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Abstract

Microbial data exhibit dynamic characteristics driven by interactions among

taxa and with experimental factors. This has led to an increased emphasis on lon-

gitudinal studies of microbial data due to their inter-dependencies. Emphasizing

the temporal dynamics of microbial communities, rather than of individual taxa,

provides valuable insights into the functionality of taxa. In the realm of identi-

fying microbial communities, the probabilistic Latent Dirichlet Allocation (LDA)

topic model has gained popularity (Sankaran & Holmes, 2019). This model is par-

ticularly applicable for analyzing multivariate, high-dimensional, and sparse data

accommodating mixed membership in clusters.

This thesis introduces a time-aligned Latent Dirichlet Allocation (LDA), an

extension of LDA for longitudinal microbiome data. Drawing inspiration from

the work of Wang et al. (2021), our study aims to capture and analyze temporal

changes in microbial communities.

The proposed time-aligned LDA method was implemented on gut microbial

specimens obtained from pregnant women enrolled in the Be Healthy in Pregnancy

(BHIP) study, both during pregnancy and at delivery. Subsequently, we conducted

a comparative analysis with the traditional LDA approach using the hold-out

specimen technique. Utilizing the time-aligned LDA alongside a mixed model,

our findings indicates no discernible changes in microbial communities between

treatment groups. Notably, the time-aligned LDA exhibited enhances sensitivity

in identifying a greater number of microbial communities exhibiting significant
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temporal dynamics compared to the standard LDA.
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Chapter 1

Introduction

This chapter presents an overview of longitudinal microbiome data. We identify

the study objectives to be achieved and conclude with an outline work of the thesis.

1.1 Analysis of Microbiome Data

Microorganisms such as bacteria, viruses, protozoa, fungi generally co-exist

in an environment (Micah et al., 2007, Symul et al., 2023). The development

of modern technology of high-throughput sequencing (HTS) has enabled precise

quantification of the microbial composition in a cost effective manner, which has

resulted a massive improvement in microbiome-related research.

A microbiome study generally involves three main stages (Calle, 2019). First,

microbial DNA are extracted from the collected specimens and sequenced using

either amplicon sequencing or shot-gun metagenomics sequencing. The commonly

used marker-gene for sequencing is 16S rRNA whereas in shot-gun metagenomic

all genes present in the specimens are sequenced, allowing much greater resolution

to identify microbial communities. In the second stage, the sequenced raw reads

are processed and clustered into representative sequences referred as ‘Operational
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Taxonomic Units’ (OTUs) (Edgar, 2013) or ‘Amplicon Sequence Variants’ (ASVs)

(Callahan et al., 2016), commonly known as ‘taxa’. We consider microbial com-

munities as the taxa co-exist. This yields a count table containing the read counts

or abundances of taxa for each specimen. Amplicon and metagenomic sequenc-

ing also result in a ‘taxonomy table’ which contains the taxonomic classifications

of each taxon. Finally, the statistical and computational methods are used to

investigate the distribution of microbial communities.

Many challenges have been identified in the microbial count table. The micro-

bial count data are typically sparse, meaning they contain many zeros that can go

up to approximately 90% (Joseph et al., 2013). This often leads to a skewed distri-

bution for each taxon counts. Further, different subjects have different microbial

compositions; even within a subject the microbial composition can be different in

various human environments including vaginal, oral, gut. Therefore, there is high

variability between and within subjects. The total count in the specimens is known

as ‘library size’ which can also vary among specimens (McMurdie & Holmes, 2014).

In addition, microbial count data have a large dynamic range varying from zero up

to thousands and the variance of the data in different parts of the dynamic range

are very different, resulting heteroskedasticity in data (Holmes & Huber, 2018).

Further, microbial count data parameters are compositional. Microbial data

are converted to relative abundances, where the sum is equal to 1, meaning to

compositional data, because of the unequal library sizes. Lastly, microbial data

are multivariate as the number of taxa usually vary in thousands and there is

dependence among taxa in the cooperative environment. As a result, existing

standard statistical tools are limited with directly applying for analyzing amplicon

and metagenomics sequencing data.
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1.2 Longitudinal Microbiome Data

Longitudinal count data be Y
(s)
t that denotes the non-negative integer response

measured on subject s at time point t. Hence, longitudinal microbial count data

be Y
(s)
t that denotes the integer response measured on subject s at time point t

for V number of taxa. There is an increasing interest on studies focusing on the

longitudinal microbial data because of the ability to gain more insights on within

and between subject dynamics of microbial communities and their interactions

with the experimental factors.

Longitudinal data poses more challenges in the statistical analysis. One should

take into account the ordering of specimens within a subject. Moreover, charac-

teristics of microbial data in Section 1.1 make the analysis more complicated in

the context of a longitudinal study. For example, the sparsity becomes taxon and

time specific (Kodikara et al., 2022). Also, the variability between subject counts

may vary across different time points while varying for other factors. Further,

the multivariate nature of Y
(s)
t might not be able to be compared over time as

trends visible in relative abundance may not mirror the trends in actual abun-

dance (Kodikara et al., 2022). In addition, the multivariate structure and auto

correlation should be accounted for throughout all time points even though repre-

sentation of dependence between taxa in a high-dimensional scenario is complex.

Consequently, these challenges have led to the extension of statistical techniques

to analyze longitudinal microbiome data.

1.3 Temporal Dynamics of Microbial Communi-

ties

One of the common goals in the analysis of longitudinal microbial data is

modelling and identifying the temporal dynamics of microbial communities. How-
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ever, taxon-wise longitudinal analysis is not suitable for this purpose since it often

treats taxa as independent (Lugo-Martinez et al., 2019). Consequently, dynamic

and network based methods were developed in the context of microbial count

data; two such methods in popular are Generalized Lotka-Volterra (gLV) mod-

els (Stein et al., 2013, Fisher and Mehta, 2014, Bucci et al., 2016, Alshawaqfeh

et al., 2017, Gibson and Gerber, 2018) and Dynamic Bayesian Network (DBN)

models (McGeachie et al., 2014, Lugo-Martinez et al., 2019). The gLV models

capture the changes in taxa composition while accounting for taxa interactions

between themselves and with the external factors and external perturbations. The

temporal dynamics are expressed in terms of ordinary differential equations that

describe the ecological dynamics (gLV equations) which are later converted to a

system of equations and solved. However, gLV models have high computational

time because of the large number of parameters, which also lessens their utility

for probabilistic inference (Ruiz-Perez et al., 2021). On the other hand, DBN

models extends standard Bayesian networks to time series data which provides a

probabilistic, non linear analogue to Auto-Regressive Integrated Moving-Average

(ARIMA) and other linear models (Park et al., 2020). However, DBN models do

not always reflect the actual taxa interactions and insufficient data may over-fit

the model making predictions on non-existing interactions (Lugo-Martinez et al.,

2019).

Dynamic models are designed to capture the temporal dynamics of longitudi-

nal microbial count data while accounting for the interactions among taxa using

a latent structure of taxa networks which remains unchanged over time. However,

identifying temporal dynamics of microbial communities is important for under-

standing its metabolic and functional capabilities in human health (Symul et al.,

2023).

In terms of identifying temporal dynamics of microbial communities, most

of the studies have focused on taxon temporal patterns. For instance, Gerber
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et al. (2012) proposed a multivariate time series clustering method called MC-

TIMME (Microbiome Counts Trajectories Infinite Mixture Engine). MC-TIMME

infers temporal latent patterns of longitudinal microbial count data using non-

parametric Bayesian techniques with the Dirichlet process and assigns taxa to

those inferred latent patterns. Moreover, the TIME web application introduced

a new distance measure applicable to microbiome time series referred as ‘TIME -

dynamic time warping’ (TIME-DTW) which uses a similarity measure to identify

similar temporal patterns in taxa (Baksi et al., 2018). TIME calculates pair-

wise TIME-DTW distances among taxa time series and uses it for hierarchical

clustering. Coenen et al. (2020) also used agglomerative hierarchical clustering

with complete linkage and partitioning around methoids (PAM) clustering for the

microbiome time series analysis (Kaufman & Rousseeuw, 2009). Recently, Benincà

et al. (2023) implemented Wavelet clustering to characterize community structure

in human gut microbiome, which clusters time series based on similarities in their

periodical patterns (Rouyer et al., 2008). Bodein et al. (2019) proposed a data-

driven framework for clustering taxon temporal patterns. It involves fitting linear

mixed model splines (LMMS) for temporal profiles of taxa. Then a dimension

reduction on those splines is done using principal component analysis (PCA) and

sparse principal component analysis (sPCA) and clustering is conducted based on

PCA loadings.

