THE THEORY OF ATOMS IN MOLECULES FOR THE BORANES

APPLICATION OF THE THEORY OF ATOMS IN MOLECULES TO THE BORANES AND CARBORANES

By

DANIEL A. LEGARE

A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree

Master of Science McMaster University (c) by Daniel A. Legare, November 1990

VOAND. 1 TOUR TOUR MARK

Abstract

The theory of Atoms in Molecules is applied to a series of borane molecules. A study of the topological features of the charge density, $\rho(\mathbf{r})$, yields a quantum mechanical definition of atoms, bonds, and the average properties of atoms within a molecule. Other topological features of the boranes studied include rings and cages, formed by bond paths in ρ which link the atoms. These bond paths which form rings are bent inward in order to maximize the binding in these electron-deficient molecules. An important result of this analysis is the unambiguous assignment of the connectivity of the boranes.

The theory of atoms and molecules allows one to quantum mechanically partition molecules into atomic basins, and calculations of average values for electron count and energies of individual atoms are performed by integration over these basins. Comparisons of atomic properties are performed to determine the transferability of atomic properties across the series.

The Laplacian of ρ , $\nabla^2 \rho$, yields information about sites of electrophilic and nucleophilic attack in molecules. These sites are found to correspond to the positions of critical points in $\nabla^2 \rho$, which are localized to specific atoms in the molecule. The boranes and carboranes are ranked according to their susceptibility to electrophilic and nucleophilic attack, and such reactions with boranes are predicted to be regiospecific. MASTER OF SCIENCE (1990) (Chemistry) McMaster University Hamilton, Ontario

TITLE:Application of the Theory of Atoms in Molecules to the
Boranes and CarboranesAUTHOR:Daniel A. Legare, B.Sc. (Brock University, St. Catharines)

SUPERVISOR: Professor Richard F.W. Bader

NUMBER OF PAGES: ix, 278

Acknowledgements

I would like to thank first and foremost Dr. Richard Bader, whose leadership and encouragement have helped me to see this work through to a successful completion. He has created a true learning environment where students are free to express their views and pursue their scientific interests.

I would also like to express my thanks to the former members of this research lab who have been of assistance to me over the last two years; Dr. Marshall Carroll, and Dr. Cheng Chang. Kudos go to Dr. Keith Laidig, from whose experience and technical knowledge I have benefitted immeasurably. I would especially like to thank James Cheeseman, whose kindnesses were extended to me in the months before I ever joined his research group.

Finally, I wish to express my appreciation to Dr. John Simmons, who made his computing, scanning and printing equipment available to me for much of the production of this work.

Table of Contents

Abstract	i
Acknowledgements	iii
Table of Contents	iv
List of Tables	V
List of Figures	vii
Poem	ix
<u>1. Introduction</u>	1
2. The Hartree-Fock Approximation and the SCF Procedure	
3. General Chemistry of the Boranes	
<u>4. Computational</u>	
Tabulation of the SCF Results for the Boranes	50
Comparison of SCF Results	57
With Regard to the Anionic Cage Clusters	65
Tabulation of Results of Application of the Theory of Atoms	
in Molecules	66
5. Discussion	
A. Bond Properties in ρ	
B. Atomic Properties	92
C. Electron Counting Schemes	98
D. Reactivity and the Laplacian of p	98
References	117
Appendix A: PROAIM, OMEGA Output	A1
Appendix B: SADDLE Output	B1

List of Tables

Table 1; IUPAC Names and styx Number Assignments for the	
Borane Series	1
Table 2.; Borane Basis Set 49)
Table 3.; BH Geometry	1
Table 4.; BH3 Geometry	1
Table 5.; B2H6 Geometry 51	1
Table 6.; B ₄ H ₁₀ Geometry52	2
Table 7.; B5H9 Geometry 52	2
Table 8.; B ₆ H ₁₀ Geometry	3
Table 9.; $B_6H_6^{2-}$ Geometry	1
Table 10.; B ₇ H ₇ ^{2–} Geometry	4
Table 11.; $B_{12}H_{12}^{2-}$ Geometry	5
Table 12.; C2B3H5 Geometry	5
Table 13.; C ₂ B ₄ H ₆ Geometry50	5
Table 14.; Comparison of Internal Coordinates for the Borane	
Series	1
Table 15.; Comparison of Geometric and Bond Path Angles for the	
Borane Series	4
Table 16.; Bond Properties for the Borane Series 70)
Table 17.; Integrated Electron Populations, Net Charges and	
Energies for Atoms in the Borane Series72	2

Table 18.; Comparison of Total Integrated Electron Populations and	
Energies with SCF Resultts for Molecules in the Borane Series	73
Table 19.; Reference Values for Integrated Electron Populations and	
Energies for Atoms in the Borane Series	73
Table 20.; Comparison of Integrated Electron Populations and	
Energies for Atoms in the Borane Series	74
Table 21.; Critical Points in $\nabla^2 \rho$ for the Borane Series	75

List of Figures

Figure 1.; Relief Maps of ρ for B_2F_4	5
Figure 2.; Relief Maps of ρ for B ₂ H ₆ 7	7
Figure 3.; Relief Maps of ρ for B ₆ H ₆ ^{2–})
Figure 4.; Phase portraits for one-, two- and three-dimensional critical	
points 1	11
Figure 5.; a) Gradient Vector Field of ρ for B ₂ F ₄	
b) Contour map of ρ for B_2F_4 1	12
Figure 6.; Gradient Vector Field of ρ for B_2H_6	16
Figure 7.; Gradient Vector Field of ρ for $B_6H_6^{2-}$	18
Figure 8.; Diagram of BH3	51
Figure 9.; Diagram of B ₂ H ₆ 5	51
Figure 10.; Diagram of B ₄ H ₁₀ 5	52
Figure 11.; Diagram of B5H95	52
Figure 12.; Diagram of B ₆ H ₁₀ 5	53
Figure 13.; Diagram of B ₆ H ₆ ^{2–} 5	54
Figure 14.; Diagram of B7H7 ^{2–} 5	54
Figure 15.; Diagram of $B_{12}H_{12}^{2-}$	55
Figure 16.; Diagram of C ₂ B ₃ H ₅ 5	56
Figure 17.; Diagram of C ₂ B ₃ H ₅ 5	56
Figure 18.; Molecular Graphs of Borane Series	32

Figure 19.; Contour maps of $\nabla^2 \rho(\mathbf{r})$ for

- a) Plane of Ring in B₂H₆
- b) Plane of Borons and Terminal Hydrogens in B₂H₆
- c) Plane of B-B Bond and Terminal Hydrogens in

B ₄ H ₁₀	86
Figure 20.; Atomic Graph of CH ₄	100
Figure 21.; Contour maps of $\nabla^2 \rho(\mathbf{r})$ for B ₄ H ₁₀	104
Figure 22.; Contour maps of $\nabla^2 \rho(\mathbf{r})$ for B ₅ H ₉	106
Figure 23.; Contour maps of $\nabla^2 \rho(\mathbf{r})$ for B ₆ H ₁₀	107
Figure 24.; Relief and Contour Maps of $\nabla^2 \rho(\mathbf{r})$ for $B_6 H_6^{2-}$	109
Figure 25.; Contour maps of $\nabla^2 \rho(\mathbf{r})$ for B ₇ H ₇ ^{2–}	111
Figure 26.; Contour maps of $\nabla^2 \rho(\mathbf{r})$ for C ₂ B ₃ H ₅ and C ₂ B ₄ H ₆	113

Once carbon a neighbouring hydrogen chided "You've more charge than Mulliken provided" The hydrogen answered with purpose "We're split by a zero-flux surface So we're not arbitrarily divided!"

1. Introduction

The most fundamental underlying concept in all of chemistry is the atomic hypothesis and its related theory of molecular structure. Until recently, scientists have been able to only postulate the idea that atoms exist as the distinct "building blocks" of molecules, while employing models such as that provided by Lewis to describe molecules as a network of atoms joined by bonds to give a particular structure. These models were not based on a fundamental understanding of quantum mechanics, but rather reflected experimental realities seen in the laboratory. With the theory of atoms in molecules, one can now recover the concepts of atoms, bonds, and molecular structure, so providing their unambiguous definition. With this theory, it is also possible to properly differentiate between molecular structure and molecular geometry, as well as predict the sites of relative reactivity in molecules.

The theory of atoms in molecules primarily deals with an examination of the charge density, $\rho(\mathbf{r}, \mathbf{X})$ for a molecule, where \mathbf{X} represents a point in configuration space, the set of nuclear coordinates representing a particular molecular geometry. The attractive forces involved in the interaction between nuclei and the surrounding electronic charge yield the first important result, that the charge density in a molecule in general attains local maxima only at the nuclear positions (Bader 1985). Therefore the nuclei make the most significant and recognizable contributions to the molecular charge distribution, a result which has made

1

which has made the gross structure of molecules an accessible component of chemical research for many years before the properties of the charge density were uncovered.

In deriving a quantum mechanical expression for the charge density, $\rho(\mathbf{r}, \mathbf{X})$, the probability of finding each one of the N electrons in a molecular system in a particular volume element $d\tau_i = dx_i dy_i dz_i$ with spin σ_i for an arrangement of nuclei X is defined by

$$\psi^{*}(x;X)\psi(x;X)dx_{1}dx_{2}\cdots dx_{n} \qquad dx_{i} = d\tau_{i}\sigma_{i} \qquad (1)$$

Further, one can obtain the probability of finding one electron in an elemental volume (independent of other electronic positions) by summing eqn. (1) over spin coordinates and integrating over the positions of all electrons but one, giving

$$\sum (\text{spins}) \left\langle \int d\tau_2 \int d\tau_3 \cdots \int d\tau_N \psi^*(\mathbf{x}; \mathbf{X}) \psi(\mathbf{x}; \mathbf{X}) \right\rangle.$$
(2)

Finally, one obtains the total probability for finding electronic charge in an elemental volume $d\tau_1$ by multiplying eqn. (2) by the number of electrons N. This then defines the electronic charge density $\rho(\mathbf{r}, \mathbf{X})$, where $\mathbf{r} = \mathbf{i}\mathbf{x} + \mathbf{j}\mathbf{y} + \mathbf{k}\mathbf{z}$, as

$$\rho(\mathbf{r};\mathbf{X}) = \mathbf{N}\sum (\text{spins}) \left\langle \int d\tau_2 \int d\tau_3 \cdots \int d\tau_N \psi^*(\mathbf{x};\mathbf{X}) \psi(\mathbf{x};\mathbf{X}) \right\rangle.$$
(3)

which in a shorter form is rendered as

$$\rho(\mathbf{r};\mathbf{X}) = N \int d\tau' \psi^{*}(\mathbf{x};\mathbf{X}) \psi(\mathbf{x};\mathbf{X})$$
(4)

where $\int d\tau'$ denotes summation over spin coordinates of all electrons, and integration over all cartesian coordinates except one.

As a physical example to illustrate the gross features of the molecular charge distribution, one can examine relief maps of B₂F₄, which show the three perpendicular molecular planes, with the charge density as a projection above each of these planes. Fig. 1a shows the plane of all six nuclei, while Fig. 1b shows the other plane still containing the boron-boron internuclear axis, obtained by rotating the plane of Fig. 1a by ninety degrees about this axis. Fig. 1c is the third plane perpendicular to the boron-boron internuclear axis, showing charge density for a plane containing the midpoint of this axis (note: the relative vertical accentuation for these three plots a, b and c is 3:3:10, so that the charge density in the midpoint of the boron-boron axis in Fig. 1c could be clearly seen).

Both Figs. 1a and 1b exhibit local maxima in $\rho(\mathbf{r})$ at the positions of each of the nuclei, showing that a nuclear maximum is visible in <u>any</u> plane containing that nucleus. Also, both these figures show a "saddle" in the midpoint of the boron-boron axis, while Fig. 1c shows a maximum there.

This points up the necessity of knowing the behaviour of $\rho(\mathbf{r})$ in all three mutually perpendicular planes. The three-dimensional form of the charge density can be summarized by expounding on the nature of the curvatures of $\rho(\mathbf{r})$ at what are known as critical points.

A critical point in the molecular charge distribution is defined as a point in space where $\nabla \rho(\mathbf{r}) = 0$. As with any scalar function, the maximal or minimal characteristics of $\rho(\mathbf{r})$ are determined by the sign of the second derivative, or curvature. Since there are three dimensions involved, there can be at most three principal non-zero curvatures for $\rho(\mathbf{r})$ (The word "principal" is used, because there are actually nine such curvatures involving cross terms in *x*, *y*, and *z*, but this 3×3 Hessian matrix can be diagonalized to give just three second derivatives with respect to the principal axes of curvature, which in the case of the central critical point in B₂F₄ coincide with the symmetry axes of the molecule).

In one dimension, a maximum is denoted by a negative curvature, while a minimum is found at a point with a positive curvature, and the combinations of the three possible signs of the curvatures can be combined into one succinct characterization for any critical point in $\rho(\mathbf{r})$. The number of non-zero curvatures is called the rank, ω , and the sum of the signs of these curvatures is called the signature, σ . Since in B₂F₄ there exists a minimum in $\rho(\mathbf{r})$ along the boron-boron internuclear axis, and a maximum along the other two perpendicular axes, the rank is three, and the signature is minus one, making this a (3,-1) or <u>bond</u> critical point. Note that Figs. 1a and 1b each show one positive and one negative

Fig. 1 Relief maps of the electronic charge density in B₂F₄ in three orthogonal planes containing the critical point midway between the boron nuclei.

curvature, while Fig. 1c shows the two negative curvatures perpendicular to the bond axis. Four more (3, -1) critical points appear between the borons and those fluorine atoms to which they are generally regarded as bonded, and these exhaust all of the available (3,-1) critical points found in this molecule.

This method of categorization also provides that the nuclear positions are known as (3, -3) critical points, although $\nabla \rho$ and $\nabla \psi$ are discontinuous because of the cusps found there. Note also that critical points of rank three are prevalent in real molecular systems, while critical points with ω <3, known as degenerate critical points, are less prevalent and also unstable, since a small change in nuclear configuration will resolve these into stable critical points of rank three; the presence of these degenerate critical points marks the onset of a change in molecular structure (Bader *et al* 1981).

There are two other possible signature values for critical points of rank three, (3,+1) and (3,+3) critical points, which are characteristic of ring and cage structural elements, respectively (Bader 1985). To illustrate the nature of the (3,+1) or ring critical points, B₂H₆ will serve, as shown in Figs. 2a-2c, which also contain relief maps of $\rho(\mathbf{r})$, as in the previous figures. While the peripheral saddle points are similar to those (3,-1) or bond critical points found in B₂F₄, the critical point found in the centre of the molecule is a (3,+1) or ring critical point. This is indicated by the presence of a minimum in the plane containing the borons and the bridging hydrogens, as shown in Fig. 2b, and a saddle rather than a maximum in the

Fig. 2 Relief maps of the electronic charge density in B₂H₆ in three orthogonal planes containing the critical point midway between the boron nuclei.

plane perpendicular to the boron-boron axis and containing the bridging hydrogens, with a similar saddle appearing in the same position in Fig. 2a. This critical point is surrounded by a ring of (3, -1) bond critical points as shown in Fig. 2b, hence the name "ring" critical point. The axis of the single negative curvature is perpendicular to this ring.

Illustration of the fourth type of critical point, known as a (3, +3) or cage critical point, is served by $B_6H_6^{2-}$, shown in Figs. 3a-3b. The critical point in the centre of this molecule appears as a minimum in any plane containing the point, and the presence of the other ring and bond critical points can be deduced from examination of the (2, 0) saddles and (2, -2) maxima found in the planes represented in these figures. Thus, $B_6H_6^{2-}$ contains all the possible non-degenerate (ω =3) critical points.

After looking at the topology of $\rho(\mathbf{r})$, one can examine the properties of the gradient vector field of $\rho(\mathbf{r})$, and in so doing recover the molecular structural elements familiar to all chemists. These are directly obtainable from the charge density itself, with no reliance on arbitrary models. One can observe the gradient vector field by mapping out the trajectories of $\nabla \rho$, known as gradient paths, all of which originate and terminate at critical points, where of course $\nabla \rho(\mathbf{r})$ vanishes. These trajectories are perpendicular to the contour lines of constant density in ρ (a contour map for B₂F₄ is found in Fig. 5c), and the vector $\nabla \rho(\mathbf{r})$ is tangent to its trajectory at each point in space \mathbf{r} . Also, since $\nabla \rho(\mathbf{r})$ determines only one direction for each point \mathbf{r} , these trajectories never cross.

Fig. 3 Relief maps of the electronic charge density for the octahedral $B_6H_6^{2-}$ molecule in two orthogonal planes containing the central cage critical point. The third orthogonal plane is symmetrically equivalent to the lower figure.

One can examine the curvature of $\rho(\mathbf{r})$ along a line instead of along three dimensions at once, and thereby derive critical points with rank and signature (1, +1) and (1, -1). At these points, the charge density is a maximum or minimum, with the trajectories of $\nabla \rho$ originating or terminating there, respectively (see Fig. 4). For the two-dimensional case, one obtains a (2,-2) local maximum at which all gradient paths terminate, or a (2,+2) local minimum from which all gradient paths originate, or a (2,0) saddle point, at which the two gradient paths approaching the maximum terminate, and the two which approach the minimum originate, with all other off-axis paths avoiding the critical point.

In three dimensions, the two negative curvatures associated with a (3, -1) critical point define a surface, and the single positive curvature has two associated gradient paths which originate there, and which are perpendicular to the surface at the critical point; the charge density is a minimum along this line at the critical point, and a maximum at the critical point with respect to the surface. For a (3,+1) critical point, the arrows in the diagram are reversed.

Fig. 5a shows the gradient vector field of B_2F_4 in the plane containing all six atoms; these atoms, as (3, -3) critical points, are defined as point attractors, since all nearby gradient paths terminate there. The set of all gradient paths which terminate at an attractor map out the basin of that attractor. With this definition, it is possible to partition space into separate regions or basins for each attractor (nucleus). Fig. 5a shows only these paths, and illustrates that *an atom can be defined as the union of an*

Fig. 4 Phase portraits for one-, two- and three-dimensional critical points.

Fig. 5 a) and b) Gradient vector field of the charge density of B_2F_4 in the plane containing the nuclei. c) Contour map of $\rho(r)$ in same plane showing bond paths and interatomic surfaces. A bond critical point is denoted by a dot ("•") attractor and its basin. As mentioned earlier, the paths terminating at a (3, -1) critical point and associated with a maximum in $\rho(\mathbf{r})$ define a surface, which can be called an interatomic surface, or basin boundary. These boundaries, found in any molecule, and whose intersection with the plane of the atoms has been added in Fig. 5b, provide a straightforward means of partitioning space into separate atomic regions. Note that these regions can extend infinitely far away from the nuclei, in areas where they are not enclosed by a boundary. Also added in Fig. 5b are the paths associated with the positive curvatures at the (3, -1) critical points; these originate at the critical point and terminate at the nuclei, and are called atomic interaction lines, and they always intersect the interatomic surface in a perpendicular fashion.

Through the use of the action principle, it is possible to apply quantum mechanics to a subsystem (i.e., one atom or fragment of a molecule) provided that this subsystem be bounded by a surface of zero flux in the gradient vector of the charge density. Mathematically, this can be expressed as

$$\nabla \rho(\mathbf{r}) \bullet \mathbf{n}(\mathbf{r}) = 0 . \tag{5}$$

This condition is satisfied as long as the gradient vector paths do not cross this surface. In fact, the interatomic surfaces which arose out of examination of the gradient vector field at the bond critical points do satisfy the condition in eqn. (5), and as such are termed zero-flux surfaces. Therefore, an atom, which can be defined as the region containing a point attractor and bounded by a zero-flux surface, lends itself to a quantum mechanical treatment of the same rigor as that of any total system, with no loss of generality or of the properties which are normally obtainable from the state function. Moreover, the average value of a property calculated for an atom in a system, when summed over the system, gives the same total average result as that calculated for the total system (Bader and Becker 1988), i.e.,

$$\langle \mathbf{M} \rangle = \sum_{\Omega} \mathbf{M}(\Omega) .$$
 (6)

The atomic interaction lines previously mentioned are found between every two nuclei which share an interatomic surface, and they support the contention that charge density accumulates between nuclei for a molecule in its equilibrium geometry. These atomic interaction lines are lines of maximum charge density linking the nuclei, and as such are called *bond paths* (for a molecule in an equilibrium geometry), and the (3, -1) critical points found along these paths are known as *bond critical points* (Bader 1985).

The network of bonds linking the nuclei in a molecule define what is known as a *molecular graph*. It is a property of a molecular graph that it retains its unique connectivity in spite of changes in geometry, i.e., as long as the changes in nuclear position do not induce a rupture of bonds or formation of new bonds in the molecule. This clearly delineates the difference between molecular geometry and molecular structure. A molecular structure is defined as the set of all molecular geometries in configuration space with the same connectivity of atoms. Molecular structure abruptly and discontinuously changes with the disruption or new formation of bonds. Examples of molecular graphs of the boranes are found in Fig. 18, with bond path critical points denoted by a black dot.

The molecular graph of B_2H_6 includes an example of the ring structural element, with the presence of a (3, +1) or ring critical point located in the centre of the ring of bonded atoms. Examination of the gradient vector field in the plane of the ring in B_2H_6 (Fig. 6) shows that all gradient paths which originate at the ring critical point form a ring surface, all of which terminate at the nuclei forming the ring, except for those gradient paths which terminate at the bond critical points in the perimeter of the ring. The bond paths curve inwardly towards the centre, which is an indication of an electron-deficient structure. Again, the two paths which originate at the ring surface, correspond to the unique negative curvature at the ring critical point. The axis of these two paths intersects the atomic surfaces of the borons and bridging hydrogens in the centre of the ring surface. A ring, therefore, is that part of the molecular graph which bounds a ring surface.

An arrangement of bond paths which completely encloses a region of a molecule with ring surfaces is known as a cage structural element,

Fig. 6 Gradient vector field of $\rho(\mathbf{r})$ for B₂H₆ in same plane as that shown in Fig. 2b and containing the ring surface.

illustrated in the case of $B_6H_6^{2-}$ (see Fig. 7). Here, the gradient paths all originate from the cage critical point, and terminate at nuclei, bond and ring critical points, to give an enclosed region in three dimensions. Therefore, a cage is that part of the molecular graph which contains at least two rings which bound a region in three-dimensional space containing a (3, +3) critical point. Note that B₅H₉ does not possess this structural element, since the bottom face of the molecule is open, and there is no (3, +3) critical point in the interior of the molecule; the charge density decays monotonically as one moves in space from the apical boron atom out through the open face and beyond.

The total number of each of these four types of critical points is governed by the Poincaré-Hopf relationship (Bader *et al* 1981), eqn. (7):

$$n - b + r - c = 1$$
 (7)

where n is the number of (3,-3) critical points or nuclei, b is the number of (3,-1) critical points or bond paths, r is the number of (3,+1) critical points or rings, and c is the number of (3,+3) critical points or cages. Collectively, the set of parameters (n, b, r, c) is defined as the *characteristic set* of the molecular system.

Fig. 7 Gradient vector field of $\rho(\mathbf{r})$ for B₆H₆²⁻ in same planes as those shown in Fig. 3 and containing the cage critical point.

Centering on the nature of the (3,-1) critical points which appear between bonded atoms, one can now investigate the recovery from this theory of the notions of bond order, bond path angle, bond ellipticity and structural stability (Wiberg *et al* 1987).

One can describe, relatively, the bond order by looking at the value of ρ_b , the value of $\rho(\mathbf{r})$ at the bond path critical point. By selecting one bonded pair as a reference, the bond orders of other pairs of linked atoms are inferred by the ratio of these ρ_b values. One can also recover the relative electronegativities of two bonded atoms by examining the relative distances, r_A and r_B , from each atom to the bond path critical point; these are the bonded radii.

Bond paths do not always follow a straight line between the two linked atoms, but rather can bend inwardly or outwardly; this usually occurs when these bond paths form the perimeter of a ring system. In the case of small ring hydrocarbons such as cyclopropane, the bond paths curve outward, which is considered indicative of ring strain. In the case of many of the boranes under present study, the bond paths curve inwardly, signifying electron deficiency. The simplest example of this is B_2H_6 . Here, the bond paths bend into the ring interior, in order to maximize the degree of binding in the system. This curvature in the bond paths is quantified by defining a bond path angle α_b , which is the angle subtended at a nucleus by the pair of bond paths linking it to the two nuclei which define the geometrical bond angle α_e . The nature of the relaxation of the charge density away from the form suggested by the geometrical arrangement of atoms is embodied in the difference $\Delta \alpha = \alpha_b - \alpha_e$. Therefore for the boranes, $\Delta \alpha < 0$.

As mentioned before, the charge density at a bond critical point is a minimum along the bond path at that point, and is a maximum in the two perpendicular directions which define a plane tangential to the interatomic surface, giving two negative eigenvalues or curvatures, λ_1 and λ_2 . One can also compare the two orthogonal planes which lie along the bond path, and which are formed on combination with one of the eigenvectors of λ_1 or λ_2 . For cylindrically symmetrical bonds, of course $\lambda_1 = \lambda_2$, and both of these planes would be identical. However, if the two negative eigenvalues at the bond critical point are unequal, then by definition λ_2 is chosen to be less than λ_1 , and it is in the plane formed on combination with λ_2 that charge is preferentially accumulated (Bader *et al* 1983). In this plane, $\rho(\mathbf{r})$ falls off relatively more slowly as one moves away from the critical point, making the axis of λ_2 the major axis of curvature, which determines the relative orientation of this plane in the molecule. The bond ellipticity, ε , is defined as $(\lambda_1/\lambda_2 - 1)$, which quantifies the preferential accumulation of charge in a given plane, specifically the plane defined by the bond path and the major axis of curvature λ_2 . Thus $\varepsilon = 0$ for a cylindrically symmetrical bond.

A general statement can be made that in small ring systems, there is less difference between the values of ρ at the ring critical point and those at the surrounding bond critical points, relative to large ring systems. Accompanying this smaller difference is the fact that the charge density at the bond critical point falls off much more slowly ("soft" curvature) in the direction of the ring critical point than in directions perpendicular to the ring (directions of "hard" curvature). Therefore the major axis of curvature would be tangent to the ring rather than perpendicular to it. A resulting preferential accumulation of charge over the ring surface is indicative of systems whose bond critical points possess large ellipticities.

In fact, the value of the ellipticity at the bond point approaches infinity when ring rupture is about to occur. At this point in nuclear configuration space, known as a *bifurcation point*, a (3,-1) or bond critical point and the (3,+1) or ring critical point of the charge density would coalesce, with the positive curvature of the ring point in the plane of the ring annihilating the negative curvature of the major axis of the ellipse formed at the bond point. This is of course easier to do in a threemembered ring than a larger ring system because of the closer proximity of these neighbouring points, and the fact that the values of $\rho(\mathbf{r})$ for these points of different signature are nearly the same.

