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Abstract A new optimization method called Razor Search is presented. The method,
which is based on pattern search, was specifically developed for the automatic
optimization by computer of networks for which the objective is to minimize the
maximum deviation of some response from a desired ideal response specification.
Minimax response objectives, which can lead to equal-ripple optima, will in
general give rise to discontinuous partial derivatives of the objective function
with respect to the network parameters. Otherwise efficient optimization methods
may slow down or even fail to reach an optimum in such circumstances, particularly
when the response hypersurface has a narrow curved valley along which the path of
discontinuous derivatives 1lies. Another direct search method called Ripple
Search is also presented. This method was developed to locate the extrema of
multimodal functions of one variéble in an efficient manner, and is used to
determine the maximum deviation of the response from the desired response.
Sufficiently detailed flow diagrams are available so that the methods can be
readily programmed. The Razor Search strategy (with Ripple Search) has been
successfully applied to the optimization of inhomogeneous waveguide transformers.
It is illustrated in this paper by examples of cascaded commensurate and
noncommensurate transmission lines acting as impedance transformers for which the

optima are known.
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I INTRODUCTION

Minimax response objectives, which can lead to equal-ripple optimum
responses, are probably the most desirable objectives in microwave network optimi-
zation. This is because the designer is usually given an ideal response specifica-
tion and has to synthesize a network which meets the ideal specification to within
a specified maximum allowable deviation. For such problems a formulation which
aims at reducing the maximum deviation of the response is the only one for which
the optimum represents the best possible attempt at satisfying the design specifi-
cations within the coﬁstraints of the particular problem.

Methods for approaching minimax response optima and which can be used on
networks whose parameters are constrained have been proposed [1-4]. The method
described by Waren EE.El.[l’QJ reduces the constrained problem to a sequence of
penalized unconstrained optimization problems, each one being started within the
feasible region. The method of Ishizaki et al [3,4] reduces the original nonlinear
problem to a series of linear programming problems. Assuming the methods converge,
the minimax optimum can be arbitrarily closely approached.

If one raises the response deviation to a sufficiently high even power p
and uses that in the objective function, the maximum deviation can be reduced [4,5].
The objective function becomes minimax as p + ®. Temes and Zai have recently
described such a least pth approximation method and its implementation [5].

In this paper a new optimization method called Razor Search is presented.
The method, which is based on the pattern search technique of Hooke and Jeeves [6],
was developed for the direct automatic optimization by computer of networks using
as the objective function the maximum deviation of the response from the desired
ideal response specification. Such a formulation will, in general, give rise to
discontinuous partial derivatives of the objective function with respect to the

network parameters [4,7-11]. Under these circumstances otherwise efficient



optimization methods -- certainly on-line manual methods -- may slow down or even
fail to reach an optimum, particularly when-the response hypersurface has a narrow
curved valley along which the path of discontinuous derivatives lies [9]. This is
probably the reason that success with the direct minimax formulation does not seem

to have been previously demonstrated. Indeed, to the authors' knowledge, the
optimization of functions with discontinuous derivatives does appear to have received
much serious attention in the literature.

Essentially, the Razor Search strategy begins with a modified version of
pattern search until this fails. A random point is selected automatically in the
neighbourhood (cf., Gelfand and Tsetlin [12]) and a second pattern search is ini-
tiated ﬁntil this one fails. Using the two points where pattern search failed a
new pattern in the direction of the optimum is established and a pattern search
strategy resumed until it too fails. This process is repeated until any of several
possible terminating critéria‘is satisfied. Thus, the strategy should work on
probléms involving narrow "razor sharp" valleys in multidimensional space.

