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This paper discusses the application of condition monitoring to a battery system used in a hybrid electric vehicle (HEV). Battery
condition management systems (BCMSs) are employed to ensure the safe, efficient, and reliable operation of a battery, ultimately
to guarantee the availability of electric power. This is critical for the case of the HEV to ensure greater overall energy efficiency
and the availability of reliable electrical supply. This paper considers the use of state and parameter estimation techniques for
the condition monitoring of batteries. A comparative study is presented in which the Kalman and the extended Kalman filters
(KF/EKF), the particle filter (PF), the quadrature Kalman filter (QKF), and the smooth variable structure filter (SVSF) are used
for battery condition monitoring. These comparisons are made based on estimation error, robustness, sensitivity to noise, and
computational time.

1. Introduction

Condition monitoring is an essential process for fault
detection and diagnosis. It involves monitoring system states
or parameters over an operational period, where abnormal
values or significant changes would indicate a fault. Quite
often direct measurements of the states are not available
due to limitations in design or cost. In these cases, state
and parameter estimation techniques can be used for infor-
mation extraction. Condition monitoring of systems allows
proper maintenance to be scheduled, which helps reduce
unscheduled downtime of manufacturing equipment, as well
as the cost to repair damaged systems [1, 2]. An important
area for condition monitoring is energy management for
hybrid electric (HEVs) and battery electric vehicles (BEVs).

In general, HEVs have two power sources: a gasoline
engine and an electric motor. In full hybrid vehicles, the
engine and the motor can operate separately or simultane-
ously. The motor is used mainly during acceleration, startup,
reverse mode, and in regenerative braking. A traction battery
pack is used to provide power to the motor. It is recharged by
a generator or during regenerative braking. The performance
of an HEV is largely dependent on a balance between
the gasoline engine and the electric motor, optimized with

respect to fuel consumption based on vehicle conditions
[3]. Many different types of control methods have been
applied to balance the power and energy requirements of
HEVs, including fuzzy logic [4–6], genetic algorithms [7],
dynamic programming [8, 9], Pareto optimization [10], and
intelligent mechanism designs [11]. These control strategies
rely heavily on the availability of battery power to balance the
operation of the gasoline engine versus the electric motor.
The available battery power may be obtained from the state-
of-charge (SOC) information [3, 12]. Further to the SOC,
the battery state-of-health (SOH) is required in order to help
determine whether a battery would fail subject to a certain
load [13]. The SOC cannot be measured directly with electric
signals, and as such it often, needs to be estimated through
current and voltage relationships [3]. Poor estimation or
control of the SOC may lead to improper charging conditions
and can degrade the efficiency and reliability of the batteries
[13]. Hence, proper condition monitoring of batteries plays a
pivotal role in the optimization of HEV performance, as well
as extending the lifetime and increasing the reliability of the
batteries [14].

State and parameter estimation techniques are an integral
part of condition monitoring and are used when direct
measurements of the states are not available. One of the most
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commonly studied methods for estimation is the Kalman
filter (KF) for linear systems and its extended form (EKF)
for nonlinear systems [15–19]. Operating conditions such
as battery SOC, power fade, capacity fade, resistance, and
instantaneous available power have been estimated well
using the EKF [17]. Other methods such as the sigma-point
Kalman filtering (SPKF) and support vector machine (SVM)
have also been used for condition monitoring and fault
diagnosis [20–22].

In critical applications, such as automotive that require
added safety and reliability, the choice of the estimation
method is very important and should be selected based
on the linearity of the system, performance, robustness or
sensitivity to noise and computational difficulty and time. In
relation to battery condition monitoring, this paper presents
a quantitative and qualitative comparison of the following
methods: the Kalman and extended Kalman filters (KF/EKF),
the particle filter (PF), the quadrature Kalman filter (QKF),
and the smooth variable structure filter (SVSF).

2. State and Parameter Estimation Techniques

State and parameter estimation is essential for sensing and
information processing in model-based condition monitor-
ing. Estimation theory involves information extraction by
tracking changes in physical parameters or operational states
of the system. This paper studies four popular strategies:
the Kalman and the extended Kalman filters (KF/EKF), the
particle filter (PF), the quadrature Kalman filter (QKF), and
the smooth variable structure filter (SVSF).