1.4 Research Objectives

Many of the studies have investigated taxon temporal patterns. Instead, iden-

tifying microbial communities and how they change over time would provide more

useful insights because there is dependence among taxa (Kodikara et al., 2022).

Hence, the goal of this research is to study the temporal changes of microbial

communities.
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In identifying microbial communities, classical clustering or multivariate meth-

ods are no longer applicable because microbial data are high dimensional, multi-

variate count data characterized by heterogeneity and sparseness (Sankaran and

Holmes, 2019, Jeganathan and Holmes, 2021). Further, the assumption that every

microbial specimen belongs only to one community they made is often restrictive

for human environments such as the gut (Holmes et al., 2012; Mao et al., 2020).

Overcoming these problems, Sankaran and Holmes (2019) proposed the probabilis-

tic topic model with latent Dirichlet allocation (LDA) in the context of microbial

data. LDA was originally proposed in the context of document-text data by Blei

et al. (2003). The main idea of LDA topic model is to consider every microbial

specimen as a mixture of latent topics and every latent topic as a mixture of taxa,

where every latent topic can be regarded as a microbial community. As a result,

LDA uses the observed microbial count table to infer the latent topics present in

microbial data by estimating the taxa distribution of topics and topic distribution

of specimens using a Bayesian approach. Recently, Wang et al. (2021) introduced

a longitudinal topic model which combines LDA and computational geometric rep-

resentations to time evolving, complex and high-dimensional document-text data.

We intend to implement a time-aligned topic model inspired by Wang et al. (2021)

with modifications suitable to microbial data in order to achieve the goal of this

study. To best of our knowledge, our study is the first application of a time-aligned

topic model in the context of microbiome data.

Therefore, the primary goal of this research is to identify temporal changes in

microbial communities by implementing a time-aligned topic model (Wang et al.,

2021). In order to accomplish the research goal, we identify microbial communities

using time-aligned LDA topic model. Then, we infer differential abundance across

experimental factors using linear mixed models. Finally, we compare the results

we obtain with the LDA model using hold-out sample technique.
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1.5 Outline of the Thesis

This research focus on identifying the temporal changes of microbial communi-

ties. In order to accomplish the study goal, a time-aligned topic model is proposed.

This dissertation consists of five main chapters, including the Introduction. Chap-

ter 2 presents the statistical methods related to this study. Chapter 3 and 4

includes an example data set and exploratory data analysis and the application

of the time-aligned LDA, respectively. Finally, Chapter 5 concludes the thesis by

providing the limitations and suggestions for future research.
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Chapter 2

Methods

This chapter provides a comprehensive statistical modelling facilitated during the

conduct of this research. The main concepts discussed in this section are micro-

biome data components, Latent Dirichlet Allocation (LDA) model, time-aligned

LDA model and linear mixed models.

2.1 Microbiome Data Structure

Microbial data are typically structured into three data tables. (1) The count

matrix records specimens in rows, taxa in columns, and contains read counts in

each cell (Table 1). (2) The sample data table is associated with the specimen in-

formation such as subject identity, sequencing batch, specimen type, and subject

related experimental factors such as treatment group, demographics, having spec-

imen identifiers in rows and specimen related variables on columns (Table 2). (3)

The taxonomy table contains taxonomy levels such as species, kingdom, phylum,

class, order, family, genus, having taxon identifiers in rows and taxonomy levels on

columns (Table 3). One can also represent the hierarchical relationship between

taxa in forms of a phylogenetic tree as demonstrated in Figure 1.
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Table 1: Count matrix; matrix of V taxa in D =
∑S

s=1 ns specimens where ns is
the number of specimens collected from sth subject over t time points for
s = 1, ..., S. ydv denote the abundance of taxon v in specimen d.

Taxa1 Taxa2 ... TaxaV
Specimen1 y11 y12 ... y1V

... ... ... ... ...
Specimenn1 yn11 yn12 ... yn1V

Specimenn1+1 y(n1+1)1 y(n1+1)2 ... y(n1+1)N

... ... ... ... ...
Specimenn2 yn21 yn22 ... yn2V

...
...

...
...

...
SpecimenD yD1 yD2 ... yDV

Table 2: Sample data table.

Subject ID Time Point Batch Group
Specimen1 Subject1 1 1 Control

... ... ... ... ...
Specimennt Subject1 t 1 Control
Specimenn1+1 Subject2 1 2 Treatment

... ... ... ... ...
Specimenn2 Subject2 t 2 Treatment

...
...

...
...

...
SpecimennS

SubjectS t 1 Control

Table 3: Taxonomy table.

Kingdom Phylum Class ... Genus
Taxa1 Bacteria Bacteroidetes Bacteroidia ... Parabacteroides
Taxa2 Bacteria Actinobacteria Actinobacteria ... Gardnerella

...
...

...
...

...
...

TaxaV Bacteria Firmicutes Bacilli ... FamilyXI

9



Figure 1: Phylogenetic tree; Black points at each node correspond to the number of
specimens in which the corresponding taxa is present and tip labels are the
class of the taxon. Source: Jeganathan and Holmes (2021).

In Table 2, let S be the number of subjects and ns; s = 1, .., S be the number

of specimens collected from subjects over time points. Then the total number of

specimens is,

D =
S∑

s=1

ns. (2.1)

Note that not all time points are available in all subjects. Let V be the number

of taxa present in D specimens. Now, let Y = [ydv] ∈ ZD×V be the matrix of V

taxa abundance in D specimens.

Note that,

• Every specimen d is associated with an V -variate vector of taxa abundance.

yd. = (yd1, yd2, ..., ydV )
T . (2.2)

• Further, the library size, the total taxa abundance in specimen d, is denoted by

Nd.

Nd =
V∑

v=1

ydv. (2.3)
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2.2 Statistical Transformations

Library sizes are highly variable among specimens, and are multiplicative fac-

tors which should be taken into account in statistical analysis (Jeganathan &

Holmes, 2021). To remove the multiplicative effect of unequal library sizes, we

calculate the library size scaling factor, denoted by N∗
d using the median-of-ratios

algorithm (Anders & Huber, 2010). This method involves calculating the geometric

mean of each taxon, dividing the abundance of each taxon by their correspond-

ing geometric mean, and calculating the median of the ratios calculated for each

specimen which is the library size scaling factor for that specimen.

We further consider variance stabilization for visualization purpose. Suppose

we assume longitudinal microbiome count data follows a negative binomial dis-

tribution for each taxon, ydv ∼ NB(µv, kv) where µv is the mean parameter and

kv is the dispersion parameter (Zhang et al., 2018). Then the Anscombe (1948)

transformation for variance stabilization is given by, y∗dv = sin−1(
√

ydv+c
yv−2c

). For

kv > 2 and large µv, c =
3
8
and Var(y∗dv) =

1
4

1
kv−1/2

.

2.3 Latent Dirichlet Allocation (LDA)

LDA is a probabilistic topic model introduced for discovering latent topics

existing within a collection of documents (Blei et al., 2003). It is the foundation

of all other variants of topic models. Here, we present the LDA topic model in the

context of microbial count data (Sankaran & Holmes, 2019).

2.3.1 Generative Process of LDA

Blei et al. (2003) described LDA in text language, using “words” as the basic

unit of discrete data, and “documents” and “corpora” which are the collection

of words and collection of documents, respectively. The algorithm detailed below
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uses words as taxa, documents as specimens and corpora as the microbial count

matrix in Table 1 and a topic as a bacterial community (Sankaran & Holmes,

2019).

Let K be the pre-specified number of topics for the LDA.

The main idea in LDA is that it assumes every specimen is a mixture of latent

topics, and every latent topic is a mixture of taxa as represented in Table 4 and 5.

Table 4: Topic mixture in D specimens; θdk denote the proportion of topic k in specimen
d.

Topic1 Topic2 ... TopicK
Specimen1 θ11 θ12 ... θ1K
Specimen2 θ21 θ22 ... θ2K

...
...

...
...

...
SpecimenD θD1 θD2 ... θDK

Table 5: Taxa mixture in topics; βkv denote the proportion of taxon v in topic k.

