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CHAPTER ONE
INTRODUCTION

Objectives

The main objective of this work is to provide RCA Limited
with a comprehensive, user-oriented computer program package that
will analyze and optimize certain electrical networks. The organ-
ization of the package is such that the optimization of microwave
filters including allpass nétworks is readily facilitated. Another
important objective which has been fulfilled is to organize the
programs on a modular approach so that future deletions or addi-

tions can be readily implemented by a user.

Main Features of the Package

The package has been originally developed on a CDC 6400
digital comﬁuter at McMaster University, Hamilton, using batch pro-
cessing. It is written in FORTRAN IV. It has been tested and run
from a Univac DCT 500 terminal at RCA Limited at St. Anne de Bellevue
using the CDC 6000 series computer at Sir George Williams University,
Montreal, on the Kronos time-sharing system.

The packagé features some of the latest and most efficient
methods of computer-aided design currently available, At the user's

command, either the well-known and highly respected Fletcher-Powell
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(1963) method of minimizing unconstrained functions of many variables
may be used, or the more recent, and generally more efficient, method
by Fletcher (1970).

The package has been designed to incorporate the adjoint
network method of sensitivity evaluation to produce accurate first
derivatives needed by these efficient gradient minimization methods.
Many formulas published by Bandler and Sevoria (1970) have been
built into the package. Considerable savings in computer effort are
usually to be gained by proper use of the adjoint network method{ not
only in computing sensitivities but also because efficient optimization
methods often rely for efficiency on the availability of very ac-
curate first derivative information.

It was agreed to use perturbation techniques to calculate
group delay and group delay sensitivities with respect to variables
since the small savings in computing time realized by using the ad-
joint network method did not appear to be worth the additional pro-
gramming complexity.

State-of-the-art techniques in least pth approximation
generalized for such tasks as filter design as proposed by
Bandler and Charalambous (1971 and 1972) are incorporated. Thus,

a variety of upper and lower response specifications as well as
simple upper and lower desired bounds for variable parameters are
catered for. Low values of p, e.g., 2, intermediately large values

of p, e.g., 10 to 1,000, as well as extremely large values of p,
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e.g., 1,000,000 are optional to the user depending on how close to
a minimax (Chebyshev, equal-ripple) solution he wants to come.

The package has been developed on an interactive basis
between RCA and CRL with the aims of making RCA engineers aware of.
progress, inevitable limitations in the capabilities of the pack-
age due to time constraints and of possibilities of expansion of

the package by RCA at a later date.

Program Capabilities

As it stands at present, the package is capable of analyzing
and optimizing certain linear, time-invariant, lumped and distrib-
uted networks in the frequency domain subject to the following speci-
fications. .

The network is assumed to be a cascade of two-port building
blocks terminated in a unit normalized frequency-independent resistance
at the source and a user-specified frequency-independent resistance
at the load (taken as unity when allpass networks are present).

Resistors, inductors, capacitors, lossless short-
circuited and open-ciréuited transmission-line stubs, and series and
parallel RLC resonant circuits can be called upon by the user and
connected as series or shunt elements, in any order. Lossless trans-
mission-lines as well as microwave allpass C- and D-sections can also
be added.

Gradients are automatically checked before optimization.
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Responses before and after optimization are printed out. Much other
useful information which can be used to check on the progress of the
optimization process and to diagnose errors is printed out at the

user's discretion.



CHAPTER TWO

CIRCUIT CONFIGURATION

AND BUILDING BLOCKS
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Possibilities

o—
o—] L o0— 0~ — ——0— —O0 CONFIGURATION

1. A cascade connection of two-port circuit blocks consisting of any

of the elements depicted on the following pages in any order, and

as many as required.

2. As many C- and D-sections .as required.

3. Modification of program to accommodate new blocks is readily ef-

fected. See the last page in this chapter.

*
Implementation

1. All blocks are numbered sequentially from left to right.
2. Each block has a code number associated with it defining the

element it contadns.

*Except allpass networks.

Parameters Required

Other than the parameters listed and defined together with the in-
dividual blocks, the following values must be supplied.

The total number of blocks (not including C- and D-sections).
The total number of parameters in these blocks.

. The number of C-sections.

The number of D-sections.

The center frequency (e.g., in Miz, for normalization).

The cutoff frequency for C- and D-sections (e.g., in MHz).

NV E NN -

The d-level for allpass networks (see Kudsia (1970)). This para-

meter is treated like any other circuit parameter. It is the very

last variable to be entered.
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source network

Possibilities

load
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SOURCE

AND

LOAD
CONFIGURATION

1. Complex (but constant) load impedance; will, therefore, usually

be a resistance.

2. Modification of program needed to have frequency dependent source

and load impedances (source is assumed to be unity).

Parameters Required

1. Load impedance.



SHUNT
—— CAPACITOR
O— * O
Code v Parameters
1 123
C

Parameter Definition

C = capacitance (normalized)

Comments

Upper and lower bounds or fixed values can be accommodated.



SHUNT
INDUCTOR
Code } Parameters
2 . 12 3
L

Parameter Definition

L = inductance (normalized)

Comments

Upper and lower bounds or fixed values can be accommodated.
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G- U O
SERIES
INDUCTOR
O~ O
Code . Parameters
3 1 2 3
L

Parameter Definition

L = inductance (normalized)

Comments

Upper and lower bounds or fixed values can be accommodated.
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Code

Parameter Definition

C = capacitance (normalized)

Comments

Upper and lower bounds or fixed values can be accommodated.

SERIES
CAPACITOR

Parameters

|~

2 3
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LOSSLESS
TRANSMISSION
LINE
Code . Parameters
5 1 2z 3
[ Z0

Parameter Definition

2 = length (normalized)

Z0 = characteristic impedance (normalized)

Comments

Upper and lower bounds or fixed values can be accommodated.
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SHUNT
SHORTED
LOSSLESS

TRANSMISSION

LINE

Code . Parameters

6 1

L

Parameter Definition

2 = length (normalized)

-

Zo = characteristic impedance (normalized)

Comments

2 3

Zo

Upper and lower bounds or fixed values can be accommodated.



Code

Parameter Definition

2 = length (normalized)

Z0 = characteristic impedance (normalized)

Comments

SHUNT

OPEN
LOSSLESS
TRANSMISSION
LINE

Parameters

]

2 3

L Z0

Upper and lower bounds or fixed values can be accommodated.
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Code

Parameter Definition

2

length (normalized)

-
L

0

Comments

characteristic impedance (normalized)

2-11

SERILS
SHORTED
LOSSLESS
‘TRANSMISSION
LINE

Parameters

1 2 3

L ZO

Upper and lower bounds or fixed values can be accommodated.



Code

Parameter Definition

)
1]

length (normalized)

N
"

characteristic impedance (normalized)

Comments

Upper and lower bounds or fixed values can be accommodated.

SERIES

OPEN
LOSSLESS
TRANSMISSION
LINE '

Parameters
1 2 3

L Z0
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SERIES
RESONANT
CIRCUIT
Code Parameters
10 123
1
wp Q X

Parameter Definition

resonant. frequency (normalized)

WR
Q = quality factor
]
X = slope of reactance at resonance (normalized)
Comments

Upper and lower bounds or fixed values can be accommodated.



SHUNT
RESONANT
CIRCUIT

|

1l

Code Parameters

11 | 1203

g QX

Parameter Definition

resonant frequency (normalized)

e
]

R
Q = quality factor

]
X = slope of reactance at resonance (normalized)
Comments

Upper and lower bounds or fixed values can be accommodated.
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@)

Code

Parameter Definition

£
n

quality factor

w O
n ]

Comments

- .-
g 1
o\ i

antiresonant frequency (normalized)

SHUNT
ANTIRESONANT
CIRCUIT

Parameters

|~
N
Jen

slope of susceptance at antiresonance (normalized)

Upper and lower bounds or fixed values can be accommodated.
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SERIES
ANTIRESONANT
CIRCUIT
Code Parameters
13 1203
|
Wp Q B

Parameter Definition

wp = antiresonant frequency (normalized)
Q = quality factor
1]
B = slope of susceptance at antiresonance (normalized)
Comments

Upper and lower bounds or fixed values can be accommodated.

2-16



Code

14

Parameter Definition

R = resistance (normalized)

Comments

Upper and lower bounds or fixed values can be accommodated.

Parameters

1

R

SERIES

RESISTOR

2

3
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SHUNT

RESISTOR
Code . Parameters
15 | 1 2 3

R

Parameter Definition

R = resistance (normalized)

Comments

Upper and lower bounds or fixed values can be accommodated.
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ALLPASS
¢ O C-SECTIONS
(Total number nc)
o—to o+—o0
Code Parameters
16 (not used) 1 2 3... n,
0p Oy Oz.. on
c

Parameter Definition

o, = location of ith real zero

Comments

1. The user specifies the number of C-sections required.

2. One cutoff frequency (fixed) and one d-level (variable) must be specified
whenever any C- or D-section is used.

3. The user should consult theoretical concepts reviewed by Kﬁdsia (1970).

4. C- and D-section parameters are either all fixed or all variable.
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O—10 o+—o0

h ¢ O

ALLPASS
o ' D-SECTIONS

% o (Total number nd)
O—1O Oo—o
Code Parameters

17 (not used) 1 2 3 ...mgy 4.2 Ndas3 .

Parameter Definition

o; = location of real part of ith zero
w, = location of imaginary part of ith zero
Comments

1. The user specifies the number of D-sections required.

2. One cutoff frequency (fixed) and one d-level (variable) must bé
specified whenever any C- or D-section is used.

3. The user should consult theoretical concepts reviewed by Kudsia (1970).

4, C- and D-section parameters are either all fixed or all variable.
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oO— —o0
TWO-PORT
SECTION

o— 0

Possibilities

Addition of various new blocks is possible because of the modular approach
which has been used in the development of the package. The following basic

procedure has to be carried out.

Implementation

An analysis subroutine must be written to calculate input voltage and
current given the output voltage and currént (ABCD matrix analysis).
The subroutine is called exactly as any other analysis subroutine in
the package is called and sensitivity formulas obtained by the adjoint
network method (see Bandler and Seviora (1970),a copy of which is

included in this report) if the parameters of the two-port are to be varied.

Comments
A wide variety of other two-ports can be added, e.g., distributed

RC lines, transistor amplifier stages, operational amplifier stages, etc.



CHAPTER THREE

SPECIFICATIONS AND CONSTRAINTS

" Possibilities

1. As many upper and lower specifications on reflection coefficient,
insertion loss and relative group delay as the user desires can
be accommodated.

2. Upper and lower bounds on all variables can be specified.

Parameters Required

1. Total number of frequency intervals including necessary ones to
define parameter constraints.
2. When asked for, +1.0 to denote upper and -1.0 to denote lower
specifications.
3. When asked for: O denotes parameter constraints
1 denotes reflection coefficient
2 denotes insertion loss

3 denotes relative group delay



specified value
UPPER

Vi RESPONSE

SPECIFICATION

-+

+ = frequency

lower upper
bound bound

Defining Parameters

1. Lower bound (frequency point)
2. Upper bound (frequency point)

3. Number of subintervals (equals sample points minus one)

PN

Specified value

Associated Quantities

1. Weighting factor (positive). If in doubt use 1.
2. Upper specification may be

(i) reflection coefficient

(ii) insertion loss (dB)

(iii)relative group delay (nsec)
(iv) upper constraint bound on parameter

Comments

1. For single point specification, let the number of subintervals be
zero and set upper bound equal to lower bound.

2. The user should consult theoretical concepts reviewed by Bandler (1969).

3. Continuous specifications require program modification.



specified value » LOWER
RESPONSE

t;j;j;CZC;C;C;C;C;C] SPECIFICATION

I 4 .
T T ———

frequency
lower upper
bound bound
Definng;Parameters

1. Lower bound (frequency point)
2. Upper bound (frequency point)

3. Number of subintervals (equals sample points minus one)

H

Specified value.

Associated Quantities

1. Weighting factor (positive). If in doubt use 1.
2. Lower specification may be

(i) reflection coefficient

(ii) insertion loss (dB)

(iii) relative group detay (nsec)
(iv) 1lower constraint bound on parameter

Comments

1. For single point specification, let the number of subintervals
be zero and set upper bound equal to lower bound.

2. The user should consult theoretical concepts reviewed by Bandler (1969).

3. Continuous specifications require program modification.
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N\

LSS
7
5

PARAMETER
CONSTRAINTS

ANNN N

S S

N

parameter one

Possibilities

1. Any circuit parameter may be fixed or varied as specified by the user.
2. 1If variable parameters are to be constrained, then each must have

an associated lower and upper desired bound supplied by the user.

Implementation

For upper and lower parameter constraints, fictitious frequency points
of value 1, 2, 3,... etc. are associated with each variable parameter

in correct sequence.

Comments

The constraints are treated exactly like single point specifications.



CHAPTER FOUR

OPTIMIZATION METHODS

Possibilities

1.

Use of Fletcher-Powell (1963) or Fletcher (1970) methods. The
Fletcher method is generally the faster method.

Any finite value of p greater than 1. Low values of p will

generally allow quicker optimization to nonequal ripple solutions.

Larger values of p may slow down optimization but better near

equal ripple solutions will be obtained. Recommendation: start

with 2, increase to 10 then to 100, etc., as needed.

Parameters Required

1.

2.

When asked for, 1 denotes Fletcher, 2 denotes Fletcher-Powell.
Maximum number of iterations (e.g., 100).

Integer denoting how many iterations should be executed before
printout of intermediate output.

Value of p (positive integer, greater than one).

Starting values of variables in correct sequence.

Small test quantities used in the optimization methods to test
for convergence (e.g., 10-4).

Estimate of lower bound on function to be minimized. Supply

realistic underestimate.



10.

Artificial margin (see Bandler and Charalambous (1972), included
in this report). Set to 0 if unsure.

Difference between objective function values in successive optim-
izations for termination. Set to 0 if unsure.

The number of complete optimizations desired. Each optimization

starts from the previous optimum obtained.
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EXAMPLE OF INPUT-OUTPUT
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CHAPTER SIX

EXAMPLES

The purpose of this chapter is to demonstrate the versatility of
the package as well as to provide the user with further illustrations

on how to enter data and interpret the results.



Example 1

Design of Optimum Group Delay Equalizer

It is desired to use one microwave C-section to optimize a set of
group delay specifications over a given band. Table 6-1 shows the

given set of frequencies and corresponding group delay.

The number of intervals was taken as 32, i.e., 16 corresponding

to upper specifications and 16 to lower specifications. The upper
and lower specifications at every frequency point were the same.
They were equal to the negative of the given group delay. The
weighting was 1 throughout. The Fletcher method was used. The
estimate of the lower bound on the objective function was taken as
-10. The test quantities used for convergence were 10'4 for each
parameter. The artificial margin was 0. The number of parameters

(unconstrained) is two, namely, o and d.

Starting and optimized values for the parameters and the cor-
responding total relative group delay are shown in Table 6-2.
Observe that the starting point was the best result obtained by
an existing program. Note also that three values of p were used,
namely, 2, 10 and 10,000, Optimizaiion for p=10 was started at

the optimum for p=2. Extrema in the responses are denoted by *.



Table 6-1

Frequency . Group Delay
(MHz) | (nsec)
7,976 69.03
7,977 62.61
7,978 : 58.03
7,979 54.79
7,980 52.52
7,981 50.79
7,982 49.98
7,983 49.49
7,984 49.49
7,985 49.97
7,986 50.95
7,987 52.50
7,988 54.75
7,989 ’ 57.99
7,990 62.55

7,991 68.94




Table 6-2

Parameters
p start 2 10 10,000
340 349.05 365.94 368.77
86 86.64 . 87.68 87.75
Frequency
(MHz) Total Relative Group Delay (nsec)
7,976 4.11 3.53 2.56* 2.49*
7,977 0.30 -0.19 -0.99 -1.04
7,978 -1.48 -1.85 -2.42% -2.43*
7,979 -1.83 -2.04 -2.33 -2.29
7,980 -1.29 -1.32 -1.29 -1.19
7,981 -0.36 -0.23 .0.14 0.29
7,982 0.56 0.83 1.48 1.69
7,983 - 1.09 1.44 2.26* 2.49* -
7,984 1.08 1.44 2.26* 2.49*
7,985 0.54 0.82 1.46 1.67
7,986 -0.38 0.24 0.13 0.29
7,987 -1.32 -1.36 -1.33 -1.23
7,988 -1.89 -2.10 -2.39 -2.35
7,989 -1.54 -1.91 -2.48* -2.49*
7,990 0.22 -0.27 -1.07 ~1.12
7,991 4.01 3.43 2.46* 2.39*
Maximum 4.11 ~ 3.53 2.56 2.49
Execution 0 1/2 1-1/4 10

Time (sec)
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Example 2

Optimization of Two-Section Transmission-Line Transformer

To demonstrate how close to known optimal solutions the package

will allow a user to come, a two-section, four-variable lossless
transmission-line transformer was optimized from a poor starting
point.- A-relative bandwidth of 100% is assumed and a load to

source impedance ratio of 10:1 is taken. The modulus of the reflection
coefficient is considered. The problem itself has frequently been

used as a test problem for optimization strategies. 2y and L, are

the normalized lengths of sections 1 and 2; Z.. and Z0 are the

01 2

corresponding normalized characteristic impedances.

