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Lay Abstract

Machine learning has made big advances and transformed industries, but challenges such as
growing model sizes and diminishing interpretability have hindered their usage and reliability.
This research aims to enhance machine learning models for time-series forecasting. It starts by
showcasing an interpretable-by-design linear model and its effectiveness in solving a real-world
industry-related problem by means of incorporating new data while dynamically forgetting old
information. Then, to consider nonlinear time-series components, the study delves into improving
the Long Short-Term Memory (LSTM) Neural Network by creating an extended version, named
E-LSTM, able to better exploit nonlinear long-term dependencies, resulting in a model of similar
size and improved performance. Finally, the Generalized Interpretable LSTM (GI-LSTM), a more
general LSTM architecture with higher temporal connectivity and embedded interpretability, is
introduced. This architecture is shown to offer a more holistic interpretation of learned long-term
dependencies while outperforming the previous architectures, all while keeping a compact model

size.
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Abstract

Machine learning-based models have yielded remarkable results in a wide range of applications,
revolutionizing industries over the last few decades. However, a variety of challenges from the
technical point of view, such as the drastic increase in model size and complexity, have become a
barrier for their portability and human interpretation. This work focuses on enhancing specific

machine learning models used in the time-series forecasting domain.

The study begins by demonstrating the effectiveness of a simple and interpretable-by-
design machine learning model in handling a real-world time-series industry-related problem. This
model incorporates new data while dynamically forgetting previous information, thus promoting
continuous learning and adaptability laying the groundwork for practical applications within

industries where real-time interpretable adaptation is crucial.

Then, the well-established LSTM Neural Network, an advanced but less interpretable
model able to learn long and more complex time dependencies, is modified to generate a model,
named E-LSTM, with extended temporal connectivity to better capture long-term dependencies.
Experimental results demonstrate improved performance with no significant increase in model size
across various datasets, showcasing the potential to have balance between performance and model

size.
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Finally, a new LSTM architecture built upon the E-LSTM’s increased temporal
connectivity while embedded with interpretability is proposed, called Generalized Interpretable
LSTM (GI-LSTM). This architecture is designed to offer a more holistic interpretation of its
learned long-term dependencies, providing semi-local interpretability by offering insights into the
detected relevance across time-series data. Furthermore, the GI-LSTM outperforms alternative
models, generally produces smaller models, and shows that performance does not necessarily

come at the cost of interpretability.
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Chapter 1

Introduction

Machine learning (ML) models have produced remarkable results in a wide range of applications,
aiding and revolutionizing fields and industries in the last couple of decades [2]-[5]. Despite these
extraordinary results a variety of challenges have become a barrier for the application of these
models, specifically their dramatic increase in size and reduced interpretability, understood as the
ability to provide explanations in understandable terms to a human. Given the ever-increasing size
of ML models [6]-[7], mostly driven by the resulting increase in performance, the ability to train
these models in portable devices has been negatively affected, limiting their accessibility to the
public. In addition, this increased size has also resulted in a reduction in the capability of humans
to understand the patterns the models learn, since these patterns are often encoded in nonlinear

relations, which represent the basis of many current advanced models.

Time-series forecasting, an area characterized by data containing temporal dependencies
of different complexity levels, is among the areas that have been influenced by machine learning
models, encompassing fields from finance to environmental science [3], [5]. However, this
influence is still affected by the challenges previously mentioned, which limits their application in
real-world scenarios in which decisions need to be made about health, well-being, and long-term
planning, due to a lack of robustness and safety [8]-[10]. The low interpretability in ML models,

typical in this area, can be partly attributed to the increasing complexity they face, promoted by



the search for better performance and the non-obvious dependence types a time-series is driven
by.

The use of linear models (LM) to handle time-dependent systems is a well-studied area
[11]-[17], that predates the current ML field, and it can be considered as part of the field’s origins
due to the models being data-driven, proving to be adapted for a variety of applications.
Furthermore, these simple models have consistently shown the power to capture statistical
correlations while allowing for an easy interpretation of the input-output dependencies they learn
through their parameters/coefficients, since these explicitly indicate a level of relevance the linear
model gives to the input data across time. Despite the difficulty for LMs to cope with nonlinearities
when present in time-dependent systems, their low complexity allows for the online recomputation

of their parameters, enabling adaptive strategies to be designed and producing so-called adaptive

linear models (ALMs).

ALM functionalities have been widely employed as an option to address the challenge of
modeling nonlinearities for time-varying systems across several applications with acceptable
results [18]-[22]. This performance can be mostly attributed to the capability of the ALM to
quickly overwrite/erase its stored/encoded information, linked to previous data, and generate linear
relations based on the most up-to-date data. For time series in which linearization can occur due
to the relatively slow dynamics of the system, ALMs become an option in terms of performance
and interpretability. This is a reasonable approach for a number of industrial applications [19]-

[20].

Neural Networks (NN), among the most popular and successful ML models [23]-[26],
carry out a more direct approach when used for data containing nonlinear components, trying to

model their effects through nonlinear functions. For the case of time series, Recurrent Neural



Networks (RNNs), a type of NN characterized by using recurrent connections to capture time
dependencies has been the basis over which more advanced ML models have been developed to

exploit time dependencies.

Among RNN models, the Long Short-Term Memory (LSTM) network, introduced at the
end of the 1990s [27]-[29], has shown the ability to exploit long-term dependencies by producing
competitive results in a diverse set of applications [30]-[34]. In comparison to LMs, the LSTM
network mitigated the need to retrain a model due to nonlinear complex behaviour in the data and,
when this is the case, tends to yield better performance by learning more intricate patterns.
However, this gain in performance comes at the expense of losing interpretability in the model and

greatly increasing the number of parameters.

Considering the previous ML challenges in the time-series domain, this research aims to
promote the progress in the area by designing and implementing ways to enhance the performance,
size, and interpretability of the models used, potentially leading to valuable insights on the
extracted information of the data to improve decision-making and extending the limits of ML
implementation. Furthermore, as the proposed models are progressively developed in this work,
the ability to incorporate long-term information is increased while pushing towards improving or

maintaining their interpretability.

The contributions provided in this work can be summarised as follows. First, an adaptive
linear model able to forget previous information at a dynamic rate is proposed and implemented
to regulate server temperatures in an industrial setting, producing competitive results with respect
to standard control algorithms and producing significant energy-consumption savings. Also, an
extension to the LSTM model is proposed, named Extended LSTM, which increases the LSTM

internal temporal connectivity to better capture long-term dependencies. The proposed model



shows improved performance across a variety of datasets without significant size increase.
Furthermore, a generalized LSTM architecture with higher temporal connectivity than the E-
LSTM and featuring embedded interpretability, called GI-LSTM, is designed to exploit long-term
dependencies more efficiently in terms of the number of parameters; resulting in a better-
performing model which is easier to interpret, and is of similar/smaller size to the E-LSTM and

the LSTM. Next, the organization of thesis and its contributions are described in detail.

In Chapter 2 an adaptive linear model, based on the Weighted Recursive Least Squares
(WRLS) algorithm, is proposed to incorporate information about prior model errors more actively.
This is accomplished by the introduction of a time-varying forgetting factor A(k), an approach
explored in [35]-[38] that has been shown to allow for a more precise regulation of how much past
information should be forgotten to sufficiently adapt to the system. The resulting ALM, named
Variable WRLS (VWRLS), can adapt with a dynamic rate, depending on user-defined physically-
interpretable thresholds, and is constrained by design to keep a user-defined fraction of previous
information to mitigate online overfitting. The proposed VWRLS is used to design an Adaptive
Predictive Controller (APC), based on the General Predictive Controller (GPC) approach, which
is implemented on a real rack-mounted cooling unit to control server temperatures in data centres.
The designed APC outperforms both standard control algorithms in simulated experiments and

when implemented in a real system.

Chapter 3 functions as a review and a bridge between Chapter 2 and Chapter 4, in which
NN models intended for time series are presented, emphasizing the LSTM architecture. The
backpropagation algorithm, the core of parameter tuning in NN models, is concisely introduced.
Also, capabilities and limitations of NNs for time series are expressed in order to motivate the need

for newer architectures.



In Chapter 4 the E-LSTM architecture is presented, serving as an initial step to overcome
LSTM-specific limitations when identifying long-term dependencies. Also, the need for increased
internal temporal connectivity, between distant and current cell states, is mathematically justified
and experimentally corroborated by a performance comparison with alternative models. In
addition, a selection process for the location of the increased connectivity is presented, based on
the Distance Correlation measure. Experimental results show that in most cases, the E-LSTM
model reduces the number of parameters needed to achieve similar or better performance to the

LSTM, by an order of magnitude in some experiments.

Chapter 5 introduces a generalized LSTM architecture with embedded interpretability,
Generalized Interpretable LSTM (GI-LSTM), which is built upon the higher temporal connectivity
approach of the E-LSTM. This advanced and more complex LSTM network enables a semi-local
interpretation [39], providing direct information about how much relevance it gives to parts of the
time series, up to a user-defined maximum dependence, and removes the need for precisely
locating the temporal connectivity. Despite the increased complexity, experimental comparative
results show that the GI-LSTM results in a model with even better performance than the E-LSTM,
the LSTM, and alternative models without significantly increasing the model size and producing
comparatively better results for small model sizes; resulting in a model that performs better size-

wise and is more accessible in interpretation.

Finally, Chapter 6 discusses the limitations of the current research and how these could be
addressed from a practical point of view. It also explores realistic options for future work aligned
with the aims established for this research and indicates alternative goals in the direction of

dynamic connectivity to improve performance.



Chapter 2

An Adaptive Linear Model for Time Series with

Control Applications

This chapter focuses on proposing a linear model intended for time-series modeling, directly
interpretable by observing its parameters. The linear model is constructed based on the well-known
Weighted Recursive Least Squares method, and a variable forgetting factor is proposed to regulate
the speed at which information is forgotten, enabling adaptation to current trends in the data. The
linear model is then instantiated in the context of control applications, specifically by following
the General Predictive Controller approach, which is further modified by integrating a variable
prediction horizon. This instantiation results in an Adaptive Predictive Controller capable of
quickly adapting to changes in the system and able to accommodate potential nonlinearities.
Comparative simulations are performed on the controller to validate its performance, and real
experiments are carried out on a cooling system used in a real-world single-rack server system for
industrial applications. A relevant part of the results and contributions presented in this chapter
have been published in [40]. Here, we expand on that work, adding a number of useful details and

insights.



2.1 Weighted Recursive Least Squares with Time-varying Forgetting Factor
2.1.1 Linear Models

The modeling of multi-input single-output (MISO) systems through linear models is a well-
studied approach across several fields [11]-[17] due to its power to capture correlations and its
ability to explicitly express input-output dependencies through its learnable parameters, an

inherent and desirable feature of this type of models, as observed in (2.1.1)
y(k) = 0x(k). (2.1.1)

Here, (k) € R represents the output of the model; x(k) € R™ is the input data; and

0 € RY*™ represents the learnable parameters of the model.

When sufficient data points are available, k > n, a matrix @ can be computed so that it
minimizes the Mean Square Error loss function £;,, = ;?:0 e(j)?, with e(j) = y(j) — (). The

result of this minimization is the well-known Ordinary Least Squares (OLS) regression in (2.1.2).
Oo1s = Xou X)) Xok Wour)” (2.1.2)
with XO:k = [x(()), L] .X(k)], Yor = [y(O), ,)’(k)]

Nevertheless, the OLS approach might produce overfitting to the data points in Xg.x,
making it susceptible to causing larger than acceptable errors when new data points are presented.
One way to mitigate the previous effect is by splitting the data into training and validation sets,

Xokypgin a0d Xp, .., respectively, and using any of the family of Gradient Descent (GD)

algorithms [41]-[43] to iteratively compute matrices 0@ to progressively minimize the MSE of

train

the training set, Z?zl e(j)?. During the latter minimization, the MSE of the validation set,

Zﬁg:ktrain +1€(j)?, is tracked and used as a stopping criterion for the minimization. The previous



process is carried out using the standard GD algorithm as given in (2.1.3), with egy, . =

[e(0), ..., e(kirqin)] and @ € R* being a positive scalar hyperparameter usually referred to as the

learning rate.

0:= 0 — aXoy, . (€on,... ) (2.1.3)

When properly trained to avoid overfitting, LMs can generate reasonable performance for
a wide variety of applications [44]-[45]; however, an important limitation might arise when they
are implemented for more complex systems: the difficulty for LMs to cope with nonlinearities
when present in systems. For instance, if during a time interval [k; , k;,] the system remained
withing a subspace characterized by a high degree of nonlinear behavior, an LM, as expressed in
(2.1.3), could experience low performance, i.e., larger than acceptable errors. In other words, since
the loss function L, gives the same relevance to all quadratic errors the significance of such
subspaces is not highlighted; furthermore, assigning more weight to errors of data points from this

type of subspace becomes a non-trivial memory.

2.1.2 Weighted Recursive Least Squares

Weighted Recursive Least Squares (WRLS), an Adaptive Linear Model (ALM), has been
employed as an option to address the challenge of subspaces with nonlinearities across several
applications, showing acceptable results [18]-[22]. In general, the approach followed by an ALM
consists of making an online update, A@(k) € R*™, to the learnable parameters at each (discrete)
time instant in order to give more relevance to the newer values whenever necessary, promoting a

linearization with more focus in the current subspaces. The latter process generates a time-varying

model described in (2.1.4)-(2.1.5)



y(k) = 0(k)x(k) (2.1.4)
0(k) = 0(k — 1) + a(k)A0(k) (2.1.5)

where a(k) € R* is the learning rate (possibly time-varying) which regulates the influence of the

update AB (k) into the time-varying learnable parameters 0 (k).

In the specific case of the standard WRLS algorithm the update A@ (k) incorporates real-
time information through the minimization of a time-varying loss function Ly, s(k) defined by

the recurrence relation in (2.1.6) and explicitly defined by (2.1.7)
Lyrrs(k) = e(klk — 1)* + 2Ly pys(k — 1) (2.1.6)
Lyris(k) = XEZg Me(k — jlk — 1= j)? 2.1.7)

where A € (0,1] is a hyperparameter known as the forgetting factor that defines how much the
relevance of previous datapoints will be reduced (often fixed and/or computed based on
preprocessed data), and e(k—jlk—1—-j)=y(k—j)— 0(k—j—Dx(k—j)Vj=0 is a

prior error linked to the minimum value of the loss function, Lyyg;.s(k — 1 — j), at a prior instant.
Similar to OLS the standard WRLS approach has an explicit recursive solution described by
(2.1.8)-(2.1.10) which promotes an online linearization of the system within the current subspace
Owris(k) = Oypros(k — 1) + e(k|k — 1)b(k) (2.1.8)

P(k-1)x(k)

b(k) = A+xT (k)P (k—1)x(k)

(2.1.9)

P(k—1)-b(k)xT (k)P(k—1)
A

P(k) = (2.1.10)

where P(k) € R™" is the inverse of a weighted sample-covariance matrix centered around

0 € R™ and b(k) € R" is the gradient direction, pointing away from the global minimum when



e(k|k — 1) > 0 or towards it when e(k|k — 1) < 0, with respect to the current parameter values,
Owris(k — 1).

When information is available before starting the iterative process the values of 0y, z,5(0)
and P(0) can be computed using an OLS approach. Otherwise, they can be initialized as

0 r.s(0) = 0and P(0) = pl,,«pn, where p = 1 is a scalar value and I,,y,, is the identity matrix.

2.1.3 Variable forgetting factor Weighted Recursive Least Squares

One of the relevant aspects associated with the capability of the standard WRLS approach
to adapt to newer values resides in the constant forgetting factor, A, which promotes the relevance
of newer data points by exponentially decreasing the relevance of previous values at a constant
rate. Such an  approach, although being a function of prior errors,
{fe(klk — 1),e(k — 1|k — 2),...,e(1]0)}, is not able to adjust the need to forget since a constant
A is used, only producing a reactive influence on the magnitude of the gradient b(k) through the

current prior error e(k|k — 1).

In order to more actively incorporate information about prior errors in the WRLS approach
beyond the most recent value, a time-varying forgetting factor A(k), with its respective loss
function Ly, g.s(k), is proposed to generate a Variable WRLS (VWRLS) approach. This approach
has been explored in [36]-[38] where it has been shown to allow for a more precise regulation of
how much past information, in terms of prior errors e(k — jlk —1 —j), is appropriate to
forget/introduce in online implementations; this can be interpreted as how much the loss function
should be changed to adapt to the current subspace. Based on this and motivated by the how-much-

information-to-forget approach, the proposed time-varying forgetting factor A(k) is designed as a

10



function of user-defined physically-interpretable thresholds, {€min, €max ATmins Aar Pold} tO

facilitate implementation.

The previously defined thresholds are: a minimum time-window length, At,,;,, € RT, of
most-recent previous information; a fixed interval, [€,,in, €max] € RY, defining the minimum and
maximum absolute values for the most-recent prior error, e(k|k — 1), that will influence A(k); a
minimum old-information fraction, pyq € (0,1), expressing the minimum influence the oldest
information will have in the adaptation of the forgetting factor when k — oo; and a multiplier,

Ap; = 1, defining how much the minimum time-window length can be extended.

The derivation of these thresholds starts by analyzing the loss function of the WRLS
approach, Ly g, (k). First, notice that in (2.1.7) the factor A7~ can be interpreted as the weight
assigned to e(k —j — 1|k — j — 2)?; therefore, when k — oo the most recent At seconds of

information, equivalent to the first j terms using a sampling period Tsgmpiing. have a weight of
(1 -V ) /(1 —2) and the remaining terms (oldest) have a weight of A//(1 — 1); in relative

proportions (fractions), these weights would be 1 — A/ and A/, respectively.
From the previous realization, it will be our aim when defining A(k) to create the relation:

imi . .. . AT
A#{:Zl = Doid> With A,in > 0 as the minimum value of A(k) and j;, = [TT#] To create the
sampling

previous relation a variable time-window length, At(k), with values in the interval

[ATmin, AarATmin] is defined as in (2.1.11)-(2.1.12)

e(k|k — 1))

At(k) = AM"( AT pin (2.1.11)

€max—€min

2
n(e(klk — 1)) = min (1,max (0, ekl = 1”“"”")) (2.1.12)

11



At(k)

where it is important to notice that [ ] would be the index of the jth term in the context of

sampling

the relative proportions 1 — A/ and A/.

From (2.1.11) a variable forgetting factor and its respective time-varying loss function,

LVWRLS(k)7 can be defined as

lTsamplingJ
Ak) = py - (2.1.13)
Lywris(k) = e(klk = 1)% + 2(k) Lywris(k — 1) (2.1.14)
lTsamplingJ 1
where the minimum value of A(k) can be calculated as A, = D, de"" , equivalent to pé T

and consequently producing the desired relation. Also, except for the use of 1(k), the equations

describing the VWRLS model’s parameters, My r.s(k), remain the same as in (2.1.8)-(2.1.10).

From (2.1.11)-(2.1.13) it can be observed that if e(k|k — 1) = e;,4, then A(k) will be
equal to Ap,,. Similarly, if e(k|lk — 1) < epn then A(k) = 1, as long as Ap ATy, is large

In(po1a)
In(0.99)

enough; for instance, if Ap;ATpin > Tsampiing then A(k) = 0.99. Also, an increasing

exponential-adaptation speed (derivative) of A(k) (2.1.15), with respect to |e(k|k — 1)|, is
obtained within the interval [e,,in, €max]-

Tsampling

In 32 o A%min Jln(AAr) e(klk — 1 —€min
Dl — 1) (200) = Lo e

At(k)(emax—emin)?

(2.1.15)

As observed in (2.1.15), the adaptation speed increases exponentially near e,,,, which
exponentially reduces both the value of A(k) and the relevance given to the least-recent prior
errors, creating a desirable outcome since beyond e, , the model would produce a beyond-

acceptable error. Furthermore, if at instant k we denote the accumulated weight caused by A(k) in

12



(2.1.14), up to the j most-recent prior errors by S,,-(k) and the accumulated weight for the j least-

recent by S;,-(k), the property in (2.1.16) can be established.

S1(K) (-2 )

o) S A Tmin )
Smr(k)+S1-(k) — Pold 1-2k

min

(2.1.16)

In more detail, since the first j terms in (2.1.14) depend on the time-varying time-window

Slr(k)

S 0+5,00 > Pota When k — oo,

length A7r(k) and j > [Ml then (2.1.16) implies

sampling
Consequently, over time the proposed time-varying forgetting factor will assign a normalized

relevance of at least p,;; to terms occurring after the [ At ] index in (2.1.14). Also, the

sampling

derivation of (2.1.16) can be obtained using the relations shown in (2.1.17)-(2.1.19).

