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Traditional Gradient-based Optimization

minimize w.r.t. x a general, real-valued, non-linear function F(x) in 

n variables

traditional optimization algorithms are based on local information 

and Taylor’s formula

early milestones in filter design by modern optimization methods

(Temes and Calahan, 1967, the state of the art)

(Lasdon et al., 1966, 1967, linear arrays and filters)

(Bandler, 1969, the state of the art)

(Director and Rohrer, 1969, adjoint sensitivity evaluation)
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Variable Metric Methods (Quasi-Newton Methods)

local approximation at 

where B is a positive definite approximation to the Hessian of F at

minimize q and find the next iterate by a line search

(Davidon, 1959, Fletcher and Powell, 1963), 

(Broyden, Fletcher, Goldfarb and Shanno (BFGS), independently 

around 1970)

trust regions were introduced by several authors in the early 1970s
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Sequential Quadratic Programming

minimize w.r.t. x a general, real-valued, non-linear function F(x) in 

n variables subject to a finite set of non-linear constraints

Han and Powell (1970s) developed a method similar to the variable 

metric method, with

● local quadratic approximation to the function

● constraints approximated by linear terms using

first-order Taylor expansions

● the local subproblems solved by quadratic programming

● line search applied
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Type of Approximation/Optimization Problem Considered

minimize w.r.t. x the absolute values of the deviations between 

response r(x, ti) and specifications yi

                             fi(x) = r(x, ti) − yi, i = 1, …, m

traditional methods are based on local information and Taylor’s 

formula, including

● least-squares formulation

● minimax formulation

● L1 formulation

● general formulation
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Traditional Least-Squares Formulation

(Levenberg, 1944, Marquardt, 1963)

local approximation at    :

minimize a damped version of    

minimize     subject to some trust region (Moré, 1983)
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Traditional Minimax Formulation

(Madsen, 1975)

local approximation at    :

minimize     subject to some trust region

ˆˆ( ) max ( )i iL l=x x
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Traditional L1 Formulation 

(Hald and Madsen, 1985)

local approximation at    :

minimize     subject to some trust region
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General Formulation

(Madsen, 1986)

                    minimize

at the iteration    :

minimize     subject to some trust region

( ) ( ( ))F H f=x x
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The Space Mapping Concept

(Bandler et al., 1994-)
validation space

optimization 

space

mapping

prediction 

surrogate 

update (surrogate

optimization)

(high-fidelity

physics model)

(low-fidelity

physics model)
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Original Space Mapping Optimization

(Bandler et al., 1994-)

find mapping P(x) through parameter extraction

           coarse model              mapping                   fine model

( )f x

. x

( )c z

. z
P

 ( ) ( ) ( )arg min f c=  −z P x x z
z
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Aggressive Space Mapping Optimization

(Bandler et al., 1995)

estimate mapping P at the kth iteration

assume P has been computed at 

where                         is, e.g., a Broyden (1970) update

approximate aim:
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Aggressive Space Mapping Optimization

(Bandler et al., 1995)

first  iteration

let

solve

0 =B I
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Space Mapping Optimization Methodologies

local information

space mapping

error

error

x

x

Taylor 

approximation

( )f x

( )f x

( ( ))kc P x

surrogate
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Space Mapping vs. Taylor Approximation

use of a suitable coarse (surrogate) model may provide large 

iteration steps

space mapping may provide a good approximate solution in

a few iteration steps

large iteration steps: space mapping is best

small iteration steps: Taylor is best?

beyond aggressive space mapping: to enhance space mapping for 

all size steps
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Linking Companion Coarse (Empirical) and Fine (EM) Models

Via Space Mapping (Bandler et al., 1994-) 

fine

model

coarse

model

design

parameters

responses responsesdesign

parameters
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BE j−=
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0= Bdesign
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 parameters

responses

fine

 space
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 space
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obtain new prediction
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physics model)
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Implicit, Input and Output Space Mappings

