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Microwave Device Modeling Using Efficient
21Optimization: A Novel Approach
JOHN W. BANDLER, F]ELLOW, IEEE, SHAO HUA CHEN, STUDENT MEMBER, IEEE,

AND SHAHROKH IIAIJAVAD, STUDENT MEMBER, IEEE

Abstract —A powerful modeling technique which exploits the theoretical
properties of the 11 norm is presented. The concept of multicircuit
measurements and its advantages for unique identification of parameters
are discussed. Self-consistent models for passive and active devices are
achieved by an approach that automatically checks the validity of model
parameters obtained from optimization. A set of formulas is presented to
evaluate the first-order sensitivities of two-port ,S-parameters with respect
to circuit elements appearing in an admittance or impedance matrix
description of linear network equivalents. These formulas are used for
devices with linear network models in conjunction with an efficient gradi-
ent-based II algorithm. Practical use of the efficient II algorithm in
complicated problems for which gradient evaluation may not be feasible is
also discussed. TWO different optimization problems arc formulated which
connect the concept of modeling to physical adjustments on the device.
Detailed examples in modeling of multicoupled cavi~ filters and GaAs
FET’s are presented.

I. INTRODUCTION

‘T’

HE PROBLEM of approximating a measured re-
sponse by a network or system response has been

formulated as an optimization problem with respect to the
equivalent circuit parameters of a proposed model. The
traditional approach in modeling is almost entirely di-
rected at achieving the best possible match between mea-
sured and calculated responses. This approach has serious
shortcomings in two frequently encountered cases. The
first case is when the equivalent circuit parameters are not
unique with respect to the responses selected and the
second is when nonideal effects are not modeled ade-
quately, the latter causing an imperfect match even if small
measurement errors are allowed for. In both cases, a
family of solutions for circuit model parameters may exist
which produce reasonable and similar matches between
measured and calculated responses.

In this paper, we present a new formulation for model-
ing that automatically checks the validity of the circuit
parameters, with a simultaneous attempt in matching mea-
sured and calculated responses. If successful, the method
provides confidence in the validity of the model parame-
ters; otherwise, it proves their incorrectness. The use of the
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11 norm, based on its theoretical properties, is an integral
part of the approach. We discuss the use of an efficient 11
algorithm [1]–[3] both in problems for which response
gradients can be evaluated and in complicated problems
for which gradient evaluation is not feasible. The use of a
gradient-based ZI algorithm and of a variation of Broyden’s
formula to update gradients internally [3] makes it possible
to employ a state-of-the-art optimization algorithm with
any simulation package capable simply of providing re-
sponses. Therefore, widely used microwave design pro-
grams, e.g., SUPER-COMPACT [4] and TOUCHSTONE
[5], which do not calculate exact gradients, could employ
such an algorithm with an appropriate interface. As a
result, it is conceivable that the modeling technique de-
scribed could find its way into microwave engineering
practice in the near future.

Two examples of practical interest, namely, modeling of
a narrow-band multicoupled cavity filter and of a wide-
band GaAs FET, follow the theoretical description of both
the traditional and the new approaches. In both examples,
a large number of variables are considered.

H. REVIEW OF CONCEPTS IN APPROXIMATION

A. The Approximation Problem

The traditional approximation problem is stated as
lows

minimize II~ II
x

fol-

(1)

where a typical component of vector ~, namely ~, evaluated
at the frequency point u,, is given by

fQwz(qc(k)-~m), i=l,2,. ... k. (2)

F,”’ is a measured response at W, and & is the response of
an appropriate network which depends nonlinearly on a
vector of model parameters x ~ [xl Xz . . . X.]T and
w, denotes a nonnegative weighting factor. Here II$ II de-
notes the general 1P norm, given by

ik \ l/p

(3)
\l=l )

The widely used least-squares norm, or lZ, is obtained with
p = 2, and as p ~ co (1) becomes the well-known minimax
problem. In this paper, we are primarily concerned with
the /l norm, i.e., formulating the approximation problem

0018-9480/86/1200-1282$01.00 01986 IEEE
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TABLE I
APPROXIMATIONPROBLEMUSING 11AND 12 OPTIMIZATION

Caw A Case B Case C

Parameter <I ez el <z , el e2

xl 00 00071 00 00391 00 -00261

X2 85629 85660 86664 58050 85506 128828

X3 293124 297515 305684 300523 291070 260012

X4 247375 ,25 0108 254261 196892 246452 321023

.5 122285 123699 129234 ~ 218794 120887 74300

as

(4)
x i=l

B. Properties of 11 Approximation

The use of the /l norm as compared to the other norms
1P with p >1 has the distinctive property that some large
components of ~ are ignored: i.e., at the solution there
may well be a few ~‘s which are much larger than the
others. This means that, with the components of ~ as
defined by (2), a few large measurement errors can be
tolerated by the 11 norm better than any other norm. In
this paper, we do not need to assume that such large errors
exist. We use a formulation in which some components of
~ are designed to have large values at the solution, thereby
justifying the use of ll. In Section III, we introduce such a
formulation using multicircuit measurements where the
change in parameters between different circuits, forms part
of the objective; i.e., they are some of the f, ‘s. Indeed,
these j‘s are expected to have a few large values and many
zeros at the solution.
The robustness of the 11 optimization in dealing with

large components of ~, as discussed in the literature [2],
[6], is the result of a mathematical property related to the
necessary conditions for optimalit y. The solution to (4) is
usually situated at a point where one or more of the ~,’s
equal zero while some huge ~‘s are in effect ignored
completely.

C. Illustration of 11 Approximation

To illustrate the above property, we consider a rational
approximation problem. We obtain a solution to the prob-
lem using II and 12 optimization. Then, we deliberately
create a few large deviations in the actual functions to
observe the effect on parameters when large components
of j are supposed to be present at the solution. Again, we
emphasize that, because of our formulation in Section III,
a few large deviations in &‘s are desired and expected. The
parameters obtained using the 11 and 12 optimization with
and without deviations present are compared.
We want to find the rational approximant of the form

[7]
xl + X2(J + X36-7

K(x) =
1+ x~a +X5J

(5)

to the function h in the interval u = [0,1]. Using 51
uniformly spaced sample points on the given interval,

-.21 I , , , I
.0 .2 .4 .6 .8 1.0

OMEGR .’

(a)

1.0 - . .

.8 -

5 .6
H

/~
z .4 -
3
L ..

.0 ;

-.?1 I , , I
.0 .? *4 .6 .8 1.0

OMEGQ

(b)

Fig. 1. Approximations using [I and 12 optimuations. Solid line M the
actual function. Diamonds identify the approximation using 1] and
circles represent approximations with 12. Stars represent data points
after large deliberate deviations. (a) and (b) correspond, respectively. to
cases B and C in Section IL

parameter vector x was obtained by 11 and 12 optimi-
zation and the results are summarized in Table I under
case A. Using both sets of parameters, the approximating
function virtually duplicates the actual function over the
whole interval. We now introduce a few large deviations in
the actual function in two separate cases. In case B, the
actual function value is replaced by zero at five points in
the interval, namely, at 0.2, 0.4,0”0,1.0. In case C. we use
zero at 0.4 and 0.8, and one at 0.2 and 0.6. In both ::ases, 11
and 12 optimizations are performed and the parameters
obtained are summarized in Table I.

The parameters obtained by 11 optimization in cases B
and C are consistent with their values in case A. OrI the
other hand, the presence of large deviations has affected
the 12 optimization results severely, and inconsistent
parameters are obtained. Fig. l(a) and (b) illustrates the
approximating and actual functions for cases B and C.
Whereas the approximation using 11 has ignored the large
deviations completely and has achieved an excellent match
for both cases, the lZ approximation, which was as good as
11 in case A, has deteriorated. For instance, the particular
arrangement of deviations in case B has caused the ap-
proximating function to underestimate the actual function
over the whole interval.



1284 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 12, DECEMBER 1986

The property that a few large individual function j,’s are
ignored by 11 optimization and many ~,’s are zero at the
solution has also found applications in fault-isolation tech-
niques for linear analog circuits [8] and the functional
approach to postproduction tuning [9].

111. NEW APPROACH USING MULTIPLE SETS

OF MEASUREMENTS

The use of multiple sets of measurements for a circuit
was originally thought of by the authors as a way of
increasing the “identifiability” of the network. The idea is
to overcome the problem of nonuniqueness of parameters
that exists when only one set of multifrequency measure-
ments at a certain number of ports (or nodes) is used for
identification. By a new set of measurements we mean
multifrequency measurements on one or more responses
after making a physical adjustment on the device. Such an
adjustment results in the deliberate perturbation of one or
a few circuit parameters; therefore, to have multiple sets of
measurements, multiple circuits differing from each other
in one or a few parameters are created. In the above

v, c v>

Ecl1A t R, R2

h’
Fig. 2. Simple RC network.

nonuniqueness is proved using the concepts discussed in
the subject of fault diagnosis of analog circuits [8] in the
following way. Given a complex-valued vector of responses
~(%.$l), z=l,2, ””’, no (from which real-valued vector
F’( x, u) is obtained), the measure of identifiability of x is
determined by testing the rank of the n. X n Jacobian
matrix

J~ [vx/zT(x)] ‘. (7)

If the rank of matrix
uniquely identifiable
we have

J denoted by p is less than n, x is not
from h. Fo~ the

S1R1R2

1’[1+sIC(R1+R,)]2 [1+sIC(RI+R,)]2 [1+sIC(RI+R2)]2

J=

s.acR2(l + sn@cR2) S.OCRI(l + s#Rl) s~uRIR1

[l+snuC(R1+R2)]2 [I+ SHWC(R1+R2)]2 [l+sntiC(R1+R2)]2

llC circuit example,

(8)

context, the term multicircuit identification may also be Denoting the three columns of J by Jl, J2, and J3, we
used.

In this section, we first use a simple example to illustrate
the usefulness of multicircuit measurements in identifying
the parameters uniquely. We formulate an appropriate
optimization problem and also discuss its limitations.
Finally, we develop a model verification method and
formulate a second optimization problem which exploits
multicircuit measurements and the properties of the 11
optimization in device modeling.

A. Unique Identification of Parameters Using Multicircuit
Measurements

Consider the simple RC passive circuit of Fig. 2. The
parameters x = [Rl R z C]’, where T denotes the trans-
pose, are to be identified. If we have measurements only
on V2, given by

SCR1R2
V2 =

1+sC(R1+R2)
(6)

have

i)

2 C(R2– R1)
J1– : J2+

R;
J3=0 (9)

1

i.e., J cannot have a rank greater than 2. Therefore, x is
not unique with respect to V2.
Now, suppose that a second circuit is created when R z

is adjusted by an unknown amount. Using a superscript to
identify the circuit (1 or 2), we have

and

sCIR~R:
v“ .

I+sC1(R:+R:)

(lOa)

(lOb)

it is clear by inspection that x cannot be uniquely de- noting that R; and C’ are not present, since only R z has
termined regardless of the number of frequency points and changed.
the choice of frequencies used., This is because RI and R z Taking only two frequencies SI and S2, the expanded
are observed in exactly the same way by V2. Formally, the parameter vector x = [R; R; C1 R ~] ~ is uniquely
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identifiable because the Jacobian Jgiven by

J=

s2clR\(l + S’ClR\)

[1+ s’cl(l?~+ R\)]’

Slclll;(l+s’c%;)

1-p+.,q~~+~;jj’
s2clR~(l + S2CIR; )

[1+ S2C’(R; +R;)]2

is of rank 4 if ,sI # Sz.

[1+.s,C’(R~ +R\)]2 [l+,s2C’(R~+ R;)]’

o

0

To summarize the approach, it can be stated that al-
though the use of unknown perturbations adds to the
number of unknown parameters, the addition of new mea-
surements could increase the rank of J by an amount
greater than the increase in n, thereby increasing the
chance of uniquely identifying the parameters. The origi-
nality of the technique lies in the fact that neither ad-
ditional ports (nodes) nor additional frequencies are re-
quired. The additional measurements on the perturbed
system can be performed at subsets of the ports (nodes) or
frequencies employed for the unperturbed system.

Based on the above ideas and for n, circuits, we for-
mulate an 11 optimization problem as follows:

where

A’;[w)-(w)q (13)

and

(14)

with superscript and index t identifying the tth circuit.
Here, x: represents the vector of additional parameters
introduced after the (t – l)th adjustment. It has only one
or a few elements compared to n elements in x t which
contains all circuit parameters after the change, i.e., includ-
ing the ones which have not changed. The variable kl is an
index whose value depends on t; therefore, a different
number of frequencies may be used for cliff erent circuits.

B. Model Verification Using Multicircuit Measurements

Although the optimization problem formulated in (12)
with the variables given in (14) enhances the unique identi-
fication of parameters, its limitations should be considered
carefully. The limitations are related to the way in which

o

[l+ SlC1(R~+R~)]’

s2C1R~(l + S2C1R:)

[I+ S2C1(R~+R~)]2

1285

[11)

model parameters x are controlled by physical adjust-
ments on the device.

Parameters x are generally controlled by some physical
parameters @~ [@l +2 . . . @,]~. For instance, in ac-
tive device modeling, intrinsic network parameters are
controlled by bias voltages or currents, and in waveguide
filters, the penetration of a screw may control a particular
element of the network model. The actual functional rela-
tionship between ~ and x may not be known; however, we
often know which element or elements of x are affected by
an adjustment on an element of +. The success of the
optimization problem (12) is dependent on this knowledge;
i.e., after each physical adjustment, the correct candidates
should be present in x~. To ensure this, we should cwer-
estimate the number of model parameters which are lilkely
to change after adjusting an element of +. On the other
hand, we would like to have as few elements as possible in
each X. vector, so that the increase in the number of
variables can be overcompensated for by the increaya in
rank of matrix J resulting from the addition of new
measurements.

In practice, by overestimating the number of elements in
X. or by making physical adjustments which indeed affect
many model parameters (a change in bias voltage may
affect all intrinsic parameters of a transistor model), the
optimization problem of (12) may not be better condi-
tioned than the traditional single-circuit optimization. ‘This
means that the chance for unique identification of parame-
ters may not increase. However, multicircuit measurements
could still be used as an alternative to selecting different
frequency points or a greater number of points, as may be
done in the single-circuit approach.
We now formulate another optimization problem, which

either verifies the model parameters obtained or proves
their inconsistency with respect to physical adjustments.
The information about which elements of x are affected b y
adjusting an element of +, although used to judge the
consistency of results, is not required a priori. Therefore,
the formulation is applicable to all practical cases.

Suppose that we make an easy-to-achieve adjustment on
an element of @ such that one or a few components of x
are changed in a dominant fashion and the rest remain
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constant or change slightly. Consider the following /l
optimization problem

k,

minimize ~ ~ 1~’1+ ~ ~,lx} – x,21 (15)
x ~=1*=1 ,=1

where /3, represents an appropriate weighting factor and x
is a vector which contains circuit parameters of both the
original and perturbed networks, i.e.,

[ 1x’~=

X2
(16)

Notice that, despite its appearance, (15) can be rewritten
easily in the standard 11 optimization form, which is
minimizing Xl 01, by taking the individual functions from
either the nonlinear part ~,r or the linear part x} – x;.

The above formulation has the following properties.
1) Considering only the first part of the objective func-

tion, the formulation is equivalent to performing two opti-
mization, i.e., matching the calculated response of the
original circuit model with its corresponding measure-
ments and repeating the procedure for the perturbed cir-
cuit.

2) By adding the second part to the objective function,
we take advantage of the knowledge that only one or a few
model parameters should change dominantly by perturb-
ing a component of +. Therefore, we penalize the objective
function for any difference between xl and X2. However,
since the 11 norm is used, one or a few large changes from
xl to x 2 are still allowed. Discussions on the use of the 11
norm in Section II should be referred to.

The confidence in the validity of the equivalent circuit
parameters increases if a) an optimization using the objec-
tive function of (15) results in a reasonable match between
calculated and measured responses for both circuits 1 and
2 (original and perturbed) and b) the examination of the
solution vector x reveals changes from xl to x 2 which are
consistent with the adjustment to o; i.e., only the expected
components have changed significantly. We can build upon
our confidence even more by generalizing the technique to
more adjustments to @, i.e., formulating the optimization
problem as

when n. circuits and their corresponding sets of responses,
measurements, and parameters are considered and the first
circuit is the reference model before any adjustment to ~.
In this case, x is given by

[X1l
X2~= . . (18)

1:1Xn’

By observing inconsistencies in changes of x with the
actual change in ~, the new technique exposes the ex-
istence of nonideal effects not taken into account in the
model. Having confidence in the parameters as well as

observing a good match between measured and modeled
responses means that the parameters and the model are
,valid, even if different responses or different frequency
ranges are used.

IV. PRACTICAL APPLICATION OF THE
11 ALGORITHM

Consider the 11 optimization problem formulated in
(17). The success of the new technique described relies
upon the use of an efficient and robust 11 algorithm.
Recently, a superlinearly convergent algorithm for nonlin-
ear 11 optimization has been described [1]. The algorithm,
based on the original work of Hald and Madsen [2], is a
combination of a first-order method that approximates the
solution by successive linear programming and a quasi-
Newton method using approximate second-order informa-
tion to solve the system of nonlinear equations resulting
from the first-order necessary conditions for an optimum.

The most efficient use of the 11 algorithm requires the
user to supply function and gradient values of the individ-
ual functions in (17); i.e., network responses as well as
their gradients are needed. Starting with the impedance or
nodal admittance description of a network for which only
input and output port responses are of interest, we have
derived analytical formulas for evaluation of first-order
sensitivities of two-port ~ parameters with respect to any
circuit parameter appearing in the impedance or admit-
tance matrix. The formulas and more explanation are
given in the Appendix.

In many practical problems, e.g., in the presence of
nonlinear devices or complicated field problems, the
evaluation of gradients is not feasible. In such cases, it is
possible to estimate the gradients using the numerical
difference method. However, this is computationally slow
and consequently expensive. To take advantage of a fast
gradient-based approach, without requiring user-supplied
gradients or using the numerical difference method, the
original 11 algorithm has been modified [3]. Different and
flexible versions of the modified algorithm exist. A typical
version estimates the gradients using the numerical dif-
ference method only once and updates the gradients with
minimum extra effort by applying a variation of Broyden’s
formula as the optimization proceeds. All approximations
are performed internally; therefore, the optimization could
be linked to any analysis program which provides only the
responses.

V. EXAMPLES

A. Modeling of Multicoupled Cavity Filters

Test 1: A sixth-order multicoupled cavity filter centered
at 11785.5 MHz with a 56.2-MHz bandwidth is consid-
ered. Measurements on input and output return loss, inser-
tion loss, and group delay of an optimally tuned filter and
the same filter after a deliberate adjustment on the screw
which dominantly controls coupling kf12 were provided by
ComDev Ltd., Cambridge, Canada [10]. Although the
passband return loss changes significantly, we anticipate
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TABLE II
RESULTSFORTHESIXTH-ORDERFILTER EXAMPLE

Coupling Or,gmal Filter Perturbed Falter Change m Parameter

.
Ml, -00473 -o 1’!72 -o 0999*

NC*2 -00204 -00696 -o 0492*

.~33 -00305 -00230 00075

~44 00005 00066 00061

rkf~~ -00026 00014 0 Oodo

3J66 00177 -00047 -00224

M,Z 0,6489 07119 -01370”

M2S O6064 05969 -00095

M34 O 5106 05101 -00005

M4s 07709 07709 00000

M5e O 7898 07806 -00092

M36 -02783 -02850 -00067

*Significant change in parameter value.

that such a physical adjustment affects only model param-
eters &flz, Mll, and Mzz (the last two correspond to cavity
resonant frequencies) in a dominant fashion, possibly with
slight changes in other parameters.

Using the new technique described in this paper, we
simultaneously processed measurements on passband re-
turn loss (input reflection coefficient with a weighting of 1)
and stopband insertion loss (with a weighting of 0.05) of
both filters, i.e., the original and perturbed models. The 11
algorithm with exact gradients was used. The evaluation of
sensitivities is discussed in detail by Bandler et al. [11]. The
model parameters identified for the two filters are sum-
marized in Table II. Figs. 3 and 4 illustrate the measured
and modeled responses of the original filter and the filter
after adjustment, respectively. An examination of the re-
sults in Table II and Figs. 3 and 4 shows that not only an
excellent match between measured and modeled responses
has been achieved, but also the changes in parameters are
completely consistent with the actual physical adjustment.
Therefore, by means of only one optimization, we have
built confidence in the validity of the equivalent circuit
parameters. The problem involved 84 nonlinear functions
(42 x 2 responses for original and perturbed filters), 12
linear functions (change in parameters, of two circuit
equivalents), and 24 variables. The solution was achieved
in 72s of CPU time on the VAX 11/780 system.

