

Explainable Learning of Long-term

Dependencies through Machine Learning

Explainable Learning of Long-term Dependencies

through Machine Learning

BY

Fernando Martinez-Garcia, M.Sc.

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTING AND SOFTWARE

AND THE SCHOOL OF GRADUATE STUDIES

OF MCMASTER UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

PH.D. IN COMPUTER SCIENCE

© Copyright by Fernando Martinez-Garcia Nov 2023

All Rights Reserved

ii

(Department of Computing and Software) Hamilton, Ontario, Canada

TITLE: Explainable Learning of Long-term Dependencies

 through Machine Learning

AUTHOR: Fernando Martinez-Garcia

 M.Sc. (Computer Science)

 Instituto Tecnologico de Estudios Superiores de

 Monterrey, Monterrey, Mexico

SUPERVISOR: Dr. Douglas G. Down

NUMBER OF PAGES: xviii, 146

iii

Lay Abstract

Machine learning has made big advances and transformed industries, but challenges such as

growing model sizes and diminishing interpretability have hindered their usage and reliability.

This research aims to enhance machine learning models for time-series forecasting. It starts by

showcasing an interpretable-by-design linear model and its effectiveness in solving a real-world

industry-related problem by means of incorporating new data while dynamically forgetting old

information. Then, to consider nonlinear time-series components, the study delves into improving

the Long Short-Term Memory (LSTM) Neural Network by creating an extended version, named

E-LSTM, able to better exploit nonlinear long-term dependencies, resulting in a model of similar

size and improved performance. Finally, the Generalized Interpretable LSTM (GI-LSTM), a more

general LSTM architecture with higher temporal connectivity and embedded interpretability, is

introduced. This architecture is shown to offer a more holistic interpretation of learned long-term

dependencies while outperforming the previous architectures, all while keeping a compact model

size.

iv

Abstract

Machine learning-based models have yielded remarkable results in a wide range of applications,

revolutionizing industries over the last few decades. However, a variety of challenges from the

technical point of view, such as the drastic increase in model size and complexity, have become a

barrier for their portability and human interpretation. This work focuses on enhancing specific

machine learning models used in the time-series forecasting domain.

The study begins by demonstrating the effectiveness of a simple and interpretable-by-

design machine learning model in handling a real-world time-series industry-related problem. This

model incorporates new data while dynamically forgetting previous information, thus promoting

continuous learning and adaptability laying the groundwork for practical applications within

industries where real-time interpretable adaptation is crucial.

Then, the well-established LSTM Neural Network, an advanced but less interpretable

model able to learn long and more complex time dependencies, is modified to generate a model,

named E-LSTM, with extended temporal connectivity to better capture long-term dependencies.

Experimental results demonstrate improved performance with no significant increase in model size

across various datasets, showcasing the potential to have balance between performance and model

size.

v

Finally, a new LSTM architecture built upon the E-LSTM’s increased temporal

connectivity while embedded with interpretability is proposed, called Generalized Interpretable

LSTM (GI-LSTM). This architecture is designed to offer a more holistic interpretation of its

learned long-term dependencies, providing semi-local interpretability by offering insights into the

detected relevance across time-series data. Furthermore, the GI-LSTM outperforms alternative

models, generally produces smaller models, and shows that performance does not necessarily

come at the cost of interpretability.

vi

In loving memory of

 my grandmother María de los Ángeles Paredes Jerez,

whose kindness, uncommon personality, and sense of humor

have positively influenced my life decisions contributing to my existence.

vii

Acknowledgements

I would like to thank my supervisor Dr. Douglas Down for being patient and understanding

with me across the most challenging time the Canadian society has faced in recent years, while

remaining consistent in his guidance, providing detail-oriented editorial comments, supporting my

research decisions, and going beyond his duty on several occasions.

I also want to thank Dr. Ghada Badawy and Dr. Souvik Pal for providing their support in

the early stages of my research and for the opportunity to keep developing my skills through

FYELABS.

My appreciation extends to my mother, who exemplified that a person can have a balanced

life while doing what is right even when is far from easy. I draw inspiration from my grandfather's

work ethic, and to this day, he maintains his diligent commitment to his work, a legacy I have

embraced.

I am deeply grateful to my long-term friends for their acceptance and invaluable insights.

Jesús Tamez-Duque for his lessons in stoicism and the pursuit of meaningful things, Ulises Tamez-

Duque for his kindness, Juan Carlos San-Martín-Alcazar for motivating me to move forward,

Miguel Romero-Medellín for exemplifying the essence of friendship, Eduardo Reyes-Álvarez for

viii

being supportive and sharing his knowledge, Fernanda Zapata-Murrieta for sharing her calmness

and positive attitude and Sofía Romero-Mandujano for listening to my life stories.

I also thank my new friends and colleagues for sharing with me their companionship and

unique ways of living, Max Moore, Jake Swarts, Akshobhya Katte, Roxana Roshankhah, Hannah

Krivic, Zahra Esmaeilnezhad, Saman Sami, Brendan Fallon, Zhaleh Rahimi, Alireza Ganjali,

Maryam Motamedi, Mohammad Moshtagh, Jason Balaci, Kamel Zarei, Rohit Gupta, Shizu Shi,

Ricardo López, Sofía Caraza, Karen Alexandra Acosta-Cavazos, Jason Jiang.

Finally, to my previous mentors and educators for their exceptional dedication and beyond-

duty teachings: Rogelio Soto, Lorena Arana-Tirado, María Leifa Wong-Balboa, and Felix

Arellano-Flores.

I am immensely grateful for the support, guidance, and inspiration I have received from

these individuals throughout my academic journey.

I also express my gratitude to the Natural Sciences and Engineering Research Council of

Canada (NSERC) and the Mexican National Council for Science and Technology (CONACYT)

for partly financing the research here presented.

ix

Contents

Lay Abstract iii

Abstract iv

Acknowledgements vii

List of Figures xi

List of Tables xvi

Notation Table xviii

1 Introduction . 1

2 An Adaptive Linear Model for Time Series with Control Applications 6

2.1 Weighted Recursive Least Squares with Time-varying Forgetting Factor. 7

2.2 Adaptive-Linear-Model-based Control algorithm. .14

2.3 Industrial Application of Adaptive-Linear-Model-based Control Algorithm. 29

3 Neural-Network-based Models for Time Series. .47

3.1 Feedforward and Recurrent Neural Networks. 47

x

3.2 LSTM. .56

4 E-LSTM: Extended LSTM. 62

4.1 E-LSTM Architecture. 62

4.2 Experimental Setup. 72

4.3 Experimental Results and Analysis. .77

5 GI-LSTM: Generalized and Interpretable LSTM. 90

5.1 GI-LSTM Architecture. 90

5.2 Experimental Setup. 100

5.3 Experimental Results and Analysis. 102

6 Conclusion. .128

Bibliography. 132

xi

List of Figures

2.2.1. Two-dimensional representation of the possible infinite set of solutions 23

2.2.2. Two-dimensional representation of the iterative process to generate 𝒖ℱ
(𝑗)(𝑘)24

2.2.3. High-level graphical representation of the proposed APC .25

2.3.1. Schematic of the rack configuration and cooling system location31

2.3.2. Performance of APC with standard GPC, PI-SR and proposed APC38

2.3.3. PWM values for the APC with standard GPC, PI-SR and proposed APC. 38

2.3.4. Water flow values for the APC with standard GPC, PI-SR and proposed APC39

2.3.5. Block diagram representation of the system being controlled and the controller 41

2.3.6. Proposed APC performance with the top 12 servers on .42

2.3.7. PWM manipulation of APC . 42

2.3.8. Water flow manipulation of APC . 43

2.3.9. APC and APC with Monetary optimization performance .44

2.3.10. Water flow manipulation of APC and APC with Monetary optimization45

xii

2.3.11. PWM manipulation of APC and APC with Monetary optimization45

2.3.12. Savings in percentage of the APC with 𝐶$(𝒖(𝑘)) enabled .46

3.1.1. Graphical representation of a Linear Model (left) and Neural Network with one hidden

layer (right) .49

3.1.2. Graphical representation of a Neural Network with L hidden layers49

3.1.3. Graphical representation of an FNN training process forward pass (left) and backward pass

(right) . 51

3.1.4. Graphical representation of an FNN with augmented input (left) and RNN (right)52

3.1.5. High-level graphical representation of a one-hidden-layer RNN and its ‘unrolled’

equivalency during the forward part of the training process . 55

3.1.6. High-level graphical representation of a one-hidden-layer RNN and its ‘unrolled’

equivalency during the backward part of the training process . 56

3.2.1. A standard single-layer LSTM architecture, solid arrows represent matrix multiplication. .58

4.1.1. Proposed E-LSTM network when “unrolled” through 2𝑝 + 1 iterations 67

4.3.1. Validation set performance across different sizes for the Switching-100 dataset 80

4.3.2. Validation set performance across different sizes for the Switching-01 dataset 81

4.3.3 Validation set performance across different sizes for the Binary sequence dataset 83

4.3.4. Validation set performance across different sizes for the Chickenpox dataset 84

4.3.5. Validation set performance across different sizes for the Sunspots dataset 86

xiii

4.3.6. Validation set performance across different sizes for the Power consumption dataset 87

4.3.7. Validation set performance across different sizes for the Toronto temperature dataset . . . 88

5.1.1. Simplified graphical representation of the memory-group mechanism in the GI-LSTM, with

𝜍 = 2 . 93

5.3.1. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Switching-100

dataset . 104

5.3.2. Validation set performance across different sizes for the Switching-100 dataset105

5.3.3. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Switching-01

dataset . 106

5.3.4. Validation set performance across different sizes for the Switching-01 dataset 106

5.3.5. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Binary sequence

dataset . 108

5.3.6. Validation set performance across different sizes for the Binary sequence dataset 108

5.3.7. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Chickenpox

dataset . 110

5.3.8. Validation set performance across different sizes for the Chickenpox dataset 110

5.3.9. Temporal-dependence relevance in the GI-LSTM memory-group 1, best configuration, for

the Sunspots dataset . 111

5.3.10. Temporal-dependence relevance in the GI-LSTM memory-group 1, second-best

configuration, for the Sunspots dataset . 112

xiv

5.3.11. Validation set performance across different sizes for the Sunspots dataset 112

5.3.12. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Power

consumption dataset . 114

5.3.13. Temporal-dependence relevance in the GI-LSTM memory-group 2, best configuration, for

the Power consumption dataset .114

5.3.14. Temporal-dependence relevance in the GI-LSTM memory-group 1, second-best

configuration, for the Power consumption dataset . 115

5.3.15. Validation set performance across different sizes for the Power consumption dataset . . .115

5.3.16. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Toronto

temperature dataset . 117

5.3.18. Temporal-dependence relevance in the GI-LSTM memory-group 2, second-best

configuration, for the Toronto temperature dataset . 118

5.3.19. Validation set performance across different sizes for the Toronto temperature dataset . . 118

5.2.20. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Copy-memory-

d50 dataset. .121

5.3.21. Training and validation cross-entropy for the Copy-memory-d50 dataset 122

5.3.22. Training and validation pattern accuracy for the Copy-memory-d50 dataset122

5.3.23. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Copy-

memory-d200 dataset . 124

5.3.24. Training and validation cross-entropy for the Copy-memory-d200 dataset124

xv

5.3.25. Training and validation pattern accuracy for the Copy-memory-d200 dataset125

5.3.26. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Copy-memory-

d400 dataset. 126

5.3.27. Training and validation cross-entropy for the Copy-memory-d400 dataset127

5.3.28. Training and validation pattern accuracy for the Copy-memory-d400 dataset. 127

xvi

List of Tables

I. High-level notation . xvi

2.3.1. RMSE performance of the controllers in the simulation . 39

2.3.2. RMSE performance of the controllers in the real system .46

4.3.1. Results for the Switching-100 dataset (𝑘𝑖 = 22) . 79

4.3.2. Results for the Switching-01 dataset (𝑘𝑖 = 50) . 80

4.3.3. Results for the Binary Sequence dataset (𝑘𝑖 = 29) . 82

4.3.4. Results for the Chickenpox dataset (𝑘𝑖 = 24) . 84

4.3.5. Results for the Sunspots dataset (𝑘𝑖 = 12) . 85

4.3.6. Results for the Power Consumption dataset (𝑘𝑖 = 24) . 87

4.3.7. Results for the Toronto temperature dataset (𝑘𝑖 = 24) . 88

5.3.1. Results for the Switching-100 dataset (𝑘𝑖 = 22) . 104

5.3.2. Results for the Switching-01 (𝑘𝑖 = 50) . 105

5.3.3. Results for the Binary Sequence dataset (𝑘𝑖 = 29) . 107

5.3.4. Results for the Chickenpox dataset (𝑘𝑖 = 24) . 109

xvii

5.3.5. Results for the Sunspots dataset (𝑘𝑖 = 12) . 111

5.3.6. Results for the Power Consumption dataset (𝑘𝑖 = 24) . 113

5.3.7. Results for the Toronto temperature dataset . 116

5.3.8. Results for the copy memory-d50 dataset (𝑇𝑑𝑒𝑙𝑎𝑦 = 50) . 121

5.3.9. Results for the copy memory-d200 dataset (𝑇𝑑𝑒𝑙𝑎𝑦 = 200) . 123

5.3.10. Results for the copy memory-d400 dataset (𝑇𝑑𝑒𝑙𝑎𝑦 = 400) . 126

xviii

Symbol Description Implication

𝒂
Bolded lower-case

variable
Vector

𝑨
Bolded upper-case

variable
Matrix

𝒂(𝒌)
Variable depending on
𝑘

Discrete time dependence

𝑨𝒌𝟏:𝒌𝟐

Variable with

subscripts separated by

‘:’

Matrix of contiguous time dependent variables

𝒂(𝒊)
Superscript with

parenthesis
Naming a variable while differentiating from exponents

𝓛 Scripted L Loss function

[𝒂]𝒊
Variable within

subscripted square

brackets

𝑖th element of the variable (assumed to be a vector)

[𝑨]𝒊𝟏,𝒊𝟐
Variable within double

subscripted square

brackets

Element in row 𝑖 and column 𝑗 of the variable (assumed to

be a matrix).

[𝑨]𝒓𝒐𝒘𝒊

Variable within row

subscripted square

brackets

Row 𝑖 of the variable (assumed to be a matrix).

𝑫𝑩(𝑨)
Derivative of 𝑩 with

respect to 𝑨

Derivative of 𝑩 ∈ ℝ𝑝×𝑞 with respect to variable 𝑨 ∈
ℝ𝑚×𝑛 [1, p. 194], where 𝑩 = 𝐹(𝑨), 𝑭: ℝ𝑚×𝑛 ⟶ ℝ𝑝×𝑞,

𝑫𝑩(𝑨) ∈ ℝ𝑚𝑝×𝑛𝑞 and

[𝑫𝑩(𝑨)]𝑚(𝑗1−1)+𝑖1,𝑛(𝑗2−1)+𝑖2 =
𝑑[𝑩]𝑗1,𝑗2

𝑑[𝑨]𝑖1,𝑖2

.

𝑽𝒆𝒄(𝑨)
Vectorization of a

matrix

A matrix 𝑨 ∈ ℝ𝑚×𝑛 is transformed into a vector 𝒂𝑣𝑒𝑐 ∈
ℝ𝑚𝑛 with [𝑨]𝑖1,𝑖2 = [𝒂𝑣𝑒𝑐]𝑖1+(𝑖2−1)𝑖1

 Table I. High-level notation

1

Chapter 1

Introduction

Machine learning (ML) models have produced remarkable results in a wide range of applications,

aiding and revolutionizing fields and industries in the last couple of decades [2]-[5]. Despite these

extraordinary results a variety of challenges have become a barrier for the application of these

models, specifically their dramatic increase in size and reduced interpretability, understood as the

ability to provide explanations in understandable terms to a human. Given the ever-increasing size

of ML models [6]-[7], mostly driven by the resulting increase in performance, the ability to train

these models in portable devices has been negatively affected, limiting their accessibility to the

public. In addition, this increased size has also resulted in a reduction in the capability of humans

to understand the patterns the models learn, since these patterns are often encoded in nonlinear

relations, which represent the basis of many current advanced models.

Time-series forecasting, an area characterized by data containing temporal dependencies

of different complexity levels, is among the areas that have been influenced by machine learning

models, encompassing fields from finance to environmental science [3], [5]. However, this

influence is still affected by the challenges previously mentioned, which limits their application in

real-world scenarios in which decisions need to be made about health, well-being, and long-term

planning, due to a lack of robustness and safety [8]-[10]. The low interpretability in ML models,

typical in this area, can be partly attributed to the increasing complexity they face, promoted by

2

the search for better performance and the non-obvious dependence types a time-series is driven

by.

The use of linear models (LM) to handle time-dependent systems is a well-studied area

[11]-[17], that predates the current ML field, and it can be considered as part of the field’s origins

due to the models being data-driven, proving to be adapted for a variety of applications.

Furthermore, these simple models have consistently shown the power to capture statistical

correlations while allowing for an easy interpretation of the input-output dependencies they learn

through their parameters/coefficients, since these explicitly indicate a level of relevance the linear

model gives to the input data across time. Despite the difficulty for LMs to cope with nonlinearities

when present in time-dependent systems, their low complexity allows for the online recomputation

of their parameters, enabling adaptive strategies to be designed and producing so-called adaptive

linear models (ALMs).

ALM functionalities have been widely employed as an option to address the challenge of

modeling nonlinearities for time-varying systems across several applications with acceptable

results [18]-[22]. This performance can be mostly attributed to the capability of the ALM to

quickly overwrite/erase its stored/encoded information, linked to previous data, and generate linear

relations based on the most up-to-date data. For time series in which linearization can occur due

to the relatively slow dynamics of the system, ALMs become an option in terms of performance

and interpretability. This is a reasonable approach for a number of industrial applications [19]-

[20].

Neural Networks (NN), among the most popular and successful ML models [23]-[26],

carry out a more direct approach when used for data containing nonlinear components, trying to

model their effects through nonlinear functions. For the case of time series, Recurrent Neural

3

Networks (RNNs), a type of NN characterized by using recurrent connections to capture time

dependencies has been the basis over which more advanced ML models have been developed to

exploit time dependencies.

Among RNN models, the Long Short-Term Memory (LSTM) network, introduced at the

end of the 1990s [27]-[29], has shown the ability to exploit long-term dependencies by producing

competitive results in a diverse set of applications [30]-[34]. In comparison to LMs, the LSTM

network mitigated the need to retrain a model due to nonlinear complex behaviour in the data and,

when this is the case, tends to yield better performance by learning more intricate patterns.

However, this gain in performance comes at the expense of losing interpretability in the model and

greatly increasing the number of parameters.

Considering the previous ML challenges in the time-series domain, this research aims to

promote the progress in the area by designing and implementing ways to enhance the performance,

size, and interpretability of the models used, potentially leading to valuable insights on the

extracted information of the data to improve decision-making and extending the limits of ML

implementation. Furthermore, as the proposed models are progressively developed in this work,

the ability to incorporate long-term information is increased while pushing towards improving or

maintaining their interpretability.

The contributions provided in this work can be summarised as follows. First, an adaptive

linear model able to forget previous information at a dynamic rate is proposed and implemented

to regulate server temperatures in an industrial setting, producing competitive results with respect

to standard control algorithms and producing significant energy-consumption savings. Also, an

extension to the LSTM model is proposed, named Extended LSTM, which increases the LSTM

internal temporal connectivity to better capture long-term dependencies. The proposed model

4

shows improved performance across a variety of datasets without significant size increase.

Furthermore, a generalized LSTM architecture with higher temporal connectivity than the E-

LSTM and featuring embedded interpretability, called GI-LSTM, is designed to exploit long-term

dependencies more efficiently in terms of the number of parameters; resulting in a better-

performing model which is easier to interpret, and is of similar/smaller size to the E-LSTM and

the LSTM. Next, the organization of thesis and its contributions are described in detail.

In Chapter 2 an adaptive linear model, based on the Weighted Recursive Least Squares

(WRLS) algorithm, is proposed to incorporate information about prior model errors more actively.

This is accomplished by the introduction of a time-varying forgetting factor 𝜆(𝑘), an approach

explored in [35]-[38] that has been shown to allow for a more precise regulation of how much past

information should be forgotten to sufficiently adapt to the system. The resulting ALM, named

Variable WRLS (VWRLS), can adapt with a dynamic rate, depending on user-defined physically-

interpretable thresholds, and is constrained by design to keep a user-defined fraction of previous

information to mitigate online overfitting. The proposed VWRLS is used to design an Adaptive

Predictive Controller (APC), based on the General Predictive Controller (GPC) approach, which

is implemented on a real rack-mounted cooling unit to control server temperatures in data centres.

The designed APC outperforms both standard control algorithms in simulated experiments and

when implemented in a real system.

Chapter 3 functions as a review and a bridge between Chapter 2 and Chapter 4, in which

NN models intended for time series are presented, emphasizing the LSTM architecture. The

backpropagation algorithm, the core of parameter tuning in NN models, is concisely introduced.

Also, capabilities and limitations of NNs for time series are expressed in order to motivate the need

for newer architectures.

5

In Chapter 4 the E-LSTM architecture is presented, serving as an initial step to overcome

LSTM-specific limitations when identifying long-term dependencies. Also, the need for increased

internal temporal connectivity, between distant and current cell states, is mathematically justified

and experimentally corroborated by a performance comparison with alternative models. In

addition, a selection process for the location of the increased connectivity is presented, based on

the Distance Correlation measure. Experimental results show that in most cases, the E-LSTM

model reduces the number of parameters needed to achieve similar or better performance to the

LSTM, by an order of magnitude in some experiments.

Chapter 5 introduces a generalized LSTM architecture with embedded interpretability,

Generalized Interpretable LSTM (GI-LSTM), which is built upon the higher temporal connectivity

approach of the E-LSTM. This advanced and more complex LSTM network enables a semi-local

interpretation [39], providing direct information about how much relevance it gives to parts of the

time series, up to a user-defined maximum dependence, and removes the need for precisely

locating the temporal connectivity. Despite the increased complexity, experimental comparative

results show that the GI-LSTM results in a model with even better performance than the E-LSTM,

the LSTM, and alternative models without significantly increasing the model size and producing

comparatively better results for small model sizes; resulting in a model that performs better size-

wise and is more accessible in interpretation.

Finally, Chapter 6 discusses the limitations of the current research and how these could be

addressed from a practical point of view. It also explores realistic options for future work aligned

with the aims established for this research and indicates alternative goals in the direction of

dynamic connectivity to improve performance.

6

Chapter 2

An Adaptive Linear Model for Time Series with

Control Applications

This chapter focuses on proposing a linear model intended for time-series modeling, directly

interpretable by observing its parameters. The linear model is constructed based on the well-known

Weighted Recursive Least Squares method, and a variable forgetting factor is proposed to regulate

the speed at which information is forgotten, enabling adaptation to current trends in the data. The

linear model is then instantiated in the context of control applications, specifically by following

the General Predictive Controller approach, which is further modified by integrating a variable

prediction horizon. This instantiation results in an Adaptive Predictive Controller capable of

quickly adapting to changes in the system and able to accommodate potential nonlinearities.

Comparative simulations are performed on the controller to validate its performance, and real

experiments are carried out on a cooling system used in a real-world single-rack server system for

industrial applications. A relevant part of the results and contributions presented in this chapter

have been published in [40]. Here, we expand on that work, adding a number of useful details and

insights.

7

2.1 Weighted Recursive Least Squares with Time-varying Forgetting Factor

2.1.1 Linear Models

The modeling of multi-input single-output (MISO) systems through linear models is a well-

studied approach across several fields [11]-[17] due to its power to capture correlations and its

ability to explicitly express input-output dependencies through its learnable parameters, an

inherent and desirable feature of this type of models, as observed in (2.1.1)

𝑦̂(𝑘) = 𝜽𝒙(𝑘). (2.1.1)

Here, 𝑦̂(𝑘) ∈ ℝ represents the output of the model; 𝒙(𝑘) ∈ ℝ𝑛 is the input data; and

𝜽 ∈ ℝ1×𝑛 represents the learnable parameters of the model.

 When sufficient data points are available, 𝑘 ≥ 𝑛, a matrix 𝜽 can be computed so that it

minimizes the Mean Square Error loss function ℒ𝐿𝑀 = ∑ 𝑒(𝑗)2𝑘
𝑗=0 , with 𝑒(𝑗) = 𝑦(𝑗) − 𝑦̂(𝑗). The

result of this minimization is the well-known Ordinary Least Squares (OLS) regression in (2.1.2).

𝜽𝑂𝐿𝑆 = (𝑿0:𝑘(𝑿0:𝑘)
𝑇)−1𝑿0:𝑘(𝒚0:𝑘)

𝑇 (2.1.2)

with 𝑿0:𝑘 = [𝒙(0),… , 𝒙(𝑘)], 𝒚0:𝑘 = [𝑦(0),… , 𝑦(𝑘)].

 Nevertheless, the OLS approach might produce overfitting to the data points in 𝑿0:𝑘,

making it susceptible to causing larger than acceptable errors when new data points are presented.

One way to mitigate the previous effect is by splitting the data into training and validation sets,

𝑿0:𝑘𝑡𝑟𝑎𝑖𝑛
 and 𝑿𝑘𝑡𝑟𝑎𝑖𝑛:𝑘 respectively, and using any of the family of Gradient Descent (GD)

algorithms [41]-[43] to iteratively compute matrices 𝜽(𝑖) to progressively minimize the MSE of

the training set, ∑ 𝑒(𝑗)2𝑘𝑡𝑟𝑎𝑖𝑛
𝑗=1 . During the latter minimization, the MSE of the validation set,

∑ 𝑒(𝑗)2𝑘
𝑗=𝑘𝑡𝑟𝑎𝑖𝑛+1 , is tracked and used as a stopping criterion for the minimization. The previous

8

process is carried out using the standard GD algorithm as given in (2.1.3), with 𝒆0:𝑘𝑡𝑟𝑎𝑖𝑛
=

[𝑒(0),… , 𝑒(𝑘𝑡𝑟𝑎𝑖𝑛)] and 𝛼 ∈ ℝ+ being a positive scalar hyperparameter usually referred to as the

learning rate.

𝜽:= 𝜽 − 𝛼𝑿0:𝑘𝑡𝑟𝑎𝑖𝑛
(𝒆0:𝑘𝑡𝑟𝑎𝑖𝑛

)
𝑇
 (2.1.3)

When properly trained to avoid overfitting, LMs can generate reasonable performance for

a wide variety of applications [44]-[45]; however, an important limitation might arise when they

are implemented for more complex systems: the difficulty for LMs to cope with nonlinearities

when present in systems. For instance, if during a time interval [𝑘𝑗1 , 𝑘𝑗2] the system remained

withing a subspace characterized by a high degree of nonlinear behavior, an LM, as expressed in

(2.1.3), could experience low performance, i.e., larger than acceptable errors. In other words, since

the loss function ℒ𝐿𝑀 gives the same relevance to all quadratic errors the significance of such

subspaces is not highlighted; furthermore, assigning more weight to errors of data points from this

type of subspace becomes a non-trivial memory.

2.1.2 Weighted Recursive Least Squares

Weighted Recursive Least Squares (WRLS), an Adaptive Linear Model (ALM), has been

employed as an option to address the challenge of subspaces with nonlinearities across several

applications, showing acceptable results [18]-[22]. In general, the approach followed by an ALM

consists of making an online update, ∆𝜽(𝑘) ∈ ℝ1×𝑛, to the learnable parameters at each (discrete)

time instant in order to give more relevance to the newer values whenever necessary, promoting a

linearization with more focus in the current subspaces. The latter process generates a time-varying

model described in (2.1.4)-(2.1.5)

9

𝑦̂(𝑘) = 𝜽(𝑘)𝒙(𝑘) (2.1.4)

𝜽(𝑘) = 𝜽(𝑘 − 1) + 𝛼(𝑘)∆𝜽(𝑘) (2.1.5)

where 𝛼(𝑘) ∈ ℝ+ is the learning rate (possibly time-varying) which regulates the influence of the

update ∆𝜽(𝑘) into the time-varying learnable parameters 𝜽(𝑘).

In the specific case of the standard WRLS algorithm the update ∆𝜽(𝑘) incorporates real-

time information through the minimization of a time-varying loss function ℒ𝑊𝑅𝐿𝑆(𝑘) defined by

the recurrence relation in (2.1.6) and explicitly defined by (2.1.7)

ℒ𝑊𝑅𝐿𝑆(𝑘) = 𝑒(𝑘|𝑘 − 1)2 + 𝜆ℒ𝑊𝑅𝐿𝑆(𝑘 − 1) (2.1.6)

ℒ𝑊𝑅𝐿𝑆(𝑘) = ∑ 𝜆𝑗𝑒(𝑘 − 𝑗|𝑘 − 1 − 𝑗)2𝑘−1
𝑗=0 (2.1.7)

where 𝜆 ∈ (0,1] is a hyperparameter known as the forgetting factor that defines how much the

relevance of previous datapoints will be reduced (often fixed and/or computed based on

preprocessed data), and 𝑒(𝑘 − 𝑗|𝑘 − 1 − 𝑗) = 𝑦(𝑘 − 𝑗) − 𝜽(𝑘 − 𝑗 − 1)𝒙(𝑘 − 𝑗) ∀𝑗 ≥ 0 is a

prior error linked to the minimum value of the loss function, ℒ𝑊𝑅𝐿𝑆(𝑘 − 1 − 𝑗), at a prior instant.

Similar to OLS the standard WRLS approach has an explicit recursive solution described by

(2.1.8)-(2.1.10) which promotes an online linearization of the system within the current subspace

𝜽𝑊𝑅𝐿𝑆(𝑘) = 𝜽𝑊𝑅𝐿𝑆(𝑘 − 1) + 𝑒(𝑘|𝑘 − 1)𝒃(𝑘) (2.1.8)

𝒃(𝑘) =
𝑷(𝑘−1)𝒙(𝑘)

𝜆+𝒙𝑇(𝑘)𝑷(𝑘−1)𝒙(𝑘)
 (2.1.9)

𝑷(𝑘) =
𝑷(𝑘−1)−𝒃(𝑘)𝒙𝑇(𝑘)𝑷(𝑘−1)

𝜆
 (2.1.10)

where 𝑷(𝑘) ∈ ℝ𝑛×𝑛 is the inverse of a weighted sample-covariance matrix centered around

𝟎 ∈ ℝ𝑛 and 𝒃(𝑘) ∈ ℝ𝑛 is the gradient direction, pointing away from the global minimum when

10

𝑒(𝑘|𝑘 − 1) > 0 or towards it when 𝑒(𝑘|𝑘 − 1) < 0, with respect to the current parameter values,

𝜽𝑊𝑅𝐿𝑆(𝑘 − 1).

When information is available before starting the iterative process the values of 𝜽𝑊𝑅𝐿𝑆(0)

and 𝑷(0) can be computed using an OLS approach. Otherwise, they can be initialized as

𝜽𝑊𝑅𝐿𝑆(0) = 𝟎 and 𝑷(0) = 𝜌𝑰𝑛×𝑛, where 𝜌 ≥ 1 is a scalar value and 𝑰𝑛×𝑛 is the identity matrix.

2.1.3 Variable forgetting factor Weighted Recursive Least Squares

One of the relevant aspects associated with the capability of the standard WRLS approach

to adapt to newer values resides in the constant forgetting factor, 𝜆, which promotes the relevance

of newer data points by exponentially decreasing the relevance of previous values at a constant

rate. Such an approach, although being a function of prior errors,

{𝑒(𝑘|𝑘 − 1), 𝑒(𝑘 − 1|𝑘 − 2),… , 𝑒(1|0)}, is not able to adjust the need to forget since a constant

𝜆 is used, only producing a reactive influence on the magnitude of the gradient 𝒃(𝑘) through the

current prior error 𝑒(𝑘|𝑘 − 1).