One upper specification of 0 reflection coefficient with 20 sub-
intervals (21 uniformly distributed sample points) was taken. The
Fletcher method was used and every optimization with a different
value of p was started at the previous optimum. The test quantities
for the Fletcher method were 10-6 and the estimate of the lower
bound on the objective function was taken as -10. The artificial
margin was 0 and the weighting was 1. Table 6-3 shows the results

obtained by the package.



Table 6-3
Parameters
P Start 2 10 1,000 10,000

21 0.8 0.9398 0.9873 0.9999 1.0000
201 3.0 1.9897 2.1753 2.2360 2.2361

22 0.8 0.9398 0.9873 0.9999 1.0000
Z02 3.5 5.0259 4.5971 4.4722 4.4722
gorm. Reflection Coefficient

Teq.

.50 .467 .560* .463* .4287% .4286*
.55 .347 .485 . 356 .3101 .3099
.60 .205 .398 .235 .1785 .1783
.65 .051 .302 .108 .0438 .0436
.70 .119 .202 ,014 .0828 .0830
.75 .266 .103 .124 .1926 .1928
.80 .392 .012 .216 .2811 .2813
.85 .495 .067 .287 .3476 .3478
.90 .574 .131 .337 .3933 .3934
.95 .634 177 .369 .4198 .4199
1.00 .678 .207 .382* .4285* .4286*
1.05 .711 .220* .378 .4199 .4199
1.10 .734 .217 .356 .3935 .3934
1.15 .749 . 196 .315 .3479 .3478
1.20 .758 .159 .255 .2815 .2813
1.25 .760 .105 .174 .1930 .1928
1.30 .758 .035 .073 .0833 .0830
1.35 .749 .050 .044 .0432 .0436
1.40 .734 . 145 .170 .1779 .1783
1.45 .711 . 246 . 295 .3095 .3099
1.50 .678 .345* .410* .4282%* ,4285*
Maximum .760 .560 .463 .4287 .4286
Execution 0 4 5 16 5-1/2

Time (sec)
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Note that to the number of significant figures shown the optimum for

p=10,000 is the same as the known Chebyshev solution for the problem.

Excellent results are obviously obtainable with p=1,000. Execution
times can be cut by roughly 50% if about half the number of sample
points are chosen. The maxima in the responses are again denoted

by *,
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ExamEIe 3

Lowpass Lumped LC Filter Design

It is desired to aﬁproximate a éertain lowpass filter insertion loss
specification using a ladder network consisting of lumped lossless
inductors and capacitors. The first element is a shunt capacitor,
followed by a series inductor and so on, with a total of three
capacitors and three inductors. The source and load resistances

are each taken as unity.

The response specification is as in Table 6-4. Observe that two

problems were to be solved with slightly different specifications.

The Fletcher method was used with the test quantities equal to
10'6, the estimate of the lower bound of the objective function
was -10, the artifical margin was 0. Table 6-5 summarizes the

results obtained.

Optimization for p=1,000 started from the optimum for p=2. Note

that the results for the two problems are identical.
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Table 6-4
Problems Frequency Specification Type
(Hz) (dB)
162 0 - 0.9 0 Upper
1§2 1.75 40 Lower
2 1.75 41 Upper
162 2.50 60 Lower




Table 6-5
Parameters
P Start 2 1,000 2 1,000
C1 1.0 1.015 1.011 1.015 1.011
Ll 1.0 1.659 1.654 1.659 1.654
C2 1.0 1.917 1.915 1.917 1.915
L2 1.0 1.917 1.915 1.917 1.915
C3 1.0 1.659 1.654 1.659 1.654
L3 1.0 1.015 1.011 1.015 1.011
Insertion Loss (dB)
Freq. Weight |
(Hz) Start Problem 1 Problem 2
.0 5.0 0 0 0 0 0
0.09 5.0 .001 .001 .001 .001 .001
0.18 5.0 .009 .007 .007 .007 .007
0.27 5.0 .042 .024 .024 .024 .024
0.36 5.0 112 .042 .042 .042 .042
0.45 5.0 .216 .037 .038 .037 .038
0.54 5.0 .327 .011 .012 .012 012
0.63 5.0 .402 .003 .002 .003 002
0.72 5.0 .398 .044 .041 .044 .041
0.81 5.0 .294 .044 .042 .044 .042
0.90 5.0 .122 .045 .042 .045 .042
1.75 1.0 .166 39.9 39.8 39.9 39.8
2.50 1.0 34.5 60.5 60.3 60.5 60.3
Ex?§2§§°“ Timg 3-1/2 7-1/2 4 8-1/2
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Examnle 4

High Power Output Filter for CTS

It is desired to meet or exceed the specifications shown in Table 6-6
for a six element filter consisting of blocks 10 and 12 alternating,

with unity terminations.

One problem that was tried took the center frequency equal to the

resonant frequency f, = 11,885.5 MHz. The quality factors were to

R
be 6,000. The normalized slope parameters were to be varied between

42 and 2,100,

The Fletcher method was used with relevant optimization parameters
as for Example 3. The results are shown in Table 6-7. Weighting

factors were unity throughout.



Table 6-6

Frequency Specification Type

(MHz) (dB)
11,700 66 Lower

*
11,843 - 11,928 0 Upper
12,038 31 Lower
12,080 41 . Lower

.85 dB was acutally wanted but 0 was used for convenience in the

program.
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Time (min)

Table 6-7
Parameters
p Start 2 1,000
1
B1 240 183.5 192,59
1)
X1 420 300.2 280 .87
1
82 570 321.6 315.17
|
X2 460 318.9 315.17
1
B3 450 295.9 280.87
1
X3 210 179.7 192.59
Frequency :
(MHz) Insertion Loss (dB)
© 11,700 85.1 65.8 65.31
11,843 2.81 0.74 0.689
11,847 1.52 0.68 0.675
11,852 1.21 0.65 0.684
11,856 1.09 0.65 0.688
11,860 1.02 0.64 0.674
11,864 0.97 0.62 0.647
11,869 0.94 0.61 0.616
11,873 0.90 0.59 0.592
11,877 0.88 0.58 0.578
11,881 0.86 0.58 0.572
11,886 0.85 0.58 0.571
11,890 0.86 0.58 0.572
11,894 0.88 0.58 0.578
11,898 0.91 0.59 0.592
11,903 0.94 0.61 0.616
11,907 0.97 0.63 0.646
11,911 1.01 0.64 0.674
11,915 1.08 0.65 0.688
11,920 1.21 0.65 0.684
11,924 1.50 0.68 0.675
11,928 2.73 0.74 0.688
12,038 73.9 54.1 53.49
12,080 86.8 67.5 67.05
Execution 0 2/3 3
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APPENDIX 1

PROGRAM LISTING

The complete listing of the program package including all sub-

programs needed is supplied in this appendix.
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The Subprograms

FMLPO

EPSNP

INPUT

WRITE1

WRITE2

FINAL

ERRO

GRDCHK

VMMO1

FMFP

FCTAPP

Supplies all the data for the optimization process

and coordinates the other subprograms in the package;
Calculates error functions with respect to the upper
and lower specifications.

(Suppressed) Prints the input data for the optimization

process.
Print intermediate results,

Prints the optimum solution.

Selects the current weighted error functions relevant
to the objective function.

Checks the gradients of the objective function with
respect to the variable parameters at the starting
point.

Minimizes the objective function using the Fletcher
method.

Minimizes the objective function using the Fletcher-

Powell method.

Defines an approximating function and its gradients

with respect to variable parameters. Specifically, the
subprogram does the network analysis and adjoint network
analysis. Reflection coefficient, insertion loss, group

delay and parameter constraints are evaluated here.



FCT Calculates the artificial upper and lower specifications.
FUNCS Defines upper and lower specifications

W Defines the weighting functions.

SUB1 to

SUB17  Analysis subprograms for the two-port circuit building

blocks corresponding to codes 1 to 17, respectively.



Listing has been omitted for brevity.

Copies are available if required from

J.W. Bandler.



APPENDIX 2

OPTIMIZATION METHODS FOR

COMPUTER-AIDED DESIGN

This appendix contains a survey of optimization methods. It
deals with response specifications, scaling, constraints, and

gradient methods among other topics.
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Optimization Methods for Computer-Aided Design

JOHN W. BANDLER, MEMBER, IEEE

Invited Paper

Abstract—This paper surveys recent automatic optimization methods
which either have found or should find useful application in the optimal
design of microwave networks by digital computer. Emphasis is given to
formulations and methods which can be implemented in situations when
the classical synthesis approach (analytic or numerical) is inappropriate.
Objectives for network optimization are formulated including minimax
and least pth. Detailed consideration is given to methods of dealing with
paramieter and response constraints by means of transformations or
penalties. In particular, the formulation of problems in terms of inequality
constraints and their solution by sequential unconstrained minimization is
discussed. Several one-dimensional and multidimensional minimization
strategies are summarized in a tutorial manner. Included are Fibonacci
and Golden Section search, interpolation methods, pattern search, Rosen-
brock’s method, Powell’s method, simplex methods, and the Newton-
Raphson, Fletcher-Powell, and least squares methods. Relevant examples
of interest to microwave circuit designers illustrating the application of
computer-aided optimization techniques are presented. The paper also
includes a classified list of references.

Manuscript received February 18, 1969; revised May 1, 1969. This
work was carried out at the University of Manitoba with financial
assistance from the Faculty of Graduate Studies of the University of
Manitoba and from the National Research Council of Canada.

The author was with the Numerical Applications Group, Depart-
ment of Electrical Engineering, University of Manitoba, Winnipeg,
Canada. He is now with the Department of Electrical Engineering,
McMaster University, Hamilton, Ont., Canada.

I. INTRODUCTION

ULLY AUTOMATED design and optimization is
Fsurely one of the ultimate goals of computer-aided

design. The amount of human intervention required to
produce an acceptable design, even though this is often un-
avoidable, should, therefore, be regarded as a measure of our
ignorance of the problem, our inability to specify our objec-
tives in a meaningful way to the computer, or our failure to
anticipate and make provisions for dealing with the possible
hazards which could be encountered in the solution of the
problem.

An on-line facility which permits the user to propose a cir-
cuit configuration, analyze it, and display the results may
well be an invaluable educational and research tool provid-
ing the user with insight into certain aspects of his design
problem. But even with the fastest analysis program it would
be misleading to suggest that this method can be efficiently
applied to the design and optimization of networks involv-
ing more than a few variables and anything other than the
simplest of paramcter and response constraints. For a fairly
complex network optimization problem the number of effec-
tive response evaluations can easily run into the thousands
even with the most efficient currently available automatic



534

optimization methods before a local optimum is reached—
and then only for that predetermined configuration.

Fully automated network design and optimization is still
some way off. In the meantime, very effective use of the com-
puter can be made by allowing the computer to optimize a
network of predetermined allowable configuration auto-
matically. If the results are unsatisfactory in some way, one
could change the objective function, impose or relax con-
straints, try another strategy, alter the configuration, etc.,
whichever course of action is appropriate, and try again.
Obviously, this can be executed either by batch processing
or from an on-line terminal. There is no reason why the on-
line designer should not avail himself of an efficient optimi-
zation program as well as an analysis program.

With the objective, therefore, of encouraging more effective
use of computers, this paper surveys recent automatic opti-
mization methods which either have found or should find
useful application in computer-aided network design. Em-
phasis is given to formulations and methods which can be
implemented in practical situations when the classical syn-
thesis approach (analytic or numerical) is inappropriate.
Objectives for network optimization including minimax and
least pth are formulated and discussed.

Detailed consideration is given to methods of dealing with
parameter constraints by means of transformations or penal-
ties. This is rather important for microwave networks where
the practical ranges of parameter values can be quite narrow,
e.g., characteristic impedance values for transmission lines
extend from about 15 to 150 ohms. The configuration, the
overall size, the suppression of unwanted modes of propaga-
tion, considerations for parasitic discontinuity effects, the
stabilization of an active device can all result in constraints
on the parameters. Response constraints, which are less
easy to deal with than parameter constraints, are also con-
sidered in some detail. In particular, the formulation of
problems in terms of inequality constraints and their solu-
tion by sequential unconstrained minimization is discussed.

Several one-dimensional and multidimensional minimiza-
tion strategies are summarized in a tutorial manner. Included
are Fibonacci and Golden Section search, interpolation
methods, pattern search and some variations including
Rosenbrock’s method, Powell’s method, simplex methods,
and the Newton-Raphson, Fletcher-Powell and least squares
methods. Slightly more emphasis has been accorded to
direct search methods than to gradient methods because
they appear to date to have been more frequently employed
in microwave network optimization. It is probably not
widely appreciated that most direct search methods are
superior, in general, to the classical steepest descent method
and compare rather favorably with other gradient methods
as far as efficiency and reliability are concerned. It is gen-
erally only ncar the minimum that differences in efficiency
begin to manifest themselves between quadratically con-
vergent and nonquadratically convergent methods--but
quadratic convergence is not the prerogative of gradient
methods as classified in this paper.

Section II introduces fundamental concepts and defini-
tions. Section III formulates objectives for network optimi-
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zation. Section 1V deals with constraints. Section V describes
one-dimensional optimization strategies, followed by Section
VI which describes multidimensional direct search strategies
and Section VII which describes multidimensional gradient
strategies. Section VIII reviews some recent papers which
report the application of various methods to network opti-
mization. Finally, the refererices are divided into broad
classifications: references of general interest [1]-[22], refer-
ences recommended for direct search methods [23]-[55] and.
gradient methods [56]-[83], references dealing with appli-
cations to network design [84]-[119], and some miscel-
laneous references [120]-[126].

Inevitably, the material presented in this paper tends to
reflect some of the author’s current interests. Conspicuous
omissions include Chebyshev polynomial and rational tunc-
tion approximation techniques using the Remez method
or its generalizations [17], [115], [125], and a discussion
of optimization by hybrid computer in which the system
is simulated on an analog computer while the optimiza-
tion strategy is controlled by the digital computer [120].
[122]. The author apologizes in advance to all those re-
searchers to whose contributions he may not have done full
justice. He hopes, however, that the references adequately
represent the state of the art of automatic optimization
methods for computer-aided design. The use of such auto-
matic computer-aided methods in microwave network design
is not so well established as the use of computers in the
numerical solution of electromagnetic field problems [126].
For this reason, there are not yet many microwave references
from which to choose to illustrate the optimization tech-
niques.

II. FUNDAMENTAL CONCEPTS AND DEFINITIONS

The problem is to minimize U where

U= U$) (0
and where
b1
L)
o=|" 2)
S

U is called the objective function and the vector ¢ represents
a set of independent parameters. Minimizing a function is
the same as maximizing the negative of the function, so there
is no loss of generality.

In general, there will be constraints that must be satisfied
cither during optimization or by the optimum solution.
Each parameter might be constrained explicitly by an upper
and lower bound as follows:

<l’li S ¢i S ¢ui

where ¢, and ¢, are lower and upper bounds, respectively.
Furthermore, the problem could be constrained by a set of
h implicit functions

ci(¢) 20

i=1,2 -k @)

J=12 -, h #)
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Any vector ¢ which satisfies the constraints is termed
feasible. 1t lies in a feasible region R (closed if equalities are
admissible as in (3) or (4), open otherwise) as expressed by
SE R. It is assumed that U(¢$) can be obtained for any $ER
either by calculation or by measurement.

Fig. 1 shows a 2-dimensional contour sketch which illus-
trates some features encountered in optimization problems.
A hypercontour, described by the relation

bv((i)) = L/const.y (5)

is the multidimensional generalization of a contour. The
feasible region in Fig. 1 is determined by fixed upper and
lower bounds on ¢. The feasible region is seen to contain
one global minimum, one local minimum and one saddle
point. A minimum may be located by a point é on the
response hypersurface generated by U(é) such that

U=U($) <U(e) (6)

for any ¢ in the immediate feasible neighborhood of é.
(Since methods which guarantee convergence to a global
minimum are not available, the discussion must restrict
itself’ to consideration of local minima.) A saddle point is
distinguished by the fact that it can appear to be a maximum
or a minimum depending upon the direction being investi-
gated. A more formal definition of a minimum follows.

