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ABSTRACT 

The sliding innovation filter is a newly developed filter that was derived in 2020 to be a predictor-corrector filter. The filter 
uses the measurement as a hyperplane, and then applies a force that makes the estimates fluctuating around it. The filter 
works on systems with full ranked measurement matrix (all states are measured). However, once the rank becomes partial, 
the filter depends highly on the pseudo inverse of the measurement matrix. This means that if the measurement matrix 
does not have a direct link to the hidden states, then these states will not be correctly estimated. When the system is 
nonlinear, the problem becomes worse as the Jacobean matrix must be calculated for the measurement matrix before the 
pseudo inverse is applied. To solve this issue, this paper proposes a new formulation of the SIF that is based on the extended 
Luenberger filter. The proposed method is tested on extracting the damping ration for a third order system.  
  
Keywords: Luenberger method, SIF, third order system. 

1. INTRODUCTION 
In a wide variety of estimation applications, filters play a critical part because of their ability to extract useful information 
from signals while at the same time mitigating the effects of disturbances, uncertainties, and noise [1-9]. The primary 
purpose of filters is to improve the overall dynamics performance of the system [10-19], which includes making the 
controller of the system of higher quality. Nevertheless, achieving optimal performance in the presence of a variety of 
challenges, such as limited measured signals, non-measured states (also known as hidden states) that are not directly linked 
to measurements, and the presence of disturbances and noise, can be quite a difficult task to accomplish. 
The sliding innovation filter (SIF) is a common and widely utilized type of filter that is utilized in estimation applications 
[20-28]. The SIF is a model-based filter that is derived from the sliding mode theory. The sliding mode theory is well-
known for its resistance to disturbances and uncertainties. An initial estimate is obtained by the SIF through the utilization 
of a system model, which is then stimulated by the system's input. Next, it utilizes a corrective gain that is derived from 
the Lyapunov stability theorem in order to further refine the estimate. As a consequence of this, the Smooth Image Filter 
(SIF) has been designated as a robust filter, which places it in the same category as smooth variable structure filters [30-
45] and sliding mode observers [46-69]. 
It's possible that the SIF's performance won't always be at its best, even with how robust it is; this is especially true when 
there are disturbances and noise present. In addition, when there are fewer measured signals than there are states, the filter 
becomes highly dependent on the system and measurement matrices, which can lead to potential problems when attempting 
to extract the necessary information. This is especially the case in situations in which the non-measured states, also known 
as the hidden states, do not have a direct correlation with the measured states or measurements. As a consequence, there is 
a reduction in accuracy and efficiency. 
Researchers have proposed a variety of solutions in order to overcome these limitations. One example of this is the 
combination of the SIF with other filters such as the Regular [70-84], Extended [85-90], and Sigma-point Kalman filters 
[91-134]. However, this type of combined approach frequently results in an increased level of complexity within the 
algorithm as well as an increase in the amount of time required for simulation, which makes them less practical for certain 
applications. In this paper, a new variant of the SIF is proposed with the intention of addressing these challenges in a 
straightforward while simultaneously effective manner [135-136]. The SIF is incorporated into the Luenberger method, 
which is well-known for its capacity to uncover latent states based on observable data using the measurements that are 
readily available [137-152]. The proposed method seeks to achieve a balance between simplicity and effectiveness while 
maintaining stability and robustness in the filtering process. This is done by combining the strengths of the SIF and the 
Luenberger method, which both have their own distinct advantages.  
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2. METHODOLOGY 
2.1. Nonlinear system model 

One of most famous nonlinear system (𝑓𝑓) with linear measurement matrix (𝐇𝐇𝑘𝑘) formulas has the shape of:  

𝐱𝐱𝑘𝑘 = 𝑓𝑓(𝐱𝐱𝑘𝑘−1,𝐮𝐮𝑘𝑘−1) + 𝐰𝐰𝑘𝑘−1, 𝐳𝐳𝑘𝑘 = 𝐇𝐇𝑘𝑘𝐱𝐱𝑘𝑘 + 𝐯𝐯𝑘𝑘        (1) 

Where the subscript represents the time step, 𝐱𝐱 and 𝐳𝐳 are the state and measurement vectors, respectively, and 𝐰𝐰 and 𝐯𝐯 are 
noise vectors of the system and measurement, respectively. Some of the system’s states are considered hidden when there 
are no direct measurements for them. In this case, estimation techniques, i.e. filters, are required to extract their information, 
while reducing the effect of the noise. This work is addressing a new formulation of the SIF that links the SIF to the 
Luenberger method. This work is different than [144, 152] as it addresses nonlinear systems. 