Thus, large ellipticities are associated with unstable structures, since a small change in nuclear configuration can result in an abrupt and discontinuous change in molecular structure, characterized by a different set of connectivities.

Another important aspect of the role of the charge density in the theory of atoms in molecules appears in the study of the Laplacian $\rho(\mathbf{r})$ (Bader and Nguyen-Dang 1981). Mathematically, the Laplacian density $L(\mathbf{r})$ is defined as :

$$L(\mathbf{r}) = -(\hbar^2/_{4m})\nabla^2\rho(\mathbf{r})$$
(8)

When $L(\mathbf{r})$ is integrated over the space of a subsystem, Ω , or more specifically the basin of an atom, one obtains $L(\Omega)$:

$$L(\Omega) = \int_{\Omega} L(\mathbf{r}) d\tau = -(\hbar^2/_{4m}) \int_{\Omega} \nabla^2 \rho(\mathbf{r}) d\tau$$

$$= -(\hbar^2/_{4m}) \oint dS(\Omega, \mathbf{r}) \nabla \rho(\mathbf{r}) \cdot \mathbf{n}(\mathbf{r}) = 0$$
(9)

The last expression for $L(\Omega)$ in eqn. (9) shows that $L(\Omega)=0$ because of the zero-flux boundary condition, while the previous expression reaches the same conclusion, but on the basis that for the basin of an attractor, the positive and negative contributions to $\int_{\Omega} \nabla^2 \rho d\tau$ cancel.

The local expression for the virial theorem relates $L(\mathbf{r})$ to the electronic potential energy density $\mathscr{V}(\mathbf{r})$ and the electronic kinetic energy density $G(\mathbf{r})$:

$$\left(\frac{\hbar^2}{4m}\right)\nabla^2\rho(\mathbf{r}) = 2G(\mathbf{r}) + \mathcal{V}(\mathbf{r}), \qquad (10)$$

where

$$G(\mathbf{r}) = \frac{\hbar^2}{2m} \int d\tau' \left(\nabla \psi^*\right) \cdot \nabla \psi \qquad (11)$$

and

$$\mathscr{V}(\mathbf{r}) = -\mathbf{r} \cdot \nabla \cdot \ddot{\mathbf{\sigma}}(\mathbf{r}) + \nabla \cdot (\mathbf{r} \cdot \ddot{\mathbf{\sigma}}(\mathbf{r}))$$

and

$$\ddot{\sigma}(\mathbf{r}) = \int d\tau' \frac{\hbar^2}{4m} \{ \psi^* \nabla \nabla \psi + \psi \nabla \nabla \psi^* - \nabla \psi^* \nabla \psi - \nabla \psi \nabla \psi^* \}$$

Also, the two terms on the right side of eqn. (10) can be combined in such a way as to form the electronic energy density $E_e(\mathbf{r})$

$$\mathbf{E}_{\mathbf{e}}(\mathbf{r}) = \mathbf{G}(\mathbf{r}) + \mathscr{V}(\mathbf{r}) \tag{12}$$

Since $L(\Omega) = 0$, eqn. (10), when integrated, yields the virial theorem for an atom in a molecule:

$$2\mathrm{T}(\Omega) = -\mathscr{V}(\Omega). \tag{13}$$

As a consequence of this theorem, the average electronic energy of an atom in a molecule is

$$E_{e}(\Omega) = \int_{\Omega} E_{e}(\mathbf{r}) d\tau = -T(\Omega) = \frac{1}{2} \mathscr{V}(\Omega)$$
(14)

Another atomic property described in this thesis is the average atomic population, $N(\Omega)$. This is obtained by an integration of $\rho(\mathbf{r})$ over the basin of the atom Ω :

$$N(\Omega) = \int_{\Omega} \rho(\mathbf{r}) d\tau$$
 (15)

The Laplacian of the scalar function $\rho(\mathbf{r})$ is itself a scalar function, $\nabla^2 \rho(\mathbf{r})$, which has its own maxima and minima. These maxima and minima correspond to regions of charge concentration and depletion, respectively. A convention in use when examining relief plots or diagrams of the scalar field of $\nabla^2 \rho(\mathbf{r})$ is to deal with the negative of the function, $-\nabla^2 \rho(\mathbf{r})$, which enables one to view positively-valued regions in the function as areas of charge concentration. Therefore, those regions where $-\nabla^2 \rho(\mathbf{r}) > 0$ are regions of local charge concentration, and regions where $-\nabla^2 \rho(\mathbf{r}) < 0$ are regions of local charge depletion (Bader 1985).

Understanding this property of the Laplacian, one can, with the aid of the local expression of the virial theorem, determine whether the electronic potential or kinetic energy makes the dominant contribution to the local energy of the charge distribution. The average virial ratio of kinetic to potential energy is 2:1, and the always negative contribution of the potential energy and always positive contribution of the kinetic energy can produce a positive or negative value for $\nabla^2 \rho(\mathbf{r})$, depending on how their relative values differ from this ratio. Therefore it can be said that a region of space with a negative value of the Laplacian and the accompanying local charge concentration signifies a potential energy dominance in the electronic energy $E_e(\mathbf{r})$ and in the local virial relationship, with a dominance by the kinetic energy producing the opposite effect.

Furthermore, since the local statement of the virial theorem requires that these two contributions exactly cancel over the system as a whole, then a region with a negative value of the Laplacian is a region of compressed charge density relative to the average, and a region with a positive value for the Laplacian has a relatively expanded charge density.

Combining information about the nature of the Laplacian with that given earlier about the nature of a (3,-1) critical point, it can be seen that a chemical bond involves the contraction of $\rho(\mathbf{r})$ towards the bond path in the plane of the interatomic surface, accompanied by an expansion of $\rho(\mathbf{r})$ away from the surface and towards the respective atomic basins. It is the net contribution of these two effects which gives rise to the sign of the Laplacian at the bond critical point. Thus, a large value of ρ_b accompanied by a large negative value of $\nabla^2 \rho_b$ at the bond critical point signifies a concentration of charge in the internuclear region, which is consistent with a shared interaction, with nuclei bound by virtue of the lowering of the potential energy. Conversely, a small value of ρ_b and a positive value of $\nabla^2 \rho_b$ at the bond critical point is characteristic of a closed-shell interaction, with a depletion of charge in the internuclear region, in favour of separate charge concentrations in each atomic basin. This is the case where the kinetic energy contribution to the electronic energy dominates in the internuclear region.
For an isolated atom, there are concentric and alternating shells of charge concentration and depletion, recovering the concept of the electronic shell model of atoms. The outermost region of charge concentration coincides with the valence shell of the atom, and it is called the Valence Shell Charge Concentration, or VSCC. This spherical shell is distorted upon chemical combination with other atoms, resulting in the appearance of maxima, minima and saddles on its surface (Bader *et al* 1988).

A local maximum in the VSCC corresponds to a nucleophile or Lewis base, and a local minimum in the VSCC corresponds to an electrophile or Lewis acid. Therefore a chemical reaction can be characterized as an interaction of the "lump" in the VSCC of a Lewis base with a corresponding "hole" in the VSCC of a Lewis acid. One can also speak in terms of eqn. (10) to describe this interaction as one between the base with excess potential energy and the acid with an excess of kinetic energy. At no time during this interaction does the value of $L(\Omega)$ deviate from zero, as changes in concentration and depletion in one region of an atom are counterbalanced by opposite changes in other regions.

Like the topology of $\rho(\mathbf{r})$, the scalar Laplacian function $\nabla^2 \rho(\mathbf{r})$ has its own set of critical points in the VSCC's of atoms. Two types of critical points, (3,-3) and (3,+3) critical points, pinpoint the areas of local charge concentration and depletion, respectively. Regions of charge concentration, or "lumps" in the VSCC, can be found in the general area of the bond path in $\rho(\mathbf{r})$, and as such are called *bonded maxima*. They can also be found in the areas where the "lone pairs" of the VSEPR model are located, and these are called *non-bonded maxima*. In the boranes, only bonded maxima are found, seeing as these molecules have no lone pairs. On the other hand, regions of charge depletion are marked by the presence of (3,+1) critical points in $\nabla^2 \rho(\mathbf{r})$, also known as "holes" in the VSCC.

Understandably, then, a study of reactivity for the boranes would involve the identification of "lumps" and "holes" in the VSCC of these molecules, which correspond to sites of electrophilic and nucleophilic attack, respectively.

2. The Hartree-Fock Approximation and SCF Procedure

In order to perform a topological analysis and integration over the atomic basins, it is first necessary to determine equilibrium geometries for the molecules under study. This is accomplished through the application of programs utilizing the Hartree-Fock approximation and SCF procedure, both of which are described by Szabo and Ostlund (1989) and reprinted below.

One can take a set of spin orbitals $\{\chi_a\}$ to form a single determinant $|\Psi_0\rangle = \frac{1}{\sqrt{N!}} |\chi_1 \chi_2 \cdots \chi_a \chi_b \dots \chi_N\rangle$ which approximates the ground state of an N-electron system. By varying these spin orbitals while maintaining their orthonormality, one can minimize the electronic energy E_0 ,

$$E_{o} = \langle \Psi_{o} | \mathscr{H} | \Psi_{o} \rangle = \sum_{a} \langle a | h | a \rangle + \frac{1}{2} \sum_{ab} \langle ab | ab \rangle , \qquad (16)$$

where

$$\langle ab||ab\rangle = \langle aa|bb\rangle - \langle ab|ba\rangle$$
 (17)

(4 (7))

In so doing, one obtains the Hartree-Fock integro-differential equation

$$h(1)\chi_{a}(1) + \sum_{b \neq a} \left[\int d\mathbf{x}_{2} |\chi_{b}(2)|^{2} r_{12}^{-1} \right] \chi_{a}(1) - \sum_{b \neq a} \left[\int d\mathbf{x}_{2} \chi_{b}^{*}(2) \chi_{a}(2) r_{12}^{-1} \right] \chi_{b}(1) = \varepsilon_{a} \chi_{a}(1)$$
(18)

In this equation,

$$h(1) = -\frac{1}{2}\nabla_1^2 - \sum_A \frac{Z_A}{r_{1A}}$$
(19)

is the kinetic and electron-nuclear potential energy for electron 1. The first sum over b in eqn. (18) is known as the coulomb term, and the second is called the exchange term. The two-electron coulomb potential for electron 1 is

$$v_a^{coul}(1) = \sum_{b \neq a} \int d\mathbf{x}_2 |\chi_b(2)|^2 r_{12}^{-1}$$
 (20)

Here, $v_a^{coul}(1)$ represents the average potential "felt" by electron 1 from the other N-1 electrons in their spin orbitals, and this leads to the definition of the coulomb operator \mathcal{J}_b :

$$\mathcal{J}_{b}(1) = \int \mathrm{d}\mathbf{x}_{2} |\chi_{b}(2)|^{2} r_{12}^{-1} \quad .$$
 (21)

The second summation term in eqn. (18) is the exchange term, $\mathscr{K}(1)$, which when acting on $\chi_a(1)$ gives

$$\mathscr{K}_{b}(1)\chi_{a}(1) = \left[\int \mathrm{d}\mathbf{x}_{2}\chi_{b}^{*}(2)r_{12}^{-1}\chi_{a}(2)\right]\chi_{b}(1)$$
(22)

which accounts for the antisymmetric properties of the spin orbitals, and which does not have a strict physical interpretation. Now, eqn. (18) can be rewritten as

$$\left[h(1) + \sum_{b \neq a} \mathcal{F}_b(1) - \sum_{b \neq a} \mathcal{F}_b(1)\right] \chi_a(1) = \varepsilon_a \chi_a(1) \quad . \tag{23}$$

Given that

$$\left[\mathcal{J}_a(1) - \mathcal{K}_a(1)\right] \chi_a(1) = 0 \tag{24}$$

eqn. (22) now becomes a definition of the Fock operator, f:

$$f(1) = h(1) + \sum_{b} \left[\mathcal{F}_{b}(1) - \mathcal{F}_{b}(1) \right]$$
(25)

which transforms the Hartree-Fock equations into

$$f |\chi_a\rangle = \varepsilon_a |\chi_a\rangle. \tag{26}$$

Furthermore, the summation term in eqn. (25) is the one-electron potential operator known as the Hartree-Fock potential $v^{\text{HF}}(1)$, so that

$$f(1) = h(1) + v^{\rm HF}(1)$$
 (27)

The integro-differential eqn. (26) has spin orbitals for eigenfunctions and spin orbital energies as eigenvalues. As an aside, now one can define an approximate Hamiltonian \mathcal{H}_0 which has $|\Psi_0\rangle$ as its eigenfunction and eigenvalue $\sum_a \varepsilon_a$, and this is known as the Hartree-Fock Hamiltonian:

$$\mathscr{H}_{0} = \sum_{i=1}^{N} f(i) \quad . \tag{28}$$

Since all of the molecules studied in this work are closed-shell ground states, i.e., all molecular states have an even number N of electrons, filling n = N/2 doubly-occupied spatial orbitals, one needs discuss only one application of Hartree-Fock theory, known as Restricted Closed Shell Hartree-Fock or RHF. The spin-orbitals in this case are:

$$\chi_{i}(\mathbf{x}) = \begin{cases} \psi_{j}(\mathbf{r})\alpha(\omega) \\ \psi_{j}(\mathbf{r})\beta(\omega) \end{cases}$$
(29)

where ω is the spin variable, with $\alpha(\omega)$ and $\beta(\omega)$ corresponding to up and down spins, respectively. Another notation used for spin up and down orbitals is Ψ_j and $\overline{\Psi}_j$. Therefore the ground state can be expressed as

$$|\Psi_{0}\rangle = |\chi_{1}\chi_{2}\cdots\chi_{N-1}\chi_{N}\rangle = |\psi_{1}\overline{\psi_{1}}\cdots\psi_{a}\overline{\psi_{b}}\cdots\psi_{N/2}\overline{\psi_{N/2}}\rangle$$
(30)

By integrating the spin functions out of eqn. (26) for this case, eqn. (25) now becomes

$$f(1) = h(1) + \sum_{a}^{N/2} \left[2J_a(1) - K_a(1) \right]$$
(31)

where

$$J_a(1) = \int d\mathbf{r}_2 \psi_a^*(2) r_{12}^{-1} \psi_a(2)$$
(32)

and

$$K_{a}(1)\psi_{i}(1) = \left[\int d\mathbf{r}_{2}\psi_{a}^{*}(2)r_{12}^{-1}\psi_{i}(2)\right]\psi_{a}(1) \quad . \tag{33}$$

This now gives the spatial integro-differential equation

$$f(\mathbf{r}_1)\psi_i(\mathbf{r}_1) = \varepsilon_i\psi_i(\mathbf{r}_1)$$
(34)

and for the closed-shell determinant (30) the ground state energy is

$$E_{o} = \langle \Psi_{o} | \mathcal{H} | \Psi_{o} \rangle = 2 \sum_{a} h_{aa} + \sum_{a} \sum_{b} \left[2J_{ab} - K_{ab} \right]$$
(35)

Eqn. (34) can be solved by choosing a set of basis functions and employing standard matrix manipulations. Therefore one represents the molecular orbitals ψ_i as a linear combination of a finite number K of basis functions:

$$\Psi_i = \sum_{\mu=1}^{K} C_{\mu i} \phi_{\mu}, \quad i=1,2,\dots,K \quad .$$
(36)

Furthermore, the basis functions ϕ are made up of a fixed linear combination of Gaussian functions or primitives, which have the form $ce^{-\sigma r^2}$, where c is a normalization constant and α is a parameter. One may choose to express a basis function as a discrete sum of individual primitives (an "uncontracted" set), or one can apportion the members of the set (usually in a disjoint fashion) into any fixed linear combination (a "contracted" set). In the case where there is a combination of two or more primitives, the contraction coefficients are renormalized. For the sake of description, one might denote a contraction of a 6s set of primitives to a combination having one group of four and two groups of one primitive each as 6s/4,1,1.

The essential aspect of solving for these molecular orbitals lies in determining the expansion coefficients $C_{\mu i}$ which can be done by substituting (36) into eqn. (34) to give

$$f(1)\sum_{v} C_{vi}\phi_{v}(1) = \varepsilon_{i}\sum_{v} C_{vi}\phi_{v}(1) . \qquad (37)$$

If one multiplies by $\phi_{\mu}^{\bar{t}}(1)$ and integrates, the result is

$$\sum_{\nu} C_{\nu i} \int d\mathbf{r}_{1} \phi_{\mu}^{*}(1) f(1) \phi_{\nu}(1) = \varepsilon_{i} \sum_{\nu} C_{\nu i} \int d\mathbf{r}_{1} \phi_{\mu}^{*}(1) \phi_{\nu}(1) . \qquad (38)$$

Further, if one defines the elements of the overlap matrix S to be

$$S_{\mu\nu} = \int d\mathbf{r}_1 \phi_{\mu}^*(1) \phi_{\nu}(1)$$
(39)

and defines the elements of the Fock matrix F to be

$$F_{\mu\nu} = \int d\mathbf{r}_{1} \phi_{\mu}^{*}(1) f(1) \phi_{\nu}(1)$$
 (40)

then eqn. (37) becomes the Roothaan equations,

$$\sum_{v} F_{\mu v} C_{vi} = \varepsilon_{i} \sum_{v} S_{\mu v} C_{vi} , \quad i = 1, 2, ..., K , \qquad (41)$$

or, in matrix form,

$$\mathbf{FC} = \mathbf{SC}\varepsilon. \tag{42}$$

One can also define the charge density matrix **P** whose elements are given by

$$P_{\mu\nu} = 2\sum_{a}^{N/2} C_{\mu a} C_{\nu a}^{*}$$
(43)

which determines the charge density $\rho(\mathbf{r}) = |\psi_a|^2$ through the coefficients C.

If eqn. (31) is expressed in terms of the basis $\{\phi_{\mu}\}$, one finds

$$F_{\mu\nu} = \int d\mathbf{r}_1 \phi_{\mu}^*(1) h(1) \phi_{\nu}(1) + \sum_{a}^{N/2} d\mathbf{r}_1 \phi_{\mu}^*(1) [2J_a(1) - K_a(1)] \phi_{\nu}(1) \quad (44)$$

$$= H_{\mu\nu}^{\text{core}} + \sum_{a}^{N/2} \sum_{\lambda\sigma} C_{\lambda a} C_{\sigma a}^{*} [2(\mu\nu |\sigma\lambda) - (\mu\lambda |\sigma\nu)]$$
(45)

$$= H_{\mu\nu}^{\text{core}} + \sum_{\lambda\sigma} P_{\lambda\sigma} \left[(\mu\nu \sigma\lambda) - \frac{1}{2} (\mu\lambda \sigma\nu) \right] .$$
(46)

The first term on the right-hand side of (44) is known as $H_{\mu\nu}^{\text{core}}$, and the second term on the right-hand side of (46) is called $G_{\mu\nu}$, the matrix element of the two-electron component G. Thus,

$$F_{\mu\nu} = H_{\mu\nu}^{\text{core}} + G_{\mu\nu} \tag{47}$$

In this procedure, the basis functions are normalized but not orthogonal; this problem could be dealt with by orthogonalizing the basis set, but this proves to be rather time-consuming. Rather, if one transforms C into C' (' refers to an orthogonalized basis) by the transformation

$$\mathbf{C'} = \mathbf{X} - \mathbf{1}\mathbf{C} \tag{48}$$

where X is a transformation matrix possessing an inverse, and if one further transforms F into F' where

$$\mathbf{F'} = \mathbf{X}^{\dagger} \mathbf{F} \tag{49}$$

then one obtains

$$\mathbf{F'C'} = \mathbf{C'\varepsilon}.$$
 (50)

These are called the transformed Roothan equations, which can be solved for C' and ε by diagonalizing F', and then C can be obtained from C'. Obtaining this solution is analogous to solving eqn. (42).

With this information in hand, one can now carry out the SCF procedure, which can be summarized in the following steps:

1. Specify the coordinates, atomic numbers, and molecular charge for the molecule under study, and provide a basis set.

2. Calculate the necessary one- and two-electron integrals.

3. Diagonalize S to obtain a transformation matrix for the transformation of $F \rightarrow F'$.

4. Guess the initial density matrix **P**, which might be just simply $H_{\mu\nu}^{\text{core}}$, i.e., no two-electron components.

5. Determine G from P and the $(\mu\nu|\lambda\sigma)$.

6. Add G to H^{core} to get F.

7. Obtain F' by determining $X^{\dagger}FX$.

8. Diagonalize F', to get C' and ε .

9. Obtain C=XC'.

10. Get a new P from C and eqn. (43).

11. Compare the new P with the previous one with a convergence criterion (a small number); if the difference is too large, repeat the procedure from step 5 with the new P. If the two differ by less than the convergence criterion, then use the solutions to obtain energies, wavefunctions for the molecule, etc.

In general, the SCF procedure in Hartree-Fock theory is used in conjunction with a molecular coordinate optimization algorithm which describes the molecule in terms of internal coordinates, and which adjusts these coordinates until the Hellman-Feynman forces acting in the molecule is reduced to within some small value. During each complete step of this algorithm, there is first a change in internal coordinates(except for the initial step), followed by a convergence test on these coordinates, followed by a calculation of the RHF energy via the SCF procedure. This process is repeated until an equilibrium geometry is reached, at which point a final SCF calculation provides the basis for the calculation of molecular properties. It is a distinction of the AIMPAC series of programs that they further calculate these same molecular properties, but as averages for the individual atoms in a molecule; these programs extract this information from a wavefunction data file, easily obtained from an output file from a completed SCF calculation.

The AIMPAC Series of Programs

Briefly, the AIMPAC program set consists of the following:

1. SADDLE: searches and finds critical points in ρ .

2. BUBBLE (or SADD2R): searches automatically(manually) and finds critical points in $\nabla^2 \rho$.

3. PROAIM (Biegler-König *et al* 1982): determines individual average atomic energies, charges, and other expectation values of atomic properties

in molecules by defining interatomic surfaces and integrating over the individual atomic basins.

4. OMEGA (Biegler-König *et al* 1981): determines individual average atomic energies, charges, and other expectation values of atomic properties in molecules by integrating along the set of gradient vector paths which terminate at the nucleus of an atom, and which effectively map out the basin of the nuclear attractor.

AIMPAC also includes a series of programs designed to calculate and display pictorially the results of topological analyses, and these are:

1. GRID: calculates a grid of points used to plot contour maps of $\rho(\mathbf{r})$ and $\nabla^2 \rho(\mathbf{r})$, and whose output can also be used to generate relief maps of these two scalar functions with the use of the program RELIEF.

2. GRDVEC: traces the gradient paths of $\rho(\mathbf{r})$ which can be plotted as a gradient vector map; can also be used to generate interatomic surface and bond path overlays for contour maps, or to generate molecular graphs.

Both GRID and GRDVEC enable the user to specify virtually any plane of interest in the molecule, either by specification of three atoms which define the plane, or by the use of Euler angles to transform the coordinate axes of the original molecular frame found in the wavefunction. 3. RELIEF: creates relief maps of scalar functions such as $\rho(\mathbf{r})$ and $\nabla^2 \rho(\mathbf{r})$, which are in the form of planar mesh grids with positive and/or negative regions of the function appearing as projections out of the plane.

39

3. General Chemistry of the Boranes and Carboranes

The general chemistry of the boranes and carboranes involves mainly a discussion of their classification, and the two sets of rules designed for electron counting and examination of proposed structures. These topics form the basis of this discussion, and are covered by Greenwood & Earnshaw (1984).

Boranes are a class of compounds composed exclusively of boron and hydrogen atoms, whose structural features are unique and distinct from other chemical series such as the hydrocarbons. Boron has one less electron than the number of available valence orbitals, which characterizes the series as "electron-deficient". The lower members of the borane series are gaseous, but the higher molecular weight members are volatile liquids and solids; the boiling points are similar to those hydrocarbons of similar molecular weight. The icosahedral B₁₂ structure is prevalent in the allotropes of boron, in metal borides and in the boranes, and the anion B₁₂H₁₂^{2–} is an example of a structure studied in this work.

Boranes are named by prefixing the number of B atoms in latin, followed by the letters "borane", followed by the number of H atoms as a number in parentheses; for anions, one changes "-ane" to "-ate", and specifies the number of H atoms in this case with a latin prefix as well. A tabulation of the names of the molecules examined in this study, along with the *styx* number assignments are given in Table I.

40

Table I. IUPAC Names and styx Number Assignmentsfor the Borane Series

<u>Molecule</u>	IUPAC Name	styx Numbers
B_2H_6	nido-diborane(6)	2002
B4H10	arachno-tetraborane(10)	4012
B5H9	nido-pentaborane(9)	4120
B6H10	nido-hexaborane(10)	4220
$B_6H_6^{2-}$	closo-hexahydrohexaborate(2-)	
B7H7 ^{2–}	closo-heptahydroheptaborate(2-))
$B_{12}H_{12}^{2-}$	closo-dodecahydrododecaborate	(2–)
C ₂ B ₃ H ₅	closo-1,5-dicarbapentaborane(5)	
$C_2B_4H_6$	closo-1,6-dicarbahexaborane(6).	

Description of the information contained in Table I begins with the classification of the degree of "openness" of the boron cluster, as described with the following italicized prefixes:

closo - closed structures of n atoms in a n-atom polyhedral framework; nido - open structures of n atoms in a n+1-atom polyhedral framework; arachno - open structures of n atoms in a n+2-atom polyhedral framework; hypho - open structures of n atoms in a n+3-atom polyhedral framework; conjuncto - formed by the joining of one or more of the above together.

There are no examples of either *hypho-* or *conjucto-*boranes in this study, since their structures tend to be less symmetrical, more complex, and of higher molecular weight, making them more difficult to handle computationally.

There are two types of three-centre, two-electron bonding in the boranes, as described in molecular orbital theory, and these are B-H-B bridges and B-B-B rings. Apart from this, there are normal B-B bonds, and B-H_t bonds between borons and terminal hydrogens. As a means of classifying boranes, and predicting the stability or existence of proposed cluster structures, a set of rules was developed based on what are called the *styx* numbers. Here, *s* is the number of B-H-B bridges, *t* is the number of B-B-B rings, *y* is the number of B-B bonds, and *x* is the number of BH₂ groups. Since boron has a valency of four, there should always be four lines ("bonds") drawn to every boron in a structure, if the *styx* rules are to

be followed. Since each boron contributes 3 electron and each hydrogen adds 1 electron, the total number of valence electrons for the borane B_nH_m is (3n + m), which must be equivalent to twice the total number of bonds. Therefore the *styx* rules give:

number of e⁻ pair bonds = $n + \sum(s + t + y + x)$ number of atoms (neutral molecule) = 2(s + t + y + x).