The first three terms of the multidimensional Taylor
series are given by

((o+ad) = U(d) + VUM + A$"HAG + - - - (7)
where

Agy

Ay

Ap=| " ®)

Ady
represents the parameter increments,
ol
d¢1
ol
vl = 3¢, )
oU
L I¢px_|

is the gradient vector containing the first partial derivatives,
and

m U 8t 92U
3t Ipdds  Odidd
o
H= 6¢2f9¢1 (10)
U QU
| 00 dgi?

535

4’2 constraint boundary
S O A A R LA S S
T T ;
-] local minimum/ z

g
~

SANANTN

AL
AN

0
L_global minimum

7
15
// 10

2 //\V
I, / \
/2 o

feasible -
region -

~ narrow valley
or - EETTTTLTT T T T ¢’
nen-feasible
region

Fig. 1. Two-dimensional contour sketch illustrating some features

encountered in optimization problems.

is the matrix of second partial derivatives, the Hessian
matrix. Assuming the first and second derivatives exist, a
point is a minimum if the gradient vector is zero and the
Hessian matrix is positive definite at that point.

A unimodal function may be defined in the present con-
text as one which has a unique optimum in the feasible

_region. The presence of discontinuities in the function or its

derivatives need not affect its unimodality. Fig. 1 has two
minima so it is called bimodal. A strictly convex function is
one which can never be underestimated by a lineat interpo-
lation between any two points on its surface. Similarly, a
strictly concave function is one whose negative is strictly
convex. Examples of unimodal, convex and concave func-
tions of one variable are illustrated in Fig. 2. (The word
“strictly” is omitted if equality of the function and a linear
interpolation can occur.)

If the first and second derivatives of a function exist then
strict convexity, for example, implies that the Hessian
matrix is positive definite and vice versa. Consider the nar-
row curved valley shown in Fig. 3(a). It is possible to under-
estimate U by a linear interpolation along a contour, for
example, which indicates that the function is nonconvex.
Contours of this type do present some difficulties to optimi-
zation strategies. Ideally, one would like contours to be in
the form of concentric hyperspheres, and one should attempt
to scale the parameters to this end, where possible.

Fig. 3 shows contours of other two-dimensional optimiza-
tion problems which present difficulties in practice. In Fig.
3(b), the minimum lies on a path of discontinuous deriva-
tives; the constraint boundaries in Fig. 3(c) define a non-
convex feasible region (a feasible region is convex if the
straight line joining any two points lies entirely within the
region); in Fig. 3(d) the minimum lies at a discontinuity in
the function. Theorems which invoke the classical properties
of optima or such concepts as convexity may not be so -
readily applicable to the problems illustrated in Fig. 3(b)-
(d), and yet the minima involved are quite unambiguously
defined.
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Fig. 3. Contours which present difliculties to optimization strategies.

(a) A narrow curved valley. (b) A narrow valley along which a path
of discontinuous derivatives lies. (c) A nonconvex feasible region.
(d) A discontinuous function.

A number of the general references [1], [17], [19], [20]
give good introductions to the fundamental concepts and
definitions used in the literature generally. Unfortunately,
because of the diverse background of the authors concerned,
there exists a profusion of different nomenclature. (The
present author has probably added to this confusion.)

III. OBJECTIVES FOR NETWORK OPTIMIZATION

In this section some objective function formulations for
network optimization will be presented and discussed. The
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emphasis is on formulations which can allow explicit and
implicit constraints, e.g., on the network parameters and
responses, to be taken into account. This is felt to be par-
ticularly important in microwave network optimization
where the range of permissible parameter values is often
fairly narrow, the choice of physical configurations may be
limited and parasitic effects can be acute. Thus, formula-
tions which remain close to physical reality and aim towards
physical and practical realizability are preferred, at least by
this author.

Direct Minimax Formulation

An ideal objective for network optimization is to minimize
U where

(10
— W) (F($, ¥) — Si¥))]

where

F(¢, ¥) is the response function
¢ represents the network parameters
¥ is an independent variable, e.g., frequency or time
S.(¥) is a desired upper response specification
Si(y) is a desired lower response specification
w.(¥) is a weighting factor for S,(¥)
wi(y) is a weighting factor for Sy(¥)
¥, is the upper bound on ¢
Y, is the lower bound on .

This formulation is illustrated by Fig. 4. Fig. 4(a) shows a
response function satisfying arbitrary specifications; Fig.
4(b) shows a response function failing to satisfy a bandpass
filter specification; Fig. 4(c) shows a response function just
satisfying a possible amplifier specification. F(¢, ¢) will
often be expressible as a continuous function of ¢ and y.
But Si(¥), S.(¢), wiy¥), and w,(¥) are likely to be dis-
continuous.
The following restrictions are imposed:

w, (@) >0 (13)
w,(Y) > 0. (14)
Under these conditions w,@)F(¢, ¢)—S.¥)) and

—wiXF(, ¥)—Su(y)) are both positive when the specifi-
cations are not met; they are zero when the specifications
are just met; and they are negative when the specifications
are exceeded. The objective is, therefore, to minimize the
maximum (weighted) amount by which the network response
fails to meet the specifications, or to maximize the minimum
amount by which the network response exceeds the specifi-
cations. Note the special case when

Su(¥) = 8:(¥) =8SW) (1)

and
= w(y)

w.(¥) = wiY) (16)
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(a)

Fig. 4. (a) A response function satisfying arbitrary specifications.
(b) A response function failing to satisfy a bandpass filter specifica-
tion. (c) A response function just satisfying an amplifier specifica-
tion.

which reduces (11) to

U= max [[e@ @0 -S@) [ an
¥

This form may be recognized as the more conventional

-Chebyshev type of objective.

The direct minimax formulation, the optimum of which
represents the best possible attempt at satisfying the design
specifications within the constraints of the particular prob-
lem, appears to have received little attention in the literature
on network optimization. This is chiefly due to the fact that
discontinuous derivatives are generated in the response
hypersurface when the maximum deviation jumps abruptly
from one point on the ¥ axis to another, and that multi-
dimensional optimization methods which deal effectively
with such problems are rather scarce [89], [100].

In spite of these difficulties, some success with objectives
in the form of (17) has been reported [23], [88]. But it is felt
that considerable research into methods for dealing with
objectives in the form of (11) remains to be done.

Formulation in Terms of Inequality Constraints

A less direct formulation than the previous one, but one
which seems to have provided considerable success, is the
formulation in terms of inequality constraints on the net-
work response described by Waren er al. [18]. Their formula-
tion will be slightly adjusted to fit in with the present nota-
tion.

The problem is to minimize U subject to

U 2 wui(Fi($) — Sui) SV (18)
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U2 —wu(F:i(¢) — Su) 11, (19)

and other constraints, e.g., as in (3) where U is now an
additional independent variable and where the subscript i
refers to quantities (already defined) evaluated at discrete
values of ¥ which form the set {\bi} in the interval [y, ¥u].
The index sets 7, and 7, which are not necessarily disjoint,
contain those values of i which refer to the upper and lower
specifications, respectively. Thus, in the case of Fig. 4(a), the
index sets 7, and /; could be identical. For Fig. 4(b), the set
I, would refer to the passband and the set /; to the stop-
bands. In Fig. 4(c), there might be an interscction between
1, and I,.

At a minimum, at least one of the constraints (18) or (19)
must be an equality, otherwise U could be further reduced
without any violation of the constraints. If /<0 then the
minimum amount by which the network response exceeds
the specifications has been maximized. If U>O0 then the
maximum amount by which the network response fails to
meet the specifications has been minimized. It is clear that
both this and the previous formulations have ultimately
similar objectives. Indeed, if the sets I, and I; are infinite then
the optimum solutions given by both formulations may be
identical. Not surprisingly such a problem may be described
as one which has an infinite number of constraints. How-
ever, with finite I, and I, the present formulation can be
used in an optimization process which avoids the generation
of discontinuous derivatives within the feasible region, as
will be seen in Section IV.

A special case again arises when

Sui =81 = 8; (20)
Wy = Wi = w; (21)
Iu = Il =17 (22)
which reduces (18) and (19) to
UZ>widFi(¢) — S . (23)
1 &€ 1.
U2 —wi(Fi(p) —8) (24)

This formulation, which is an approximation to (17), has
been successfully used by Ishizaki and Watanabe [102],
[103] (see Section VIII).

Weighting Factors

A discussion of the weighting factors is appropriate at this
stage. Essentially, their task is to emphasize or deemphasize
various parts of the response to suit the designer’s require-
ments. For example, if one of the factors is unity and the
other very much greater than unity, then if the specifications
are not satisfied, a great deal of effort will be devoted to
forcing the response associated with the large weighting
factor to meeting the specifications at the expense of the rest
of the response. Once the specifications are satisfied, then
effort is quickly switched to the rest of the response while the
response associated with the large weighting factor is vir-
tually left alone. In this way, once certain parts of the net-
work response reach acceptable levels they are effectively
maintained at those levels while further effort is spent on
improving other parts.
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Least pth Approximation
A frequently employed class of objective functions may
be written in the generalized form

U=Ulo, © = 2 |wilFu(e) =Sy P
) = (25)
=2 ledo) ]
=1
where
21
el (26)
¢.n

and where the subscript i refers to quantities evaluated at the
sample point ;. Thus, the objective is essentially to min-
imize the sum of the magnitudes raised to some power p of
the weighted deviations e ) of the network response from
a desired response over a set of sample points {;}. p may
be any positive integer.

The sample points are commonly spaced uniformly along
the y axis in the interval |y, ¢.]. If the objective is effec-
tively to minimize the area under a curve then sufficient
sample points must be used to ensure that (25) is a good
approximation to the area. However, it should be remem-
bered that function cvaluations are often by far the most
time consuming parts of an optimization process. So the
number of sample points should be carefully chosen for the
particular problem under consideration. These arguments
apply, of course, to any formulation which involves sam-
pling.

With p=1, (25) represents the arca under the deviation
magnitude curve if sufficient sample points are used. With
p =2 we have a least squares type of formulation. Obviously,
the higher value of p the more emphasis will be given to
those deviations which are largest. So if the requirement is
to concentrate more on minimizing the maximum deviation
a sufficiently large value of p must be chosen [17], [79],
[100]. The basis of such a formulation is the fact that

max [ | e(¢, ¥) | ]

1'[ : fwlwwﬂwyrun
= lim|-—— - c(P, 't
P e lﬁu - ¢l 12 |

when |e(&, ¢)| is defined in the interval [¢, ¥.]. In terms
of a sampled response deviation the corresponding state-
ment is

tp
[ S lawl]" e

In practice, values of p from 4 to 10 may provide an ade-
quate approximation for engineering purposcs to the ideal
objective. A good choice of the weighting factors 1w, will
also assist in emphasizing or deemphasizing parts of the
response deviation. It may also be found advantageous to

max | [ e ()| ] - lim

PR
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switch objective functions, number of sample points, or
weighting factors after any complete optimization if the
optimum is unsatisfactory. For example, one may optimize
with the weighting factors set to unity and with p=2. If the
maximum deviation is larger than desired, one could select
appropriate scale factors and/or a higher value of p and try
again from the previous “‘optimum.”

Combined Objectives

The objective function can consist of several objectivese
Indeed, the form of (11) and (25) suggest such a possibility.
For example, we could have a linear combination

U = C¥1(71 + LY‘:(';* + -
where Uy, U, - - -

(29

could take the form of (25). For an

amplifier a compromise might have to be reached between

gain and noise figure [93]; another example is the problem
of approximating the input resistance and reactance of a
model to experimental data [100]. The factors ay, o, - - -
would then be given values commensurate with the impor-
tance of U,, Us, - - -, respectively. If, however, these objec-
tives can be represented instead as inequality constraints,
alternative approaches are possible (Section 1V).

1V. CONSTRAINTS

Discussions on how to handle constraints in optimization
invariably follow discussions on unconstrained optimiza-
tion methods in most publications. This is unfortunate
because the nature of the constraints and the way they enter
into the problem can be deciding factors in the selection of
an optimization strategy. And it is rare to find a network
design problem which is unconstrained.

This section deals in particular with methods of reducing
a constrained problem into an essentially unconstrained one.
This can be accomplished by transforming the parameters
and leaving the objective function unaltered, or by modify-
ing the objective function by introducing some kind of
penalty.

Transformations for Parameter Constraints

Probably the most frequently occurring constraint on the
parameter values are upper and lower bounds as indicated
by (3). These can be handled by defining ¢ such that [3]

bi = ¢ + (Pui — ¢1:) sin? ¢/, (30)

If the periodicity caused by this transformation is undesir-
able and the constraints are in the form

¢li < d’i < ¢ui
which defines an open feasible region, one could try [86]

(31

L
¢ = ¢+ (i — ¢u) cot '/ (32)
™
where — o ¢/ <o but where only solutions within the
range
0 <cotle/ <mn 33)
are allowed. This transformation has a penalizing effect upon
the parameters in the vicinity of the upper and lower bounds.
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So if the optimum values are expected to lie away from the
bounds this transformation may also introduce a favorable
parameter scaling [86].

When the constraints are in the form

¢ 2 bui (34)
one can use
o = ¢ + ¢/ (35)
For
¢: >0 (36)
one can use
b = ¢ 7

Other transformations of variables can be found [3].
Well chosen transformations may not only reduce an essen-
tially constrained optimization problem to an unconstrained
one but might also improve parameter scaling.

Consider the constraint

Lij < ¢/ < wiy (38)

which restricts the ratio of two parameters to be within a
permissible range [1;, u,;]. This type of constraint can occur
when parasitic effects need to be taken into account [17],

[88]. Suppose we consider the example
[ < ¢s/p1 < (39)
¢1>0 (40)
¢ >0 (41)

where 7> 0.and #>0. It may be verified that the transforma-
tions

¢ = et cos (0; + (6, — 8;) sin? z,) (42)
and
¢2 = etsin (0, + (8, — 6;) sin? 2,) (43)
where A
O0<=tan'l1 <8, =tantu < 7/2 (44)

ensﬁre that for any z; and z, the constraints (39) to (41) are
always satisfied.

Inequality Constraints in General

Unfortunately, one cannot always conveniently transform
the parameters to incorporate constraints. With implicit
constraints of the form of (4) transformations may be out of
the question. y-dependent constraints in network optimiza-
tion may, without loss of generality, be written as

ci(p,¥) 20  j=1,2,---,h (45)
in the interval [y, ¥, or, at particular points y; ‘
1=1,2---,n
sewzo L7000

A microwave problem having constraints of this form has
been described by Bandler [87]. It concerns a stabilizing net-
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work of a tunnel-diode amplifier where the objective was to
minimize the square of the input reactance of the network at
selected frequencies while maintaining certain specifications
on the input resistance and reactance at different frequencies
(see Fig. 15).

If one is lucky, of course, one might be able to rely on the
constraints not being violated. If, for example, a certain
parameter must be positive but it is clear from the network
configuration that as the parameter tends to zero the re-
sponse deteriorates anyway then it may not be necessary to
constrain the parameter. However, one can not always rely
on good fortune so various methods for dealing with in-
equality constraints in general need to be discussed.

Let all the inequality constraints in a particular problem
including the y-dependent ones be contained in the vector of
m functions

[g ()
92($)
8(¢) = L . (47
gm($)
where the feasible region is defined by!
£(¢) > 0. 48)
For example, constraints in the form of (3) may be written
i i 2 0
b — ¢ (49)
Sui — ¢ > 0.

Finding a Feasible Point

Finding a feasible point to serve as the initial point in the
constrained optimization process may not be easy. It may
be found by trial and error [87] or by unconstrained optimi-
zation as follows.

Minimize

- i wigi($) f=0 ole) 20

i 50
i=1 v l >0 g,(¢) < 0. (O )

A minimum of zero indicates that a feasible point has been
found.

Penalties for Nonfeasible Points

Assuming that the initial solution is feasible, the simplest
way of disallowing a constraint violation is by rejecting any
set of parameter values which produces a nonfeasible solu-
tion. This may be achieved in direct search methods during
optimization either by freezing the violating parameter(s)
temporarily or by imposing a sufficiently large penalty on the
objective function when any violation occurs. Thus, we may
add the term

' Xm) wig2(d) (51)

=1

'{=0 gi(¢p) >0
‘>0 g:(¢) <O

1Tt is hoped that the reader will not be too upset by g(¢)>0 which
is used for g($)>0,i=i,2, - - - m.
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to the objective function. As long as the constraints are
satisfied the objective function is not penalized. However,
nonfeasible points can be obtained with this formulation.
An alternative which can prevent this is simply to set the
objective function to its most unattractive value when
g4$)<0. In practice such a value may be easy to determine
on physical grounds.

