k)
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where Ty is the sampling time, which is assumed to be 0.001s, v(k) and w(k) are

zero-mean white Gaussian noise with the following covariance matrices:

10-12 0 0
mw=Q=| 0 107 0],

0 0 1
10-10 0 0 (3.65)
ww'=R=| o0 10" 0 ]
0 0 106

Table 3-1 provides the nominal values of the parameters in the state-space model
(64) [41]. When a leakage fault, friction fault, or bulk modulus mismatch occurs in
the system, it causes a change in the associated parameter values L;, a, or f,.
Following [41], Table 6-1 summarizes the mismatch scenarios, which are considered
to evaluate the ability of the proposed method for handling different levels of defects
and faults. This table also shows the corresponding changes in system's dynamics for
each fault regarding damping ratio and natural frequency with respect to their

nominal values presented in Table 3-1.

Table 3-1: EHA Parameters.

Physical Significance Parameter Value
Piston Area A, 1.52 x 107 m?
Pump Displacement Dp 5.57 x 107 m?
Mass M 7.38 kg
m3
Leakage Coefficient L 48 x 10712
s.pa
Friction Coefficient a 2144 N.s/m
Bulk Modulus Be 5 x 10% Pa
System Volume Vo 1.08x 107 m?
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Table 3-2: Fault Levels.

Affected Natural Damping
Fault Level Value
Parameter Frequency Ratio
Healthy N/A N/A N/A 38.9Hz 0.5924
m3
Minor L 3x1071—— 38.43Hz 0.5895
s.pa
m3
Leakage Medium L, 6x 10711 spa 37.88Hz 0.5861
m3
Major L, 9x10711— 37.32Hz 0.5826
s.pa
Minor a 4000 N.s/m 38.82Hz 1.1091
Friction
Major a 7000 N.s/m 38.7Hz 1.9484
50% down Be 0.58 27.5Hz 0.8392
Bulk 25% down Be 0.75B 33.69Hz 0.6846
Modulus 25% up Be 1.258. 43.49Hz 0.5295
50% up Be 1.58 47.64Hz 0.4830
The system matrices are obtained from (3.64) as follows:
0 T 0 0
0 1-— E TsAc 0 1 0
A= m m » B=|rp,p, [ €=[0 1 (3.66)
sPelp
TSAC.Be _ Tsﬁel‘t Vv 0 O
Vo Vo ’

Substituting (3.65) and (3.66) into (3.55), (3.60), and (3.61), the expected value

and the threshold can be calculated for the power spectrum of the chattering signal

under normal conditions. An input chirp signal with a frequency ranging from 10 to

100Hz is used to excite the system below and above its natural frequency. Figure 3-9

shows the power spectrum of the chattering signal under the healthy condition. For

the error probability @ = 0.1%, power spectrum of the chattering signal follows the

expected value trend and remains below the threshold for the corresponding
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chattering signals of the three state variables. For a = 1%, there are several false
alarms in high frequencies, which would be acceptable considering the number of
data points (N=4000). However, these false alarms can be avoided by a lower level

of a using equation (3.63).

%107

Actual
N it Expected

Power Spectrum

Pressure Chattering Velocity Chattering Position Chattering
Power Spectrum Power Spectrum

0 100 200 300 400 500
Frequency (Hz)

Figure 3-9. Power spectrum of the chattering signal for the EHA system under the healthy

condition, where a denotes the error probability.

Ignoring the negligible impact of initial error e,(0[0) in (3.23), the chattering

signal of the EHA for leakage condition is obtained as:
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chattering,(k + 1)
chattering,(k + 1)
chatterings;(k + 1)

vy (k) + Tow, (k) +wy(k + 1) (3.67)
T.a T.A,
_ vz(k)+<1— m)wz(k)+( = )wg(k)+w2(k+1)
(1= 252 1,0 + 0 + (52 a0+ (1= w0 + ik 1)

where AL; is the mismatch in the leakage coefficient due to leakage fault. As shown
in (3.67), leakage fault is observable from the chattering signal of the third state
variable that represents differential pressure. Thus, the power spectrum of the
pressure chattering signal is used for leakage fault detection. Figure 3-10 shows that
the power spectrum of the chattering signal deviates from the expected value when
leakage occurs, with higher leakage levels leading to a larger divergence. However,
only a major leakage can be detected based on the 0.1% threshold, derived from
system noise. This issue can be improved to some extent by deploying a more accurate
sensor with a lower level of noise. Additionally, following the idea of Monte Carlo
simulation, as shown in Figure 3-6, the experiment can be repeated, and average of
the power spectrum can be calculated. Then, detection can be performed based on
the expected power spectrum. As indicated in Table 6-1, leakage has a small Impact
on natural frequency. Hence, power spectrum has a peak at the natural frequency of

the system.

Similar to (3.67), the following equation is used to obtain the chattering signal

when there is a friction fault:
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Figure 3-10. Leakage fault detection using spectral analysis of the pressure chattering

signal.

chattering,(k + 1)
chattering,(k + 1)
chattering;(k + 1)

v3 () + (

TsAcﬁe

vi(k) + Towy (k) + wy(k+ 1)
LAa )+ v, + (1 _ @) w, (k) + (TsA
m m m

>W2(k)+(1—

0

Vo

TsBelLy

)Wg(k) +wyk +1)

>W3(k) +wy(k+1)

(3.68)

where Aa is the mismatch in the friction coefficient due to the fault. Power spectrum

of the velocity chattering signal is employed for friction fault identification. As

demonstrated in (3.68), friction fault can be observed from the chattering signal of

the second state variable that represents velocity. Figure 3-11 shows that both minor

and major frictions can be detected from spectral analysis. The friction fault has a

negligible impact on the natural frequency, but it increases the damping ratio of the
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system and makes it overdamped (Table 6-1). Power spectrum does not peak at the

natural frequency, because the system becomes overdamped for minor and major

friction faults.
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Figure 3-11. Friction fault detection using spectral analysis of the velocity chattering signal.
The chattering for the bulk modulus mismatch is obtained from the following
equation:

chattering, (k + 1)
chattering,(k + 1)
chattering;(k + 1)

2, () + Towy () + wy (k +1) (3.69)
v, () + (1 - E) w, (k) + (TsAC) wa () + wy(k + 1)
T ﬁe IsBPelp

T,A A TsAB.L |
TA:Lp. TABeL: wa (k) + wy(k + 1)
0

2 0) ~ = ) + k)
0

=P80 (k) + vy (k) +( s CBe)wz(k)+(
where AB, is the mismatch in the bulk modulus due to the fault. The bulk modulus
mismatch is detectable from the pressure chattering signal, as indicated in (3.69).

Figure 3-12 shows that the bulk modulus mismatch can be identified using the
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deviation from the expected power spectrum. Furthermore, a larger mismatch leads
to a higher degree of deviation. According to Table 6-1, a higher bulk modulus
increases the natural frequency and decreases the damping ratio of the system. This

phenomenon is illustrated in Figure 3-12.
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Figure 3-12. Bulk modulus mismatch detection using the spectral analysis of the pressure

chattering signal.

3.6. Conclusion

In addition to the innovation vector, which is used in filtering algorithms to correct
the predicted state vector in light of the most recent estimation, SVSF benefits from
a secondary set of indicators that are the chattering signals associated with different
state variables. This paper entertained the idea of using the chattering signal for fault
detection and model mismatch identification. In this paper, mathematical expressions
were derived for chattering signal of the SVSF for both full-state and partial-state
measurement scenarios. Spectrogram of the chattering signal was investigated to
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extract temporal and spectral information. Building on the idea of Monte Carlo
simulation, and taking account of process and measurement noise characteristics,
expected value of the chattering signal’s power spectrum was obtained under normal
conditions. It was proposed to select a threshold for mismatch identification based
on a trade-off between avoiding false alarms and minimizing the chance of missing
any event that leads to a change in the system under study and causes model
mismatch such as fault occurrence. The proposed strategy for choosing this threshold
takes the probability distribution of the chattering signal’s power spectrum into
consideration. A confidence interval is determined using such a distribution that
paves the way for fault detection using one realization of the sequence of events,
which is suitable for real-time applications. Furthermore, to recover the temporal
information regarding a mismatch, the chattering signal can be analyzed using the
short-time Fourier transform. Effectiveness of the proposed method for fault detection
and mismatch identification was demonstrated through considering a number of
scenarios for a typical second order system and an electro-hydraulic actuator.
Furthermore, the proposed framework allows for determining the severity of the
mismatch. Future research can study the implementation of this approach within a
closed-loop system for fault diagnosis and development of a Fault Tolerant Control
System (FTCS). Considering that the majority of closed-loop systems are designed
to demonstrate overdamped dynamics and regarding the fact that the input
excitation originates from the controller, addressing challenges in achieving the

persistent excitation necessary for fault detection calls for an in-depth exploration.
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Abstract

In industries where harsh environments and stringent safety requirements are
prevalent, the widespread use of applications has made it essential to focus on Fault
Detection and Diagnosis (FDD) in hydraulic actuators. To achieve this, Model-based
FDD techniques are utilized, which employ estimation tools like observers and filters.
However, for many applications, particularly in fluid power systems, observability,
and parameter uncertainty pose constraints to extracting information and estimating
parameters. To address these issues, an efficient form of Interactive Multiple Model
(IMM), called Updated IMM (UIMM), is applied to an Electro-Hydrostatic Actuator
(EHA) to detect and isolate persisting friction and leakage faults. The UIMM method
progresses through a series of models that correspond to the fault condition's

progression instead of considering all models at once (as is done in IMM). This
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reduces the number of models running simultaneously, providing two significant
benefits: enhanced computational efficiency and avoidance of combinatorial
explosion. The Smooth Variable Structure Filter with Variable Boundary Layer
(SVSF-VBL) is used for state and parameter estimation in conjunction with UIMM.
SVSF-VBL is a reliable suboptimal estimation method that performs better than the
Kalman Filter regarding uncertainties related to the system and modeling. The
performance of the UIMM method is validated by the simulation of fault conditions
for a typical EHA. A Fault Tolerable Control System (FTCS) has been designed to
demonstrate the use of the proposed FDD strategy for fault management in a closed-

loop system.

Keywords: Electro-Hydraulic Actuator, Fault Detection and Diagnosis, Smooth

Variable Structure Filter, Updated Interactive Multiple Model.

4.1. Introduction

Emerging methodologies and technologies in areas such as artificial intelligence,
sensors, signal processing, control systems, and real-time computation have paved
the way for replacing traditional maintenance methods with automated approaches
for fault management. Such approaches can be categorized into two main groups:
Model-based Fault Detection and Diagnosis (FDD) and Signal-based FDD. Model-
based FDD strategies typically require system models complemented by estimation

strategies.