Test 2: In this test, we used the new modeling technique
to reject a certain set of parameters obtained for an
eighth-order multicavity filter by proving their inconsistent
behavior with respect to physical adjustments. We then
improved the model by including an ideally zero stray
coupling in the model and obtained parameters which not
only produce a good match between measured and modeled
responses, but also behave consistently when perturbed by
a physical adjustment.

The eight-order filter is centered at 11902.5 MHz with a
60-MHz bandwidth. Return ,loss and insertion loss

o

30

40 L-_o_..77r..._ __=__&_..Lm
Frequency (Mtiz)

(a)

50 I **;30 I
1 17S0 11790 1 *e20 < tE1’50

Frequency (MHz)

(b)

Fig. 3. (a) Input return loss and (b) insertion loss responses of the
sixth-order filter before adjusting the screw. Solid line represents the
modeled response and dashed line shows measurement data.

measurements of an optimally tuned filter and the same
filter after an adjustment on the iris which dominantly
controls coupling Mzs were provided by ComDev Ltd [110].
Based on the physical structure of the filter, screw cou-
plings ~12, ~34, ikf~b, and ikl~g and the iris couplings
M23, iM14, Mb5, M67, and M5g, as well as all cavity
resonant frequencies and input–output couplings (trans-
former ratios), are anticipated as possible nonzero paran~e-
ters to be identified.

In the first attempt, the stray coupling M36 was ignored
and passband measurements on input and output return
loss and stopband isolation for both filters were used to
identify the parameters of the filters. The parameters are
summarized in Table HI. An examination of the results
shows no apparent trend for the change in parameters; i.e.,
it would have been impossible to guess the source of
perturbation (adjustment on the iris controlling M23 ) from
these results. This is the kind of inconsistency that would
not have been discovered if only the original circuit had
been considered.

In a second attempt, we included the stray coupling MSC
in the circuit model and processed exactly the same
measurements as before. Table III also contains the iden ti-
fied parameters of the two filters for this case. A compari-
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Fig. 4. (a) Input return loss and (b) insertion loss responses of the
sixth-order filter after adjusting the screw, Solid line represents the
modeled response and dashed line shows measurement data.

son of the original and perturbed filter parameters reveals
that the significant change in couplings Mlz, Mz~, and
Mjd and cavity resonant frequencies Mzz and M33 is
absolutely consistent with the actual adjustment on the
iris; i.e., by inspecting the change in parameters, it is
possible to deduce which iris has been adjusted. The
measured and modeled input return loss and insertion loss
responses of the two filters are illustrated in Figs. 5 and 6.
It is interesting to mention that the match between mea-
sured and modeled responses in the first attempt, where
M36 was ignored and inconsistent parameters were found,
is almost as good as the match in Figs. 5 and 6. This
justifies the essence of this paper, which attempts to iden-
tify the most consistent set of parameters among many
that produce a reasonable match between measured and
calculated responses.

B. FET Modeling
Test 1: Device NEC700, for which measurement data

are supplied with TOUCHSTONE, was considered. Using
S-parameter data, single-circuit modeling with the 11 ob-
jective was performed. The goal of this experiment was to
prepare for the more complicated Test 2 by testing some
common formulas and assumptions. The equivalent circuit

TABLE III
RESULTSFORTHEEIGHTH-OROERFILTER EXAMPLE

M36 ,~nmed hlJ6 present

Coupling Orlgmal Perturbed Orlgmal Perturbed

Ml, -00306 -01122 -00260

~2z O 0026 -00243 00354

~33 -00176 -00339 -006’,4

w4 -00105 -00579 -00078

~55 -00273 -00009 -00214

~66 -00256 00457 -00179

~77 -00502 00679 -00424

~88 -00423 00594 -00426

~lz O 7789 07462 03879

X*3 O S061 O S376 09990

J’t34 O 4460 04205 00270

w5 05335 05343 04791

M56 05131 05373 05006

ar~, 07260 07469 06495

M~~ o S330 0 S416 O 8447

M,4 03470 -O 35S2 -O 164S

I@ -01995 -01892 -01000

!@e 01314

Input and output couplings: n? = n; = 1.067.
‘Slgniflcant change in parameter vafue.

-00529

065038

-O 6113*

-00151

00506

-00027

-00278

–O 0272

0 2876*

08160.

-O 1250*

05105

05026

06451

08463

-07959

-00953

01459

at normal operating bias (including the carrier) with 16
possible variables, as illustrated in Fig. 7, was used. An II
optimization with exact gradients, which are evaluated
using the formulas derived in the Appendix, was per-
formed. Measurement data were taken from 4 to 20 GHz.
Table IV summarizes the identified parameters and Fig. 8
illustrates the measured and modeled responses.

Test 2: Using S-parameter data for the device B1824-20C
from 4 to 18 GHz, Curtice and Camisa have achieved a
very good model for the FET chip [12]. They have used the
traditional least squares optimization of responses utilizing
SUPER-COMPACT. Their success is due to the fact that
they have reduced the number of possible variables in Fig.
7 from 16 to 8 by using dc and zero-bias measurements.
We created two sets of artificial S-parameter measure-
ments with TOUCHSTONE: one set using the parameters
reported by Curtice and Camisa (operating bias V~~=
8.0 V, V~, = – 2.0 V, and Id,= 128.0 mA) and the other by
changing the values of Cl, Cz, L~, and L~ to simulate the
effect of taking different reference planes for the carriers.
Both sets of data are shown in Fig. 9, where the S
parameters of the two circuits are plotted on a Smith
Chart.
Using the technique described in this paper, we processed

the measurements on the two circuits simultaneously by
minimizing the function defined in (15). The objective of
this experiment is to show that even if the equivalent
circuit parameters were not known, as is the case using real
measurements, the consistency of the results would be
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Fig. 5. (a) Input return loss and (b) insertion loss of the eighth-order filter before adjusting the iris. Solid line represents the
modeled response and dashed line shows the measurement data.
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f2 N. 0000

TABLE IV
RESULTSFORTHENEC700 FET EXAMPLE

Parameter value

c, (pm O0448

C2 (pF) 00058

Cdg lpF) O0289

c a. [ pFl O 2867

Cd, (pF) O0822

c, (pF) 00100

Rg (n) 35000

Rd (Q) 20000

R, (01 36210

R, (n) 73178

Gal-1 (kw O2064

Lg (IIH) 00585

Ld [nH) O0496

L, (nH) 00379

gm (s1 O0572

L (P,) 31711

-5 0 i -1 -3 -2r-

Fig. 9. Smith Chart display of S1l, S22, S12, and S21 for the curier-
mounted FET device B1824-20C before and after adjustment of param-
eters. Points a and b mark the high-frequency end of origin-al and
perturbed network responses, respectively.

proved only if the intrinsic parameters of the FET remain
unchanged between the two circuits. This was indeed the
case for the experiment performed. Although the maxi-
mum number of possible variables, namely 32 (16 for each
circuit), was allowed for in the optimization, the intrinsic
parameters were found to be the same between the two
circuits and, as expected, Cl, Cz, L~, and L~ changed
from circuit 1 to 2. Table V summarizes the parameter
values obtained. The problem involved 128 nonlinear func-
tions (real and imaginary parts of four S parameters, at
eight frequencies, for two circuits), 16 linear functions, and
32 variables. The CPU time on the VAX 11/780 system
was 79 s.
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TABLE V
RESULTSFORTHEGAAS FET B1824-20C EXAMPLE

Parameter Original Cmc.,t Ikr(urbcd C,rCu,t

c1 (PF) 00440 00200,

cl (PF) O0389 00200,

Cdg (pF) O0416 00416

c K. (pF) O6869 06869

c& (pF) 01900 01900

c, (pF) 00100 00100

RK (n) 05490 05490

Rd (w 13670 13610

R. (Q) 10460 10480

R, (Q) 10842 10842

Gal-l (kw O3761 03763

Lg (nH) O 3158 0 1500*

Ld (.H) 02515 0 1499*

L, (nH) 00105 00105

gr” (s) 00423 00423

. (p.) 7,4035 74035

*Significant change in parameter value.

VI. CONCLUSIONS

We have described a new technique for the modeling of
microwave devices which exploits multicircuit measure-
ments. The way in which the multicircuit measurements
may contribute to the unique identification of parameters
has been described mathematically with the help of a
simple example. An optimization problem which is directly
aimed at overcoming the nonuniqueness of parameters was
formulated. A second formulation, which is aimed at the
automatic verification of model parameters by checking
the consistency of their behavior with respect to physical
adjustments on the device, was proposed.

The use of the 11 norm is an integral part of the
approach. We discussed the use of an efficient 11 algorithm
both in problems for which gradient evaluation is possible
(a set of useful formulas was presented) and in comp-
licated problems for which gradient evaluation is not
feasible. In the latter case, the technique described in this
paper can be used in conjunction with widely used micro-
wave design programs or in-house analysis programs em-
ployed in industry.

An important aspect of any optimization problem is the
question of starting values. To address this problem, we
recommend the use of II optimization with simplified
network equivalent models such as low-frequency models.
In cases where little information about the range of param-
eter values is available, a common set of measurements can
be used with different network equivalents (different
topology) for the optimization. The solutions obtained
using simplified models provide good starting values for
multicircuit modeling with complicated network equiv-
alents.

The results for the modeling of narrow-band multicou-
pled cavity filter and wide-band GaAs FET examples are
very promising and completely justify the use of our
multicircuit approach and formulation. The authlors
strongly believe that the use of multiple sets of measure-
ments and a formulation which ties modeling (performed
by computer) to the actual physical adjustments on the
device will enhance further developments in modeling and
tuning of microwave circuits.
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APPENDIX
FIRST-ORDER SENSITIVITY EVALUATION FOR

TWO-PORT S PARAMETERS

Here, the details for evaluating the first-order sensitivi-
ties of two-port S parameters with respect to the circuit
elements are given. It is assumed that the nodal admittance
matrix Y for the circuit model is available. For the case in
which the impedance matrix is given, the approach is
similar.
The open-circuit impedance matrix of the two-porlt is

given by

[

(Y-’)ll (Y-’)ln

‘0== (Y-’)n, (Y-l)nn 1 (Al)

where Y. ~. is the admittance matrix arranged such that
nodes 1 and n identify the ports at which S paramel ers
are of interest.

Assuming that @ is a generic notation for a variable
which appears in Y in the locations as shown below

k 1

–“+ ““”y= i . . . ~ “.’. .
(A2)

J . . . -“4 ““” i ““”

it can be proved, after a few simple algebraic manipula-
tions, that

[1P1 ql
Zoc = pn qn (,%3)

and

azoc
[
(P1-?,)(Pk-Pl) (31-},)(%-%-—= —

aq (?i-@J)(P~-Pl) (ll-~,)(q~-ql) -
(A4)

where vectors p, j, q, and ~ are obtained by solving the
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systems of equations

Yp = el (A5a)

YTfi = el (A5b)

Yq = en (A5c)

and

(A5d)

where el=[l O”” .O]~and e.=[O. .. Ol]~.
From a computational point of view, the solution to

(A.5) requires only one LU factorization of Y (the LU
factors of Y~ are obtained from LU factors of Y without
calculations) and four forward and backward substitu-
tions. Matrix Y is never inverted in the process.

The two-port S-parameter matrix and its sensitivities
with respect to @ are then evaluated using the following
relationships:

(i-l) =s(i+l) (A6)

and

ds 1
—(l-s)

x = 2Z0
%(1-S) (A7)

where

1
~= —zocZ.

and

(A8)

(A9)

with ZO denoting the normalizing impedance and 1 repre-

senting the 2 X 2 unit matrix.
The sensitivities of S with respect to circuit elements

can be evaluated using 0S/01#1. For instance, for transcon-
ductance parameter g~ and delay r associated with a
VCCS in the circuit, we have i3S/dg~ = e ‘J”’ dS/dq and
aS/aT = – JUgme-J”’ iM/i?4, where @= gme-Jo’.
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of Networks 

JOHN W. BANDLER, FELLOW, IEEE, WITOLD 
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Abstract -This paper presents a fast and highly efficient algorithm for 
nonlinear I, optimization and its applications to circuits employing the 
properties of the I, norm. The algorithm, based on the work of Hald and 
Madsen, is similar to a minimax algorithm originated by the same authors. 
It is a combination of a first-order method that approximates the solution 
by successive linear programming and a quasi-Newton method using 
approximate second-order information to solve a system of nonlinear 
equations resulting from the first-order necessary conditions for an opti- 
mum. The new I, algorithm is particularly useful in fault location methods 
using the I, norm. A new technique for isolating the most likely faulty 
elements, based on an exact penalty function, is presented. Another 
important application of the algorithm is the design of contiguous-band 
multiplexers consisting of multicavity filters distributed along a waveguide 
manifold which is illustrated by a ltchannel multiplexer design. We also 
present a formulation using the I, norm for model parameter identification 
problems in the presence of large isolated errors in measurements and 
illustrate it with a sixth-order filter. 

I. INTRODUCTION 

The optimization problem to be considered has the following 
mathematical formulation: 

Let fi(x)=fi(xi;..,~~), j=l;..,m, beaset of m nonlin- 
ear, continuously differentiable functions. The vector x p [xi 
x2 . . . x,]r is the set of n parameters to be optimized. We 
consider the following problem: 

mir$tieF(x) P f ]h(x)] 
j=I 

subject to 

UTX + bi = 0, i-l,... 1 ’ eq 
UTX + b; > 0, i=(Z,+l);..,Z (1) 

where ai and bi, i = 1; . ., I, are constants. This is called the 
linearly constrained I, problem. 

The problem arises in a variety of areas. The most popular 
application of the Zi norm is the problem of approximating a 
function to data that might be contaminated with some wild 
points or gross errors. In this case, the minimization of the I, 
norm residual is superior to using other norms I, with p > 1 [l]. 
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The larger the value of p, the more focus is put on the data 
points with largest deviation from the approximating function. 

The number of applications of the Zi norm to circuit problems 
is increasing. The Zi norm has been successfully used to isolate 
the most likely faulty elements in fault isolation techniques for 
linear analog circuits [2]. We present a new technique for isolat- 
ing the most likely faulty elements which is based on an exact 
penalty function. 

Another important application of the Zt norm is the functional 
approach to post-production tuning [3], where the Zi type of 
objective function is used to select the number of tunable param- 
eters needed to tune all possible outcomes of a manufactured 
design. 

In this paper, the Z, norm is employed in a general multiplexer 
design procedure and in model parameter identification from 
measurements with large isolated errors. Therefore, a highly 
efficient and fast algorithm for fi optimization is of great impor- 
tance to many circuit designers and engineers. It is the purpose of 
this paper to present such an algorithm. 

We present an iterative algorithm for solving (l), which re- 
quires the user to supply function and gradient values of the 
nonlinear functions h. The algorithm also uses some second-order 
information, i.e., information about the second-order derivatives 
of the functions. This is approximated from the user-supplied 
gradients. 

The algorithm is similar to that of Hald and Madsen in [4]. It 
has been reported by Hald in [5], which describes and lists a 
Fortran subroutine implementing a version of the algorithm. 
Hald and Madsen [6] have demonstrated that the algorithm has 
sure convergence properties. Their results indicate that this al- 
gorithm may be the best of its class currently available. A survey 
of Zi algorithms has also been given in [6]. 

The plan of the paper is as follows. The algorithm of this paper 
is described in more detail in Section II, where the two methods 
(namely, the first-order method and the approximate second-order 
method) are presented and the switching conditions between the 
two methods are given. A new technique for isolating the most 
likely faulty elements, based on an exact penalty function, is 
presented in Section III and illustrated by a simple mesh network 
example. In Section IV, we describe an optimization procedure 
using the I, norm for contiguous-band multiplexer design. Sec- 
tion V illustrates the application of the I, norm to model 
parameter identification from measurements. We conclude in 
Section VI with an assessment of the potential impact of the Zt 
algorithm in the area of circuit design, fault location, and model 
parameter identification. 

II. DESCRIPTION OF THE ALGORITHM 

The algorithm of this paper is based on the work of Hald and 
Madsen [6]. It is a hybrid method combining a first-order method 
with an approximate second-order method. The first-order 
method is a robust trust region method which provides conver- 
gence to the neighborhood of a solution. It is based on linear 
model problems. These are solved subject to the constraints of 
the original problem (1) and a bound on the step length ]]h]]. The 

009%4094/87/0200-0174$01.00 01987 IEEE 
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latter bound reflects the neighborhood of the iterate xk in which 
the kth model function (see (2)) is a good approximation to the 
nonlinear I, function. When a good approximation to the solu- 
tion seems to have been obtained, then a higher order method 
must be used in order to obtain a fast ultimate rate of conver- 
gence. Therefore, a switch is made t,o a quasi-Newton method 
that solves a set of nonlinear equations that necessarily hold at a 
solution of (1). This method has superlinear final convergence. 
Several switches between the first-order and the quasi-Newton 
method may take place. The reason for allowing this is that the 
latter method works only close to a solution so that, if it is 
started too early, a switch back to the (more robust) trust region 
method is necessary. Notice that the user of this algorithm is 
required to supply function values and first-order derivatives, 
whereas the necessary second derivative information is generated 
by the algorithm. 

We now give a detailed description of the method which is a 
combination of Method 1 and Method 2. We first describe the 
two basic methods and next the combined method, including 
switching rules. 

A. Method 1 
This is a method providing global convergence. At the kth step 

a feasible approximation xk to a solution of (1) and a local 
bound A, are given. In order to find a better estimate, the 
following linearized problem is solved: 

mi$mizeF(x,,h) P i Ifi( $‘(xk)rh] 
j=l 

subject to 

Ilk 6 A, 
a~(Xk+h)+bbr=O, i=l,...,&, 

a~(x,+h)+b,>O, i=(I,,+l);.-,Z. (2) 
The solution of (2), h,, may be found by a standard linear 
programming routine. However, we use an implementation of the 
algorithm of Bartels,. Corm, and Sinclair [7], which is more 
efficient. Notice that (xk + hk) is feasible. 

The next iterate is (xk + /rk) provided that this point is better 
than xk in the sense of F, i.e:, if F(x, + hk) < F(xk). Otherwise, 
xk+l = xk. 

The local bound A, is adjusted in every iteration based on 
comparison between the decrease in the nonlinear objective func- 
tion and the decrease predicted by the model F. If the ratio 
between the two is small 

F(X,)-F(X,+hk)<o.25[F(Xk,o)-F(Xk,hk)] (3) 
then the bound is decreased: hk+i = h,/4. Otherwise, if 

F(Xk)-F(Xk+l)k)~0.75[~(xk,O)-F(xk,hk)] (4) 
then Ak+i = 2h,. If neither (3) nor (4) hold, then we leave the 
bound unchanged, Ak+i = A,. 

Experiments have shown that the method is insensitive to small 
changes in the constants used in this updating procedure of the 
local bound. Notice that if the new point (xk + hk) is not 
accepted, then the bound is decreased. 

B. Method 2 
This is a local method. It is assumed that a point near a 

solution x* is known and that the set of zero functions 

Z(x*) p { jlfi(x*) =0} (5) 

and the set of active constraints 
A( x*) g { ila;x* + b, = 0} (6) 

are known. 
At a solution x* of the linearly constrained !i problem (l), the 

functions whose values are zero play a special role since they 
contribute to the kinks of F. The functions which are nonzero at 
x * give smooth contributions to F since I,$( x)] is smooth near 
x* when f( x* ) # 0. Therefore, we partition F into a smooth 
and a nonsmooth part 

f’(x) = c Ifi(x)l+ c Ih( 
j65Z jeZ 

=dx)+ c If( 
jEZ 

where 2 = Z(x* ) is defined by (5) and g = g(x* ) is smooth in a 
neighborhood of x*. 