2.1. Kalman and Extended Kalman Filters. Even after 50
years, the Kalman filter (KF) remains the most studied and
one of the most popular tools used in state estimation
[23–26]. It may be applied to linear dynamic systems in
the presence of Gaussian white noise, and provides an
elegant and statistically optimal solution by minimizing the
mean-squared error. The impact that the KF has had on
estimation and control problems is considered by some sci-
entists and engineers to be one of the greatest achievement
in engineering and signal processing [26]. It is a method
that utilizes measurements linearly related to the states, and
error covariance matrices, to generate a gain referred to
as the Kalman gain. This gain is applied to the a priori
state estimate, thus creating an a posteriori estimate. The
estimation process continues in a predictor-corrector fashion
while maintaining a statistically minimal state error covari-
ance matrix for linear systems.

The following two equations describe the system dynam-
ic model and the measurement model used in general for
state estimation. Refer to Appendix A for a description of the
nomenclature

xk+1 = Akxk + Bkuk + wk,

zk+1 = Ck+1xk+1 + vk+1.
(1)

The next five equations form the KF algorithm and are
used in an iterative fashion. Equation (2) extrapolates the a
priori state estimate, and (3) is the corresponding a priori

error covariance. The Kalman gain may be calculated by (4),
and is used to update the state estimate and error covariance,
described by (5) and (6), respectively.

x̂k+1|k = Akx̂k|k + Bkuk, (2)

Pk+1|k = AkPk|kATk +Qk, (3)

Kk = Pk+1|kCT
k

[

CkPk+1|kCT
k + Rk

]−1
, (4)

x̂k+1|k+1 = x̂k+1|k + Kk
[

zk − Ckxk+1|k
]

, (5)

Pk+1|k+1 = [I − KkCk]Pk+1|k. (6)

The effects due to model uncertainties can have a
large impact on the stability and performance of the KF
[26, 27]. For nonlinear systems, the EKF may be used. It
is conceptually similar to the KF process. The nonlinear
system and measurement matrices are linearized according
to their corresponding Jacobian, which is a first-order partial
derivative. This linearization introduces uncertainties in the
estimation process; such that overlooked nonlinearities in
the system may cause the EKF to become unstable [26].

2.2. Particle Filter. The particle filter (PF) has many forms:
Monte Carlo filters, interacting particle approximations [28],
bootstrap filters [29], condensation algorithm [30], and
survival of the fittest [31], to name a few. Compared to the
KF, it is newer, being introduced in 1993. Since then, the
PF has become a very popular method for solving nonlin-
ear estimation problems, ranging from predicting chemical
processes to target tracking. The PF takes the Bayesian
approach to dynamic state estimation, in which one attempts
to accurately represent the probability distribution function
(PDF) of the values of interest [32]. The PDF contains all of
the pertinent statistical information and may be considered
as holding the solution to the estimation problem [32]. Es-
sentially, the distribution holds a probability of values for the
state being observed. The stronger or tighter the prediction
PDF, the more accurate the state estimate.

The PF obtains its name from the use of weighted
particles or “point masses” that are distributed throughout
the PDF to form an approximation. These particles are used
in an iterative process to obtain new particles and associated
importance weights, with the goal of creating a more accurate
approximation of the PDF. In general, as the number of
implemented particles becomes large, the PDF becomes
more accurate [32]. An important step in the PF is that of
resampling, which eliminates particles with low weights and
multiplies those with high weights [32]. This helps to avoid
the degeneracy problem with the PF, which refers to only
one particle having a significant importance weight after a
large number of recursions. Furthermore, it also increases the
accuracy of the PDF approximation by replicating particles
with high weights. The sequential importance resampling
(SIR) algorithm is a very popular form of the PF and may be
summarized by (7) to (10). The first equation draws samples
or particles from the proposal distribution.

x(n)
k ∼ π

(

xk | x(n)
k−1, yk

)

. (7)



ISRN Signal Processing 3

The next equation updates the importance weights up to a
normalizing constant

ω̂(n)
k = ω(n)

k−1

p
(

yk | x(n)
k

)

p
(

x(n)
k | x(n)

k−1

)