Smr(k) = (1 +Ak) + A(R)A(k—1) + -+ A(k) .. A(k—j + 1)) (2.1.17)
S (k) =TT 2 Ak — i) (ACk — ) + Ak — DACk — j = 1) + -+ + Ak — Ak — j —
1) ..4(1))
- : i
2 3,2 A0k = 1) Amin 22 (2.1.18)
12kt
Sir (k) _ 1 1 Amin 1_;nr;1:n
Smr(k)+S1-(k) o i,m—7$+1 = 1 . 2 L1 1 1—lfn_i£l_1
ir it T I AR=D A=+ 1 e BREYES FAmin T-Amin
1-ak=J-1 i
bt
j 1_’1£€n_i{1_1 k-j-1 k—j-1
M 12,00 imin 1= Anin 1=Amin
- 1_;£cnin 2 Ainin ( 1-Ak ) = pold( 12k ) (2.1.19)
T-Amin

“min
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One limitation of the proposed approach is A(k) < 1 since At(k) is upper bounded, in
other words, the time-varying time-window cannot extend indefinitely. Consequently, to address

this edge case whenever e(k|k — 1) < e, the forgetting factor is set to 1, A(k) = 1.

While using any ALM algorithm redundant information might be present when performing
the adaptive process (2.1.8)-(2.1.10). Specifically, in the case of the previously described VWRLS,
when e(k|k — 1) < ep,in, anegligible value for the prior error could occur but the iterative process
would be performed regardless, potentially adding redundant information. Furthermore, the time-
series signals might contain a level of noise due to the finite resolution in the acquiring devices
used, possibly creating numerical instability in the form of overflow in the matrix P(k), which
compresses the information of current and previous datapoints, x(k). Consequently, to promote
computational stability a user-defined parameter representing the level of negligible error, e,;, will
be added so that the VWRLS algorithm is executed only when e(k|k — 1) > e,;; otherwise

Oywris(k) = Oyypris(k —1) and P(k) = P(k — 1).

2.2. Adaptive-Linear-Model-based Control algorithm.
2.2.1 Autoregressive Exogenous model

In general, a time-series is often modeled by integrating a degree of autoregression to
potentially extract time dependencies that show a level of regularity across time. The integration
is performed by explicitly introducing it as part of the input data, x(k), or implicitly by using time-
varying learnable parameters, 8(k), as is the case for ALMs. A general formulation is defined by

(2.2.1)

90 = Fnoer (Vv e (), 000) ) @21
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where dy, > 1 is the maximum lag for the output y(k) and x,, (k) denotes the fixed size vector

composed of m exogenous variables at instant k and of previous values up to lag dependencies

{dS}, . dg:l)}; with the input data vector defined as x(k) = [Vi—1.x—a) Xex (K)T]T.

When explicit integration of autoregression is used in the model, as in (2.2.1), the resulting
model is deemed an Autoregressive Exogenous (ARX) model. An ARX model establishes a partly
recursive relation, which enables a forecasting estimation of the time series’ output by using the
recursion over a prediction horizon, yeN, by performing forward iterations of y steps. This
approach can be implemented if 8(k) is assumed to remain constant over the prediction horizon
and as long as a sufficiently statistically confident estimation of the exogenous variable X, (k + j)
can be generated in each of the iterations up to the chosen time-horizon value, i.e., 0 < j <y. A

1-step forward iteration of the previous approach is described in (2.2.2)

90+ 1K) = foder (900, Vi1, Rex e + 1,000
= fmodel (fmodel (yk—l:k—dy' Xex (k): 0(k)> ’ yk—l:k—dy+1f Qex (k + 1); 0(k)>

= rr(llo)del < yk—l:k—dy: Xex (k)’ /x\ex (k + 1), O(k)) (222)

with f,fl?d ¢, denoting the result of the 1-step forward iteration.

By generalizing the process in (2.2.2) to a time-horizon y > 1 through y-step forward
iterations, using the previous assumption over 8(k), y(k + y|k) can be obtained as shown in

(2.2.3) where its dependence to past and estimated information can be observed

90+ 110 = D1 ( Fieeriy Xex (), Bexl + 1), Be (e +7), 806 (223)
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with fn(l];)d ¢; denoting the result of the y-step forward iteration.

One of the useful properties of specializing LMs to ARX models is their practicality when
implemented, since using the representation (2.2.3) shows that another LM can be used to
explicitly define y(k + y|k) as a function of ¥y _1.x—a» {Xex (kK + 1), oo, Xex (kK + ¥)}, Xox (k) and

0(k), as described in (2.2.4)

y(k + Vlk) = ey(k) [Yk—l:k—d; xex(k)Tr fex(k + 1)T: ey 2ex(k + V)T]T (224)

with @, (k) denoting a matrix, which in practical terms defines fn(l);)del in this case, resulting from

bounded-length-input process, Iy, carried out y times. In more detail, I;; depends on (k) and

previous computed matrices 8,,_;(k), ..., 0 (k), where dg = min(y, dy).

y—dm

2.2.2 Generalized-Predictive-Control algorithm

The model described in (2.2.4) is of special interest in the are of control theory when the
exogenous variables are user-defined across the prediction horizon, i.e., they are manipulated
variables. This has been explored in [46]-[47] resulting in the well-known Generalized Predictive
Controller (GPC) algorithm, which has become one of the most popular predictive control

algorithms with a wide variety of applications.

In the context of the GPC algorithm, a model (2.2.5) composed of m manipulated variables,
{u,(k), ..., u,,, (k)}, is used over a prediction horizon y with a control horizon y, < y. The output

forecast y(k + j|k) made by the GPC for j < y is interchangeably expressed by (2.2.6) and (2.2.7)

y(k) = aoypast(k) + boupast(k) (2.2.5)
y](31/,1)1,“111"6(]{) = Ayypast(k) + B]/upast(k) + HVu](C)I/LCt)uT'e (k) (226)
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P re () = AyYpase (k) + Byttpas (k) + Hyu(k — 1) + 6, 0ul? (k) (2.2.7)

uture

with [aOJ bO] = B(k))

al b
Ay =1 , By =1 ,aj = IA(aj_l, . aj_dA(j)), b] = IB(aj_l, . aj_dA(j), bj—ll . b]—dA(]))
al b7
Y Y
o) y(k + 1|k) :V(k - 1) upast—l(k)
yf];ture(k) = ~ : ) ypast(k) = [ ]a upast(k) = : )
y(k + )/|k) y(k - d) upast—m(k)
(u;(k —1) o u(k) uy (k + )
upast—i(k) = : > uf){fture(k) = ,ulk+j) = : Nt
[u; (k —e;) utk+y.—1) U (k +j)
u,(k—1) o Au(k) Auq(k + )
uk-1) = [ : , Auf):fwre(k) = ], Au(k +j) = : ,
un(k—1) Au(k +y.—1) Au,, (k + j)

Aui(k+ ) =w(k+j) —w(k+j—1), da(j) = min(j, d,), A, € RV, B, €
Ryxm(d§1)+---+d§m))’ H, € RY*(mye) G, € RY*(MmYe) and H), € RY*™,

In (2.2.6)-(2.2.7) the matrices A,, B, are calculated through the previously mentioned

iterative process, Ig, which in the context of the GPC algorithm is separated into two processes,

I4 and Ig, defined in [75]. Also, the matrices H,, are block lower triangular matrices as described

in (2.2.8)-(2.2.9), where h;, g; € R™™. In more detail, h; = b, and for j > 1, h; can be extracted

from B, by taking the following m elements located in the ith row: {1, d(l) +1,.., d(l) + .-+
y DY g g u u

dﬁm_l) + 1}- Furthermore, g; = {=1 h; and H) = g1, - Gy "
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h, h, 0 . :

H,=|h; h, hx % (2.2.8)
h, h,_, h_; hy—ye+1
91 0 0 0
9> g1 0 :

G,=|9s 9. g - (2.2.9)
9y Gy-1 Gy-2 7 Gy-y+1

In addition, the equivalences between (2.2.4) and some of the expressions linked to (2.2.6)
are: Yg—1:k-d = Ypast(k)Ta Xex(k) = upast(k)a Xex (k +]) = upast(k +]) Consequently, in
the j-step forward iteration of the GPC algorithm elements in X, (k + j) are either known or user-

defined, where the latter type of elements is precisely u]%)tur (k).

By using current and past information of the system the GPC structure can be used to

determine appropriate increments of the exogenous values, Au%ct)ure (k), so that the model’s

output can closely track a vector of (desired) set points y((i];)sired (k) ERY, ie. y}ﬁtm (k) =

62)

Yiesirea- 1he exogenous values (manipulated variables) are computed by minimizing the loss

function shown in (2.2.10) which has a closed-form solution (2.2.11) due to the linearity and the

unconstrained structure of GPC.

Ye—1

14
Lopc() = ) qPele+j102 + ) sk + )"0 buk +))
j=1 j=0

T
— [+ ~0) 62) ~0)
- (yd);sired (k) — yf)l/tture (k)) Qy (yd];sired (k) — yf);ture (k)> +

Aufuture (k)TQuAufuture (k) (2.2. 10)
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-1
Aufuture(k) = (G;"any + Qu) G)T;Qy(yg/e)gired(k) - Ayypast(k) - Byupast(k) -

Hu(k — 1)) (2.2.11)

desired

where e(k + jlk) = [y(y) (k)]_ — 9k +jlk); @, € RV and Q,, € R™<*™¥c are positive
J

semi-definite block diagonal matrices used to assign relevance to future estimated errors and

penalize large changes in the manipulated variables.

2.2.3 GPC-based algorithm with variable prediction horizon and feasible solutions

The standard GPC algorithm considers a fixed prediction horizon y; however, the chosen
value for y directly affects all the manipulated variables due to the interdependence created by the
GPC solution (2.2.11). In this regard, a variable prediction horizon could potentially increase the
flexibility of the approach and even consider practical constraints, an idea explored in [48]-[49]
where theoretical advantages were demonstrated. Inspired by these works and aiming to achieve a
higher flexibility with the prediction horizon, a simple and effective variable prediction horizon

for the GPC is proposed and implemented heuristically.

First, it is important to highlight that in practical implementations, like most predictive-
based algorithms, the GPC algorithm uses a receding-horizon approach, meaning that at each

sampling instant the vector Algy (k) is recomputed. Furthermore, the computational cost of

generating AU, ¢y (k) in (2.2.11) is mostly caused by (G)T, Q.G + Qu)_l, whose computational
complexity is 0((my,)?) when using the Gauss-Jordan method or 0 ((my,)?*%), with 0.8 < a <
0.81, for more advanced and implementable methods. Hence, the total complexity of (2.2.11) is

O((my)***+y(d+e ++ey+m+7v.)),with0.8<a<1.
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Based on the previous complexity analysis and using the approach in [47], the control
horizon y, can be set equal to 1 in order to decrease the computational cost of calculating the next
value for Au(k), producing an optimal “mean-level” controller [47]. In more detail, only a one-
time increment is performed in the manipulated variables, after which no further changes are made,

causing u(k + j) to remain constant across the prediction horizon, i.e., u(k + j) = u(k), vj =
1. Based on the previous setting and (2.2.7), the matrix G,, can be replaced by [g{ ,g)T,]T,

significantly decreasing the computational complexity of (2.2.11) to O (m“ﬁ +y(d+e +-+

em + m)). In general, for stable systems with possible dead-time, making y, = 1 can generate an

acceptable solution since a new Au(k) is computed in each iteration when the receding-horizon

approach is used, a common and widely accepted approach for predictive control algorithms.

The general approach of the heuristic starts by setting all elements of matrix @, in (2.2.10)
to zero except for the last element, set to 1, simplifying the optimization problem to (2.2.12) and
leading to a corresponding explicit solution expressed in (2.2.13) with a time complexity of

od+e; +:+e,+m).

gyAu(k) = [yg;)sired(k)]y - ayypast(k) - byupast(k) - gyu(k - 1) (2.2.12)
T
Buk) = 2 ([Yirea ()] = @y ¥pase () = byttpase (k) = gyule = 1) (2.2.13)

As observed in (2.2.13) the calculation of Au(k) is of low time complexity but considers
only the last set point in the prediction horizon y; however, such simplicity can be exploited by
exploring possible contiguous values for the prediction horizon located in a user-defined set I' =
{yl, Y2s oo Vmax } which would lead to a solution set U, = {Au't(k), Au?2(k), ..., Au¥nmax(k)},

representing the control increment vectors obtained at prediction horizon values ranging from y;
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t0 ¥n,,,, - Using U, manipulated-variables values, u? (k), can be created and subsequently used

for a selection process based on practical constraints and predefined metrics.

The details of the previous heuristic are described next. Let us denote the set of physically
feasible manipulated variables as U. Then, assuming the variables are physically independent of
each other and defined over continuous closed intervals (as in many control applications) the set

U can be described by a hyperrectangle defined by the physical constraints, (U,,in, Umax), Of the

manipulated variables; also, let 7; denote ([yg];z’i"r‘;’;)(k)]j—ajypast(k)—bjupast(k)—

gju(k — 1)). From this point two cases will be considered, m = 1 and m > 1.

In the first case, with a single manipulated variable, the constraints (U,in, Wmay) are
applied on each of the single-element solutions, uY”’(k), i € T. This is performed by computing

ui{l)t = SAT(u(j)(k),umin, Umax ), Where SAT (") is a function that saturates u@P (k) so that

0 <

sat < Umayx, Which becomes relevant when dealing with infeasible solutions due to the

Unmin <u

"

sat » 18 selected

likely model mismatch. Then, a prediction horizon y*, and consequently a u

according to (2.2.14).

Y= argr?in T — gjugl)t (2.2.14)
JE

o)

<at|» the minimum

If there exists more than one element j € I' that minimizes [t; — g;u

element is selected for y*. This selection is justified by the fact that smaller elements of I are more
likely to result in smaller errors, since mismatches between My r.s(k) and the optimal

parameters M* (k) as well as unmodeled effects are propagated to 4;, B;, H; and G; through their

iterative construction, which is the basis for computing 7; and the set Un. Hence, the larger the
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value of j, the greater the likelihood of a large error in the forecast, i.c., between y(k + j) and
J(k + jlk).

In the second case, m > 1, when using multiple manipulated variables and if any of the
solutions obtained using the pseudo-inverse is not feasible, i.e., u%’ (k) & U, a solution might still
exist. If the hyperplane defined by the normal vector and bias pair (g j ,Tj) intersects the

hyperrectangle U it is possible to convert the vector u® (k) into a vector u(Tj ) (k) € U with the

property: g ju(j) (k) =g jugf ) (k). Determining ugf ) (k) can be interpreted as finding a point in

the hyperplane that is inside the boundaries of the hyperrectangle, as shown in Fig. 2.2.1.
Examining Fig. 2.2.1, it can be seen that u(Tj)(k) can have multiple values, none or only
one. When more than one value exists the closest value to u'” (k) is selected to achieve the smallest
feasible change Au(fj) (k), in the 2-norm sense, with g,-ug_!') (k) = 0. In this way, feasible solutions
are reduced to points in the intersection between the hyperplane (g j ,rj) and u; Aug) (k) would

be the smallest vector from u” (k) to one of the points in such intersection. The previous solution-
finding approach is performed iteratively using the following procedure. First, the lower-
dimensional hyperface closest to the intersection is determined by identifying in u'” (k) the set of

components, ¢, that cause it to be outside of U as specified in (2.2.15).

7e = {11 < 1< mA ([P W], > M V[P K], < [minl:) } (2.2.15)
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Uzmax Uzmax

Uzmin 1 (gj,rj) Uamin

v
v

Uimin Utnax Uimin Uimax

Fig. 2.2.1. Two-dimensional representation of the possible infinite set of solutions that arise in the

proposed approach when u (k) € U (left) and u’ (k) & U (right).

Next, a hyperplane of dimension m — card (Fy) is defined by using the pair (951) R )
) _

where g§1 is the original vector g; with components [ € F{ removed and ‘L'(l =T —

> leg:f[uggt]l[g f]l' Then, assuming at least one of the components of g; is non-zero, the vector

Augl) (k) that connects u" (k) to the closest point in (951) RIS ) is computed using (2.2.16) and

(2.2.17).
o __ 1w
. (2.2.16)
9;°9;
[Aum(k)] _[Av@] vl ¢ FL, [Aum(k)]l:[ugat]l,vze:pf (2.2.17)

Finally, a modified solution u(] ) (k) =u (k) + AuU ) (k) can be calculated. If u(] ) (k) ¢

U then the steps (2.2.15)-(2.2.17) are repeated, but replacing (g] , T]) and u® (k) by ( g, fj(l) )

)

and u(] : (k), respectively; in this way, the constraints already considered, [usat

] vl € Fy, are not
l

violated, and new sets F{ are used in further iterations.
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The iterative procedure ends after a number of iterations no higher than m, since at least

one component is removed from u'’ (k) in each iteration until a feasible solution ug) (k) is
achieved, as depicted in Fig. 2.2.2. Also, it should be noted that in each iteration i, Aii;_ji ) is the

smallest vector that fulfills Aﬁgi):g’g.") = “j(i) due to the right-hand side of (2.2.16) being the Moore—

Penrose inverse, and there will be no need to consider previous constraints since increments Aii:(F])
l

will be along the constrained gradient descent direction.

Umax

Uzmin

Uimin Uimax

Fig. 2.2.2. Two-dimensional representation of the iterative process to generate ugcj ) (k).

Once the iterative procedure is carried out for each possible value of j, the set of feasible
prediction horizons is constructed Ty = {j JET A Elu(Tj ) (k) :upay < ugcj ) (k) < wmax }, and

from it the prediction horizon y* is selected using (2.2.18).

y* =argmin|t; — g; uj(rj)(k)| (2.2.18)

JjETx

If there is no intersection between any hyperplane (g j ,Tj) and the hyperrectangle U,

implying infeasible inputs for any value in I, then y* is selected based on (2.2.14).
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2.2.4 Adaptive Predictive Control Algorithm

An Adaptive Predictive Control (APC) algorithm is proposed by integrating the ALM
model defined in Section 2.2.2 and the GPC-based control approach in Section 2.2.3, resulting in
a control algorithm that provides online predictions of the system while adapting to new operating
conditions. Potential advantages of APC algorithms have already been shown in a variety of

applications [50]-[53] where promising results were shown through simulations.

The proposed APC is characterized by the following properties: it adapts its learning rate
in an online fashion, which reflects the dynamics of the possibly time-varying nonlinear system;
it uses a variable prediction horizon algorithm, increasing the controller’s ability to deal with time-
varying systems; it implements a method to transform physically infeasible solutions, in the
predictive formulation, into feasible solutions (when they exist); and it is computationally
inexpensive to implement with respect to the maximum prediction horizon and the dimensionality

of the input. A graphical representation of the proposed APC can be observed in Fig. 2.2.3.
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Fig. 2.2.3. High-level graphical representation of the proposed APC integrating the VWRLS

and the GPC-Based control as the Adaptive and Predictive algorithms, respectively.
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When implementing the VWRLS (or the WRLS) algorithm, in addition to constraining the
minimum value of the forgetting factor through the choice of p 4, as discussed in Section 2.2.2,
practical implementation issues must be addressed. In particular, the following potential
interconnected issues are considered as most relevant: potential mismatches between the estimated
and the optimal model parameters, lack of diversity in the data generated while in deployment, and
numerical instability. These issues, combined or independent of each other, could slow down the
convergence of Oy r.s(k); degrading the performance of the control algorithm and leading to
computational instability in the matrix P(k), as discussed in [54]. Next, two independent strategies

are proposed to handle these implementation issues within the proposed APC framework.

The first strategy, intended to mitigate the first two issues, is based on the realization that,

with respect to Lyyg.s(k), mismatches between the estimated and optimal parameters, 8, (k),
although not measured directly can be detected whenever there is a steady-state error, which can
be defined over a possibly weighted time window considering the last kg errors. Therefore, by
monitoring the steady-state error the following strategy is developed. First, if there is a solution
u® (or uj(gj )) then, with probability one, there exist an infinite number of solutions, since a unique
solution occurs when a vertex of the hyperrectangle U intersects the plane (g j ,Tj). Hence, to

increase information diversity, it is proposed that one of these solutions be selected at random,
promoting variability in some of the features in x,, (k), which promotes more stability in P(k) by

decreasing its eigenvalues’ magnitudes.

The selection can be implemented by using a randomly weighted average of all intersection
points between the ‘edges’ of U and the hyperplane (g j ,Tj), generating a solution Au%)n within

the convex hull defined by the intersection points. From a practical point of view, identifying the

26



intersection points for the case of m manipulated variables would imply a O(m2™1) time
complexity, which is manageable for small m; however, for m > 4 a more sophisticated algorithm

such as the one described in [55] can be implemented.

In the context of the numerical stability of P(k), VWRLS can handle the situation more
effectively than WRLS due to its flexibility, caused by the dynamic relevance given to new data;
however, in practical implementations this does not imply that the eigenvalues of P(k), up(k),
will be upper bounded at all sample instants. The latter phenomena is the result of the fact that
there is no an upper bound for the degree of time collinearity in the matrix Xy .;,, which is
implicitly used in the loss functions Ly, g;s(k) and Lyyris(k). The time collinearity, coupled

with the inherently finite resolution of computers, can lead to very large eigenvalues up (k).