2.2. SIF algorithm 

The sliding Innovation filter for nonlinear systems consists of two steps: 

1- Prediction Stage 

The a priori estimate (𝐱𝐱�𝑘𝑘+1|𝑘𝑘) and its measurement (𝐳𝐳�𝑘𝑘+1|𝑘𝑘), are obtained by: 

𝐱𝐱�𝑘𝑘|𝑘𝑘−1 = 𝑓𝑓�𝐱𝐱�𝑘𝑘−1|𝑘𝑘−1,𝐮𝐮𝑘𝑘−1�, 𝐳𝐳�𝑘𝑘|𝑘𝑘−1 = 𝐇𝐇𝑘𝑘𝐱𝐱�𝑘𝑘|𝑘𝑘−1        (2) 

2- Update/Correction Stage, w 

The a posteriori estimate (𝐱𝐱�𝑘𝑘|𝑘𝑘) and its measurements (𝐳𝐳�𝑘𝑘|𝑘𝑘) are obtained by: 

𝐱𝐱�𝑘𝑘|𝑘𝑘 = 𝐱𝐱�𝑘𝑘|𝑘𝑘−1 + �𝐇𝐇𝑘𝑘
+�𝐳𝐳𝑘𝑘 − 𝐳𝐳�𝑘𝑘|𝑘𝑘−1��°𝑠𝑠𝑠𝑠𝑠𝑠��𝐳𝐳𝑘𝑘 − 𝐳𝐳�𝑘𝑘|𝑘𝑘−1�,𝚿𝚿𝑘𝑘�, 𝐳𝐳�𝑘𝑘|𝑘𝑘 = 𝐇𝐇𝑘𝑘𝐱𝐱�𝑘𝑘|𝑘𝑘     (3) 

Where 𝐇𝐇𝑘𝑘
+, 𝚿𝚿𝑘𝑘 and 𝑠𝑠𝑠𝑠𝑠𝑠 are the pseudoinverse of  𝐇𝐇𝑘𝑘, is the boundary layer, and the saturated function. 𝐴𝐴°𝐵𝐵 is schur product.  

According to [144, 152], the SIF performance becomes worse when hidden states do exist. To improve the performance, 
the filter is linked to the Luenberger method. 

2.3. Luenberger/SIF algorithm 
The Luenberger method is considered an observer as it assumes no uncertainties exist. If uncertainty exists, i.e. noise, the 
method needs to be merged with a filter to smooth out the noise effect [144, 152]. In this work, Luenberger method is 
combined with SIF as follows: 

Assuming that two type of measurement signals exist, the actual one (𝐳𝐳𝑘𝑘) and imaginary one that is linked to the hidden 
states (𝐲𝐲𝑘𝑘), then the states are considered to be fully measured with the vector (𝐙𝐙𝑘𝑘): 

𝐙𝐙𝑘𝑘 = �
𝐳𝐳𝑘𝑘
𝐲𝐲𝑘𝑘�             (4) 

where 

𝐙𝐙𝑘𝑘 ≅  𝐱𝐱𝑘𝑘            (5) 

According to [144, 152], 𝐲𝐲𝑘𝑘 is defined as 

𝐲𝐲𝑘𝑘 = 𝑓𝑓−1(𝐳𝐳𝑘𝑘, 𝐳𝐳𝑘𝑘−2, … , 𝐳𝐳𝑘𝑘−𝑀𝑀,𝐮𝐮𝑘𝑘−1, 𝐯𝐯𝑘𝑘−1,𝐯𝐯𝑘𝑘,𝐰𝐰𝑘𝑘−1)        (6) 

By this, the modified SIF has the same equation (2), but equation (3) is modified to: 

𝐱𝐱�𝑘𝑘|𝑘𝑘 = 𝐱𝐱�𝑘𝑘|𝑘𝑘−1 + ��𝐙𝐙𝑘𝑘 − 𝐱𝐱�𝑘𝑘|𝑘𝑘−1��°𝑠𝑠𝑠𝑠𝑠𝑠��𝐙𝐙𝑘𝑘 − 𝐱𝐱�𝑘𝑘|𝑘𝑘−1�,𝚿𝚿𝑘𝑘�, 𝐳𝐳�𝑘𝑘|𝑘𝑘 = 𝐱𝐱�𝑘𝑘|𝑘𝑘      (7) 