It is easily shown (see for instance Charalambous, [8]) that the 
following set of equations hold at the local minimum x = x * : 

g’tx)+j~z’j~‘(x)- C Pi”i=O 
iEA 

f(x) =0, jEZ 

u;x + bi = 0, iEA (7) 
where IS,] 41, pi 2 0, Z= 2(x*) and A= A(x*) are defined by 
(5) and (6), ad 

L?(x) = c IfiWI. 
j6CZ 

This set of equations corresponds to the Kuhn-Tucker condi- 
tions for the nonlinear programming problem which is equivalent 
to (1). The unknowns are x, aj, and pi, and it is seen that the 
number of unknowns equals the number of equations. If we use 
vector notation, (7) can be expressed as follows: 

R(x,&p) =o. (8) 
Method 2 is an approximate Newton method for solving the 

nonlinear system (7) (in the variables (x, 8, p)). Exact first de- 
rivatives are used but the matrix 

g”(X*)$ c ai&’ 
jeZ 

is approximated using a modified Broyden-Fletcher- 
Goldfarb-Shanno update. In this way, an approximate Jacobian 
Jk is obtained at the estimate (x,, Sck), pck)) of the solution of 
(7). The next estimate is obtained by Ax, 

Jk A&ick) =-R(x,,~(~),#~)) [ 1 Al.0 

(Xk+l,8(k+l),p~k+l)) =(Xk,w,p) 

+(Ax,,AG(~),A~(~)) (9) 
where R is defined by (8). Notice that no line search is involved. 

C. The Combined Method 
The combined method is the algorithm which we recommend 

to use in this paper. Method 1 is intended to provide the global 
convergence and Method 2 is used to obtain fast local conver- 
gence. 

Initially, Method 1 is used and the sets (5) and (6) are 
estimated. When a local minimum seems to be approached, a 
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switch to Method 2 is made. If the Method 2 iteration is 
unsuccessful, then Method 1 is used again. Several switches 
between the two methods may take place. When Method 1 is 
used, we say that the iteration is in Stage 1; otherwise, it is in 
Stage 2. A detailed description of the two stages follows. 

D. The Stage I Iteration 
We have a point xk, a local bound Ak, and a matrix Jk which 

should approximate the Jacobian of (7). 
1) xk+l and hk+l are found using Method 1, and approxima- 

tions Z,,, and Ak+l of the sets (5) and (6) are found via the 
zero and active sets at the solution h, of the linear model 
problem (2). 

2) An estimate (8(k+1),p(k+1)) of the multipliers is found 
through a least-squares solution of (Al) with (xkcl, Zk+l, Ak+l) 
inserted for (x, Z(x), A(x)). This estimate is used for finding a 
new Jacobian estimate Jk+l by the BFGS method. 

3) A switch to Stage 2 is made if the following two conditions 
hold: 

(a) the estimates Z,,, and Ak+l have been constant over u 
consecutive different Stage 1 iterates (v 2 3); 

(b) the multiplier estimates are in the correct ranges 
J8!k+1)l < 1 

J 

p!k+l) > 0. 
J 

E. The Stage 2 Iteration 
We have an estimate (xk, 8 (k),p(k)), estimates Z, and A, of 

(5) and (6), and a matrix Jk which should approximate the 
Jacobian of (7). 

1) Find (x~+~, 8ck+i), pck+‘)) and Jk+l using Method 2 with 
(Zk,Ak) insertedfor(Z(x*),A(x*)). 

2) Let Ak+l = A,, Z,,, = Z, and Ak+l = Ak. 
3) Switch to Stage 1 if one of the following conditions holds: 

(a) a function 4 with j B 2, has changed sign, or a con- 
straint corresponding to an index i with i ~5 A, has 
become violated; 

(b) a component of 8ck+‘) or of l&k+‘) is outside its range 
p!k+“l> 1 

J 

or 
p(.k+l) < 0 

J 

(C) IIR(Xk+l, ack+‘), #k+l)ll > o.999p(Xk, tick), p’“‘)II (See 
(8) for the definition of R). 

This completes the description of the combined method. 
It has been shown by Hald and Madsen [6] that the method 

has safe global convergence properties: it can only converge to 
stationary points. Furthermore, the final rate of convergence is at 
least superlinear, i.e., 

Iixk+l - x*ll d EkllXk - x*ll (10) 

where ck-‘Ofork+w. 

III. FAULT ISOLATION USING THE I, NORM 

A. Formulation of the Problem 
In this section, we deal with fault isolation in linear analog 

circuits under an insufficient number of independent voltage 
measurements. The I, norm is used to isolate the most likely 
faulty elements. Practically, the faulty components are very few 

Fig. 1. The resistive mesh network. 

and the relative change in their values is significantly larger than 
in the nonfaulty ones [9]. 

The method presented here is a modification of the method 
utilizing multiple test vectors to obtain the measurements [2]. 

For k different excitations applied to the faulty network, we 
consider the following optimization problem: 

mi$nize 2 ]Axi/x;] 014 
i=l 

subject to 
Vf-v;=o 

v;-v~=o @lb) 
where xh[[xl x2 ... x,,]r is a vector of network parame- 
ters, x0 represents the nominal parameter values, Axi 0 
xi-x:, i=1,2,...,n, represent the deviations in network 
parameters from nominal values, Vr is a p-dimensional vector 
of voltage measurements performed at the accessible nodes for 
the kth excitation, and Vl is a p-dimensional vector of voltages 
at accessible nodes calculated using the vector x as parameter 
values. 

The corresponding nonlinear I, problem can be formulated 
based on an exact penalty function [8] as follows: 

n+kxp 

mi- j;l IrjWl ~ 02) 

where 
h(x) e Axi/,;, i=1,2;..,n (13) 

fn+i(x) ‘Bi(T-Km)> i=1,2;.*,kxp (14) 
and &, i =1,2;. . , k x p, are appropriate multipliers (satisfying 
certain conditions stated in [S]). 

B. Mesh Network Example [2/ 
Consider the resistive network shown in Fig. 1 with the nomi- 

nal values of elements Gi =l.O and tolerances ci = kO.05, i = 
1,2,. * .) 20. All outside nodes are assumed to be accessible with 
node 12 taken as the reference node. Nodes 4, 5, 8, and 9 are 
assumed internal, where no measurements can be performed. 

Two faults are assumed in the network in elements G2 and 
G,,. For Case 1, we applied the new 1, algorithm to optimization 
problem (12) with a single excitation at node 1. For Case 2, we 
considered two excitations applied at nodes 3 and 6 sequentially. 
The results of both optimization problems are summarized in 
Table I. The nominal component values have been used as a 
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TABLE I 
RESULTS FOR THE MESH NETWORK EXAMPLE 

Percentage Deviation 

Element Nominal Actual 
Value VdW Actual Case 1 Case 2 

Gl 1.0 0.98 -2.0 0.00 0.13 

cz 1.0 0.50 -50.0' -48.78 -49.44 

09 1.0 1.04 4.0 0.00 3.60 

04 1.0 0.97 -3.0 0.00 0.00 

4 1.0 0.95 -5.0 -2.26 -1.11 

06 1.0 0.99 -1.0 0.00 0.00 

c, 1.0 1.02 2.0 0.00 0.00 

G3 1.0 1.05 5.0 0.00 0.00 

4 1.0 1.02 2.0 2.60 0.97 

GO 1.0 0.98 -2.0 0.00 0.00 

011 1.0 1.04 4.0 0.00 0.00 

G12 1.0 1.01 1.0 3.45 2.06 

'ha 1.0 0.99 -1.0 0.00 -0.44 

014 1.0 0.98 -2.0 0.00 0.00 

GO 1.0 1.02 2.0 0.00 1.55 

GM 1.0 0.96 -4.0 -2.42 -5.71 

011 1.0 1.02 2.0 0.00 2.6'7 

G18 1.0 0.50 -50.0. -52.16 48.94 

Gl9 1.0 0.98 -2.0 0.00 -1.95 

GO 1.0 0.96 -4.0 -3.61 -4.88 

Number of Function a a 
Evaluations 

Execution Time (sets) 
on Cyber 170/815 3.0 3.9 

l Fsultn 

starting point since just a few elements change significantly from 
nominal. 

In both cases, the actual faulty elements have been identified, 
but in Case 2, the estimated changes in the faulty elements are 
closer to their true values. Also, some of the changes in the 
nonfaulty components approach better their true values in 
Case 2. 

The estimated changes in the faulty elements are much closer 
to the actual changes as compared to the results reported in [2]. 

IV. CONTIGUOUS-BAND MULTIPLEXER DESIGN USING 
THE 1, NORM 

A. Introductory Remarks 
Practical design and manufacture of contiguous- and noncon- 

tiguous-band microwave multiplexers consisting of multicavity 
filters distributed along a waveguide manifold has been a prob- 
lem of significant interest [lo]-[13]. Recently, a general multi- 
plexer optimal design procedure using a powerful gradient-based 
minimax algorithm has been described [14]. The simulation and 
sensitivity analysis aspect of the problem together with a number 
of examples of multiplexer optimization have been presented in 
[15]. A typical structure under consideration is shown in Fig. 2. 
All design parameters of interest, e.g., waveguide spacings, in- 
put-output, and filter coupling parameters, can be directly opti- 
mized. A wide range of possible multiplexer optimization prob- 
lems can be formulated and solved by appropriately defining 
specifications on common port return loss and individual channel 
insertion loss functions. 

A major task in designing a multiplexer is to determine the 
location of the channel filters along the waveguide manifold [12]. 

This is very important for designs using the common port return 
loss as the only optimizau,n criterion. A typical value of lower 
specification on return loss over the passbands of all multiplexer 
channels is 20 dB. 

The error functions f,(x), j E J, are of the form 

-w,(~i)(F(x,~i)-s~(~i)) (15) 

where F( x, oi) is the return loss at the common port at the i th 
frequency, SL(oj) is the lower specification on return loss at the 
ith frequency, x$[x, x2 ... x,,]r is the vector of design 
parameters, and wL is an arbitrary user chosen nonnegative 
weighting factor. 

If we perform a minimax optimization based on these error 
functions and, at the solution, the minimax objective function 
value is negative, then the goal has been achieved. In many cases, 
however, using the filter spacings as the only optimization vari- 
ables may not be sufficient to satisfy all specifications, and 
minimax optimization gives results corresponding to the situation 
where the specification violations are distributed over all multi- 
plexer channels. In that case, the use of the one-sided I, optimi: 
zation of the same error functions may lead to more desirable 
results where the violations occur only over a few multiplexer 
channels. This process of identifying “bad channels” has two 
very important consequences. First, the results indicate in which 
channels the additional variables have to be released to improve 
locally (in the frequency domain) the performance of the multi- 
plexer, and second, it gives very good starting values of the 
waveguide spacings to be used in the subsequent minimax opti- 
mization. The idea presented is illustrated by designing a 12-GHz, 
12-channel multiplexer without dummy channels. The 12-channel 
contiguous-band multiplexer has a channel frequency separation 
of 40 MHz and a usable bandwidth of 39 MHz with the center 
frequency of channel no. 1 being 12 180.0 MHz. 

B. 12-Channel 12-GHz Multiplexer Design 
Suppose we want to design this multiplexer such that a lower 

specification of 20 dB on the common port return loss over the 
passbands of all 12 channels should be satisfied. 

We start the design process with 12 identical sixth-order filters 
with the coupling coefficients given in the following matrix [16]: 

I 

0 0.594 0 0 0 0 
0.594 0 0.535 0 0 0 

M= .; 0.535 0 0.425 0 - 0.400 
0 0.425 0 0.834 0 

0 0 0 0.834 0 0.763 
0 0 -0.400 0 0.763 0 1 

Initially, we select the spacing lengths along the waveguide 
manifold as the only optimization variables with starting values 
set equal to X,, /2 (half the wavelength corresponding to the k th 
center frequency). For the kth channel, the waveguide spacing is 
measured along the manifold from the adjacent (k - 1)th chan- 
nel. For the first channel, the spacing is the distance from the 
short circuit. The filters are assumed lossy and dispersive. Wave- 
guide junctions are assumed nonideal. 

Fig. 3 shows the return-loss response of the multiplexer at the 
start of the optimization process. The specification on the com- 
mon port return loss is seriously violated, especially in the lower 
frequency range (corresponding to channels 9-12). 

The filter spacings are the dominant variables of the problem. 
This is based on the initial sensitivity analysis of the common 
port return loss function w.r.t. all variables at selected frequency 
points. 
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Fig. 2. The multiplexer configuration under consideration. J1, J2,. , JN are arbitrarily defined 3-port junctions. B,, B2; ., B, are 

terminated branches or channels which may each be represented in reduced cascade form and S1; S,; . ., S, are usually waveguide 
spacing elements. 

FREOUENCY I MHZ I 

Fig. 3. Responses of the 1Zchannel multiplexer at the start of the optimization process 

We perform the one-sided I, optimization which is defined in optimized spacings as the starting values for the spacings. The 
the following way: final optimized return loss of the 12-channel multiplexer is shown 

m in Fig. 5. The problem involves 60 nonlinear design variables. 

where 

V. MODELPARAMETERIDENTIFICATIONUSING 

THEl,NoRM 

’ i 
h(x) ifh(x) >O A. Formulation of the Problem f,* & 
0 if fi(x) < 0. (17) This application of the l, norm to circuit problems deals with 

The functions h(x) are the original error functions defined in 
model parameter identification from measurements. The problem 
of approximating a measured response by a network or system 

(1% 
We define also the gradients of the functions h*(x) in the 

response can be formulated as an optimization problem 

following way: ~$fWlfll 09) 

if h(x)>0 
(18) 

where 

if f;(x) CO f’[fi f* ... fklT 
The results of the !, optimization defined above are shown in 
Fig. 4. The violations of the 20-dB specification are most serious 
in the frequency range corresponding to channels l-2 and 9-12. 
This motivates us to release additional optimization variables in 
the filters corresponding to these channels. As additional optimi- 
zation variables we release the input-output transformer ratios, 
cavity resonant frequencies, as well as intercavity couplings. 
From that point, minimax optimization is employed using the I1 

h(4) ‘FC(O,~i)-F”‘(~s)t i=1,2;..,k. (21) 

F’(+, oi) is the response of an appropriate model which 
depends nonlinearly on a vector of parameters 4 p 
1% +2 ... %I= and F”(q) is a measured response corre- 
sponding to measurements at data (frequency) points wi, i = 
1,2;. ., k: 

It is usually assumed that the expected values of components 
of f are zero, but due to the presence of measurement errors in 
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Fig. 4. Responses of the 12-channel multiplexer with optimized spacings only using I, optimization. 
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Fig. 5. Responses of the 12-channel multiplexer with optimized spacings, input-output transformer ratios, cavity resonances, and 
coupling parameters using minimax optimization. 

observing F”‘( oi), this cannot be realized in practice. The par- 
ticular norm to be used depends on the distribution of these 
:rrors, represented by the components of f. 

It is commonly supposed that the values of the fi’s are inde- 
pendent and normally distributed, when the maximum likelihood 
zstimate of the data is given by choosing the norm to be the 
least-squares norm [17]. The measurements, however, might con- 
tain some isolated large errors, and in this case, minimization of 
the 1, norm residual is recommended due to its “filtering” 
properties w.r.t. large errors. 

Using the I, norm, the identification problem becomes 

(22) 
9 i=l 

rhereh($), i=1,2;..,k,aredefinedin(21). 

“. Sixth-Order Multicoupled cavity Filter Example 
In this example, we deal with multicoupled cavity narrow 

bandpass filters used in microwave communication, systems (see 
Fig. 6). 

A narrow-band lumped model of an unterminated multicavity 
filter has been given by Atia and Williams [18] as 

zz=v 
where (23) 

Z=j(sl+M), (24) 

(25) 

1 denotes an n X n identity matrix, M is an n X n coupling 
matrix whose (i, j) element represents the normalized coupling 
between the i th and jth cavities, w. is the center frequency, and 
Aw is the bandwidth parameter. The diagonal entries Mii repre- 
sent the deviations from the synchronous tuning. 

In practice, it is often desired to determine the actual filter 
couplings based on response (return loss or insertion loss) mea- 
surements. The problem can be formulated as an optimization 
problem (22) with the I, objective function. 

In this example, reflection coefficient has been used as the 
filter response. A sixth;order filter centered at 4000 MHz with 
40;MHz bandwidth is considered. 
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Fig. 6. Unterminated coupled-cavity filter illustrating the coupling coeffi- 
cients. 

TABLE II 
DATA USED AS MEASUREMENTS IN THE SIXTH-ORDER FILTER EXAMPLE 

Frequency 
(MHz) 

Reflection 
Coefficient 

3915.0 0.99 
3911.0 1.00 
3919.0 0.89 
3960.0 0.56 
3962.0 0.26 
39640 0.23 
3986.0 0.23 
3986 0 0.23-0.15 
3986.0 0.20 
3990.0 0.14-bo.40 
3992.0 0.06 
3994.0 0.01 
3996.0 0.05 
3996.0 0.06 
4000.0 0.09 
4002.0 0.06 
4004.0 0.05 
4006.0 0.01 
4006.0 0.06 
4010.0 0.14 
4012.0 0.20 
4014.0 0.23 
4016.0 0.23 
4016.0 0.25 
4020.0 0.55 
4022.0 099 
4024.0 0.99 

To demonstrate the properties of the II norm in the identifica- 
tion problem, we deliberately introduce large errors to data 
representing the measurements. Table II contains data (frequency 
point, reflection coefficient) used- in the example. Measurement 
0.23 at 3986.0 MHz has been replaced by 0.75 and measurement 
0.14 at 3990.0 by 0.40. The optimization problem (22) has been 
solved with the data containing two large errors. The results of 
identification are summarized in Table III. All the couplings have 
been identified successfully in the presence of large errors. The I, 
objective function of the solution is equal to the sum of the 
absolute values of the errors introduced in the measurements. 

VI. CONCLUSIONS 

We have described a highly efficient algorithm for nonlinear l, 
optimization problems. The algorithm combines linear program- 
ming methods with quasi-Newton methods and the convergence 
is at least superlinear. 

TABLE III 
RESULTS OF IDENTIFICATION FOR THE SIXTH-ORDER FILTER 

PROBLEM WITH DATA CONTAINING LARGE ERRORS 

Coupling Actual Value Identified Value 

Ml2 0.859956 0.860312 
M23 0.526602 0.527016 

MS4 0.191694 0.791691 

M45 0.526602 0.526164 

%6 0.659956 0.659606 

Ml6 0.061293 0.061213 

M25 -0.393665 -0.393660 

Number of 
Function 
Evaluations 19 

(1 Objective 
Function at the 
Solution 0.71626 

Execution Time 
bxs) on 
VAX 11/180 12.5 

The importance of the algorithm stems from the fact that the 
number of applications of the I, norm to circuit and system 
problems has been increasing in recent years. The necessary 
conditions for optimality of the nonlinear I, problem (see, e.g., 
[S]) indicate that zeros of the nonlinear functions h(x) play an 
important role in the characteristics of the I, problem. This fact 
has been used in fault isolation techniques for linear analog 
circuits and we have demonstrated that the new I, algorithm is 
very successful in methods for fault isolation in linear at&o: 
circuits under an insufficient number of independent voltage 
measurements. 

A formulation using the I, norm for the initial stage ot 
multiplexer design has been presented and illustrated by a 12- 
channel 12-GHz multiplexer. The one-sided I, optimization set: 
to zero as many error functions as possible and this results in 
identifying channels of the multiplexer where the specification 
violations are m&t serious. 

We also presented a formulation using the 1, norm for model 
parameter identification problems in the presence of large iso- 
lated errors in the measurements. 

We feel that the properties of the I, norm will be used more 
and more frequently in solving circuit and system problems, 
including diagnosis of networks, selection of tunable p&ameter: 
in post-production tuning, and model parameter identification 
from measurements. 
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Fig. 1. Illustration of 2-D linear FIR least-squares filtering problem. 

The subject of this paper is the development of fast algorithms 
for 2-D finite-impulse response (FIR) Wiener filters which mini- 
mize the mean-square-error (MSE) criterion of performance. 
Assuming a 2-D FIR filter with quarter-plane support, the mini- 
mization in the spatial-domain results in a linear system of 
normal equations whose solution provides the coefficients of the 
Wiener filter. The solution of these normal equations requires a 
tremendous amount of computational effort. However, if the 
input signal is either horizontally or vertically stationary, then a 
proper arrangement of the normal equations results in a block 
Toeplitz system of linear equations, which can be efficiently 
solved using the multichannel Levinson algorithm [4], [5]. If the 
input signal is featured by both vertical and horizontal stationar- 
ity (homogeneous signal), then the normal equation matrix at- 
tains a Toeplitz-Toeplitz (TIJ structure (block Toeplitz with 
Toeplitz entries). Although the multichannel Levinson algorithm 
[6] can also be used in this case, we introduce two new algorithms 
which offer a computational saving of 30 percent compared to 
the Levinson scheme. Moreover, both algorithms possess a struc- 
ture which reveals many interesting physical aspects of the prob- 
lem. 