(Bandler et al., 2003-)

expert engineering  expertise helpful in engineering expertise

knowledge helpful  “tuning the surrogate” perhaps less necessary

(few designable  (many possibilities, (many output variables)

 variables)  e.g., dielectric constant)  
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The Novice-Expert Continuum

output space mapping: a “band-aid” solution for engineers and 

non-engineers;  the parameter extraction step does not require 

coarse model re-analysis; good for final touch-ups

input space mapping: an engineering approach to find and cure

the root-cause of a defect; but the parameter extraction step

can be a difficult inverse optimization problem to solve

w.r.t. the coarse model 

tuning space mapping (new): simulator-based expert approach

but all types of space mapping can be viewed as special cases

of implicit space mapping
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Aggressive Space Mapping Design of

Dielectric Resonator Multiplexers

(Ismail et al., 2003, Com Dev, Canada)

10-channel output multiplexer, 140 variables
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For the Expert: Tuning Space Mapping (TSM)

(Bandler et al., 2006-)

surrogate based on the fine model with internal tuning ports 

fine

model
space 

mapping

responses

tuning model

design 

parameters responses

tuning 

parameters

B

= D

0= B

 +D J

j =−E

ED =

HB =

j =H

internal tuning port
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Tuning Space Mapping (TSM) Flowchart

 

Classical Space Mapping Tuning Space Mapping 

(Bandler et al., 2004) (Koziel et al., 2008) 

start

criterion

satisfied 

yes

no

end

update surrogate model

simulate fine model

find initial guess

optimize surrogate model

select models and 

mapping framework

start

criterion

satisfied 

yes

no

end

simulate fine model

find initial guess

optimize tuning model

select models 

update tuning model

translate tuning parameters 

to design parameters
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Tuning Space Mapping (TSM): Type 1 and Type 0 Embedding 

 

responses

design 
parameters

responses

internal  portsfine model

tuning model

 tuning element
(Type 0 embedding)

 tuning element
(Type 1 embedding)
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Open-loop Ring Resonator Bandpass Filter (Koziel et al., 2008)

design parameters 

x = [L1  L2  L3  L4  S1  S2  g]T mm

specifications

|S21|  −3 dB for 2.8 GHz    3.2 GHz

|S21|  −20 dB for 1.5 GHz    2.5 GHz

|S21|  −20 dB for 3.5 GHz    4.5 GHz  

L2

S2

W1

L3

S2

L1

W Output

Input

L4

S1

2

1

g
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Open-loop Ring Resonator Bandpass Filter (Type 1 and Type 0)

 

Sonnet em model with internal (co-calibrated) ports 
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Open-loop Ring Resonator Bandpass Filter (Type 1 and Type 0)

 

Sonnet em model with internal (co-calibrated) ports 
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Open-loop Ring Resonator Bandpass Filter (Type 1 and Type 0) 

initial responses: tuning model (—), fine model (○),

fine model with co-calibrated ports (---)
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Tuning (Implicit) Space Mapping Algorithm (Cheng et al., 2010) 

original problem

align the surrogate to match fine model

design parameter value prediction

( )* arg min ( )f fU=
x

x R x

( ) ( ) ( ) ( )arg min ( ) ( , )
p

i i i i

p f s p= −
x

x R x R x x

( )( 1) ( ) ( )arg min ( , )i i i

s pU+ =
x

x R x x
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Response-Corrected Tuning Space Mapping Algorithm

(Cheng et al., 2010) 

the response-corrected tuning model at optimum x*

s is a function that snaps a point to the nearest fine model grid point

* * * *( ) ( , ) ( ( )) ( ( ), )s s p f s ps s= + −R x R x x R x R x x

.

.

.

.
x*

s(x*)
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Yield Analysis and Yield Optimization (Cheng et al., 2010) 

Step 1 Use tuning space mapping to obtain a nominal optimal  

design.  A tuning model or surrogate is also obtained.

Step 2 Snap the optimal design to the nearest on-grid fine model 

point. 

Step 3 Simulate the snapped design (EM fine model).

Step 4 Calculate the response difference between the fine model and 

the surrogate at the nearest on-grid point.