Since the only point of interest in the network response at any given
time during opfimization is that point where the maximum deviation occurs, it is
important to obtain this point to any desiréd accuracy with as few response evalua-
tions as possible. Another direct search method called Ripple Search, which locates
the extrema of multimodal functions of one variable in an efficient manner, was
developed for this purpose. Unlike the usual practice of sampling, for example,

a frequencv response at closely spaced fixed frequencies, the Ripple Search strategy
first conducts a uniform search to determine the extrema and appropriate unimodal
regions; subsequently, during optimization, it locates the extrema within the
previously defined regions using a Fibonacci search scheme [13,14]. Safeguards are
built into the program to deal with continuously changing ripple patterns during
optimization. |

Descriptive and mathematical flow diagrams of the Razor Search and Ripple



Search strategies are presented so that the methods can be readily programmed.
Examples are also presented of the optimization of cascaded commensurate and non-
commensurate transmission lines acting as impedance transformers for which the
optima are known. Bandler describes the constrained optimization of inhomogeneous
waveguide transformers using these methods in another paper [10]. In the present
paper the advantages and disadvantages of the methods are discussed and ways of

improving them are indicated.

IT PROBLEM FORMULATION

Fig. 1 shows examples falling within the scope of this paper. In Fig. 1(a)
the problem is to maximize the minimum gain of an amplifier over a frequency band
of interest subject to a maximum allowable gain. In Fig. 1(b) the problem is to
minimize the maximum deviation of the gain from a desired gain. In Fig. 1(c) the
problem is to minimize the maximum reflection coefficient of a matching network.

A wide range of microwave network design problems can be formulated along these or
similar lines. Note that the response specification need not be linear.

A detailed discussion on the formulation of direct minimax response
objectives in general is presented elsewhere in this issue [11]. Also discussed
in that paper are methods of dealing with parameter and other constraints subject
to which the optimization is to be carried out. (See also Bandler [10]). The
present paper is, therefore, devoted to a presentation of the Razor Search and
Ripple Search strategies and an examination of their behaviour on essentially
unconstrained test problems.

The test problems are examples of the optimization of cascaded commensurate
and noncommensurate transmission lines acting as impedance transformers between
resistive terminations as shown in Fig. 2. A previous numerical investigation [8]
found that the optimum designs were, not unexpectedly, quarter-wave Chebyshev

transformers [15]. So the results obtained by optimization may be compared with the



results obtained by analytic methods. It should be born in mind, however, that
none of the well-known properties of quarter-wave transformers are employed to
simplify the process -- as far as the optimization strategies are concerned the
problems are Quite arbitrary.

The objective for a matching network (Fig. 1(c)) is to find

¢ ¢

v _ min _ min max
U = (U) = {[fz’ fu][lp(?, |1 (1)

where ? represents the variable parameters of the network, p is the reflection
coefficient, f is frequency and fk and fu are the lower ana upper band edges,
respectively. U is seen to be the maximum magnitude of p in the band, and the
objective is to find a set of parameter values § which minimizes U. (Expressions
of the form of (1) can be written down for the other exanples in Fig. 1).

A computer program was written to calculate the reflection coefficient
of a resistively terminated cascade of transmission lines at any frequency and for
any section lengths and characteristic impedances as shown in the Appendix. It is

" in the form of a function subprogram to be called by the Ripple Search package

(Section IV).

III THE RAZOR SEARCH STRATEGY

The Rézor Search strategy presented in this paper employs a pattern search
strategy which is.different from published versions of pattern search [6,16-18] in
the following ways:
1) The exploratory increments depend on the total progress made between the
previous two base points. Thus, they automatically increase or decrease in accord-
ance with previous succésses or failures, respectively.
2) When a pattern move plus exploratory moves fail the pattern is not
immediately discarded. Instead, the same procedure is repeated closer to the base

point. If this too is unsuccessful, the procedure is attempted in the opposite



direction.

Fig. 3 shows a block diagram summarizing the computer program. The
Razor Search strategy is outlined by the descriptive flow diagrams of Figs. 4 to 7.
Also shown in these figures are the essential details of the computer program in
symbolic form.l Perhaps the best way of comprehending the strategy is by studying
an example which demonstrates most of the main features, and by discussing their
general implicationms.

The problem of optimizing a 2-section transmission-line transformer for
a load to source impedance ratio of 10:1 over a 100% bandwidth with the section
lengths fixed at their optimum values, i.e., quarter-wave at center frequency, is
a good choice because ordinary pattern search fails to reach the optimum under
certain circumstances [9].