Fast Algorithms for 2-D FIR Wiener Filtering and 
Linear Prediction 

DIMITRIS G. MANOLAKIS 
AND VINAY K. INGLE, MEMBER, IEEE 

Abstruc~ -This paper deals with the development of computationally 
efficient algorithms for 2-D finite-impulse response (FIR) Wiener filters 
and linear predictors which are optimum in the mean-square-error (MSE) 
sense. It turns out that the computational effort to determine the coeffi- 
cients of the 2-D FIR restoration filter depends heavily on the statistical 
features of the input signal. It is shown that in the case of homogeneous 
signals, one can develop two very efficient algorithms which are, at least, 
30-percent faster than other existing schemes. These algorithms are subse- 
quently used for the efficient implementation of the introduced restoration 
techniques. Experimental results as well as performance evaluations of this 
technique are included. 

I. INTRODUCTION 

The state of the art in digital computers, special-purpose signal 
processors, and VLSI has recently opened the way for high-reso- 
lution 2-D digital signal processing. 
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FIR FILTER 

The remainder of the paper is organized as follows. In Section 
II, we introduce the basic 2-D FIR MSE filtering problem. This 
material serves both to establish notation and to provide the 
background for the rest of the paper. Section III provides a brief 
discussion of the multichannel Levinson algorithm and prepares 
the ground for Section IV, which deals with the introduction of 
the new algorithms. The application of these algorithms to the 
restoration of degraded images is the subject of Section V. 

II. 2-D FIR MEAN-SQUARE-ERROR FILTERING 

We shall deal with the optimum filtering problem, shown in 
Fig. 1. The 2-D FIR filter used in this arrangement has a finite 
quarter-plane support and is described by the following convolu- 
tion summation: 

y(m,n)=- f f c,,x(m+l-k,n+l-I) (1) 
k-l I=1 

where {Q,: lgk<M, l</<N} is the array of the filter 
coefficients, m is the horizontal index, and n is the vertical 
index. We will use the symbol C( M, N) to denote this kind of 
filter. 

A simple look at Fig. 2 indicates that the computation of the 
output sample y(m, n) requires the present and M - 1 “previ- 
ous” columns, with each column having N samples, if the filter 
input data are arranged column-wise. If the input data are 
arranged row-wise, the present and N - 1 “previous” rows, with 
M elements each, are needed for the computation of the output 
Y(m7 n>. 
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Circuit Optimization: The State of the Art 

Abstract-This paper reviews the current state of the art in circuit 
optimization, emphasizing techniques suitable for modern microwave CAD. 
It is directed at the solution of realistic design and modeling problems, 
addressing such concepts as physical tolerances and model uncertainties. A 
unified hierarchical treatment of circuit models forms the basis of the 
presentation. It exposes tolerance phenomena at different parameter/ 
response levels. The concepts of design centering, tolerance assignment, 
and postproduction tuning in relation to yield enhancement and cost 
reduction suitable for integrated circuits are discussed. Suitable techniques 
for optimization oriented worst-case and statistical design are reviewed. A 
generalized lp centering algorithm is proposed and discussed. Multicircuit 
optimization directed at both CAD and robust device modeling is formal- 
ized. Tuning is addressed in some detail, both at the design stage and for 
production alignment. State-of-the-art gradient-based nonlinear optimiza- 
tion methods are reviewed, with emphasis given to recent, but well-tested, 
advances in minimax, I , ,  and I ,  optimization. lllustrative examples as well 
as a comprehensive bibliography are provided. 

I. INTRODUCTION 
OMPUTER-AIDED circuit optimization is certainly C one of the most active areas of interest. Its advances 

continue; hence the subject deserves regular review from 
time to time. The classic paper by Temes and Calahan in 
1967 [lo21 was one of the earliest to formally advocate the 
use of iterative optimization in circuit design. Techniques 
that were popular at the time, such as one-dimensional 
(single-parameter) search, the Fletcher-Powell procedure 
and the Remez method for Chebyshev approximation, 
were described in detail and well illustrated by circuit 
examples. Pioneering papers by Lasdon, Suchman, and 
Waren [73], [74], [lo81 demonstrated optimal design of 
linear arrays and filters using the penalty function ap- 
proach. Two papers in 1969 by Director and Rohrer [48], 
[49] originated the adjoint network approach to sensitivity 
calculations, greatly facilitating the use of powerful gradi- 
ent-based optimization methods. In the same period, the 
work by Bandler [4], [5] systematically treated the formula- 
tion of error functions, the least pth objective, nonlinear 
constraints, optimization methods, and circuit sensitivity 
analysis. 
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Since then, advances have been made in several major 
directions. The development of large-scale network simula- 
tion and optimization techniques have been motivated by 
the requirements of the VLSI era. Approaches to realistic 
circuit design where design parameter tolerances and yield 
are taken into account have been pioneered by Elias [52] 
and Karafin [68] and furthered by many authors over the 
ensuing years. Optimization methods have evolved from 
simple, low-dimension-oriented algorithms into sophisti- 
cated and powerful ones. Highly effective and efficient 
solutions have been found for a large number of spe- 
cialized applications. The surveys by Calahan [ 371, 
Charalambous [39], Bandler and Rizk [26], Hachtel and 
Sangiovanni-Vincentelli [63], and Brayton et al. [32] are 
especially relevant to circuit designers. 

In the present paper, we concentrate on aspects that are 
relevant to and necessary for the continuing move to 
optimization of increasingly more complex microwave cir- 
cuits, in particular to MMIC circuit modeling and design. 
Consequently, we emphasize optimization-oriented ap- 
proaches to deal more explicitly with process imprecision, 
manufacturing tolerances, model uncertainties, measure- 
ment errors, and so on. Such realistic considerations arise 
from design problems in which a large volume of produc- 
tion is envisaged, e.g., integrated circuits. They also arise 
from modeling problems in whch consistent and reliable 
results are expected despite measurement errors, structural 
limitations such as physically inaccessible nodes, and model 
approximations and simplifications. The effort to for- 
mulate and solve these problems represents one of the 
driving forces of theoretical study in the mathematics of 
circuit CAD. Another important impetus is provided by 
progress in computer hardware, resulting in drastic reduc- 
tion in the cost of mass computation. Finally, the continu- 
ing development of gradient-based optimization tech- 
niques has provided us with powerful tools. 

In this context, we review the following concepts: realis- 
tic representations of a circuit design and modeling prob- 
lem, nominal (single) circuit optimization, statistical circuit 
design, and multicircuit modeling, as well as recent gradi- 
ent-based optimization methods. 

Nominal design and modeling are the conventional ap- 
proaches used by microwave engineers. Here, we seek a 
single point in the space of variables selected for optimiza- 
tion which best meets a given set of performance specifica- 
tions (in design) or best matches a given set of response 
measurements (in modeling). A suitable scalar measure 
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of the deviation between responses and specifications 
which forms the objective function to be minimized 
is the ubiquitous least squares measure (see, for example, 
Morrison [83]), the more esoteric generalized f p  objective 
(Charalambous [41]) or the minimax objective (Madsen 
et al. [80]). We observe here that the performance-driven 
(single-circuit) least squares approach that circuit design 
engineers have traditionally chosen has proved unsuccess- 
ful both in addressing design yield and in serious device 
modeling. 

Recognition that an actual realization of a nominal 
design is subject to fluctuation or deviation led, in the 
past, to the so-called sensitivity minimization approach 
(see, for example, Schoeffler [94] and Laker et al. [71]). 
Employed by filter designers, the approach involves mea- 
sures of performance sensitivity, typically first-order, that 
are included in the objective function. 

In reality, uncertainties which deteriorate performance 
may be due to physical (manufacturing, operating) toler- 
ances as well as to parasitic effects such as electromagnetic 
coupling between elements, dissipation, and dispersion 
(Bandler [6], Tromp [107]). In the design of substantially 
untunable circuits these phenomena lead to two important 
classes of problems: worst-case design and statistical de- 
sign. The main objective is the reduction of cost or the 
maximization of production yield. 

Worst-case design (Bandler et al. [23], [24]), in general, 
requires that all units meet the design specifications under 
all circumstances (i.e., a 100 percent yield), with or without 
tuning, depending on what is practical. In statistical design 
[l], [26], [30], [47], [97], [98], [loo], [ loll  it is recognized 
that a yield of less than 100 percent is likely; therefore, 
with respect to an assumed probability distribution func- 
tion, yield is estimated and enhanced by optimization. 
Typically, we either attempt to center the design with fixed 
assumed tolerances or we attempt to optimally assign 
tolerances and/or design tunable elements to reduce pro- 
duction cost. 

What distinguishes all these problems from nominal 
designs or sensitivity minimization is the fact that a single 
design point is no longer of interest: a (tolerance) region of 
multiple possible outcomes is to be optimally located with 
respect to the acceptable (feasible, constraint) region. 

Modeling, often unjustifiably treated as if it were a 
special case of design, is particularly affected by uncertain- 
ties and errors at many levels. Unavoidable measurement 
errors, limited accessibility to measurement points, ap- 
proximate equivalent circuits, etc., result in nonunique and 
frequently inconsistent solutions. To overcome these frus- 
trations, we advocate a properly constituted multicircuit 
approach (Bandler et al. [12]). 

Our presentation is outlined as follows. 
In Section 11, in relation to a physical engineering sys- 

tem of interest, a typical hierarchy of simulation models 
and corresponding response and performance functions 
are introduced. Error functions arising from given specifi- 
cations and a vector of optimization variables are defined. 
Performance measures such as lp  objective functions ( lp  

norms and generalized 1, functions) are introduced and 
their properties discussed. 

We devote to Section I11 a brief review of the relatively 
well-known and successful approach of nominal circuit 
design optimization. 

In Section IV, uncertainties that exist in the physical 
system and at different levels of the model hierarchy are 
discussed and illustrated by a practical example. Different 
cases of multicircuit design, namely centering, tolerancing 
(optimal tolerance assignment), and tuning at the design 
stage, are identified. A multicircuit modeling approach and 
several possible applications are described. 

Some important and representative techniques in worst- 
case and statistical design are reviewed in Section V. These 
include the nonlinear programming approach to worst-case 
design (Bandler et al. [24], Polak [89]), simplicial (Director 
and Hachtel [47]) and multidimensional (Bandler and 
Abdel-Malek [7]) approximations of the acceptable region, 
the gravity method (Soin and Spence [98]), and the para- 
metric sampling method (Singhal and Pine1 [97]). A gener- 
alized l p  centering algorithm is proposed as a natural 
extension to 1, nominal design. It provides a unified 
formulation of yield enhancement for both the worst case 
and the case where yield is less than 100 percent. 

Illustrations of statistical design are given in Section VI. 
The studies in the last two decades on the theoretical 

and algorithmic aspects of optimization techniques have 
produced a great number of results. In particular, 
gradient-based optimization methods have gained increas- 
ing popularity in recent years for their effectiveness and 
efficiency. The essence of gradient-based l p  optimization 
methods is reviewed in Section VII. Emphasis is given to 
the trust region Gauss-Newton and the quasi-Newton 
algorithms (Madsen [78], Mor6 1821, Dennis and Mor6 

The subject of gradient calculation and approximation is 
[461). 

briefly discussed in Section VIII. 

11. VARIABLES AND FUNCTIONS 
In this section, we review some basic concepts of practi- 

cal circuit optimization. In particular, we identify a physi- 
cal system and its simulation models. We discuss a typical 
hierarchy of models and the associated designable parame- 
ters and response functions. We also define specifications, 
error functions, optimization variables and objective func- 
tions. 

A .  The Physical System 
The physical engineering system under consideration 

can be a network, a device, a process, and so on, which has 
both a fixed structure and given element types. We 
manipulate the system through some adjustable parame- 
ters contained in the column vector GM. The superscript M 
identifies concepts related to the physical system. Geomet- 
rical dimensions such as the width of a strip and the length 
of a waveguide section are examples of adjustable parame- 
ters. 
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In the production of integrated circuits, +”’ may include 
some fundamental variables which control, say, a doping 
or photomasking process and, consequently, determine the 
geometrical and electrical parameters of a chip. External 
controls, such as the biasing voltages applied to an active 
device, are also possible candidates for +’. 

The performance and characteristics of the system are 
described in terms of some measurable quantities. The 
usual frequency and transient responses are typical’ exam- 
ples. These measured responses, or simply measurements, 
are denoted by FM( +’). 

B. The Simulation Models 
In circuit optimization, some suitable models are used to 

simulate the physical system. Actually, models can be 
usefully defined at many levels. Tromp [106], [lo71 has 
considered an arbitrary number of levels (also see Bandler 
et al. [19]). Here, for simplicity, we consider a hierarchy of 
models consisting of four typical levels as 

F H =  F H ( F L )  

F L  = F L (  + H )  

v= +”(+“)e (1) 

+L is a set of low-level model parameters. It is supposed 
to represent, as closely as possible, the adjustable parame- 
ters in the actual system, i.e., +’. +H defines a higher-level 
model, typically an equivalent circuit, with respect to a 
fixed topology. Usually, we use an equivalent circuit for 
the convenience of its analysis. The relationship between 
+L and +H is either derived from theory or given by a set 
of empirical formulas. 

Next on the hierarchy we define the model responses at 
two possible levels. The low-level external representation, 
denoted by PL,  can be the frequency-dependent complex 
scattering parameters, unterminated y-parameters, transfer 
function coefficients, etc. Although these quantities may or 
may not be directly measurable, they are very often used 
to represent a subsystem. The high-level responses F H  
directly correspond to the actual measured responses, 
namely F M ,  which may be, for example, frequency re- 
sponses such as return loss, insertion loss, and group delay 
of a suitably terminated circuit. 

A realistic example of a one-section transformer on strip- 
line was originally considered by Bandler et al. [25]. The 
circuits and parameters, physical as well as model, are 
shown in Fig. 1. The physical parameters +M (and the 
low-level model + L )  include strip widths, section lengths, 
dielectric constants, and strip and substrate thcknesses. 
The equivalent circuit has six parameters, considered as 
+H, including the effective line widths, junction parasitic 
inductances, and effective section length. The scattering 
matrix of the circuit with respect to idealized (matched) 
terminations is a candidate for a low-level external repre- 
sentation ( F L ) .  The reflection coefficient by taking into 
account the actual complex terminations could be a high- 
level response of interest ( F H ) .  

A B 

W 1  w 2  

where w is the strip width, I the length of the middle section, E, the 
dielectric constant, b the substrate thickness, and t, the strip thickness. 
OM is represented in the simulation model by &. The high-level 
parameters of the equivalent circuit are 

where D is the effective linewidth, L the junction parasitic inductance, 
and I ,  the effective section length. Suitable empirical formulas that 
relate OL to OH can be found in [25]. 

For a particular case, we may choose a certain section of 
this hierarchy to form a design problem. We can choose 
either +L or +H as the designable parameters. Either F L  or 
F H  or a suitable combination of both may be selected as 
the response functions. Bearing this in mind, we simplify 
the notation by using + for the designable parameters and 
F for the response functions. 

C. Specifications and Error Functions 
The following discussion on specifications and error 

functions is based on presentations by Bandler [5], and 
Bandler and Rizk [26], where more exhaustive illustrations 
can be found. 

We express the desirable performance of the system by a 
set of specifications which are usually functions of certain 
independent variable(s) such as frequency, time, and tem- 
perature. In practice, we have to consider a discrete set of 
samples of the independent variable(s) such that satisfying 
the specifications at these points implies satisfying them 
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Fig. 2. Illustrations of (a) upper specifications, lower specifications, and 

the responses of circuits a and b, (b) error functions corresponding to 
circuits a and b, (c) the acceptable region, and (d) generalized / p  
objective functions defined in (13). 

almost everywhere. Also, we may consider simultaneously 
more than one lund of response. Thus, without loss of 
generality, we denote a set of sampled specifications and 
the corresponding set of calculated response functions by, 
respectively, 

j = 1 , 2 , - .  * ,  m SJ , 
q( +), j = 1 ,2 ;  - , m .  (2) 

Error functions arise from the difference between the 
given specifications and the calculated responses. In order 
to formulate the error functions properly, we may wish to 
distinguish between having upper and lower specifications 
(windows) and having single specifications, as illustrated in 
Figs. 2(a) and 3(a). Sometimes the one-sidedness of upper 
and lower specifications is quite obvious, as in the case of 
designing a bandpass filter. On other occasions the distinc- 
tion is more subtle, since a single specification may as well 
be interpreted as a window having zero width. 

In the case of having single specifications, we define the 
error functions by 

. . , m (3) 
where wJ is a nonnegative weighting factor. 

We may also have an upper specification SuJ and a 
lower specification S/, .  In this case we define the error 

eJ ( +) = w, IF/ (+ ) - SJI, j = 

parameter space 

(empty acceptable region) 
aF 0 '  x b  

b O a  

,,L i, 
l e  b I 1  i i  

Fig. 3. Illustrations of (a) a discretized single specification and two 
discrete single specifications (e.g., expected parameter values to be 
matched), as well as the responses of circuits a and b,  (b) error 
functions related to circuits a and b, (c) the (empty) acceptable region 
(i.e., a perfect match is not possible) and (d) the corresponding lp 
norms. 

functions as 

. U , ( + >  = w u J ( 5 ( + ) - s U J ) 7  j E J u  

e , ( + >  = w / , ( q ( + ) - s / , ) y  J E J /  (4) 
where wuJ and wIJ are nonnegative weighting factors. The 
index sets as defined by 

J, = { j l ,  j * , *  . )  j k }  

J/ = { & + I 7  j k + 2 , .  * * 9 jm 1 ( 5 )  
are not necessarily disjoint (i.e., we may have simultaneous 
specifications). In order to have a set of uniformly indexed 
error functions, we let 

. .  e ,  = e , , ( + ) ,  J =  J , ,  i = 1 , 2 ; . . , k  

e , = - e , J ( + ) ,  j = j , ,  i = k + l , k + 2 , . . . , m .  ( 6 )  

The responses corresponding to the single specifications 
can be real or complex, whereas upper and lower specifica- 
tions are applicable to real responses only. Notice that, in 
either case, the error functions are real. Clearly, a positive 
(nonpositive) error function indicates a violation (satisfac- 
tion) of the corresponding specification. Figs. 2(b) and 
3(b) depict the concept of error functions. 

D. Optimization Variables and Objective Functions 

lem by the following statement: 
Mathematically, we abstract a circuit optimization prob- 

(7) minimize U( x) 

where x is a set of optimization variables and U ( x )  a 
scalar objective function. 

Optimization variables and model parameters are two 
separate concepts. As will be elaborated on later in this 
paper, x may contain a subset of + which may have been 
normalized or transformed, it may include some statistical 
variables of interest, several parameters in + may be tied 
to one variable in x, and so on. 

X 
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Typically, the objective function U( x) is closely related 
to an lp  norm or a generalized l p  function of e (+) .  We 
shall review the definitions of such lp functions and dis- 
cuss their appropriate use in different contexts. 

E. The l p  Norms 
The lp  norm (Temes and Zai [103]) of e is defined as 

l / P  

I I ~ I I ~ =  C IejIp * (8) [;rl I 
It provides a scalar measure of the deviations of the 

model responses from the specifications. Least-squares ( I , )  
is perhaps the most well-known and widely used norm 
(Morrison [83]), which is 

llell2 = [ ~ l ~ e j 1 2 ] 1 ’ 2 .  (9) 

The 1 ,  objective function is differentiable and its gradi- 
ent can be easily obtained from the partial derivatives of e. 
Partly due to this property, a large variety of I, opti- 
mization techniques have been developed and popularly 
implemented. For example, the earlier versions of the 
commercial CAD packages TOUCHSTONE [ 1041 and 
SUPER-COMPACT [99] have provided designers solely 
the least-squares objective. 

