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Lay Abstract 

Machine learning has made big advances and transformed industries, but challenges such as 

growing model sizes and diminishing interpretability have hindered their usage and reliability. 

This research aims to enhance machine learning models for time-series forecasting. It starts by 

showcasing an interpretable-by-design linear model and its effectiveness in solving a real-world 

industry-related problem by means of incorporating new data while dynamically forgetting old 

information. Then, to consider nonlinear time-series components, the study delves into improving 

the Long Short-Term Memory (LSTM) Neural Network by creating an extended version, named 

E-LSTM, able to better exploit nonlinear long-term dependencies, resulting in a model of similar 

size and improved performance. Finally, the Generalized Interpretable LSTM (GI-LSTM), a more 

general LSTM architecture with higher temporal connectivity and embedded interpretability, is 

introduced. This architecture is shown to offer a more holistic interpretation of learned long-term 

dependencies while outperforming the previous architectures, all while keeping a compact model 

size.  
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Abstract 

Machine learning-based models have yielded remarkable results in a wide range of applications, 

revolutionizing industries over the last few decades. However, a variety of challenges from the 

technical point of view, such as the drastic increase in model size and complexity, have become a 

barrier for their portability and human interpretation. This work focuses on enhancing specific 

machine learning models used in the time-series forecasting domain.  

The study begins by demonstrating the effectiveness of a simple and interpretable-by-

design machine learning model in handling a real-world time-series industry-related problem. This 

model incorporates new data while dynamically forgetting previous information, thus promoting 

continuous learning and adaptability laying the groundwork for practical applications within 

industries where real-time interpretable adaptation is crucial. 

Then, the well-established LSTM Neural Network, an advanced but less interpretable 

model able to learn long and more complex time dependencies, is modified to generate a model, 

named E-LSTM, with extended temporal connectivity to better capture long-term dependencies. 

Experimental results demonstrate improved performance with no significant increase in model size 

across various datasets, showcasing the potential to have balance between performance and model 

size. 
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Finally, a new LSTM architecture built upon the E-LSTM’s increased temporal 

connectivity while embedded with interpretability is proposed, called Generalized Interpretable 

LSTM (GI-LSTM). This architecture is designed to offer a more holistic interpretation of its 

learned long-term dependencies, providing semi-local interpretability by offering insights into the 

detected relevance across time-series data. Furthermore, the GI-LSTM outperforms alternative 

models, generally produces smaller models, and shows that performance does not necessarily 

come at the cost of interpretability. 
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Chapter 1 

Introduction 

Machine learning (ML) models have produced remarkable results in a wide range of applications, 

aiding and revolutionizing fields and industries in the last couple of decades [2]-[5]. Despite these 

extraordinary results a variety of challenges have become a barrier for the application of these 

models, specifically their dramatic increase in size and reduced interpretability, understood as the 

ability to provide explanations in understandable terms to a human. Given the ever-increasing size 

of ML models [6]-[7], mostly driven by the resulting increase in performance, the ability to train 

these models in portable devices has been negatively affected, limiting their accessibility to the 

public. In addition, this increased size has also resulted in a reduction in the capability of humans 

to understand the patterns the models learn, since these patterns are often encoded in nonlinear 

relations, which represent the basis of many current advanced models. 

Time-series forecasting, an area characterized by data containing temporal dependencies 

of different complexity levels, is among the areas that have been influenced by machine learning 

models, encompassing fields from finance to environmental science [3], [5]. However, this 

influence is still affected by the challenges previously mentioned, which limits their application in 

real-world scenarios in which decisions need to be made about health, well-being, and long-term 

planning, due to a lack of robustness and safety [8]-[10]. The low interpretability in ML models, 

typical in this area, can be partly attributed to the increasing complexity they face, promoted by 
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the search for better performance and the non-obvious dependence types a time-series is driven 

by. 

The use of linear models (LM) to handle time-dependent systems is a well-studied area 

[11]-[17], that predates the current ML field, and it can be considered as part of the field’s origins 

due to the models being data-driven, proving to be adapted for a variety of applications. 

Furthermore, these simple models have consistently shown the power to capture statistical 

correlations while allowing for an easy interpretation of the input-output dependencies they learn 

through their parameters/coefficients, since  these explicitly indicate a level of relevance the linear 

model gives to the input data across time. Despite the difficulty for LMs to cope with nonlinearities 

when present in time-dependent systems, their low complexity allows for the online recomputation 

of their parameters, enabling adaptive strategies to be designed and producing so-called adaptive 

linear models (ALMs).  

ALM functionalities have been widely employed as an option to address the challenge of 

modeling nonlinearities for time-varying systems across several applications with acceptable 

results [18]-[22]. This performance can be mostly attributed to the capability of the ALM to 

quickly overwrite/erase its stored/encoded information, linked to previous data, and generate linear 

relations based on the most up-to-date data. For time series in which linearization can occur due 

to the relatively slow dynamics of the system, ALMs become an option in terms of performance 

and interpretability. This is a reasonable approach for a number of industrial applications [19]-

[20]. 

Neural Networks (NN), among the most popular and successful ML models [23]-[26], 

carry out a more direct approach when used for data containing nonlinear components, trying to 

model their effects through nonlinear functions. For the case of time series, Recurrent Neural 
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Networks (RNNs), a type of NN characterized by using recurrent connections to capture time 

dependencies has been the basis over which more advanced ML models  have been developed to 

exploit time dependencies.  

Among RNN models, the Long Short-Term Memory (LSTM) network, introduced at the 

end of the 1990s [27]-[29], has shown the ability to exploit long-term dependencies by producing 

competitive results in a diverse set of applications [30]-[34]. In comparison to LMs, the LSTM 

network mitigated the need to retrain a model due to nonlinear complex behaviour in the data and, 

when this is the case, tends to yield better performance by learning more intricate patterns. 

However, this gain in performance comes at the expense of losing interpretability in the model and 

greatly increasing  the number of parameters.  

Considering the previous ML challenges in the time-series domain, this research aims to 

promote the progress in the area by designing and implementing ways to enhance the performance, 

size, and interpretability of the models used, potentially leading to valuable insights on the 

extracted information of the data to improve decision-making and extending the limits of ML 

implementation. Furthermore, as the proposed models are progressively developed in this work, 

the ability to incorporate long-term information is increased while pushing towards improving or 

maintaining their interpretability. 

The contributions provided in this work can be summarised as follows. First, an adaptive 

linear model able to forget previous information at a dynamic rate is proposed and implemented 

to regulate server temperatures in an industrial setting, producing competitive results with respect 

to standard control algorithms and producing significant energy-consumption savings. Also, an 

extension to the LSTM model is proposed, named Extended LSTM, which increases the LSTM 

internal temporal connectivity to better capture long-term dependencies. The proposed model 
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shows improved performance across a variety of datasets without significant size increase. 

Furthermore, a generalized LSTM architecture with higher temporal connectivity than the E-

LSTM and featuring embedded interpretability, called GI-LSTM, is designed to exploit long-term 

dependencies more efficiently in terms of the number of parameters; resulting in a better-

performing model which is easier to interpret, and is of similar/smaller size to the E-LSTM and 

the LSTM. Next, the organization of thesis and its contributions are described in detail. 

In Chapter 2 an adaptive linear model, based on the Weighted Recursive Least Squares 

(WRLS) algorithm, is proposed to incorporate information about prior model errors more actively. 

This is accomplished by the introduction of a time-varying forgetting factor 𝜆(𝑘), an approach 

explored in [35]-[38] that has been shown to allow for a more precise regulation of how much past 

information should be forgotten to sufficiently adapt to the system. The resulting ALM, named 

Variable WRLS (VWRLS), can adapt with a dynamic rate, depending on user-defined physically-

interpretable thresholds, and is constrained by design to keep a user-defined fraction of previous 

information to mitigate online overfitting. The proposed VWRLS is used to design an Adaptive 

Predictive Controller (APC), based on the General Predictive Controller (GPC) approach, which 

is implemented on a real rack-mounted cooling unit to control server temperatures in data centres. 

The designed APC outperforms both standard control algorithms in simulated experiments and 

when implemented in a real system. 

Chapter 3 functions as a review and a bridge between Chapter 2 and Chapter 4, in which 

NN models intended for time series are presented, emphasizing the LSTM architecture. The 

backpropagation algorithm, the core of parameter tuning in NN models, is concisely introduced. 

Also, capabilities and limitations of NNs for time series are expressed in order to motivate the need 

for newer architectures. 
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In Chapter 4 the E-LSTM architecture is presented, serving as an initial step to overcome 

LSTM-specific limitations when identifying long-term dependencies. Also, the need for increased 

internal temporal connectivity, between distant and current cell states, is mathematically justified 

and experimentally corroborated by a performance comparison with alternative models. In 

addition, a selection process for the location of the increased connectivity is presented, based on 

the Distance Correlation measure. Experimental results show that in most cases, the E-LSTM 

model reduces the number of parameters needed to achieve similar or better performance to the 

LSTM, by an order of magnitude in some experiments. 

Chapter 5 introduces a generalized LSTM architecture with embedded interpretability, 

Generalized Interpretable LSTM (GI-LSTM), which is built upon the higher temporal connectivity 

approach of the E-LSTM. This advanced and more complex LSTM network enables a semi-local 

interpretation [39], providing direct information about how much relevance it gives to parts of the 

time series, up to a user-defined maximum dependence, and removes the need for precisely 

locating the temporal connectivity. Despite the increased complexity, experimental comparative 

results show that the GI-LSTM results in a model with even better performance than the E-LSTM, 

the LSTM, and alternative models without significantly increasing the model size and producing 

comparatively better results for small model sizes; resulting in a model that performs better size-

wise and is more accessible in interpretation. 

Finally, Chapter 6 discusses the limitations of the current research and how these could be 

addressed from a practical point of view.  It also explores realistic options for future work aligned 

with the aims established for this research and indicates alternative goals in the direction of 

dynamic connectivity to improve performance. 
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Chapter 2 

An Adaptive Linear Model for Time Series with 

Control Applications 

This chapter focuses on proposing a linear model intended for time-series modeling, directly 

interpretable by observing its parameters. The linear model is constructed based on the well-known 

Weighted Recursive Least Squares method, and a variable forgetting factor is proposed to regulate 

the speed at which information is forgotten, enabling adaptation to current trends in the data. The 

linear model is then instantiated in the context of control applications, specifically by following 

the General Predictive Controller approach, which is further modified by integrating a variable 

prediction horizon. This instantiation results in an Adaptive Predictive Controller capable of 

quickly adapting to changes in the system and able to accommodate potential nonlinearities. 

Comparative simulations are performed on the controller to validate its performance, and real 

experiments are carried out on a cooling system used in a real-world single-rack server system for 

industrial applications. A relevant part of the results and contributions presented in this chapter 

have been published in [40]. Here, we expand on that work, adding a number of useful details and 

insights. 

 



 

7 

 

2.1 Weighted Recursive Least Squares with Time-varying Forgetting Factor 

2.1.1 Linear Models 

The modeling of multi-input single-output (MISO) systems through linear models is a well-

studied approach across several fields [11]-[17] due to its power to capture correlations and its 

ability to explicitly express input-output dependencies through its learnable parameters, an 

inherent and desirable feature of this type of models, as observed in (2.1.1)  

𝑦̂(𝑘) = 𝜽𝒙(𝑘).                      (2.1.1) 

Here, 𝑦̂(𝑘) ∈ ℝ represents the output of the model; 𝒙(𝑘) ∈ ℝ𝑛 is the input data; and 

𝜽 ∈ ℝ1×𝑛 represents the learnable parameters of the model. 

 When sufficient data points are available, 𝑘 ≥ 𝑛, a matrix 𝜽 can be computed so that it 

minimizes the Mean Square Error loss function ℒ𝐿𝑀 = ∑ 𝑒(𝑗)2𝑘
𝑗=0 , with 𝑒(𝑗) = 𝑦(𝑗) − 𝑦̂(𝑗). The 

result of this minimization is the well-known Ordinary Least Squares (OLS) regression in (2.1.2). 

𝜽𝑂𝐿𝑆 = (𝑿0:𝑘(𝑿0:𝑘)
𝑇)−1𝑿0:𝑘(𝒚0:𝑘)

𝑇                     (2.1.2) 

with 𝑿0:𝑘 = [𝒙(0),… , 𝒙(𝑘)], 𝒚0:𝑘 = [𝑦(0),… , 𝑦(𝑘)].  

 Nevertheless, the OLS approach might produce overfitting to the data points in 𝑿0:𝑘, 

making it susceptible to causing larger than acceptable errors when new data points are presented. 

One way to mitigate the previous effect is by splitting the data into training and validation sets, 

𝑿0:𝑘𝑡𝑟𝑎𝑖𝑛
 and 𝑿𝑘𝑡𝑟𝑎𝑖𝑛:𝑘 respectively, and using any of the family of Gradient Descent (GD) 

algorithms [41]-[43] to iteratively compute matrices 𝜽(𝑖) to progressively minimize the MSE of 

the training set, ∑ 𝑒(𝑗)2𝑘𝑡𝑟𝑎𝑖𝑛
𝑗=1 . During the latter minimization, the MSE of the validation set, 

∑ 𝑒(𝑗)2𝑘
𝑗=𝑘𝑡𝑟𝑎𝑖𝑛+1 , is tracked and used as a stopping criterion for the minimization. The previous 
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process is carried out using the standard GD algorithm as given in (2.1.3), with 𝒆0:𝑘𝑡𝑟𝑎𝑖𝑛
=

[𝑒(0),… , 𝑒(𝑘𝑡𝑟𝑎𝑖𝑛)] and 𝛼 ∈ ℝ+ being a positive scalar hyperparameter usually referred to as the 

learning rate. 

𝜽:= 𝜽 − 𝛼𝑿0:𝑘𝑡𝑟𝑎𝑖𝑛
(𝒆0:𝑘𝑡𝑟𝑎𝑖𝑛

 )
𝑇
          (2.1.3) 

When properly trained to avoid overfitting, LMs can generate reasonable performance for 

a wide variety of applications [44]-[45]; however, an important limitation might arise when they 

are implemented for more complex systems: the difficulty for LMs to cope with nonlinearities 

when present in systems. For instance, if during a time interval [𝑘𝑗1 , 𝑘𝑗2] the system remained 

withing a subspace characterized by a high degree of nonlinear behavior, an LM, as expressed in 

(2.1.3), could experience low performance, i.e., larger than acceptable errors. In other words, since 

the loss function ℒ𝐿𝑀 gives the same relevance to all quadratic errors the significance of such 

subspaces is not highlighted; furthermore, assigning more weight to errors of data points from this 

type of subspace becomes a non-trivial memory.  

 

2.1.2 Weighted Recursive Least Squares 

Weighted Recursive Least Squares (WRLS), an Adaptive Linear Model (ALM), has been 

employed as an option to address the challenge of subspaces with nonlinearities across several 

applications, showing acceptable results [18]-[22]. In general, the approach followed by an ALM 

consists of making an online update, ∆𝜽(𝑘) ∈ ℝ1×𝑛, to the learnable parameters at each (discrete) 

time instant in order to give more relevance to the newer values whenever necessary, promoting a 

linearization with more focus in the current subspaces. The latter process generates a time-varying 

model described in (2.1.4)-(2.1.5)  
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𝑦̂(𝑘) = 𝜽(𝑘)𝒙(𝑘)                       (2.1.4) 

𝜽(𝑘) = 𝜽(𝑘 − 1) + 𝛼(𝑘)∆𝜽(𝑘)          (2.1.5) 

where 𝛼(𝑘) ∈ ℝ+ is the learning rate (possibly time-varying) which regulates the influence of the 

update ∆𝜽(𝑘) into the time-varying learnable parameters 𝜽(𝑘). 

In the specific case of the standard WRLS algorithm the update ∆𝜽(𝑘) incorporates real-

time information through the minimization of a time-varying loss function ℒ𝑊𝑅𝐿𝑆(𝑘) defined by 

the recurrence relation in (2.1.6) and explicitly defined by (2.1.7)  

ℒ𝑊𝑅𝐿𝑆(𝑘) = 𝑒(𝑘|𝑘 − 1)2 + 𝜆ℒ𝑊𝑅𝐿𝑆(𝑘 − 1)                              (2.1.6) 

ℒ𝑊𝑅𝐿𝑆(𝑘) =  ∑ 𝜆𝑗𝑒(𝑘 − 𝑗|𝑘 − 1 − 𝑗)2𝑘−1
𝑗=0          (2.1.7) 

where 𝜆 ∈ (0,1] is a hyperparameter known as the forgetting factor that defines how much the 

relevance of previous datapoints will be reduced (often fixed and/or computed based on 

preprocessed data), and 𝑒(𝑘 − 𝑗|𝑘 − 1 − 𝑗) = 𝑦(𝑘 − 𝑗) −  𝜽(𝑘 − 𝑗 − 1)𝒙(𝑘 − 𝑗) ∀𝑗 ≥ 0 is a 

prior error linked to the minimum value of the loss function, ℒ𝑊𝑅𝐿𝑆(𝑘 − 1 − 𝑗), at a prior instant. 

Similar to OLS the standard WRLS approach has an explicit recursive solution described by 

(2.1.8)-(2.1.10) which promotes an online linearization of the system within the current subspace 

𝜽𝑊𝑅𝐿𝑆(𝑘) = 𝜽𝑊𝑅𝐿𝑆(𝑘 − 1) + 𝑒(𝑘|𝑘 − 1)𝒃(𝑘)                             (2.1.8) 

𝒃(𝑘) =
𝑷(𝑘−1)𝒙(𝑘)

𝜆+𝒙𝑇(𝑘)𝑷(𝑘−1)𝒙(𝑘)
                      (2.1.9) 

𝑷(𝑘) =
𝑷(𝑘−1)−𝒃(𝑘)𝒙𝑇(𝑘)𝑷(𝑘−1)

𝜆
                                                                                              (2.1.10) 

where 𝑷(𝑘) ∈ ℝ𝑛×𝑛 is the inverse of a weighted sample-covariance matrix centered around 

𝟎 ∈ ℝ𝑛 and 𝒃(𝑘) ∈ ℝ𝑛 is the gradient direction, pointing away from the global minimum when 
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𝑒(𝑘|𝑘 − 1) > 0 or towards it when 𝑒(𝑘|𝑘 − 1) < 0, with respect to the current parameter values, 

𝜽𝑊𝑅𝐿𝑆(𝑘 − 1). 

When information is available before starting the iterative process the values of 𝜽𝑊𝑅𝐿𝑆(0) 

and 𝑷(0) can be computed using an OLS approach. Otherwise, they can be initialized as 

𝜽𝑊𝑅𝐿𝑆(0) = 𝟎 and  𝑷(0) = 𝜌𝑰𝑛×𝑛, where 𝜌 ≥ 1 is a scalar value and 𝑰𝑛×𝑛 is the identity matrix.  

 

2.1.3 Variable forgetting factor Weighted Recursive Least Squares 

One of the relevant aspects associated with the capability of the standard WRLS approach 

to adapt to newer values resides in the constant forgetting factor, 𝜆, which promotes the relevance 

of newer data points by exponentially decreasing the relevance of previous values at a constant 

rate. Such an approach, although being a function of prior errors, 

{𝑒(𝑘|𝑘 − 1), 𝑒(𝑘 − 1|𝑘 − 2),… , 𝑒(1|0)}, is not able to adjust the need to forget since a constant 

𝜆 is used, only producing a reactive influence on the magnitude of the gradient 𝒃(𝑘) through the 

current prior error 𝑒(𝑘|𝑘 − 1). 

In order to more actively incorporate information about prior errors in the WRLS approach 

beyond the most recent value, a time-varying forgetting factor 𝜆(𝑘), with its respective loss 

function ℒ𝑉𝑊𝑅𝐿𝑆(𝑘), is proposed to generate a Variable WRLS (VWRLS) approach. This approach 

has been explored in [36]-[38] where it has been shown to allow for a more precise regulation of 

how much past information, in terms of prior errors 𝑒(𝑘 − 𝑗|𝑘 − 1 − 𝑗), is appropriate to 

forget/introduce in online implementations; this can be interpreted as how much the loss function 

should be changed to adapt to the current subspace. Based on this and motivated by the how-much-

information-to-forget approach, the proposed time-varying forgetting factor 𝜆(𝑘) is designed as a 



 

11 

 

function of user-defined physically-interpretable thresholds, {𝑒𝑚𝑖𝑛, 𝑒𝑚𝑎𝑥, Δ𝜏𝑚𝑖𝑛, 𝐴Δ𝜏, 𝑝old} to 

facilitate implementation. 

The previously defined thresholds are: a minimum time-window length, Δ𝜏𝑚𝑖𝑛 ∈ ℝ+, of 

most-recent previous information; a fixed interval, [𝑒𝑚𝑖𝑛, 𝑒𝑚𝑎𝑥] ∈ ℝ+, defining the minimum and 

maximum absolute values for the most-recent prior error, 𝑒(𝑘|𝑘 − 1), that will influence 𝜆(𝑘); a 

minimum old-information fraction, 𝑝old ∈ (0,1), expressing the minimum influence the oldest 

information will have in the adaptation of the forgetting factor when 𝑘 → ∞; and a multiplier, 

𝐴Δ𝜏 ≥ 1, defining how much the minimum time-window length can be extended. 

The derivation of these thresholds starts by analyzing the loss function of the WRLS 

approach, ℒ𝑊𝑅𝐿𝑆(𝑘). First, notice that in (2.1.7) the factor 𝜆𝑗−1 can be interpreted as the weight 

assigned to 𝑒(𝑘 − 𝑗 − 1|𝑘 − 𝑗 − 2)2; therefore, when 𝑘 → ∞ the most recent Δ𝜏 seconds of 

information, equivalent to the first 𝑗 terms using a sampling period 𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔, have a weight of 

(1 − 𝜆𝑗)/(1 − 𝜆) and the remaining terms  (oldest) have a weight of 𝜆𝑗/(1 − 𝜆); in relative 

proportions (fractions), these weights would be 1 − 𝜆𝑗 and 𝜆𝑗, respectively.  

From the previous realization, it will be our aim when defining 𝜆(𝑘) to create the relation: 

𝜆𝑚𝑖𝑛
𝑗𝑚𝑖𝑛 = 𝑝old, with 𝜆𝑚𝑖𝑛 > 0 as the minimum value of 𝜆(𝑘) and 𝑗𝑚𝑖𝑛 = ⌈

Δ𝜏𝑚𝑖𝑛

𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
⌉. To create the 

previous relation a variable time-window length, Δ𝜏(𝑘), with values in the interval 

[Δ𝜏𝑚𝑖𝑛, 𝐴Δ𝜏Δ𝜏𝑚𝑖𝑛] is defined as in (2.1.11)-(2.1.12) 

Δ𝜏(𝑘) = 𝐴Δ𝜏
𝜂(𝑒(𝑘|𝑘 − 1))Δ𝜏𝑚𝑖𝑛                   (2.1.11) 

𝜂(𝑒(𝑘|𝑘 − 1)) = 𝑚𝑖𝑛 (1,𝑚𝑎𝑥 (0,
|𝑒(𝑘|𝑘 − 1)|−𝑒𝑚𝑖𝑛

𝑒𝑚𝑎𝑥−𝑒𝑚𝑖𝑛
))

2

                                    (2.1.12) 
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where it is important to notice that ⌈
Δ𝜏(𝑘)

𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
⌉ would be the index of the 𝑗th term in the context of 

the relative proportions 1 − 𝜆𝑗 and 𝜆𝑗. 

From (2.1.11) a variable forgetting factor and its respective time-varying loss function, 

ℒ𝑉𝑊𝑅𝐿𝑆(𝑘), can be defined as 

𝜆(𝑘) = 𝑝
old

⌊
𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

Δ𝜏(𝑘)
⌋
                                (2.1.13) 

ℒ𝑉𝑊𝑅𝐿𝑆(𝑘) = 𝑒(𝑘|𝑘 − 1)2 + 𝜆(𝑘)ℒ𝑉𝑊𝑅𝐿𝑆(𝑘 − 1)                 (2.1.14) 

where the minimum value of 𝜆(𝑘) can be calculated as 𝜆𝑚𝑖𝑛 = 𝑝
old

⌊
𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

Δ𝜏𝑚𝑖𝑛
⌋

, equivalent to 𝑝
old

1

𝑗𝑚𝑖𝑛   

and consequently producing the desired relation. Also, except for the use of 𝜆(𝑘), the equations 

describing the VWRLS model’s parameters, 𝑴𝑉𝑊𝑅𝐿𝑆(𝑘), remain the same as in (2.1.8)-(2.1.10). 

From (2.1.11)-(2.1.13) it can be observed that if 𝑒(𝑘|𝑘 − 1) ≥ 𝑒𝑚𝑎𝑥 then 𝜆(𝑘) will be 

equal to 𝜆𝑚𝑖𝑛. Similarly, if 𝑒(𝑘|𝑘 − 1) ≤ 𝑒𝑚𝑖𝑛 then 𝜆(𝑘) ≈ 1, as long as 𝐴Δ𝜏Δ𝜏𝑚𝑖𝑛 is large 

enough; for instance, if 𝐴Δ𝜏Δ𝜏𝑚𝑖𝑛 >
ln(𝑝𝑜𝑙𝑑)

ln(0.99)
𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 then 𝜆(𝑘) = 0.99. Also, an increasing 

exponential-adaptation speed (derivative) of 𝜆(𝑘) (2.1.15), with respect to |𝑒(𝑘|𝑘 − 1)|, is 

obtained within the interval [𝑒𝑚𝑖𝑛, 𝑒𝑚𝑎𝑥]. 

𝐷|𝑒(𝑘|𝑘 − 1)|(𝜆(𝑘)) =
ln(𝑝old

−2 )𝑝
old

⌊
𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

Δ𝜏𝑚𝑖𝑛
⌋

ln(𝐴Δ𝜏)(|𝑒(𝑘|𝑘 − 1)|−𝑒𝑚𝑖𝑛)

Δ𝜏(𝑘)(𝑒𝑚𝑎𝑥−𝑒𝑚𝑖𝑛)2
                          (2.1.15) 

 As observed in (2.1.15), the adaptation speed increases exponentially near 𝑒𝑚𝑎𝑥 which 

exponentially reduces both the value of 𝜆(𝑘) and the relevance given to the least-recent prior 

errors, creating a desirable outcome since beyond 𝑒𝑚𝑎𝑥 the model would produce a beyond-

acceptable error. Furthermore, if at instant 𝑘 we denote the accumulated weight caused by 𝜆(𝑘) in 
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(2.1.14), up to the 𝑗 most-recent prior errors by 𝑆𝑚𝑟(𝑘) and the accumulated weight for the 𝑗 least-

recent by 𝑆𝑙𝑟(𝑘), the property in (2.1.16) can be established. 

𝑆𝑙𝑟(𝑘)

𝑆𝑚𝑟(𝑘)+𝑆𝑙𝑟(𝑘)
≥ 𝑝𝑜𝑙𝑑

(1−𝜆𝑚𝑖𝑛
𝑘−𝑗−1

)

1−𝜆𝑚𝑖𝑛
𝑘                    (2.1.16) 

In more detail, since the first 𝑗 terms in (2.1.14) depend on the time-varying time-window 

length Δ𝜏(𝑘) and 𝑗 ≥ ⌈
Δ𝜏𝑚𝑖𝑛

𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
⌉, then (2.1.16) implies 

𝑆𝑙𝑟(𝑘)

𝑆𝑚𝑟(𝑘)+𝑆𝑙𝑟(𝑘)
→ 𝑝𝑜𝑙𝑑 when 𝑘 → ∞. 

Consequently, over time the proposed time-varying forgetting factor will assign a normalized 

relevance of at least 𝑝𝑜𝑙𝑑 to terms occurring after the ⌈
Δ𝜏(𝑘)

𝑇𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
⌉ index in (2.1.14). Also, the 

derivation of (2.1.16) can be obtained using the relations shown in (2.1.17)-(2.1.19). 