Regarding fluid power systems, since there is a rich literature on the modeling of such
systems, model-based FDD has been a popular approach among researchers [6]. This

paper proposes a novel model-based FDD algorithm for the Electro-Hydraulic
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Actuator (EHA). The EHA includes a closed-loop circuit that controls a linear
hydraulic actuator by adjusting the flow rate by changing the speed of a fixed
displacement gear pump using an electric motor. This system is commonly used in
aerospace as it is more efficient than the conventional servo-valve-controlled hydraulic
systems, in terms of its average size and energy consumption. The focus of this study
is on detecting leakage and friction, which are the most common faults in the EHA

[6]-[10]. In fluid power systems, model-based FDD usually relies on three pillars:

e Residual-based fault detection: This approach, which is also known as the
observer-based method, compares the predicted value of the output from an
observer to the measured output in order to obtain a residual error. If the
residual error components exceed the predefined thresholds, faults are
detected, and then isolated through further analyses. The core element of this
diagnostic system is an observer or a filter [7], [9], [10]. Diagnostic observers
are mainly used for estimating the output rather than the state vector as
opposed to those used in control. Moreover, open-loop configurations involved
in diagnostic observers accentuate the adverse effects of modeling errors [11].
Regardless of the form of implementation, robustness is essential for a
diagnostic observer and allows for reducing false alarms [9], [12]-[15]. When a
fault occurs, observers, which are designed to be sensitive to that specific type
of fault, will provide significant residuals, while residuals of other observers
remain insignificant. Perfect fault isolation relies on decoupling observer
residuals, which is not always feasible, because of restrictive conditions
imposed by the number of faults to be isolated and the number of available

sensors. To address this problem, approximate decoupling has been proposed
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[11], [12], [16], which solves an optimization problem to enhance the effect of
faults on the residuals while minimizing the effect of unknown inputs and
uncertainties.
Parameter estimation: It is usually part and parcel of residual analysis and
provides useful information for fault diagnosis and quantification. In this
regard, various methods have been proposed in the literature including
Recursive Least Square (RLS) [17], [18], robust RLS [19], State Augmented
Extended Kalman Filter (SAEKF) [20], [21], and Robust Estimation
Algorithm (REA) based on SAEKF [22].
Adaptive multiple models: Since observability is a common concern in
most fluid power applications including the case study of this paper, adaptive
strategies such as Interactive Multiple Model (IMM) estimations have been
proposed to address this issue [23]-[26]. The main idea behind such a method
is to use a finite number of models to represent different fault conditions. A
finite number of filters are run in parallel based on these models, which provide
the estimated state vector as well as its corresponding covariance and
likelihood. The provided information allows for computing a mode probability
for each filter as an indicator of the accuracy of the corresponding model.
Then, based on the residuals provided by the models, a probability
distribution is computed over the fault models, which is used for fault
diagnosis. Multiple-model decision mechanisms can be categorized into two
groups:

o Static: The model is assumed to be fixed during the process, which

may not be a realistic assumption in an FDD problem.
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o Dynamic: It is assumed that switching can occur in the system over

time, which can be modeled as a Markov process.

IMM can be viewed as the optimal dynamic multiple-model estimator [27].
Combinations of the IMM strategy with different filters have achieved excellent
performance in FDD applications. These algorithms include the combination of IMM
with Kalman Filter (IMM-KF) and variations of the Smooth Variable Structure Filter
(SVSF) such as Smooth Variable Structure Filter with Variable Boundary Layer
(IMM-SVSF-VBL) [28]. SVSF is a robust state estimation algorithm in the predictor-
corrector form, which is based on the variable structure/sliding mode condition [29].
SVSF-VBL is the optimal version of SVSF, in which the width of the smoothing
boundary layer is obtained by minimizing the trace of the estimation error covariance
matrix [30]. The idea is to use the obtained optimal gain when the a priori estimation
error is inside a time-varying smoothing boundary layer but apply a discontinuous

corrective action if the error is going outside it.

In this paper, a computationally efficient variation of the IMM, referred to as
Updated IMM (UIMM) which is applicable for irreversible faults, has been proposed
to combine with robust SVSF-VBL filtering. The resulting FDD strategy, called
UIMM-SVSF-VBL, combines the computational effectiveness and improved
identifiability of the UIMM strategy with the robustness of SVSF filtering, making it
very suited for real-time applications like closed-loop systems. A Fault Tolerant
Control System (FTCS) is designed, employing UIMM-SVSF-VBL for state
estimation and fault identification, in a closed-loop system. Assuming the occurring

faults are persistent, the UIMM algorithm relies on adjusting the deployed models in
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a way that each one reflects a single typical fault. In this way, computational efficiency
can be improved by reducing the number of models which are used for state
estimation at each cycle. Reducing the number of models allows this algorithm to
effectively handle multiple faults and reduce false labeling which increases
identifiability. In the UIMM, if the system detects a fault, model parameters will be
updated for all filters, accordingly. For this purpose, the maximum mode probability
among all faulty conditions is compared with the mode probability threshold for its
corresponding fault. If it passes the threshold, the fault is detected, and the
parameters of all the remaining models are updated considering the detected fault.
Then for a fault-tolerant control system, the control law is updated based on the

detected fault.

Here, the proposed FDD strategy for the EHA system is built on the following

three elements:

e System models for healthy and faulty conditions of a typical EHA system.
e The SVSF-VBL estimation algorithm addresses model uncertainties.
e The UIMM strategy allows multiple models and estimation strategies to work

in parallel.

The proposed FDD algorithm is validated via simulations.

The rest of the paper is organized as follows: In section 2, the EHA system is
described, and its model is developed. Section 3 presents the SVSF-VBL estimation
strategy, which includes one filter for each condition. In section 4, several SVSF-VBL

filters are combined in a UIMM structure to complete the FDD strategy. Section 5

106



Ph.D. Thesis — Ahsan Saeedzadeh McMaster University — Mechanical Engineering

compares the results of the proposed FDD strategy with IMM-SVSF-VBL and IMM-

KF. Concluding remarks are provided in the last section.

4.2. Electro-Hydraulic Actuator Model

The EHA is more compact and energy-efficient than conventional servo-valve-
controlled hydraulic systems also known as Electro-Hydraulic Systems (EHS) [31],
[32]. Open-loop hydraulic circuits in EHS require a large external hydraulic supply,
leading to several drawbacks, including high energy consumption due to the pumps
continuously running and the requirement of an extensive fluid distribution system
with a reservoir that increases the weight of the system [33]. Additionally, expensive
servo valves are needed for precision control [33]. In contrast, EHA employs a closed-
loop circuit where the pump directly controls the position of the hydraulic actuator,

resulting in a higher power-to-weight ratio and energy efficiency.

Most EHAs use a variable displacement piston pump, which runs continuously,
leading to a slight decrease in energy efficiency and ripple effects that can negatively
impact high-precision motion [32]. The EHA studied in this research varies the flow
by changing the speed and direction of a fixed displacement gear pump, which
produces less ripple since only one gear creates the pumping action at any time. This
configuration also has submicron precision position control capability, as reported in

the literature [32].

The following EHA model is obtained from data described in a prior work [28]
on a prototype EHA developed at the CMHT laboratory. An inner circuit is used to
prevent cavitation, which includes an accumulator and three check valves. The inner
circuit also provides a conduit for the pump’s case drain. A bi-directional relief valve
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is installed for safety purposes. The schematic of a prototype EHA system is shown
in Figure 2-9. The results presented in this paper are generated using a simulation
model of this EHA system in MATLAB. The parameters used in this mathematical

model were validated for this system using experimental data in [28].
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Figure 4-1. Schematic of the electro-hydraulic actuator system.
To introduce the leakage fault, a proportional valve is installed in parallel to the
hydraulic cylinder, which is represented by changing the leakage coefficient in the
simulation model for leakage fault. Another hydraulic circuit, including a
proportional valve and a hydraulic cylinder, is deployed to add friction fault. This is

simulated as a change in viscous friction coefficient in the friction fault model through
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changing the valve orifice. Considering a control volume on the pump inlet and outlet,

the pump flow rate can be calculated as follows:

V, (dP,
Qa = Dpwp - Lp(Pa -B) - _(E) ) 4.1)
e
Vp, (dP,
Qa = Dpwp - Lp(Pa —PB) + (E); (4.2)

e
where Qg and @, are pump outlet and inlet flowrates, D, is the pump displacement,
P, and P, are pump outlet and inlet pressures, respectively, w,, is the pump speed,
L, is the pump internal leakage coefficient, V, and V;, denote the fluid volume in the
control volume for chambers 1 and 2, respectively (including pump chamber and
pipes), and B, is the effective bulk modulus of the hydraulic fluid. Similarly, the

flowrate of cylinder ports is obtained using the following equations:

. Vo —A.y/dP
Q1 = Ay === () = Lin(Pr = P) + Low(R) 43)
e
. Vo — A,y /dP.
Q2 = Ay === (2] + LinPr = P2) = Low(P) (4.4
e

In these equations, Q; and Q, are flowrate into and out of cylinder chambers,
respectively, y is the cylinder position, A, is the cylinder cross-section, V, is the
actuator control volume for each side when placed in its reference central position,
Lin and L, are the internal and external leakage coefficients in the cylinder, and P;
and P, are cylinder chamber pressures. The accumulator pressure is set to 40psi to
prevent cavitation assuming that its associated dynamic effects are negligible [34].
Ignoring external leakage in the pipes and connections, Q; = Q, and Q, = @, which

leads to the following equation:

Q1 +Q; =Qa+Qyp, (4.5)
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Furthermore, assuming that pressure drops in the pipes are negligible, then P, = P,

and P, = Pp. Let the leakage coefficient be defined as Ly = L, + Lip + L"zut and the

nominal actuator volume as Vo=V, + A,y =V, —A.y. Assuming the actuator is

dp; dp, .
— ~ ——=_ Equations
’odt dt !

unsaturated and the variance in external load is negligible
(4.1) to (4.5) lead to the following relation between the actuator position and pump
speed:

Vo, /dP; dP
Dyw, = Ay + 0( 1 2

8. \dt dt) Le(Py = Po). (4.6)

According to Newton’s second law, the relation between the cylinder position and

the differential pressure in the linear actuator is obtained as:

(P, — P)A. = My + Fj, (4.7)
where M denotes load mass and Fy is the actuator friction, which can be formulated

as a second-order quadratic function related to the actuator velocity y as follows [33]:

Fr = ay + (by* + c) + sgn(y). (4.8)
Taking dynamics into account and ignoring the nonlinear portion of the friction

equation, the following third-order discrete-time state-space model is obtained for the

EHA [34]:

x1(k +1) = x; (k) + Tsxa (k) + vy(k)

Tsa
2y (k +1) = (1 _ W) 2, (K)
TsBeLt
7

0

{Z1(k) = x;1(k) + wy (k)
zy(k) = x3(k) + wy (k)

) x3(k) + —— Sﬁe ? u(k) — TsPed. x, (k) + v3(k)  (4.9)

s (k +1) = (1—
0
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In this model, the state vector is defined as x =[y y P;— P,], measurement
signals z, (k) and z, (k) are provided by an encoder and a differential pressure sensor,
and the process and measurement noise are denoted by v(k) and w(k), respectively.
Occurrence of a leakage or friction fault in the system leads to a change in the
corresponding parameters L; or a. The nominal values of the parameters were selected
according to [34], which are presented in Table 3-1. Next section provides a brief

account of the SVSF.

Table 4-1: The electro-hydraulic actuator parameters [24].

Physical Significance Parameter Value
Piston Area A, 1.52 x 10 m?
Pump Displacement Dp 5.57 x 107 m?
Mass M 7.38 kg
Bulk Modulus Be 2.07 x 10* Pa
System Volume Vo 1.08x 103 m?