The parameter p has an important implication. By 
choosing a large (small) value for p ,  we in effect place 
more emphasis on those error functions (e j ’ s )  that have 
larger (smaller) values. By letting p = CO we have the 
minimax norm 

llellm = maxlejl (10) 
J 

which directs all the attention to the worst case and the 
other errors are in effect ignored. Minimax optimization is 
extensively employed in circuit design where we wish to 
satisfy the specifications in an optimal equal-ripple manner 
PI, [13l, [14], 

On the other hand, the use of the I, norm, as defined by 
[4Ol, [42], [65], [67], [go], [85]. 

m 

IIeIIl= C IejI (11) 
;=1 

implies attaching more importance to the error functions 
that are closer to zero. This property has led to the 
application of I, to data-fitting in the presence of gross 
errors [22], [29], [66], [86] and, more recently, to fault 
location [8], [9], [27] and robust device modeling [12]. 

Notice that neither llellm nor llelll is differentiable in 
the ordinary sense. Therefore, their minimization requires 
algorithms that are much more sophisticated than those 
for the 1,  optimization. 

F. The One-sided and Generalized lp  Functions 
By using an lp  norm, we try to minimize the errors 

towards a zero value. In cases where we have upper and 
lower specifications, a negative value of ej simply indicates 
that the specification is exceeded at that point which, in a 

sense, is better than having ej = 0. Ths  fact leads to the 
one-sided lp function defined by 

l / P  

~ p ’ ( e >  = C IejIp (12) 
[ J E J  1 

where J = { j l e ,  2 O}. Actually, if we define 
max { e j ,O} ,  then H,’(e) = [le+ [ I p .  

use of a generalized lp function defined by 

e,’ = 

Bandler and Charalambous [lo], [41] have proposed the 

H l  (e )  if the set J is not empty 
(13) Hp(e) = H; ( e )  otherwise i 

where 

Hp-(e)  = - [;l ( - e j ) - ’  (14) 

In other words, when at least one of the ej is nonnegative 
we use H i ,  and Hp- is defined if all the error functions 
have become negative. 

Compared to (12), the generalized l p  function has an 
advantage in the fact that it is meaningfully defined for the 
case where all the e, are negative. This permits its minimi- 
zation to proceed even after all the specifications have 
been met, so that the specifications may be further ex- 
ceeded. 

A classical example is the design of Chebyshev-type 
bandpass filters, where we have to minimize the gener- 
alized minimax function 

Hm ( e ) = max { ej } . (15) 
J 

The current Version 1.5 of TOUCHSTONE [lo51 offers 
the generalized lp optimization techniques, including 
minimax. 

G. The Acceptable Region 
We use H ( e )  as a generic notation for Ilellp, H,+(e) ,  

and H p ( e ) .  The sign of H ( e ( + ) )  indicates whether or not 
all the specifications are satisfied by +. An acceptable 
region is defined as 

R ,  = { +IH(e(+)) 01 (16) 

Figs. 2(c), 2(d), 3(c), and 3(d) depict the l p  functions and 
the acceptable regions. 

111. NOMINAL CIRCUIT OPTIMIZATION 
In a nominal design, without considering tolerances (i.e., 

assuming that modeling and manufacturing can be done 
with absolute accuracy), we seek a single set of parameters, 
called a nominal point and denoted by +O, which satisfies 
the specifications. Furthermore, if we consider the func- 
tional relationship of + H =  +”(+“) to be precise, then it 
does not really matter at which level the design is con- 
ceived. In fact, traditionally it is often oriented to an 
equivalent circuit. A classical case is network synthesis 

’ 
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where +H,o is obtained through the use of an equivalent 
circuit and/or a transfer function. A low-level model +L,o 

is then calculated from +H,o, typically with the help of an 
empirical formula (e.g., the number of turns of a coil is 
calculated for a given inductance). Finally, we try to 
realize +L,o by its physical counterpart +',o. 

With the tool of mathematical optimization, the nominal 
point 9' (at a chosen level) is obtained through the mini- 
mization of U( x), where the objective function is typically 
defined as an lp  function H ( e ) .  The vector x contains all 
the elements of or a subset of the elements of +'. It is a 
common practice to have some of the variables normal- 
ized. It is also common to have several model parameters 
tied to a single variable. This is true, e.g., for symmetrical 
circuit structures but, most importantly, it is a fact of life 
in integrated circuits. Indeed, such dependencies should be 
taken into account both in design and in modeling to 
reduce the dimensionality. The minimax optimization of 
manifold multiplexers as described by Bandler et al. [18], 
[22], [28] provides an excellent illustration of large-scale 
nominal design of microwave circuits. 

Traditionally, the approach of nominal design has been 
extended to solving modeling problems. A set of measure- 
ments made on the physical system serves as single specifi- 
cations. Error functions are created from the differences 
between the calculated responses F( +') and the measured 
responses F M .  By minimizing an l p  norm of the error 
functions, we attempt to identify a set of model parameters 
9' such that I;(+') best matches F M .  This is known as 
data fitting or parameter identification. 

Such a casual treatment of modeling as if it were a 
special case of design is often unjustifiable, due to the lack 
of consideration to the uniqueness of the solution. In 
design, one satisfactory nominal point, possibly out of 
many feasible solutions, may suffice. In modeling, how- 
ever, the uniqueness of the solution is almost always 
essential to the problem. Affected by uncertainties at many 
levels, unavoidable measurement errors and limited acces- 
sibility to measurement points, the model obtained by a 
nominal optimization is often nonunique and unreliable. 
To overcome these frustrations, a recent multicircuit ap- 
proach will be described in Section IV. 

IV. A MULTICIRCUIT APPROACH 
The approach of nominal circuit optimization, which we 

have described in Section 111, focuses attention on a cer- 
tain kind of idealized situation. In reality, unfortunately, 
there are many uncertainties to be accounted for. For the 
physical system, without going into too many details, 
consider 

F M = F M , o ( + M ) + A F M  

where AFM represents measurement errors, GM,' a nomi- 
nal value for OM, and AGM some physical (manufacturing, 
operating) tolerances. 

For simulation purposes, we may consider a realistic 
representation of the hierarchy of possible models as 

F H =  FH, ' (FL)+  AFH 

F L  = FL.'( O H )  + AFL 

+ H =  +H,'( + L )  + A+H 

+L = +L," + A+L (18) 
where GL*', +H.o, FL,', and PH,' are nominal models 
applicable at different levels. A+L, A+H, AFL, and AFH 
represent uncertainties or inaccuracies associated with the 
respective models. corresponds to the tolerances A+M. 
A+H may be due to the approximate nature of an empirical 
formula. Parasitic effects which are not adequately mod- 
eled in GH will contribute to AFL, and finally we attribute 
anything else that causes a mismatch between FH,' and 
FM.' to AFH.  

These concepts can be illustrated by the one-section 
stripline transformer example [25] which we have consid- 
ered in Section 11. Tolerances may be imposed on the 
physical parameters including the strip widths and thick- 
nesses, the dielectric 'constants, the section length and 
substrate thicknesses (see Fig. 1). Such tolerances corre- 
spond to A+M and are represented in the model by A+L. 
We may also use AGH to represent uncertainties associated 
with the empirical formulas which relate the physical 
parameters to the equivalent circuit parameters (the effec- 
tive line widths, the junction inductances, and the effective 
section length). Mismatches in the terminations at differ- 
ent frequencies may be estimated by AFH ( F H  being the 
actual reflection coefficient; see [25] for more details). 

The distinction between different levels of model uncer- 
tainties can be quite subtle. As an example, consider the 
parasitic resistance r associated with an inductor whose 
inductance is L. Both L and r are functions of the 
number of turns of a coil (which is a physical parameter). 
Depending on whether or not r is modeled by the equiv- 
alent circuit (i.e., whether or not r is included in + H ) ,  the 
uncertainty associated with r may appear in A+H or in 
AFL.  

When such uncertainties are present, a single nominal 
model often fails to represent satisfactorily the physical 
reality. One effective solution to the problem is to simulta- 
neously consider multiple circuits. We discuss the conse- 
quences for design and modeling separately. 

A .  Multicircuit Design 
Our primary concern is to improve production yield and 

reduce cost in the presence of tolerances A+L and model 
uncertainties A+H. First of all, we represent a realistic 
situation by multiple circuits as 

+k = +' + S k ,  k = 1,2,  * . . , K (19) 
where +', + k ,  and s k  are generic notation for the nominal 
parameters, the k th set of parameters, and a deviate due to 
the uncertainties, respectively. A more elaborate definition 
is developed as we proceed. 
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parameter space 

low yield 

high yield 

Fig. 4. Three nominal points and the related yield. 

For each circuit, we define an acceptance index by 

where H(e) 0, defined in (13), indicates satisfaction of 
the specifications by +. An estimate of the yield is given by 
the percentage of acceptable samples out of the total, as 

The merit of a design can then be judged more realistically 
according to the yield it promises, as illustrated in Fig. 4. 
Now we shall have a closer look at the definition of 
multiple circuits. 

In the Monte Carlo method the deviates s k  are con- 
structed by generating random numbers using a physical 
process or arithmetical algorithms. Typically, we assume a 
statistical distribution for A+L, denoted by D L( E ~ )  where 

is a vector of tolerance variables. For example, we may 
consider a multidimensional uniform distribution on 
[ - E ~ ,  E ~ ] .  Similarly, we assume a D H ( ~ H )  for A+H. The 
uniform and Gaussian (normal) distributions are il- 
lustrated in Fig. 5. 

At the low level, consider 

+ L , k = + L , o + ~ L , k ,  k = 1 , 2 , . . - ,  K L  (22)  

where s ~ , ~  are samples from D L .  At the higher level, we 
have, for each k ,  

I 
uniform rtl I 1 I + 

0 

A Gaussian 

/I\ 0 

(b) 
Fig. 5. Typical tolerance distributions: uniform and Gaussian (normal). 

where 
+ H , O  = + K O (  + L O )  

(24) S H , k , i ,  + H , O ( + L , k ) -  +H,O(+L,O)+ 8 k - i  

with tik,' being samples from D H .  
One might propose a distribution for ~ ~ 3 ~ 7 '  which pre- 

sumably encompasses the effect of distribution D L  and 
distribution D H .  But, while we may reasonably assume 
simple and independent distributions for A+L and A+H, 
the compound distribution is likely to be complicated and 
correlated. 

B. Centering, Tolerancing, and Tuning 
Again, in order to simplify the notation, we use +' for 

the nominal circuit and E for the tolerance variables. 
An important problem involves design centering with 

fixed tolerances, usually relative to corresponding nominal 
values. We call this the fixed tolerance problem (FTP). The 
optimization variables are elements of +O, the elements of 
E are constant or dependent on the variables, and the 
objective is to improve the yield. Incidentally, the nominal 
optimization problem, i.e., the traditional design problem, 
is sometimes referred to as the zero tolerance problem 
(ZTP). 

Since imposing tight tolerances on the parameters will 
increase the cost of component fabrication or process 
operation, we may attempt to maximize the allowable 
tolerances subject to an acceptable yield. In this case both 
4' and E may be considered as variables. Such a problem 
is referred to as optimal tolerancing, optimal tolerance 
assignment, or the variable tolerance problem (VTP). 

Tuning some components of GM after production, 
whether by the manufacturer or by a customer, is quite 
commonly used as a means of improving the yield. Ths  
process can also be simulated using the model by introduc- 
ing a vector of designable tuning adjustments T~ for each 
circuit, as 

Gk = +O + s k  + T ~ ,  k = 1 , 2 , *  * e ,  K .  (25)  

We have to determine, through optimization, the value of 
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t 
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2 t tunable 

Fig. 6. Illustrations of tuning: (a) both parameters are tunable for a 
case in which the probability that an untuned design meets the specifi- 
cations is very low and (b) only one parameter is tunable. 

T such that the specifications will be satisfied at @k which 
may otherwise be unacceptable, as depicted in Figs. 6 and 
7. The introduction of tuning, on the other hand, also 
increases design complexity and manufacturing cost. We 
seek a suitable compromise by solving an optimization 

'2 

. I  I 

toleranced 

431 

8, 

tuning range 

8, 

tuning 

1 
0 

8 
0 

I 41 
( 4  

Fig. 7. An illustration of multicircuit design considering eight circuit 
outcomes. is toleranced and +2 is tunable. (a) Without tuning the 
yield is 2/8 (25 percent). @) Tuning on & is restricted to a small 
range. The improved yield is 4/8 (50 percent). (c) A 75 percent yield is 
achieved by allowing a large tuning range. 

From nominal design, centering, optimal tolerancing, to 
optimal tuning, we have defined a range of problems 
which lead to increasingly improved yield but, on the other 
hand, correspond to increasing complexity. Some specific 
formulations are discussed in Section V. Analogously to 
ZTP, FTP, and VTP, we can define zero tuning, fixed 

problem in which T are treated as part of the variables. tuning, and variable tuning problems [20]. 
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C. Multicircuit Modeling 4 2  4 2  

discussed under the following categories. 
The uncertainties that affect circuit modeling can be 

4; 

1) Measurement errors will inevitably exist in practice, 
as represented by A F M  in (17): F M =  FM*'(+")+ 

2) Even without measurement errors, the calculated re- 
sponse FH,' may never be able to match FMv0 per- 
fectly, due to, for example, the use of a model of 
insufficient order or inadequate complexity. Such an 

4; - 
AF". 

4: - 

I I I 
41 kk4: *41 4: 

inherent mismatch is accounted for in (18) by F H =  
FH>' + A F H .  

3) Even if neither A F M  nor A F H  exists so that FH,' = (a) ( b )  

F", we may still not be able to uniquely identify + 
from the set of measurements that has been selected. 
This happens when the system of (generally nonlin- 
ear) equations FHs0(+)  - F M  = 0, where F M  is the 
data, is underdetermined. Typically, this problem 
occurs when, for any reason, many internal nodes are 
inaccessible to direct measurement. An overcom- 
plicated equivalent circuit, including unknown para- 
sitic elements, is frequently at the heart of this phe- 
nomenon. 

4) The parasitic effects that are not adequately modeled 
by +H contribute to the uncertainty AFL.  This is 
another source of interference with the modeling 
process. 

First we consider the case in which modeling is applied 
to obtain a suitable + such that I;"(+) approximates F M .  
The nominal circuit approach may be able to cope with the 
uncertainties in 1) and 2), and comes up with a + which 
minimizes the errors A F M  and A F H  in a certain sense. 
But it will not be able to overcome the problem of unique- 
ness. In practice, we are often unable to determine unam- 
biguously the identifiability of a system, because all these 
uncertainties can be present at the same time. There will 
be, typically, a family of solutions which produce reason- 
able and similar matches between the measured and the 
calculated responses. We cannot, therefore, rely on any 
particular set of parameters. 

The approach of multicircuit modeling by Bandler et al. 
[12] can be used to overcome these difficulties. Multiple 
circuits are created by making deliberate adjustments on 
the physical parameters +M. For example, we can change 
the biasing conditions for an active device and obtain 
multiple sets of measurements. By doing so, we introduce 
perturbations to the model which cause some parameters 
in + to change by an unknown amount. For this approach 
to be successful, each physical adjustment should produce 
changes in only a few parameters in +. 

Although we do not know the changes in + quantita- 
tively, it is often possible to identify which model parame- 
ters may have been affected by the physical adjustments. 
Such a qualitative knowledge may be apparent from the 
definition of the model or it may come from practical 
experience. In the attempt to process multiple circuits 

Fig. 8. An illustration of multicircuit modeling. Three circuits are 
created by making two physical adjustments. Assume that we know 
that $1 should not be affected by the physical adjustments. CO, C', 
and C2 are contours of the error functions corresponding to the three 
circuits. (a) By treating the three circuits separately, we obtain +', +', 
and 0'. $:, &, and $! turn out to have different values (which is 
inconsistent with our knowledge) because of uncertainties. (b) Con- 
sistent results can be obtained by defining as a common variable 
and processing three circuits simultaneously. 

simultaneously, we define those model parameters that are 
not supposed to change as common variables and, at the 
same time, allow the others to vary between different 
circuits. By doing so, we force the solution to exhibit the 
desired consistency and, therefore, improve the reliability 
of the result. In other words, from a family of possible 
solutions we select the one that conforms to the topologi- 
cal constraints. Bandler et al. have shown an example [12, 
Section 111-A] in which + can not be uniquely identified 
due to inaccessible nodes. The problem was effectively 
addressed using the multicircuit approach. 

To formulate this mathematically, let 

where +: contains the common variables and +: contains 
the variables which are allowed to vary between the k th 
circuit and the reference circuit 9'. We then define the 
optimization variables by 

and state the optimization problem as to 

where 

f = [er( +') eT( 4') . eT( +K)] '. 
Although any l p  norm may be used, the unique property 

of I ,  discussed in detail by Bandler et al. [12] can be 
exploited to great advantage. The concept of common and 
independent variables is depicted in Fig. 8. 

Now, suppose that we do not have a clear idea about 
which model parameters may have been affected by the 
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adjustment on GM. In this case, we let 

and change the objective function to an l p  norm of 

f= [e'( $0) e e'( +'I al(+l - $0) T. . a" ( +" - +o) '1 ' 
(31) 

where al, az,- a ,  a' are nonnegative multipliers (weights). 
Using this formulation, while minimizing the errors e, 

we penalize the objective function for any deviates be- 
tween +k and +O, since our only available knowledge is 
that only a few parameters in +k should have any signifi- 
cant changes. To be effective, an I ,  norm should be used. 
A similar principle has been successfully applied to the 
analog circuit fault location problem 191, [27]. 

A practical application to FET modeling has been de- 
scribed by Bandler et al. in [16], where multiple circuits 
were created by taking three sets of actual measurements 
under different biasing conditions. 

Another important application of multicircuit modeling 
is to create analytical formulas which link the model + to 
the actual physical parameters GM. Such formulas will 
become extremely useful in guiding an actual production 
alignment or tuning procedure. A sequence of adjustments 
on +M can be systematically made and multiple sets of 
measurements are taken. By nominal circuit optimization, 
these measurements would be processed separately to ob- 
tain a set of static models. In the presence of uncertainties, 
a single change in 4"' may seem to cause fluctuations in all 
the model parameters. Obviously, such results are of very 
little use. In contrast, multicircuit modeling is more likely 
to produce models that are consistent and reliable. Since 
the measurements are made systematically, it certainly 
makes sense to process them simultaneously. Actually, the 
variables need not be equivalent circuit model parameters. 
They can include coefficients of a proposed formula as 
well. 

An example of establishing an experimental relationship 
between the physical and model parameters for a multicav- 
ity filter using multiple sets of actual measurements has 
been described by Daijavad [44]. 

The multicircuit approach can also be applied to model 
verification. This is typically related to cases where the 
parasitic uncertainty A F L  has put the validity of a model 
in doubt. Instead of defining common and independent 
variables explicitly, we use the formulation of (30) and 
(31). If consistent results are obtained, then our confidence 
in the model is strengthened. Otherwise we should prob- 
ably reject the current model and consider representing the 
parasitics more adequately. A convincing example has 
been demonstrated by Bandler et al. [12, section V, test 21. 

The commercial packages TOUCHSTONE [ 1041, [lo51 
and SUPER-COMPACT [99] allow a hierarchy of circuit 
blocks and permit the use of variable labels. Multiple 
circuits and common variables can be easily defined utiliz- 
ing these features. 

I I b 
0 100% 

yield 

Fig. 9. A typical cost-versus-yield curve [97] 

V. TECHNIQUES FOR STATISTICAL DESIGN 
In Section IV we have generally discussed uncertainties 

at different levels, and, in particular, we have expressed 
our desire to maximize yield in the presence of uncertain- 
ties. Optimal tolerancing and tuning have also been identi- 
fied as means to further reduce cost in the actual produc- 
tion. 

We begin this section with a review of some existing 
techniques for statistical design. Some of the earliest work 
in this area came from Karafin [68], Pinel and Roberts 
[87], Butler [36], Elias [52], Bandler, Liu, and Tromp [24]. 
During the years, significant contributions have been made 
by, among others, Director and Hachtel[47] (the simplicial 
method), Soin and Spence [98] (the gravity method), Band- 
ler and Abdel-Malek [l], [2], [7] (multidimensional ap- 
proximation), Biernacki and Styblinski [30] (dynamic con- 
straint approximation), Polak and Sangiovanni-Vincentelli 
[90] (a method using outer approximation), as well as 
Singhal and Pinel [97] (the parametric sampling method). 
Following the review, we propose a generalized lp  center- 
ing algorithm. 

A commonly assumed cost versus yield curve [97] is 
shown in Fig. 9. Actually, hard data are difficult to obtain, 
and, as we shall see, rather abstract objective functions are 
often selected for the tolerance-yield design problem. Fig. 
10 shows a design with a 100 percent yield and a second 
design corresponding to the minimum cost. 