Because of the potential instability of P(k), the second proposed strategy focuses on
assuring all eigenvalues up(k) are below a threshold, p,,qy, that is user-defined and hardware-
dependent. The last strategy is implemented by tracking the easy-to-compute trace of P(k),
compare it to Ny, and, if larger than the latter, implementing a saturation-like operation over
up(k) to produce an upper-bound eigenvalue matrix P, (k). In more detail, if Tr(P(k)) >

Nimay, then a multiple of the identity matrix c, I is “injected” into P(k) by making P, (k) =
_1\-1

D(k) (cﬂl + diag(pp (k) 1) DT (k), where ¢, = 1/ttmax and D(k)diag(up(k))DT (k) is the

spectral decomposition of P (k).

It is worth noting that the calculation of P,;.(k) can be performed avoiding matrix
inversion by carrying out (2.1.9)-(2.1.10) n times with A = 1 and using each of the n column

vectors of ¢, I instead of the vector x(k); the latter equivalence is due to the Woodbury matrix
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inversion [56], over which the Recursive Least Squares algorithm is based upon, and due to each

column vector of ¢, I being zeros except in exactly one of its elements.

A summarized pseudocode of the proposed APC algorithm is depicted in Algorithm 2.2.1.

Algorithm 2.2.1: Adaptive Predictive Control
Input: y(k), u(k)
Initialize: 6yz,5(0)(0), P(0),x(0),T = {¥1, V2, ) ¥npor
A(k) < Variable forgetting factor (At,in, Apr, Y(k), Oviyris (k — 1), x(k), €min, €maxs €nt)
Ovwres(k), P(k) «— VWRLS (A(k), y(k), x(k), P(k — 1), Oywp.s(k — 1))
I Tr(P(k)) = ntmay:
P(k) < Information diversity (P(k), cﬂ)
end If

0, By — Oy (k). el) — ([yf;’;;';z’;)(k)]o - y(k))
Flag_rand_sol < steady state error detection(e(k), ek — kss))
Ip = {}, Tpe = {}
AVnmax’ BVnmax’ GVnmax - [M(ao’ bO' ynmax)
For j =vy1 10 Vu,.,
a; b;,g; — Extract (A

B )
Ynmax’ ~ Ynmax’ ~ Ynmax

7 — ([yﬁi’;z';i’;%m]j — @Y pase () + byt aee () + gulle - 1))
@) 9" @
Au. T = 91‘-‘]]1'T g .
uPD (k) — uk — 1) + 4uP (k)
If(m>1)
If (u (k) ¢ U)or(Flag_rand_sol = 1)
ul (k) — Feasible solution ( uD (k), Wopin, Uinax 9, Tj, Flag_rand_sol, e(k), ..., e(k — kss))
1t ud’ (k) # Null:
Else
[pe «— Tre U {j}, u_E;]a)t — SAT(u(j) (k), Winin, umax)
end If
Else
Iy — Tp U {j}, u® (k) — u® (k)
end If
Else
If (uP (k) ¢ U)
FTC — FTC U {]}5 ugfl)t = SAT(u(}) (k), umin: umax)

Else
Iy — Ir U {3 uf () — u® (k)
end If
end If
end for
If Tz = {}:

y* =minly
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u(k) — u(Ty*)

Else
* _ . _ (6))
Y = argmin|t; gl
LEF]:C
u(k) —ul,
end If

2.3 Industrial application of Adaptive-Linear-Model-based Control Algorithm
2.3.1 Context of implementation

Data center (DC) energy consumption has attracted a lot of attention in recent years.
According to [57], DC energy consumption ranges from 1.1% to 1.5% of total global electricity
consumption, with this proportion showing a tendency to increase [58]. A significant portion of
this energy utilization is devoted to cooling systems that aim to keep server temperatures within a
safe region, necessary to avoid damage to servers. Traditionally in DCs, cooling infrastructure is
either room-based or row-based [59]-[60]. However, in recent years rack-mountable cooling units
have been introduced to cope with the increasing demand for high performance computing (HPC).
These new architectures bring servers and cooling units closer to each other with an aim to decrease

cooling infrastructure energy consumption [60].

In addition to reducing energy consumption, maintaining a stable temperature inside a data
center is crucial since oscillations in air temperature, even by 1 or 2 degrees, increase the
probability of server failures [61]. These oscillations are an inherent characteristic of the ON/OFF
or PID controllers which have been widely used in cooling infrastructure [62]. Due to the proximity
of the rack-mounted cooling units to the servers, any variation in airflow created by these
controllers, as a response to changes in workload, will be experienced immediately by the servers,

which will consequently lead to higher server failure rates.
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Within the previous scope, the APC algorithm defined in Section 2.2.4 is implemented in
a rack-mountable cooling unit with limited computational capacity and developed by an industrial
partner, the Computing Infrastructure Research Centre (CIRC) (now FYELABS). The goal of this
implementation is to utilize a data-driven control method with hardware limitations that can adapt
to changes in the system, such as addition and removal of servers. Hence, the proposed APC is
chosen due to being implementable on a low-cost and memory limited, off the shelf general
purpose microcontroller. Furthermore, the APC is extended to take monetary costs into
consideration by adding a projected gradient-based algorithm so that, unlike other low complexity

controllers, it can address power consumption and operating costs.

2.3.2 Hardware and physical system description

The test bed considered for the APC implementation consists of a single rack containing
20 servers with an average maximum power consumption of 250W across all servers, and a rack-
mounted cooling unit located at the top of the rack which uses air as the cooling medium. The
cooling unit consists of a heat exchanger and a set of five identical compact industrial fans. The
controlled variable is the rack’s temperature, measured using a sensor of 0.06°C resolution and
located in front of the 12th server, the hottest point in front of the rack. The manipulated variables
are the water flow in the heat exchanger and the PWM signals of the fans. A schematic of the rack

can be observed in Fig. 2.3.1.

The water flow in the heat exchanger is regulated by an on/off valve, whose aperture is
controlled by a local feedback loop model-based algorithm that generates electrical pulses to
manipulate the aperture. Hence, the input to the water flow regulation algorithm is the desired

value of water flow computed by the temperature controller. The water flow, with a maximum
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value near 21L/min, is measured by a sensor with average resolution of 1.06L/min whose value is
fed back to the water regulation algorithm. The fans, with a maximum power consumption of
168W per unit, are directly manipulated by the controller through 8-bit resolution PWM signals at

488Hz.

Water is supplied by a branch of the building’s water system, and its temperature is
regulated by an outside controller using cooling tower technology. Since the outside controller is
not designed for delivering a constant water temperature, there are changes in the water inlet
temperature of the heat exchanger in the rack, which can have significant impact on the system.

Therefore, the water inlet temperature is considered a disturbance for the system.

Water inlet Water outlet
/’ ,ﬁ
’ 21
/’ 1
/7 Heat Exchanger g 1
’ P |
’ y) 1
/7 / !
’ / 1
ﬁ - — —-— —-— —-— —-— I
[ A
1 ’
I Server 1 R4
I 1 ’
I ’
1 7
i V.
I Server 20 R4
A it

Fig. 2.3.1. Schematic of the rack configuration and cooling system location.

An Arduino Mega, a low-cost general-purpose microcontroller, is used to implement the
proposed APC. The microcontroller is characterized by having 8KB of SRAM memory, a 256KB

Flash memory and a 16MHz crystal oscillator.
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2.3.3 Implementation Challenges in Real-Time APC and Monetary Optimization

One of the limitations with the APC’s adaptive algorithm is that, even when the error is
close to zero, the parameters 0y, z.s(k) do not necessarily represent the true dynamics of the
system, due to the limited amount of online information. The latter can in turn have a significant
impact on the performance of the predictive algorithm, especially for long prediction horizons.
This issue can be handled by using one of the following approaches: constraining My, g.s(k) to
be in a specific space or establishing constraints for g; in the predictive algorithm. In this

implementation, the latter is chosen.

Typically, the output of a dynamic system is physically constrained, i.e., Ymin < ¥(k) <
Vmax, Vk. Hence, in the GPC-based algorithm the following constraint can be imposed:

y\f(?ee(k +jlk) = SAT(ajypast(k) + bjupast(k) + gju(k = 1); Ymins ymax); where Y >

Vmin and 37;2 o (k + j|k) represents the estimated (free) evolution of the system at time instant j,

when no change in the input is implemented, so that the constrained estimated output error is Tj(c) =

desired

[y(y"m“x )(k)] = y}ﬁﬂ, ¢ (k + jlk). In addition, since (2.2.12) captures in g ; the physical effect that
j

each manipulated variable has on the output, it is possible to constrain the values of g; by setting

gS'C) = SAT(gj: Imins gmax)-

Even when g,,i, and g4, are not known, due to physical constraints most industrial
systems do have a minimum and maximum gain for each input variable and it is information that
can be easily obtained or estimated. Consequently, by using these minimum and maximum
possible gains with possibly a margin of error (to overestimate) it is possible to establish a lower

bound for the true g,,;, and an upper bound for the true g,,,,. The result is a reduction in the
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negative effects of transitory lack of information and large perturbations that dramatically change

the value of @y g;s(k) in a sudden manner and propagate to g .

For cases in which the signs of the gains of the manipulated variables, with respect to the

output, are known and constant, constraining g; can avoid counterintuitive control actions

(ugrj) (k)) that, even though they do not necessarily prevent the desired set-points from being
achieved, can waste excessive energy. To elaborate further, such cases can occur for a multiple
input system in which the output behavior of one variable can be attributed to multiple inputs, and
limited information about the inputs can cause a false attribution of positive gain effects to input

variables with negative gains.

By considering the economic aspect linked to manipulated variable usage and exploiting
the flexibility of (2.2.12), it is possible to implement an algorithm that minimizes the monetary

cost rate Cg (u(k)). Assuming the monetary cost function is differentiable, a gradient descent
T
algorithm restricted to be orthogonal to gg-c) can be implemented, with a learning rate ag. The

resulting direction for minimizing Cg (u(k)) is then given by

T

g%
© T
j 9

~VCy(uk)) + gvC(uk)) 2.3.1)

The use of (2.3.1) is suggested only when a feasible solution has been found and the system
output has settled around the desired set-point, so that no additional restrictions are imposed
onu(k) for the transient response, which would also increase the diversity in the input and

subsequently benefit the VWRLS algorithm.

A summarized pseudocode of the practical implementation of the APC can observed in

Algorithm 2.3.1.
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Algorithm 2.3.1: Adaptive Predictive Control for practical implementation

Input: y(k), u(k)
Initialize: 6yy,z,5(0)(0), P(0),x(0),T = {¥1, V2, ) ¥npor)
A(k) < Variable forgetting factor (AT,in, Asr, V(K), @pyris(k — 1), x(k), €mins €max> €nt)
0y wris(k), P(k) < VWRLS (A(k),y(k),x(k),P(k — 1), 0yyps(k - 1))
I Tr(P(k)) = Nty
P(k) « Information diversity (P(k), cﬂ)
end If
ay, by — Oy, s(k),

e(k) — ([yfzi’;’;;‘;’;)(k)]o - y(k))

Flag_rand_sol « steady state error detection(e(k), v, e(k — kss))
Ip — {}, Ipe — {3

AYnmax’ BYnmax’ GYnmax A IM ((10, bo’ y”max)

For j =y1 t0 Vn,,,

a;, b;, g; — Extract (AYnmax’ BYnmax’ GYnmax)
()

gj = SAT(gj' Imin, gmax)

y;f"zze(k +]|k) = SAT(ajypast(k) + bjupast(k) + gE'C)u(k - 1): YVmin, ymax)

o (e @] - si0. 0
@"
2uD (k) — ﬁl_j(c)
9;°9j
uD (k) — uk — 1) + 4uY (k)
If(m>1):
If (u (k)  U)or(Flag_rand_sol = 1)
u' (k) < Feasible solution ( u® (k),umin,umax,gg-c), r]-(c), Flag_rand_sol,e(k), ...,e(k — kss))
1t ud’ (k) # Null:
I —TrU{j}
Else
Tpe  Tpe U {j}, u), — SAT(uD (k), pmin, Urnas )
end If
Else
Iy — Ir U {3 uf’ () — uP (k)
end If
Else
If (uP (k) ¢ U)
[pe  Tre U 7}, uD), = SAT(uD (), pin) Umas )
Else
Iy — Ir U G} u () — u (k)
end If
end If
end for
Ty # {}:
y* =minlf
Else
(., ()

* __ : (o)
Yy = argmin T]- — g]- usat
i€Elzc
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end If
If Cost reduction is enabled and I'z # {}:
. " .
Aug — —VC; (ugg’ )(k)) + (f)’ 579, VCs (u(?y )(k)>
9;°9;

u(k) « Cost reduction <Au$, u;y*) k), as, e(k))
Else

ulk) —u
end If

_y*
sat

It should be highlighted that for the proposed VWRLS a proof of convergence is not
available. However, the variable forgetting factor implemented belongs to a family of RLS
algorithms described in [63] where, under some excitation and boundedness assumptions for x(k),
it is shown that for systems with time varying parameters and a bounded disturbance, RLS with a
variable forgetting factor will have a bounded tracking error. This, together with the random
solution selection, the lower bound on the forgetting factor, 4,,;,,, from Section 2.1.3 as well as
the experimental results shown in the following sections, validate the effectiveness of the

algorithm.

2.3.4 APC Experimental Simulations

The proposed APC defined in Algorithm 2.3.1, except for the monetary compensation, is
compared with a standard APC via simulation, replacing the proposed predictive algorithm with
the original version of the GPC, both using VWRLS as the adaptive algorithm. The proposed
controllers were tested in a MATLAB simulation environment. The simulated system has similar
characteristics to the physical system described in Section 2.3.1 and it is composed of independent
linearized subsystems of PWM signals, water flow and water inlet temperature; the water inlet
temperature is considered as a disturbance. For the standard APC the parameters of the GPC’s loss

function (2.2.10) were set to y, = 1, @, = Q,, = I. Additionally, a PI controller designed with the
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Split-Range strategy (PI-SR), described in [64]-[65] and characterized by a hierarchy of
manipulated-variables activation sequences, was simulated to provide a comparison to an

alternative low-complexity control algorithm.

The VWRLS parameters for both APC controllers were set as follows: e =
0.05, epax = 0.2, e = 0.01, poiqg = 0.1, Atpyin = 350, Ay, = 100, and pfyq, = 1000. Also, the
VWRLS considered eight previous values of the output and inputs, i.e., d = e; = e, = 8, for a
total of 24 learnable parameters. For both controllers, the maximum prediction horizon y;,, =~ was
set to 24. This value was tuned to optimize the performance of the APC with standard GPC. In

addition, y; was set to 8 and the output’s constraints were set t0 Yy = 15, y, = 35.

Since the constraints for g ;, described in Section 2.3.3, decreased the performance of the
standard APC in simulations, it was implemented only in the proposed APC, where g, and
9max Were determined experimentally and set to [—0.2/255,—0.2/27] and [—-10/255,—10/
27], respectively. Also, the random solution selection from Section 2.2.4 was implemented using
the simple algorithm of iterating across each edge in U, since the space dimensionality considered
was low, two in the current implementation. The random solution selection was not compatible

with the standard GPC, therefore it was not implemented in that setting.

For the simulated system some additional physical restrictions were implemented. The
output temperature was discretized to a resolution of 0.06°C, identical to the resolution of the
sensors used in the physical system described in Section 2.3.2. Also, the water inlet temperature
variable was set to a constant value of 12°C plus a sinusoidal function with a period of 300s and
bounded random amplitude to test the system under perturbation conditions. The water flow and

PWM signal values calculated by the controllers were discretized to 0.02L/min and 1 unit,
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respectively, and for both controllers their values were constrained to [100, 255] for PWM and
[10, 27] for the water flow. The amplitude of the water temperature sinusoidal component followed
a half-normal distribution with mean absolute value u of 0.4°C and standard deviation o of 0.3°C.
Finally, a sampling time of 5 seconds was used since it represented the minimum stable sampling

time that could be used in the real implementation.

One relevant aspect resulting from the physical constraints in the simulated system is the
increased time for the VWRLS algorithm to converge, due to the resolution of the PWM and the
sensor readings which decrease the frequency information in the signals. In addition, the APC with
standard GPC does not identify which values (g jo Tj) generate infeasible solutions. In this aspect,
since the proposed APC first identifies and discards solutions that could lead to this problem, it is

expected to provide better regulation.

For the PI-SR control the procedure defined in [65] was implemented, resulting in internal
parameter values v* = 0.2838, a; = 2.142, 2, = 0.93, K. = 16.50and7; = 70. For this
scheme, the water flow was used as the first manipulated variable in the PI-SR hierarchy. The
results of the simulations are shown from Fig. 2.3.2 to Fig. 2.3.4. The Mean Squared Error of the

simulation results for Fig. 2.3.2 can be found in Table 2.3.1.

From Fig. 2.3.2 it can be observed that the PI-SR and proposed APC algorithms have
similar performance, with both showing improved performance over the APC with standard GPC.
However, PI-SR shows more oscillations around the operating point than the APC controllers,
possibly due to the activation of the second manipulated variable, as observed in Fig. 2.3.4. Similar
behavior was observed with respect to the water flow manipulated variable for both APC
controllers, but more short-term oscillations were generated by the proposed APC as identified in

Fig. 2.3.3, mostly attributed to the variable prediction horizon and the random solution selection.

37



Also, while the APC with standard GPC took more than 200s to show reasonable performance,

the proposed APC stabilized in less than 100s.
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Fig. 2.3.2. Performance of APC with standard GPC, PI-SR and proposed APC. The random

sinusoidal amplitude parameters of the water temperature are set to u=0.4°C and 6=0.3°C.
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Fig. 2.3.3. PWM values for the APC with standard GPC, PI-SR and proposed APC. Resolution

of 1, within the range [100,255] (8-bit representation).
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Fig. 2.3.4. Water flow values for the APC with standard GPC, PI-SR and proposed APC.
Resolution of 0.02, within the range [10,27].

Table 2.3.1. RMSE performance of the controllers in the

simulation.
Controller RMSE
APC standard GPC 0.5095
APC 0.4670
PI-SR 0.4778

It is important to note that while stability cannot be guaranteed for the manipulated values
generated by the proposed APC, for the current stable system the VWRLS algorithm when facing
model mismatch will use the error values, e(k|k — 1) = y(k) — y(k|k — 1) to make corrections.
In addition, the constraints g,,i, and g4, used in the GPC-based algorithm will result in the
model remaining in a region more consistent with the physical properties of the system,
independently of how large the error values are. Furthermore, one of the main advantages of the
proposed APC approach in the current implementation is that precise tuning was not required to

have competitive performance.
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The proposed APC controller showed two major advantages over the standard APC in the
presented simulations. First, it can discard values for manipulated variables that are outside of the
physical constraints, whereas such values implicitly affect the standard APC. Second, the proposed
APC can create more diversity in the values of the manipulated variables by selecting semi-random
solutions when a threshold of steady-state error is reached, which leads to a more accurate model

computed by the adaptive algorithm.

2.3.5 APC Experiments in a rack-mounted cooling unit

The proposed APC defined in Algorithm 2.3.1 (Section 2.3.3) was used to perform a set of
experiments on the physical system described in Section 2.3.2. Both the proposed APC and the
water flow regulation algorithm were implemented on the low-cost microcontroller installed in the
cooling system, since the memory space proved to be more than enough for their implementation.
Given the memory and CPU speed constraints (§KB SRAM and 16MHz), a computationally
expensive iterative controller implementation would have been infeasible for the desired sampling
time (5s). In contrast, the proposed APC required approximately the same memory space as a
standard unconstrained APC with control horizon of 1. In more detail, the implementation of
Algorithm 2.3.1, including the monetary cost reduction strategy, required approximately 60% of
the SRAM for static variables and 30% for non-static variables, resulting in 90% total memory

usage.

It is important to note that even though the water flow regulation algorithm was encoded
in the same microcontroller, this algorithm was transparent to the proposed APC since its
parameters are not used for the controller design and it represented less than 2% of the memory

used. Hence, the water flow regulation algorithm was considered part of the controlled physical
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system. Also, the acquisition times for the water flow and temperatures were close to 4.5s, which
made 5s the minimum achievable stable sampling time in the microcontroller. A general schematic

of the implementation of the APC is shown in Fig. 2.3.5.