In order to more actively incorporate information about prior errors in the WRLS approach

beyond the most recent value, a time-varying forgetting factor 𝜆(𝑘), with its respective loss

function ℒ𝑉𝑊𝑅𝐿𝑆(𝑘), is proposed to generate a Variable WRLS (VWRLS) approach. This approach

has been explored in [36]-[38] where it has been shown to allow for a more precise regulation of

how much past information, in terms of prior errors 𝑒(𝑘 − 𝑗|𝑘 − 1 − 𝑗), is appropriate to

forget/introduce in online implementations; this can be interpreted as how much the loss function

should be changed to adapt to the current subspace. Based on this and motivated by the how-much-

information-to-forget approach, the proposed time-varying forgetting factor 𝜆(𝑘) is designed as a

11

function of user-defined physically-interpretable thresholds, {𝑒𝑚𝑖𝑛, 𝑒𝑚𝑎𝑥, Δ𝜏𝑚𝑖𝑛, 𝐴Δ𝜏, 𝑝old} to

facilitate implementation.

The previously defined thresholds are: a minimum time-window length, Δ𝜏𝑚𝑖𝑛 ∈ ℝ+, of

most-recent previous information; a fixed interval, [𝑒𝑚𝑖𝑛, 𝑒𝑚𝑎𝑥] ∈ ℝ+, defining the minimum and

maximum absolute values for the most-recent prior error, 𝑒(𝑘|𝑘 − 1), that will influence 𝜆(𝑘); a

minimum old-information fraction, 𝑝old ∈ (0,1), expressing the minimum influence the oldest

information will have in the adaptation of the forgetting factor when 𝑘 → ∞; and a multiplier,

𝐴Δ𝜏 ≥ 1, defining how much the minimum time-window length can be extended.

The derivation of these thresholds starts by analyzing the loss function of the WRLS

approach, ℒ𝑊𝑅𝐿𝑆(𝑘). First, notice that in (2.1.7) the factor 𝜆𝑗−1 can be interpreted as the weight

assigned to 𝑒(𝑘 − 𝑗 − 1|𝑘 − 𝑗 − 2)2; therefore, when 𝑘 → ∞ the most recent Δ𝜏 seconds of

information, equivalent to the first 𝑗 terms using a sampling period 𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔, have a weight of

(1 − 𝜆𝑗)/(1 − 𝜆) and the remaining terms (oldest) have a weight of 𝜆𝑗/(1 − 𝜆); in relative

proportions (fractions), these weights would be 1 − 𝜆𝑗 and 𝜆𝑗, respectively.

From the previous realization, it will be our aim when defining 𝜆(𝑘) to create the relation:

𝜆𝑚𝑖𝑛
𝑗𝑚𝑖𝑛 = 𝑝old, with 𝜆𝑚𝑖𝑛 > 0 as the minimum value of 𝜆(𝑘) and 𝑗𝑚𝑖𝑛 = ⌈

Δ𝜏𝑚𝑖𝑛

𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
⌉. To create the

previous relation a variable time-window length, Δ𝜏(𝑘), with values in the interval

[Δ𝜏𝑚𝑖𝑛, 𝐴Δ𝜏Δ𝜏𝑚𝑖𝑛] is defined as in (2.1.11)-(2.1.12)

Δ𝜏(𝑘) = 𝐴Δ𝜏
𝜂(𝑒(𝑘|𝑘 − 1))Δ𝜏𝑚𝑖𝑛 (2.1.11)

𝜂(𝑒(𝑘|𝑘 − 1)) = 𝑚𝑖𝑛 (1,𝑚𝑎𝑥 (0,
|𝑒(𝑘|𝑘 − 1)|−𝑒𝑚𝑖𝑛

𝑒𝑚𝑎𝑥−𝑒𝑚𝑖𝑛
))

2

 (2.1.12)

12

where it is important to notice that ⌈
Δ𝜏(𝑘)

𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
⌉ would be the index of the 𝑗th term in the context of

the relative proportions 1 − 𝜆𝑗 and 𝜆𝑗.

From (2.1.11) a variable forgetting factor and its respective time-varying loss function,

ℒ𝑉𝑊𝑅𝐿𝑆(𝑘), can be defined as

𝜆(𝑘) = 𝑝
old

⌊
𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

Δ𝜏(𝑘)
⌋
 (2.1.13)

ℒ𝑉𝑊𝑅𝐿𝑆(𝑘) = 𝑒(𝑘|𝑘 − 1)2 + 𝜆(𝑘)ℒ𝑉𝑊𝑅𝐿𝑆(𝑘 − 1) (2.1.14)

where the minimum value of 𝜆(𝑘) can be calculated as 𝜆𝑚𝑖𝑛 = 𝑝
old

⌊
𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

Δ𝜏𝑚𝑖𝑛
⌋

, equivalent to 𝑝
old

1

𝑗𝑚𝑖𝑛

and consequently producing the desired relation. Also, except for the use of 𝜆(𝑘), the equations

describing the VWRLS model’s parameters, 𝑴𝑉𝑊𝑅𝐿𝑆(𝑘), remain the same as in (2.1.8)-(2.1.10).

From (2.1.11)-(2.1.13) it can be observed that if 𝑒(𝑘|𝑘 − 1) ≥ 𝑒𝑚𝑎𝑥 then 𝜆(𝑘) will be

equal to 𝜆𝑚𝑖𝑛. Similarly, if 𝑒(𝑘|𝑘 − 1) ≤ 𝑒𝑚𝑖𝑛 then 𝜆(𝑘) ≈ 1, as long as 𝐴Δ𝜏Δ𝜏𝑚𝑖𝑛 is large

enough; for instance, if 𝐴Δ𝜏Δ𝜏𝑚𝑖𝑛 >
ln(𝑝𝑜𝑙𝑑)

ln(0.99)
𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 then 𝜆(𝑘) = 0.99. Also, an increasing

exponential-adaptation speed (derivative) of 𝜆(𝑘) (2.1.15), with respect to |𝑒(𝑘|𝑘 − 1)|, is

obtained within the interval [𝑒𝑚𝑖𝑛, 𝑒𝑚𝑎𝑥].

𝐷|𝑒(𝑘|𝑘 − 1)|(𝜆(𝑘)) =
ln(𝑝old

−2)𝑝
old

⌊
𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

Δ𝜏𝑚𝑖𝑛
⌋

ln(𝐴Δ𝜏)(|𝑒(𝑘|𝑘 − 1)|−𝑒𝑚𝑖𝑛)

Δ𝜏(𝑘)(𝑒𝑚𝑎𝑥−𝑒𝑚𝑖𝑛)2
 (2.1.15)

 As observed in (2.1.15), the adaptation speed increases exponentially near 𝑒𝑚𝑎𝑥 which

exponentially reduces both the value of 𝜆(𝑘) and the relevance given to the least-recent prior

errors, creating a desirable outcome since beyond 𝑒𝑚𝑎𝑥 the model would produce a beyond-

acceptable error. Furthermore, if at instant 𝑘 we denote the accumulated weight caused by 𝜆(𝑘) in

13

(2.1.14), up to the 𝑗 most-recent prior errors by 𝑆𝑚𝑟(𝑘) and the accumulated weight for the 𝑗 least-

recent by 𝑆𝑙𝑟(𝑘), the property in (2.1.16) can be established.

𝑆𝑙𝑟(𝑘)

𝑆𝑚𝑟(𝑘)+𝑆𝑙𝑟(𝑘)
≥ 𝑝𝑜𝑙𝑑

(1−𝜆𝑚𝑖𝑛
𝑘−𝑗−1

)

1−𝜆𝑚𝑖𝑛
𝑘 (2.1.16)

In more detail, since the first 𝑗 terms in (2.1.14) depend on the time-varying time-window

length Δ𝜏(𝑘) and 𝑗 ≥ ⌈
Δ𝜏𝑚𝑖𝑛

𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
⌉, then (2.1.16) implies

𝑆𝑙𝑟(𝑘)

𝑆𝑚𝑟(𝑘)+𝑆𝑙𝑟(𝑘)
→ 𝑝𝑜𝑙𝑑 when 𝑘 → ∞.

Consequently, over time the proposed time-varying forgetting factor will assign a normalized

relevance of at least 𝑝𝑜𝑙𝑑 to terms occurring after the ⌈
Δ𝜏(𝑘)

𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
⌉ index in (2.1.14). Also, the

derivation of (2.1.16) can be obtained using the relations shown in (2.1.17)-(2.1.19).

𝑆𝑚𝑟(𝑘) = (1 + 𝜆(𝑘) + 𝜆(𝑘)𝜆(𝑘 − 1) + ⋯+ 𝜆(𝑘)…𝜆(𝑘 − 𝑗 + 1)) (2.1.17)

𝑆𝑙𝑟(𝑘) = ∏ 𝜆(𝑘 − 𝑖1)
𝑗−1
𝑖1=0 (𝜆(𝑘 − 𝑗) + 𝜆(𝑘 − 𝑗)𝜆(𝑘 − 𝑗 − 1) + ⋯+ 𝜆(𝑘 − 𝑗)𝜆(𝑘 − 𝑗 −

1)…𝜆(1))

≥ ∏ 𝜆(𝑘 − 𝑖1)
𝑗−1
𝑖1=0 𝜆𝑚𝑖𝑛

1−𝜆𝑚𝑖𝑛
𝑘−𝑗−1

1−𝜆𝑚𝑖𝑛
 (2.1.18)

𝑆𝑙𝑟(𝑘)

𝑆𝑚𝑟(𝑘)+𝑆𝑙𝑟(𝑘)
=

1
𝑆𝑚𝑟(𝑘)

𝑆𝑙𝑟(𝑘)
+1

≥
1

(

 1+

1
𝜆(𝑘)

+⋯+
1

𝜆(𝑘)𝜆(𝑘−1)…𝜆(𝑘−𝑗+1)

𝜆𝑚𝑖𝑛

1−𝜆
𝑚𝑖𝑛
𝑘−𝑗−1

1−𝜆𝑚𝑖𝑛)

+1

≥
𝜆𝑚𝑖𝑛

1−𝜆
𝑚𝑖𝑛
𝑘−𝑗−1

1−𝜆𝑚𝑖𝑛

1+
1

𝜆𝑚𝑖𝑛
+⋯+

1

𝜆
𝑚𝑖𝑛
𝑗−1 +𝜆𝑚𝑖𝑛

1−𝜆
𝑚𝑖𝑛
𝑘−𝑗−1

1−𝜆𝑚𝑖𝑛

 =
𝜆𝑚𝑖𝑛

𝑗 1−𝜆
𝑚𝑖𝑛
𝑘−𝑗−1

1−𝜆𝑚𝑖𝑛

1−𝜆𝑚𝑖𝑛
𝑘

1−𝜆𝑚𝑖𝑛

≥ 𝜆𝑚𝑖𝑛
𝑗𝑚𝑖𝑛

(1−𝜆𝑚𝑖𝑛
𝑘−𝑗−1

)

1−𝜆𝑚𝑖𝑛
𝑘 = 𝑝𝑜𝑙𝑑

(1−𝜆𝑚𝑖𝑛
𝑘−𝑗−1

)

1−𝜆𝑚𝑖𝑛
𝑘 (2.1.19)

14

One limitation of the proposed approach is 𝜆(𝑘) < 1 since Δ𝜏(𝑘) is upper bounded, in

other words, the time-varying time-window cannot extend indefinitely. Consequently, to address

this edge case whenever 𝑒(𝑘|𝑘 − 1) < 𝑒𝑚𝑖𝑛 the forgetting factor is set to 1, 𝜆(𝑘) = 1.

While using any ALM algorithm redundant information might be present when performing

the adaptive process (2.1.8)-(2.1.10). Specifically, in the case of the previously described VWRLS,

when 𝑒(𝑘|𝑘 − 1) < 𝑒𝑚𝑖𝑛, a negligible value for the prior error could occur but the iterative process

would be performed regardless, potentially adding redundant information. Furthermore, the time-

series signals might contain a level of noise due to the finite resolution in the acquiring devices

used, possibly creating numerical instability in the form of overflow in the matrix 𝑷(𝑘), which

compresses the information of current and previous datapoints, 𝒙(𝑘). Consequently, to promote

computational stability a user-defined parameter representing the level of negligible error, 𝑒𝑛𝑙, will

be added so that the VWRLS algorithm is executed only when 𝑒(𝑘|𝑘 − 1) > 𝑒𝑛𝑙; otherwise

𝜽𝑉𝑊𝑅𝐿𝑆(𝑘) = 𝜽𝑉𝑊𝑅𝐿𝑆(𝑘 − 1) and 𝑷(𝑘) = 𝑷(𝑘 − 1).

2.2. Adaptive-Linear-Model-based Control algorithm.

2.2.1 Autoregressive Exogenous model

In general, a time-series is often modeled by integrating a degree of autoregression to

potentially extract time dependencies that show a level of regularity across time. The integration

is performed by explicitly introducing it as part of the input data, 𝒙(𝑘), or implicitly by using time-

varying learnable parameters, 𝜽(𝑘), as is the case for ALMs. A general formulation is defined by

(2.2.1)

𝑦̂(𝑘) = 𝑓𝑚𝑜𝑑𝑒𝑙 (𝒚𝑘−1:𝑘−𝑑𝑦
, 𝒙𝑒𝑥(𝑘), 𝜽(𝑘)) (2.2.1)

15

where 𝑑𝑦 ≥ 1 is the maximum lag for the output 𝑦(𝑘) and 𝒙𝑒𝑥(𝑘) denotes the fixed size vector

composed of 𝑚 exogenous variables at instant 𝑘 and of previous values up to lag dependencies

{𝑑𝑒𝑥
(1)

, … , 𝑑𝑒𝑥
(𝑚)

}; with the input data vector defined as 𝒙(𝑘) = [𝒚𝑘−1:𝑘−𝑑 , 𝒙𝑒𝑥(𝑘)𝑇]𝑇.

When explicit integration of autoregression is used in the model, as in (2.2.1), the resulting

model is deemed an Autoregressive Exogenous (ARX) model. An ARX model establishes a partly

recursive relation, which enables a forecasting estimation of the time series’ output by using the

recursion over a prediction horizon, 𝛾𝜖ℕ, by performing forward iterations of 𝛾 steps. This

approach can be implemented if 𝜽(𝑘) is assumed to remain constant over the prediction horizon

and as long as a sufficiently statistically confident estimation of the exogenous variable 𝒙̂𝑒𝑥(𝑘 + 𝑗)

can be generated in each of the iterations up to the chosen time-horizon value, i.e., 0 ≤ 𝑗 ≤ 𝛾. A

1-step forward iteration of the previous approach is described in (2.2.2)

𝑦̂(𝑘 + 1|𝑘) = 𝑓𝑚𝑜𝑑𝑒𝑙 (𝑦̂(𝑘), 𝒚𝑘−1:𝑘−𝑑𝑦+1, 𝒙̂𝑒𝑥(𝑘 + 1), 𝜽(𝑘))

 = 𝑓𝑚𝑜𝑑𝑒𝑙 (𝑓𝑚𝑜𝑑𝑒𝑙 (𝒚𝑘−1:𝑘−𝑑𝑦
, 𝒙𝑒𝑥(𝑘), 𝜽(𝑘)) , 𝒚𝑘−1:𝑘−𝑑𝑦+1, 𝒙̂𝑒𝑥(𝑘 + 1), 𝜽(𝑘))

 = 𝑓𝑚𝑜𝑑𝑒𝑙
(1)

(𝒚𝑘−1:𝑘−𝑑𝑦
, 𝒙𝑒𝑥(𝑘), 𝒙̂𝑒𝑥(𝑘 + 1), 𝜽(𝑘)) (2.2.2)

with 𝑓𝑚𝑜𝑑𝑒𝑙
(1)

 denoting the result of the 1-step forward iteration.

By generalizing the process in (2.2.2) to a time-horizon 𝛾 ≥ 1 through 𝛾-step forward

iterations, using the previous assumption over 𝜽(𝑘), 𝑦̂(𝑘 + 𝛾|𝑘) can be obtained as shown in

(2.2.3) where its dependence to past and estimated information can be observed

𝑦̂(𝑘 + 𝛾|𝑘) = 𝑓𝑚𝑜𝑑𝑒𝑙
(𝛾)

(𝒚𝑘−1:𝑘−𝑑𝑦
, 𝒙𝑒𝑥(𝑘), 𝒙̂𝑒𝑥(𝑘 + 1),… , 𝒙̂𝑒𝑥(𝑘 + 𝛾), 𝜽(𝑘)) (2.2.3)

16

with 𝑓𝑚𝑜𝑑𝑒𝑙
(𝛾)

 denoting the result of the 𝛾-step forward iteration.

 One of the useful properties of specializing LMs to ARX models is their practicality when

implemented, since using the representation (2.2.3) shows that another LM can be used to

explicitly define 𝑦̂(𝑘 + 𝛾|𝑘) as a function of 𝒚𝑘−1:𝑘−𝑑, {𝒙̂𝑒𝑥 (𝑘 + 1),… , 𝒙̂𝑒𝑥 (𝑘 + 𝛾)}, 𝒙𝑒𝑥(𝑘) and

𝜽(𝑘), as described in (2.2.4)

𝑦̂(𝑘 + 𝛾|𝑘) = 𝜽𝛾(𝑘)[𝒚𝑘−1:𝑘−𝑑, 𝒙𝑒𝑥(𝑘)𝑇 , 𝒙̂𝑒𝑥(𝑘 + 1)𝑇 , … , 𝒙̂𝑒𝑥(𝑘 + 𝛾)𝑇]𝑇 (2.2.4)

with 𝜽𝛾(𝑘) denoting a matrix, which in practical terms defines 𝑓𝑚𝑜𝑑𝑒𝑙
(𝛾)

 in this case, resulting from

bounded-length-input process, 𝐼𝑴, carried out 𝛾 times. In more detail, 𝐼𝑴 depends on 𝜽(𝑘) and

previous computed matrices 𝜽𝛾−1(𝑘),… , 𝜽𝛾−𝑑𝑴
(𝑘), where 𝑑𝜽 = 𝑚𝑖𝑛(𝛾, 𝑑𝑦).

2.2.2 Generalized-Predictive-Control algorithm

The model described in (2.2.4) is of special interest in the are of control theory when the

exogenous variables are user-defined across the prediction horizon, i.e., they are manipulated

variables. This has been explored in [46]-[47] resulting in the well-known Generalized Predictive

Controller (GPC) algorithm, which has become one of the most popular predictive control

algorithms with a wide variety of applications.

In the context of the GPC algorithm, a model (2.2.5) composed of 𝑚 manipulated variables,

{𝑢1(𝑘),… , 𝑢𝑚(𝑘)}, is used over a prediction horizon 𝛾 with a control horizon 𝛾𝑐 ≤ 𝛾. The output

forecast 𝑦̂(𝑘 + 𝑗|𝑘) made by the GPC for 𝑗 ≤ 𝛾 is interchangeably expressed by (2.2.6) and (2.2.7)

𝑦̂(𝑘) = 𝒂0𝒚𝑝𝑎𝑠𝑡(𝑘) + 𝒃0𝒖𝑝𝑎𝑠𝑡(𝑘) (2.2.5)

𝒚̂𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾)

(𝑘) = 𝑨𝛾𝒚𝑝𝑎𝑠𝑡(𝑘) + 𝑩𝛾𝒖𝑝𝑎𝑠𝑡(𝑘) + 𝑯𝛾𝒖𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾𝑐) (𝑘) (2.2.6)

17

𝒚̂𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾)

(𝑘) = 𝑨𝛾𝒚𝑝𝑎𝑠𝑡(𝑘) + 𝑩𝛾𝒖𝑝𝑎𝑠𝑡(𝑘) + 𝑯𝛾
′ 𝒖(𝑘 − 1) + 𝑮𝛾Δ𝒖𝑓𝑢𝑡𝑢𝑟𝑒

(𝛾𝑐) (𝑘) (2.2.7)

with [𝒂0, 𝒃0] = 𝜽(𝑘),

𝑨𝛾 = [
𝒂1

𝑇

⋮
𝒂𝛾

𝑇
], 𝑩𝛾 = [

𝒃1
𝑇

⋮
𝒃𝛾

𝑇
],𝒂𝑗 = 𝐼𝐴(𝒂𝑗−1, … , 𝒂𝑗−𝑑𝑨(𝑗)), 𝒃𝑗 = 𝐼𝐵(𝒂𝑗−1, … , 𝒂𝑗−𝑑𝑨(𝑗), 𝒃𝑗−1, … , 𝒃𝑗−𝑑𝑨(𝑗))

𝒚̂𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾)

(𝑘) = [
𝑦̂(𝑘 + 1|𝑘)

⋮
𝑦̂(𝑘 + 𝛾|𝑘)

], 𝒚𝑝𝑎𝑠𝑡(𝑘) = [
𝑦(𝑘 − 1)

⋮
𝑦(𝑘 − 𝑑)

], 𝒖𝑝𝑎𝑠𝑡(𝑘) = [

𝒖𝑝𝑎𝑠𝑡−1(𝑘)

⋮
𝒖𝑝𝑎𝑠𝑡−𝑚(𝑘)

],

𝒖𝑝𝑎𝑠𝑡−𝑖(𝑘) = [
𝑢𝑖(𝑘 − 1)

⋮
𝑢𝑖(𝑘 − 𝑒𝑖)

], 𝒖𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾𝑐) (𝑘) = [

𝒖(𝑘)
⋮

𝒖(𝑘 + 𝛾𝑐 − 1)
], 𝒖(𝑘 + 𝑗) = [

𝑢1(𝑘 + 𝑗)
⋮

𝑢𝑚(𝑘 + 𝑗)
],

𝒖(𝑘 − 1) = [
𝑢1(𝑘 − 1)

⋮
𝑢𝑚(𝑘 − 1)

], Δ𝒖𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾𝑐) (𝑘) = [

Δ𝒖(𝑘)
⋮

Δ𝒖(𝑘 + 𝛾𝑐 − 1)
], Δ𝒖(𝑘 + 𝑗) = [

Δ𝑢1(𝑘 + 𝑗)
⋮

Δ𝑢𝑚(𝑘 + 𝑗)
],

𝛥𝑢𝑖(𝑘 + 𝑗) = 𝑢𝑖(𝑘 + 𝑗) − 𝑢𝑖(𝑘 + 𝑗 − 1), 𝑑𝑨(𝑗) = 𝑚𝑖𝑛(𝑗, 𝑑𝑦), 𝑨𝛾 ∈ ℝ𝛾×𝑑𝑦, 𝑩𝛾 ∈

ℝ𝛾×𝑚(𝑑𝑢
(1)

+⋯+𝑑𝑢
(𝑚)

), 𝑯𝛾 ∈ ℝ𝛾×(𝑚𝛾𝑐), 𝑮𝛾 ∈ ℝ𝛾×(𝑚𝛾𝑐) and 𝑯𝛾
′ ∈ ℝ𝛾×𝑚.

In (2.2.6)-(2.2.7) the matrices 𝑨𝛾, 𝑩𝛾 are calculated through the previously mentioned

iterative process, 𝐼𝜽, which in the context of the GPC algorithm is separated into two processes,

𝐼𝑨 and 𝐼𝑩, defined in [75]. Also, the matrices 𝑯𝛾 are block lower triangular matrices as described

in (2.2.8)-(2.2.9), where 𝒉𝑗 , 𝒈𝑗 ∈ ℝ1×𝑚. In more detail, 𝒉1 = 𝒃0 and for 𝑗 > 1, 𝒉𝑗 can be extracted

from 𝑩𝛾 by taking the following 𝑚 elements located in the 𝑖th row: {1, 𝑑𝑢
(1)

+ 1,… , 𝑑𝑢
(1)

+ ⋯+

𝑑𝑢
(𝑚−1)

+ 1}. Furthermore, 𝒈𝑖 = ∑ 𝒉i
𝑗
𝑖=1 and 𝑯𝛾

′ = [𝒈1
𝑇 , … , 𝒈𝛾

𝑇]
𝑇
.

18

𝑯𝛾 =

[

𝒉1

𝒉2

𝒉3

⋮
𝒉𝛾

𝟎
𝒉1

𝒉2

⋮
𝒉𝛾−1

𝟎
𝟎
𝒉1

⋮
𝒉𝛾−2

⋯ 𝟎
⋱ ⋮
⋱ ⋮
⋮ ⋮
⋯ 𝒉𝛾−𝛾𝑐+1]

 (2.2.8)

𝑮𝛾 =

[

𝒈1

𝒈2
𝒈3

⋮
𝒈𝛾

𝟎
𝒈1
𝒈2

⋮
𝒈𝛾−1

𝟎
𝟎
𝒈1

⋮
𝒈𝛾−2

⋯ 𝟎
⋱ ⋮
⋱ ⋮
⋮ ⋮
⋯ 𝒈𝛾−𝛾𝑐+1]

 (2.2.9)

In addition, the equivalences between (2.2.4) and some of the expressions linked to (2.2.6)

are: 𝒚𝑘−1:𝑘−𝑑 = 𝒚𝑝𝑎𝑠𝑡(𝑘)𝑇, 𝒙𝑒𝑥(𝑘) = 𝒖𝑝𝑎𝑠𝑡(𝑘), 𝒙̂𝑒𝑥 (𝑘 + 𝑗) = 𝒖𝑝𝑎𝑠𝑡(𝑘 + 𝑗). Consequently, in

the 𝑗-step forward iteration of the GPC algorithm elements in 𝒙̂𝑒𝑥 (𝑘 + 𝑗) are either known or user-

defined, where the latter type of elements is precisely 𝒖𝑓𝑢𝑡𝑢𝑟𝑒
(𝑗) (𝑘).

By using current and past information of the system the GPC structure can be used to

determine appropriate increments of the exogenous values, Δ𝒖𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾𝑐) (𝑘), so that the model’s

output can closely track a vector of (desired) set points 𝒚𝑑𝑒𝑠𝑖𝑟𝑒𝑑
(𝛾)

(𝑘) ∈ ℝ𝛾, i.e. 𝒚̂𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾)

(𝑘) ≈

𝒚𝑑𝑒𝑠𝑖𝑟𝑒𝑑
(𝛾)

. The exogenous values (manipulated variables) are computed by minimizing the loss

function shown in (2.2.10) which has a closed-form solution (2.2.11) due to the linearity and the

unconstrained structure of GPC.

ℒ𝐺𝑃𝐶(𝑘) = ∑𝑞𝑦
(𝑗)

𝑒(𝑘 + 𝑗|𝑘)2

𝛾

𝑗=1

+ ∑ Δ𝒖(𝑘 + 𝑗)𝑇𝑞𝑢
(𝑗)

Δ𝒖(𝑘 + 𝑗)

𝛾𝑐−1

𝑗=0

 = (𝒚𝑑𝑒𝑠𝑖𝑟𝑒𝑑
(𝛾)

(𝑘) − 𝒚̂𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾)

(𝑘))
𝑇

𝑸𝑦 (𝒚𝑑𝑒𝑠𝑖𝑟𝑒𝑑
(𝛾)

(𝑘) − 𝒚̂𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾)

(𝑘)) +

 Δ𝒖𝑓𝑢𝑡𝑢𝑟𝑒(𝑘)𝑇𝑸𝑢Δ𝒖𝑓𝑢𝑡𝑢𝑟𝑒(𝑘) (2.2.10)

19

Δ𝒖𝑓𝑢𝑡𝑢𝑟𝑒(𝑘) = (𝑮𝛾
𝑇𝑸𝑦𝑮𝛾 + 𝑸𝑢)

−1
𝑮𝛾

𝑇𝑸𝑦(𝒚𝑑𝑒𝑠𝑖𝑟𝑒𝑑
(𝛾)

(𝑘) − 𝑨𝛾𝒚𝑝𝑎𝑠𝑡(𝑘) − 𝑩𝛾𝒖𝑝𝑎𝑠𝑡(𝑘) −

 𝑯𝛾
′ 𝒖(𝑘 − 1)) (2.2.11)

where 𝑒(𝑘 + 𝑗|𝑘) = [𝒚𝑑𝑒𝑠𝑖𝑟𝑒𝑑
(𝛾)

(𝑘)]
𝑗
− 𝑦̂(𝑘 + 𝑗|𝑘); 𝑸𝑦 ∈ ℝ𝛾×𝛾 and 𝑸𝑢 ∈ ℝ𝑚𝛾𝑐×𝑚𝛾𝑐 are positive

semi-definite block diagonal matrices used to assign relevance to future estimated errors and

penalize large changes in the manipulated variables.

2.2.3 GPC-based algorithm with variable prediction horizon and feasible solutions

The standard GPC algorithm considers a fixed prediction horizon 𝛾; however, the chosen

value for 𝛾 directly affects all the manipulated variables due to the interdependence created by the

GPC solution (2.2.11). In this regard, a variable prediction horizon could potentially increase the

flexibility of the approach and even consider practical constraints, an idea explored in [48]-[49]

where theoretical advantages were demonstrated. Inspired by these works and aiming to achieve a

higher flexibility with the prediction horizon, a simple and effective variable prediction horizon

for the GPC is proposed and implemented heuristically.

First, it is important to highlight that in practical implementations, like most predictive-

based algorithms, the GPC algorithm uses a receding-horizon approach, meaning that at each

sampling instant the vector Δ𝒖𝑓𝑢𝑡𝑢𝑟𝑒(𝑘) is recomputed. Furthermore, the computational cost of

generating Δ𝒖𝑓𝑢𝑡𝑢𝑟𝑒(𝑘) in (2.2.11) is mostly caused by (𝑮𝛾
𝑇𝑸𝑢𝑮𝛾 + 𝑸𝑢)

−1
, whose computational

complexity is 𝑂((𝑚𝛾𝑐)
3) when using the Gauss-Jordan method or 𝑂((𝑚𝛾𝑐)

2+𝛼), with 0.8 ≤ 𝛼 ≤

0.81, for more advanced and implementable methods. Hence, the total complexity of (2.2.11) is

𝑂((𝑚𝛾𝑐)
2+𝛼 + 𝛾(𝑑 + 𝑒1 + ⋯+ 𝑒𝑚 + 𝑚 + 𝛾𝑐)), with 0.8 ≤ 𝛼 ≤ 1.

20

Based on the previous complexity analysis and using the approach in [47], the control

horizon 𝛾𝑐 can be set equal to 1 in order to decrease the computational cost of calculating the next

value for Δ𝒖(𝑘), producing an optimal “mean-level” controller [47]. In more detail, only a one-

time increment is performed in the manipulated variables, after which no further changes are made,

causing 𝒖(𝑘 + 𝑗) to remain constant across the prediction horizon, i.e., 𝒖(𝑘 + 𝑗) = 𝒖(𝑘), ∀𝑗 ≥

1. Based on the previous setting and (2.2.7), the matrix 𝑮𝛾 can be replaced by [𝒈1
𝑇 ⋯ 𝒈𝛾

𝑇]
𝑇
,

significantly decreasing the computational complexity of (2.2.11) to 𝑂 (𝑚2+𝛽 + 𝛾(𝑑 + 𝑒1 + ⋯+

𝑒𝑚 + 𝑚)). In general, for stable systems with possible dead-time, making 𝛾𝑐 = 1 can generate an

acceptable solution since a new Δ𝒖(𝑘) is computed in each iteration when the receding-horizon

approach is used, a common and widely accepted approach for predictive control algorithms.

The general approach of the heuristic starts by setting all elements of matrix 𝑸𝑦 in (2.2.10)

to zero except for the last element, set to 1, simplifying the optimization problem to (2.2.12) and

leading to a corresponding explicit solution expressed in (2.2.13) with a time complexity of

𝑂(𝑑 + 𝑒1 + ⋯+ 𝑒𝑚 + 𝑚).

𝒈𝛾Δ𝒖(𝑘) = [𝒚𝑑𝑒𝑠𝑖𝑟𝑒𝑑
(𝛾)

(𝑘)]
𝛾
− 𝒂𝛾𝒚𝑝𝑎𝑠𝑡(𝑘) − 𝒃𝛾𝒖𝑝𝑎𝑠𝑡(𝑘) − 𝒈𝛾𝒖(𝑘 − 1) (2.2.12)

Δ𝒖(𝑘) =
𝒈𝛾

𝑇

𝒈𝛾𝒈𝛾
𝑇 ([𝒚𝑑𝑒𝑠𝑖𝑟𝑒𝑑

(𝛾)
(𝑘)]

𝛾
− 𝒂𝛾𝒚𝑝𝑎𝑠𝑡(𝑘) − 𝒃𝛾𝒖𝑝𝑎𝑠𝑡(𝑘) − 𝒈𝛾𝒖(𝑘 − 1)) (2.2.13)

As observed in (2.2.13) the calculation of Δ𝒖(𝑘) is of low time complexity but considers

only the last set point in the prediction horizon 𝛾; however, such simplicity can be exploited by

exploring possible contiguous values for the prediction horizon located in a user-defined set Γ =

{𝛾1, 𝛾2, … , 𝛾𝑛𝑚𝑎𝑥
 } which would lead to a solution set ℧Δ = {Δ𝒖𝛾1(𝑘), Δ𝒖𝛾2(𝑘),… , Δ𝒖𝛾𝑛𝑚𝑎𝑥(𝑘)},

representing the control increment vectors obtained at prediction horizon values ranging from 𝛾1

21

to 𝛾𝑛𝑚𝑎𝑥
 . Using ℧Δ manipulated-variables values, 𝒖(𝛾𝑖)(𝑘), can be created and subsequently used

for a selection process based on practical constraints and predefined metrics.