4.3. Smooth Variable Structure Filter with Variable Boundary Layer

An uncertain linear system can be represented by the following state-space model:

x(k+1) = (Fl(k) + AA(k)) x(k) + (Ti’(k) + AB(k)) u(k) +v(k),  (4.10)
z(k) = (Clk) + AC(R) ) x (k) + w(k), (4.11)

where A(k), B(k), and C(k) represent the nominal model, and AA, AB, and AC
denote the unknown uncertainties. It is assumed that the system is contaminated by

white process noise v(k) and white measurement noise w(k) characterized by the
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covariance matrices Q(k) and R(k), respectively. In the prediction stage of the SVSF

algorithm, states and measurements are predicted according to the model as:

x(k +11k) = A(k)x(k|k) + B()u(k), (4.12)
2(k + 1|k) = C(k + Dx(k + 1]k). (4.13)

The corresponding error covariance matrix is obtained as:
P(k + 1|k) = A()P(k|k)A(K)" + Q(k). (4.14)

The following a priori measurement error is computed as the difference between the

actual measurements and their predicted values:

e,(k+1lk)=z(k+1) —z(k + 1|k). (4.15)
The innovation covariance is obtained based on the a priori covariance matrix in Eqn.
(4.14) as:
S(k+1)=C(k+ 1Pk +1|k)C(k+ 1)+ R(k + 1). (4.16)

Then, the variable boundary layer is updated using the innovation covariance as:

Yyp(k+1) = (diag(lez(k + 11k) | aps
+vle, (k1K) | aps) T CR)P(k + 1K) C(K)'S(k (4.17)
+D™)7,

where § is the innovation covariance, Y, g; is the variable boundary layer, and
yaffects the convergence rate with a value between 0 and 1. To update the filter gain,
Yyp. is compared with Yy, which is obtained based on system uncertainties. If

Yye. < Yuim, the filter gain is computed as:

Wk+1) =P(k+11k)Ck)'S(k+ 1)1, (4.18)

Otherwise, the filter gain is updated by a discontinuous corrective action as follows:
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W(k +1) = C(k + 1)*(e,(k + 1]k)

+ Yez(klk))(Dsgn(ez(k + 1|k))ez(k + 1|k)—1 (4.19)

Using the filter gain and the a priori estimation, the a posteriori state estimate,
measurement error, and covariance matrix are updated as follows:
Xk+1lk+1)=x(k+1|k) + W(k + 1e,(k + 1]|k), (4.20)

e,(k+1lk+1) =z(k+1)—Clk + Dx(k + 1|k + 1), (4.21)
Pk+1lk+1) =Pk +1lk) - Wk + DSk +1DW((k + 1)". (4.22)

The flowchart of the SVSF-VBL algorithm is shown in Figure 2-2. Since the velocity
is not measured, the state variables of the state-space model in Eqn.(4.9) are
rearranged as follows; x; is the position of the actuator, x, is the pressure difference,
and x5 is velocity; to be consistence with SVSF for fewer measurement than state
variables [29]. The corresponding matrices for the state-space model of the EHA

system are obtained as follows:

1 T, 0 .
. 0 1— TsﬁeLt _TﬁeAC R Tsﬁer
A= Vo Vo | B = v |’
0 T, ) T.a 00 (4.23)
M 1 0 é\/l
c=ly 1 o
SVSF-VBL gain
from (2.21)
Prediction Find Py, Update
step from (4.17) step
Regular SVSF
gain form (4.19)

Figure 4-2. Smooth variable structure filter with variable boundary layer.
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4.4. Updated Interactive Multiple Model Design

Different stages of the Updated Interactive Multiple Model (UIMM) strategy
include Mixing probability calculation; Mixing stage; Likelihood calculation; Finding
mode probabilities; Combined state and covariance estimation; and Fault detection

and model update. They are summarized as follows [27]:

4.4.1. Mixing Probability Calculation.

First, the mixing probability is obtained as:

Pijpi(k — 1) .
wiyj (e — 1]k — 1) =%, Lj=1,..,r1, (4.24)
- ]
G = Zpijui(k 1), j=1 .,7 (4.25)
i=1

where p is the mode probability, p;; is the probability of switching from model i to

model j, and r is the number of models.

4.4.2. Mixing Stage

Initial conditions for filters are obtained from the following equations:

T

ow—1m—1)=§}W@—1m—1mww—1m—1y

- (4.26)
j=1,..,1,
PY(k—1lk — 1) = L&MMk—Hk—DW@—1M—D+
[®i(k— 1k — 1) — 2% (k — 1|k — D].[®!(k — 1]k — 1) — (4.27)

%% (ke — 1]k — 1)]T), j=1..,1,

Where x% states and P% is the covariance of the filter j obtained based on mixing

probabilities from the previous step.
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4.4.3. Likelihood Calculation

As shown in Figure 4-3, The state estimates and their respective covariance
matrices are computed by feeding the filters with the measurements and the initial
conditions from the preceding step. Subsequently, the likelihood function for each
filter is derived as follows:

A = N{z(k); 2 [k| k — ,RY (k — 1| k — 1)], 8/ [k; P (k — 1|k — D]},

j=1,..,7 (4.28)

Where A; is the likelihood of filter j and )V is the normal distribution.

4.4.4. Finding Mode Probabilities

Mode probability of each model is determined by utilizing the likelihood function

derived from the previous step:

PR L
w (k) = AN

j=1,..,r, (4.29)

Where ; is the mode probability of filter i which indicates the probability of model

i to be the true model and is used for detecting faults in the system.

4.4.5. Combined State and Covariance Estimation

During this step, the estimated states and their corresponding covariance are updated

and prepared for use in the subsequent cycle as follows:

2l = ) (R k1), (430)
j=1

P(klk) = ()P (k|k) + %7 (k|k) — %(k|k)
Z{“’ % #(klio) (4.31)

j=1

[® (ki) — 2(kl)] '},
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Where X are estimated states and P is the estimated covariance of the system which

is used for the next cycle.

4.4.6. Fault Detection and Model Update.

This section is added to the UIMM strategy to focus on a subset of models (instead
of all possible models in the IMM structure) based on the system condition. In this
step, the mode probability in Eqn.(4.28) is used to find out if there is a specific fault
in the system. For this purpose, the maximum mode probability is compared against
the threshold for the fault associated with the corresponding model, Wipreshotd, as
follows:

(k) = max p; (k), (4.32)

{If Kf = Uthreshota, fault foccurred

If Uy < Uthreshold» NO fault (4.33)

If a fault is detected in the system, the filter models are updated accordingly.
Due to noise and uncertainty in the system, the mode probability usually spikes even
when there is not any fault in the system. To avoid false alarms, the moving average
of mode probability p;(k) is used. The flowchart of the UIMM for one cycle is

presented in Figure 4-3.

The primary benefit of the UIMM approach over IMM is its notable reduction in the
number of parallel filters, as illustrated in Table 2-1. In the UIMM strategy, only
individual fault models are included in the filter bank, whereas the IMM strategy
considers all potential combinations of faults within the system, leading to an

exponential increase in the number of required models. This reduction in the number
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of filters enhances computational efficiency and mitigates the risk of combinatorial

explosion.
75 1
\ 4 Update Filter Models Fault < [
__________________ 1
k—=1lk-=1 ] Detector
u( ll ) v | u(klk) E
i Aq(k
21k — 1]k — 1) 29k = 1)k — 1) — >
> »| Filter1 || > .
Pk -1k —1) Pk —11k—1) ‘ " | Mode Probability Update &
121 (klke), P* (k) Mixing Probability
! Ak ’ Calculation
22(k — 1]k — 1) 202k = 1k = 1) | 1 Aa (k) :
> 0 =~ > Filter 2 || >
2 _ _ . — _ ‘
Prlk=tk -1 g PR tle=D £2(kIK), P (klk)
2 | u(k)
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Figure 4-3. The UIMM flowchart for one cycle.

Table 4-2: Comparing the number of filters in IMM and UIMM algorithms.

Number of Faults 1 2 3 4 n
Number of Filters in IMM 2 4 8 16 20
Number of Filters in UIMM 2 3 4 5 n+1

4.5. Results and Discussion
Within this section, the application of the UIMM-SVSF-VBL strategy is

employed to detect and isolate faults related to leakage and friction in the EHA

system. The outcomes of this strategy are then compared to those obtained from the
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IMM-SVSF-VBL and IMM-KF approaches. The leakage and friction coefficients are
changed based on Table 4-3 to simulate the faults. The nominal values for leakage
and friction coefficient of a healthy system have been determined based on the
parameters reported in [24]. To incorporate leakage, a tiny hole with a diameter of
less than 5mm has been assumed across the cylinder chamber. The friction coefficients
for friction faults have also been acquired from [19]. To assess the robustness of the
system, a 20% mismatch in bulk modulus (Bre = 1.2BModel) and a 5% mismatch in
pump displacement and system mass (Dprrye = 0.95Dppodel and Mryye = 1.05Myoqe1)
are considered.

Table 4-3. The conditions for different faults.

Condition Leakage Coefficient L, Friction Coefficient a
. m3 2144 N.s/m
Normal 48 % 10-12 /
s.pa
m? 2144 N.s/m
Leakage Fault 2 % 102 /
s.pa
ricti , m3 7440 N.s/m
Friction Fault 48 % 10-12 /
s.pa
Minor Leakage 10-° m? 2144 N.s/m
s.pa
li icti m? 3000 N.s/m
Minor Friction 48 % 10-12 /
s.pa

Three scenarios were investigated in this study: open-loop with major faults,
open-loop with minor faults (to demonstrate the superior performance of the UIMM-
SVSF-VBL strategy compared to IMM-SVSF-VBL in identifying minor faults) and
closed-loop systems for real-time control applications. The following sequence of
events was simulated to replicate fault conditions in all of these scenarios:

1. The system begins in a healthy state at the start of the simulation.

2. At t = 1s, a leakage fault is introduced.

3. At t = 2s, the friction fault is also applied.

118



Ph.D. Thesis — Ahsan Saeedzadeh McMaster University — Mechanical Engineering

This sequence of events was used consistently across all three cases. Table 4-4
illustrates the parameters employed for each FDD strategy. The state vector elements
are defined as follows: x; represents the actuator position, x, denotes the pressure
difference across chambers, and x5 signifies the load velocity. In order to ensure a fair
comparison, the same parameters were utilized for all strategies. To enhance the
robustness of the Kalman filter against parameter mismatch, an artificial process
noise was introduced for the IMM-KF strategy [35]. This was achieved by
incorporating a larger process noise (Q) for the IMM-KF with the introduced fake
noise. The parameters employed in the UIMM strategy differ from those in IMM due

to the utilization of a reduced number of filters in the filter bank.

Table 4-4. Parameters used for each FDD strategy.

IMM-KF with

UIMM-SVSF- .
Parameter VBL IMM-SVSF-VBL IMM-KF introduced
artificial noise
Measurement 10-10 ¢ 10-10 ¢ 10-10 10-1° ¢
[ 0 103] [ 0 103] [ 0 103] [ 0 103]

Noise (R)

Process Noise [107'% 0 0 1072 0 0 10712 0 0 10712 0 0
(Q) 0 102 0 0 102 0 0 102 0 0 102 0

0 0 10710 0 0 10710 0 0 10710 0 0 10710

Initial Error~ [10°8 0 0 10 0 0 107 0 0 10 0 0
. 0 10° 0 0 10° 0 0 10° 0 0 10° 0
Covariance 0 0 107 0 0 10* 0 0 10 0 0 107

Initial State 0 0 0 0
Estimate 0 0 0 0
(x(0]0)) 0 0 0 0
Initial Mode 05 0.4 0.4 0.4
Probability 0.25 0.2 0.2 0.2
0.25 0.2 0.2 0.2
(1(0)) ' 0.2 0.2 0.2
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. 098 001 001 0.97 0.01 0.01 0.01] [0.97 0.01 0.01 0.01] [0.97 0.01 0.01
Transition [ : ) ] 0.01 097 0.01 0.01] |0.01 0.97 0.01 0.01] [0.01 097 o0.01

Matrix (P;;) 8'81 8'3? 8'8% 0.01 001 097 0.01| [0.01 001 097 001] [001 001 097
4 ' ' ' 0.01 001 001 097] l0.01 001 001 097] l0.01 001 0.01

Boundary [10—3 [10—3
Layer (Yim) 10 10

0.01
0.01
0.01
0.97

|

4.5.1. Case 1: Open-Loop System with Major Faults

In the present section, the performance of the UIMM-SVSF-VBL strategy in
comparison to IMM-SVSF-VBL and IMM-KF with and without the inclusion of
artificial noise is studied. The evaluation is conducted on an open-loop system
featuring major leakage and friction faults from Table 4-3, employing the previously
defined sequence of events. The outcomes presented in Table 4-5 and Figure 4-4
demonstrate that the proposed strategy effectively identifies both leakage and friction

faults and exhibits superior performance in state estimation.