A .  Worst-case Design 
By this approach, we attempt to achieve a 100 percent 

yield. Since it means that the specifications have to be 
satisfied for all the possible outcomes, we need to consider 
only the worst cases. 

Bandler et al. [23], [24] have formulated it as a nonlinear 
programming problem 

minimize C ( x ) 
X 

subject to e( + k )  6 0, for all k (32) 

where C(x) is a suitable cost function and the points +k 
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Fig. 10. A maximum yield design and a minimum cost design. 

are the worst cases. For instance, we may have 
a 

C(x)=  I+ b,t, (33) 
1 E I ,  E l  1 E It 

where I ,  and I ,  are index sets identifying the toleranced 
and tunable parameters, respectively. E, and t ,  are the 
tolerance and the tuning range, respectively, associated 
with the ith parameter. a ,  and b, are nonnegative weights. 
A cost function can also be defined for relative tolerances 
and tuning by including +: into (33). A critical part of thts 
approach is the determination of the worst cases. Vertices 
of the tolerance region, for example, are possible candi- 
dates for the worst cases by assuming one-dimensional 
convexity. The yield function does not enter (32) ex- 
plicitly; instead, a 100 percent yield is implied by a feasible 
solution. 

Bandler and Charalambous [ l l ]  have demonstrated a 
solution to (32) by minimax optimization. Polak and 
Sangiovanni-Vincentelli [90] have proposed a different but 
equivalent formulation which involves a nondifferentiable 
optimization. 

A worst-case design is not always appropriate. While 
attempting to obtain a 100 percent yield, the worst-case 
approach may necessitate unrealistically tight tolerances, 
or demand excessive tuning. In either case, the cost may be 
too high. A perfect 100 percent yield may not even be 
realizable. 

B. Methods of Approximating the Acceptable Region 
Since yield is given by the percentage of model out- 

comes that fall into the acceptable region, we may wish to 

find an approximation to that region. The acceptable 
region has been defined in (16) as R ,  = { +IH(e(+))  < O}. 

Director and Hachtel [47] have devised a simplicial 
approximation approach. It begins by determining points 
+k on the boundary of R ,  which is given by a,= 
{ +lH(e(+))  = O}. The convex hull of these points forms a 
polyhedron. The largest hypersphere inscribed within the 
polyhedron gives an approximation to R ,  and is found by 
solving a linear programming problem. Using line searches, 
more points on the boundary are located and the poly- 
hedron is expanded. The process thus provides a monoton- 
ically increasing lower bound on the yield. The center and 
radius of the hypersphere can be used to determine the 
centered nominal point and the tolerances, respectively. 
The application of this method is, however, severely limited 
by the assumption of a convex acceptable region. 

Bandler and Abdel-Malek [l], [2], [7] have presented a 
method which approximates each ej(  +) by a low-order 
multidimensional polynomial. Model simulations are per- 
formed at some +k selected around a reference point. 
From the values of e j (+k )  the coefficients of the ap- 
proximating polynomial are determined by solving a linear 
system of equations. Appropriate linear cuts are con- 
structed to approximate the boundary 3,. The yield is 
estimated through evaluation of the hypervolumes that lie 
outside R ,  but inside the tolerance region. In critical 
regions these polynomial approximations are updated dur- 
ing optimization. The one-dimensional convexity assump- 
tion for this method is much less restrictive than the 
multidimensional convexity required by the simplicial ap- 
proach. Sensitivities for the estimated yield are also avail- 
able. 

Recently, Biemaclu and Styblinski [30] have extended 
the work on multidimensional polynomial approxima- 
tion by considering a dynamic constraint approximation 
scheme. It avoids the large number of base points required 
for a full quadratic interpolation by selecting a maximally 
flat interpolation. During optimization, whenever a new 
base point is added, the approximation is updated. It 
shows improved accuracy compared with a linear model as 
well as reduced computational effort compared with a full 
quadratic model. 

C. The Gravity Method 
Soin and Spence [98] proposed a statistical exploration 

approach. Based on a Monte Carlo analysis, the centers of 
gravity of the failed and passed samples are determined as, 
respectively, 

Gf = [ k € J  c + k ] / K , ,  

+ p  = [ ; J + k ] / K , ,  (34) 

where J is the index set identifying the failed samples. 
K,,, and Kpas are the numbers of failed and passed 
samples, respectively. The nominal point 9' is then ad- 
justed along the direction s = + P  - +f using a line search. 
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This algorithm is simple but also heuristic. It is not clear as 
to how the gravity centers are related to the yield in a 
general multidimensional problem. sampling method. 

D. The Parametric Sampling Method 
The parametric sampling approach by Singha1 and Pinel 

[97] has provided another promising direction. A continu- 
ous estimate of yield (as opposed to the Monte Carlo 
estimate, using discrete samples) is given by the following 
integral: 

through optimization. Variable tuning ranges (in order to 
minimize cost) cannot be accommodated by the parametric 

E. Generalized lp  Centering 
Here, we propose a generaked lp  centering algorithm 

which encompasses, in a unified formulation, problems of 
100 percent yield (worst-case design) and less than 100 
percent yield. 

First, we consider the centering problem where we have 
fixed tolerances and no tuning. Only the nominal point +O 
is to be optimized. Define (35) 

f = [eT(  +') . . . eT( + K ) ]  (38) where I,(+) is the acceptance index defined in (20) and 
r( +, x) the parameter distribution density function whch 
depends on the design variables x (e.g., the nominal point 
specifies the mean value and the tolerances control the 

as the set of multicircuit error functions. We can achieve a 
worst-case minimax design by 

standard deviations). Normally, in order to estimate the 
yield, we generate samples +k, k = 1,2; . ., K ,  from the 
component density r, perform K circuit analyses, and 
then take the average of For each new set of 
variables x we would have a new density function, and 
therefore, the sampling and circuit analyses have to be 
repeated. 

The parametric sampling method is based on the con- 
cept of importance sampling as 

where h ( + )  is called the sampling density function. The 
samples +k are generated from h ( + )  instead of r(+, x). 
An estimate of the yield is made as 

1 K  
=-  c I , ( + k ) > W ( + k , X ) .  (37) 

k = l  

The weights W(+k, x) compensate for the use of a sam- 
pling density different from the component density. 

This approach has two clear advantages. First, once the 
indices Za( O k )  are calculated, no more model simulations 
are required when x is changed. Furthermore, if r is a 
differentiable density function, then gradients of the esti- 
mated yield are readily available. Hence, powerful optimi- 
zation techniques may be employed. In practice, the al- 
gorithm starts with a large number of base points sampled 
from h ( + )  to construct the initial databank. To maintain a 
sufficient accuracy, the databank needs to be updated by 
adding new samples during optimization. 

This approach, however, cannot be applied to nondif- 
ferentiable density functions such as uniform, discrete, and 
truncated distributions. It can be extended to include some 
tunable parameters if the tuning ranges are fixed or prac- 
tically unlimited. In this case the acceptance index 
is defined as 1 if +k is acceptable after tuning. If +k is 
unacceptable before tuning, then whether it can be tuned 
and, if so, by how much, may have to be determined 

minimize ~ ( x )  = H,( f ) = m y  m v  [ e , (  + k ) )  (39) 

where the multiple circuits cpk are related to according 
to (19). 

If a 100 percent yield is not attainable, we would natu- 
rally look for a solution where the specifications are met 
by as many points (out of K circuits) as possible. For this 
purpose minimax is not a proper choice, since unless and 
until the worst case is dealt with nothng else seems to 
matter. We may attempt to use a generalized I, or I, 
function (i.e., H2( f )  or HI(  f)) instead of H,( f )  in (39), 
hoping to reduce the emphasis given to the worst case. 

In order to gain more insight into the problem, we 
define, for each +k,  a scalar function which will indicate 
directly whether +k satisfies or violates the specifications 
and by how much. For this purpose, we choose a set of 
generalized lp  functions as 

X J 

U k ( X ) = H p ( e ( + k ) ) ,  k=172,.**, K .  (40) 

The sign of uk indicates the acceptability of +k while the 
magnitude of u k  measures, so to speak, the distance be- 
tween +k and the boundary of the acceptable region. For 
example, with p = m  the distance is measured in the 
worst-case sense whereas for p = 2 it will be closer to a 
Euclidean norm. 

We can define a generalized lp  centering as 

minimize X U( x)  = H ~ (  U( x)) (41) 

where 

and al, a,; . ., aK are a set of positive multipliers. With 
different p and q it leads to a variety of algorithms for 
yield enhancement. We discuss separately the case where a 
nonpositive U( x) exists and the case where we always have 

In the first case, the existence of a U ( x )  d 0 indicates 
that a 100 percent yield is attainable. We should point out 

U ( X )  > 0. 
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that for a given x the sign of U ( x )  does not depend on p ,  
q, or ak. However, the optimal solution x at which U ( x )  
attains its minimum is dependent on p ,  q, and a. This 
means that using any values of p ,  q, and a we will be able 
to achieve a U ( x )  G 0 (i.e., to achieve a 100 percent yield). 
Furthermore, by using different p ,  q, and a, we influence 
the centering of 4'. Interestingly, the worst-case centering 
(39) becomes a special case by letting both p ,  q = 00 and 
using unit multipliers. 

Now consider the case where the optimal yield is less 
than 100 percent. In this case we propose the use of p =1 
and q = 1 in (41). Also, given a starting point no, we define 
the set of multipliers by 

( Y k = l / I u k ( x o ) I ,  k=1,2 ;* . ,K.  (43) 
Our proposition is based on the following reasoning (a 
more complete theoretical justification is reserved for a 
future paper). 

Consider the l p  sum given by 

[ u k < x > l p  (44) 
k € J  

where J = { klu, > O}. As p -+ 0 (44) approaches the total 
number of unacceptable circuits which we wish to mini- 
mize. The smallest p that gives a convex approximation is 
1. This leads to the generalized I, objective function given 
by 

= c = O L L U k ( I ) -  (45) 
k € J  k € J  

With the multipliers defined by (43), the value of the 
objective function at the starting point, namely U ( x , ) ,  is 
precisely the count of unacceptable circuits. Also, notice 
that the magnitude of uk measures the closeness of # to 
the acceptable region. A small lukl indicates that Ok is 
close to satisfying or violating the specifications. There- 
fore, we assign a large multiplier to it so that more 
emphasis will be given to #' during optimization. On the 
other hand, we de-emphasize those points that are far 
away from the boundary of the acceptable region because 
their contributions to the yield are less likely to change. 

One important feature of this approach is its capability 
of accommodating arbitrary tolerance distributions, since 
they only influence the generation of +k. The numerical 
results we have obtained are very promising. The gener- 
alized l p  centering algorithm can also be extended to 
include variable tolerances and tuning. 

VI. EXAMPLES OF STATISTICAL DESIGN 
Example 1 
The classical two-section 10 : 1 transmission line trans- 

former, originally proposed by Bandler et al. [23] to test 
minimax optimizers, is a good example for illustrating 
graphically the basic ideas of centering and tolerancing. 
An upper specification on the reflection coefficient as 
IpI < 0.55 and 11 frequencies {0.5,0.6; . .,1.5 GHz} are 
considered. The lengths of the transmission lines are fixed 
at the quarter-wavelength while the characteristic imped- 
ances 2, and 2, are to be toleranced and optimized. Fig. 

6 

5 

z 2  

4 

3 
1 2 3 

Z1 
Fig. 11. Contours of max Ip I with respect to Z ,  and Z,  for the 

two-section transformer indiiating the minimax nominal solution a ,  
the centered design with relative tolerances b, and the centered design 
with absolute tolerances c. The values in brackets are the optimized 
tolerances (as percentages of the nominal values). The specification is 
IpI < 0.55. 

11 shows the minimax contours, the minimax nominal 
solution, and the worst-case solutions [23] for 
PO: minimize C ,  = z , O / E ,  + z , O / E ,  

subject to Y = 100 percent 
P1: minimize C2 = 1 /~ ,  + 1 /~ ,  subject to Y = 100 percent 

where E , ,  E ,  denote tolerances on 2, and 2, (assuming 
independent uniform distributions), and Y is the yield. 
The cost functions C,  and C, correspond to, respectively, 
relative and absolute tolerancing problems. Two problems 
of less than 100 percent yield have also been considered by 
Bandler and Abdel-Malek [7] as 

P2: minimize C, subject to Y > 90 percent 
P 3  : minimize C 2 / Y  

The optimal tolerance regions and nominal values for 
P 2  and P3  are shown in Fig. 12. For more details see the 
original paper [7]. 

Example 2 
The statistical design of a Chebyshev low-pass filter 

(Singhal and Pine1 [97])  is used as the second example. 
Fifty-one frequencies { 0.02,0.04,. . a ,  1.0,1.3 Hz} are con- 
sidered. An upper specification of 0.32 dB on the insertion 
loss is defined for frequencies from 0.02 to 1.0 Hz. A lower 
specification of 52 dB on the insertion loss is defined at 
1.3 Hz. 
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1.5 2 .o 2.5 3 .O 

21 

Fig. 12. The optimized tolerance regions and nominal values for the 
worst case design P1, 90 percent yield design P 2 ,  and minimum cost 
design P 3  of the two-section transformer. 

Singhal and Pine1 [97] have applied the parametric sam- 
pling method to the same circuit, assuming normal distri- 
butions for the toleranced elements. But, as we have pointed 
out earlier in this paper, the parametric sampling method 
cannot be applied to nondifferentiable (such as uniform) 
distributions. Here, we consider a uniformly distributed 
1.5 percent relative tolerance for each component. The 
generalized l p  centering algorithm described in Section V 
is used with p =l.  The nominal solution by standard 
synthesis as given in [97] was used as starting point, which 
has a 49 percent yield (w.r.t. the tolerances specified). An 
84 percent yield is achieved at the solution which involves 
a sequence of three design cycles with a total CPU time of 
66 seconds on the VAX 8600. Some details are provided in 
Table I. 

-' 

VII. GRADIENT-BASED OPTIMIZATION METHODS 
So far we have concentrated on translating our practical 

concerns into mathematical expressions. Now we turn our 
attention to the solution methods for optimization prob- 
lems. 

The studies in the last two decades on the theoretical 
and algorithmic aspects of optimization techniques have 
produced a great number of results. Modern state-of-the-art 
methods have largely replaced the primitive trial-and- 
error-approach. In particular, gradient-based optimization 
methods have gained increasing popularity in recent years 
for their effectiveness and efficiency. 

The majority of gradient-based methods belong to the 
Gauss-Newton, quasi-Newton, and conjugate gradient 
families. All these are iteralive algorithms which, from a 

TABLE I 

GENERALIZED I ,  CENTERING TECHNIQUE 
STATISTICAL DESIGN OF A LOW-PASS FILTER USING 

Component Nominal Design Case 1 Case 2 Case 3 
+I +IQ 0 +lo 1 k Q . 2  3 

X I  0 2251 0 21954 0 21705 0 21530 

X2 0 2494 0 25157 0 24677 0 23838 

x3 0 2523 0 25529 0 24784 0 24120 

4 0 2494 0 24807 0 24019 0 23687 

Y 0 2251 0 22042 0 21753 0 21335 

xg 0 2149 0 22627 0 23565 0 23093 

XT 0 3636 0 36739 0 37212 0 38225 

X8 0 3761 0 36929 0 38012 0 39023 

x9 0 3761 0 31341 0 38371 0 39378 

X I 0  0 3636 0 36732 0 37716 0 38248 

XI1 0 2149 0 22575 0 22127 0 23129 

Yield 49% 71.67% 79.67% 83.67% 

Number of samples 50 100 100 

Starting point 00.0 v.1 002 

used for design 

Number of itorations 16 18 13 

CPU time WAX 8800) 10 W. 30 9ee. 26 gpe 

Independent uniform distributions are assumed for each component with fixed tolerances 

ci = 1.5% &D. The yield is estimated based on 300 samples. 

given starting point xo, generate a sequence of points 
{xk}. The success of an algorithm depends on whether 
{ xk} will converge to a point x *  and, if so, whether x *  
will be a stationary point. An iterative algorithm is de- 
scribed largely by one of its iterations as how to obtain 
xk+l from xk .  

We use the notation U( x) for the objective function and 
V U  for the gradient vector of U. When U(x) is defined by 
an lp  function, we use f to denote the set of individual 
error functions so that U =  H( f ). We also use 4' for the 
first-order derivatives of jj and G for the Jacobian matrix 
of f .  

A .  l p  Optimization and Mathematical Programming 
Of the 1, family, I,, I,, and I, are the most distinctive 

and by far the most useful members. Apart from their 
unique theoretical properties, it is very important from the 
algorithmic point of view that linear I,, I,, and lo3 prob- 
lems can be solved exactly using linear or quadratic pro- 
gramming techniques. Besides, all the other members of 
the lp  family have a continuously differentiable function 
and, therefore, can be treated similarly to the I ,  case. 

An I,, I,, or I ,  optimization problem can be converted 
into a mathematical program. The concepts of local lin- 
earization and optimality conditions are often clarified by 
the equivalent formulation. 

is equivalent to For instance, the minimization of 1 )  
m 

minimize y, 
X,Y j - 1  
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TABLE I1 

I,, I,, AND I ,  OPTIMIZATION 
hhTHEMATICAL PROGRAMMING EQUIVALENT FORMULATIONS FOR 

The original problem: minimize H(n 
I 

The equivalent problem. minimize V(s.y) subject to the constraints asdefined below 
X.Y 

H ( n  Wx, y) constraints (forj = 1.2, , m) 

If l ,  

Note- A generalized Cp function Hp(O is defined through H,+(D and H;IO. 

continuously differentiable function far all p < m 

Hp- is a 

subject to 
y j > . f , ( x ) ,  y j >  -.f,(x), j = 1 , 2 ; . . , m .  

Other equivalent formulations are summarized in Table 
11. For the convenience of presentation, we denote these 
mathematical programming problems by P ( x ,  f). One 
important feature of P ( x ,  f )  is that it has a linear or 
quadratic objective function. If f is a set of linear func- 
tions, then P( x, f ) becomes a linear or quadratic program 
which can be solved using standard techniques. Equally 
importantly, linear constraints can be easily incorporated 
into the problem. Let P ( x ,  f, D) be the problem of 
P ( x ,  f )  subject to a set of linear constraints of the form 

where a ,  and b, are constants. If P ( x ,  f )  is a linear or 
quadratic program, so is P ( x ,  f, 0). In other words, un- 
constrained and linearly constrained linear I,, I,, and I, 
problems can be solved using standard linear or quadratic 
programming techniques. 

B. Gauss - Newton Methods Using Trust Regions 
For a general problem, we may, at each iteration, sub- 

stitute f with a linearized model f so that P ( x ,  j )  can be 
solved. 

For a Gauss-Newton type method, at a given point xk,  

a linearization of f is made as 

f ( h )  = f ( . k > +  G ( x k ) h  (48) 

where G is the Jacobian matrix. We then solve the linear 

or quadratic program P ( h ,  j ,  D), where 

These additional constraints define a trust region in whch 
the linearized model is believed to be a good approxi- 
mation to f. 

Another way to look at it is that we have applied a 
semilinearization (Madsen [78]) to U ( x )  = H( f ) resulting 
in 

U ( h )  = H (  j ( h ) ) .  
It is important to point out that (50) is quite different from 
a normal linearization as U( h )  = U( x k )  + [ v U( xk)] Th 
which corresponds to a steepest descent method. In fact 
v U may not even exist. 

reduces the original objective function, we take it as the 
next iterate; i.e., if u ( x k  + h k )  < u ( x k )  then x k + l =  

xk  + h,. Otherwise we let x k + ,  = x,. In the latter case, the 
trust region is apparently too large and, consequently, 
should be reduced. At each iteration, the local bound A, 
in (49) is adjusted according to the goodness of the lin- 
earized model. 

The above describes the essence of a class of algorithms 
due to Madsen, who has called it method 1. Madsen [78] 
has shown that the algorithm provides global convergence 
in which the proper use of trust regions constitutes a 
critical part. Such a method has been implemented as an 
important element in the minimax and 1, algorithms of 
Hald and Madsen [65], [66]. In some other earlier work by 
Osborne and Watson [85], [86] the problem P ( h ,  j )  was 
solved without incorporating a trust region and the solu- 
tion h ,  was used as the direction for a line search. For 
their methods no convergence can be guaranteed and { xk} 
may even converge to a nonstationary point. 