Formally, the problem is to reach

6 = miﬂ (U) = mén {[O.Tsnfxlosjtlp(g),f)l]} (2)

where the center frequency is taken as 1 GHz. It is convenient to define

Hi

6= (6,5 6,) = (2, ) . (3)

2

Contours of U versus Z. and Z,, the characteristic impedances of the two

1 2°
sections normalized to the source impedance, are plotted in Fig. 8. The sharp
points in the contours indicate the presence of the discontinuous derivatives
which arise when U Jjumps from one response ripple extremum to another.

The notation used in Figs. 4 to 7 is defined in the Appendix. For the
purpose of the present discussion superscripts will denote sequential parameter or
function values obtained during optimization. It is important to note that in
Figs. 4 to 7 ¢ refers to any current projected, exploratory or random point,

while 90 is temporarily the best point. Thus, a particular set of parameter values

may be differently defined, depending upon which subroutine it finds itself in.



The starting point @l = (1.25, 4.50) 1is selected as the first base
point QO on entering RAZOR (see Fig. 4). The objective function is evaluated
at @l . Let its value U¢o be denoted Ul . A user supplied finish criterion
is tested next.2 If this is not satisfied we prepare for a pattern search. The
vector S , which keeps track of previous successful directions for the exploratory

moves, has all its components initially set at 1. It is also seen that

K
€<«€ . N (4)
min
where € is the current minimum permissible exploratory increment, K 1is the
maximum number of random moves to be allowed and n 1is a scale factor (greater

than or equal to unity); €min is the minimum possible value of ¢ . Subsequently,

every time a random move is made
€ < €/n. (5)

This feature is included to prevent the parameter increments from becoming too
small during the early stages of optimization which would probably result in wasted
effdrt. In the present example emin = .01, K = 3 and n = 2, therefore initially
€ = .08,

Before attempting a pattern search (see Fig. 5) the exploratory increment
A¢ (=8 in the program at this stage) is compared with € . Initially, in this
example, A¢ = .25 > € = .08. Exploration begins with ¢l as indicated in Fig. 6
and takes us to @2 . Since v? < ub we retain @2 and continue exploration with
¢2 .  The next point 93 is rejected because U3 > U2 and ¢2 is incremented in

. . . . e a . 2
the opposite direction to 94 . Uu < U2 so ¢4 is retained in place of ¢ .

The first set of exploratory moves is now complete. Returning to PATSER (Fig. 5)
we find that U‘+ < Ul .
The point 9” becomes the second base point @O and in accordance with

the pattern move strategy we obtain a projected point ¢ such that



" -¢ =¢ -¢ , i.e., in general
o« ¢°+ 6 (6)

where 0 is the vector difference between the last two base points. Before
proceeding with the pattern move strategy of Fig. 7 the exploratory increment is
compared with €. The value of A¢ is l@u - @%]//f , where k 1is the dimension-
ality of the space; here k = 2. Each parameter was successfully incremented during
the previous exploration; therefore, A¢ remains at .25 (otherwise the increment
would have been automatically reduced). Since the exploratory increment is not
too small U5 is evaluated, and the next set of exploratory moves is started.
Incrementing ¢l in the direction previously found successful takes us to ¢ .
It is found that U6 < U5 so we retain @6 and increment ¢2 in the direction
previously found successful for this parameter. Thus, ¢2 is first decreased
because 82 = -1. However, neither @7 nor subsequently 98 result in any
improvement over 96 .

The outcome of the pattern move plus exploration is an improvement because
U6 < UL+ and the parameter change is also significant (see Fig. 7). Thus, ¢
becomes the third base point. We now obtain a projected point @9 such that
@9 - @6 = @6 - 94 and an exploratory increment A¢ = I@B - @ul//g = /10/8 .

Exploration around @9 ends at 912 with U12 < U9 . It is unsuccessful, however,

since U12 > U6 .

Not wishing to destroy the pattern already established, we project a point

3 . .
1 and reduce the exploratory increment appropria-

midway between @6 and @9 to ¢
tely. This is shown in Fig. 7, where it is also seen that m, the counter for
projected points, is set at 2. We finally arrive at 915 which is an improvement
over @6 . However, on entering PATMV it is found that A¢ < €. The first pattern

search is, therefore, terminated at 915.