𝑆𝑚𝑟(𝑘) = (1 + 𝜆(𝑘) + 𝜆(𝑘)𝜆(𝑘 − 1) + ⋯+ 𝜆(𝑘)…𝜆(𝑘 − 𝑗 + 1))             (2.1.17) 

𝑆𝑙𝑟(𝑘) = ∏ 𝜆(𝑘 − 𝑖1)
𝑗−1
𝑖1=0 (𝜆(𝑘 − 𝑗) + 𝜆(𝑘 − 𝑗)𝜆(𝑘 − 𝑗 − 1) + ⋯+ 𝜆(𝑘 − 𝑗)𝜆(𝑘 − 𝑗 −

1)…𝜆(1))  

≥ ∏ 𝜆(𝑘 − 𝑖1)
𝑗−1
𝑖1=0 𝜆𝑚𝑖𝑛

1−𝜆𝑚𝑖𝑛
𝑘−𝑗−1

1−𝜆𝑚𝑖𝑛
                                     (2.1.18) 

𝑆𝑙𝑟(𝑘)

𝑆𝑚𝑟(𝑘)+𝑆𝑙𝑟(𝑘)
=

1
𝑆𝑚𝑟(𝑘)

𝑆𝑙𝑟(𝑘)
+1

≥
1

(

 
 1+

1
𝜆(𝑘)

+⋯+
1

𝜆(𝑘)𝜆(𝑘−1)…𝜆(𝑘−𝑗+1)

𝜆𝑚𝑖𝑛

1−𝜆
𝑚𝑖𝑛
𝑘−𝑗−1

1−𝜆𝑚𝑖𝑛 )

 
 

+1

≥ 
𝜆𝑚𝑖𝑛

1−𝜆
𝑚𝑖𝑛
𝑘−𝑗−1

1−𝜆𝑚𝑖𝑛

1+
1

𝜆𝑚𝑖𝑛
+⋯+

1

𝜆
𝑚𝑖𝑛
𝑗−1 +𝜆𝑚𝑖𝑛

1−𝜆
𝑚𝑖𝑛
𝑘−𝑗−1

1−𝜆𝑚𝑖𝑛

 

            =
𝜆𝑚𝑖𝑛

𝑗 1−𝜆
𝑚𝑖𝑛
𝑘−𝑗−1

1−𝜆𝑚𝑖𝑛

1−𝜆𝑚𝑖𝑛
𝑘

1−𝜆𝑚𝑖𝑛

≥ 𝜆𝑚𝑖𝑛
𝑗𝑚𝑖𝑛

(1−𝜆𝑚𝑖𝑛
𝑘−𝑗−1

)

1−𝜆𝑚𝑖𝑛
𝑘 = 𝑝𝑜𝑙𝑑

(1−𝜆𝑚𝑖𝑛
𝑘−𝑗−1

)

1−𝜆𝑚𝑖𝑛
𝑘                                    (2.1.19) 
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One limitation of the proposed approach is 𝜆(𝑘) < 1 since Δ𝜏(𝑘) is upper bounded, in 

other words, the time-varying time-window cannot extend indefinitely. Consequently, to address 

this edge case whenever 𝑒(𝑘|𝑘 − 1) < 𝑒𝑚𝑖𝑛 the forgetting factor is set to 1, 𝜆(𝑘) = 1. 

While using any ALM algorithm redundant information might be present when performing 

the adaptive process (2.1.8)-(2.1.10). Specifically, in the case of the previously described VWRLS, 

when 𝑒(𝑘|𝑘 − 1) < 𝑒𝑚𝑖𝑛, a negligible value for the prior error could occur but the iterative process 

would be performed regardless, potentially adding redundant information. Furthermore, the time-

series signals might contain a level of noise due to the finite resolution in the acquiring devices 

used, possibly creating numerical instability in the form of overflow in the matrix 𝑷(𝑘), which 

compresses the information of current and previous datapoints, 𝒙(𝑘). Consequently, to promote 

computational stability a user-defined parameter representing the level of negligible error, 𝑒𝑛𝑙, will 

be added so that the VWRLS algorithm is executed only when 𝑒(𝑘|𝑘 − 1) > 𝑒𝑛𝑙; otherwise  

𝜽𝑉𝑊𝑅𝐿𝑆(𝑘) = 𝜽𝑉𝑊𝑅𝐿𝑆(𝑘 − 1) and 𝑷(𝑘) = 𝑷(𝑘 − 1). 

 

2.2. Adaptive-Linear-Model-based Control algorithm. 

2.2.1 Autoregressive Exogenous model 

In general, a time-series is often modeled by integrating a degree of autoregression to 

potentially extract time dependencies that show a level of regularity across time. The integration 

is performed by explicitly introducing it as part of the input data, 𝒙(𝑘), or implicitly by using time-

varying learnable parameters, 𝜽(𝑘), as is the case for ALMs. A general formulation is defined by 

(2.2.1) 

𝑦̂(𝑘) = 𝑓𝑚𝑜𝑑𝑒𝑙 (𝒚𝑘−1:𝑘−𝑑𝑦
, 𝒙𝑒𝑥(𝑘), 𝜽(𝑘))                  (2.2.1) 
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where 𝑑𝑦 ≥ 1 is the maximum lag for the output 𝑦(𝑘) and 𝒙𝑒𝑥(𝑘) denotes the fixed size vector 

composed of 𝑚 exogenous variables at instant 𝑘 and of previous values up to lag dependencies 

{𝑑𝑒𝑥
(1)

, … , 𝑑𝑒𝑥
(𝑚)

}; with the input data vector defined as 𝒙(𝑘) = [𝒚𝑘−1:𝑘−𝑑 , 𝒙𝑒𝑥(𝑘)𝑇]𝑇.  

When explicit integration of autoregression is used in the model, as in (2.2.1), the resulting 

model is deemed an Autoregressive Exogenous (ARX) model. An ARX model establishes a partly 

recursive relation, which enables a forecasting estimation of the time series’ output by using the 

recursion over a prediction horizon, 𝛾𝜖ℕ, by performing forward iterations of 𝛾 steps. This 

approach can be implemented if 𝜽(𝑘) is assumed to remain constant over the prediction horizon 

and as long as a sufficiently statistically confident estimation of the exogenous variable 𝒙̂𝑒𝑥(𝑘 + 𝑗) 

can be generated in each of the iterations up to the chosen time-horizon value, i.e., 0 ≤ 𝑗 ≤ 𝛾. A 

1-step forward iteration of the previous approach is described in (2.2.2) 

𝑦̂(𝑘 + 1|𝑘) = 𝑓𝑚𝑜𝑑𝑒𝑙 (𝑦̂(𝑘), 𝒚𝑘−1:𝑘−𝑑𝑦+1, 𝒙̂𝑒𝑥(𝑘 + 1), 𝜽(𝑘))                

        = 𝑓𝑚𝑜𝑑𝑒𝑙 (𝑓𝑚𝑜𝑑𝑒𝑙 (𝒚𝑘−1:𝑘−𝑑𝑦
, 𝒙𝑒𝑥(𝑘), 𝜽(𝑘)) , 𝒚𝑘−1:𝑘−𝑑𝑦+1, 𝒙̂𝑒𝑥(𝑘 + 1), 𝜽(𝑘))  

        = 𝑓𝑚𝑜𝑑𝑒𝑙
(1)

( 𝒚𝑘−1:𝑘−𝑑𝑦
, 𝒙𝑒𝑥(𝑘), 𝒙̂𝑒𝑥(𝑘 + 1), 𝜽(𝑘))               (2.2.2) 

with 𝑓𝑚𝑜𝑑𝑒𝑙
(1)

 denoting the result of the 1-step forward iteration. 

By generalizing the process in (2.2.2) to a time-horizon 𝛾 ≥ 1 through 𝛾-step forward 

iterations, using the previous assumption over 𝜽(𝑘),  𝑦̂(𝑘 + 𝛾|𝑘) can be obtained as shown in 

(2.2.3) where its dependence to past and estimated information can be observed 

𝑦̂(𝑘 + 𝛾|𝑘) = 𝑓𝑚𝑜𝑑𝑒𝑙
(𝛾)

( 𝒚𝑘−1:𝑘−𝑑𝑦
, 𝒙𝑒𝑥(𝑘), 𝒙̂𝑒𝑥(𝑘 + 1),… , 𝒙̂𝑒𝑥(𝑘 + 𝛾), 𝜽(𝑘))            (2.2.3) 
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with 𝑓𝑚𝑜𝑑𝑒𝑙
(𝛾)

 denoting the result of the 𝛾-step forward iteration. 

 One of the useful properties of specializing LMs to ARX models is their practicality when 

implemented, since using the representation (2.2.3) shows that another LM can be used to 

explicitly define 𝑦̂(𝑘 + 𝛾|𝑘) as a function of 𝒚𝑘−1:𝑘−𝑑, {𝒙̂𝑒𝑥 (𝑘 + 1),… , 𝒙̂𝑒𝑥 (𝑘 + 𝛾)}, 𝒙𝑒𝑥(𝑘) and 

𝜽(𝑘),  as described in (2.2.4) 

𝑦̂(𝑘 + 𝛾|𝑘) = 𝜽𝛾(𝑘)[𝒚𝑘−1:𝑘−𝑑, 𝒙𝑒𝑥(𝑘)𝑇 , 𝒙̂𝑒𝑥(𝑘 + 1)𝑇 , … , 𝒙̂𝑒𝑥(𝑘 + 𝛾)𝑇]𝑇                        (2.2.4) 

with 𝜽𝛾(𝑘) denoting a matrix, which in practical terms defines 𝑓𝑚𝑜𝑑𝑒𝑙
(𝛾)

 in this case, resulting from 

bounded-length-input process, 𝐼𝑴, carried out 𝛾 times. In more detail, 𝐼𝑴 depends on 𝜽(𝑘) and 

previous computed matrices 𝜽𝛾−1(𝑘),… , 𝜽𝛾−𝑑𝑴
(𝑘), where 𝑑𝜽 = 𝑚𝑖𝑛(𝛾, 𝑑𝑦). 

 

2.2.2 Generalized-Predictive-Control algorithm 

The model described in (2.2.4) is of special interest in the are of control theory when the 

exogenous variables are user-defined across the prediction horizon, i.e., they are manipulated 

variables. This has been explored in [46]-[47] resulting in the well-known Generalized Predictive 

Controller (GPC) algorithm, which has become one of the most popular predictive control 

algorithms with a wide variety of applications. 

In the context of the GPC algorithm, a model (2.2.5) composed of 𝑚 manipulated variables, 

{𝑢1(𝑘),… , 𝑢𝑚(𝑘)}, is used over a prediction horizon 𝛾 with a control horizon 𝛾𝑐 ≤ 𝛾. The output 

forecast 𝑦̂(𝑘 + 𝑗|𝑘) made by the GPC for 𝑗 ≤ 𝛾 is interchangeably expressed by (2.2.6) and (2.2.7) 

𝑦̂(𝑘) = 𝒂0𝒚𝑝𝑎𝑠𝑡(𝑘) + 𝒃0𝒖𝑝𝑎𝑠𝑡(𝑘)                                                    (2.2.5) 

𝒚̂𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾)

(𝑘) = 𝑨𝛾𝒚𝑝𝑎𝑠𝑡(𝑘) + 𝑩𝛾𝒖𝑝𝑎𝑠𝑡(𝑘) + 𝑯𝛾𝒖𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾𝑐) (𝑘)                                                 (2.2.6) 
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𝒚̂𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾)

(𝑘) = 𝑨𝛾𝒚𝑝𝑎𝑠𝑡(𝑘) + 𝑩𝛾𝒖𝑝𝑎𝑠𝑡(𝑘) + 𝑯𝛾
′ 𝒖(𝑘 − 1) + 𝑮𝛾Δ𝒖𝑓𝑢𝑡𝑢𝑟𝑒

(𝛾𝑐) (𝑘)                      (2.2.7) 

with [𝒂0, 𝒃0] = 𝜽(𝑘), 

𝑨𝛾 = [
𝒂1

𝑇

⋮
𝒂𝛾

𝑇
], 𝑩𝛾 = [

𝒃1
𝑇

⋮
𝒃𝛾

𝑇
],𝒂𝑗 = 𝐼𝐴(𝒂𝑗−1, … , 𝒂𝑗−𝑑𝑨(𝑗)), 𝒃𝑗 = 𝐼𝐵(𝒂𝑗−1, … , 𝒂𝑗−𝑑𝑨(𝑗), 𝒃𝑗−1, … , 𝒃𝑗−𝑑𝑨(𝑗)) 

𝒚̂𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾)

(𝑘) = [
𝑦̂(𝑘 + 1|𝑘)

⋮
𝑦̂(𝑘 + 𝛾|𝑘)

], 𝒚𝑝𝑎𝑠𝑡(𝑘) = [
𝑦(𝑘 − 1)

⋮
𝑦(𝑘 − 𝑑)

], 𝒖𝑝𝑎𝑠𝑡(𝑘) = [

𝒖𝑝𝑎𝑠𝑡−1(𝑘)

⋮
𝒖𝑝𝑎𝑠𝑡−𝑚(𝑘)

],  

𝒖𝑝𝑎𝑠𝑡−𝑖(𝑘) = [
𝑢𝑖(𝑘 − 1)

⋮
𝑢𝑖(𝑘 − 𝑒𝑖)

], 𝒖𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾𝑐) (𝑘) = [

𝒖(𝑘)
⋮

𝒖(𝑘 + 𝛾𝑐 − 1)
], 𝒖(𝑘 + 𝑗) = [

𝑢1(𝑘 + 𝑗)
⋮

𝑢𝑚(𝑘 + 𝑗)
],  

𝒖(𝑘 − 1) = [
𝑢1(𝑘 − 1)

⋮
𝑢𝑚(𝑘 − 1)

], Δ𝒖𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾𝑐) (𝑘) = [

Δ𝒖(𝑘)
⋮

Δ𝒖(𝑘 + 𝛾𝑐 − 1)
], Δ𝒖(𝑘 + 𝑗) = [

Δ𝑢1(𝑘 + 𝑗)
⋮

Δ𝑢𝑚(𝑘 + 𝑗)
], 

𝛥𝑢𝑖(𝑘 + 𝑗) = 𝑢𝑖(𝑘 + 𝑗) − 𝑢𝑖(𝑘 + 𝑗 − 1), 𝑑𝑨(𝑗) = 𝑚𝑖𝑛(𝑗, 𝑑𝑦), 𝑨𝛾 ∈ ℝ𝛾×𝑑𝑦, 𝑩𝛾 ∈

ℝ𝛾×𝑚(𝑑𝑢
(1)

+⋯+𝑑𝑢
(𝑚)

), 𝑯𝛾 ∈ ℝ𝛾×(𝑚𝛾𝑐), 𝑮𝛾 ∈ ℝ𝛾×(𝑚𝛾𝑐)  and 𝑯𝛾
′ ∈ ℝ𝛾×𝑚.  

In (2.2.6)-(2.2.7) the matrices 𝑨𝛾, 𝑩𝛾 are calculated through the previously mentioned 

iterative process, 𝐼𝜽,  which in the context of the GPC algorithm is separated into two processes, 

𝐼𝑨 and 𝐼𝑩, defined in [75]. Also, the matrices 𝑯𝛾 are block lower triangular matrices as described 

in (2.2.8)-(2.2.9), where 𝒉𝑗 , 𝒈𝑗 ∈ ℝ1×𝑚. In more detail, 𝒉1 = 𝒃0 and for 𝑗 > 1, 𝒉𝑗 can be extracted 

from 𝑩𝛾 by taking the following 𝑚 elements located in the 𝑖th row:  {1, 𝑑𝑢
(1)

+ 1,… , 𝑑𝑢
(1)

+ ⋯+

𝑑𝑢
(𝑚−1)

+ 1}. Furthermore, 𝒈𝑖 = ∑ 𝒉i
𝑗
𝑖=1  and 𝑯𝛾

′ = [𝒈1
𝑇 , … , 𝒈𝛾

𝑇]
𝑇
. 
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𝑯𝛾 =

[
 
 
 
 
𝒉1

𝒉2

𝒉3

⋮
𝒉𝛾

𝟎
𝒉1

𝒉2

⋮
𝒉𝛾−1

𝟎
𝟎
𝒉1

⋮
𝒉𝛾−2

⋯     𝟎       
⋱      ⋮        
⋱      ⋮        
⋮       ⋮        
⋯ 𝒉𝛾−𝛾𝑐+1]

 
 
 
 

                 (2.2.8) 

𝑮𝛾 =

[
 
 
 
 
𝒈1

𝒈2
𝒈3

⋮
𝒈𝛾

𝟎
𝒈1
𝒈2

⋮
𝒈𝛾−1

𝟎
𝟎
𝒈1

⋮
𝒈𝛾−2

⋯     𝟎       
⋱      ⋮        
⋱      ⋮        
⋮       ⋮        
⋯ 𝒈𝛾−𝛾𝑐+1]

 
 
 
 

                  (2.2.9) 

In addition, the equivalences between (2.2.4) and some of the expressions linked to (2.2.6) 

are: 𝒚𝑘−1:𝑘−𝑑 = 𝒚𝑝𝑎𝑠𝑡(𝑘)𝑇, 𝒙𝑒𝑥(𝑘) = 𝒖𝑝𝑎𝑠𝑡(𝑘), 𝒙̂𝑒𝑥 (𝑘 + 𝑗) = 𝒖𝑝𝑎𝑠𝑡(𝑘 + 𝑗). Consequently, in 

the 𝑗-step forward iteration of the GPC algorithm elements in 𝒙̂𝑒𝑥 (𝑘 + 𝑗) are either known or user-

defined, where the latter type of elements is precisely 𝒖𝑓𝑢𝑡𝑢𝑟𝑒
(𝑗) (𝑘). 

By using current and past information of the system the GPC structure can be used to 

determine appropriate increments of the exogenous values, Δ𝒖𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾𝑐) (𝑘), so that the model’s 

output can closely track a vector of (desired)  set points 𝒚𝑑𝑒𝑠𝑖𝑟𝑒𝑑
(𝛾)

(𝑘) ∈ ℝ𝛾, i.e. 𝒚̂𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾)

(𝑘) ≈

𝒚𝑑𝑒𝑠𝑖𝑟𝑒𝑑
(𝛾)

. The exogenous values (manipulated variables) are computed by minimizing the loss 

function shown in (2.2.10) which has a closed-form solution (2.2.11) due to the linearity and the 

unconstrained structure of GPC. 

ℒ𝐺𝑃𝐶(𝑘) = ∑𝑞𝑦
(𝑗)

𝑒(𝑘 + 𝑗|𝑘)2

𝛾

𝑗=1

+ ∑ Δ𝒖(𝑘 + 𝑗)𝑇𝑞𝑢
(𝑗)

Δ𝒖(𝑘 + 𝑗)

𝛾𝑐−1

𝑗=0

 

               = (𝒚𝑑𝑒𝑠𝑖𝑟𝑒𝑑
(𝛾)

(𝑘) − 𝒚̂𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾)

(𝑘))
𝑇

𝑸𝑦 (𝒚𝑑𝑒𝑠𝑖𝑟𝑒𝑑
(𝛾)

(𝑘) − 𝒚̂𝑓𝑢𝑡𝑢𝑟𝑒
(𝛾)

(𝑘)) + 

       Δ𝒖𝑓𝑢𝑡𝑢𝑟𝑒(𝑘)𝑇𝑸𝑢Δ𝒖𝑓𝑢𝑡𝑢𝑟𝑒(𝑘)                                (2.2.10) 
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Δ𝒖𝑓𝑢𝑡𝑢𝑟𝑒(𝑘) = (𝑮𝛾
𝑇𝑸𝑦𝑮𝛾 + 𝑸𝑢)

−1
𝑮𝛾

𝑇𝑸𝑦(𝒚𝑑𝑒𝑠𝑖𝑟𝑒𝑑
(𝛾)

(𝑘) − 𝑨𝛾𝒚𝑝𝑎𝑠𝑡(𝑘) − 𝑩𝛾𝒖𝑝𝑎𝑠𝑡(𝑘) − 

  𝑯𝛾
′ 𝒖(𝑘 − 1))                                (2.2.11) 

where 𝑒(𝑘 + 𝑗|𝑘) = [𝒚𝑑𝑒𝑠𝑖𝑟𝑒𝑑
(𝛾)

(𝑘)]
𝑗
− 𝑦̂(𝑘 + 𝑗|𝑘); 𝑸𝑦 ∈ ℝ𝛾×𝛾 and 𝑸𝑢 ∈ ℝ𝑚𝛾𝑐×𝑚𝛾𝑐  are positive 

semi-definite block diagonal matrices used to assign relevance to future estimated errors and 

penalize large changes in the manipulated variables.   

 

2.2.3 GPC-based algorithm with variable prediction horizon and feasible solutions 

The standard GPC algorithm considers a fixed prediction horizon 𝛾; however, the chosen 

value for 𝛾 directly affects all the manipulated variables due to the interdependence created by the 

GPC solution (2.2.11). In this regard, a variable prediction horizon could potentially increase the 

flexibility of the approach and even consider practical constraints, an idea explored in [48]-[49] 

where theoretical advantages were demonstrated. Inspired by these works and aiming to achieve a 

higher flexibility with the prediction horizon, a simple and effective variable prediction horizon 

for the GPC is proposed and implemented heuristically. 

First, it is important to highlight that in practical implementations, like most predictive-

based algorithms, the GPC algorithm uses a receding-horizon approach, meaning that at each 

sampling instant the vector Δ𝒖𝑓𝑢𝑡𝑢𝑟𝑒(𝑘) is recomputed. Furthermore, the computational cost of 

generating Δ𝒖𝑓𝑢𝑡𝑢𝑟𝑒(𝑘) in (2.2.11) is mostly caused by (𝑮𝛾
𝑇𝑸𝑢𝑮𝛾 + 𝑸𝑢)

−1
, whose computational 

complexity is 𝑂((𝑚𝛾𝑐)
3) when using the Gauss-Jordan method or 𝑂((𝑚𝛾𝑐)

2+𝛼), with 0.8 ≤ 𝛼 ≤

0.81, for more advanced and implementable methods. Hence, the total complexity of (2.2.11) is 

𝑂((𝑚𝛾𝑐)
2+𝛼 + 𝛾(𝑑 + 𝑒1 + ⋯+ 𝑒𝑚 + 𝑚 + 𝛾𝑐)), with 0.8 ≤ 𝛼 ≤ 1. 
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Based on the previous complexity analysis and using the approach in [47], the control 

horizon 𝛾𝑐 can be set equal to 1 in order to decrease the computational cost of calculating the next 

value for Δ𝒖(𝑘), producing an optimal “mean-level” controller [47]. In more detail, only a one-

time increment is performed in the manipulated variables, after which no further changes are made, 

causing 𝒖(𝑘 + 𝑗) to remain constant across the prediction horizon, i.e., 𝒖(𝑘 + 𝑗) = 𝒖(𝑘), ∀𝑗 ≥

1. Based on the previous setting and (2.2.7), the matrix 𝑮𝛾 can be replaced by [𝒈1
𝑇 ⋯ 𝒈𝛾

𝑇]
𝑇
,  

significantly decreasing the computational complexity of (2.2.11) to 𝑂 (𝑚2+𝛽 + 𝛾(𝑑 + 𝑒1 + ⋯+

𝑒𝑚 + 𝑚)). In general, for stable systems with possible dead-time, making 𝛾𝑐 = 1 can generate an 

acceptable solution since a new Δ𝒖(𝑘) is computed in each iteration when the receding-horizon 

approach is used, a common and widely accepted approach for predictive control algorithms. 

The general approach of the heuristic starts by setting all elements of matrix 𝑸𝑦 in (2.2.10) 

to zero except for the last element, set to 1, simplifying the optimization problem to (2.2.12) and 

leading to a corresponding explicit solution expressed in (2.2.13) with a time complexity of 

𝑂(𝑑 + 𝑒1 + ⋯+ 𝑒𝑚 + 𝑚).  

𝒈𝛾Δ𝒖(𝑘) = [𝒚𝑑𝑒𝑠𝑖𝑟𝑒𝑑
(𝛾)

(𝑘)]
𝛾
− 𝒂𝛾𝒚𝑝𝑎𝑠𝑡(𝑘) − 𝒃𝛾𝒖𝑝𝑎𝑠𝑡(𝑘) − 𝒈𝛾𝒖(𝑘 − 1)                              (2.2.12) 

Δ𝒖(𝑘) =
𝒈𝛾

𝑇

𝒈𝛾𝒈𝛾
𝑇 ([𝒚𝑑𝑒𝑠𝑖𝑟𝑒𝑑

(𝛾)
(𝑘)]

𝛾
− 𝒂𝛾𝒚𝑝𝑎𝑠𝑡(𝑘) − 𝒃𝛾𝒖𝑝𝑎𝑠𝑡(𝑘) − 𝒈𝛾𝒖(𝑘 − 1))             (2.2.13) 

As observed in (2.2.13) the calculation of Δ𝒖(𝑘) is of low time complexity but considers 

only the last set point in the prediction horizon 𝛾; however, such simplicity can be exploited by 

exploring possible contiguous values for the prediction horizon located in a user-defined set Γ =

{𝛾1, 𝛾2, … , 𝛾𝑛𝑚𝑎𝑥
 } which would lead to a solution set  ℧Δ = {Δ𝒖𝛾1(𝑘), Δ𝒖𝛾2(𝑘),… , Δ𝒖𝛾𝑛𝑚𝑎𝑥(𝑘)}, 

representing the control increment vectors obtained at prediction horizon values ranging from 𝛾1 
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to 𝛾𝑛𝑚𝑎𝑥
 . Using ℧Δ manipulated-variables values, 𝒖(𝛾𝑖)(𝑘), can be created and subsequently used 

for a selection process based on practical constraints and predefined metrics.  

The details of the previous heuristic are described next. Let us denote the set of physically 

feasible manipulated variables as 𝒰. Then, assuming the variables are physically independent of 

each other and defined over continuous closed intervals (as in many control applications) the set 

𝒰 can be described by a hyperrectangle defined by the physical constraints, (𝒖𝑚𝑖𝑛, 𝒖𝑚𝑎𝑥), of the 

manipulated variables; also, let 𝜏𝑗 denote ([𝒚
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

(𝛾𝑛𝑚𝑎𝑥  )
(𝑘)]

𝑗
− 𝒂𝑗𝒚𝑝𝑎𝑠𝑡(𝑘) − 𝒃𝑗𝒖𝑝𝑎𝑠𝑡(𝑘) −

𝒈𝑗𝒖(𝑘 − 1)). From this point two cases will be considered, 𝑚 = 1 and 𝑚 > 1. 

In the first case, with a single manipulated variable, the constraints (𝒖𝑚𝑖𝑛, 𝒖𝑚𝑎𝑥) are 

applied on each of the single-element solutions, 𝒖(𝑗)(𝑘), 𝑖 ∈ Γ. This is performed by computing 

𝒖𝑠𝑎𝑡
(𝑗)

= 𝑆𝐴𝑇(𝒖(𝑗)(𝑘), 𝒖𝑚𝑖𝑛, 𝒖𝑚𝑎𝑥), where 𝑆𝐴𝑇(∙) is a function that saturates 𝒖(𝑗)(𝑘) so that 

𝒖𝑚𝑖𝑛 ≤ 𝒖𝑠𝑎𝑡
(𝑗)

≤ 𝒖𝑚𝑎𝑥,  which becomes relevant when dealing with infeasible solutions due to the 

likely model mismatch. Then, a prediction horizon 𝛾∗, and consequently a 𝒖𝑠𝑎𝑡
(𝛾∗)

, is selected 

according to (2.2.14). 

𝛾∗ = argmin
𝑗∈Γ

|𝜏𝑗 − 𝒈𝑗𝒖𝑠𝑎𝑡
(𝑗)

|                                            (2.2.14) 

If there exists more than one element 𝑗 ∈ Γ that minimizes |𝜏𝑗 − 𝒈𝑗𝒖𝑠𝑎𝑡
(𝑗)

|, the minimum 

element is selected for 𝛾∗. This selection is justified by the fact that smaller elements of Γ are more 

likely to result in smaller errors, since mismatches between 𝑴𝑉𝑊𝑅𝐿𝑆(𝑘) and the optimal 

parameters 𝑴∗(𝑘) as well as unmodeled effects are propagated to 𝑨𝑗, 𝑩𝑗, 𝑯𝑗 and 𝑮𝑗 through their 

iterative construction, which is the basis for computing 𝜏𝑗 and the set ℧Δ. Hence, the larger the 
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value of 𝑗, the greater the likelihood of a large error in the forecast, i.e., between 𝑦(𝑘 + 𝑗) and 

𝑦̂(𝑘 + 𝑗|𝑘). 

In the second case, 𝑚 > 1, when using multiple manipulated variables and if any of the 

solutions obtained using the pseudo-inverse is not feasible, i.e., 𝒖(𝑗)(𝑘) ∉ 𝒰, a solution might still 

exist. If the hyperplane defined by the normal vector and bias pair (𝒈𝑗 , 𝜏𝑗) intersects the 

hyperrectangle 𝒰 it is possible to convert the vector 𝒖(j)(𝑘) into a vector 𝒖ℱ
(𝑗)(𝑘) ∈ 𝒰 with the 

property: 𝒈𝑗𝒖
(𝑗)(𝑘)  = 𝒈𝑗𝒖ℱ

(𝑗)(𝑘). Determining 𝒖ℱ
(𝑗)(𝑘) can be interpreted as finding a point in 

the hyperplane that is inside the boundaries of the hyperrectangle, as shown in Fig. 2.2.1. 