There are disadvantages inherent in this simple approach
to dealing with constraints. Depending on the type of penalty
used, the objective function may be discontinuous or have
steep valleys at the boundaries of the feasible region, and its
first or second derivatives may be discontinuous.

Any method which does not modify the objective func-
tion in the feasible region and simply causes nonfeasible
points to be rejected can run into the following difficulty.
Consider the point A on the constraint boundary in Fig. 5.
Clearly any exploration along a coordinate direction from
A will result either in a nonfeasible point or in an increase in
the objective function. Similarly, any excursion along the
path of steepest descent (see Section VII) results in a non-
feasible point. This problem does not occur at B, however.
Note that direct search methods (Section VI) in particular
those good at following narrow curved valleys, might be
able to make reasonable progress once a feasible direction is
found. A rotation of coordinates might also alleviate the
problem to some extent.

The Created Response Surface Technique?

This approach originally suggested by Carroll [60] and
developed further by Fiacco and McCormick [63], [64]
involves the transformation of the constrained objective
into a penalized unconstrained objective of the form

T — 1
P(g, ) =U(@) +72, (52)
-1 gi(9)

where r>0.
Define the interior of the region R of feasible points as!
r° = {¢] &(9) > 0} (53)

where

k- 1] a(¢) > 0f. (54)

Starting with a point ¢ and a value of r, initially 75, such
that $& R° and r;>0 minimize the unconstrained function
P(&, r1). The form of (52) leads one to expect that a minimum
will lie in R°, since as any g{ $)—0, P— . The location of
the minimum will depend on the value of r, and is denoted
(f)(rl).

This procedure is repeated for a strictly monotonic
decreasing sequence of r values, i.e.,

ry>ry> 1 >0, (55)
each minimization being started at the previous minimum.

For example, the minimization of P(¢$, r,) would be started

2 References pertinent to this subsection have been included under
gradient methods because of their association with gradient methods
of minimization.
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false minimum

feasible
direct

Pitfalls in constrained minimization when
nonfeasible points are simply rejected.

Fig. 5.

at §(r1). Every time r is reduced, the effect of the penalty is
reduced, so one would expect in the limit as j—o and
r—0 that $(r;)— ¢ and, consequently, that U—U, the con-
strained minimum.

During minimization, should a nonfeasible point be en-
countered in some current search direction it can simply be
rejected since a minimum can always be found in R°® by
interpolation. If an interior feasible point is not initially
available, an attempt to find one can be made either as indi-
cated previously, or by repeated application of the present
method [63]. In the latter case, the objective function in (52)
is replaced by the negative of any violating constraint func-
tion and the satisfied constraints are included as the penalty
term. When the constraint is satisfied, the minimization
process is stopped and the procedure is repeated for another
violating constraint.

Conditions which guarantee convergence have been
proved by Fiacco and McCormick. They invoke the require-
ments that U(¢$) be convex and the g{$) be concave (see
Section I1) so that P(¢, r) is convex. However, it is not
unlikely that this method will work successfully on prob-
lems for which convergence cannot be readily proved.

To apply the created response surface technique to the
formulation in terms of inequality constraints used by
Waren et al. [18] and introduced in Section III, (52) may be
rewritten as

m 1

])((I)y Ur 7‘) =U +r Z B

i1 gi(, U)

This brings out explicitly the fact that U is both the objec-

tive to be minimized and an independent parameter. The
constraints g(¢) are from (18) and (19)

U - u’ui(ﬁvi(q)) - Sui) Z 0 Z E Iu ) ('37
U + 'wzf(l"f((l)) - Sli) 2 0 ) E Il (58)

and, for example, (49). Waren et al. [18] describe a method
for allowing for parameter constraints to be initially violated
so that a “‘reasonably good” initial design can be found.
However, the method does not seem to guarantee that these
constraints will be ultimately satisfied.

As might be expected, a bad initial value of r will slow
down convergence onto each response surface minimum (as
indeed a bad initial ¢ will). Too large a value of r, will cause

. O6)
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9,=0

Fig. 6. An interpretation of the Kuhn-Tucker relations,
>0, 1,>0, u;=0.

the first few minima of P to be relatively independent of U,
whereas too small a value will render the penalty term in-
effective, except near the constraint boundaries where the
surface rises very steeply. Once the process is started, how-
ever, a constant reduction factor of 10 can be used for suc-
cessive r values. Another disadvantage of this sequential
unconstrained minimization technigue (SUMT) is that second-
order minimization methods are generally required for
reasonably fast convergence to the constrained minimum.

Discussions and extensions of these techniques abound in
the literature [63], [64], [69], [72], [77], [83]. A book on
applications of SUMT is also available [4].

Sufficient Conditions for a Constrained Minimum

Assuming g(¢) to be concave and differentiable and U(q))
to bg convex and differentiable, a constrained minimum at
&= & will satisfy

VUG = 3 uve(d) (59)

u”g($) =0 | (60)

where u is a column vector of nonnegative constants and
Vg: is the gradient vector of the ith constraint function.
These are the Kuhn-Tucker relations [123]. They state that
vU(d)is a nonnegative linear combination of the gradients
Vg,(é;) of those constraints which are active at i) An inter-
pretation of these ideas is sketched in Fig. 6. Note that these
relations are not, for example, applicable to the case of Fig.
3(c), which is a serious drawback.

I

Other Methods for Handling Constraints

Other methods for handling constraints include, for
example, Rosen’s gradient projection method [73], [74],
Zoutendijk’s method of feasible directions [22], and the
method of Glass and Cooper [33]. These methods employ
changes in strategy when constraint violations occur. They
do not require a transformation of parameters or a penalty
function. Thus, they can deal with difficulties such as the
one illustrated by Fig. 5 and find a feasible direction yield-
ing an improvement in the objective function. Further details
may be found in some of the general references [10], [16],
[19], [20]. Alternative methods for dealing with constraints
are also indicated, where appropriate, in the following sec-
tions.
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V. ONE-DIMENSIONAL OPTIMIZATION STRATEGIES

Many multidimensional optimization strategies employ
one-dimensional techniques for searching along some fea-
sible direction to find the minimum in that direction. A brief
discussion of efficient one-dimensional strategies is, there-
fore, appropriate at this stage.

The methods can be divided into two classes: 1) the min-
imax direct elimination methods——minimax, because they
minimize the maximum interval which could contain the
minimum, and 2) the approximation methods. The latter
are generally effective on smooth functions, but the former
can be applied to arbitrary unimodal functions.

Fibonacci Search

The most effective direct elimination method is the
Fibonacci search method [25], [28], [40], [47], [49], [52].
It is so-called because of its association with the Fibonacci
sequence of numbers defined by

Fo = F1 = 1
Fi = Fi—1+Fi—2

61
i=23..., O

the first six terms, for example, being 1, 1, 2, 3, 5, 8. Assume
that we have obtained an initial interval [¢;, ¢,!] over which
the objective function is unimodal. At the jth iteration of the
Fibonacci search using » function evaluations (n>2) we have

n—1—j

b7 = I+ ¢ (62)
e j=1,2---,n—1
& = + v (63)
nl—j J
where
I'= ¢, — ¢/ (64)

is the interval of uncertainty at the start of the jth iteration.
An example for n=4 is illustrated in Fig. 7. Observe that
each iteration except the first actually requires only one
function evaluation due to symmetry. This fact is summa-
rized by the following relationship.

If U,7> U, then

¢lj+] = ¢aj, ¢aj+1 = ¢bj,v ¢uj+1 = ¢uj) []aﬁ-l = L'ij; (653-)
and if U,”< U’ then
¢lj+1 = ¢ljr ¢bj+l = ¢aj; ¢uj+1 = ¢bj7 Ubj_H = Uaj- (65b)

Note that the very last function evaluation should, accord-
ing to this algorithm, be made where the previous one was
made. It can, therefore, be oniitted if only the minimum
value is desired. But to reduce the interval of uncertainty the
last function evaluation should be made as close as possible
to the previous one, either to the right or to the left.

The interval of uncertainty after j iterations is

I = ¢ud — ¢o? = ! — if (66)

reducing the interval I/ by a factor
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L e (67)

After n—1 iterations, assuming infinite resolution, the total
reduction ratio is

It F, F.. F,

— = . c—=F, (68)
I Fo1 Fus Fy
For an accuracy of ¢ the values of n must be such that
1 1
Foa<® "% <, (69)

g

In the example of Fig. 7 the initial interval has been reduced
by a factor of 5 after 4 function evaluations. Eleven evalua-
tions would have reduced the interval by a factor of 144.

Search by Golden Section

Almost as effective as Fibonacci search, but with the
advantage that n need not be fixed in advance, is the one-
dimensional search method using the Golden Section [47],
[49], [52].

It is readily shown for Fibonacci search that

Ji = [+t + Jit2 (70)

as may be verified by the example of Fig. 7. The same rela-
tionship between the intervals of uncertainty is true for the
present method, with an added restriction that

& [t
e e T @

which leads to
7= (72)

the solution of interest being 7= 3(1++/5)=1.6180 - - - -
The division of a line according to (70) and (71) is called the
Golden Section of a line.

The reduction ratio after n function evaluations is

]1
F = 7771, (73)
It can be shown that for Fibonacci search as n— =
1 1 Tn+'l
MI"' = I, = Av/-") : (74)

The ratio of effectiveness of the Fibonacci scarch as com-
pared with the Golden Scction is, therefore,

I’v" T: — —
' = 1.1708. (75H)
P \/"") .
Furthermore as n--»>»
I, -6)
ST, (76
I"n 1

Comparing (67) and (71) for j=1 we see that the Fibonacci
search and the Golden Section search start at practically the
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Fig. 7. A Fibonacci search scheme involving three
iterations on a unimodal function of one variable.

same point, the latter method ultimately providing an inter-
val of uncertainty only some 17 percent greater than the
former.

Golden Section search is frequently preferred because the
number of function evaluations need not be fixed in advance.

Interpolation Methods

Several methods for finding a minimum have been pro-
posed which repetitively fit a low order polynomial through
a nuniber of points until the minimum is obtained to the
desired accuracy [28], [41], [47]. The essence of a tvp-
ical method involving quadratic interpolation may be ex-
plained as follows.

At the jth iteration we have a unimodal function over
[¢17, ¢.7] with an interior point ¢,.7. Let a=¢;'. b= ¢, and
¢=¢,’. Then the minimum of the quadratic through a, b, and
¢ is at '

Al)

1 (0= AU, + (= aDHUp + (@ — )L,

d =

2 (b —Us+ ~a)ls+ (@— L.
Then ¢+, ¢,,7+, and ¢, are obtained as follows:

b>(i i [(/vb> I/Td ¢lj+1:a, ¢mj+l:d; ¢uj+1=b
and

If l( vb < Lr‘i ¢lj+] :d’ ‘i’m'H_1 = b) ¢:1j+1 =c
Uy> U, Himb ¢utl=d, ¢ 1=c

bed and JL27 0 G0 dnTimd 9
1Ub<(fd St =q, ¢u'tl=Db, ¢ t1=d

(8
The procedure may be repeated for greater accuracy, con-
vergence being guaranteed.

This method and certain others like it, are said to have
second-order convergence. For this reason they can be more
cfficient on smooth, well-behaved functions than the Fibo-
nacet search.

Finding Unimodul Intervals

The methods described so far rely on knowing in advance
the unimodal interval which contains the desired minimum,
otherwise convergence onto it can not be guaranteed. Two
situations can arise in practice which require a more cautious
strategy.
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One is that a given function is expected to be unimodal
but the bounds on the unimodal interval are not known in
advance. In this case, a quadratic extrapolation method
similar to the interpolation method already discussed can be
employed repetitively until the minimum is bounded [41],
[47]. Alternatively, a sequence of explorations may be
performed until such bounds can be established. The second
situation is when a given function is expected to be multi-
modal. In this case, it is advisable to proceed even more
cautiously. The function should be evaluated at a sufficient
number of uniformly spaced points to determine the uni-
modal intervals. Once unimodal intervals are established
they can be shrunk further by a more efficient method. An
example of a multimodal search strategy is the ripple search
method [23].

VI. MULTIDIMENSIONAL DIRECT SEARCH STRATEGIES

Methods which do not rely explicitly on evaluation or
estimation of partial derivatives of the objective function at
any point are usually called direct search methods. Broadly
speaking, they rely on the sequential examination of trial
solutions in which each solution is compared with the best
obtained up to that time, with a strategy generally based on
past experience for deciding where the next trial solution
should be located.

Falling into the category of direct search are: random
search; one-at-a-time search [25], [50], [53]; simplex meth-
ods [26], [27], [38], [45], [47]; pattern search and its vari-
ations [23], [24], [29], [30], [33]-[35], [44], [46], [48], [50],
[51]., [53], [54]; and some quadratically convergent methods
[27], [31], [41], [55]. Multidimensional extensions of Fibo-
nacei search have also been reported [36], [37]. Elimination
methods are not as successful, however, as some of the
climbing methods to be discussed.

One-at-a-Time Search

In this method first one parameter is allowed to vary, gen-
erally until no further improvement is obtained, and then the
next one, and so on. Fig. 8 illustrates the behavior of this
method. It is clear that progress will be slow on narrow val-
leys which are not oriented in the direction of any coordinate
axis.

Pattern Search

The pattern search strategy of Hooke and Jeeves [34],
[50], [53]. however, is able to follow along fairly narrow
valleys because it attempts to align a search direction along
the valley. Fig. 9 shows an example of the pattern search
strategy.

The starting point ¢! is the first base point b'. In the ex-
ample the first exploratory move from ¢! begins by incre-
menting ¢: and resulting in ¢2. Since U< U, ¢* is retained
and exploration is continued by incrementing ¢.. U*<U? so
¢ is retained in place of ¢*. The first set of exploratory
moves being complete, ¢* becomes the second base point b%.
A pattern move is now made to ¢*=2b*—b!, i.e., in the direc-
tion b2—p!, in the hope that the previous success will be
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Fig. 8. Minimization by a one-at-a-time method.

|

Fig. 9. Following a valley by pattern search.

repeated. U* is not immediately compared with U3. Instead,
a set of exploratory moves is first made to try to improve on
the pattern direction. The best point found in the present
example is ¢° and, since U< U3, it becomes b?, the third
base point. The search continues with a pattern move to
$*=2b3—b.

When a pattern move and subsequent exploratory moves
fail (as around $), the strategy is to return to the previous
base point. If the exploratory moves about the base point
fail (as at ¢°®) the pattern is destroyed, the parameter incre-
ments are reduced and the whole procedure restarted at that
point. The search is terminated when the parameter incre-
ments fall below prescribed levels.

Constraints can be taken into account by addition of
penalties as described by Weisman and Wood [48], or by
the method of Glass and Cooper [33] who describe an alter-
nate strategy for dealing with constraints. Algorithms of
pattern search are available in the literature [24], [35].

A variation of pattern search called spider, which seems
to have enjoyed some success in microwave network optimi-
zation [53], has been described by Emery and O’Hagan
[30]. The essential difference is that the exploratory moves
are made in randomly chosen orthogonal directions. For
this reason, there is less likelihood of the search terminating
at a false minimum either in a sharp valley or at a constraint
boundary as in Fig. 5. Spider can, therefore, be recom-
mended as a useful general purpose direct search method.

Another variation of pattern search called razor search
[23] has recently been proposed by Bandler and Macdonald
to deal with “razor sharp” valleys, i.e., valleys along which
a path of discontinuous derivatives lies. Such situations
arise in direct minimax response formulations (Section TII).
An example [23], [89] is shown in Fig. 10. When the
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Fig. 10. Following a path of discontinuous derivatives along a nar-

row valley by razor search. The function is the maximum reflection
coefficient over a 100 percent bandwidth of a 2-section 10: 1 quarter-
wave transmission-line transformer versus characteristic impedances
V4 1 and Zz.

basic pattern search strategy fails it is assumed that a sharp
valley whose contours lie entirely within a quadrant of the
coordinate axes has been encountered (or for that matter a
constraint boundary as in Fig. 5) so a random move is
made. When pattern search fails again it is assumed that the
same valley (or boundary) is responsible and an attempt to
establish a new pattern in the direction of the minimum is
tried. The method has been successfully applied to micro-
wave network optimization [23], [88].