Returning to RAZOR the finish criterion is tested. If this is not



. s . . 6 . .
satisfied we prepare for the first random move. The random point Ql is given

by the instruction
¢, « ¢7 + 0*R(1)-e i=1, 2. ...k (7)

where p (not to be confused with reflection coefficient) is a scale factor and
R(1) generates random numbers between -1 and 1. The minimum exploratory increment

is reduced in accordance with (5) and & = A¢ = |@l6 - QIS[//E .

A second pattern search is conducted starting at 916 . Eventually we
arrive at @36 where this pattern search is abandoned because A¢ < € = .04. The
36 i . . .
values U and U15 are compared. Since U36 < U15 the direction of the valley

indicated in Fig. 8 is given by @36 - 915 . Taking §36 as a base point and @8/

. . 5 .
as a projected point down the valley such that 937 - ¢36 = @36 - @l , we continue

with the pattern move strategy until A¢ < .04. Then the finish criterion is tested.
If this is not satisfied we prepare for the next random move.

Table I summarizes the important steps in this example. Note that

37 . .
¢~ = (2.21791, 4.44943). Thus, at the 37th function evaluation the parameters are

v
within about 1% and 1/2%, respectively, of their values at the optimum ¢ =(?.2361,

4,4721).



v THE RIPPLE SEARCH STRATEGY

The program for Ripple Search is in three parts. First, there is the
function subprogram U which is represented by the flow diagram of Fig g.
Secondly, there is the subroutine LOCATE represented in Fig. 10. Thirdly, there
is a subroutine called FIBSER which conducts the Fibonacci search [14] for an
extremum. FIBSER is not shown as it is a version of a published algorithm [13]
which has been slightly modified to handle both maxima and minima. The notation
used in Figs. 9 and 10 is defined in the Appendix.

Refer to Fig. 9 . When U is called for the first time by RAZOR
j = j' = 0. As a consequence it is seen that LOCATE is immediately called. As

shown in Fig.10, LOCATE sets o., the location of the first extremum, and e

1°
the left hand end point of the first unimodal interval (see Fig, 11). A test is
then made to determine whether the first turning point (if any) will be a local
minimum as in Fig. 11 or a local maximum. Following this a uniform search loop
is entered. This keeps a record of Ve oo the temporary maximum value of the
objective function y. The locations of the local extrema are recorded sequentially
as 0,5 Oy5 Og5 Opy ... aS indicated in Fig. 11. End points of intervals sub-
sequently to be explored by FIBSER are first defined here. Denoted e they are
located midway between adjacent extrema with the exception of the first and last
as shown in Fig. 11. Finally, the maximum value of y obtained is set equal
to U.

This process, i.e. the search for U by uniformly spaced test points,
will be repeated next time U 1is called until j changes to 1. Since J in
RAZOR is not set equal to 1 wuntil the first random move is made, this means that
during the first pattern search the response is uniformly sampled. When J =1,
j' is still O so, as shown by Fig. 9 , a new increment (preferably smaller

than before) is set for any subsequent uniform searches.

Also,



10
K (8)

where O 1is the uncertainty interval in the Fibonacci search; Kk is the maximum
number of random moves in RAZOR and ¢ 1is a scale factor (greater than or equal
to unity); omin is the minimum value of O. Accompanying every random move in
RAZOR, therefore,

o<+ o/t . (9)

This feature is similar to the one in the Razor Search strategy which prevents the
parameter increments from becoming too small. In the present case we do not want
the uncertainty interval to be too small in the early stages of optimization,
which would be wasteful. j' is now set equal to j and the counter k to 1.
A final uniform search is then made before FIBSER is called for the first time.
Next time U is called (Fig. 9 ), Jj = 3j' =1, so unless k = 1 mod kc
(in which case a uniform search is carred out) a series of Fibonacci searches
is made to locate the extrema within the previously defined intervals to intervals
of uncertainty o. If the first argument in the call statement of FIBSER, namely
T, is +1 a maximum is expected, if it is -1 a minimum is expected. Notice
that following each Fibonacci search certain safety checks are made. These deter-
mine whether the response is consistently divided up into a monotonically increasing
or decréasing pértion followed appropriately by a series of maxima and minima and
ending in a monotonic portion. These tests are important because the series of
end points, which are continually being redefined (as indicated in Fig,11), were
set after a previous search and may not correspond to the present ripple pattern.
For example, the ripples may have shifted substantially or a new one may have
appeared and so on. Thus, if any such inconsistency is detected, LOCATE is called
so that the search for U becomes uniform and the endpoints are redefined in
accordance with the current ripple pattern. If no inconsistency occurs the end

points are redefined in U wusing the current local extrema, and the maximum value of

y obtained is set equal to U.
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v NUMERICAL RESULTS