Examining Fig. 2.2.1, it can be seen that 𝒖ℱ
(𝑗)(𝑘) can have multiple values, none or only 

one. When more than one value exists the closest value to 𝒖(𝑗)(𝑘) is selected to achieve the smallest 

feasible change ∆𝒖ℱ
(𝑗)(𝑘), in the 2-norm sense, with 𝒈𝑗𝒖ℱ

(𝑗)(𝑘) = 0. In this way, feasible solutions 

are reduced to points in the intersection between the hyperplane (𝒈𝑗 , 𝜏𝑗) and 𝒰; ∆𝒖ℱ
(𝑗)(𝑘) would 

be the smallest vector from 𝒖(𝑗)(𝑘) to one of the points in such intersection. The previous solution-

finding approach is performed iteratively using the following procedure. First, the lower-

dimensional hyperface closest to the intersection is determined by identifying in 𝒖(𝑗)(𝑘) the set of 

components, ℱ1
𝑐, that cause it to be outside of 𝒰 as specified in (2.2.15). 

ℱ1
𝑐 = {𝑙 |(1 ≤ 𝑙 ≤ 𝑚)⋀([𝒖(𝑗)(𝑘)]

𝑙
> [𝒖𝑚𝑎𝑥]𝑙⋁[𝒖(𝑗)(𝑘)]

𝑙
< [𝒖𝑚𝑖𝑛]𝑙) }              (2.2.15) 
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Next, a hyperplane of dimension 𝑚 − 𝑐𝑎𝑟𝑑(ℱ1
𝑐) is defined by using the pair (𝒈̌𝑗

(1)
  , 𝜏̌𝑗

(1)
 ), 

where 𝒈̌𝑗
(1)

 is the original vector 𝒈𝑗 with components 𝑙 ∈ ℱ1
𝑐 removed and 𝜏̌𝑗

(1)
= 𝜏𝑗 −

∑ [𝒖𝑠𝑎𝑡
(𝑗)

]
𝑙
[𝒈𝑗]𝑙𝑙∈ℱ1

𝑐 . Then, assuming at least one of the components of  𝒈̌𝑗 is non-zero, the vector 

∆𝒖ℱ1

(𝑗)(𝑘) that connects 𝒖(𝑗)(𝑘) to the closest point in (𝒈̌𝑗
(1)

  , 𝜏̌𝑗
(1)

 ) is computed using (2.2.16) and 

(2.2.17). 

 ∆𝒖̌ℱ1

(𝑗)
=

𝒈̌𝑗
(1)𝑇

𝒈̌
𝑗
(1)

𝒈̌
𝑗
(1)𝑇

𝜏̌𝑗
(1)

                     (2.2.16) 

[∆𝒖ℱ1

(𝑗)(𝑘)]
𝑙
= [∆𝒖̌ℱ1

(𝑗)
]
𝑙
, ∀𝑙 ∉ ℱ1

𝑐,      [∆𝒖ℱ1

(𝑗)(𝑘)]
𝑙
= [𝒖𝑠𝑎𝑡

𝑗
]
𝑙
, ∀𝑙 ∈ ℱ1

𝑐               (2.2.17) 

Finally, a modified solution 𝒖ℱ1

(𝑗)(𝑘) = 𝒖(𝑗)(𝑘) + ∆𝒖ℱ1

(𝑗)(𝑘) can be calculated. If 𝒖ℱ1

(𝑗)(𝑘) ∉

𝒰 then the steps (2.2.15)-(2.2.17) are repeated, but replacing (𝒈𝑗  , 𝜏𝑗) and 𝒖(𝑗)(𝑘) by (𝒈̌𝑗
(1)

  , 𝜏̌𝑗
(1)

 )  

and 𝒖ℱ1

(𝑗)(𝑘), respectively; in this way,  the constraints already considered, [𝒖𝑠𝑎𝑡
(𝑗)

]
𝑙
∀𝑙 ∈ ℱ1

𝑐, are not 

violated, and new sets ℱ𝑖
𝑐 are used in further iterations. 

Fig. 2.2.1. Two-dimensional representation of the possible infinite set of solutions that arise in the 

proposed approach when 𝒖(𝑗)(𝑘) ∈ 𝒰 (left) and 𝒖(𝑗)(𝑘) ∉ 𝒰 (right). 
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The iterative procedure ends after a number of iterations no higher than 𝑚, since at least 

one component is removed from 𝒖(𝑗)(𝑘) in each iteration until a feasible solution 𝒖ℱ
(𝑗)(𝑘) is 

achieved, as depicted in Fig. 2.2.2. Also, it should be noted that in each iteration 𝑖, ∆𝒖̌ℱ𝑖

(𝑗)
 is the 

smallest vector that fulfills ∆𝒖̌ℱ𝑖

(𝑗)
𝒈̌𝑗

(𝑖) = 𝜏̌𝑗
(𝑖)

 due to the right-hand side of (2.2.16) being the Moore–

Penrose inverse, and there will be no need to consider previous constraints since increments ∆𝒖̌ℱ𝑖

(𝑗)
 

will  be along the constrained gradient descent direction. 

 

 

 

 

 

 

 

 

 

Once the iterative procedure is carried out for each possible value of 𝑗, the set of feasible 

prediction horizons is constructed Γℱ = {𝑗|𝑗 ∈ Γ ⋀∃𝒖ℱ
(𝑗)(𝑘) : 𝒖𝑚𝑎𝑥 ≤ 𝒖ℱ

(𝑗)(𝑘) ≤ 𝒖𝑚𝑎𝑥 }, and 

from it the prediction horizon 𝛾∗ is selected using (2.2.18). 

𝛾∗ = argmin
𝑗∈Γℱ  

|𝜏𝑗 − 𝒈𝑗 𝒖ℱ
(𝑗)(𝑘)|                   (2.2.18) 

If there is no intersection between any hyperplane (𝒈𝑗  , 𝜏𝑗) and the hyperrectangle 𝒰, 

implying infeasible inputs for any value in Γ, then 𝛾∗ is selected based on (2.2.14). 

 

Fig. 2.2.2. Two-dimensional representation of the iterative process to generate 𝒖ℱ
(𝑗)(𝑘). 
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2.2.4 Adaptive Predictive Control Algorithm 

 An Adaptive Predictive Control (APC) algorithm is proposed by integrating the ALM 

model defined in Section 2.2.2 and the GPC-based control approach in Section 2.2.3, resulting in 

a control algorithm that provides online predictions of the system while adapting to new operating 

conditions. Potential advantages of APC algorithms have already been shown in a variety of 

applications [50]-[53] where promising results were shown through simulations. 

The proposed APC is characterized by the following properties: it adapts its learning rate 

in an online fashion, which reflects the dynamics of the possibly time-varying nonlinear system; 

it uses a variable prediction horizon algorithm, increasing the controller’s ability to deal with time-

varying systems; it implements a method to transform physically infeasible solutions, in the 

predictive formulation, into feasible solutions (when they exist); and it is computationally 

inexpensive to implement with respect to the maximum prediction horizon and the dimensionality 

of the input. A graphical representation of the proposed APC can be observed in Fig. 2.2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2.3. High-level graphical representation of the proposed APC integrating the VWRLS 

and the GPC-Based control as the Adaptive and Predictive algorithms, respectively. 
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When implementing the VWRLS (or the WRLS) algorithm, in addition to constraining the 

minimum value of the forgetting factor through the choice of 𝑝old, as discussed in Section 2.2.2, 

practical implementation issues must be addressed. In particular, the following potential 

interconnected issues are considered as most relevant: potential mismatches between the estimated 

and the optimal model parameters, lack of diversity in the data generated while in deployment, and 

numerical instability. These issues, combined or independent of each other, could slow down the 

convergence of 𝜽𝑉𝑊𝑅𝐿𝑆(𝑘); degrading the performance of the control algorithm and leading to 

computational instability in the matrix 𝑷(𝑘), as discussed in [54]. Next, two independent strategies 

are proposed to handle these implementation issues within the proposed APC framework. 

The first strategy, intended to mitigate the first two issues, is based on the realization that, 

with respect to ℒ𝑉𝑊𝑅𝐿𝑆(𝑘), mismatches between the estimated and optimal parameters, 𝜽𝑜𝑝𝑡(𝑘), 

although not measured directly can be detected whenever there is a steady-state error, which can 

be defined over a possibly weighted time window considering the last 𝑘𝑠𝑠 errors. Therefore, by 

monitoring the steady-state error the following strategy is developed. First, if there is a solution 

 𝒖(𝑗) (or 𝒖ℱ
(𝑗)

) then, with probability one, there exist an infinite number of solutions, since a unique 

solution occurs when a vertex of the hyperrectangle 𝒰 intersects the plane (𝒈𝑗  , 𝜏𝑗). Hence, to 

increase information diversity, it is proposed that one of these solutions be selected at random, 

promoting variability in some of the features in 𝒙𝑒𝑥(𝑘), which promotes more stability in 𝑷(𝑘) by 

decreasing its eigenvalues’ magnitudes.  

The selection can be implemented by using a randomly weighted average of all intersection 

points between the ‘edges’ of 𝒰 and the hyperplane (𝒈𝑗  , 𝜏𝑗), generating a solution ∆𝒖𝑟𝑎𝑛
(𝑗)

 within 

the convex hull defined by the intersection points. From a practical point of view, identifying the 
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intersection points for the case of 𝑚 manipulated variables would imply a 𝑂(𝑚2𝑚−1) time 

complexity, which is manageable for small 𝑚; however, for 𝑚 ≥ 4 a more sophisticated algorithm 

such as the one described in [55] can be implemented.  

In the context of the numerical stability of 𝑷(𝑘), VWRLS can handle the situation more 

effectively than WRLS due to its flexibility, caused by the dynamic relevance given to new data; 

however, in practical implementations this does not imply that the eigenvalues of 𝑷(𝑘), 𝝁𝑷(𝑘), 

will be upper bounded at all sample instants. The latter phenomena is the result of the fact that 

there is no an upper bound for the degree  of time collinearity in the matrix 𝑿𝑘1:𝑘2
, which is 

implicitly used in the loss functions ℒ𝑊𝑅𝐿𝑆(𝑘) and ℒ𝑉𝑊𝑅𝐿𝑆(𝑘).  The time collinearity, coupled 

with the inherently finite resolution of computers, can lead to very large eigenvalues 𝝁𝑷(𝑘).  

Because of the potential instability of 𝑷(𝑘), the second proposed strategy focuses on 

assuring all eigenvalues 𝝁𝑷(𝑘) are below a threshold, 𝜇𝑚𝑎𝑥, that is user-defined and hardware-

dependent. The last strategy is implemented by tracking the easy-to-compute trace of 𝑷(𝑘), 

compare it to 𝑛𝜇𝑚𝑎𝑥 and, if larger than the latter, implementing a saturation-like operation over 

𝝁𝑷(𝑘) to produce an upper-bound eigenvalue matrix 𝑷𝑢𝑏𝑒(𝑘). In more detail, if 𝑇𝑟(𝑷(𝑘)) ≥

𝑛𝜇𝑚𝑎𝑥, then a multiple of the identity matrix 𝑐𝜇𝑰 is “injected” into 𝑷(𝑘) by making 𝑷𝑢𝑏𝑒(𝑘) =

𝑫(𝑘) (𝑐𝜇𝑰 + diag(𝝁𝑷(𝑘))
−1

)
−𝟏

𝑫𝑇(𝑘), where 𝑐𝜇 ≥ 1/𝜇𝑚𝑎𝑥 and 𝑫(𝑘)diag(𝝁𝑷(𝑘))𝑫𝑇(𝑘) is the 

spectral decomposition of 𝑷(𝑘).  

It is worth noting that the calculation of 𝑷𝑢𝑏𝑒(𝑘) can be performed avoiding matrix 

inversion by carrying out (2.1.9)-(2.1.10) 𝑛 times with 𝜆 = 1 and using each of the 𝑛 column 

vectors of 𝑐𝜇𝑰 instead of the vector 𝒙(𝑘); the latter equivalence is due to the Woodbury matrix 
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inversion [56], over which the Recursive Least Squares algorithm is based upon, and due to each 

column vector of 𝑐𝜇𝑰 being zeros except in exactly one of its elements. 

A summarized pseudocode of the proposed APC algorithm is depicted in Algorithm 2.2.1. 

Algorithm 2.2.1: Adaptive Predictive Control 
Input: 𝑦(𝑘), 𝒖(𝑘)  

Initialize:  𝜽𝑉𝑊𝑅𝐿𝑆(0)(0), 𝑷(0), 𝒙(0), Γ = {𝛾1, 𝛾2, … , 𝛾𝑛𝑚𝑎𝑥
} 

𝜆(𝑘) ⟵ 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝒇𝒐𝒓𝒈𝒆𝒕𝒕𝒊𝒏𝒈 𝒇𝒂𝒄𝒕𝒐𝒓 (𝛥𝜏𝑚𝑖𝑛 , 𝐴𝛥𝜏, 𝑦(𝑘),𝜽𝑉𝑊𝑅𝐿𝑆(𝑘 − 1), 𝒙(𝑘), 𝑒𝑚𝑖𝑛 , 𝑒𝑚𝑎𝑥 , 𝑒𝑛𝑙)  

𝜽𝑉𝑊𝑅𝐿𝑆(𝑘), 𝑷(𝑘) ⟵ 𝑉𝑊𝑅𝐿𝑆 (𝜆(𝑘), 𝑦(𝑘), 𝒙(𝑘), 𝑷(𝑘 − 1),𝜽𝑉𝑊𝑅𝐿𝑆(𝑘 − 1))  

If 𝑇𝑟(𝑷(𝑘)) ≥ 𝑛𝜇𝑚𝑎𝑥: 

    𝑷(𝑘) ⟵ 𝑰𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒅𝒊𝒗𝒆𝒓𝒔𝒊𝒕𝒚 (𝑷(𝑘), 𝑐𝜇) 
end If 

𝒂0, 𝒃0 ⟵ 𝜽𝑉𝑊𝑅𝐿𝑆(𝑘), 𝑒(𝑘) ⟵ ([𝒚
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

(𝛾𝑛𝑚𝑎𝑥  )
(𝑘)]

0
− 𝑦(𝑘)) 

𝐹𝑙𝑎𝑔_𝑟𝑎𝑛𝑑_𝑠𝑜𝑙 ⟵ 𝒔𝒕𝒆𝒂𝒅𝒚 𝒔𝒕𝒂𝒕𝒆 𝒆𝒓𝒓𝒐𝒓 𝒅𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏(𝑒(𝑘), … , 𝑒(𝑘 − 𝑘𝑠𝑠)) 

Γℱ ⟵ {}, Γℱ𝑐 ⟵ {}  

𝑨𝛾𝑛𝑚𝑎𝑥
, 𝑩𝛾𝑛𝑚𝑎𝑥

, 𝑮𝛾𝑛𝑚𝑎𝑥
⟵ 𝐼𝑴(𝒂0, 𝒃0, 𝛾𝑛𝑚𝑎𝑥

)  

For 𝑗 = 𝛾1 to  𝛾𝑛𝑚𝑎𝑥
 

     𝒂𝑗 , 𝒃𝑗 , 𝒈𝑗 ⟵ 𝑬𝒙𝒕𝒓𝒂𝒄𝒕 (𝑨𝛾𝑛𝑚𝑎𝑥
, 𝑩𝛾𝑛𝑚𝑎𝑥

, 𝑮𝛾𝑛𝑚𝑎𝑥
) 

      

     𝜏𝑗 ⟵ ([𝒚
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

(𝛾𝑛𝑚𝑎𝑥  )
(𝑘)]

𝑗
− 𝒂𝑗𝒚𝑝𝑎𝑠𝑡(𝑘) + 𝒃𝑗𝒖𝑝𝑎𝑠𝑡(𝑘) + 𝒈𝑗𝒖(𝑘 − 1))                            

     𝛥𝒖(𝑗)(𝑘) ⟵
𝒈𝑗

𝑇

𝒈𝑗𝒈𝑗
𝑇 𝜏𝑗

(𝑐)
 

     𝒖(𝑗)(𝑘) ⟵ 𝒖(𝑘 − 1) + 𝛥𝒖(𝑗)(𝑘) 

     If (𝑚 > 1) 

         If (𝒖(𝑗)(𝑘) ∉ 𝒰)𝒐𝒓(𝐹𝑙𝑎𝑔_𝑟𝑎𝑛𝑑_𝑠𝑜𝑙 = 1) 

             𝒖ℱ
(𝑗)(𝑘) ⟵ 𝑭𝒆𝒂𝒔𝒊𝒃𝒍𝒆 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 ( 𝒖(𝑗)(𝑘), 𝒖𝑚𝑖𝑛 , 𝒖𝑚𝑎𝑥 , 𝒈𝑗 , 𝜏𝑗 , 𝐹𝑙𝑎𝑔_𝑟𝑎𝑛𝑑_𝑠𝑜𝑙, 𝑒(𝑘), … , 𝑒(𝑘 − 𝑘𝑠𝑠)) 

             If 𝒖ℱ
(𝑗)(𝑘) ≠ 𝑁𝑢𝑙𝑙: 

                   Γℱ ⟵ Γℱ ∪ {𝑗}  

             Else 

                   Γℱ𝑐 ⟵ Γℱ𝑐 ∪ {𝑗}, 𝒖𝑠𝑎𝑡
(𝑗)

⟵ 𝑆𝐴𝑇(𝒖(𝑗)(𝑘), 𝒖𝑚𝑖𝑛 , 𝒖𝑚𝑎𝑥) 

             end If 

         Else 

             Γℱ ⟵ Γℱ ∪ {𝑗}, 𝒖ℱ
(𝑗)(𝑘) ⟵ 𝒖(𝑗)(𝑘) 

         end If 

     Else 

         If (𝒖(𝑗)(𝑘) ∉ 𝒰) 

             Γℱ𝑐 ⟵ Γℱ𝑐 ∪ {𝑗}, 𝒖𝑠𝑎𝑡
(𝑗)

= 𝑆𝐴𝑇(𝒖(𝑗)(𝑘), 𝒖𝑚𝑖𝑛 , 𝒖𝑚𝑎𝑥) 

         Else 

             Γℱ ⟵ Γℱ ∪ {𝑗}, 𝒖ℱ
(𝑗)(𝑘) ⟵ 𝒖(𝑗)(𝑘) 

         end If       

     end If       

end for  

If Γℱ ≠ {}: 
    𝛾∗ = 𝑚𝑖𝑛 Γℱ 
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    𝒖(𝑘) ⟵ 𝒖ℱ
(𝛾∗)

 

Else 

    𝛾∗ = argmin
𝑖∈Γℱ𝑐

|𝜏𝑗 − 𝒈𝑗𝒖𝑠𝑎𝑡
(𝑗)

|  

    𝒖(𝑘) ⟵ 𝒖𝑠𝑎𝑡
 𝛾∗

 

end If 

 

2.3 Industrial application of Adaptive-Linear-Model-based Control Algorithm 

2.3.1 Context of implementation 

Data center (DC) energy consumption has attracted a lot of attention in recent years. 

According to [57], DC energy consumption ranges from 1.1% to 1.5% of total global electricity 

consumption, with this proportion showing a tendency to increase [58]. A significant portion of 

this energy utilization is devoted to cooling systems that aim to keep server temperatures within a 

safe region, necessary to avoid damage to servers. Traditionally in DCs, cooling infrastructure is 

either room-based or row-based [59]-[60]. However, in recent years rack-mountable cooling units 

have been introduced to cope with the increasing demand for high performance computing (HPC). 

These new architectures bring servers and cooling units closer to each other with an aim to decrease 

cooling infrastructure energy consumption [60].   

In addition to reducing energy consumption, maintaining a stable temperature inside a data 

center is crucial since oscillations in air temperature, even by 1 or 2 degrees, increase the 

probability of server failures [61]. These oscillations are an inherent characteristic of the ON/OFF 

or PID controllers which have been widely used in cooling infrastructure [62]. Due to the proximity 

of the rack-mounted cooling units to the servers, any variation in airflow created by these 

controllers, as a response to changes in workload, will be experienced immediately by the servers, 

which will consequently lead to higher server failure rates. 
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Within the previous scope, the APC algorithm defined in Section 2.2.4 is implemented in 

a rack-mountable cooling unit with limited computational capacity and developed by an industrial 

partner, the Computing Infrastructure Research Centre (CIRC) (now FYELABS). The goal of this 

implementation is to utilize a data-driven control method with hardware limitations that can adapt 

to changes in the system, such as addition and removal of servers. Hence, the proposed APC is 

chosen due to being implementable on a low-cost and memory limited, off the shelf general 

purpose microcontroller. Furthermore, the APC is extended to take monetary costs into 

consideration by adding a projected gradient-based algorithm so that, unlike other low complexity 

controllers, it can address power consumption and operating costs.  

 

2.3.2 Hardware and physical system description 

The test bed considered for the APC implementation consists of a single rack containing 

20 servers with an average maximum power consumption of 250W across all servers, and a rack-

mounted cooling unit located at the top of the rack which uses air as the cooling medium. The 

cooling unit consists of a heat exchanger and a set of five identical compact industrial fans. The 

controlled variable is the rack’s temperature, measured using a sensor of 0.06°C resolution and 

located in front of the 12th server, the hottest point in front of the rack. The manipulated variables 

are the water flow in the heat exchanger and the PWM signals of the fans. A schematic of the rack 

can be observed in Fig. 2.3.1. 

The water flow in the heat exchanger is regulated by an on/off valve, whose aperture is 

controlled by a local feedback loop model-based algorithm that generates electrical pulses to 

manipulate the aperture. Hence, the input to the water flow regulation algorithm is the desired 

value of water flow computed by the temperature controller. The water flow, with a maximum 
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value near 21L/min, is measured by a sensor with average resolution of 1.06L/min whose value is 

fed back to the water regulation algorithm. The fans, with a maximum power consumption of 

168W per unit, are directly manipulated by the controller through 8-bit resolution PWM signals at 

488Hz.  

Water is supplied by a branch of the building’s water system, and its temperature is 

regulated by an outside controller using cooling tower technology. Since the outside controller is 

not designed for delivering a constant water temperature, there are changes in the water inlet 

temperature of the heat exchanger in the rack, which can have significant impact on the system. 

Therefore, the water inlet temperature is considered a disturbance for the system. 

 

 

 

 

 

 

 

An Arduino Mega, a low-cost general-purpose microcontroller, is used to implement the 

proposed APC. The microcontroller is characterized by having 8KB of SRAM memory, a 256KB 

Flash memory and a 16MHz crystal oscillator.  

 

 

Fig. 2.3.1. Schematic of the rack configuration and cooling system location. 
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2.3.3 Implementation Challenges in Real-Time APC and Monetary Optimization 

One of the limitations with the APC’s adaptive algorithm is that, even when the error is 

close to zero, the parameters 𝜽𝑉𝑊𝑅𝐿𝑆(𝑘) do not necessarily represent the true dynamics of the 

system, due to the limited amount of online information. The latter can in turn have a significant 

impact on the performance of the predictive algorithm, especially for long prediction horizons. 

This issue can be handled by using one of the following approaches: constraining 𝑴𝑉𝑊𝑅𝐿𝑆(𝑘) to 

be in a specific space or establishing constraints for 𝒈𝑗 in the predictive algorithm. In this 

implementation, the latter is chosen. 

Typically, the output of a dynamic system is physically constrained, i.e., 𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑘) ≤

𝑦𝑚𝑎𝑥 , ∀𝑘. Hence, in the GPC-based algorithm the following constraint can be imposed: 

𝑦̂𝑓𝑟𝑒𝑒
(𝑐) (𝑘 + 𝑗|𝑘) = 𝑆𝐴𝑇(𝒂𝑗𝒚𝑝𝑎𝑠𝑡(𝑘) + 𝒃𝑗𝒖𝑝𝑎𝑠𝑡(𝑘) + 𝒈𝑗𝒖(𝑘 − 1); 𝑦𝑚𝑖𝑛; 𝑦𝑚𝑎𝑥); where 𝑦𝑚𝑎𝑥 >

𝑦𝑚𝑖𝑛 and 𝑦̂𝑓𝑟𝑒𝑒
(𝑐) (𝑘 + 𝑗|𝑘) represents the estimated (free) evolution of the system at time instant 𝑗, 

when no change in the input is implemented, so that the constrained estimated output error is 𝜏𝑗
(𝑐)

=

[𝒚
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

(𝛾𝑛𝑚𝑎𝑥  )
(𝑘)]

𝑗
− 𝑦̂𝑓𝑟𝑒𝑒

(𝑐) (𝑘 + 𝑗|𝑘). In addition, since (2.2.12) captures in 𝒈𝑗 the physical effect that 

each manipulated variable has on the output, it is possible to constrain the values of 𝒈𝑗 by setting 

𝒈𝑗
(𝑐)

= 𝑆𝐴𝑇(𝒈𝑗, 𝒈𝑚𝑖𝑛, 𝒈𝑚𝑎𝑥).  

Even when 𝒈𝑚𝑖𝑛 and 𝒈𝑚𝑎𝑥 are not known, due to physical constraints most industrial 

systems do have a minimum and maximum gain for each input variable and it is information that 

can be easily obtained or estimated. Consequently, by using these minimum and maximum 

possible gains with possibly a margin of error (to overestimate) it is possible to establish a lower 

bound for the true 𝒈𝑚𝑖𝑛 and an upper bound for the true 𝒈𝑚𝑎𝑥. The result is a reduction in the 
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negative effects of transitory lack of information and large perturbations that dramatically change 

the value of 𝜽𝑉𝑊𝑅𝐿𝑆(𝑘) in a sudden manner and propagate to 𝒈𝑗.  

For cases in which the signs of the gains of the manipulated variables, with respect to the 

output, are known and constant, constraining 𝒈𝑗 can avoid counterintuitive control actions 

(𝒖ℱ
(𝑗)(𝑘)) that, even though they do not necessarily prevent the desired set-points from being 

achieved, can waste excessive energy. To elaborate further, such cases can occur for a multiple 

input system in which the output behavior of one variable can be attributed to multiple inputs, and 

limited information about the inputs can cause a false attribution of positive gain effects to input 

variables with negative gains. 

By considering the economic aspect linked to manipulated variable usage and exploiting 

the flexibility of (2.2.12), it is possible to implement an algorithm that minimizes the monetary 

cost rate 𝐶$(𝒖(𝑘)). Assuming the monetary cost function is differentiable, a gradient descent 

algorithm restricted to be orthogonal to 𝒈𝑗
(𝑐)𝑇

can be implemented, with a learning rate 𝛼$. The 

resulting direction for minimizing 𝐶$(𝒖(𝑘)) is then given by 

−∇𝐶$(𝒖(𝑘)) +
𝒈𝑗

(𝑐)𝑇

𝒈𝑗
(𝑐)

𝒈𝑗
(𝑐)𝑇

𝒈𝑗
(𝑐)

∇𝐶$(𝒖(𝑘))                                (2.3.1) 

The use of (2.3.1) is suggested only when a feasible solution has been found and the system 

output has settled around the desired set-point, so that no additional restrictions are imposed 

on 𝒖(𝑘) for the transient response, which would also increase the diversity in the input and 

subsequently benefit the VWRLS algorithm. 