π
(

xk | x(n)
k−1, yk

) . (8)

Next, the normalized weights are calculated for each particle

ω(n)
k = ω̂(n)

k
∑n

i=1 ω̂
(i)
k

. (9)

Finally, a constant known as the effective number of
particles is calculated as shown in (10). Resampling is
performed if the effective number of particles is lower than
some design threshold

̂Neff = 1
∑n

i=1

(

ω(i)
k

)2 . (10)

2.3. Quadrature Kalman Filter. Similar to the PF, the quadra-
ture Kalman filter (QKF) is a type of Bayesian filter that is
able to model dynamic processes which are nonlinear and
subject to non-Gaussian noise. In 2007, it was proposed that
a set of Gauss-Hermite quadrature points could be used to
parameterize the PDF [33, 34]. When compared with the
EKF, it was found that the QKF method provides a more
accurate least-squares solution [33]. Figure 1 shows the PDF
of a nonlinearly transformed Gaussian random variable. The
mean of the EKF appears to be biased, and the covariance
is obviously far from the true covariance. However, the QKF
mean and covariance match the true values quite well, with
the 5 point QKF working the best. The main drawback to
this method is the fact that the number of terms used in
the Gaussian sum grows exponentially, which means that
more memory will be used over a longer period of time [33].
The process of this filter is similar to the PF, in the sense
that it may be solved recursively using two stages (time and
measurement update). Please refer to Appendix B for the full
QKF algorithm.

2.4. Smooth Variable Structure Filter. In 2002, the variable
structure filter (VSF) was introduced as a new predictor-
corrector method used for state and parameter estimation
[27, 35]. It is a type of sliding mode estimator, where gain
switching is used to ensure that the estimates converge to
true state values. An internal model of the system, either
linear or nonlinear, is used to predict an a priori state
estimate. A corrective term is then applied to calculate the
a posteriori state estimate, and the estimation process is
repeated iteratively. The SVSF was later derived from the
VSF and uses a simpler and less complex gain calculation
[36]. In its present form, the SVSF is stable and robust to
modeling uncertainties and noise, given an upperbound on
uncertainties [36]. The basic concept of the SVSF is shown in
Figure 2. Assume that the solid line in Figure 2 is a trajectory
of some state (amplitude versus time). An initial value is
selected for the state estimate. The estimated state is pushed
towards the true value until it reaches a subspace around the
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Figure 2: SVSF estimation concept [36].

actual state trajectory, referred to as the existence subspace.
Once the value enters the existence subspace, the estimated
state is forced to remain within it and into switching along
the system state trajectory [36].

The SVSF method is model based and applies to smooth
nonlinear dynamic equations. The estimation process may
be summarized by (11) to (16) and is repeated iteratively.
An a priori state estimate is calculated using an estimated
model of the system. This value is then used to calculate
an a priori estimate of the measurement defined by (12). A
corrective term, referred to as the SVSF gain, is calculated as
a function of the error in the predicted output, as well as a
gain matrix and the smoothing boundary layer width. The
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corrective term calculated in (13) is then used in (14) to find
the a posteriori state estimate

x̂k+1|k = ̂F
(

x̂k|k ,uk
)

, (11)

ẑk+1|k = ̂Cx̂k+1|k , (12)

Kk+1 = ̂C−1
∣

∣

∣

(∣

∣

∣ezk+1|k

∣

∣

∣

ABS
+ γ
∣

∣

∣ezk|k
∣

∣

∣

ABS

)∣

∣

∣

ABS

◦ sat
(

ezk+1|k ,Ψ
)

,
(13)

x̂k+1|k+1 = x̂k+1|k + Kk+1, (14)

ezk|k = zk − ẑk|k, (15)

ezk+1|k = zk+1 − ẑk+1|k. (16)

Two critical variables in this process are the a priori and
a posteriori output error estimates, defined by (15) and (16),
respectively [36]. Note that (15) is the output error estimate
from the previous time step and is used only in the gain
calculation.