The parameters for the APC were set as follows: é,,i, = 0.045, é,,,x = 0.2, é, =
0.001, ppmin = 0.1, wy,i,, = 150 and p,y,i, = 0.1. The eight previous values of outputs and inputs
yield a total of 24 coefficients. Also, Vimin = 3, Vimax = 14, Ymin = 20, Ymax = 40, and g, and
9max values were setto [—0.2/255,—0.2/30] and [-10/255,—10/30], respectively. The water
flow and PWM values calculated by the APC were discretized to 0.02L/min and lunit,
respectively. Finally, the manipulated variables were constrained to [35,255] for PWM and
[9,21]L/min for water flow. The minimum achievable stable sampling time of 5 seconds was used

for these experiments and their results can be observed in Fig. 2.3.6 - Fig. 2.3.8.
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Fig. 2.3.5. Block diagram representation of the system being controlled and the controller.
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Fig. 2.3.8. Water flow manipulation of APC. Resolution of 0.02, within the range [9,21].

In Fig. 2.3.6, after the initial 400s when the VWRLS algorithm has obtained more
information about the system, it can be observed that the APC’s performance tends to improve,
generating less overshoot. The decreased overshoot can be mainly attributed to the forecasting
performed by the predictive algorithm of APC. In addition, it is worthwhile noticing that in Fig.
2.3.7 and Fig. 2.3.8 the variations in steady-state found in the manipulated variables are partially
caused by the water inlet temperature oscillation, and the APC is capable of incorporating this

effect through parameter adaptation, implying consistent results with those obtained in simulation.

Additional experiments were conducted to test the monetary cost reduction algorithm in
Section 2.3.3 and described in Algorithm 2.3.1. The results from the latter and the conditions for
implementation are explained next. Assuming a case in which both water and energy have

associated costs, the monetary cost function of the manipulated variables has the form Cg (u(k)) =

bsu/, where bg contains the cost rate of water per litre/min and an estimate of the associated cost

rate for the energy spent for fans, bg = [5.94(10"6) cents/s 6.340(1073) cents/ (ﬁs)]
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The latter values were computed assuming 7.3 cents/kWh and 3.84 CAD/m? as fixed utility prices,

based on information from the province of Ontario, Canada [66]-[67].

The monetary cost reduction algorithm was activated only when the system output
approximately matched the desired set-point (+0.06) for four consecutive iterations. The
performance of the APC with the monetary cost reduction, APCs, is shown in Fig. 2.3.9 - Fig.
2.3.11, and the cumulative monetary reduction through time is observed in Fig. 2.3.12. From them,
it is possible to observe that the APCs generates a reduction near 15% of Cy (u(k)) when compared
to the APC. Considering that a typical large DC has from hundreds to thousands of rack units, the
savings of an estimated 3700CAD per rack per year are significant. It is important to note that both
algorithms, APCs and APC, are similar in general performance. However, since the former slowly
changes the state of the system by making small adjustments to u(k), it can become more
vulnerable to disturbance effects caused by the water temperature, as observed in Fig. 2.3.9.
Despite this, when the system changes the desired set-point the algorithm that minimizes Cg (u(k))

is not active until it returns to the set-point.

265 T T T T T T T T

---------- APC

—APC Monetary Optimization
26.2 - = -Set point .

Temperature (°C)

253 | | | | | |
0 250 500 750 1000 1250 1500 1750 2000 2250 2500

time(s)

Fig. 2.3.9. APC and APC with Monetary optimization performance
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Fig. 2.3.10. Water flow manipulation of APC and APC with Monetary optimization.

Resolution of 0.02, within the range [9,21].
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Fig. 2.3.11. PWM manipulation of APC and APC with Monetary optimization. Resolution of

1, within the range [35,255] (8-bit representation).
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Fig. 2.3.12. Savings of the APC with Cj (u(k)) enabled, with respect to Cy (u(k)) disabled.

The behavior of the manipulated variables for the APCs are consistent with the

minimization objective defined by bg, since the energy price of the water flow is more expensive

per unit than that linked to the fans.

The Mean Squared Error of the results for Fig. 2.3.5 and Fig. 2.3.9 can be found in Table

2.3.2 as Experiment 1 and Experiment 2, respectively.

Table 2.3.2. RMSE performance of the controllers in the simulation

Controller RMSE

Experiment 1 APC 0.3650
Experiment 2 APC 0.0814
APC;s 0.1088
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Chapter 3

Neural-Network-based Models for Time Series

In this chapter a brief introduction to Neural Network models intended for time series is presented.
Feedforward and Recurrent Neural Network models are covered, emphasizing the LSTM recurrent
architecture. In addition, the backpropagation (BP) algorithm, used in these models, is concisely
presented using compact matrix notation to facilitate its readability and interpretation. For
reference in later chapters standard equations for each architecture, linked to the algorithm, are

expressed; these equations are also used to describe the models’ capabilities and limitations.

3.1 Feedforward and Recurrent Neural Networks

In recent years, the field of time series has been through a gradual but important
transformation, caused in large advances in the machine learning (ML) area. Among these, Neural
Networks (NN) have emerged as an effective alternative to linear models, specifically due to the

capability to model nonlinearities in time-dependent data.

When compared to Adaptive Linear Models (ALM) studied in previous chapters, NN
models carry out a more direct approach when used to handle nonlinearities, by trying to capture

their effects on the output, y(k), using nonlinear functions, o (-), usually referred to as activation

47



functions or hidden neurons. Feedforward neural networks (FNN), one of the most popular
architectures, have shown remarkable results beyond time series modelling and across many
scientific applications [23]-[26]. One of the simplest FNN architectures, with one hidden layer,

can be observed in (3.1.1)-(3.1.2) (with its corresponding graphical representation in Fig. 3.1.1):
hRW (k) = o(Wox(k)) (3.1.1)
y(k) = W, h® (k) (3.1.2)

where RV (k) € R", W, € R™™, W, € R™", g(-) is applied elementwise and x(k) is assumed
to contain a constant ‘1’ as its last element to introduce a bias. These equations, describing the NN

architecture, will be referred to from now on as forward equations.

An FNN with more complex architecture is shown in Fig. 3.1.2 and defined by the forward
equations (3.1.3)-(3.1.4); here, L hidden layers are used, h® (k) = x(k) and W, € R7t+1X7t,
When more than a few hidden layers are used, such models are referred to as Deep Neural

Networks (DNN) or Deep Learning models.
hO k) = o (Wl_lh(“l)(k)>,Vl >1 (3.1.3)

y(k) = W h ™ (k) (3.1.4)

For the case of most FNN models intended for regression the computation of the learnable

parameters, W, is performed by minimizing the MSE loss function over a training set, L%;in) =

Koo N . . . . (tval) _ kypal N (12 :
Zjirflnlle(])ll , while tracking the MSE of a validation set, Ly~ = Zj;‘;(tminﬂlle(])ll , as in

Section 2.1.1. As FNNs (and NNs in general) are nonlinear models, the loss function is minimized

using any of the iterative GD-based algorithms, with a vanilla version described in (3.1.5).
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aL(train)

= — . LEMSE
0:= 0 — ;28 (3.1.5)

where 8 = Vec([W,, ..., W]) is the set of learnable parameters and «; is the (possibly varying)

learning rate at the ith iteration .

Fig. 3.1.1. Graphical representation of a Linear Model (left) and Neural Network with one hidden

layer (right).

Weights

Fig. 3.1.2. Graphical representation of a Neural Network with L hidden layers.

49



When (3.1.5) is used (or one of its variations) on an NN model as defined in (3.1.3)-(3.1.4),

the changes, aﬁgggi“ /OW, in the front layers (rightmost in Fig. 3.1.2) influence the changes in

the back layers (leftmost in Fig. 3.1.2), creating the well-known backpropagation effect which
ain)

results from the chain-rule application to OLI(\;;E /00®) The associated BP equations for the

architecture (3.1.3)-(3.1.4) (henceforth referred to as backward equations) are defined in (3.1.6)-

(3.1.7).
O (1+1) rp(1+1)
skokf = (W{+18k0kf) o Hkokf (316)
T
l l
W§p+1) — ng) + apal(co)kf (Hl(co)kf) (3.1.7)

where  HQD = [AOko), ., RO(ke)],  HD, = [RO ko), .., RO(kp)], RO (K) =

6 (200W). ¢ (20(0)) = do (20 ()) /dzO (), 20 (k) = WhO (), 80y, = OLGE™ )

9z% . & = [e(k) e(k )] HO = [x(k) x(k )] “o” denotes the Hadamard
koks> “kokf 0/r s 1l koky 0Jr s )l

product (elementwise multiplication); and the term 8,((10)kf is the so-called propagated error across

the network, received at the /th hidden layer. A high-level graphical representation of the training

process when using the forward and backward equations is shown in Fig. 3.1.3.

Even though an FNN can model some nonlinear components in the data, it still has
limitations regarding learning time dependencies in a time series, since it does not consider the
interactions between previous and current inputs [68]-[69]. A widely used approach to overcome
this limitation in the context of time series is the augmented-input approach, x4, (k) =
VeC(X k- j:k), by which the previous j values in x(k) are directly introduced to the network in

order to extract their interactions [68]-[69].
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Fig. 3.1.3. Graphical representation of an FNN training process: forward pass (left) and

backward pass (right).

One of the disadvantages of the augmented-input approach is the potential dimensionality
increase in the layers’ weights, as well as larger number of layers, needed for the FNN to extract
temporal information. Furthermore, the increase in model size can also make the minimization
process more complex due to the increase of the search space of the learnable parameters [70]. In
addition, in this approach the time dependency of y(k) on the previous input information is limited
to exactly the j previous time instances contained in X4,,4 (k). The previous process can also be
interpreted as the FNN trying to model the mean of the output y(k) conditioned on previous inputs,
ie., E (y(k) |x(k), o Xx(k — j)), by encoding it in its weights W;. This potentially requires a large
number of layers when nonlinear complex time dependencies exist in the data, since the first few

layers create a linear combination of the input elements.
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One option to model nonlinear time dependencies in the area of time series, following an
NN-based model, is the Recurrent Neural Network (RNN) model, a type of NN that tries to extend
the limits of FNN models in capturing long-term dependencies. RNNs are characterized by using
feedback connections within hidden layers through recurrent matrices, U; € R™*"t, [71]-[72] (see
Fig. 3.1.4). Through this connection, the output y(k) becomes dependent not only on the current
input x(k) but also on the extracted information from previous input values x(k — j). The vanilla

RNN forward equations of an L-hidden layer architecture, resulting from using (3.1.5) to minimize

£879M are defined in (3.1.8)-(3.1.9).

MSE
hO k) = o (Wl_lh(l‘l) (k) + Uh Ok - 1)), v 2 1 (3.1.8)
y(k) = W, h®D (k) (3.1.9)
Output Output
(o)
F 3 WL UL WL
Hidden Hidden
h® (k) Layer L Recurrent h® (k) Layer L
: matrices :
Hidden U, C\ Hidden
h™ (k) Layer 1 h™ (k) Layer 1
W W
aug (k) x(k)
Input Input

Fig. 3.1.4. Graphical representation of an FNN with augmented input (left) and RNN (right)
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The vanilla RNN backward equations, resulting from using (3.1.5) to minimize Lﬁggin),

are described in (3.1.10)-(3.1.14), where 8" (k) = a£41%™ / arD(k), 8% (k) = e(k) and

hO® (k) = x(k).

50 (k) = WT (8" (k) 0 RV (k) ) + UT (85 (k + 1) o RO (k + 1)) (3.1.10)
81 (k) = (850 (h) 0 RV (k) ) RO (k)T (3.1.11)
59 (k) = (8 (k + 1) e AO e + 1)) RO (k)T (3.1.12)
WD =wP +a, 37, 85 () (3.1.13)
v =uP + 2,37, 850 (3.1.14)

In the previous equations, (3.1.10) is the propagated error through time across the RNN,
which is why backpropagation for RNN models is referred to as backpropagation through time

(BPTT) [73].

RNN models have been successfully applied to problems in which nonlinear time
dependencies need to be modeled accurately in forecasting settings [74]-[76]. However, when their
vanilla architecture is used, (3.1.8)-(3.1.9), they experience practical limitations during their

training phase, namely the Vanishing Gradient (VG) and Exploding Gradient (EG) problems [77]-

[78]. These problems are linked to the magnitude of the gradients a/:,(vf;gi”) /awl(”)

used to update
the weights in the NN. As its name suggests, the VG problem arises when the magnitude of the
gradient is so small that changes in the weights become negligible during the training process,

limiting the capability of the model to learn long-term dependencies and/or making the

convergence extremely slow. On the other hand, the EG problem occurs whenever the magnitude
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of the gradient becomes large enough to create large oscillations in the learnable parameters, 6,

potentially leading to numerical instabilities.

In more depth, one of the main causes of the VG and EG problems is the consecutive matrix

multiplication associated to the propagated gradients across layers [76], § ,E?kf, in multilayer FNNs

and/or the propagated gradients through time in RNNs, 6,(11) (k). These propagations can be
observed in (3.1.15)-(3.1.16) where the propagated gradients’ effects across, respectively, two

layers and two-time instances, are explicitly shown.
000, = (Wha (W02 < i) ) )

= (WLaWlo8i2) o (WEaHGD ) o Hics? (3.1.15)
5 = W (80 0 V() )

+uT <<w{ (55{*“ (k + 1) o RO*+D (K + 1))) o RO (k + 1))

+uT ((uf <5§P(k +2) 0 hO(k + 2))) o hO (I + 1)) (3.1.16)

From (3.1.15)-(3.1.16) it can be observed that since the eigenvalues of the matrices
{W,,U,} are not bounded, the consecutive products can lead to exponential growth or decay in

their eigenvalues and consequently their elements. Also, in the context of VG, whenever the

magnitude of the activation function’s derivative, |6(+)|, is less than 1 the matrices I:I,((lgkf and

vectors h®¥ (k) will contain elements smaller than 1 in magnitude, decreasing the magnitude of the
propagated gradients due to the element-wise multiplication and hence potentially promoting VG

effects.
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It is important to highlight that in RNNs, due to the recurrent connections, the gradient
propagation across time, even when a single layer is used, becomes equivalent to that observed in
an NN with several hidden layers, as seen in Fig. 3.1.5-Fig. 3.1.6, where the forward and backward
components of the training process are depicted. This is sometimes referred to as RNN unrolling

[79] and shows the similarity between RNNs and DNNss.

Output Output Output
y(k) y(ko) y(kr)
o v, U,
RO [ = [ A k= = =R (ky)
Wy | W, | W,
Input Input Input

Fig. 3.1.5. High-level graphical representation of a one-hidden-layer RNN and its ‘unrolled’

equivalency during the forward part of the training process.
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| EI05) 36 (k;) ¥5;” (k)
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Fig. 3.1.6. High-level graphical representation of a one-hidden-layer RNN and its ‘unrolled’

equivalency during the backward part of the training process.

Due to the similarity between RNNs and DNNs in terms of the gradient propagation,
practical measures are often taken to mitigate the VG and EG problems, one of which is to restrict
the process of BPTT to relatively small time windows, a process known as Truncated Back
Propagation Through Time (TBPTT) [80]-[81]. By implementing TBPTT, not only are the VG and
EG problems diminished but also the computational overhead/auxiliary-memory associated to the
BPTT (3.1.10)-(3.1.12), caused by the hidden-state related values (R (k), A (k)), is decreased

[27].
3.2 LSTM

Even though TBPTT facilitates the use of vanilla RNN, the presence of VG and EG
problems can limit its potential [27]. In order to overcome the previous limitations and improve
the performance of RNNSs, an architecture known as Long Short-Term Memory (LSTM) was

introduced in the late 90s [27]-[29], standing out due to its potential to exploit long-term
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dependencies and producing competitive results in a wide range of applications [30]-[34]. The
practical success of LSTMs has been mostly attributed to its capability to mitigate the EG and VG
problems [30], [82]. This capability is mostly associated to an ‘internal’ vector state c(k), often

referred to as cell units, that partly depends on its own previous immediate value c(k — 1).

Since the LSTM was first introduced variations with different levels of success have been
proposed [82]-[83]; however, the most common single-layer LSTM architecture (3.2.1)- (3.2.6)
can be mostly described by four different single-layer RNNs of equal dimensions,
{a(k),i(k), f(k),o0(k)}, referred to as ‘gate units’ and the previously mentioned internal state
c(k). The gate units are interconnected in an element-wise fashion, they depend on the same
hidden states, h(k — 1), and are used to regulate the ‘flow’ of information across time in the
network. Additionally, a linear relation is used to create the recursive temporal dependence in the
cell units c(k), responsible for creating a flow of information from previous inputs, x(k — j), into

the current output, y(k), during the training process [27]-[28].

a(k) = o, (Wax(k) + Ugh(k — 1) + by) (3.2.1)
i(k) = 05;y(Wix(k) + U;h(k — 1) + b)) (3.2.2)
flk) = o5ig(Wex(k) + Ush(k — 1) + by) (3.2.3)
o(k) = a5;;(W,ox(k) + Uyh(k — 1) + b,) (3.2.4)
c(k) = f(k) o c(k — 1) + i(k) o a(k) (3.2.5)
h(k) = o(k) ° oy, (c(k)) (3.2.6)
y(k) =W, h(k) (3.2.7)
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where g5;4(z) = 1/(1 + e7?) and 04, (z) = tanh(z) are element-wise functions, W, U, belong

to R™*™ R™*™h respectively and n;, denotes the number of hidden units in the LSTM layer.

Regarding (3.2.2)-(3.2.4), the regulation of information due to the gates can be interpreted
in the following manner. First, the input gate, i(k), gives a degree of relevance to the activation
gate a(k). Then, the forget gate, f(k), determines how much past information contained in the
previous cell units’ values, c(k — 1), will be carried into the current iteration. Finally, the output
gate, 0(k), dynamically scales the nonlinear transformed cell state, o, (c(k)). Each of these gates
have their own associated input and feedback matrices, W, U,. A graphical representation of the
LSTM architecture is shown in Fig. 3.2.1.

units’ output

— L] L] L] - L] L] -_— - L]
[ ]
o l output
.-° gate o
. l activation

function

h® (k)

activation
gate

[ ] [ ] -_—— -_—— - -_—— -_—— -_—— -_—— -
Previous

values of
nput units

Fig. 3.2.1. A standard single-layer LSTM architecture, solid arrows represent matrix

multiplication.

58



The backward equations resulting from implementing BP in the LSTM architecture, under

the loss function L{iee™, are expressed in (3.2.8)- (3.2.17).

on(k) = Wie(k) (3.2.8)
8,(k) = 8p(k) © op(c(k)) (3.2.9)
8.(k) = 84(k) o 0(k) o 64, (c(k)) + 8. (k + 1) o f(k + 1) (3.2.10)
8i(k) = 8.(k)  a(k) (3.2.11)
05(k) =8.(k)oc(k—1) (3.2.12)
0a(k) = 8.(k) o i(k) (3.2.13)
8,(k) = 64(k) o g (k) (3.2.14)
8y, (k) = VT 8,(k) (3.2.15)
Oy (k) = 6,(k)xp(k) (3.2.16)
Vi=V+a,%, 8y() (3.2.17)

where  8,(k) = 0LLTA™ / dh(k), E,(k) = ALe™/ do(k), 8.(k) = L™/ dc(k),

8a(k) = 0LLTA™ 1 dak), &;(k) = dLLLA™ /di(k), 6,(k) = dLLA™ / 0z(k), 6,(k) =

oLLTAM 1 axy(k), by(k) = aLEE™ oV (k), z(k) = Vxn(k), xp(k) = " (’l‘c(f) 1)], V=
Vv, 5,(k) 6en(VoI(k))

V; _ RIGI _ Gsig(ViI(K))

Vf 5 V* - [W*: U*], Sa(k) - 8f(k) , O (k) - O._Sig (Vfl(k)) .

Vo Bo(k) 631 (VoI (K))
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As observed in (3.2.10) the propagated error to the internal state c(k) has two components,
the propagated error from the cell’s output & (k) and the propagated error from the next state’s
value &.(k + 1). The latter component is referred to in the literature as the constant error carousel,
since 6.(k + 1) is multiplied by the forget gate value f(k + 1) and no additional unconstrained
matrix is present in this part of the operation. This process is one of the main reasons why this
architecture can significantly mitigate the EG problem compared to vanilla RNNs, since the forget
gate regulates the degree to which the incoming gradient is forgotten through this operation. In

more detail, since 0, x1 < f(k) < 1,,x1, the operation will not contribute to the generation of

EG. It is important to highlight that even though LSTM architectures are more appropriate to
handle gradient implementation problems, TBPTT is still used in practice during the training phase

to further handle the VG and EG problems.

As expressed before, variations of LSTM have arisen through the years such as
bidirectional LSTMs [82] and LSTM with peepholes [28], where the latter variation replaces the
term h(k — 1) by c(k — 1) in (3.1.1)-(3.1.4), allowing the gates to have direct access to the
constant error carousel when BP is implemented. Also, a simplified and very popular version of
the LSTM architecture was proposed in [28], known as Gated Recurrent Unit (GRU), which uses
one less gate than the LSTM, decreasing the number of parameters. These architectures have

shown similar performance to the LSTM for various applications [30]-[34].