A summarized pseudocode of the practical implementation of the APC can observed in 

Algorithm 2.3.1. 
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Algorithm 2.3.1: Adaptive Predictive Control for practical implementation 
Input: 𝑦(𝑘), 𝒖(𝑘)  

Initialize:  𝜽𝑉𝑊𝑅𝐿𝑆(0)(0), 𝑷(0), 𝒙(0), Γ = {𝛾1, 𝛾2, … , 𝛾𝑛𝑚𝑎𝑥
} 

𝜆(𝑘) ⟵ 𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆 𝒇𝒐𝒓𝒈𝒆𝒕𝒕𝒊𝒏𝒈 𝒇𝒂𝒄𝒕𝒐𝒓 (𝛥𝜏𝑚𝑖𝑛 , 𝐴𝛥𝜏, 𝑦(𝑘),𝜽𝑉𝑊𝑅𝐿𝑆(𝑘 − 1), 𝒙(𝑘), 𝑒𝑚𝑖𝑛 , 𝑒𝑚𝑎𝑥 , 𝑒𝑛𝑙)  

𝜽𝑉𝑊𝑅𝐿𝑆(𝑘), 𝑷(𝑘) ⟵ 𝑉𝑊𝑅𝐿𝑆 (𝜆(𝑘), 𝑦(𝑘), 𝒙(𝑘), 𝑷(𝑘 − 1),𝜽𝑉𝑊𝑅𝐿𝑆(𝑘 − 1))  

If 𝑇𝑟(𝑷(𝑘)) ≥ 𝑛𝜇𝑚𝑎𝑥: 

    𝑷(𝑘) ⟵ 𝑰𝒏𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏 𝒅𝒊𝒗𝒆𝒓𝒔𝒊𝒕𝒚 (𝑷(𝑘), 𝑐𝜇) 
end If 

𝒂0, 𝒃0 ⟵ 𝜽𝑉𝑊𝑅𝐿𝑆(𝑘), 

𝑒(𝑘) ⟵ ([𝒚
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

(𝛾𝑛𝑚𝑎𝑥  )
(𝑘)]

0
− 𝑦(𝑘)) 

𝐹𝑙𝑎𝑔_𝑟𝑎𝑛𝑑_𝑠𝑜𝑙 ⟵ 𝒔𝒕𝒆𝒂𝒅𝒚 𝒔𝒕𝒂𝒕𝒆 𝒆𝒓𝒓𝒐𝒓 𝒅𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏(𝑒(𝑘), … , 𝑒(𝑘 − 𝑘𝑠𝑠)) 

Γℱ ⟵ {}, Γℱ𝑐 ⟵ {}  

𝑨𝛾𝑛𝑚𝑎𝑥
, 𝑩𝛾𝑛𝑚𝑎𝑥

, 𝑮𝛾𝑛𝑚𝑎𝑥
⟵ 𝐼𝑴(𝒂0, 𝒃0, 𝛾𝑛𝑚𝑎𝑥

)  

For 𝑗 = 𝛾1 to  𝛾𝑛𝑚𝑎𝑥
 

     𝒂𝑗 , 𝒃𝑗 , 𝒈𝑗 ⟵ 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 (𝑨𝛾𝑛𝑚𝑎𝑥
, 𝑩𝛾𝑛𝑚𝑎𝑥

, 𝑮𝛾𝑛𝑚𝑎𝑥
) 

    𝒈𝑗
(𝑐)

= 𝑆𝐴𝑇(𝒈𝑗 , 𝒈𝑚𝑖𝑛 , 𝒈𝑚𝑎𝑥)      

     𝑦̂𝑓𝑟𝑒𝑒
(𝑐) (𝑘 + 𝑗|𝑘) = 𝑆𝐴𝑇(𝒂𝑗𝒚𝑝𝑎𝑠𝑡(𝑘) + 𝒃𝑗𝒖𝑝𝑎𝑠𝑡(𝑘) + 𝒈𝑗

(𝑐)
𝒖(𝑘 − 1), 𝑦𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥) 

     𝜏𝑗
(𝑐)

⟵ ([𝒚
𝑑𝑒𝑠𝑖𝑟𝑒𝑑

(𝛾𝑛𝑚𝑎𝑥  )
(𝑘)]

𝑗
− 𝑦̂𝑓𝑟𝑒𝑒

(𝑐) (𝑘 + 𝑗|𝑘))                            

     𝛥𝒖(𝑗)(𝑘) ⟵
𝒈𝑗

(𝑐)𝑇

𝒈𝑗
(𝑐)

𝒈𝑗
(𝑐)𝑇

𝜏𝑗
(𝑐)

 

     𝒖(𝑗)(𝑘) ⟵ 𝒖(𝑘 − 1) + 𝛥𝒖(𝑗)(𝑘) 

     If (𝑚 > 1) : 

         If (𝒖(𝑗)(𝑘) ∉ 𝒰)𝒐𝒓(𝐹𝑙𝑎𝑔_𝑟𝑎𝑛𝑑_𝑠𝑜𝑙 = 1) 

             𝒖ℱ
(𝑗)(𝑘) ⟵ 𝑭𝒆𝒂𝒔𝒊𝒃𝒍𝒆 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 ( 𝒖(𝑗)(𝑘), 𝒖𝑚𝑖𝑛 , 𝒖𝑚𝑎𝑥 , 𝒈𝑗

(𝑐)
, 𝜏𝑗

(𝑐)
, 𝐹𝑙𝑎𝑔_𝑟𝑎𝑛𝑑_𝑠𝑜𝑙, 𝑒(𝑘), … , 𝑒(𝑘 − 𝑘𝑠𝑠)) 

             If 𝒖ℱ
(𝑗)(𝑘) ≠ 𝑁𝑢𝑙𝑙: 

                   Γℱ ⟵ Γℱ ∪ {𝑗}  
             Else 

                   Γℱ𝑐 ⟵ Γℱ𝑐 ∪ {𝑗}, 𝒖𝑠𝑎𝑡
(𝑗)

⟵ 𝑆𝐴𝑇(𝒖(𝑗)(𝑘), 𝒖𝑚𝑖𝑛 , 𝒖𝑚𝑎𝑥) 

             end If 

         Else 

             Γℱ ⟵ Γℱ ∪ {𝑗}, 𝒖ℱ
(𝑗)(𝑘) ⟵ 𝒖(𝑗)(𝑘) 

         end If 

     Else 

         If (𝒖(𝑗)(𝑘) ∉ 𝒰) 

             Γℱ𝑐 ⟵ Γℱ𝑐 ∪ {𝑗}, 𝒖𝑠𝑎𝑡
(𝑗)

= 𝑆𝐴𝑇(𝒖(𝑗)(𝑘), 𝒖𝑚𝑖𝑛 , 𝒖𝑚𝑎𝑥) 

         Else 

             Γℱ ⟵ Γℱ ∪ {𝑗}, 𝒖ℱ
(𝑗)(𝑘) ⟵ 𝒖(𝑗)(𝑘) 

         end If       

     end If       

end for  

If Γℱ ≠ {}: 
    𝛾∗ = 𝑚𝑖𝑛 Γℱ 

Else 

    𝛾∗ = argmin
𝑖∈Γℱ𝑐

|𝜏𝑗
(𝑐)

− 𝒈𝑗
(𝑐)

𝒖𝑠𝑎𝑡
(𝑗)

|  
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end If 

If 𝐶𝑜𝑠𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 and Γℱ ≠ {}: 

    Δ𝒖$ ⟵ −∇𝐶$ (𝒖ℱ
(𝛾∗)

(𝑘)) +
𝒈𝑗

(𝑐)𝑇

𝒈𝑗
(𝑐)

𝒈𝑗
(𝑐)𝑇

𝒈𝑗∇𝐶$ (𝒖ℱ
(𝛾∗)

(𝑘)) 

    𝒖(𝑘) ⟵ 𝑪𝒐𝒔𝒕 𝒓𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 (Δ𝒖$, 𝒖ℱ
(𝛾∗)

(𝑘), 𝛼$, 𝑒(𝑘))  

Else 

    𝒖(𝑘) ⟵ 𝒖𝑠𝑎𝑡
 𝛾∗

  

end If 

 

It should be highlighted that for the proposed VWRLS a proof of convergence is not 

available. However, the variable forgetting factor implemented belongs to a family of RLS 

algorithms described in [63] where, under some excitation and boundedness assumptions for 𝒙(𝑘), 

it is shown that for systems with time varying parameters and a bounded disturbance, RLS with a 

variable forgetting factor will have a bounded tracking error. This, together with the random 

solution selection, the lower bound on the forgetting factor, 𝜆𝑚𝑖𝑛, from Section 2.1.3 as well as 

the experimental results shown in the following sections, validate the effectiveness of the 

algorithm.   

 

2.3.4 APC Experimental Simulations 

The proposed APC defined in Algorithm 2.3.1, except for the monetary compensation, is 

compared with a standard APC via simulation, replacing the proposed predictive algorithm with 

the original version of the GPC, both using VWRLS as the adaptive algorithm. The proposed 

controllers were tested in a MATLAB simulation environment. The simulated system has similar 

characteristics to the physical system described in Section 2.3.1 and it is composed of independent 

linearized subsystems of PWM signals, water flow and water inlet temperature; the water inlet 

temperature is considered as a disturbance. For the standard APC the parameters of the GPC’s loss 

function (2.2.10) were set to 𝛾𝑐 = 1, 𝑸𝑦 = 𝑸𝑢 = 𝑰. Additionally, a PI controller designed with the 
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Split-Range strategy (PI-SR), described in [64]-[65] and characterized by a hierarchy of 

manipulated-variables activation sequences, was simulated to provide a comparison to an 

alternative low-complexity control algorithm. 

The VWRLS parameters for both APC controllers were set as follows: 𝑒𝑚𝑖𝑛 =

0.05, 𝑒𝑚𝑎𝑥 = 0.2, 𝑒𝑛𝑙 = 0.01, 𝑝old = 0.1, Δ𝜏𝑚𝑖𝑛 = 350, 𝐴𝛥𝜏 = 100, and 𝜇𝑚𝑎𝑥 = 1000. Also, the 

VWRLS considered eight previous values of the output and inputs, i.e., 𝑑 = 𝑒1 = 𝑒2 = 8, for a 

total of 24 learnable parameters. For both controllers, the maximum prediction horizon 𝛾𝑛𝑚𝑎𝑥
  was 

set to 24. This value was tuned to optimize the performance of the APC with standard GPC. In 

addition, 𝛾1 was set to 8 and the output’s constraints were set to 𝑦𝑚𝑖𝑛 = 15, 𝑦𝑛𝑚𝑎𝑥
= 35.  

Since the constraints for 𝒈𝑗, described in Section 2.3.3, decreased the performance of the 

standard APC in simulations, it was implemented only in the proposed APC, where  𝒈𝑚𝑖𝑛 and 

𝒈𝑚𝑎𝑥 were determined experimentally and set to  [−0.2/255,−0.2/27]  and [−10/255,−10/

27], respectively. Also, the random solution selection from Section 2.2.4 was implemented using 

the simple algorithm of iterating across each edge in 𝒰, since the space dimensionality considered 

was low, two in the current implementation. The random solution selection was not compatible 

with the standard GPC, therefore it was not implemented in that setting. 

For the simulated system some additional physical restrictions were implemented. The 

output temperature was discretized to a resolution of 0.06°C, identical to the resolution of the 

sensors used in the physical system described in Section 2.3.2. Also, the water inlet temperature 

variable was set to a constant value of 12°C plus a sinusoidal function with a period of 300s and 

bounded random amplitude to test the system under perturbation conditions. The water flow and 

PWM signal values calculated by the controllers were discretized to 0.02L/min and 1 unit, 
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respectively, and for both controllers their values were constrained to [100, 255] for PWM and 

[10, 27] for the water flow. The amplitude of the water temperature sinusoidal component followed 

a half-normal distribution with mean absolute value 𝜇 of 0.4°C and standard deviation 𝜎 of 0.3°C. 

Finally, a sampling time of 5 seconds was used since it represented the minimum stable sampling 

time that could be used in the real implementation. 

One relevant aspect resulting from the physical constraints in the simulated system is the 

increased time for the VWRLS algorithm to converge, due to the resolution of the PWM and the 

sensor readings which decrease the frequency information in the signals. In addition, the APC with 

standard GPC does not identify which values (𝒈𝑗  , 𝜏𝑗) generate infeasible solutions. In this aspect, 

since the proposed APC first identifies and discards solutions that could lead to this problem, it is 

expected to provide better regulation.  

For the PI-SR control the procedure defined in [65] was implemented, resulting in internal 

parameter values 𝑣∗ = 0.2838, 𝛼1 = 2.142, 𝛼2 = 0.93, 𝐾𝑐 = 16.50 and 𝜏𝐼 = 70.  For this 

scheme, the water flow was used as the first manipulated variable in the PI-SR hierarchy. The 

results of the simulations are shown from Fig. 2.3.2 to Fig. 2.3.4. The Mean Squared Error of the 

simulation results for Fig. 2.3.2 can be found in Table 2.3.1.  

From Fig. 2.3.2 it can be observed that the PI-SR and proposed APC algorithms have 

similar performance, with both showing improved performance over the APC with standard GPC. 

However, PI-SR shows more oscillations around the operating point than the APC controllers, 

possibly due to the activation of the second manipulated variable, as observed in Fig. 2.3.4. Similar 

behavior was observed with respect to the water flow manipulated variable for both APC 

controllers, but more short-term oscillations were generated by the proposed APC as identified in 

Fig. 2.3.3, mostly attributed to the variable prediction horizon and the random solution selection. 
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Also, while the APC with standard GPC took more than 200s to show reasonable performance, 

the proposed APC stabilized in less than 100s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.3.3. PWM values for the APC with standard GPC, PI-SR and proposed APC. Resolution 

of 1, within the range [100,255] (8-bit representation). 

Fig. 2.3.2. Performance of APC with standard GPC, PI-SR and proposed APC. The random 

sinusoidal amplitude parameters of the water temperature are set to 𝜇=0.4°C and 𝜎=0.3°C. 
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It is important to note that while stability cannot be guaranteed for the manipulated values 

generated by the proposed APC, for the current stable system the VWRLS algorithm when facing 

model mismatch will use the error values, 𝑒(𝑘|𝑘 − 1) = 𝑦(𝑘) − 𝑦̂(𝑘|𝑘 − 1) to make corrections. 

In addition, the constraints 𝒈𝑚𝑖𝑛 and 𝒈𝑚𝑎𝑥 used in the GPC-based algorithm will result in the 

model remaining in a region more consistent with the physical properties of the system, 

independently of how large the error values are. Furthermore, one of the main advantages of the 

proposed APC approach in the current implementation is that precise tuning was not required to 

have competitive performance. 

Controller RMSE 

APC standard GPC 0.5095   

APC 0.4670 

PI-SR 0.4778 

Table 2.3.1. RMSE performance of the controllers in the 
simulation. 

 

Fig. 2.3.4. Water flow values for the APC with standard GPC, PI-SR and proposed APC. 

Resolution of 0.02, within the range [10,27]. 
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The proposed APC controller showed two major advantages over the standard APC in the 

presented simulations. First, it can discard values for manipulated variables that are outside of the 

physical constraints, whereas such values implicitly affect the standard APC. Second, the proposed 

APC can create more diversity in the values of the manipulated variables by selecting semi-random 

solutions when a threshold of steady-state error is reached, which leads to a more accurate model 

computed by the adaptive algorithm.  

 

2.3.5 APC Experiments in a rack-mounted cooling unit 

The proposed APC defined in Algorithm 2.3.1 (Section 2.3.3) was used to perform a set of 

experiments on the physical system described in Section 2.3.2. Both the proposed APC and the 

water flow regulation algorithm were implemented on the low-cost microcontroller installed in the 

cooling system, since the memory space proved to be more than enough for their implementation. 

Given the memory and CPU speed constraints (8KB SRAM and 16MHz), a computationally 

expensive iterative controller implementation would have been infeasible for the desired sampling 

time (5s). In contrast, the proposed APC required approximately the same memory space as a 

standard unconstrained APC with control horizon of 1. In more detail, the implementation of 

Algorithm 2.3.1, including the monetary cost reduction strategy, required approximately 60% of 

the SRAM for static variables and 30% for non-static variables, resulting in 90% total memory 

usage. 

It is important to note that even though the water flow regulation algorithm was encoded 

in the same microcontroller, this algorithm was transparent to the proposed APC since its 

parameters are not used for the controller design and it represented less than 2% of the memory 

used. Hence, the water flow regulation algorithm was considered part of the controlled physical 
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system. Also, the acquisition times for the water flow and temperatures were close to 4.5s, which 

made 5s the minimum achievable stable sampling time in the microcontroller. A general schematic 

of the implementation of the APC is shown in Fig. 2.3.5. 

The parameters for the APC were set as follows: 𝑒̂𝑚𝑖𝑛 = 0.045, 𝑒̂𝑚𝑎𝑥 = 0.2, 𝑒̂𝑧 =

0.001, 𝑝min = 0.1, 𝑤𝑚𝑖𝑛 = 150 and 𝜇𝑚𝑖𝑛 = 0.1. The eight previous values of outputs and inputs 

yield a total of 24 coefficients. Also, 𝛾𝑚𝑖𝑛 = 3, 𝛾𝑚𝑎𝑥 = 14, 𝑦𝑚𝑖𝑛 = 20, 𝑦𝑚𝑎𝑥 = 40, and 𝒈𝑚𝑖𝑛 and 

𝒈𝑚𝑎𝑥 values were set to  [−0.2/255,−0.2/30]  and [−10/255,−10/30], respectively. The water 

flow and PWM values calculated by the APC were discretized to 0.02L/min and 1unit, 

respectively. Finally, the manipulated variables were constrained to [35,255] for PWM and 

[9,21]L/min for water flow. The minimum achievable stable sampling time of 5 seconds was used 

for these experiments and their results can be observed in Fig. 2.3.6 - Fig. 2.3.8. 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig. 2.3.5. Block diagram representation of the system being controlled and the controller. 
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Fig. 2.3.6. Proposed APC performance with the top 12 servers on, the bottom servers off and 

the air ducts of the latter blocked. 

Fig. 2.6.7. PWM manipulation of APC. Resolution of 1, within the range [35,255] (8-bit 

representation). 
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In Fig. 2.3.6, after the initial 400s when the VWRLS algorithm has obtained more 

information about the system, it can be observed that the APC’s performance tends to improve, 

generating less overshoot. The decreased overshoot can be mainly attributed to the forecasting 

performed by the predictive algorithm of APC. In addition, it is worthwhile noticing that in Fig. 

2.3.7 and Fig. 2.3.8 the variations in steady-state found in the manipulated variables are partially 

caused by the water inlet temperature oscillation, and the APC is capable of incorporating this 

effect through parameter adaptation, implying consistent results with those obtained in simulation. 

Additional experiments were conducted to test the monetary cost reduction algorithm in 

Section 2.3.3 and described in Algorithm 2.3.1. The results from the latter and the conditions for 

implementation are explained next. Assuming a case in which both water and energy have 

associated costs, the monetary cost function of the manipulated variables has the form 𝐶$(𝒖(𝑘)) =

𝒃$𝒖
𝑗, where 𝒃$ contains the cost rate of water per litre/min and an estimate of the associated cost 

rate for the energy spent for fans, 𝒃$ = [5.94(10−6) 𝑐𝑒𝑛𝑡𝑠/𝑠 6.340(10−3) 𝑐𝑒𝑛𝑡𝑠/ (
𝐿

𝑚𝑖𝑛
𝑠)]. 

Fig. 2.3.8. Water flow manipulation of APC. Resolution of 0.02, within the range [9,21]. 
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The latter values were computed assuming 7.3 cents/kWh and 3.84 CAD/m3 as fixed utility prices, 

based on information from the province of Ontario, Canada [66]-[67]. 

The monetary cost reduction algorithm was activated only when the system output 

approximately matched the desired set-point (±0.06) for four consecutive iterations. The 

performance of the APC with the monetary cost reduction, APC$, is shown in Fig. 2.3.9 - Fig. 

2.3.11, and the cumulative monetary reduction through time is observed in Fig. 2.3.12. From them, 

it is possible to observe that the APC$ generates a reduction near 15% of 𝐶$(𝒖(𝑘)) when compared 

to the APC. Considering that a typical large DC has from hundreds to thousands of rack units, the 

savings of an estimated 3700CAD per rack per year are significant. It is important to note that both 

algorithms, APC$ and APC, are similar in general performance. However, since the former slowly 

changes the state of the system by making small adjustments to 𝒖(𝑘), it can become more 

vulnerable to disturbance effects caused by the water temperature, as observed in Fig. 2.3.9. 

Despite this, when the system changes the desired set-point the algorithm that minimizes 𝐶$(𝒖(𝑘)) 

is not active until it returns to the set-point.   

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2.3.9. APC and APC with Monetary optimization performance 
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Fig. 2.3.11. PWM manipulation of APC and APC with Monetary optimization. Resolution of 

1, within the range [35,255] (8-bit representation). 

Fig. 2.3.10. Water flow manipulation of APC and APC with Monetary optimization. 

Resolution of 0.02, within the range [9,21]. 
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The behavior of the manipulated variables for the APC$ are consistent with the 

minimization objective defined by 𝒃$, since the energy price of the water flow is more expensive 

per unit than that linked to the fans. 

The Mean Squared Error of the results for Fig. 2.3.5 and Fig. 2.3.9 can be found in Table 

2.3.2 as Experiment 1 and Experiment 2, respectively.  

 
 

 

 

 

 

 

 

 

 

 

  

 Controller RMSE 

Experiment 1 APC 0.3650 

Experiment 2 
APC 0.0814 

APC$ 0.1088 

Table 2.3.2. RMSE performance of the controllers in the simulation 

 

Fig. 2.3.12. Savings of the APC with  𝐶$(𝒖(𝑘)) enabled, with respect to 𝐶$(𝒖(𝑘)) disabled. 
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Chapter 3  

Neural-Network-based Models for Time Series 

In this chapter a brief introduction to Neural Network models intended for time series is presented. 

Feedforward and Recurrent Neural Network models are covered, emphasizing the LSTM recurrent 

architecture. In addition, the backpropagation (BP) algorithm, used in these models, is concisely 

presented using compact matrix notation to facilitate its readability and interpretation. For 

reference in later chapters standard equations for each architecture, linked to the algorithm, are 

expressed; these equations are also used to describe the models’ capabilities and limitations. 

 

3.1 Feedforward and Recurrent Neural Networks 

In recent years, the field of time series has been through a gradual but important 

transformation, caused in large advances in the machine learning (ML) area. Among these, Neural 

Networks (NN) have emerged as an effective alternative to linear models, specifically due to the 

capability to model nonlinearities in time-dependent data. 

When compared to Adaptive Linear Models (ALM) studied in previous chapters, NN 

models carry out a more direct approach when used to handle nonlinearities, by trying to capture 

their effects on the output, 𝒚(𝑘), using nonlinear functions, 𝜎(∙), usually referred to as activation 
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functions or hidden neurons. Feedforward neural networks (FNN), one of the most popular 

architectures, have shown remarkable results beyond time series modelling and across many 

scientific applications [23]-[26]. One of the simplest FNN architectures, with one hidden layer, 

can be observed in (3.1.1)-(3.1.2) (with its corresponding graphical representation in Fig. 3.1.1):  

𝒉(1)(𝑘) = 𝜎(𝑾0𝒙(𝑘))                      (3.1.1) 

𝒚̂(𝑘) = 𝑾1𝒉
(1)(𝑘)                      (3.1.2) 

where 𝒉(1)(𝑘) ∈ ℝ𝑟, 𝑾0 ∈ ℝ𝑟×𝑛, 𝑾1 ∈ ℝ𝑚×𝑟, 𝜎(∙) is applied elementwise and 𝒙(𝑘) is assumed 

to contain a constant ‘1’ as its last element to introduce a bias. These equations, describing the NN 

architecture, will be referred to from now on as forward equations. 

An FNN with more complex architecture is shown in Fig. 3.1.2 and defined by the forward 

equations (3.1.3)-(3.1.4); here, 𝐿 hidden layers are used, 𝒉(0)(𝑘) = 𝒙(𝑘) and 𝑾𝑙 ∈ ℝ𝑟𝑙+1×𝑟𝑙. 

When more than a few hidden layers are used, such models are referred to as Deep Neural 

Networks (DNN) or Deep Learning models. 

𝒉(𝑙)(𝑘) = 𝜎 (𝑾𝑙−1𝒉
(𝑙−1)(𝑘)) , ∀𝑙 ≥ 1                     (3.1.3) 

𝒚̂(𝑘) = 𝑾𝐿𝒉
(𝐿)(𝑘)                    (3.1.4) 

For the case of most FNN models intended for regression the computation of the learnable 

parameters, 𝑾𝑙, is performed by minimizing the MSE loss function over a training set, ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

=

∑ ‖𝒆(𝑗)‖2𝑘𝑡𝑟𝑎𝑖𝑛
𝑗=1 , while tracking the MSE of a validation set, ℒ𝑀𝑆𝐸

(𝑡𝑣𝑎𝑙)
= ∑ ‖𝒆(𝑗)‖2𝑘𝑣𝑎𝑙

𝑗=𝑘𝑡𝑟𝑎𝑖𝑛+1 , as in 

Section 2.1.1. As FNNs (and NNs in general) are nonlinear models, the loss function is minimized 

using any of the iterative GD-based algorithms, with a vanilla version described in (3.1.5). 
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 𝜽:= 𝜽 − 𝛼𝑖
𝜕ℒ𝑀𝑆𝐸

(𝑡𝑟𝑎𝑖𝑛)

𝜕𝜽
                                  (3.1.5) 

where 𝜽 = 𝑉𝑒𝑐([𝑾0, … ,𝑾𝐿]) is the set of learnable parameters and 𝛼𝑖 is the (possibly varying) 

learning rate at the 𝑖th iteration . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1.1. Graphical representation of a Linear Model (left) and Neural Network with one hidden 

layer (right). 

Fig. 3.1.2. Graphical representation of a Neural Network with 𝐿 hidden layers. 
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When (3.1.5) is used (or one of its variations) on an NN model as defined in (3.1.3)-(3.1.4), 

the changes,  𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/𝜕𝑾, in the front layers (rightmost in Fig. 3.1.2) influence the changes in 

the back layers (leftmost in Fig. 3.1.2), creating the well-known backpropagation effect which 

results from the chain-rule application to 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/𝜕𝜽(𝑝). The associated BP equations for the 

architecture (3.1.3)-(3.1.4) (henceforth referred to as backward equations) are defined in (3.1.6)-

(3.1.7). 

𝜹𝑘0𝑘𝑓

(𝑙) = (𝑾𝑙+1
𝑇 𝜹𝑘0𝑘𝑓

(𝑙+1)
) ∘ 𝑯̇𝑘0𝑘𝑓

(𝑙+1)
                     (3.1.6) 

𝑾𝑙
(𝑝+1)

= 𝑾𝑙
(𝑝)

+ 𝛼𝑝𝜹𝑘0𝑘𝑓

(𝑙) (𝑯𝑘0𝑘𝑓

(𝑙) )
𝑇

                   (3.1.7) 

where 𝑯𝑘0𝑘𝑓

(𝑙) = [𝒉(𝑙)(𝑘0),… , 𝒉(𝑙)(𝑘𝑓)], 𝑯̇𝑘0𝑘𝑓

(𝑙) = [𝒉̇(𝑙)(𝑘0),… , 𝒉̇(𝑙)(𝑘𝑓)], 𝒉̇(𝑙)(𝑘) =

𝜎̇ (𝒛(𝑙−1)(𝑘)), 𝜎̇ (𝒛(𝑙)(𝑘)) = 𝑑𝜎 (𝒛(𝑙)(𝑘)) /𝑑𝒛(𝑙)(𝑘), 𝒛(𝑙)(𝑘) = 𝑾𝑙𝒉
(𝑙)(𝑘), 𝜹𝑘0𝑘𝑓

(𝑙) = 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/

 𝜕𝒛𝑘0𝑘𝑓

(𝑙)
; 𝜹𝑘0𝑘𝑓

(𝐿)
= [𝒆(𝑘0),… , 𝒆(𝑘𝑓)], 𝑯𝑘0𝑘𝑓

(0)
= [𝒙(𝑘0),… , 𝒙(𝑘𝑓)]; “∘” denotes the Hadamard 

product (elementwise multiplication); and the term 𝜹𝑘0𝑘𝑓

(𝑙)
 is the so-called propagated error across 

the network, received at the 𝑙th hidden layer. A high-level graphical representation of the training 

process when using the forward and backward equations is shown in Fig. 3.1.3. 

Even though an FNN can model some nonlinear components in the data, it still has 

limitations regarding learning time dependencies in a time series, since it does not consider the 

interactions between previous and current inputs [68]-[69]. A widely used approach to overcome 

this limitation in the context of time series is the augmented-input approach, 𝒙𝑎𝑢𝑔(𝑘) =

𝑉𝑒𝑐(𝑿𝑘−𝑗:𝑘), by which the previous 𝑗 values in 𝒙(𝑘) are directly introduced to the network in 

order to extract their interactions [68]-[69]. 
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One of the disadvantages of the augmented-input approach is the potential dimensionality 

increase in the layers’ weights, as well as larger number of layers, needed for the FNN to extract 

temporal information. Furthermore, the increase in model size can also make the minimization 

process more complex due to the increase of the search space of the learnable parameters [70]. In 

addition, in this approach the time dependency of 𝒚(𝑘) on the previous input information is limited 

to exactly the 𝑗 previous time instances contained in 𝒙𝑎𝑢𝑔(𝑘). The previous process can also be 

interpreted as the FNN trying to model the mean of the output 𝒚(𝑘) conditioned on previous inputs, 

i.e., 𝐸(𝒚(𝑘)|𝒙(𝑘), . . , 𝒙(𝑘 − 𝑗)), by encoding it in its weights 𝑾𝑙. This potentially requires a large 

number of layers when nonlinear complex time dependencies exist in the data, since the first few 

layers create a linear combination of the input elements. 