3. Condition Monitoring of a Battery System in
a Hybrid Electric Vehicle

A variety of batteries have been studied in literature, most
notably lead-acid and lithium-ion batteries [13, 15, 19, 20,
37]. Lead-acid batteries are the oldest type of rechargeable
batteries, and are most commonly found in motor vehicles.
Lithium-ion batteries are also a form of rechargeable battery,
which contain lithium in its positive electrode (cathode).
These batteries are usually found in portable consumer
electronics (i.e., laptops or notebooks) due to particularly
high energy-to-weight ratios, slow self-discharge, and a lack
of memory effect (i.e., where a battery loses its maximum
energy capacity over time) [16]. In recent years, lithium-
ion batteries have slowly entered the hybrid electric vehicle
market, due to the fact that they offer better energy density
compared to standard batteries [38].

The operation of batteries may be studied by using the
advanced vehicle simulator (ADVISOR), which was written
in MATLAB and Simulink by the US Department of Energy
and the National Renewable Energy Laboratory [39–41].
ADVISOR is used for the analysis of performance and fuel
economy of three vehicle types: conventional, electric, and
hybrid vehicles [39]. In 2001, the resistance-capacitance (RC)
battery model was first implemented in ADVISOR [42]. The
electrical model consists of three resistors (Re, Rc, and Rt)
and two capacitors (Cb and Cc). The first capacitor (Cb)
represents the capability of the battery to chemically store a
charge, and the second capacitor (Cc) represents the surface
effects of a cell [41]. The resistances and capacitances vary
with changing SOC and temperature (T) [41]. ADVISOR
offers two different datasets for the RC battery model:
lithium-ion and nickel-metal hydride chemistries. For the
purposes of this study, the lithium-ion chemistry was used in
conjunction with the RC battery model. Figure 3 illustrates
the equivalent circuit diagram of the RC model.

Rt

Rc

Ic

Ib

Cb ,VCb Vo

IsRe

Cc ,VCc

Figure 3: RC battery circuit diagram.

A standard model of a parallel hybrid electric vehicle
referred to within ADVISOR as the Annex VII PHEV
was used for this study. This model has been developed
by the International Energy Agency (IEA), which is an
international research community for the development and
commercialization of hybrid and electric vehicles [43]. The
model is based on data obtained from published sources and
national (U.S.) research test data [39]. The battery system
of the HEV represents the battery pack which stores energy
on board the HEV. The system accepts a power request and
returns the available power from the battery, as well as the
SOC, voltage and current [39].

The nonlinear equations that describe the system may be
derived from the RC battery model of Figure 3, as shown
in Appendix C. For the purposes of condition monitoring
of the battery, two voltages VCb and VCc as well as two
capacitance parameters Cb and Cc need to be estimated.
Should a fault exist in either of the battery capacitors, one
would be able to determine this given the corresponding
change in the parametric value. Further to the equations
found in Appendix C, a discrete-time state space model of
the Capacitor voltages may be defined as follows:

⎡

⎣

VCbk+1

VCck+1

⎤

⎦

=

⎡

⎢

⎢

⎢

⎣

− Ts
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+ 1
Ts

Cb(Re + Rc)
Ts
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⎤

⎥

⎥

⎥

⎦

k
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⎣
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⎤

⎦

+

⎡
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⎣

TsRc
Cb(Re + Rc)

TsRe
Cc(Re + Rc)

⎤

⎥

⎥

⎥

⎦

k

ISk .

(17)

For parameter estimation, (17) is used to formulate a
state vector that would include parameters such that

x = [VCb VCc Cb Cc]
T. (18)
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Figure 4: Supplied current input.

By rearranging (17), and further to Appendix C, the
general model used for state and parameter estimation is
obtained as

xk+1 = f (xk,uk) + wk,

zk+1 = h(xk+1,uk+1) + vk+1.
(19)

To implement the EKF method, the nonlinear system had
to be linearized using a first-order Taylor series approxima-
tion. The linearized form of the system equation is provided
in Appendix D.

4. Estimation Results

This paper presents a comparative performance for the appli-
cation of the extended Kalman filter, the particle filter, the
quadrature Kalman filter, and the smooth variable structure
filter for condition monitoring of RC batteries. The study is
conducted by simulation using the ADVISOR battery model.
The model parameters are documented in [39].