The details of the previous heuristic are described next. Let us denote the set of physically

feasible manipulated variables as 𝒰. Then, assuming the variables are physically independent of

each other and defined over continuous closed intervals (as in many control applications) the set

𝒰 can be described by a hyperrectangle defined by the physical constraints, (𝒖𝑚𝑖𝑛, 𝒖𝑚𝑎𝑥), of the

manipulated variables; also, let 𝜏𝑗 denote ([𝒚
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

(𝛾𝑛𝑚𝑎𝑥)
(𝑘)]

𝑗
− 𝒂𝑗𝒚𝑝𝑎𝑠𝑡(𝑘) − 𝒃𝑗𝒖𝑝𝑎𝑠𝑡(𝑘) −

𝒈𝑗𝒖(𝑘 − 1)). From this point two cases will be considered, 𝑚 = 1 and 𝑚 > 1.

In the first case, with a single manipulated variable, the constraints (𝒖𝑚𝑖𝑛, 𝒖𝑚𝑎𝑥) are

applied on each of the single-element solutions, 𝒖(𝑗)(𝑘), 𝑖 ∈ Γ. This is performed by computing

𝒖𝑠𝑎𝑡
(𝑗)

= 𝑆𝐴𝑇(𝒖(𝑗)(𝑘), 𝒖𝑚𝑖𝑛, 𝒖𝑚𝑎𝑥), where 𝑆𝐴𝑇(∙) is a function that saturates 𝒖(𝑗)(𝑘) so that

𝒖𝑚𝑖𝑛 ≤ 𝒖𝑠𝑎𝑡
(𝑗)

≤ 𝒖𝑚𝑎𝑥, which becomes relevant when dealing with infeasible solutions due to the

likely model mismatch. Then, a prediction horizon 𝛾∗, and consequently a 𝒖𝑠𝑎𝑡
(𝛾∗)

, is selected

according to (2.2.14).

𝛾∗ = argmin
𝑗∈Γ

|𝜏𝑗 − 𝒈𝑗𝒖𝑠𝑎𝑡
(𝑗)

| (2.2.14)

If there exists more than one element 𝑗 ∈ Γ that minimizes |𝜏𝑗 − 𝒈𝑗𝒖𝑠𝑎𝑡
(𝑗)

|, the minimum

element is selected for 𝛾∗. This selection is justified by the fact that smaller elements of Γ are more

likely to result in smaller errors, since mismatches between 𝑴𝑉𝑊𝑅𝐿𝑆(𝑘) and the optimal

parameters 𝑴∗(𝑘) as well as unmodeled effects are propagated to 𝑨𝑗, 𝑩𝑗, 𝑯𝑗 and 𝑮𝑗 through their

iterative construction, which is the basis for computing 𝜏𝑗 and the set ℧Δ. Hence, the larger the

22

value of 𝑗, the greater the likelihood of a large error in the forecast, i.e., between 𝑦(𝑘 + 𝑗) and

𝑦̂(𝑘 + 𝑗|𝑘).

In the second case, 𝑚 > 1, when using multiple manipulated variables and if any of the

solutions obtained using the pseudo-inverse is not feasible, i.e., 𝒖(𝑗)(𝑘) ∉ 𝒰, a solution might still

exist. If the hyperplane defined by the normal vector and bias pair (𝒈𝑗 , 𝜏𝑗) intersects the

hyperrectangle 𝒰 it is possible to convert the vector 𝒖(j)(𝑘) into a vector 𝒖ℱ
(𝑗)(𝑘) ∈ 𝒰 with the

property: 𝒈𝑗𝒖
(𝑗)(𝑘) = 𝒈𝑗𝒖ℱ

(𝑗)(𝑘). Determining 𝒖ℱ
(𝑗)(𝑘) can be interpreted as finding a point in

the hyperplane that is inside the boundaries of the hyperrectangle, as shown in Fig. 2.2.1.

Examining Fig. 2.2.1, it can be seen that 𝒖ℱ
(𝑗)(𝑘) can have multiple values, none or only

one. When more than one value exists the closest value to 𝒖(𝑗)(𝑘) is selected to achieve the smallest

feasible change ∆𝒖ℱ
(𝑗)(𝑘), in the 2-norm sense, with 𝒈𝑗𝒖ℱ

(𝑗)(𝑘) = 0. In this way, feasible solutions

are reduced to points in the intersection between the hyperplane (𝒈𝑗 , 𝜏𝑗) and 𝒰; ∆𝒖ℱ
(𝑗)(𝑘) would

be the smallest vector from 𝒖(𝑗)(𝑘) to one of the points in such intersection. The previous solution-

finding approach is performed iteratively using the following procedure. First, the lower-

dimensional hyperface closest to the intersection is determined by identifying in 𝒖(𝑗)(𝑘) the set of

components, ℱ1
𝑐, that cause it to be outside of 𝒰 as specified in (2.2.15).

ℱ1
𝑐 = {𝑙 |(1 ≤ 𝑙 ≤ 𝑚)⋀([𝒖(𝑗)(𝑘)]

𝑙
> [𝒖𝑚𝑎𝑥]𝑙⋁[𝒖(𝑗)(𝑘)]

𝑙
< [𝒖𝑚𝑖𝑛]𝑙) } (2.2.15)

23

Next, a hyperplane of dimension 𝑚 − 𝑐𝑎𝑟𝑑(ℱ1
𝑐) is defined by using the pair (𝒈̌𝑗

(1)
 , 𝜏̌𝑗

(1)
),

where 𝒈̌𝑗
(1)

 is the original vector 𝒈𝑗 with components 𝑙 ∈ ℱ1
𝑐 removed and 𝜏̌𝑗

(1)
= 𝜏𝑗 −

∑ [𝒖𝑠𝑎𝑡
(𝑗)

]
𝑙
[𝒈𝑗]𝑙𝑙∈ℱ1

𝑐 . Then, assuming at least one of the components of 𝒈̌𝑗 is non-zero, the vector

∆𝒖ℱ1

(𝑗)(𝑘) that connects 𝒖(𝑗)(𝑘) to the closest point in (𝒈̌𝑗
(1)

 , 𝜏̌𝑗
(1)

) is computed using (2.2.16) and

(2.2.17).

 ∆𝒖̌ℱ1

(𝑗)
=

𝒈̌𝑗
(1)𝑇

𝒈̌
𝑗
(1)

𝒈̌
𝑗
(1)𝑇

𝜏̌𝑗
(1)

 (2.2.16)

[∆𝒖ℱ1

(𝑗)(𝑘)]
𝑙
= [∆𝒖̌ℱ1

(𝑗)
]
𝑙
, ∀𝑙 ∉ ℱ1

𝑐, [∆𝒖ℱ1

(𝑗)(𝑘)]
𝑙
= [𝒖𝑠𝑎𝑡

𝑗
]
𝑙
, ∀𝑙 ∈ ℱ1

𝑐 (2.2.17)

Finally, a modified solution 𝒖ℱ1

(𝑗)(𝑘) = 𝒖(𝑗)(𝑘) + ∆𝒖ℱ1

(𝑗)(𝑘) can be calculated. If 𝒖ℱ1

(𝑗)(𝑘) ∉

𝒰 then the steps (2.2.15)-(2.2.17) are repeated, but replacing (𝒈𝑗 , 𝜏𝑗) and 𝒖(𝑗)(𝑘) by (𝒈̌𝑗
(1)

 , 𝜏̌𝑗
(1)

)

and 𝒖ℱ1

(𝑗)(𝑘), respectively; in this way, the constraints already considered, [𝒖𝑠𝑎𝑡
(𝑗)

]
𝑙
∀𝑙 ∈ ℱ1

𝑐, are not

violated, and new sets ℱ𝑖
𝑐 are used in further iterations.

Fig. 2.2.1. Two-dimensional representation of the possible infinite set of solutions that arise in the

proposed approach when 𝒖(𝑗)(𝑘) ∈ 𝒰 (left) and 𝒖(𝑗)(𝑘) ∉ 𝒰 (right).

24

The iterative procedure ends after a number of iterations no higher than 𝑚, since at least

one component is removed from 𝒖(𝑗)(𝑘) in each iteration until a feasible solution 𝒖ℱ
(𝑗)(𝑘) is

achieved, as depicted in Fig. 2.2.2. Also, it should be noted that in each iteration 𝑖, ∆𝒖̌ℱ𝑖

(𝑗)
 is the

smallest vector that fulfills ∆𝒖̌ℱ𝑖

(𝑗)
𝒈̌𝑗

(𝑖) = 𝜏̌𝑗
(𝑖)

 due to the right-hand side of (2.2.16) being the Moore–

Penrose inverse, and there will be no need to consider previous constraints since increments ∆𝒖̌ℱ𝑖

(𝑗)

will be along the constrained gradient descent direction.

Once the iterative procedure is carried out for each possible value of 𝑗, the set of feasible

prediction horizons is constructed Γℱ = {𝑗|𝑗 ∈ Γ ⋀∃𝒖ℱ
(𝑗)(𝑘) : 𝒖𝑚𝑎𝑥 ≤ 𝒖ℱ

(𝑗)(𝑘) ≤ 𝒖𝑚𝑎𝑥 }, and

from it the prediction horizon 𝛾∗ is selected using (2.2.18).

𝛾∗ = argmin
𝑗∈Γℱ

|𝜏𝑗 − 𝒈𝑗 𝒖ℱ
(𝑗)(𝑘)| (2.2.18)

If there is no intersection between any hyperplane (𝒈𝑗 , 𝜏𝑗) and the hyperrectangle 𝒰,

implying infeasible inputs for any value in Γ, then 𝛾∗ is selected based on (2.2.14).

Fig. 2.2.2. Two-dimensional representation of the iterative process to generate 𝒖ℱ
(𝑗)(𝑘).

25

2.2.4 Adaptive Predictive Control Algorithm

 An Adaptive Predictive Control (APC) algorithm is proposed by integrating the ALM

model defined in Section 2.2.2 and the GPC-based control approach in Section 2.2.3, resulting in

a control algorithm that provides online predictions of the system while adapting to new operating

conditions. Potential advantages of APC algorithms have already been shown in a variety of

applications [50]-[53] where promising results were shown through simulations.

The proposed APC is characterized by the following properties: it adapts its learning rate

in an online fashion, which reflects the dynamics of the possibly time-varying nonlinear system;

it uses a variable prediction horizon algorithm, increasing the controller’s ability to deal with time-

varying systems; it implements a method to transform physically infeasible solutions, in the

predictive formulation, into feasible solutions (when they exist); and it is computationally

inexpensive to implement with respect to the maximum prediction horizon and the dimensionality

of the input. A graphical representation of the proposed APC can be observed in Fig. 2.2.3.

Fig. 2.2.3. High-level graphical representation of the proposed APC integrating the VWRLS

and the GPC-Based control as the Adaptive and Predictive algorithms, respectively.

26

When implementing the VWRLS (or the WRLS) algorithm, in addition to constraining the

minimum value of the forgetting factor through the choice of 𝑝old, as discussed in Section 2.2.2,

practical implementation issues must be addressed. In particular, the following potential

interconnected issues are considered as most relevant: potential mismatches between the estimated

and the optimal model parameters, lack of diversity in the data generated while in deployment, and

numerical instability. These issues, combined or independent of each other, could slow down the

convergence of 𝜽𝑉𝑊𝑅𝐿𝑆(𝑘); degrading the performance of the control algorithm and leading to

computational instability in the matrix 𝑷(𝑘), as discussed in [54]. Next, two independent strategies

are proposed to handle these implementation issues within the proposed APC framework.

The first strategy, intended to mitigate the first two issues, is based on the realization that,

with respect to ℒ𝑉𝑊𝑅𝐿𝑆(𝑘), mismatches between the estimated and optimal parameters, 𝜽𝑜𝑝𝑡(𝑘),

although not measured directly can be detected whenever there is a steady-state error, which can

be defined over a possibly weighted time window considering the last 𝑘𝑠𝑠 errors. Therefore, by

monitoring the steady-state error the following strategy is developed. First, if there is a solution

 𝒖(𝑗) (or 𝒖ℱ
(𝑗)

) then, with probability one, there exist an infinite number of solutions, since a unique

solution occurs when a vertex of the hyperrectangle 𝒰 intersects the plane (𝒈𝑗 , 𝜏𝑗). Hence, to

increase information diversity, it is proposed that one of these solutions be selected at random,

promoting variability in some of the features in 𝒙𝑒𝑥(𝑘), which promotes more stability in 𝑷(𝑘) by

decreasing its eigenvalues’ magnitudes.

The selection can be implemented by using a randomly weighted average of all intersection

points between the ‘edges’ of 𝒰 and the hyperplane (𝒈𝑗 , 𝜏𝑗), generating a solution ∆𝒖𝑟𝑎𝑛
(𝑗)

 within

the convex hull defined by the intersection points. From a practical point of view, identifying the

27

intersection points for the case of 𝑚 manipulated variables would imply a 𝑂(𝑚2𝑚−1) time

complexity, which is manageable for small 𝑚; however, for 𝑚 ≥ 4 a more sophisticated algorithm

such as the one described in [55] can be implemented.

In the context of the numerical stability of 𝑷(𝑘), VWRLS can handle the situation more

effectively than WRLS due to its flexibility, caused by the dynamic relevance given to new data;

however, in practical implementations this does not imply that the eigenvalues of 𝑷(𝑘), 𝝁𝑷(𝑘),

will be upper bounded at all sample instants. The latter phenomena is the result of the fact that

there is no an upper bound for the degree of time collinearity in the matrix 𝑿𝑘1:𝑘2
, which is

implicitly used in the loss functions ℒ𝑊𝑅𝐿𝑆(𝑘) and ℒ𝑉𝑊𝑅𝐿𝑆(𝑘). The time collinearity, coupled

with the inherently finite resolution of computers, can lead to very large eigenvalues 𝝁𝑷(𝑘).

Because of the potential instability of 𝑷(𝑘), the second proposed strategy focuses on

assuring all eigenvalues 𝝁𝑷(𝑘) are below a threshold, 𝜇𝑚𝑎𝑥, that is user-defined and hardware-

dependent. The last strategy is implemented by tracking the easy-to-compute trace of 𝑷(𝑘),

compare it to 𝑛𝜇𝑚𝑎𝑥 and, if larger than the latter, implementing a saturation-like operation over

𝝁𝑷(𝑘) to produce an upper-bound eigenvalue matrix 𝑷𝑢𝑏𝑒(𝑘). In more detail, if 𝑇𝑟(𝑷(𝑘)) ≥

𝑛𝜇𝑚𝑎𝑥, then a multiple of the identity matrix 𝑐𝜇𝑰 is “injected” into 𝑷(𝑘) by making 𝑷𝑢𝑏𝑒(𝑘) =

𝑫(𝑘) (𝑐𝜇𝑰 + diag(𝝁𝑷(𝑘))
−1

)
−𝟏

𝑫𝑇(𝑘), where 𝑐𝜇 ≥ 1/𝜇𝑚𝑎𝑥 and 𝑫(𝑘)diag(𝝁𝑷(𝑘))𝑫𝑇(𝑘) is the

spectral decomposition of 𝑷(𝑘).

It is worth noting that the calculation of 𝑷𝑢𝑏𝑒(𝑘) can be performed avoiding matrix

inversion by carrying out (2.1.9)-(2.1.10) 𝑛 times with 𝜆 = 1 and using each of the 𝑛 column

vectors of 𝑐𝜇𝑰 instead of the vector 𝒙(𝑘); the latter equivalence is due to the Woodbury matrix

28

inversion [56], over which the Recursive Least Squares algorithm is based upon, and due to each

column vector of 𝑐𝜇𝑰 being zeros except in exactly one of its elements.

A summarized pseudocode of the proposed APC algorithm is depicted in Algorithm 2.2.1.

Algorithm 2.2.1: Adaptive Predictive Control
Input: 𝑦(𝑘), 𝒖(𝑘)

Initialize: 𝜽𝑉𝑊𝑅𝐿𝑆(0)(0), 𝑷(0), 𝒙(0), Γ = {𝛾1, 𝛾2, … , 𝛾𝑛𝑚𝑎𝑥
}

𝜆(𝑘) ⟵ 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝒇𝒐𝒓𝒈𝒆𝒕𝒕𝒊𝒏𝒈 𝒇𝒂𝒄𝒕𝒐𝒓 (𝛥𝜏𝑚𝑖𝑛 , 𝐴𝛥𝜏, 𝑦(𝑘),𝜽𝑉𝑊𝑅𝐿𝑆(𝑘 − 1), 𝒙(𝑘), 𝑒𝑚𝑖𝑛 , 𝑒𝑚𝑎𝑥 , 𝑒𝑛𝑙)

𝜽𝑉𝑊𝑅𝐿𝑆(𝑘), 𝑷(𝑘) ⟵ 𝑉𝑊𝑅𝐿𝑆 (𝜆(𝑘), 𝑦(𝑘), 𝒙(𝑘), 𝑷(𝑘 − 1),𝜽𝑉𝑊𝑅𝐿𝑆(𝑘 − 1))

If 𝑇𝑟(𝑷(𝑘)) ≥ 𝑛𝜇𝑚𝑎𝑥:

 𝑷(𝑘) ⟵ 𝑰𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒅𝒊𝒗𝒆𝒓𝒔𝒊𝒕𝒚 (𝑷(𝑘), 𝑐𝜇)
end If

𝒂0, 𝒃0 ⟵ 𝜽𝑉𝑊𝑅𝐿𝑆(𝑘), 𝑒(𝑘) ⟵ ([𝒚
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

(𝛾𝑛𝑚𝑎𝑥)
(𝑘)]

0
− 𝑦(𝑘))

𝐹𝑙𝑎𝑔_𝑟𝑎𝑛𝑑_𝑠𝑜𝑙 ⟵ 𝒔𝒕𝒆𝒂𝒅𝒚 𝒔𝒕𝒂𝒕𝒆 𝒆𝒓𝒓𝒐𝒓 𝒅𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏(𝑒(𝑘), … , 𝑒(𝑘 − 𝑘𝑠𝑠))

Γℱ ⟵ {}, Γℱ𝑐 ⟵ {}

𝑨𝛾𝑛𝑚𝑎𝑥
, 𝑩𝛾𝑛𝑚𝑎𝑥

, 𝑮𝛾𝑛𝑚𝑎𝑥
⟵ 𝐼𝑴(𝒂0, 𝒃0, 𝛾𝑛𝑚𝑎𝑥

)

For 𝑗 = 𝛾1 to 𝛾𝑛𝑚𝑎𝑥

 𝒂𝑗 , 𝒃𝑗 , 𝒈𝑗 ⟵ 𝑬𝒙𝒕𝒓𝒂𝒄𝒕 (𝑨𝛾𝑛𝑚𝑎𝑥
, 𝑩𝛾𝑛𝑚𝑎𝑥

, 𝑮𝛾𝑛𝑚𝑎𝑥
)

 𝜏𝑗 ⟵ ([𝒚
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

(𝛾𝑛𝑚𝑎𝑥)
(𝑘)]

𝑗
− 𝒂𝑗𝒚𝑝𝑎𝑠𝑡(𝑘) + 𝒃𝑗𝒖𝑝𝑎𝑠𝑡(𝑘) + 𝒈𝑗𝒖(𝑘 − 1))

 𝛥𝒖(𝑗)(𝑘) ⟵
𝒈𝑗

𝑇

𝒈𝑗𝒈𝑗
𝑇 𝜏𝑗

(𝑐)

 𝒖(𝑗)(𝑘) ⟵ 𝒖(𝑘 − 1) + 𝛥𝒖(𝑗)(𝑘)

 If (𝑚 > 1)

 If (𝒖(𝑗)(𝑘) ∉ 𝒰)𝒐𝒓(𝐹𝑙𝑎𝑔_𝑟𝑎𝑛𝑑_𝑠𝑜𝑙 = 1)

 𝒖ℱ
(𝑗)(𝑘) ⟵ 𝑭𝒆𝒂𝒔𝒊𝒃𝒍𝒆 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 (𝒖(𝑗)(𝑘), 𝒖𝑚𝑖𝑛 , 𝒖𝑚𝑎𝑥 , 𝒈𝑗 , 𝜏𝑗 , 𝐹𝑙𝑎𝑔_𝑟𝑎𝑛𝑑_𝑠𝑜𝑙, 𝑒(𝑘), … , 𝑒(𝑘 − 𝑘𝑠𝑠))

 If 𝒖ℱ
(𝑗)(𝑘) ≠ 𝑁𝑢𝑙𝑙:

 Γℱ ⟵ Γℱ ∪ {𝑗}

 Else

 Γℱ𝑐 ⟵ Γℱ𝑐 ∪ {𝑗}, 𝒖𝑠𝑎𝑡
(𝑗)

⟵ 𝑆𝐴𝑇(𝒖(𝑗)(𝑘), 𝒖𝑚𝑖𝑛 , 𝒖𝑚𝑎𝑥)

 end If

 Else

 Γℱ ⟵ Γℱ ∪ {𝑗}, 𝒖ℱ
(𝑗)(𝑘) ⟵ 𝒖(𝑗)(𝑘)

 end If

 Else

 If (𝒖(𝑗)(𝑘) ∉ 𝒰)

 Γℱ𝑐 ⟵ Γℱ𝑐 ∪ {𝑗}, 𝒖𝑠𝑎𝑡
(𝑗)

= 𝑆𝐴𝑇(𝒖(𝑗)(𝑘), 𝒖𝑚𝑖𝑛 , 𝒖𝑚𝑎𝑥)

 Else

 Γℱ ⟵ Γℱ ∪ {𝑗}, 𝒖ℱ
(𝑗)(𝑘) ⟵ 𝒖(𝑗)(𝑘)

 end If

 end If

end for

If Γℱ ≠ {}:
 𝛾∗ = 𝑚𝑖𝑛 Γℱ

29

 𝒖(𝑘) ⟵ 𝒖ℱ
(𝛾∗)

Else

 𝛾∗ = argmin
𝑖∈Γℱ𝑐

|𝜏𝑗 − 𝒈𝑗𝒖𝑠𝑎𝑡
(𝑗)

|

 𝒖(𝑘) ⟵ 𝒖𝑠𝑎𝑡
 𝛾∗

end If

2.3 Industrial application of Adaptive-Linear-Model-based Control Algorithm

2.3.1 Context of implementation

Data center (DC) energy consumption has attracted a lot of attention in recent years.

According to [57], DC energy consumption ranges from 1.1% to 1.5% of total global electricity

consumption, with this proportion showing a tendency to increase [58]. A significant portion of

this energy utilization is devoted to cooling systems that aim to keep server temperatures within a

safe region, necessary to avoid damage to servers. Traditionally in DCs, cooling infrastructure is

either room-based or row-based [59]-[60]. However, in recent years rack-mountable cooling units

have been introduced to cope with the increasing demand for high performance computing (HPC).

These new architectures bring servers and cooling units closer to each other with an aim to decrease

cooling infrastructure energy consumption [60].

In addition to reducing energy consumption, maintaining a stable temperature inside a data

center is crucial since oscillations in air temperature, even by 1 or 2 degrees, increase the

probability of server failures [61]. These oscillations are an inherent characteristic of the ON/OFF

or PID controllers which have been widely used in cooling infrastructure [62]. Due to the proximity

of the rack-mounted cooling units to the servers, any variation in airflow created by these

controllers, as a response to changes in workload, will be experienced immediately by the servers,

which will consequently lead to higher server failure rates.

30

Within the previous scope, the APC algorithm defined in Section 2.2.4 is implemented in

a rack-mountable cooling unit with limited computational capacity and developed by an industrial

partner, the Computing Infrastructure Research Centre (CIRC) (now FYELABS). The goal of this

implementation is to utilize a data-driven control method with hardware limitations that can adapt

to changes in the system, such as addition and removal of servers. Hence, the proposed APC is

chosen due to being implementable on a low-cost and memory limited, off the shelf general

purpose microcontroller. Furthermore, the APC is extended to take monetary costs into

consideration by adding a projected gradient-based algorithm so that, unlike other low complexity

controllers, it can address power consumption and operating costs.

2.3.2 Hardware and physical system description

The test bed considered for the APC implementation consists of a single rack containing

20 servers with an average maximum power consumption of 250W across all servers, and a rack-

mounted cooling unit located at the top of the rack which uses air as the cooling medium. The

cooling unit consists of a heat exchanger and a set of five identical compact industrial fans. The

controlled variable is the rack’s temperature, measured using a sensor of 0.06°C resolution and

located in front of the 12th server, the hottest point in front of the rack. The manipulated variables

are the water flow in the heat exchanger and the PWM signals of the fans. A schematic of the rack

can be observed in Fig. 2.3.1.

The water flow in the heat exchanger is regulated by an on/off valve, whose aperture is

controlled by a local feedback loop model-based algorithm that generates electrical pulses to

manipulate the aperture. Hence, the input to the water flow regulation algorithm is the desired

value of water flow computed by the temperature controller. The water flow, with a maximum

31

value near 21L/min, is measured by a sensor with average resolution of 1.06L/min whose value is

fed back to the water regulation algorithm. The fans, with a maximum power consumption of

168W per unit, are directly manipulated by the controller through 8-bit resolution PWM signals at

488Hz.

Water is supplied by a branch of the building’s water system, and its temperature is

regulated by an outside controller using cooling tower technology. Since the outside controller is

not designed for delivering a constant water temperature, there are changes in the water inlet

temperature of the heat exchanger in the rack, which can have significant impact on the system.

Therefore, the water inlet temperature is considered a disturbance for the system.

An Arduino Mega, a low-cost general-purpose microcontroller, is used to implement the

proposed APC. The microcontroller is characterized by having 8KB of SRAM memory, a 256KB

Flash memory and a 16MHz crystal oscillator.

Fig. 2.3.1. Schematic of the rack configuration and cooling system location.

32

2.3.3 Implementation Challenges in Real-Time APC and Monetary Optimization

One of the limitations with the APC’s adaptive algorithm is that, even when the error is

close to zero, the parameters 𝜽𝑉𝑊𝑅𝐿𝑆(𝑘) do not necessarily represent the true dynamics of the

system, due to the limited amount of online information. The latter can in turn have a significant

impact on the performance of the predictive algorithm, especially for long prediction horizons.

This issue can be handled by using one of the following approaches: constraining 𝑴𝑉𝑊𝑅𝐿𝑆(𝑘) to

be in a specific space or establishing constraints for 𝒈𝑗 in the predictive algorithm. In this

implementation, the latter is chosen.

Typically, the output of a dynamic system is physically constrained, i.e., 𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑘) ≤

𝑦𝑚𝑎𝑥 , ∀𝑘. Hence, in the GPC-based algorithm the following constraint can be imposed:

𝑦̂𝑓𝑟𝑒𝑒
(𝑐) (𝑘 + 𝑗|𝑘) = 𝑆𝐴𝑇(𝒂𝑗𝒚𝑝𝑎𝑠𝑡(𝑘) + 𝒃𝑗𝒖𝑝𝑎𝑠𝑡(𝑘) + 𝒈𝑗𝒖(𝑘 − 1); 𝑦𝑚𝑖𝑛; 𝑦𝑚𝑎𝑥); where 𝑦𝑚𝑎𝑥 >

𝑦𝑚𝑖𝑛 and 𝑦̂𝑓𝑟𝑒𝑒
(𝑐) (𝑘 + 𝑗|𝑘) represents the estimated (free) evolution of the system at time instant 𝑗,

when no change in the input is implemented, so that the constrained estimated output error is 𝜏𝑗
(𝑐)

=

[𝒚
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

(𝛾𝑛𝑚𝑎𝑥)
(𝑘)]

𝑗
− 𝑦̂𝑓𝑟𝑒𝑒

(𝑐) (𝑘 + 𝑗|𝑘). In addition, since (2.2.12) captures in 𝒈𝑗 the physical effect that

each manipulated variable has on the output, it is possible to constrain the values of 𝒈𝑗 by setting

𝒈𝑗
(𝑐)

= 𝑆𝐴𝑇(𝒈𝑗, 𝒈𝑚𝑖𝑛, 𝒈𝑚𝑎𝑥).

Even when 𝒈𝑚𝑖𝑛 and 𝒈𝑚𝑎𝑥 are not known, due to physical constraints most industrial

systems do have a minimum and maximum gain for each input variable and it is information that

can be easily obtained or estimated. Consequently, by using these minimum and maximum

possible gains with possibly a margin of error (to overestimate) it is possible to establish a lower

bound for the true 𝒈𝑚𝑖𝑛 and an upper bound for the true 𝒈𝑚𝑎𝑥. The result is a reduction in the

33

negative effects of transitory lack of information and large perturbations that dramatically change

the value of 𝜽𝑉𝑊𝑅𝐿𝑆(𝑘) in a sudden manner and propagate to 𝒈𝑗.

For cases in which the signs of the gains of the manipulated variables, with respect to the

output, are known and constant, constraining 𝒈𝑗 can avoid counterintuitive control actions

(𝒖ℱ
(𝑗)(𝑘)) that, even though they do not necessarily prevent the desired set-points from being

achieved, can waste excessive energy. To elaborate further, such cases can occur for a multiple

input system in which the output behavior of one variable can be attributed to multiple inputs, and

limited information about the inputs can cause a false attribution of positive gain effects to input

variables with negative gains.

By considering the economic aspect linked to manipulated variable usage and exploiting

the flexibility of (2.2.12), it is possible to implement an algorithm that minimizes the monetary

cost rate 𝐶$(𝒖(𝑘)). Assuming the monetary cost function is differentiable, a gradient descent

algorithm restricted to be orthogonal to 𝒈𝑗
(𝑐)𝑇

can be implemented, with a learning rate 𝛼$. The

resulting direction for minimizing 𝐶$(𝒖(𝑘)) is then given by

−∇𝐶$(𝒖(𝑘)) +
𝒈𝑗

(𝑐)𝑇

𝒈𝑗
(𝑐)

𝒈𝑗
(𝑐)𝑇

𝒈𝑗
(𝑐)

∇𝐶$(𝒖(𝑘)) (2.3.1)

The use of (2.3.1) is suggested only when a feasible solution has been found and the system

output has settled around the desired set-point, so that no additional restrictions are imposed

on 𝒖(𝑘) for the transient response, which would also increase the diversity in the input and

subsequently benefit the VWRLS algorithm.

A summarized pseudocode of the practical implementation of the APC can observed in

Algorithm 2.3.1.