Table II shows typical results obtained for the 2-section example defined
by (2) and (3) starting from each corner of Fig. 8. Two runs per corner were made,
one with an initial exploratory increment of .25, the other with an increment of .5.

Data not shown in Table II but relevant to the strategy is:

o = .1

e . =107°
min

n =5

K =5

n = 8

nf = 100

k = 2000
C

o . = 1073
min

C =2

The number of function evaluations required to bring the maximum reflection
coefficient to within .01% of its optimum value before the next random move was made
is shown for each case. The maxima in each response agree to at least 5 significant
figures (but this is not in itself an indication that the optimum has been reached).
Fig. 12 shows responses corresponding to the four starting points and the optimum
response.

Extensive experimentation with the various constants and scale factors to
reduce the number of function evaluations has not yet been attempted so these results
should not be regarded as the best possible. A published version of pattern search
[16,17] on the other hand performed rather poorly on this problem. It terminated
outside the bounded area starting from (1,3), and only came reasonably close to the
optimum starting from other corners when the initial increment was .25. The reader
is referred to another publication [9] for more details on the behaviour of pattern

search.
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Table III presents some results obtained for 3-section 1):1 transformers
optimized over 100% bandwidth. The relevant data for the three examples is the

same as for the previous examples with the following exceptions:

§ = .25
p=>5
n =12

The starting points for the first two cases essentially represent optimum
single-section quarter-wave transformers (see Curve a in Fig. 13). In the first
one the section lengths are held fixed at the optimum quarter-wave value Qq
In the second one they are allowed to vary. The third case can be thought of as a
reasonable guess at an optimum 3-section transformer (see Curve b in Fig. 13), and
both lengths and impedances are allowed to vary.

The number of function evaluations and the maximum reflection coefficient
before and after optimization are shown for each case in Table ITI. Optimization
was continued until all 5 random moves had been made and the exploratory increments
had fallen below 10_5. Again all maxima in each response agreed to 5 significant
figures. The optimum response is shown in Fig. 13. Observe that neither of the
initial responses has as many extrema as the optimum response. Furthermore, as
the transformer corresponding to Curve a has essentially one section, one could, in
a rather loose way, say that two additional sections have "grown" during optimization.

Tt should be emphasized that the small differences between the results
obtained by optimization and the analytic results [15] are not attributable to any
a priori approximations in the formulation. These differences, which do, however,
reflect the efficiency of the optimization process as a function of the input data
determining the strategy, can be reduced simply by continuing the optimization

process.
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VI  DISCUSSION
The Razor Search strategy was tested on Rosenbrock's function [19,201]

U = 100 (¢2 - ¢12)2 + (1 - ¢l)2 (10)

in order to make an adequate comparison with other direct search methods on a
problem not involving discontinuous derivatives and to assess the effects of the
modifications 1) and 2) described in Section III. A contour diagram of (10) is
given by Bandler [111].

Table IV presents the comparison. Typical results obtained with Razor
Search with and without random moves are shown. Without random moves Razor Search
compares very favourably with previous versions of pattern search, with random moves
it compares favourably with Rosenbrock's method. It may be conjectured, therefore,
that a random move is ultimately more efficient at locating an improved direction
of search along a narrow valley than is reducing the exploratory increments. When
the path of discontinuous derivatives lies along such a valley as in Fig. 8, where
exploring parallel to the coordinate axes from this path yields no improvement, a
random move is obviously more efficient.

Powell's method [21,22] which performs very well on Rosenbrock's function
(since it has quadratic convergence) was also tried on the example defined by (2)
but failed in much the same way as pattern search after one linear minimization.