Normally for the least-squares objective we have to solve 
a quadratic program at each iteration, which can be a 
time-consuming process. A remarkable alternative is the 
Levenberg-Marquardt [76], [81] method. Given xk ,  it 
solves 

minimize h '( G TG + 0,l) h + 2 f TGh + f Tf (51) 

where G = G(x,), f = ! ( irk),  and 1 is an identity matrix. 
The minimizer h ,  is obtained simply by solving the linear 
system 

Denote the SOlUtiOn Of P ( h ,  io) by h,. If x k +  h ,  

h 

( GTG + 0,l)h, = - GTf 

using, for example, LU factorization. The Levenberg- 
Marquardt parameter 0, is very critical for this method. 
First of all, it is made to guarantee the positive definiteness 
of (52). Furthermore, it plays, roughly speaking, an in- 
versed role of A, to control the size of a trust region. 
When 8, -, 00, h ,  gives an infinitesimal steepest descent 
step. When 8,=0, hk becomes the solution to ~ ( h ,  j )  
without bounds, which is equivalent to having 

The concept of trust region has been discussed in a 
broader context by Mor6 in a recent survey [82]. 

-, 00. 
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C. Quasi-Newton Method 
Quasi-Newton methods (also known as variable metric 

methods) are originated in and steadily upgraded from the 
work of Davidon [45] and Broyden [33], [34], as well as 
Fletcher and Powell [55]. 

For a differentiable U ( x ) ,  a quasi-Newton step is given 
by 

h,  = - B i  v U( x k )  (53) 
where B, is an approximation to the Hessian of U ( x )  and 
the step size controlling parameter ak is to be determined 
through a line search. However, on some occasions such as 
in the I ,  or minimax case, the gradient V U  may not exist, 
much less the Hessian. 

We can gain more insight to the general case by examin- 
ing the optimality conditions. Applying the Kuhn-Tucker 
conditions for nonlinear programming [70] to the equiv- 
alent problem P ( x ,  f), we shall find a set of optimality 
equations 

R ( x )  =o. (54) 

Since a local optimum x *  must satisfy these equations, 
we are naturally motivated to solve (54), as a means of 
finding the minimizer of U ( x ) .  A quasi-Newton step for 
solving nonlinear equations (54) is given by 

h,  = - akJF'R(Xk) ( 5 5 )  

where Jk is an approximate Jacobian of R ( x ) .  Only when 
U( x) is differentiable will we have the optimality equa- 
tions as R( x) = v U( x) = 0 and (55) reverts to (53). 

Hald and Madsen [65], [66] and Bandler et al. [21], [22] 
have described the implementation of a quasi-Newton 
method for the minimax and I, optimization in which the 
objective functions are not differentiable. Clarke [43] has 
introduced the concept of generalized gradient, with which 
optimality conditions can be derived for a broad range of 
problems. 

Quasi-Newton methods, whether in (53) or ( 5 9 ,  all 
require updates of certain approximate Hessians. Many 
formulas have been proposed over the years. The best 
known are the Powell symmetric Broyden (PSB) update 
[91], the Davidon-Fletcher-Powell (DFP) update [45], 
[55], and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
update [35], [53], [60], [95]. The merits of these formulas 
and a great many other variations are often compared in 
terms of their preservation of positive definiteness, conver- 
gence to the true Hessian, and numerical performance (see, 
for instance, Fletcher [54] and Gill and Murray [59]). 

Another important point to be considered is the line 
search. Ideally, (Yk is chosen as the minimizer of U in the 
direction of line search so that h ; v U ( x ,  + h k )  = 0. If 
exact line searches are executed, Dixon [50] has shown that 
theoretically all members of the Broyden family [34], [53] 
would have the same performance. In practice, however, 
exact line search is deemed too expensive and is therefore 
replaced by other methods. An inexact line search usually 
limits the evaluation of U and V U  to only a few points. 

Interpolation and extrapolation techniques (such as a 
quadratic or cubic fit) are then incorporated. 

D. Combined Methoh 
The distinguishing advantage of a quasi-Newton method 

is that it enjoys a fast rate of convergence near a solution. 
However, like the Newton method for nonlinear equations, 
the quasi-Newton method is not always reliable from a 
bad starting point. 

Hald and Madsen [65], [66], [78] have suggested a class 
of two-stage algorithms. A first-order method of the 
Gauss-Newton type is employed in stage 1 to provide 
global convergence to a neighborhood of a solution. When 
the solution is singular, method 1 suffers from a very slow 
rate of convergence and a switch is made to a quasi-New- 
ton method (stage 2). Several switches between the two 
methods may take place and the switching criteria ensure 
the global convergence of the combined algorithm. 
Numerical examples of circuit applications have demon- 
strated a very strong performance of the approach [21], 
[221, [791, WI. 

Powell [92] has extended the Levenberg-Marquardt 
method and suggested a trust-region strategy which inter- 
polates between a steepest descent step and a Newton step. 
When far away from the solution, the step is biased toward 
the steepest descent direction to make sure that it is 
downhill. Once close to the solution, taking a full Newton 
step will provide rapid final convergence. 

E. Conjugate Gradient Method 
Some extremely large-scale engineering applications in- 

volve hundreds of variables and functions. Although the 
rapid advances in computer technology have enabled us to 
solve increasingly larger problems, there may be cases in 
which even the storage of a Hessian matrix and the solu- 
tion of an n by n linear system become unmanageable. 

Conjugate gradient methods [56], [75], [88] provide an 
alternative for such problems. A distinct advantage of 
conjugate gradient methods is the minimal requirement of 
storage. Typically three to six vectors of length n are 
needed, which is substantially less than the requirement by 
the Gauss-Newton or quasi-Newton methods. However, 
proper scaling or preconditioning, near-perfect line searches 
and appropriate restart criteria are usually necessary to 
ensure convergence. In general, we have to pay the price 
for the reduced storage by enduring a longer computation 
time. 

VIII. GRADIENT CALCULATION AND APPROXIMATION 
The application of gradient-based lp optimization meth- 

ods requires the first-order derivatives of the error func- 
tions with respect to the variables. 

In circuit optimization, these derivatives are usually 
obtained from a sensitivity analysis of the network under 
consideration. For linearized circuits in the frequency do- 
main, it is often possible to calculate the exact sensitivities 
by the adjoint network approach [5], [31], [48]. 
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However, we ought to recognize that an explicit and 
elegant sensitivity expression is not always available. For 
time-domain responses and nonlinear circuits, an exact 
formula may not exist. Even for linear circuits in the 
frequency domain, large-scale networks present new prob- 
lems which need to be addressed. 

Often, a large-scale network can be described through 
compounded and interconnected subnetworks. Many com- 
mercial CAD packages such as SUPER-COMPACT [99] 
and TOUCHSTONE [104], [lo51 have facilitated such a 
block structure. In this case, one possible approach would 
be to assemble the overall nodal matrix and solve the 
system of equations using sparse techniques (see, e.g., Duff 
[51], Gustavson [61], Hachtel et al. [62]). Another possibil- 
ity is to rearrange the overall nodal matrix into a bor- 
dered block structure which is then solved using the Sher- 
man-Morrison-Woodbury formula [63], [96]. Sometimes 
it is also possible to develop efficient formulas for a special 
structure, such as the approach of Bandler et al. [17] for 
branched cascaded networks. 

In practice, perhaps the most perplexing and time-con- 
suming part of the task is to devise an index scheme 
through which pieces of lower level information can be 
brought into the overall sensitivity expression. It may also 
require a large amount of memory storage for the various 
intermediate results. Partly due to these difficulties, meth- 
ods of exact sensitivity calculations have yet to find their 
way into general-purpose CAD software packages, al- 
though the concept of adjoint network has been in ex- 
istence for nearly two decades and has had success in 
many specialized applications. 

In cases where either exact sensitivities do not exist or 
are too difficult to calculate, we can utilize gradient ap- 
proximations [15], [16], [77], [109]. A recent approach to 
circuit optimization with integrated gradient approxima- 
tions has been described by Bandler et al. [16]. It has been 
shown to be very effective and efficient in practical appli- 
cations including FET modeling and multiplexer optimiza- 
tion. 

IX. CONCLUSIONS 
In this review, we have formulated realistic circuit de- 

sign and modeling problems and described their solution 
methods. Models, variables, and functions at different 
levels, as well as the associated tolerances and uncertain- 
ties, have been identified. The concepts of design center- 
ing, tolerancing, and tuning have been discussed. Recent 
advances in statistical design, yield enhancement, and 
robust modeling techniques suitable for microwave CAD 
have been discussed in detail. State-of-the-art optimization 
techniques have been addressed from both the theoretical 
and algorithmic points of view. 

We have concentrated on aspects that are felt to be 
immediately relevant to and necessary for modern micro- 
wave CAD. There are, of course, other related subjects 
that have not been treated or not adequately treated in this 
paper. Notable among these are special techniques for very 
large systems (Geoffrion [57], [58], Haimes [64], Lasdon 

[72]), third-generation simulation techniques (Hachtel and 
Sangiovanni-Vincentelli [63]), fault diagnosis (Bandler and 
Salama [27]), supercomputer-aided CAD (kzzoli et al. 
[93]), the simulated annealing and combinatorial optimiza- 
tion methods and their application to integrated circuit 
layout problems [38], [69], [84], and the new automated 
decomposition approach to large scale optimization 
(Bandler and Zhang [28]). 

The paper is particularly timely in that software based 
on techniques which we have described is being integrated 
by Optimization Systems Associates Inc. into SUPER- 
COMPACT by arrangement with Compact Software Inc. 
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Efficient Large-Signal FET Parameter
Extraction Using Harmonics

JOHN W. BANDLER, FELLOW, IEEE, QI-JUN ZHANG, MEMBER, IEEE, SHEN YE,
STUDENT MEMBER, IEEE, AND SHAO HUA CHEN, MEMBER, IEEE

Afm&act — We present a novel approach to nonlinear large-signaf FET
model parameter extraction for GaAs MESFET devices measured under
large-signaf condkions. Powerful nonlinear adjoint-based optimizatio~
which employs the harmonic bafance method as the nonlinear circuit
simulation technique, simultaneously processes mrdtibias, yultipower
inputs, mnki-fundamental-frequency excitations, and mnftiharmonic mea-
surements to uniquely reveaf the parameters of the intrinsic FET. In
contrast to other methods by which the model parameters me extracted
using dc and small-signal measurements, onr new approach can provide
more accurate and refiable large-signaf model parameters extracted under
actual operating cond@ions. Tfre mrMfied Materka and Racprzak FET
model serves as an example. Numericaf results verify that our approach
can effectively determine the parameters of this modeL Inchrding harmon-
ics in parameter extraction results in a reliable huge-siguaf model. Reaf
data provided by Texas Instruments have afso been employed. The tech-
nique has been implemented in a new program called HarPE.

I. INTRODUCTION

A N ACCURATE nonlinear large-signal FET model is
critical to nonlinear microwave CAD. Various ap-

proaches to FET modeling have been proposed, e.g., [1]-[5].
The dominant nonlinear bias-dependent current source in
these models, namely, the drain-to-source current source,
is commonly determined by fitting static or dynamic dc
I–V characteristics only [1], [2], [4]-[7] or by matching dc
characteristics and small-signal S parameters simultane-
ously [3]. Other nonlinear elements in the model are deter-
mined either by applying special dc biases so as to de-
termine the parameters of “the gate-to-source nonlinear
current source in the Materka and Kacprzak model [2] or
by using small-signal S parameters so as to determine the
gate-to-source nonlinear capacitor [3].

The FET models obtained by those methods may pro-
vide accurate results under dc and/or small-signal operat-
ing conditions. They may not, however, be accurate enough
for high-frequency large-signal applications [8], since they
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are determined under small-signal conditions and then
used to predict the behavior for large-signal operations.
Parameter extraction using large-signal measurements, e.g.,
power measurements [9], has recently been proposed.
However the approach in [9] does not distinguish individ-
ual harmonics.

In this paper, we present a truly nonlinear large-signhl
FET p~rameter extraction procedure which utilizes spec-
trum measurements, including dc bias information and
power output at different harmonics under practical wcrk-
ing conditions [10]. Besides multibias and multifrequency
excitations, multipower inputs are introduced for large-sig-
nal parameter extraction. The harmonic balance method
[11] is employed for fast nonlinear frequency domain simul-
ation in conjunction with #l [12] and lZ optimization for
extracting the parameters of the nonlinear elements in the
large-signal FET model. Powerful nonlinear adjoint analy-
sis for sensitivity computation [13] is implemented with
attendant advantages in computation time.
Numerical expeiimen ts show that all the parameters can

be identified under practical large-signal conditions and
that including higher harmonics in large-signal parameter
extraction is crucial to the reliability y of the model. Numer-
ical results are also obtained in processing actual measure-
ment data provided by Texas Instruments.’ Good agree-
ment between the measurements and the model responses
is reached, demonstrating the feasibility of our new param-
eter extraction approach.
In Section II, the formulation of the large-signal param-

eter extraction optimization problem is presented. Section
III describes the applications of the harmonic balance
technique to model response simulations and nonlinear
adjoint sensitivity and,ysis to gradient calculations. An
automatic weight assignment algorithm enhancing paramet-
er extraction optimization is given in Section IV. Numeri-
cal examples are discussed in Section V, where we use the
modified Materka and Kacprzak FET model [14], which
has 21
part of

parameters charact&-izing the nonlinear intrinsic
this large-signal F12T model.

H. OpTmnzAT1oN FOR LARGE-SIGNAL
PARAMETER EXTRACTION

Consider the FET model and its measurement environ-
ment shown in Fig. 1, where Yin and YOUt are input an~d
output 2-ports, and Yg and Yd are gate and drain bias

0018-9480/90/1200-2099$01.00 01990 IEEE
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Fig. 1. Circuit setup for large-sigrd multiharmonic FET measurement.

2-ports, respectively. A large-signal power input Pi. is
applied to the circuit. The responses including dc and
several harmonic components are measured.

In addition to the multibias, multifrequency concept we
pioneered for small-signal parameter extraction [3], [15],
we allow the circuit to be excited at several input power
levels. Various combinations of bias points, fundamental
frequencies, and input power levels together with multihar-
monic measurements contribute to the information needed
for real large-signal parameter extraction. In the following
discussion we use the term bias – input-frequency combina-
tion to indicate the modeling circuit working at a bias
point with a particular input power level and at a particu-
lar fundamental frequency.

Assume for the jth bias–input-frequency combination,
j+,z,.. ., M, the measurement is

(1)
where M is the number of bias–input-frequency combina-
tions, S“(0) is the dc component of the measurement,
S,(u,~), k=l,2,. . . . H, are the k th harmonic components
at the j th bias–input-frequency combination, and H is the
number of harmonics contained in the measurement. S,(0)
can be taken as the bias-related dc voltage or current,
which varies at different fundamental frequencies and in-
put levels even at a fixed bias point. When using power
spectrum measurement, S, ( u,~) denotes the k th harmonic
of the output power spectrum measured at the j th bias–
input-frequency combination. (The equivalent output volt-
age with phase information might also be employed [10].)

Corresponding to (l), the model response ~(~) can be
expressed as

q(+) = [5(N) q(+?ql) ““”q(+>qH)]Tj

j=l,2, -.., M (2)

where + stands for the parameters of the model to be
determined. The parameter extraction problem can be
formulated as the following optimization problem:

(‘in f ‘,dcl~( +,”)–sj(o)lp
@ ,=1

H
+ z ykl~J(+$Q,k ))-s,(@,k)lp (3)

k=l

where w,~C and WIL are weighting factors, and p = 1 or 2

Nonl or part

[Intr, nsc FETl

() —

Lneor port

[ ~

+

1-
Fig. 2. Block diagram for illustrating circuit simulation using the har-

monic balance method.

corresponds to #l or & optimization, respectively. The
criterion of the above optimization is to match the model
responses to the measurements at dc and several harmon-
ics. It is clear that the practical usefulness of this parame-
ter extraction approach depends on the effectiveness of
calculating the model responses F,(+), j =1,2,. “ “, M, and
their derivatives. (In the next section we will show that the
numerical computation of F~( o ) and its derivatives is not a
trivial task.)
The magnitude of the circuit responses varies widely at

different bias–input-frequency combinations and different
harmonics. An automatic weight assignment algorithm has
been developed to improve robustness and enhance con-
vergence speed. If the harmonic measurement is made in
the form of output power, the conditioning of the opti-
mization problem can be further improved by converting
the output power to its equivalent output voltage.

111. NONLINEAR CIRCUIT SIMULATION AND
GRADIENT CALCULATION

For a nonlinear large-signal FET model, the circuit
model in Fig. 1 is nonlinear. This means that the model
response F,(+) in (2) must be obtained by solving a
dynamic nonlinear circuit, and the gradient of the objec-
tive function in (3) involves calculation of the derivatives
of the dynamic nonlinear circui~ response.
To solve these two difficult problems, we have employed

the efficient harmonic balance method [11] for fast nonlin-
ear circuit simulation in the frequency domain. A powerful
nonlinear adj oint sensitivity analysis technique [13] has
been implemented to calculate the derivatives of the model
response and therefore the gradient of the objective func-
tion in (3) with respect to +. In this section we discuss the
applications of the harmonic balance technique to model
response simulation, and of nonlinear adjoint sensitivity
analysis to gradient calculations.

Let the nonlinear circuit model be partitioned into linear
and nonlinear subcircuits, as illustrated in Fig. 2. Assume
that the multiport 1’ matrix of the linear subcircuit can be
established, all the nonlinear elements are voltage-con-
trolled, and there is no nonlinear inductor inside the
intrinsic FET model. Also, for simplicity, we assume that
the parameters in the linear subcircuits are known. In the
rest of this section. we will focus our discussions on the jth



BANDLER et U[.: EFFICIENTLARGE-SIGNALFETPARAMETEREXTRACTION

bias–input-frequency combination; therefore the corre-
sponding subscript j will be omitted to simplify the nota-
tion. Other bias–input-frequency combinations can be
treated similarly.

A. Nonlinear Circuit Simulation Using Harmonic
Balance Method

Following [11], the harmonic balance equation for our
model can be expressed as

Zd(~>V(@)> @~)+~~(~~)Q(~> V(@)> @~)

+Y(tik) v(+, cok)+l,(tik)=o, k=o,l,..., w
(4)

where k represents the k th harmonic, tio ==O corresponds
to the dc component, v(+) = [VT(+>O) VT(O> @l) “ “ “
VT(+, u~,)] ~ is the voltage vector to be solved for, Y
stands for the multiport admittance matrix of the linear
subcircuit, 1, is the equivalent current excitation from the
external excitations, Id corresponds to the current from
the nonlinear current sources, fl(u~) is a diagonal matrix
with ti~ as diagonal elements, and Q corresponds to the
charge from the nonlinear capacitors. For example, Id
may contain the drain-to-source and drain-to-gate nonlin-
ear current sources, and Q may include the gate-to-source
nonlinear capacitor.

In (4) @ represents the optimization variables, i.e., the
parameters to, be determined, and H’ the number of har-
monics considered in the harmonic balance simulation. It
should be noticed that H z H (the number of measured
harmonics used), and H’ can be different for different
bias–input frequency combinations. For higher accuracy
H’ could be greater than H.

We solve (4) by organizing it into a scalar form:

+

Y’ (o)

Y’((JJ

2101

where the superscripts R and I represent real and imagi-
nary parts of the corresponding component, respectively.
Note that in sol~ng the harmonic balance equation (5), @
is constant and V(O) is the variable. Powell’s algorithm for
solving nonlinear equations [16] is used, where in orde.r to
save computation time and provide higher accuracy the
exact Jacobian matrix is calculated in our program, i.e.,

Y(@,v(+))

The detailed calculations of the entries of Y(+, ~($)) are
discussed in [11].
When the solution ~(~) is reached, the model response

F(+) can be easily obtained:

where a (ok) and b ( ti~,) are constant vectors determined
by the linear subcircuit, and l?(ti~) corresponds to the
external excitations including power input source and bias
sources.