Fig. 3.1.3. Graphical representation of an FNN training process: forward pass (left) and 

backward pass (right).   
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One option to model nonlinear time dependencies in the area of time series, following an 

NN-based model, is the Recurrent Neural Network (RNN) model, a type of NN that tries to extend 

the limits of FNN models in capturing long-term dependencies. RNNs are characterized by using 

feedback connections within hidden layers through recurrent matrices, 𝑼𝑙 ∈ ℝ𝑟𝑙×𝑟𝑙, [71]-[72] (see 

Fig. 3.1.4). Through this connection, the output 𝒚̂(𝑘) becomes dependent not only on the current 

input 𝒙(𝑘) but also on the extracted information from previous input values 𝒙(𝑘 − 𝑗). The vanilla 

RNN forward equations of an 𝐿-hidden layer architecture, resulting from using (3.1.5) to minimize 

ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

, are defined in (3.1.8)-(3.1.9). 

𝒉(𝑙)(𝑘) = 𝜎 (𝑾𝑙−1𝒉
(𝑙−1)(𝑘) + 𝑼𝑙𝒉

(𝑙)(𝑘 − 1)) , ∀𝑙 ≥ 1                   (3.1.8) 

𝒚̂(𝑘) = 𝑾𝐿𝒉
(𝐿)(𝑘)                    (3.1.9) 

 

 

 

 

 

 

 

 

 

Fig. 3.1.4. Graphical representation of an FNN with augmented input (left) and RNN (right) 
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The vanilla RNN backward equations, resulting from using (3.1.5) to minimize ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

, 

are described in (3.1.10)-(3.1.14), where 𝜹𝒉
(𝑙)(𝑘) =  𝜕ℒ𝑀𝑆𝐸

(𝑡𝑟𝑎𝑖𝑛)
/ 𝜕𝒉(𝑙)(𝑘), 𝜹𝒉

(𝐿)(𝑘) = 𝒆(𝑘) and 

𝒉(0)(𝑘) = 𝒙(𝑘).  

𝜹𝒉
(𝑙)(𝑘) = 𝑾𝑙

𝑇 (𝜹𝒉
(𝑙+1)(𝑘) ∘ 𝒉̇(𝑙+1)(𝑘)) + 𝑼𝑙

𝑇 (𝜹𝒉
(𝑙)(𝑘 + 1) ∘ 𝒉̇(𝑙)(𝑘 + 1))              (3.1.10) 

𝜹𝑾
(𝑙)(𝑘) = (𝜹𝒉

(𝑙+1)(𝑘) ∘ 𝒉̇(𝑙+1)(𝑘))𝒉(𝑙)(𝑘)𝑇                                          (3.1.11) 

𝜹𝑼
(𝑙)(𝑘) = (𝜹𝒉

(𝑙)(𝑘 + 1) ∘ 𝒉̇(𝑙)(𝑘 + 1))𝒉(𝑙)(𝑘)𝑇                 (3.1.12) 

𝑾𝑙
(𝑝+1)

= 𝑾𝑙
(𝑝)

+ 𝛼𝑝 ∑ 𝜹𝑾
(𝑙)(𝑗)

𝑘𝑓

𝑗=𝑘0
                                          (3.1.13) 

𝑼𝑙
(𝑝+1)

= 𝑼𝑙
(𝑝)

+ 𝛼𝑝 ∑ 𝜹𝑾
(𝑙)(𝑗)

𝑘𝑓

𝑗=𝑘0
                                (3.1.14) 

In the previous equations, (3.1.10) is the propagated error through time across the RNN, 

which is why backpropagation for RNN models is referred to as backpropagation through time 

(BPTT) [73]. 

RNN models have been successfully applied to problems in which nonlinear time 

dependencies need to be modeled accurately in forecasting settings [74]-[76]. However, when their 

vanilla architecture is used, (3.1.8)-(3.1.9), they experience practical limitations during their 

training phase, namely the Vanishing Gradient (VG) and Exploding Gradient (EG) problems [77]-

[78]. These problems are linked to the magnitude of the gradients 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/𝜕𝑾𝑙

(𝑝)
 used to update 

the weights in the NN. As its name suggests, the VG problem arises when the magnitude of the 

gradient is so small that changes in the weights become negligible during the training process, 

limiting the capability of the model to learn long-term dependencies and/or making the 

convergence extremely slow. On the other hand, the EG problem occurs whenever the magnitude 
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of the gradient becomes large enough to create large oscillations in the learnable parameters, 𝜽, 

potentially leading to numerical instabilities.  

In more depth, one of the main causes of the VG and EG problems is the consecutive matrix 

multiplication associated to the propagated gradients across layers [76], 𝛿𝑘0𝑘𝑓

(𝑙)
, in multilayer FNNs 

and/or the propagated gradients through time in RNNs, 𝛿ℎ
(𝑙)(𝑘). These propagations can be 

observed in (3.1.15)-(3.1.16) where the propagated gradients’ effects across, respectively, two 

layers and two-time instances, are explicitly shown. 

𝜹𝑘0𝑘𝑓

(𝑙) = (𝑾𝑙+1
𝑇 ((𝑾𝑙+2

𝑇 𝜹𝑘0𝑘𝑓

(𝑙+2)
) ∘ 𝑯̇𝑘0𝑘𝑓

(𝑙+2)
)) ∘ 𝑯̇𝑘0𝑘𝑓

(𝑙+1)
  

          = (𝑾𝑙+1
𝑇 𝑾𝑙+2

𝑇 𝜹𝑘0𝑘𝑓

(𝑙+2)
) ∘ (𝑾𝑙+1

𝑇 𝑯̇𝑘0𝑘𝑓

(𝑙+2)
) ∘ 𝑯̇𝑘0𝑘𝑓

(𝑙+1)
                    (3.1.15) 

𝜹𝒉
(𝑙)(𝑘) = 𝑾𝑙

𝑇 (𝜹𝒉
(𝑙+1)

(𝑘) ∘ 𝒉̇(𝑙+1)(𝑘)) 

                  +𝑼𝑙
𝑇 ((𝑾𝑙

𝑇 (𝜹𝒉
(𝑙+1)(𝑘 + 1) ∘ 𝒉̇(𝑙+1)(𝑘 + 1))) ∘ 𝒉̇(𝑙)(𝑘 + 1)) 

    +𝑼𝑙
𝑇 ((𝑼𝑙

𝑇 (𝜹𝒉
(𝑙)(𝑘 + 2) ∘ 𝒉̇(𝑙)(𝑘 + 2))) ∘ 𝒉̇(𝑙)(𝑘 + 1))               (3.1.16) 

From (3.1.15)-(3.1.16) it can be observed that since the eigenvalues of the matrices 

{𝑾𝑙 , 𝑼𝑙} are not bounded, the consecutive products can lead to exponential growth or decay in 

their eigenvalues and consequently their elements. Also, in the context of VG, whenever the 

magnitude of the activation function’s derivative, |𝜎̇(∙)|, is less than 1 the matrices 𝑯̇𝑘0𝑘𝑓

(𝑙)
 and 

vectors 𝒉̇(𝑙)(𝑘) will contain elements smaller than 1 in magnitude, decreasing the magnitude of the 

propagated gradients due to the element-wise multiplication and hence potentially promoting VG 

effects. 
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It is important to highlight that in RNNs, due to the recurrent connections, the gradient 

propagation across time, even when a single layer is used, becomes equivalent to that observed in 

an NN with several hidden layers, as seen in Fig. 3.1.5-Fig. 3.1.6, where the forward and backward 

components of the training process are depicted. This is sometimes referred to as RNN unrolling 

[79] and shows the similarity between RNNs and DNNs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1.5. High-level graphical representation of a one-hidden-layer RNN and its ‘unrolled’ 

equivalency during the forward part of the training process. 
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Due to the similarity between RNNs and DNNs in terms of the gradient propagation, 

practical measures are often taken to mitigate the VG and EG problems, one of which is to restrict 

the process of BPTT to relatively small time windows, a process known as Truncated Back 

Propagation Through Time (TBPTT) [80]-[81]. By implementing TBPTT, not only are the VG and 

EG problems diminished but also the computational overhead/auxiliary-memory associated to the 

BPTT (3.1.10)-(3.1.12), caused by the hidden-state related values (𝒉(𝑙)(𝑘), 𝒉̇(𝑙)(𝑘)), is decreased 

[27]. 

3.2 LSTM 

Even though TBPTT facilitates the use of vanilla RNN, the presence of VG and EG 

problems can limit its potential [27]. In order to overcome the previous limitations and improve 

the performance of RNNs, an architecture known as Long Short-Term Memory (LSTM) was 

introduced in the late 90s [27]-[29], standing out due to its potential to exploit long-term 

Fig. 3.1.6. High-level graphical representation of a one-hidden-layer RNN and its ‘unrolled’ 

equivalency during the backward part of the training process. 
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dependencies and producing competitive results in a wide range of applications [30]-[34]. The 

practical success of LSTMs has been mostly attributed to its capability to mitigate the EG and VG 

problems [30], [82]. This capability is mostly associated to an ‘internal’ vector state 𝒄(𝑘), often 

referred to as cell units, that partly depends on its own previous immediate value 𝒄(𝑘 − 1). 

Since the LSTM was first introduced variations with different levels of success have been 

proposed [82]-[83]; however, the most common single-layer LSTM architecture (3.2.1)- (3.2.6) 

can be mostly described by four different single-layer RNNs of equal dimensions, 

{𝒂(𝑘), 𝒊(𝑘), 𝒇(𝑘), 𝒐(𝑘)}, referred to as ‘gate units’ and the previously mentioned internal state 

𝒄(𝑘). The gate units are interconnected in an element-wise fashion, they depend on the same 

hidden states, 𝒉(𝑘 − 1), and are used to regulate the ‘flow’ of information across time in the 

network. Additionally, a linear relation is used to create the recursive temporal dependence in the 

cell units 𝒄(𝑘), responsible for creating a flow of information from previous inputs, 𝒙(𝑘 − 𝑗),  into 

the current output, 𝒚(𝑘), during the training process [27]-[28].  

𝒂(𝑘) = 𝜎𝑡ℎ(𝑾𝒂𝒙(𝑘) + 𝑼𝒂𝒉(𝑘 − 1) + 𝒃𝑎)                          (3.2.1) 

𝒊(𝑘) = 𝜎𝑠𝑖𝑔(𝑾𝒊𝒙(𝑘) + 𝑼𝒊𝒉(𝑘 − 1) + 𝒃𝒊)                               (3.2.2) 

𝒇(𝑘) = 𝜎𝑠𝑖𝑔(𝑾𝒇𝒙(𝑘) + 𝑼𝒇𝒉(𝑘 − 1) + 𝒃𝒇)                            (3.2.3) 

𝒐(𝑘) = 𝜎𝑠𝑖𝑔(𝑾𝒐𝒙(𝑘) + 𝑼𝒐𝒉(𝑘 − 1) + 𝒃𝒐)                            (3.2.4) 

𝒄(𝑘) = 𝒇(𝑘) ∘ 𝒄(𝑘 − 1) + 𝒊(𝑘) ∘ 𝒂(𝑘)                          (3.2.5) 

𝒉(𝑘) = 𝒐(𝑘) ∘ 𝜎𝑡ℎ(𝒄(𝑘))                                          (3.2.6) 

𝒚̂(𝑘) = 𝑾𝑦𝒉(𝑘)                      (3.2.7) 
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where 𝜎𝑠𝑖𝑔(𝑧) = 1/(1 + 𝑒−𝑧) and 𝜎𝑡ℎ(𝑧) = 𝑡𝑎𝑛ℎ(𝑧) are element-wise functions, 𝑾∗, 𝑼∗, belong 

to ℝ𝑛ℎ×𝑛, ℝ𝑛ℎ×𝑛ℎ, respectively and 𝑛ℎ denotes the number of hidden units in the LSTM layer. 

Regarding (3.2.2)-(3.2.4), the regulation of information due to the gates can be interpreted 

in the following manner. First, the input gate, 𝒊(𝑘), gives a degree of relevance to the activation 

gate 𝒂(𝑘). Then, the forget gate, 𝒇(𝑘), determines how much past information contained in the 

previous cell units’ values, 𝒄(𝑘 − 1), will be carried into the current iteration. Finally, the output 

gate, 𝒐(𝑘), dynamically scales the nonlinear transformed cell state, 𝜎𝑡ℎ(𝒄(𝑘)). Each of these gates 

have their own associated input and feedback matrices, 𝑾∗ 𝑼∗. A graphical representation of the 

LSTM architecture is shown in Fig. 3.2.1. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2.1. A standard single-layer LSTM architecture, solid arrows represent matrix 

multiplication. 
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The backward equations resulting from implementing BP in the LSTM architecture, under 

the loss function ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

, are expressed in (3.2.8)- (3.2.17). 

𝜹𝒉(𝑘) = 𝑾𝑦
𝑇𝒆(𝑘)                       (3.2.8) 

𝜹𝒐(𝑘) = 𝜹𝒉(𝑘) ∘ 𝜎𝑡ℎ(𝒄(𝑘))                      (3.2.9) 

𝜹𝒄(𝑘) = 𝜹𝒉(𝑘) ∘ 𝒐(𝑘) ∘ 𝜎̇𝑡ℎ(𝒄(𝑘)) + 𝜹𝒄(𝑘 + 1) ∘ 𝒇(𝑘 + 1)               (3.2.10) 

𝜹𝒊(𝑘) = 𝜹𝒄(𝑘) ∘ 𝒂(𝑘)                    (3.2.11) 

𝜹𝒇(𝑘) = 𝜹𝒄(𝑘) ∘ 𝒄(𝑘 − 1)                    (3.2.12) 

𝜹𝒂(𝑘) = 𝜹𝒄(𝑘) ∘ 𝒊(𝑘)                    (3.2.13) 

𝜹𝒛(𝑘) = 𝜹𝝈(𝑘) ∘ 𝝈 ̇ (𝑘)                               (3.2.14) 

𝜹𝒙𝒉
(𝑘) = 𝑽𝑇𝜹𝒛(𝑘)                     (3.2.15) 

𝜹𝑽(𝑘) = 𝜹𝒛(𝑘)𝒙𝒉(𝑘)                     (3.2.16) 

𝑽:= 𝑽 + 𝛼𝑝 ∑ 𝜹𝑽(𝑗)
𝑘𝑓

𝑗=𝑘0
                               (3.2.17) 

where 𝜹𝒉(𝑘) = 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/ 𝜕𝒉(𝑘), 𝜹𝒐(𝑘) =  𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/ 𝜕𝒐(𝑘), 𝜹𝒄(𝑘) =  𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/ 𝜕𝒄(𝑘), 

𝜹𝒂(𝑘) =  𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/ 𝜕𝒂(𝑘), 𝜹𝒊(𝑘) =  𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/ 𝜕𝒊(𝑘), 𝜹𝒛(𝑘) =  𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/ 𝜕𝒛(𝑘), 𝜹𝒛(𝑘) =

 𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/ 𝜕𝒙𝒉(𝑘), 𝜹𝑽(𝑘) =  𝜕ℒ𝑀𝑆𝐸
(𝑡𝑟𝑎𝑖𝑛)

/ 𝜕𝑽(𝑘), 𝒛(𝑘) = 𝑽𝒙𝒉(𝑘), 𝒙𝒉(𝑘) = [
𝒙(𝑘)

𝒉(𝑘 − 1)
], 𝑽 =

[

𝑽𝑎

𝑽𝑖

𝑽𝑓

𝑽𝑜

], 𝑽∗ = [𝑾∗, 𝑼∗], 𝜹𝝈(𝑘) =

[
 
 
 
𝜹𝒂(𝑘)

𝜹𝒊(𝑘)

𝜹𝒇(𝑘)

𝜹𝒐(𝑘)]
 
 
 

, 𝝈 ̇ (𝑘) =

[
 
 
 
 
 
𝜎̇𝑡ℎ(𝑽𝑎𝑰(𝑘))

𝜎̇𝑠𝑖𝑔(𝑽𝑖𝑰(𝑘))

𝜎̇𝑠𝑖𝑔 (𝑽𝑓𝑰(𝑘))

𝜎̇𝑠𝑖𝑔(𝑽𝑜𝑰(𝑘))]
 
 
 
 
 

.  
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As observed in (3.2.10) the propagated error to the internal state 𝒄(𝑘) has two components, 

the propagated error from the cell’s output 𝜹𝒉(𝑘) and the propagated error from the next state’s 

value 𝜹𝒄(𝑘 + 1). The latter component is referred to in the literature as the constant error carousel, 

since 𝜹𝒄(𝑘 + 1) is multiplied by the forget gate value 𝒇(𝑘 + 1) and no additional unconstrained 

matrix is present in this part of the operation. This process is one of the main reasons why this 

architecture can significantly mitigate the EG problem compared to vanilla RNNs, since the forget 

gate regulates the degree to which the incoming gradient is forgotten through this operation. In 

more detail, since 𝟎𝑛ℎ×1 ≤ 𝒇(𝑘) ≤ 𝟏𝑛ℎ×1, the operation will not contribute to the generation of 

EG. It is important to highlight that even though LSTM architectures are more appropriate to 

handle gradient implementation problems, TBPTT is still used in practice during the training phase 

to further handle the VG and EG problems. 

As expressed before, variations of LSTM have arisen through the years such as 

bidirectional LSTMs [82] and LSTM with peepholes [28], where the latter variation replaces the 

term 𝒉(𝑘 − 1) by 𝒄(𝑘 − 1) in (3.1.1)-(3.1.4), allowing the gates to have direct access to the 

constant error carousel when BP is implemented. Also, a simplified and very popular version of 

the LSTM architecture was proposed in [28], known as Gated Recurrent Unit (GRU), which uses 

one less gate than the LSTM, decreasing the number of parameters. These architectures have 

shown similar performance to the LSTM for various applications [30]-[34]. 

One of the main challenges when using LSTM networks is their complexity in terms of the 

number of parameters needed in their structure, which implies the need for more computational 

power to use them as well as the need for Graphics Processing Units (GPUs) to avoid slow training 

times [84]-[86]. Also, as is the case for most NN-based models, LSTMs are still considered black-

box models due to their capability to approximate a wide range of functions but with low 
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interpretability when compared to LMs. For instance, two NN models with the same topology but 

significantly different learnable parameter values can generate similar results [87]-[88]. 

Consequently, there is not a simple link between the parameter values in these models and the 

function being approximated. 
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Chapter 4  

E-LSTM: Extended LSTM 

In this chapter an extended LSTM architecture designed to facilitate capturing long-term 

dependencies is proposed, named Extended Long-Short Term Memory (ELSTM). This extension 

is performed by explicitly increasing the connectivity of the states in the LSTM, 𝒄(𝑘), to their own 

values at a lag of 𝑝 time units, 𝒄(𝑘 −  𝑝). The increased connectivity in the E-LSTM aims to 

reduce the number of parameters in relation to the LSTM network, while achieving a similar 

performance to an LSTM model. In addition to describing the E-LSTM architecture, a performance 

comparison with the LSTM network and alternative models is provided, including the number of 

parameters needed in each model, through simulations using synthetic and real-world time-series 

data. It is important to clarify that a large amount of the material in this chapter has also been 

published in [89], where the results are more compactly presented.  

 

4.1 E-LSTM Architecture 

4.1.1 Motivation and conceptualization 

As discussed in Chapter 3, LSTMs have produced competitive results in a wide range of 

applications [30]-[37], but at the price of using a large number of parameters in their architectures 



 

63 

 

[90]-[91]. For instance, in datasets containing short-term and long-term dependencies, LSTM 

networks might require on the order of several thousands of parameters [84]-[85] to extract the 

information about both dependence types, due to the temporal-explicit connectivity in the LSTM 

architecture being only immediate.  For cases in which information about time dependencies can 

be obtained using statistical techniques, the temporal-explicit connectivity of standard LSTMs 

might create an inherent barrier to extract this information efficiently, which could be one of the 

potential causes behind the need for a large number of parameters to achieve an acceptable 

performance.  

In previous years, approaches have been proposed to exploit long-term dependencies, some 

of which encompass stacked layers of NNs, RNNs or LSTMs designed to handle a variety of 

datasets [92]–[95] or to solve specific practical problems [96]-[97]. However, none of the 

strategies modify the inner mechanism of the LSTMs in terms of the temporal connectivity, leaving 

them susceptible to using a large number of  parameters.  

Clockwork RNN (CW-RNN), another well-established approach in the RNN field [98]–

[100], is a model designed to decrease the number of parameters in its architecture, by reducing 

the connectivity between hidden units and dividing the network into modules that activate at 

different frequencies. For some datasets, this approach has shown to generate competitive results 

when compared to LSTM networks, while noticeably reducing the number of parameters. 

 In the context of exploiting statistical information more efficiently, an extension to the 

LSTM architecture is proposed, named Extended Long-Short Term Memory (E-LSTM). This 

architecture focuses on extending the temporal-explicit connectivity. The E-LSTM is designed to 

facilitate capturing long-term dependencies, under the assumption that the temporal location of 

those dependencies is known or that it can be estimated during data preprocessing, a more practical 
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assumption used in this chapter. The addition of the dependence information is performed by 

connecting the cell states in the LSTM, 𝒄(𝑘), to their own value with 𝑝 lags, 𝒄(𝑘 − 𝑝).  

The increased temporal connectivity in the E-LSTM (as opposed to the reduced 

connectivity in the CW-RNN approach) aims to reduce the number of parameters while achieving 

a similar performance to an LSTM model. In this regard, an approach increasing the connectivity 

within the LSTM architecture has been previously proposed [93], but the modification was limited 

to linearly connect the current and immediately previous LSTM outputs. 

 

4.1.2 Forward equations and conceptualization 

As mentioned in Section 3.2, the propagated error to the cell states 𝒄(𝑘) (3.2.10) is caused 

by two other propagated-error components: the LSTM output 𝜹𝒉(𝑘) and the next state’s value 

𝜹𝒄(𝑘 + 1). The latter component is of special relevance, since its effect is regulated by the forget 

gate 𝒇(𝑘), controlling how much the incoming propagated error is diminished. Therefore, when 

an LSTM is used to model long-term dependencies, it can be challenging to identify to what extent 

it considers the effect of distant past values,  

Even though 𝒇(𝑘) mitigates the EG problem it can also exponentially decrease the effect 

of long-term dependencies, specifically, the effect of a previous cell state 𝒄(𝑘 − 𝑝) into the current 

state 𝒄(𝑘). The latter can be observed in the first term on the right-hand side of (4.1.1), resulting 

from implementing backward substitution for (3.2.5). 

𝒄(𝑘) = 𝒄(𝑘 − 𝑝) ∘ ∏ 𝒇(𝑘 − 𝑗)𝑝−1
𝑗=0   

            +𝒊(𝑘) ∘ 𝒂(𝑘) + ∑ (𝒊(𝑘 − 𝑗) ∘ 𝒂(𝑘 − 𝑗) ∘ ∏ 𝒇(𝑘 − 𝑖)
𝑗−1
𝑖=0 )𝑝−1

𝑗=1                                    (4.1.1) 
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Although forgetting previous information can be useful to prevent large accumulations 

from being created, due to the sum involving the terms of the form 𝒊(𝑘 − 𝑗) ∘ 𝒂(𝑘 − 𝑗), this could 

potentially erase relevant long-term information. The latter effect is more likely to occur when few 

hidden units are used, since the dimension of the forget gate vector is equal to the number of hidden 

units, 𝑛ℎ. Therefore, with smaller 𝑛ℎ it is less likely to have sufficiently large forget-gate values 

(close to one) in the multiplicative effect. The latter situation can imply that having more units 

(and consequently a larger number of parameters) might allow long-term dependencies to be 

captured in an LSTM network. 

As an initial approach to oppose the exponentially decreasing effect of previous cell states, 

𝒄(𝑘 − 𝑝), the recursive dependence defining the cell state (3.2.5) could be modified by creating a 

direct connection to a previous value, as expressed in (4.1.2). This modification could improve 

preserving/capturing long-term dependencies across a time series. In (4.1.2) a new additional 

forget gate, 𝒇𝑝(𝑘), is used to dynamically regulate the effect of past information carried out by 

𝒄(𝑘 − 𝑝) and follows the same mathematical structure defined by the original gates, as seen in 

(4.1.3). 

𝒄(𝑘) = 𝒇(𝑘) ∘ 𝒄(𝑘 − 1) + 𝒇𝑝(𝑘) ∘ 𝒄(𝑘 − 𝑝) + 𝒊(𝑘) ∘ 𝒂(𝑘)                 (4.1.2) 

𝒇𝑝(𝑘) = 𝜎𝑠𝑖𝑔 (𝑾𝑓𝑝𝒙(𝑘) + 𝑼𝑓𝑝𝒉(𝑘 − 1))                              (4.1.3) 

Although the term 𝒇𝑝(𝑘) ∘ 𝒄(𝑘 − 𝑝) in (4.1.2) seems an appropriate generalization of the 

recursive equation in (3.2.5), it increases the likelihood of saturation in the hidden units, 𝒉(𝑘) =

𝜎𝑠𝑖𝑔(𝒄(𝑘)). This potential saturation is linked to exponential growth in the values of 𝒄(𝑘), which 

can occur when the sum of 𝒇(𝑘) and 𝒇𝑝(𝑘) is consistently greater than one across consecutive 

forward iterations. The latter cause can be eliminated by replacing both forget gates by constrained 
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versions, 𝒇̂(𝑘) and 𝒇̂𝑝(𝑘), as defined in (4.1.4) and resulting in the cell-state equation (4.1.5) that 

will be used as the core of the E-LSTM network. 

𝒄(𝑘) = 𝒇̂(𝑘) ∘ 𝒄(𝑘 − 1) + 𝒇̂𝑝(𝑘) ∘ 𝒄(𝑘 − 𝑝) + 𝒊(𝑘) ∘ 𝒂(𝑘)                  (4.1.4) 

𝒇̂(𝑘) + 𝒇̂𝑝(𝑘) ≤ 𝟏𝑛ℎ×1                                  (4.1.5) 

where  𝒇̂(𝑘)  =  𝒇(𝑘) ∘ 𝔀𝑓(𝑘),  𝒇̂𝑝(𝑘)  =  𝒇𝑝(𝑘) ∘ 𝔀𝑓𝑝
(𝑘), and 𝔀𝑓(𝑘), 𝔀𝑓𝑝

(𝑘)  are 𝑛ℎ-

dimensional dynamic normalizing factors, satisfying the constraints in (4.1.6)-(4.1.7). 

𝔀𝑓(𝑘), 𝔀𝑓𝑝
(𝑘) ≤ 𝟏𝑛ℎ×1                                                               (4.1.6) 

𝔀𝑓(𝑘) + 𝔀𝑓𝑝
(𝑘) = 𝟏𝑛ℎ×1                                                                     (4.1.7) 

Among a variety of candidates for the normalizing factors 𝔀𝑓(𝑘) and 𝔀𝑓𝑝
(𝑘) (constant 

functions, linear functions, neural networks, etc.), a simple normalization (4.1.8)-(4.1.9) using both 

forget gates is used. This normalization not only avoids additional parameters in the E-LSTM 

network but also causes the following two useful effects: competition for transmitting relevant 

information between short-term and long-term relations is directly promoted and the forget gate 

values directly influence each other during the training process, as will be seen in the next section. 

𝔀𝑓(𝑘) =
𝒇(𝑘)

𝒇(𝑘)+𝒇𝑝(𝑘)
                      (4.1.8) 

𝔀𝑓𝑝
(𝑘) =

𝒇𝑝(𝑘)

𝒇(𝑘)+𝒇𝑝(𝑘)
                       (4.1.9) 

where the divisions are elementwise.  
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Through the explicit temporal connectivity of the E-LSTM architecture, (4.1.4)-(4.1.9), the 

likelihood of forgetting relevant information in the distant past can be decreased by creating a 

‘bridge’ to it. A high-level representation of this process is depicted in Fig. 4.1.1. 

 

 

 

 

 

4.1.3 Backward equations and analysis 

Since the cell-state equation is different in the E-LSTM and an additional gate is used, 

existing BP will be modified (4.1.10)-(4.1.11) and a new BP is generated (4.1.12),  which are 

linked to the forward equations described in (4.1.4)-(4.1.9). 