Rotating Coordinates

Rosenbrock’s strategy [44] is to carry on exploring in
directions parallel to the current coordinate axes until one
success followed by one failure has occurred in each direc-
tion. Whenever a move is successful (objective function does
not become greater than the current best value) the associ-
ated increment is multiplied by a factor «; whenever a move
fails the increment is multiplied by —B. When the jth
exploratory stage is complete, the coordinates are rotated
as described below. First,

Vi = dkukf

79)

vi =dud + vipy i=k—1,---,1

where uy/, uy, - - - uy? are the orthogonal directions dur-
" ing the jth stage (initially the coordinate directions) and
dy, d», - - - d; are the distances moved in the respective direc-
tions since the previous rotation of the axes. The new sct of
orthogonal unit vectors uyt!, uyit, - - - w7, the first of
which always lies in the direction of total progress made dur-
ing the jth stage, arc obtained from (79) using the Gram-
Schmidt procedure:
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The process is then repeated. The search may be terminated
after a predetermined number of function evaluations or
when the total progress made during each of several succes-
sive exploratory stages becomes smaller than a predeter-
mined value. '

Fig. 11 shows a contour plot of Rosenbrock’s test func-
tion which is frequently used for testing new strategies.
Experimentally, Rosenbrock found that a=23, g= —1} gives
a good cfliciency. Constraints can be taken into account by
Rosenbrock’s boundary zone approach [44], [47].

Swann [46] has described an improvement of Rosen-
brock’s method which employs linear minimizations once
along each direction in turn, after which the coordinates are
rotated [27], [31], [47].

More¢ efficient methods of rotating the coordinate direc-
tions for Rosenbrock’s and Swann’s methods have been
recently proposed [39], [43].

Powell’s Method

An efficient method devised by Powell [41] is based on the
properties of conjugate directions defined by a quadratic
function, namely

U(g) = &TAd + bT¢ + ¢

where A is a k X k constant matrix, b is a constant vector, and
¢ is a constant. The directions u; and u; are conjugate with
respect to A if

81)

ui"'Au,- =0 ’L # j (82)
A two-dimensional example is shown in Fig. 12(a). The con-
sequences of having mutually conjugate directions is that
the minimum of a quadratic function can be located by
searching for a minimum along each of the directions once.

The jth iteration involves a search for a minimum along A
linearly independent directions uy/, u.?, - - - u,/. At the first
iteration these are the coordinate directions. Denoting the
starting point of the iteration ¢° and the point arrived at

after k minimizations ¢*, a new direction
u= ¢t — &°
is defined along which another search for a minimum is car-

ried out. uy’ is then discarded and the linearly independent
directions for the (j4 Dth iteration arc defined as

(83)

[t wdtt e w = a uy, - ] (8

and the process is repeated.
If a quadratic is being minimized then after & iterations all
the directions are mutually conjugate insuring quadratic
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Fig. 12. Tllustration of (a) conjugate directions u; and u,, and (b) one
iteration of Powell’s method (the minimum is found in this prob-
lem after two iterations).

convergence. One iteration of Powell’s method is repre-
sented in Fig. 12(b). In its final form, the method is some-
what more involved than indicated here (see Powell [41] for
details, and for the quadratically convergent linear minimi-
zation technique). In order to prevent the directions from
becoming linearly dependent allowance is made for discard-
ing directions other than u,”. Comparisons with other
methods are available [27], [31]. Zangwill [55] has simplified
Powell’s modified method and presented a new one based on
Powell’s.

Simplex Methods

Simplex methods of nonlinear optimization [26], [27],
[38], [45], [47] involve the following operations. A set
of k+1 points are set up in the k-dimensional ¢ space to
form a simplex. The objective function is evaluated at each
vertex and an attempt to form a new simplex by replacing

6 °l0 9
< |
B

- 4

7
$2
2
él
Fig. 13.  Following a valley by the simplex

method of Nelder and Mead.

the vector with the greatest value of the objective function
by another point is made.

An efficient simplex method has been presented by Nelder
and Mead [38]. The basic move is to reflect the vertex with
the greatest value with respect to the centroid of the simplex
formed by the remaining vertices. Depending on the out-
come, the procedure is repeated or expansion, contraction, or
shrinking tactics are employed. Although remarkably effi-
cient for up to four parameters, progress may be slow on
problems having more than four parameters [27].

A two-dimensional example of a simplex strategy is given
in Fig. 13. Examples of expansion ($*to ¢°) and contraction
(¢°to ¢" and ¢'*to ¢") are shown. Shrinking of the simplex
about the vertex having the lowest value follows an un-
successful attempt at contraction.

A simplex method developed for constrained optimiza-
tion has been presented by Box [26], [27], [47].

VII. MULTIDIMENSIONAL GRADIENT STRATEGIES

In this section methods are described which utilize partial
derivative information to determine the direction of search.
The appropriate partial derivatives (which are assumed to
exist) may be obtained either by evaluating analytic expres-
sions or by estimation.

The first derivatives can, for example, be estimated from
the differences in the objective function produced by small
perturbations in the parameter values, say 0.01-1 percent
[78]. If the perturbations are too large the estimation will be
inaccurate; if they are too small they can still be inaccurate
through numerical difficulties. The presence of a narrow
curved valley can further confound the issue. Thus, numer-
ical estimation of derivatives must be made somewhat appre-
hensively.

Steepest Descent

Referring to the multidimensional Taylor series expansion
of (7) and neglecting the third term it is clear that a first
order change AU in the objective function is given by

AU = vUTA . (85)

It is readily shown that maximum change occurs in the direc-
tion of the gradient vector VU. The steepest descent direc-
tion is, therefore, given by
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_ vU

= v =0

where the unit vector s is the negative of the normalized

gradient vector.
At the jth iteration of a simple steepest descent strategy
we would have

O = ¢ + s (87)

where o7 is a positive scale factor. It is usual to proceed in the
s’ direction until no further improvement is obtained, eval-
uate s, and continue in this manner.

Fig. 14 illustrates the behavior of this method. Highly
dependent on scaling, the method seems to have little advan-
tage over the one at a time mcthod described in Section VI
to which it bears a strong resemblance [57], [81], [82].

Parallel Tangents (Partan)

An acceleration technique which makes use of the results
of every second iteration to define new scarch dircctions can
be used rather cffectively to speed up the process as should
be evident from Fig. 14. A quadratically convergent method,
of parallel tangents (or partan) [75], exploits this basic idea,
which can be extended to multidimensional optimization.
Excellent discussions of the partan strategy are presented by
Wilde [81] and Wilde and Beightler [82].

Generalized Newton—Raphson

Consider the Taylor series expansion of (7) about ¢ in the
vicinity of the minimizing point ¢ for a differentiable func-
tion such that

¢ =¢+Ao (88)
Differentiating (7), and using the fact that vU($)=0, we
have (neglecting higher order terms)

0~ VU + HAd (89)

at &. Hence
(90)

where H-! is the inverse of the Hessian matrix. On a quad-
ratic function (90) provides the parameter increments for
the minimum to be reached in exactly one step. When U is
not quadratic (90) provides the basis of the iterative scheme

Ap ~ — H'WU

ot = ¢ — H-'WUY 1)
called the generalized Newton-Raphson method [72], [77].

Although quadratically convergent, the method has sev-
eral disadvantages. H must be positive definite, implying
that the function must be convex (see Section 1I), or diver-
gence could occur. To counteract this tendency (91) can be
modified to

‘I’“ 1 (92)

where o is chosen to minimize U7'' in the direction indi-
cated by —H 'WU7. But even this may be ineffective [72].
Thus, unlike steepest descent, the Newton -Raphson method

C ol — W H
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Fig. 14. Minimization by a steepest descent method (see Fig. 8).

may fail to converge from a poor starting point. Further-
more, the computation of H and its inverse are time con-
suming operations.

Fletcher Powell

Generally acknowledged to be one of the most powertul
minimization methods currently available when first deriv-
atives are analytically defined, the Fletceher Powell method
[66] combines some of the more desiruble features of steep-
est descent and the Newton Raphson method. 1t is a devel-
opment of Davidon’s variable metric method [61]. A brief
discussion of the method follows.

Redefine H as any positive definite matrix. Then at the

Jth iteration

G = &+ s

(03
where

si= — Hvl, 4

Here, H’ is the jth approximation to the inverse of the
Hessian matrix. The initial approximation to H is usually
the unit matrix. Noiice that, in this case, the first iteration is
in the direction of steepest descent [cf. (87)]. The o/ are
chosen to minimize U#'. H is continually updated during
minimization (hence the name variable metric) such that [72]

Gt — = Hit\ v/t — v('j]_ (“5)
Thus, only first derivatives are required to update H.
In practice the following procedure is adopted. Let
AP/ = als! ' (96)
gl = vl — vl 07
Set
H*' = Hi + A’ 4 B/ u8)
where
oA ae” (99)
AyiTgl
and
B - ~Zf§;HJ - (100)

The process is repeated from §/t1, replacing j by j+1.
Fletcher and Powell prove by induction that if H/ is pos-
itive definite then H/*' is also positive definite, since H° is
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taken as positive definite. Fletcher and Powell further prove
that on a quadratic function, H* is the inverse of the Hessian
matrix and VU¥=0. However, because of, say, accumulated
round-off errors, one extra iteration corresponding to a
Newton-Raphson iteration may be required. It is possible
for divergence to occur if the af are not accurately chosen to
minimize the function along s’. A check for this can be made
and H reset to the unit matrix, if necessary.

Algorithms of the Fletcher-Powell method are available
[59], [65], [80]. Several comparisons of its performance
with other gradient methods have also been published [58],
[59], [71], [78]. The reader might also be interested in
related methods and extensions which have been proposed
[62], [67], [68], [76], in particular, Stewart’s modifica-
tion [76] to accept difference approximations of the deriv-
atives, and Davidon’s recent variance algorithm [62].

Least Squares
When the objective function can be represented as a sum

of squares of a set of functions, special techniques are avail-
able [56], [59], [78], [82]. In this case (25) becomes

U= 3 o) (101

ex(d)
02(}#)

en('(b)J

with n> k. Define the vector
e(9) = (102)

Then (101) can be written as

U =eTe (103)
and
vU = 2]7e (104)
where
—der dey der |
a6y ag ot
dey - dey
J=|os - o (105)
den e
e, R ;;k—

is an nXk Jacobian matrix. Using the first two terms of a
Taylor series expansion

e(d + A9) ~ e(9) + JAG.

Assumihg J does not change from ¢ to ¢-+A ¢ we may
write [from (104)]

vU($ + Ad) ~ 2]7[e + JAS].

(106)

(107)

The least squares method then is to solve
J7e +J7JAd = 0

for the k components of A ¢ causing the gradient at ¢-+A ¢
to vanish. Note that J7] is a square matrix of rank k so that

Ad = — [J7]] JTe.

But from (104) 2J7e= v U. Now compare (109) with (90).
Hence, the term 2J7J corresponds to the Hessian matrix,
The least squares method (sometimes called the Gauss
method) is, therefore, analogous to the Newton-Raphson
method. U is minimized when [J7]J]! is positive definite
which is generally true under the assumptions of the prob-
lem.

To avoid divergence, however, the jth iteration is often
taken as

(108)

(109)

¢j+1 = ¢j -+ a"A(,')f (110)
where o, as for the previous methods, may be chosen so as to
minimize U, With /<1 we have one possible form of
damped least squares.

Other variations to the least squares method to improve
convergence are available [78], [82]. Powell [42] has
presented a procedure for least squares which does not
require derivatives, these being approximated by differences.

Least pth

Temes and Zai [79] have recently generalized the least
squares method to a Jeast pth method, where p is any positive
even integer. They report improved convergence but also
discuss damping techniques similar to those used in least
squares. The advantages of using a large value of p as far as
reducing the maximum response deviation is concerned are
discussed in Section III, so the method should be of consid-
erable interest to network designers. The derivation is anal-
ogous to the least squares method which falls out as a special
case.

VIII. APPLICATION TO NETWORK OPTIMIZATION

A list is appended of selected references [84]-[119] on the
application of various methods to the optimal design of net-
works which should be of interest to microwave engineers.
Most of these are briefly discussed and commented upon in
this section.

Least pth Objectives

Weighted least squares objectives with the sample points
nonuniformly distributed along the frequency axes have been
used to design LC ladder filters in the presence of loss [95],
[110]. Desoer and Mitra [95] used a steepest descent
method, while Murata [110] used a simple direct search
method. A comparison of the rather unfavorable results
obtained by these formulations with alternative formulations
is presented by Temes and Calahan [116].

Sheibe and Huber [112] used a least squares objective
function with the created response surface technique (Sec-



548

tion IV) to optimize a transistor amplifier subject to various
parameter constraints including realistic Q values. Their aim
was to fit the gain curve to a desired trapezoidal shape. It
turned out that the Q value of one of the tuned circuits was
forced to its maximum value, and the response at higher fre-
quencies was rather poor.

An investigation into the design and optimization of LC
ladder networks to match arbitrary load immittances to a
constant source resistance has been reported by Hatley
[100]. After experimentation with several objective functions
of the form of (25) on a 6 element resistively terminated LC
transformer, X, |p1~(¢)| * was chosen, where p is the reflec-
tion coefficient, even though max | p| was 0.08870 after opti-
mization as compared with the known optimum value of
0.07582. A new minimization technique called the method of
quadratic eigenspaces is presented and compared with the
Fletcher-Powell method. Examples are presented involving
antenna matching, the antennas being characterized by mea-
sured data rather than models.

The application of the least pth method developed by
Temes and Zai [117] (Section VII) was applied to the opti-
mization of a four-variable RC active equalizer with p= 10.
The maximum deviation from the desired specification for
p=2 was found to be 33 percent higher. Temes and Zai
demonstrated the nonuniqueness of the optimum—they
obtained different solutions with different starting points.
Indeed, two of the four elements were found to be essentially
redundant. The necessity of some experimentation, in gen-
eral, before accepting an apparently optimal solution (by
any numerical optimization procedure) is shown by this
example. It is interesting to speculate that since the least pth
solution will generally not be the minimax solution, although
they could be fairly close, it may be possible to obtain a
smaller maximum deviation than given by the least pth solu-
tion while still searching for it. The optimization program
could check for this possibility.

Inequality Constraints

Two distinct methods of optimizing networks when the
objectives are formulated in terms of incquality constraints
(Section I11) and when minimax solutions are required have
been reported.

One of these [102], [103] reduces the nonlinear pro-
gramming problem to a scries of linear programming prob-
lems. The constraints are in the form of (23) and (24). The
response function F{¢) or the deviation e ) is linearized
at a particular stage in the optimization process and the
linear programming problem thus created can be solved by
the simplex method of linear programming [9], [20] to
reduce U for that stage. Unfortunately, however, because of
the linear approximations made, it is possible that the orig-
inal constraints are violated and that U is not actually min-
imized. Suflicient wnder-relaxing (or damping) may be
required to guarantee that U/+' < U7 and that in the limit the
process converges to the desired minimax response. A de-
tailed discussion of this method is presented by Temes and
Calahan [116]. The paper by Ishizaki and Watanabe [103]
presents examples including the design of attenuation
equalizers and group delay cqualizers. It is felt that their
method should have wide application. The reader may also
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be interested in another recent contribution for nonlinear
minimax approximation [124].

The other method which is reviewed by Waren e al. [119],
uses the sequential unconstrained minimization technique,
the advantages and disadvantages of which are discussed in
Section IV. They recommend quadratically convergent
minimization methods such as the Fletcher-Powell method
(Section VII) or Powell’s method (Section VI) for rapid
convergence to each response surface minimum. Several suc-
cessful applications have been reported [85], [106], [107],
[118], [119]. For example, cascade crystal-realizable lattice
filters have been optimized from approximate initial designs,
including realistic losses and bounds on the element values
[107], [118], [119]. Also of interest to microwave engineers
might be the optimization of linear arrays, where allowing
additional dcgrees of freedom can result in improved designs
[106], and the more recent extension to planar arrays [119].

Microwave Networks

Several reports of the application of computer-aided
optimization methods of varying sophistication to micro-
wave network problems can be found in the literature [84].
[86]- [90], [93]. [97]. [99]. [101], [104]. [108], [114]. A num-
ber of these [88], [90], [104], [108] are found elsewhere in
this issue.

One example which demonstrates the effectiveness of com-
puter-aided optimization techniques [87] involved the
optimization of the transmission-line network shown in Fig.
15 which was to be used for stabilizing and biasing a tunnel-
diode amplifier. The requirements of stability and low noise
broad-band amplification in conjunction with the rest of the
circuitry (rectangular waveguide components including cir-
culator, matching network and tuning element) imposed
nonsymmetrical response restrictions on the input resistance
and reactance of the network as shown in Fig. 15. Upper and
lower bounds on the final parameter values were also im-
posed. The objective was to minimize the sum of squares of
the input reactance at selected frequencics. A simple direct
scarch method was used, which rejected nonfeasible solu-
tions, an initial feasible solution being found by trial and
crror. An alternative, and perhaps more elegant, approach
would have been the implementation of the sequential un-
constrained minimization technique.