IMM-SVSF-VBL can effectively detect and isolate the faults, but the presence of
a larger bank of filters results in more intense spikes in the mode probability signals

compared to those observed in UIMM-SVSF-VBL (Figure 4-4b).

IMM-KF is unable to detect both the leakage and friction faults, resulting in a
significant estimation error for the velocity when no measurements are available due
to model mismatch (Figure 4-4c¢). To address this issue, the process noise covariance
Q is increased by introducing artificial white noise to accommodate a higher level of
system uncertainty caused by the model mismatch. Despite the improved

performance achieved by incorporating the artificial process noise, IMM-KF still fails
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to identify the friction fault, as depicted in Figure 4-4d. Given the unsatisfactory
performance of IMM-KF without the inclusion of artificial noise, it is not included

for comparison in the subsequent sections.

Table 4-5. Comparing FDD results for different approaches.

IMM-SVSF- UIMM-SVSF- IMM-KF with

IMM-KF
VBL VBL artificial noise
State Normalized
Normalized Normalized Normalized RMSE
RMSE RMSE RMSE
Position 1.4355e — 04 1.3611e — 04 2.0268¢e — 04 0.0018
Velocity 0.0385 0.0365 0.0556 0.4021
Pressure 1.2605e — 04 1.2605e — 04 9.4810e — 04 1.2985e — 04
Leakage
fg Pass Pass Pass Pass
Detection
Friction
Pass Pass Pass Pass
Detection
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Figure 4-4. Fault detection and diagnosis for the open-loop system with major faults.

4.5.2. Case 2: Open-Loop System with Minor Faults

In the current section, the performance of the UIMM-SVSF-VBL strategy in
comparison to IMM-SVSF-VBL and IMM-KF with artificial noise is investigated.
The assessment is carried out on an open-loop system that exhibits minor leakage
and friction faults, as indicated in Table 4-3. The evaluation is performed using the
predetermined sequence of events. In scenarios where faults are minor, the
distinctions between the models are not substantial, leading to increased severity of
the combinatorial effect within the IMM algorithm.

The outcomes presented in Figure 4-5 and Table 4-6 reveal that both IMM-SVSF-
VBL and IMM-KF were unsuccessful in isolating the faults, whereas UIMM-SVSF-
VBL effectively detected and isolated the faults. As depicted in Figure 4-5b IMM-
SVSF-VBL exhibits insufficient performance in accurately detecting the minor

leakage fault, resulting in frequent model switching. Also, IMM-KF fails to identify
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the minor friction fault and triggers a false friction alarm even when the system is in

a healthy state (Figure 4-5¢).
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Figure 4-5. Fault detection and diagnosis for the open-loop system with minor faults.
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Table 4-6. Comparing FDD results for different approaches.

UIMM-SVSF- IMM-KF with
IMM-SVSF-VBL . L .
State Normalized RMSE VBL Normalized artificial noise
RMSE Normalized RMSE
Position 2.0200e — 04 1.5863e — 04 2.4970e — 04
Velocity 0.0518 0.0440 0.0673
Pressure 1.2605e — 04 1.2605e — 04 7.3394e — 04
Leakage Detection Fail Pass Pass
Friction Detection Pass Pass Fail

4.5.3. Case 3: Open-Loop System with Proportional-Derivative Controller

In the context of a closed-loop system, UIMM-SVSF-VBL can be applied to
provide state feedback for the controller while simultaneously detecting faults
through the utilization of mode probability, as depicted in Figure 2-8. In this section,
a proportional-derivative (PD) controller has been designed to control the position
of the EHA using feedback estimates obtained from UIMM-SVSF-VBL. The obtained
results have been compared to those obtained from IMM-SVSF-VBL and IMM-KF,

as illustrated in Figure 4-7 and Table 4-7.

Tracking

Reference Input Output
—| Controller Plant —
Estimated WMessurements

States
UIMM-
SVSEF-VBL

Mode Probabilities
Update Controller

For FTCS

R EE S ——

FDD

Figure 4-6. Flowchart of the UIMM-SVSF-VBL application in closed-loop system for real-
time FDD and control.
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Figure 4-7. Position control of the EHA using PD controller.

Table 4-7. Comparing FDD results for different approaches.

IMM-SVSF-VBL

IMM-KF with
artificial noise
Normalized RMSE

UIMM-SVSF-VBL
Normalized RMSE

State
Normalized RMSE
Tracking Error 0.1230
Position 0.0032
Velocity 0.0632
Pressure 1.8174e — 04
Leakage
8 Pass
Detection
Friction
Pass
Detection

0.1229 0.1225
0.0027 0.0018
0.0376 0.7663
1.8173e — 04 5.7716e — 05
Pass Fail
Pass Fail

As shown the controller's performance remains consistent across all three cases

due to the adoption of a highly precise position sensor with a minimal covariance

error of 1071% (The incremental encoder employed in the EHA reported at [28]

exhibits a high accuracy of +5um). Consequently, the filters assign considerable
weight to the measurement signal, leading to the nearly identical estimated positions
employed by the PD controller across all three scenarios. Table 4-7 and Figure 4-8
demonstrate the successful detection of leakage and friction faults by UIMM-SVSF-

VBL and IMM-SVSF-VBL, whereas IMM-KF fails to identify either fault. In the
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event of leakage and friction occurring within the system (following t = 1s in Figure
4-7), the tracking error increases because the PD gains are tuned based on the healthy
condition. In response to this concern, the forthcoming section presents the
development of a Fault-Tolerant Control System (FTCS) utilizing the UIMM-SVSF-

VBL strategy.

4.5.4. Design of A Fault-Tolerant Control System

The real-time detection and diagnosis of faults play a pivotal role in the
advancement of Fault Tolerant Control Systems (FTCS), which are crucial for
ensuring the reliability and robustness of various industrial processes. It enhances
system performance by employing an adaptive controller that dynamically adjusts
the gains in response to system faults. Figure 4-10 compares an FTCS equipped with
an adaptive controller and a PD controller, using the UIMM-SVSF-VBL. The Results
show that the adaptive controller effectively maintains proper reference signal

tracking even in the presence of faults.

0.01

[—Estmated - - - - Actual| € 0.01 VA AN
= 0 ——Estimated - - - - Actual \
> 0.01k AT ‘

x (m)
S

g 02 [—Estimated ---- Actual| T 02 " [—Estimated --- - Actual| ]
T e f T
z 0 N VA,
> ‘ a \/\,V > 0 ‘ ! \/\J ‘
. x10° 105
© ‘ - ] ] - ‘ ; ‘ ‘ ‘
0 1 o ]
g e ! ‘ ‘ ‘
L I 4
3
(s = 0 L‘IAALJM_J_JA“I.‘._...A,_.A_._
5 i ,
< . 3 ﬂ 1
- 0 3“ O A " L L
-8 1 T 1 . . -
=i '|——Leakage < '
® J !|- - - - Friction 2 ]
£2, N EI T T |
0 o5 M 15 X 25 3 o o5 M 15 X 25 3
Insert Leakage Time (s) Insert Friction Insert Leakage Time (s) Insert Friction
a) UIMM-SVSF-VBL b) IMM-SVSF-VBL

126



Ph.D. Thesis — Ahsan Saeedzadeh McMaster University — Mechanical Engineering

0.01F - .
= /\/\
> 0 [——Estimated - - - - Actual |
-0.01 - ‘ NS ‘ ]
:g 0.4+ \—— Estimated - - - - Actual /’V\
Z 0 Pﬁ\/‘\/\\/\/\]/\/‘ N\ _ /S
x10°
g 4 [— Estimated - - - - Actual 1
o 0 /\/\/ q
< . ! .
1 T T .
o
g |
= ol= N .
1
X
©
§ |
3 0 .
1
£
358 0.5
0

0o 05 M 15 2% 25 3
Insert Leakage Time (s) Insert Friction

c) IMM-KF with added artificial noise

Figure 4-8. Fault detection and diagnosis for the closed-loop system with PD controller.
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Figure 4-9. Fault detection and diagnosis in a fault-tolerant position control system using
UIMM-SVSF-VBL.
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Figure 4-10. Comparing the PD controller and FTCS with adaptive controller for the
EHA system using UIMM-VBL-SVSF.

4.6. Conclusions

This research paper introduces the UIMM-SVSF algorithm as a novel approach for
the detection and isolation of leakage and friction faults in a typical EHA system.
The proposed algorithm improves performance by significantly reducing the number
of required running models. This reduction not only enhances computational
efficiency but also mitigates the combinatorial effect. Results show that UIMM-SVSF
has a better performance compared to IMM-SVSF and IMM-KEF. Furthermore, both
the IMM-SVSF and the IMM-KF suffer from a combinatorial effect, especially for
minor faults. In the case of model parameter mismatch, the IMM-KEF requires added
artificial process noise to accommodate modeling uncertainties at the cost of
compromising its performance. It is important to note that investigation is limited
to leakage and friction faults, which are prevalent in hydraulic systems. Expansion
of the fault condition set calls for increasing the number of models, which in turn,

increases the computational complexity. In this regard, the proposed UIMM-SVSF
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algorithm will be the method of choice due to its computational efficiency, especially

for real-time applications such as fault-tolerable control systems.
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Abstract

State estimation is paramount in control, monitoring, and fault management across
various domains. Uncertainty in model parameters and changing system dynamics
pose significant challenges to accurate state estimation. This paper proposes a novel
adaptive estimation strategy called Moving Window Interacting Multiple Model
(MWIMM). Using a moving window improves identifiability and computational
efficiency of the multiple model algorithms by focusing on a subset of possible models,
rather than considering all models at each stage. MWIMM enables the estimation of
gradual changes in the system, making it valuable for fault intensity and Remaining
Useful Life (RUL) estimation. The paper provides an overview of adaptive estimation
strategies, presents the formulation of MWIMM for fault intensity and RUL
estimation, and investigates the parameter estimation problem. Results are compared
with those of augmented state Extended Kalman Filter (EKF) estimation, and it is
shown that the proposed MWIMM approach offers a promising alternative for
effectively handling extensive parameter uncertainty and accommodating gradual

changes in system parameters.
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Estimation.

5.1. Introduction

State estimation is an essential step in various fields, including control, monitoring,
and fault management [1]. However, system states may be partially observable or
even unobservable. In addition to the challenges posed by the unknown states,
another important barrier in state estimation is the uncertainty within the model
parameters. Since these parameters are often not precisely known, the estimation
process is inherently unpredictable and imprecise. Moreover, system dynamics
gradually change over time due to ageing. It is also possible that a system undergoes
abrupt changes, which include switching in the entire system dynamics. Hybrid
models are deployed to capture this phenomenon. In such cases, estimating the model
parameters alongside the states becomes particularly valuable, as it aids in detecting
faults and predicting their future behavior as well as allowing for proactive

maintenance and management.

State estimation accuracy heavily depends on the prior knowledge of model
parameters. When parameters are precisely known, which is unrealistic in most
applications, the Kalman Filter (KF) offers optimal state estimation for linear
systems assuming zero-mean Gaussian noise [1]. Furthermore, in the presence of small
parameter uncertainties, the impact of parametric mismatch is typically insignificant
compared to the process noise, enabling the KF to maintain a satisfactory
performance [2]. However, for scenarios involving moderate parameter uncertainty,

alternative approaches become necessary. One approach involves introducing artificial
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white noise by increasing specific elements of the process noise covariance matrix, Q,
within the KF algorithm [2]. Another technique adaptively adjusts the process noise
covariance matrix by monitoring residuals within the KF [3]. Alternatively, a robust
estimation strategy such as the Smooth Variable Structure Filter (SVSF) with
Variable Boundary Layer (SVSF-VBL) optimizes estimation error while considering

parametric uncertainty through deploying a switching gain [4].