Taxa1 Taxa2 ... TaxaV
Topic1 β11 β12 ... β1V
Topic2 β21 β22 ... β2V

...
...

...
...

...
TopicK βK1 βK2 ... βKV

Let, θdk be the k
th topic proportion in dth specimen, βkv be the v

th taxa proportion

in kth topic. Then θd = (θd1, θd2, ..., θdK)
T ∈ SK−1 and βk = (βk1, βk2, ..., βkV )

T ∈

SV−1, where SK−1 and SV−1 are (K − 1) and (V − 1) simplex, respectively.

The Dirichlet distribution with hyper-parametersα = (α1, ..., αK) and γ = (γ1, ..., γV )

are used to generate the topic proportions in each specimen and the taxa propor-

tions in each topic, respectively.

Let wdn be the nth sequence associated with one of the taxa in the dth specimen

and let zdn be the topic assignment for the sequence wdn.
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For a given number of latent topics K, the generative process of LDA is defined

as follows.

1. For each topic k,

(a) Draw βk ∼ Dirichlet(γ).

2. For each specimen d,

(a) Draw θd ∼ Dirichlet(α).

(b) For nth sequence of specimen d,

i. Draw zdn|θd ∼ Multinomial(1,θd),

ii. Draw wdn|βk, zdn ∼ Multinomial(1, βzdn).

We can summarize the above as follows,

wdn|βk, zdn
iid∼ Multinomial(1, βzdn); d = 1, ..., D, ;n = 1, ..., Nd,

zdn|θd
iid∼ Multinomial(1,θd); d = 1, ..., D, ;n = 1, ..., Nd,

θd
iid∼ Dirichlet(α); d = 1, ..., D,

βk
iid∼ Dirichlet(γ); k = 1, ..., K,

(2.4)

where α = (α1, ..., αK)
T is a K-dimensional vector with components αi > 0,

γ = (γ1, ..., γV ) is a V -dimensional vector with components γi > 0.

We can create V taxon abundances in dth specimen as ydv =
∑Nd

n=1 1(wdn ∈ v) .

Now by marginalizing over the topics the generative process of LDA can be written

as in (2.5).
Yd.|(βk)

K
k=1

iid∼ Multinomial(Nd,Bθd); d = 1, ..., D,

θd
iid∼ Dirichlet(α); d = 1, ..., D,

βk
iid∼ Dirichlet(γ); k = 1, ..., K,

(2.5)

where B = (β1,β2, ...,βK) is V ×K matrix having probability distribution of taxa

in K topics.
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2.3.2 Dirichlet Distribution

The Dirichlet distribution, denoted by Dir(α), is a multivariate generalization

of the Beta distribution parameterized by a vector α > 0. The probability density

function of a k-dimensional random vector (x1, ...xK)
T ;K ≥ 2 which has a Dirichlet

distribution with parameters α = (α1, ..., αK)
T is given as follows.

f(x1, ...xK ;α1, ..., αK) =
Γ(
∑K

k=1 αk)∏K
i=k(Γαk)

K∏
k=1

x
(αk−1)
k , (2.6)

where
∑K

k=1 xk = 1 and xk ∈ [0, 1], αk > 0 for ∀k ∈ 1, ..., K, and Γ is the gamma

function, xk ∈ S(K−1). (x1, ...xK) belongs to a (K − 1) dimensional probability

simplex that exists on a K-dimensional space.

The value of parameter α determines where the density accumulates or spreads on

the K-dimensional simplex. Figure 2 shows, for 0 < α < 1 the density accumu-

lates at the edges of the simplex, for α = 1 the density becomes more concentrated

throughout the simplex uniformly and for α > 1 the density becomes more con-

centrated on the smaller subsets of the simplex. In addition, if α′
ks are same in α,

then the density is symmetric. As a result, we set the Dirichlet hyper-parameters

α and γ in LDA to a value less than 1 to generate mixtures different from each

other in the topic proportion in specimens and taxa proportion in topics and avoid

generating unrealistic topics (Jeganathan & Holmes, 2021).
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α = (0.1, 0.1, 0.1) α = (0.4, 0.4, 0.4) α = (1, 1, 1)

α = (2, 2, 2) α = (8, 8, 8) α = (2, 4, 8)

Figure 2: Distribution of 1000 points simulated from Dirichlet in a 3-dimensional space
for different 3-dimensional α parameter values.

2.3.3 Bayesian Inference

Given the number of latent topics K, the topic mixture in specimens θd; d =

1, ..., D and the taxa mixture in topics B = (β1,β2, ...,βK) are the parameters

that need to be estimated in the LDA.

The joint posterior distribution of θd and B given Yd. can be obtained using Bayes’

theorem as follows.

P (θd,B|Yd., Nd,α, γ) =
P (Yd.|Nd,θd,B)P (θd,B|α, γ)

P (Yd.)

=
P (Yd.|Nd,θd,B)P (θd|α)P (B|γ)

P (Yd.)

=
P (Yd.|Nd,θd,B)P (θd|α)P (B|γ)∫∫

P (Yd.|Nd,θd,B)P (θd|α)P (B|γ) dB dθ
.

(2.7)

The second equation comes from assuming θd and B are independent. The inte-

gral in the denominator in (2.7) is complicated as there are D × K number of θ
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parameters andK×V number of β parameters involved. Hence, the joint posterior

distribution of θd and B is given by (2.8) below.

P (θd,B|Yd., Nd,α, γ) ∝ P (Yd.|Nd,θd,B)P (θd|α)P (B|γ). (2.8)

Next, the Markov Chain Monte Carlo (MCMC) algorithms can be used in order

to draw samples from the posterior given by (2.8). We utilize Hamiltonian Monte

Carlo (HMC) and its adaptive variant the No-U-Turn Sampler (NUTS) (Hoffman,

Gelman, et al., 2014) for that purpose. For the sampler and computing we use

Stan (Carpenter et al., 2017) which is a probabilistic programming language. It

has an interface in R, RStan (Guo et al., 2020).

Hamiltonian Monte Carlo (HMC) and No-U-Turn Sampler (NUTS)

HMC is one of the MCMC algorithms that uses Hamiltonian dynamics to

propose samples that follow a target distribution (Nishio & Arakawa, 2019).

Suppose, we are interest in drawing samples from the distribution f(θ) for a pa-

rameter θ. Typically, this is the posterior as shown in (2.9).

P (θ|X) =
P (X|θ)P (θ)

P (X)
)

∝ P (X|θ)P (θ)

= f(θ).

(2.9)

HMC introduces auxiliary momentum variables ρ which is of the same dimension

as θ with a multivariate normal density that does not depend on the parameter θ.

ρ ∼ N(0,Σ). (2.10)

The Hamiltonian, H is defined using the potential energy which depends on the

parameter of interest, V (θ) and kinetic energy which depends on the momentum
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parameter, K(ρ) as follows.

H(θ, ρ) = V (θ) +K(ρ) (2.11)

Then, the joint density function f(θ, ρ) has the form f(θ, ρ) ∝ e−H(θ,ρ).

Next we can show,

H(θ, ρ) ∝ −logf(θ, ρ)

= −log(f(θ)f(ρ|θ))

= −logf(θ)− logf(ρ|θ).

(2.12)

As a result, potential energy is only determined by the target density, V (θ) =

−logf(θ). Moreover, the kinetic energy is determined by the multivariate normal

distribution; K(ρ) = −logf(ρ|θ) = −logf(ρ) = −1
2
ρTΣ−1ρ. Therefore,

f(θ, ρ) ∝ e(logf(θ)+
1
2
ρTΣ−1ρ)

= f(θ)e
1
2
ρTΣ−1ρ.

(2.13)

Finally, we can obtain the target distribution by integrating f(θ, ρ) with respect

to ρ. Now we show that

∫
f(θ, ρ)dρ = f(θ)

∫
e

1
2
ρTΣ−1ρdρ

= f(θ).

(2.14)

Thus, HMC generates samples from this joint distribution f(θ, ρ) and picks only

θ in order to obtain the samples from the target distribution. Samples of (θ, ρ)

are obtained with the use of Hamiltonian dynamics which describes the change of

θ and ρ over time using the two differential equations given in (2.15) are called

Hamilton’s equations.
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dθ

dt
=
∂H

∂ρ
=
∂K

∂ρ
,

dρ

dt
=
∂H

∂θ
=
∂V

∂θ
.