Step 5 Add the response difference to the surrogate to form a new 

surrogate: the response corrected surrogate.

Step 6 Perform yield analysis and yield optimization on the 

response-corrected surrogate.

Step 7 Compare this response to that of the fine model.



WSN: The State of Art of Microwave Filter Synthesis, Optimization and Realization

Second-order Tapped-line Microstrip Filter (Type 1) 
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Second-order Tapped-line Microstrip Filter (Type 1) 

tuning model (—), fine model (○),

response corrected surrogate (—)

                                                              yield analysis (500 trials)
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Space Mapping with Constrained Parameter Extraction:

Concept (Koziel et al., 2010)

selection of surrogate is critical for space mapping performance

a novel technique replaces “manual” adjustment of the type and 

number of space mapping parameters, based on an adaptively 

constrained parameter extraction process

•  construct initial, over-flexible surrogate with excellent 

   approximation capability (so that (i) = ||Rf(x
(i)) – Rc(x

(i),xp
(i))|| 

   can be brought to a very small value)

• adjust its generalization capability by constraining 

   the parameter space
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Wideband Bandstop Microstrip Filter

fine model (FEKO)           coarse model (Agilent ADS)

design parameters:  x = [Lr Wr Lc Wc Gc]
T

initial surrogate model has 10 parameters
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Wideband Bandstop Microstrip Filter: Optimization Results

Algorithm
Specification Error Number of Fine 

Model 

EvaluationsBest Found Final

Standard SM –1.8 dB –1.7 dB 21*

Constrained SM –2.0 dB –2.0 dB 7

*algorithm terminated after 20 iterations without convergence
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Wideband Bandstop Microstrip Filter: Responses

fine model at initial (dashed line) and final (solid line) designs

obtained using the constrained space mapping algorithm
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Wideband Bandstop Microstrip Filter: Convergence

constrained SM algorithm (o) versus standard SM algorithm ():

      convergence plot              specification error evolution
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Conclusions

filters have been designed by modern optimization techniques

for some 45 years

traditional Newton-based methods employ Taylor approximations

● required for “coarse” or “surrogate” optimizations

● required for model alignment (parameter extraction) 

space mapping harnesses physics-based surrogates to remove

expensive “fine” models from traditional optimization loops

space mapping facilitates full-wave EM-based,

as well as multidisciplinary design optimization 
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Space Mapping with Constrained Parameter Extraction: Details

constrained parameter extraction process:

             ()

where l(i) = xp
(i–1) – (i) and u(i) = xp

(i–1) + (i)

 xp
(i–1) model parameters at iteration i – 1

 (i)     surrogate model parameter space size at iteration i

Updating l(i) and u(i) ((i), xp
(i–1) and max are input arguments):

   1. Calculate l(i) = xp
(i–1) – (i) and u(i) = xp

(i–1) + (i);

   2. Find xp
(i) using ();

   3. If (i) ≤ decr·max then (i+1) = (i)/decr; Go to 5;

   4. If (i) > incr·max then (i+1) = (i)·incr; Go to 5;

   5. END;

    Typically: decr = 1, incr = 2, decr = 5, incr = 2

( ) ( )

( ) ( ) ( )arg min || ( ) ( , ) ||
i i

p

i i i

p f c p
 

= −
l x u

x R x R x x
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Space Mapping with Constrained Parameter Extraction:

Interpretation

our algorithm tightens the constraints if the approximation 

error is sufficiently small, loosens them otherwise

constraint tightening improves the generalization capability 

of the surrogate: low error  (i–1) = ||Rf(x
(i–1)) – Rc(x

(i–1), xp
(i–1))||p 

and (i) = ||Rf(x
(i)) – Rc(x

(i), xp
(i))||p makes it more likely to have 

||Rf(x
(i–1)) – Rc(x

(i–1), xp
(i))||p small if (i) is reduced because a small    

||xp
(i) –  xp

(i–1))|| ≤ ||(i)|| implies similarity of the subsequent 

surrogate models

improved performance follows from rigorous convergence results

for space mapping algorithms
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