Figures 4 and 5 illustrate the input current (Is) and the
output voltages VCb and VCc used in the simulation. The pa-
rameter values Cb and Cc are made to vary in order to simu-
late fault conditions as shown in Figures 6 and 7. Parameters
Cb and Cc as well as the states VCb and VCc are estimated
using the four methods described in Section 2.

A comparison and discussion of the results is provided
using two simulated cases: one with noise and one with noise
as well as modeling errors. Note that the sampling time used
in the simulation was 0.01 seconds.

4.1. Extended Kalman Filter Results. For linear dynamic
systems in the presence of Gaussian white noise, the KF
provides an elegant and statistically optimal solution by
minimizing the mean-squared estimation error. The EKF
is used for nonlinear problems. The following covariance
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Figure 5: Capacitance voltages.
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matrices (error, process, and measurement, resp.) were used
for the EKF and were obtained by trial-and-error:

P =

⎡
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⎢

⎢

⎢

⎢
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1 30 30 30
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(20)
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The EKF worked very well in the absence of modeling
errors, as shown in Figure 8. Its performance degraded con-
siderably when modeling errors were added, as illustrated in
Figure 9.

As shown in Figure 10, the EKF was very sensitive to
the selection of the initial conditions; however, it often
recovered and performed very well. This is important to
note because without selecting good starting points, the filter
performed the worst. However, when good initial conditions
were selected, the EKF yields the best results (based on RMSE
and the assumption that there were no uncertainties in the
model). When uncertainties (besides white measurement
and process noise) were present in the filter model, in this
example, the EKF became unstable (as shown in Figure 9)
and failed to yield reasonable results. The simulation time
for the EKF was one of the fastest, and compared to the other
methods, it was computationally easy.

4.2. Particle Filter Results. For the PF method, a large number
of particles (500) were used. Its application results are shown
in Figures 11 and 12. The PF was able to estimate fairly well in
the presence of noise. However, when modeling uncertainties
were introduced, the PF had difficulty tracking the true
voltages. As shown in Figure 12(b), after about 20 seconds,
the PF was able to recover and provide a good estimate.

The PF provided satisfactory results. However, the tech-
nique had the highest RMSE (for the first case). That being
said, when compared to the EKF, no Jacobian matrix had
to be calculated to linearize the system matrix, as weighted
particles were used instead. This may be an attractive feature
if the system is too difficult to linearize. A large number
of particles (which were required to accurately estimate the
PDF), and the resampling feature of the PF, contributed
to a slower computational time. When uncertainties were
added to the filter model (as shown in Figure 12), the PF was
able to recover slowly from modeling errors and after some
time, accurately represent the first two states. There were
significant errors in the third and fourth states; however this,

as previously mentioned, may be attributed to measurements
being only available for the first two states.

4.3. Quadrature Kalman Filter Results. For the QKF, the ini-
tial values of the covariance matrices were set to the identity
matrix. The following results shown in Figures 13 and 14
were generated using the QKF based on the simulation setup.
The QKF performed very well for both cases. However, like
the previous methods, when uncertainties were introduced,
it was unable to accurately track the two parameters associ-
ated with the battery (Cb and Cc) as shown in Figure 14.

The QKF provided good results for the system. Like
the PF, there was no need to calculate the Jacobian, since
weighted quadrature points were used instead. One of the
drawbacks of the QKF is the computational demand when
a large number of states and quadrature points are used.
This leads to a slower calculation time. For example, since
four states were required, an array of 81 quadrature points
was required (34). If a more accurate model was required,
five quadrature points per state could be used. However,
this would further increase the computational time. For this
system, it was found that increasing the number of quadrat-
ure points had a negligible effect on the accuracy. Note that
when uncertainties were added to the filter model, the QKF
worked extremely well. However, the slow computation time
is its main hindrance.