One of the main challenges when using LSTM networks is their complexity in terms of the
number of parameters needed in their structure, which implies the need for more computational
power to use them as well as the need for Graphics Processing Units (GPUs) to avoid slow training
times [84]-[86]. Also, as is the case for most NN-based models, LSTMs are still considered black-

box models due to their capability to approximate a wide range of functions but with low
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interpretability when compared to LMs. For instance, two NN models with the same topology but
significantly different learnable parameter values can generate similar results [87]-[88].
Consequently, there is not a simple link between the parameter values in these models and the

function being approximated.
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Chapter 4

E-LSTM: Extended LSTM

In this chapter an extended LSTM architecture designed to facilitate capturing long-term
dependencies is proposed, named Extended Long-Short Term Memory (ELSTM). This extension
is performed by explicitly increasing the connectivity of the states in the LSTM, c(k), to their own
values at a lag of p time units, c¢(k — p). The increased connectivity in the E-LSTM aims to
reduce the number of parameters in relation to the LSTM network, while achieving a similar
performance to an LSTM model. In addition to describing the E-LSTM architecture, a performance
comparison with the LSTM network and alternative models is provided, including the number of
parameters needed in each model, through simulations using synthetic and real-world time-series
data. It is important to clarify that a large amount of the material in this chapter has also been

published in [89], where the results are more compactly presented.

4.1 E-LSTM Architecture
4.1.1 Motivation and conceptualization

As discussed in Chapter 3, LSTMs have produced competitive results in a wide range of

applications [30]-[37], but at the price of using a large number of parameters in their architectures
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[90]-[91]. For instance, in datasets containing short-term and long-term dependencies, LSTM
networks might require on the order of several thousands of parameters [84]-[85] to extract the
information about both dependence types, due to the temporal-explicit connectivity in the LSTM
architecture being only immediate. For cases in which information about time dependencies can
be obtained using statistical techniques, the temporal-explicit connectivity of standard LSTMs
might create an inherent barrier to extract this information efficiently, which could be one of the
potential causes behind the need for a large number of parameters to achieve an acceptable

performance.

In previous years, approaches have been proposed to exploit long-term dependencies, some
of which encompass stacked layers of NNs, RNNs or LSTMs designed to handle a variety of
datasets [92]-[95] or to solve specific practical problems [96]-[97]. However, none of the
strategies modify the inner mechanism of the LSTMs in terms of the temporal connectivity, leaving

them susceptible to using a large number of parameters.

Clockwork RNN (CW-RNN), another well-established approach in the RNN field [98]-
[100], is a model designed to decrease the number of parameters in its architecture, by reducing
the connectivity between hidden units and dividing the network into modules that activate at
different frequencies. For some datasets, this approach has shown to generate competitive results

when compared to LSTM networks, while noticeably reducing the number of parameters.

In the context of exploiting statistical information more efficiently, an extension to the
LSTM architecture is proposed, named Extended Long-Short Term Memory (E-LSTM). This
architecture focuses on extending the temporal-explicit connectivity. The E-LSTM is designed to
facilitate capturing long-term dependencies, under the assumption that the temporal location of

those dependencies is known or that it can be estimated during data preprocessing, a more practical
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assumption used in this chapter. The addition of the dependence information is performed by

connecting the cell states in the LSTM, c¢(k), to their own value with p lags, c(k — p).

The increased temporal connectivity in the E-LSTM (as opposed to the reduced
connectivity in the CW-RNN approach) aims to reduce the number of parameters while achieving
a similar performance to an LSTM model. In this regard, an approach increasing the connectivity
within the LSTM architecture has been previously proposed [93], but the modification was limited

to linearly connect the current and immediately previous LSTM outputs.

4.1.2 Forward equations and conceptualization

As mentioned in Section 3.2, the propagated error to the cell states c(k) (3.2.10) is caused
by two other propagated-error components: the LSTM output 6, (k) and the next state’s value
6.(k + 1). The latter component is of special relevance, since its effect is regulated by the forget
gate f(k), controlling how much the incoming propagated error is diminished. Therefore, when
an LSTM is used to model long-term dependencies, it can be challenging to identify to what extent

it considers the effect of distant past values,

Even though f(k) mitigates the EG problem it can also exponentially decrease the effect
of long-term dependencies, specifically, the effect of a previous cell state c(k — p) into the current
state ¢(k). The latter can be observed in the first term on the right-hand side of (4.1.1), resulting

from implementing backward substitution for (3.2.5).
c(k) = c(k —p) o [I°Z) fk = ))

+i(k) o a(k) + XP_1 (iCk — j) o ak — j) o [1/Zy f(k — 1)) (4.1.1)
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Although forgetting previous information can be useful to prevent large accumulations
from being created, due to the sum involving the terms of the form i(k — j) o a(k — j), this could
potentially erase relevant long-term information. The latter effect is more likely to occur when few
hidden units are used, since the dimension of the forget gate vector is equal to the number of hidden
units, n,. Therefore, with smaller n, it is less likely to have sufficiently large forget-gate values
(close to one) in the multiplicative effect. The latter situation can imply that having more units
(and consequently a larger number of parameters) might allow long-term dependencies to be

captured in an LSTM network.

As an initial approach to oppose the exponentially decreasing effect of previous cell states,
c(k — p), the recursive dependence defining the cell state (3.2.5) could be modified by creating a
direct connection to a previous value, as expressed in (4.1.2). This modification could improve
preserving/capturing long-term dependencies across a time series. In (4.1.2) a new additional

forget gate, f,(k), is used to dynamically regulate the effect of past information carried out by

c(k — p) and follows the same mathematical structure defined by the original gates, as seen in

(4.1.3).
c(k) =f(k)octk—1) + fp(k) o c(k —p) +i(k) o a(k) (4.1.2)
£p00) = 03ty (W5,x00) + U bk = 1)) @13)

Although the term f,,(k) o c(k — p) in (4.1.2) seems an appropriate generalization of the
recursive equation in (3.2.5), it increases the likelihood of saturation in the hidden units, h(k) =
0dsig(c(k)). This potential saturation is linked to exponential growth in the values of c(k), which
can occur when the sum of f(k) and f, (k) is consistently greater than one across consecutive

forward iterations. The latter cause can be eliminated by replacing both forget gates by constrained
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versions, f(k) and fp (k), as defined in (4.1.4) and resulting in the cell-state equation (4.1.5) that

will be used as the core of the E-LSTM network.
c(k) = f(k) e c(k — 1) + f,(k) o c(k — p) + i(k) ° a(k) (4.1.4)
F) + Fp(k) < 141 (4.1.5)

where  f(k) = f(k) owy(k), fp(k) = fp(k)owy (k), and wy(k), wy (k) are ny-

dimensional dynamic normalizing factors, satisfying the constraints in (4.1.6)-(4.1.7).

Wf(k), Wfp(k) < 1nh><1 (416)

Among a variety of candidates for the normalizing factors w (k) and wry, (k) (constant

functions, linear functions, neural networks, etc.), a simple normalization (4.1.8)-(4.1.9) using both
forget gates is used. This normalization not only avoids additional parameters in the E-LSTM
network but also causes the following two useful effects: competition for transmitting relevant
information between short-term and long-term relations is directly promoted and the forget gate

values directly influence each other during the training process, as will be seen in the next section.

_ f(k)

wy(k) = T (4.1.8)
)

wy, () = 7o s (4.1.9)

where the divisions are elementwise.
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Through the explicit temporal connectivity of the E-LSTM architecture, (4.1.4)-(4.1.9), the
likelihood of forgetting relevant information in the distant past can be decreased by creating a

‘bridge’ to it. A high-level representation of this process is depicted in Fig. 4.1.1.

F(k, k
LASON ﬁ). c(kp)

f(kp+1) f(kZp)
. e

= | (ko) — € (kzp)

i(k)oa(k) itko)oatke) Fo(k) i(ky)oalk,) fplksy) i(kap)®alks)

Fig. 4.1.1. Proposed E-LSTM network when “unrolled” through 2p + 1 iterations.

4.1.3 Backward equations and analysis

Since the cell-state equation is different in the E-LSTM and an additional gate is used,
existing BP will be modified (4.1.10)-(4.1.11) and a new BP is generated (4.1.12), which are

linked to the forward equations described in (4.1.4)-(4.1.9).

8.(k) = 8p(k) o 0(k) o 6,4 (c(k)) + 8.(k + Do f(k +1) + 8.(k+p) o fr(k+p) (4.1.10)

8;(k) = 8.(k) o ((2wf(k) —w?()) o ek — 1) — w (k) o c(k — p)) 4.1.11)
87, (k) = (k) o ((2wfp () — w? (k)) o c(k — p) — w?(k) o c(k — 1)) (4.1.12)

where (4.1.10) and (4.1.11) replace (3.2.10) and (3.2.12), respectively and (4.1.12) is used to

update the learnable parameters of the new gate f,(k), i.e., Vg, The power operation is applied

element-wise in (4.1.11)-(4.1.12).
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The remaining backpropagation equations linked to the LSTM remain the same for the E-

LSTM, but the matrices V, 6,(k) and 6 (k), defined in Section 3.2, are modified as indicated next:

[ Gen(Val(k)) |

II/,‘; _ g?((llcc)) _ d_sig((ViI(k)%
v=|Vs| 6,k =80 [and ¢ (k) = | Fsig (Vfl(k)).
[I,’f ?p((:)) s (V51 0)
T | 656 (VoI (K)) |

When examining the propagated error (4.1.11), it is possible to verify that even when f (k)

is close to zero the magnitude of 87(k) might not necessarily reduce, since it is influenced by
w]%p (k), and consequently by f(k); an analogous situation occurs for & (k) in (4.1.12). In

practical terms, this situation is desirable during the training process since it can aid f(k) and

[p (k) in avoiding local optima when they have transitory near-zero values.

4.1.4 Overhead analysis and training implementation

The number of learnable parameters in a single-layer E-LSTM network is expressed in

(4.1.13).

n(()E—LSTM) _ S(nh + Nippur + 1)nh (4.1.13)

The training of the E-LSTM is similar to that of the LSTM. However, due to the modified
relationship in (4.1.4), the values associated with previous internal states, c(k — 1), ..., c(k — p),
used during forward and backward passes in BP need to be either explicitly stored or re-computed.
In the first case, storing up to p previous values would imply an increase in the memory needed

for the BP implementation, compared to a standard LSTM. Specifically, if the number of forward
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iterations is equal to the sequence length, S, then the total number of auxiliary variables used to
store previous values of ¢(k) during the forward pass of the E-LSTM training is as expressed in

(4.1.14).

nf'_f"“m) = Sn, (4.1.14)

If memory becomes a constraint for the BP implementation, due to large sequence lengths
or a large number of hidden units, it may be advantageous to re-compute previous values of the

cell state, changing the number of auxiliary variables to be that in (4.1.15).

n%))GI_LSTM) = pny, (4.1.15)
For the backward pass the overhead analysis can be performed similar to the forward pass.

The resulting memory usage due to auxiliary internal states, nff I_LSTM), is as described in (4.1.16)

for the computation prioritization approach.

ng"‘“m) = Sny, (4.1.16)
For the memory prioritization approach, the resulting auxiliary internal states is indicated

by (4.1.17).

ng"“m) = pn, (4.1.17)

For the training process, a validation set is used as one of the stopping criteria, specifically,

using a threshold 1 for the maximum number of consecutive fails on decreasing the validation-

set loss function, L@aD a5 defined in Algorithm 4.1.
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Algorithm 4.1: E-LSTM training

Input: {(x(l),y(l)), . (x(n),y(n))} //assumed to be normalized//
Set values:

ny //mumber of hidden neurons

Ngg //number of subsequences

SSiength //training subsequence length

Lnax //maximum number of iterations before stopping
Nfaits //mumber of consecutive fails

Nfails—max //max number of consecutive fails before stopping

Etrain—min < inf //minimum training MSE

Evqi—min < inf //minimum validation MSE
Initialize: //random initialization of weights
Divide dataset: D;,4i,, Dyai> Diest //division keeping temporal order
for j =110 Ly

for [ =1 to ng

/l Forward pass //
Extract: D

train
for k =1to SSiengtn

Compute: a(k), i(k), w(k), wr, (k) FUo, fp(k), 0(k), c(k), h(k)
Compute:E,, 4, // using L™ for the Ith subsequence
// Backward pass --- //
for k =1 t0 SSiengtn

Compute: 8,(k), 8,(k), 8.(k), 8;(k), 87(k), 8¢, (k), 84(k), 6,(k), 8,(k), 8¢(k)

8g < X" o))

j=1
Update: 8 //using any optimizer designed for this purpose

//Extract lth training subsequence from Dyyqin

(val)

Compute: E,;;//using D,,,; and L while keeping temporal order

/! Stopping criteria-------- --//

if Eygi—min > Evar and Etrqin—min > Etraint //Storing best performance and optimal
parameters//

eopt <0, Eval-min < Evai, Ngails < 0

else:
nfails < nfails +1

if Nfgits > Nrgits—max//Maximum consecutive fails for reducing Eyq;—min OF Etrain—min
break //ending main for loop

return: 6,,,; //Maximum number of iterations reached//
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4.1.5 Lag dependence selection using the distance correlation

As indicated in Section 4.1.4, the relevance given to past information in (4.1.1) depends on
the decay-rate variety in the elements of the forget gate, f(k), a situation mitigated in the E-LSTM
architecture. However, due to the E-LSTM using two forget gates, if elements in the first of these
are large enough to incorporate partial information of c(k —p), redundancy can occur.
Consequently, appropriate selection for the lag value p is desirable. This selection process might
be challenging when using techniques that rely on mathematical correlations (linear relations),
since NN models focused on exploiting nonlinearities and such techniques would not be suited to

spot the nonlinear relations in datasets.

Several selection techniques could be used to try to identify a value for p [103]-[105].
However, they are prone to miss nonlinear effects. Therefore, a hybrid approach for the lag
selection designed, to consider the nonlinear nature of RNN networks, is employed. This is
performed by combining a filter method and the distance correlation (DC) measure [106]-[108],
a statistical measure used to identify statistical relations, not only linear relations, between paired

multivariate variables.

The proposed hybrid approach is composed of two parts. First, an auxiliary linear
regression model is constructed: Ppc(k) = Opcxpc(k), where @y € R i and xp-(k) =
Vec(X k—k;+1: k) is an augmented input composed of the previous k; input values. Using this model,
linear relations between the desired output, y(k), and current-and-previous inputs, Xy _, 1.k, are

then removed by computing the residual values, i.e., epc(k) = y(k) — Opcxpc(k). Second, a

filter method is employed by computing the DC value of the paired residuals and lagged input
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values, i.e., epc (k) , x(k — j), for each lag j € {0, ..., k;}, from which relevant nonlinear effects

can be identified. The lag with the highest DC value is selected as the value for p.

4.2 Experimental Setup

To evaluate the performance and efficiency (in terms of the number of parameters) of the
proposed E-LSTM network in relation to the standard LSTM, experiments using univariate
synthetic and real time-series are performed. Additionally, the CW-RNN network and the Seasonal
Auto Regressive Integrated Moving Average (SARIMA) model, a well-known linear model
designed for data with seasonalities [101]-[102], are used as additional baselines to compare with
the E-LSTM model. The CW-RNN is selected model due to its sparse structure approach to exploit

long-term dependencies while reducing the number of parameters per unit.

4.2.1 Augmented-input Networks

One of the main purposes of an RNN is to identify relations among previous inputs,
immediate and far in the past. However, simple linear input-output relationships, i.e., x(k — p),
y(k), could require a large number of parameters for an RNN model, due to the several consecutive
nonlinear operations employed within the model. As indicated in Section 3.1, directly presenting
lagged input values into an NN model is a practice that can be used when handling time series to
exploit possible relations [109]-[110]. Therefore, in order to assess the practical usefulness of the
increased connectivity in the E-LSTM, the augmented-input approach is implemented in the CW-
RNN, the standard LSTM and the proposed E-LSTM, resulting in augmented versions of these

models, denoted as CW-RNN-A, LSTM-A and E-LSTM-A.
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By using the augmented-input models, it might be possible to ease the need for a large
number of parameters to learn linear relations, due to the linear transformation the augmented input
goes through in the gate equations in (3.1.1)-(3.1.5) and (4.1.3). The augmentation is performed
by adding a lagged input value, x(k — k;), selected based on a simple correlation analysis, from
which the augmented input is constructed X4,,4(k) = [x(k), x(k — k;)], where only one lag is

selected to avoid potential redundancy caused by the recurrence relations in RNNs.

4.2.2 SARIMA implementation details

The selection for the SARIMA model hyperparameters and parameters is carried out in
two stages for each dataset used. First, using the training set, a correlation analysis between the
input and its lagged values is performed, using prior information associated with the maximum
seasonality in each dataset to create an upper bound for a maximum lag. From the previous
analysis, the highest (absolute) correlation value is selected for the seasonal components of the
model (SA, MA). In the second stage, using the SARIMA performance over the validation set in
each dataset, a search for appropriate values for the autoregressive, moving average and integrative
components is carried out, varying values from one up to the seasonal values obtained in the first
stage (SA, MA), turning on and off the presence of the integrative component. It is important to
clarify that, even though it is possible to extract these linear relations first and then use the RNN
models over the residuals, this approach is not used in this work, since the main goal across the
experiments is to identify the capability of the networks, especially the proposed E-LSTM, as

standalone models.
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4.2.3 Synthetic datasets

Synthetic datasets are employed to have control over the effect of long-term dependencies
and the size of the lag, denoted as p;, while avoiding/controlling noisy measurements and outliers

that are typically present in real-world datasets.

Two different pattern recognition aspects are tested through the synthetic datasets: the
accuracy of the models on a time series that follows a nonlinear recurrent relationship and the

detection capabilities of fixed length sequences that repeatedly (stochastically) appear.

For the first recognition aspect, a dataset is created with a nonlinear dependence located at
a fixed lagged value p;, where the nonlinearity is due to changing sign. This dataset, referred to as
the Switching time series, is generated using two i.i.d. random sequences, z(k) € R and
Zsign(k) € {1,0} following the distributions N(0, 1) and B(1, psy); respectively, and two lags

of z(k) as shown in (4.2.1).
y(k) = a;z%(k) + azz(k — 1) + ap,2(zsign(k — p) — 0.5)z%(k — p;) (4.2.1)

where a,, a, and a,,, are constant coefficients with values 0.25, 0.35 and 0.35, respectively; and
Pswe 18 the switching probability. In (4.2.1) the term Z(Zsign(k -p) — 0.5) € {1, —1} creates
the switching-sign effect for the lagged variable z2(k — p;).

The second dataset, referred to as Binary sequence, is motivated by the potential limitation
expressed in Section 3.1 about (4.1.1), the forgetting effect of relevant information in a standard

LSTM. The latter is explored by embedding replicas of two different binary patterns of length 28,

b; and b,, in a long sequence of bits, separated from each other by a constant length. The long
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sequence is composed of 28-bit and 112-bit sequences whose individual values are obtained from
the distribution B(1,0.5). The embedding of the patterns is described in Algorithm 4.2, where
Npyoints 18 assumed to be a large multiple of the length of b; and b,, rand is a function generating
samples from the uniform distribution on [0,1] and generate(n,) creates random binary

sequences of length n,..

Algorithm 4.2: Binary sequence construction
Input: by, by, Nyoines  //Patterns and number of points//
Set: ng « nyoines/2length(by + by) /mumber of 112-length subsequences//

Bseq < empty //the desired Binary sequence dataset//
for i =1tong
if: rand>0.5
V112 < generate(112), Bs.q < append(Bseq, V112)
Else:

vig « generate(28),vig « generate(28)
Bseq < append(sr U%S' bli v%S' bZ)
Output: B,

Examining Algorithm 4.2, with probability 0.5 a 112-bit sequence is created, containing
patterns b;and b, as well as short random sequences v and v.2; placing vz’ between the patterns.
The Binary sequence dataset represents one of many possible instances in which repetitive patterns

are embedded among non-relevant data, which can be particularly challenging for linear models

even when the pattern length is known.

4.2.4 Real-world datasets

In order to identify the performance of the proposed E-LSTM on real-world problems, four
univariate time-series datasets were selected; categorized as small, medium and large sizes, with

the last category containing two datasets.

75



The small-size dataset is the well-known Chicken Pox [111] time series, which represents
the monthly occurrences of chicken pox in New York City, between the years 1931 and 1972. It

is composed of 498 samples with an apparent yearly seasonality.

For the medium-size category, a popular dataset containing the monthly mean number of
detected sunspots [112], from Jan 1749 to Dec 2019, is used. This dataset is characterized by

showing a degree of seasonality occurring every 10 to 11 years and is composed of 3252 samples.