Another scheme for electron counting has been devised in what are known as Wade's Rules, based upon molecular orbital theory:

closo-boranes have the formula $B_nH_n^{2-}$ with B's at all *n* corners of a *n*-cornered triangulated polyhedron, requiring (n + 1) pairs of bonding framework e^{-'s};

nido-boranes have the formula B_nH_{n+4} with B's at *n* corners of a (n+1)-cornered polyhedron, requiring (n + 2) pairs of bonding framework e^{-'s};

arachno-boranes have the formula B_nH_{n+6} with B's at *n* corners of a (n+2)-cornered polyhedron, requiring (n + 3) pairs of bonding framework e⁻'s, and

hypho-boranes have the formula B_nH_{n+6} with B's at *n* corners of a (n+3)-cornered polyhedron, requiring (n + 4) pairs of bonding framework e^{-'s}.

In the boranes, each $B-H_t$ group provides 2 electrons to the cluster, and each BH_2 group contributes 1 electron, where the framework includes the bridging atoms. In a neutral molecule, there are as many skeletal framework electrons as atoms.

In the case of the $B_nH_n^{2-}$ molecules, there are no B-H-B bridges, and no BH₂ groups. Each B contributes one of its three electrons to the B-H_t bonds, and the remaining 2 electrons to the framework. Therefore the framework of *n*+1 molecular orbitals is filled by the 2*n* e⁻'s of the boron atoms, plus the two extra electrons of the anion. Thus, there are *n* pairs of electrons in the *n*(B-H_t) bonding m.o.'s, there are (*n* + 1) pairs in the framework, and there are (2*n* - 1) empty nonbonding and antibonding framework m.o.'s. Therefore Wade's rules point up the fact that there are just enough electrons in a stable molecule to fill the bonding m.o.'s, and no more.

In terms of reactivity, one finds generally that the *arachno*-boranes are more reactive than the *nido*-, with the *closo*-boranes being the most stable, whose cage structures produce what has been called "threedimensional aromaticity". It is also a general observation that boranes of higher molecular weight are less reactive, although acidity appears to increase with increasing size of the borane cluster. Therefore to compare the relative acidities of B_4H_{10} , B_6H_{10} , and B_5H_9 , one finds that

 $B_4H_{10} > B_6H_{10} > B_5H_9$

which shows that the openness of the structure plays a more important role in reactivity than the relative size of the molecules. Furthermore, experimentalists have found that the regions with the greatest likelihood of electrophilic attack are found at the positions of apical boron atoms, which thus are furthest removed from the open faces of the polyhedral fragment. Conversely, nucleophilic attack is more likely to occur at those boron atoms involved in B-H-B bridging. Also, bridging H atoms are more acidic than terminal, and are the first hydrogens lost upon anion formation (this is also true for *nido-* and *arachno-* carboranes). As an example, in B₅H₉, the apical boron experiences electrophilic attack more readily than the basal borons.

One can also apply Wade's rules to the carboranes, which have the formula $[(CH)_a(BH)_mH_b]^{c-}$, and are stoichiometrically derived from boranes by the following general substitutions:

$$BH \equiv C$$
$$BH_2 \equiv CH ,$$

In the above formula, a = number of CH groups, m = number of BH groups, b = number of extra H_b or H_{endo}, where H_{endo} is a terminal hydrogen which points inward toward the mouth of the open face. Therefore the total number of skeletal bonding electron pairs is $\frac{1}{2}(3a + 2m + b + c)$, or $n + \frac{1}{2}(a + b + c)$, where n = a + m is the number of occupied vertices of the polyhedron. Again, *closo-*, *nido-*, and *arachno-*boranes require n + 1, 2, or 3 pairs of framework bonding electrons, respectively, since a + b + c = 2, 4, and 6, respectively. Note also that {CH} donates 3 electrons to the cluster, whereas {BH} donates only two.

There are other general observations that can be made about the carboranes, as listed below:

1. There is a tendency for carbon to have a minimal coordination number, and to be as far removed from other C's as possible, so that the most stable isomer of a particular carborane has the greatest number of B-C connections.

2. B-B interatomic distances increase with increasing coordination number.

3. B-C distances are shorter than B-B distances, since C has a smaller atomic radius.

4. According to Mulliken population analyses, the negative charge on B decreases in the following order:

B(no bond to C) > B(bonded to one C) > B(bonded to two C)In each case, the B of lower coordination number possesses a greater negative charge than that with higher coordination number.

5. The carbons in carboranes tend to have larger geometrical bond angles as they approach normal sp³ hybridization angles. In C₂B₄H₆, for example, the geometrical bond angles at carbon are usually larger than 60° or 90°, while angles at boron are less. It is the purpose of this work to both examine and quantify these observations about boranes and carboranes through the use of the theory of atoms in molecules.

4. Computational

Examination of the boranes began with the selection of a suitable basis set. For boron, a 9s/6,1,1,1 + 5p/4,1 (Dunning Jr. 1970,1971)+1d basis set was chosen. For hydrogen, a 6s/4,1,1 + 1p set was used. Table II gives a description of the basis set in the format employed in the GAUSSIAN series of programs, with the most recent version being GAUSSIAN88 (Frisch *et al* 1988).

The description of the GAUSSIAN format is as follows: the first line gives the chemical symbol of the atom described, followed on the next line by a shell descriptor, which specifies the type of shell(s,p,d, etc.), the degree of contraction(e.g., 6 for the first set in the table), and the shell scale factor. The next n lines, where n is the degree of contraction, give the exponents and contraction coefficients for each primitive, in that order.

Table II: Borane Basis Set

```
в 0
     6 1.00
S
 0.2788410000D+04
                   0.2122000000D-02
 0.4190390000D+03
                   0.161710000D-01
 0.9646830000D+02
                   0.783560000D-01
 0.2806940000D+02
                   0.2632500000D+00
 0.937600000D+01
                   0.596729000D+00
 0.1305700000D+01
                   0.2303970000D+00
     1 1.00
S
 0.340620000D+01
                   0.100000000D+01
     1 1.00
S
 0.324500000D+00
                   0.100000000D+01
S
     1 1.00
 0.102200000D+00
                   0.100000000000+01
Р
     4 1.00
 0.1134130000D+02
                   0.179870000D-01
 0.243600000D+01
                   0.1103390000D+00
 0.683600000D+00
                   0.3831110000D+00
 0.213400000D+00
                   0.647860000D+00
Ρ
     1 1.00
 0.701000000D-01
                   0.100000000D+01
     1 1.00
D
 7.500000000D-01
                   0.100000000D+01
****
н О
S
     4 1.00
82.636374
                6.172045011044104D-03
12.409598
                4.721337522157118D-02
                0.232534718743609
2.823854
0.79767
                0.790495587401532
S
   1 1.00
 0.258053
              1.0
     1 1.00
S
 0.089891
              1.0
Р
    1 1.00
 1.0725
              1.000000
```

Both the d and p functions in the basis set were optimized variationally with B₂H₆, since this was the smallest molecule containing both bond and ring structural elements.

Geometry optimizations were performed by means of both the GAUSSIAN88(Frisch *et al* 1988) program and the GAMESS(Schmidt *et al* 1987) program. GAUSSIAN88 was used to optimize the smaller boranes, such as BH₃, B₂H₆, B₄H₁₀ and B₅H₉. GAMESS was used to optimize higher-symmetry cage molecules like B₆H₆^{2–}, B₇H₇^{2–} and the carboranes, while a Direct SCF calculation was employed in GAUSSIAN88 to optimize both B₆H₁₀ and B₁₂H₁₂^{2–}, both of which contained too many basis functions for GAMESS to handle. GAUSSIAN88 was run on the VAX 8650 & 6240, and the Trace/Multiflow was used for the direct SCF runs, while GAMESS was run on the FPS Stellar GS1000.

Tabulation of the SCF Results for the Boranes

The borane summaries presented here contain the following information:

1. The total calculated energy.

2. Cartesian coordinates of all atoms for the calculated minimum energy geometry (standard orientation).

3. Molecular point group(D_{3h} for BH₃, for example).

Also, an identifying structure is given for each molecule, to help with assignment of the positions of the numbered atoms.

Borane Energies, Coordinates

(Energies and atomic coordinates in atomic units)

Table III. BH

BH, C∞v	E(RHF) =	-25.124157 a.u.
---------	----------	-----------------

Atom	X	У	Z
B1	0.00000	0.00000	0.22124
H2	0.00000	0.00000	-2.11093

Table IV. BH₃

Table V. B₂H₆

BH3, D3h	E(RHF) = -26.395270 a.u.
----------	--------------------------

Atom	x	У	Z
B1	0.00000	0.00000	0.00000
H2	0.00000	2.25084	0.00000
H3	1.94929	-1.12542	0.00000
H4	-1.94929	-1.12542	0.00000

B₂H₆, D_{2h}

E(RHF) = -52.822442 a.u.

Atom	x	У	Z
B1	-1.6982	0.0000	0.0000
H2	0.0000	0.0000	1.8514
H3	-2.7774	1.9639	0.0000
H4	-2.7774	-1.9639	0.0000
B5	1.6982	0.0000	0.0000
H6	2.7774	-1.9639	0.0000
H7	2.7774	1.9639	0.0000
H8	0.0000	0.0000	-1.8514

$B_{4}H_{10}, C_{2v}$	E(RHF)	= -104.477	749 a.u.	
Atom	x	у	z	
B1	-1.64935	0.00000	-0.90345	
B2	1.64935	0.00000	-0.90345	Q Q Q Q
H3	-2.61283	0.00000	-2.91360	
H4	2.61283	0.00000	-2.91360	(1) (5)
B5	0.00000	2.71799	0.77701	
B6	0.00000	-2.71799	0.77701	
H7	-2.50164	-1.75440	0.44703	0(2)-(9
H8	2.50164	-1.75440	0.44703	
H9	2.50164	1.75440	0.44703	Å
H10	-2.50164	1.75440	0.44703	\odot
H11	0.00000	2.73239	3.02214	Fig 10 Rolling
H12	0.00000	-2.73239	3.02214	Fig. 10 B4H10
H13	0.00000	4.63883	-0.37037	
H14	0.00000	-4.63883	-0.37037	

Table VII. B₅H₉

B5H9, C4v	E(RHF) = -128.597863 a.u.			
Atom	x	у	Z	
B1	0.00000	2.43416	-0.27283	
B2	2.43416	0.00000	-0.27283	
B3	0.00000	-2.43416	-0.27283	
B4	-2.43416	0.00000	-0.27283	@ /
B5	0.00000	0.00000	1.85481	\sim
H6	0.00000	4.64360	-0.01215	
H7	4.64360	0.00000	-0.01215	(3)
H8	0.00000	-4.64360	-0.01215	
H9	-4.64360	0.00000	-0.01215	
H10	1.82100	1.82100	-1.96208	
H11	1.82100	-1.82100	-1.96208	
H12	-1.82100	-1.82100	-1.96208	Fig.
H13	-1.82100	1.82100	-1.96208	
H14	0.00000	0.00000	4.07958	

11 B5H9

10

Table VIII. B₆H₁₀

E(RHF) = -153.860374 a.u.

Atom	x	у	Z
B1	2.84236	-0.11692	0.00000
B2	0.00000	1.64075	0.00000
H3	4.91057	0.70327	0.00000
B4	0.70225	-0.21088	2.69923
B5	0.70225	-0.21088	-2.69923
H6	2.60860	-1.77117	1.79789
H7	2.60860	-1.77117	-1.79789
H8	-0.01128	3.86981	0.00000
B9	-2.43041	-0.35557	1.54956
B10	-2.43041	-0.35557	-1.54956
H11	1.36770	0.34747	4.74802
H12	1.36770	0.34747	-4.74802
H13	-0.92215	-2.10902	2.63832
H14	-0.92215	-2.10902	-2.63832
H15	-3.96890	0.26888	3.04215
H16	-3.96890	0.26888	-3.04215

B₆H₁₀, C_S

Fig. 12 B₆H₁₀

Table IX. B₆H₆^{2–}

Atom	x	у	Z
B1	0.00000	0.00000	-2.33569
B2	2.33569	0.00000	0.00000
B3	-2.33569	0.00000	0.00000
B4	0.00000	2.33569	0.00000
B5	0.00000	-2.33569	0.00000
B6	0.00000	0.00000	2.33569
H7	0.00000	0.00000	-4.63096
H8	4.63096	0.00000	0.00000
H9	-4.63096	0.00000	0.00000
H10	0.00000	4.63096	0.00000
H11	0.00000	-4.63096	0.00000
H12	0.00000	0.00000	4.63096

 $B_6H_6^{2-}$, $O_h = E(RHF) = -151.466097$ a.u.

Fig. 13 B₆H₆²⁻

Table X. B7H7^{2–}

$B_7H_7^{2-}, D_{5h}$	E(RHF)	= -176.759690 a.u.
-----------------------	--------	--------------------

Atom	x	у	Z
B1	0.82778	2.54763	0.00000
B2	-2.16715	1.57452	0.00000
B3	-2.16715	-1.57452	0.00000
B4	0.82778	-2.54763	0.00000
B5	2.67874	0.00000	0.00000
B6	0.00000	0.00000	-2.24057
B7	0.00000	0.00000	2.24057
H8	1.53721	4.73105	0.00000
H9	-4.02447	2.92395	0.00000
H10	-4.02447	-2.92395	0.00000
H11	1.53721	-4.73105	0.00000
H12	4.97452	0.00000	0.00000
H13	0.00000	0.00000	-4.53698
H14	0.00000	0.00000	4.53698

Table XI. B₁₂H₁₂^{2–}

$B_{12}H_{12}^{2-}$, $I_h \quad E(RHF) = -303.326804 \text{ a.u.}$

Atom	x	у	Z
B1	0.00000	0.00000	3.23340
B2	0.00000	2.89204	1.44602
B3	2.75050	0.89369	1.44602
B4	1.69990	-2.33971	1.44602
B5	-1.69990	-2.33971	1.44602
B6	-2.75050	0.89369	1.44602
B7	0.00000	0.00000	-3.23340
B8	0.00000	-2.89204	-1.44602
B9	2.75050	-0.89369	-1.44602
B 10	1.69990	2.33971	-1.44602
B11	-1.69990	2.33971	-1.44602
B12	-2.75050	-0.89369	-1.44602
H13	0.00000	0.00000	5.50294
H14	0.00000	4.92198	2.46099
H15	4.68108	1.52097	2.46099
H16	2.89307	-3.98196	2.46099
H17	-2.89307	-3.98196	2.46099
H18	-4.68108	1.52097	2.46099
H19	0.00000	0.00000	-5.50294
H20	0.00000	-4.92198	-2.46099
H21	4.68108	-1.52097	-2.46099
H22	2.89307	3.98196	-2.46099
H23	-2.89307	3.98196	-2.46099
H24	-4.68108	-1.52097	-2.46099

Table XII. C₂B₃H₅

Atom	x	У	Z
C1	0.00000	0.00000	2.10213
B2	0.00000	2.06718	0.00000
B3	-1.79023	-1.03359	0.00000
B4	1.79023	-1.03359	0.00000
C5	0.00000	0.00000	-2.10213
H6	0.00000	0.00000	4.12036
H7	0.00000	0.00000	-4.12036
H8	0.00000	4.29423	0.00000
H9	-3.71891	-2.14711	0.00000
H10	3.71891	-2.14711	0.00000

 $C_{2}B_{3}H_{5}$, D_{3h} E(RHF) = -152.708566 a.u.

Table XIII. C₂B₄H₆

 $C_{2}B_{4}H_{6}$, D_{4h} E(RHF) = -177.939490 a.u.

6

Comparison of SCF Results

Before exploring the connectivity of these molecules, it will first be useful to compare the geometries obtained through these calculations with the experimental results compiled by Baudet in his contribution to the monograph on "Advances in Boron and the Boranes" (Baudet *et al* 1989). The analytical techniques used to determine his geometries were:

> Microwave Spectroscopy (MW) X-Ray Crystallography (XR), and Electron Diffraction (ED).

Baudet took the geometry information provided by these techniques, and used them to calculate the values of internal coordinates in the borane molecules. Beaudet's article covered only the neutral boranes, so there were no comparisons for $B_6H_6^{2-}$, $B_7H_7^{2-}$, and $B_{12}H_{12}^{2-}$, but results were obtained for $B_6H_6^{2-}$ and $B_{12}H_{12}^{2-}$ (the potassium salt) in a paper by Fowler (1986), both of which came from XR results. Also, a dipole moment value was provided for comparison by Baudet for B_6H_{10} , the only C_s molecule in the series studied here. The following is a description of the mathematics used to calculate internal coordinates from cartesian coordinates:

Taking a group of four different atoms in a molecule, and representing their coordinates in space by the vectors A, B, C, and D, one can calculate the distances between any two neighbouring atoms in the group with the following expressions:

$$R_a = |\mathbf{A} - \mathbf{B}|$$

$$R_b = |\mathbf{B} - \mathbf{C}|$$

$$R_c = |\mathbf{C} - \mathbf{D}|$$

Also, the vector differences between these same pairs can be obtained by:

$$\mathbf{r}_{AB} = \mathbf{A} - \mathbf{B}$$
$$\mathbf{r}_{BC} = \mathbf{B} - \mathbf{C}$$
$$\mathbf{r}_{CD} = \mathbf{C} - \mathbf{D}$$

and these vector differences are used in the calculation of the angle in degrees, θ_{ABC} or θ_{BCD} , formed by either set of three contiguous atoms:

$$\theta_{ABC} = \arccos\left(\frac{-\mathbf{r}_{BC}\cdot\mathbf{r}_{AB}}{R_{a}R_{b}}\right) \times \frac{360}{2\pi}$$

with a similar expression for θ_{BCD} . Finally, the torsional angle in degrees, ω_{ABCD} , created by all four atoms in the group is determined by

$$\omega_{ABCD} = \arccos\left(\frac{[\mathbf{r}_{BC} \times \mathbf{r}_{AB}] \cdot [\mathbf{r}_{CD} \times \mathbf{r}_{BC}]}{R_a R_b^2 R_c \sin(\theta_{ABC}) \sin(\theta_{BCD})}\right) \times \frac{360}{2\pi}$$

It is not necessary to compare every possible combination of two, three, or four atoms in a given molecule; rather, only a fixed number of these parameters are required to unambiguously fix the geometry of a molecule (the total number of interatomic lengths and angles should be equal to N - 1, where N is the number of degrees of freedom). For the purpose of comparison, the same set of bond lengths and angles calculated from experiment by Baudet were chosen for calculation from geometries obtained in this work.

Furthermore, all angles are in degrees, and all lengths in angstroms. The number of significant figures for the results of this work were trimmed to match those given by Baudet, whose error values are given in parentheses.

Examination of Table XIV shows that all of the interatomic distances are in very good to excellent agreement with experiment, and most of the angles were in good agreement, except for some angles found in B_4H_{10} , B_5H_9 and B_6H_{10} .

Table XV gives a comparison of the geometrical angles and bond path angles for those bond angles which form a part of the perimeter of a ring; this restricts the atoms involved in the formation of these bond angles to borons and/or bridging hydrogens. As mentioned earlier, the difference between the bond path angles and geometrical angles, $\Delta \alpha$, is invariably negative.

With a view towards the statements made about carboranes at the end of the General Chemistry section of the thesis, it is confirmed that B-C distances are shorter than B-B distances in the same molecule. Thus, in $C_2B_3H_5$, the B-C distance (1.56Å) is shorter than the B-B distance(1.85Å), and in $C_2B_4H_6$, the B-C distance (1.63Å) is again shorter than the B-B distance(1.72Å).

The idea that higher-coordinated boron atoms have longer B-B interatomic distances could not be approved or disproved in this research, since by the conventions of Greenwood & Earnshaw (1984), both of the carboranes studied here have pentacoordinate boron atoms, although it will be shown later that there are actually only three bonds to boron in $C_2B_3H_5$.

Finally, it has also been confirmed that there are larger angles subtended at a carbon in carboranes than at a boron in the same molecule, for in $C_2B_4H_6$ the angles subtended at carbon are greater than 60°, at 64°, and greater than 90°, at 96°, while at boron they are less than 60°, at 58°, and less than 90°, at 83°.

Molecule	Experimental	This Work
B2H6	Baudet	
Bond or Angle	MW	
B1-B5	1.743	1.797
B1-H3(Terminal)	1.184(3)	1.186
B1-H2(Bridging)	1.314(3)	1.329
H3-B1-H4	121.5(5)	122.4
H2-B1-H8	96.9(5)	94.9
B4H10	Baudet	
Bond or Angle	XR	
B1-B5	1.845(2)	1.903
B5-B6	2.786	2.877
B1-B2(B-B Bond)	1.75	1.75
B1-H10(Bridging)	1.21(4)	1.26
B5-H10(Bridging)	1.37(10)	1.43
B1-H3(Terminal)	1.14(4)	1.18
B5-H11(Terminal)	1.14(4)	1.19
B5-H13(Terminal)		1.18
H11-B5-H13	126	120
B2-B1-H3	118	116
B2-B1-H10	109	111
H10-B5-H9	135.7	135.7
B1-H10-B5	91.1	90.0
B1-B5-B2	56.6	54.6
B5-B1-B2	61.7	62.7
	0117	0217
B5-B1-B2-B6	118.1	116.6
B2-B1-B5-H10	170	173
B5H9	Baudet	
Bond or Angle	MW	
B1-B5(Apical Bond)	1.690(5)	1.711
B1-B2(Equatorial Bond)	1.803(5)	1.822
B5-H14(Terminal Apical)	1.181(5)	1.177
B2-H7(Terminal Equatorial)	1.186(5)	1,177
B1-H10(Bridging)	1.352(5)	1.354
	1.552(5)	
B1-B5-B2	64.5	64.3
B5-B1-H6	131.0(5)	132.1
	(-)	
B1-B2-B3-H11	116.0	116.8
B5-B2-B3-H11	193.1(29)	167.9
B5-B3-B2-B1	50.9	51.0