In the presence of significant parametric uncertainty, the traditional approach of
increasing process noise and treating it as equivalent to white noise within the KF
becomes inadequate. In this case, the effect of parametric uncertainties becomes
significant and cannot be considered as added white noise [2]. Although SVSF can
guarantee boundedness of estimation error in the presence of large uncertainties, it
requires a large corrective gain, which leads to chattering [5]. While the mean error
may decrease rapidly due to this significant gain, the excessive control action, can
result in a large Root Mean Square Error (RMSE) for SVSF [6]. As an alternative,
particle filters are known nonlinear filtering techniques suitable for more general
systems characterized by unknown uncertainties and non-Gaussian probability
density functions (PDFs) [7]. However, their performance is contingent on the number
of particles employed and they require very high computational power. An infinite
number of particles would be necessary for the estimation error to converge to zero

in an ideal setting [8].

Joint state and parameter estimation offers an alternative approach for dealing
with extensive parametric uncertainties and for accommodating gradual changes in

model parameters. However, this method presents challenges due to its reliance on

135



Ph.D. Thesis — Ahsan Saeedzadeh McMaster University — Mechanical Engineering

nonlinear filtering and calls for solving complex nonlinear Partial Differential
Equations (PDEs) to obtain the optimal solution. The augmented state Extended
Kalman Filter (EKF) provides a suboptimal solution [9], which is susceptible to bias
estimation and divergence for several reasons [10], [11]. Firstly, the augmented states
lack meaningful dynamics, making it challenging to intuitively select the artificially
introduced noise based on engineering guesses [2]. Secondly, discriminative training
methods for determining the process noise covariance matrix depend on measured
states, and including augmented states can negatively impact the training process
[3], [12]. Additionally, validity of linearization used in the EKF becomes compromised
in the presence of significant parametric uncertainty. Moreover, incorporating

augmented states can render the system unobservable [9].

Alternatively, adaptive estimation strategies offer a different viewpoint that
tackles significant uncertainties and enables the estimation of abrupt changes in the
system that is a possible occurrence in hybrid systems and fault detection scenarios.
In this paper, a novel adaptive estimation strategy is developed based on the
Interacting Multiple Model (IMM) method. The new algorithm called Moving

Window Interacting Multiple Model (MWIMM) offers the following advantages:

e It is capable of estimating gradual changes in system parameters, making it
valuable for fault prognosis and Remaining Useful Life (RUL) estimation
problems. This is achieved through utilizing parameter bins.

e [t improves computational efficiency and avoids computational explosion,

which are two common problems associated with MMAE algorithms. This is
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accomplished by narrowing down the search space to a specific window rather
than considering all potential models at each stage.

e It relaxes the assumed irreversible condition used in Updated IMM (UIMM)
algorithm [13], thus extending its application to a wider range of problem

domains.

The paper follows the subsequent structure: Section 2 presents an overview of
adaptive estimation strategies. In Section 3, the formulation of MWIMM for fault
intensity and remaining useful life estimation is presented. Section 4 investigates the
application of the proposed MWIMM in a comprehensive parameter estimation
problem, comparing the results with parameter estimation using augmented state
extended Kalman filter. Section 5 explores the influence of three crucial factors—
identifiability, optimality, and system excitation—on the performance of the multiple
model adaptive estimation strategy in general and the proposed method specifically.
It is demonstrated through a case study that for a Multiple Model Adaptive
Estimation (MMAE) strategy, observability of all models in the filter bank does not
guarantee identifiability. Finally, the paper concludes with summarizing remarks in

the last section.

5.2. Background: Adaptive Estimation Strategy

Adaptive estimation using multiple models for hypothesis testing, known as Multiple
Model Adaptive Estimation (MMAE), proves to be a valuable tool for handling large
parameter uncertainty and hybrid systems characterized by different system models
with distinct parameter sets [2]. MMAE assumes that engineering knowledge can

serve as prior information about the hybrid models and the feasible range of
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parameters. This approach enables the estimation of system states while providing
an algorithm to identify changing parameters or the true underlying model. MMAE
finds extensive applications in real-time problems, including autonomous vehicles
[14], target tracking [15], fault diagnosis [16], [17], and fault-tolerant control systems
[13], [18]. The multiple model estimation procedure involves three main steps:
generating individual state estimates that correspond to a given parameter vector,

evolving the hypothesis probability, and combining the individual estimates.

In the realm of MMAE, two distinct approaches can be observed: static and
dynamic. Static MMAE assumes the exclusive usage of a single model throughout
the entire process, without any transitions or jumps occurring. Consequently, it is
unsuitable for time-variant systems characterized by changing parameters or
instances where the system switches between different models. On the other hand,
dynamic MMAE is specifically designed for time-varying systems and proves to be
well-suited for online fault diagnosis or target tracing applications [1]. Notably, within
the realm of dynamic MMAE, three widely recognized strategies are General Pseudo-
Bayesian estimator of first order (GPB1), General Pseudo-Bayesian estimator of
second order (GPB2) and Interacting Multiple Model (IMM). Among these, IMM
gained interest due to its reported computational efficiency while maintaining a
performance comparable to that of GPB2 [1]. As a result, IMM emerges as a
promising choice for dynamic MMAE applications. Hence, the proposed method in

this study is built on IMM.

In this research, a novel strategy known as the Mowing Window Interacting

Multiple Model (MWIMM) is proposed as an enhanced and computationally efficient
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version of the IMM approach, demonstrating improved performance in identifiability.
MWIMM demonstrates relevance in scenarios where models exhibit varying degrees
of chronological order, such as aging or fault intensity analysis. Furthermore, it proves
valuable in addressing parameter estimation challenges in time-varying systems
characterized by gradual parameter changes. It can be considered as a general format
of Updated IMM (UIMM), relaxing the irreversible assumption, thereby widening its

applicability to a broader range of problems [19].

5.3. Moving Window Interactive Multiple Model for Fault Intensity

and Remaining Useful Life Estimation
The novel Moving Window Interactive Multiple Model (MWIMM) strategy is
proposed and is well-suited for addressing problems characterized by a gradual
progression of degradation, such as estimating a system's Remaining Useful Life
(RUL) and measuring fault intensity. Assessment of RUL involves evaluating the level
of degradation in a system and estimating its remaining operational lifespan, with
the estimation of battery State of Health (SoH) being a prominent example. Precise
fault intensity measurement is a fundamental pillar in prognostics and condition
monitoring applications. Taking account of the inherent chronological order involved
in these issues, MWIMM strategy can effectively estimate RUL and quantify fault
intensity, incorporating supplementary temporal information to enhance
computational efficiency, and improve identifiability compared to IMM strategy.

Consider a general linear system that is subject to switching as described below:

x(k) = A(M(k))x(k — 1) + B(M(k))u(k) + v(k — 1, M(k)), (5.1)
z(k) = C(M(k))x(k) + D(M (k) )u(k) + w(k, M(k)). (5.2)
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In this context, x(k) and z(k) are state and measurement vectors respectively, M (k)
represents the true model at time k, while A(M(k)), B(M(k)), C(M(k)), and
D(M (k)) refer to the system matrices associated with model M (k). Additionally,
v(k -1,M (k)) and w(k, M (k)) represent the process and measurement noise
corresponding to model M(k), respectively. These systems are also known as jump-
linear systems, assuming that the mode jump process exhibits left continuity [1]. This
means that the influence of the new model initiates from time k onwards. The vector
x(k), which takes on continuous values, and the discrete variable M (k) are sometimes

denoted as the base state and modal state, respectively [1].

The model at time k is assumed to be among the N possible fault severity levels

as:

N-1

M(k) € {Mpr1it},_, » (5.3)

@
l

where the subscript FL[i] stands for fault intensity level of “i”. A larger means

the model has a more severe fault (i.e., the model Mgy[o) corresponds to a healthy
system or zero fault intensity level, and model Mgy;; has the fault intensity level of
“i”). Similarly for RUL estimation, M (k) is assumed to be among the N possible

RUL levels as:

N-1
i=0 °

M(k) € {MRUL[i]} (5.4)

73
l

Here, the index serves as an indicator of the system's level of degradation. For

instance, the model Mgy o] corresponds to zero degradation or the maximum RUL,
while the model Mgyy[;; represents the RUL level associated with the degradation

773
l

level of the system. In a general formulation applicable to all level-based model
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sets, such as fault intensity level sets or RUL level sets, equations (2.24) and (5.4)

can be expressed as follows:

N-1
i=0 °

M(k) € {M,[;} (5.5)

In this context, My ;) represents the model corresponding to level “i”. Assuming that
the model switching follows a Markov process with a known mode transition, a

common assumption in MMAE strategies leads to the following [1]:

py 2 P{M (k) = My(|M(k — 1) = My} (5.6)
The mode transition probabilities, represented by p;;, are constant over time and
independent of the base state. To account for the inherent temporal information
associated with the chronological order, it is possible to build the transition matrix
assuming that the transition probability increases when the model levels are in close

proximity, as illustrated in equation (5.7):

i = jal < 1i=J2l = pij, > pij,- (5.7)

In contrast to the IMM strategy, the MWIMM approach utilizes a filter bank
that includes only neighboring models of the matched model, incorporating
information aligned with the chronological order. Consequently, the number of filters
operating in parallel depends on the chosen size of the moving window that defines
the neighborhood. As illustrated in Figure 2-9, when a model transition occurs,
signifying a change in the matched model, the moving window adjusts accordingly.
Regarding the initial condition, it is reasonable to assume that the system is in a
healthy state (level zero) at the commencement of the process. However, the proposed

algorithm can start from any other initial condition.
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Remark 1: In cases where the true model is not included within the model
bank contained in the window employed by the MWIMM approach, an
automatic adjustment takes place. Such cases can occur due to incorrect initial
conditions or a significant and abrupt change during the process that pushes
the model outside the window. The adjustment process involves initial
convergence towards the "nearest” model [1], followed by the subsequent sliding
of the window's position. M

Mei(01©F Mgy Filter Bank at Time (k)
(Healthy system) /

__________ -

Window Slides at Time (k+1)

Window Size (n=5)

Jump Due to Model Change :|
1
|
Matched Model at Time (k+1) * Meys) O MRuys) !
L
|

Meii6) OF Mguigg)

Mg 710 Mgy 7

Filter Bank at Time (k+1)

Figure 5-1. Flowchart illustrating the MWIM approach for estimating RUL and
addressing fault intensity issues.

Remark 2: In general, it is advisable to opt for an odd-sized window in the
MWIMM framework, with the matched model positioned at the center. This
choice helps prevent any bias towards switching to higher or lower levels.
However, depending on the application, it is permissible to employ a skewed

window that tilts towards a specific direction. For instance, in the case of RUL
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estimation, where switching consistently occurs in the direction of lower RUL
due to the nature of aging, the MWIMM design can incorporate a skewed
window that promotes switching predominantly in that specific direction B
Remark 3: The applicability of the MWIMM strategy extends to nonlinear
systems by employing linearization techniques, following the same underlying
principles utilized in IMM strategy [1]. B

Remark 4: The computational efficiency of the MWIMM approach is
enhanced by reducing the number of running filters, number of combinations
and number of probability calculations in comparison to the IMM strategy.
This improvement is demonstrated in Table 5-1, where " represents the size
of the moving window and "N " denotes the total number of models. The same
strateqy can be applied to GPB1 and GPB2 estimators using targeted moving

windows, known as MWGPBI and MWGPB2 respectively, in Table 5-1,

resulting in improved computational efficiency.