4.4. Smooth Variable Structure Filter Results. The constant
diagonal matrix (γ) was set to 0.4, and the smoothing bound-
ary layer thicknesses (ψ) were, respectively, set to 1 × 10−3

and 1 × 10−2 for the two states and the two parameters,
respectively. The results are shown in Figures 15 and 16,
and were generated using the SVSF based on the simulation
setup. The SVSF method is very robust to noise and modeling
uncertainties, as demonstrated by the accurate estimation in
both cases.

The SVSF yielded very good results for condition mon-
itoring of the battery system. Similar to the previous two
methods, it did not require calculation of the Jacobian ma-
trix, and also required a time delay (signal extraction for the
last two states). The SVSF simulation time was just as fast as
the EKF, and the results were similar for the case with noise.
When errors were added to the filter model, the SVSF worked
the best (in terms of RMSE). Although there were still large
estimation errors for the third and fourth states, they were
finite and stable. It is important to note that the SVSF was
robust and not sensitive to changes in the filter parameters
and the initial conditions.

4.5. Summary of Results. The results of the simulations were
compared based on estimation error, robustness, sensitivity
to noise, and computational difficulty and time. As shown
in Table 1, the EKF performed best in terms of estimation
error, in the case of only noise (referred to as Case (1)).
In the presence of modeling uncertainties (Case (2)), the
EKF’s performance severely degraded. The SVSF yielded the
most accurate estimation for the case involving modeling
uncertainties. Both the PF and QKF performed moderately
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well, but at a cost of computational time, as shown in the last
row of Table 1.

The error in Table 1 refers to the root mean-squared error
(RMSE), calculated as follows:

RMSE = 1
N

√

√

√

√

√

N
∑

i=1

(xi − x̂i)2. (21)

Table 2 gives a quantitative comparison of the four filters.
The robustness was based on observations made on varying
the noise levels and considering its impact on model errors.
The sensitivities were determined by tuning the filters various

parameters. Computation (simulation) time was determined
for each method and may be compared on a relative basis.

5. Conclusions

This paper discussed the application of condition monitoring
to an RC battery system, typically found within a hybrid
electric vehicle. State and parameter estimation techniques
are important as they are responsible for providing accurate
estimates of the states when reliable measurements are
unavailable, and hence ensure successful condition mon-
itoring. A comparative study was presented in which the
Kalman and the extended Kalman filters (KF/EKF), the
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Figure 9: Extended Kalman filter simulation results (including errors).

Table 1: Quantitative summary of results.

EKF PF QKF SVSF

States and parameters Case (1) Case (2) Case (1) Case (2) Case (1) Case (2) Case (1) Case (2)

RMSE
VCb 2.25E− 09 5.61E− 01 2.34E− 04 9.50E− 03 2.07E− 05 4.19E− 05 2.82E− 07 1.24E− 08

VCc 1.10E− 08 9.23E− 02 2.95E− 04 1.30E− 03 2.07E− 05 4.19E− 05 6.58E− 07 9.62E− 09

Cb 12.02 597 41.19 1196 28.07 1196 18.48 1195

Cc 1.40 89 2.19 177 1.20 177 0.73 177

Simulation time (sec) 0.38 0.44 3.27 3.34 8.35 8.42 0.39 0.39
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Figure 10: EKF Simulation results with poor initial conditions (only noise).

Table 2: Qualitative comparison of the filters.

Characteristic EKF PF QKF SVSF

Robustness Little Medium Good Good

Sensitivity to
Uncertainties

High High Low Low

Sensitivity to Filter
Parameters

High Low Low Low

Computation Time Fast Slow Very Slow Fast

Table 3: Ranking of the state estimation techniques.

Ranking
Case (1): Case (2):

Only noise Noise and model errors

1 EKF SVSF

2 SVSF QKF

3 QKF PF

4 PF EKF

particle filter (PF), the quadrature Kalman filter (QKF), and
the smooth variable structure filter (SVSF) were applied
for condition monitoring. These estimation methods were
compared based on estimation error, robustness, sensitivity
to noise, and computation time. Table 3 summarizes the
results of the comparison. For the case without modeling
errors, the EKF worked the best in terms of RMSE and
computational speed. When modeling errors were present,
which is common in physical applications, the SVSF was
shown to work significantly better than the other methods
in terms of stability and RMSE.