(2.15)

To be specific, one should solve the Hamilton’s equation and obtain the exact

trajectory of state transition for θ and ρ from time t to time t + s, which allows

to draw (θ, ρ) samples along those exact trajectories. However, in the practical

usage, HMC approximates the trajectories in a discrete time setting, using the

“Leapfrog” integrator which is a numerical integration algorithm. It involves ap-

plying integration steps of size ϵ over discrete time points t = 1, .., L until t reaches

L which is the number of integration steps in the leapfrog method. In the context

of HMC, an integration step starts with a half-step update of ρ, followed by a

full-step update of θ using updated ρ and ends again with a half-step update ρ

using updated θ, as shown in (2.16).

ρ(t+
ϵ

2
)← ρ(t)− ϵ

2

∂V

∂θ
,

θ(t+ ϵ)← θ(t) + ϵρ(t+
ϵ

2
),

ρ(t+ ϵ)← ρ(t+
ϵ

2
)− ϵ

2

∂V

∂θ
.

(2.16)

Starting from (θ0, ρ0) and implementing L leapfrog steps of size ϵ, one can obtain

the proposal state (θ∗, ρ∗). However, in order to account for numerical errors during

integration resulting due to the time discretization, a Metropolis acceptance step

is used, where either to accept (θ∗, ρ∗) with probability min{1, exp(H(θ0, ρ0) −

H(θ∗, ρ∗))}, or if (θ∗, ρ∗) is rejected, accept (θ0, ρ0).

No-U-Turn Sampler is a variant of HMC introduced to automate the tuning of

these hyper-parameters because the performance of HMC is sensitive to the hyper-

parameters L and ϵ (Hoffman, Gelman, et al., 2014).

We note that LDA does not account for the order of specimens in a subject. Thus,
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LDAmight be missing temporal changes in topic proportions and taxa proportions.

Next, we propose to extend the LDA to account for temporal dynamics locally.

2.4 Time-aligned LDA

We propose a time-aligned topic model for longitudinal microbial data, inspired

by Wang et al. (2021). The proposed model is a two stage approach, in which the

first stage involves constructing new cohorts of specimens for each time point by

subsampling and fitting independent topic models to each of the cohort, separately.

The second stage involves aligning the topics in the cohorts.

2.4.1 Time-aligned LDA - Stage 1

Initially, a sub-sample of specimens, referred as a cohort, is constructed at each

time point by conditional sampling of all specimens using a sampling distribution

that is inversely proportional to the temporal adjacency of the specimens. This

ensures that a cohort is a mixture of specimens of corresponding time point and

nearby time points, providing a degree of temporal smoothing.

To elaborate the sub-sampling procedure, we suppose microbial count data corre-

sponding to 5 specimens are collected over 4 time points.

Let, ti indicate the ith time point and Ci be the cohort created at ith time point

where i = 1, 2, 3, 4. For each cohort Ci, a 4-dimensional vector of exponential

weights, denoted by wi = (wi1, wi2, wi3, wi4) is calculated such that

wij =



1 if j = i,

0.751 if j = i− 1 or j = i+ 1,

0.752 if j = i− 2 or j = i+ 2,

0.753 if j = i− 3 or j = i+ 3.

(2.17)

19



Then, the sampling distribution is defined by normalizing the exponential weights

wij for i ̸= j by their sum and is used to construct the sub-sample at time i.

That is, when constructing the cohort at time point 1, C1, exponential weights

and the normalized weights denoted by w1 and w∗
1, respectively are as in (2.18).

w1 = (w11 = 1, w12 = 0.751, w13 = 0.752, w14 = 0.753),

w∗
1 = (w∗

11 = 1, w∗
12 = 0.751/A1, w

∗
13 = 0.752/A1, w

∗
14 = 0.753/A1)

= (w∗
11 = 1, w∗

12 = 0.4324, w∗
13 = 0.3243, w∗

14 = 0.2432),

(2.18)

where A1 =
∑4

j=1w1j for i ̸= j.

Therefore, C1 consists of 100% of specimens from time point 1, 43.24% of specimens

from time point 2, 32.43% of specimens from time point 3, 24.32% of specimens

from time point 4. This is similar to locally weighted regression (Cleveland &

Devlin, 1988). When constructing the cohort at time point 2, C2, exponential

weights and the normalized weights denoted by w2 and w∗
2, respectively are as in

(2.19).

w2 = (w21 = 0.751, w22 = 1, w23 = 0.751, w24 = 0.752),

w∗
2 = (w∗

21 = 0.751/A2, w
∗
22 = 1, w∗

23 = 0.751/A2, w
∗
24 = 0.752/A2)

= (w∗
21 = 0.3636, w∗

22 = 1, w∗
23 = 0.3636, w∗

24 = 0.2727),

(2.19)

where A2 =
∑4

j=1w2j for i ̸= j.

We note that, C2 consists of 36.36% of specimens from time point 1, 100% of

specimens from time point 2, 36.36% of specimens from time point 3, 27.27% of

specimens from time point 4 and so on (Figure 3). This sub-sampling procedure

ensures a degree of smoothness over the cohorts generating at each time point in

a manner that cohorts which are close in time likely to contain similar topics in

specimens. Hence, this procedure is called temporal smoothing by sub-sampling
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(Wang et al., 2021).

Figure 3: Demonstration of the sub-sampling procedure of 2 cohorts supposing 5 spec-
imens collected over 4 time points.

After constructing the temporally smoothed cohorts of specimens for each

time point, LDA topics models are implemented to each cohort independently,

using the same prior distributions across all cohorts. These LDA models applied

to time-localized smoothed cohorts are referred as local LDA models.

2.4.2 Time-aligned LDA - Stage 2

This stage involves combining the results obtained from local LDA models. In

that regard, firstly, the topics of local LDA models are aligned. This is because, it

is possible to observe topics in different order among the local LDA models since

they are fitted independently.

In this study, we implement a local optimal alignment of topics using the cosine

similarity. The cosine similarity between two vectors X = (x1, x2, ..., xn) and

Y = (y1, y2, ..., yn) is defined as
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Sc(X, Y ) =
X.Y

||X||||Y ||
=

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

. (2.20)

Further, the topic distribution in specimens in the local LDA constructed for the

first time point (cohort 1) is used as the reference for topic alignment. The topic

alignment process is explained below.

1. To align topics in cohorts 1 and 2 (C1,C2),

(a) Calculate the cosine similarity, Sc, between Topic 1 proportion in spec-

imens in C1 and each topic proportion in specimens in C2.

(b) Label the topic in C2 that has the highest Sc as Topic 1.

(c) Calculate Sc between Topic 2 in C1 and each topic in C2 except for the

one labeled in (b).

(d) Label the topic in C2 that has the highest Sc as Topic 2.

(e) Calculate Sc between Topic 3 in C1 and each topic in C2 except for the

ones labeled in (b) and (d).

(f) Label the topic in C2 that has the highest Sc as Topic 3.

(g) Repeat until all topics in C2 are aligned.

2. To align topics in cohorts 2 and 3 (C2,C3),

Treat aligned C2 and C3 as C1 and C2 in step (1), respectively and repeat

steps in (1).

3. To align topics in cohorts 3 and 4 (C3,C4),

Treat aligned C3 and C4 as C1 and C2 in step (1), respectively and repeat

steps in (1).

After the topic alignment, a time-aligned topic distribution in specimens is

obtained in a way that, for a specimen corresponding to the ith time point, the

topic distribution in specimens obtained from the local LDA implemented on ith

cohort Ci, is the topic distribution for that specimen.
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2.5 Mixed Models

2.5.1 Negative Binomial Mixed Model for Taxa Abundance

With the purpose of identifying taxa with differential abundance among the

experimental factors including treatment groups, Negative Binomial Mixed Models

(NBMM) were fitted for each taxon separately.

We consider D number of specimens and V number of taxa. Denote the abundance

of any taxa by Yv which is assumed to follow a negative binomial distribution

(Zhang et al., 2018). The probability density of Yv is as follows.

f(yv) =
Γ(yv + ϕv)

Γ(ϕv)yv!
.

(
ϕv

µv + ϕv

)ϕv

.

(
µv

µv + ϕv

)yv

; yv = 0, 1, ..., µv ≥ 0, ϕv ≥ 0.

(2.21)

where µv and ϕv are the mean and dispersion parameters, respectively and Γ(p) =∫∞
0
t(p−1)e−tdt is the gamma function.