Table 5-1: A Comparative Analysis of Computational Requirements among Various MMAE

Strategies.
Adaptive Number of Number of | Number of Probability
Estimation Strategy | Combinations Filters Calculations
IMM [1] N+1 N N%+N
MWIMM n+1 n n2+n
GPBI1 [1] 1 N N
MWGPB1 1 n n
GPB2 [1] N+1 N2 N2+ N
MWGPB2 n+1 n? n?+n
]
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Based on Remark 1, it can be inferred that selecting a window of size n = 3 with
the matched model in the center is generally adequate since the MWIMM strategy
adjusts the window position over time to encompass the true model. However, in
situations where the model levels are closely spaced, resulting from selecting small
bin levels, and the system undergoes rapid changes, the sliding window may lag
behind and fail to converge to include the true model in a timely manner. Increasing
the window size addresses this issue by sacrificing computational efficiency (as shown
in Table 5-1), but it facilitates the inclusion of the true model within the sliding
window and expedites convergence. Further elaboration on these issues will be
provided in the subsequent section, which discusses the selection of MWIMM

parameters for parameter estimation problems.

5.4. Moving Window Interactive Multiple Model for Parameter
Identification

The MWIMM strategy can be applied in a general context for parameter

identification tasks when system parameters are unknown and potentially subject to

time variations. Consider a general linear system as follows, with parameter 6(k)

being unknown and time-varying:

x(k) = A(6(K))x(k — 1) + B(0 (k) )u(k) + Q(6(k))v(k — 1), (5.8)
z(k) = C(0(k))x(k) + D(6 (k) )u(k) + R(6(k))w(k), (5.9)

where A(H(k)), B(B (k)), C(B (k)), and D(G(k)) represent system matrices, Q(Q (k))
and R(H(k)) denote the matrices associated with process noise and measurement
noise, respectively, as functions of 8(k). Without loss of generality 8(k) is assumed

to be bounded as follows:
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B1 < 0(k) < ps. (5.10)

Then, the set of models can be created based on discretizing the value of 8(k) to

N bins as:
6,2 By +22(8, - p,) wherei€{01,..,N -1}, (5.11)
N-1
M(k) e {ML[gi]}izo , (5.12)

where 6; represents the central value of the ith bin, and Mg, corresponds to the
model associated with parameter 8;, which can be derived based on equations (5.8)
and (5.9). The total number of models (N) depends on the chosen bin size for 6;.
Thus, identification of parameter 6 entails determining the model M (k) in equation
(5.12), which can be solved using the MWIMM strategy. Opting for a smaller bin size
enhances the resolution for identification of 8; however, this leads to closely spaced
M, g, models, posing a greater challenge for MWIMM in terms of identification.
Figure 5-2 illustrates the application of MWIMM in a parameter identification
context for estimating a time-varying parameter. This figure highlights the
importance of two additional parameters: the window size and the updating time for
the MWIMM sliding window. Remark 1 suggests that a window size of n = 3, with
the matched model positioned in the center, is generally sufficient. However, for
improved performance, the window size can be determined by considering the
confidence interval of the Probability Density Function (PDF), if such information is
available (as depicted in Figure 5-2). The impact of the updating time and bin size

will be extensively investigated in the following section through several case studies.
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Figure 5-2. Parameter identification using the MWIMM strateqgy.

Remark 5: If the probability distribution function of the parameter to be
identified () is available, the transition matriz for the MWIMM strategy can
be formed accordingly. W

Remark 6: The aforementioned approach can also be applied for identification
of multiple parameters by utilizing a parameter vector (8 ), whereby the number
of models grows exponentially with respect to the number of parameters to be
identified. M

5.4.1. Case Study: Second Order System Parameter identification

This section utilizes the MWIMM strategy with the Kalman Filter as the underlying
filter (referred to as MWIMM-KF) to estimate the natural frequency of a second-
order system. Assuming that only the first state has been measured, the state-space

model (5.13) represents a generic second-order system with parameters such as
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damping ratio ¢, natural frequency w,, measurement noise w(k), and process noise

v(k):

{x1(k + 1) = x1(k) + Tsxy(k) + vy (k)
x(k +1) = —Towix, (k) + (1 — 2T.{wy)x, (k) + Tohu(k) + vy (k) (5.13)

2(k) = x, (k) + w(k).

here T denotes the time-step and u is the system input. Let us assume that
parameters of the system are specified as follows: ¢ = 0.1, b = 100, uncorrelated
process noise v;(k)~N(0,10712) and v,(k)~N(0,107%), and measurement noise
w(k)~N(0,10719). Given that the system behavior changes gradually over time due
to variations in the natural frequency, the MWIMM strategy can be employed to

estimate the natural frequency.

In this approach, a window size of three is chosen, limiting the consideration to
three models in the filter bank at each instant. To ensure a high resolution, the bin
size for the natural frequency is set to 0.05 Hz. The sampling time used in the filter
is 0.002s, while the updating time bin for the sliding window (Ty) is 0.1s. The

transition matrix P;;, initial mode probability u(0), and mode probability threshold

js

for sliding pUrnresnoia, are determined as follows:

5.14
Py = (5.14)

0.9 0.05 0.05 0.25
0.05 0.9 0.05{, H(O) =105, UThreshold = 0.5.
0.05 0.05 0.9 0.25

The threshold for the mode probability in the sliding window reflects the sliding
window's sensitivity to model transitions. A higher threshold value makes the
MWIMM window reluctant to sliding, thereby minimizing false transitions caused by

noise. However, it also reduces the sensitivity of the estimation to parameter changes.
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In this case study, a threshold of 0.5 is chosen to ensure that sliding occurs only when
the new "matched model" has the highest probability among the model banks. The
minimum threshold can be set as the maximum mode probability at each time step

to establish a reference level.

The covariance matrices used for the Kalman filter are derived from the

measurement and process noises in the following manner:

_[107* 0 — 10-10 _ 0 (5.15)
e="" | Rr=107 pOO=|; ]

The results illustrated in Figure 6-1 show the MWIMM-KF's effective estimation
of both states, while successfully identifying the gradual change in the natural
frequency. With a chosen window size of three (n = 3), Figure 6-1.a displays three
mode probabilities: “Model Low”, “Model Mid”, and “Model Up”, corresponding to

models with lower, middle, and higher natural frequencies within the window.

When the mode probability of “Model Up” surpasses the others (t between 25s
and 125s), it signifies an increasing natural frequency, prompting an upward slide of
the MWIMM window. Conversely, when the mode probability of “Model Low”
exceeds the others (from t = 175s to t = 275s), it indicates a decreasing natural
frequency, causing the window to slide downward. Finally, when the mode probability
of “Model Mid” outweighs the others (t < 255 or 125s < t < 1755 or 275s < t),
it signifies a constant natural frequency, resulting in the window to remain stationary.

In Figure 6-1.b, the estimated natural frequency exhibits step levels with a resolution

of 0.05 Hz, derived from the chosen frequency bin in the MWIMM models.
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.

Figure 5-3. Using MWIMM-KF for estimating the time-varying parameter of a second-

order system: (a) State estimation; (b) Parameter identification.

Effect of Bin Size and Updating Time

The choice of bin size within the MWIMM strategy significantly impacts the process
of parameter estimation by influencing both the accuracy and convergence of the
estimation. A smaller bin size enhances the resolution of the estimated parameter,
allowing for finer details to be captured. However, when a parameter undergoes rapid
changes, MWIMM with a small bin size will slide the window of filter bank slower
than the rate of parameter change and will fail to converge to the true value in a
timely manner. This issue is shown in Figure 5-4, where Binl demonstrates a scenario
in which the MWIMM strategy lacks sufficient time to effectively track the gradual
change in the target parameter. To address this challenge, one potential solution is
to increase the window size (n > 3), allowing for a larger interval to be covered in

each update. Nevertheless, this approach necessitates running more filters in parallel,
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leading to increased computational demand and a higher risk of combinatorial
explosion [13]. Additionally, employing a small bin size diminishes the difference
between the models in the filter bank, and potentially further escalates the risk of
combinatorial explosion.

In Figure 5-5, the natural frequency estimation of the previously introduced
second-order system is performed using different bin sizes under the exact same
conditions. It is evident that larger bin sizes, such as 0.4 Hz and 0.2 Hz, lead to a
deterioration in the resolution of the parameter estimation. On the other hand,
employing a very small bin size of 0.02 Hz causes the MWIMM strategy to lag behind

and ultimately fail in accurately estimating the natural frequency.
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Figure 5-4. Schematic depiction of the Figure 5-5. Estimating natural frequency for
effect of the rate of change of a parameter different bin size.
on determining an appropriate bin size.

These observations highlight the trade-off involved in selecting an appropriate

bin size in MWIMM. A balance must be struck between achieving higher resolution
and ensuring timely convergence to the true parameter value. The choice of bin size
should be tailored to the specific characteristics of the parameter being estimated
and the dynamics of the system under investigation.
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Employing a longer updating time in the MWIMM increases the amount of
measurement data available for estimating the correct model, thereby reducing the
likelihood of false switching, and yielding smoother parameter estimation results.
However, when the rate of change of the parameter is high, MWIMM with a longer
updating time, as demonstrated in Figure 5-6 for updating T3 and Ty, tends to lag
behind. In Figure 5-7, estimation of the natural frequency is conducted for the
previously introduced second-order system using various updating times while
maintaining a fixed bin size of 0.05Hz, as utilized previously. As depicted in this
figure, a smaller updating time of 0.01s results in higher fluctuations in the estimated
natural frequency, as expected. Conversely, larger updating times such as 1s and 2s
cause the MWIMM to be unable to keep pace with the rapid rate of change in the

natural frequency.
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Figure 5-6. Schematic depiction of the Figure 5-7. Estimating natural frequency for
effect of the rate of change of a parameter different updating time.

on determining an appropriate updating

time.
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Identifying Both Natural Frequency and Damping Ratio

One alternative approach for estimating the natural frequency involves utilizing joint
state and parameter estimation. This technique considers the natural frequency as
an augmented state within the system and employs a nonlinear filter, such as the
Extended Kalman Filter (EKF), to estimate it alongside other states, as long as the
system maintains observability. However, it is important to note that this method
provides a suboptimal solution, and the accuracy of the linearization is compromised
when there is significant uncertainty in the parameters. By considering the natural
frequency as an augmented state in the system described in (5.13), it is possible to
prove observability of the system using Lie derivative. Consequently, the natural
frequency can be estimated using the EKF estimation method. In this section, the
EKF-based MWIMM method (MWIMM-EKF) is applied to identify the damping
ratio and the natural frequency of a second-order system, thereby demonstrating the

applicability of the MWIMM approach for nonlinear systems as well.

Regarding the natural frequency as an augmented state, we can reformulate the

model in equation (5.13) as follows:

x1(k + 1) = x1 (k) + Tsxp (k) + v (k)
xa(k + 1) = —Tex (k)xq (k) + (1 — 2Ts{x3 (k))xz (k) + Tsbu(k) + vy (k),
x3(k + 1) = x3(k) + v3(k)

2(k) = x, (k) + w(k).