Appendices

A. List of Nomenclature

A: System matrix

B: Input matrix

C: Output matrix

e: State estimation error

f : Nonlinear system or process equation

h: Nonlinear measurement or output equation

k: Time step index

K : Gain value (KF, QKF, or SVSF)

m: Number of measurements

n: Number of states

Neff: Effective number of particles

P: Error covariance matrix

Q: System noise covariance matrix

R: Measurement noise covariance matrix

Sat: Saturation function

t: Simulation time

Ts: Sampling time

u: Input

v: Measurement noise

w: System noise

wl: Quadrature point weight
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Figure 11: Particle filter simulation results (only noise).

x: System states

y: Observed measurement or output

z: Measurement output

γ: Constant diagonal gain matrix with elements having
values between 0 and 1

ω: Particle weight

Ψ: Smoothing boundary layer

π: Probability distribution

τ: Sampling time

̂ : Denotes an estimated value

∼ : Denotes an error value

· : On top of a parameter denotes a time derivative.

Furthermore, note that subscript k + 1 | k refers to an a
priori time step and that the subscript k + 1 | k + 1 refers an
a posteriori time step. A superscript of T denotes a matrix
transpose.

B. Quadrature Kalman Filter Algorithm

The following is a summary of the QKF algorithm, directly
as presented in [33, 34]. This process was used to obtain the
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Figure 12: Particle filter simulation results (including errors).

presented results. There are two updates at each step: the time
update and the measurement update.

Time Update Step.

(1) Assuming at time k the posterior density function
p(xk−1 | zk−1) = N(x̂k−1|k−1,Pk−1|k−1) is known, then
we may factorize as follows:

Pk−1|k−1 =
√

Pk−1|k−1

(√

Pk−1|k−1

)T
. (B.1)

(2) Evaluate the quadrature points {Xl,k−1|k−1}ml=1 as

Xl,k−1|k−1 =
√

Pk−1|k−1ξl + x̂k−1|k−1 . (B.2)

(3) Evaluate the propagated quadrature points{X∗l,k|k−1}ml=1
as:

X∗l,k|k−1 = f
(

Xl,k−1|k−1,uk−1, k − 1
)

. (B.3)
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Figure 13: Quadrature Kalman filter simulation results (only noise).

(4) Estimate the predicted state:

x̂k|k−1 =
m
∑

l=1

wlX
∗
l,k|k−1 . (B.4)

(5) Estimate the predicted error covariance:

Pk|k−1 =
m
∑

l=1

wlX
∗
l,k|k−1X

∗T
l,k|k−1 − x̂k|k−1x̂

T
k|k−1 +Qk. (B.5)

Measurement Update Step.

(1) Factorize:

Pk−1|k−1 =
√

Pk−1|k−1

(√

Pk−1|k−1

)T
. (B.6)

(2) Evaluate the quadrature points {Xl,k−1|k−1}ml=1 as:

Xl,k−1|k−1 =
√

Pk−1|k−1ξl + x̂k−1|k−1 . (B.7)
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Figure 14: Quadrature Kalman filter simulation results (including errors).

(3) Evaluate the propagated quadrature points {Zl,k|k−1}ml=1
as:

Zl,k|k−1 = h
(

Xl,k|k−1,uk , k
)

. (B.8)

(4) Estimate the predicted measurement:

ẑk|k−1 =
m
∑

l=1

wlZl,k|k−1 . (B.9)

(5) Estimate the innovation covariance matrix

Pzz,k|k−1 = Rk +
m
∑

l=1

wlZl,k|k−1Z
T
l,k|k−1 − ẑk|k−1ẑ

T
k|k−1.

(B.10)

(6) Estimate the cross covariance matrix

Pxz,k|k−1 =
m
∑

l=1

wlXl,k|k−1Z
T
l,k|k−1 − x̂k|k−1 ẑ

T
k|k−1. (B.11)
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Figure 15: Smooth variable structure filter simulation results (only noise).