Table XIV. Comparison of Internal Coordinates for the Borane Series.
B6H10 Baudet Bond or Angle Baudet B1-B2 MW $1.774(13)$ 1.769 B2-B4 MW $1.762(4)$ 1.772 B2-B9 MW $1.783(11)$ 1.855 B1-B4 MW $1.815(5)$ 1.824 B4-B9 MW $1.710(6)$ 1.768 B9-B10 MW $1.654(3)$ 1.640 B2-H8 XR $1.25(6)$ 1.18 B1-H3 XR $1.14(6)$ 1.18 B4-H11 XR $1.32(6)$ 1.30 B4-H13 XR $1.28(5)$ 1.18 B1-H3 XR $1.32(6)$ 1.30 B4-H6 XR $1.32(6)$ 1.30 B4-H6 XR $1.31(4)$ 1.32 B9-H13 XR $1.31(4)$ 1.32 B9-H13 XR 1.364 1.01 B1-B2-B3 XR 126.8 126.6 B2-B9-H10 MW 103.0 <	Molecule	Technique	Experimental	This Work
Bond or Angle Bauket B1-B2 MW $1.774(13)$ 1.769 B2-B4 MW $1.7762(4)$ 1.772 B2-B9 MW $1.783(11)$ 1.855 B1-B4 MW $1.712(6)$ 1.722 B4-B9 MW $1.710(6)$ 1.768 B9-B10 MW $1.654(3)$ 1.640 B2-H8 XR $1.25(6)$ 1.18 B1-H3 XR $1.14(6)$ 1.18 B4-H11 XR $1.18(4)$ 1.18 B4-H6 XR $1.22(5)$ 1.18 B4-H5 XR $1.22(5)$ 1.18 B4-H6 XR $1.32(6)$ 1.39 B4-H3 XR $1.32(6)$ 1.39 B4-H3 XR $1.32(6)$ 1.39 B4-H3 XR $1.26,8$ $126,9$ B5-B1-B4 MW 103.0 103.1 B1-B2 MW 10.4 10.1 B1-82	B6H10			
B1-B2 MW 1.774(13) 1.769 B2-B4 MW 1.762(4) 1.772 B2-B9 MW 1.783(11) 1.855 B1-B4 MW 1.818(5) 1.824 B4-B9 MW 1.710(6) 1.769 B2-B10 MW 1.654(3) 1.640 B2-H8 XR 1.25(6) 1.18 B1-H3 XR 1.14(6) 1.18 B4-H11 XR 1.28(5) 1.18 B4-H11 XR 1.28(5) 1.18 B1-H6 XR 1.32(6) 1.30 B4-H13 XR 1.31(4) 1.32 B9-H13 XR 1.35(4) 1.35 B5-B1-B4 MW 103.0 103.1 B1-B4-B9 MW 108.2 108.3 B2-B9-B10 MW 108.2 108.3 B4-H5 XR 1.35(4) 1.35 B5-B1-B4 MW 103.0 103.1 B1-B2 MW 108.2 108.3 B2-B9-H15 XR 126.8 126.6	Bond or Angle		Baudet	
B2-B4 MW $1.762(4)$ 1.772 B2-B9 MW $1.783(11)$ 1.855 B1-B4 MW $1.818(5)$ 1.824 B4-B9 MW $1.710(6)$ 1.768 B9-B10 MW $1.654(3)$ 1.640 B2-H8 XR $1.25(6)$ 1.18 B4-H11 XR $1.14(6)$ 1.18 B4-H11 XR $1.18(4)$ 1.18 B4-H11 XR $1.23(6)$ 1.30 B4-H6 XR $1.232(6)$ 1.30 B4-H6 XR $1.32(6)$ 1.30 B4-H3 XR $1.30(4)$ 1.32 B9-H13 XR $1.35(4)$ 1.35 B4-B9-B10 MW 10.4 110.1 B1-B2 XR 126.8 126.6 B	B1-B2	MW	1.774(13)	1.769
B2-B9 MW $1.783(11)$ 1.855 B1-B4 MW $1.818(5)$ 1.824 B4-B9 MW $1.710(6)$ 1.768 B9-B10 MW $1.654(3)$ 1.640 B2-H8 XR $1.25(6)$ 1.18 B1-H3 XR $1.14(6)$ 1.18 B4-H11 XR $1.18(4)$ 1.18 B4-H11 XR $1.28(5)$ 1.18 B4-H11 XR $1.28(5)$ 1.18 B4-H6 XR $1.28(5)$ 1.30 B4-H6 XR $1.32(6)$ 1.30 B4-H6 XR $1.35(4)$ 1.32 B9-H13 XR $1.31(4)$ 1.32 B9-H13 XR $1.36(3)$ 127.9 B1-B4-B9 MW 103.0 103.1 B1-B4-B9 MW 103.2 103.3 B2-B4-H11 XR 119.4 137.8 B2-B9-H15 XR 126.3 127.9 Dipole moment (Debyes) MW 2.50 2.86 <td>B2-B4</td> <td>MW</td> <td>1.762(4)</td> <td>1.772</td>	B2-B4	MW	1.762(4)	1.772
B1-B4 MW $1.818(5)$ 1.824 B4-B9 MW $1.710(6)$ 1.768 B9-B10 MW $1.654(3)$ 1.640 B2-H8 XR $1.25(6)$ 1.18 B1-H3 XR $1.14(6)$ 1.18 B4-H11 XR $1.18(4)$ 1.18 B4-H11 XR $1.18(4)$ 1.18 B4-H11 XR $1.28(5)$ 1.18 B1-H6 XR $1.28(5)$ 1.39 B4-H13 XR $1.32(6)$ 1.30 B4-H6 XR $1.34(5)$ 1.39 B4-H13 XR $1.31(4)$ 1.32 B5-B1-B4 MW 103.0 103.1 B1-B4-B9 MW 103.0 103.1 B1-B2-H3 XR 126.8 126.6 B2-B4-H11 XR 110.4 110.1 B1-B2-H3 XR 126.3 127.9 Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) E0ad 2.472	B2-B9	MW	1.783(11)	1.855
B4-B9 MW 1.710(6) 1.768 B9-B10 MW 1.654(3) 1.640 B2-H8 XR 1.25(6) 1.18 B1-H3 XR 1.14(6) 1.18 B4-H11 XR 1.14(6) 1.18 B4-H11 XR 1.14(6) 1.18 B4-H11 XR 1.28(5) 1.18 B1-H6 XR 1.28(5) 1.30 B4-H6 XR 1.32(6) 1.30 B4-H13 XR 1.31(4) 1.32 B9-H13 XR 1.35(4) 1.35 B5-B1-B4 MW 103.0 103.1 B1-B4-B9 MW 108.2 108.3 B2-B9-B10 MW 104 110.1 B1-B2-H3 XR 126.8 126.6 B2-B4-H11 XR 136.3 127.9 Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) 1.215 1.11(7) 1.215 B7-H14(Apical) 1.215 1.215 1.215 B1-B7 (Apical) <td>B1-B4</td> <td>MW</td> <td>1.818(5)</td> <td>1.824</td>	B1-B4	MW	1.818(5)	1.824
B9-B10 MW $1.654(3)$ 1.640 B2-H8 XR $1.25(6)$ 1.18 B1-H3 XR $1.14(6)$ 1.18 B4-H11 XR $1.18(4)$ 1.18 B9-H15 XR $1.28(5)$ 1.18 B1-H6 XR $1.28(5)$ 1.13 B1-H6 XR $1.32(6)$ 1.30 B4-H13 XR $1.31(4)$ 1.32 B9-H13 XR $1.35(4)$ 1.35 B5-B1-B4 MW 103.0 103.1 B1-B4-B9 MW 108.2 108.3 B4-B9-B10 MW 106.2 108.3 B4-B9-B10 MW 106.2 108.3 B4-B9-B10 MW 104 110.4 B1-B2-H3 XR 126.8 126.6 B2-B4-H11 XR 119.4 137.8 B2-B9-H15 XR 126.8 24.62 B6H6(2-) Fowler(XR) 2.86 24.72 B1-B2 $1.69(1)$ 1.748 2.472 <td>B4-B9</td> <td>MW</td> <td>1.710(6)</td> <td>1.768</td>	B4-B9	MW	1.710(6)	1.768
B2-H8 XR 1.25(6) 1.18 B1-H3 XR 1.14(6) 1.18 B4-H11 XR 1.18(4) 1.18 B4-H11 XR 1.28(5) 1.18 B1-H6 XR 1.28(5) 1.30 B4-H6 XR 1.32(6) 1.30 B4-H6 XR 1.31(4) 1.32 B9-H13 XR 1.31(4) 1.32 B9-H13 XR 1.35(4) 1.35 B1-B4 MW 103.0 103.1 B1-B4-B9 MW 103.2 108.3 B4-B9-B10 MW 100.4 110.1 B1-B2-H3 XR 126.8 126.6 B2-B4-H11 XR 119.4 137.8 B2-B9-H15 XR 136.3 127.9 Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) 2.472 1.748 B1-B2 1.69(1) 1.748 2.472 B1-H7 1.11(7) 1.215 1.215 B7H7(2-) Endor Angle	B9-B10	MW	1.654(3)	1.640
B1-H3 XR 1.14(6) 1.18 B4-H11 XR 1.18(4) 1.18 B9-H15 XR 1.28(5) 1.18 B1-H6 XR 1.32(6) 1.30 B4-H6 XR 1.32(6) 1.30 B4-H6 XR 1.48(5) 1.39 B4-H13 XR 1.31(4) 1.32 B9-H13 XR 1.35(4) 1.35 B5-B1-B4 MW 103.0 103.1 B1-B4-B9 MW 108.2 108.3 B4-H9-B10 MW 108.2 108.3 B4-B9-B10 MW 104 110.1 B1-B2-H3 XR 126.8 126.6 B2-B4-H11 XR 119.4 137.8 127.9 Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) 2.472 1.11(7) 1.215 B7H7(2-) E0nd or Angle 1.2472 1.11(7) 1.215 B7H7(2-) E0nd or Angle 1.215 1.2472 B1-H7 1.11(7) 1.215	B2-H8	XR	1.25(6)	1.18
B4-H11 XR 1.18(4) 1.18 B9-H15 XR 1.28(5) 1.18 B1-H6 XR 1.32(6) 1.30 B4-H6 XR 1.48(5) 1.39 B4-H13 XR 1.31(4) 1.32 B9-H13 XR 1.35(4) 1.35 B5-B1-B4 MW 103.0 103.1 B1-B4-B9 MW 108.2 108.3 B4-H9 MW 10.4 110.1 B1-B2-B9 MW 10.4 110.1 B1-B2-H3 XR 126.8 126.6 B2-B4-H11 XR 119.4 137.8 B2-B9-H15 XR 136.3 127.9 Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) 2.472 1.11(7) 1.215 B7H7(2-) Bond or Angle 1.215 1.215 1.215 B0-H7(2-) Bond or Angle 1.215 1.215 1.215 B7H7(2-) Bond or Angle 1.215 1.215 1.215 1.215 B1-B7(Apic	B1-H3	XR	1.14(6)	1.18
B9-H15 XR $1.28(5)$ 1.18 B1-H6 XR $1.32(6)$ 1.30 B4-H6 XR $1.48(5)$ 1.39 B4-H13 XR $1.31(4)$ 1.32 B9-H13 XR $1.35(4)$ 1.35 B5-B1-B4 MW 103.0 103.1 B1-B4-B9 MW 108.2 108.3 B4-B9-B10 MW 100.4 110.1 B1-B2-H3 XR 126.8 126.6 B2-B4-H11 XR 119.4 137.8 B2-B9-H15 XR 136.3 127.9 Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) E E Bond or Angle 2.472 2.472 2.472 B1-B2 $1.69(1)$ 1.748 2.2472 B7-H7(2-) E n/a 1.215 B7H7(2-) E 1.215 1.215 B7-H14(Apical) 1.215 1.248 1.248 B1-B7(Apical) 1.696 1.696 </td <td>B4-H11</td> <td>XR</td> <td>1.18(4)</td> <td>1.18</td>	B4-H11	XR	1.18(4)	1.18
B1-H6 XR $1.32(6)$ 1.30 B4-H6 XR $1.48(5)$ 1.39 B4-H13 XR $1.31(4)$ 1.32 B9-H13 XR $1.35(4)$ 1.35 B5-B1-B4 MW 103.0 103.1 B1-B4-B9 MW 108.2 108.3 B4-B9-B10 MW 108.2 108.3 B4-B9-B10 MW 104.4 110.1 B1-B2-H3 XR 126.8 126.6 B2-B4-H11 XR 119.4 137.8 B2-B9-H15 XR 136.3 127.9 Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) E09(1) 1.748 B2-B3 2.472 2.472 2.472 B1-H7 $1.11(7)$ 1.215 5 B7H7(2-) E0 and or Angle 1.215 1.215 B1-H8(Equatorial) 1.215 1.215 1.215 B1-H8(Equatorial) 1.215 1.266 $1.29.9$ B1-B7-H14(Apical)	В9-Н15	XR	1.28(5)	1.18
B4-H6 XR $1.48(5)$ 1.39 B4-H13 XR $1.31(4)$ 1.32 B9-H13 XR $1.35(4)$ 1.35 B5-B1-B4 MW 103.0 103.1 B1-B4-B9 MW 103.0 103.1 B1-B4-B9 MW 108.2 108.3 B4-B9-B10 MW 100.4 110.1 B1-B2-H3 XR 126.8 126.6 B2-B4-H11 XR 119.4 137.8 B2-B4-H11 XR 116.3 127.9 Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) 2.472 2.472 B1-B2 $1.69(1)$ 1.748 2.472 B1-H7 $1.11(7)$ 1.215 3.2472 B7-H7(2-) Bond or Angle n/a 1.215 B7H7(2-) Bond or Angle 1.215 3.2472 B1-H7(Apical) 1.215 3.2472 3.2472 B1-B7(Apical) 1.215 3.2472 3.2472 B1-B7(Apical)<	B1-H6	XR	1.32(6)	1.30
B4-H13 XR 1.31(4) 1.32 B9-H13 XR 1.35(4) 1.35 B5-B1-B4 MW 103.0 103.1 B1-B4-B9 MW 108.2 108.3 B4-B9-B10 MW 110.4 110.1 B1-B2-H3 XR 126.8 126.6 B2-B4-H11 XR 119.4 137.8 B2-B4-H11 XR 119.4 137.8 B2-B9-H15 XR 136.3 127.9 Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) 82-B3 2.472 B1-B2 1.69(1) 1.748 2.472 B1-H7 1.11(7) 1.215 2.472 B7-H14(Apical) 1.215 2.472 1.11(7) 1.215 B7H7(2-) Bond or Angle n/a 1.215 1.215 B1-H7 1.11(7) 1.215 1.215 1.215 1.215 1.215 B1-B2(Equatorial) 1.215 1.215 1.215 1.215 1.215 1.215 1.215 1.215 1.215	B4-H6	XR	1.48(5)	1.39
B9-H13 XR 1.35(4) 1.35 B5-B1-B4 MW 103.0 103.1 B1-B4-B9 MW 108.2 108.3 B4-B9-B10 MW 110.4 110.1 B1-B2-H3 XR 126.8 126.6 B2-B4-H11 XR 119.4 137.8 B2-B4-H11 XR 119.4 137.8 B2-B9-H15 XR 136.3 127.9 Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) 2.472 1.69(1) 1.748 B1-B2 1.69(1) 1.748 2.472 B1-H7 1.11(7) 1.215 2.472 B7-H14(Apical) 1.215 1.215 1.215 B7-H14(Apical) 1.215 1.215 1.215 B1-B7(Apical) 1.848 1.848 1.666 1.29.9 B1-B7-H14(Apical) 1.666 1.29.9 1.29.9 B1-B7-H14(Apical) 1.666 1.29.9 1.29.9	B4-H13	XR	1.31(4)	1.32
B5-B1-B4 MW 103.0 103.1 B1-B4-B9 MW 108.2 108.3 B4-B9-B10 MW 110.4 110.1 B1-B2-H3 XR 126.8 126.6 B2-B4-H11 XR 119.4 137.8 B2-B9-H15 XR 136.3 127.9 Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) 2.472 2.472 B1-B2 1.69(1) 1.748 2.472 B1-B4 1.11(7) 1.215 2.472 B7H7(2-) Bond or Angle n/a 1.215 B7H7(2-) Bond or Angle 1.215 1.215 B7-H14(Apical) 1.215 1.215 1.848 B1-B7(Apical) 1.848 1.666 1.696 B1-B7-H14(Apical) 1.696 1.29.9 1.29.9	B9-H13	XR	1.35(4)	1.35
B1-B4-B9 MW 108.2 108.3 B4-B9-B10 MW 110.4 110.1 B1-B2-H3 XR 126.8 126.6 B2-B4-H11 XR 119.4 137.8 B2-B9-H15 XR 136.3 127.9 Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) 82-B3 2.472 B1-B2 1.69(1) 1.748 82-B3 B2-B3 2.472 1.11(7) 1.215 B7H7(2-) Bond or Angle n/a 1.215 B7-H14(Apical) 1.215 1.215 1.215 B1-B7(Apical) 1.848 1.848 1.666 B1-B7-H14(Apical) 1.266 1.266	B5-B1-B4	MW	103.0	103.1
B4-B9-B10 MW 110.4 110.1 B1-B2-H3 XR 126.8 126.6 B2-B4-H11 XR 119.4 137.8 B2-B9-H15 XR 136.3 127.9 Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) 8 8 Bond or Angle 1.69(1) 1.748 B2-B3 2.472 1.11(7) 1.215 B7H7(2-) 8 1.11(7) 1.215 B7H7(2-) n/a 1.215 1.215 B1-B7 1.11(7) 1.215 1.215 B1-B7(Apical) 1.215 1.215 1.215 B1-B7(Apical) 1.848 1.666 1.666 B1-B7-H14(Apical) 1.266 1.29.9 1.29.9 B1 B7-H14(Apical) 129.9 129.9 129.9	B1-B4-B9	MW	108.2	108.3
B1-B2-H3 XR 126.8 126.6 B2-B4-H11 XR 119.4 137.8 B2-B9-H15 XR 136.3 127.9 Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) Bond or Angle 1.69(1) 1.748 B1-B2 1.69(1) 1.748 2.472 B1-H7 1.11(7) 1.215 B7H7(2-) Bond or Angle n/a 1.215 1.215 1.215 1.215 B7-H14(Apical) 1.215 1.215 1.215 1.215 1.215 1.215 B1-B7(Apical) 1.215 1.848 1.666 1.666 1.666 B1-B7-H14(Apical) 1.266 1.29.9 1.29.9 1.29.9	B4-B9-B10	MW	110.4	110.1
B2-B4-H11 XR 119.4 137.8 B2-B9-H15 XR 136.3 127.9 Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) Bond or Angle 1.69(1) 1.748 B1-B2 1.69(1) 1.748 2.472 B1-H7 1.11(7) 1.215 2.472 B1-H7 1.11(7) 1.215 1.215 B7H7(2-) n/a 1.215 1.215 B1-H8(Equatorial) 1.215 1.215 1.215 B1-B7(Apical) 1.848 1.666 1.666 B1-B7-H14(Apical) 1.666 1.229.9 B1-B7-H14(Apical) 129.9 129.9	B1-B2-H3	XR	126.8	126.6
B2-B9-H15 XR 136.3 127.9 Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) Bond or Angle 1.69(1) 1.748 B1-B2 1.69(1) 1.748 2.472 B1-H7 1.11(7) 1.215 2.472 B7-H7(2-) 1.11(7) 1.215 1.215 B7-H14(Apical) 1.215 1.215 1.215 B1-B7(Apical) 1.848 1.666 1.666 B1-B7-H14(Apical) 1.666 1.229.9 129.9	B2-B4-H11	XR	119.4	137.8
Dipole moment (Debyes) MW 2.50 2.86 B6H6(2-) Fowler(XR) Bond or Angle 1.69(1) 1.748 B1-B2 1.69(1) 1.748 2.472 2.472 B1-H7 1.11(7) 1.215 2.472 B7H7(2-) Bond or Angle n/a 1.215 B7H7(2-) Bond or Angle 1.215 1.215 B1-H8(Equatorial) 1.215 1.215 1.215 B1-B7(Apical) 1.848 1.666 1.666 B1-B7-H14(Apical) 129.9 129.9	B2-B9-H15	XR	136.3	127.9
B6H6(2-) Fowler(XR) Bond or Angle 1.69(1) 1.748 B1-B2 1.69(1) 1.748 B2-B3 2.472 B1-H7 1.11(7) 1.215 B7H7(2-) n/a 1.215 B7-H14(Apical) 1.215 1.215 B1-B7(Apical) 1.215 1.215 B1-B7(Apical) 1.215 1.666 B1-B7-H14(Apical) 1.225 1.215	Dipole moment (Debyes)	MW	2.50	2.86
Bond or Angle 1.69(1) 1.748 B1-B2 2.472 B1-H7 1.11(7) 1.215 B7H7(2-) n/a 1.215 B7-H14(Apical) 1.215 1.215 B1-B7(Apical) 1.215 1.215 B1-B7-H14(Apical) 1.215 1.215 B1-B7-H14(Apical) 1.215 1.215 B1-B7-H14(Apical) 1.266 1.266	B6H6(2-)		Fowler(XR)	
B1-B2 1.69(1) 1.748 B2-B3 2.472 B1-H7 1.11(7) 1.215 B7H7(2-) n/a 1.215 B7-H14(Apical) 1.215 1.215 B1-B7(Apical) 1.215 1.215 B1-B7(Apical) 1.848 1.666 B1-B7-H14(Apical) 1.29.9 129.9	Bond or Angle			
B2-B3 2.472 B1-H7 1.11(7) B7H7(2-) n/a B7-H14(Apical) 1.215 B1-H8(Equatorial) 1.215 B1-B7(Apical) 1.848 B1-B2(Equatorial) 1.666 B1-B7-H14(Apical) 129.9 129.9 1215	B1-B2		1.69(1)	1.748
B1-H7 1.11(7) 1.215 B7H7(2-) Bond or Angle n/a B7-H14(Apical) 1.215 B1-H8(Equatorial) 1.215 B1-B7(Apical) 1.848 B1-B2(Equatorial) 1.666 B1-B7-H14(Apical) 129.9 11 129.9 11 129.9	B2-B3			2.472
B7H7(2-) n/a Bond or Angle n/a B7-H14(Apical) 1.215 B1-H8(Equatorial) 1.215 B1-B7(Apical) 1.848 B1-B2(Equatorial) 1.666 B1-B7-H14(Apical) 129.9 11-B7-H14(Apical) 129.9	B1-H7		1.11(7)	1.215
Bond or Angle n/a B7-H14(Apical) 1.215 B1-H8(Equatorial) 1.215 B1-B7(Apical) 1.848 B1-B2(Equatorial) 1.666 B1-B7-H14(Apical) 129.9 11.215 1.215	B7H7(2-)			
B7-H14(Apical) 1.215 B1-H8(Equatorial) 1.215 B1-B7(Apical) 1.848 B1-B2(Equatorial) 1.666 B1-B7-H14(Apical) 129.9 129.9 126.6	Bond or Angle		n/a	
B1-H8(Equatorial) 1.215 B1-B7(Apical) 1.848 B1-B2(Equatorial) 1.666 B1-B7-H14(Apical) 129.9 1215 129.9	B7-H14(Apical)			1.215
B1-B7(Apical) 1.848 B1-B2(Equatorial) 1.666 B1-B7-H14(Apical) 129.9 D1-D2 V000000000000000000000000000000000000	B1-H8(Equatorial)			1.215
B1-B2(Equatorial) 1.666 B1-B7-H14(Apical) 129.9 D1-B7-W070 120.0	B1-B7(Apical)			1.848
B1-B7-H14(Apical) 129.9	B1-B2(Equatorial)			1.666
	B1-B7-H14(Apical)			129.9
BI-B2-H9(Equatorial) 126.0	B1-B2-H9(Equatorial)			126.0
H9-B2-B1-B7 134 1	H9-B2-B1-B7			134 1
B7-B1-B2-B6 91.9	B7-B1-B2-B6			91.9

Table XIV(Cont'd). Comparison of Internal Coordinates for the Borane Series.

Molecule	Technique Experimental	This Work
B12H12(2-)	Fowler[K ₂ B ₁₂ H ₁₂ ,XR]	
Bond or Angle		
B1-H13	1.07	1.201
B1-B2	1.77	1.799
C2B3H5	Baudet[ED]	
Bond or Angle		
С1-Н6	1.071(7)	1.068
B2-H8	1.183(6)	1.179
C1-B2	1.556(2)	1.560
B2-B3	1.853(2)	1.895
C1-C5	2.261(3)	2.225
B2-C1-B3	73.05(1)	74.78
C1-B2-B3	53.48(1)	52.61
C1-B2-C5	93.16(1)	90.96
C2B4H6	Baudet[ED]	
Bond or Angle		
B1-C6	1.633(4)	1.626
B1-B2	1.720(4)	1.716
B1-B3	2.432(6)	2.427
C5-C6	2.179(7)	2.166
B1-H7	1.244(12)	1.172
С5-Н11	1.104(22)	1.065
B1-C6-B2	63.55	63.69
C6-B2-B1	58.22	58.16
C5-B1-C6	83.73	83.48
B1-C6-B3	96.26	96.52

Table XIV(Cont'd). Comparison of Internal Coordinates for the Borane Series.

Molecule	Bond Angle	α_e (Geometric Angle)	α_b (Bond Path Angle)	$\Delta \alpha = \alpha_b - \alpha_e$
B ₂ H ₆	B1-H2-B5	85.0574	1.7262	-83.3312
	H2-B1-H8	94.9426	59.1582	-35.7844
B ₄ H ₁₀	H9-B5-H10	135.6934	92.0558	-43.6376
	B1-H10-B5	90.0361	1.8987	-88.1374
	B2-B1-H10	111.0545	101.5480	-9.5065
B5H9	B1-B5-B3	97.6880	93.1671	-4.5209
	B1-B5-B2	64.3349	61.8114	-2.5235
	B1-B10-B2	84.5608	1.6244	-82.9364
B ₆ H ₁₀	B1-B2-B9	106.8640	84.5643	-22.2997
	B2-B9-H15	127.8700	140.1437	-12.2737
	B1-H6-B4	85.4123	1.2411	-84.1712
	H6-B1-B2	105.8720	91.4306	-14.4414
	B1-B2-B9	106.8640	84.5643	-22.2997
B6H6 ²⁻	B2-B1-B4	60.0000	60.2804	+0.2804
0 0	B2-B1-B3	90.0000	90.4863	+0.4863
B12H12 ²⁻	B3-B1-B2	60.0000	57.0538	2.9462
- 1212	B1-B2-B11	108.0000	101.1987	-6.8013
C ₂ B ₄ H ₆	B2-B1-B4	90.0000	75.1615	-14.8385

Table XV. Comparison of Geometric and Bond Path Angles for the Borane Series.

.

With Regard to the Anionic Cage Clusters

The nature of bonding in $B_6H_6^{2-}$ and other *closo*-boranes is discussed in a paper by P.W. Fowler(1986). He points out that for a calculation with a 6-31G* basis set, the t_{2g} HOMO of $B_6H_6^{2-}$ has a positive orbital eigenvalue. He goes on to contend that "the positive t_{2g} eigenvalue appears to be stable against basis set extensions, implying that it is a 'real' feature of the SCF calculation, rather than an artefact of basis set choice."

He further states that the free $B_6H_6^{2-}$ anion in the gas phase is unbound, or unstable with respect to electron loss. It is only by modelling a crystal environment around the anion with a negative field that he obtains a stable anion, with all filled orbitals being negative in energy. Looking at $B_6H_6^{2-}$, his best SCF energy is -151.38542, compared to the value of -151.46610 obtained with the 9s/5p+1d set employed in this work, lower by 0.08 hartrees. Furthermore, although both of these calculations gave positive t_{2g} orbital eigenvalues, the HOMO energy he obtained was +0.0820, compared to only +0.0520 found in this work, making this value less positive by 0.03 hartrees. This clearly demonstrates that the positive eigenvalue of the t_{2g} HOMO is <u>not</u> stable against basis set extension, but rather it shows that the possibility of a completely stable anion cannot be ruled out, given a calculation with a sufficiently large basis set.

<u>Tabulation of Results of</u> <u>Application of Theory of Atoms in Molecules</u>

Figure 18 gives the molecular graphs of the boranes examined in this study. A molecular graph is defined as the network of bond paths linking pairs of neighbouring nuclear attractors. Again, a bond path is defined as the set of two gradient paths which originate at a (3,-1) or bond critical point and which link this point to the nuclear attractors or (3,-3) critical points on either side. This line through the charge distribution is a maximum in $\rho(\mathbf{r})$ with respect to any neighbouring line. At the bond critical points along the bond path. Furthermore, the interatomic surface intersects the bond path at the bond critical point, which is the position of a maximum in $\rho(\mathbf{r})$ on that surface.

Table XVI gives the values of the properties associated with each of the unique bond paths in the borane series. Terminal and bridging hydrogen atoms are subscripted with the letters b and t, respectively. R_e is the geometrical distance between the two neighbouring nuclei, and R_b is the distance measured along the bond path, through the bond critical point; the presence of a value of R_b in the table is evidence of a curved bond path, curving inwardly in the case of the electron-deficient boranes. The bonded radii, r_A and r_B , are the geometrical distances from the bond critical point to the nuclei A and B, respectively, where the "bond" column gives the atoms in the form of "A-B". The value of $\rho(\mathbf{r})$ at the bond critical point is given by ρ_b , and *n* is the ratio of ρ_b for this bond critical point to the value for the reference for this type of bond. There are three types of bonds in the borane series: B-B, B-H_t, and B-H_b. For B-B bonds, the reference has been chosen to be the B-B bond in B₄H₁₀, and for both types of B-H bond, the reference comes from B₂H₆. So, for these three references, the *n* value is 1.0000, and values of *n* greater or less than 1 in other bonds signify greater or lesser accumulations of charge in the internuclear region. Therefore it is possible to compare the bond order, and in so doing to quantify the relative strength and weaknesses of bonds. There are also references for B-C and C-H bonds in the carboranes, but these are less useful for comparison, seeing as there are only two examples of this type of molecule given.

The values of $\nabla^2 \rho_b$ in Table XVI are the traces of the Hessian matrices of ρ_b , where the three eigenvalues are given as λ_1 , λ_2 , and λ_3 , where λ_3 is the unique positive eigenvalue of the (3,-1) critical point. As mentioned earlier, information about the nature of the atomic interaction can be obtained from the value of $\nabla^2 \rho_b$. The ellipticity, ε , has been defined as ($\lambda_1/\lambda_2 - 1$). Finally, the last column gives values of $\rho(\mathbf{r})$ at ring and cage critical points when they exist, and they are denoted with subscripts r and c, respectively.

Table XVII gives a listing of the electron populations, net charges and energies of the boron atoms and the two types of hydrogen atoms in this series of molecules. These values were obtained by integration over the individual atomic basins, according to eqns. (14) and (15), and were calculated with either PROIAIM or OMEGA. In the case where the atomic properties of one of the atoms in a molecule could not be integrated successfully, the values of the properties for that atom were calculated by difference (the difference between the total electron population or the total SCF energy for the molecule and the sum of the individual atomic properties for the other atoms), and these entries are shaded in the table. When two of the atoms in a molecule could not be integrated, the letters "n/a" for "not available" have been entered for those atoms.

Table XVIII is a listing of the total electron populations and energies for the molecules in the borane series under study, obtained by summing the individual PROAIM and/or OMEGA results according to eqn. (6). The E(SCF) results are the Restricted Hartree-Fock energy values for the molecule in atomic units from the GAUSSIAN88 SCF calculations. The differences are given as $q = \langle N \rangle - N_{molec}$, and $\Delta E = \langle E \rangle - E(SCF)$, and are tabulated in both atomic units and kcal/mol.

Table XIX repeats the information in Table XVII, but only for B_2H_6 , the smallest molecule containing boron atoms as well as both types of hydrogen atoms. The atoms in B_2H_6 have been chosen as references for a comparison of the properties of the individual atoms. This comparison is given in Table XX. Values appearing in Table XX are in the form of simple differences; therefore the entries for the atoms in B_2H_6 appear in this table as zeros, and they are also shaded. The purpose of Table XX is to show how the values of these atomic properties change throughout the series.

