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The Space Mapping Concept

(Bandler et al., 1994-)
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Explicit Space Mapping Concept

(Bandler et al., 1994-)

used in the microwave industry (e.g., Com Dev, 2003-2004, for 

optimization of dielectric resonator filters and multiplexers)
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Space Mapping: a Glossary of Terms

Space Mapping transformation, link, adjustment, correction,

   shift (in parameters or responses)

Coarse Model  simplification or convenient representation,

   companion to the fine model,

   auxiliary representation, cheap model

   idealized model 

Fine Model  accurate representation of system considered,

   device under test, component to be optimized, 

  expensive model
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Space Mapping: a Glossary of Terms

Surrogate  model, approximation or representation to be 

  used, or to act, in place of, or as a

   substitute for, the system under consideration

Updated Surrogate mapped or enhanced coarse model

   corrected coarse model 

Surrogate Model alternative expression for Surrogate

   

Target Response response the fine model should achieve,

   (usually) optimal response of an idealized

   “coarse” model, an enhanced coarse model,

   or surrogate
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Implicit Space Mapping Concept

(Bandler et al., 2004)
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Space Mapping Framework 

(Bandler et al., 2004)

Neural Space Mapping    

Implicit Space Mapping   () 

Aggressive Space Mapping  () 
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Model Enhancement—the SM Tableau Approach   

(Bandler et al., 2001)

used in the RF industry (Philips) for new library models

(Snel, 2001)
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Space Mapping Application to SAAB 9-3 Sport Sedan 

(Redhe et al., 2001-2003, Sweden)

[type “saab space mapping” into Google]

In crashworthiness finite element simulations, each evaluation is 

expensive. Space Mapping reduces the total computing time to 

optimize the vehicle structure up to 50% compared to traditional 

optimization.

Space Mapping has been applied to the complete FE model of the 

new Saab 9-3 Sport Sedan. Intrusion into the passenger 

compartment area after the impact was reduced by 32% with no 

reduction in other crashworthiness responses.
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Space Mapping Implementation and Applications 1  

RF and microwave implementation (Bandler et al., 1994-2004)

civil engineering structural design (Leary et al., 2000) 

SAAB crashworthiness design (Redhe et al., 2001-2003)

generating microwave neural models (Devabhaktuni et al., 2002) 

combline filter design (Swanson and Wenzel, 2001)

microwave filter design (Harscher, et al., 2002, 2003)

CAD of integrated passive elements on PCBs (Draxler, 2002)
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Space Mapping Implementation and Applications 2 

CAD technique for microstrip filter design 

(Ye and Mansour, 1997)

SM models (model enhancement) for RF components (Snel, 2001)

multilayer microwave circuits (LTCC) (Pavio et al., 2002)

cellular power amplifier output matching circuit (Lobeek, 2002)

multilevel ASM strategy applied to filter optimization

(Safavi-Naeini et al., 2002)

coupled resonator filter (Pelz, 2002)
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Space Mapping Implementation and Applications 3 

LTCC RF passive circuit design (Wu et al., 2002-2004)

waveguide filter design (Steyn et al., 2001)

inductively coupled filters (Soto et al., 2000)

magnetic systems (Choi et al., 2001)

Implicit Space Mapping optimization with preassigned parameters

(Bandler et al., 2002-2004)

Output Space Mapping optimization (Bandler et al., 2003-2004)
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Space Mapping Implementation and Applications 4 

EM-based optimization of microwave oscillators

(Rizzoli et al., 2003)

circuit level, neuro-SM modeling of nonlinear devices

(Zhang et al., 2003-2004)

optimization of dielectric resonator filters and multiplexers

(Ismail et al., 2003-2004)

waveguide filter design (Morro et al., 2003)

optimal control of partial differential equations

(Hintermueller and Vicente, 2003)
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Space Mapping Implementation and Applications 5 

modeling and simulation of photonic devices 

(Feng and Huang, 2003)

design of comb filters using implicit SM (Gentili et al., 2003)

optimization of antireflection coatings in photonic devices

(Feng et al., 2003)

time-domain design, CMOS drivers, using linear inverse

and neuro inverse SM (Rayas-Sánchez, 2004) 

Space Mapping Interpolating Surrogates (SMIS) for highly 

optimized EM-based design (Bandler et al., 2004)



Implicit, Extra and Output Space Mappings

(Bandler et al., 2003)
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Implicit and Output Space Mappings

(Bandler et al., 2003)
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Single Resonator Filter (Bakr et. al, 2002) 

design of d and W with the waveguide dimensions fixed 

(a = 60 mm and L = 150 mm)

Matlab implemented 2D TLM simulator is used (Bakr 2004)
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Single Resonator Filter

3.0 GHz    5.0 GHz with 0.1GHz step (21 points) 

design parameters xf = [d W]T

preassigned parameter x = r  

Fine Model Coarse Model

dx = dy = 1 mm

d = 2dx, W = dy

Nx = 150

Ny = 30

Johns boundary

dx = dy = 5 mm

d = 2dx, W = dy

Nx = 30

Ny = 6

absorbing boundary at 4 GHz
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Single Resonator Filter
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Single Resonator Filter
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Single Resonator Filter MEFiSTo Validation 
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Single Resonator Filter Final Design
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Single Resonator Filter Final Design
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SM-based Interpolating Surrogate (SMIS) Concept
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Seven-Section Capacitively-Loaded Impedance Transformer