Thus, E(Yv) = µv and V ar(yv) = σ2
v = µv +

µ2
v

ϕv
.

The NBMM for taxa abundance Yv with p number of fixed-effects (including the

intercept) and q number of random-effects where the vector of random effects is

denoted by B is given by,

(Yv|B = b) ∼ NB(Xβ + Zb, σ2W−1), (2.22)

where Yv is the D-dimensional response vector of taxa abundance, X is the D× p

design matrix of fixed-effects, β is the corresponding coefficient vector, Z is the

D × q design matrix of random-effects, b is the corresponding coefficient vector,

W is a diagonal matrix of known prior weights and σ is the scale parameter. Here

is the description of Yv, X, Z, β and b.
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Yv =



y1

y2
...

yD


, X=



1 x11 ... x1p

1 x21 ... x2p
...

...
. . .

...

1 xD1 ... xDp


, Z=



z11 ... z1q

z21 ... z2q
...

. . .
...

zD1 ... zDq


,

β =

(
β0 β1 ... βp

)T

, b =

(
b1 b2 ... bq

)T

.

In general, the vector of the random effects is assumed to follow a multivariate

normal distribution, b ∼ N(0, ψ) where ψ is a positive semi-definite variance-

covariance matrix that determines the dependence between random effects. In

this study, for simplicity, the case where the random effects are independent is

assumed, i.e.: b ∼ N(0, Iq). Further, we assume unit weights for W, that is

W = Iq.

2.5.2 Linear Mixed Model for Topic Proportion

In order to identify latent topics derived from LDA that are differentially

abundant between the experimental factors, Linear Mixed Models (LMM) were

fitted for each topic separately.

Recall that we consider D number of specimens, V number of taxa and K number

of latent topics. Denote the topic proportion of any topic by Pk. We fit a LMM

for the logarithm of topic proportions.

The LMM for the logarithm of topic proportion Pk for each topic k with p number

of fixed-effects (including the intercept) and q number of random-effects where the

vector of random effects is denoted by B is given by,

(log(Pk)|B = b) ∼ N(Xβ + Zb, σ2W−1) (2.23)

where Pk is the D-dimensional response vector of kth topic proportion, and X, Z,
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β, b, W and σ are same as given in (2.22).

As similar to Section 2.4.1, the independent random effects and unit weights are

assumed.

In the mixed models for taxa abundance and topic proportions mentioned

above, models were fitted using the glmer.nb and lmer functions in lme4 package

(Bates et al., 2009) and the maximum likelihood estimation with Laplace approx-

imation and Nelder Mead optimizer was used.
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Chapter 3

Example Dataset and Application

This purpose of this chapter is to offer an insight on an example longitudinal

microbiome data set that is considered in the application of the proposed time-

aligned LDA. Hence, Chapter 3 uncovers details regarding the data set including

the process of data preparation and data exploration.

3.1 Example Data set

The microbial data used are from the ‘Be Healthy in Pregnancy’(BHIP) which

is a randomized two-arm study, (Atkinson et al., 2022). It was designed to test the

efficacy of a novel treatment which provided structured and monitored nutrition

(high dairy protein diet and individualized energy intake), exercise (walking of

10,000 steps/day) with bi-weekly counselling compared to the regular care as per

Health Canada recommendations, through out the pregnancy. Data consists of gut

microbial specimens of 63 pregnant women in southern Ontario, Canada, collected

at each trimester and one time after the delivery, resulting in 191 total specimens

and gut microbial specimens of 50 infants collected one time within 6 months after

the delivery, resulting 50 total specimens. The sampling schedule is demonstrated
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in Figure 4 and Table 6 provides a summary of the variables in sample data.

Figure 4: Sampling schedule. Participants were grouped (colour) into one of control
group or intervention group. For maternal specimens, SM1 = first trimester;
SM2 = second trimester; SM3 = third trimester; SM5 = 6 months postpar-
tum and for infant specimens, SF5 = infant at 6 months of age.
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Table 6: Description of sample variables.

Variable
Name

Description

participantID Unique identity for the participant

sampleID Unique identity for the specimen

sampleTime Time at point the specimen were collected.
(Maternal : SM1 = first trimester; SM2 = second trimester; SM3
= third trimester; SM5 = 6 months post-partum; Infant : SF5 =
infant at 6 months of age)

illuminaRun Sequencing run

group Treatment group
(intervention/control)

BMI SM0 Pre-pregnancy BMI (kg/m2)

gravidity Number of previous pregnancies

dG Days of gestation (length of pregnancy in days)

weight gain Total gestational weight gain (in kgs)

birthMode Delivery mode
(Spontaneous/Forceps/Vacuum extraction/Emergency caesarean
section/Scheduled caesarean section)

modeSimple Simplified birth mode
(vaginal = Spontaneous/Forceps/Vacuum extraction; cs = Emer-
gency caesarean section/Scheduled caesarean section)

sex Infant sex
(female/male)

gwg kg wk Gestational weight gain rate (kg/week)

BMI cat 0 Pre-pregnancy BMI category
(underweight = BMI<18.5; optimal = BMI within (18.5–24.9);
overweight = BMI within (25.0–29.9); obese = BMI> 29.9)

gain cat Gestational weight gain category
(below/ wihtin/ above the range by pBMI according to Institute of
Medicine guidelines)

grava Gravidity category
(0 = primigravid; 1 = multigravid)

EADP Excessive adiposity during pregnancy
(Yes = pBMI >25 or above gain cat; No = otherwise)
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3.2 Exploratory Data Analysis

Because maternal and infant microbial communities are hugely different, we

consider maternal gut microbial specimens from 63 pregnant women in the thesis.

Participant were equally distributed among treatment groups (control n=31; inter-

vention n=32). With respect to the levels of gravidity about 50% were categorized

as multigravid. The number of participants falling in to the levels of pre-pregnancy

body mass index (pBMI) is approximately similar between the treatment groups

where about 60-70% were categorized as optimal, about 20-30% as overweight and

about 10% as obese (Table 7).

Table 7: Experimental factors.

Demographic Characteristic Control
(n=31)

Intervention
(n=32)

Mean(SD) Mean(SD)

Pre-pregnancy BMI (kg/m2) 23.54 (4.05) 23.87 (3.90)

Gravidity 1.25 (1.57) 0.85 (1.07)

N(%) N(%)
(Mean,SD) (Mean,SD)

Pre-pregnancy BMI
Underweight 0 (0) 1 (3)

(0.00,0.00) (17.37,0.00)
Optimal 19 (61) 22 (69)

(22.25,1.79) (22.29,1.23)
Overweight 9 (29) 6 (19)

(26.72,1.14) (26.90,1.37)
Obese 3 (10) 3 (9)

(32.38,1.28) (35.45,3.48)

Gravidity
0 15 (48) 17 (53)
1 15 (48) 14 (44)
Missing 1 1

The observed count table contains information on 4019 taxa in 191 specimens.

We filtered taxa by removing non-bacterial taxa, the ones belonged to kingdom Eu-

29



karyota, family Mitochondria, order Chloroplast, or no assigned phylum (n=235).

We also removed low prevalence taxa which are present in less than 5% of sam-

ples (n=2915). Further, there were 10 specimens which corresponds to a subject

where that subject has only that specimen. Therefore, there is no longitudinal

data available for that subject. Since, this study focuses on temporal dynamics,

we filtered those 10 specimens. The reduced count table contains information on

869 taxa in 181 specimens.

Initially, we explored within microbial community diversity in participants

throughout pregnancy and post-delivery using Shannon diversity (SD) index (Shan-

non, 1948). It is an alpha diversity metric which estimates the diversity of mi-

croorganisms within a community. We noticed SD index increased over time on

the intervention group subjects which is actually caused by one outlier appearing

in the first time point in that group (Figure 5). However, Figure 6 demonstrates

an increasing trend in the SD index for the subjects with optimal pBMI and a

decreasing trend of the same for subjects with over-weight pBMI over time in the

intervention group. Also, a similar increasing and decreasing behaviour is observed

Figure 5: Distribution of Shannon index throughout the four-time points between
treatment groups; A: Before removing the outlier, B: After removing the
outlier.
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Figure 6: Distribution of Shannon index throughout the four-time points between
treatment groups and; A: pBMI, B: Gravidity C: Both pBMI and gravid-
ity.

in SD index but with respect to with and without previous pregnancies (Figure

6:(B)). More interestingly, looking into further we can see that, in the intervention

group, the decreasing trend for the subjects with no previous pregnancies is ac-

tually corresponding to over-weight subjects and the increasing trend for subjects

with previous pregnancies corresponds to optimal weight subjects (Figure 6:(C)).