Table XXI gives a listing of the critical points in $\nabla^2 \rho(\mathbf{r})$ for the borane series. Because these points do not always lie along bond paths as the critical points in $\rho(\mathbf{r})$ do, the xyz coordinates of these points have been given, along with R, the distance from the given atom to the critical point. The value of $\nabla^2 \rho(\mathbf{r})$ is given, along with eigenvalues of the Hessian of $\nabla^2 \rho(\mathbf{r})$. Sites of electrophilic and nucleophilic attack are shaded.

The number of these unique critical points in the <u>entire molecule</u> is given by n, and the "designation" column describes where that unique point may be found. "Along C_n axis" means that the point lies along the axis, but inside of the cage or interior of the molecule, and therefore it is not an accessible reactive site. Two atom numbers separated by a comma signify that the critical point lies equidistant from the two nuclei, unless stated that it lies "near" one of the two. Three atom numbers separated by commas signify that the critical point can be found in the general area of the centroid of the triangle in three-dimensional space mapped out by those three nuclei. Both of these designations are used for bonded maxima which lie roughly along the bond path of a B-B bond. An atom number followed by three atom numbers in parentheses signifies that the point lies above the centroid mapped out by the three numbered nuclei in parentheses, between the plane of that triangle and the firstmentioned nucleus. Finally, "top ring" means that the point is a part of a ring of (3,+1) and/or (3,-1) critical points encircling a B-H bond and in a plane perpendicular to the B-H bond path.

formula	hand		D				ρ _b ,	$\nabla^2 \rho_{\rm b}$	λ1,	λ2,	λ3,		$\rho_{\rm r}$ and $\rho_{\rm c}$,
Tormula	bond	π_{e}, a_{0}	$\kappa_{\rm b}, a_{\rm o}$	$r_{\rm A}$, a_0	<i>r</i> _B , a ₀	n	e/a _o s	e/a _o o	e/ao ³	e/ao ⁵	e/ao ³	ε	e/ao ³
BH	B-Ht	2.3322		0.9626	1.3696	0.9724	0.1795	-0.4217	-0.4699	-0.4699	0.5182	0.0000	
BH3	B-Ht	2.2508		0.9511	1.2997	0.9897	0.1827	-0.2498	0.4758	-0.3734	0.5993	0.2741	
B ₂ H ₆	B1–H3 _t	2.2409	2.2415	0.9539	1.2875	1.0000	0.1846	-0.2583	-0.4342	-0.4053	0.5812	0.0714	$\rho_{\rm T} = 0.1083$
	B1–H2 _b	2.5123	2.6010	0.9957	1.5792	1.0000	0.1146	0.1864	-0.1671	-0.1067	0.4602	0.5657	
B4H10	B1B2	3.2987	3.3389	1.6513	1.6513	1.0000	0.1378	-0.3058	-0.1782	-0.1480	0.0204	0.2042	$\rho_{\rm r} = 0.0840$
	B1–H3 _t	2.2291		0.9542	1.2750	0.9919	0.1831	-0.2095	-0.4146	-0.3723	0.5774	0.1134	
	B5-H11 _t	2.2452	2.2462	0.9564	1.2897	1.0000	0.1846	-0.2614	-0.4240	-0.4038	0.5665	0.0498	
	B5-H13t	2.2374	2.2382	0.9543	1.2838	1.0141	0.1872	-0.2782	-0.4394	-0.4117	0.5729	0.0675	
	B1H10b	2.3724	2.3915	0.9686	1.4122	1.1764	0.1348	0.1598	-0.2540	-0.1778	0.5917	0.4285	
	B5-H10b	2.7010	2.8674	1.0570	1.7448	0.8264	0.0947	0.0829	-0.1010	-0.0653	0.2493	0.5467	
B5H9	B1-B5	3.2330	3.2336	2.1226	1.1108	0.9794	0.1350	-0.1090	-0.1646	-0.0484	0.1039	2.4039	$\rho_{\rm T} = 0.1110$
• •	B1-H6t	2.2248	2.2252	0.9527	1.2724	1.0125	0.1869	-0.2546	-0.4340	-0.3982	0.5776	0.0900	
	B5-H14	2.2248		0.9520	1.2727	0.9599	0.1772	-0.1363	-0.3724	-0.3724	0.6085	0.0000	
	B1-H10b	2.5584	2.7080	1.0405	1.6446	0.9909	0.1136	0.0787	-0.1822	-0.0229	0.2839	6.9458	
B6H10	B1-B2	3.3419	3.3443	2.0195	1.3238	0.9154	0.1262	-0.1992	-0.1625	-0.0566	0.0198	1.8728	$\rho_{\rm r} = 0.1071$
0 10	B2-B4	3.3478	3.3646	1.2630	2.0869	0.9044	0.1247	-0.1870	-0.1674	-0.0479	0.0283	2.4961	$\rho_{\rm r} = 0.1068$
	B2-B9	3.5062	3.7223	1.8332	1.7084	0.7748	0.1068	-0.0928	-0.1319	-0.0075	0.0466	16.6455	$\rho_{\rm T} = 0.1033$
	B9-nn	1.5550		1.1675	0.3875	1.2293	0.1695	-0.4510	-0.2775	-0.2037	0.0301	0.3626	
	B1-H3 _t	2.8434		0.9537	1.2714	1.0146	0.1873	-0.2543	-0.4273	-0.3976	0.5706	0.0748	
	B2-H8t	2.2291		0.9529	1.2763	0.9821	0.1813	-0.1839	-0.3915	-0.3843	0.5918	0.0187	
	B4-H11t	2.2253		0.9527	1.2730	1.0271	0.1896	-0.2838	-0.4346	-0.4239	0.5747	0.0253	
	B9-H15t	2.2327		0.9537	1.2797	0.9924	0.1832	-0.2204	-0.4279	-0.3817	0.5891	0.1212	
	В1-Н6 _b	2.4543	2.5028	0.9870	1.4994	1.0946	0.1254	0.1507	-0.2232	-0.1155	0.4894	0.9335	
	B4-H6b	2.6232	3.1981	1.2317	1.8511	0.9440	0.1082	-0.0864	-0.1522	-0.0161	0.0818	8.4454	
	B4-Н13ь	2.4990	2.6314	1.0373	1.5774	1.1346	0.1300	-0.0216	-0.2252	-0.0741	0.2777	2.0396	
	B9-H13 _b	2.5564	3.5957	1.1516	2.0857	0.9698	0.1111	-0.0550	-0.1261	0.0111	0.0822	10.3819	

Table XVI. Bond Properties for the Borane Series. (Reference values for ρ_b are shaded)

		_	_	_			$\rho_{\rm b}$,	$\nabla^2 \rho_{\rm b}$,	λ ₁ ,	λ2,	λ3,		$\rho_{\rm r}$ and $\rho_{\rm c}$,
formula	bond	$R_{\rm e}, a_{\rm o}$	$R_{\rm b}, a_{\rm o}$	$r_{\rm A}, a_0$	r _B , a _o	n	e/a _o ³	e/ao ⁵	e/ao ⁵	e/ao ⁵	e/ao ⁵	3	e/ao ³
B ₆ H ₆ ²⁻	B-B	3.3032	3.3114	1.6518	1.6518	0.9076	0.1251	-0.1692	-0.1458	-0.0445	0.0212	2.2759	$\rho_{\rm T} = 0.1159$
	B–Ht	2.2953		0.9613	1.3340	0.8294	0.1531	-0.0200	-0.3114	-0.3114	0.6028	0.0000	$\rho_{\rm c} = 0.0642$
B7H7 ²⁻	B1-B7	3.4922		1.8076	1.6850	0.7723	0.1065	-0.0940	-0.1261	-0.0156	0.0477	7.0693	$\rho_{\rm r} = 0.1042$
	B1-nn	1.5748		1.2017	0.3731	1.0749	0.1482	-0.2941	-0.1896	-0.1277	0.0231	0.4850	$\rho_{\rm c} = 0.0485$
	B1-H8 _t	2.2958		0.9627	1.3331	0.8288	0.1530	-0.0134	-0.3320	-0.2773	0.5958	0.1971	
	B7-H14 _t	2.2964		0.9594	1.3370	0.8570	0.1582	-0.0691	-0.1199	-0.1199	-0.0713	0.0000	
$B_{12}H_{12}^{2-}$	B-B	3.3998	3.4033	1.7006	1.7006	0.8553	0.1179	-0.1614	-0.1544	-0.0407	0.0338	2.7918	$\rho_{\rm r} = 0.1097$
	B-Ht	2.2695		0.9575	1.3120	0.8976	0.1657	-0.0899	-0.3467	-0.3467	0.6034	0.0000	$\rho_{\rm c} = 0.0136$
C ₂ B ₃ H ₅	BC	2.9483	2.9557	1.9987	0.9560	1.0000	0.1685	0.0306	-0.2948	-0.2927	0.6181	0.0072	$\rho_{\rm r} = 0.1003$
	C-H _t	2.0182		1.2242	0.7940	1.0000	0.2933	-1.1867	-0.7344	-0.7344	0.2820	0.0000	$\rho_{\rm c} = 0.0908$
	B-Ht	2.2270		0.9501	1.2769	1.0043	0.1854	-0.2439	-0.4554	-0.3861	0.5977	0.1794	
C ₂ B ₄ H ₆	B-C	3.0735	3.0757	1.0055	2.0682	0.8577	0.1445	0.0873	-0.2077	-0.0825	0.3775	1.5172	$\rho_{\rm r} = 0.1297$
	B-B	3.2433	3.7615	1.6233	1.6233	0.9412	0.1297	-0.1279	-0.1388	0.0024	0.0133	57.5559	$\rho_{\rm c} = 0.0780$
	C-H _t	2.0116		1.2270	0.7846	1.0123	0.2969	-1.1830	-0.7400	-0.7400	0.2970	0.0000	
	B-H _t	2.2146		0.9513	1.2634	1.0060	0.1857	-0.2283	-0.4285	-0.3962	0.5965	0.0814	

Table XVI. (Cont'd.) Bond Properties for the Borane Series. (Reference values for p_b are shaded)

		Boron	Atoms			Terminal Hyd	rogen Atoms			Bridging Hyd	rogen Atoms	
Formula	Atom	N(B), e	q(B), e	E(B), e ² /a ₀	Atom	N(H _t), e	q(H _t), e	$E(H_t), e^{2}/a_0$	Atom	N(H _b), e	q(H _b), e	$E(H_b), e^{2}/a_0$
BH	B1	4.2106	+0.7894	-24.2125	H2	1.7917	-0.7917	-0.9112				
BH3	B1	2.8385	+2.1615	-23.7544	H2	1.7199	-0.7199	-0.8804				
B ₂ H ₆	B1	2.8764	+2.1236	-23.7300	Н3	1.7042	-0.7042	-0.8751	H2	1.7133	-0.7133	-0.9305
B4H10	B1	3.6095	+1.3905	-24.0085	H3	1.6626	-0.6626	-0.8536	H7	1.7169	-0.7169	-0.9220
	B5	3.0427	+1.9574	-23.8729	H11	1.6936	-0.6936	-0.8777				
					H13	1.7003	-0.7003	-0.8804				
B5H9	B1	n/a	n/a	n/a	H6	1.6828	-0.6828	-0.8609	H10	1.6736	-0.6736	-0.8934
	B5	n/a	n/a	n/a	H14	1.6792	-0.6792	-0.8402				
B ₆ H ₁₀	B1	3.5080	+1.4920	-24.0316	Н3	1.6727	-0.6727	-0.8597	H6	1.7008	-0.7008	-0.9128
	B4	3.7793	+1.2207	-24.1363	H8	1.6834	-0.6834	-0.8554	H13	1.7188	-0.7188	-0.9206
	B2	n/a	n/a	n/a	H11	1.6886	-0.6886	-0.8713				
	B9	n/a	n/a	n/a	H15	1.7007	-0.7007	-0.8665				
B ₆ H ₆ ²⁻	Bl	4.5326	+0.4674	-24.4041	H7	1.8008	-0.8008	-0.8403				
B7H7 ²⁻	B1	n/a	n/a	n/a	H8	1.7684	-0.7684	-0.8349				
	B7	n/a	n/a	n/a	H14	1.7957	-0.7957	-0.8535				
B ₁₂ H ₁₂ ²⁻	Bl	4.4274	+0.5726	-24.4198	H13	1.7393	-0.7393	-0.8574				
C ₂ B ₃ H ₅	B2	2.8723	+2.1277	-23.7248	H8	1.7033	-0.7033	-0.8628				
C ₂ B ₄ H ₆	Bl	3.3521	+1.6479	-24.1774	H7	1.6947	-0.6947	-0.8514				72

Table XVII. Integrated Electron Populations, Net Charges and Energies for Atoms in the Borane Series. (Atoms by difference are shaded)

Molecule	$\langle N \rangle = \sum N(\Omega)$.	q= <n>-N_{molec}</n>	$\langle E \rangle = \sum E(\Omega)$.	$E(SCF), e^2/a_0$	$\Delta E = \langle E \rangle - E(SCF),$	ΔΕ,
	Ω e	e	$e^{\hat{\Omega}}/a_{O}$		e²/a ₀	kcal/mole
BH	6.0023	+0.0023	-25.1237	-25.1242	+0.0005	+0.3138
BH3	7.9981	-0.0019	-26.3955	-26.3953	-0.0002	-0.1255
B_2H_6	15.9963	-0.0037	-52.8214	-52.8224	+0.001	+0.6275
B4H10	30.2851	+0.2851	-104.6740	-104.4777	-0.1963	-123.2
$C_2B_3H_5$	31.9940	-0.0060	-152.7066	-152.7085	+0.0019	+1.1923

Table XVIII. Comparison of Total Integrated Electron Populations and Energies with SCF Results for Molecules in the Borane Series

Table XIX. Reference Values for Integrated Electron Populations and Energies for Atoms in the Borane Series

Atom	N(Ω), e	$E(\Omega),$ e ² /a ₀	$E(\Omega),$ kcal/mole
В	2.8764	-23.7300	-14,890.6
Ht	1.7042	-0.8751	-549.1
Hb	1.7133	-0.9305	-628.4

		Boron Atom	Comparison		Term	ninal Hydrogen	Atom Comp	parison	Brid	lging Hydrogen	Atom Comp	varison
Formula	Atom	ΔN(B), e	ΔE(B), e ² /a ₀	ΔE(B), kcal/mole	Atom	$\Delta N(H_t)$, e	$\Delta E(H_{l}),$ e^{2}/a_{O}	ΔE(H _t), kcal/mole	Atom	ΔN(H _b), e	$\frac{\Delta E(H_b)}{e^2/a_0},$	ΔE(H _b), kcal/mole
BH	B1	+1.3342	-0.4825	-302.8	H2	+0.0875	-0.0361	-22.65		4		
BH3	B1	-0.0379	0.0244	-15.31	H2	+0.0156	-0.0053	-3.313				
B ₂ H ₆	BI	0.0000	0.0000	0.000	H3	0.0000	0.0000	0.000	H2	0.0000	0.0000	0.000
B4H10	B1 B5	+0.7331 +0.1662	-0.2785 -0.1429	174.8 89.67	H3 H11 H13	-0.0416 -0.0107 -0.0040	+0.0215 -0.0026 -0.0053	+13.47 -1.619 -3.301	H7	+0.0036	+0.0085	+5.328
B5H9	B1 B5	n/a n/a	n/a n/a	n/a n/a	H6 H14	-0.0215 -0.0250	+0.0142 +0.0349	+8.886 +21.89	H10	-0.0397	+0.0371	+23.26
B ₆ H ₁₀	B1 B4 B2 B9	+0.6316 +0.9029 n/a n/a	-0.3016 -0.4063 n/a n/a	-189.3 -254.9	H3 H8 H11 H15	-0.0315 -0.0208 -0.0157 -0.0035	+0.0154 +0.0197 +0.0038 +0.0086	+9.657 +12.37 +2.359 +5.409	H6 H13	-0.0125 +0.0055	+0.0176 +0.0099	+11.07 +6.212
B ₆ H ₆ ²⁻	B1	+1.656	-0.6741	-423.0	H7	+0.0965	+0.0349	+21.87				
B7H7 ²⁻	B1 B7	n/a n/a	n/a n/a		H8 H14	+0.0641 +0.0915	+0.0402 +0.0216	+25.21 +13.53				
B ₁₂ H ₁₂ ²⁻	Bl	+1.551	-0.6898	-432.8	H13	+0.0351	+0.0177	+11.11				
C ₂ B ₃ H ₅	B2	-0.0041	+0.0052	+3.263	H8	-0.0010	+0.0123	+7.712				
C ₂ B ₄ H ₆	B1	+0.4757	-0.4474	-280.7	H7	-0.0095	+0.0237	+14.87				74

Table XX. Comparison of Integrated Electron Populations and Energies for Atoms in the Borane Series. (Reference atoms are shaded)

Molecule	x	у	Z	$\nabla^2 \rho$, e/a, ⁵	R	$\lambda_1, e/a^7$	$\lambda_3, e/a^7$	$\lambda_3, e/a^7$	Desigination	n
BH3	····					-7-0	-,0			
(3,-1)	1.0689	0.6171	0.0000	0.00488	1.2342	-2.19943	-0.19500	1.07670	2,1,3	3
B ₂ H ₆										
(3,-1)	-2.9783	0.0000	0.0000	0.03039	1.2801	-1.33345	-0.15506	0.84004	3,1,4	2
(3,-1)	-0.3583	0.0000	0.0000	-0.05567	1.3398	-0.89350	-0.76696	0.56002	2,1,8	2
(3,-1)	-1.3543	-0.8500	0.9502	0.03592	1.3204	-1.19882	-0.20763	0.75185	4,1,2	8
(3,+1)	-0.6886	1.0432	0.0000	0.08510	1.4517	-0.28260	0.11360	0.28787	2,3,8	4
(3,+1)	0.0000	0.0000	0.0000	-0.04507	1.6982	-0.73009	0.29090	0.38989	Centre	1
(3,+1)	-3.2205	0.0000	-0.8132	0.05541	1.7259	-0.03522	0.01025	0.14408	2,3,4	4
B4H10-B1										
(3,-1)	-0.9196	0.0000	-1.9370	-0.00631	1.2652	-1.84180	-0.28447	0.77308	2,1,3	2
(3,-1)	-0.9819	0.9483	-0.3222	-0.06434	1.2972	-1.53012	-0.67866	0.48955	2,1,7	4
(3,-1)	-2.4725	0.0000	0.1048	0.01806	1.3016	-1.59173	-0.30366	0.96243	7,1,10	2
(3,-1)	-2.6802	-0.7920	-1.0793	0.03604	1.3118	-1.11577	-0.13928	0.79065	3,1,7	4
(3,-1)	0.0000	0.0000	-0.8714	-0.30725	1.6497	-1.26474	-1.14502	0.27602	1,2 Midpt.	1
(3,+1)	-3.1271	0.0000	-0.5995	0.05369	1.5087	-0.14817	0.05994	0.08657	3,7,10	2
(3,+1)	-1.6090	-1.6253	-1.2802	0.08112	1.6689	-0.13762	0.05964	0.27904	2,3,7	4
(3,+1)	-1.3813	-0.3311	0.8727	0.10317	1.8265	-0.04566	0.06275	0.34129	2,7,10 -	2
(3,+1)	-1.3813	0.3311	0.8727	0.10317	1.8265	-0.04566	0.06275	0.34129	2,7,10 +	2
(3,-3)	-0.3565	0.0000	-0.8610	-0.31827	1.2936	-1.33950	-1.13687	-1.06169	1,2,near 1	2
(3,-3)	0.3565	0.0000	-0.8610	-0.31827	2.0063	-1.33950	-1.13687	-1.06169	1,2,near 2	2

Table XXI. Critical Points in $\nabla^2 \rho$ for the Borane Series. (Sites of electrophilic and nucleophilic attack are shaded)

.

Molecule	x	у	Z	$\nabla^2 \rho$,	R	λ ₁ ,	λ ₃ ,	λ ₃ ,	Desigination	n
				e/a ⁵		e/a ₀ 7	e/a_7	e/a ⁷		
B ₄ H ₁₀ -B5										
(3,-1)	0.0000	3.8246	1.4111	0.02849	1.2754	-1.44110	-0.19920	0.90690	5,11,13	2
(3,-1)	0.9773	2.1053	1.3717	0.02277	1.2977	-1.61950	-0.24372	0.77892	5,9,11	4
(3,-1)	-0.9656	2.8191	-0.1130	0.03604	1.3171	-1.28865	-0.13132	0.60671	5,10,13	4
(3,-1)	0.0000	1.5832	0.0701	-0.04524	1.3369	-1.41802	-0.47347	0.17147	5,9,10	2
(3,+1)	0.0000	2.4891	-0.6530	0.05672	1.4482	-0.32645	0.04245	0.27823	9,10,13	2
(3,+1)	0.0000	1.2965	1.2766	0.06700	1.5067	-0.20695	0.04266	0.18131	9,10,11	2
(3,+1)	1.6272	2.8764	1.4781	0.07366	1.7789	-0.05689	0.07257	0.21604	9,11,13	4
B5H9-B1										
(3,-1)	0.0000	2.8449	0.9620	0.01557	1.3014	-1.14874	-0.12099	0.52882	5,1,6	4
(3,-1)	1.0346	1.6209	-0.3955	-0.09403	1.3217	-1.18164	-0.83612	0.42507	2,1,6	8
(3,-1)	0.7494	3.0942	-1.1481	0.03331	1.3279	-1.03892	-0.12858	0.65463	5,1,10	8
(3,-1)	0.0000	2.1181	-1.5750	0.03232	1.3400	-1.24480	-0.20022	0.66263	13,1,10	4
(3,+1)	0.0000	1.1340	-0.8083	0.11179	1.4061	-0.56065	0.25964	0.36702	5,10,13	4
(3,+1)	0.0000	2.8879	-1.6370	0.04976	1.4376	-0.34328	0.10763	0.11191	6,10,13	4
(3,+1)	1.5726	2,7768	-0.2299	0.07640	1.6100	-0.14129	0.07623	0.23255	5,6,10	8
(3,-3)	0.0000	1.5649	0.6111	-0.30181	1.2397	-2.19429	-1.36701	-0.76389	1,5	4
(3,+3)	0.0000	0.0000	-0.0993	0.18489	2.4403	0.22223	0.22223	0.32236	lower cage	1
B5H9-B5										
(3,-1)	-0.7298	0.7298	1.0937	-0.13656	1.2824	-2.01867	-0.78774	0.60837	1,5,4	4
(3,-1)	0.0000	1.2782	2.4374	0.03974	1.4047	-0.42621	-0.00768	0.32774	1,5,14	4
(3,+1)	0.0000	0.0000	0.5154	0.14894	1.3394	-1.07061	0.86079	0.86079	1,3,5	1
(3,+1)	0.9127	-0.9127	2.4286	0.04126	1.4126	-0.39687	0.00706	0.29068	1,2,14	4
(3,-3)	0.0000	1.5649	0.6111	-0.30181	1.9989	-2.19429	-1.36701	-0.76389	1,5	4
(3,-3)	-1.4581	0.4539	1.1549	-0.12217	1.3253	-1.17796	-0.74501	-0.16772	2,9	2

Table XXI(Cont'd). Critical Points in $\nabla^2 \rho$ for the Borane Series. (Sites of electrophilic & nucleophilic attack are shaded)

Molecule	x	У	Z	$\nabla^2 \rho$,	R	λ ₁ ,	λ ₃ ,	λ3,	Desigination	n
				e/a°		e/a _o 7	e/a _o 7	e/a _o 7		
B ₆ H ₁₀ -B1										
(3,-1)	2.9329	1.1790	0.0000	0.01262	1.2991	-1.24074	-0.15507	0.55156	3,1,2	1
(3,-1)	3.6982	-0.7028	0.8079	0.03673	1.3147	-1.12836	-0.14532	0.77141	3,1,6	2
(3,-1)	2.0295	-0.2087	1.0302	-0.09891	1.3154	-1.16778	-0.83229	0.34749	2,1,6	2
(3,-1)	2.7753	-1.4434	0.0000	0.03155	1.3282	-1.29883	-0.23966	0.81327	1,6,7	1
(3,+1)	3.6560	-1.4009	0.0000	0.05701	1.5201	-0.14985	0.07878	0.08677	3,6,7	1
(3,+1)	3.1624	0.1498	1.5223	0.08142	1.5783	-0.15852	0.09343	0.24635	2,3,6	2
(3,+1)	1.5084	-1.0635	0.0000	0.10187	1.6357	-0.00480	0.04887	0.08661	2,6,7	1
(3,-3)	1.8042	0.5829	0.0000	-0.26075	1.2520	-2.08961	-1.17612	-0.71443	1,2	1
B ₆ H ₁₀ -B2										
(3,-1)	-1.0820	0.9707	0.0000	-0.09773	1.2727	-2.23125	-0.68211	0.31160	9,10	1
(3,-1)	0.8276	0.9614	0.6913	-0.13443	1.2745	-2.15689	-0.85277	0.52890	1,2,4	2
(3,-1)	1.2176	2.2385	0.0000	0.03572	1.3564	-0.71545	-0.05930	0.47284	1,2,8	1
(3,-1)	-0.8213	2.2175	0.9221	0.03552	1.3629	-0.66126	-0.02360	0.41447	8,2,9	2
(3,-1)	-1.2250	0.6925	0.9085	-0.10509	1.7959	-0.73316	-0.39107	0.41623	2,9	2
(3,-1)	-1.8406	2.2305	0.0000	0.04945	1.9328	-0.04953	-0.00390	0.16440	8,2,front face	1
(3,+1)	-1.2851	2.1808	0.0000	0.03886	1.3939	-0.47950	0.01050	0.30407	top ring	1
(3,+1)	-0.0048	0.2238	0.0000	0.12277	1.4170	-0.49960	0.37952	0.43980	along c2 axis	1
(3,+1)	-1.5546	0.5446	0.0000	-0.00197	1.9022	-0.52167	0.46704	0.81388	8,9,10	1
(3,+1)	-0.7467	0.5237	1.4489	-0.05773	1.9760	-0.61529	0.51807	0.63769	4,8,9	2
(3,+1)	1.2926	0.4768	1.0096	-0.04988	2.0112	-0.59738	0.43609	0.79422	1,4,8	2
(3,-3)	1.8042	0.5829	0.0000	-0.26075	2.0914	-2.08961	-1.17612	-0.71443	1,2	1
(3,-3)	0.3225	0.5036	1.7695	-0.26471	2.1280	-2.62332	-1.21958	-0.55811	2,4	2
(3,-3)	-1.4581	0.4539	1.1549	-0.12217	2.2065	-1.17796	-0.74501	-0.16772	2,9	2

Table XXI(Cont'd). Critical Points in $\nabla^2 \rho$ for the Borane Series. (Sites of electrophilic & nucleophilic attack are shaded)