B. Gradient Calculation by Nonlinear Adjoint
Sensitivity Ana&sis

Let N be an index set indicating interfacing ports
between linear and nonlinear parts, and eml(k) and enz(k)
be such unit vectors that V.(O, u~) = (e.l(k) +‘
jenz(k))T~($), n ~ N. The circuit response F(@ Ok) in (7)

—i-l (o) lrQR(W’WO.O) 1
–a(q)

●
e

–Q(ti)w)

t?(o)
i-l(wl)

●
●

S2(6JH)

– Yr(o)

●
●

Y’ (wH?)
Y’(o) YR(o)

Y’(q)

●

●

YJ(fJ}{f)

VR(O>O)
- YI((dJ V’(+,ul)

● .,
●

– YJ((.JW) vR((b, uH?)
V’(o,o)

Y’((+) V’(@, @l)
●

●

Y~((JHf) V’(ljl, c’)”)
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Z:((dl)
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z:(o)

1:(6)1)

Zj(c.JH)
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can be rewritten as

F(@, ti~)

= ~ an(o,)(eml(k)+ je.,(k))~~(+)+ b~(u,)E(a,).
nGN

(8)

The derivative of F(4, ti~) w.r.t. +1 is then

f3F(@, @k)

aql

To realize the above derivative, we first derive from (5)
that

(?F(+)

a+,

(lo)
where J( $, 7(~)) is defined in (6) and is available at the
solution of the harmonic balance equation. Then by multi-
plying both sides of (10) by e~(k), we get

where

ti~(+) = [(t~(+,o))T (t~(+,6+))T. 0. (t~(@, @Hr))T

($’(+,O))T (tq+, q))T. . . (P(+,LJH))T]

and is determined by solving the adj oint system

~T(o,~(@))fi(@) =e~l(k). (12)

It can be proved that if ~, is a parameter of a nonlinear
element at branch b, then

example, if branch b is the gate-to-source diode with
characteristics

i~($, o(t)) =l~O[exp (a~u~(t))–l]

and ~{ = a~, we will have

a~,(+>~(~))
a+, =IGoub(t) exp(aGub(t))

where discrete Fourier transformation is used, NT z (2 H’
+1) is the number of samples in the time domain within
one period T, T1 = T/NT, and T = l/( fundamental fre-
quency).
The same derivations can be applied to

(3P(*)
e~z(k)— aq, -

Hence, i3F(@, ti~)/tl @l in (9) can be obtained. Conse-
quently, the gradient of the objective function in (3) can be
obtained.

Summing up, we can see that the gradient of the nonlin-
ear circuit response F(O) w.r.t. @ can be calculated by
nonlinear adj oint analysis which utilizes the existing Jaco-
bian matrix from the solution of the harmonic balance
equation to complete all the adjoint analysis. The equiva-
lent conductance at the nonlinear element level, i.e.,
Gb~i(@, ~f) or GbQ, (0, Ut), are the same for different ad-
joint systems, and therefore only need to be calculated
once. Compared with the perturbation method for gradient
computations, which requires solving one nonlinear circuit
for each optimization variable, the nonlinear adjoint analy-
sis not only provides the exact gradient of the objective
function, but, what is more important, significantly re-
duces the computation time and makes our parameter
extraction approach computationally practical [13], [17].

IV. WEIGHT ASSIGNMENT PROCEDURE

In the large-signal parameter extraction approach, pre-
sented in Section 11, the model response is optimized to
match several harmonics at various bias–input-frequency
combinations. Two difficulties must be overcome to opti-
mize the objective function in (3): the magnitude differ-

1fReal[Fb(+, @,) G;L(4> ~/)]
ap(+) - /=~

if b G {nonlinear current sources}

e~(k)—=
a+,

(13)

— ~ Imag[Fb(@,~/)GFQi(@,@/)] if b = {nonlinear capacitors}
/=0

where the superscript * stands for complex conjugate, and ences between different harmonic measurements, and the
Gb~,(~, ~~) and GbQ,(@, @~) are the ~th Fourier coeffi- differences between different bias–input-frequency combi-
cients of the partial derivatives of the current ib( +, O( t)) nations. Suitably chosen weighting factors can balance
and charge q,,( 4, V(t)) w.r.t. 1#1,respectively (see [13]). For these differences and improve the convergence of the opti-
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mization. This weight assignment procedure assumes that
(a) the possibility of having large measurement errors is
small, (b) the power measurement has been converted to
the magnitude of the output voltage, and (c) we want one
harmonic in a bias–input-frequency combination to have
the same opportunity in the objective function as the same
harmonic in another bias-input-frequency combination.

A. Balance of a Harmonic Between Different Bias – Input-
Frequency Combinations

In (1) of Section 11, we have defined the k th harmonic
measurement S1( u,~), where j =1,2,. . . . M corresponds to
the jth bias–input-frequency combination. Let ~~ be the
mean value of the k th harmonic measurement over M
combinations:

Fk=; .$S’(qk), k= O,l,..., H. (14)
]=1

Since the measurement will not be zero, we can balance
the k th harmonic by

q

“(ajk) “
(15)

Minimum and maximum bounds can be imposed on w~k;
i.e., simple interpolation adjustment can be used within the
k th harmonic if some w;, j = 1, . . . . M, lies outside the
bound(s).

B. Balance Between D#ferent Harmonics

In practice we may want to emphasize some harmonics
over the others; e.g., the lower harmonic measurements
may be emphasized due to their larger magnitudes and
therefore higher measurement accuracy. This requires ad-
justment between different harmonics. Let K~ be the
weight adjustment factor for the k th harmonic. Then the
weighting factors for the optimization problem (3) can be
expressed as

51
Wlk = Kkw~=-,

J Sk k=l,2,..., H (16)

and
—

Wjdc= KOW;O; (17)
o

where we take the mean value of the first harmonic mea-
surement as a reference. As an example, if we want to
place equal emphasis on the dc and fundamental harmonic
measurements and lower emphasis on higher harmonic
measurement, we can choose K~ = 1 for k = O and 1, and
K~=B-kfor k=2,, ... Hwhere B >1.

V. NUMERICAL EXAMPLES

In the numerical examples, we use the Microwave Har-
monica [14] modified Materka and Kacprzak FET model
as the intrinsic FET, as shown in Fig. 3. All tlhe linear FET
model parameters such as the parasitic in Fig. 1 are

s
Fig. 3. Intrinsic part of the modified Materka and Kacprzak FET

model.

extracted using small-signal measurement data. The non-
linear elements of the model are described by [14]

‘~=F’”~(t-’)o~(t)’(1
(

i 1(E+ KEUG)

F(o~, u~) = ~~ss 1– ~ ~YU~
Po

(

s~v~
-tarlh

lDS’S(l – ‘GUG) )

i~=l~o[exp (a~u~)–l]

iB=lBoexp[aB(uD– VI– VBC)]

(

RI= RIO(l– K,u~)

R1=O if K~v~ >1

{

Cl= Clo(l -- K1u~) - 1’2+ C1~
(1:8)

c1 = C10J5-i- Cls if K1v~ & 0.8

and

{

CF=CFO[l– K~(ul– u~)] ‘“2

Cp= CFOJ7 if K~(ul– u~) >0.8

where IDS~, P’po, Y, B, KE, S1, KG, T, SS, 1~0, a~, 1~0,
a~, V~c, RIO, K~, Clo, Kl, C1~, C~O, and K~ are the
parameters to be determined. Since only one of l~o and
V~c is independent (see the Appendix), we fix V~c and
optimize the other 20 parameters:

During the optimization the nonlinear circuit is solved
using the harmonic balance method, where the excitation
of the circuit is the available input power Pi., which can be
converted to an equivalent input voltage source Vin by

(20)
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TABLE I
PARAMETERVALUESOFTHEINTRINSICPARTOFTHEMODIFIED

MATERKA AND KACPRZAK FET MODEL

Value

Name Unit Case 1 Case 2 Case 3

IDSS
v Po
7
E
KE
S1
KG
r
s,
lGo
‘G
1BO
‘B
v BC
R10
KR
c 10
K1
c 1s
c FO
KF

A 0.1888
v -4.3453

-0.3958
2.0

I/v 0.0
1/n 0.0972
I/v -0.1678
ps 3.654
1/n 0.0
A O.5X1O-9
I/v 20.0
A O.5X1O-9
I/v I ,0
v 0.0”
n 4.4302
l/v 0.0
PF 0.6137
I/v 0.7686
pF 0.0
pF 0.0416
1Iv 0,0

0.0521
-1.267
-0.0877
1.269

-0.3224
0.0731

-06482
5.322
4.462 x10-5
8.782 x10-g
34.04
5.960x 10-12
4.245
20.0’
0.0361
9.892x10-S
1.066
1.531
0.0314
1.321
1.638

0.0740
-3.185
0.0177
2.937
-0.9077
0.1527

-0.4912
0.1011
0.0022
4.965x10-11
20.32
1.OOOX1O-12
2.000
20.0’
0.1243
0.0
1.170
1.201

-0.5243
0.0623
-0.0959

* Since only one of IBO and VBC is independent (see the
Appendix), we fix VBC and optimize IBO.

Three cases are discussed. In case 1, we will show the
theoretical aspects of the proposed approach, i.e., the
robustness, reliability and efficiency of our parameter ex-
traction approach if there is no model deficiency. Case 2
gives a numerical experiment of matching the modified
I’vfaterka and Kacprzak model to the Curtice model. In
case 3, we will discuss practical large-signal FET model
parameter extraction for the measurement data provided
by Texas Instruments.
Case 1: Robustness and Efficiency of the Parameter Extrac-
tion Approach
We use the MESFET parasitic from [3]:

[R, L, R. L, % L, C., R,, c~.~

= [0.0119 Q 0.1257 nH

0.3740 Q 0.0107 nH 0.0006 L! 0.0719 nH

0.1927 pF 440 Q 1.5 pF]

and assume that the solution of the model is also from [3],
which is listed in Table I. The circuit is simulated at four
bias points: (V~~ = – 0.5 V, V~~ = 2 V), (V~~ = – 2 V,
V~~=2V), (V~~=–0.5V, V&=5 V). and(V~B=–2V,
V~~ = 5 V). At each bias point three input power levels
(P,n = 5, 10, and 15 dBm) and two fundamental frequen-
cies ( fl = 1 and 2 GHz) are applied, respectively. There are
a total of 24 bias–input-frequency combinations. Six har-
monics are considered in the harmonic balance simulation.
The output power POut and the dc voltage V~c (see Fig. 1)
of the simulation results are then used as the simulated
measurements. This corresponds to the situation of no
model deficiencies.

To examine the robustness of the approach, we gener-

TABLE II
MATCH ERRORS BETWEEN THE MEASUREMENTS

AND MODEL RESPONSES IN CASE 1
.——. — .-—

P.Ut matching errors in (Ye)

Harm. Match (H=l) (H=2) (H=3)

First harm, -0.53 -0.84 -1.08

Second harm. 21.32 7.58 6.77

Third harm. -37.48 -14.36 -9.31

where H=l, 2, or 3 corresponds to the number of har-
monics included in the objective function (3), and the
comparisons here are made at bias point (VGB=-2V,
VDB=2V), available input power Pin=lOdBm and funda-
mental frequency fl=l GHz.

ated several starting points by uniformly perturbing the
assumed solution by 20 to 40 percent and optimized them
with the t’l norm, i.e., p = 1 in (3). The circuit response
~(+) in (2) was computed using six harmonics (H’= 6).
In the case where there is no measurement error, i.e., the
exact simulation results obtained at the assumed solution
are used as the measurement data, all the starting points
converged to the known solution exactly when we included
the first three harmonics, the first two harmonics, or one
harmonic (plus dc) in the objective function; i.e., H =3, 2,
or 1 in (3), respectively. However, it has been observed
that the speed of convergence is usually faster when more
harmonics are considered in the optimization.
To simulate a real measurement environment we added

10 percent normally distributed random noise to the simu-
lated measurements. The same starting points were opti-
mized with the 22 norm, i.e., p = 2 in (3), and the same
conditions were tested. When H = 3 or 2 in (3), all the
starting points converged to virtually one solution which is
close to the assumed solution and gave very good match to
the measurement with noise. When H =1, however, those
different starting points did not converge to a single solu-
tion close to the assumed solution. Although at these
solutions the matches to the measurements with noise at dc
and fundamental harmonic are better than those achieved
when H = 3 or 2, poor matches at second, third, and/or
higher harmonics exist. Table II shows the match errors at
one of the bias–input-frequency combinations at the solu-
tions obtained when H =1, 2, and 3 in the objective

function.

From these experiments, we can see that with our ap-
proach the nonlinear parameters can theoretically be deter-
mined even when H = 1 in (3). In practice when the model
is not perfect and the measurement contains error, it is
necessary to include higher harmonic measurements in the
nonlinear large-signal model parameter extraction, for it
not only improves convergence, but, what is more impor-
tant, results in a more reliable model.
Two different starting points were used to compare the

CPU execution time with and without nonlinear adjoint
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TABLE III
PARAMETERS OF THE CURTICE MODEL USED IN CASE 2

Parameter P2 (1 Iv) AO (A) Al (A/V)
Value

AZ (A/V2)
0.04062 0.05185 0.04036 -0.009478

Parameter A3 (A/V3) 7 (l/v) fiso W IS (A)
Value -0.009058 1.608 1.O5X1O-9

Parameter N (-) :SO (PF) H;O (P’F) FC (-)
Value 1.0 0.5

Parameter C&(l/II) VW (w VBR (J’) T (P$)
Value 0.7 20 5.0

see [4]

TABLE IV
INPUT LEVELS USED WITH DIFFERENT FUNDAMENTAL FREQUENCIES

AND DIFI ERENT BIASES IN CASE 2
—
—

Pin (dBm)
(VGB, VDB) —

fl=0.5GHz fl=l.OGHz fl=l.5GHz f1=2.0GHz

(-0.3, 3) 0,4 0, 4 0, 4 0, 4
(-0.3,7) 0,4 0, 4 0, 4 0, 4
(-1.0,3) 0 0 0 0
(-1.0, 7) o 0, 4 0,4 0
(-0.5, 3) -- 8 8 --
(-0.5, 7) 8 8 8 8

fl denotes the fundamental frequency

analysis for gradient computation. To reaclh an t’l objec-
tive function value of about 1.0X 10-3 for another exam-
ple having 16 bias–input-frequency combiniitions, 20 vari-
ables, and 64 error functions, the Fortran program with
the adjoint analysis runs approximately 10 times faster
than that without adjoint analysis (about 200 s versus 2000
s on a VAX 8650 computer).
Case 2: Fitting to the Curtice Model
Here we use a set of data generated by the Curtice

model [4]. The circuit is similar to that of Fig. 1 except that
the intrinsic FET is replaced by the intrinsic part of the
Curtice model. Some of the parameters of the Curtice
model are taken from [4, fig. 13]. See Table III. The
parameters in the linear part of the circuit are the same as
in case 1.

We selected 32 bias–input-frequency combinations, as
shown in Table IV. The first three harmonics were as-
sumed as measurement data. Any signal below – 30 dBm
was discarded. There were 111 error functions in total.

To extract the model parameters, ~j optimization was
applied and the result is listed under the case 2 column in
Table I. Fig. 4 illustrates the modeling results at a bias
point other than those considered in the optimization.
Excellent agreement is observed.
As for case 1, parameters at the solution were perturbed

uniformly by 20 to 40 percent and reoptimized. Of six
starting points, four converged to the same solution with
little variances in RIO and K~. The other two converged to
different local solutions with higher final objective func-
tion values.

Fig. 5 shows the characteristics of drain-to-source non-
linear current sources of the Curtice model and the modi-
fied Materka and Kacprzak model, and again we have
reached an excellent match. Notice that only six bias
points are used in the optimization, which is even less than
the total number of parameters for this current source.
However, since we modeled under actual large-signal con-
ditions, employing higher harmonic measurements, a much
larger range of information has been covered than individ-
ual points on the dc 1– V curve can provide.
Case 3: Processing Measurement Data from ‘Texas Instru-
ments

Actual GRAS FET measurement data were obtained
from Texas Instruments [18] including small-signal and

large-signal measurements. We used the small-signal S
parameter measurement data to extract the linear parame-
ters of the model. Large-signal measurements taken at 36
bias–input-frequency combinations were used for nonlin-
ear parameter extraction. Table V illustrates the bias–i n-
put frequency combinations in detail. At each combina-
tion, the dc bias current and up to three RF harmonic
output power measurements are available.

Optimization with the /1 norm was performed where,
depending on the scales of the input and the correspond-
ing output powers,, the c;rcuit was simulated using three to
seven harmonics. There are 20 optimization variables and
113 error functions. Among ten different starting points,
six converged to virtual] y one single solution with varia-
tions of 1~0, 1~0, a~, and RIO because of their relative] y
low sensitivities to the response functions. One typical
solution is listed under the case 3 column in Table I. Fig. 6
shows the match at the solution between the model re-
sponses and measurement ts at one of the bias points taken
into account in the optimization, while Fig. 7 shows the
match at a bias point not included in the optimization.
Good agreement at both bias points is observed.
Fig. 8 depicts the 1– ,V characteristics of the drain-tcl-

source nonlinear current :source at the solution. Notice that
this set of curves is obtained from large-signal parameter
extraction, not from typical dc 1– V curve fitting.

VI. ICONCLUSIONS

An accurate and truly nonlinear large-signal parameter
extraction approach has been presented where not only dc
bias and fundamental frequency but also higher harmonic
responses have been used. The harmonic balance method
for nonlinear circuit simulation, adjoint analysis for non-
linear circuit sensitivity calculation, and state-of-the-art
optimization methods have been applied. Improvements to
the convergence of the optimization process have been
discussed. Numerical results have demonstrated that the
method is both theoretically and computationally feasible,
i.e., the method can uniquely and efficiently determine
the parameters of the nonlinear elements of the GaAs
MESFET model under actual large-signal operating condi-
tions. Numerical results have also shown that under multi-
bias, multipower inputs and multifrequency excitations.,
spectrum measurements can effectively reflect the nonlin-
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Fig. 4. Agreement between the (Materka) model response and the simulated measurements (using the Curtice model) at
V6B = – 0.5 and V~B = 5 in case 2 Solid lines represent the (Materka) computed model response. Circles denote the
simulated measurements at fundamental frequency 0.5 GHz and triangles the simulated measurements at fundamental
frequency 15 GHz (a) Fundamental component. (b) Second harmonic component. (c) Third harmonic component. (d) dc

TABLE V
BIAS–INPUT-FREQUENCY MEASUREMENT COMBINATIONS

FOR THE NUMEtUCAL EXAMPLE OF CASE 3

Pin = -15, -10, -5, 0, 5, 10 dBm

fl=0.2GIiz f ~=6.OG1iz fl=i OGHz

S3ixs 1 (-0.373,2) (-0.372,2) (-0.372,2)

Bias 2 (-1.072,6) (-1.073,6) (- 1.069,6)

where fl means fundamental frequency and the number
pairs in the brackets are the bias voltages (VGB,VDB)

earities of the model and improve model reliability when
used in nonlinear large-signal model parameter extraction.

A computer program. called HarPE, has been developed
by Optimization Systems Associates Inc. It offers a user-

‘/

friendly implementation of the technique presented in this
paper to the microwave community.

APPENDIX
RELATIONSHIP BETWEEN I~o AND VBC

For the drain-to-gate diode of the Materka and Kacprzak
FET model (see Fig. 3), we have

i~=l~oexp[a~(o~–ol–V~c)]. (Al)

This can be rewritten as

i~=l~oexp[a~(O~– Ul)] “exp[–a#’~c] (A2)

or
i~=l~oexp[a~(u~–ul)] (A3)

where

ljo = l~oexp [ – CY~V~c]. (A4)
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Fig. 5. Agreement between the dc characteristics of the modified
Materka and Kacprzak model and the simulated measurements (from
the Curtice model) in case 2. V~ is from – 1.75 V to 0.25 V in steps of
0.25 V, and V~ is from O to 10 V. (Curtice uses ~n and V&,
respectively.) Solid lines represent the (Materka) model, and the circles
represent the measurements.
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Fig. 6. Agreement between the (Materka) model responses and the
measurements from Texas Instruments at fundanumtaf frequency 0.2
GHz, and bias point V~B = – 0.373 V and V~B = 2 ~. (This bias point
has been included in the optimization.) Solid lines represent computed
model responses. Circles, triangles, and squares denote fundarnentaf,
second harmonic, and third harmonic measurements, respectively.

It is clear that for a given value of ljO there is no unique
solution for lBO and ~Bc. In other words, only one of the
two parameters lBO and ~Bc is independent. Therefore, we
can fix P’BC and optimize lBO during parameter extraction.
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