Next, ordination methods were applied based on the Bray-Curtis and Jaccard

distances in order to identify outliers, clusters and gradients of specimens of mi-

crobial distribution in low dimensions.Figures 7 and 8 shows there is no outliers

and clusters, but there are changes in the specimen ordination over time but not

among treatment groups.

The alpha diversity and beta diversity based ordination limited in uncovering

temporal changes in taxa.
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Figure 7: Ordination using Bray-Curtis distances; A: Ordination plot over time, B:
Ordination axes values over time.

Figure 8: Ordination using Jaccard distances; A: Ordination plot over time, B: Ordi-
nation axes values over time.
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Figure 9: Relative abundance of specimens at the four-time points.

Figure 9 displays the distribution of relative abundance of specimens collected

at the four time points coloured by the class levels of taxonomy taxa between con-

trol and intervention groups. We see that the class Clostridia is of high abundance

in all time points. Also, it is clear that the relative abundance changes over time

by class level which suggest that class-level taxa composition change over time.

We considered specimen-wise networks based on Jaccard distance using a max-

imum threshold of 0.8. Figure 10 illustrates the microbial composition changes over

time for both treatment groups. For instance, in the intervention group, specimens

52 (participantID 92) and 57 (participantID 94) are grouped at the first time point,

but both specimen 58 (participantID 94) and specimen 60 (participantID 95) are

isolated at the second time point. In addition, while specimens 26 (participantID

80) and 169 (participantID 129) are grouped, following a group of specimen 27

(participantID 80), specimen 61 (participantID 95) and specimen 126
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Figure 10: A network representation of microbial at the four-time points.
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(participantID 115) at the thirst time point and finally specimen 118 (112) and

specimen 171 (participantID 129) are grouping at the last time point. On the

other hand, in the control group, specimen 136 (participantID 119) is isolated at

the second time point, but specimen 106 (participantID 108) and specimen 126

(participantID 119) are grouped at the third time point. We conducted graph

based tests (Jeganathan & Holmes, 2021) for the networks constructed at each

time point for testing the null hypothesis that the microbial distribution of the

two treatment groups are the same. The p-values of the test are 0.24, 0.908,

0.948 and 0.62 suggesting that there is not enough evidence to conclude microbial

distributions are different between treatment groups at each time point.

We highlight that the exploratory tools and network-based hypothesis could

not identify temporal changes in taxa.

3.3 Mixed Models for Taxa Abundance

To identify differentially abundance taxa in the experimental factors, we fitted

NBMMs for each taxon. We considered removing additional taxa to access per-

formance of mixed model and topic models. That is, we considered the top 150

taxa based on the total taxon abundances, resulting in 150 taxa in 181 specimens.

Considering the treatment group (X1) and time point at which the samples were

collected (X2) as fixed effects and random intercepts for participants (Z), loga-

rithm of the library size (Nd) as offsets, the NBMM for taxon abundance is given

as follows.

log(E(Yv|X1, X2,B = b)) = β0 + β1X1 + β2X2 + Zb+ log(Nd), (3.1)

where X1 = treatment group (binary; control = 0, intervention = 1),

X2 = time point and
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Z =



Participant1

Participant2
...

Participants



T

=



1 ... 1 0 ... 0 0 ... 0

0 ... 0 1 ... 1 0 ... 0

... ...
...

... ...
...

... ...
...

0 ... 0 0 ... 0 1 ... 1



T

.

After fitting the NBMMs for each of 150 taxa, p values corresponding to the vari-

able group (X1) were adjusted using the Benjamini and Yekutieli (2001) method

for controlling false discovery rate for correlated hypothesis, in order to identify the

taxa that are differentially abundant between the control and intervention groups.

Figure 11 shows the abundance and transformed abundance (described in Section

2.2) of the significant taxa. The transformed abundance of most of the signifi-

cant taxa in the control group decreases in the second time point but increased

in the third time point and again decreases in the last time point. On the other

hand an opposite pattern can be observed for most of the significant taxa in the

intervention group.

Figure 11: A: Abundance and B: Transformed abundance of significant taxa over time.
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Note that Figure 11: (A) is hard to interpret because of library size effect and

over-dispersion.
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Chapter 4

Application of LDA and

time-aligned LDA

This chapter presents the application of LDA and time-aligned LDA models on

BHIP example data set. First, we present the implementation LDA models, fol-

lowed by their corresponding results, and finally giving the results of the mixed

model implementation with relevant conclusions.

4.1 LDA

This section focuses on the implementation of LDA topic model. We applied

LDA on BHIP data after filtering the top 150 taxa as explained in Section 3.3.

Hence a total of 150 taxa corresponding to 181 specimens were used in the appli-

cation of LDA.

4.1.1 Identifying Number of Topics

The number of topics, K, should be pre-specified for LDA. We used recently

introduced alto R package for this purpose (Fukuyama et al., 2023). The optimal
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K was selected by conducting topic alignment across different LDA models using

two methods; one that uses the specimen composition known as “Product align-

ment” and one that uses the topic composition known as “Transport alignment”.

We used three diagnostic scores; number of paths, coherence scores and refinement

Figure 12: Alignment diagnostic scores; A: Number of paths, B: Coherence scores, C:
Refinement scores. Colors denote the various alignments.

scores (Fukuyama et al., 2023) in deciding the number of topics. Topic alignment

was done on LDA models that were fitted for different number of topics K rang-

ing from 5 to 15 (Symul et al., 2023). The corresponding diagnostics plots are

illustrated in Figure 12. We identified a deviation of the number of paths and a

decrease in the coherence and refinement scores at K = 5 and K = 8 for prod-

uct and transport methods, respectively. Therefore, the product method suggests

K = 4 while the transport method suggests K = 7 as the optimal number of

topics. For a simple model, we set K = 4. Figure 13 demonstrates the evolution
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of LDA models as the number of topics K increase from 1 to 4.

Figure 13: Alignment of different LDA models based on product method for chosen
K, 1 to 4.

4.1.2 LDA Implementation

After identifyingK = 4, we set the Dirichlet hyper-parameters α = (α1, ..., α4)

and γ = (γ1, ..., γ150) such that α1 = ... = α4 = 0.8 and γ1 = ... = γ150 = 0.8.

This parameter was set to a value less than 1 with the intention of generating

sparse mixtures of taxa and topic proportions that are different and realistic in

the posterior estimates. We use HMC-NUTs with 8000 iterations to draw samples

from the posterior distribution of θ and B in (2.8). Further, we used first 4000

iterations as warm-up. We also checked the trace plots for some of the parameters

to ensure the warm-up iterations.

We extracted the samples of θ andB in a three dimensional array. Denoting the

number of iterations excluding warm-up runs as I, for D specimens the dimension

of θ is given by I ×D ×K = 4000 × 181 × 4 and for V taxa the dimension of B

is given by I ×K × V = 4000× 4× 150. A representation of posterior estimates

for topic proportion θd in specimen d and for taxa proportion B in topic k are

illustrated in Tables 8 and 9.
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Table 8: Posterior estimates of topic
proportion for specimen d.
θdi is the ith iteration esti-
mate of θ for topic k of spec-
imen d.

Specimend Topic1 ... TopicK

iter 1 θd11 ... θdK1

iter 2 θd12 ... θdK2

...
... ...

...

iter 4000 θd14000 ... θdK4000

Table 9: Posterior estimates of
taxa proportions for
topic k. βkvi is the ith

iteration estimate of β
for taxa v of topic k.

Topick Taxa1 ... TaxaV

iter 1 βk11 ... βkV1

iter 2 βk12 ... βkV2

...
... ...

...

iter 4000 βk14000 ... βkV4000

4.1.3 LDA Model Diagnostics

The next step involves conducting model diagnostics. It is a vital step as

it evaluates whether we draw samples from the posterior distribution and have

sufficient effective samples for each parameter. The diagnostics provide directions

for hyper-parameter tuning of HMC-NUTs and prior distributions.

Usually, the samples will be auto correlated within a Markov chain and treat-

ing samples as independent would underestimate the uncertainty associated with

each parameter as it is inversely proportional to
√
N where N is the sample size.