O'Hagan's spider search method [23], also based on pattern search, but
which explores in randomly chosen orthogonal directions, should ultimately be
successful because of the finite probability of obtaining a direction yielding
improvement [24]. This suggests that a rotation of coordinates coupled with the
facility of a random move could result in greater efficiency. Another possibility
is to use three base points to make a pseudo-quadratic extrapolation so as to get
a better estimate of the path of discontinuous derivatives. Following this, a

one-dimensional minimization could be made to find the minimum along that path.
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The Ripple Search method might be made more efficient if quadratic
interpolation [11] is employed to find the extrema, rather than the Fibonacci
search. But in either case there is the danger that if the maxima are not accurately
evaluated it may be difficult for Razor Search to determine a direction of improve-
ment when any two maxima are nearly equal. The additional function evaluation made
just prior to every random move (Fig. 4) when the uncertainty interval for the
Fibonacci search is reduced is included to alleviate this difficulty to some extent.

To date, Razor Search and Ripple Search have been successfully applied to
optimization problems having up to 14 variables and 8 ripple maxima. More experi-
ence is required, however, before the practical limitations of the methods are
realized. A worthwhile investigation would be an in depth comparison of the methods
with the other currently available methods for approaching minimax optima [1-5].

It is computation time, reliability in a wide range of problems and ease of imple-

mentation that should form the basis of any comparison.

VII CONCLUSIONS

Efficient direct search methods have been presented for the computer-aided
optimization of networks for which minimax response optima are desired. In this
paper the methods have been tested on problems for which the optima are known. In
another paper [10] these methods are applied to the constrained optimization of
inhomogeneous waveguide transformers (including parasitic junction discontinuity
effects).

The methods described should find immediate application to a wide range of
microwave network design problems, particularly where optimum broadband performance
is requifed. Noncommensurate network components present no special difficulties.
Parasitic effects can be taken into account if reliable data to represent them is
available. Response and parameter constraints can also be taken into account to

guarantee physical realizability. In common with other optimization methods,
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generally the closer the starting point is to a local optimum the Ffaster will be
the convergence onto that optimum. So, if an approximate feasible solution can
be found by "exact" methods, this can be used as a starting point.
APPENDTX
THE RAZOR SEARCH PACKAGE

Variables in RAZOR as shown in Fig. U

conv  initially true, becomes false unless finish criterion satisfied.
3 counts number of random moves.
k dimensionality of space.

R(1) generates random numbers between -1 and 1.

S vector controlling directions for exploratory moves.
Si ith component of S.
8] objective function to be minimized.
U¢ valve of U at 9.
U value of U at ¢o

¢O 3 C e .
§ defines next exploratory increment.
€ current minimum permissible exploratory increment.
€ . minimum value of €.

min
n scale factor for €.
8 vector dtermining projected point and subsequent §.
K maximum number of random moves.

o scale factor for randomization.
) current projected, exploratory or random point.

¢j ith component of ¢.

o . .
) temporarily the best point.

o .

¢i ith component of Q?.

The following variables are initially assigned values externally to the
; 3 - 0 . .

Razor Search package: k, §, emin’ n, K, p and ¢ . The variables j and K are

common to the Ripple Search package.
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Variables in PATSER as shown in Fig. 5

The variables U¢, U¢o’ ¢ and ¢O are defined as in RAZOR. The

variables &, € and 6 are common to RAZOR.

o scale factor for reduction of §.

The variable a .is initially assigned a value externally to. the Razor Search
package.

Variables in EXPLR as shown in Fig. 6

The function U and variables S., U¢, U¢o’ ¢ and ¢i are defined

as in RAZOR. The variables k, § and S are common to RAZOR.

Variables in PATMV as shown in Fig. 7

The function U and variables U o, D., 9? and ¢z are

do’> + i

defined as in RAZOR. The variables k, &, €, 6 and S are common to RAZOR.

m counter for projected points.

THE RIPPLE SEARCH PACKAGE

d dummy argument.

e end point of starting interval in Fibonacci search for local extremum.
i numbers intervals from left to right.

j integer set externally (initially 0) controlling reduction of 0.

j! integer (initially 0) storing previous value of J.

k counter for Ripple Search.

kC a uniform search is carried out whenever k = 1 mod kc'

n number of intervals in uniform search.

ne value for n in uniform search when k = 1 mod kc.

n number of turning points plus one.



o location of local extremum.