Another area in which the computer can be effectively
used is the design and optimization of broad-band integrated
microwave transistor amplifiers [93], [97], [99]. A block
diagram of a two-stage amplifier is shown in Fig. 16. The
transistors are usually characterized experimentally at se-
lected frequencies in the band of interest and under the
conditions (e.g., operating power level) in which they are to
be used. The representation can, for example, be in the form
of input and output admittance [97], ABCD matrix [93]. or
scattering matrix [99]. It may also be an advantage to fit the
measured data versus frequency to a suitable function in a
least-squares sense [93], [97].

The input, output and interstage matching networks usu-
ally consist of noncommensurate transmission lines and
stubs. The line lengths and characteristic impedances are
allowed to vary within upper and lower bounds during the
optimization of the amplifier. The spider search method
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Fig. 15. Noncommensurate stabilizing network for a tunnel-diode
amplifier with constraints on input resistance and reactance at

certain frequencies.
% 500

Fig. 16. Block diagram of a two-stage microwave transistor amplifier.
The transistors are characterized experimentally. The matching net-
works usually consist of noncommensurate transmission lines and
stubs.
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(Section VI) has been applied to the design of such matching
networks [97]. The objective functions commonly take the
form of (25) with p=1 or 2. It is felt, however, that better
designs might be achieved by using larger values of p or a
minimax objective like (17) to reduce, for example, the
maximum deviation of the gain versus frequency from the
desired gain. The method of Temes and Zai [117] would be
quite appropriate in the former case, while the razor search
method [90] could be used in the latter. Since it is difficult to
realize component values in integrated circuitry very ac-
curately, the optimal solution should also satisfy appropriate
sensitivity constraints.

Multisection inhomogeneous rectangular waveguide im-
pedance transformers (Fig. 17) have been optimized in a
minimax equal-ripple sense [88] by the razor search strategy
[90] (see Section VI). Suitable parameter constraints—the
parameters were the physical dimensions—were imposed to
ensure dominant mode propagation and reasonably small
junction discontinuity effects which could be taken into
account during optimization. Improvements in performance
coupled with reduction in size over previous design methods
are reported [88].

Automated Design

Approaches to automated network design and optimiza-
tion which can permit new elements to be “grown” have
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Fig. 17. An inhomogeneous rectangular waveguide impedance trans-
former. All guides are, in general, noncommensurate.

been suggested by Rohrer [111] and Director and Rohrer
[96]. The latter paper, which seems to be a significant contri-
bution, discusses design in the frequency domain of circuits
comprising certain types of lumped linear time-invariant
elements. A technique is presented whereby the gradient
vector of a least squares type of objective function is shown
to require only two analyses over the frequency range of
interest regardless of the number of variable parameters.
And because this gradient depends only on currents and
voltages, gradients with respect to nonexistent elements can
be calculated. If such a gradient indicates an increase in an
element value an appropriate element is grown in the appro-
priate location. The authors consider an example of broad-
banding a transistor amplifier in which they allow for the
possibility of growing a number of capacitors. Apparently
one has to specify in advance the locations where elements
can grow.

IX. CONCLUSIONS

It is hoped that this paper will not only encourage the use
of efficient optimization methods, but will also stimulate the
engineer into developing new ones more suited to his design
problems. After all, as exemplified by this paper, few opti-
mization strategies have been reported so far which were
originally developed with electrical networks in mind. It is
also hoped that the present almost instinctive preoccupation
with least squares formulations may give way to more atten-
tion being paid to minimax objectives and efficient methods
of realizing them. Least squares objectives may be flexible
and easy to optimize. It is probably their flexibility, however,
which is their undoing since any designer who is essentially
trying to fit a network response between certain upper and
lower levels and is using a least squares objective function
may have to employ more human intervention than neces-
sary to achieve an acceptable design. On the other hand, the
designer who is employing a minimax objective directly and
does not recognize the possible dangers, e.g., of discontinu-
ous derivatives, can easily obtain an equal-ripple response
which is still far from the optimum. On-line designers opti-
mizing a network manually with the objective of minimizing
the maximum deviation of the network response from a
desired response are equally prone to these dangers. An
equal-ripple solution need not necessarily be the minimax
solution.
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APPENDIX 3

THE ADJOINT NETWORK METHOD

The following paper provides all the sensitivity formulas needed
to derive the gradients with respect to parameters as used in
the program. It will be helpful in future additions or
modifications. It also illustrates how the network analysis

is performed.
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Abstract—Some current trends in automated network design
optimization which, it is believed, will play a significant role in the
computer-aided design of lumped-distributed and microwave net-
works are reviewed and discussed. In particular, the adjoint network
approach due to Director and Rohrer for evaluating the gradient vec-
tor of suitable objective functions related to network responses that
are to be optimized is presented in a tutorial manner. The advantage
of this method is the ease with which the required partial derivatives
with respect to variable parameters, such as electrical quantities or
geometrical dimensions, can be obtained using at most two network
analyses. Least pth and minimax approximation in the frequency do-
main are considered. Networks consisting of linear time-invariant
elements are treated, including the conventional lumped elements,
transmission lines, RC lines, coaxial lines, rectangular waveguides,
and coupled lines. To illustrate the application of the adjoint net-
work method, an example is given concerning the optimization in the
least pth sense using the Fletcher-Powell method of a transmission-
line filter with frequency variable terminations previously considered
by Carlin and Gupta.

I. INTRODUCTION

S THE RECENT special issue on Computer-
A Oriented Microwave Practices of the IEEE
TRANSACTIONS ON MICROWAVE THEORY AND
TECHNIQUES shows, microwave network optimization
is widely carried out using direct search methods, i.e.,
iterative optimization methods which do not employ
evaluation or estimation of derivatives. Murray-Lasso
and Kozemchak [1], for example, used pattern search
[2] to optimize the parameters of the transmission-line
network shown in Fig. 1. The problem was to match
the 50-ohm characteristic impedance of a transmission
line to the complex input impedance of the transistor
specified at a discrete set of frequencies in the band of
interest. The ten parameters were the five lengths and
five characteristic impedances. A problem studied by
Bandler [3] was the optimization of multisection in-
homogeneous rectangular waveguide impedance trans-
formers (Fig. 2). The objective was, within certain con-
straints, to adjust the geometrical dimensions of the
sections such that the input and output waveguides
were matched over a given frequency band. In general,
all waveguides had different cutoff frequencies. Re-
sponses which were optimal in the Chebyshev sense,
i.e., minimax, were desired. The razor search method
[4] was employed to realize them. A modified version
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and A5277. This paper is based on two papers presented at the 1970
IEEE G-MTT International Microwave Symposium, Newport
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J. W. Bandler is with the Department of Electrical Engineering,
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Murray-Lasso and Kozemchak [1].
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transformer optimized by Bandler [3].
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Fig. 3. Broad-band amplifier optimized by Trick and Vlach [5].

of Rosenbrock’s method [2] was used more recently by
Trick and Vlach [5] to optimize the broad-band ampli-
fier shown in Fig. 3 with, in general, complex frequency-
dependent terminations. A weighted least-squares type
of objective function was employed to achieve a flat
power gain with a reasonable reflection coefficient in
the band of interest.

These three examples (Figs. 1 to 3) are a good indica-
tion of the state of the art in automatic optimization by
computer of distributed networks in the microwave
region. In the absence of a reasonably simple and effi-
cient method of evaluating derivatives, direct search
methods were probably found preferable by the authors
instead of gradient methods of minimization. Consider,
for example, an m-section cascaded network described
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In general, the functions involved are highly nonlinear,
containing transcendental expressions. If care is not
exercised to prevent reevaluation of expressions and
formulas already evaluated, it may not make much
difference in computing time whether analytic expres-
sions are available for the derivatives, the derivatives
are estimated numerically by differences produced by
small perturbations in the parameter values, or large
steps in the parameters are taken as in direct search
methods.

The essence of the adjoint network method originally
proposed by Director and Rohrer [7], [8] is that all
required partial derivatives of the objective function
may be obtained from the results of at most two com-
plete analyses of the network regardless of the number
of variable parameters and without actually perturbing
them. For design of reciprocal networks on the reflection
coefficient basis, for example, only one analysis yields
all the information needed to compute the derivatives.
The procedure is essentially an exact one, so the com-
ponents could be in analytic or numerical form.

II. TELLEGEN’S THEOREM

Tellegen’s theorem [9], [10], [11] is invoked to
simplify the necessary derivations. Let

V1

V2
"ZAY I 3)

iL : 4
i

contain all the corresponding branch currents using
associated reference directions [10].! Tellegen’s theorem

! With associated reference directions, the current always enters a
branch at the plus sign and leaves at the minus sign. .

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, DECEMBER 1970

© , ® ©, , .®

L) 2% }3 : 2 3

®@ °* 0 @ e
(a) (b)

Fig. 4. . Two networks having the same topology with
nodes and branches correspondingly numbered,., ;,

states that if v and 1 satisfy Kirchhoff’s voltage law
(KVL) and Kirchoff’s current law (KCL), respectively,

vli = 0. » )
The proof is rather straightforward [10, p. 422].
KVL ‘requires that v=ATe, where A is the reduced

incidence matrix of the network and e is the node-to-
datum voltage vector. So

Vi = (ATe)Ti = eTAi.
But KCL requires that A7i=0. Therefore,
C vTi=0.
As a numerical example of Tellegen's theorem con-

sider Fig. 4, which represents two networks having the
same topology. Let.

i=[3 -2 5 3 =3
refer, for example, to Fig. 4(a), and
v=1[1 2 2 3 6]

to Fig. 4(b). Then
VTi=3—4+10+9~18=0.

Observe that differences in elements or element values
between the networks are irrelevant. Thus, i may be
essentially arbitrary but subject to KCL and v arbitrary
subject to KVL.

I1l. THE ADJOINT NETWORK

We need to define an auxiliary network which is
topologically the same as the original or given network
which is to be optimized. This is called the adjoint net-
work. Let the variables V7 and [ refer to the original
network and " and [ refer to the corresponding quan-
tities of the adjoint network. From (5)

VuTly =0
I"Vy =0 (6)

where subscript B implies that the associated vectors
contain all corresponding complex branch voltages and
currents. Perturbing elements in the original network
and noting that Kirchoff's laws and hence Tellegen's
theorem are applicable to the incremental changes in
current and voltage, namely, AIp and AV, respectively,

AVBTiB = 0
AIgTVg =0 (7)
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application of Tellegen’s theorem.

so that we have the useful form
AV Iz — AITVs = 0. (8)

In general, the network to be optimized will consist
of multiport elements (Fig. 5), particularly in the micro-
wave region. To see how Tellegen’s theorem may be ap-
plied, consider Fig. 6. Obviously, we can still think in
terms of network graphs with branch quantities related
through some appropriate matrix description. Suppose
we take the hybrid matrix description

=l dl] e
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where

F'[p_'

Perturbing the parameters of the element and neglecting
higher order terms

AR
*Laae azll] o

Substituting (10) in (8), the terms of (8) corresponding
to the element are

RAIAE .
I T+ AT 1)
(v e R i)

[T e v
which can be reduced to
e [0 6] e
if
AR 1

which defines the adjoint element. This definition causes
the terms of (8) relating to tl.e element to be expressible
only in terms of the unperturbed currents and voltages
associated with the original and adjoint elements and
incremental changes in the elements of the matrix.
Terms containing incremental changes in current and
voltage have disappeared. .

Table I summarizes these results and results for im-
pedance matrix, admittance matrix, and A BCD matrix
descriptions. They may be derived independently or as
special cases of the derivation for the hybrid matrix.
Two important special cases should be noted. The first
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TABLE I
Matrix Type Original Element Adjoint Element Expression Yielding Sensitivity
Impedance V=2zI V=2zrf razrf
Admittance I=YV I=vymv —VTAYTV
I, Y A[V. A YT —MT [V —AYT AMT [V,
Hybrid =[ ][ ] A]=[_ r T] ~] vl T][*]
Vs M ZJLI, Vs A z Iy . AZ I
i A B V, Vs 1 A B v, A4 —aCri,
ABc []-1e p]l-r] )= ao=mele ollos e 1]
: I, C DJL-I, I AD—-BCLC DiL-I, —-AB ADILY,

is that adjoint of a reciprocal element is identical to the
element itself. The second is that a one-port element
(resistor, inductor, etc.) is accounted for by Table I.

Suppose the original and adjoint networks are excited
by independent sources? as indicated by Fig. 7. Let

Ve A [ViVy- - VT (14)
be theny-element voltage-excitation vector,
I & [Lnpii Lngir « + + Tngyny]” (15)
be the n;-element current-excitation vector, so that
AL Iyl (16)
and
VIA [Vapsr Vapsz -+ Vagam, )T (17)

respectively, are the corresponding response vectors.
Thus, subscript V refers to voltage-excited ports and
subscript I refers to current-excited ports. For the ad-
joint network, similar definitions from (14) through
(17) would be distinguished by *.

Terms of (8) associated with the port excitations and
responses are

AV T, — ALTVy + AVITE; — ALV, (18)

But AV, =AI;=0 if the excitations remain constant.
Expression (18), therefore, reduces to

— ALY, + AV, (19)
In summary, then, (8) consists of terms of the form
of (12) and similar ones as in Table I together with

(19) leading, in general, to

ALV, — AVITE = GTA (20)
where G is a vector of sensitivities related to the ad-
justable network parameters contained in ¢. It is seen
that (20) relates changes in the port responses to changes
in parameter values, which is usually what we are in-

2 Appropriate zero-valued sources are placed, for convenience, at
ports which are not excited.

r~
Vi Voy +1 < Ing+l

® original °
: In, network .
+
. an V"v*nI I"v+"l
(@)
1,
+
O| . an""l fnv+|
b adjoint :
o Iny network o
+
vnv V"v+nI C Inv'”‘I
(b)

Fig. 7., (a) Excited arbitrary multiport network containing lumped
and distributed elements. (b) Topologically equivalent adjoint
network with corresponding port excitations.

terested in. The form of the right-hand side of (20) is a
direct consequence of the definition of the adjoint net-
work.

IV. DERIVATION OF SENSITIVITIES

Table I1 presents the results of applying the formulas
of Table I to a number of commonly used elements.
Consider, for example, an inductor. According to the
impedance formulas of Table I, the expression yielding
the sensitivity is

IAZI = (jw IT)AL. (21)
Taking the inductance L as the parameter, oIl is
the sensitivity or component of G and AL is the pa-
rameter increment.

Now consider a uniformly distributed line as shown in
Fig. 8(a). The element is reciprocal, so that

coth§ csch @
ZT=Z=Z['O ® ]

(22)
csch & cothé
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Ip Iq
+ +
Ip Iq
o Zcoth 8 [] Zcoth@
+ +
Vp 6,z Vg Vp Vg
- = ZIq Zlp
e sinh 0 <‘> sinh 8
(a)
I
1
+
+
9.z \ Ztanh 8
(b)
I
I
+
+
\% 6,y v Y tanh 6
()

Fig. 8. Uniformly distributed elements with convenient representa-
tions. (a) Uniform line. (b) Short-circuited line. (c) Open-cir-
cuited line.

where Z is the characteristic impedance. Using the
same formula in Table I as for the inductor [12]
csch 6

csch 6

coth B:I
ZAB [csch @ coth 67\7-~
sinh 6 [:coth 6 csch 0:') L

AZ A6 [0 1 T
(- 210 )
A sinhd[1 0

AZ - A8

0 17-
= VT — VT[ ]1.
Z sinhe L1 0

Corresponding expressions for the lossless transmission
line of length / with # =38! and the uniform RC line
(Fig. 9) with Z=+/R/sC and 6 =+/sRC are readily ob-
tained [12] and are shown in Table I1.