(5.16)

State variable x5, which represents the natural frequency, incorporates artificial
noise v3(k)~N'(0,107%). The MWIMM employs the same parameters as described
in equation (5.14). However, here, the set of considered models is formed according
to discretization of damping ratio, and model validation is performed using the

estimated value of the damping ratio at each time step. To ensure accurate resolution,
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a bin size of 0.05 is chosen for the damping ratio. Moreover, when considering the

augmented state vector, covariance matrices of the EKF are updated as follows:

10712 0 0 100
Q= o 10 o0 |, R=10"" POIO)=|0 1 Of (5.17)
0 0 10°° 0 0 1

Form equation (5.16), the measurement function can be obtained as h(x) = x;.
The observability matrix can then be computed utilizing Lie derivatives in the

following manner:

[dLphG) ] .
0Geu) =| ARG |=l0 1 0 ] (5.18)
[dL}l‘li'h(x)J x5 20x3  2{x, + 2x3%,

Here, dL?h represents the nth order Lie derivative of the measurement function h
with respect to the system model f, and O represents the observability matrix. The
observability matrix is full rank as long as 2&x, + 2x3x; is not equal to zero. It means
that the system is observable. The only scenario for the system to be unobservable
is when both states x; and x, are zero (trivial solution for any linear system) which
is very rare, and can be ignored. Figure 5-8 demonstrates that the MWIMM-EKF
accurately estimates natural frequency, damping ratio, and system states, including
scenarios with both constant and unknown damping ratios (Figure 5-8.a) as well as
time-varying damping ratios (Figure 5-8.b).

For comparative analysis, in this section, the augmented state EKF' is employed
to estimate both natural frequency and damping ratio along with other states.

Therefore, equation (5.13) can be reformulated as follows:

x1(k +1) = x,(k) + Tsxy (k) + vy (k)

%, (k + 1) = =Tyx2(k)x, (k) + (1 - 2Tsx4(k)x3(k))x2 (k) + Tobu(k) + vy (k)

x3(k + 1) = x3(k) + v (k) ’ (5.19)
x4(k +1) = x4(k) + v, (k)

z(k) = x, (k) + w(k),
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Figure 5-8. [Lstimating natural frequency and damping ratio using MWIMM-EKF: (a)
Constant unknown damping ratio; (b) Time-varying damping ratio.

where x5 is natural frequency and x, is damping ratio. In order to ensure a fair
comparison, all conditions in this section are assumed to be identical to those in the
previous section. However, there is one distinction regarding the artificial noise v,
corresponding to damping ratio x,. Obtaining this artificial noise for the augmented
state EKF is not straightforward due to the lack of information about dynamics of
the augmented states. Consequently, it becomes challenging to intuitively select the
noise based on engineering guesswork [2], and employing discriminative training
methods is ineffective for determining the process noise for all four states using only

one measurement X1-

Assuming that damping ratio can fluctuate with standard deviation of 0.01, an
added artificial noise is assumed with the normal distribution of v,(k)~N(0,10%).

Covariance matrices of the EKF are then derived as follows:
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1072 0 0 0 10 00
_| 0 10 o0 0 — 10-10 _l0 1.0 0
0 0 0 107 0 0 0 1
The observability matrix can then be computed using Lie derivatives as:
[ dLPh(x) ]
O(x,u) =| dLh(x) |
ldz ()]
o 0 0 (5.21)
0 1 0 0
= «2 2X4X3 2x3%1 + 2X5X4 2x,X3

2x3x,  Ax2xZ2 +x%  8xzxZx, + 6x2x4x1 + 2x,%3 + 2bx,u 8x,x3x, + 2x3x; + 2bxsu
As shown, it is not necessarily guaranteed that the observability matrix to be full
rank, indicating that in general, observability cannot be proven. Figure 5-9 illustrates

that the augmented state EKF fails to estimate both constant and time-varying

damping ratio.
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Figure 5-9. FEstimating natural frequency and damping ratio using Augmented state EKF':

(a) Constant unknown damping ratio; (b) Time-varying damping ratio.
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5.5. Discussion And Future Directions

To comprehensively investigate the performance of the Multiple-Model Adaptive
Estimation (MMAE) strategy, particularly the Moving Window IMM (MWIMM)
proposed in this paper, it is essential to carefully examine three key factors. These

factors play a crucial role in understanding the efficacy of these strategies:

1. Identifiability: This factor evaluates the ability of the MMAE strategy to
accurately identify the true model among the bank of possible models. It is
important to note that even if all the models within the bank are observable,
identifiability cannot be guaranteed. The absence of identifiability indicates
the singularity of the Fisher information matrix, and vice versa [20]. In such
cases, it becomes necessary to incorporate prior information by imposing
constraints on the model or consider reparameterization of the model as
potential solutions.

2. Optimality: Theoretically speaking, optimality can be guaranteed only in
the case of static MMAE, where the system has time-invariant parameters [2].
For dynamic multiple-model adaptive estimation strategies such as Interacting
Multiple Models (IMM) and MWIMM, which deal with systems with time-
varying parameters, only suboptimal solutions can be obtained.

3. System Excitation: To accurately estimate time-varying parameters, the
system under study needs to be excited. This excitation is necessary for
convergence towards the true model. Therefore, to maintain observability,
careful consideration should be given to the level of system excitation,

especially for nonlinear systems.
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Understanding these factors can significantly contribute to the development and
evaluation of effective estimation strategies in various applications. In the following
section, an illustrative example is presented to show the identifiability challenge
encountered in dynamic multiple model adaptive estimation.

Consider a second-order system, exemplified by a mass-spring-damper

configuration, which is derived by an external force F as:

{xl (k+ 1) = x;(k) + Tsxz (k) + vy (k)
xy(k +1) = —Tywdxy (k) + (1 — 2T wg) x5 (k) + Tshu(k) + vy(k) — ToF (5.22)

z(k) = x5, (k) + w(k).

Using the previously mentioned parameter values, including a natural frequency
of 2Hz, a damping ratio of 0.1, a value of b equivalent to 100, uncorrelated process
noise v; (k)~N(0,10712), and v,(k)~N(0,107°). Now considering the availability of
velocity measurement for the second state, subject to measurement noise
w(k)~N(0,1078). Additionally, assume the external force F to possess three distinct
levels, namely low (50N), mid (500N), and high (2000N). System observability is

assessed as follows:

c=[0 1] 4= [—2)(2) —Zéwo] =0= [Cc;l] - [—(6)0(2) —22“’0]

= full rank.

(5.23)

The observability matrix with full rank indicates that the system is observable,
allowing for unique determination of states x; and x,. Nevertheless, as demonstrated
in the following illustration, the external force cannot be estimated as an augmented

state using the KF due to the system's lack of observability.

x1(k + 1) = x1(k) + Tsxp (k) + vy (k)
xy(k +1) = =Tow3x; (k) + (1 — 2Ts{wo)xy (k) — Texs3 (k) + Tebu(k) + v, (k),
x3(k + 1) = x5(k) + v3(k) (5.24)

z(k) = x,(k) + w(k) .
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In equation (5.24), the augmented state x3 represents the external force. To

perform observability test, the observability matrix can be derived as follows:

0 1 0 C
C=[0 1 0], A=|-w? -2lw, —1|=>0=|CA
0 0 0 CA?
0 1 0
5.25
=|—w} —2{wg —1 | = Rank(0) =2 ( )

2{w§ (407 = Dw§  2{w,
= 0 is not full rank.

According to Equation (5.25), it is evident that the system lacks observability,
thereby preventing the estimation of the external force using the augmented KF. In
order to address this issue, an alternative approach is IMM-KF. This method involves
incorporating models for low, mid, and high external forces, and leveraging the mode
probability to determine the true model at each time step, thereby enabling the
identification of the external force. To assess the effectiveness of this approach, a
series of events is considered as a simulation scenario:

1. For the initial 10 seconds, the external force is set to a low level (F = 50N).

2. From 10 seconds to 20 seconds, the external force transitions to a mid-level

(F = 500N).

3. Finally, for the last 10 seconds, the external force switches to a high level (F =

2000N).

Figure 5-10.a demonstrates that the IMM-KF fails to accurately estimate the
state x; and cannot correctly identify the external force, despite each model in the
filter bank being individually observable based on Equation (5.25). However, as
depicted in Figure 5-10.b and Figure 5-10.c, the IMM-KF can successfully estimate
the states and identify the external force accurately when either the measurement for

state x; or both states are available. Overall, Figure 5-10 illustrates that the IMM-
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KF achieves the best performance when measurements for both states are available,

which is intuitively reasonable.
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Figure 5-10. Identifying the external force for a second order system using IMM-KF: (a)
Measurement feedback from x,; (b) Measurement feedback from xq; (c) Measurement feedback

from both states.
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MWIMM-KF: (a) Measurement feedback from x,; (b) Measurement feedback from xy; (c)

Measurement feedback from both states.

Consequently, MWIMM is unable to accurately estimate the time-varying

external force in cases where only the x, measurement is available, as depicted in

Figure 5-11. However, the external force estimation is achievable when either the x;
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measurement or both state measurements are available. Additionally, it is evident
that the performance of MWIMM improves significantly when both states are

measured, as the system exhibits a higher degree of observability.

A viable approach to address the identifiability concern in this scenario involves
utilizing a robust filter, such as the Smooth Variable Structure Filter (SVSF), in lieu
of the Kalman filter to account for model mismatch. An IMM-SVSF-VBL, equipped
with a small boundary layer for the measured state and a large boundary layer for
the unmeasured state, can effectively detect sudden changes in the external force by

including additional information as follows:

e By setting a small boundary layer threshold for the measured state x,, the
IMM-SVSF-VBL is capable of recognizing changes in the system model,
triggering the corrective action of the SVSF.

e Conversely, a large boundary layer threshold for the unmeasured state x;
implies that the system relies on the filter bank models to estimate the
unmeasured state x;, avoiding from correcting the a priori estimations of the
filters based on new measurements. Consequently, the incorrect models
maintain a substantial a priori error, helping the IMM to find the most

relevant model.

As depicted in Figure 5-12.a, unlike IMM-KF, IMM-SVSF-VBL successfully
identifies sudden changes in the level of the external force. However, as demonstrated
in Figure 5-12.b, it still struggles to identify the external force level when it changes
gradually. In such cases, the slow deviation of the a priori error does not cross the
boundary layer, giving the incorrect filter (representing a low external force model
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here) sufficient time to adjust the gain, to maintain a small a priori error and prevent
the IMM from switching. This limitation stems from the fact that the impact of a
changing external force is akin to the displacement of a spring (x;), and the filter
cannot distinguish between the two solely based on the system's velocity
measurement. This is due to the unobservability of the augmented state as shown in

Equation (5.25).
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Figure 5-12. External load level identification in a second-order system form velocity
measurement using IMM-SVSF-VBL: (a) Sudden change in the external load level; (b)
Gradual change in the external load level.

5.6. Conclusion

In this study, a novel adaptive estimation strategy called Mowing Window Interacting
Multiple Model (MWIMM) has been introduced to address the challenges of state
estimation in the presence of uncertain model parameters and changing system
dynamics. Focusing on a subset of possible models at each stage instead of considering

all models, MWIMM improves identifiability and computational efficiency by
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effectively narrowing down the search space for the true model. This approach enables
the estimation of gradual changes in the system, making it particularly valuable for

estimation of fault intensity and remaining useful life.

Parameter estimation problem was investigated, comparing the results obtained
by the proposed method and the augmented state extended Kalman filter. The results
demonstrated that the proposed MWIMM approach presents a promising alternative
for effectively handling extensive parameter uncertainty and accommodating gradual

changes in system parameters.

Instead of merging, an alternative for decreasing the number of regime sequences
in MMAE algorithms involves employing pruning. Pruning entails the removal of low
probability branches (i.e., regime sequence) from MMAE tree, in contrast to the
merging approach used in IMM. While merging algorithms such as IMM filters are
widely employed in estimation tasks like target tracking, a pruning algorithm like
Multiple Model Pruning (MMP) [21] is more relevant for detecting changes in fault
detection problems. In these scenarios, accurately identifying changes in the system's
behavior is more important than estimating the system state. An entirely distinct
approach to reduce the complexity and improve the performance of MMAE
algorithms in addressing fault detection problems involves the adoption of the MMP
algorithm. Future research can explore pruning techniques and compare their
performance with merging approaches employed in this paper, such as IMM and

MWIMM, for fault detection and diagnosis problems.
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6. Concluding Remarks

This chapter outlines the main research contributions and outcomes discussed in this
thesis. Moreover, it provides recommendations for future works aimed at expanding

and furthering the current research.