The large-size category is composed of temperature data for the city of Toronto, Canada
[113], and the Power Consumption in the US Eastern Interconnection grid, reported by FirstEnergy
Corp [114]. In both datasets hourly information is provided, spanning from Jan 2011 to Dec 2020
for the first dataset and from Dec 31st 2011 to Jan 1st 2018 for the second dataset. As expected,

both datasets show a seasonality of 24 hours.

4.2.5 Implementation details

For the experiments performed over the datasets introduced in the previous section and
using the RNN and SARIMA models, original subroutines were created using the MATLAB
2018a environment. Simulations using MATLAB-library-built LSTMs were performed for
verification purposes, resulting in no significant performance difference with respect to the original
subroutines. The Adam optimization algorithm [43], [115]-[116], a variation of the GD algorithm,
was used for the training process in all experiments. Adam’s hyperparameters were set to standard
values, B; = 0.9, 8, = 0.999 and ¢ = 1078. A small value for the learning rate, « = 0.001,
was chosen to mitigate potential EG issues during the training process, using up to 10000 epochs.

Following the same training setting described in Algorithm 4.1, the validation-set loss function
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value, £ was used as one of the stopping criteria for the training process, specifically using a

threshold myq;;s = 4000 for the maximum number of consecutive fails on decreasing the error.

A similar training implementation was used for the CW-RNN, using the Adam algorithm
with standard values, but using a smaller learning rate, « = 0.0003, in order to avoid the EG
problem. The number of modules, n,,,4, a hyperparameter needed for the CW-RNN, was set to 7
for the Chicken Pox dataset due to its small size, and to 9 for the remaining datasets. Also, the
frequency of activation of these modules was set as in [98], from 1 to 2"med, and using the same

number of hidden units per module.

For selecting the number of hidden units in each of the four LSTM variants (including the
E-LSTM) and the CW-RNNs an iterative process using the values from the set {2°, 21,...,2°} was
performed over the validation set, with 40 repetitions for each value; the value producing the best
average validation-set performance was selected. Simulations were performed in the Beluga server

cluster, operated by the Digital Research Alliance of Canada (formerly Compute Canada), using

2.4GHz CPUs.

4.3 Experimental Results and Analysis

The simulation results for each of the LSTM variants, CW-RNN and SARIMA models are
presented. In all tables in this section performance indicators are provided such as average (u) and
standard deviation (o) of the RMSE. The size of each model is selected based on the validation-
set performance (minimum p,4; + 0,4;)- Additionally, the following metrics are provided: number
of hidden units and number of parameters (n,, ng); average training time per iteration (£jzer);

f(opt) Ii_opt)).

average time and number of iterations to achieve the optimal loss function value ( N g
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Also, the hyperparameter p for the E-LSTM is explicitly indicated next to the name of the network
in the results and bold text is used to represent the network with best testing performance

(minimum feese + Ogest)-

4.3.1 Synthetic datasets

For the synthetically created datasets, the lag associated with x4,,4(k) in the augmented-
input models was set equal to the lag dependence, i.e., k; = p;. The hyperparameter p in the E-
LSTM and E-LSTM-A models was set equal to p; — 1, due to the input to the network being the

lagged desired output (lag 1). Also, for each of the two datasets 10 different sequences are used.

In the case of the Switching dataset, experiments varying the value for the switching-sign
probability pg,,¢ of Zg;4, (k) were carried out, creating different instances. Results can be found in
Table 4.3.1-Table 4.3.2 which correspond to py,,; taking the values 1 and 0.01, representing high-
frequency and low-frequency switching behavior, respectively. Additionally, the lag-dependence
p; was set to 22 and 50 for the high-frequency and low-frequency switching datasets, respectively.
A larger lag p; was selected for the latter dataset instance to account for the higher linearity
associated with a lower switching frequency. A time window of 100 was used for the backward
and forward passes during training. No significant changes were found, in terms of performance

among variants, for other values of pg,,; between 0.01 and 1.

By assuming the only unpredictable value in (4.2.1) is the term a,z?(k) it is possible to
establish a (not necessarily tight) lower bound on the minimum possible RMSE. This lower bound

is also presented in Table 4.3.1-Table 4.3.2 and is used as a reference for relative comparison.
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For the high-frequency Switching dataset the E-LSTM outperforms all other models (Table
4.3.1), outperforming the LSTM and CW-RNN by a significant margin, and it shows better
parameter efficiency, as observed in Fig. 4.3.1. Also, the E-LSTM outperforms the LSTM-A
despite the latter model using the lagged input directly where the nonlinear dependence occurs.
This can be seen as the E-LSTM being able to model the nonlinear behavior of this time series

better than the networks using input augmentation.

For the low-frequency Switching dataset, the augmented E-LSTM-A and LSTM-A showed
similar performance (Table 4.3.1), with noticeably better performance than their standard versions
and the remaining models. These results can be partly attributed to a lower nonlinear effect caused
by the low-frequency switching (with switching probability of 0.01), in contrast with the results
observed for the high-frequency Switching dataset. Also, the standard E-LSTM network still
shows better parameter efficiency across different sizes, with respect to the standard LSTM and

CW-RNN networks.

Table 4.3.1. Results for the Switching dataset (k; = 22). SARIMA hyperparameters were set
as: AR = MA=1 and SAR = SMA = 22, resulting in RMSE = 0.6811. Lower bound RMSE =

0.4227. Forward-backward pass length of 100.

Switching series 100% probability switching (p; = 22)

I_'(O.‘Pt) f(opt)(s)

Merain Otrain - Mvai Opar  Htest Otest | Mh Mo titer(s) iter

LSTM 0.6232  0.0980 0.6810 0.0085 0.6771 0.0182 | 128 66689 151 381.37 575.87
E-LSTM2: 0.5894  0.0080 0.6198  0.0047 0.6060 0.0044 | 128 83329 1.97 69.82 137.55
CWRNN 0.6718  0.0109 0.7025  0.0020 0.6938 0.0353 | 72 2412 0.32 4865.43 1556.94
LSTM-A 0.6014  0.0052  0.6204  0.0029  0.6156  0.0040 | 128 67201 1.51 69.32 104.67
E-LSTM22-A | 05855 0.0123 0.6167 0.0039 0.6071  0.0069 | 128 83969 1.98 54.82 108.54

CWRNN-A 0.5934  0.0155 0.6286  0.0028  0.6115  0.0077 | 288 40320 1.70 426.78 725.53
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Fig. 4.3.1. Validation set performance across different sizes for the Switching-100 dataset.

Table 4.3.2. Results for the Switching dataset (k; = 50). SARIMA hyperparameters were set
as: AR =MA =1 and SAR = SMA = 50, resulting in RMSE = 0.732. Lower bound RMSE =

0.4095. Forward-backward pass length of 100.

Switching series 1% probability switching (p; = 50)

F jlopt)  r(opt
Hirain Otrain Hyai Oval  Hest Otest Ny Ng titer(s) Iiter t( p)(s)

LSTM 0.6988 0.0041 0.7675 0.0012 0.7258 0.0116 | 32 4385 0.53 510.15 270.38

E-LSTMso0 0.6484 0.0110  0.7252 0.0082 0.7207 0.0204 | 64 21185 1.19 459.35 546.63

CWRNN 0.6866 0.0090  0.7678 0.0029 0.7489 0.0141 | 144 10368 0.57 1791.42 1021.11
LSTM-A 0.6396 0.0111 0.6858 0.0041 0.6777 0.0181 8 361 0.41 413.72 169.63
E-LSTMso-A | 0.6490 0.0064  0.6858 0.0052 0.6784 0.0096 4 145 0.67 2666.25 1786.39

CWRNN-A 0.6360 0.0153 0.6984 0.0094 0.7346 0.0489 | 72 3168 0.32 2671.43 854.86
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Fig. 4.3.2. Validation set performance across different sizes for the Switching-01 dataset.

Forward-backward pass length of 100.

In the case of the Binary sequence (Table 4.3.3) the E-LSTM hyperparameter p was set to

29 to create a direct connection between elements in both 28-bit sequences, vz(;) and vz(?.
Additionally, a time window of 1120 was used for the backward and forward passes during

training. This window size was selected so that the resulting subsequences contain five instances,
on average, of the 112-bit sequence (in which 172(;) and vz(? are embedded), while keeping the

subsequence length not too large. Similar to the Switching datasets, a (not necessarily tight) lower

bound for the minimum RMSE was derived for the Binary Sequence dataset, shown in Table 4.3.3.

The results in Table 4.3.3 show again the E-LSTM as the network with the best testing
performance. Even though it uses a larger number of parameters for this case, the alternative

networks’ performances stagnate more when the sizes are increased (Fig. 4.3.3).
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Table 4.3.3. Results for the Binary Sequence dataset (k; = 29). ARMA used lags from 1 to
112 for AR and MA components, resulting in RMSE = 0.6811. Lower bound RMSE = 0.4357.

Forward-backward pass length of 1120.

Binary Sequence

F flopt)  F(opt
Hirain Otrain Hyal Oval  Miest Otest | Th MNag titer(s) Iiter t(Op )(h)

LSTM 0.4586 0.0037  0.4624 0.0039 0.4645 0.0041 8 329 1.488 1479.67 0.6116
E-LSTMoao 0.4314 0.0051  0.4520 0.0052 0.4582 0.0071 | 128 83329 7.242 39.02 0.0785
CWRNN 0.4490 0.0086  0.4653 0.0070 0.4706 0.0078 | 144 10368 2.07 1774.885 1.0206
LSTM-A 0.4601 0.0073  0.4650 0.0070 0.4692 0.0074 | 8 361 1.503 1375.935 0.5745
E-LSTMas-A 0.4292 0.0078  0.4552 0.0118 0.4618 0.0131 | 128 83969 7.133 45.815 0.0908

CWRNN-A 0.4498 0.0115 0.4805 0.0051 0.4942 0.0093 | 288 40320 5.992 1027.735 1.7106
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Fig. 4.3.3 Validation set performance across different sizes for the Binary sequence dataset.

82




Regarding the LSTM variants’ performance on the synthetic datasets the E-LSTM and its
augmented version required a similar or lower number of parameters to achieve a similar or better
performance than the alternative networks, in some cases with the number of parameters being an
order of magnitude smaller. Also, it should be highlighted that such performance is achieved

without drastically increasing the CPU time needed for the training process.

4.3.2 Real-world datasets

For the experiments involving real-world datasets, the distance-correlation-based process
described in Section 4.1.5 was used for the selection of the hyperparameter p of the proposed E-
LSTM and E-LSTM-A models. Also, for the augmented variants, LSTM-A and E-LSTM-A, a
correlation analysis on the training sets was performed to select the lag value k; for the input
augmentation. Differentiated datasets were used in all LSTM variants for the cases in which the
integrative component of SARIMA was selected, since the differentiation due to this component
is not directly performed in the LSTM variants; whenever this was the case, the correlation analysis

was performed over the differentiated dataset.

Regarding the Chickenpox dataset (small size), the E-LSTM and its augmented variation
showed a significant improvement over the other networks (Table 4.3.4). They reduced the number
of parameters needed overall by orders of magnitude, while achieving better performance. Also,
the E-LSTM-A was the top-performing network, using the least number of parameters and with

consistent performance across different sizes (Fig. 4.3.4).
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Table 4.3.4. Results for the Chickenpox dataset (k; = 24). SARMA components used lags 1
to 4 for the AR and MA and a value of 12 for SAR and SMA, resulting in RMSE = 113.423.

Forward-backward pass length of 200.

Chickenpox

£ iopt)  F(opt
Htrain Otrain Hyat Oval  Mtest Otest | M Mo titer(s) Iiter t(Op )(h)

LSTM 146.46 41.48 111.05 493 143.31 32.44 | 128 66689 0.168 8874.43 0.4141
E-LSTMa4 216.48 9.76 11420 470 121.36  7.33 2 43 0.0601  4701.95 0.0785
CWRNN 145.22 15.14 11640  7.12 134.45 1731 | 192 16320{ 0.09588  7494.76 0.1996
LSTM-A 127.88 48.71 104.69  8.04 14493 40.59 | 128 67201| 1.503 2122.30 0.8861
E-LSTM24-A | 201.42 0.84 100.72  1.75 108.99  1.53 1 22 0.17 8819.90 0.4165

CWRNN-A 142.22 20.77 102.80  5.13 147.34  30.09 | 192 16800f 0.0839 684523 0.1595

240
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Fig. 4.3.4. Validation set performance across different sizes for the Chickenpox dataset.
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For the experiments with the Sunspots dataset (medium size) the proposed E-LSTM
showed similar performance to the LSTM (Table 4.3.5), and slightly outperformed the alternative
networks; however, the SARIMA algorithm had very similar performance as the E-LSTM. The
fact that a linear model, using less than 100 parameters, can achieve the best performance among
the models might partly indicate why little improvement is generated by the E-LSTM architecture,
as there might be little nonlinear time dependence in the data. Furthermore, when analyzing the
performance curves of the networks in (Fig. 4.3.5) it can be noticed that those for the E-LSTM and
LSTM networks have similar shape and values which might corroborate the marginal contribution

of adding a mechanism to capture nonlinear long-term dependencies for this dataset.

Table 4.3.5. Results for the Sunspots dataset (k; = 12). SARIMA hyperparameters used lags 1
to 34 for the AR and MA and a value of 127 for SAR and SMA, resulting in RMSE = 22.80.

Forward-backward pass length of 288.

Sunspots
Hirain Otrain Hyal Oval  Heest Orest | Mh Mg fiter(s) I_I.(:g,t) f(opt) (S)

LST™M 2422 0.19 24.89 0.21 22,71 0.27 4 101 0.2079  3386.75 704.11
E-LSTMis 24.22 0.21 24.93 0.18 22.67 0.18 4 125 0.2910 3179.8 925.32
CWRNN 25.16 0.11 26.32 0.24 23.51 0.30 9 108 0.1022  4826.75 493.29
LSTM-A 24.15 0.20 25.00 0.20 22.83 0.24 4 117 0.2091 2616 547.01
E-LSTMis-A 24.09 0.23 25.15 0.27 23.00 0.32 4 145 0.2946 2184.2 643.47
CWRNN-A 25.00 0.19 26.10 0.42 23.47 0.30 9 144 0.1030  4527.98 466.38
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Fig. 4.3.5. Validation set performance across different sizes for the Sunspots dataset.

The results for the Power consumption dataset (Table 4.3.6) further supports the E-LSTM’s
capability to break potential walls the LSTM network might face, in terms of capturing long-term
dependencies. This can be concluded by directly comparing the augmented and non-augmented
versions side by side in Table 4.3.6 and analyzing how quickly the loss function value decreases
with respect to the number of parameters for small network sizes in Fig. 4.3.6, where the

performance curves of the E-LSTM and its augmented version are almost identical.

In the Toronto temperature dataset, the E-LSTM is the best-performing model, generating
a small improvement over the LSTM and using less than half of the number of parameters in
comparison (Table 4.3.7). Additionally, in terms of parameter efficiency, the performance

behavior of the E-LSTM network seems to be more consistent across different network sizes,
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providing more evidence that the LSTM needs a larger number of units to create variety in the

behavior of the forget gates.

Table 4.3.6. Results for the Power Consumption dataset (k; = 24) SARIMA hyperparameters
used lags 1 to 14 for the AR and MA and a value of 24 for SAR and SMA, resulting in RMSE

= 85.1136. Forward-backward pass length of 672.

Power consumption
= flopt)  F(opt
Herain Otrain Hyai Oval  Hiest Otest np Ng titer (S) "iter t(Op )(h)

LSTM 65.00 1.00 63.75 0.58 65.58 1.40 32 4385 6.18 1452.18 2.493

E-LSTM24 65.16 1.54 63.08 0.53 63.71 0.63 128 83329| 22.15 213.53 1.314

CWRNN 83.08 4.75 82.41 2.94 82.76 2.89 288 39168 18.87 1401.7 7.347

LSTM-A 65.35 0.92 63.61 0.42 64.74 0.57 32 4513 6.25 619.13 1.075

E-LSTM24-A 05.08 1.20 62.98 0.52 63.47 0.63 64 21505 12.50 221.45 0.769

CWRNN-A 76.64 2.23 73.09 0.67 73.58 0.95 288 40320 19.44 900.03 4.860
150
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Fig. 4.3.6. Validation set performance across different sizes for the Power consumption dataset.
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Table 4.3.7. Results for the Toronto temperature dataset (k; = 24). SARMA components used
lags 1 to 17 for the AR and MA and a value of 23 for SAR and SMA, resulting in RMSE =

0.6955. Forward-backward pass length of 672.

Toronto temperature

flopt)  z(opt
Utrain Otrain Hyql Opal  Htest Otest Ny Ng titer(s) Iifer t( p )(h)

LST™M 0.6751 0.0029  0.6618 0.0011 0.6684 0.0015| 16 1169 7.217 692.68 1.3886

E-LSTMo24 0.6775 0.0023  0.6607 0.0020 0.6676 0.0014 [ 8 409 9961 1051.135  2.9084
CWRNN 0.7443 0.0195 0.7178 0.0132 0.7343 0.017 | 144 10368 8.8 590.205 1.4427
LSTM-A 0.6722 0.0021  0.6631 0.0012 0.6715 0.0013 [ 16 1233 7.323 262.41 0.5338

E-LSTM2-A | 0.6776 0.0032  0.6631 0.0019 0.6702 0.0019 | 8 449 9.997 362.44 1.0065

CWRNN-A 0.7448 0.0020 0.7156 0.0026 0.7319 0.0024 [ 18 360 3.108 377.53 0.3259

0.82
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Fig. 4.3.7. Validation set performance across different sizes for the Toronto temperature dataset.
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It is important to highlight that for the case of the large-size datasets (on the order of 10°
datapoints) the E-LSTM and its augmented version were the best-performing models, when
compared to the LSTM and the CW-RNN, while using a similar or lower number of parameters
for the selected network sizes and showing a sharper increase in the performance curves for small

network sizes.

From the previous real-world results, a general pattern that can be observed is that the
proposed E-LSTM architecture appears to be a better option when compared to the LSTM and
CW-RNN models, in terms of the number of parameters required to achieve similar performance,
creating a significant reduction in the size of the model in some cases (by an order of magnitude).
Furthermore, the increase in training time with the proposed variants remained reasonable across

these experiments.
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Chapter 5

GI-LSTM: Generalized and Interpretable LSTM

In this chapter a new mechanism that generalizes the E-LSTM connectivity approach is proposed,
named Generalized Interpretable LSTM (GI-LSTM). This mechanism further increases the
explicit recursive connectivity among cell states to directly compensate for exponentially
weakening connectivity (EWC) across time, when needed. The GI-LSTM aims to extract long
term dependencies more efficiently even when their precise location is unknown. In addition, due
to the specific method used to create this connectivity, the GI-LSTM is embedded with an easy-
to-use interpretability component (defined as being able to provide explanations in understandable

terms to a human) that indicates the statistical relevance it gives to previous cell states.

5.1. GI-LSTM Architecture
5.1.1 Motivation for a generalization

As stated in Chapter 4, relevant information for long-term dependencies could be left
uncaptured in the standard LSTM due to the lack of variety in the decay rate among forget gates,
an issue partly addressed by the E-LSTM approach of increasing the explicit connectivity between

cell states. Taking a step forward in this approach the connectivity among cell states with respect
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to their previous values is increased, eliminating the need for specifying a previous location in
time (in contrast to the E-LSTM) and replacing it by a flexible user-defined interval of previous
values, which can be based on loose estimations of: maximum lag dependency, apparent
seasonalities (as seen in human-driven phenomena) and other guessed temporal information. Also,
by creating this higher connectivity the need for the DC measure is removed, resulting in reduced
preprocessing time. This is particularly useful since the computation of the DC can be time
consuming when trying to identify very long-term dependencies, even in univariate time series.
Furthermore, the proposed GI-LSTM architecture enables a semi-local interpretation, as defined
in [39], specifying which parts of the time series the network gives relevance to, within the user-

defined time intervals.

5.1.2 Forward equations and conceptualization

To keep the efficiency in the number of weights achieved by the E-LSTM while extending
the reach into past values, the new increased connectivity is performed by introducing dynamic
‘memory groups’, mg(k) € R™, designed to create a balance between the explicit temporal

connectivity and the number of parameters.