Matlab Implementation (Bandler, 2001)

fine model

coarse model

Rg = 50 , C1, . . . , C8 = 0.025 pF specifications

68 point frequency sweep  |S11|  0.07 for 1 GHz    7.7 GHz

   

Z in   R L =100    C 3   C 2   

L 1   

C 5   C 4   C 7   C 6   C 8   C 1   

L 2   L 3   L 4   L 5   L 6   L 7   

   

Z in   R L =100    

L 1   L 2   L 3   L 4   L 5   L 6   L 7   
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Seven-Section Capacitively-Loaded Impedance Transformer

Matlab Implementation (Bandler, Hailu et al., 2004) 

parameter
initial 

solution (m)

solution reached 

by the SMIS

algorithm (m)

solution reached 

by direct 

optimization (m)

L1 0.01724138 0.01564205 0.01564205

L2 0.01724138 0.01638347 0.01638347

L3 0.01724138 0.01677145 0.01677145

L4 0.01724138 0.01697807 0.01697807

L5 0.01724138 0.01709879 0.01709879

L6 0.01724138 0.01723238 0.01723238

L7 0.01724138 0.01625988 0.01625988
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Seven-Section Capacitively-Loaded Impedance Transformer

Matlab Implementation (Bandler, Hailu et al., 2004) 
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SMIS algorithm (○) , Hald-Madsen algorithm (□) , HASM (    ) using exact gradients
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SMIS algorithm (○) , Hald-Madsen algorithm (□) , HASM (    ) using exact gradients

Seven-Section Capacitively-Loaded Impedance Transformer

Matlab Implementation (Bandler, Hailu et al., 2004) 
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Optimization methods used on the Section Capacitively-Loaded 

Impedance Transformer (Bandler, Hailu et al., 2004) 

method
number of 

iterations

number of fine 

model evaluations

fminimax* 14 153

HASM 25 26

Hald-Madsen 13 13

SMIS 5 6

Simulation Optimization Systems Research Laboratory
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*the fminimax routine available in the Matlab Optimization

  Toolbox 



H-plane Waveguide Filter Design (Young et. al., 1963, Bakr et al., 

1999) 

H-plane filter

circuit model

(Marcuvitz,1951) 
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H-plane Waveguide Filter Design 

optimal coarse model

response (---) 

initial fine model* 

response (○)

*the fine model exploits Agilent HFSS 

5.20 6.06  6.92 7.78 8.64  9.50
0  

0.2

0.4

0.6

0.8

1  

frequency (GHz)

|S
1

1
|

Simulation Optimization Systems Research Laboratory
McMaster University



H-plane Waveguide Filter Design 

optimal coarse model

response (---) 

fine model* (○)

SMIS algorithm,

3 iterations,

4 frequency sweeps

(excluding Jacobian

estimations)

*the fine model exploits Agilent HFSS 
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Space Mapping Technology: Current and Future Work 

new framework and optimization algorithms 

rigorous convergence proofs 

(collaboration with Dr. K. Madsen, DTU, Denmark)

methodologies for device and component model enhancement

(collaboration with Dr. Q.J. Zhang, Carleton University)

 

TLM-based modeling and design (with Dr. M. Bakr)

exploitation of adjoint sensitivities for coarse and fine model EM 

solvers (with Drs. M. Bakr and N. Nikolova)
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Linking Companion Coarse (Empirical) and Fine (EM) Models

 

fine

model

coarse

model

design

parameters

responses responsesdesign

parameters

Z

C3
 = f (w,d)

JDH += j

BE j−=

= D

ED =

HB =

0= Bdesign

 parameters

responses design

 parameters

responses

fine

 space

coarse

 spacefind a mapping to

match the models



Aggressive Space Mapping Practice—Cheese Cutting Problem

(Bandler et al., 2002) 
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Implicit Space Mapping Theory: Modeling

implicit mapping Q between the spaces xf, xc and x
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Implicit Space Mapping Theory: Prediction

implicit mapping Q between the spaces xf, xc and x
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Cheese Cutting Problem—A Numerical Example of ISM
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Cheese Cutting Problem—A Numerical Example of ISM
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Single Resonator Filter

minimax objective function with upper and lower design 

specifications
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Single Resonator Filter
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Single Resonator Filter

25 27 29 31 33 35
10

11

12

13

14

15

16

17

18

19

20

d

W
FM modeling grid

1 

2 

3 

4 

5 



Simulation Optimization Systems Research Laboratory
McMaster University

Single Resonator Filter MEFiSTo Validation 
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Single Resonator Filter Rubber Cell

locally conformal TLM cell (So and Hoefer, 2003)



H-plane Waveguide Filter Design 

design parameters L1, L2, L3, W1, W2, W3, W4  

design specifications 

23 points per frequency sweep    

11 0.16, for 5.4 GHz 9.0 GHzS   

11 0.85, for 5.2 GHzS  

11 0.5, for 9.5 GHzS  
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H-plane Waveguide Filter Design 

parameter initial solution
solution reached by 

the SMIS algorithm

W1 0.48583 0.51397

W2 0.43494 0.47244

W3 0.40433 0.44501

W4 0.39796 0.44627

L1 0.65585 0.63142

L2 0.65923 0.63922

L3 0.67666 0.65705

all values are in inches  
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Space Mapping Technology: Current and Future Work 

new framework and optimization algorithms 

rigorous convergence proofs 

methodologies for device and component model enhancement

TLM-based modeling and design

exploitation of adjoint sensitivities

for coarse and fine model EM solvers
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