Molecule	x	у	Z	$\nabla^2 \rho$,	R	λ ₁ ,	λ ₃ ,	λ ₃ ,	Desigination	n
				e/a _o		e/a _o /	e/a_o'	e/a _o /		
B ₆ H ₁₀ -B4										
(3,-1)	-0.4765	-0.4326	2.2914	-0.14804	1.2669	-1.86712	-1.00696	0.46232	2,4,13	2
(3,-1)	1.8474	-0.7334	3.0816	0.03596	1.3155	-1.24287	-0.15980	0.75387	4,6,11	2
(3,-1)	0.2343	-1.0049	3.6644	0.04272	1.3346	-0.90675	-0.11565	0.64114	4,13,11	2
(3,-1)	1.5716	-0.3041	1.6907	-0.09646	1.3347	-1.04640	-0.82100	0.25851	2,4,6	2
(3,-1)	0.5290	1.0969	2.9904	0.03445	1.3509	-0.68040	-0.06790	0.43628	2,4,11	2
(3,-1)	0.8668	-1.5429	2.4117	0.04865	1.3726	-0.93902	-0.16703	0.65241	4,6,13	2
(3,+1)	0.4717	-0.9952	1.5009	0.09790	1.4506	-0.31727	0.17221	0.25933	2,6,13	2
(3,+1)	-0.5607	-0.1965	3.5817	0.07313	1.5408	-0.14858	0.08311	0.18055	2,11,13	2
(3,+1)	1.0989	-1.6721	3.1250	0.06290	1.5728	-0.13075	0.07131	0.11201	2,6,13	2
(3,+1)	1.8264	-0.3074	1.3956	-0.08140	1.7241	-0.79549	0.19115	0.37727	2,6,11	2
(3,-3)	0.3225	0.5036	1.7695	-0.26471	1.2325	-2.62332	-1.21958	-0.55811	2,4	2
B ₆ H ₁₀ -B9										
(3,-1)	-1.7193	0.3381	0.7520	-0.10879	1.2739	-2.04157	-0.75021	0.42248	2,9,10	1
(3,-1)	-2.0499	0.6283	2.3514	0.01793	1.3250	-1.06597	-0.11143	0.46805	2,9,15	2
(3,-1)	-2.0323	-1.6409	1.3494	0.01889	1.3604	-9.85146	-0.22235	0.55410	10,9,13	2
(3,-1)	-3.6614	-0.6045	1.2760	0.01179	1.2854	-1.30486	-0.13576	0.61853	10,9,15	2
(3,-1)	-2.2434	-0.8543	2.7799	0.05264	1.3407	-1.00019	-0.04765	0.65848	13,9,15	2
(3,-1)	-1.2881	0.2750	1.5931	-0.11551	1.3055	-1.69147	-0.67389	0.11124	2,9,13	2
(3,-1)	-2.4955	-0.4799	0.0000	-0.46112	1.5559	-1.80471	-1.40751	0.12500	9,10	1
(3,-1)	-1.2250	0.6925	0.9085	-0.10509	1.7211	-0.73316	-0.39107	0.41623	2,9	2
(3,+1)	-2.0335	-0.5525	2.8035	0.05391	1.3299	-1.06431	0.06005	0.56811	10,13,15	2
(3,+1)	-1.2595	-0.8528	1.0389	0.09530	1.3708	-0.73255	0.31553	0.50310	2,10,13	2
(3,+1)	-3.0521	1.0456	0.4854	0.06253	1.8661	-0.05736	0.01939	0.23541	2,10,15	2
(3,+1)	-0.7467	0.5237	1.4489	-0.05773	1.9022	-0.61529	0.51807	0.63769	2,13,15	2
(3,-3)	-2.5044	-0.4938	0.2816	-0.46516	1.2776	-1.90928	-1.54360	-0.70579	9,10 near 9	2
(3,-3)	-1.4581	0.4539	1.1549	-0.12217	1.3253	-1.17796	-0.74501	-0.16772	2,9	2

Table XXI(Cont'd). Critical Points in $\nabla^2 \rho$ for the Borane Series. (Sites of electrophilic & nucleophilic attack are shaded)

Molecule	x	у	Z	$\nabla^2 \rho$,	R	λ ₁ ,	λ3,	λ3,	Desigination	n
				e/a _o s		e/a _o 7	e/a _o 7	e/a _o 7		
B ₆ H ₆ (2-)										
(3,-1)	0.8812	0.8812	-2.9969	0.03550	1.4108	-0.45637	-0.00731	0.32503	7,(1,2,4)	24
(3,-1)	0.7274	0.7274	-1.6203	-0.14372	1.2530	-2.59216	-0.73692	0.30506	2,1,4	24
(3,-1)	1.3059	0.0000	-1.3059	-0.18398	1.6631	-1.03033	-0.46054	0.14822	1,2	12
(3,+1)	0.0000	0.0000	-1.0679	0.13340	1.2678	-2.16556	0.92705	0.92705	along c4 axis	6
(3,+1)	1.2610	0.0000	-2.9977	0.03690	1.4242	-0.39262	0.00692	0.30212	7,1,2	24
(3,+1)	0.9901	0.9901	-0.9901	-0.05202	1.9420	-0.66860	0.62911	0.62911	1,2,4	8
(3,-3)	1.0941	0.0000	-1.5362	-0.18827	1.3551	-1.07772	-0.48215	-0.35005	1,2 near 1	48
(3,+3)	0.0000	0.0000	0.0000	0.25011	2.3357	0.21262	0.21262	0.21262	centre of cage	1
B7H7(2-) B1										
(31)	-0.0311	3.5312	0.0000	0.01150	1.3058	-1.19565	-0.08248	0.55556	2.1.8	10
(3,-1)	0.3030	1.8564	0.9844	-0.10599	1.3123	-1.38354	-0.65584	0.13784	7.1.2	20
(31)	0.0000	0.0000	0.0000	0.19932	2.6787	-0.02590	-0.02590	0.19608	centre of cage	1
(3,+1)	0.4301	1.3238	0.0000	0.11306	1.2868	-1.75473	0.78083	0.81957	along c2 axis	5
(3,+1)	1.1055	3.4025	-1.4535	0.05203	1.7090	-0.05868	0.01102	0.18687	6,5,12 near 5	10
(3,+1)	0.8634	2.6573	-1.9887	0.04147	1.9920	-0.03678	0.00467	0.16381	6,5,12 near 6	10
(3,-3)	0.5615	1.7281	1.0415	-0.10773	1.3517	-0.88952	-0.58472	-0.08782	1,6 near 1	10
(3,-3)	-0.7028	2.1630	0.0000	-0.32149	1.5782	-1.40227	-0.83332	-0.10889	1,2	5
(3,-3)	0.3395	1.0448	-1.5832	-0.14463	2.2369	-1.82709	-0.81895	-0.17029	1,6 near 6	10
$B_2H_2(2)$ B7										
(3-1)	.0 3334	1 0261	1 6001	-0 12880	1 2547	-2 63575	-0 72449	0 16443	172	10
(3, 1)	-0 3811	1 1729	2 8902	0.03663	1 3939	-0 52080	-0.00374	0 37524	1214	10
(3, 1)	0.3011	1 4822	1 2139	-0.10035	1.8662	-0 73353	-0.31296	0.33695	1,2,1 (10
(3, 1)	0.0000	0.0000	0.0000	0 19932	2 2406	-0.02590	-0.02590	0 19608	centre of cage	1
(3,-1)	0.0000	0.0000	0.0000	0.13076	1 3118	-1 39010	0.58014	0.12000	along c5 axis	2
(3,+1)	0.0000	1 1755	2 8868	0.13070	1 3047	-0.51129	0.00376	0.36798	1 7 14	2
(3,+1)	-0.4862	1.1755	1.0853	-0.02816	1.9519	-0.53406	0.42550	0.30790	1,7,14	10
(3, -3)	0.4002	1 0448	1.5832	-0.14463	1.2802	-1 82700	-0.81805	-0 17020	1,2,7 1 7 near 7	10
(3, -3)	-1 4700	1.0680	1.0052	-0.14403	2 1770	-1.02709	-0.01093	-0.17029	2.7 near 2	10
(3,-3)	-1.4700	1.0000	1.0415	-0.10775	2.1770	-0.007.02	-0.50+72	-0.00702	2,7 mai 2	

Table XXI(Cont'd). Critical Points in $\nabla^2 \rho$ for the Borane Series. (Sites of electrophilic & nucleophilic attack are shaded)

79

Molecule	x	у	Z	$\nabla^2 \rho$,	R	λ ₁ ,	λ3,	λ3,	Designation	n
	<u> </u>			e/a _o 5		e/a _o 7	e/a _o 7	e/a _o 7		
B ₁₂ H ₁₂ (2-)										
(3,-1)	0.6371	0.8769	2.5934	-0.14592	1,2587	-2.47883	-0.83903	0.30988	2,1,3	60
(3,-1)	0.7299	1.0046	3.8750	0.04476	1.3977	-0.49872	-0.00678	0.38257	13,(1,2,3)	60
(3,-1)	0.0000	1.4698	2.3781	-0.16544	1.7005	-0.93278	-0.50377	0.29799	1,2	30
(3,+1)	0.0000	0.0000	1.8418	0.10881	1.3916	-0.59801	0.40055	0.40055	along c5 axis	12
(3,+1)	0.0000	1.2411	3.8706	0.04560	1.3951	-0.50943	0.00672	0.39334	13,1,2	60
(3,+1)	0.9702	1.3353	2.1606	-0.05190	1.9686	-0.60264	0.63475	0.63475	1,2,3	20
(3,-3)	0.0000	1.1464	2.5741	-0.17764	1.3225	-0.98192	-0.96057	-0.33808	1,2 near 1	60
(3,-3)	0.0000	0.0000	0.0000	0.08448	3.2334	-0.06556	-0.06556	-0.06556	centre of cage	1
C ₂ B ₃ H ₅ -C1										
(3,-1)	-0.6865	0.3963	1.5026	-0.42393	0.9938	-13.93154	-1.81647	1.48598	2,1,3	6
(3,-1)	0.0000	0.8965	2.5499	-0.07386	1.0021	-11.56675	-0.11718	2.29055	6,1,2	6
(3,-1)	-1.0393	1.1674	0.0000	0.02972	2.6195	-0.81463	-0.37499	0.36545	2,3 near 2	6
(3,+1)	-1.3196	0.7619	0.0000	0.04982	2.5963	-0.32564	0.00301	0.32036	2,3 midpoint	3
(3,+1)	-0.7913	0.4569	2.5228	-0.05256	1.0059	-10.97764	0.11659	1.94626	6,(1,2,3)	6
(3,+1)	0.0000	0.8558	0.0000	0.20515	2.2697	-3.94342	0.89317	1.70836	1,2,5 inside	3
(3,-3)	0.0000	0.8346	1.5048	-0.64414	1.0263	-8.59867	-3.12535	-1.51546	1,2 near 1	6
(3,+3)	0.0000	0.0000	0.0000	0.39371	2.1021	0.06576	0.87607	0.87607	centre of cage	1

Table XXI(Cont'd). Critical Points in $\nabla^2 \rho$ for the Borane Series. (Sites of electrophilic & nucleophilic attack are shaded)

Molecule	x	у	Z	$\nabla^2 \rho$,	R	λ ₁ ,	λ3,	λ3,	Desigination	n
				e/a°		e/a _o 7	e/a _o 7	e/a _o 7		
C ₂ B ₃ H ₅ -B ₂										
(3,-1)	0.0000	2.6271	1.1497	0.02076	1.2788	-1.34416	-0.10026	0.69812	1,2,8	6
(3,+1)	-0.7913	0.4569	2.5228	-0.05256	1.0059	-10.97764	0.11659	1.94626	6,(1,2,3)	6
(3,+1)	-1.1885	0.6862	0.6036	0.05163	1.9194	-0.43480	0.12958	0.75245	1,2,3 ring centre	6
(3,+1)	0.0000	0.8558	0.0000	0.20515	2.2697	-3.94342	0.89317	1.70836	1,2,5 inside	3
(3,-3)	0.0000	0.8346	-1.5048	-0.64414	1.9452	-8.59867	-3.12535	-1.51546	1,2 near 1	6
(3,+3)	0.0000	0.0000	0.0000	0.39371	2.0672	0.06576	0.87607	0.87607	centre of cage	1
C2B4H6-B1										
(3,-1)	-1.5298	-0.7840	-0.6308	-0.12977	1.2632	-2.60579	-0.91987	0.36746	5,1,2 near 1	8
(3,-1)	-2.7942	-1.2759	0.0000	0.02509	1.3707	-0.59461	-0.05621	0.30036	7,1,2	8
(3,+1)	-1.0705	0.0000	0.0000	0.18700	1.2229	-3.85637	1.11980	1.42820	along c2 axis	4
(3,+1)	-2.6425	0.0000	-1.7476	0.06146	1,7821	-0.07323	0.01576	0,19978	5,1,7	8
(3,+1)	-2.2497	-2.2497	0.0000	0.04131	2.2501	-0.02179	0.03905	0.17363	8,2,1,7	4
(3,-3)	-1.2854	-1.2854	0.0000	-0.16907	1.6335	-1.08017	-0.39430	-0.06141	1,2 midpoint	4
(3,-3)	-0.8285	0.0000	-1.4813	-0.45293	2.0833	-10.82248	-1.98322	-0.97986	1,5 near 5	8
(3,+3)	0.0000	0.0000	0.0000	0.42823	2.2934	0.03288	0.54829	0.54829	centre of cage	1
C2B4H6-C5										
(3,-1)	-0.5560	-0.5560	-1.4518	-0.37211	0.9857	-14.29404	-1.45504	0.99681	1,5,2	8
(3,-1)	-0.9051	0.0000	-2.4501	-0.15534	0.9912	-13.5076	-0.06271	1.39091	1,5,11	8
(3,+1)	-0.9224	-0.9224	-0.9605	-0.00951	1.6971	-0.94910	0.99536	1.40295	1,2,6	8
(3,-3)	-0.8285	0.0000	-1.4813	-0.45293	1.0028	-10.82248	-1.98322	-0.97986	1,6 near 6	8
(3,+3)	0.0000	0.0000	0.0000	0.42823	2.0462	0.03288	0.54829	0.54829	centre of cage	1

.

Table XXI(Cont'd). Critical Points in $\nabla^2 \rho$ for the Borane Series (Sites of electrophilic & nucleophilic attack are shaded)

Fig. 18. Molecular Graphs of Borane Series

82

5. Discussion

A. Bond Properties in p

Examination of the molecular graphs in Figure 18 shows that the first major goal of this work has been accomplished; the non-arbitrary assignment of the connectivity of these boranes. There are several instances of connectivities which may contradict the models used by some researchers. In B₅H₉, for example, while there exists the set of four B-B bonds between the apical boron and those in the basal plane, there are no B-B bonds between adjacent basal borons, but rather there are fourmembered rings formed by the apical boron, two adjacent basal borons, and a bridging hydrogen atom. Similarly, in B_6H_{10} there are no B-B bonds between those pairs of neighbouring basal boron atoms which have bridging hydrogens between them, so there are the same types of fourmembered rings present here also; however, between the two basal borons labelled 9 & 10 (the two symmetrically equivalent borons which are bridged on one side only), there is a bond path, although there is a nonnuclear attractor or (3,-3) critical point in the centre of the bond path, rather than a (3,-1) critical point in ρ . Examining the bond critical points which link this attractor to the borons on either side, one finds that the values of $\rho(\mathbf{r})$ at the attractor and those at the (3,-1) points (which lie only 0.38 a.u. on either side) differ by only 0.00036 a.u. If a larger basis set were used, the non-nuclear attractor would most likely disappear, and there would be only the expected (3,-1) critical point; in any event, one treats this as a bond critical point and attaches no physical significance to the anomaly, since this is a very flat region of electron density.

For the carboranes, there are no B-B bonds in C₂B₃H₅, but they do exist in C₂B₄H₆. Comparison of the values of ρ_b between these two molecules shows that there is higher electron density at the B-C bond critical point in C₂B₃H₅ than in C₂B₄H₆, which is consistent with the fact that the carbon in C₂B₃H₅ is tetracoordinate, with shorter B-C bond lengths, whereas in C₂B₄H₆ the carbon is pentacoordinate, with longer bond lengths.

In the three anionic cage clusters, there are B-B bonds between all pairs of adjacent borons, but, as with B_6H_{10} , there are non-nuclear attractors in $\rho(\mathbf{r})$ between adjacent basal borons in $B_7H_7^{2-}$. There are no bridging hydrogens present in these cage molecules.

Having established the lines of interaction among the atoms in the borane series, these interactions can be further characterized by examining the value of the Laplacian of the charge density at the bond critical point, r_c (See Table XVI). As mentioned earlier, the nature of the pair-wise atomic interactions is determined by the predominance of either a perpendicular contraction of $\rho(\mathbf{r})$ towards the bond path (charge concentration at r_c) or a parallel expansion of $\rho(\mathbf{r})$ away from the interatomic surface, in favour of separate charge concentrations in the individual atomic basins (charge depletion at r_c).

Examination of the values of $\nabla^2 \rho(\mathbf{r})$ for the two types of B-H bond critical points shows that all values of $\nabla^2 \rho_b$ are near zero, which characterizes these interactions as borderline, rather than strictly ionic or covalent. In general, values of ρ_b for the B-H_b bonds are 0.135 a.u. or less, whereas the values of ρ_b for B-H_t bonds are in the neighbourhood of 0.18 a.u. (for the non-*closo* molecules). This is the major distinction between the types of B-H bonding in the boranes, showing that B-H_b interactions are weaker, in agreement with the classification of B-H-B bridges as 3-centre, 2-electron bonds.

Another aspect of both types of B-H bonding in the boranes is that the VSCC of boron is virtually stripped away by hydrogen, as can be seen in the contour diagrams of the Laplacian of ρ for B₂H₆ (see Fig. 19a,b), for both the planes containing terminal and bridging hydrogen bonds to boron. It can also be seen from the diagrams that hydrogen is very polarizable, with a significant amount of charge density pulled back towards the boron core, seen more in the case of a terminal hydrogen bond than in the bridging case.

In order to examine the nature of the bonding between boron and a terminal hydrogen, one can compare the B-H_t bonding in the *nido*-borane reference of B₂H₆ to that in the *arachno*-B₄H₁₀. Here, one finds that the value of ρ_b differs in only the third decimal place; comparison with the two other *nido*-boranes, B₅H₉ and B₆H₁₀, reveals a maximum difference of

Fig. 19 Contour maps of $\nabla^2 \rho(\mathbf{r})$ for a) Plane of ring in B₂H₆, b) Plane of borons and terminal hydrogens in B₂H₆, and c) Plane of bonded borons and their terminal H's in B₄H₁₀.

only .007 a.u., so there are no real differences in $B-H_t$ bonding in these two classes of boranes.

On the other hand, comparing B-Ht bonds in the nido-boranes to the anionic *closo*-boranes, one finds that the value of ρ_b has been lowered from the reference value of 0.18 a.u. in the former to 0.15 a.u. in the case of $B_6H_6^{2-}$, giving this cage cluster an *n* value of 0.83. Also, the value of $\nabla^2\rho_b$ changes from the reference value of -.26 a.u. to -.02 for the same anion. These two facts suggest that the terminal hydrogen bonding in the anionic clusters is of a more ionic nature, with less accumulation of charge in the interatomic region, and more charge drawn in to the separate atomic basins. Reference to Table XVII confirms this, with the electron population on the hydrogen atom in $B_6H_6^{2-}$ increasing by 0.1 e relative to the B₂H₆ reference. Similarly, the electron population of each boron atom increases by 1.7 e relative to the reference, although it must be kept in mind that these cages have a net charge of -2, relative to the neutral *nido*and arachno-boranes. Finally, comparison of B-Ht bonding in the nidoand *arachno*-boranes to the *closo*-carboranes shows the atomic interactions to be virtually identical.

The next type of atomic interaction in the boranes to be considered is the bonding between boron and bridging hydrogen. B-H_b bonding in the *nido-* and *arachno*-boranes is characterized by lower values of ρ_b than for B-H_t bonds, 0.11a.u. compared to 0.18 a.u., and also by mostly positive near-zero values of $\nabla^2 \rho_b$. Therefore these are weaker atomic interactions, but like the B-H_t bonds, they are on the borderline with regard to the shared nature of the interaction. In the case of *arachno*-B₄H₁₀, the bond critical points on the two sides of the bridging hydrogen differ from the reference by ±0.02 a.u., with the critical point linking to the boron involved in B-B bonding having a larger ρ_b value, and the other, linking to the boron in an environment similar to B₂H₆, having a smaller value. Both bond critical points have positive values of $\nabla^2 \rho_b$, with the firstmentioned interaction being a bit more ionic.

The reference B-B bond in this study is the B-B bond in *arachno*-B₄H₁₀, with a ρ_b value of 0.14 a.u., lower than in the B-H_t interaction, but higher than in a B-H_b bond. A B-B bond exhibits a definite covalent nature, shown by a $\nabla^2 \rho_b$ value of -0.31. Therefore charge density in these types of interactions is contracted towards the bond path, in the region between the two nuclei. Comparison of the diagram of $-\nabla^2 \rho$ for B₂H₆ (Fig. 19a,b) with that for the plane of the B-B bond in B₄H₁₀ (Fig. 19c) clearly shows that the latter is a more shared interaction.

Perusal of Table XVI shows that there is very little difference in the bond properties of the B-B bonds in the two *nido*-boranes, B₅H₉ and B₆H₁₀, except for a much weaker bond between B2 and B9 or between B2 and B10 (See Fig. 12) in B₆H₁₀, with an *n*-value of 0.77, and which is also borderline covalent. There is also a stronger bond between B9 and B10 in the same molecule, which has a *n*-value of 1.23, and a strongly covalent character ($\nabla^2 \rho_b = -.45$).

Looking at B-B bonds in the *closo*-boranes, the values of ρ_b are progressively lower as the cage is enlarged, relative to that found in B₄H₁₀ $(\rho_b = 0.1378)$. The charge density at the B-B bond critical point drops from a value of 0.1251 in B₆H₆²⁻, down to an value of .1179 in B₁₂H₁₂²⁻. In the case of B₇H₇²⁻, there are five equatorial B-B bonds, each with a ρ_b value of 0.1482, and ten apical bonds with ρ_b equal to 0.1065, giving an average value for the molecule of 0.1204, which is bracketed by the values in the other two anions. Therefore the trend is apparent, that as the cage size increases, there are fewer electrons per B-B bond path. The values of $\rho(\mathbf{r})$ for both ring and cage critical points follow the same general trend, except for the value of ρ_r for B₇H₇²⁻, which is smaller than that for B₁₂H₁₂²⁻.

The value of ρ_b for the B-B bond in C₂B₄H₆, the only carborane in this study with B-B bonds, is similar to that in the reference, but it is borderline covalent.

Comparison of $\rho(\mathbf{r})$ values between a particular ring critical point and its surrounding bond critical points along with an examination of the ellipticities at these points yields information about the stability of the ring systems in the boranes. For example, the four-membered ring in B₂H₆ has a value of ρ_r of 0.1083 a.u., very close to the values of ρ_b in the bond paths that form the ring, all of which are 0.1146 a.u. As is apparent for the entire series of boranes, the charge density is delocalized over the surface of the ring, but the ellipticity of the bonds which make up the ring is only .57, making this a lesser example this effect. Similarly, in B₄H₁₀, ρ_r is only close in magnitude to ρ_b in the case of the B5-H10 bond critical point, while the other bond critical points have ρ_b larger by 0.06 a.u., and all of the values of ε in these bond critical points are near zero. These two smaller molecules with four-membered ring systems show the least amount of charge delocalization in the borane series.

To see an example where this effect is more pronounced, one can examine the case of B₅H₉; here, the value of ρ_r is exceeded by only 0.0026 a.u. by the value for the bonds between basal borons and bridging hydrogens. The ellipticity for this bridging bond is 7.0, which suggests that charge density is more delocalized over the surface of the fourmembered ring, a conclusion that is further supported by the ε value of 2.4 for the B-B bond. This is also the case in the three rings of B₆H₁₀, which have ellipticities ranging from 1.9 to 16.6 in the bonds around the perimeters of the rings.

The three-membered rings in the *closo*-boranes are also marked by B-B bonds with high ellipticities, ranging from 2.3 to 7.0, and very similar values of $\rho(\mathbf{r})$, when comparing the ring and bond critical points. The largest ellipticity found in any bond was found in the B-B bond in C₂B₄H₆, with $\varepsilon = 58$. Here, the value of ρ_r and ρ_b are equivalent to four decimal places! In the two cases where non-nuclear attractors between bonded atoms appear, i.e., in B₇H₇^{2–} and B₆H₁₀, the ellipticities are small, and it is uncertain as to whether the presence of the attractors has affected this aspect of the topology in $\rho(\mathbf{r})$, since the other bonds in these rings have high ellipticities.

For those bonds in the boranes which have high ellipticities, it is useful to examine the orientation of the major axis of "soft" curvature, whose eigenvalue is λ_2 . All of these eigenvalues are oriented in a direction tangent to the surface of the molecule at the bond critical point, rather than pointing into or out of the interior of the molecule. This confirms the fact that charge is delocalized over the surface of the rings, rather than being concentrated in the bonds themselves.

B. Atomic Properties

The results of the integration of the properties determined over the individual atomic basins for the borane series in this study are given in Table XVII. The values in this table are divided into columns for boron atoms, terminal hydrogens, and bridging hydrogens. Before examining these results, it is useful to discuss their accuracy in general.

There are two ways of checking the validity of an integration. The first is to sum the individual values of the atomic properties, and to compare these with values for the total molecule. The total energy of the molecule can be obtained from the output of the SCF calculation, and the total electron population can be calculated from the molecular formula. The size of the difference obtained from a comparison of the energies or electron populations is the most important indicator of the success of a set of atomic integrations, since the actual results must be usable.

The second way of checking an integration is to look at the value of the Laplacian integrated over the basin of an atom, $L(\Omega)$. According to eqn. (9), the value of $L(\Omega)$ should theoretically be zero, if the region of space for integration is a true quantum mechanical subsystem bounded by a surface of zero flux. In practice, a "good" value of $L(\Omega)$ for a PROAIM integration is on the order of 10^{-5} , with 10^{-3} being marginally acceptable.

In this work, the integration results which were rejected had failed the first test, comparing the electron populations to the total for the molecule, and most of the boron atom integrations which were acceptable had $L(\Omega)$ values on the order of 10^{-3} . When only one atomic integration in a molecule is rejected, the values of the properties for that particular atom can be obtained by subtracting the sum of the values for the other atoms in the molecule from the molecular totals (i.e., calculation by difference), but then one is no longer able to compare a complete sum of the atomic properties with the molecular values. Incomplete summations of the atomic properties are the reason that Table XVIII contains only five of the eleven molecules studied.

Four of the five molecules listed in Table XVIII have values of ΔE on the order of one kcal/mol or less, which represent an excellent agreement between the sums of the individual atomic energies and the totals for the molecules. Only B₄H₁₀ had a large ΔE value, but the value of L(Ω) for both of the boron atoms in this molecule were on the order of 10⁻¹. And all of the molecules had q values on the order of 10⁻³, except again for B₄H₁₀. These results for energy and electron population lend support to the idea that properties can be calculated for an atom (or fragment) in a molecule, and that these properties are additive to a sum which is equal to the molecular values.