34

Algorithm 2.3.1: Adaptive Predictive Control for practical implementation
Input: 𝑦(𝑘), 𝒖(𝑘)

Initialize: 𝜽𝑉𝑊𝑅𝐿𝑆(0)(0), 𝑷(0), 𝒙(0), Γ = {𝛾1, 𝛾2, … , 𝛾𝑛𝑚𝑎𝑥
}

𝜆(𝑘) ⟵ 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝒇𝒐𝒓𝒈𝒆𝒕𝒕𝒊𝒏𝒈 𝒇𝒂𝒄𝒕𝒐𝒓 (𝛥𝜏𝑚𝑖𝑛 , 𝐴𝛥𝜏, 𝑦(𝑘),𝜽𝑉𝑊𝑅𝐿𝑆(𝑘 − 1), 𝒙(𝑘), 𝑒𝑚𝑖𝑛 , 𝑒𝑚𝑎𝑥 , 𝑒𝑛𝑙)

𝜽𝑉𝑊𝑅𝐿𝑆(𝑘), 𝑷(𝑘) ⟵ 𝑉𝑊𝑅𝐿𝑆 (𝜆(𝑘), 𝑦(𝑘), 𝒙(𝑘), 𝑷(𝑘 − 1),𝜽𝑉𝑊𝑅𝐿𝑆(𝑘 − 1))

If 𝑇𝑟(𝑷(𝑘)) ≥ 𝑛𝜇𝑚𝑎𝑥:

 𝑷(𝑘) ⟵ 𝑰𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒅𝒊𝒗𝒆𝒓𝒔𝒊𝒕𝒚 (𝑷(𝑘), 𝑐𝜇)
end If

𝒂0, 𝒃0 ⟵ 𝜽𝑉𝑊𝑅𝐿𝑆(𝑘),

𝑒(𝑘) ⟵ ([𝒚
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

(𝛾𝑛𝑚𝑎𝑥)
(𝑘)]

0
− 𝑦(𝑘))

𝐹𝑙𝑎𝑔_𝑟𝑎𝑛𝑑_𝑠𝑜𝑙 ⟵ 𝒔𝒕𝒆𝒂𝒅𝒚 𝒔𝒕𝒂𝒕𝒆 𝒆𝒓𝒓𝒐𝒓 𝒅𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏(𝑒(𝑘), … , 𝑒(𝑘 − 𝑘𝑠𝑠))

Γℱ ⟵ {}, Γℱ𝑐 ⟵ {}

𝑨𝛾𝑛𝑚𝑎𝑥
, 𝑩𝛾𝑛𝑚𝑎𝑥

, 𝑮𝛾𝑛𝑚𝑎𝑥
⟵ 𝐼𝑴(𝒂0, 𝒃0, 𝛾𝑛𝑚𝑎𝑥

)

For 𝑗 = 𝛾1 to 𝛾𝑛𝑚𝑎𝑥

 𝒂𝑗 , 𝒃𝑗 , 𝒈𝑗 ⟵ 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 (𝑨𝛾𝑛𝑚𝑎𝑥
, 𝑩𝛾𝑛𝑚𝑎𝑥

, 𝑮𝛾𝑛𝑚𝑎𝑥
)

 𝒈𝑗
(𝑐)

= 𝑆𝐴𝑇(𝒈𝑗 , 𝒈𝑚𝑖𝑛 , 𝒈𝑚𝑎𝑥)

 𝑦̂𝑓𝑟𝑒𝑒
(𝑐) (𝑘 + 𝑗|𝑘) = 𝑆𝐴𝑇(𝒂𝑗𝒚𝑝𝑎𝑠𝑡(𝑘) + 𝒃𝑗𝒖𝑝𝑎𝑠𝑡(𝑘) + 𝒈𝑗

(𝑐)
𝒖(𝑘 − 1), 𝑦𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥)

 𝜏𝑗
(𝑐)

⟵ ([𝒚
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

(𝛾𝑛𝑚𝑎𝑥)
(𝑘)]

𝑗
− 𝑦̂𝑓𝑟𝑒𝑒

(𝑐) (𝑘 + 𝑗|𝑘))

 𝛥𝒖(𝑗)(𝑘) ⟵
𝒈𝑗

(𝑐)𝑇

𝒈𝑗
(𝑐)

𝒈𝑗
(𝑐)𝑇

𝜏𝑗
(𝑐)

 𝒖(𝑗)(𝑘) ⟵ 𝒖(𝑘 − 1) + 𝛥𝒖(𝑗)(𝑘)

 If (𝑚 > 1) :

 If (𝒖(𝑗)(𝑘) ∉ 𝒰)𝒐𝒓(𝐹𝑙𝑎𝑔_𝑟𝑎𝑛𝑑_𝑠𝑜𝑙 = 1)

 𝒖ℱ
(𝑗)(𝑘) ⟵ 𝑭𝒆𝒂𝒔𝒊𝒃𝒍𝒆 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 (𝒖(𝑗)(𝑘), 𝒖𝑚𝑖𝑛 , 𝒖𝑚𝑎𝑥 , 𝒈𝑗

(𝑐)
, 𝜏𝑗

(𝑐)
, 𝐹𝑙𝑎𝑔_𝑟𝑎𝑛𝑑_𝑠𝑜𝑙, 𝑒(𝑘), … , 𝑒(𝑘 − 𝑘𝑠𝑠))

 If 𝒖ℱ
(𝑗)(𝑘) ≠ 𝑁𝑢𝑙𝑙:

 Γℱ ⟵ Γℱ ∪ {𝑗}
 Else

 Γℱ𝑐 ⟵ Γℱ𝑐 ∪ {𝑗}, 𝒖𝑠𝑎𝑡
(𝑗)

⟵ 𝑆𝐴𝑇(𝒖(𝑗)(𝑘), 𝒖𝑚𝑖𝑛 , 𝒖𝑚𝑎𝑥)

 end If

 Else

 Γℱ ⟵ Γℱ ∪ {𝑗}, 𝒖ℱ
(𝑗)(𝑘) ⟵ 𝒖(𝑗)(𝑘)

 end If

 Else

 If (𝒖(𝑗)(𝑘) ∉ 𝒰)

 Γℱ𝑐 ⟵ Γℱ𝑐 ∪ {𝑗}, 𝒖𝑠𝑎𝑡
(𝑗)

= 𝑆𝐴𝑇(𝒖(𝑗)(𝑘), 𝒖𝑚𝑖𝑛 , 𝒖𝑚𝑎𝑥)

 Else

 Γℱ ⟵ Γℱ ∪ {𝑗}, 𝒖ℱ
(𝑗)(𝑘) ⟵ 𝒖(𝑗)(𝑘)

 end If

 end If

end for

If Γℱ ≠ {}:
 𝛾∗ = 𝑚𝑖𝑛 Γℱ

Else

 𝛾∗ = argmin
𝑖∈Γℱ𝑐

|𝜏𝑗
(𝑐)

− 𝒈𝑗
(𝑐)

𝒖𝑠𝑎𝑡
(𝑗)

|

35

end If

If 𝐶𝑜𝑠𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 and Γℱ ≠ {}:

 Δ𝒖$ ⟵ −∇𝐶$ (𝒖ℱ
(𝛾∗)

(𝑘)) +
𝒈𝑗

(𝑐)𝑇

𝒈𝑗
(𝑐)

𝒈𝑗
(𝑐)𝑇

𝒈𝑗∇𝐶$ (𝒖ℱ
(𝛾∗)

(𝑘))

 𝒖(𝑘) ⟵ 𝑪𝒐𝒔𝒕 𝒓𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 (Δ𝒖$, 𝒖ℱ
(𝛾∗)

(𝑘), 𝛼$, 𝑒(𝑘))

Else

 𝒖(𝑘) ⟵ 𝒖𝑠𝑎𝑡
 𝛾∗

end If

It should be highlighted that for the proposed VWRLS a proof of convergence is not

available. However, the variable forgetting factor implemented belongs to a family of RLS

algorithms described in [63] where, under some excitation and boundedness assumptions for 𝒙(𝑘),

it is shown that for systems with time varying parameters and a bounded disturbance, RLS with a

variable forgetting factor will have a bounded tracking error. This, together with the random

solution selection, the lower bound on the forgetting factor, 𝜆𝑚𝑖𝑛, from Section 2.1.3 as well as

the experimental results shown in the following sections, validate the effectiveness of the

algorithm.

2.3.4 APC Experimental Simulations

The proposed APC defined in Algorithm 2.3.1, except for the monetary compensation, is

compared with a standard APC via simulation, replacing the proposed predictive algorithm with

the original version of the GPC, both using VWRLS as the adaptive algorithm. The proposed

controllers were tested in a MATLAB simulation environment. The simulated system has similar

characteristics to the physical system described in Section 2.3.1 and it is composed of independent

linearized subsystems of PWM signals, water flow and water inlet temperature; the water inlet

temperature is considered as a disturbance. For the standard APC the parameters of the GPC’s loss

function (2.2.10) were set to 𝛾𝑐 = 1, 𝑸𝑦 = 𝑸𝑢 = 𝑰. Additionally, a PI controller designed with the

36

Split-Range strategy (PI-SR), described in [64]-[65] and characterized by a hierarchy of

manipulated-variables activation sequences, was simulated to provide a comparison to an

alternative low-complexity control algorithm.

The VWRLS parameters for both APC controllers were set as follows: 𝑒𝑚𝑖𝑛 =

0.05, 𝑒𝑚𝑎𝑥 = 0.2, 𝑒𝑛𝑙 = 0.01, 𝑝old = 0.1, Δ𝜏𝑚𝑖𝑛 = 350, 𝐴𝛥𝜏 = 100, and 𝜇𝑚𝑎𝑥 = 1000. Also, the

VWRLS considered eight previous values of the output and inputs, i.e., 𝑑 = 𝑒1 = 𝑒2 = 8, for a

total of 24 learnable parameters. For both controllers, the maximum prediction horizon 𝛾𝑛𝑚𝑎𝑥
 was

set to 24. This value was tuned to optimize the performance of the APC with standard GPC. In

addition, 𝛾1 was set to 8 and the output’s constraints were set to 𝑦𝑚𝑖𝑛 = 15, 𝑦𝑛𝑚𝑎𝑥
= 35.

Since the constraints for 𝒈𝑗, described in Section 2.3.3, decreased the performance of the

standard APC in simulations, it was implemented only in the proposed APC, where 𝒈𝑚𝑖𝑛 and

𝒈𝑚𝑎𝑥 were determined experimentally and set to [−0.2/255,−0.2/27] and [−10/255,−10/

27], respectively. Also, the random solution selection from Section 2.2.4 was implemented using

the simple algorithm of iterating across each edge in 𝒰, since the space dimensionality considered

was low, two in the current implementation. The random solution selection was not compatible

with the standard GPC, therefore it was not implemented in that setting.

For the simulated system some additional physical restrictions were implemented. The

output temperature was discretized to a resolution of 0.06°C, identical to the resolution of the

sensors used in the physical system described in Section 2.3.2. Also, the water inlet temperature

variable was set to a constant value of 12°C plus a sinusoidal function with a period of 300s and

bounded random amplitude to test the system under perturbation conditions. The water flow and

PWM signal values calculated by the controllers were discretized to 0.02L/min and 1 unit,

37

respectively, and for both controllers their values were constrained to [100, 255] for PWM and

[10, 27] for the water flow. The amplitude of the water temperature sinusoidal component followed

a half-normal distribution with mean absolute value 𝜇 of 0.4°C and standard deviation 𝜎 of 0.3°C.

Finally, a sampling time of 5 seconds was used since it represented the minimum stable sampling

time that could be used in the real implementation.

One relevant aspect resulting from the physical constraints in the simulated system is the

increased time for the VWRLS algorithm to converge, due to the resolution of the PWM and the

sensor readings which decrease the frequency information in the signals. In addition, the APC with

standard GPC does not identify which values (𝒈𝑗 , 𝜏𝑗) generate infeasible solutions. In this aspect,

since the proposed APC first identifies and discards solutions that could lead to this problem, it is

expected to provide better regulation.

For the PI-SR control the procedure defined in [65] was implemented, resulting in internal

parameter values 𝑣∗ = 0.2838, 𝛼1 = 2.142, 𝛼2 = 0.93, 𝐾𝑐 = 16.50 and 𝜏𝐼 = 70. For this

scheme, the water flow was used as the first manipulated variable in the PI-SR hierarchy. The

results of the simulations are shown from Fig. 2.3.2 to Fig. 2.3.4. The Mean Squared Error of the

simulation results for Fig. 2.3.2 can be found in Table 2.3.1.

From Fig. 2.3.2 it can be observed that the PI-SR and proposed APC algorithms have

similar performance, with both showing improved performance over the APC with standard GPC.

However, PI-SR shows more oscillations around the operating point than the APC controllers,

possibly due to the activation of the second manipulated variable, as observed in Fig. 2.3.4. Similar

behavior was observed with respect to the water flow manipulated variable for both APC

controllers, but more short-term oscillations were generated by the proposed APC as identified in

Fig. 2.3.3, mostly attributed to the variable prediction horizon and the random solution selection.

38

Also, while the APC with standard GPC took more than 200s to show reasonable performance,

the proposed APC stabilized in less than 100s.

Fig. 2.3.3. PWM values for the APC with standard GPC, PI-SR and proposed APC. Resolution

of 1, within the range [100,255] (8-bit representation).

Fig. 2.3.2. Performance of APC with standard GPC, PI-SR and proposed APC. The random

sinusoidal amplitude parameters of the water temperature are set to 𝜇=0.4°C and 𝜎=0.3°C.

39

It is important to note that while stability cannot be guaranteed for the manipulated values

generated by the proposed APC, for the current stable system the VWRLS algorithm when facing

model mismatch will use the error values, 𝑒(𝑘|𝑘 − 1) = 𝑦(𝑘) − 𝑦̂(𝑘|𝑘 − 1) to make corrections.

In addition, the constraints 𝒈𝑚𝑖𝑛 and 𝒈𝑚𝑎𝑥 used in the GPC-based algorithm will result in the

model remaining in a region more consistent with the physical properties of the system,

independently of how large the error values are. Furthermore, one of the main advantages of the

proposed APC approach in the current implementation is that precise tuning was not required to

have competitive performance.

Controller RMSE

APC standard GPC 0.5095

APC 0.4670

PI-SR 0.4778

Table 2.3.1. RMSE performance of the controllers in the
simulation.

Fig. 2.3.4. Water flow values for the APC with standard GPC, PI-SR and proposed APC.

Resolution of 0.02, within the range [10,27].

40

The proposed APC controller showed two major advantages over the standard APC in the

presented simulations. First, it can discard values for manipulated variables that are outside of the

physical constraints, whereas such values implicitly affect the standard APC. Second, the proposed

APC can create more diversity in the values of the manipulated variables by selecting semi-random

solutions when a threshold of steady-state error is reached, which leads to a more accurate model

computed by the adaptive algorithm.

2.3.5 APC Experiments in a rack-mounted cooling unit

The proposed APC defined in Algorithm 2.3.1 (Section 2.3.3) was used to perform a set of

experiments on the physical system described in Section 2.3.2. Both the proposed APC and the

water flow regulation algorithm were implemented on the low-cost microcontroller installed in the

cooling system, since the memory space proved to be more than enough for their implementation.

Given the memory and CPU speed constraints (8KB SRAM and 16MHz), a computationally

expensive iterative controller implementation would have been infeasible for the desired sampling

time (5s). In contrast, the proposed APC required approximately the same memory space as a

standard unconstrained APC with control horizon of 1. In more detail, the implementation of

Algorithm 2.3.1, including the monetary cost reduction strategy, required approximately 60% of

the SRAM for static variables and 30% for non-static variables, resulting in 90% total memory

usage.

It is important to note that even though the water flow regulation algorithm was encoded

in the same microcontroller, this algorithm was transparent to the proposed APC since its

parameters are not used for the controller design and it represented less than 2% of the memory

used. Hence, the water flow regulation algorithm was considered part of the controlled physical

41

system. Also, the acquisition times for the water flow and temperatures were close to 4.5s, which

made 5s the minimum achievable stable sampling time in the microcontroller. A general schematic

of the implementation of the APC is shown in Fig. 2.3.5.

The parameters for the APC were set as follows: 𝑒̂𝑚𝑖𝑛 = 0.045, 𝑒̂𝑚𝑎𝑥 = 0.2, 𝑒̂𝑧 =

0.001, 𝑝min = 0.1, 𝑤𝑚𝑖𝑛 = 150 and 𝜇𝑚𝑖𝑛 = 0.1. The eight previous values of outputs and inputs

yield a total of 24 coefficients. Also, 𝛾𝑚𝑖𝑛 = 3, 𝛾𝑚𝑎𝑥 = 14, 𝑦𝑚𝑖𝑛 = 20, 𝑦𝑚𝑎𝑥 = 40, and 𝒈𝑚𝑖𝑛 and

𝒈𝑚𝑎𝑥 values were set to [−0.2/255,−0.2/30] and [−10/255,−10/30], respectively. The water

flow and PWM values calculated by the APC were discretized to 0.02L/min and 1unit,

respectively. Finally, the manipulated variables were constrained to [35,255] for PWM and

[9,21]L/min for water flow. The minimum achievable stable sampling time of 5 seconds was used

for these experiments and their results can be observed in Fig. 2.3.6 - Fig. 2.3.8.

Fig. 2.3.5. Block diagram representation of the system being controlled and the controller.

42

Fig. 2.3.6. Proposed APC performance with the top 12 servers on, the bottom servers off and

the air ducts of the latter blocked.

Fig. 2.6.7. PWM manipulation of APC. Resolution of 1, within the range [35,255] (8-bit

representation).

43

In Fig. 2.3.6, after the initial 400s when the VWRLS algorithm has obtained more

information about the system, it can be observed that the APC’s performance tends to improve,

generating less overshoot. The decreased overshoot can be mainly attributed to the forecasting

performed by the predictive algorithm of APC. In addition, it is worthwhile noticing that in Fig.

2.3.7 and Fig. 2.3.8 the variations in steady-state found in the manipulated variables are partially

caused by the water inlet temperature oscillation, and the APC is capable of incorporating this

effect through parameter adaptation, implying consistent results with those obtained in simulation.

Additional experiments were conducted to test the monetary cost reduction algorithm in

Section 2.3.3 and described in Algorithm 2.3.1. The results from the latter and the conditions for

implementation are explained next. Assuming a case in which both water and energy have

associated costs, the monetary cost function of the manipulated variables has the form 𝐶$(𝒖(𝑘)) =

𝒃$𝒖
𝑗, where 𝒃$ contains the cost rate of water per litre/min and an estimate of the associated cost

rate for the energy spent for fans, 𝒃$ = [5.94(10−6) 𝑐𝑒𝑛𝑡𝑠/𝑠 6.340(10−3) 𝑐𝑒𝑛𝑡𝑠/ (
𝐿

𝑚𝑖𝑛
𝑠)].

Fig. 2.3.8. Water flow manipulation of APC. Resolution of 0.02, within the range [9,21].

44

The latter values were computed assuming 7.3 cents/kWh and 3.84 CAD/m3 as fixed utility prices,

based on information from the province of Ontario, Canada [66]-[67].

The monetary cost reduction algorithm was activated only when the system output

approximately matched the desired set-point (±0.06) for four consecutive iterations. The

performance of the APC with the monetary cost reduction, APC$, is shown in Fig. 2.3.9 - Fig.

2.3.11, and the cumulative monetary reduction through time is observed in Fig. 2.3.12. From them,

it is possible to observe that the APC$ generates a reduction near 15% of 𝐶$(𝒖(𝑘)) when compared

to the APC. Considering that a typical large DC has from hundreds to thousands of rack units, the

savings of an estimated 3700CAD per rack per year are significant. It is important to note that both

algorithms, APC$ and APC, are similar in general performance. However, since the former slowly

changes the state of the system by making small adjustments to 𝒖(𝑘), it can become more

vulnerable to disturbance effects caused by the water temperature, as observed in Fig. 2.3.9.

Despite this, when the system changes the desired set-point the algorithm that minimizes 𝐶$(𝒖(𝑘))

is not active until it returns to the set-point.

 Fig. 2.3.9. APC and APC with Monetary optimization performance

45

Fig. 2.3.11. PWM manipulation of APC and APC with Monetary optimization. Resolution of

1, within the range [35,255] (8-bit representation).

Fig. 2.3.10. Water flow manipulation of APC and APC with Monetary optimization.

Resolution of 0.02, within the range [9,21].

46

The behavior of the manipulated variables for the APC$ are consistent with the

minimization objective defined by 𝒃$, since the energy price of the water flow is more expensive

per unit than that linked to the fans.

The Mean Squared Error of the results for Fig. 2.3.5 and Fig. 2.3.9 can be found in Table

2.3.2 as Experiment 1 and Experiment 2, respectively.

 Controller RMSE

Experiment 1 APC 0.3650

Experiment 2
APC 0.0814

APC$ 0.1088

Table 2.3.2. RMSE performance of the controllers in the simulation

Fig. 2.3.12. Savings of the APC with 𝐶$(𝒖(𝑘)) enabled, with respect to 𝐶$(𝒖(𝑘)) disabled.

47

Chapter 3

Neural-Network-based Models for Time Series

In this chapter a brief introduction to Neural Network models intended for time series is presented.

Feedforward and Recurrent Neural Network models are covered, emphasizing the LSTM recurrent

architecture. In addition, the backpropagation (BP) algorithm, used in these models, is concisely

presented using compact matrix notation to facilitate its readability and interpretation. For

reference in later chapters standard equations for each architecture, linked to the algorithm, are

expressed; these equations are also used to describe the models’ capabilities and limitations.

3.1 Feedforward and Recurrent Neural Networks

In recent years, the field of time series has been through a gradual but important

transformation, caused in large advances in the machine learning (ML) area. Among these, Neural

Networks (NN) have emerged as an effective alternative to linear models, specifically due to the

capability to model nonlinearities in time-dependent data.

When compared to Adaptive Linear Models (ALM) studied in previous chapters, NN

models carry out a more direct approach when used to handle nonlinearities, by trying to capture

their effects on the output, 𝒚(𝑘), using nonlinear functions, 𝜎(∙), usually referred to as activation

48

functions or hidden neurons. Feedforward neural networks (FNN), one of the most popular

architectures, have shown remarkable results beyond time series modelling and across many

scientific applications [23]-[26]. One of the simplest FNN architectures, with one hidden layer,

can be observed in (3.1.1)-(3.1.2) (with its corresponding graphical representation in Fig. 3.1.1):

𝒉(1)(𝑘) = 𝜎(𝑾0𝒙(𝑘)) (3.1.1)

𝒚̂(𝑘) = 𝑾1𝒉
(1)(𝑘) (3.1.2)

where 𝒉(1)(𝑘) ∈ ℝ𝑟, 𝑾0 ∈ ℝ𝑟×𝑛, 𝑾1 ∈ ℝ𝑚×𝑟, 𝜎(∙) is applied elementwise and 𝒙(𝑘) is assumed

to contain a constant ‘1’ as its last element to introduce a bias. These equations, describing the NN

architecture, will be referred to from now on as forward equations.

An FNN with more complex architecture is shown in Fig. 3.1.2 and defined by the forward

equations (3.1.3)-(3.1.4); here, 𝐿 hidden layers are used, 𝒉(0)(𝑘) = 𝒙(𝑘) and 𝑾𝑙 ∈ ℝ𝑟𝑙+1×𝑟𝑙.

When more than a few hidden layers are used, such models are referred to as Deep Neural

Networks (DNN) or Deep Learning models.

𝒉(𝑙)(𝑘) = 𝜎 (𝑾𝑙−1𝒉
(𝑙−1)(𝑘)) , ∀𝑙 ≥ 1 (3.1.3)

𝒚̂(𝑘) = 𝑾𝐿𝒉
(𝐿)(𝑘) (3.1.4)

For the case of most FNN models intended for regression the computation of the learnable

parameters, 𝑾𝑙, is performed by minimizing the MSE loss function over a training set, ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

=

∑ ‖𝒆(𝑗)‖2𝑘𝑡𝑟𝑎𝑖𝑛
𝑗=1 , while tracking the MSE of a validation set, ℒ𝑀𝑆𝐸

(𝑡𝑣𝑎𝑙)
= ∑ ‖𝒆(𝑗)‖2𝑘𝑣𝑎𝑙

𝑗=𝑘𝑡𝑟𝑎𝑖𝑛+1 , as in

Section 2.1.1. As FNNs (and NNs in general) are nonlinear models, the loss function is minimized

using any of the iterative GD-based algorithms, with a vanilla version described in (3.1.5).

49

 𝜽:= 𝜽 − 𝛼𝑖
𝜕ℒ𝑀𝑆𝐸

(𝑡𝑟𝑎𝑖𝑛)

𝜕𝜽
 (3.1.5)

where 𝜽 = 𝑉𝑒𝑐([𝑾0, … ,𝑾𝐿]) is the set of learnable parameters and 𝛼𝑖 is the (possibly varying)

learning rate at the 𝑖th iteration .

Fig. 3.1.1. Graphical representation of a Linear Model (left) and Neural Network with one hidden

layer (right).

Fig. 3.1.2. Graphical representation of a Neural Network with 𝐿 hidden layers.

50

When (3.1.5) is used (or one of its variations) on an NN model as defined in (3.1.3)-(3.1.4),

the changes, 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/𝜕𝑾, in the front layers (rightmost in Fig. 3.1.2) influence the changes in

the back layers (leftmost in Fig. 3.1.2), creating the well-known backpropagation effect which

results from the chain-rule application to 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/𝜕𝜽(𝑝). The associated BP equations for the

architecture (3.1.3)-(3.1.4) (henceforth referred to as backward equations) are defined in (3.1.6)-

(3.1.7).

𝜹𝑘0𝑘𝑓

(𝑙) = (𝑾𝑙+1
𝑇 𝜹𝑘0𝑘𝑓

(𝑙+1)
) ∘ 𝑯̇𝑘0𝑘𝑓

(𝑙+1)
 (3.1.6)

𝑾𝑙
(𝑝+1)

= 𝑾𝑙
(𝑝)

+ 𝛼𝑝𝜹𝑘0𝑘𝑓

(𝑙) (𝑯𝑘0𝑘𝑓

(𝑙))
𝑇

 (3.1.7)

where 𝑯𝑘0𝑘𝑓

(𝑙) = [𝒉(𝑙)(𝑘0),… , 𝒉(𝑙)(𝑘𝑓)], 𝑯̇𝑘0𝑘𝑓

(𝑙) = [𝒉̇(𝑙)(𝑘0),… , 𝒉̇(𝑙)(𝑘𝑓)], 𝒉̇(𝑙)(𝑘) =

𝜎̇ (𝒛(𝑙−1)(𝑘)), 𝜎̇ (𝒛(𝑙)(𝑘)) = 𝑑𝜎 (𝒛(𝑙)(𝑘)) /𝑑𝒛(𝑙)(𝑘), 𝒛(𝑙)(𝑘) = 𝑾𝑙𝒉
(𝑙)(𝑘), 𝜹𝑘0𝑘𝑓

(𝑙) = 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/

 𝜕𝒛𝑘0𝑘𝑓

(𝑙)
; 𝜹𝑘0𝑘𝑓

(𝐿)
= [𝒆(𝑘0),… , 𝒆(𝑘𝑓)], 𝑯𝑘0𝑘𝑓

(0)
= [𝒙(𝑘0),… , 𝒙(𝑘𝑓)]; “∘” denotes the Hadamard

product (elementwise multiplication); and the term 𝜹𝑘0𝑘𝑓

(𝑙)
 is the so-called propagated error across

the network, received at the 𝑙th hidden layer. A high-level graphical representation of the training

process when using the forward and backward equations is shown in Fig. 3.1.3.

Even though an FNN can model some nonlinear components in the data, it still has

limitations regarding learning time dependencies in a time series, since it does not consider the

interactions between previous and current inputs [68]-[69]. A widely used approach to overcome

this limitation in the context of time series is the augmented-input approach, 𝒙𝑎𝑢𝑔(𝑘) =

𝑉𝑒𝑐(𝑿𝑘−𝑗:𝑘), by which the previous 𝑗 values in 𝒙(𝑘) are directly introduced to the network in

order to extract their interactions [68]-[69].

51

One of the disadvantages of the augmented-input approach is the potential dimensionality

increase in the layers’ weights, as well as larger number of layers, needed for the FNN to extract

temporal information. Furthermore, the increase in model size can also make the minimization

process more complex due to the increase of the search space of the learnable parameters [70]. In

addition, in this approach the time dependency of 𝒚(𝑘) on the previous input information is limited

to exactly the 𝑗 previous time instances contained in 𝒙𝑎𝑢𝑔(𝑘). The previous process can also be

interpreted as the FNN trying to model the mean of the output 𝒚(𝑘) conditioned on previous inputs,

i.e., 𝐸(𝒚(𝑘)|𝒙(𝑘), . . , 𝒙(𝑘 − 𝑗)), by encoding it in its weights 𝑾𝑙. This potentially requires a large

number of layers when nonlinear complex time dependencies exist in the data, since the first few

layers create a linear combination of the input elements.

Fig. 3.1.3. Graphical representation of an FNN training process: forward pass (left) and

backward pass (right).

52

One option to model nonlinear time dependencies in the area of time series, following an

NN-based model, is the Recurrent Neural Network (RNN) model, a type of NN that tries to extend

the limits of FNN models in capturing long-term dependencies. RNNs are characterized by using

feedback connections within hidden layers through recurrent matrices, 𝑼𝑙 ∈ ℝ𝑟𝑙×𝑟𝑙, [71]-[72] (see

Fig. 3.1.4). Through this connection, the output 𝒚̂(𝑘) becomes dependent not only on the current

input 𝒙(𝑘) but also on the extracted information from previous input values 𝒙(𝑘 − 𝑗). The vanilla

RNN forward equations of an 𝐿-hidden layer architecture, resulting from using (3.1.5) to minimize

ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

, are defined in (3.1.8)-(3.1.9).

𝒉(𝑙)(𝑘) = 𝜎 (𝑾𝑙−1𝒉
(𝑙−1)(𝑘) + 𝑼𝑙𝒉

(𝑙)(𝑘 − 1)) , ∀𝑙 ≥ 1 (3.1.8)

𝒚̂(𝑘) = 𝑾𝐿𝒉
(𝐿)(𝑘) (3.1.9)

Fig. 3.1.4. Graphical representation of an FNN with augmented input (left) and RNN (right)

53

The vanilla RNN backward equations, resulting from using (3.1.5) to minimize ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

,

are described in (3.1.10)-(3.1.14), where 𝜹𝒉
(𝑙)(𝑘) = 𝜕ℒ𝑀𝑆𝐸

(𝑡𝑟𝑎𝑖𝑛)
/ 𝜕𝒉(𝑙)(𝑘), 𝜹𝒉

(𝐿)(𝑘) = 𝒆(𝑘) and

𝒉(0)(𝑘) = 𝒙(𝑘).

𝜹𝒉
(𝑙)(𝑘) = 𝑾𝑙

𝑇 (𝜹𝒉
(𝑙+1)(𝑘) ∘ 𝒉̇(𝑙+1)(𝑘)) + 𝑼𝑙

𝑇 (𝜹𝒉
(𝑙)(𝑘 + 1) ∘ 𝒉̇(𝑙)(𝑘 + 1)) (3.1.10)

𝜹𝑾
(𝑙)(𝑘) = (𝜹𝒉

(𝑙+1)(𝑘) ∘ 𝒉̇(𝑙+1)(𝑘))𝒉(𝑙)(𝑘)𝑇 (3.1.11)

𝜹𝑼
(𝑙)(𝑘) = (𝜹𝒉

(𝑙)(𝑘 + 1) ∘ 𝒉̇(𝑙)(𝑘 + 1))𝒉(𝑙)(𝑘)𝑇 (3.1.12)

𝑾𝑙
(𝑝+1)

= 𝑾𝑙
(𝑝)

+ 𝛼𝑝 ∑ 𝜹𝑾
(𝑙)(𝑗)

𝑘𝑓

𝑗=𝑘0
 (3.1.13)

𝑼𝑙
(𝑝+1)

= 𝑼𝑙
(𝑝)

+ 𝛼𝑝 ∑ 𝜹𝑾
(𝑙)(𝑗)

𝑘𝑓

𝑗=𝑘0
 (3.1.14)

In the previous equations, (3.1.10) is the propagated error through time across the RNN,

which is why backpropagation for RNN models is referred to as backpropagation through time

(BPTT) [73].

RNN models have been successfully applied to problems in which nonlinear time

dependencies need to be modeled accurately in forecasting settings [74]-[76]. However, when their

vanilla architecture is used, (3.1.8)-(3.1.9), they experience practical limitations during their

training phase, namely the Vanishing Gradient (VG) and Exploding Gradient (EG) problems [77]-

[78]. These problems are linked to the magnitude of the gradients 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/𝜕𝑾𝑙

(𝑝)
 used to update

the weights in the NN. As its name suggests, the VG problem arises when the magnitude of the

gradient is so small that changes in the weights become negligible during the training process,

limiting the capability of the model to learn long-term dependencies and/or making the

convergence extremely slow. On the other hand, the EG problem occurs whenever the magnitude

54

of the gradient becomes large enough to create large oscillations in the learnable parameters, 𝜽,

potentially leading to numerical instabilities.