Consider a rectangular waveguide operating in the
Hy mode, as shown in Fig. 10. The following model
may be used if the restrictions outlined by Bandler
[3] are observed:

a coth 6
ITAZT] = IT (AZ[

(23)

Z = b\, (24)
2wl .
A=j— =78 (25)
Ag
where -
A
Ao (26)

T VI= (20
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8 (RC,s)
Z (R,C,s)
o590

Fig. 9. Uniformly distributed RC line.

propagation

(a)

‘Hé
8(a, 4 1)
Z(a,b,f)
o— o

(b)

Fig. 10. Rectangular waveguide. (a) Geometrical
dimensions. (b) Circuit representation.

where a, b, and / are the width, height, and length, re-
spectively of the waveguide; A, is the guide wavelength
and N =¢/f. It is readily shown, neglecting higher order
terms, that

)W
AZ = N\Ab — — Aa 27
4q3
and
A2
B Aa. (28)

A9 = jB,Al 4 Py
Expression (23) for the rectangular waveguide then be-
comes

Ayl - 8ol 0 17-
- Aa#(wur : vr[ ]1)
4q® sin B,/ 10

Ab .~ ByAl 0 17,
vl
sin 83,0 1 0

+ —yrr —
b
Note that the voltages and currents do not necessarily
have to have any physical interpretation, their use is
only in being convenient variables for analysis.
Now consider a uniform lossless coaxial line with

1 Z d
Z=——Lln—i

21!' \/E,- d,’

(29)

(30)

where Zo=/po/¢o, € is the relative permittivity of the
medium, and do and d; are the outer and inner diameters,
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TABLE II
SENSITIVITY EXPRESSIONS FOR SOME LUMPED AND UNIFORMLY DISTRIBUTED ELEMENTS

N

Sensitivity Increment
Element Equation (component of G) (component of A¢)
Resistor V =RI I : AR
I=GV -vv AG
Inductor V =jwLl joIl AL
1 . : 1.
I=—TV —-—VV AT
Je Jo
1 1.
Capacitor V=35I —1II AS
Jw Jw
I =juCV —juwVV AC
Transformer V. ,] l: 0 n] [Ip] o
= Vol 1,V
I, -n oJLy, ofs + IV an
0 . -
Gyrator V= [—a ;:l 7 1,0, — 17, .
trolled volt: ce 1, 0 0rv -
Voltage controlled voltage sour: p] _ [ ] [ ,] Vo, v Au
Va u O0JLI, .
Voltage controlled current source I= [0 O] v —V.7, Ag
m O
Current controlled voltage source V= [0 0] 1 . LI, A
tm. O
Current controlled current source V,,] [0 O] [I,,] N
= I,V A
Iq 6 0 Vq p¥a B
Short-circuited uniformly V =Ztanho1l tanh 6 I AZ
distributed line Z sech?@ 1T Af
I =Y cothoV —coth g VV AY
: Y csch?o VPV Af
Open-circuited uniformly "V =2Zcothol : coth 6 IT AZ
distributed line —Z csch? 0 IT A8
I=7YtanhoV —tanh @ VV AY
— Y sech?o V'V A6
coth 8 csch @ i
. — . V= I ~yrf
Uniformly distributed line Z [csch 6 coth 0] Z AZ
Ly [O My a6
sinh 6 i 0
coth® =—csch 6 1
1=v[ 1v -
—csch 6 coth 6 Y v AY
1 0 17 4
1 Ir[ ]
sinh 6 10 v 48
Short-circuited lossless V =jZ tan gl I 4 tan B I1 AZ
transmission line jZB sectBLIT Al
I=—jYcotBlV jcotBIVY AY
—j VB esc? 8L VI Al
Open-circuited lossless V==—jZcotBll —jcot Bl 11 AZ
transmission line ) JZB csc? Bl 11 al
I=jYtan BV —jtan BLVV AY
—jYB8 sec? Bl VI Al
cot Bl csc Bl 1 -
S ission li V-—-'Z[ — VTl
Lossless transmission line f) esc gl cot Bl 7 AZ
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TABLE II (Cont.)

Sensitivity Increment
Element Equation (component of G) (component of Ad)
i o) o
sin ﬂl 0
. , cot 8} —csc g}
Lossless t: lin I-—Y[ —-—179
ess transmission line J —csc Bl cot gl | 4 Y AY
-L_p [ ‘] v Al
sin ﬁl 0
B8
. . . . . . Az, sinfgl | &
ectangular waveguide operating as for lossless transmission line with e vr 8, I Aa
in H1o mode Z = b),, O replaced by B = 2x/A,, —_
sin B,/
where A, = A\/+/T — (7/2a)} -l-VTf ab
- b
sin ﬂ,,l [ ] al
[’}
. . - . 1 ' sinh @ | »
pitorm RC line as for uniformly distributed line with IR vT 0 I AR
R . —_—
Z=1/_;€ and 0 = +/sRC . L. sinh@
— 1 0
1 l sinh @ | .
- yrT b
2C . ac
|_sinh 60
1 .-
Uniform coaxial line as for lossless transmission line with a0 V71 Ady
0
1 Zo do do In —
Z=— In— d;
oy n 2 and 8 = fover
B _d 1 do - o
¢ in 4
1 A :
e [0 1Y 5
sin Bov/ed
1 BVl 17,
- —(vrf+ VT[ ] b ) . A
2¢r sin Bov/erl 0 “
cothd —csch Vi
e A
c[ v qu] —csch @ coth8JLV,,. ACon
Ccoth§ —Ccsch@ coth® —csch@ Vg,,
- a2 )
Coupled l.mes . L. ¢ [—C csch 8 C coth 0] c[ » zq] —csch @ coth @ ACn
(1) capacitance matrix description
where
Can+Cis —Cu ] [ 1" cothd —1' csch 0] o~
—cVT
ca —Cis  Coa+Cna ¢ —1’ csch 6 1’ coth 6, ACi
(see text and Fig. 11) _ ' 1 I [0 1] > »
sinh 6
(see text for definitions of 1/, 1, and 0)
. -] 1p “I‘ I 2p
Yucotfl —Y, I 1 I,+1
Coupled lines - [ u cot B e cscf —Lyr| Dot I AY.
L —YucscBl Y cot Sl 27, Ig+ Ing
(2) even-and odd-mode description Ty,
for symmetrical arrangement where _ f:, _ ' f:-T
Y.+Y, V,— Y.,] 1 Inp—1,
Y - VT, Y,
”éz Vom Y. Yo+ 7. 27, | 1= I a
_i,,, — I
and where Y, and Y, are the even- ] ¢ Al
and odd-mode admittances sin ﬁl
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respectively, of the line. Here,

0= jBove | (31)
where 8, is the free-space phase constant. Thus
Ady Ad; Ae,
AZ =7 - — (32)
dO do 26,-
doln — d;ln —
i di
and
— iBolAe,
A6 = jBor/e Al + ]‘; e (33)

€r

Expression (23) for the coaxial line becomes

doln= g sin B
Ae. [/ e | 0 17,
——E<VT1+.~B°—‘/-‘—_—_VT[ :II) (34)
2e, sin Bov e, [ 10

Finally, consider the admittance matrix formulas of
Table I applied to the pair of coupled lines above a
ground plane [13], [14] shown in Fig. 11. The admit-
tance matrix description is

I, Vip
Igp i C coth§ —Cocsch@ Vzp

=
I, —Ccsch g C coth g Lqu.
12(1 V‘—’q
where subscript p denotes the two ports formed betwcen
each conductor and the ground plane at one end and ¢
the corresponding ports at the other end; subscript 1

refers to one conductor and 2 to the other. The matrix
C is given by

co

[Cm + Cr 36)

—Cp ]
—C2 Coz + Cp2

the elements of which are defined in Fig. 11. Treating
Co1, Cos, Cis, and 8 as variables we have

—VIAYTV
coth® —csché le:l
= — |V, V . | AC
Vi Vel [—csch 6 coth 0] I:qu "
coth® —csch gV
— e[Vap V] [ ] |: f”:l ACos
—csch @ coth 6] LV,

1" cothg —1’csch 6 _
— VT VAC]-;
—1" ¢csch @ 1’ coth @
c —C csch @ C coth @
- VT (37)
sinh 6 Ccothd —Ccsché
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Cor—]-— —[— Coz

Fig. 11. . Coupled lines above a ground plane with
static capacitances per unit length.

where
1A [ ! ~1] (38)
B I B W
The last term may be rewritten as
1 0 17-
- [ ] Va0 (39)
sinh 6 1 0
where
on[® Y (40)
— L0 o
and
-1 0
124 . (41)
K

These results are summarized in Table II, along with
expressions based on the approach using even- and
odd-mode characteristic admittances.

V. GRADIENT COMPUTATIONS

There are a number of ways in which the adjoint net-
work method can be used effectively in gradient compu-
tations.

Consider Iigs. 12 and 13. Fig. 12(a) depicts the situa-
tion when insertion loss or gain is to be optimized. Here
we are interested at some frequency in the partial de-
rivatives of J; with respect to the parameters and hence
VI;. Fig. 13(a) is appropriate for design on the reflec-
tion coethcient basis. In this case we are interested at
some frequency in VI,. Suppose the adjoint networks
are excited as shown in Figs. 12(b) and 13(b). Then, for
Fig. 12, (20) can be reduced to

AILV . = GTA$. (42)
Dividing by ¥, we have -
Al = VITA$ = [% GT] Ad
from which
vl = L G. 43)
e
For Fig. 13, (20) can be reduced to
| ALYV, = GTA. (44
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Ig - I
=AM\ O—AAA
v R original R
E i ’ 9 network -
]
(a)
g I
AMA—o o—AAA—]
adjoint A
Rg network Ru Vi
o__:E
(b)
‘Fig. 12, Special case of Fig. 7 for insertion loss design.

I
VVi—o .
R original
Vg 9 Zin  network
—e—
(a)
g
—\\—o .
. adjoint
Vg Rg network
pre———()
(b)
Fig. 13. Special case of Fig. 7 for reflection coefficient design.

Noting that (44) has the same form as (42) we get

1
vl, = —G.
Ve

(45)

Observe that VI, in (43) and VI, in (45) are
evaluated from the currents and voltages present in the
unperturbed original and adjoint networks. At most,
two network analyses using any suitable method will,
therefore, yield the information required for the evalua-
tion. Of course, if desired, analytic expressions for the
partial derivatives could also be found by this ap-
proach.? It is interesting to note that for design of re-
ciprocal networks on the reflection coefficient basis we
are at liberty to set ¥,=V, and use the results of just
one analysis at each frequency.

To relate VI, or VI, to the gradient vector of suit-
able least pth or minimax objective functions [2]-[4],
[6], [15]-[18] is a straightforward process [12]. In
anticipation of the numerical example (Section VI), we
will first consider discrete least pth approximation
using the reflection coefficient. Let '

1
U=, ? | p(jwa) |7,  wa € Qu (46)

3 It is debatable, however, whether any computational advantage
would, in general, be gained by deriving analytic expressions.
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where p is the reflection coefficient between R, and the
one-port network, € is a set of discrete frequencies wg,
and p is any positive integer. Suppose it is required to
minimize U. In this case we are trying to approximate
zero reflection coefficient in a least pth sense. For large
p we would expect a nearly equal-ripple response to cor-
respond to the minimum of U [2].

. Zin(jwd) - Ru 2R0
plion) = St =
Zin(jwa) + R, Zin(jwa) + Ry
_Z_Rala‘(jf*’i) (47)
Vo(jwa)
so that
vU = 3 Re {| p(jwd) |7 20*(jwa) Vo (jwa) |
Qa4
2R,

= R e jwa) [P 20*(Jwa) VI, (jwa) ¢ . (48
> e{v,@-wd)"’“ ) [ Goa) v 14)} (48)

If, instead of minimizing (46), the problem is to mini-
mize a nonnegative independent variable U, subject to

U2 glod =4 pGod |, @€ (49
then we have minimax appr’oxirﬁation [2], for which
R,
Vo(jwa)

Finally, let us address ourselves to the approximation
problem considered by Director and Rohrer [8], gener-
alizing it to least p [19], [20]. Equation (20) is readily re-
arranged to give

Ve(ws) = Re { p*(jw»w,(jwd)} . (s0)

LA . ny+nr .
G=2 Vwl.— > LvV; (51)
i=1 i=ny+1
since, neglecting higher order terms,
Al; = VvITA
AV; = VViTA¢.
Given, for example, the objective function
ny+ny 1 .
U= 2 | —|e(d,jw)|?do (52)
i=1 Q P
where
ei(§, jo) & wi(w)(Fi(9, jo) — Si(jv)) (53)
where
. Il'(‘b)jw) i= 1)27" c o, Ry
Fugio & {00 (54)
V.-(c]:,]w) i=nmy+ 1, ,ny+ nr

and 2 defines the frequency range of interest. Here,
S;i(jw) is a desired complex port response with w;(w) a
nonnegative real weighting function. In this case

ny+nr

vU= ),

i=1 2

Re { | (¢, jw) |7~ 2wi(w)

-e*(d, jw)VFi($, )} dw. (55)
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Fig. 14. Cascaded transmission lines terminated in
frequency variable resistances.

By comparing (51), (54), and (55) it is seen that by ar-
ranging for the adjoint network voltage and current
excitations to be given by

| (o, jw) | 2wi(w)e* (&, jw)

Vi i =1,2,-- -,
={ PG T s
—Ii(jw) t=ny+1, 0y +ns
we obtain
vU =fRe{G} dw. (57)
Q

If there is no excitation at a particular port the ap-
propriate source is obviously set to zero. If the response
at a particular port is not to be controlled the cor-
responding adjoint excitation should be zero. Elements
or parameters not to be varied during optimization do
not, of course, contribute to ¢ or G.

VI. EXAMPLE

Carlin and Gupta [21] recently considered the opti-
mal design of filters with lumped—distributed elements
or frequency-variable terminations. Although any of
their design examples are amenable to computer-
oriented optimization techniques, let us discuss the
design of the symmetrical seven-section cascaded trans-
mission-line filter shown in Fig. 14(a).

The terminating impedances are real but frequency
dependent, specifically

R(w) = Ru(w) = 377/5/1=(1./7)
where f is the frequency in GHz and
fe = 2.077 GHz.

Thus, the terminating impedances can be thought of as
rectangular waveguides operating in the ;5 mode with
cutoff frequency 2.077 GHz. Carlin and Gupta required
a passband insertion loss of less than 0.4 dB over 2.16
to 3 GHz and an edge to the useful band of § GHz.
They constrained all section lengths to be 1.5 cm so
that each section would be quarter wave at 5 GHz and
causing the maximum insertion loss to occur at that
frequency. The response of their design is shown in Figs.
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frequency GHz

Fig. 15. The response of the seven-section filter whose configuration
is shown in Fig. 14. The authors’ response was optimized for min-
imum passband insertion loss.

-
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o8} :
D osl
g - passband specification
= oal &//
L
T -
2 - Bandler
€ o2t % and
- Seviora
3
ol.l |I J

frequency GHz

Fig. 16. Details of the passband insertion loss
of the seven-section filter.

15 and 16 and the values of characteristic impedance
in Table III.

A question of interest to the present authors is this:
how small can the passband insertion loss be made
under the constraints of the problem? (Note that the
question is trivial if the terminating impedances were
frequency independent or if the section lengths were
freely variable.)

The least pth objective function of (46) was set up
using 51 uniformly spaced points over the range 2.16
to 3 GHz and with p=10. Optimization was carried
out by the Fletcher-Powell method [22], the required
derivatives being evaluated from the results of one
analysis of the network of Fig. 14(b). To apply the ad-
joint network method a simple ABCD matrix analysis
algorithm employing the approach indicated in Fig.
14(b) was written. Instead of fixing V,, it was found
more convenient to assume that 7 =1 and to calculate
the required currents and voltages including V,. The
appropriate formulas from Table II were used (not
forgetting to reverse the currents at the junctions when
necessary). The design parameter values of Carlin and
Gupta were used as starting values.
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TABLE 111
COMPARISON OF PARAMETER VALUES FOR THE SEVEN-SECTION FILTER

Characteristic

Impedances Carlin and Bandler and

(normalized) Gupta [21] Seviora
Zy 1476.5 1469.5
Zs 733.6 763.2
Zs 1963.6 1945.1
Za . 461.8 558.7
Zs 1963.6 1945.1
Zs 733.6 763.2
Z 1476.5 1469.5

The resulting response is plotted in Figs. 15 and 16
and the final parameter values are given in Table 111.
Observe the almost equal-ripple behavior of the response
with a maximum insertion loss over the passband of
about 0.1 dB. It would appear then that under the de-
sign constraints imposed by Carlin and Gupta, a much
lower maximum passband insertion loss is probably not
achieveable. This was verified more recently by apply-
ing a minimax approximation algorithm to the same
problem. A substantially equal-ripple response was ob-
tained with a maximum insertion loss of 0.086 dB. (The
algorithm uses the general philosophy behind the razor
search method [4] but relies on gradient information
generated by the adjoint network method.)

The reader should note that our design is not optimal
in the filtering sense required by Carlin and Gupta; to
-achieve this one would want to maximize the stopband
insertion loss subject to a passband insertion loss less
than or equal to 0.4 dB. Allowing the section lengths to
vary might also improve the response somewhat.

VII. DiscussioN

A nonexistent lumped element may be thought of as
an appropriate zero-valued element connected between
two nodes. Since the gradients depend only on voltages
between nodes and currents through branches, they
may be evaluated with respect to such nonexistent
elements. If an increase in element value is indicated,
the element can be grown from a short circuit or open
circuit, as appropriate. Thus, changes in topology can
be accommodated by this means. The adjoint network
method does not seem, however, to provide any clear
advantage over other methods as an aid to choosing the
best topology except possibly in computation time. A
direct search method, for example, can also investigate
changes with respect to zero-valued elements.