(7) Estimate the Kalman gain:

Wk = Pxz,k|k−1P−1
zz,k|k−1 . (B.12)

(8) Estimate the updated step:

x̂k|k = x̂k|k−1 +Wk
(

zk − ẑk|k−1
)

. (B.13)

(9) Estimate the corresponding error covariance:

Pk|k = Pk|k−1 −WkPzz,k|k−1W
T
k . (B.14)

C. Derivation of the RC Battery
Model Equations

The output voltage may be calculated by summing the
voltages of each element in the circuit. Summation of the
outer loop and inner loop voltages yield two equations for
the output voltage, respectively:

VO = ISRt + IbRe +VCb, (C.1)

VO = ISRt + IcRc +VCc. (C.2)
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Figure 16: Smooth variable structure filter simulation results (including errors).

Recall Kirchhoff ’s current law, which states that the total
current entering a node must equal the total current leaving,
such that the supply current is defined by

IS = Ib + Ic. (C.3)

Rearranging for Ic in (C.3) and substituting into (C.2) yields

VO = ISRt + (IS − Ib)Rc +VCc. (C.4)

Equating (C.4) with the first output voltage (C.1) and solving
for Ib yields

Ib = ISRc
Re + Rc

+
VCc

Re + Rc
− VCb

Re + Rc
. (C.5)

Note that V̇Cb = Ib/Cb such that (C.5) becomes

V̇Cb = ISRc
Cb(Re + Rc)

+
VCc

Cb(Re + Rc)
− VCb

Cb(Re + Rc)
. (C.6)

Similarly, the above approach may be used to solve for the
second capacitor voltage rate of change:

V̇Cc = ISRe
Cc(Re + Rc)

+
VCb

Cc(Re + Rc)
− VCc

Cc(Re + Rc)
. (C.7)
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The output voltage may be solved by manipulating (C.1)
through (C.3). Setting Ic = IS − Ib in (C.2), and rearranging
for Ib, results in the following:

Ib = Rt + Rc
Rc

IS +
VCc

Rc
− VO

Rc
. (C.8)

Rearranging (C.1) for Ib, and setting the result equal to (C.8)
yields

VO

Re
− VCb

Re
− Rt
Re
IS = Rt + Rc

Rc
IS +

VCc

Rc
− VO

Rc
. (C.9)

Manipulating (C.9) and simplifying for the output voltage
results in

VO = Rc
Re + Rc

VCb +
Re

Re + Rc
VCc +

[

Rt +
ReRc
Re + Rc

]

IS.

(C.10)

D. Linearization of the Battery System

The battery model described in Section 3 requires lineariza-
tion for the EKF to be implemented. The linearization was
based on the Jacobian matrix and the four states (where for
neatness, WCb = 1/Cb and WCc = 1/Cc)

φk =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂ f1
∂VCb

∂ f1
∂VCc

∂ f1
∂WCb

∂ f1
∂WCc

∂ f2
∂VCb

∂ f2
∂VCc

∂ f2
∂WCb

∂ f2
∂WCc

∂ f3
∂VCb

∂ f3
∂VCc

∂ f3
∂WCb

∂ f3
∂WCc

∂ f4
∂VCb

∂ f4
∂VCc

∂ f4
∂WCb

∂ f4
∂WCc

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

k

, (D.1)

where the functions in (D.1) are described by

f1 = −TSVCbWCb

Re + Rc
+VCb

+
TSVCcWCb

Re + Rc
+
TSRcWCb

Re + Rc
IS,

f2 = −TSVCbWCc

Re + Rc
− TSVCcWCb

Re + Rc

+VCc +
TSReWCc

Re + Rc
IS,

f3 =WCb,

f4 =WCc.

(D.2)

The linearized form (φ) of the system matrix, using the
state vector described by (18), is as follows:

φk =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

φ11 φ12 φ13 0

φ21 φ22 0 φ24

0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

k

, (D.3)

where the elements are described by:

φ11 = −TSWCbk

Rek + Rck
+ 1,

φ12 = TSWCbk

Rek + Rck
,

φ13 = TS
Rek + Rck

(−VCbk +VCck + RckISk),

φ21 = TSWCck

Rek + Rck
,

φ22 = −TSWCck

Rek + Rck
+ 1,

φ24 = TS
Rek + Rck

(VCbk −VCck + RekISk).

(D.4)
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