In more depth, one of the main causes of the VG and EG problems is the consecutive matrix

multiplication associated to the propagated gradients across layers [76], 𝛿𝑘0𝑘𝑓

(𝑙)
, in multilayer FNNs

and/or the propagated gradients through time in RNNs, 𝛿ℎ
(𝑙)(𝑘). These propagations can be

observed in (3.1.15)-(3.1.16) where the propagated gradients’ effects across, respectively, two

layers and two-time instances, are explicitly shown.

𝜹𝑘0𝑘𝑓

(𝑙) = (𝑾𝑙+1
𝑇 ((𝑾𝑙+2

𝑇 𝜹𝑘0𝑘𝑓

(𝑙+2)
) ∘ 𝑯̇𝑘0𝑘𝑓

(𝑙+2)
)) ∘ 𝑯̇𝑘0𝑘𝑓

(𝑙+1)

 = (𝑾𝑙+1
𝑇 𝑾𝑙+2

𝑇 𝜹𝑘0𝑘𝑓

(𝑙+2)
) ∘ (𝑾𝑙+1

𝑇 𝑯̇𝑘0𝑘𝑓

(𝑙+2)
) ∘ 𝑯̇𝑘0𝑘𝑓

(𝑙+1)
 (3.1.15)

𝜹𝒉
(𝑙)(𝑘) = 𝑾𝑙

𝑇 (𝜹𝒉
(𝑙+1)

(𝑘) ∘ 𝒉̇(𝑙+1)(𝑘))

 +𝑼𝑙
𝑇 ((𝑾𝑙

𝑇 (𝜹𝒉
(𝑙+1)(𝑘 + 1) ∘ 𝒉̇(𝑙+1)(𝑘 + 1))) ∘ 𝒉̇(𝑙)(𝑘 + 1))

 +𝑼𝑙
𝑇 ((𝑼𝑙

𝑇 (𝜹𝒉
(𝑙)(𝑘 + 2) ∘ 𝒉̇(𝑙)(𝑘 + 2))) ∘ 𝒉̇(𝑙)(𝑘 + 1)) (3.1.16)

From (3.1.15)-(3.1.16) it can be observed that since the eigenvalues of the matrices

{𝑾𝑙 , 𝑼𝑙} are not bounded, the consecutive products can lead to exponential growth or decay in

their eigenvalues and consequently their elements. Also, in the context of VG, whenever the

magnitude of the activation function’s derivative, |𝜎̇(∙)|, is less than 1 the matrices 𝑯̇𝑘0𝑘𝑓

(𝑙)
 and

vectors 𝒉̇(𝑙)(𝑘) will contain elements smaller than 1 in magnitude, decreasing the magnitude of the

propagated gradients due to the element-wise multiplication and hence potentially promoting VG

effects.

55

It is important to highlight that in RNNs, due to the recurrent connections, the gradient

propagation across time, even when a single layer is used, becomes equivalent to that observed in

an NN with several hidden layers, as seen in Fig. 3.1.5-Fig. 3.1.6, where the forward and backward

components of the training process are depicted. This is sometimes referred to as RNN unrolling

[79] and shows the similarity between RNNs and DNNs.

Fig. 3.1.5. High-level graphical representation of a one-hidden-layer RNN and its ‘unrolled’

equivalency during the forward part of the training process.

56

Due to the similarity between RNNs and DNNs in terms of the gradient propagation,

practical measures are often taken to mitigate the VG and EG problems, one of which is to restrict

the process of BPTT to relatively small time windows, a process known as Truncated Back

Propagation Through Time (TBPTT) [80]-[81]. By implementing TBPTT, not only are the VG and

EG problems diminished but also the computational overhead/auxiliary-memory associated to the

BPTT (3.1.10)-(3.1.12), caused by the hidden-state related values (𝒉(𝑙)(𝑘), 𝒉̇(𝑙)(𝑘)), is decreased

[27].

3.2 LSTM

Even though TBPTT facilitates the use of vanilla RNN, the presence of VG and EG

problems can limit its potential [27]. In order to overcome the previous limitations and improve

the performance of RNNs, an architecture known as Long Short-Term Memory (LSTM) was

introduced in the late 90s [27]-[29], standing out due to its potential to exploit long-term

Fig. 3.1.6. High-level graphical representation of a one-hidden-layer RNN and its ‘unrolled’

equivalency during the backward part of the training process.

57

dependencies and producing competitive results in a wide range of applications [30]-[34]. The

practical success of LSTMs has been mostly attributed to its capability to mitigate the EG and VG

problems [30], [82]. This capability is mostly associated to an ‘internal’ vector state 𝒄(𝑘), often

referred to as cell units, that partly depends on its own previous immediate value 𝒄(𝑘 − 1).

Since the LSTM was first introduced variations with different levels of success have been

proposed [82]-[83]; however, the most common single-layer LSTM architecture (3.2.1)- (3.2.6)

can be mostly described by four different single-layer RNNs of equal dimensions,

{𝒂(𝑘), 𝒊(𝑘), 𝒇(𝑘), 𝒐(𝑘)}, referred to as ‘gate units’ and the previously mentioned internal state

𝒄(𝑘). The gate units are interconnected in an element-wise fashion, they depend on the same

hidden states, 𝒉(𝑘 − 1), and are used to regulate the ‘flow’ of information across time in the

network. Additionally, a linear relation is used to create the recursive temporal dependence in the

cell units 𝒄(𝑘), responsible for creating a flow of information from previous inputs, 𝒙(𝑘 − 𝑗), into

the current output, 𝒚(𝑘), during the training process [27]-[28].

𝒂(𝑘) = 𝜎𝑡ℎ(𝑾𝒂𝒙(𝑘) + 𝑼𝒂𝒉(𝑘 − 1) + 𝒃𝑎) (3.2.1)

𝒊(𝑘) = 𝜎𝑠𝑖𝑔(𝑾𝒊𝒙(𝑘) + 𝑼𝒊𝒉(𝑘 − 1) + 𝒃𝒊) (3.2.2)

𝒇(𝑘) = 𝜎𝑠𝑖𝑔(𝑾𝒇𝒙(𝑘) + 𝑼𝒇𝒉(𝑘 − 1) + 𝒃𝒇) (3.2.3)

𝒐(𝑘) = 𝜎𝑠𝑖𝑔(𝑾𝒐𝒙(𝑘) + 𝑼𝒐𝒉(𝑘 − 1) + 𝒃𝒐) (3.2.4)

𝒄(𝑘) = 𝒇(𝑘) ∘ 𝒄(𝑘 − 1) + 𝒊(𝑘) ∘ 𝒂(𝑘) (3.2.5)

𝒉(𝑘) = 𝒐(𝑘) ∘ 𝜎𝑡ℎ(𝒄(𝑘)) (3.2.6)

𝒚̂(𝑘) = 𝑾𝑦𝒉(𝑘) (3.2.7)

58

where 𝜎𝑠𝑖𝑔(𝑧) = 1/(1 + 𝑒−𝑧) and 𝜎𝑡ℎ(𝑧) = 𝑡𝑎𝑛ℎ(𝑧) are element-wise functions, 𝑾∗, 𝑼∗, belong

to ℝ𝑛ℎ×𝑛, ℝ𝑛ℎ×𝑛ℎ, respectively and 𝑛ℎ denotes the number of hidden units in the LSTM layer.

Regarding (3.2.2)-(3.2.4), the regulation of information due to the gates can be interpreted

in the following manner. First, the input gate, 𝒊(𝑘), gives a degree of relevance to the activation

gate 𝒂(𝑘). Then, the forget gate, 𝒇(𝑘), determines how much past information contained in the

previous cell units’ values, 𝒄(𝑘 − 1), will be carried into the current iteration. Finally, the output

gate, 𝒐(𝑘), dynamically scales the nonlinear transformed cell state, 𝜎𝑡ℎ(𝒄(𝑘)). Each of these gates

have their own associated input and feedback matrices, 𝑾∗ 𝑼∗. A graphical representation of the

LSTM architecture is shown in Fig. 3.2.1.

Fig. 3.2.1. A standard single-layer LSTM architecture, solid arrows represent matrix

multiplication.

59

The backward equations resulting from implementing BP in the LSTM architecture, under

the loss function ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

, are expressed in (3.2.8)- (3.2.17).

𝜹𝒉(𝑘) = 𝑾𝑦
𝑇𝒆(𝑘) (3.2.8)

𝜹𝒐(𝑘) = 𝜹𝒉(𝑘) ∘ 𝜎𝑡ℎ(𝒄(𝑘)) (3.2.9)

𝜹𝒄(𝑘) = 𝜹𝒉(𝑘) ∘ 𝒐(𝑘) ∘ 𝜎̇𝑡ℎ(𝒄(𝑘)) + 𝜹𝒄(𝑘 + 1) ∘ 𝒇(𝑘 + 1) (3.2.10)

𝜹𝒊(𝑘) = 𝜹𝒄(𝑘) ∘ 𝒂(𝑘) (3.2.11)

𝜹𝒇(𝑘) = 𝜹𝒄(𝑘) ∘ 𝒄(𝑘 − 1) (3.2.12)

𝜹𝒂(𝑘) = 𝜹𝒄(𝑘) ∘ 𝒊(𝑘) (3.2.13)

𝜹𝒛(𝑘) = 𝜹𝝈(𝑘) ∘ 𝝈 ̇ (𝑘) (3.2.14)

𝜹𝒙𝒉
(𝑘) = 𝑽𝑇𝜹𝒛(𝑘) (3.2.15)

𝜹𝑽(𝑘) = 𝜹𝒛(𝑘)𝒙𝒉(𝑘) (3.2.16)

𝑽:= 𝑽 + 𝛼𝑝 ∑ 𝜹𝑽(𝑗)
𝑘𝑓

𝑗=𝑘0
 (3.2.17)

where 𝜹𝒉(𝑘) = 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/ 𝜕𝒉(𝑘), 𝜹𝒐(𝑘) = 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/ 𝜕𝒐(𝑘), 𝜹𝒄(𝑘) = 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/ 𝜕𝒄(𝑘),

𝜹𝒂(𝑘) = 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/ 𝜕𝒂(𝑘), 𝜹𝒊(𝑘) = 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/ 𝜕𝒊(𝑘), 𝜹𝒛(𝑘) = 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/ 𝜕𝒛(𝑘), 𝜹𝒛(𝑘) =

 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/ 𝜕𝒙𝒉(𝑘), 𝜹𝑽(𝑘) = 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/ 𝜕𝑽(𝑘), 𝒛(𝑘) = 𝑽𝒙𝒉(𝑘), 𝒙𝒉(𝑘) = [
𝒙(𝑘)

𝒉(𝑘 − 1)
], 𝑽 =

[

𝑽𝑎

𝑽𝑖

𝑽𝑓

𝑽𝑜

], 𝑽∗ = [𝑾∗, 𝑼∗], 𝜹𝝈(𝑘) =

[

𝜹𝒂(𝑘)

𝜹𝒊(𝑘)

𝜹𝒇(𝑘)

𝜹𝒐(𝑘)]

, 𝝈 ̇ (𝑘) =

[

𝜎̇𝑡ℎ(𝑽𝑎𝑰(𝑘))

𝜎̇𝑠𝑖𝑔(𝑽𝑖𝑰(𝑘))

𝜎̇𝑠𝑖𝑔 (𝑽𝑓𝑰(𝑘))

𝜎̇𝑠𝑖𝑔(𝑽𝑜𝑰(𝑘))]

.

60

As observed in (3.2.10) the propagated error to the internal state 𝒄(𝑘) has two components,

the propagated error from the cell’s output 𝜹𝒉(𝑘) and the propagated error from the next state’s

value 𝜹𝒄(𝑘 + 1). The latter component is referred to in the literature as the constant error carousel,

since 𝜹𝒄(𝑘 + 1) is multiplied by the forget gate value 𝒇(𝑘 + 1) and no additional unconstrained

matrix is present in this part of the operation. This process is one of the main reasons why this

architecture can significantly mitigate the EG problem compared to vanilla RNNs, since the forget

gate regulates the degree to which the incoming gradient is forgotten through this operation. In

more detail, since 𝟎𝑛ℎ×1 ≤ 𝒇(𝑘) ≤ 𝟏𝑛ℎ×1, the operation will not contribute to the generation of

EG. It is important to highlight that even though LSTM architectures are more appropriate to

handle gradient implementation problems, TBPTT is still used in practice during the training phase

to further handle the VG and EG problems.

As expressed before, variations of LSTM have arisen through the years such as

bidirectional LSTMs [82] and LSTM with peepholes [28], where the latter variation replaces the

term 𝒉(𝑘 − 1) by 𝒄(𝑘 − 1) in (3.1.1)-(3.1.4), allowing the gates to have direct access to the

constant error carousel when BP is implemented. Also, a simplified and very popular version of

the LSTM architecture was proposed in [28], known as Gated Recurrent Unit (GRU), which uses

one less gate than the LSTM, decreasing the number of parameters. These architectures have

shown similar performance to the LSTM for various applications [30]-[34].

One of the main challenges when using LSTM networks is their complexity in terms of the

number of parameters needed in their structure, which implies the need for more computational

power to use them as well as the need for Graphics Processing Units (GPUs) to avoid slow training

times [84]-[86]. Also, as is the case for most NN-based models, LSTMs are still considered black-

box models due to their capability to approximate a wide range of functions but with low

61

interpretability when compared to LMs. For instance, two NN models with the same topology but

significantly different learnable parameter values can generate similar results [87]-[88].

Consequently, there is not a simple link between the parameter values in these models and the

function being approximated.

62

Chapter 4

E-LSTM: Extended LSTM

In this chapter an extended LSTM architecture designed to facilitate capturing long-term

dependencies is proposed, named Extended Long-Short Term Memory (ELSTM). This extension

is performed by explicitly increasing the connectivity of the states in the LSTM, 𝒄(𝑘), to their own

values at a lag of 𝑝 time units, 𝒄(𝑘 − 𝑝). The increased connectivity in the E-LSTM aims to

reduce the number of parameters in relation to the LSTM network, while achieving a similar

performance to an LSTM model. In addition to describing the E-LSTM architecture, a performance

comparison with the LSTM network and alternative models is provided, including the number of

parameters needed in each model, through simulations using synthetic and real-world time-series

data. It is important to clarify that a large amount of the material in this chapter has also been

published in [89], where the results are more compactly presented.

4.1 E-LSTM Architecture

4.1.1 Motivation and conceptualization

As discussed in Chapter 3, LSTMs have produced competitive results in a wide range of

applications [30]-[37], but at the price of using a large number of parameters in their architectures

63

[90]-[91]. For instance, in datasets containing short-term and long-term dependencies, LSTM

networks might require on the order of several thousands of parameters [84]-[85] to extract the

information about both dependence types, due to the temporal-explicit connectivity in the LSTM

architecture being only immediate. For cases in which information about time dependencies can

be obtained using statistical techniques, the temporal-explicit connectivity of standard LSTMs

might create an inherent barrier to extract this information efficiently, which could be one of the

potential causes behind the need for a large number of parameters to achieve an acceptable

performance.

In previous years, approaches have been proposed to exploit long-term dependencies, some

of which encompass stacked layers of NNs, RNNs or LSTMs designed to handle a variety of

datasets [92]–[95] or to solve specific practical problems [96]-[97]. However, none of the

strategies modify the inner mechanism of the LSTMs in terms of the temporal connectivity, leaving

them susceptible to using a large number of parameters.

Clockwork RNN (CW-RNN), another well-established approach in the RNN field [98]–

[100], is a model designed to decrease the number of parameters in its architecture, by reducing

the connectivity between hidden units and dividing the network into modules that activate at

different frequencies. For some datasets, this approach has shown to generate competitive results

when compared to LSTM networks, while noticeably reducing the number of parameters.

 In the context of exploiting statistical information more efficiently, an extension to the

LSTM architecture is proposed, named Extended Long-Short Term Memory (E-LSTM). This

architecture focuses on extending the temporal-explicit connectivity. The E-LSTM is designed to

facilitate capturing long-term dependencies, under the assumption that the temporal location of

those dependencies is known or that it can be estimated during data preprocessing, a more practical

64

assumption used in this chapter. The addition of the dependence information is performed by

connecting the cell states in the LSTM, 𝒄(𝑘), to their own value with 𝑝 lags, 𝒄(𝑘 − 𝑝).

The increased temporal connectivity in the E-LSTM (as opposed to the reduced

connectivity in the CW-RNN approach) aims to reduce the number of parameters while achieving

a similar performance to an LSTM model. In this regard, an approach increasing the connectivity

within the LSTM architecture has been previously proposed [93], but the modification was limited

to linearly connect the current and immediately previous LSTM outputs.

4.1.2 Forward equations and conceptualization

As mentioned in Section 3.2, the propagated error to the cell states 𝒄(𝑘) (3.2.10) is caused

by two other propagated-error components: the LSTM output 𝜹𝒉(𝑘) and the next state’s value

𝜹𝒄(𝑘 + 1). The latter component is of special relevance, since its effect is regulated by the forget

gate 𝒇(𝑘), controlling how much the incoming propagated error is diminished. Therefore, when

an LSTM is used to model long-term dependencies, it can be challenging to identify to what extent

it considers the effect of distant past values,

Even though 𝒇(𝑘) mitigates the EG problem it can also exponentially decrease the effect

of long-term dependencies, specifically, the effect of a previous cell state 𝒄(𝑘 − 𝑝) into the current

state 𝒄(𝑘). The latter can be observed in the first term on the right-hand side of (4.1.1), resulting

from implementing backward substitution for (3.2.5).

𝒄(𝑘) = 𝒄(𝑘 − 𝑝) ∘ ∏ 𝒇(𝑘 − 𝑗)𝑝−1
𝑗=0

 +𝒊(𝑘) ∘ 𝒂(𝑘) + ∑ (𝒊(𝑘 − 𝑗) ∘ 𝒂(𝑘 − 𝑗) ∘ ∏ 𝒇(𝑘 − 𝑖)
𝑗−1
𝑖=0)𝑝−1

𝑗=1 (4.1.1)

65

Although forgetting previous information can be useful to prevent large accumulations

from being created, due to the sum involving the terms of the form 𝒊(𝑘 − 𝑗) ∘ 𝒂(𝑘 − 𝑗), this could

potentially erase relevant long-term information. The latter effect is more likely to occur when few

hidden units are used, since the dimension of the forget gate vector is equal to the number of hidden

units, 𝑛ℎ. Therefore, with smaller 𝑛ℎ it is less likely to have sufficiently large forget-gate values

(close to one) in the multiplicative effect. The latter situation can imply that having more units

(and consequently a larger number of parameters) might allow long-term dependencies to be

captured in an LSTM network.

As an initial approach to oppose the exponentially decreasing effect of previous cell states,

𝒄(𝑘 − 𝑝), the recursive dependence defining the cell state (3.2.5) could be modified by creating a

direct connection to a previous value, as expressed in (4.1.2). This modification could improve

preserving/capturing long-term dependencies across a time series. In (4.1.2) a new additional

forget gate, 𝒇𝑝(𝑘), is used to dynamically regulate the effect of past information carried out by

𝒄(𝑘 − 𝑝) and follows the same mathematical structure defined by the original gates, as seen in

(4.1.3).

𝒄(𝑘) = 𝒇(𝑘) ∘ 𝒄(𝑘 − 1) + 𝒇𝑝(𝑘) ∘ 𝒄(𝑘 − 𝑝) + 𝒊(𝑘) ∘ 𝒂(𝑘) (4.1.2)

𝒇𝑝(𝑘) = 𝜎𝑠𝑖𝑔 (𝑾𝑓𝑝𝒙(𝑘) + 𝑼𝑓𝑝𝒉(𝑘 − 1)) (4.1.3)

Although the term 𝒇𝑝(𝑘) ∘ 𝒄(𝑘 − 𝑝) in (4.1.2) seems an appropriate generalization of the

recursive equation in (3.2.5), it increases the likelihood of saturation in the hidden units, 𝒉(𝑘) =

𝜎𝑠𝑖𝑔(𝒄(𝑘)). This potential saturation is linked to exponential growth in the values of 𝒄(𝑘), which

can occur when the sum of 𝒇(𝑘) and 𝒇𝑝(𝑘) is consistently greater than one across consecutive

forward iterations. The latter cause can be eliminated by replacing both forget gates by constrained

66

versions, 𝒇̂(𝑘) and 𝒇̂𝑝(𝑘), as defined in (4.1.4) and resulting in the cell-state equation (4.1.5) that

will be used as the core of the E-LSTM network.

𝒄(𝑘) = 𝒇̂(𝑘) ∘ 𝒄(𝑘 − 1) + 𝒇̂𝑝(𝑘) ∘ 𝒄(𝑘 − 𝑝) + 𝒊(𝑘) ∘ 𝒂(𝑘) (4.1.4)

𝒇̂(𝑘) + 𝒇̂𝑝(𝑘) ≤ 𝟏𝑛ℎ×1 (4.1.5)

where 𝒇̂(𝑘) = 𝒇(𝑘) ∘ 𝔀𝑓(𝑘), 𝒇̂𝑝(𝑘) = 𝒇𝑝(𝑘) ∘ 𝔀𝑓𝑝
(𝑘), and 𝔀𝑓(𝑘), 𝔀𝑓𝑝

(𝑘) are 𝑛ℎ-

dimensional dynamic normalizing factors, satisfying the constraints in (4.1.6)-(4.1.7).

𝔀𝑓(𝑘), 𝔀𝑓𝑝
(𝑘) ≤ 𝟏𝑛ℎ×1 (4.1.6)

𝔀𝑓(𝑘) + 𝔀𝑓𝑝
(𝑘) = 𝟏𝑛ℎ×1 (4.1.7)

Among a variety of candidates for the normalizing factors 𝔀𝑓(𝑘) and 𝔀𝑓𝑝
(𝑘) (constant

functions, linear functions, neural networks, etc.), a simple normalization (4.1.8)-(4.1.9) using both

forget gates is used. This normalization not only avoids additional parameters in the E-LSTM

network but also causes the following two useful effects: competition for transmitting relevant

information between short-term and long-term relations is directly promoted and the forget gate

values directly influence each other during the training process, as will be seen in the next section.

𝔀𝑓(𝑘) =
𝒇(𝑘)

𝒇(𝑘)+𝒇𝑝(𝑘)
 (4.1.8)

𝔀𝑓𝑝
(𝑘) =

𝒇𝑝(𝑘)

𝒇(𝑘)+𝒇𝑝(𝑘)
 (4.1.9)

where the divisions are elementwise.

67

Through the explicit temporal connectivity of the E-LSTM architecture, (4.1.4)-(4.1.9), the

likelihood of forgetting relevant information in the distant past can be decreased by creating a

‘bridge’ to it. A high-level representation of this process is depicted in Fig. 4.1.1.

4.1.3 Backward equations and analysis

Since the cell-state equation is different in the E-LSTM and an additional gate is used,

existing BP will be modified (4.1.10)-(4.1.11) and a new BP is generated (4.1.12), which are

linked to the forward equations described in (4.1.4)-(4.1.9).

𝜹𝒄(𝑘) = 𝜹𝒉(𝒌) ∘ 𝒐(𝑘) ∘ 𝜎̇𝑡ℎ(𝒄(𝑘)) + 𝜹𝒄(𝑘 + 1) ∘ 𝒇̂(𝑘 + 1) + 𝜹𝒄(𝑘 + 𝑝) ∘ 𝒇̂𝑝(𝑘 + 𝑝) (4.1.10)

𝜹𝒇(𝑘) = 𝜹𝒄(𝑘) ∘ ((2𝔀𝑓(𝑘) − 𝔀𝑓
2(𝑘)) ∘ 𝒄(𝑘 − 1) − 𝔀𝑓𝑝

2 (𝑘) ∘ 𝒄(𝑘 − 𝑝)) (4.1.11)

𝜹𝒇𝑝
(𝑘) = 𝜹𝒄(𝑘) ∘ ((2𝔀𝑓𝑝

(𝑘) − 𝔀𝑓𝑝
2 (𝑘)) ∘ 𝒄(𝑘 − 𝑝) − 𝔀𝑓

2(𝑘) ∘ 𝒄(𝑘 − 1)) (4.1.12)

where (4.1.10) and (4.1.11) replace (3.2.10) and (3.2.12), respectively and (4.1.12) is used to

update the learnable parameters of the new gate 𝑓𝑝(𝑘), i.e., 𝑽𝑓𝑝. The power operation is applied

element-wise in (4.1.11)-(4.1.12).

Fig. 4.1.1. Proposed E-LSTM network when “unrolled” through 2𝑝 + 1 iterations.

68

The remaining backpropagation equations linked to the LSTM remain the same for the E-

LSTM, but the matrices 𝑽, 𝜹𝝈(𝑘) and 𝝈 ̇ (𝑘), defined in Section 3.2, are modified as indicated next:

𝑽 =

[

𝑽𝑎

𝑽𝑖

𝑽𝑓

𝑽𝑓𝑝

𝑽𝑜]

, 𝜹𝝈(𝑘) =

[

𝜹𝒂(𝑘)

𝜹𝒊(𝑘)

𝜹𝒇(𝑘)

𝜹𝒇𝑝
(𝑘)

𝜹𝒐(𝑘)]

 and 𝝈 ̇ (𝑘) =

[

𝜎̇𝑡ℎ(𝑽𝑎𝑰(𝑘))

𝜎̇𝑠𝑖𝑔(𝑽𝑖𝑰(𝑘))

𝜎̇𝑠𝑖𝑔 (𝑽𝑓𝑰(𝑘))

𝜎̇𝑠𝑖𝑔 (𝑽𝑓𝑝𝑰(𝑘))

𝜎̇𝑠𝑖𝑔(𝑽𝑜𝑰(𝑘))]

.

When examining the propagated error (4.1.11), it is possible to verify that even when 𝒇(𝑘)

is close to zero the magnitude of 𝜹𝒇(𝑘) might not necessarily reduce, since it is influenced by

𝔀𝑓𝑝
2 (𝑘), and consequently by 𝒇(𝑘); an analogous situation occurs for 𝜹𝒇𝑝

(𝑘) in (4.1.12). In

practical terms, this situation is desirable during the training process since it can aid 𝒇(𝑘) and

𝒇𝑝(𝑘) in avoiding local optima when they have transitory near-zero values.

4.1.4 Overhead analysis and training implementation

The number of learnable parameters in a single-layer E-LSTM network is expressed in

(4.1.13).

 𝑛𝛉
(𝐸−𝐿𝑆𝑇𝑀)

= 5(𝑛ℎ + 𝑛𝑖𝑛𝑝𝑢𝑡 + 1)𝑛ℎ (4.1.13)

The training of the E-LSTM is similar to that of the LSTM. However, due to the modified

relationship in (4.1.4), the values associated with previous internal states, 𝒄(𝑘 − 1), ..., 𝒄(𝑘 − 𝑝),

used during forward and backward passes in BP need to be either explicitly stored or re-computed.

In the first case, storing up to 𝑝 previous values would imply an increase in the memory needed

for the BP implementation, compared to a standard LSTM. Specifically, if the number of forward

69

iterations is equal to the sequence length, 𝒮, then the total number of auxiliary variables used to

store previous values of 𝒄(𝑘) during the forward pass of the E-LSTM training is as expressed in

(4.1.14).

𝑛
ϕ⃗⃗
(𝐺𝐼−𝐿𝑆𝑇𝑀)

= 𝒮𝑛ℎ (4.1.14)

If memory becomes a constraint for the BP implementation, due to large sequence lengths

or a large number of hidden units, it may be advantageous to re-compute previous values of the

cell state, changing the number of auxiliary variables to be that in (4.1.15).

𝑛
ϕ⃗⃗
(𝐺𝐼−𝐿𝑆𝑇𝑀)

= 𝑝𝑛ℎ (4.1.15)

For the backward pass the overhead analysis can be performed similar to the forward pass.

The resulting memory usage due to auxiliary internal states, 𝑛
ϕ⃗⃗⃖

(𝐺𝐼−𝐿𝑆𝑇𝑀)
, is as described in (4.1.16)

for the computation prioritization approach.

𝑛
ϕ⃗⃗⃖

(𝐺𝐼−𝐿𝑆𝑇𝑀)
= 𝒮𝑛ℎ (4.1.16)

For the memory prioritization approach, the resulting auxiliary internal states is indicated

by (4.1.17).

𝑛
ϕ⃗⃗⃖

(𝐺𝐼−𝐿𝑆𝑇𝑀)
= 𝑝𝑛ℎ (4.1.17)

For the training process, a validation set is used as one of the stopping criteria, specifically,

using a threshold 𝑛𝑓𝑎𝑖𝑙𝑠 for the maximum number of consecutive fails on decreasing the validation-

set loss function, ℒ (𝑣𝑎𝑙), as defined in Algorithm 4.1.

70

Algorithm 4.1: E-LSTM training

Input: {(𝒙(1), 𝒚(1)),… , (𝒙(𝑛), 𝒚(𝑛))} //assumed to be normalized//

Set values:

 𝑛ℎ //number of hidden neurons

 𝑛𝑠𝑠 //number of subsequences

 𝑠𝑠𝑙𝑒𝑛𝑔𝑡ℎ //training subsequence length

 𝐼𝑚𝑎𝑥 //maximum number of iterations before stopping

 𝑛𝑓𝑎𝑖𝑙𝑠 //number of consecutive fails

 𝑛𝑓𝑎𝑖𝑙𝑠−𝑚𝑎𝑥 //max number of consecutive fails before stopping

 𝐸𝑡𝑟𝑎𝑖𝑛−𝑚𝑖𝑛 ← 𝑖𝑛𝑓 //minimum training MSE

 𝐸𝑣𝑎𝑙−𝑚𝑖𝑛 ← 𝑖𝑛𝑓 //minimum validation MSE

Initialize: 𝜽 //random initialization of weights

Divide dataset: 𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙, 𝐷𝑡𝑒𝑠𝑡 //division keeping temporal order

for 𝑗 = 1 to 𝐼𝑚𝑎𝑥

 for 𝑙 = 1 to 𝑛𝑠𝑠

 //-----------------------Forward pass---------------------------//

 Extract: 𝐷𝑡𝑟𝑎𝑖𝑛
(𝑙)

 //Extract 𝑙th training subsequence from 𝐷𝑡𝑟𝑎𝑖𝑛

 for 𝑘 = 1 to 𝑠𝑠𝑙𝑒𝑛𝑔𝑡ℎ

 Compute: 𝒂(𝑘), 𝒊(𝑘),𝔀𝑓(𝑘),𝔀𝑓𝑝
(𝑘) 𝒇̂(𝑘), 𝒇̂𝑝(𝑘), 𝒐(𝑘), 𝒄(𝑘), 𝒉(𝑘)

 Compute:𝐸𝑡𝑟𝑎𝑖𝑛 // using ℒ (𝑡𝑟𝑎𝑖𝑛) for the 𝑙th subsequence

 //-----------------------Backward pass-------------------------//

 for 𝑘 = 1 to 𝑠𝑠𝑙𝑒𝑛𝑔𝑡ℎ

 Compute: 𝜹𝒉(𝑘), 𝜹𝒐(𝑘), 𝜹𝒄(𝑘), 𝜹𝒊(𝑘), 𝜹𝒇(𝑘), 𝜹𝒇𝑝
(𝑘), 𝜹𝒂(𝑘), 𝜹𝒛(𝑘), 𝜹𝒛(𝑘), 𝜹𝜽(𝑘)

 𝜹𝜽 ← ∑ 𝜹𝜽(𝑗)
 𝑠𝑠𝑙𝑒𝑛𝑔𝑡ℎ

𝑗=1

 Update: 𝜽 //using any optimizer designed for this purpose

 //-----------------Validation Set Performance------------------//

 Compute: 𝐸𝑣𝑎𝑙//using 𝐷𝑣𝑎𝑙 and ℒ (𝑣𝑎𝑙)while keeping temporal order

 //--------------------Stopping criteria-----------------------------//

 if 𝐸𝑣𝑎𝑙−𝑚𝑖𝑛 > 𝐸𝑣𝑎𝑙 and 𝐸𝑡𝑟𝑎𝑖𝑛−𝑚𝑖𝑛 > 𝐸𝑡𝑟𝑎𝑖𝑛: //Storing best performance and optimal

 parameters//

 𝜽𝑜𝑝𝑡 ← 𝜽, 𝐸𝑣𝑎𝑙−𝑚𝑖𝑛 ← 𝐸𝑣𝑎𝑙, 𝑛𝑓𝑎𝑖𝑙𝑠 ← 0

 else:

 𝑛𝑓𝑎𝑖𝑙𝑠 ← 𝑛𝑓𝑎𝑖𝑙𝑠 + 1

 if 𝑛𝑓𝑎𝑖𝑙𝑠 > 𝑛𝑓𝑎𝑖𝑙𝑠−𝑚𝑎𝑥://Maximum consecutive fails for reducing 𝐸𝑣𝑎𝑙−𝑚𝑖𝑛 or 𝐸𝑡𝑟𝑎𝑖𝑛−𝑚𝑖𝑛

 break //ending main for loop

return: 𝜽𝑜𝑝𝑡 //Maximum number of iterations reached//

71

4.1.5 Lag dependence selection using the distance correlation

As indicated in Section 4.1.4, the relevance given to past information in (4.1.1) depends on

the decay-rate variety in the elements of the forget gate, 𝒇(𝑘), a situation mitigated in the E-LSTM

architecture. However, due to the E-LSTM using two forget gates, if elements in the first of these

are large enough to incorporate partial information of 𝒄(𝑘 − 𝑝), redundancy can occur.