As the authors have found [12], it is not, in general,
obvious what kind of element should be grown, whether
lumped or distributed, when distributed elements are
also allowed. A knowledge only of the currents and
voltages is not really sufficient. Furthermore, a variety
of physical, economic, and other practical constraints
on circuit configuration will also affect the choice. How
would one decide, for example, whether a short-circuited
transmission line should be grown rather than a lumped
inductor? :

1169

Many circuit designers claim to have had success in
computer-aided network design using direct search
methods, so why should they adopt a gradient method?
Well, if it is steepest descent they are thinking of, they
are better off using the direct search methods. The
Fletcher-Powell method [22], on the other hand, is, at
the time of writing, still most widely acknowledged as
the most powerful unconstrained minimization method
available. Factors affecting the choice of an optimiza-
tion method undoubtedly include familiarity with a
particular program, the presence of constraints, the
type of approximation required (whether least pth or
minimax), the number of variables, and the available
computation system [23]. As far as approximation
methods are concerned, algorithms which should bene-
fit considerably from the adjoint network method of
evaluating derivatives are the minimax approximation
methods of Lasdon and Waren [6], [15], Ishizaki and
Watanabe [16], Osborne and Watson [24], and the
least pth approximation method of Temes and Zai
[17], [18].

Extensions of the adjoint network method to second-
order network sensitivities have been presented [25]-
[27]. The results may be used with those optimization
methods, such as the Newton method [2], which re-
quire second derivatives. However, since gradient
methods involving only first derivatives are generally
considered superior, it seems unlikely that widespread
application of these results will be seen in the very near
future.

VIII. CONCLUSIONS

The ease of implementation of the adjoint network
method of evaluating partial derivatives and the im-
mediate savings in computation time for the computer-
aided design of circuits make it very attractive. A great

"deal of the uncertainty and inefficiency inherent in the

numerical estimation of partial derivatives can be
eliminated.

It is believed that this approach will find very wide
application. Another very recent report in this area
and of interest to microwave engineers is available
[28]. There seems little doubt, from the circuit de-
signer’s point of view at any rate, that the introduction
of the adjoint network method by Director and Rohrer
is a turning point in computer-aided design.
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APPENDIX 4

PRACTICAL LEAST PTH OPTIMIZATION

On the following pages tﬁe formulation of least pth approximation
problems as used in the package is described. Much useful in-
sight into scaling, weighting, values of p, the artifical margin,
efficiency, satisfied and violated specifications and some examples

are provided.
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Practical Least pth Optimization of Networks

JOHN W. BANDLER anp CHRISTAKIS CHARALAMBOUS

Abstract—A new and practical approach to computer-aided design
optimization is presented. Central to the process is the application of
least pth approximation using extremely large values of p, typically
1000 to 1 000 000. It is shown how suitable and reasonably well-
conditioned objective functions can be formulated, giving particular
emphasis to more general approximation problems as, for example,
in filter design. It is demonstrated how easily and efficiently ex-
tremely near minimax results can be achieved on a discrete set of
sample points. Highly efficient gradient methods can be employed
and, in network design problems, the use of the adjoint network
approach for evaluating gradients results in greater savings in com-
puter effort. A comparison between the Fletcher~Powell method and
the more recent Fletcher method is made on the application of least
pth approximation, using a range of values of p up to 1 000 000 000 000
on transmission-line transformer problems for which optimal mini-
max solutions are known. This is followed by filter design examples
subject to certain constraints.

I. INTRODUCTION
![ EAST pth approximation with a sufficiently large

value of  can, in principle, be used to achieve
near minimax approximations for a wide class of
circuit- and system-design problems. Early reports
[1]-[4] simply suggested that appropriate error func-
tions be raised to a power p. This approach, in practice,
can lead to ill-conditioning of the objective function for
values of p greater than or equal to about 10. In certain
design problems the unwary designer may. be led to the
conclusion that his problem has many local minima (see,
for example, [1] and [2]) in a region of the parameter
space where, in fact, a unique minimum exists.
Bandler and Charalambous [5] have shown how to
apply least pth approximation to design problems hav-
ing upper and lower response specifications, e.g., as in
filter design. However, the same ill-conditioning could
arise in that particular formulation. More recent theo-
retical work has been published on conditions for opti-
mality in least pth approximation with p— o [6], from
which conditions for a minimax approximation [7] fall
out.
It is the purpose of the present paper to present a
computationally practical approach to least pth ap-
proximation for use in design problems. The important

Manuscript received June 9, 1972; revised August 4, 1972. This
work was supported by the National Research Council of Canada
under Grants A7239 and C154, and by a Frederick Gardner Cottrell
Grant from the Research Corporation. This paper is based on papers
presented at the 5th Asilomar Conference on Circuits and Systems,
Pacific Grove, Calif., November 1971, and the 1972 IEEE Interna-
tional Microwave Symposium, Chicago, [1l., May 22-24, 1972,

The authors are with the Communications Research Laboratory,
Department of Electrical Engineering, McMaster University, Hamil-
ton, Ont., Canada.

feature of the approach is the use that can be made of
efficient gradient minimization techniques, such as the
Fletcher-Powell method [8] and the more recent
Fletcher method [9], in conjunction with least pth ob-
jective functions employing extremely large values of p,
typically 1000-1 000 000. It is demonstrated how easily
and efficiently extremely near minimax results can be
achieved on a discrete set of sample points.

A comparison between the Fletcher-Powell and
Fletcher methods is made using a range of values of p
up to 1 000 000 000 000 on transmission-line trans-
former problems for which optimal minimax solutions
are known. Filter-design examples with constraints are
also provided. In all cases the adjoint network method
[4] is used to obtain all the required partial derivatives
at a given point in the parameter space from the results
of one network analysis.

Il. THEORY
Definitions

The notation to be used in this paper largely follows
that used previously by the authors [3], [5].

F(,¥)

The approximating function (actual re-
sponse).

Su() An upper specified function (desired re-
sponse bound).

S./ (¢, £)  An artificial upper specified function.

Si(¥) A lower specified function (desired response
bound).

S/’W, £)  An artificial lower specified function.

w, () An upper positive weighting function.

wi(Y) A lower positive weighting function.

) A vector containing the %k independent
parameters.

¥ Anp independent variable (e.g., frequency
or time).

¢ Margin of errors with respect to the arti-

ficial and desired specifications.

The introduction of the artificial margin £, which is a
constant during optimization, allows for certain flexi-
bility in formulating the optimization problem. Its
advantage will become evident at a later stage.

Now we can define real error functions related to the
upper and lower specifications as

eu(, ¥) Lwu(¥) (F(, ¥) —Su(¥)) (n
e (9, ¥, 2w (W) (F(, ¥) =S¥, ) =eu(¢, ¥)—¢ (2)
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eil( b, V) Awi(¥) (F (9, ¥) —Si(¥)) (3)
el,(d’; 'I’y g)éwl(‘l’)(P‘((b’ 'l/)_'Sl’(w; E)) =e’(¢’ ‘p)+E (4)
where S,/, £) and S/'(¥, &) are taken, respectively, as

§

S, &) = Su¥) + 5
(2%) ) ) ©®)
3
S/, 8) =S - .
¥, 8 = Si(¥) nd) (6)

In practice, we will evaluate all the functions at a finite
discrete set of values of ¢ taken from one or more closed
intervals. Therefore, we will define the functions

IS (7
1€ I, (8)

eui,(¢) E) é eu,(¢) !P-', E))
eli,(‘by E) é el’(‘bs \l’ia 5)1

where it is assumed that a sufficient number of sample
points have been chosen so that the discrete approxima-
tion problem adequately approximates the continuous
problem. I, and I; are appropriate index sets. We as-
sume that we can choose ¥, such that the corresponding
e.. (¢, &) and e;/(, &) are continuous with continuous
derivatives with respect to ¢.

The Objective Function

Here we have to consider two separate cases, the first
one when the specification is violated and the second
one when the specification is satisfied.

In the first case some of the e,/ (&, £) or —e;/ (9, £) are
positive. To meet the artificial specification [same as
original if £=0 as indicated by (5) and (6)] we might
propose the following objective function to be mini-
mized:

U, &) = ( S el D
SET u ($,8) ’ 1/p
b Y —ad(e z)]v) ©
.'e.r,(dt,s)
where!
Ju((b) E) é {1| eui,(q)y E) ..>_ Oy i E Iu} (10)
Jud, ) & {i| — el (9,8 >0, €L} (11)

and ‘
p> 1

For larger values of p we would expect the maximum
of the functions to be emphasized, since

1 It is important to note that the sets J, and J; are dependent on
¢ and £ Thus temporarily excluded sample points are immediately
included when the corresponding errors violate the specification, and
temporarily included sample points are immediately excluded when
the corresponding errors satisfy the specification.

835

n}aj.x [em"@), £), — e (9, 8))

= lim U(‘b, é)s i1E ]u(¢: E)
i€ Jud, 8. (12)
Letting
ad
a1
9
v A a?z (13)
3
0o
we have
vU($, ¢ = ( 2 e (e, 9]
€T 4 (d,8)
(1/p)—-1
+ X [—ei(e, E)]")
€T 1 (9.8)
( 2 led(o, 9l 'ved (9,8
€T 4 (4.8)

- 2 [-ei/@ D vel (s, E))- (14)

i€J (9.5

For the second case all the —e,/(¢, £) and e;/($, £)
will be positive. To exceed the specification by the
greatest amount, we might propose the following objec-
tive function to be minimized:

U, O = — ( Y (el 0]

=

—(1/p)
+ 2 [ (o, s)]-v) (15)

=14
for
_eui’(¢; E) >0, i€ I, (16)
e’ (d,£) >0, = an
and

p21

Again, for larger values of » we would expect the maxi-
mum of the functions to be emphasized, since

max [em',(d” E)y - eli,(q” E)]

]
1e I,
JEeL

= lim U(¢, ),

P

(18)
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Fig. 5. Optimization from Z,=1.0, Z,=3.0. (a) Fletcher.
(b) Fletcher—Powell.
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Fig. 6. Optimization from Z;=1.0, Z;=6.0. (a) Fletcher.
(b) Fletcher—Powell.
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Optimization from Z; =3.5, Z,=6.0. (a) Fletcher.

FFig. 7.
(b) Fletcher-Powell.

£=0. Since the response at zero frequency is independent

of the parameters, and to avoid numerical difficulties,

the frequency point 0.02 replaced 0 in problem 1.
Optimization using the Fletcher method in accordance
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Fig.8. Optimization from Z,=3.5, Z;=3.0. (a) Fletcher.
_ (b) Fletcher—Powell.
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Fig. 9. Optimization from Z;=1.5, Z3=3.0, Z3=6.0, 1,/l,=0.8,
l/lq=1.2, 13/l,=0.8. (a) Fletcher. (b) Fletcher-Powell.
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Fig. 10. 5-section transmission-line low-pass filter.

with the foregoing ideas with » =1000 gave the results
shown in Table II1, where /, is the quarter-wave value
at 1 GHz.

The responses are depicted in Figs. 11-13. The final
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TABLE 1

OPTIMIZATION OF A 2-SECTION 10:1 QUARTER-WAVE TRANSFORMER
OVER 100-PERCENT BANDWIDTH WITH VARIABLE CHARACTERISTIC
IMPEDANCES Z, AND Z;

Number of Function
Evaluations N»

Starting Point

Fig- n where  Fletcher  Fletcher-
ure Z Zs p=10" [9] Powell [8]

5 1.0 3.0 2 22 31
3 28 49

6 33 56

9 33 56

12 33 56

6 1.0 6.0 2 30 26
3 58 50

6 b 133

9 b 172

12 b 198

7 3.5 6.0 2 15 23
3 b 41

6 44 101

9 102 118

12 102 118

8 3.5 3.0 2 14 16
3 19 56

6 21 75

9 21 85

12 21 310

» The number of N listed are those required to bring M within
0.01 percent of the known optimum value, namely, 0.42857.

b Missing entries are due to parameters becoming negative—con-
straints were not imposed during optimization.

TABLE II

OPTIMIZATION OF A 3-SECTION 10:1 TRANSFORMER OVER 100-
PERCENT BANDWIDTH WITH VARIABLE LENGTHS AND
CHARACTERISTIC IMPEDANCES

Starting Point: Z;=1.5, Z,=3.0, Z;=6.0, 1,/1,=08, hL/l,=1.2,
ls/14=0.8, where l, is the quarter wavelength at center frequency

Number of Function Evaluations N to Reach the
Value of M Shown in Brackets®; the Optimum
Value of M is 0.19729

n where p =107 Fletcher [9] Fletcher-Powell [8]
3 57 (0.19734) . 115 (0.19733)

4 86 (0.19730) 378 (0.19729)

6 418 (0.19729) 702 (0.19740)

9 634 (0.19730) 661 (0.19740)

12 668 (0.19736) 645 (0.19851)

* A time limit of 64 s/run was imposed, at which time the opti-
mum for large p had still not been reached.

TABLE III

OPTIMIZATION OF THE CIRCUIT SHOWN IN FI1G. 10
USING VARIABLE LENGTHS

Parameters  Starting Point Problem 1 Problem 2

h s '

—_—= 0.07 0.09593 0.09098
[ A .

[}

l—' 0.15 0.16278 0.18928
q

s Ia

—= 0.15 .0.19798 0.15821
le 1o

60

40}

a8

insertion loss

20

Fig.

60r

50

a0}

d8

insertion loss

20f

839

.03+

02

Ko}

frequency GHz

11. Optimized response of the circuit of Fig. 10 subject to

the constraints imposed for problem 1.

Fig.

frequency GHz

12. Optimized response of the circuit of Fig. 10 subject to

.05

.04

.03

.02

insertion loss dB

.0l

the constraints imposed for problem 2.

optimized

frequency GHz

Fig.13. Passband details of the optimized response shown in Fig. 12.
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results are the same whether or not symmetry is as-
sumed. Problem 2, for example, was solved using the
Fletcher-Powell method without the symmetry as-
sumption.

Three comments on the responses shown in Figs. 11—
13 are in order. The first is that perfectly equal-ripple
responses should not be expected in general nonlinear
approximation problems, with or without constraints.
The second is that, unless interpolation methods [3],
[11] are used, actual extrema in the response errors will
usually lie between adjacent discrete sample points. The
third is that, in the present examples, slight deviations
from the passband specification are to be expected, since
the stopband specification is unattainable in practice.

IV. DiscussioN

From a minimax point of view (p = »), the value of
the parameter £ does not affect the location of the opti-
mum. For finite values of p, however, it can play an ex-
tremely important role. It can be chosen, if desired, so
that the M of (20) is always positive or, alternatively,
always negative. In the first case an economy in gradient
computation may be realized since only sample points
satisfying the conditions in (10) and (11) are considered.
This is a subset of all the possible sample points. In the
second case all the sample points would generally have
to be considered, but in our experience convergence to
a good solution is usually faster. In this case, of course,
we avoid the mild possible hazards mentioned in Section
II encountered in the transition region when M =0.

Theoretically, if £ is chosen such that M = 0 is optimal,
then a finite value of p will yield the minimax solution!
In practice, a good estimate for £ may allow relatively
low values of p to yield results much closer to the mini-
max solution than a bad estimate. As Figs. 5-9 indicate
the lower the value of p the faster M is reduced in the
early stages of optimization. This is not unexpected
since the minimization algorithms used are based on
quadratic models. As p increases the objective function
will generally deviate further and further from a quad-
ratic form so that the algorithms will progressively slow
down. .

It is, incidentally, always good practice to monitor
the current minimum value of M and the associated
¢ while U is being minimized, since a lower, and hence
presumably preferable, value of M may be realized on
the way than might prevail at the minimizing point

for U.
V. CONCLUSIONS

An approach to computer-aided minimax design of
microwave circuits employing highly efficient optimiza-
tion methods has heen presented. Typically, less than
1 min of CDC 6400 computer time is sufficient to opti-
mize the type of examples given in this paper to a high
degree of accuracy.

Other recent work on least pth approximation using
very large p is the work by Fletcher et al. [15] on linear
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approximation problems, and the work by Bandler et a/.
[16] on optimum system modeling problems in the time
domain. The latter paper, in particular, compares the
grazor search method [12] with the present approach.

No attempts at modifying the minimization methods
to improve convergence for extremely large values of p
nor a detailed study of other possible effects of numeri-
cal ill-conditioning have as yet been carried out. But,
if the success we have had is widely repeatable, then far-
reaching consequences are foreseen, not only in non-
linear approximation, but-in the closely related field of
nonlinear programming [17].
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