𝜹𝒄(𝑘) = 𝜹𝒉(𝒌) ∘ 𝒐(𝑘) ∘ 𝜎̇𝑡ℎ(𝒄(𝑘)) + 𝜹𝒄(𝑘 + 1) ∘ 𝒇̂(𝑘 + 1) + 𝜹𝒄(𝑘 + 𝑝) ∘ 𝒇̂𝑝(𝑘 + 𝑝)       (4.1.10) 

𝜹𝒇(𝑘) = 𝜹𝒄(𝑘) ∘ ((2𝔀𝑓(𝑘) − 𝔀𝑓
2(𝑘)) ∘ 𝒄(𝑘 − 1) − 𝔀𝑓𝑝

2 (𝑘) ∘ 𝒄(𝑘 − 𝑝))             (4.1.11) 

𝜹𝒇𝑝
(𝑘) = 𝜹𝒄(𝑘) ∘ ((2𝔀𝑓𝑝

(𝑘) − 𝔀𝑓𝑝
2 (𝑘)) ∘ 𝒄(𝑘 − 𝑝) − 𝔀𝑓

2(𝑘) ∘ 𝒄(𝑘 − 1))                     (4.1.12) 

where (4.1.10) and (4.1.11) replace (3.2.10) and (3.2.12), respectively and (4.1.12) is used to 

update the learnable parameters of the new gate 𝑓𝑝(𝑘), i.e., 𝑽𝑓𝑝. The power operation is applied 

element-wise in (4.1.11)-(4.1.12). 

Fig. 4.1.1. Proposed E-LSTM network when “unrolled” through 2𝑝 + 1 iterations. 



 

68 

 

The remaining backpropagation equations linked to the LSTM remain the same for the E-

LSTM, but the matrices 𝑽, 𝜹𝝈(𝑘) and 𝝈 ̇ (𝑘), defined in Section 3.2, are modified as indicated next: 

𝑽 =  

[
 
 
 
 
𝑽𝑎

𝑽𝑖

𝑽𝑓

𝑽𝑓𝑝

𝑽𝑜 ]
 
 
 
 

, 𝜹𝝈(𝑘) =

[
 
 
 
 
 
𝜹𝒂(𝑘)

𝜹𝒊(𝑘)

𝜹𝒇(𝑘)

𝜹𝒇𝑝
(𝑘)

𝜹𝒐(𝑘) ]
 
 
 
 
 

 and 𝝈 ̇ (𝑘) =

[
 
 
 
 
 
 
 

𝜎̇𝑡ℎ(𝑽𝑎𝑰(𝑘))

𝜎̇𝑠𝑖𝑔(𝑽𝑖𝑰(𝑘))

𝜎̇𝑠𝑖𝑔 (𝑽𝑓𝑰(𝑘))

𝜎̇𝑠𝑖𝑔 (𝑽𝑓𝑝𝑰(𝑘))

𝜎̇𝑠𝑖𝑔(𝑽𝑜𝑰(𝑘)) ]
 
 
 
 
 
 
 

. 

When examining the propagated error (4.1.11), it is possible to verify that even when 𝒇(𝑘) 

is close to zero the magnitude of 𝜹𝒇(𝑘) might not necessarily reduce, since it is influenced by 

𝔀𝑓𝑝
2 (𝑘), and consequently by 𝒇(𝑘); an analogous situation occurs for 𝜹𝒇𝑝

(𝑘) in (4.1.12). In 

practical terms, this situation is desirable during the training process since it can aid 𝒇(𝑘) and 

𝒇𝑝(𝑘) in avoiding local optima when they have transitory near-zero values. 

 

4.1.4 Overhead analysis and training implementation 

The number of learnable parameters in a single-layer E-LSTM network is expressed in 

(4.1.13). 

 𝑛𝛉
(𝐸−𝐿𝑆𝑇𝑀)

= 5(𝑛ℎ + 𝑛𝑖𝑛𝑝𝑢𝑡 + 1)𝑛ℎ                                                                         (4.1.13) 

The training of the E-LSTM is similar to that of the LSTM. However, due to the modified 

relationship in (4.1.4), the values associated with previous internal states, 𝒄(𝑘 − 1), ..., 𝒄(𝑘 − 𝑝), 

used during forward and backward passes in BP need to be either explicitly stored or re-computed. 

In the first case, storing up to 𝑝 previous values would imply an increase in the memory needed 

for the BP implementation, compared to a standard LSTM. Specifically, if the number of forward 
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iterations is equal to the sequence length, 𝒮, then the total number of auxiliary variables used to 

store previous values of 𝒄(𝑘) during the forward pass of the E-LSTM training is as expressed in 

(4.1.14). 

𝑛
ϕ⃗⃗ 
(𝐺𝐼−𝐿𝑆𝑇𝑀)

= 𝒮𝑛ℎ                     (4.1.14) 

If memory becomes a constraint for the BP implementation, due to large sequence lengths 

or a large number of hidden units, it may be advantageous to re-compute previous values of the 

cell state, changing the number of auxiliary variables to be that in (4.1.15). 

𝑛
ϕ⃗⃗ 
(𝐺𝐼−𝐿𝑆𝑇𝑀)

= 𝑝𝑛ℎ                     (4.1.15) 

For the backward pass the overhead analysis can be performed similar to the forward pass. 

The resulting memory usage due to auxiliary internal states, 𝑛
ϕ⃗⃗⃖

(𝐺𝐼−𝐿𝑆𝑇𝑀)
, is as described in (4.1.16) 

for the computation prioritization approach. 

𝑛
ϕ⃗⃗⃖

(𝐺𝐼−𝐿𝑆𝑇𝑀)
= 𝒮𝑛ℎ                     (4.1.16) 

For the memory prioritization approach, the resulting auxiliary internal states is indicated 

by (4.1.17). 

𝑛
ϕ⃗⃗⃖

(𝐺𝐼−𝐿𝑆𝑇𝑀)
= 𝑝𝑛ℎ                                                     (4.1.17) 

For the training process, a validation set is used as one of the stopping criteria, specifically, 

using a threshold 𝑛𝑓𝑎𝑖𝑙𝑠 for the maximum number of consecutive fails on decreasing the validation-

set loss function, ℒ (𝑣𝑎𝑙), as defined in Algorithm 4.1. 
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Algorithm 4.1: E-LSTM training 

Input: {(𝒙(1), 𝒚(1)),… , (𝒙(𝑛), 𝒚(𝑛))} //assumed to be normalized// 

Set values:  

   𝑛ℎ                          //number of hidden neurons 

   𝑛𝑠𝑠                         //number of subsequences 

   𝑠𝑠𝑙𝑒𝑛𝑔𝑡ℎ                 //training subsequence length 

   𝐼𝑚𝑎𝑥                       //maximum number of iterations before stopping 

   𝑛𝑓𝑎𝑖𝑙𝑠                     //number of consecutive fails 

   𝑛𝑓𝑎𝑖𝑙𝑠−𝑚𝑎𝑥             //max number of consecutive fails before stopping 

   𝐸𝑡𝑟𝑎𝑖𝑛−𝑚𝑖𝑛 ← 𝑖𝑛𝑓 //minimum training MSE 

   𝐸𝑣𝑎𝑙−𝑚𝑖𝑛 ← 𝑖𝑛𝑓    //minimum validation MSE 

Initialize: 𝜽           //random initialization of weights 

Divide dataset: 𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙, 𝐷𝑡𝑒𝑠𝑡 //division keeping temporal order 

for 𝑗 = 1 to 𝐼𝑚𝑎𝑥 

   for 𝑙 = 1 to 𝑛𝑠𝑠 

      //-----------------------Forward pass---------------------------// 

      Extract: 𝐷𝑡𝑟𝑎𝑖𝑛
(𝑙)

 //Extract 𝑙th training subsequence from 𝐷𝑡𝑟𝑎𝑖𝑛 

      for 𝑘 = 1 to  𝑠𝑠𝑙𝑒𝑛𝑔𝑡ℎ 

         Compute: 𝒂(𝑘), 𝒊(𝑘),𝔀𝑓(𝑘),𝔀𝑓𝑝
(𝑘) 𝒇̂(𝑘), 𝒇̂𝑝(𝑘), 𝒐(𝑘), 𝒄(𝑘), 𝒉(𝑘) 

      Compute:𝐸𝑡𝑟𝑎𝑖𝑛 // using ℒ (𝑡𝑟𝑎𝑖𝑛) for the 𝑙th subsequence 

      //-----------------------Backward pass-------------------------// 

      for 𝑘 = 1 to 𝑠𝑠𝑙𝑒𝑛𝑔𝑡ℎ 

         Compute: 𝜹𝒉(𝑘), 𝜹𝒐(𝑘), 𝜹𝒄(𝑘), 𝜹𝒊(𝑘), 𝜹𝒇(𝑘), 𝜹𝒇𝑝
(𝑘), 𝜹𝒂(𝑘), 𝜹𝒛(𝑘), 𝜹𝒛(𝑘), 𝜹𝜽(𝑘) 

      𝜹𝜽 ← ∑ 𝜹𝜽(𝑗)
 𝑠𝑠𝑙𝑒𝑛𝑔𝑡ℎ

𝑗=1
 

      Update: 𝜽    //using any optimizer designed for this purpose 

   //-----------------Validation Set Performance------------------// 

   Compute: 𝐸𝑣𝑎𝑙//using 𝐷𝑣𝑎𝑙 and ℒ (𝑣𝑎𝑙)while keeping temporal order 

   //--------------------Stopping criteria-----------------------------// 

   if 𝐸𝑣𝑎𝑙−𝑚𝑖𝑛 > 𝐸𝑣𝑎𝑙 and 𝐸𝑡𝑟𝑎𝑖𝑛−𝑚𝑖𝑛 > 𝐸𝑡𝑟𝑎𝑖𝑛: //Storing best performance and optimal           

                                                                               parameters// 

      𝜽𝑜𝑝𝑡 ← 𝜽, 𝐸𝑣𝑎𝑙−𝑚𝑖𝑛 ← 𝐸𝑣𝑎𝑙, 𝑛𝑓𝑎𝑖𝑙𝑠 ← 0 

   else: 

      𝑛𝑓𝑎𝑖𝑙𝑠 ← 𝑛𝑓𝑎𝑖𝑙𝑠 + 1 

   if 𝑛𝑓𝑎𝑖𝑙𝑠 > 𝑛𝑓𝑎𝑖𝑙𝑠−𝑚𝑎𝑥://Maximum consecutive fails for reducing 𝐸𝑣𝑎𝑙−𝑚𝑖𝑛 or 𝐸𝑡𝑟𝑎𝑖𝑛−𝑚𝑖𝑛 

      break //ending main for loop 

return: 𝜽𝑜𝑝𝑡 //Maximum number of iterations reached// 
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4.1.5 Lag dependence selection using the distance correlation 

As indicated in Section 4.1.4, the relevance given to past information in (4.1.1) depends on 

the decay-rate variety in the elements of the forget gate, 𝒇(𝑘), a situation mitigated in the E-LSTM 

architecture. However, due to the E-LSTM using two forget gates, if elements in the first of these 

are large enough to incorporate partial information of 𝒄(𝑘 − 𝑝), redundancy can occur. 

Consequently, appropriate selection for the lag value 𝑝 is desirable. This selection process might 

be challenging when using techniques that rely on mathematical correlations (linear relations), 

since NN models focused on exploiting nonlinearities and such techniques would not be suited to 

spot the nonlinear relations in datasets. 

Several selection techniques could be used to try to identify a value for 𝑝 [103]–[105]. 

However, they are prone to miss nonlinear effects. Therefore, a hybrid approach for the lag 

selection designed, to consider the nonlinear nature of RNN networks, is employed. This is 

performed by combining a filter method and the distance correlation (DC) measure [106]–[108], 

a statistical measure used to identify statistical relations, not only linear relations, between paired 

multivariate variables. 

The proposed hybrid approach is composed of two parts. First, an auxiliary linear 

regression model is constructed: 𝒚̂𝐷𝐶(𝑘)  =  𝜽𝐷𝐶𝒙𝐷𝐶(𝑘), where 𝜽𝐷𝐶 ∈ ℝ1×𝑘𝑖 and 𝒙𝐷𝐶(𝑘) =

𝑉𝑒𝑐(𝑿𝑘−𝑘𝑖+1:𝑘) is an augmented input composed of the previous 𝑘𝑖 input values. Using this model, 

linear relations between the desired output, 𝒚(𝑘), and current-and-previous inputs, 𝑿𝑘−𝑘𝑖+1:𝑘, are 

then removed by computing the residual values, i.e., 𝒆𝐷𝐶(𝑘)  =  𝒚(𝑘) − 𝜽𝐷𝐶𝒙𝐷𝐶(𝑘). Second, a 

filter method is employed by computing the DC value of the paired residuals and lagged input 
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values, i.e., 𝒆𝐷𝐶(𝑘) , 𝒙(𝑘 − 𝑗), for each lag 𝑗 ∈ {0, … , 𝑘𝑖}, from which relevant nonlinear effects 

can be identified. The lag with the highest DC value is selected as the value for 𝑝. 

 

4.2 Experimental Setup 

To evaluate the performance and efficiency (in terms of the number of parameters) of the 

proposed E-LSTM network in relation to the standard LSTM, experiments using univariate 

synthetic and real time-series are performed. Additionally, the CW-RNN network and the Seasonal 

Auto Regressive Integrated Moving Average (SARIMA) model, a well-known linear model 

designed for data with seasonalities [101]-[102], are used as additional baselines to compare with 

the E-LSTM model. The CW-RNN is selected model due to its sparse structure approach to exploit 

long-term dependencies while reducing the number of parameters per unit. 

 

4.2.1 Augmented-input Networks 

One of the main purposes of an RNN is to identify relations among previous inputs, 

immediate and far in the past. However, simple linear input-output relationships, i.e., 𝑥(𝑘 − 𝑝), 

𝑦(𝑘), could require a large number of parameters for an RNN model, due to the several consecutive 

nonlinear operations employed within the model. As indicated in Section 3.1, directly presenting 

lagged input values into an NN model is a practice that can be used when handling time series to 

exploit possible relations [109]-[110]. Therefore, in order to assess the practical usefulness of the 

increased connectivity in the E-LSTM, the augmented-input approach is implemented in the CW-

RNN, the standard LSTM and the proposed E-LSTM, resulting in augmented versions of these 

models, denoted as CW-RNN-A, LSTM-A and E-LSTM-A.  
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By using the augmented-input models, it might be possible to ease the need for a large 

number of parameters to learn linear relations, due to the linear transformation the augmented input 

goes through in the gate equations in (3.1.1)-(3.1.5) and (4.1.3). The augmentation is performed 

by adding a lagged input value, 𝒙(𝑘 − 𝑘𝑖), selected based on a simple correlation analysis, from 

which the augmented input is constructed 𝒙𝑎𝑢𝑔(𝑘)  =  [𝒙(𝑘), 𝒙(𝑘 − 𝑘𝑖)], where only one lag is 

selected to avoid potential redundancy caused by the recurrence relations in RNNs. 

 

4.2.2 SARIMA implementation details 

 The selection for the SARIMA model hyperparameters and parameters is carried out in 

two stages for each dataset used. First, using the training set, a correlation analysis between the 

input and its lagged values is performed, using prior information associated with the maximum 

seasonality in each dataset to create an upper bound for a maximum lag. From the previous 

analysis, the highest (absolute) correlation value is selected for the seasonal components of the 

model (SA, MA). In the second stage, using the SARIMA performance over the validation set in 

each dataset, a search for appropriate values for the autoregressive, moving average and integrative 

components is carried out, varying values from one up to the seasonal values obtained in the first 

stage (SA, MA), turning on and off the presence of the integrative component. It is important to 

clarify that, even though it is possible to extract these linear relations first and then use the RNN 

models over the residuals, this approach is not used in this work, since the main goal across the 

experiments is to identify the capability of the networks, especially the proposed E-LSTM, as 

standalone models. 
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4.2.3 Synthetic datasets 

Synthetic datasets are employed to have control over the effect of long-term dependencies 

and the size of the lag, denoted as 𝑝𝑙, while avoiding/controlling noisy measurements and outliers 

that are typically present in real-world datasets. 

Two different pattern recognition aspects are tested through the synthetic datasets: the 

accuracy of the models on a time series that follows a nonlinear recurrent relationship and the 

detection capabilities of fixed length sequences that repeatedly (stochastically) appear.  

For the first recognition aspect, a dataset is created with a nonlinear dependence located at 

a fixed lagged value 𝑝𝑙, where the nonlinearity is due to changing sign. This dataset, referred to as 

the Switching time series, is generated using two i.i.d. random sequences, 𝑧(𝑘) ∈ ℝ and 

𝑧𝑠𝑖𝑔𝑛(𝑘)  ∈  {1, 0} following the distributions 𝑁(0, 1) and 𝐵(1, 𝜌𝑠𝑤𝑡); respectively, and two lags 

of 𝑧(𝑘) as shown in (4.2.1). 

𝑦(𝑘) = 𝑎1𝑧
2(𝑘) + 𝑎2𝑧(𝑘 − 1) + 𝑎𝑝𝑙

2(𝑧𝑠𝑖𝑔𝑛(𝑘 − 𝑝𝑙) − 0.5)𝑧2(𝑘 − 𝑝𝑙)               (4.2.1) 

where 𝑎1, 𝑎2 and 𝑎𝑝𝑙
 are constant coefficients with values 0.25, 0.35 and 0.35, respectively; and 

𝜌𝑠𝑤𝑡 is the switching probability. In (4.2.1) the term 2(𝑧𝑠𝑖𝑔𝑛(𝑘 − 𝑝𝑙)  −  0.5) ∈ {1,−1} creates 

the switching-sign effect for the lagged variable 𝑧2(𝑘 − 𝑝𝑙). 

 The second dataset, referred to as Binary sequence, is motivated by the potential limitation 

expressed in Section 3.1 about (4.1.1), the forgetting effect of relevant information in a standard 

LSTM. The latter is explored by embedding replicas of two different binary patterns of length 28, 

𝑏1 and 𝑏2, in a long sequence of bits, separated from each other by a constant length. The long 
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sequence is composed of 28-bit and 112-bit sequences whose individual values are obtained from 

the distribution 𝐵(1, 0.5). The embedding of the patterns is described in Algorithm 4.2, where 

𝑛𝑝𝑜𝑖𝑛𝑡𝑠 is assumed to be a large multiple of the length of 𝑏1 and 𝑏2, 𝑟𝑎𝑛𝑑 is a function generating 

samples from the uniform distribution on [0, 1] and 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒(𝑛𝑟) creates random binary 

sequences of length 𝑛𝑟. 

 

 Examining Algorithm 4.2, with probability 0.5 a 112-bit sequence is created, containing 

patterns 𝑏1and 𝑏2 as well as short random sequences 𝑣28
(1)

 and 𝑣28
(2)

; placing 𝑣28
(2)

 between the patterns. 

The Binary sequence dataset represents one of many possible instances in which repetitive patterns 

are embedded among non-relevant data, which can be particularly challenging for linear models 

even when the pattern length is known. 

 

4.2.4 Real-world datasets 

In order to identify the performance of the proposed E-LSTM on real-world problems, four 

univariate time-series datasets were selected; categorized as small, medium and large sizes, with 

the last category containing two datasets. 

Algorithm 4.2: Binary sequence construction 

Input: 𝑏1, 𝑏2, 𝑛𝑝𝑜𝑖𝑛𝑡𝑠    //Patterns and number of points// 

Set: 𝑛𝑠 ← 𝑛𝑝𝑜𝑖𝑛𝑡𝑠/2𝑙𝑒𝑛𝑔𝑡ℎ(𝑏1 + 𝑏2)  //number of 112-length subsequences//      

        𝐵𝑠𝑒𝑞 ← 𝑒𝑚𝑝𝑡𝑦             //the desired Binary sequence dataset// 

for 𝑖 = 1 to 𝑛𝑠 

   if: 𝑟𝑎𝑛𝑑>0.5 

      𝑣112 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒(112),  𝐵𝑠𝑒𝑞 ← 𝑎𝑝𝑝𝑒𝑛𝑑(𝐵𝑠𝑒𝑞, 𝑣112)     

   Else: 

      𝑣28
1 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒(28), 𝑣28

2 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒(28)   

      𝐵𝑠𝑒𝑞 ← 𝑎𝑝𝑝𝑒𝑛𝑑(𝑆, 𝑣28
1 , 𝑏1, 𝑣28

2 , 𝑏2)     

Output: 𝐵𝑠𝑒𝑞 
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The small-size dataset is the well-known Chicken Pox [111] time series, which represents 

the monthly occurrences of chicken pox in New York City, between the years 1931 and 1972. It 

is composed of 498 samples with an apparent yearly seasonality.  

For the medium-size category, a popular dataset containing the monthly mean number of 

detected sunspots [112], from Jan 1749 to Dec 2019, is used. This dataset is characterized by 

showing a degree of seasonality occurring every 10 to 11 years and is composed of 3252 samples. 

The large-size category is composed of temperature data for the city of Toronto, Canada 

[113], and the Power Consumption in the US Eastern Interconnection grid, reported by FirstEnergy 

Corp [114]. In both datasets hourly information is provided, spanning from Jan 2011 to Dec 2020 

for the first dataset and from Dec 31st 2011 to Jan 1st 2018 for the second dataset. As expected, 

both datasets show a seasonality of 24 hours. 

 

4.2.5 Implementation details 

For the experiments performed over the datasets introduced in the previous section and 

using the RNN and SARIMA models, original subroutines were created using the MATLAB 

2018a environment. Simulations using MATLAB-library-built LSTMs were performed for 

verification purposes, resulting in no significant performance difference with respect to the original 

subroutines. The Adam optimization algorithm [43], [115]-[116], a variation of the GD algorithm, 

was used for the training process in all experiments. Adam’s hyperparameters were set to standard 

values, 𝛽1  =  0.9, 𝛽2  =  0.999 and 𝜖 =  10−8. A small value for the learning rate, 𝛼 =  0.001, 

was chosen to mitigate potential EG issues  during the training process, using up to 10000 epochs. 

Following the same training setting described in Algorithm 4.1, the validation-set loss function 
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value, ℒ (𝑣𝑎𝑙), was used as one of the stopping criteria for the training process, specifically using a 

threshold 𝑚𝑓𝑎𝑖𝑙𝑠  =  4000 for the maximum number of consecutive fails on decreasing the error. 

 A similar training implementation was used for the CW-RNN, using the Adam algorithm 

with standard values, but using a smaller learning rate, 𝛼 =  0.0003, in order to avoid the EG 

problem. The number of modules, 𝑛𝑚𝑜𝑑, a hyperparameter needed for the CW-RNN, was set to 7 

for the Chicken Pox dataset due to its small size, and to 9 for the remaining datasets. Also, the 

frequency of activation of these modules was set as in [98], from 1 to 2𝑛𝑚𝑜𝑑 , and using the same 

number of hidden units per module. 

 For selecting the number of hidden units in each of the four LSTM variants (including the 

E-LSTM) and the CW-RNNs an iterative process using the values from the set {20, 21, . . . , 29} was 

performed over the validation set, with 40 repetitions for each value; the value producing the best 

average validation-set performance was selected. Simulations were performed in the Beluga server 

cluster, operated by the Digital Research Alliance of Canada (formerly Compute Canada), using 

2.4GHz CPUs.  

 

4.3 Experimental Results and Analysis 

The simulation results for each of the LSTM variants, CW-RNN and SARIMA models are 

presented. In all tables in this section performance indicators are provided such as average (𝜇) and 

standard deviation (𝜎) of the RMSE. The size of each model is selected based on the validation-

set performance (minimum 𝜇𝑣𝑎𝑙 + 𝜎𝑣𝑎𝑙). Additionally, the following metrics are provided: number 

of hidden units and number of parameters (𝑛ℎ, 𝑛𝜽); average training time per iteration (𝑡𝑖̅𝑡𝑒𝑟); 

average time and number of iterations to achieve the optimal loss function value (𝑡̅(𝑜𝑝𝑡), 𝐼 ̅𝑖𝑡𝑒𝑟
(𝑜𝑝𝑡)

). 
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Also, the hyperparameter 𝑝 for the E-LSTM is explicitly indicated next to the name of the network 

in the results and bold text is used to represent the network with best testing performance 

(minimum 𝜇𝑡𝑒𝑠𝑡 + 𝜎𝑡𝑒𝑠𝑡). 

 

4.3.1 Synthetic datasets 

For the synthetically created datasets, the lag associated with 𝒙𝑎𝑢𝑔(𝑘) in the augmented-

input models was set equal to the lag dependence, i.e., 𝑘𝑖 = 𝑝𝑙. The hyperparameter 𝑝 in the E-

LSTM and E-LSTM-A models was set equal to 𝑝𝑙 − 1, due to the input to the network being the 

lagged desired output (lag 1). Also, for each of the two datasets 10 different sequences  are used. 

In the case of the Switching dataset, experiments varying the value for the switching-sign 

probability 𝜌𝑠𝑤𝑡 of 𝑧𝑠𝑖𝑔𝑛(𝑘) were carried out, creating different instances. Results can be found in 

Table 4.3.1-Table 4.3.2 which correspond to 𝜌𝑠𝑤𝑡 taking the values 1 and 0.01, representing high-

frequency and low-frequency switching behavior, respectively. Additionally, the lag-dependence 

𝑝𝑙 was set to 22 and 50 for the high-frequency and low-frequency switching datasets, respectively. 

A larger lag 𝑝𝑙 was selected for the latter dataset instance to account for the higher linearity 

associated with a lower switching frequency. A time window of 100 was used for the backward 

and forward passes during training. No significant changes were found, in terms of performance 

among variants, for other values of 𝜌𝑠𝑤𝑡 between 0.01 and 1.  

By assuming the only unpredictable value in (4.2.1) is the term 𝑎1𝑧
2(𝑘) it is possible to 

establish a (not necessarily tight) lower bound on the minimum possible RMSE. This lower bound 

is also presented in Table 4.3.1-Table 4.3.2 and is used as a reference for relative comparison. 
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For the high-frequency Switching dataset the E-LSTM outperforms all other models (Table 

4.3.1), outperforming the LSTM and CW-RNN by a significant margin, and it shows better 

parameter efficiency, as observed in Fig. 4.3.1. Also, the E-LSTM outperforms the LSTM-A 

despite the latter model using the lagged input directly where the nonlinear dependence occurs. 

This can be seen as the E-LSTM being able to model the nonlinear behavior of this time series 

better than the networks using input augmentation.  

For the low-frequency Switching dataset, the augmented E-LSTM-A and LSTM-A showed 

similar performance (Table 4.3.1), with noticeably better performance than their standard versions 

and the remaining models. These results can be partly attributed to a lower nonlinear effect caused 

by the low-frequency switching (with switching probability of 0.01), in contrast with the results 

observed for the high-frequency Switching dataset. Also, the standard E-LSTM network still 

shows better parameter efficiency across different sizes, with respect to the standard LSTM and 

CW-RNN networks. 

 

 

 

 

 

 

 

 

Table 4.3.1. Results for the Switching dataset (𝑘𝑖  =  22). SARIMA hyperparameters were set 

as: AR = MA=1 and SAR = SMA = 22, resulting in RMSE = 0.6811. Lower bound RMSE = 

0.4227. Forward-backward pass length of 100. 
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Fig. 4.3.1. Validation set performance across different sizes for the Switching-100 dataset. 

Table 4.3.2. Results for the Switching dataset (𝑘𝑖  = 50). SARIMA hyperparameters were set 

as: AR = MA = 1 and SAR = SMA = 50, resulting in RMSE = 0.732. Lower bound RMSE = 

0.4095. Forward-backward pass length of 100. 



 

81 

 

 

 

 

 

 

 

 

 

 

 

 

In the case of the Binary sequence (Table 4.3.3) the E-LSTM hyperparameter 𝑝 was set to 

29 to create a direct connection between elements in both 28-bit sequences, 𝑣28
(1)

 and 𝑣28
(2)

. 

Additionally, a time window of 1120 was used for the backward and forward passes during 

training. This window size was selected so that the resulting subsequences contain five instances, 

on average, of the 112-bit sequence (in which 𝑣28
(1)

 and 𝑣28
(2)

 are embedded), while keeping the 

subsequence length not too large. Similar to the Switching datasets, a (not necessarily tight) lower 

bound for the minimum RMSE was derived for the Binary Sequence dataset, shown in Table 4.3.3. 

The results in Table 4.3.3 show again the E-LSTM as the network with the best testing 

performance. Even though it uses a larger number of parameters for this case, the alternative 

networks’ performances stagnate more when the sizes are increased (Fig. 4.3.3). 