Consequently, appropriate selection for the lag value 𝑝 is desirable. This selection process might

be challenging when using techniques that rely on mathematical correlations (linear relations),

since NN models focused on exploiting nonlinearities and such techniques would not be suited to

spot the nonlinear relations in datasets.

Several selection techniques could be used to try to identify a value for 𝑝 [103]–[105].

However, they are prone to miss nonlinear effects. Therefore, a hybrid approach for the lag

selection designed, to consider the nonlinear nature of RNN networks, is employed. This is

performed by combining a filter method and the distance correlation (DC) measure [106]–[108],

a statistical measure used to identify statistical relations, not only linear relations, between paired

multivariate variables.

The proposed hybrid approach is composed of two parts. First, an auxiliary linear

regression model is constructed: 𝒚̂𝐷𝐶(𝑘) = 𝜽𝐷𝐶𝒙𝐷𝐶(𝑘), where 𝜽𝐷𝐶 ∈ ℝ1×𝑘𝑖 and 𝒙𝐷𝐶(𝑘) =

𝑉𝑒𝑐(𝑿𝑘−𝑘𝑖+1:𝑘) is an augmented input composed of the previous 𝑘𝑖 input values. Using this model,

linear relations between the desired output, 𝒚(𝑘), and current-and-previous inputs, 𝑿𝑘−𝑘𝑖+1:𝑘, are

then removed by computing the residual values, i.e., 𝒆𝐷𝐶(𝑘) = 𝒚(𝑘) − 𝜽𝐷𝐶𝒙𝐷𝐶(𝑘). Second, a

filter method is employed by computing the DC value of the paired residuals and lagged input

72

values, i.e., 𝒆𝐷𝐶(𝑘) , 𝒙(𝑘 − 𝑗), for each lag 𝑗 ∈ {0, … , 𝑘𝑖}, from which relevant nonlinear effects

can be identified. The lag with the highest DC value is selected as the value for 𝑝.

4.2 Experimental Setup

To evaluate the performance and efficiency (in terms of the number of parameters) of the

proposed E-LSTM network in relation to the standard LSTM, experiments using univariate

synthetic and real time-series are performed. Additionally, the CW-RNN network and the Seasonal

Auto Regressive Integrated Moving Average (SARIMA) model, a well-known linear model

designed for data with seasonalities [101]-[102], are used as additional baselines to compare with

the E-LSTM model. The CW-RNN is selected model due to its sparse structure approach to exploit

long-term dependencies while reducing the number of parameters per unit.

4.2.1 Augmented-input Networks

One of the main purposes of an RNN is to identify relations among previous inputs,

immediate and far in the past. However, simple linear input-output relationships, i.e., 𝑥(𝑘 − 𝑝),

𝑦(𝑘), could require a large number of parameters for an RNN model, due to the several consecutive

nonlinear operations employed within the model. As indicated in Section 3.1, directly presenting

lagged input values into an NN model is a practice that can be used when handling time series to

exploit possible relations [109]-[110]. Therefore, in order to assess the practical usefulness of the

increased connectivity in the E-LSTM, the augmented-input approach is implemented in the CW-

RNN, the standard LSTM and the proposed E-LSTM, resulting in augmented versions of these

models, denoted as CW-RNN-A, LSTM-A and E-LSTM-A.

73

By using the augmented-input models, it might be possible to ease the need for a large

number of parameters to learn linear relations, due to the linear transformation the augmented input

goes through in the gate equations in (3.1.1)-(3.1.5) and (4.1.3). The augmentation is performed

by adding a lagged input value, 𝒙(𝑘 − 𝑘𝑖), selected based on a simple correlation analysis, from

which the augmented input is constructed 𝒙𝑎𝑢𝑔(𝑘) = [𝒙(𝑘), 𝒙(𝑘 − 𝑘𝑖)], where only one lag is

selected to avoid potential redundancy caused by the recurrence relations in RNNs.

4.2.2 SARIMA implementation details

 The selection for the SARIMA model hyperparameters and parameters is carried out in

two stages for each dataset used. First, using the training set, a correlation analysis between the

input and its lagged values is performed, using prior information associated with the maximum

seasonality in each dataset to create an upper bound for a maximum lag. From the previous

analysis, the highest (absolute) correlation value is selected for the seasonal components of the

model (SA, MA). In the second stage, using the SARIMA performance over the validation set in

each dataset, a search for appropriate values for the autoregressive, moving average and integrative

components is carried out, varying values from one up to the seasonal values obtained in the first

stage (SA, MA), turning on and off the presence of the integrative component. It is important to

clarify that, even though it is possible to extract these linear relations first and then use the RNN

models over the residuals, this approach is not used in this work, since the main goal across the

experiments is to identify the capability of the networks, especially the proposed E-LSTM, as

standalone models.

74

4.2.3 Synthetic datasets

Synthetic datasets are employed to have control over the effect of long-term dependencies

and the size of the lag, denoted as 𝑝𝑙, while avoiding/controlling noisy measurements and outliers

that are typically present in real-world datasets.

Two different pattern recognition aspects are tested through the synthetic datasets: the

accuracy of the models on a time series that follows a nonlinear recurrent relationship and the

detection capabilities of fixed length sequences that repeatedly (stochastically) appear.

For the first recognition aspect, a dataset is created with a nonlinear dependence located at

a fixed lagged value 𝑝𝑙, where the nonlinearity is due to changing sign. This dataset, referred to as

the Switching time series, is generated using two i.i.d. random sequences, 𝑧(𝑘) ∈ ℝ and

𝑧𝑠𝑖𝑔𝑛(𝑘) ∈ {1, 0} following the distributions 𝑁(0, 1) and 𝐵(1, 𝜌𝑠𝑤𝑡); respectively, and two lags

of 𝑧(𝑘) as shown in (4.2.1).

𝑦(𝑘) = 𝑎1𝑧
2(𝑘) + 𝑎2𝑧(𝑘 − 1) + 𝑎𝑝𝑙

2(𝑧𝑠𝑖𝑔𝑛(𝑘 − 𝑝𝑙) − 0.5)𝑧2(𝑘 − 𝑝𝑙) (4.2.1)

where 𝑎1, 𝑎2 and 𝑎𝑝𝑙
 are constant coefficients with values 0.25, 0.35 and 0.35, respectively; and

𝜌𝑠𝑤𝑡 is the switching probability. In (4.2.1) the term 2(𝑧𝑠𝑖𝑔𝑛(𝑘 − 𝑝𝑙) − 0.5) ∈ {1,−1} creates

the switching-sign effect for the lagged variable 𝑧2(𝑘 − 𝑝𝑙).

 The second dataset, referred to as Binary sequence, is motivated by the potential limitation

expressed in Section 3.1 about (4.1.1), the forgetting effect of relevant information in a standard

LSTM. The latter is explored by embedding replicas of two different binary patterns of length 28,

𝑏1 and 𝑏2, in a long sequence of bits, separated from each other by a constant length. The long

75

sequence is composed of 28-bit and 112-bit sequences whose individual values are obtained from

the distribution 𝐵(1, 0.5). The embedding of the patterns is described in Algorithm 4.2, where

𝑛𝑝𝑜𝑖𝑛𝑡𝑠 is assumed to be a large multiple of the length of 𝑏1 and 𝑏2, 𝑟𝑎𝑛𝑑 is a function generating

samples from the uniform distribution on [0, 1] and 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒(𝑛𝑟) creates random binary

sequences of length 𝑛𝑟.

 Examining Algorithm 4.2, with probability 0.5 a 112-bit sequence is created, containing

patterns 𝑏1and 𝑏2 as well as short random sequences 𝑣28
(1)

 and 𝑣28
(2)

; placing 𝑣28
(2)

 between the patterns.

The Binary sequence dataset represents one of many possible instances in which repetitive patterns

are embedded among non-relevant data, which can be particularly challenging for linear models

even when the pattern length is known.

4.2.4 Real-world datasets

In order to identify the performance of the proposed E-LSTM on real-world problems, four

univariate time-series datasets were selected; categorized as small, medium and large sizes, with

the last category containing two datasets.

Algorithm 4.2: Binary sequence construction

Input: 𝑏1, 𝑏2, 𝑛𝑝𝑜𝑖𝑛𝑡𝑠 //Patterns and number of points//

Set: 𝑛𝑠 ← 𝑛𝑝𝑜𝑖𝑛𝑡𝑠/2𝑙𝑒𝑛𝑔𝑡ℎ(𝑏1 + 𝑏2) //number of 112-length subsequences//

 𝐵𝑠𝑒𝑞 ← 𝑒𝑚𝑝𝑡𝑦 //the desired Binary sequence dataset//

for 𝑖 = 1 to 𝑛𝑠

 if: 𝑟𝑎𝑛𝑑>0.5

 𝑣112 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒(112), 𝐵𝑠𝑒𝑞 ← 𝑎𝑝𝑝𝑒𝑛𝑑(𝐵𝑠𝑒𝑞, 𝑣112)

 Else:

 𝑣28
1 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒(28), 𝑣28

2 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒(28)

 𝐵𝑠𝑒𝑞 ← 𝑎𝑝𝑝𝑒𝑛𝑑(𝑆, 𝑣28
1 , 𝑏1, 𝑣28

2 , 𝑏2)

Output: 𝐵𝑠𝑒𝑞

76

The small-size dataset is the well-known Chicken Pox [111] time series, which represents

the monthly occurrences of chicken pox in New York City, between the years 1931 and 1972. It

is composed of 498 samples with an apparent yearly seasonality.

For the medium-size category, a popular dataset containing the monthly mean number of

detected sunspots [112], from Jan 1749 to Dec 2019, is used. This dataset is characterized by

showing a degree of seasonality occurring every 10 to 11 years and is composed of 3252 samples.

The large-size category is composed of temperature data for the city of Toronto, Canada

[113], and the Power Consumption in the US Eastern Interconnection grid, reported by FirstEnergy

Corp [114]. In both datasets hourly information is provided, spanning from Jan 2011 to Dec 2020

for the first dataset and from Dec 31st 2011 to Jan 1st 2018 for the second dataset. As expected,

both datasets show a seasonality of 24 hours.

4.2.5 Implementation details

For the experiments performed over the datasets introduced in the previous section and

using the RNN and SARIMA models, original subroutines were created using the MATLAB

2018a environment. Simulations using MATLAB-library-built LSTMs were performed for

verification purposes, resulting in no significant performance difference with respect to the original

subroutines. The Adam optimization algorithm [43], [115]-[116], a variation of the GD algorithm,

was used for the training process in all experiments. Adam’s hyperparameters were set to standard

values, 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜖 = 10−8. A small value for the learning rate, 𝛼 = 0.001,

was chosen to mitigate potential EG issues during the training process, using up to 10000 epochs.

Following the same training setting described in Algorithm 4.1, the validation-set loss function

77

value, ℒ (𝑣𝑎𝑙), was used as one of the stopping criteria for the training process, specifically using a

threshold 𝑚𝑓𝑎𝑖𝑙𝑠 = 4000 for the maximum number of consecutive fails on decreasing the error.

 A similar training implementation was used for the CW-RNN, using the Adam algorithm

with standard values, but using a smaller learning rate, 𝛼 = 0.0003, in order to avoid the EG

problem. The number of modules, 𝑛𝑚𝑜𝑑, a hyperparameter needed for the CW-RNN, was set to 7

for the Chicken Pox dataset due to its small size, and to 9 for the remaining datasets. Also, the

frequency of activation of these modules was set as in [98], from 1 to 2𝑛𝑚𝑜𝑑 , and using the same

number of hidden units per module.

 For selecting the number of hidden units in each of the four LSTM variants (including the

E-LSTM) and the CW-RNNs an iterative process using the values from the set {20, 21, . . . , 29} was

performed over the validation set, with 40 repetitions for each value; the value producing the best

average validation-set performance was selected. Simulations were performed in the Beluga server

cluster, operated by the Digital Research Alliance of Canada (formerly Compute Canada), using

2.4GHz CPUs.

4.3 Experimental Results and Analysis

The simulation results for each of the LSTM variants, CW-RNN and SARIMA models are

presented. In all tables in this section performance indicators are provided such as average (𝜇) and

standard deviation (𝜎) of the RMSE. The size of each model is selected based on the validation-

set performance (minimum 𝜇𝑣𝑎𝑙 + 𝜎𝑣𝑎𝑙). Additionally, the following metrics are provided: number

of hidden units and number of parameters (𝑛ℎ, 𝑛𝜽); average training time per iteration (𝑡𝑖̅𝑡𝑒𝑟);

average time and number of iterations to achieve the optimal loss function value (𝑡̅(𝑜𝑝𝑡), 𝐼 ̅𝑖𝑡𝑒𝑟
(𝑜𝑝𝑡)

).

78

Also, the hyperparameter 𝑝 for the E-LSTM is explicitly indicated next to the name of the network

in the results and bold text is used to represent the network with best testing performance

(minimum 𝜇𝑡𝑒𝑠𝑡 + 𝜎𝑡𝑒𝑠𝑡).

4.3.1 Synthetic datasets

For the synthetically created datasets, the lag associated with 𝒙𝑎𝑢𝑔(𝑘) in the augmented-

input models was set equal to the lag dependence, i.e., 𝑘𝑖 = 𝑝𝑙. The hyperparameter 𝑝 in the E-

LSTM and E-LSTM-A models was set equal to 𝑝𝑙 − 1, due to the input to the network being the

lagged desired output (lag 1). Also, for each of the two datasets 10 different sequences are used.

In the case of the Switching dataset, experiments varying the value for the switching-sign

probability 𝜌𝑠𝑤𝑡 of 𝑧𝑠𝑖𝑔𝑛(𝑘) were carried out, creating different instances. Results can be found in

Table 4.3.1-Table 4.3.2 which correspond to 𝜌𝑠𝑤𝑡 taking the values 1 and 0.01, representing high-

frequency and low-frequency switching behavior, respectively. Additionally, the lag-dependence

𝑝𝑙 was set to 22 and 50 for the high-frequency and low-frequency switching datasets, respectively.

A larger lag 𝑝𝑙 was selected for the latter dataset instance to account for the higher linearity

associated with a lower switching frequency. A time window of 100 was used for the backward

and forward passes during training. No significant changes were found, in terms of performance

among variants, for other values of 𝜌𝑠𝑤𝑡 between 0.01 and 1.

By assuming the only unpredictable value in (4.2.1) is the term 𝑎1𝑧
2(𝑘) it is possible to

establish a (not necessarily tight) lower bound on the minimum possible RMSE. This lower bound

is also presented in Table 4.3.1-Table 4.3.2 and is used as a reference for relative comparison.

79

For the high-frequency Switching dataset the E-LSTM outperforms all other models (Table

4.3.1), outperforming the LSTM and CW-RNN by a significant margin, and it shows better

parameter efficiency, as observed in Fig. 4.3.1. Also, the E-LSTM outperforms the LSTM-A

despite the latter model using the lagged input directly where the nonlinear dependence occurs.

This can be seen as the E-LSTM being able to model the nonlinear behavior of this time series

better than the networks using input augmentation.

For the low-frequency Switching dataset, the augmented E-LSTM-A and LSTM-A showed

similar performance (Table 4.3.1), with noticeably better performance than their standard versions

and the remaining models. These results can be partly attributed to a lower nonlinear effect caused

by the low-frequency switching (with switching probability of 0.01), in contrast with the results

observed for the high-frequency Switching dataset. Also, the standard E-LSTM network still

shows better parameter efficiency across different sizes, with respect to the standard LSTM and

CW-RNN networks.

Table 4.3.1. Results for the Switching dataset (𝑘𝑖 = 22). SARIMA hyperparameters were set

as: AR = MA=1 and SAR = SMA = 22, resulting in RMSE = 0.6811. Lower bound RMSE =

0.4227. Forward-backward pass length of 100.

80

Fig. 4.3.1. Validation set performance across different sizes for the Switching-100 dataset.

Table 4.3.2. Results for the Switching dataset (𝑘𝑖 = 50). SARIMA hyperparameters were set

as: AR = MA = 1 and SAR = SMA = 50, resulting in RMSE = 0.732. Lower bound RMSE =

0.4095. Forward-backward pass length of 100.

81

In the case of the Binary sequence (Table 4.3.3) the E-LSTM hyperparameter 𝑝 was set to

29 to create a direct connection between elements in both 28-bit sequences, 𝑣28
(1)

 and 𝑣28
(2)

.

Additionally, a time window of 1120 was used for the backward and forward passes during

training. This window size was selected so that the resulting subsequences contain five instances,

on average, of the 112-bit sequence (in which 𝑣28
(1)

 and 𝑣28
(2)

 are embedded), while keeping the

subsequence length not too large. Similar to the Switching datasets, a (not necessarily tight) lower

bound for the minimum RMSE was derived for the Binary Sequence dataset, shown in Table 4.3.3.

The results in Table 4.3.3 show again the E-LSTM as the network with the best testing

performance. Even though it uses a larger number of parameters for this case, the alternative

networks’ performances stagnate more when the sizes are increased (Fig. 4.3.3).

Fig. 4.3.2. Validation set performance across different sizes for the Switching-01 dataset.

Forward-backward pass length of 100.

82

Table 4.3.3. Results for the Binary Sequence dataset (𝑘𝑖 = 29). ARMA used lags from 1 to

112 for AR and MA components, resulting in RMSE = 0.6811. Lower bound RMSE = 0.4357.

Forward-backward pass length of 1120.

Fig. 4.3.3 Validation set performance across different sizes for the Binary sequence dataset.

83

Regarding the LSTM variants’ performance on the synthetic datasets the E-LSTM and its

augmented version required a similar or lower number of parameters to achieve a similar or better

performance than the alternative networks, in some cases with the number of parameters being an

order of magnitude smaller. Also, it should be highlighted that such performance is achieved

without drastically increasing the CPU time needed for the training process.

4.3.2 Real-world datasets

For the experiments involving real-world datasets, the distance-correlation-based process

described in Section 4.1.5 was used for the selection of the hyperparameter 𝑝 of the proposed E-

LSTM and E-LSTM-A models. Also, for the augmented variants, LSTM-A and E-LSTM-A, a

correlation analysis on the training sets was performed to select the lag value 𝑘𝑖 for the input

augmentation. Differentiated datasets were used in all LSTM variants for the cases in which the

integrative component of SARIMA was selected, since the differentiation due to this component

is not directly performed in the LSTM variants; whenever this was the case, the correlation analysis

was performed over the differentiated dataset.

Regarding the Chickenpox dataset (small size), the E-LSTM and its augmented variation

showed a significant improvement over the other networks (Table 4.3.4). They reduced the number

of parameters needed overall by orders of magnitude, while achieving better performance. Also,

the E-LSTM-A was the top-performing network, using the least number of parameters and with

consistent performance across different sizes (Fig. 4.3.4).

84

Table 4.3.4. Results for the Chickenpox dataset (𝑘𝑖 = 24). SARMA components used lags 1

to 4 for the AR and MA and a value of 12 for SAR and SMA, resulting in RMSE = 113.423.

Forward-backward pass length of 200.

Fig. 4.3.4. Validation set performance across different sizes for the Chickenpox dataset.

85

For the experiments with the Sunspots dataset (medium size) the proposed E-LSTM

showed similar performance to the LSTM (Table 4.3.5), and slightly outperformed the alternative

networks; however, the SARIMA algorithm had very similar performance as the E-LSTM. The

fact that a linear model, using less than 100 parameters, can achieve the best performance among

the models might partly indicate why little improvement is generated by the E-LSTM architecture,

as there might be little nonlinear time dependence in the data. Furthermore, when analyzing the

performance curves of the networks in (Fig. 4.3.5) it can be noticed that those for the E-LSTM and

LSTM networks have similar shape and values which might corroborate the marginal contribution

of adding a mechanism to capture nonlinear long-term dependencies for this dataset.

Table 4.3.5. Results for the Sunspots dataset (𝑘𝑖 = 12). SARIMA hyperparameters used lags 1

to 34 for the AR and MA and a value of 127 for SAR and SMA, resulting in RMSE = 22.80.

Forward-backward pass length of 288.

86

The results for the Power consumption dataset (Table 4.3.6) further supports the E-LSTM’s

capability to break potential walls the LSTM network might face, in terms of capturing long-term

dependencies. This can be concluded by directly comparing the augmented and non-augmented

versions side by side in Table 4.3.6 and analyzing how quickly the loss function value decreases

with respect to the number of parameters for small network sizes in Fig. 4.3.6, where the

performance curves of the E-LSTM and its augmented version are almost identical.

 In the Toronto temperature dataset, the E-LSTM is the best-performing model, generating

a small improvement over the LSTM and using less than half of the number of parameters in

comparison (Table 4.3.7). Additionally, in terms of parameter efficiency, the performance

behavior of the E-LSTM network seems to be more consistent across different network sizes,

Fig. 4.3.5. Validation set performance across different sizes for the Sunspots dataset.

87

providing more evidence that the LSTM needs a larger number of units to create variety in the

behavior of the forget gates.

Table 4.3.6. Results for the Power Consumption dataset (𝑘𝑖 = 24) SARIMA hyperparameters

used lags 1 to 14 for the AR and MA and a value of 24 for SAR and SMA, resulting in RMSE

= 85.1136. Forward-backward pass length of 672.

Fig. 4.3.6. Validation set performance across different sizes for the Power consumption dataset.

88

Table 4.3.7. Results for the Toronto temperature dataset (𝑘𝑖 = 24). SARMA components used

lags 1 to 17 for the AR and MA and a value of 23 for SAR and SMA, resulting in RMSE =

0.6955. Forward-backward pass length of 672.

Fig. 4.3.7. Validation set performance across different sizes for the Toronto temperature dataset.

89

It is important to highlight that for the case of the large-size datasets (on the order of 105

datapoints) the E-LSTM and its augmented version were the best-performing models, when

compared to the LSTM and the CW-RNN, while using a similar or lower number of parameters

for the selected network sizes and showing a sharper increase in the performance curves for small

network sizes.

 From the previous real-world results, a general pattern that can be observed is that the

proposed E-LSTM architecture appears to be a better option when compared to the LSTM and

CW-RNN models, in terms of the number of parameters required to achieve similar performance,

creating a significant reduction in the size of the model in some cases (by an order of magnitude).

Furthermore, the increase in training time with the proposed variants remained reasonable across

these experiments.

90

Chapter 5

GI-LSTM: Generalized and Interpretable LSTM

In this chapter a new mechanism that generalizes the E-LSTM connectivity approach is proposed,

named Generalized Interpretable LSTM (GI-LSTM). This mechanism further increases the

explicit recursive connectivity among cell states to directly compensate for exponentially

weakening connectivity (EWC) across time, when needed. The GI-LSTM aims to extract long

term dependencies more efficiently even when their precise location is unknown. In addition, due

to the specific method used to create this connectivity, the GI-LSTM is embedded with an easy-

to-use interpretability component (defined as being able to provide explanations in understandable

terms to a human) that indicates the statistical relevance it gives to previous cell states.

5.1. GI-LSTM Architecture

5.1.1 Motivation for a generalization

As stated in Chapter 4, relevant information for long-term dependencies could be left

uncaptured in the standard LSTM due to the lack of variety in the decay rate among forget gates,

an issue partly addressed by the E-LSTM approach of increasing the explicit connectivity between

cell states. Taking a step forward in this approach the connectivity among cell states with respect

91

to their previous values is increased, eliminating the need for specifying a previous location in

time (in contrast to the E-LSTM) and replacing it by a flexible user-defined interval of previous

values, which can be based on loose estimations of: maximum lag dependency, apparent

seasonalities (as seen in human-driven phenomena) and other guessed temporal information. Also,

by creating this higher connectivity the need for the DC measure is removed, resulting in reduced

preprocessing time. This is particularly useful since the computation of the DC can be time

consuming when trying to identify very long-term dependencies, even in univariate time series.

Furthermore, the proposed GI-LSTM architecture enables a semi-local interpretation, as defined

in [39], specifying which parts of the time series the network gives relevance to, within the user-

defined time intervals.

5.1.2 Forward equations and conceptualization

To keep the efficiency in the number of weights achieved by the E-LSTM while extending

the reach into past values, the new increased connectivity is performed by introducing dynamic

‘memory groups’, 𝒎𝑠(𝑘) ∈ ℝ𝑛ℎ, designed to create a balance between the explicit temporal

connectivity and the number of parameters.

In more detail, the first memory group, 𝒎1(𝑘), contains explicit information of contiguous

lagged cell states, starting at 1; the second memory group, 𝒎2(𝑘), contains information of non-

contiguous lagged values of 𝒎1(𝑘), a structure followed by higher-order memory groups, 𝒎𝑠(𝑘),

up to a maximum number 𝜍. Similar to the E-LSTM, a weighted forget gate, 𝒇̂𝑠(𝑘), is associated

to each memory group to allow for dynamism during the information processing and to promote

stability during the training phase.

92

𝑵1(𝑘) = [𝒄(𝑘 − 1), 𝒄(𝑘 − 2),… , 𝒄(𝑘 − 𝑞1)] (5.1.1)

𝒎1(𝑘) = (𝑵1(𝑘) ∘ 𝑾𝒎1
)𝟏𝑞1×1 (5.1.2)

𝑵𝑠(𝑘) = [𝒎𝑠−1(𝑘 − 𝑞𝑠−1 …𝑞1),𝒎𝑠−1(𝑘 − 2𝑞𝑠−1 …𝑞1),… ,𝒎𝑠−1(𝑘 − 𝑞𝑠𝑞𝑠−1 …𝑞1)], 𝑠 ≥ 2

 (5.1.3)

𝒎𝑠(𝑘) = (𝑵𝑠(𝑘) ∘ 𝑾𝑚𝑠
)𝟏𝑞𝑠×1, 𝑠 ≥ 2 (5.1.4)

∥ [𝑾𝒎𝑠
]
𝑟𝑜𝑤𝑖

∥1= 1 (5.1.5)

𝒄(𝑘) = 𝒂(𝑘) ∘ 𝒊(𝑘) + 𝒇̂1(𝑘) ∘ 𝒎1(𝑘) + 𝒇̂2(𝑘) ∘ 𝒎2(𝑘) + ⋯+ 𝒇̂𝜍(𝑘) ∘ 𝒎𝜍(𝑘) (5.1.6)

𝒇̂𝑠(𝑘) = 𝒇𝑠(𝑘) ∘ 𝔀𝒇𝑠
(𝑘) (5.1.7)

𝔀𝒇𝑠
(𝑘) =

𝒇𝑠(𝑘)

∑ 𝒇𝑑(𝑘)𝜍
𝑑=1

 (5.1.8)

where [𝑾𝒎𝑠
]
𝑟𝑜𝑤𝑖

 is the 𝑖th row of the matrix 𝑾𝒎𝑠
∈ ℝ𝑛ℎ×𝑞𝑠; ∥∙∥1 is the 1-norm; 𝟏𝑞𝑠×1 is a vector

of ones of dimension 𝑞𝑠 × 1. The logic behind the choice of the 1-norm in the constraint for the

group weights 𝑾𝒎𝑠
, instead of the 2-norm, will be explained in detail in the next section. However,

the following is worth noting: there is no constraint on the sign of the weights and the 1-norm

constraint is embedded in the network through a nonunique parametrization with respect to

learnable parameters 𝚯𝑠, as shown in (5.1.9).

[𝑾𝒎𝑠
]
𝑖,𝑗

 =
[𝚯𝑠]𝑖,𝑗

∑ |𝚯𝑠|𝑟𝑜𝑤𝑖

 (5.1.9)

where ∑ |𝚯𝑠|𝑟𝑜𝑤𝑖
= ∑ |[𝚯𝑠]𝑖,𝑗|

𝑞𝑠
𝑗=1 .

93

In the definition of higher-order memory groups, the design choice of creating lag values

that are multiplicative, 𝑞𝑠𝑞𝑠−1 …𝑞1, instead of additive is intended to avoid information

overlapping, as shown in Fig. 5.1.1, that could create potentially unnecessary redundancy.

There are three major advantages in the proposed memory-group approach, when

compared to the E-LSTM approach. (i) It theoretically allows for reaching very long-term

dependencies due to the multiplicative lags in the higher-order memory groups, i.e., 𝑘 −

(𝑞1 + 𝑞2𝑞1 …+ 𝑞𝜍𝑞𝜍−1 …𝑞1), without the aid of the DC measure. (ii) Higher-order memory

groups compress the information in lower-order memory groups, functioning as filters for past

information. (iii) The architecture allows for a dynamic balance between short-term, long-term and

very long-term dependencies due to the weighted gates 𝒇̂𝑠(𝑘) associated to each memory group.

Additionally, and following a similar strategy to the E-LSTM architecture, only one forget gate is

added per memory group which, when considering the multiplicative reaching effect, maintains

the number of parameters low in practice (we will see this in Section 5.3).

Fig. 5.1.1. Simplified graphical representation of the memory-group mechanism in the GI-LSTM,

with 𝜍 = 2.

94

 5.1.3 Backward equations and analysis

The BP equations are derived following a similar approach to that described in Sections

3.1 and 3.2. Hence, the resulting backward equations linked to the GI-LSTM are as follows:

𝜹𝒎𝜍
(𝑘) = 𝒇̂𝜍(𝑘) ∘ 𝜹𝒄(𝑘) (5.1.10)

𝜹𝒎𝑠
(𝑘) = 𝒇̂𝑠(𝑘) ∘ 𝜹𝒄(𝑘) + ∑ ([𝑾𝒎𝑠

]
𝑐𝑜𝑙𝑟

∘ 𝜹𝒎𝑠+1
(𝑘 + 𝑟𝑞𝑠−1 …𝑞1))

𝑞𝑠
𝑟=1 , 𝑠 < 𝜍 (5.1.11)

𝜹𝒄(𝑘) = 𝜹𝒉(𝑘) ∘ 𝒐(𝑘) ∘ 𝜎̇𝑡ℎ(𝒄(𝑘)) + ∑ ([𝑾𝒎1
]
𝑐𝑜𝑙𝑟

∘ 𝜹𝒎1
(𝑘 + 𝑟))

𝑞1
𝑟=1 (5.1.12)

𝜹𝑾𝑚𝑠
(𝑘) = 𝑑𝑖𝑎𝑔(𝜹𝒎𝑠

(𝑘))𝑵𝑠(𝑘) (5.1.13)

𝐷[𝚯𝑠]𝑟𝑜𝑤𝑖
([𝑾𝑚𝑠

]
𝑟𝑜𝑤𝑖

𝑇
) = (

−[𝑾𝑚𝑠]𝑟𝑜𝑤𝑖

𝑇
𝑠𝑖𝑔𝑛([𝚯𝑠]𝑟𝑜𝑤𝑖

)

∑ |𝚯𝑠|𝑟𝑜𝑤𝑖

+
𝑰𝑞𝑠𝑥𝑞𝑠

∑ |𝚯𝑠|𝑟𝑜𝑤𝑖

) (5.1.14)

𝜹[𝚯𝑠]𝑟𝑜𝑤𝑖
(𝑘) = (𝜹[𝑾𝒎𝑠]𝑟𝑜𝑤𝑖

(𝑘))𝐷[𝚯𝑠]𝑟𝑜𝑤𝑖
([𝑾𝑚𝑠

]
𝑟𝑜𝑤𝑖

𝑇
) (5.1.15)

𝜹𝚯𝑠
(𝑘) = 𝑛𝑓(𝚯𝑠) (−𝑑𝑖𝑎𝑔 ((𝜹𝑾𝑚𝑠

(𝑘) ∘ 𝑾𝒎𝑠
)𝟏𝑞𝑠𝑥1) 𝑠𝑖𝑔𝑛(𝚯𝑠) + 𝜹𝑾𝒎𝑠

(𝑘)) (5.1.16)

𝜹𝒇𝑠
(𝑘) = 2𝜹𝒎𝑠

(𝑘) ∘ 𝒇̂𝑠(𝑘) − ∑ 𝜹𝒎𝑑
(𝑘) ∘ 𝒇̂𝑑(𝑘)2𝑠𝑚𝑎𝑥

𝑑=1 (5.1.17)

where 𝜍 is the index of the last memory group; [𝑾𝒎𝑠
]
𝑐𝑜𝑙𝑖

 is the 𝑖th column of the matrix 𝑾𝒎𝑠
;

𝑛𝑓(𝚯𝑠) is a normalizing matrix, 𝑑𝑖𝑎𝑔 ([∑ |𝚯𝑠|𝑟𝑜𝑤1
, … , ∑ |𝚯𝑠|𝑟𝑜𝑤𝑛ℎ

])
−1

.