Therefore, we use a diagnostic measure known as ‘effective sample size’ (ESS).

ESS denoted by Neff quantifies the effective number of samples generated in the

Markov chain accounting for auto correlation.

Suppose X1, ..., XN is sequence of Markov chain with N number of iterations.

Then, the auto correlation for time lag t is defined as,

ρt =
Cov(Xi, Xi+t)√
V ar(Xi)V ar(Xi+t)

, (4.1)

and the ESS of N samples generated by a process with auto correlations ρt is
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defined as follows.

Neff =
N

1 + 2
∑∞

t=1 ρt
. (4.2)

The ESS is considered as the number of iterations for independent draws, is lower

than the number of iterations for correlated draws and is larger than the number

of iterations for anti-correlated draws. HMC-NUTs can produce anti-correlated

draws if the posterior is close to Gaussian with weak correlation (Stan et al.,

2023).

Figure 14: Effective sample size (ESS) for each parameter estimation.

Figure 14 demonstrates the distribution of ESS obtained for all parameters

in HMC-NUTs. We observe that the ESS is highly dense around 4000 which is

the number of iterations I = 4000, suggesting that the number of samples gener-

ated during the posterior simulation is sufficient such that the posterior sampling

process is reliable, and no increment is needed in the number of iterations.

4.1.4 LDA Model Assessment

Further, abundance data were simulated using the posterior estimates as de-

scribed in (2.5) and compared with the observed abundance data in order to assess

the goodness-of-fit. Model assessment allows to evaluate model’s reliability in cap-
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turing the underlying latent variables under the model generative process.

For this purpose, we identified the maximum of simulated cell counts in each

iteration and plot its distribution against the maximum of observed cell abundance

in each taxon for several randomly selected taxa in the observed data. Figure 15

shows that most of observed maximum falls in the range of simulated maximums,

suggesting a good-fitted model. However, for some taxa, the observed maximum

lies in the tail of the simulated maximums, for which further investigation might

be required. We may adjust the hyper-parameters for those taxa to increase the

model performance.

Figure 15: Model assessment for the LDA for several selected taxa. Blue histogram is
the maximums from the simulated data. Purple vertical line is the observed
maximum.

4.1.5 Estimated Topic and Taxa Distributions

The main interest in LDA is to obtain the estimates of topic distribution for

each specimen θd and taxa distribution for each topic B. The estimates θd and

B are obtained by taking the median of the posterior samples are illustrated in

figure 16 and 17.

Figure 16 shows on average, the trend in topic proportions is similar between

treatment groups for all topics, and there is a small change in Topics 1 and 2

over time. Figure 16: (A) shows that Topic 2 and 3 are dominating at all time
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points regardless of the treatment groups. Interestingly, topic proportions are high

at time point 1 and start to reduce over the time for Topic 1 in the intervention

group, whereas the same topic starts at low and increase over time in the control

group. Figure 17 illustrates the taxa composition of topics. For instance, Taxa 14

which belongs to the Lactobacillus genus dominates in Topic 1, and Taxa 39, 69,

79, 86, 101, 107, 113, 152, 153, 162 dominates in Topic 4 which mostly consists

of Porphyromonas and Prevotella genera. Topic 2 and 3 are compounds from

almost all of the taxa while dominated by Bacteroides and Roseburia genera.

Interestingly, taxa 39 and 107 were found to be differentially abundant between

the two treatment groups in Section 3.3, which are here found to be present in

Topic 4. We use mixed models to infer whether topics are differentially abundant

in Section 4.3.

Figure 16: Estimated topic distribution in specimens obtained from LDA; A: Heat map
of median topic proportions, B: Topic proportion of subjects over time.
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Figure 17: Estimated median taxa proportions in topics obtained from LDA.

4.2 Time-aligned LDA

This section focuses on the implementation of time-aligned LDA topic model.

The same data with a total of 150 taxa in to 181 specimens were used in this

context as well. As explained in Section 2.4.1, initially four cohorts corresponding

to the four time points were generated using normalized exponential weights W

given in (4.3), specifically using wi as the sampling distribution when creating

the ith cohort Ci where i = 1, 2, 3, 4, which eventually resulted cohort 1 with 91

specimens, cohort 2 with 92 specimens, cohort 3 with 89 specimens and cohort 4

with 90 specimens.

W =



w1

w2

w3

w4


=



1 0.4324 0.3243 0.2432

0.3636 1 0.3636 0.2727

0.2727 0.3636 1 0.3636

0.2432 0.3243 0.4324 1


. (4.3)
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4.2.1 Local LDA Implementation

After creating the four cohorts, local LDA models were fitted for each cohort in-

dependently. For comparative purposes, the parameters used in the LDA, namely;

number of topics K = 4, Dirichlet hyper-parameters α1 = ... = α4 = 0.8 and

γ1 = ... = γ150 = 0.8 were set in the local LDA implementations. For each cohort,

we used HMC-NUTs with 8000 iterations of which the first 4000 are considered as

warm-up runs to draw posterior samples for θd and B.

We extracted four sets of estimates of θd and B in posterior samples in three

dimensional arrays as mentioned in Section 4.1.2, corresponding to the 4 local

LDA models. Denoting the number of specimens in the ith cohort Ci as ni, the

dimension of θ corresponding to Ci is given by I × ni ×K and for all the cohorts

the dimension of B is given by I ×K × V = 4000× 4× 150.

4.2.2 Model Diagnostics and Model Assessment

As for the LDA, we conducted model diagnostics using ESS and model as-

sessment for the same selected taxa as the time-unaware LDA, for the 4 local

LDAs. Figures 18 and 19 depict the distribution of ESS obtained for each param-

eter estimation and the distribution of the maximum of simulated cell counts in

each iteration against the maximum of observed cell abundance in each taxon for

the selected taxa, respectively. The ESS of all local LDAs are highly dense around

4000, therefore the number of samples generated during the posterior sampling are

sufficient. Further, the observed maximum lie in the range of simulated maxima.

Thus, the model is a good-fit.
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Figure 18: Effective sample size (ESS) for each parameter estimation of the 4 local
LDA fitted for the 4 cohorts. Blue histogram is the maximums from the
simulated data. Purple vertical line is the observed maximum.

Figure 19: Model assessment for the local LDA for the selected taxa.

4.2.3 Estimated Topic and Taxa Distributions

Once the local LDAs were constructed, the corresponding estimates of topic

proportions θd in specimens d and taxa distributions in topics B were obtained

by taking the median of the posterior samples for local LDA separately. Then we
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aligned the topics of local LDA considering cohort 1 as a reference. Next, we obtain

a time-aligned topic distribution in specimens by merging the cohort results. This

process is explained in detail in Section 2.4.2.

Figure 22 illustrates the estimated median topic proportions in specimens.

As similar to LDA, there is no difference in the average topic proportion over

time between the control and intervention groups for all the topics. However,

now we can clearly observe a decreasing trend in Topic 1, increasing trend in

Topic 4 and fluctuating trend in Topic 2. Further, topic proportions are high at

first time point and reduce over the time for Topic 1 in the intervention group.

Topic 4 proportions are low at first time point and increase over the time in

the control group. Moreover, the changes in taxa composition in each topic are

illustrated in Figure 21. For instance, in Topic 4, Taxa 14 and 105 which belong

to Lactobacillus and Clostridium genera dominate at time point 1, Taxa 20 and

36 in the Roseburia and Bacteroides genera dominates at time point 2, Taxa 20

in Roseburia genus and Taxa 14 in Lactobacillus genus dominates at time points 3

and 4. More interestingly, Taxa 39, 53, 107, 112, 116 and 168 that were found to

be differentially abundance between the treatment groups are present in the topics

identified in tme-aligned LDA model.

Next, we find the significantly differential topics in experimental factors using

mixed models.
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Figure 20: Estimated topic distribution in specimens obtained from time-aligned LDA;
A: Heat map of median topic proportions, B: Topic proportion of subjects
over time.
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Figure 21: Estimated taxa distribution in topics obtained from time-aligned LDA.
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4.3 Mixed Models for Topic Proportions

LMMs were fitted for the logarithm of topic proportion of each topic obtained

from both the time-unaware and time-aligned LDA models. In (4.4) the treat-

ment group (X1) and time point at which the samples were collected (X2) were

considered as fixed effects and random intercepts for the participants (Z) were

considered.

log(Pk|X1, X2d,B = b) = β0 + β1X1 + β2X2 + Zb, (4.4)

where X1 = treatment group (binary; control = 0, intervention = 1),

X2 = time point,

Z =



Participant1

Participant2
...