Fig. 4.3.2. Validation set performance across different sizes for the Switching-01 dataset. 

Forward-backward pass length of 100. 
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Table 4.3.3. Results for the Binary Sequence dataset  (𝑘𝑖 = 29). ARMA used lags from 1 to 

112 for AR and MA components, resulting in RMSE = 0.6811. Lower bound RMSE = 0.4357. 

Forward-backward pass length of 1120. 

Fig. 4.3.3 Validation set performance across different sizes for the Binary sequence dataset. 
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Regarding the LSTM variants’ performance on the synthetic datasets the E-LSTM and its 

augmented version required a similar or lower number of parameters to achieve a similar or better 

performance than the alternative networks, in some cases with the number of parameters being an 

order of magnitude smaller. Also, it should be highlighted that such performance is achieved 

without drastically increasing the CPU time needed for the training process.  

 

4.3.2 Real-world datasets 

For the experiments involving real-world datasets, the distance-correlation-based process 

described in Section 4.1.5 was used for the selection of the hyperparameter 𝑝 of the proposed E-

LSTM and E-LSTM-A models. Also, for the augmented variants, LSTM-A and E-LSTM-A, a 

correlation analysis on the training sets was performed to select the lag value 𝑘𝑖 for the input 

augmentation. Differentiated datasets were used in all LSTM variants for the cases in which the 

integrative component of SARIMA was selected, since the differentiation due to this component 

is not directly performed in the LSTM variants; whenever this was the case, the correlation analysis 

was performed over the differentiated dataset.  

Regarding the Chickenpox dataset (small size), the E-LSTM and its augmented variation 

showed a significant improvement over the other networks (Table 4.3.4). They reduced the number 

of parameters needed overall by orders of magnitude, while achieving better performance. Also, 

the E-LSTM-A was the top-performing network, using the least number of parameters and with 

consistent performance across different sizes (Fig. 4.3.4). 
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Table 4.3.4. Results for the Chickenpox dataset  (𝑘𝑖 = 24). SARMA components used lags 1 

to 4 for the AR and MA and a value of 12 for SAR and SMA, resulting in RMSE = 113.423. 

Forward-backward pass length of 200. 

Fig. 4.3.4. Validation set performance across different sizes for the Chickenpox dataset. 
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For the experiments with the Sunspots dataset (medium size) the proposed E-LSTM 

showed similar performance to the LSTM (Table 4.3.5), and slightly outperformed the alternative 

networks; however, the SARIMA algorithm had very similar performance as the E-LSTM. The 

fact that a linear model, using less than 100 parameters, can achieve the best performance among 

the models might partly indicate why little improvement is generated by the E-LSTM architecture, 

as there might be little nonlinear time dependence in the data. Furthermore, when analyzing the 

performance curves of the networks in (Fig. 4.3.5) it can be noticed that those for the E-LSTM and 

LSTM networks have similar shape and values which might corroborate the marginal contribution 

of adding a mechanism to capture nonlinear long-term dependencies for this dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3.5. Results for the Sunspots dataset (𝑘𝑖  = 12). SARIMA hyperparameters used lags 1 

to 34 for the AR and MA and a value of 127 for SAR and SMA, resulting in RMSE = 22.80. 

Forward-backward pass length of 288. 
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The results for the Power consumption dataset (Table 4.3.6) further supports the E-LSTM’s 

capability to break potential walls the LSTM network might face, in terms of capturing long-term 

dependencies. This can be concluded by directly comparing the augmented and non-augmented 

versions side by side in Table 4.3.6 and analyzing how quickly the loss function value decreases 

with respect to the number of parameters for small network sizes in Fig. 4.3.6, where the 

performance curves of the E-LSTM and its augmented version are almost identical. 

 In the Toronto temperature dataset, the E-LSTM is the best-performing model, generating 

a small improvement over the LSTM and using less than half of the number of parameters in 

comparison (Table 4.3.7). Additionally, in terms of parameter efficiency, the performance 

behavior of the E-LSTM network seems to be more consistent across different network sizes, 

Fig. 4.3.5. Validation set performance across different sizes for the Sunspots dataset. 
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providing more evidence that the LSTM needs a larger number of units to create variety in the 

behavior of the forget gates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3.6. Results for the Power Consumption dataset (𝑘𝑖  = 24) SARIMA hyperparameters 

used lags 1 to 14 for the AR and MA and a value of 24 for SAR and SMA, resulting in RMSE 

= 85.1136. Forward-backward pass length of 672. 

Fig. 4.3.6. Validation set performance across different sizes for the Power consumption dataset. 
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Table 4.3.7. Results for the Toronto temperature dataset (𝑘𝑖 = 24). SARMA components used 

lags 1 to 17 for the AR and MA and a value of 23 for SAR and SMA, resulting in RMSE = 

0.6955. Forward-backward pass length of 672. 

Fig. 4.3.7. Validation set performance across different sizes for the Toronto temperature dataset. 
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It is important to highlight that for the case of the large-size datasets (on the order of 105 

datapoints) the E-LSTM and its augmented version were the best-performing models, when 

compared to the LSTM and the CW-RNN, while using a similar or lower number of parameters 

for the selected network sizes and showing a sharper increase in the performance curves for small 

network sizes. 

 From the previous real-world results, a general pattern that can be observed is that the 

proposed E-LSTM architecture appears to be a better option when compared to the LSTM and 

CW-RNN models, in terms of the number of parameters required to achieve similar performance, 

creating a significant reduction in the size of the model in some cases (by an order of magnitude). 

Furthermore, the increase in training time with the proposed variants remained reasonable across 

these experiments. 
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Chapter 5  

GI-LSTM: Generalized and Interpretable LSTM 

In this chapter a new mechanism that generalizes the E-LSTM connectivity approach is proposed, 

named Generalized Interpretable LSTM (GI-LSTM). This mechanism further increases the 

explicit recursive connectivity among cell states to directly compensate for exponentially 

weakening connectivity (EWC) across time, when needed. The GI-LSTM aims to extract long 

term dependencies more efficiently even when their precise location is unknown. In addition, due 

to the specific method used to create this connectivity, the GI-LSTM is embedded with an easy-

to-use interpretability component (defined as being able to provide explanations in understandable 

terms to a human) that indicates the statistical relevance it gives to previous cell states. 

 

5.1. GI-LSTM Architecture 

5.1.1 Motivation for a generalization 

As stated in Chapter 4, relevant information for long-term dependencies could be left 

uncaptured in the standard LSTM due to the lack of variety in the decay rate among forget gates, 

an issue partly addressed by the E-LSTM approach of increasing the explicit connectivity between 

cell states. Taking a step forward in this approach the connectivity among cell states with respect 
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to their previous values is increased, eliminating the need for specifying a previous location in 

time (in contrast to the E-LSTM) and replacing it by a flexible user-defined interval of previous 

values, which can be based on loose estimations of: maximum lag dependency, apparent 

seasonalities (as seen in human-driven phenomena) and  other guessed temporal information. Also, 

by creating this higher connectivity the need for the DC measure is removed, resulting in reduced 

preprocessing time. This is particularly useful since the computation of the DC can be time 

consuming when trying to identify very long-term dependencies, even in univariate time series.  

Furthermore, the proposed GI-LSTM architecture enables a semi-local interpretation, as defined 

in [39], specifying which parts of the time series the network gives relevance to, within the user-

defined time intervals. 

 

5.1.2 Forward equations and conceptualization 

To keep the efficiency in the number of weights achieved by the E-LSTM while extending 

the reach into past values, the new increased connectivity is performed by introducing dynamic 

‘memory groups’, 𝒎𝑠(𝑘) ∈ ℝ𝑛ℎ, designed to create a balance between the explicit temporal 

connectivity and the number of parameters. 

In more detail, the first memory group, 𝒎1(𝑘), contains explicit information of contiguous 

lagged cell states, starting at 1; the second memory group, 𝒎2(𝑘), contains information of non-

contiguous lagged values of 𝒎1(𝑘), a structure followed by higher-order memory groups, 𝒎𝑠(𝑘), 

up to a maximum number 𝜍. Similar to the E-LSTM, a weighted forget gate,  𝒇̂𝑠(𝑘), is associated 

to each memory group to allow for dynamism during the information processing and to promote 

stability during the training phase. 
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𝑵1(𝑘) = [𝒄(𝑘 − 1), 𝒄(𝑘 − 2),… , 𝒄(𝑘 − 𝑞1)]        (5.1.1) 

𝒎1(𝑘) = (𝑵1(𝑘) ∘ 𝑾𝒎1
)𝟏𝑞1×1          (5.1.2)  

𝑵𝑠(𝑘) = [𝒎𝑠−1(𝑘 − 𝑞𝑠−1 …𝑞1),𝒎𝑠−1(𝑘 − 2𝑞𝑠−1 …𝑞1),… ,𝒎𝑠−1(𝑘 − 𝑞𝑠𝑞𝑠−1 …𝑞1)], 𝑠 ≥ 2     

             (5.1.3) 

𝒎𝑠(𝑘) = (𝑵𝑠(𝑘) ∘ 𝑾𝑚𝑠
)𝟏𝑞𝑠×1, 𝑠 ≥ 2         (5.1.4) 

∥ [𝑾𝒎𝑠
]
𝑟𝑜𝑤𝑖

∥1= 1                       (5.1.5) 

𝒄(𝑘) = 𝒂(𝑘) ∘ 𝒊(𝑘) + 𝒇̂1(𝑘) ∘ 𝒎1(𝑘) + 𝒇̂2(𝑘) ∘ 𝒎2(𝑘) + ⋯+ 𝒇̂𝜍(𝑘) ∘ 𝒎𝜍(𝑘)            (5.1.6) 

𝒇̂𝑠(𝑘) = 𝒇𝑠(𝑘) ∘ 𝔀𝒇𝑠
(𝑘)                      (5.1.7) 

𝔀𝒇𝑠
(𝑘)  =

𝒇𝑠(𝑘)

∑ 𝒇𝑑(𝑘)𝜍
𝑑=1

                                  (5.1.8) 

where [𝑾𝒎𝑠
]
𝑟𝑜𝑤𝑖

 is the 𝑖th row of the matrix 𝑾𝒎𝑠
∈ ℝ𝑛ℎ×𝑞𝑠; ∥∙∥1 is the 1-norm; 𝟏𝑞𝑠×1 is a vector 

of ones of dimension 𝑞𝑠 × 1. The logic behind the choice of the 1-norm in the constraint for the 

group weights 𝑾𝒎𝑠
, instead of the 2-norm, will be explained in detail in the next section. However, 

the following is worth noting: there is no constraint on the sign of the weights and the 1-norm 

constraint is embedded in the network through a nonunique parametrization with respect to 

learnable parameters 𝚯𝑠, as shown in (5.1.9). 

[𝑾𝒎𝑠
]
𝑖,𝑗

 =
[𝚯𝑠]𝑖,𝑗

∑ |𝚯𝑠|𝑟𝑜𝑤𝑖

             (5.1.9) 

where ∑ |𝚯𝑠|𝑟𝑜𝑤𝑖
= ∑ |[𝚯𝑠]𝑖,𝑗|

𝑞𝑠
𝑗=1 . 
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In the definition of higher-order memory groups, the design choice of creating lag values 

that are multiplicative, 𝑞𝑠𝑞𝑠−1 …𝑞1, instead of additive is intended to avoid information 

overlapping, as shown in Fig. 5.1.1, that could create potentially unnecessary redundancy. 

There are three major advantages in the proposed memory-group approach, when 

compared to the E-LSTM approach. (i) It theoretically allows for reaching very long-term 

dependencies due to the multiplicative lags in the higher-order memory groups, i.e., 𝑘 −

(𝑞1 + 𝑞2𝑞1 …+ 𝑞𝜍𝑞𝜍−1 …𝑞1), without the aid of the DC measure. (ii) Higher-order memory 

groups compress the information in lower-order memory groups, functioning as filters for past 

information. (iii) The architecture allows for a dynamic balance between short-term, long-term and 

very long-term dependencies due to the weighted gates 𝒇̂𝑠(𝑘) associated to each memory group. 

Additionally, and following a similar strategy to the E-LSTM architecture, only one forget gate is 

added per memory group which, when considering the multiplicative reaching effect, maintains 

the number of parameters low in practice (we will see this in Section 5.3). 

 

 

 

 

 

 

 

 

Fig. 5.1.1. Simplified graphical representation of the memory-group mechanism in the GI-LSTM, 

with 𝜍 = 2. 
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 5.1.3 Backward equations and analysis 

The BP equations are derived following a similar approach to that described in Sections 

3.1 and 3.2. Hence, the resulting backward equations linked to the GI-LSTM are as follows: 

𝜹𝒎𝜍
(𝑘) = 𝒇̂𝜍(𝑘) ∘ 𝜹𝒄(𝑘)                                       (5.1.10) 

𝜹𝒎𝑠
(𝑘) = 𝒇̂𝑠(𝑘) ∘ 𝜹𝒄(𝑘) + ∑ ([𝑾𝒎𝑠

]
𝑐𝑜𝑙𝑟

∘ 𝜹𝒎𝑠+1
(𝑘 + 𝑟𝑞𝑠−1 …𝑞1))

𝑞𝑠
𝑟=1 , 𝑠 < 𝜍                (5.1.11) 

𝜹𝒄(𝑘) = 𝜹𝒉(𝑘) ∘ 𝒐(𝑘) ∘ 𝜎̇𝑡ℎ(𝒄(𝑘)) + ∑ ([𝑾𝒎1
]
𝑐𝑜𝑙𝑟

∘ 𝜹𝒎1
(𝑘 + 𝑟))

𝑞1
𝑟=1                          (5.1.12) 

𝜹𝑾𝑚𝑠
(𝑘) = 𝑑𝑖𝑎𝑔(𝜹𝒎𝑠

(𝑘))𝑵𝑠(𝑘)                   (5.1.13) 

𝐷[𝚯𝑠]𝑟𝑜𝑤𝑖
([𝑾𝑚𝑠

]
𝑟𝑜𝑤𝑖

𝑇
) = (

−[𝑾𝑚𝑠]𝑟𝑜𝑤𝑖

𝑇
𝑠𝑖𝑔𝑛([𝚯𝑠]𝑟𝑜𝑤𝑖

)

∑ |𝚯𝑠|𝑟𝑜𝑤𝑖

+
𝑰𝑞𝑠𝑥𝑞𝑠

∑ |𝚯𝑠|𝑟𝑜𝑤𝑖

)                                    (5.1.14) 

𝜹[𝚯𝑠]𝑟𝑜𝑤𝑖
(𝑘) = (𝜹[𝑾𝒎𝑠]𝑟𝑜𝑤𝑖

(𝑘))𝐷[𝚯𝑠]𝑟𝑜𝑤𝑖
([𝑾𝑚𝑠

]
𝑟𝑜𝑤𝑖

𝑇
)                (5.1.15) 

𝜹𝚯𝑠
(𝑘) = 𝑛𝑓(𝚯𝑠) (−𝑑𝑖𝑎𝑔 ((𝜹𝑾𝑚𝑠

(𝑘) ∘ 𝑾𝒎𝑠
)𝟏𝑞𝑠𝑥1) 𝑠𝑖𝑔𝑛(𝚯𝑠) + 𝜹𝑾𝒎𝑠

(𝑘))             (5.1.16) 

𝜹𝒇𝑠
(𝑘) = 2𝜹𝒎𝑠

(𝑘) ∘ 𝒇̂𝑠(𝑘) − ∑ 𝜹𝒎𝑑
(𝑘) ∘ 𝒇̂𝑑(𝑘)2𝑠𝑚𝑎𝑥

𝑑=1                 (5.1.17) 

where 𝜍 is the index of the last memory group; [𝑾𝒎𝑠
]
𝑐𝑜𝑙𝑖

 is the 𝑖th column of the matrix 𝑾𝒎𝑠
; 

𝑛𝑓(𝚯𝑠) is a normalizing matrix, 𝑑𝑖𝑎𝑔 ([∑ |𝚯𝑠|𝑟𝑜𝑤1
, … , ∑ |𝚯𝑠|𝑟𝑜𝑤𝑛ℎ

])
−1

.  

When analyzing the GI-LSTM backward equations it can be observed that in (5.1.14) the 

individual elements of the gradient 𝜹[𝚯𝑠]𝑟𝑜𝑤𝑖
(𝑘) do not vanish solely by the fact that the elements 

might have values close to or equal to 0, specifically due to the non-zero term 
𝑰𝑞𝑠𝑥𝑞𝑠

∑ |𝚯𝑠|𝑟𝑜𝑤𝑖

 resulting 
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from the 1-norm, something that would occur if the 2-norm were used instead. Also, it can be 

noticed that when (5.1.15) is expanded the resulting term 

−𝜹[𝑾𝒎𝑠]𝑟𝑜𝑤𝑖

(𝑘)[𝑾𝑚𝑠
]
𝑟𝑜𝑤𝑖

𝑇
𝑠𝑖𝑔𝑛([𝚯𝑠]𝑟𝑜𝑤𝑖

) is a projection of the gradient 𝜹[𝑾𝒎𝑠]𝑟𝑜𝑤𝑖

(𝑘) over the 

current values of [𝑾𝒎𝑠
]
𝑟𝑜𝑤𝑖

. This projection, in the context of (5.1.9), can be interpreted as an 

opposition to the change in the learnable parameters of the memory groups, [𝚯𝑠]𝑟𝑜𝑤𝑖
. The 

opposition occurs when the change in the learnable parameters produces similar values for 

[𝑾𝒎𝑠
]
𝑟𝑜𝑤𝑖

, due to a near-to-uniform scaling in [𝚯𝑠]𝑟𝑜𝑤𝑖
. Consequently, in (5.1.15) all elements in 

[𝚯𝑠]𝑟𝑜𝑤𝑖
 influence the gradient of each of its individual elements. This influence partly produces 

the desired effect of the rescaling transformation (5.1.9), which embeds the lack of need for 

different values of 𝚯𝑠 that result in the same memory-group weights 𝑾𝒎𝑠
. 

Upon further inspection of (5.1.14) and (5.1.16) two things can be noticed. First, the 

magnitude of 𝜹𝚯𝑠
(𝑘) is dependent on 𝑛𝑓(𝚯𝑠) but not its direction; second, 𝑾𝒎𝑠

 does not depend 

on the normalizing factor 𝑛𝑓(𝚯𝑠) as seen in (5.1.9). Hence, the gradient 𝜹𝚯𝑠
(𝑘) could become 

unnecessarily affected by 𝑛𝑓(𝚯𝑠) whenever any of its elements becomes significantly smaller than 

1, i.e., (∑ |𝚯𝑠|𝑟𝑜𝑤𝑖
)
−1

< 1. Consequently, 𝑛𝑓(𝚯𝑠)  is removed from (5.1.16), resulting in (5.1.18), 

and instead a 1-norm row normalization is performed on 𝚯(𝑠) during each batch (mini-batch) 

iteration in the training process to ensure ∑ |𝚯𝑠|𝑟𝑜𝑤𝑖
= 1, for each row 𝑖. 

 𝜹𝚯𝑠
(𝑘) = −𝑑𝑖𝑎𝑔 ((𝜹𝑾𝒎𝑠

(𝑘) ∘ 𝑾𝒎𝑠
)𝟏𝑞𝑠𝑥1) 𝑠𝑖𝑔𝑛(𝚯𝑠) + 𝜹𝑾𝒎𝑠

(𝑘)              (5.1.18) 

It is important to notice that despite the removal of 𝑛𝑓(𝚯𝑠) the parametrization of 𝑾𝒎𝑠
 in 

terms of 𝚯(𝑠) remains useful, due to the previously discussed projection effect in (5.1.15). 
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5.1.4 GI-LSTM Interpretability 

The row-normalized memory-group matrices, ∥ [𝑾𝒎𝑠
 ]

𝑟𝑜𝑤𝑖
∥1= 1, in the GI-LSTM 

architecture represent an easy-to-analyze option to partly access what the network has learned, 

specifically the relevance that each individual unit, [𝒉(𝑘)]𝑖, assigns to its memory groups, 

[𝒎𝑠]𝑟𝑜𝑤𝑖
, which implies temporal relevance in the time series. This interpretability can be 

achieved by observing, through 𝜍 different plots, the absolute values of the 𝑖th-row memory-group 

matrices, i.e., 𝑎𝑏𝑠 ([𝑾𝒎1
]
𝑟𝑜𝑤𝑖

) , … , 𝑎𝑏𝑠 ([𝑾𝒎𝜍
]
𝑟𝑜𝑤𝑖

).  

This approach, although offering a substantial degree of interpretability, would not express 

how the temporal relevance is distributed across the memory groups when more than one is used, 

since the relevance is dependent on the dynamic behaviour of the normalized forget gates, 

[𝒇̂𝑠(𝑘)]
𝑟𝑜𝑤𝑖

. On the other hand, the dynamic behavior of the forget gates increases the difficulty 

of interpreting the temporal relevance, since it tends to change from one iteration to the next. 

Therefore, a middle ground between obtaining a more accurate insight into the distributed 

relevance and handling the dynamism of the forget gates can be achieved by using the time-

averaged values of the forget gates (5.1.19), 𝒇̂
𝑠
, since they represent the overall effect the forget 

gates have across the forward pass. The process of incorporating the averaged values into the effect 

of the memory-group matrices, as described in (5.1.20), results in integrated memory-group 

matrices, 𝝎𝑠, through which a more accurate interpretation of temporal relevance can be obtained. 

Plotting the rows of the integrated memory-group matrices, [𝝎𝑠]𝑟𝑜𝑤𝑖
, produces the desired 

interpretability for an individual unit 𝑖.  

𝒇̂
𝑠
, =

1

𝒮
∑ 𝒇̂𝑠(𝑗)

𝒮
𝑗=1                                                       (5.1.19) 
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𝝎𝑠 = [(𝒇̂
𝑠−1

 , 𝑑𝑖𝑎𝑔 (𝒇̂
𝑠
 ) 𝑎𝑏𝑠(𝑾𝒎𝑠

)]                                                     (5.1.20) 

where as previously mentioned, 𝒮 is the sequence length. 

By looking at the individual rows of the integrated matrices it is possible to access the 

temporal instances considered by individual units. Nevertheless, when interpreting one unit at a 

time, it might not be straightforward to identify what the whole network assigns relevance to; this 

is due to the units’ interdependence in the recurrence equations, affecting each other through the 

network gates. Therefore, if holistic interpretability is desired the mean value of the integrated 

row-normalized matrices (5.1.21), can be used instead.  

𝝎̂𝑠
̅̅ ̅̅ =

1

𝑛ℎ
𝟏1×𝑛ℎ

𝝎̂𝑠                                (5.1.21) 

where 𝝎̂𝑠 is the result of row-normalizing the matrix 𝝎𝑠, i.e., [𝝎𝑠]𝑖,𝑗/∑ [𝝎𝑠]𝑖,𝑗𝑗 . 

 

5.1.5 Overhead analysis and training implementation 

Considering the GI-LSTM structure defined by (5.1.1)-(5.1.13) and (5.1.17)-(5.1.18), the 

number of learnable parameters in a single layer is: 

 𝑛𝛉
(𝐺𝐼−𝐿𝑆𝑇𝑀)

= (4 + 𝜍 − 1)(𝑛ℎ + 𝑛𝑖𝑛𝑝𝑢𝑡 + 1)𝑛ℎ + (𝑞1 + ⋯+ 𝑞𝜍)𝑛ℎ                        (5.1.22) 

As observed in the first term of the RHS of (5.1.22), for a fixed number of hidden units the 

number of parameters increases proportionally with the number of forget gates, which is equal to 

the number of memory groups being used, 𝑠𝑚𝑎𝑥, while the second term represents the increase due 

to the memory groups’ learnable parameters, 𝚯𝑠. For a large number of hidden units if all the lag 

values are such that 𝑞𝑠 < 𝑛ℎ,  the increase in parameters per hidden unit with respect to an LSTM 

remains reasonable, while the long-term reach remains large, 𝑞1 + 𝑞2𝑞1 + ⋯+ 𝑞𝑠𝑞𝑠−1 …𝑞1. 
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Furthermore, for small values of 𝑛ℎ the temporal reach can be easily extended while still using 

fewer parameters.  

The previous two relations are part of the core of the GI-LSTM capabilities as they 

substantially mitigate the need to add more hidden units to oppose the EWC effect and allow for 

adding units mostly to increase the expressive power, when the nonlinear complexity of the time 

series requires it. Also, it should be highlighted that when 𝜍 = 1 and 𝑞1 = 1 the number of 

parameters in (5.1.22) is equal to the standard LSTM, since such a configuration would result in 

𝚯1 = 𝟏𝑛ℎ×1 and therefore there would be no need to store such parameters. 

In more practical terms and as seen in (5.1.1)-(5.1.4), due to a memory group’s need for 

accessing lagged values of the lower-order memory group, the number of transitory internal states 

in the GI-LSTM for the forward pass (5.1.23), 𝑛
ϕ⃗⃗ 
(𝐺𝐼−𝐿𝑆𝑇𝑀)

, is larger than in the E-LSTM and LSTM 

architectures. This number is achieved at the expense of frequently shifting values in auxiliary 

matrices, 𝑨𝑠 ∈ ℝ𝑛ℎ×𝑞𝑠…𝑞1, containing the internal states as expressed in (5.1.23).  

𝑛
ϕ⃗⃗ 
(𝐺𝐼−𝐿𝑆𝑇𝑀)

= (𝑞1 + 𝑞2𝑞1 …+ 𝑞𝜍𝑞𝜍−1 …𝑞1)𝑛ℎ                           (5.1.23) 

In the case of memory not being the main constraint, a reduction in computation can be 

achieved by using larger matrices, 𝑨𝑠 ∈ ℝ𝑛ℎ×𝒮, storing the values across the forward pass and 

producing an internal overhead in the number of variables as seen in (5.1.24). 

𝑛
ϕ⃗⃗ 
(𝐺𝐼−𝐿𝑆𝑇𝑀)

= 𝒮𝜍𝑛ℎ                                                     (5.1.24) 

For the backward pass of the training process the overhead analysis is similar to the forward 

pass, an overhead caused specifically by (5.1.11)-(5.1.13). Hence, when the analysis is carried out, 
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the resulting memory usage due to dynamic internal states, 𝑛
ϕ⃗⃗⃖

(𝐺𝐼−𝐿𝑆𝑇𝑀)
, is as described in (5.1.25) 

for the memory prioritization approach. 

𝑛
ϕ⃗⃗⃖

(𝐺𝐼−𝐿𝑆𝑇𝑀)
= (𝑞1 + 𝑞2𝑞1 …+ 𝑞𝜍𝑞𝜍−1 …𝑞1)𝑛ℎ                           (5.1.25) 

For the computation prioritization approach, the resulting number of dynamic internal 

states is given by (5.1.26). 

𝑛
ϕ⃗⃗⃖

(𝐺𝐼−𝐿𝑆𝑇𝑀)
= 𝒮𝜍𝑛ℎ                                                     (5.1.26) 

It is important to clarify that the multiplicative temporal reach, 𝑞𝜍𝑞𝜍−1 …𝑞1, in (5.1.25) is 

upper bounded by the sequence length, 𝒮, itself, due to the standard training process in the RNN 

architecture. Also sequence lengths do not go beyond the tens of thousands in practice [117]-[123], 

which is a practical constraint for the number of transitory parameters per unit in the GI-LSTM 

architecture. 