When analyzing the GI-LSTM backward equations it can be observed that in (5.1.14) the

individual elements of the gradient 𝜹[𝚯𝑠]𝑟𝑜𝑤𝑖
(𝑘) do not vanish solely by the fact that the elements

might have values close to or equal to 0, specifically due to the non-zero term
𝑰𝑞𝑠𝑥𝑞𝑠

∑ |𝚯𝑠|𝑟𝑜𝑤𝑖

 resulting

95

from the 1-norm, something that would occur if the 2-norm were used instead. Also, it can be

noticed that when (5.1.15) is expanded the resulting term

−𝜹[𝑾𝒎𝑠]𝑟𝑜𝑤𝑖

(𝑘)[𝑾𝑚𝑠
]
𝑟𝑜𝑤𝑖

𝑇
𝑠𝑖𝑔𝑛([𝚯𝑠]𝑟𝑜𝑤𝑖

) is a projection of the gradient 𝜹[𝑾𝒎𝑠]𝑟𝑜𝑤𝑖

(𝑘) over the

current values of [𝑾𝒎𝑠
]
𝑟𝑜𝑤𝑖

. This projection, in the context of (5.1.9), can be interpreted as an

opposition to the change in the learnable parameters of the memory groups, [𝚯𝑠]𝑟𝑜𝑤𝑖
. The

opposition occurs when the change in the learnable parameters produces similar values for

[𝑾𝒎𝑠
]
𝑟𝑜𝑤𝑖

, due to a near-to-uniform scaling in [𝚯𝑠]𝑟𝑜𝑤𝑖
. Consequently, in (5.1.15) all elements in

[𝚯𝑠]𝑟𝑜𝑤𝑖
 influence the gradient of each of its individual elements. This influence partly produces

the desired effect of the rescaling transformation (5.1.9), which embeds the lack of need for

different values of 𝚯𝑠 that result in the same memory-group weights 𝑾𝒎𝑠
.

Upon further inspection of (5.1.14) and (5.1.16) two things can be noticed. First, the

magnitude of 𝜹𝚯𝑠
(𝑘) is dependent on 𝑛𝑓(𝚯𝑠) but not its direction; second, 𝑾𝒎𝑠

 does not depend

on the normalizing factor 𝑛𝑓(𝚯𝑠) as seen in (5.1.9). Hence, the gradient 𝜹𝚯𝑠
(𝑘) could become

unnecessarily affected by 𝑛𝑓(𝚯𝑠) whenever any of its elements becomes significantly smaller than

1, i.e., (∑ |𝚯𝑠|𝑟𝑜𝑤𝑖
)
−1

< 1. Consequently, 𝑛𝑓(𝚯𝑠) is removed from (5.1.16), resulting in (5.1.18),

and instead a 1-norm row normalization is performed on 𝚯(𝑠) during each batch (mini-batch)

iteration in the training process to ensure ∑ |𝚯𝑠|𝑟𝑜𝑤𝑖
= 1, for each row 𝑖.

 𝜹𝚯𝑠
(𝑘) = −𝑑𝑖𝑎𝑔 ((𝜹𝑾𝒎𝑠

(𝑘) ∘ 𝑾𝒎𝑠
)𝟏𝑞𝑠𝑥1) 𝑠𝑖𝑔𝑛(𝚯𝑠) + 𝜹𝑾𝒎𝑠

(𝑘) (5.1.18)

It is important to notice that despite the removal of 𝑛𝑓(𝚯𝑠) the parametrization of 𝑾𝒎𝑠
 in

terms of 𝚯(𝑠) remains useful, due to the previously discussed projection effect in (5.1.15).

96

5.1.4 GI-LSTM Interpretability

The row-normalized memory-group matrices, ∥ [𝑾𝒎𝑠
]

𝑟𝑜𝑤𝑖
∥1= 1, in the GI-LSTM

architecture represent an easy-to-analyze option to partly access what the network has learned,

specifically the relevance that each individual unit, [𝒉(𝑘)]𝑖, assigns to its memory groups,

[𝒎𝑠]𝑟𝑜𝑤𝑖
, which implies temporal relevance in the time series. This interpretability can be

achieved by observing, through 𝜍 different plots, the absolute values of the 𝑖th-row memory-group

matrices, i.e., 𝑎𝑏𝑠 ([𝑾𝒎1
]
𝑟𝑜𝑤𝑖

) , … , 𝑎𝑏𝑠 ([𝑾𝒎𝜍
]
𝑟𝑜𝑤𝑖

).

This approach, although offering a substantial degree of interpretability, would not express

how the temporal relevance is distributed across the memory groups when more than one is used,

since the relevance is dependent on the dynamic behaviour of the normalized forget gates,

[𝒇̂𝑠(𝑘)]
𝑟𝑜𝑤𝑖

. On the other hand, the dynamic behavior of the forget gates increases the difficulty

of interpreting the temporal relevance, since it tends to change from one iteration to the next.

Therefore, a middle ground between obtaining a more accurate insight into the distributed

relevance and handling the dynamism of the forget gates can be achieved by using the time-

averaged values of the forget gates (5.1.19), 𝒇̂
𝑠
, since they represent the overall effect the forget

gates have across the forward pass. The process of incorporating the averaged values into the effect

of the memory-group matrices, as described in (5.1.20), results in integrated memory-group

matrices, 𝝎𝑠, through which a more accurate interpretation of temporal relevance can be obtained.

Plotting the rows of the integrated memory-group matrices, [𝝎𝑠]𝑟𝑜𝑤𝑖
, produces the desired

interpretability for an individual unit 𝑖.

𝒇̂
𝑠
, =

1

𝒮
∑ 𝒇̂𝑠(𝑗)

𝒮
𝑗=1 (5.1.19)

97

𝝎𝑠 = [(𝒇̂
𝑠−1

 , 𝑑𝑖𝑎𝑔 (𝒇̂
𝑠
) 𝑎𝑏𝑠(𝑾𝒎𝑠

)] (5.1.20)

where as previously mentioned, 𝒮 is the sequence length.

By looking at the individual rows of the integrated matrices it is possible to access the

temporal instances considered by individual units. Nevertheless, when interpreting one unit at a

time, it might not be straightforward to identify what the whole network assigns relevance to; this

is due to the units’ interdependence in the recurrence equations, affecting each other through the

network gates. Therefore, if holistic interpretability is desired the mean value of the integrated

row-normalized matrices (5.1.21), can be used instead.

𝝎̂𝑠
̅̅ ̅̅ =

1

𝑛ℎ
𝟏1×𝑛ℎ

𝝎̂𝑠 (5.1.21)

where 𝝎̂𝑠 is the result of row-normalizing the matrix 𝝎𝑠, i.e., [𝝎𝑠]𝑖,𝑗/∑ [𝝎𝑠]𝑖,𝑗𝑗 .

5.1.5 Overhead analysis and training implementation

Considering the GI-LSTM structure defined by (5.1.1)-(5.1.13) and (5.1.17)-(5.1.18), the

number of learnable parameters in a single layer is:

 𝑛𝛉
(𝐺𝐼−𝐿𝑆𝑇𝑀)

= (4 + 𝜍 − 1)(𝑛ℎ + 𝑛𝑖𝑛𝑝𝑢𝑡 + 1)𝑛ℎ + (𝑞1 + ⋯+ 𝑞𝜍)𝑛ℎ (5.1.22)

As observed in the first term of the RHS of (5.1.22), for a fixed number of hidden units the

number of parameters increases proportionally with the number of forget gates, which is equal to

the number of memory groups being used, 𝑠𝑚𝑎𝑥, while the second term represents the increase due

to the memory groups’ learnable parameters, 𝚯𝑠. For a large number of hidden units if all the lag

values are such that 𝑞𝑠 < 𝑛ℎ, the increase in parameters per hidden unit with respect to an LSTM

remains reasonable, while the long-term reach remains large, 𝑞1 + 𝑞2𝑞1 + ⋯+ 𝑞𝑠𝑞𝑠−1 …𝑞1.

98

Furthermore, for small values of 𝑛ℎ the temporal reach can be easily extended while still using

fewer parameters.

The previous two relations are part of the core of the GI-LSTM capabilities as they

substantially mitigate the need to add more hidden units to oppose the EWC effect and allow for

adding units mostly to increase the expressive power, when the nonlinear complexity of the time

series requires it. Also, it should be highlighted that when 𝜍 = 1 and 𝑞1 = 1 the number of

parameters in (5.1.22) is equal to the standard LSTM, since such a configuration would result in

𝚯1 = 𝟏𝑛ℎ×1 and therefore there would be no need to store such parameters.

In more practical terms and as seen in (5.1.1)-(5.1.4), due to a memory group’s need for

accessing lagged values of the lower-order memory group, the number of transitory internal states

in the GI-LSTM for the forward pass (5.1.23), 𝑛
ϕ⃗⃗
(𝐺𝐼−𝐿𝑆𝑇𝑀)

, is larger than in the E-LSTM and LSTM

architectures. This number is achieved at the expense of frequently shifting values in auxiliary

matrices, 𝑨𝑠 ∈ ℝ𝑛ℎ×𝑞𝑠…𝑞1, containing the internal states as expressed in (5.1.23).

𝑛
ϕ⃗⃗
(𝐺𝐼−𝐿𝑆𝑇𝑀)

= (𝑞1 + 𝑞2𝑞1 …+ 𝑞𝜍𝑞𝜍−1 …𝑞1)𝑛ℎ (5.1.23)

In the case of memory not being the main constraint, a reduction in computation can be

achieved by using larger matrices, 𝑨𝑠 ∈ ℝ𝑛ℎ×𝒮, storing the values across the forward pass and

producing an internal overhead in the number of variables as seen in (5.1.24).

𝑛
ϕ⃗⃗
(𝐺𝐼−𝐿𝑆𝑇𝑀)

= 𝒮𝜍𝑛ℎ (5.1.24)

For the backward pass of the training process the overhead analysis is similar to the forward

pass, an overhead caused specifically by (5.1.11)-(5.1.13). Hence, when the analysis is carried out,

99

the resulting memory usage due to dynamic internal states, 𝑛
ϕ⃗⃗⃖

(𝐺𝐼−𝐿𝑆𝑇𝑀)
, is as described in (5.1.25)

for the memory prioritization approach.

𝑛
ϕ⃗⃗⃖

(𝐺𝐼−𝐿𝑆𝑇𝑀)
= (𝑞1 + 𝑞2𝑞1 …+ 𝑞𝜍𝑞𝜍−1 …𝑞1)𝑛ℎ (5.1.25)

For the computation prioritization approach, the resulting number of dynamic internal

states is given by (5.1.26).

𝑛
ϕ⃗⃗⃖

(𝐺𝐼−𝐿𝑆𝑇𝑀)
= 𝒮𝜍𝑛ℎ (5.1.26)

It is important to clarify that the multiplicative temporal reach, 𝑞𝜍𝑞𝜍−1 …𝑞1, in (5.1.25) is

upper bounded by the sequence length, 𝒮, itself, due to the standard training process in the RNN

architecture. Also sequence lengths do not go beyond the tens of thousands in practice [117]-[123],

which is a practical constraint for the number of transitory parameters per unit in the GI-LSTM

architecture.

Algorithm 5.1: GI-LSTM training

Input: {(𝒙(1), 𝒚(1)),… , (𝒙(𝑛), 𝒚(𝑛))} //assumed to be normalized

Set values:

 𝑛ℎ //number of hidden neurons

 𝑛𝑠𝑠 //number of subsequences

 𝑠𝑠𝑙𝑒𝑛𝑔𝑡ℎ //training subsequence length

 𝐼𝑚𝑎𝑥 //maximum number of iterations before stopping

 𝑛𝑓𝑎𝑖𝑙𝑠 //number of consecutive fails

 𝑛𝑓𝑎𝑖𝑙𝑠−𝑚𝑎𝑥 //max number of consecutive fails before stopping

 𝐸𝑡𝑟𝑎𝑖𝑛−𝑚𝑖𝑛 ← 𝑖𝑛𝑓 //minimum training MSE

 𝐸𝑣𝑎𝑙−𝑚𝑖𝑛 ← 𝑖𝑛𝑓 //minimum validation MSE

Initialize: 𝜽 //random initialization of weights

Divide dataset: 𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙, 𝐷𝑡𝑒𝑠𝑡 //division keeping temporal order

for 𝑗 = 1 to 𝐼𝑚𝑎𝑥

 for 𝑙 = 1 to 𝑛𝑠𝑠

100

 //-----------------------Forward pass---------------------------//

 Extract: 𝐷𝑡𝑟𝑎𝑖𝑛
(𝑙)

 //Extract 𝑙th training subsequence from 𝐷𝑡𝑟𝑎𝑖𝑛

 for 𝑘 = 1 to 𝑠𝑠𝑙𝑒𝑛𝑔𝑡ℎ

 Compute: 𝒂(𝑘), 𝒊(𝑘),𝔀𝒇𝑠
, 𝒇̂𝑠, 𝒐(𝑘),𝑵𝑠(𝑘), 𝒄(𝑘), 𝒉(𝑘)

 Compute:𝐸𝑡𝑟𝑎𝑖𝑛 // using ℒ (𝑡𝑟𝑎𝑖𝑛) for the 𝑙th subsequence

 //-----------------------Backward pass-------------------------//

 for 𝑘 = 1 to 𝑠𝑠𝑙𝑒𝑛𝑔𝑡ℎ

 Compute: 𝜹𝒉(𝑘), 𝜹𝒐(𝑘), 𝜹𝒄(𝑘), 𝜹𝒊(𝑘), 𝜹𝒇𝒔
(𝑘), 𝜹𝒂(𝑘), 𝜹𝒛(𝑘), 𝜹𝚯(𝑘), 𝜹𝜽(𝑘)

 𝜹𝜽 ← ∑ 𝜹𝜽(𝑗)
 𝑠𝑠𝑙𝑒𝑛𝑔𝑡ℎ

𝑗=1

 Update: 𝜽 //using any optimizer designed for this purpose

 //-----------------Validation Set Performance------------------//

 Compute: 𝐸𝑣𝑎𝑙 //using 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 and ℒ (𝑣𝑎𝑙) while keeping temporal order

 //--------------------Stopping criteria-----------------------------//

 if 𝐸𝑣𝑎𝑙−𝑚𝑖𝑛 > 𝐸𝑣𝑎𝑙 and 𝐸𝑡𝑟𝑎𝑖𝑛−𝑚𝑖𝑛 > 𝐸𝑡𝑟𝑎𝑖𝑛: //Storing best performance and optimal

 parameters//

 𝜽𝑜𝑝𝑡 ← 𝜽, 𝐸𝑣𝑎𝑙−𝑚𝑖𝑛 ← 𝐸𝑣𝑎𝑙, 𝑛𝑓𝑎𝑖𝑙𝑠 ← 0

 else:

 𝑛𝑓𝑎𝑖𝑙𝑠 ← 𝑛𝑓𝑎𝑖𝑙𝑠 + 1

 if 𝑛𝑓𝑎𝑖𝑙𝑠 > 𝑛𝑓𝑎𝑖𝑙𝑠−𝑚𝑎𝑥: //maximum consecutive fails for reducing 𝐸𝑣𝑎𝑙−𝑚𝑖𝑛 or 𝐸𝑡𝑟𝑎𝑖𝑛−𝑚𝑖𝑛

 break //ending main for loop

return: 𝜽𝑜𝑝𝑡 //Maximum number of iterations reached//

5.2 Experimental Setup

The GI-LSTM network performance is assessed by using the datasets described in Chapter

4 in addition to two popular benchmarks in the RNN area, the Copy memory dataset [28] described

in the following paragraphs. This new dataset belongs to the category of multiclass classification,

𝒚(𝑘) ∈ ℝ𝑛𝑐𝑙𝑎𝑠𝑠 , a category of problems that often uses the cross-entropy (CE) loss function (5.2.1)

for the training process, due to its capability to embed categorical information through a

probabilistic-like function.

ℒ𝐶𝐸 = ∑ ∑ [𝒚(𝑗)]𝑖
𝑛𝑐𝑙𝑎𝑠𝑠
𝑖=1

𝑘
𝑗=1 𝑙𝑜𝑔([𝒚̂(𝑗)]𝑖) (5.2.1)

101

The experiments with the Copy memory dataset are also performed with the standard

LSTM to maintain a baseline to compare with; however, the E-LSTM, the SARIMA and the CW-

RNN algorithms are not considered, due to model incompatibility in the first two cases and low

performance results across experiments in the last case (Chapter 4).

5.2.1 Copy memory dataset

The copy memory is a synthetic dataset initially proposed in [28] and has been extensively

used to evaluate the capability of a network to remember patterns across long-term delays [118],

[119], [121]-[124]. At a high level, the task consists of introducing a pattern to the model at hand,

followed by a large delay after which a trigger indicates to the network to output the pattern

initially presented.

In more detail, the copy memory dataset is composed of an input sequence of length

𝑇𝑑𝑒𝑙𝑎𝑦 + 2𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛, where the first 𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛 elements in the sequence are chosen uniformly at

random from the set of 𝑛𝑠𝑦𝑚 symbols {𝑎1, … , 𝑎𝑛𝑠𝑦𝑚
}, creating the pattern to be remembered. The

following 𝑇𝑑𝑒𝑙𝑎𝑦 − 1 elements consist of a ‘dummy’ symbol, 𝑎𝑛𝑠𝑦𝑚+1, causing the desired delay.

Next, a trigger symbol, 𝑎𝑛𝑠𝑦𝑚+2, is presented to signal the network to output the pattern. Finally,

the dummy symbol is used for the last 𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛 elements in the input sequence. The output

sequence, of the same length as the input sequence, is composed of 𝑛𝑠𝑦𝑚 + 1 classes

{𝑐0, 𝑐1, … , 𝑐𝑛𝑠𝑦𝑚
} whose 𝑇𝑑𝑒𝑙𝑎𝑦 + 2𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛 elements are the ‘zero’ class, 𝑐0, everywhere except

for the last 𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛 elements after the trigger symbol, 𝑎𝑛𝑠𝑦𝑚+1, which correspond to the classes of

each of the 𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛 symbols encountered in the initial input pattern.

102

5.2.2 Implementation details

For the GI-LSTM implementation the MATLAB 2020b environment was utilized for the

simulations. Also, the Adam optimization algorithm [41], [42] was again used across all

experiments, including any additional LSTM simulations presented in this chapter. Adam’s

hyperparameters were set to standard values, 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜖 = 10−8. The

validation loss, ℒ (𝑣𝑎𝑙), was used as one of the stopping criteria across experiments for the training

process, as indicated in Section 5.1.5, with a threshold value of 𝑚𝑓𝑎𝑖𝑙𝑠 = 4000.

 Experiments were carried out using different sizes of the GI-LSTM in terms of the number

of hidden units, sizes from the set {20, 21, . . . , 28} were utilized over the validation set, with 20

repetitions for each size; the loss function value producing the best average validation performance

was selected. Simulations were performed in the Beluga, Graham and Narval server clusters,

operated by the Digital Research Alliance of Canada, using 2.4GHz CPUs. For each of the selected

sizes the resulting performance in the testing set is reported.

5.3. Experimental Results and Analysis

In this section the GI-LSTM results for each introduced dataset, from the current and

previous chapters, are presented together with some of the results from Section 4.3 to facilitate

comparison across networks. The average (𝜇) and standard deviation (𝜎) of the RMSE value (or

cross entropy for classification problems) are provided as performance indicators. Also, the

following metrics are provided: number of hidden units and number of parameters (𝑛ℎ, 𝑛𝜽).;

average training time per iteration (𝑡𝑖̅𝑡𝑒𝑟); average time and number of iterations to achieve the

optimal loss function value (𝑡̅(𝑜𝑝𝑡), 𝐼 ̅𝑖𝑡𝑒𝑟
(𝑜𝑝𝑡)

). The top two GI-LSTM models, from a small set of

possible configurations and based on the validation-set performance (minimum 𝜇𝑣𝑎𝑙 + 𝜎𝑣𝑎𝑙), are

103

provided. Also, bold text is used in the tables to represent the network with best testing

performance (minimum 𝜇𝑡𝑒𝑠𝑡 + 𝜎𝑡𝑒𝑠𝑡).

The hyperparameter values for the GI-LSTM configurations are chosen based on easy-to-

access information in the datasets: seasonality, maximum length of potential patterns, human-

driven seasonalities (hours, days, weeks, months, etc.).

GI-LSTM interpretability plots are also provided, i.e., 𝝎̂𝑠
̅̅ ̅̅ (5.1.21), where it should be noted

that a temporal dependence in the plots at 𝑑 implies a self-lag dependence in the time series at 𝑑 +

1, since the input is the output with a lag of 1. Also, the qualitative description ‘parameter-efficient’

will be used across this section to describe when the GI-LSTM achieves a similar performance to

the LSTM using significantly less parameters. Furthermore, validation-set performance results for

different GI-LSTM sizes are presented, in the form of plots, as additional information to make

performances comparisons under similar numbers of parameters.

5.3.1 Synthetic datasets

Results for the Switching datasets are presented in Table 5.3.1-Table 5.3.2 and Fig. 5.3.1-

Fig. 5.3.4. In the case of the Switching-100 dataset, the best GI-LSTM variant outperforms the

LSTM and its augmented-input variation, showing a similar performance to the proposed E-LSTM

but using an order of magnitude less of parameters. Also, the interpretability plot shows that the

GI-LSTM can detect the nonlinear lagged dependence at 22 without the aid of the DC correlation,

as opposed to the E-LSTM. Furthermore, in terms of parameter efficiency the GI-LSTM prevails

over the standard LSTM across different networks sizes and remains competitive with the E-

LSTM.

104

Table 5.3.1. Results for the Switching-100 dataset (𝑘𝑖 = 22). Lower bound RMSE = 0.4227,

GI-LSTM forward-backward pass length is set to 1000.

Fig. 5.3.1. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the

Switching-100 dataset.

105

For the Switching-01 dataset the best GI-LSTM variant outperforms the standard LSTM

and E-LSTM, but the augmented-input variations of these networks remain on top. In this case, as

in Section 4.3.1, the results can be attributed to the low-frequency switching. However, the GI-

LSTM is able again to precisely detect the nonlinear lagged dependence at 50 and remains

parameter-efficient with respect to the standard LSTM and E-LSTM networks.

Fig. 5.3.2. Validation set performance across different sizes for the Switching-100 dataset.

Table 5.3.2. Results for the Switching-01 (𝑘𝑖 = 50), with a lower bound RMSE = 0.4095 and

a GI-LSTM forward-backward pass length of 1000.

106

Fig. 5.3.3. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the

Switching-01 dataset.

Fig. 5.3.4. Validation set performance across different sizes for the Switching-01 dataset.

107

For the Binary sequence dataset, results (Table 5.3.3) show that both configurations of the

GI-LSTM, one using a lag-memory value equal to the embedded sequence’s length (𝑞1 = 112),

and the other using a larger lag-memory value (𝑞1 = 200) have better performance than the

alternative networks, with performance close to the lower bound. Also, by analyzing the

interpretability plot (Fig. 5.3.5) the relevance that the GI-LSTM gives to the long-term

dependencies can be observed, potentially explaining the better performance. In addition, Fig.

5.3.6 indicates that the optimal validation performance obtained by the alternative networks can

be achieved by the GI-LSTM using less parameters (again by an order of magnitude).

Table 5.3.3. Results for the Binary Sequence dataset (𝑘𝑖 = 29), with a lower bound RMSE =

0.4357 and a GI-LSTM forward pass length of 1120

108

Fig. 5.3.5. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Binary

sequence dataset.

Fig. 5.3.6. Validation set performance across different sizes for the Binary sequence dataset.

109

5.3.2 Real-world datasets

 In the Chickenpox dataset the GI-LSTM outperforms the standard LSTM and E-LSTM

models, but the augmented E-LSTM remains on top (Table 5.3.3). It is worth noting that the GI-

LSTM produces competitive performance with an acceptable number of parameters, with respect

to the other networks. Furthermore, the dependence relevance (Fig. 5.3.7) is consistent with the

highest-value nonlinear dependence identified by the DC measure and used for the E-LSTM (𝑝 =

24). In this dependence relevance, less value is assigned to the yearly data’s seasonality (lag of 12

in the time series and equivalent to the dependence at 11 in the interpretability plot). In relation to

the performance across different network sizes (Fig. 5.3.8), the GI-LSTM model remains

consistently better in relation to the alternative networks.

Table 5.3.4. Results for the Chickenpox dataset (𝑘𝑖 = 24) a GI-LSTM forward pass length of

400.

110

Fig. 5.3.7. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the

Chickenpox dataset.

Fig. 5.3.8. Validation set performance across different sizes for the Chickenpox dataset.

111

For the Sunspots dataset, little improvement is obtained through the best GI-LSTM model

in comparison to the other models. Nevertheless, when analyzing the interpretability plots of both

GI-LSTM configurations, Fig. 5.3.9-Fig. 5.3.10, it can be observed that the 10-to-11-year

seasonality in the dataset (120-132 lagged values in the timeseries) receives little relevance in the

second-best configuration, while most of it is allocated for the last three years of information. This

relevance distribution could potentially explain why little improvement is achieved in the model

even when compared to the standard LSTM.

Fig. 5.3.9. Temporal-dependence relevance in the GI-LSTM memory-group 1, best

configuration, for the Sunspots dataset,

Table 5.3.5. Results for the Sunspots dataset (𝑘𝑖 = 12) and a GI-LSTM forward pass length of

1440.

112

Fig. 5.3.10. Temporal-dependence relevance in the GI-LSTM memory-group 1, second-best

configuration, for the Sunspots dataset.

Fig. 5.3.11. Validation set performance across different sizes for the Sunspots dataset.

113

For the Power Consumption dataset, the GI-LSTM networks (Table 5.3.6) achieve the best

performance; specifically, the configuration using two memory groups. The latter is of interest

when considering that in theory both configurations possess the same temporal reach (derived from

(5.1.1)-(5.1.4)), 168 = 24 ∗ (6 + 1). One interpretation of the latter outcome is potential

redundancy in the information across the previous 168 time units (hours). In more detail, by

observing Fig. 5.3.12 - Fig. 5.3.13 it can be noticed that approximately 45% of the relevance is

given to the information occurring in the last 24 hours, while the remaining relevance seems to be

more uniformly distributed across the remainder of the previous information. Also, the

interpretability plot in Fig. 5.3.14 shows a pattern in the relevance distribution, with pronounced

local maxima occurring at lag values that are multiples of 24, after the first 48-time dependencies.

This can indicate that information compression has no negative effect in the performance for this

dataset, a trend that remains consistent across different sizes of the GI-LSTM network (Fig.

5.3.15).

Table 5.3.6. Results for the Power Consumption dataset (𝑘𝑖 = 24)) and a GI-LSTM forward

pass length of 1344

114

Fig. 5.3.12. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Power

consumption dataset.

Fig. 5.3.13. Temporal-dependence relevance in the GI-LSTM memory-group 2, best

configuration, for the Power consumption dataset.

115

Fig. 5.3.15. Validation set performance across different sizes for the Power consumption

dataset.

Fig. 5.3.14. Temporal-dependence relevance in the GI-LSTM memory-group 1, second-best

configuration, for the Power consumption dataset.

116

Similar to the previous case, in the Toronto temperature dataset the GI-LSTM

configurations (Table 5.3.7) outperform the alternative models; both configurations are close in

performance, despite the second-best using 15% less parameters due to the use of a second-order

memory group. The latter effect can be further supported when observing the interpretability plots

(Fig. 5.3.16-Fig. 5.3.18), where the relevance distribution shows a similar phenomenon to the

Power Consumption dataset: a pattern of local maxima at multiples of 24 hours in the configuration

using a single memory group (Fig. 5.3.16) and the configuration using two memory groups a

relevance of approximately 45% for the previous 24 hours (Fig. 5.3.18). Additionally, the

performance of the networks across different sizes (Fig. 5.3.19) shows that the GI-LSTM

configurations remain parameter-efficient, and the performance trend is similar to that of the Power

consumption dataset (Fig. 5.3.15). This performance trend resemblance is not further explored or

analyzed in this work, but it could be hypothesized that the energy consumption of the US Eastern

grid area, in the same time-zone as the city of Toronto, is heavily affected by the temperatures in

the region which are in turn correlated with Toronto's temperature.

Table 5.3.7. Results for the Toronto temperature dataset and a GI-LSTM forward pass of 1344.

117

Fig. 5.3.17. Temporal-dependence relevance in the GI-LSTM memory-group 1, second-best

configuration, for the Toronto temperature dataset.

Fig. 5.3.16. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Toronto

temperature dataset.

118

 Fig. 5.3.19. Validation set performance across different sizes for the Toronto temperature

dataset.

Fig. 5.3.18. Temporal-dependence relevance in the GI-LSTM memory-group 2, second-best

configuration, for the Toronto temperature dataset.

119

5.3.3 Copy memory dataset results and analysis

 The copy memory dataset simulation results are studied separately due to the use of the CE

loss function and the flexibility it allows for varying the delay, 𝑇𝑑𝑒𝑙𝑎𝑦, between the introduction of

the input patterns and the time to output their class. Experiments using delay values of 50, 200 and

400 were performed to test the long-term memory capability of the networks under the following

conditions. First, 𝑛𝑠𝑦𝑚 = 8 and 𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = 10, as in the original copy memory task. Also, one-hot

encoding is used for all the symbols, producing vectors of dimension 10. Since the encoding

generates 0-1 values no input normalization is performed (which avoids the generation of large

values in the input due to the scarcity of the symbols to be classified when 𝑇𝑑𝑒𝑙𝑎𝑦 is large).

Additionally, batch processing is performed, and the Adam optimizer is used, with default

hyperparameter values and learning rate 𝛼 = 0.005. Chrono initialization [122] is implemented

for the standard LSTM, due to its proven efficacy to accelerate the learning process of long-term

patterns. A maximum number of 100000 epochs for the LSTM and 40000-60000 epochs for the

GI-LSTM are used during the training phase. Finally, a temporal reach equal to half the sequence

length, 𝒮/2, in each experiment is used for all the GI-LSTM configurations.

 Among the defined experimental conditions, it is important to highlight that avoiding

normalization after the one-hot encoding also avoids the effect of unintentionally leaking

information to the networks, since the mean-variance normalization would generate a very low

variance for the features linked to the symbols to be reconstructed, greatly increasing the values of

these features and decreasing the feature value associated with the dummy symbol, 𝑎𝑛𝑠𝑦𝑚+1, giving

away the relevance of the patterns.

120

For the result tables, in addition to the CE metrics, the total classification accuracy and the

pattern reconstruction accuracy metrics are also reported; the pattern reconstruction accuracy

reflects the true capability of the networks to learn and generalize the task, without the bias created

by the dummy symbol that appears across most of the sequence length, i.e., in 𝑇𝑑𝑒𝑙𝑎𝑦 + 𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛 −

1 instances out of 𝒮 = 𝑇𝑑𝑒𝑙𝑎𝑦 + 2𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛.