6.1. Summary of Research

This thesis considers the application of model-based methodologies to enhance fault
diagnosis, introducing creative estimation strategies aimed at improving the
diagnostic procedure. The core of this research centers on the application of stochastic
filtering methods, with a particular focus on the Kalman Filter (KF) to manage
challenges posed by process and measurement noise and robust filtering methods
using Smooth Variable Structure Filters (SVSF) to effectively tackle uncertainties
encountered in the fault diagnosis problems. The proposed algorithms aim to enhance
computational efficiency, address fault discretization, and present robust fault
detection strategies.

In addition to the innovation vector, which plays a role in filtering algorithms to
adjust the predicted state vector based on the most recent estimation, the Smooth
Variable Structure Filter (SVSF) has an additional set of indicators: the chattering
signals associated with various state variables. Chapter 3 explored the concept of
utilizing these chattering signals for the purpose of fault detection and identifying
model mismatches. Within this chapter, mathematical expressions were formulated
to describe the chattering signal of the SVSF in scenarios involving both full-state
and partial-state measurements. The analysis extended to investigating the

spectrogram of the chattering signal to extract temporal and spectral information.
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Building upon the concept of Monte Carlo simulation and considering the
characteristics of process and measurement noise, the expected value of the power
spectrum of the chattering signal was determined and examined under normal
operating conditions.

In Chapter 3, thresholds were established based on an analysis of power
spectrum of the chattering of the SVSF filter for identifying faults. The threshold
selection process was based on a careful balance between minimizing the risk of false
alarms and ensuring that no significant system events leading to changes, such as
faults, are overlooked. The strategy for determining this threshold took into account
the probability distribution of the power spectrum of the chattering signal. A
confidence interval was derived from this distribution, facilitating fault detection
using a single realization of the event sequence, which is particularly suitable for real-
time applications. Moreover, to retrieve temporal information regarding a fault, an
analysis of the chattering signal using the short-time Fourier transform was
conducted. The effectiveness of this proposed method in terms of fault detection and
identification was demonstrated through the evaluation of various scenarios involving
a typical second-order system and an electro-hydraulic actuator.

Employing a bank of filters within a Multiple Model Adaptive Estimation
(MMAE) structure is a well-established model-based Fault Detection and Diagnosis
(FDD) strategy known for addressing identifiability challenges. The parallel structure
of these filters allows for swift adaptation, ensuring accurate state estimation in the
event of a fault. Nevertheless, this approach suffers from two formidable obstacles:
high computational demands and the assumption of fault parameters as discrete

values from a finite set. Chapter 4 introduced the Updated Interactive Multiple Model
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(UIMM) framework to address the computational intensity issue. By considering the
irreversible nature of faults, the UIMM-SVSF algorithm demonstrated superior
computational efficiency and reduced false alarm rates compared to the traditional
IMM strategy. In chapter three the UIMM-SVSF was applied to diagnose leakage
and friction faults in an Electro-Hydraulic Actuator (EHA), where it significantly
outperformed IMM-SVSF and IMM-KF. The computational efficiency of UIMM-
SVSF positions it as an ideal choice for real-time applications, particularly for Fault-
Tolerant Control Systems (FTCS).

Expanding on this topic, Chapter 5 introduced an innovative strategy referred to
as the 'Moving Window Interacting Multiple Model' (MWIMM). MWIMM is
considered as an improved and computationally efficient variant of the IMM approach
with enhanced performance in terms of identifiability. This enhancement is achieved
by narrowing the search space to a specific window, instead of evaluating all potential
models. MWIMM can be viewed as a broader adaptation of the Updated IMM
(UIMM) concept, as it relaxes the assumption of irreversibility, thereby broadening
its applicability to a wider spectrum of problems. MWIMM proves its relevance in
situations where models exhibit varying degrees of temporal progression, such as
scenarios involving aging or the analysis of fault intensity. Additionally, it
demonstrates its utility in addressing challenges related to parameter estimation

within dynamic systems characterized by gradual parameter variations.

6.2. Recommendations for Future Research
For a comprehensive evaluation of the Multiple-Model Adaptive Estimation
(MMAE) strategy, specifically the Moving Window IMM (MWIMM) as proposed in

Chapter 5, it is imperative to delve into three pivotal factors: Identifiability,
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Optimality, and System Excitation. These factors constitute fundamental elements
in assessing the effectiveness of these strategies which only briefly studied in chapter
5.  Future research directions could explore the impact of these factors on the
performance of the multiple model adaptive estimation strategy.

Another area worthy of further exploration is the robustness of the MWIMM
algorithm. The Kalman filter utilized in the MWIMM algorithm, as discussed in
Chapter 5, assumes that the process and measurement noise of the system adhere to
zero-mean and Gaussian distributions. Consequently, any bias or uncertainty present
in the system can impact the performance of this strategy, and in extreme cases, it
may lead to instability in the Kalman filter. Consider the system studied in chapter
5, as shown in equation (5.13). Let’s assume the system behavior changes gradually
over time due to variations in the damping ratio. Then the MWIMM-KF strategy
can be employed to estimate the damping ratio. To study the robustness of this
approach, different levels of bias or uncertainty has been introduced to the natural
frequency of the system. These scenarios are outlined below, and the results of the
MWIMM-KF are presented in Figure 6-1.

1. System with out bias or uncertainty: In this situation, the MWIMM-KF

exhibits excellent performance as expected.

2. System with small bias or uncertainty (1% additive uncertainty): Despite a
slight increase in estimation error compared to the scenario without bias, KF
effectively manages to estimate states because the bias or uncertainty falls
within the range of process noise.

3. System with medium bias or uncertainty (10% additive uncertainty): In this

scenario, MWIMM-KF fails to estimate the damping ratio as the bias or
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Figure 6-1. Using MWIMM-KF for estimating the time-varying parameter of a second-
order system with different level of bias or uncertainty: (a) No bias; (b) Small bias (1%);
(¢) Medium bias (10%); (d) Large bias (50%).

One approach to improve robustness is to use robust filtering strategy such as

(=}

SVSF-VBL, instead of Kalman filter. The results for the same conditions using
MWIMM-SVSF are illustrated in Figure 6-2. The results also compared with
MWIMM-KF in Table 6-1. In the scenario without bias, both KF and SVSF-VBL
exhibit similar performance as expected. Note that employing a very small Fixed
Boundary Layer (FBL) may compromise the performance of SVSF-VBL, as it relies
on the fixed bound instead of the optimized bound obtained from system noise most

of the time.
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In the case of small bias SVSF estimation error is slightly larger than KF, because
corrective actions from FBL occurring more frequently with a larger a priori error
from uncertainty. Enhancing SVSF performance can be achieved by increasing FBL,

but this comes at the expense of a larger error boundary.

For medium and large bias, MWIMM-SVSF fails to estimate damping ratio.
However, it ensures stability and boundedness of the estimation error. This is
because, when the prior error exceeds the fixed boundary layer, SVSF loses confidence
in the model and relies on corrective actions from the fixed boundary layer. As a

result, the estimation error of the damping ratio levels off.

Table 6-1: Comparing MWIMM-KF with MWIMM-SVSF for different bias level.

. . . MWIMM-KF MWIMM-SVSF
Estimation Error No Bias . .
Normalized RMSE Normalized RMSE
X1 7.6419e-04 7.6419e-04
X, 0.0056 0.0056
¢ 0.0311 0.0311
Estimation Error small MWIMM-KF MWIMM-SVSF
Bias/uncertainty (1%) Normalized RMSE Normalized RMSE
X 7.6399¢-04 7.6387e-04
Xz 0.0087 0.0345
¢ 0.0368 0.0376
Estimation Error medium MWIMM-KF MWIMM-SVSF
Bias/uncertainty (10%) Normalized RMSE Normalized RMSE
Xy 5.8131e-04 7.6335e-04
X, 0.2035 0.5365
¢ 37.3749 27.2272
Estimation Error large MWIMM-KF MWIMM-SVSF
Bias/uncertainty (50%) Normalized RMSE Normalized RMSE
X unstable 7.7567e-04
X2 unstable 0.6884
¢ unstable 22.8583
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Figure 6-2. Using MWIMM-SVSF for estimating the time-varying parameter of a second-
order system with different level of bias or uncertainty: (a) No bias; (b) Small bias (1%);

(¢) Medium bias (10%); (d) Large bias (50%).

As shown, although MWIMM-SVSF ensures the stability and boundedness of the
estimation error, neither of these approaches effectively captures the states and
unknown parameters (e.g. damping ratio) under conditions of medium and large
uncertainty. This outcome is expected, given that when uncertainty significantly
outweighs the differences between model hypotheses, the comparison becomes
irrelevant for identifying the true model. A more in-depth exploration of this issue
could be pursued in the future, developing a robust estimation strategy based on the
variable structure system concept, as demonstrated here. This could involve a
comprehensive analysis of parameters such as bin size, window size, and process noise

(Q) to enhance performance, and potentially delving into other robust strategies.

Instead of merging, as seen in the IMM strategy, an alternative for decreasing the

number of regime sequences in MMAE algorithms involves employing pruning.
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Pruning entails the removal of low probability branches (i.e., regime sequence) from
MMAE tree, in contrast to the merging approach used in IMM. While merging
algorithms such as IMM filters are widely employed in estimation tasks like target
tracking, a pruning algorithm like Multiple Model Pruning (MMP) [5] is more
relevant for detecting changes in fault detection problems. In these scenarios,
accurately identifying changes in the system's behavior is more important than

estimating the system state. The MMP algorithm has three main steps [5]:

1. Recursively compute the conditional filter for a bank of M sequences.

2. After the measurement update at time k, retain only the M /S most probable
branches and prune the rest.

3. At time k + 1, allow the M/S considered branches to split into S.M/S =M

branches and update their a posteriori probabilities.

An entirely distinct approach to reduce the complexity and improve the
performance of MMAE algorithms in addressing fault detection problems involves
the adoption of the MMP algorithm. Future research can explore pruning techniques
and compare their performance with merging approaches employed in this thesis,

such as IMM, UIMM, and MWIMM, for fault detection and diagnosis problems.

Examining the stability of the proposed MMAE algorithms within real-time
closed-loop applications for the attainment of a fault-tolerant control system is an
area that merits further exploration. The literature has previously addressed a
comparable issue known as stability for Multiple Model Adaptive Control (MMAC)
[96]-[98]. The central questions addressed in these studies are determining robustness
guarantees [96] and finding ways to steer clear of a conservative design [97]. The
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methodologies outlined in existing literature for ensuring robustness rely on nonlinear
input-output stability theory, which involves the nonlinear gap metric [96], [98]. A
similar methodology could potentially be applied to investigate the stability and
robustness of the proposed algorithms in this thesis, particularly in the context of

their utilization within a fault-tolerant control framework.

The fusion of data-driven techniques with the model-based approaches provided
in this thesis holds immense potential. It was demonstrated in Chapter 3 through
spectral analysis of the chattering phenomenon in filter-based SVSF' estimations for
fault diagnosis. This approach can be extended to incorporate other data-driven
methodologies, including the integration of machine learning techniques. Future
investigations may delve into hybrid systems that combine the strengths of both
model-based and data-driven methodologies, providing comprehensive solutions for
Fault Detection and Diagnosis (FDD) challenges. Such research topics have gained
substantial momentum in recent years, often referred to as “physics-informed machine
learning methods” [99]. The underlying premise is that while comprehensive models
can be established for systems under normal conditions based on their physics, the
development of explicit models to capture the effects of various potential faults is
often difficult. Consequently, the integration of model-based methods with machine
learning techniques can prove highly advantageous in addressing complex fault

detection problems.
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