 

Algorithm 5.1: GI-LSTM training 

Input: {(𝒙(1), 𝒚(1)),… , (𝒙(𝑛), 𝒚(𝑛))} //assumed to be normalized 

Set values:  

   𝑛ℎ                          //number of hidden neurons 

   𝑛𝑠𝑠                         //number of subsequences 

   𝑠𝑠𝑙𝑒𝑛𝑔𝑡ℎ                 //training subsequence length 

   𝐼𝑚𝑎𝑥                       //maximum number of iterations before stopping 

   𝑛𝑓𝑎𝑖𝑙𝑠                     //number of consecutive fails 

   𝑛𝑓𝑎𝑖𝑙𝑠−𝑚𝑎𝑥             //max number of consecutive fails before stopping 

   𝐸𝑡𝑟𝑎𝑖𝑛−𝑚𝑖𝑛 ← 𝑖𝑛𝑓 //minimum training MSE 

   𝐸𝑣𝑎𝑙−𝑚𝑖𝑛 ← 𝑖𝑛𝑓    //minimum validation MSE 

Initialize: 𝜽             //random initialization of weights 

Divide dataset: 𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙, 𝐷𝑡𝑒𝑠𝑡 //division keeping temporal order 

for 𝑗 = 1 to 𝐼𝑚𝑎𝑥 

   for 𝑙 = 1 to 𝑛𝑠𝑠 



 

100 

 

      //-----------------------Forward pass---------------------------// 

      Extract: 𝐷𝑡𝑟𝑎𝑖𝑛
(𝑙)

 //Extract 𝑙th training subsequence from 𝐷𝑡𝑟𝑎𝑖𝑛 

      for 𝑘 = 1 to  𝑠𝑠𝑙𝑒𝑛𝑔𝑡ℎ 

         Compute: 𝒂(𝑘), 𝒊(𝑘),𝔀𝒇𝑠
, 𝒇̂𝑠, 𝒐(𝑘),𝑵𝑠(𝑘), 𝒄(𝑘), 𝒉(𝑘) 

      Compute:𝐸𝑡𝑟𝑎𝑖𝑛 // using ℒ (𝑡𝑟𝑎𝑖𝑛) for the 𝑙th subsequence 

      //-----------------------Backward pass-------------------------// 

      for 𝑘 = 1 to 𝑠𝑠𝑙𝑒𝑛𝑔𝑡ℎ 

         Compute: 𝜹𝒉(𝑘), 𝜹𝒐(𝑘), 𝜹𝒄(𝑘), 𝜹𝒊(𝑘), 𝜹𝒇𝒔
(𝑘), 𝜹𝒂(𝑘), 𝜹𝒛(𝑘), 𝜹𝚯(𝑘), 𝜹𝜽(𝑘) 

      𝜹𝜽 ← ∑ 𝜹𝜽(𝑗)
 𝑠𝑠𝑙𝑒𝑛𝑔𝑡ℎ

𝑗=1
 

      Update: 𝜽    //using any optimizer designed for this purpose 

   //-----------------Validation Set Performance------------------// 

   Compute: 𝐸𝑣𝑎𝑙 //using 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 and ℒ (𝑣𝑎𝑙) while keeping temporal order 

   //--------------------Stopping criteria-----------------------------// 

   if 𝐸𝑣𝑎𝑙−𝑚𝑖𝑛 > 𝐸𝑣𝑎𝑙 and 𝐸𝑡𝑟𝑎𝑖𝑛−𝑚𝑖𝑛 > 𝐸𝑡𝑟𝑎𝑖𝑛: //Storing best performance and optimal           

                                                                               parameters// 

      𝜽𝑜𝑝𝑡 ← 𝜽, 𝐸𝑣𝑎𝑙−𝑚𝑖𝑛 ← 𝐸𝑣𝑎𝑙, 𝑛𝑓𝑎𝑖𝑙𝑠 ← 0 

   else: 

      𝑛𝑓𝑎𝑖𝑙𝑠 ← 𝑛𝑓𝑎𝑖𝑙𝑠 + 1 

   if 𝑛𝑓𝑎𝑖𝑙𝑠 > 𝑛𝑓𝑎𝑖𝑙𝑠−𝑚𝑎𝑥: //maximum consecutive fails for reducing 𝐸𝑣𝑎𝑙−𝑚𝑖𝑛 or 𝐸𝑡𝑟𝑎𝑖𝑛−𝑚𝑖𝑛 

      break //ending main for loop 

return: 𝜽𝑜𝑝𝑡 //Maximum number of iterations reached// 

 

 

5.2 Experimental Setup 

The GI-LSTM network performance is assessed by using the datasets described in Chapter 

4 in addition to two popular benchmarks in the RNN area, the Copy memory dataset [28] described 

in the following paragraphs. This new dataset belongs to the category of multiclass classification, 

𝒚(𝑘) ∈ ℝ𝑛𝑐𝑙𝑎𝑠𝑠 , a category of problems that often uses the cross-entropy (CE) loss function (5.2.1) 

for the training process, due to its capability to embed categorical information through a 

probabilistic-like function. 

ℒ𝐶𝐸 = ∑ ∑ [𝒚(𝑗)]𝑖
𝑛𝑐𝑙𝑎𝑠𝑠
𝑖=1

𝑘
𝑗=1 𝑙𝑜𝑔([𝒚̂(𝑗)]𝑖)        (5.2.1) 
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The experiments with the Copy memory dataset are also performed with the standard 

LSTM to maintain a baseline to compare with; however, the E-LSTM, the SARIMA and the CW-

RNN algorithms are not considered, due to model incompatibility in the first two cases and low 

performance results across experiments in the last case (Chapter 4).  

 

5.2.1 Copy memory dataset 

The copy memory is a synthetic dataset initially proposed in [28] and has been extensively 

used to evaluate the capability of a network to remember patterns across long-term delays [118], 

[119], [121]-[124]. At a high level, the task consists of introducing a pattern to the model at hand, 

followed by a large delay after which a trigger indicates to the network to output the pattern 

initially presented.  

In more detail, the copy memory dataset is composed of an input sequence of length 

𝑇𝑑𝑒𝑙𝑎𝑦 + 2𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛, where the first 𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛 elements in the sequence are chosen uniformly at 

random from the set of 𝑛𝑠𝑦𝑚 symbols {𝑎1, … , 𝑎𝑛𝑠𝑦𝑚
}, creating the pattern to be remembered. The 

following 𝑇𝑑𝑒𝑙𝑎𝑦 − 1 elements consist of a ‘dummy’ symbol, 𝑎𝑛𝑠𝑦𝑚+1, causing the desired delay. 

Next, a trigger symbol, 𝑎𝑛𝑠𝑦𝑚+2, is presented to signal the network to output the pattern. Finally, 

the dummy symbol is used for the last 𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛 elements in the input sequence. The output 

sequence, of the same length as the input sequence, is composed of 𝑛𝑠𝑦𝑚 + 1 classes 

{𝑐0, 𝑐1, … , 𝑐𝑛𝑠𝑦𝑚
} whose 𝑇𝑑𝑒𝑙𝑎𝑦 + 2𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛 elements are the ‘zero’ class, 𝑐0, everywhere except 

for the last 𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛 elements after the trigger symbol, 𝑎𝑛𝑠𝑦𝑚+1, which correspond to the classes of 

each of the 𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛 symbols encountered in the initial input pattern. 

 



 

102 

 

5.2.2 Implementation details 

For the GI-LSTM implementation the MATLAB 2020b environment was utilized for the 

simulations. Also, the Adam optimization algorithm [41], [42] was again used across all 

experiments, including any additional LSTM simulations presented in this chapter. Adam’s 

hyperparameters were set to standard values, 𝛽1  =  0.9, 𝛽2  =  0.999 and 𝜖 =  10−8. The 

validation loss, ℒ (𝑣𝑎𝑙), was used as one of the stopping criteria across experiments for the training 

process, as indicated in Section 5.1.5, with a threshold value of 𝑚𝑓𝑎𝑖𝑙𝑠 =  4000. 

 Experiments were carried out using different sizes of the GI-LSTM in terms of the number 

of hidden units, sizes from the set {20, 21, . . . , 28} were utilized over the validation set, with 20 

repetitions for each size; the loss function value producing the best average validation performance 

was selected. Simulations were performed in the Beluga, Graham and Narval server clusters, 

operated by the Digital Research Alliance of Canada, using 2.4GHz CPUs. For each of the selected 

sizes the resulting performance in the testing set is reported. 

 

5.3. Experimental Results and Analysis 

In this section the GI-LSTM results for each introduced dataset, from the current and 

previous chapters, are presented together with some of the results from Section 4.3 to facilitate 

comparison across networks. The average (𝜇) and standard deviation (𝜎) of the RMSE value (or 

cross entropy for classification problems) are provided as performance indicators. Also, the 

following metrics are provided: number of hidden units and number of parameters (𝑛ℎ, 𝑛𝜽).; 

average training time per iteration (𝑡𝑖̅𝑡𝑒𝑟); average time and number of iterations to achieve the 

optimal loss function value (𝑡̅(𝑜𝑝𝑡), 𝐼 ̅𝑖𝑡𝑒𝑟
(𝑜𝑝𝑡)

). The top two GI-LSTM models, from a small set of 

possible configurations and based on the validation-set performance (minimum 𝜇𝑣𝑎𝑙 + 𝜎𝑣𝑎𝑙), are 
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provided. Also, bold text is used in the tables to represent the network with best testing 

performance (minimum 𝜇𝑡𝑒𝑠𝑡 + 𝜎𝑡𝑒𝑠𝑡). 

The hyperparameter values for the GI-LSTM configurations are chosen based on easy-to-

access information in the datasets: seasonality, maximum length of potential patterns, human-

driven seasonalities (hours, days, weeks, months, etc.). 

GI-LSTM interpretability plots are also provided, i.e., 𝝎̂𝑠
̅̅ ̅̅  (5.1.21), where it should be noted 

that a temporal dependence in the plots at 𝑑 implies a self-lag dependence in the time series at 𝑑 +

1, since the input is the output with a lag of 1. Also, the qualitative description ‘parameter-efficient’ 

will be used across this section to describe when the GI-LSTM achieves a similar performance to 

the LSTM using significantly less parameters. Furthermore, validation-set performance results for 

different GI-LSTM sizes are presented, in the form of plots, as additional information to make 

performances comparisons under similar numbers of parameters.  

 

5.3.1 Synthetic datasets 

Results for the Switching datasets are presented in Table 5.3.1-Table 5.3.2 and Fig. 5.3.1- 

Fig. 5.3.4. In the case of the Switching-100 dataset, the best GI-LSTM variant outperforms the 

LSTM and its augmented-input variation, showing a similar performance to the proposed E-LSTM 

but using an order of magnitude less of parameters. Also, the interpretability plot shows that the 

GI-LSTM can detect the nonlinear lagged dependence at 22 without the aid of the DC correlation, 

as opposed to the E-LSTM. Furthermore, in terms of parameter efficiency the GI-LSTM prevails 

over the standard LSTM across different networks sizes and remains competitive with the E-

LSTM.  
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Table 5.3.1. Results for the Switching-100 dataset (𝑘𝑖 = 22). Lower bound RMSE = 0.4227, 

GI-LSTM forward-backward pass length is set to 1000.  

Fig. 5.3.1. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the 

Switching-100 dataset. 
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For the Switching-01 dataset the best GI-LSTM variant outperforms the standard LSTM 

and E-LSTM, but the augmented-input variations of these networks remain on top. In this case, as 

in Section 4.3.1, the results can be attributed to the low-frequency switching. However, the GI-

LSTM is able again to precisely detect the nonlinear lagged dependence at 50 and remains 

parameter-efficient with respect to the standard LSTM and E-LSTM networks. 

 

 

 

 

 

Fig. 5.3.2. Validation set performance across different sizes for the Switching-100 dataset. 

Table 5.3.2. Results for the Switching-01 (𝑘𝑖  = 50), with a lower bound RMSE = 0.4095 and 

a GI-LSTM forward-backward pass length of 1000. 
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Fig. 5.3.3. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the  

Switching-01 dataset. 

Fig. 5.3.4. Validation set performance across different sizes for the Switching-01 dataset. 
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For the Binary sequence dataset, results (Table 5.3.3) show that both configurations of the 

GI-LSTM, one using a lag-memory value equal to the embedded sequence’s length (𝑞1 = 112), 

and the other using a larger lag-memory value (𝑞1 = 200) have better performance than the 

alternative networks, with performance close to the lower bound. Also, by analyzing the 

interpretability plot (Fig. 5.3.5) the relevance that the GI-LSTM gives to the long-term 

dependencies can be observed, potentially explaining the better performance. In addition, Fig. 

5.3.6 indicates that the optimal validation performance obtained by the alternative networks can 

be achieved by the GI-LSTM using less parameters (again by an order of magnitude).  

 

 

 

 

 

 

 

 

 

 

 

Table 5.3.3. Results for the Binary Sequence dataset (𝑘𝑖  = 29), with a lower bound RMSE = 

0.4357 and a GI-LSTM forward pass length of 1120 
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Fig. 5.3.5. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Binary 

sequence dataset. 

Fig. 5.3.6. Validation set performance across different sizes for the Binary sequence dataset. 
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5.3.2 Real-world datasets 

 In the Chickenpox dataset the GI-LSTM outperforms the standard LSTM and E-LSTM 

models, but the augmented E-LSTM remains on top (Table 5.3.3). It is worth noting that the GI-

LSTM produces competitive performance with an acceptable number of parameters, with respect 

to the other networks. Furthermore, the dependence relevance (Fig. 5.3.7) is consistent with the 

highest-value nonlinear dependence identified by the DC measure and used for the E-LSTM (𝑝 =

24). In this dependence relevance, less value is assigned to the yearly data’s seasonality (lag of 12 

in the time series and equivalent to the dependence at 11 in the interpretability plot). In relation to 

the performance across different network sizes (Fig. 5.3.8), the GI-LSTM model remains 

consistently better in relation to the alternative networks.  

  

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3.4. Results for the Chickenpox dataset (𝑘𝑖  = 24) a GI-LSTM forward pass length of 

400. 
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Fig. 5.3.7. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the 

Chickenpox dataset. 

Fig. 5.3.8. Validation set performance across different sizes for the Chickenpox dataset. 
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For the Sunspots dataset, little improvement is obtained through the best GI-LSTM model 

in comparison to the other models. Nevertheless, when analyzing the interpretability plots of both 

GI-LSTM configurations, Fig. 5.3.9-Fig. 5.3.10, it can be observed that the 10-to-11-year 

seasonality in the dataset (120-132 lagged values in the timeseries) receives little relevance in the 

second-best configuration, while most of it is allocated for the last three years of information. This 

relevance distribution could potentially explain why little improvement is achieved in the model 

even when compared to the standard LSTM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3.9. Temporal-dependence relevance in the GI-LSTM memory-group 1, best 

configuration, for the Sunspots dataset, 

Table 5.3.5. Results for the Sunspots dataset (𝑘𝑖  = 12) and a GI-LSTM forward pass length of 

1440. 
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Fig. 5.3.10. Temporal-dependence relevance in the GI-LSTM memory-group 1, second-best 

configuration, for the Sunspots dataset. 

Fig. 5.3.11. Validation set performance across different sizes for the Sunspots dataset. 
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For the Power Consumption dataset, the GI-LSTM networks (Table 5.3.6) achieve the best 

performance; specifically, the configuration using two memory groups. The latter is of interest 

when considering that in theory both configurations possess the same temporal reach (derived from 

(5.1.1)-(5.1.4)), 168 = 24 ∗ (6 + 1). One interpretation of the latter outcome is potential 

redundancy in the information across the previous 168 time units (hours). In more detail, by 

observing Fig. 5.3.12 - Fig. 5.3.13 it can be noticed that approximately 45% of the relevance is 

given to the information occurring in the last 24 hours, while the remaining relevance seems to be 

more uniformly distributed across the remainder of the previous information. Also, the 

interpretability plot in Fig. 5.3.14 shows a pattern in the relevance distribution, with pronounced 

local maxima occurring at lag values that are multiples of 24, after the first 48-time dependencies. 

This can indicate that information compression has no negative effect in the performance for this 

dataset, a trend that remains consistent across different sizes of the GI-LSTM network (Fig. 

5.3.15). 

 

 

 

 

 

 

 

 

Table 5.3.6. Results for the Power Consumption dataset (𝑘𝑖  = 24)) and a GI-LSTM forward 

pass length of 1344 
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Fig. 5.3.12. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Power 

consumption dataset. 

Fig. 5.3.13. Temporal-dependence relevance in the GI-LSTM memory-group 2, best 

configuration, for the Power consumption dataset. 
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Fig. 5.3.15. Validation set performance across different sizes for the Power consumption 

dataset. 

Fig. 5.3.14. Temporal-dependence relevance in the GI-LSTM memory-group 1, second-best 

configuration, for the Power consumption dataset. 
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Similar to the previous case, in the Toronto temperature dataset the GI-LSTM 

configurations (Table 5.3.7) outperform the alternative models; both configurations are close in 

performance, despite the second-best using 15% less parameters due to the use of a second-order 

memory group. The latter effect can be further supported when observing the interpretability plots 

(Fig. 5.3.16-Fig. 5.3.18), where the relevance distribution shows a similar phenomenon to the 

Power Consumption dataset: a pattern of local maxima at multiples of 24 hours in the configuration 

using a single memory group (Fig. 5.3.16) and the configuration using two memory groups a 

relevance of approximately 45% for the previous 24 hours (Fig. 5.3.18). Additionally, the 

performance of the networks across different sizes (Fig. 5.3.19) shows that the GI-LSTM 

configurations remain parameter-efficient, and the performance trend is similar to that of the Power 

consumption dataset (Fig. 5.3.15). This performance trend resemblance is not further explored or 

analyzed in this work, but it could be hypothesized that the energy consumption of the US Eastern 

grid area, in the same time-zone as the city of Toronto, is heavily affected by the temperatures in 

the region which are in turn correlated with Toronto's temperature. 

 

 

 

 

 

 

 

Table 5.3.7. Results for the Toronto temperature dataset and a GI-LSTM forward pass of 1344. 
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Fig. 5.3.17. Temporal-dependence relevance in the GI-LSTM memory-group 1, second-best 

configuration, for the Toronto temperature dataset. 

Fig. 5.3.16. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Toronto 

temperature dataset. 
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 Fig. 5.3.19. Validation set performance across different sizes for the Toronto temperature 

dataset. 

Fig. 5.3.18. Temporal-dependence relevance in the GI-LSTM memory-group 2, second-best 

configuration, for the Toronto temperature dataset. 
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5.3.3 Copy memory dataset results and analysis 

 The copy memory dataset simulation results are studied separately due to the use of the CE 

loss function and the flexibility it allows for varying the delay, 𝑇𝑑𝑒𝑙𝑎𝑦, between the introduction of 

the input patterns and the time to output their class. Experiments using delay values of 50, 200 and 

400 were performed to test the long-term memory capability of the networks under the following 

conditions. First, 𝑛𝑠𝑦𝑚 = 8 and 𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = 10, as in the original copy memory task. Also, one-hot 

encoding is used for all the symbols, producing vectors of dimension 10. Since the encoding 

generates 0-1 values no input normalization is performed (which avoids the generation of large 

values in the input due to the scarcity of the symbols to be classified when 𝑇𝑑𝑒𝑙𝑎𝑦 is large). 

Additionally, batch processing is performed, and the Adam optimizer is used, with default 

hyperparameter values and learning rate 𝛼 = 0.005.  Chrono initialization [122] is implemented 

for the standard LSTM, due to its proven efficacy to accelerate the learning process of long-term 

patterns. A maximum number of 100000 epochs for the LSTM and 40000-60000 epochs for the 

GI-LSTM are used during the training phase. Finally, a temporal reach equal to half the sequence 

length, 𝒮/2, in each experiment is used for all the GI-LSTM configurations. 

 Among the defined experimental conditions, it is important to highlight that avoiding 

normalization after the one-hot encoding also avoids the effect of unintentionally leaking 

information to the networks, since the mean-variance normalization would generate a very low 

variance for the features linked to the symbols to be reconstructed, greatly increasing the values of 

these features and decreasing the feature value associated with the dummy symbol, 𝑎𝑛𝑠𝑦𝑚+1, giving 

away the relevance of the patterns.  
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For the result tables, in addition to the CE metrics, the total classification accuracy and the 

pattern reconstruction accuracy metrics are also reported; the pattern reconstruction accuracy 

reflects the true capability of the networks to learn and generalize the task, without the bias created 

by the dummy symbol that appears across most of the sequence length, i.e., in 𝑇𝑑𝑒𝑙𝑎𝑦 + 𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛 −

1 instances out of 𝒮 = 𝑇𝑑𝑒𝑙𝑎𝑦 + 2𝑇𝑝𝑎𝑡𝑡𝑒𝑟𝑛. 

 In Table 5.3.8 the results for 𝑇𝑑𝑒𝑙𝑎𝑦 = 50, with the best performing sizes of the networks, 

is shown. As observed, the LSTM is essentially unable to perform the pattern reconstruction under 

the conditions of the experiment, despite the use of the chrono initialization, the use of a higher 

number of parameters (an order of magnitude higher than the GI-LSTM) and more training epochs. 

In contrast, the GI-LSTM is able to achieve near 100% accuracy in the testing set, showing its 

capability to generalize beyond the training and validation sets. Also, when analyzing the 

interpretability plot (Fig. 5.3.20) for this experiment, it can be observed that relevance is assigned 

to iterations beyond the trigger symbol, located at 10 in lag values. Consequently, information is 

propagated forward across the temporal connectivity generated in the memory groups.  

The detailed evolution of the training process for this experiment can be observed in  

Fig. 5.3.21 - Fig. 5.3.22, where it can be seen that the average validation loss curves do not follow 

the trajectory of the training loss curves. This implies that the LSTM network is not able to 

generalize beyond the training set under these experimental conditions. 
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Fig. 5.3.20. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Copy-

memory-d50 dataset. 

Table 5.3.8. Results for the Copy-memory-d50 dataset, 100 sequences and batch size of 100. 
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Fig. 5.3.22. Training and validation pattern accuracy for the Copy-memory-d50 dataset.  

Fig. 5.3.21. Training and validation cross-entropy for the Copy-memory-d50 dataset. 
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When the delay value is increased to 200 a more pronounced difference in relation to the 

generalization capability in the networks can be observed in Table 5.3.9; additional results for the 

GI-LSTM are provided to directly compare networks of similar sizes. In this case, the 

interpretability plot (Fig. 5.3.23) of the best performing GI-LSTM shows a high relevance 

associated to a long-term dependence at 105, revealing again that the network tries to propagate 

the pattern information occurring at the beginning of the sequence, located between 220 and 210 

previous instances. Also, the training process in Fig. 5.3.24-Fig. 5.3.25 shows the LSTM is not 

able to learn the pattern in the training dataset, while the GI-LSTM starts to reduce its 

generalization performance in a noticeable but not critical fashion. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3.9. Results for the Copy-memory-d200 dataset, 100 sequences and batch size of 100, 

with additional results for the GI-LSTM. 
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Fig. 5.3.23. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the copy-

memory-d200 dataset. 

Fig. 5.3.24. Training and validation cross-entropy for the Copy-memory-d200 dataset. 
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An experiment using delay of 400 is carried out (Table 5.3.10); however, the LSTM 

network is not used in this case, a decision made based on its low performance for easier tasks. 

For this scenario, the GI-LSTM generalization performance reduces, partly explained by the 

maximum simulation time used for this experiment. In addition, the associated interpretability plot 

(Fig. 5.3.26) for this experiment resembles that for a delay of 200, with a high relevance near the 

last dependencies.  Furthermore, Fig. 5.3.27- Fig. 5.3.28 support the observation of the simulation 

time affecting the GI-LSTM performance, where the last figure shows an upward trend for the 

pattern accuracy. 

 

 

 

 

Fig. 5.3.25. Training and validation pattern accuracy for the Copy-memory-d200 dataset. 
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Fig. 5.3.26. Temporal-dependence relevance in the GI-LSTM memory-group 1 for the Copy-

memory-d400 dataset. 

Table 5.3.10. Results for the copy-memory-d400 dataset (𝑇𝑑𝑒𝑙𝑎𝑦 = 400), 100 sequences and 

batch size of 100. 
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Fig. 5.3.27. Training and validation cross-entropy for the Copy-memory-d400 dataset. 

Fig. 5.3.28. Training and validation pattern accuracy for the Copy-memory-d400 dataset. 
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Chapter 6  

Conclusion 

In this work, machine learning models for time-series forecasting are proposed and experimentally 

tested. These models are intended to be interpretable, possess increasing long-term learning 

capability and maintain acceptable size. They exhibit promising performance across a variety of 

simulated and real-world experiments. These results were achieved by taking the following path: 

• An inherently interpretable adaptive linear model for dynamic systems was proposed. The 

model was designed to incorporate information more actively through a time-varying 

forgetting factor that is constrained by physically interpretable and user-defined 

parameters. 

• The adaptive linear model was used as the basis, together with a General Predictive 

Controller approach with a variable time horizon, to create an Adaptive Predictive 

Controller. 

• The proposed Adaptive Predictive Controller was implemented on a real rack-mounted 

cooling system to control server temperatures in data centres, using a low-cost commercial 

microcontroller. The resulting model outperforms standard control algorithms (a standard 

GPC included), in both simulations and real-world tests. 
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• The proposed Adaptive Predictive Controller also showed capabilities to significantly 

reduce energy-consumption expenses by allowing for a monetary optimization algorithm. 

• In order to consider nonlinear effects in time series, attention is redirected to the LSTM 

model. Initial steps to overcome the model’s potential limitations on identifying long-term 

dependencies and using a large number of parameters are taken by increasing its internal 

temporal connectivity, resulting in the E-LSTM architecture. 

• An approach based on the Distance Correlation intended to detect nonlinear effects that 

can be exploited by time-series nonlinear models is proposed. This approach is used to 

select the incremented temporal connectivity in the E-LSTM architecture.  

• Experiments using the proposed E-LSTM, the LSTM and alternative time-series linear and 

nonlinear models showed that the E-LSTM achieved similar or better performance for a 

variety of synthetic and real-world time-series datasets, while in most cases maintaining or 

reducing the number of parameters. 

• Further steps are taken to increase performance and interpretability by proposing a 

Generalized Interpretable LSTM (GI-LSTM) architecture, with even higher temporal 

connectivity than the E-LSTM, allowing for semi-global interpretation and removing the 

need for precisely locating the temporal connectivity.  

• Experiments are carried out with the proposed GI-LSTM and alternative linear and 

nonlinear models, showing the proposed GI-LSTM provides better performance with 

respect to size while becoming more accessible for human interpretation. 

From the previous milestones some insights can be extracted. First, the ability of an 

adaptive linear model to dynamically regulate how much relevance is given to new information, 
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based on interpretable physical constraints, not only promotes better performance and reliability, 

but also showcases the usefulness of simple and interpretable models  for industrial applications. 

Among the potential restrictions of the proposed adaptive linear model is the limited 

memory capability, which can force the model to forget useful information to adapt to the current 

dynamic system’s state. In this regard, investigation in the direction of piece-wise linear models 

could be performed, from the perspective of having a set of learnable parameters (vectors) 

functioning as not necessarily disjoint ‘memories’ for different system states. In this way, relevant 

information is more likely to remain encoded and dynamic adaptation can be used mostly to handle 

time-varying conditions in the system and not to handle nonlinear effects. 

 In relation to the E-LSTM, the experimental results showed that, for time-series datasets in 

which nonlinear effects might be present, the standard LSTM architecture seems to rely on a larger 

number of hidden units and forget gates to identify long-term dependencies, consequently 

producing a large number of parameters in the model. In contrast, the extended connectivity in the 

E-LSTM alleviates this need while improving the performance in some cases.   

The E-LSTM model has two limitations. It relies on an external approach to identify where 

the extended connectivity location should be created and it is not clear that such an approach can 

be used for more than a single-layer architecture while producing significantly better results. The 

first of these limitations is mostly addressed by the GI-LSTM, as shown in the last part of this 

thesis. In relation to the second limitation, investigation on incremental training of a multi-layer 

E-LSTM could be performed; specifically, selecting the temporal connectivity of a second E-

LSTM layer based on the residual errors created by the first layer, and iteratively repeating this 

process for subsequent layers.  
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The proposed  GI-LSTM network and the experimental results suggested that not only is it 

possible to further increase the internal connectivity in the E-LSTM, removing the need for 

preprocessing the data by means of an external algorithm, but also showed that a small network 

can still result in a competitive model. Also, the proposed architecture opens up the possibility of 

having the previous advantages while allowing for interpretability. Furthermore, the architecture 

is general enough to be used in deep layer architectures, an approach that would be worth testing 

for additional time-series showing more complex nonlinearities.  

There are a number of research opportunities with respect to the GI-LSTM architecture, 

aimed to increase performance and interpretability, accelerate the training process and produce 

smaller network sizes. First, artificial stochastic variability could be produced in the memory-

group parameters, since they represent the core mechanism in the identification of long-term 

dependencies. This could decrease the time spent in local optima and possibly reduce the number 

of units needed to identify relevant dependencies. Also, modifications to the input gate in the 

direction expressed by [119] could be performed if deep layers were to be investigated, since the 

memory-group strategy is compatible with such modifications. In relation to the temporal 

connectivity in the memory groups, it is worth noting that such connectivity could be further 

promoted by designing mechanisms that allow for information sharing across memory-group units, 

since the proposed temporal connectivity is limited to be unit-wise, i.e., the behavior of each 

element in a memory-group is not directly influenced by other elements’ behavior. This lack of 

influence could lead to undesired, or at least not well-directed, redundancy; producing model sizes 

larger than necessary. 
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