§] maximum value of vy.

x independent variable, e.g. frequency.

X, lower bound on x (left end) |

X, upper bound on x (right end).

vy objective function v(x), e.g. network response deviation.

Yy value of y at left hand e.

y local extremal value of y.

vy value of y at right hand e.
e temporary maximum value of y.
y value of y at X,

Sx increment of x 1in uniform search.

g scale factor for O.
K maximum value of 7j.
o interval of uncertainty in Fibonacci search.
0 . minimum value of O.
min
=1 ., . maximum
T { if searching for .. .
= -1 minimum
=1 ., . . . . maximum
T' { if the first turning point is expected to be a _. .
= -1 minimum

The following variables are initially assigned values externally to the
. 3 . . .
Ripple Search package:™ j, J', kc, D, Doy Koy X o C, K, and Gmin’ The variables

and K are common to RAZOR. The variable e 1is common to FIBSER.

Variables in LOCATE as shown in Fig. 10

The function y and the variables x, Vo and U are defined as in

the function subprogram U. The variables e, n, Dos Os Xgy X §x and T' are

common to U.

3 {

=1 . . minimum
~while searching for a local .
=2 maximum

Yy current value of y at X.
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v temporary local minimum value of vy.

temporary local maximum value of vy.

<>

COMPUTATION OF REFLECTION COEFFICIENT
Using the notation of Fig. 2, the basic steps in calculating the

reflection coefficient p of a resistively terminated cascade of transmission

lines were:

ZI < R
6 < m mod(2f Qi/c, 1) .\
2 i -5
- =l <
2.°/2; K 2[ < 10
ZI « > i<« m,m-1,
ZI + j Z, tanB - -5
Z, = lo - 3 > 10
Zi + J Z_ tanb

I ’ _J

ZI -1

0+ —
ZI + 1
where J = V-1 , ¢ 1is the velocity of light and where mod(a,b) is equivalent

to a - b times the integral part of (a/b).

All programs were written in FORTRAN IV for the IBM 360/65.
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point description value

1 initial base point Q}. 9} = (1.25, 4.5)

2, 3, 4 exploratory points Q?, gﬁ, g& from Q}. Q& = (1.5, 4.25)
Second base point is 9&. !

5 projected point 9?.

6, 7, 8 exploratory points Q?, 97, 9? from g?. 9? = (2.0, 4.0)
Third base point is ¢

9 projected point Q?. 1

10, 11, 12 | exploratory points Q}O, 9}1, 9}2 i
from Q?.

13 projected point 9}3.

14, 15 exploratory points Q}u, 9}5 from Q}S. Q}S = (2.05236, 4.07264)
First pattern search terminates at Q}S.

16 random point g}6 projected from 9}5. Q}B = (2.23389, 3.95552)

36 Second pattern search terminates at 9?6. Q?G = (2.13514, 4.26104)

37 point 9?7 projected down valley using Q?7 = (2.21791, 4.44943)
615 ana %

TABLE I SUMMARY OF THE IMPORTANT STEPS IN THE EXAMPLE ILLUSTRATING

THE RAZOR SEARCH STRATEGY U™ = .64907 U37 = .42986 U = .u2857.



T i T
Starting Point ; , 3 Number of ; Number of
e ; . random .+ function
z, z, : § { o) i moves | evaluations
1.0 3.0 .25 10 2 § 157
1.0 3.0 .5 10 2 § 207
i : i i

1.0 6.0 25 - 0 E 3k

! E }
1.0 6.0 .5 | 10 | 2 ; 152

, s
3.5 6.0 .25 5 2 : 223
3.5 6.0 5 5 1 , 100
3.5 3.0 25 5 3 | 210

'i ‘
3.5 3.0 5 0 1 163

TABLE II OPTIMIZATION OF A 2-SECTION 10:1 QUARTER-WAVE TRANSFORMER
OVER 100% BANDWIDTH. THE NUMBER OF RANDOM MOVES AND FUNCTION
EVALUATIONS REQUIRED TO BRING THE REFLECTION COEFFICIENT
WITHIN .01% OF ITS OPTIMUM VALUE ARE SHOWN