3. CASE STUDY 
The Luenberger/SIF is tested on the following system: 

𝑓𝑓𝑘𝑘 = �

𝑥𝑥1,𝑘𝑘 + 𝜏𝜏𝑥𝑥2,𝑘𝑘
𝑥𝑥2,𝑘𝑘 + 𝜏𝜏𝑥𝑥3,𝑘𝑘

−𝜔𝜔𝑛𝑛2𝜏𝜏𝑥𝑥2,𝑘𝑘 + 𝑥𝑥3,𝑘𝑘�1 − 2𝑥𝑥4,𝑘𝑘𝜔𝜔𝑛𝑛𝜏𝜏� + 𝑏𝑏𝑏𝑏𝑢𝑢𝑘𝑘
0

� + 𝐰𝐰𝑘𝑘−1, 𝑧𝑧𝑘𝑘 = 𝑥𝑥1,𝑘𝑘 + 𝑣𝑣𝑘𝑘     (8) 
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Where 𝜔𝜔𝑛𝑛 , b, and 𝜏𝜏 have values of 10 Hz, 3 m
sec×rad

, and 0.001 sec, respectively [112]. The input is a multiple level random 
signal. The states include the position, velocity, acceleration and damping ratio ξ. The results are illustrated by Fig. 1 and 
the root mean squared error (RMSE) and the maximum absolute error (MAE) are calculated in tables 1 and 2, respectively 
using the equations:  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ �𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑖𝑖−𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑖𝑖�
2𝑛𝑛𝑛𝑛

𝑖𝑖=1
𝑛𝑛𝑛𝑛

(9) 

𝑀𝑀𝑀𝑀𝑀𝑀 = max(|𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|) (10) 

Figure 1. The results of the proposed method trajectories; (a) position, (b) error in position, (c) velocity, (d) error in 
velocity, (e) acceleration, (f) error in acceleration, (g) damping ratio, and (h) the error in damping ratio. 
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Table 1. RMSE of the SIF’s results 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 in  

 𝑥𝑥1 (𝑐𝑐𝑐𝑐) 𝑥𝑥2(𝑐𝑐𝑐𝑐/𝑠𝑠) 𝑥𝑥3(𝑐𝑐𝑐𝑐/𝑠𝑠2) 𝑥𝑥4 

SIF 6.8 × 10−05 9.6 × 10−03 2.1 × 10−01 1.5 × 10−02 

Table 2. MAE of the SIF’s results 

 𝑀𝑀𝑀𝑀𝑀𝑀 in 

 𝑥𝑥1 (𝑐𝑐𝑐𝑐) 𝑥𝑥2(𝑐𝑐𝑐𝑐/𝑠𝑠) 𝑥𝑥3(𝑐𝑐𝑐𝑐/𝑠𝑠^2) 𝑥𝑥4 

SIF 1.3 × 10−03 2.2 × 10−02 1.6 1.1 

 
The results show that the proposed method extract the hidden states and parameters with excellent accuracy; RMSEs have 
values of 6.8 × 10−05, 9.6 × 10−03, 2.1 × 10−01, and 1.5 × 10−02 for position, velocity, acceleration and damping ratio 
coefficient, respectively. The errors are found to be less than 0.2% for more than 99% of the datasets. Only a few spikes 
appear in the damping ratio coefficient with amplitude of 20%. The results prove that the method has an excellent 
performance. 

4. CONCLUSION 

The proposed variant of the SIF formulated with the Luenberger method for nonlinear systems offers promising results in 
terms of performance and accuracy. The RMSE of the estimated states was found to be less than 0.2% for over 99% of the 
datasets, indicating high accuracy in estimating the system states. Moreover, the ability of the proposed method to extract 
three states from just one measurement signal in online processes highlights its potential for efficient state estimation with 
minimal sensor requirements. The excellent performance of the proposed method opens up avenues for further investigation 
and experimental verification in future work. One potential direction for future research is to conduct extensive experiments 
on real-world systems to validate the effectiveness and robustness of the proposed method in practical scenarios. 
Experimental verification can help uncover any potential limitations or challenges that may arise when implementing the 
algorithm in real-time applications and can provide insights into its performance under different operating conditions and 
system dynamics. 
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