In more detail, the first memory group, m (k), contains explicit information of contiguous
lagged cell states, starting at 1; the second memory group, m,(k), contains information of non-
contiguous lagged values of m, (k), a structure followed by higher-order memory groups, mg(k),
up to a maximum number ¢. Similar to the E-LSTM, a weighted forget gate, f(k), is associated
to each memory group to allow for dynamism during the information processing and to promote

stability during the training phase.
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Ni(k) = [e(k — 1), ¢(k = 2), ..., c(k — q1)] (5.1.1)
m, (k) = (N1(k) ° Wm1)1q1><1 (5.1.2)

Ns(k) = [ms—l(k —(qs-1 ---Q1):ms—1(k - ZQS—l ---ql): ---:ms—l(k —{qsqs—1 - Ch)]:s = 2

(5.1.3)
ms(k) = (Ns(k) e Wy )14 51,5 = 2 (5.1.4)
I W], =1 (5.1.5)
c(k) = a(k) o i(k) + f1(k) o my (k) + F2 (k) o my (k) + - + fo (k) o m (k) (5.1.6)
fs(k) = fo(k) 0wy (k) (5.1.7)
wy (k) = % (5.1.8)

where [WmS]Towi is the ith row of the matrix W,, € R™9s; ||-|l; is the 1-norm; 1, 44 is a vector

of ones of dimension g X 1. The logic behind the choice of the 1-norm in the constraint for the
group weights W, , instead of the 2-norm, will be explained in detail in the next section. However,
the following is worth noting: there is no constraint on the sign of the weights and the 1-norm
constraint is embedded in the network through a nonunique parametrization with respect to

learnable parameters O, as shown in (5.1.9).

[Wms] N [05];

LJ - Zrowi|@s| (519)

Where ZTOWilOSl = Z?ill [OS]l,] |'
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In the definition of higher-order memory groups, the design choice of creating lag values
that are multiplicative, qsqs_q ...qq, instead of additive is intended to avoid information

overlapping, as shown in Fig. 5.1.1, that could create potentially unnecessary redundancy.

There are three major advantages in the proposed memory-group approach, when
compared to the E-LSTM approach. (i) It theoretically allows for reaching very long-term
dependencies due to the multiplicative lags in the higher-order memory groups, i.e., k —
(ql + 4291 -+ qcqc-1 ...ql), without the aid of the DC measure. (ii) Higher-order memory
groups compress the information in lower-order memory groups, functioning as filters for past
information. (iii) The architecture allows for a dynamic balance between short-term, long-term and
very long-term dependencies due to the weighted gates f(k) associated to each memory group.
Additionally, and following a similar strategy to the E-LSTM architecture, only one forget gate is
added per memory group which, when considering the multiplicative reaching effect, maintains

the number of parameters low in practice (we will see this in Section 5.3).

—-—— e —
—— —

m,(k — g,1q2)
Iwmi i
Ck—q1(q2+1):k—1—q1q2 e Ck—qu:k—l—ql Ck—l:k—qll ,l 1=
~ -~ ~ - - ’
~o _ - -
Cipky = [€k), €Uy + 1), c(ly)] === mmmmmm === = -

Fig. 5.1.1. Simplified graphical representation of the memory-group mechanism in the GI-LSTM,

with ¢ = 2.
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5.1.3 Backward equations and analysis

The BP equations are derived following a similar approach to that described in Sections

3.1 and 3.2. Hence, the resulting backward equations linked to the GI-LSTM are as follows:

Em (k) = f (k) o 8:(k) (5.1.10)
S, (k) = Fs(k) 0 8.(k) + T2, <[wms]wlr o 8m,, (k+7qs_q .. q1)>,s <¢ (5.1.11)
8.(k) = 8p(k) 0 0(k) o 6 (c(k)) + X2, <[Wm1]wlr o &, (k + r)> (5.1.12)
8w,y (k) = diag(8m, (k)N (k) (5.1.13)
Diogt o, (W]l ) = <_[Wm“’]:;“j;jj;‘fl[ Oclrw) | Ejj:;gs') (5.114)
810slrow, () = (5[Wms]r,,wi (k)> Diostrow, (W], ) (5.1.15)
8o, (k) = nf (8y) <—diag ((5me (k) o wms) 1qsx1> sign(®,) + &y, (k)) (5.1.16)
8, (k) = 28 (k) o fs(k) — Xomax &, (k) o f 4 (k)? (5.1.17)

where ¢ is the index of the last memory group; [Wms] _is the ith column of the matrix W, ;

col

-1

nf(0y) is a normalizing matrix, diag ([Zrowllesl ) e ,Zrownhlﬁ)sl])
When analyzing the GI-LSTM backward equations it can be observed that in (5.1.14) the
individual elements of the gradient §g),, (k) do not vanish solely by the fact that the elements

IQSxQS
ZTOWilesl

might have values close to or equal to 0, specifically due to the non-zero term resulting
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from the 1-norm, something that would occur if the 2-norm were used instead. Also, it can be

noticed that when (5.1.15) is expanded the resulting term

(k) [Wms]:ow'sign([ﬁ)s]mwi) is a projection of the gradient S[Wms] (k) over the

row;

—8w,, ]

row

current values of [Wms]mw.' This projection, in the context of (5.1.9), can be interpreted as an
i

opposition to the change in the learnable parameters of the memory groups, [@]ow,. The
opposition occurs when the change in the learnable parameters produces similar values for

[Wms]row-’ due to a near-to-uniform scaling in [@],,,,. Consequently, in (5.1.15) all elements in
[@5]ow, influence the gradient of each of its individual elements. This influence partly produces

the desired effect of the rescaling transformation (5.1.9), which embeds the lack of need for

different values of @ that result in the same memory-group weights W, .

Upon further inspection of (5.1.14) and (5.1.16) two things can be noticed. First, the
magnitude of §¢_(k) is dependent on nf (@) but not its direction; second, W, does not depend
on the normalizing factor nf (@) as seen in (5.1.9). Hence, the gradient 8¢ (k) could become
unnecessarily affected by nf (@) whenever any of its elements becomes significantly smaller than
1,ie., (Zrowil 0, I)_1 < 1. Consequently, nf (@) is removed from (5.1.16), resulting in (5.1.18),

and instead a 1-norm row normalization is performed on @) during each batch (mini-batch)

iteration in the training process to ensure Y.,ou,|0s| = 1, for each row i.

8o, (k) = —diag ((5me (k) o Wi, ) 1qsx1) sign(®,) + 8y, (k) (5.1.18)

It is important to notice that despite the removal of nf (@) the parametrization of W,,_in

terms of @) remains useful, due to the previously discussed projection effect in (5.1.15).
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5.1.4 GI-LSTM Interpretability

The row-normalized memory-group matrices, || [Wms] l,=1, in the GI-LSTM

row;
architecture represent an easy-to-analyze option to partly access what the network has learned,
specifically the relevance that each individual unit, [h(k)];, assigns to its memory groups,

[mg],ow, which implies temporal relevance in the time series. This interpretability can be

achieved by observing, through ¢ different plots, the absolute values of the ith-row memory-group
matrices, i.e., abs ([Wml]mwi) , e, abs ([WmC]rowi)'

This approach, although offering a substantial degree of interpretability, would not express
how the temporal relevance is distributed across the memory groups when more than one is used,

since the relevance is dependent on the dynamic behaviour of the normalized forget gates,
[fs (k)]mwi. On the other hand, the dynamic behavior of the forget gates increases the difficulty
of interpreting the temporal relevance, since it tends to change from one iteration to the next.
Therefore, a middle ground between obtaining a more accurate insight into the distributed
relevance and handling the dynamism of the forget gates can be achieved by using the time-
averaged values of the forget gates (5.1.19), ?S, since they represent the overall effect the forget

gates have across the forward pass. The process of incorporating the averaged values into the effect
of the memory-group matrices, as described in (5.1.20), results in integrated memory-group
matrices, wg, through which a more accurate interpretation of temporal relevance can be obtained.

Plotting the rows of the integrated memory-group matrices, [@ws],ow,;, produces the desired

interpretability for an individual unit i.

Fo= i3l Fs() (5.1.19)
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A A

o = [(F,_,  diag (F, ) abs(Wy,)] (5.1.20)

where as previously mentioned, S is the sequence length.

By looking at the individual rows of the integrated matrices it is possible to access the
temporal instances considered by individual units. Nevertheless, when interpreting one unit at a
time, it might not be straightforward to identify what the whole network assigns relevance to; this
is due to the units’ interdependence in the recurrence equations, affecting each other through the
network gates. Therefore, if holistic interpretability is desired the mean value of the integrated

row-normalized matrices (5.1.21), can be used instead.

A~

- 1 A~
ws = 11xn, @5 (5.1.21)

where @; is the result of row-normalizing the matrix wy, i.e., [@ws]; j/ X j[ws]; ;.

5.1.5 Overhead analysis and training implementation

Considering the GI-LSTM structure defined by (5.1.1)-(5.1.13) and (5.1.17)-(5.1.18), the

number of learnable parameters in a single layer is:

n(()GI—LSTM) —(4+¢c— 1)(nh + Mt + 1)nh + (ql 4ot qc)nh (5.1.22)

As observed in the first term of the RHS of (5.1.22), for a fixed number of hidden units the
number of parameters increases proportionally with the number of forget gates, which is equal to
the number of memory groups being used, S,,4, While the second term represents the increase due
to the memory groups’ learnable parameters, @,. For a large number of hidden units if all the lag
values are such that g, < n,, the increase in parameters per hidden unit with respect to an LSTM

remains reasonable, while the long-term reach remains large, q; + q,q1 + *** + qsQs—1 - q1-
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Furthermore, for small values of n; the temporal reach can be easily extended while still using

fewer parameters.

The previous two relations are part of the core of the GI-LSTM capabilities as they
substantially mitigate the need to add more hidden units to oppose the EWC effect and allow for
adding units mostly to increase the expressive power, when the nonlinear complexity of the time
series requires it. Also, it should be highlighted that when ¢ =1 and g; = 1 the number of
parameters in (5.1.22) is equal to the standard LSTM, since such a configuration would result in

0, = 1,, x; and therefore there would be no need to store such parameters.

In more practical terms and as seen in (5.1.1)-(5.1.4), due to a memory group’s need for

accessing lagged values of the lower-order memory group, the number of transitory internal states

(GI-LSTM)

in the GI-LSTM for the forward pass (5.1.23), n 3 ,1s larger than in the E-LSTM and LSTM

architectures. This number is achieved at the expense of frequently shifting values in auxiliary
matrices, A; € R™>9s41 containing the internal states as expressed in (5.1.23).

GI-LSTM
n% ) = (q1 + 4291 -+ qcqc-1 ...ql)nh (5.1.23)

In the case of memory not being the main constraint, a reduction in computation can be
achieved by using larger matrices, A; € R™>9 storing the values across the forward pass and

producing an internal overhead in the number of variables as seen in (5.1.24).

nlGISTM) — Sep, (5.1.24)

For the backward pass of the training process the overhead analysis is similar to the forward

pass, an overhead caused specifically by (5.1.11)-(5.1.13). Hence, when the analysis is carried out,
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the resulting memory usage due to dynamic internal states, ng I_LSTM), is as described in (5.1.25)

for the memory prioritization approach.

n%;I—LSTM) = (q1+ 9291 -+ qcGc-1 G2 )M (5.1.25)

For the computation prioritization approach, the resulting number of dynamic internal

states is given by (5.1.26).

nlEESTM) = Sep, (5.1.26)

It is important to clarify that the multiplicative temporal reach, q.q¢—1 ... qq, in (5.1.25) is
upper bounded by the sequence length, §, itself, due to the standard training process in the RNN
architecture. Also sequence lengths do not go beyond the tens of thousands in practice [117]-[123],
which is a practical constraint for the number of transitory parameters per unit in the GI-LSTM

architecture.

Algorithm 5.1: GI-LSTM training
Input: {(x(l), y(l)), s (x(n), y(n))} //assumed to be normalized

Set values:
np //mumber of hidden neurons
Ngs //number of subsequences
SSiength //training subsequence length
Lnax //maximum number of iterations before stopping
Nfails //number of consecutive fails
Nfails—max //max number of consecutive fails before stopping

Etrain—min < Inf /minimum training MSE

Eyqi—min < Inf //minimum validation MSE
Initialize: //random initialization of weights
Divide dataset: D;,4in, Dyai> Deest //division keeping temporal order
for j =11to L,ax

for [ =1 tong
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// Forward pass //
Extract: Dt%m
for k =1to SSiengtn

Compute: a(k),i(k), w;,, fs, 0(k), Ny(k), c(k), h(k)
Compute:E,, 4, // using L& for the Ith subsequence
// Backward pass //
for k = 1to SSiengen

Compute: 6, (k), 6,(k), 8.(k), 8;(k), 8¢ (k),84(k), 6,(k), 6g(k), 8g(k)
8o < 2,21 85())
Update: 0 //using any optimizer designed for this purpose
ffmmmmmmmm e Validation Set Performance------------------ //
Compute: E,g; //using Dygiiaation and L@ while keeping temporal order

//Extract lth training subsequence from Dy qin

//- Stopping criteria //
if Eyai—min > Evar and Etrqin—min > Etraint //Storing best performance and optimal
parameters//

eopt <0, Eval—min < Lyal, Nfaits < 0

else:
Nraits < Nrais + 1

if Nfgits > Npgits—max: #/maximum consecutive fails for reducing Eyqi—min 07 Etrqin—min
break /ending main for loop

return: 6,,,; //Maximum number of iterations reached//

5.2 Experimental Setup

The GI-LSTM network performance is assessed by using the datasets described in Chapter

4 in addition to two popular benchmarks in the RNN area, the Copy memory dataset [28] described
in the following paragraphs. This new dataset belongs to the category of multiclass classification,
y(k) € RMclass, a category of problems that often uses the cross-entropy (CE) loss function (5.2.1)

for the training process, due to its capability to embed categorical information through a

probabilistic-like function.

o1 s ly(D]; log (BN (5.2.1)
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The experiments with the Copy memory dataset are also performed with the standard
LSTM to maintain a baseline to compare with; however, the E-LSTM, the SARIMA and the CW-
RNN algorithms are not considered, due to model incompatibility in the first two cases and low

performance results across experiments in the last case (Chapter 4).

5.2.1 Copy memory dataset

The copy memory is a synthetic dataset initially proposed in [28] and has been extensively
used to evaluate the capability of a network to remember patterns across long-term delays [118],
[119], [121]-[124]. At a high level, the task consists of introducing a pattern to the model at hand,
followed by a large delay after which a trigger indicates to the network to output the pattern
initially presented.

In more detail, the copy memory dataset is composed of an input sequence of length
Taetay + 2Tpattern, Where the first Tpgirern €lements in the sequence are chosen uniformly at
random from the set of ng,,,,, symbols {al, ) ansym}, creating the pattern to be remembered. The
following Teqy — 1 elements consist of a ‘dummy” symbol, gy +15 causing the desired delay.
Next, a trigger symbol, Aoy +2> is presented to signal the network to output the pattern. Finally,
the dummy symbol is used for the last Tpgstern €lements in the input sequence. The output
sequence, of the same length as the input sequence, is composed of ngy, +1 classes
{co, Ciy eees Cnsym} whose Tyeray + 2Tpartern €lements are the ‘zero’ class, ¢y, everywhere except
for the last Ty q¢tern €lements after the trigger symbol, gy +15 which correspond to the classes of

each of the Ty 4¢rern Symbols encountered in the initial input pattern.
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5.2.2 Implementation details

For the GI-LSTM implementation the MATLAB 2020b environment was utilized for the
simulations. Also, the Adam optimization algorithm [41], [42] was again used across all
experiments, including any additional LSTM simulations presented in this chapter. Adam’s
hyperparameters were set to standard values, f; = 0.9, 5, = 0.999 and € = 1078. The
validation loss, £ was used as one of the stopping criteria across experiments for the training
process, as indicated in Section 5.1.5, with a threshold value of myq;; = 4000.

Experiments were carried out using different sizes of the GI-LSTM in terms of the number
of hidden units, sizes from the set {2°,21,..., 28} were utilized over the validation set, with 20
repetitions for each size; the loss function value producing the best average validation performance
was selected. Simulations were performed in the Beluga, Graham and Narval server clusters,
operated by the Digital Research Alliance of Canada, using 2.4GHz CPUs. For each of the selected

sizes the resulting performance in the testing set is reported.

5.3. Experimental Results and Analysis
In this section the GI-LSTM results for each introduced dataset, from the current and
previous chapters, are presented together with some of the results from Section 4.3 to facilitate
comparison across networks. The average (1) and standard deviation (o) of the RMSE value (or
cross entropy for classification problems) are provided as performance indicators. Also, the
following metrics are provided: number of hidden units and number of parameters (n,, ng).;

average training time per iteration (£;;.,-); average time and number of iterations to achieve the
optimal loss function value (£(°P9) ﬁoPt)). The top two GI-LSTM models, from a small set of

> “iter

possible configurations and based on the validation-set performance (minimum fi,q; + 0yq;), are
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provided. Also, bold text is used in the tables to represent the network with best testing

performance (minimum p;pg + Opest)-

The hyperparameter values for the GI-LSTM configurations are chosen based on easy-to-
access information in the datasets: seasonality, maximum length of potential patterns, human-

driven seasonalities (hours, days, weeks, months, etc.).

GI-LSTM interpretability plots are also provided, i.e., @ (5.1.21), where it should be noted
that a temporal dependence in the plots at d implies a self-lag dependence in the time series at d +
1, since the input is the output with a lag of 1. Also, the qualitative description ‘parameter-efficient’
will be used across this section to describe when the GI-LSTM achieves a similar performance to
the LSTM using significantly less parameters. Furthermore, validation-set performance results for
different GI-LSTM sizes are presented, in the form of plots, as additional information to make

performances comparisons under similar numbers of parameters.

5.3.1 Synthetic datasets

Results for the Switching datasets are presented in Table 5.3.1-Table 5.3.2 and Fig. 5.3.1-
Fig. 5.3.4. In the case of the Switching-100 dataset, the best GI-LSTM variant outperforms the
LSTM and its augmented-input variation, showing a similar performance to the proposed E-LSTM
but using an order of magnitude less of parameters. Also, the interpretability plot shows that the
GI-LSTM can detect the nonlinear lagged dependence at 22 without the aid of the DC correlation,
as opposed to the E-LSTM. Furthermore, in terms of parameter efficiency the GI-LSTM prevails
over the standard LSTM across different networks sizes and remains competitive with the E-

LSTM.
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Table 5.3.1. Results for the Switching-100 dataset (k; = 22). Lower bound RMSE = 0.4227,

GI-LSTM forward-backward pass length is set to 1000.

Switching-100 switching (p; = 22)

z ilopt)  F(opt
Hirain Otrain - Mval Opal Heest Otest Ny Ng titer(s) Iite‘r t( P )(S)

LST™M 0.6232  0.0980 0.6810 0.0085 0.6771  0.0182 | 128 66689 1.51 381.37 575.87
E-LSTM2. 0.5894  0.0080 0.6198 0.0047 0.6060 0.0044 | 128 83329 1.97 69.82 137.55
LSTM-A 0.6014  0.0052 0.6204 0.0029 0.6156 0.0040 | 128 67201 1.51 69.32 104.67

GI-LSTM1oo | 0.5817 0.0084 0.6175 0.0118 0.6087 0.0108 | 32 7585 1.11 310.65 344.82

GI-LSTMio00-4 | 0.5885 0.0128  0.6307 0.0105 0.6155 0.0102 | 64 27841 1.52 346.45 526.60

Normalized relevance

Fig. 5.3.1. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the

Switching-100 dataset.
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Fig. 5.3.2. Validation set performance across different sizes for the Switching-100 dataset.

For the Switching-01 dataset the best GI-LSTM variant outperforms the standard LSTM

and E-LSTM, but the augmented-input variations of these networks remain on top. In this case, as

in Section 4.3.1, the results can be attributed to the low-frequency switching. However, the GI-

LSTM is able again to precisely detect the nonlinear lagged dependence at 50 and remains

parameter-efficient with respect to the standard LSTM and E-LSTM networks.

Table 5.3.2. Results for the Switching-01 (k; = 50), with a lower bound RMSE = 0.4095 and

a GI-LSTM forward-backward pass length of 1000.

Switching-01 (p; = 50)
Herain Otrain Hypai Oval  Htest Otest np Ng Eiter(s) _i(gﬁﬂt) E(OPt)(S)
LSTM 0.6988 0.0041  0.7675 0.0012 0.7258 0.0116 | 32 4385 0.53 510.15 270.38
E-LSTMso 0.6484 0.0110  0.7252 0.0082 0.7207 0.0204 | 64 21185 1.19 459.35 546.63
LSTM-A 0.6396 0.0111 0.6858 0.0041 0.6777 0.0181 8 361 0.41 413.72 169.63
E-LSTMso-A 0.6490 0.0064  0.6858 0.0052 0.6784 0.0096 4 145 0.67 2666.25 1786.39
GLLSTMuw | 06065 00141 07074 00106 07270 00239 | 8 1120 | 076 23399 1778324
GI-LSTM100-4 0.6396 0.0114  0.7240 0.0130 0.7163  0.0135 8 1241 0.83 2315.6 1921.948
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For the Binary sequence dataset, results (Table 5.3.3) show that both configurations of the
GI-LSTM, one using a lag-memory value equal to the embedded sequence’s length (q; = 112),
and the other using a larger lag-memory value (q; = 200) have better performance than the
alternative networks, with performance close to the lower bound. Also, by analyzing the
interpretability plot (Fig. 5.3.5) the relevance that the GI-LSTM gives to the long-term
dependencies can be observed, potentially explaining the better performance. In addition, Fig.
5.3.6 indicates that the optimal validation performance obtained by the alternative networks can

be achieved by the GI-LSTM using less parameters (again by an order of magnitude).