The provision of electron populations and energies for the individual atoms in the boranes invites a comparison of their properties. In BH, for example, the boron atom is bonded to one terminal hydrogen, while the boron in BH₃ is bonded to three terminal hydrogens. The terminal hydrogen atom in BH withdraws 0.79 e of charge from B, while in BH₃ the boron has a charge q(B) = +2.2, almost three times the charge transfer for one terminal hydrogen in BH. This begins to suggest that terminal hydrogen as a functional group is transferable, i.e., that one H_t in BH has the same effect as one H_t in BH₃, or indeed in other borane molecules.

In B₂H₆, q(B) = +2.12, compared to a value of q(B)=+2.16 in BH₃. The boron in B₂H₆ is surrounded by two terminal hydrogens and a pair of bridging hydrogens, while the boron in BH₃ is bonded to three terminal hydrogens. Comparison of the atomic charges on boron reveals that a terminal hydrogen withdraws slightly more charge from a boron atom than two hydrogen bridges. This may be because more charge remains in the boron atomic basin because of delocalization of charge within the ring in B₂H₆. The same comparison can be made between the boron in BH₃ and the boron in B₄H₁₀ which is not involved in B-B bonding.

The boron in B₄H₁₀ which is not involved in B-B bonding (B5 in Fig. 10) has an electron population of 3.04, and it has a bonding arrangement similar to the boron in B₂H₆ (N(B) = 2.88). The bond critical point linking B5 in B₄H₁₀ to a neighbouring bridging hydrogen is 0.06 a.u. further away from the boron than the same critical point in B₂H₆, and thus the boron in B₄H₁₀ has a slightly larger basin relative to the boron in B₂H₆, and this could account for the difference in electron count. Therefore the boron atom in B₂H₆ can be considered transferable.

The boron in B_4H_{10} which is involved in B-B bonding (B1 in Fig. 10) has a charge of +1.39, so it has 0.73 e more than the boron in B_2H_6 . The major difference between B1 in B_4H_{10} and the boron in B_2H_6 is that the boron in B_4H_{10} has a single B-B bond instead of a second terminal hydrogen bond. Since the two bonded borons in B_4H_{10} are symmetrically equivalent, there is no net transfer of charge from one boron atomic basin to the other, whereas in B_2H_6 there is another terminal hydrogen atom to withdraw charge from boron. This accounts for the difference in electron population between the B-B bonded boron in B_4H_{10} and the boron in B_2H_6 .

At this point, some general statements can be made about the terminal and bridging hydrogens in the boranes. It is important to consider how the properties of atoms (or groups) in a molecule change when they appear in different members of a series of related compounds. If they change little, then it can be said that these atoms or groups are transferable, i.e., a transferable atom or group can be removed from one molecule and use to replace a similar atom or group in another molecule with little change in the charge distribution or molecular properties. Table XX gives the information which shows how the atomic properties of borons, and bridging and terminal hydrogens change throughout the borane series.

If one were to discuss relative transferability, the conclusion would be that the bridging hydrogens are the most transferable atoms in borane systems, since the values of ΔN and ΔE and their spread for this type of atom are the smallest in the table. Therefore, bridging hydrogens are the most constant in their atomic properties. Terminal hydrogens are also quite constant in their properties, even when including the anionic cages and carboranes. But there are large differences in electron population and energy among the boron atoms as a group, with a spread in energies across the series as large as 435 kcal/mol, compared with a spread of 48 kcal/mol for terminal hydrogens, and only 18 kcal/mol for the bridging hydrogens. The large spread in boron energies suggests that there are different types of borons in the series under study, a fact already evident from examination of the topology of $\rho(\mathbf{r})$.

In the case of B₅H₉, there is a large difference between the atomic properties of the basal and apical borons. Each basal boron has one terminal hydrogen and two hydrogen bridges withdrawing charge from it, while the apical boron has only a single terminal hydrogen. The position of the bond critical point in the B-B bonds in B₅H₉ is about 2 a.u. away from the basal borons, but only about 1 a.u. away from the apical boron.

In B_6H_{10} , the two boron atoms which were successfully integrated were both basal borons, and both showed a charge increase (relative to the boron in B_2H_6 —the apical boron B_6H_{10} could not be calculated)

In C₂B₃H₅, the boron atom is bonded to two carbons and a terminal hydrogen, with no B-B bonds found. The value of E(B) = -23.7, very close to the energy of the boron in *nido*-B₂H₆. In C₂B₄H₆, E(B) = -24.2, a difference of 280 kcal/mol. This is because in C₂B₄H₆ the carbon is withdrawing charge from four borons rather than three in C₂B₃H₅, and also there are equatorial B-B bonds in this molecule. The formation of these bonds is easier in C₂B₄H₆ than in C₂B₃H₅, because of the fact that the boron atoms are closer together in C₂B₄H₆ (R=3.24 a.u.) than in C₂B₃H₅ (R=3.58 a.u.).

C. Electron Counting Schemes

Having discussed the connectivity of the boranes, the nature of their bonding interactions, and their atomic electron populations, some things can be said about the electron-counting schemes that have been put forward to help predict structural stability or to classify the different boranes by means of molecular orbital theory.

First are the *styx* rules. In order for these rules to work, there have to be four bonds to each boron. The only way to represent the stable B_5H_9 structure is to draw a series of resonance structures involving B-B-B threecentre bonds. Now that the bonds in B_5H_9 have been unambiguously defined, a new set of rules for the boranes involving bonding should be developed, if possible, based on the true connectivity of the molecule, rather than on some model of bonding.

This researcher has attempted to devise a set of rules based on the true bonding in the boranes, but these attempts have been unsuccessful. The reason for this failure is obvious from the discussion on B-B bonding in part A of this section. To apportion, say, two electrons to every B-B bond in a borane molecule would not work well in the case of $B_{12}H_{12}^{2-}$, in which there are five B-B bonds around a single boron. Therefore it does not seem possible to set up an electron-counting scheme based on the number of bonds in a molecule. This leaves only the number of boron atoms in a molecule as a basis for an electron count.
In part B of this section, the atomic electron populations were discussed. The differences in the values of the populations on boron throughout the borane series makes it difficult, if not impossible to create an electron-counting scheme based on these populations.

Wade's rules are the only set of rules which can still be applied in spite of the new discoveries about the boranes outlined in this thesis, and they do correctly predict the number of electrons in the various classes of boranes. They are based on the number of borons present in the molecule, and on the number of additional vertices (borons) required to make a complete cage from these molecules.

C. Reactivity and the Laplacian of p

This section of the thesis deals with the scalar field derived from the second derivative of $\rho(\mathbf{r})$, $\nabla^2 \rho(\mathbf{r})$. Both $\rho(\mathbf{r})$ and $\nabla^2 \rho(\mathbf{r})$ are scalar fields, and as such both have the same topological features. In both are found critical points of rank three, and lines in space which link these points. In this discussion, it should be remembered that $\rho(\mathbf{r})$ and $\nabla^2 \rho(\mathbf{r})$ are mapped out independently in space, and references to "bond paths", which are found only in $\rho(\mathbf{r})$, are made only in order to help the reader visualize where the critical points in $\nabla^2 \rho(\mathbf{r})$ lie.

The Laplacian of ρ is a useful tool for modelling reactivity in molecules. Sites of preferential nucleophilic attack in molecules are found to correspond to the positions of "holes" in the Valence Shell Charge

Concentration (VSCC) of boron atoms, i.e., the positions of critical points with the most positive values of $\nabla^2 \rho$; this correspondence is not always perfect, as steric considerations also play a role. Essentially, holes give attacking nucleophiles access to the core of the atom. For sites of electrophilic attack in the boranes, one needs to locate those critical points with the most negative values of $\nabla^2 \rho$, and which are not lying strictly along bond paths in ρ . Tabulation of the critical point data for the Laplacian of ρ is found in Table XXI.

To begin this discussion, a simple example from organic chemistry will be useful. In CH₄ (see Fig. 20), there are four bonded maxima or (3,-3) critical points in the VSCC of the carbon atom which lie along the four bond paths. There are lines of maximum charge concentration, or LOMCC, which link each of these bonded maxima to the other three, and these lines originate from (3,-1) saddle points, of which there are six in the case of a tetrahedrally coordinated carbon. So the (3,-1) critical point can be approximately located in space in the centroid of the plane triangle formed by the central carbon and any two bonded atoms. The network of lines which link the bonded maxima in methane are collectively known as an *atomic graph*, and it partitions the VSCC into four areas, which gives the atomic graph the appearance of a tetrahedron with curved faces. There is a face or (3,+1) critical point in the centre of each face, topologically identical to the ring critical point found in $\rho(\mathbf{r})$. Therefore, for this molecule, the atomic graph looks like a tetrahedron in space, centered on the carbon atom, with four (3,-3) critical points, one at each of the four

corners of the tetrahedron, and six (3,-1) critical points, one along each edge, and finally with four (3,+1) critical points in the VSCC located in the centre of each face of the tetrahedron.

Fig. 20 Atomic Graph of CH₄. Bonded maxima appear as "★" (in this figure only)

Sites of electrophilic attack are generally found at (3,-3) or (3,-1) critical points. The (3,-3) critical points appear as either bonded or nonbonded maxima. A bonded maximum is a local concentration of electronic charge along a bond path, while a non-bonded maximum does not lie along such paths. Non-bonded maxima correspond to the lone pairs of the VSEPR model, but these are absent in the electron-deficient boranes and therefore are not found. This leaves the (3,-1) points as sites of electrophilic attack.

With the atomic graph of methane in mind, it is possible to envision the topology of $\nabla^2 \rho$ for a boron atom in a borane molecule, especially the four-coordinate borons such as are found in B₂H₆ or B₄H₁₀. But there is one important difference between the atomic graphs of hydrocarbons and those of boranes; in the boranes, the hydrogen atoms have effectively stripped away the VSCC of boron, and so *there are no bonded maxima between boron and hydrogen in the boranes*. So in these molecules, the LOMCC link (3,-1) critical points to the protons, which serve as the (3,-3) critical points.

In the case of bonding between symmetrically equivalent borons, there is a (3,-1) critical point in the centre of the bond path, linking two (3,-3) bonded maxima which lie along the region of the bond path in ρ , and which are equidistant from the central saddle point. The following is a description of the topology of $\nabla^2 \rho$ for each of the boranes studied here, along with contour maps of the Laplacian which contain symbols to denote the four types of critical point: " \square " for (3,+3), " \bullet " for (3,-1), " \blacktriangle " for (3,+1), and " \blacksquare " for (3,-3) critical points. Sites of electrophilic attack are marked by an arrow and the letter "**E**", and sites of nucleophilic attack are similarly marked by the letter "**N**".

i) BH₃. In BH₃, there are only three (3,-1) critical points which link the hydrogens.

ii) B_2H_6 . In B_2H_6 , each boron atom is tetrahedrally coordinated, so the placement of the critical points is similar to that already discussed for CH₄, but with a distortion caused by the lower symmetry of the boron environment. Here, again, the hydrogen nuclei, both terminal and bridging, serve as the (3,-3) critical points.

Electrophilic attack occurs at either of the two (3,-1) critical points in $\nabla^2 \rho$, which lie inside and in the plane of the ring, at a distance of 1.34 a.u. from each boron (see Fig. 19b). At these points, $\nabla^2 \rho = -0.06$. Nucleophilic attack can occur at any of the four (3,+1) points above and below the plane of the ring, 1.45 a.u. from the closest boron, and with a $\nabla^2 \rho$ value of +0.09.

iii) B_4H_{10} . In B_4H_{10} , both of the boron atoms are again arranged as in methane, with six (3,-1) points about each boron. There is also a pair of bonded maxima along the B-B bond path, both lying at a distance of 0.36 a.u. from the central (3,-1) critical point. This is the smallest of the molecules to contain bonded maxima.

Figure 21 shows that electrophilic attack occurs at any of the four (3,-1) critical points which link the bonded maxima to bridging hydrogens $(\nabla^2 \rho = -0.06, R_{B1} = 1.30 \text{ a.u.})$ Note that these two borons, involved in B-B bonding, are furthest removed from the open face of the molecule. Nucleophilic attack occurs at either of the other borons, labelled B5 and B6, at any of the four (3,+1) points which are 1.80 a.u. from one of these borons, and which have a $\nabla^2 \rho$ value of +0.07. There is a (3,+1) critical point in the VSCC of B1 or B2 inside the "butterfly", and although it has a larger positive value of $\nabla^2 \rho$, the presence of the H_{endo}, H11 and H12, makes it sterically infeasible for nucleophilic attack to occur at B1. This finding is confirmed by Muetterties (1967), who explains that cleavage of B4H₁₀ by a nucleophile such as :NH₃ takes place at the boron other than the one involved in B-B bonding.

Fig. 21 Contour maps of $\nabla^2 \rho(\mathbf{r})$ for B₄H₁₀, containing: a) Plane of two B-B bonded borons and two bridging hydrogens, and b) Plane of one bridging and two neighbouring terminal hydrogens.

iv) B₅H₉. In the vicinity of the basal borons in B₅H₉, there are tetrahedral arrangements of critical points in $\nabla^2 \rho$ as in B₂H₆, but there is a single (3,-3) critical point or bonded maximum along each B-B bond, about 1.2 a.u. away from a basal boron, and about 2.0 a.u. from the apical boron. Rather than link to a second bonded maximum along each bond path, the (3,-3) critical points link to the proton of the apical hydrogen, through four (3,-1) critical points which lie in a plane perpendicular to the apical B-H_t bond path, just above the apical boron.

Adjacent bonded maxima are linked by (3,-1) critical points exterior to the faces of the pyramid (see Fig. 22). These saddle points are 1.28 a.u. from the apical boron, and are the sites of electrophilic attack, with a $\nabla^2 \rho$ value of -0.14. The (3,+1) holes are in the face created by links between a bonded maximum, a basal terminal hydrogen, and a bridging hydrogen. $(\nabla^2 \rho = +0.076, R_{B1} = 1.61 \text{ a.u.})$ This confirms the statement by Greenwood & Earnshaw (1984), that electrophilic attack occurs at borons furthest removed from an open face, and nucleophilic attack occurs at borons involved in bridging.

v) B₆H₁₀ (Fig. 23). For B₆H₁₀, the site of electrophilic attack is found above the plane of the ring formed by borons 1,2, and 4, at a distance of 1.27 a.u. from the apical B2 ($\nabla^2 \rho = -.13$). Nucleophilic attack occurs, as in B₅H₉, at the basal B4 boron atom, in the face critical point formed by the links between B2, the terminal hydrogen on B4, and the bridging hydrogen between B4 and B9 ($\nabla^2 \rho = +0.073$, R_{B4} = 1.54a.u.).

106

Fig. 22 Contour maps of ∇²ρ(r) for B₅H₉, containing:
a) Plane of two basal borons and the apical boron, and
b) Plane of the apical boron, one bridging and one neighbouring terminal hydrogens.

Fig. 23 Contour maps of $\nabla^2 \rho(\mathbf{r})$ for B₆H₁₀, containing: a) Plane of two basal borons and the apical boron, and b) Plane of the apical boron, one bridging and one neighbouring terminal hydrogens.

vi & vii) $B_6H_6^{2-}$ and $B_{12}H_{12}^{2-}$. In $B_6H_6^{2-}$ and $B_{12}H_{12}^{2-}$, there are pairs of bonded maxima linked by (3,-1) critical points along each of the B-B bonds in the cage. The relief map of $\nabla^2 \rho$ in Fig. 24b shows these bonded maxima as a ridge between the boron atoms. There are also three more (3,-1) critical points in the surface of the 3-membered B-B-B rings, and these link bonded maxima located on neighbouring bond paths. Again, the bonded maxima link to the terminal hydrogen nearest it, forming an alternating ring of (3,-1) and (3,+1) critical points.

In both of these anionic cages, electrophilic attack occurs at the (3,-1) critical points lying between the bond paths that make up the faces. For B₆H₆²⁻, $\nabla^2 \rho = -0.14$, and the points are 1.25 a.u. from the nearest boron atom (see Fig. 24a). In B₁₂H₁₂²⁻, $\nabla^2 \rho = -0.15$, and R_B = 1.26 a.u.

Nucleophilic Attack occurs at the ring of (3,+1) critical points which lie in a plane perpendicular to each B-H_t bond path (see Fig 24a). These points lie between B-B bonds and B-H_t bonds. For B₆H₆²⁻, there are four such points in this ring, and in B₁₂H₁₂²⁻, there are five. In B₆H₆²⁻, $\nabla^2 \rho$ = +0.037, and R_B = 1.42 a.u.; in B₁₂H₁₂²⁻, $\nabla^2 \rho$ = +0.046, R_B = 1.40 a.u.

viii) $B_7H_7^{2-}$. $B_7H_7^{2-}$ is similar to the other two *closo*-boranes, except that there are two bonded maxima along equatorial-apical bonds, but only one along equatorial-equatorial bonds. They also link to the terminal hydrogens as described earlier.

Electrophilic attack takes place at the same type of (3,-1) critical point as in the other two anions, but preferentially at the one closest to

axial boron. Here, $\nabla^2 \rho = -.129$, and the distance to boron is 1.25 a.u. The other two (3,-1) critical points in the triangular face have $\nabla^2 \rho = -.11$.

Nucleophilic attack in B₇H₇^{2–} occurs at the equatorial boron, in the position shown in Fig. 25 ($\nabla^2 \rho$ = +.052, R_B = 1.71 a.u.).

Fig. 24 a) Contour map of $\nabla^2 \rho(\mathbf{r})$ for B₆H₆²⁻, containing the plane of four boron atoms.

Fig. 24 b) Relief map of $\nabla^2 \rho(\mathbf{r})$ for B₆H₆²⁻, containing a B-B-B face. c) Contour map of $\nabla^2 \rho(\mathbf{r})$ for B₆H₆²⁻, for same plane.

Fig. 25 a) Contour map of $\nabla^2 \rho(\mathbf{r})$ for B₇H₇²⁻, plane of a B-B-B face. b) Contour map of $\nabla^2 \rho(\mathbf{r})$ for B₇H₇²⁻, plane containing one equatorial and the two axial borons.

ix & x) $C_2B_3H_5$ and $C_2B_4H_6$. Both of these molecules possess single bonded maxima along the B-C bonds, 1.0 a.u. from the axial carbon in each case. These link directly to the equatorial hydrogens, as there are no second bonded maxima present along the B-C bond paths.

As in the *closo*-anions, electrophilic attack occurs at the (3,-1) critical point between the B-C bonds. For C₂B₃H₅, $\nabla^2 \rho = -0.42$, and the distance from the carbon atom is 0.994 a.u., a reasonable value for the extent of the VSCC of carbon. For C₂B₄H₆, $\nabla^2 \rho = -0.37$, R_c = .986 a.u.

Nucleophilic attack occurs in C₂B₃H₅ in the triangular faces, at a distance from carbon of 2.03 a.u., and from boron of 1.92; therefore, the attack is at the equatorial boron ($\nabla^2 \rho = +0.052$). But in C₂B₄H₆, the analagous face critical point has a $\nabla^2 \rho$ value of -0.01, so it is not the site of nucleophilic attack. This is no doubt because of the presence of B-B bonds around the equator of the molecule. Instead, the (3,+1) critical points at which nucleophilic attack is most likely to occur are between the B-C bonds and the B-H bonds (see Fig. 26), with a value of $\nabla^2 \rho$ equal to +.06, at a distance of 1.78 a.u. from the equatorial boron. This is in agreement with a statement by Onak (1988) that conversion of *closo*-C₂B₄H₆ to the *nido* form by addition of (CH₃)₃N: occurs by nucleophilic attack at boron.

Fig. 26 a) Contour map of $\nabla^2 \rho(\mathbf{r})$ for C₂B₃H₅, plane of a B-C-B face. b) Contour map of $\nabla^2 \rho(\mathbf{r})$ for C₂B₄H₆, plane of a B-C-B face.

Fig. 26 c) Contour map of $\nabla^2 \rho(\mathbf{r})$ for C₂B₄H₆, plane containing one equatorial boron and the two axial carbons.

Since the boranes are electron-deficient, nucleophilic attack should be more prevalent in these molecules than electrophilic attack. The highest value of positive $\nabla^2 \rho$ for a site of nucleophilic attack in the borane series studied here is +0.09, for B₂H₆. Ranking these molecules by their $\nabla^2 \rho$ value, one finds:

Susceptibility to Electrophilic Attack:

 $C_{2}B_{3}H_{5} > C_{2}B_{4}H_{6} > B_{12}H_{12}^{2-} > B_{6}H_{6}^{2-} > B_{5}H_{9} > B_{6}H_{10} > B_{7}H_{7}^{2-} > B_{4}H_{10} > B_{2}H_{6}.$

Susceptibility to Nucleophilic Attack: $B_2H_6 > B_5H_9 > B_4H_{10} > B_6H_{10} > C_2B_4H_6 > B_7H_7^{2-} > C_2B_3H_5 > B_{12}H_{12}^{2-}$ $> B_6H_6^{2-}$.

In conclusion, the information presented here on the reactivity of the boranes and carboranes leads to the following points of interest:

1. B₇H₇^{2–} is more susceptible to nucleophilic attack than either of the two other *closo*-boranes, probably because of the asymmetrical axial-equatorial B-B bonds.

2. Among the *nido*-boranes, larger species are less reactive, with respect to nucleophilic attack, a confirmation of the statement by Greenwood and Earnshaw.

3. Electrophilic attack does occur preferentially at apical boron atoms, those furthest removed from the open face, and nucleophilic attack does occur most likely at basal boron atoms, which are involved in bridging, again in agreement with Greenwood & Earnshaw.

4. In compounds of carbon and boron, electrophilic attack occurs at carbon, while nucleophilic attack occurs at boron.

5. The *closo*-compounds, whether they be boranes or carboranes, are as a group less susceptible to nucleophilic attack than any of the open clusters. Therefore the cage species are the most stable.

6. B₅H₉ was found to be more susceptible to nucleophilic attack than either B₄H₁₀ or B₆H₁₀, in contradiction to the statements of Greenwood and Earnshaw, but only by a difference in $\nabla^2 \rho$ of 0.02-0.03.

The results contained herein have shown that the Theory of Atoms in Molecules does indeed correctly predict the connectivity, atomic properties, and relative reactivities of the boranes and carboranes. It remains to be seen how an application of this theory to heteroboranes and other normal boranes will aid in the development of our understanding of this fascinating class of inorganic compounds.

References

- Bader, R.F.W. (1985) Acc. Chem. Res. 8, 9.
- Bader, R.F.W. (1988) Chem. Phys. Lett. 148, 452.
- Bader, R.F.W. and Chang, C. (1989) J. Phys. Chem. 93, 2946.
- Bader, R.F.W., Gillespie, and R.J., McDougall, P.J. (1988) J. Am. Chem. Soc. 110, 7329.
- Bader, R.F.W. and Nguyen-Dang, T.T. (1981) Adv. Quant. Chem. 14, 63.
 Bader, R.F.W., Nguyen-Dang, T.T., and Tal, Y. (1981) Rep. Prog. Phys.
 44, 893.
- Bader, R.F.W., Slee, T.S., Cremer, D., and Kraka, E (1983) J. Am. Chem. Soc. 105, 5061.
- Baudet, R.A. (1988) "Advances in Boron and The Boranes: The Molecular Structures of Boranes and Carboranes" (New York: VCH Publishers), p. 417.
- Biegler-König, F., Bader, R.F.W., and Tang, T. (1982) J. Comp. Chem. 3, 317.
- Biegler-König, F., Nguyen-Dang, T.T., Tal, Y., Bader, R.F.W., and Duke, A.J. (1981) J. Phys. B: At. Mol. Phys. 14, 2379.
- Dunning Jr., T.H. (1970) J. Chem. Phys. 53, 2823; (1971) 55, 716.
- Fowler, P.W. (1986) J. Chem. Soc. 82, 61.
- M. J. Frisch, M. Head-Gordon, H. B. Schlegel, K. Raghavachari, J. S.
- Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger,
- C. F. Melius, J. Baker, R. L. Martin, L. R. Kahn, J. J. P. Stewart, E. M.
- Fluder, S. Topiol, and J. A. Pople, (1988) Gaussian, Inc., Pittsburgh PA.
- Greenwood, N.N. and Earnshaw, A. (1984) "Chemistry of the Elements"
- (New York: Pergamon Press).

Muetterties, E.L. (1967) "The Chemistry of Boron and its Compounds" (New York: Wiley & Sons).

Onak, T. (1988) "Advances in Boron and The Boranes: The Molecular Structures of Boranes and Carboranes" (New York: VCH Publishers), p. 125.

Szabo, A. and Ostlund, N.S. (1989) "Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory" (New York:

McGraw-Hill).

Wiberg, K.B., Bader, R.F.W., and Lau, C.D.H., (1987) J. Am. Chem. Soc. 109, 985, 1001.