Parametersf Fixed Lengths ! Variable Lengths Optimum
¢i ? Start  Finish Start Finish Start Finish [15]
Zl/ﬁ % 1.0 ! 1.0 .99814 .8 .99871 1 1.0
Zl ? 1.0 1.63716 ; 1.0 1.62888 { 1.5 1.63363 ; 1.63471
2/2 | 1.0 1.0 .99995 | 1.2 1.00000 : 1.0
z, | 3.16228 3.16698 |  3.16228 3.16157 | 3.0 3.15250  3.16228
R/8, E 1.0 1.0 1.00190 | .8 1.00124 1.0
| i 3
23 | 10.0 6.12645 10.0 6.09571 ¢ 6.0 6.11328 ! 6.11729
maximum ;
reflection §
Coefficientj .70930 .19729 .70930 .19733 ;. .38865 .19731 .19729
. | ;
number of i ;
function 406 | 1300 | 1250 o
evaluations 3 '
TABLE III OPTIMIZATION OF A 3-SECTION 10:1 TRANSFORMER OVER A 100% BANDWIDTH
| o function !
Strategy v evaluations
Ordinary pattern search [19] 8.03 x lO_l 200
Pattern with adjusted steps [19] 1.03 x lO-2 200
- i
Razor Search without random moves ¢ 7.4 x 10 3 200
Rotating coordinates (Rosenbrock) [20] | 2.2 x 107° 200 i
Razor Search with 3 random moves 1.6 x lO_6 172 i
Powell's method [21] 7 x lO_lO 151
Minimum 0 —_
TABLE IV A COMPARISON OF RAZOR SEARCH WITH PUBLISHED RESULTS OF SOME

OTHER DIRECT SEARCH METHODS ON ROSENBROCK'S FUNCTION




FOOTNOTES

Details such as counters for the numbers of function evaluations made in the
subroutines, and other statements not directly involved in the logic of the

optimization process are not shown.

The finish criterion can take several forms. For example, a test could be made
to determine whethef the maximum deviation has fallen below some specified value.
Alternatively, a test could be made to determine whether any significant improve-
ment has occurred since the last one or more times the finish criterion was
tested. One could even check the number of response extrema and use it as a

finish criterion.

In retrospect, the scale factors n, p and ¢ would probably be more conveniently
calculated by the computer. They could be obtained by assigning initial values

~ to €, the expression p-:€ in (7) and o, say, €15 1y and Oy respectively. Then

n « (e, /e_. )l/K )l/K.

1/nin s P * rl/e and ¢ <« (ol/o

min
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Fig. 3 Block diagram summarizing the computer program structure and

indicating the relative hierarchy of the subprograms.
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Fig. 4(a) Descriptive flow diagram of subroutine RAZOR.
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Fig. 4(b) Mathematical flow diagram of subroutine RAZOR.
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Fig. u4(b) <(continued) Mathematical flow diagram of subroutine RAZOR.
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Fig. 5(a) Descriptive flow diagram of subroutine PATSER.
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Fig. 5(b) Mathematical flow diagram of subroutine PATSER."
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Descriptive flow diagram of subroutine EXPLR.
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Fig. 6(b) Mathematical flow diagram of subroutine EXPLR.
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Fig. 7(a) Descriptive flow diagram of subroutine PATMV.
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Fig. 7(b) Hathematicai flow diasram of subroutina PATMV.
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Fig. 8 ° Example illustrating the Razor Search étrategy showing how
following one random move the path of discontinuous derivatives
leading to the optimum is effectively located.
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Fig. 9 Flow diagram of function U.
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Fig. 10 (continued) Flow diagram of subroutine LOCATE.
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Fig. 11 Example illustrating the Ripple Séarch strategy showing how a
uniform search defines end points of intervals subsequently to
be explored by a series of Fibonacci searches.
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Fig. 12 Responses of the 2-section transformer corresponding to the
starting points tabulated in Table II. The optimum response

is also shown.
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Responses of the 3-section transformer corresponding to the
starting points tabulated in Table III. Curve a corresponds to
the first two cases, Curve b to the third case. The optimum
response is also shown.