Participants



T

=



1 ... 1 0 ... 0 0 ... 0

0 ... 0 1 ... 1 0 ... 0

... ...
...

... ...
...

... ...
...

0 ... 0 0 ... 0 1 ... 1



T

.

The results of the LMM’s are given in Tables 10 and 11. In time-unaware LDA,

there is a significant difference between the treatment groups for Topic 2 and a

significant difference in at least one of the time points for Topic 1. In contrast,

in the time-aligned LDA, there is not enough evidence to find significant topic

differences between the treatment groups. In contrast to only one topic changes

significantly over time in the time-unaware LDA, time-aligned LDA found Topic

1 and 4 significantly different at least one of the time points.

Next, we compared how well the topics and temporal changes are captured

by the time-aligned LDA with LDA. We carried a holdout specimen prediction

by holding out one specimen at a time, fitting LMM on the rest of the specimens

and compute the root squared error of the predictions of each topic. Figure 22

and Table 12 shows the root squared errors of the holdout predictions is similar

between the time-unaware and time-aligned LDA in topics other that the one that

has a significant group effect in the time-unaware LDA. However, the root squared
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errors in the time-aligned LDA are larger than the time-unaware LDA.

Table 10: Linear mixed effect model results for LDA.
(In each row block, first row: regression coefficient, second row: (standard
error of the regression coefficient), third row: p value, ∗ indicates the p values
significant at 5% significance).

Topic 1 Topic 2 Topic 3 Topic 4

Intercept -4.6384
(0.7203)
2.08e-09∗

-1.4766
(0.5787)
0.0123∗

-3.3432
(0.7986)
6.31e-05∗

-5.5710
(0.7021)
1.37e-12∗

groupIntervention 0.0439
(0.7211)
0.9517

-1.5860
(0.6590)
0.0198∗

-0.3051
(0.9201)
0.742

1.0401
(0.7499)
0.171

time point -0.4157
(0.2022)
0.0416∗

0.1011
(0.1329)
0.4484

-0.1183
(0.1787)
0.509

0.0461
(0.1811)
0.800

Table 11: Linear mixed effect model results for time-aligned LDA.
(In each row block, first row: regression coefficient, second row: (standard
error of the regression coefficient), third row: p value, ∗ indicates the p values
significant at 5% significance).

Topic 1 Topic 2 Topic 3 Topic 4

Intercept -1.8412
(0.7514)
0.0154∗

-3.3377
(0.7339)
1.05e-05∗

-5.7523
(0.7429)
1.85e-12∗

-6.6565
(0.7026)
<2e-16∗

groupIntervention -0.1979
(0.6958)
0.7772

-0.7310
(0.6150)
0.240

0.9224
(0.7317)
0.213

0.2110
(0.5654)
0.711

time point -0.8360
(0.2273)
0.0003∗

-0.0584
(0.2379)
0.806

0.1576
(0.2122)
0.459

1.1690
(0.2329)
1.49e-06∗

Table 12: Average of the root squared errors of holdout sample predictions.

Topic 1 Topic 2 Topic 3 Topic 4

LDA 2.69 1.40 2.20 2.38

Time-aligned LDA 3.03 3.26 2.75 2.94
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Figure 22: Distributions of root squared errors of holdout specimen predictions.
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Chapter 5

Discussion

This chapter provides a discussion based on the literature review and the findings

of the research. Further, it concludes the thesis with limitations of the study and

suggestions for future research.

Microbial data are dynamic and driven by the interactions of taxa between

them and with the host, which has lead to increase in studying microbial data

longitudinally. More importantly, identifying the temporal dynamics of microbial

communities instead of individual taxa is insightful for understanding function-

ality of taxa co-exist. With respect to identifying microbial communities, the

implementation of probabilistic LDA model proposed by Sankaran and Holmes

(2019) is popular as it is applicable for multivariate, high dimensional, sparse data

while allowing for mixed membership for specimens in the clusters. Thus, this

study proposes a time-aligned LDA for longitudinal microbiome data with the

inspiration obtained from Wang et al. (2021) for identifying temporal changes in

microbial communities.

The proposed time-aligned LDA involves, creating temporal smoothed cohorts

for every time point, implementing LDA for each of those cohorts independently,

followed by aligning cohort results. The parameters; number of topics K = 4,
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Dirichlet hyper-parametersα = γ = 0.8 were set in all local LDA implementations.

HMC-NUTs was used for posterior sampling with 8000 iterations while using first

4000 as warm-up runs. Using 4000 iterations for posterior sampling provided a

sufficient sample size such that the posterior sampling is reliable. The median of

posterior samples were taken as the estimated topic proportions in specimens and

taxa proportions in topics. Further, the taxa composition in all the chosen four

topics change at each time point which suggest there is a temporal change in those

four microbial communities over time.

Pregnancy is one of the most suitable events to observe changes in human

microbiome as a result of not just physical but also hormonal, immunoloigical and

metabolic changes that a pregnant woman experience in the course of body adapt-

ing for fetal growth and development (Atkinson et al., 2022, Symul et al., 2023).

Hence, the proposed method was applied on Be Healthy In Pregnancy (BHIP)

Atkinson et al., 2022 data set which contains gut microbiome specimens corre-

sponding to 63 pregnant women in southern Ontario, Canada, who were randomly

allocated to either the intervention group which provided nutrition, exercise and

counselling or the control group. Data are available for 4 time points, correspond-

ing to each trimester and one time after the pregnancy.

According to the results, estimated topic proportions in specimens had a sig-

nificant group for one topic in the LDA, but for no topics in the time-aligned

LDA. This may be due to small group differences in topic proportions obtained

in the time-aligned LDA which might not captured with the given sample size.

Further, estimated topic proportions in specimens had a significant time effect at

least in one of the time points for one topic in the LDA, but for two topics in the

time-aligned LDA. Even though there is no significant impact of the treatment,

the microbial composition is expected to change over time and the time-aligned

LDA and mixed models identified more topics that are temporally changing. This

might be due to capturing microbial community changes locally in time-aligned
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LDA. More importantly, the proposed time-aligned LDA provide information on

how the taxa composition in topics change at each time point, which cannot be

derived from the LDA. However, the holdout sample predictions errors are higher

for the proposed time-aligned LDA. This might be because we assumed all taxa

are present in all the time points, even though we see there are some taxa not

present at some time points. To overcome this issue, we might need to consider

sparsity imposed on the time-aligned LDA. Further, there is subject and specimen

heterogeneity captured in microbial communities when we use time-aligned LDA

which is not captured over time in the mixed models, which might also be a reason

for the higher prediction errors in the time-aligned LDA. Regardless, the proposed

time-aligned LDA was able to identify significant microbial community changes

over time in terms of topic proportions as well as the taxa composition changes of

those topics over time, which eventually provides more useful information.

5.1 Study Limitations and Future Research

This study only focused on top 150 taxa because of the memory restrictions

in applying all taxa in the local compute, but all the taxa can be considered with

the help of high-performance computing.

Next, in the implementation of LDA, a hyper-parameter tuning was not done

due to limited time. Thus, some of the resulted topics did not capture dominating

taxa in them. We can consider tuning of the LDA hyper-parameters in topics to

sparse taxa proportions. Or one can add a prior over the hyper-parameters in the

LDA and letting the MCMC algorithm mix among them rather than performing

hyper-parameter tuning. This approach is naturally Bayesian and can be more

efficient.

Also, in the implementation of the proposed time-aligned LDA, we used the

same prior distribution for all cohorts. Instead, either conducting a separate hyper-
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parameter tuning for each local LDA or seeding the next LDA with estimates of

the current LDA can be done (Wang et al., 2021).

One can apply the proposed method to a highly dynamic microbiome ecosys-

tem such as vaginal microbiome which changes in pregnant women (Symul et al.,

2023) to investigate the temporal changes in microbial communities.

In the future, we need to perform a simulation study in order to investigate

the properties of the time-aligned LDA.
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Appendix

The code to reproduce the results and figures can be found at https://github.com/

IshankaRandini/Master-Thesis-Sirikkathuge-Fernando.git.
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