Table 5.3.3. Results for the Binary Sequence dataset (k; = 29), with a lower bound RMSE =

0.4357 and a GI-LSTM forward pass length of 1120

Binary Sequence

i jlopt)  £(opt
Herain Otrain Hyal Ovai  Hiest Otest | Mh Mo titer(s) Iiter glop )(h)
LSTM 0.4586 0.0037  0.4624 0.0039 0.4645 0.0041 | 8 329 1.488 1479.67 0.6116
E-LSTM2o 0.4314 0.0051  0.4520 0.0052 0.4582 0.0071 | 128 83329 7.242 39.02 0.0785

GI-LSTMui12 0.4275 0.0020 0.4416 0.0014 0.4390 0.0013 | 128 81025| 15.403 53.75 0.229975

GI-LSTM200 0.4278 0.0033  0.4434 0.0021 0.4419 0.0029 | 128 92289 | 18.527 566.15 2.913628
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5.3.2 Real-world datasets

In the Chickenpox dataset the GI-LSTM outperforms the standard LSTM and E-LSTM

models, but the augmented E-LSTM remains on top (Table 5.3.3). It is worth noting that the GI-

LSTM produces competitive performance with an acceptable number of parameters, with respect

to the other networks. Furthermore, the dependence relevance (Fig. 5.3.7) is consistent with the

highest-value nonlinear dependence identified by the DC measure and used for the E-LSTM (p =

24). In this dependence relevance, less value is assigned to the yearly data’s seasonality (lag of 12

in the time series and equivalent to the dependence at 11 in the interpretability plot). In relation to

the performance across different network sizes (Fig. 5.3.8), the GI-LSTM model remains

consistently better in relation to the alternative networks.

Table 5.3.4. Results for the Chickenpox dataset (k; = 24) a GI-LSTM forward pass length of

400.
Chickenpox
opt by t
Uirain Otrain  Hval Opal MHiest Otest | Mh Mg tltE‘r‘(S) I_i(ter ) t(op )(h)

LSTM 146.46 41.48 111.05 493 14331 3244 | 128 66689 0.168 8874.43 04141
E-LSTM24 216.48 9.76 11420 4.70 12136 7.33 2 43 0.0601 4701.95 0.0785
E-LSTM24-A 201.42 0.84 100.72 1.75 108.99 1.53 1 22 0.17 8819.90 0.4165
GI-LSTM12 148.71 17.65 106.31 6.94 109.24 12.21 4 149 0.058 5736.3 0.0924
GI-LSTMi20 179.56 1.03 106.43 0.204 109.87 0.902 1 134 0.039 17535.95 0.1900
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Fig. 5.3.8. Validation set performance across different sizes for the Chickenpox dataset.

110



For the Sunspots dataset, little improvement is obtained through the best GI-LSTM model
in comparison to the other models. Nevertheless, when analyzing the interpretability plots of both
GI-LSTM configurations, Fig. 5.3.9-Fig. 5.3.10, it can be observed that the 10-to-11-year
seasonality in the dataset (120-132 lagged values in the timeseries) receives little relevance in the
second-best configuration, while most of it is allocated for the last three years of information. This
relevance distribution could potentially explain why little improvement is achieved in the model

even when compared to the standard LSTM.

Table 5.3.5. Results for the Sunspots dataset (k; = 12) and a GI-LSTM forward pass length of

1440.
Sunspots
F flopt)  F(opt
Utrain Otrain Hyal Opal  Heest  Otest ny Ng titer(s) Iiter t(Op )(S)
LSTM 24.22 0.19 24.89 0.21 22.71 0.27 4 101 0.2079 3386.75 704.11
E-LSTM.s 24.22 0.21 24.93 0.18 22.67 0.18 4 125 0.2910 3179.8 925.32
GI-LSTMi44 24.32 0.02 25.05 0.03 22.66 0.02 1 158 0.2771 4884.4 1353.47
GI-LSTM1:2 23.94 0.23 24.95 0.19 22.48 0.14 16 1361 0.4440 498.6 221.38
014
©
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Fig. 5.3.9. Temporal-dependence relevance in the GI-LSTM memory-group 1, best

configuration, for the Sunspots dataset,
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Fig. 5.3.11. Validation set performance across different sizes for the Sunspots dataset.
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For the Power Consumption dataset, the GI-LSTM networks (Table 5.3.6) achieve the best
performance; specifically, the configuration using two memory groups. The latter is of interest
when considering that in theory both configurations possess the same temporal reach (derived from
(5.1.1)-(5.1.4)), 168 =24 (6 + 1). One interpretation of the latter outcome is potential
redundancy in the information across the previous 168 time units (hours). In more detail, by
observing Fig. 5.3.12 - Fig. 5.3.13 it can be noticed that approximately 45% of the relevance is
given to the information occurring in the last 24 hours, while the remaining relevance seems to be
more uniformly distributed across the remainder of the previous information. Also, the
interpretability plot in Fig. 5.3.14 shows a pattern in the relevance distribution, with pronounced
local maxima occurring at lag values that are multiples of 24, after the first 48-time dependencies.
This can indicate that information compression has no negative effect in the performance for this
dataset, a trend that remains consistent across different sizes of the GI-LSTM network (Fig.

5.3.15).

Table 5.3.6. Results for the Power Consumption dataset (k; = 24)) and a GI-LSTM forward

pass length of 1344

Power Consumption
Uerain Otrain Hyal Oval  Htest Otest Np Ng fiter(s) I_,g(t();:«t) E(Opt)(h)

LST™M 65.00 1.00 63.75 0.58 65.58 1.40 32 4385 6.18 1452.18 2.493
E-LSTM24 65.16 1.54 63.08 0.53 63.71 0.63 128 83329 22.15 213.53 1.314
LSTM-A 63.35 0.92 63.61 0.42 64.74 0.57 32 4513 6.25 619.13 1.075
E-LSTMas-A 65.08 1.20 62.98 0.52 63.47 0.63 64 21505 12.50 221.45 0.769

'GLLSTMus | 6181 Lol 5981 022 6042 046 | 128 88193 | 2930 27005 223
GI-LSTM24-6 62.34 0.75 59.98 0.32 60.18 0.39 128 87169 37.12 186.05 1.918
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Similar to the previous case, in the Toronto temperature dataset the GI-LSTM
configurations (Table 5.3.7) outperform the alternative models; both configurations are close in
performance, despite the second-best using 15% less parameters due to the use of a second-order
memory group. The latter effect can be further supported when observing the interpretability plots
(Fig. 5.3.16-Fig. 5.3.18), where the relevance distribution shows a similar phenomenon to the
Power Consumption dataset: a pattern of local maxima at multiples of 24 hours in the configuration
using a single memory group (Fig. 5.3.16) and the configuration using two memory groups a
relevance of approximately 45% for the previous 24 hours (Fig. 5.3.18). Additionally, the
performance of the networks across different sizes (Fig. 5.3.19) shows that the GI-LSTM
configurations remain parameter-efficient, and the performance trend is similar to that of the Power
consumption dataset (Fig. 5.3.15). This performance trend resemblance is not further explored or
analyzed in this work, but it could be hypothesized that the energy consumption of the US Eastern
grid area, in the same time-zone as the city of Toronto, is heavily affected by the temperatures in

the region which are in turn correlated with Toronto's temperature.

Table 5.3.7. Results for the Toronto temperature dataset and a GI-LSTM forward pass of 1344.

Toronto temperature

Hirain Otrain Hyai Oval  MHiest Otest | Mh  MNpg Eite‘r(s) I_i(;it) f(opt) (h)
LST™M 0.6751 0.0029  0.6618 0.0011 0.6684 0.0015| 16 1169 7.217 692.68 1.389
E-LSTM24 0.6775 0.0023  0.6607 0.0020 0.6676 0.0014 | 8 409 9.961 1051.135 2.908
CGLLSTMus | 06567  0.0027 0.6540 00008 0.6596 00008 | 64 27713| 33639 132 1233
GI-LSTM24.13 0.6601 0.0021  0.6546 0.0011 0.6597 0.0008 | 64 23553 | 19.314 106.1 0.569
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Fig. 5.3.16. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Toronto
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configuration, for the Toronto temperature dataset.
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5.3.3 Copy memory dataset results and analysis

The copy memory dataset simulation results are studied separately due to the use of the CE
loss function and the flexibility it allows for varying the delay, Tje 4y, between the introduction of
the input patterns and the time to output their class. Experiments using delay values of 50, 200 and
400 were performed to test the long-term memory capability of the networks under the following
conditions. First, ngy,;, = 8 and Tpqttern = 10, as in the original copy memory task. Also, one-hot
encoding is used for all the symbols, producing vectors of dimension 10. Since the encoding
generates 0-1 values no input normalization is performed (which avoids the generation of large
values in the input due to the scarcity of the symbols to be classified when Tyeq, is large).
Additionally, batch processing is performed, and the Adam optimizer is used, with default
hyperparameter values and learning rate @ = 0.005. Chrono initialization [122] is implemented
for the standard LSTM, due to its proven efficacy to accelerate the learning process of long-term
patterns. A maximum number of 100000 epochs for the LSTM and 40000-60000 epochs for the
GI-LSTM are used during the training phase. Finally, a temporal reach equal to half the sequence

length, §/2, in each experiment is used for all the GI-LSTM configurations.

Among the defined experimental conditions, it is important to highlight that avoiding
normalization after the one-hot encoding also avoids the effect of unintentionally leaking
information to the networks, since the mean-variance normalization would generate a very low
variance for the features linked to the symbols to be reconstructed, greatly increasing the values of

these features and decreasing the feature value associated with the dummy symbol, ay, 11, giving

away the relevance of the patterns.
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For the result tables, in addition to the CE metrics, the total classification accuracy and the
pattern reconstruction accuracy metrics are also reported; the pattern reconstruction accuracy
reflects the true capability of the networks to learn and generalize the task, without the bias created

by the dummy symbol that appears across most of the sequence length, i.e., in Tgeiqy + Tpattern —

1 instances out of § = Tye1ay + 2Tpattern-

In Table 5.3.8 the results for Tge1q, = 50, with the best performing sizes of the networks,
is shown. As observed, the LSTM is essentially unable to perform the pattern reconstruction under
the conditions of the experiment, despite the use of the chrono initialization, the use of a higher
number of parameters (an order of magnitude higher than the GI-LSTM) and more training epochs.
In contrast, the GI-LSTM is able to achieve near 100% accuracy in the testing set, showing its
capability to generalize beyond the training and validation sets. Also, when analyzing the
interpretability plot (Fig. 5.3.20) for this experiment, it can be observed that relevance is assigned
to iterations beyond the trigger symbol, located at 10 in lag values. Consequently, information is

propagated forward across the temporal connectivity generated in the memory groups.

The detailed evolution of the training process for this experiment can be observed in
Fig. 5.3.21 - Fig. 5.3.22, where it can be seen that the average validation loss curves do not follow
the trajectory of the training loss curves. This implies that the LSTM network is not able to

generalize beyond the training set under these experimental conditions.

120



Table 5.3.8. Results for the Copy-memory-d50 dataset, 100 sequences and batch size of 100.

Copy-memory-d50
Herain Otrain Hya Oval  Htest Otest | Mn Mg Eiter(s) I_i(t(Z:,t) f(opt) (h)
Cross Entropy 0.2683 0.0158  0.2872 0.0065 0.2938 0.0130
LSTM Total accuracy(%) 89.78 0.65 88.93 0.44 88.75 0.45 64 17025 0.8482 4664.8 1.01
Pattern accuracy(%) 28.51 0.54 22.62 3.08 21.67 3.07
Cross Entropy 0.0019 0.0035  0.0028 0.0040 0.0033 0.0039
GI-LSTMs3s  Total accuracy(%) 100 0 99.99 0.02 99.97 0.04 16 1729 | 0.2921 18876 1.53
Pattern accuracy(%) 100 0 99.99 0.13 99.81 0.31
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Fig. 5.3.20. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Copy-

memory-d50 dataset.
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Fig. 5.3.21. Training and validation cross-entropy for the Copy-memory-d50 dataset.
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Fig. 5.3.22. Training and validation pattern accuracy for the Copy-memory-d50 dataset.
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When the delay value is increased to 200 a more pronounced difference in relation to the
generalization capability in the networks can be observed in Table 5.3.9; additional results for the
GI-LSTM are provided to directly compare networks of similar sizes. In this case, the
interpretability plot (Fig. 5.3.23) of the best performing GI-LSTM shows a high relevance
associated to a long-term dependence at 105, revealing again that the network tries to propagate
the pattern information occurring at the beginning of the sequence, located between 220 and 210
previous instances. Also, the training process in Fig. 5.3.24-Fig. 5.3.25 shows the LSTM is not
able to learn the pattern in the training dataset, while the GI-LSTM starts to reduce its

generalization performance in a noticeable but not critical fashion.

Table 5.3.9. Results for the Copy-memory-d200 dataset, 100 sequences and batch size of 100,

with additional results for the GI-LSTM.

Copy-memory-d200
Hirain Otrain Hyal Opal  Hiest Otest |Mh Mg fi.ter(s) fi(:::‘i) E(Opt)(h)
Cross Entropy 0.0926 0.0020  0.0943 0.0011 0.0959 0.0040
LSTM Total accuracy(%) 96.36 0.09 96.24 0.08 96.21 0.07 16 1185 0.56 23167.15 3.60
Pattern accuracy(%) 20.01 1.97 17.19 1.80 16.81 1.59
Cross Entropy 0.0096 0.0137 0.0103 0.0140 0.0128 0.0184
Total accuracy(%) 99.83 0.590 99.81 0.62 99.77 0.63 8 1209 0.93 24138.7 6.24
Pattern accuracy(%) 96.48 12.97 9592 1336 9572 13.30
GI-LSTMu1o
Cross Entropy 0.0029 0.0066  0.0047 0.0093 0.0062 0.0116
Total accuracy(%) 99.95 0.15 99.88 0.32 99.84 0.36 16 2929 1.92 17467.9 9.3
Pattern accuracy(%) 99.10 2.68 97.27 6.98 96.94 7.38
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Fig. 5.3.23. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the copy-

memory-d200 dataset.
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Fig. 5.3.24. Training and validation cross-entropy for the Copy-memory-d200 dataset.
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Fig. 5.3.25. Training and validation pattern accuracy for the Copy-memory-d200 dataset.

An experiment using delay of 400 is carried out (Table 5.3.10); however, the LSTM
network is not used in this case, a decision made based on its low performance for easier tasks.
For this scenario, the GI-LSTM generalization performance reduces, partly explained by the
maximum simulation time used for this experiment. In addition, the associated interpretability plot
(Fig. 5.3.26) for this experiment resembles that for a delay of 200, with a high relevance near the
last dependencies. Furthermore, Fig. 5.3.27- Fig. 5.3.28 support the observation of the simulation
time affecting the GI-LSTM performance, where the last figure shows an upward trend for the

pattern accuracy.
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Table 5.3.10. Results for the copy-memory-d400 dataset (Tye;q, = 400), 100 sequences and

batch size of 100.
Copy-memory-d400
z opt 7 (opt
Uirain Otrain Hval Opal  Hiest Otest |Mn Mo titer(s) I_i(ter ) t(Op )(h)
Cross Entropy 0.0110 0.0167 0.0122 0.0175 0.0125 0.0173
GI-LSTM210  Total accuracy(%) 99.59 0.69 99.54 0.74 99.52 0.73 16 4529 3.37 21285.2 19.9
Pattern accuracy(%) 82.82 2997 80.53 31.11 80.28 30.97
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5.3.26. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Copy-

memory-d400 dataset.
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Chapter 6

Conclusion

In this work, machine learning models for time-series forecasting are proposed and experimentally
tested. These models are intended to be interpretable, possess increasing long-term learning
capability and maintain acceptable size. They exhibit promising performance across a variety of

simulated and real-world experiments. These results were achieved by taking the following path:

¢ An inherently interpretable adaptive linear model for dynamic systems was proposed. The
model was designed to incorporate information more actively through a time-varying
forgetting factor that is constrained by physically interpretable and user-defined
parameters.

e The adaptive linear model was used as the basis, together with a General Predictive
Controller approach with a variable time horizon, to create an Adaptive Predictive
Controller.

e The proposed Adaptive Predictive Controller was implemented on a real rack-mounted
cooling system to control server temperatures in data centres, using a low-cost commercial
microcontroller. The resulting model outperforms standard control algorithms (a standard

GPC included), in both simulations and real-world tests.
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e The proposed Adaptive Predictive Controller also showed capabilities to significantly
reduce energy-consumption expenses by allowing for a monetary optimization algorithm.

e In order to consider nonlinear effects in time series, attention is redirected to the LSTM
model. Initial steps to overcome the model’s potential limitations on identifying long-term
dependencies and using a large number of parameters are taken by increasing its internal
temporal connectivity, resulting in the E-LSTM architecture.

e An approach based on the Distance Correlation intended to detect nonlinear effects that
can be exploited by time-series nonlinear models is proposed. This approach is used to
select the incremented temporal connectivity in the E-LSTM architecture.

e Experiments using the proposed E-LSTM, the LSTM and alternative time-series linear and
nonlinear models showed that the E-LSTM achieved similar or better performance for a
variety of synthetic and real-world time-series datasets, while in most cases maintaining or
reducing the number of parameters.

e Further steps are taken to increase performance and interpretability by proposing a
Generalized Interpretable LSTM (GI-LSTM) architecture, with even higher temporal
connectivity than the E-LSTM, allowing for semi-global interpretation and removing the
need for precisely locating the temporal connectivity.

e Experiments are carried out with the proposed GI-LSTM and alternative linear and
nonlinear models, showing the proposed GI-LSTM provides better performance with

respect to size while becoming more accessible for human interpretation.

From the previous milestones some insights can be extracted. First, the ability of an

adaptive linear model to dynamically regulate how much relevance is given to new information,
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based on interpretable physical constraints, not only promotes better performance and reliability,

but also showcases the usefulness of simple and interpretable models for industrial applications.

Among the potential restrictions of the proposed adaptive linear model is the limited
memory capability, which can force the model to forget useful information to adapt to the current
dynamic system’s state. In this regard, investigation in the direction of piece-wise linear models
could be performed, from the perspective of having a set of learnable parameters (vectors)
functioning as not necessarily disjoint ‘memories’ for different system states. In this way, relevant
information is more likely to remain encoded and dynamic adaptation can be used mostly to handle
time-varying conditions in the system and not to handle nonlinear effects.

In relation to the E-LSTM, the experimental results showed that, for time-series datasets in
which nonlinear effects might be present, the standard LSTM architecture seems to rely on a larger
number of hidden units and forget gates to identify long-term dependencies, consequently
producing a large number of parameters in the model. In contrast, the extended connectivity in the

E-LSTM alleviates this need while improving the performance in some cases.

The E-LSTM model has two limitations. It relies on an external approach to identify where
the extended connectivity location should be created and it is not clear that such an approach can
be used for more than a single-layer architecture while producing significantly better results. The
first of these limitations is mostly addressed by the GI-LSTM, as shown in the last part of this
thesis. In relation to the second limitation, investigation on incremental training of a multi-layer
E-LSTM could be performed; specifically, selecting the temporal connectivity of a second E-
LSTM layer based on the residual errors created by the first layer, and iteratively repeating this

process for subsequent layers.
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The proposed GI-LSTM network and the experimental results suggested that not only is it
possible to further increase the internal connectivity in the E-LSTM, removing the need for
preprocessing the data by means of an external algorithm, but also showed that a small network
can still result in a competitive model. Also, the proposed architecture opens up the possibility of
having the previous advantages while allowing for interpretability. Furthermore, the architecture
is general enough to be used in deep layer architectures, an approach that would be worth testing

for additional time-series showing more complex nonlinearities.

There are a number of research opportunities with respect to the GI-LSTM architecture,
aimed to increase performance and interpretability, accelerate the training process and produce
smaller network sizes. First, artificial stochastic variability could be produced in the memory-
group parameters, since they represent the core mechanism in the identification of long-term
dependencies. This could decrease the time spent in local optima and possibly reduce the number
of units needed to identify relevant dependencies. Also, modifications to the input gate in the
direction expressed by [119] could be performed if deep layers were to be investigated, since the
memory-group strategy is compatible with such modifications. In relation to the temporal
connectivity in the memory groups, it is worth noting that such connectivity could be further
promoted by designing mechanisms that allow for information sharing across memory-group units,
since the proposed temporal connectivity is limited to be unit-wise, i.e., the behavior of each
element in a memory-group is not directly influenced by other elements’ behavior. This lack of
influence could lead to undesired, or at least not well-directed, redundancy; producing model sizes

larger than necessary.
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