 In Table 5.3.8 the results for 𝑇𝑑𝑒𝑙𝑎𝑦 = 50, with the best performing sizes of the networks,

is shown. As observed, the LSTM is essentially unable to perform the pattern reconstruction under

the conditions of the experiment, despite the use of the chrono initialization, the use of a higher

number of parameters (an order of magnitude higher than the GI-LSTM) and more training epochs.

In contrast, the GI-LSTM is able to achieve near 100% accuracy in the testing set, showing its

capability to generalize beyond the training and validation sets. Also, when analyzing the

interpretability plot (Fig. 5.3.20) for this experiment, it can be observed that relevance is assigned

to iterations beyond the trigger symbol, located at 10 in lag values. Consequently, information is

propagated forward across the temporal connectivity generated in the memory groups.

The detailed evolution of the training process for this experiment can be observed in

Fig. 5.3.21 - Fig. 5.3.22, where it can be seen that the average validation loss curves do not follow

the trajectory of the training loss curves. This implies that the LSTM network is not able to

generalize beyond the training set under these experimental conditions.

121

Fig. 5.3.20. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Copy-

memory-d50 dataset.

Table 5.3.8. Results for the Copy-memory-d50 dataset, 100 sequences and batch size of 100.

122

Fig. 5.3.22. Training and validation pattern accuracy for the Copy-memory-d50 dataset.

Fig. 5.3.21. Training and validation cross-entropy for the Copy-memory-d50 dataset.

123

When the delay value is increased to 200 a more pronounced difference in relation to the

generalization capability in the networks can be observed in Table 5.3.9; additional results for the

GI-LSTM are provided to directly compare networks of similar sizes. In this case, the

interpretability plot (Fig. 5.3.23) of the best performing GI-LSTM shows a high relevance

associated to a long-term dependence at 105, revealing again that the network tries to propagate

the pattern information occurring at the beginning of the sequence, located between 220 and 210

previous instances. Also, the training process in Fig. 5.3.24-Fig. 5.3.25 shows the LSTM is not

able to learn the pattern in the training dataset, while the GI-LSTM starts to reduce its

generalization performance in a noticeable but not critical fashion.

Table 5.3.9. Results for the Copy-memory-d200 dataset, 100 sequences and batch size of 100,

with additional results for the GI-LSTM.

124

Fig. 5.3.23. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the copy-

memory-d200 dataset.

Fig. 5.3.24. Training and validation cross-entropy for the Copy-memory-d200 dataset.

125

An experiment using delay of 400 is carried out (Table 5.3.10); however, the LSTM

network is not used in this case, a decision made based on its low performance for easier tasks.

For this scenario, the GI-LSTM generalization performance reduces, partly explained by the

maximum simulation time used for this experiment. In addition, the associated interpretability plot

(Fig. 5.3.26) for this experiment resembles that for a delay of 200, with a high relevance near the

last dependencies. Furthermore, Fig. 5.3.27- Fig. 5.3.28 support the observation of the simulation

time affecting the GI-LSTM performance, where the last figure shows an upward trend for the

pattern accuracy.

Fig. 5.3.25. Training and validation pattern accuracy for the Copy-memory-d200 dataset.

126

Fig. 5.3.26. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Copy-

memory-d400 dataset.

Table 5.3.10. Results for the copy-memory-d400 dataset (𝑇𝑑𝑒𝑙𝑎𝑦 = 400), 100 sequences and

batch size of 100.

127

Fig. 5.3.27. Training and validation cross-entropy for the Copy-memory-d400 dataset.

Fig. 5.3.28. Training and validation pattern accuracy for the Copy-memory-d400 dataset.

128

Chapter 6

Conclusion

In this work, machine learning models for time-series forecasting are proposed and experimentally

tested. These models are intended to be interpretable, possess increasing long-term learning

capability and maintain acceptable size. They exhibit promising performance across a variety of

simulated and real-world experiments. These results were achieved by taking the following path:

• An inherently interpretable adaptive linear model for dynamic systems was proposed. The

model was designed to incorporate information more actively through a time-varying

forgetting factor that is constrained by physically interpretable and user-defined

parameters.

• The adaptive linear model was used as the basis, together with a General Predictive

Controller approach with a variable time horizon, to create an Adaptive Predictive

Controller.

• The proposed Adaptive Predictive Controller was implemented on a real rack-mounted

cooling system to control server temperatures in data centres, using a low-cost commercial

microcontroller. The resulting model outperforms standard control algorithms (a standard

GPC included), in both simulations and real-world tests.

129

• The proposed Adaptive Predictive Controller also showed capabilities to significantly

reduce energy-consumption expenses by allowing for a monetary optimization algorithm.

• In order to consider nonlinear effects in time series, attention is redirected to the LSTM

model. Initial steps to overcome the model’s potential limitations on identifying long-term

dependencies and using a large number of parameters are taken by increasing its internal

temporal connectivity, resulting in the E-LSTM architecture.

• An approach based on the Distance Correlation intended to detect nonlinear effects that

can be exploited by time-series nonlinear models is proposed. This approach is used to

select the incremented temporal connectivity in the E-LSTM architecture.

• Experiments using the proposed E-LSTM, the LSTM and alternative time-series linear and

nonlinear models showed that the E-LSTM achieved similar or better performance for a

variety of synthetic and real-world time-series datasets, while in most cases maintaining or

reducing the number of parameters.

• Further steps are taken to increase performance and interpretability by proposing a

Generalized Interpretable LSTM (GI-LSTM) architecture, with even higher temporal

connectivity than the E-LSTM, allowing for semi-global interpretation and removing the

need for precisely locating the temporal connectivity.

• Experiments are carried out with the proposed GI-LSTM and alternative linear and

nonlinear models, showing the proposed GI-LSTM provides better performance with

respect to size while becoming more accessible for human interpretation.

From the previous milestones some insights can be extracted. First, the ability of an

adaptive linear model to dynamically regulate how much relevance is given to new information,

130

based on interpretable physical constraints, not only promotes better performance and reliability,

but also showcases the usefulness of simple and interpretable models for industrial applications.

Among the potential restrictions of the proposed adaptive linear model is the limited

memory capability, which can force the model to forget useful information to adapt to the current

dynamic system’s state. In this regard, investigation in the direction of piece-wise linear models

could be performed, from the perspective of having a set of learnable parameters (vectors)

functioning as not necessarily disjoint ‘memories’ for different system states. In this way, relevant

information is more likely to remain encoded and dynamic adaptation can be used mostly to handle

time-varying conditions in the system and not to handle nonlinear effects.

 In relation to the E-LSTM, the experimental results showed that, for time-series datasets in

which nonlinear effects might be present, the standard LSTM architecture seems to rely on a larger

number of hidden units and forget gates to identify long-term dependencies, consequently

producing a large number of parameters in the model. In contrast, the extended connectivity in the

E-LSTM alleviates this need while improving the performance in some cases.

The E-LSTM model has two limitations. It relies on an external approach to identify where

the extended connectivity location should be created and it is not clear that such an approach can

be used for more than a single-layer architecture while producing significantly better results. The

first of these limitations is mostly addressed by the GI-LSTM, as shown in the last part of this

thesis. In relation to the second limitation, investigation on incremental training of a multi-layer

E-LSTM could be performed; specifically, selecting the temporal connectivity of a second E-

LSTM layer based on the residual errors created by the first layer, and iteratively repeating this

process for subsequent layers.

131

The proposed GI-LSTM network and the experimental results suggested that not only is it

possible to further increase the internal connectivity in the E-LSTM, removing the need for

preprocessing the data by means of an external algorithm, but also showed that a small network

can still result in a competitive model. Also, the proposed architecture opens up the possibility of

having the previous advantages while allowing for interpretability. Furthermore, the architecture

is general enough to be used in deep layer architectures, an approach that would be worth testing

for additional time-series showing more complex nonlinearities.

There are a number of research opportunities with respect to the GI-LSTM architecture,

aimed to increase performance and interpretability, accelerate the training process and produce

smaller network sizes. First, artificial stochastic variability could be produced in the memory-

group parameters, since they represent the core mechanism in the identification of long-term

dependencies. This could decrease the time spent in local optima and possibly reduce the number

of units needed to identify relevant dependencies. Also, modifications to the input gate in the

direction expressed by [119] could be performed if deep layers were to be investigated, since the

memory-group strategy is compatible with such modifications. In relation to the temporal

connectivity in the memory groups, it is worth noting that such connectivity could be further

promoted by designing mechanisms that allow for information sharing across memory-group units,

since the proposed temporal connectivity is limited to be unit-wise, i.e., the behavior of each

element in a memory-group is not directly influenced by other elements’ behavior. This lack of

influence could lead to undesired, or at least not well-directed, redundancy; producing model sizes

larger than necessary.

132

Bibliography

[1] Magnus, J. R., & Neudecker, H. (2019). Matrix Differential Calculus with Applications in

Statistics and Econometrics (3rd ed.). John Wiley & Sons. ISBN: 1119541204.

[2] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

[3] Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2018). Deep learning for healthcare:

review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236-1246.

[4] Raghu, M., & Schmidt, E. (2020). A survey of deep learning for scientific discovery. arXiv

preprint arXiv:2003.11755.

[5] Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2020). DeepAR: Probabilistic

forecasting with autoregressive recurrent networks. International Journal of Forecasting, 36(3),

1181-1191.

[6] Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., & Amodei, D.

(2020). Scaling laws for neural language models. arXiv preprint arXiv:2001.08361.

[7] Marcus, G. (2020). The next decade in AI: four steps towards robust artificial

intelligence. arXiv preprint arXiv:2002.06177.

[8] Samek, W., & Müller, K. R. (2019). Towards explainable artificial intelligence. Explainable

AI: interpreting, explaining and visualizing deep learning, 5-22.

[9] Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Deep inside convolutional networks:

visualising image classification models and saliency maps. Proceedings of the International

Conference on Learning Representations (ICLR), 1–8.

133

[10] Holzinger, A., Biemann, C., Pattichis, C. S., & Kell, D. B. (2017). What do we need to build

explainable AI systems for the medical domain?. arXiv preprint arXiv:1712.09923.

[11] El-Sherief, H., & Sinha, N. (1979). Choice of models for the identification of linear

multivariable discrete-time systems. Proceedings of the Institution of Electrical Engineers,

126(12), 1326.

[12] Ding, F., & Chen, T. (2005). Hierarchical least squares identification methods for

multivariable systems. IEEE Transactions on Automatic Control, 50(3), 397-402.

[13] Li, J., Stoica, P., Xu, L., & Roberts, W. (2007). On parameter identifiability of MIMO

radar. IEEE signal processing letters, 14(12), 968-971.

[14] Ozsoy, C., Kural, A., Cetinkaya, M., & Ertug, S. (1999, October). Constrained MIMO self-

tuning composition control in cement industry. In 1999 7th IEEE International Conference on

Emerging Technologies and Factory Automation. Proceedings ETFA'99 (Cat. No.

99TH8467) (Vol. 2, pp. 1021-1028). IEEE.

[15] Han, J., Cui, Q., Guo, L., Rehman, W. U., & Chen, Z. (2013, April). Application of orthogonal

experimental design to MIMO detection. In 2013 IEEE Wireless Communications and Networking

Conference (WCNC) (pp. 4009-4014). IEEE.

[16] Phung, J., Young, C. L., & Zomaya, A. Y. (2017, May). Application-agnostic power

monitoring in virtualized environments. In 2017 17th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGRID) (pp. 335-344). IEEE

[17] Rodionov, R., De Martino, F., Laufs, H., Carmichael, D. W., Formisano, E., Walker, M., &

Lemieux, L. (2007). Independent component analysis of interictal fMRI in focal epilepsy:

comparison with general linear model-based EEG-correlated fMRI. Neuroimage, 38(3), 488-500.

134

[18] Kollias, S., & Anastassiou, D. (1989). An adaptive least squares algorithm for the efficient

training of artificial neural networks. IEEE Transactions on Circuits and Systems, 36(8), 1092-

1101.

[19] Dayal, B. S., & Macgregor, J. F. (1997). Recursive exponentially weighted PLS and its

applications to adaptive control and prediction. Journal of Process Control, 7(3), 169-179.

[20] Chen, S., Billings, S. A., & Grant, P. M. (1992). Recursive hybrid algorithm for non-linear

system identification using radial basis function networks. International Journal of Control, 55(5),

1051-1070.

[21] Mao, Y., Ding, F., Xu, L., & Hayat, T. (2019). Highly efficient parameter estimation

algorithms for Hammerstein non-linear systems. IET Control Theory & Applications, 13(4), 477-

485.

[22] Xu, L., & Ding, F. (2017). Recursive least squares and multi-innovation stochastic gradient

parameter estimation methods for signal modeling. Circuits, Systems, and Signal Processing, 36,

1735-1753.

[23] Bengio, Y., Ducharme, R., & Vincent, P. (2000). A neural probabilistic language

model. Advances in neural information processing systems, 13.

[24] He, W., Chen, Y., & Yin, Z. (2015). Adaptive neural network control of an uncertain robot

with full-state constraints. IEEE transactions on cybernetics, 46(3), 620-629.

[25] Liang, D., Krishnan, R. G., Hoffman, M. D., & Jebara, T. (2018, April). Variational

autoencoders for collaborative filtering. In Proceedings of the 2018 world wide web

conference (pp. 689-698).

135

[26] Geva, M., Schuster, R., Berant, J., & Levy, O. (2021). Transformer Feed-Forward Layers Are

Key-Value Memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural

Language Processing. Association for Computational Linguistics.

[27] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8), 1735-1780.

[28] Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction

with LSTM. Neural computation, 12(10), 2451-2471.

[29] Gers, F. (2001). Long short-term memory in recurrent neural networks. PhD dissertation,

Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

[30] Athiwaratkun, B., & Stokes, J. W. (2017, March). Malware classification with LSTM and

GRU language models and a character-level CNN. In 2017 IEEE international conference on

acoustics, speech and signal processing (ICASSP) (pp. 2482-2486). IEEE.

[31] Fu, R., Zhang, Z., & Li, L. (2016, November). Using LSTM and GRU neural network methods

for traffic flow prediction. In 2016 31st Youth academic annual conference of Chinese association

of automation (YAC) (pp. 324-328). IEEE.

[32] Gensler, A., Henze, J., Sick, B., & Raabe, N. (2016, October). Deep Learning for solar power

forecasting—An approach using AutoEncoder and LSTM Neural Networks. In 2016 IEEE

international conference on systems, man, and cybernetics (SMC) (pp. 2858-2865). IEEE.

[33] Tax, N., Verenich, I., La Rosa, M., & Dumas, M. (2017). Predictive business process

monitoring with LSTM neural networks. In Advanced Information Systems Engineering: 29th

International Conference, CAiSE 2017, Essen, Germany, June 12-16, 2017, Proceedings 29 (pp.

477-492). Springer International Publishing.

136

[34] Wigington, C., Stewart, S., Davis, B., Barrett, B., Price, B., & Cohen, S. (2017, November).

Data augmentation for recognition of handwritten words and lines using a CNN-LSTM network.

In 2017 14th IAPR international conference on document analysis and recognition (ICDAR) (Vol.

1, pp. 639-645). IEEE.

[35] Woo, W. W., Svoronos, S. A., & Crisalle, O. D. (1995, June). A directional forgetting factor

for single-parameter variations. In Proceedings of 1995 American Control Conference-

ACC'95 (Vol. 2, pp. 1149-1151). IEEE.

[36] Rao, A. K., Huang, Y. F., & Dasgupta, S. (1990). ARMA parameter estimation using a novel

recursive estimation algorithm with selective updating. IEEE transactions on acoustics, speech,

and signal processing, 38(3), 447-457.

[37] Bittanti, S., Bolzern, P., & Campi, M. (1990). Convergence and exponential convergence of

identification algorithms with directional forgetting factor. Automatica, 26(5), 929-932.

[38] Ydstie, B. E., Kershenbaum, L. S., & Sargent, R. W. H. (1985). Theory and application of an

extended horizon self-tuning regulator. AIChE, 31(11), 1771-1780.

[39] Zhang, Y., Tiňo, P., Leonardis, A., & Tang, K. (2021). A survey on neural network

interpretability. IEEE Transactions on Emerging Topics in Computational Intelligence, 5(5), 726-

742.

[40] Martinez-Garcia, F., Badawy, G., Kheradmandi, M., & Down, D. G. (2021). Adaptive

Predictive Control of a data center cooling unit. Control Engineering Practice, 107, 104674.

[41] Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale

optimization. Mathematical programming, 45(1-3), 503-528.

137

[42] Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters.

Journal of the society for Industrial and Applied Mathematics, 11(2), 431-441.

[43] Kinga, D., & Adam, J. B. (2015, May). A method for stochastic optimization. In International

conference on learning representations (ICLR) (Vol. 5, p. 6).

[44] Deng, B. C., Yun, Y. H., Liang, Y. Z., Cao, D. S., Xu, Q. S., Yi, L. Z., & Huang, X. (2015).

A new strategy to prevent over-fitting in partial least squares models based on model population

analysis. Analytica Chimica Acta, 880, 32-41.

[45] Mangan, N. M., Kutz, J. N., Brunton, S. L., & Proctor, J. L. (2017). Model selection for

dynamical systems via sparse regression and information criteria. Proceedings of the Royal Society

A: Mathematical, Physical and Engineering Sciences, 473(2204), 20170009.

[46] Clarke, D. W., Mohtadi, C., & Tuffs, P. S. (1987). Generalized predictive control—Part I.

The basic algorithm. Automatica, 23(2), 137-148.

[47] Clarke, D. W., Mohtadi, C., & Tuffs, P. S. (1987). Generalized predictive control—Part II

Extensions and interpretations. Automatica, 23(2), 149-160.

[48] Shekhar, R. C., & Maciejowski, J. M. (2012). Robust variable horizon MPC with move

blocking. Systems & Control Letters, 61(4), 587-594.

[49] Keerthi, S. S., & Gilbert, E. G. (1988). Optimal infinite-horizon feedback laws for a general

class of constrained discrete-time systems: Stability and moving-horizon approximations. Journal

of optimization theory and applications, 57, 265-293.

[50] Hedjar, R. (2013). Adaptive neural network model predictive control. International Journal

of Innovative Computing, Information and Control, 9(3), 1245-1257.

138

[51] Bobal, V., Kubalcik, M., Dostal, P., & Matejicek, J. (2013). Adaptive predictive control of

time-delay systems. Computers & Mathematics with Applications, 66(2), 165-176.

[52] Mizumoto, I., Fujimoto, Y., & Ikejiri, M. (2015). Adaptive output predictor based adaptive

predictive control with ASPR constraint. Automatica, 57, 152-163.

[53] Yoon, T. W., & Clarke, D. W. (1994). Adaptive predictive control of the benchmark

plant. Automatica, 30(4), 621-628.

[54] Ydstie, B. E., Kershenbaum, L. S., & Sargent, R. W. H. (1985). Theory and application of an

extended horizon self-tuning regulator. AIChE, 31(11), 1771-1780.

[55] Lara, C., Flores, J. J., & Calderon, F. (2009). On the Hyperbox – Hyperplane Intersection

Problem. INFOCOMP, 8(4), 21-27.

[56] Woodbury, M.A. & Princeton University. Department of Statistics. (1950). Inverting

Modified Matrices. Department of Statistics, Princeton University.

[57] Koomey, J. (2011). Growth in data center electricity use 2005 to 2010. A report by Analytical

Press, completed at the request of The New York Times, 9(2011), 161.

[58] Delforge, P., Whitney, J., & Anthesis. (2014). Data Center Efficiency Assessment: Scaling

Up Energy Efficiency Across the Data Center Industry: Evaluating Key Drivers and Barriers

(IP:14-08-a). NRDC.

[59] Patterson, M. K. (2008, May). The effect of data center temperature on energy efficiency.

In 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in

Electronic Systems (pp. 1167-1174). IEEE.

[60] Dunlap, K., & Rasmussen, N. (2012). Choosing Between Room, Row, and Rack-based

Cooling for Data Centers. Schneider Electr.

139

[61] El-Sayed, N., Stefanovici, I. A., Amvrosiadis, G., Hwang, A. A., & Schroeder, B. (2012, June).

Temperature management in data centers: Why some (might) like it hot. In Proceedings of the 12th

ACM SIGMETRICS/PERFORMANCE joint international conference on Measurement and

Modeling of Computer Systems (pp. 163-174).

[62] Afram, A., & Janabi-Sharifi, F. (2014). Theory and applications of HVAC control systems–A

review of model predictive control (MPC). Building and Environment, 72, 343-355.

[63] Campi, M. (1994). Performance of RLS Identification Algorithms with Forgetting Factor: A

ϕ-Mixing Approach. Journal of Mathematical Systems, Estimation, and Control, 4(3), 1-25.

[64] Lipták, B. G. (1985). Control and on-off valves (pp. 410-412). Instrument Engineers’

Handbook, 2nd ed.

[65] Reyes-Lúa, A., Zotică, C., Forsman, K., & Skogestad, S. (2019). Systematic design of split

range controllers. IFAC-PapersOnLine, 52(1), 898-903.

[66] Ontario Energy Board. (n.d.). Electricity Rates. Retrieved July 10, 2018 from

https://www.oeb.ca/rates-and-your-bill/electricity-rates.

[67] City of Toronto. (n.d.). 2018 Water Rates & Fees. Retrieved July 10, 2018 from

https://www.toronto.ca/services-payments/property-taxes-utilities/utility-bill/water-rates-and-

fees/.

[68] Teran, R., Draye, J. P., Pavisic, D., Calderon, G., & Libert, G. (1996, January). Predicting a

chaotic time series using a dynamical recurrent neural network. In Proceedings IWISP'96 (pp. 115-

118). Elsevier Science Ltd.

140

[69] Seidl, D. R., & Lorenz, R. D. (1991, July). A structure by which a recurrent neural network can

approximate a nonlinear dynamic system. In IJCNN-91-Seattle International Joint Conference on

Neural Networks (Vol. 2, pp. 709-714). IEEE.

[70] Schuster, M. (1996, September). Learning out of time series with an extended recurrent neural

network. In Neural Networks for Signal Processing VI. Proceedings of the 1996 IEEE Signal

Processing Society Workshop (pp. 170-179). IEEE.

[71] Robinson, A., and F. Fallside. "Static and dynamic error propagation networks with

application to speech coding." Neural information processing systems. 1987.

[72] Robinson, A. J. (1994). An application of recurrent nets to phone probability estimation. IEEE

transactions on Neural Networks, 5(2), 298-305.

[73] Werbos, P. J. (1990). Backpropagation through time: what it does and how to do

it. Proceedings of the IEEE, 78(10), 1550-1560.

[74] Rao, D. H., & Gupta, M. M. (1994). Neuro-fuzzy controller for control and robotics

applications. Engineering Applications of Artificial Intelligence, 7(5), 479-491.

[75] Tsoi, A. C., Shrimpton, D., Watson, B., & Back, A. (1994). Application of artificial neural

network techniques to speaker verification. In Automatic Speaker Recognition, Identification and

Verification.

[76] Alvarez-Cercadillo, J., Ortega-Garcia, J., & Hernández-Gómez, L. A. (1993, April). Context

modeling using RNN for keyword detection. In 1993 IEEE International Conference on Acoustics,

Speech, and Signal Processing (Vol. 1, pp. 569-572). IEEE.

[77] Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen [M.S.

thesis]. Technische Universitt München, München, Germany.

141

[78] Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient

descent is difficult. IEEE transactions on neural networks, 5(2), 157-166.

[79] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-

propagating errors. nature, 323(6088), 533-536.

[80] Williams, R. J., & Zipser, D. (1990). Gradient-based learning algorithms for recurrent

connectionist networks (pp. 433-486). Boston, MA: College of Computer Science, Northeastern

University.

[81] Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory based recurrent neural

network architectures for large vocabulary speech recognition. arXiv preprint arXiv:1402.1128.

[82] Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional

LSTM and other neural network architectures. Neural networks, 18(5-6), 602-610.

[83] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent

neural networks on sequence modeling. In NIPS 2014 Workshop on Deep Learning, December

2014

[84] Li, C., Yang, Y., Feng, M., Chakradhar, S., & Zhou, H. (2016, November). Optimizing

memory efficiency for deep convolutional neural networks on GPUs. In SC'16: Proceedings of the

International Conference for High Performance Computing, Networking, Storage and

Analysis (pp. 633-644). IEEE.

[85 Hwang, K., & Sung, W. (2015, April). Single stream parallelization of generalized LSTM-like

RNNs on a GPU. In 2015 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP) (pp. 1047-1051). IEEE.

142

[86] Kuchaiev, O., & Ginsburg, B. (2017). Factorization tricks for LSTM networks. arXiv preprint

arXiv:1703.10722.

[87] Sussmann, H. J. (1992). Uniqueness of the weights for minimal feedforward nets with a given

input-output map. Neural networks, 5(4), 589-593.

[88] Chen, A. M., Lu, H. M., & Hecht-Nielsen, R. (1993). On the geometry of feedforward neural

network error surfaces. Neural computation, 5(6), 910-927

[89] Martinez-Garcia, F., & Down, D. (2022, July). E-LSTM: An extension to the LSTM

architecture for incorporating long lag dependencies. In 2022 International Joint Conference on

Neural Networks (IJCNN) (pp. 1-8). IEEE.

[90] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., ... & Yoon, D. H.

(2017, June). In-datacenter performance analysis of a tensor processing unit. In Proceedings of the

44th annual international symposium on computer architecture (pp. 1-12)Jouppi, N. P., Young, C.,

Patil, N., Patterson, D., Agrawal, G., Bajwa, R., ... & Yoon, D. H. (2017, June). In-datacenter

performance analysis of a tensor processing unit. In Proceedings of the 44th annual international

symposium on computer architecture (pp. 1-12)

[91] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016).

LSTM: A search space odyssey. IEEE transactions on neural networks and learning

systems, 28(10), 2222-2232.

[92] Ganesh, P., & Rakheja, P. (2018). Vlstm: Very long short-term memory networks for high-

frequency trading. arXiv preprint arXiv:1809.01506.

143

[93] Xie, J., Yan, R., Xiao, S., Peng, L., Johnson, M. T., & Zhang, W. Q. (2020, May). Dynamic temporal

residual learning for speech recognition. In ICASSP 2020-2020 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP) (pp. 7709-7713). IEEE.

[94] Shen, L., Yu, Z., Ma, Q., & Kwok, J. T. (2021, May). Time series anomaly detection with

multiresolution ensemble decoding. In Proceedings of the AAAI Conference on Artificial

Intelligence (Vol. 35, No. 11, pp. 9567-9575).

[95] Kieu, T., Yang, B., Guo, C., & Jensen, C. S. (2019, August). Outlier Detection for Time Series

with Recurrent Autoencoder Ensembles. In IJCAI (pp. 2725-2732).

[96] Pigou, L., Van Herreweghe, M., & Dambre, J. (2017). Gesture and sign language recognition

with temporal residual networks. In Proceedings of the IEEE International Conference on

Computer Vision Workshops (pp. 3086-3093).

[97] Zhang, J., Zheng, Y., & Qi, D. (2017, February). Deep spatio-temporal residual networks for

citywide crowd flows prediction. In Proceedings of the AAAI conference on artificial

intelligence (Vol. 31, No. 1).

[98] Koutnik, J., Greff, K., Gomez, F., & Schmidhuber, J. (2014, June). A clockwork rnn.

In International conference on machine learning (pp. 1863-1871). PMLR.

[99] Achanta, S., Godambe, T., & Gangashetty, S. V. (2015). An investigation of recurrent neural network

architectures for statistical parametric speech synthesis. In Sixteenth Annual Conference of the

International Speech Communication Association.

[100] Feng, Xiong, et al. "State-of-charge estimation of lithium-ion battery based on clockwork

recurrent neural network." Energy 236 (2021): 121360.

144

[101] Musbah, H., & El-Hawary, M. (2019, May). SARIMA model forecasting of short-term

electrical load data augmented by fast fourier transform seasonality detection. In 2019 IEEE

Canadian Conference of Electrical and Computer Engineering (CCECE) (pp. 1-4). IEEE.

[102] Samal, K. K. R., Babu, K. S., Das, S. K., & Acharaya, A. (2019, August). Time series based

air pollution forecasting using SARIMA and prophet model. In proceedings of the 2019

international conference on information technology and computer communications (pp. 80-85).

[103] Hsu, H. H., Hsieh, C. W., & Lu, M. D. (2011). Hybrid feature selection by combining filters and

wrappers. Expert Systems with Applications, 38(7), 8144-8150.

[104] Mafarja, M., & Mirjalili, S. (2018). Whale optimization approaches for wrapper feature

selection. Applied Soft Computing, 62, 441-453.

[105] Porkodi, R. (2014). Comparison of filter based feature selection algorithms: An

overview. International journal of Innovative Research in Technology & Science, 2(2), 108-113.

[106] Dueck, J., Edelmann, D., Gneiting, T., & Richards, D. (2014). The affinely invariant distance

correlation. Bernoulli, 20(4), 2305-2330.

[107] Székely, G. J., Rizzo, M. L., & Bakirov, N. K. (2007). Measuring and testing dependence by

correlation of distances.

[108] Székely, G. J., & Rizzo, M. L. (2013). The distance correlation t-test of independence in high

dimension. Journal of Multivariate Analysis, 117, 193-213.

[109] Silva, E. S., Hassani, H., Heravi, S., & Huang, X. (2019). Forecasting tourism demand with

denoised neural networks. Annals of Tourism Research, 74, 134-154.

[110] Yakovyna, V., Uhrynovskyi, B., & Bachkay, O. (2019, September). Software failures

forecasting by Holt-Winters, ARIMA and NNAR methods. In 2019 IEEE 14th International

145

Conference on Computer Sciences and Information Technologies (CSIT) (Vol. 2, pp. 151-155).

IEEE.

[111] London, W. P., & Yorke, J. A. (1973). Recurrent outbreaks of measles, chickenpox and

mumps: I. Seasonal variation in contact rates. American journal of epidemiology, 98(6), 453-468.

[112] Royal Observatory of Belgium. (n.d). World Data Center SILSO. Retrieved November 5,

2020 from http://www.sidc.be/silso/datafiles.

[113] Government of Canada. (n.d). The official website of the Government of Canada. Retrieved

December 20, 2020 from https://climate.weather.gc.ca/historical-data/search-historic-data-

e.html/.

[114] PJM Interconnection LLC. (n.d). kaggle. Retrieved Aug. 10, 2020 from

https://www.kaggle.com/robikscube/hourly-energy-consumption/.

[115] Reddi, S. J., Kale, S., & Kumar, S. (2018, February). On the Convergence of Adam and

beyond. In International Conference on Learning Representations.

[116] Yazan, E., & Talu, M. F. (2017, September). Comparison of the stochastic gradient descent

based optimization techniques. In 2017 International Artificial Intelligence and Data Processing

Symposium (IDAP) (pp. 1-5). IEEE.

[117] Kanuparthi, B., Arpit, D., Kerg, G., Ke, N. R., Mitliagkas, I., & Bengio, Y. (2018,

September). h-detach: Modifying the LSTM gradient towards better optimization. In International

Conference on Learning Representations.

[118] Rusch, T. K., & Mishra, S. (2021, July). Unicornn: A recurrent model for learning very long

time dependencies. In International Conference on Machine Learning (pp. 9168-9178). PMLR.

146

[119] Turkoglu, M. O., D'Aronco, S., Wegner, J. D., & Schindler, K. (2021). Gating revisited: Deep

multi-layer RNNs that can be trained. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 44(8), 4081-4092.

[120] Gu, A., Johnson, I., Goel, K., Saab, K., Dao, T., Rudra, A., & Ré, C. (2021). Combining

recurrent, convolutional, and continuous-time models with linear state space layers. Advances in

neural information processing systems, 34, 572-585.

[121] Arjovsky, M., Shah, A., & Bengio, Y. (2016, June). Unitary evolution recurrent neural

networks. In International conference on machine learning (pp. 1120-1128). PMLR.

[122] Tallec, C., & Ollivier, Y. (2018, April). Can recurrent neural networks warp time?.

In International Conference on Learning Representation 2018.

[123] Henaff, M., Szlam, A., & LeCun, Y. (2016, June). Recurrent orthogonal networks and long-

memory tasks. In International Conference on Machine Learning (pp. 2034-2042). PMLR.

[124] Landi, F., Baraldi, L., Cornia, M., & Cucchiara, R. (2021). Working memory connections

for LSTM. Neural Networks, 144, 334-341.