Appendix A. PROAIM, OMEGA Output

BH-B1

PROAIM STELLIX VERSION 0.95

PER PATH
PER PATH
PER PATH
PER PATH
PER PATH
1
1
1
1
-
RGE 7.89364677111933E-01
OM) -2.42124801211100E+01
OD) E 4000(104240407E)01
SR = 5.48806184248487E+01
JR) -5.63989646655125E+01
001 7 045524274795105100
OR) 7.94553427478510E+00
OR) 7.94553427478510E+00
OR) 7.94553427478510E+00 OR) 7.97399467831708E+00 OR) -4.84248702048853E+01
 OR) 7.94553427478510E+00 OR) 7.97399467831708E+00 OM) -4.84249702049953E+01
 OR) 7.94553427478510E+00 OR) 7.97399467831708E+00 OM) -4.84249702049953E+01
OR) 7.94553427478510E+00 OR) 7.97399467831708E+00 OM) -4.84249702049953E+01
OR) 7.94553427478510E+00 OR) 7.97399467831708E+00 OM) -4.84249702049953E+01
 OR) 7.94553427478510E+00 OR) 7.97399467831708E+00 OM) -4.84249702049953E+01 AG) 9.60751721594765E-01
 OR) 7.94553427478510E+00 OR) 7.97399467831708E+00 OM) -4.84249702049953E+01 AG) 9.60751721594765E-01
 OR) 7.94553427478510E+00 OR) 7.97399467831708E+00 OM) -4.84249702049953E+01 AG) 9.60751721594765E-01
 OR) 7.94553427478510E+00 OR) 7.97399467831708E+00 OM) -4.84249702049953E+01 AG) 9.60751721594765E-01 AG) 9.59440215622743E-01
 OR) 7.94553427478510E+00 OR) 7.97399467831708E+00 OM) -4.84249702049953E+01

QZZ (DIAG) -1.92019193721751E+00

QZZ	-1.92019109290481E+00
FAXA	-3.76483538693656E-05
FAYA	2.62309278302193E-13
FAZA	1.07647265489600E+00
FBXA	-7.29154881869253E-06
FBYA	3.87733576564211E-14
FBZA	5.61970322398683E-01
RHO*L	4.04321478788050E+02
VOL1	1.63226343922733E+02
VOL2	1.20310879254625E+02
N(VOL1)	4.12457949330514E+00
N(VOL2)	4.06275891796840E+00

THE ATOMIC OVERLAP MATRIX AOM :

0.999011

- -0.012282 0.278503 0.003484 0.300182 0.827803
 - NA 2.10531766144403E+00 NB 2.10531766144403E+00 Ν 4.21063532288807E+00 FOOA -1.94138979663631E+00 FOOB -1.94138979663631E+00 ALOC 9.22136280044652E-01 BLOC 9.22136280044652E-01 FLA 1.63927864807727E-01 1.63927864807727E-01 FLB 2.26924552625176E+00 FL

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 5.44984484988687E-08

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9981146210E+00

BH-H2

PROAIM STELLIX VERSION 0.95

BH OPTIMIZATION	N				
-V/T FOR THIS	WAVEFUNCTION =	2.00070	036000		
MOLECULAR SCF	ENERGY (AU) =	-25.12415	5719630		
/-					
H2 of BH 9s/5p	+ 1d on B, 6s/4	,1 , 1 + 1p on F	ł		
INTEGRATION IS	S OVER ATOM H	2			
120 PHI PLAN	NES 96 THETA	PLANES			
80 PATHS WITH	H 141 POINTS PER	R PATH			
RADIUS OF BETA	A SPHERE 1.369	5 WITH 120	POINTS	PER	PATH
VOL1 RHO CONTO	OUR THRESHOLD=	0.0010			

VOL2 RHO CONTOU	JR THRESHOLD= 0.0020		
INSERTION LIMIT	USED = 6		
INSERTION LIMIT	REACHED 0 TIMES FO	OR SURFACE 1	
FOR SURFACE # 1	NUMBER OF INSERTED PATH	IS = 80	
TOTAL NUMBER OF	INSERTED PATHS= 80		
RESULTS OF THE	INTEGRATION		
N	1.79173615135739E+00	NET CHARGE	-7.91736151357386E-01
G	9.10486029561403E-01	- (1	0 111500016756067 01
ĸ	9.10521508831770E-01	E (ATOM)	-9.111592016/5696E-01
ட் ர	3.54/92/0366528/E-05		
L P(-1)	1.7483337760243785+00		
۲(-1) 1 م			
R1 D2	A 54269136246203E+00	,	
RZ PA	2 438307170969075+01		
GP(-1)	-2.96393745274208r+00		
GR0	-4 30718241127402E+00		
GR1	-7.90919819322078E+00		
GR2	-1,74213996348689E+01		
VNEO	-1.74843201622875E+00	VNEO (COR)	-1.74904406782397E+00
VNET	-5.89928692049337E+00	VNET (COR)	-5.90135200963427E+00
VEET	1,95849414933614E+00	VEET (COR)	1.95917973473906E+00
EHF	-3.03027126232546E+00		
		VREP (COR)	4.07829179538882E+00
		V (ATOM)	-1.82306021424545E+00
EL DX	-5.24253619047974E-07	. ,	
EL DY	-3.10731573422550E-14		
EL DZ	-5.51712669407832E-01		
EL DIPOLE MAG	5.51712669408081E-01		
QXX	-1.18397398109016E-01	QXX (DIAG)	-1.18399093403364E-01
QXY	4.33338107371216E-13		
QXZ	-2.10857194010971E-06		
QYY	-1.18399093403364E-01	QYY (DIAG)	-1.18397398121533E-01
QYZ	-1.25235377251072E-13		
QZZ	2.36796491512380E-01	QZZ (DIAG)	2.36796491524897E-01
FAXA	-4.46096820296222E-08		
FAYA	-2.61341480903033E-15		
FAZA	3.53692904107110E-01		
FBXA	-1.12465044819739E-06		
FBYA	-6.66270439071904E-14		
FBZA	-1.77787147334031E+00		
RHO*L	1.02529856875571E-01		
VOL1	9.58028916597456E+01		
VOL2	7.34841174900852E+01		

-

N(VOL1) 1.74403707538013E+00 N(VOL2) 1.71151634265801E+00 A3

0.000989 0.012284 0.722488 -0.003484 -0.299742 0.172392

> NA 8.95868075678693E-01 NB 8.95868075678693E-01 N 1.79173615135739E+00 FOOA -7.31725082612497E-01 FOOB -7.31725082612497E-01 ALOC 8.16777718145783E-01 BLOC 8.16777718145783E-01 FLA 1.64142993066196E-01 FLB 1.64142993066196E-01 1.06001106874489E+00 FL

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 3.56376503474895E-08

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9965164172E+00

BH3-B1

PROAIM VERSION 0.90

BH3 OPTIMIZATION USING VD SET(Renormalized) d=0.75, p=1.0725 -V/T FOR THIS WAVEFUNCTION = 2.00175720000 MOLECULAR SCF ENERGY (AU) = -26.39526969889 BH3 Integration of B INTEGRATION IS OVER ATOM в 1 120 PHI PLANES 96 THETA PLANES 80 PATHS WITH 141 POINTS PER PATH RADIUS OF BETA SPHERE 0.9511 WITH 120 POINTS PER PATH VOL1 RHO CONTOUR THRESHOLD= 0.0010 0.0020 VOL2 RHO CONTOUR THRESHOLD= INSERTION LIMIT USED 6 =

INSERTION LIMIT REACHED 0 TIMES FOR SURFACE 1 INSERTION LIMIT REACHED **0 TIMES FOR SURFACE** 2 INSERTION LIMIT REACHED 0 TIMES FOR SURFACE 3 FOR SURFACE # 1 NUMBER OF INSERTED PATHS = 192 FOR SURFACE # 2 NUMBER OF INSERTED PATHS = 192 FOR SURFACE # 3 NUMBER OF INSERTED PATHS = 192 TOTAL NUMBER OF INSERTED PATHS= 576

RESULTS OF THE INTEGRATION N 2.83847466387523E+00 NET CHARGE 2.16152533612477E+00 G 2.37111792776597E+01 K 2.37126965456553E+01 E(ATOM) -2.37543644960253E+01

L I R(-1) R1 R2 R4 GR(-1) GR0	1.51726799564267E-03 6.74281029606683E-01 1.03263310004731E+01 1.65101437836471E+00 1.76270671980631E+00 6.01038923875535E+00 -1.92104077697166E+01 -6.70627622854193E+00
GR1	-4.15626056248759E+00
GR2	-5.13501158107185E+00
VNEO	-5.16316550023656E+01
VNET	-5.53584136503959E+01
VEET	7.97166413220649E+00
Enr	-2.36/40529/25341E+01
EL DX	-4.01237772373887E-03
EL DY	1.92822519791914E-03
EL DZ	-1.84245975083525E-07
EL DIPOLE MAG	4.45165446163478E-03
QXX	3.43238042733823E-02
QXY	-5.96295272123438E-03
QXZ	-5.87667162417044E-05
QYY	4.24216825649860E-02
QYZ	9.50114203318068E-05
Q44 ENVA	-7.67454868383685E-02
F AAA E N Y N	1.272376116323126-03
FAIA FAZA	
FRYA	3 359954770243415-04
FBYA	-3 09720785071665E-04
FBZA	-5 89246164309999E-08
RHO*L	3 95812632272822E+02
VOL1	2.23884749336799E+01
VOI.2	2.01352395596544E+01
N(VOL1)	2.83517691112919E+00
N(VOL2)	2.83192479464181E+00
•	

0	•	9	9	7	3	6
-0	•	0	2	1	8	6

0.997366			
-0.021860	0.187223		
-0.000001	-0.000408	0.117551	
0.000001	0.000551	0.000286	0.117098
	NA 1	41923733193	762E+00

INU	1.41923/33193/026+00
NB	1.41923733193762E+00
N	2.83847466387523E+00
FOOA	-1.05827756626344E+00
FOOB	-1.05827756626344E+00
ALOC	7.45666381829614E-01
BLOC	7.45666381829614E-01

VNEO (COR)	-5.16769787530033E+01
VNET (COR)	-5.54070088568807E+01
VEET (COR)	7.97866188808473E+00
VREP (COR)	7.89835036459347E+00
V (ATOM)	-4.75086584922872E+01
QXX (DIAG)	-7.67455889272106E-02
QYY (DIAG)	3.11650596069139E-02
QZZ (DIAG)	4.55805293202966E-02

A5

FLA 3.60959765674180E-01 FLB 3.60959765674180E-01 FL 1.78019709761180E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 4.10504636500200E-08 FOR SURFACE # 2 EPSD 4.10504636500200E-08 FOR SURFACE # 3 EPSD 4.10504636500200E-08

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9955962036E+00

BH3-H2

PROAIM VERSION 0.90

BH3 OPTIMIZATION -V/T FOR THIS W	USING VD SET(Renord NAVEFUNCTION =	nalized) d=0.75, p= 2.00175720000	1.0725
MOLECULAR SCF E	NERGY (AU) =	-26.39526969889	
BH3 Integration INTEGRATION IS 120 PHI PLANE 80 PATHS WITH RADIUS OF BETA VOL1 RHO CONTOU VOL2 RHO CONTOU	of H OVER ATOM H 2 S 96 THETA PLANE 141 POINTS PER PATE SPHERE 1.2997 WITE IR THRESHOLD= 0.007	ES H H 120 POINTS PER LO 20	PATH
INSERTION LIMIT	USED =	6	
INSERTION LIMIT	REACHED 0 TIME	ES FOR SURFACE 1	
FOR SURFACE # 1	NUMBER OF INSERTED	PATHS = 192	
IUIAL NUMBER OF	INSERIED PAINS-	192	
RESULTS OF THE	INTEGRATION		
N	1.71986338166556E-	+00 NET CHARGE	-7.19863381665558E-01
G	8.78825867788447E-	-01	
K	8.78835511779175E-	-01 E (ATOM)	-8.80379801540474E-01
L	9.64399072746475E-	-06	
I	1.11773442223603E-	+00	
R(-1)	1.71812834090062E-	+00	
R1	2.37821403055307E-	+00	
R2	4.10980517645047E-	+00	
R4	2.07639088978504E-	+01	
GR(-1)	-2.76490102947142E-	+00	
GR0	-3.90595332707110E-	+00	
GR1	-7.02815752816314E	+00	
GR2	-1.52773846836535E-	+01	
VNEO	-1.71812834090062E-	+00 VNEO (COR)	-1.71963656333671E+00
VNET	-6.66643943077094E-	+00 VNET (COR)	-6.67229142289453E+00
VEET	2.40371781700107E-	+00 VEET (COR)	2.40582786958289E+00
EHF	-3.38388610199070E-	+00	
		VREP (COR)	4.90933417003311E+00

				V (ATOM)	-1.76295725286142E+0	0
EL DX	-6.38826	534248590E-	-07			
EL DY	4.340180)15391986E-	-01			
EL DZ	1.47204	488725674E-	-06			
EL DIPOLE MAG	4.340180	015394952E-	-01			
QXX	-4.57796	539007002E-	-02	QXX (DIAG)	-5.58152398487724E-0	1
QXY	1.95997	439593407E	-06			
QXZ	5.21/00	0848963/UE-	-05	OVV (DTAC)	4 577064950229205-0	2
	-7 474430	147027020E-	-06	QII(DIAG)	-4.57796485952820E-0.	2
077	-5 58152	393126320E-	-01	077 (DTAG)	6 03932047081005E-0	1
FAXA	2.38017	711511789E-	-07	Q00 (0 110)	0.0000201/0020002	•
FAYA	-3.49821	198141421E-	-01			
FAZA	-4.61858	687866289E-	-08			
FBXA	2.69537	365416017E-	-06			
FBYA	1.96963	688448871E-	+00			
FBZA	-3.43469	261906124E-	-07			
RHO*L	9.91969	677280422E-	-02			
VOL1	8.81804	432036079E-	+01			
	0.78030.	1043235808-	+00			
N(VOL1)	1 64941	J94480529E- 845012111F-	+00 +00			
N(VOBZ)	1.049410	5450121115				
THE ATOMIC OV	ERLAP MATI	RIX AOM :				
0.000878						
0.007286 0.27	0783					
0.009200 0.37	4844 0.5	48273				
0.000000 0.00	0.00 0.00	0.00 0.00	39998			
NA	8.59931	690832779E-	-01			
NB	8.59931	690832779E	-01			
N	1.71986	338166556E-	+00			
FOOA	-6.56818	451814762E	-01			
PUOB	7 63803	451014702E 354145711E	-01			
BLOC	7 63803	154145711E	-01			
FLA	2.03113	239018017E-	-01			
FLB	2.03113	239018017E-	-01			
FL	1.06304	492985080E-	+00			
ERROR ESTIMATE	FOR DIFFE	RENTIAL EQU	JATIONS			
FOR SURFACE # 1	EPSD	3.45896923	3016946E	2-08		
MAXIMUM DISTANC	E REACHED	FROM NUCLE	EUS = 9	9957658742	E+00	
		-		-		
		В	2H6-B	1		

PROAIM STELLIX VERSION 0.95

B2H6 USING D95 AND VAN DUIJNEVELDT BASES (Renormalized)

-V/T FOR THIS WAVEFUNCTION = 2.00207143000 MOLECULAR SCF ENERGY (AU) = -52.82244183403B2H6 Integration of B1 INTEGRATION IS OVER ATOM B 1 120 PHI PLANES **96 THETA PLANES** 80 PATHS WITH 141 POINTS PER PATH RADIUS OF BETA SPHERE 120 POINTS PER PATH 0.9539 WITH VOL1 RHO CONTOUR THRESHOLD= 0.0010 VOL2 RHO CONTOUR THRESHOLD= 0.0020 INSERTION LIMIT USED 6 INSERTION LIMIT REACHED **0 TIMES FOR SURFACE** 1 INSERTION LIMIT REACHED **0 TIMES FOR SURFACE** 2 INSERTION LIMIT REACHED 1 TIMES FOR SURFACE 3 INSERTION LIMIT REACHED 1 TIMES FOR SURFACE 4 FOR SURFACE # 1 NUMBER OF INSERTED PATHS = 53 FOR SURFACE # 2 NUMBER OF INSERTED PATHS = 53 FOR SURFACE # 3 NUMBER OF INSERTED PATHS = 89 FOR SURFACE # 4 NUMBER OF INSERTED PATHS = 89 TOTAL NUMBER OF INSERTED PATHS= 284 RESULTS OF THE INTEGRATION Ν 2.87639115822766E+00 NET CHARGE 2.12360884177234E+00 G 2.36813312642053E+01 к 2.36809650477718E+01 E(ATOM) -2.37300185092007E+01 -3.66216433510751E-04 L 4.68296569167601E-01 Ι R(-1)1.03507964448527E+01 1.69001161272838E+00 R1 **R**2 1.78543743530470E+00 R4 5.52107513108538E+00 GR (-1) -1.91352832221070E+01 GR0 -6.61851874658061E+00 GR1 -3.96319451052202E+00 GR2 -4.58725898509630E+00 VNEO -5.17539822242634E+01 -5.18075291406183E+01 VNEO (COR) -6.19762429166703E+01 VNET -6.19121858819014E+01 VNET (COR) VEET 1.12316455464790E+01 VEET (COR) 1.12432662944632E+01 EHF -2.69995752876505E+01 VREP (COR) 1.45128230729131E+01 V (ATOM) -4.74634198437572E+01 EL DX 5.28777924497619E-02 EL DY 5.11944070911604E-09 EL DZ -1.38375206340026E-03 EL DIPOLE MAG 5.28958949648561E-02 QXX 1.55352787161654E-01 QXX (DIAG) 1.26522741587297E-01 QXY 2.98150620949584E-09 QXZ 1.48215091328895E-03 QYY 1.26522739922993E-01 1.55357811415897E-01 QYY (DIAG) QYZ 2.60736202779051E-05 QZZ(DIAG) -2.81880553003195E-01 QZZ -2.81875527084647E-01

FAXA 7.17386452088246E-02 FAYA -1.33890660035511E-07 FAZA 4.55393769433029E-04 FBXA -1.50871219749283E+00 FBYA -8.09627670305894E-09 FBZA 2.30483535479529E-04 RHO*L 3.93805134409472E+02 VOL1 1.88284871187015E+01 VOL2 1.75972135628431E+01 N(VOL1) 2.87477952517395E+00 N(VOL2) 2.87298422998257E+00	
THE ATOMIC OVERLAP MATRIX AOM :	
0.498615 0.498638 0.498662 -0.011825 -0.011951 0.095202 -0.009767 -0.009820 0.068090 0.087848 0.000000 0.000000 0.000074 0.000079 0.063369 0.000000 0.000000 0.000000 0.000000 0.000000	0.071135 0.000000
NA 1.43819557911383E+00 NB 1.43819557911383E+00 N 2.87639115822766E+00 FOOA -1.05110920590296E+00 FOOB -1.05110920590296E+00 ALOC 7.30852758253239E-01 BLOC 7.30852758253239E-01 FLA 3.87086373210874E-01 FLB 3.87086373210874E-01 FL 1.82528195232470E+00	
ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS	
FOR SURFACE # 1EPSD1.20581628063488E-07FOR SURFACE # 2EPSD1.20581628066682E-07FOR SURFACE # 3EPSD3.04044187630510E-04FOR SURFACE # 4EPSD7.23323114118775E-04	
MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9972156042E+00	
B2H6-H2	

PROAIM STELLIX VERSION 0.95

B2H6 USING D95	AND VAN DUIJNEVELDT	BASES (Renormalized)
-V/T FOR THIS	WAVEFUNCTION =	2.00207143000
MOLECULAR SCF	ENERGY (AU) =	-52.82244183403

B2H6 Integration of Bridging H INTEGRATION IS OVER ATOM H 2 120 PHI PLANES 96 THETA PLANES 80 PATHS WITH 141 POINTS PER PATH RADIUS OF BETA SPHERE 1.5792 WITH 120 POINTS PER PATH VOL1 RHO CONTOUR THRESHOLD= 0.0010 VOL2 RHO CONTOUR THRESHOLD= 0.0020 INSERTION LIMIT USED 6 INSERTION LIMIT REACHED 1 TIMES FOR SURFACE 1 INSERTION LIMIT REACHED 1 TIMES FOR SURFACE 2 FOR SURFACE # 1 NUMBER OF INSERTED PATHS = 89 FOR SURFACE # 2 NUMBER OF INSERTED PATHS = 89 TOTAL NUMBER OF INSERTED PATHS= 178 RESULTS OF THE INTEGRATION Ν 1.71330020378423E+00 NET CHARGE -7.13300203784231E-01 G 9.27507775433108E-01 E(ATOM) -9.30466728768952E-01 к 9.28543316287295E-01 L 1.03554085418655E-03 Ι 6.00242104975462E-01

	R(-1)	1.74013671210300E+00		
	R1	2.22882905248296E+00		
	R2	3.44049068716434E+00		
	R4	1.20075925650597E+01		
	GR(-1)	-2.24025216130865E+00		
	GR0	-2.77722518826241E+00		
	GR1	-4.30510035317847E+00		
	GR2	-7.93754047726038E+00		
	VNEO	-1.74013671210300E+00	VNEO (COR)	-1.74193713307477E+00
	VNET	-1.13228292394554E+01	VNET (COR)	-1.13345443300461E+01
	VEET	4.62634819860384E+00	VEET (COR)	4.63113481925355E+00
	EHF	-5.76793772456427E+00		
			VREP (COR)	9.46860581504886E+00
			V (ATOM)	-1.86593851499723E+00
	EL DX	-2.60914601738159E-05		
	EL DY	-1.16804100796610E-03		
	EL DZ	4.68855427436464E-01		
ΕL	DIPOLE MAG	4.68856883107404E-01		
	QXX	4.40064505122622E-01	QXX (DIAG)	4.40064516471911E-01
	QXY	-2.73546421351362E-05		
	QXZ	8.79448728962813E-05		
	QYY	-1.11703854176376E-01	QYY (DIAG)	-1.11512518208618E-01
	QYZ	6.44135762147223E-03		
	QZZ	-3.28360650946246E-01	QZZ (DIAG)	-3.28551998263293E-01
	FAXA	3.35597464649190E-06		
	FAYA	1.13500606315245E-04		
	FAZA	-3.40254750287146E-01		
	FBXA	3.92498027317463E-06		
	FBYA	1.73179076107756E-03		
	FBZA	2.32348802113613E+00		

RHO*L 8.62093447805431E-02

VOL1	5.91785853051270E+01
VOL2	4.96595864321962E+01
N(VOL1)	1.69756248385816E+00
N(VOL2)	1.68379211007336E+00

0.000568						
0.00000	0.000523					
0.007069	0.000000	0.287536				
0.00000	0.001555	-0.000002	0.019753			
0.005685	0.000000	0.306703	-0.000002	0.391118		
0.000004	0.000000	0.000174	0.00000	0.000002	0.042957	
0.004127	0.000000	0.163354	0.00000	0.166190	0.000102	0.103099
0.00000	0.000001	-0.000001	0.000004	-0.000001	-0.000003	0.00000
0.011096						

NA	8.56650101892115E-01
NB	8.56650101892115E-01
N	1.71330020378423E+00
FOOA	-5.45583669733466E-01
FOOB	-5.45583669733466E-01
ALOC	6.36880411883936E-01
BLOC	6.36880411883936E-01
FLA	3.11066432158649E-01
FLB	3.11066432158649E-01
FL	1.16771653405076E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 2.05272494593827E-04 FOR SURFACE # 2 EPSD 2.05272494593827E-04

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9959018620E+00

B2H6-H3

PROAIM STELLIX VERSION 0.95

B2H6 USING D95	AND VAN DUIJNEVELDT	BASES (Renormalized)
-V/T FOR THIS	WAVEFUNCTION =	2.00207143000
MOLECULAR SCF	ENERGY (AU) =	-52.82244183403

B2H6 Integration of Terminal H INTEGRATION IS OVER ATOM H 3 120 PHI PLANES 96 THETA PLANES 80 PATHS WITH 141 POINTS PER PATH RADIUS OF BETA SPHERE 1.2875 WITH 120 POINTS PER PATH VOL1 RHO CONTOUR THRESHOLD= 0.0010 VOL2 RHO CONTOUR THRESHOLD= 0.0020

INSERTION LIMIT USED = 6

INSERTION LIMIT	REACHED 0 TIMES FOR	SURFACE 1	
FOR SURFACE # 1	. NUMBER OF INSERTED PATHS	= 53	
TOTAL NUMBER OF	INSERTED PATHS= 53		
RESULTS OF THE	INTEGRATION		
N	1.70423871590660E+00	NET CHARGE	-7.04238715906604E-01
G	8.73224055120012E-01		
K	8.73292504442757E-01	E (ATOM)	-8.75101468735235E-01
L	6.84493227445586E-05		
I	6.22408680590528E-01		
R(-1)	1.71423403800436E+00		
R1	2.32361568384050E+00		
R2	3.92575995854152E+00		
R4	1.85539460218572E+01		
GR(-1)	-2.65386705424597E+00		
GR0	-3.64482232136458E+00		
GR1	-6.35216999882664E+00		
GR2	-1.33562299880105E+01		
VNEO	-1.71423403800436E+00	VNEO (COR)	-1.71600765894522E+00
VNET	-9.45434010491038E+00	VNET (COR)	-9.46412197554199E+00
VEET	3.80313307712618E+00	VEET (COR)	3.80706796368013E+00
EHF	-4.77791452334144E+00		
		VREP (COR)	7.70988101828633E+00
		V (ATOM)	-1.75424095725566E+00
EL DX	-1.77817385895831E-01		
EL DY	3.64009249168047E-01		
EL DZ	-4.48755960335572E-06		
EL DIPOLE MAG	4.05119434521291E-01		
QXX	1.21579570667562E-01	QXX (DIAG)	6.19789184955219E-01
QXY	-3.68016708265273E-01		
QXZ	-3.86505518037816E-05		
QYY	3.47943171116139E-01	QYY(DIAG)	-1.50266438533052E+01
QYZ	-1.11800270441938E-05		
QZZ	-4.69522741783702E-01	QZZ(DIAG)	-4.69522746422168E-01
FAXA	1.71987471620733E-01		
FAYA	-3.05191127525399E-01		
FAZA	4.60508412338142E-08		
FBXA	-1.47123448802947E+00		
FBYA	1.94572645385979E+00		
FBZA	-5.76525967121113E-07		
RHO*L	9.79870198647061E-02		
VOL1	8.27759441879269E+01		
VOL2	6.44674718725112E+01		
N(VOL1)	1.66882671105959E+00		
N(VOL2)	1.64236861699685E+00		

```
0.000408

0.000407 0.000407

0.002365 0.002362 0.058339

0.004129 0.004132 0.099462 0.196213

0.000000 0.000000 0.000000 0.022859

0.003782 0.003780 0.101884 0.183135 0.000001 0.194723

-0.003307 -0.003315 -0.081814 -0.174825 0.000000 -0.156548 0.162641

0.003948 0.003947 0.104789 0.196497 0.000000 0.203550 -0.170868

0.216530
```

NA	8.52119357953302E-01
NB	8.52119357953302E-01
N	1.70423871590660E+00
FOOA	-6.25526534149967E-01
FOOB	-6.25526534149967E-01
ALOC	7.34083234128625E-01
BLOC	7.34083234128625E-01
FLA	2.26592823803335E-01
FLB	2.26592823803335E-01
FL	1.07871218175664E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 9.66293167339648E-08

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9957599157E+00

B4H10-B1

PROAIM STELLIX VERSION 0.95

B4H10 OPTIMIZATION USING VD SET(Renormalized) d=0.7 -V/T FOR THIS WAVEFUNCTION = 2.00132087000 MOLECULAR SCF ENERGY (AU) = -104.47774919276	75, p=1.0725
B1 of B4H10 $9s/5p + 1d$ on B, F	
INTEGRATION IS OVER ATOM B 1	
120 PHI PLANES 96 THETA PLANES	
80 PATHS WITH 141 POINTS PER PATH	
RADIUS OF BETA SPHERE 0.9542 WITH 120 POINTS	PER PATH
VOL1 RHO CONTOUR THRESHOLD= 0.0010	
VOL2 RHO CONTOUR THRESHOLD= 0.0020	
INSERTION LIMIT USED = 6	
INSERTION LIMIT REACHED 0 TIMES FOR SURFACE	1
INSERTION LIMIT REACHED 0 TIMES FOR SURFACE	2
INSERTION LIMIT REACHED 1 TIMES FOR SURFACE	3
INSERTION LIMIT REACHED 0 TIMES FOR SURFACE	4
FOR SURFACE # 1 NUMBER OF INSERTED PATHS = 12	
FOR SURFACE # 2 NUMBER OF INSERTED PATHS = 48	

FOR SURFACE # 3	3 NUMBER OF INSERTED PATHS	5 = 70	
FOR SURFACE # 4	4 NUMBER OF INSERTED PATHS	5 = 72	
TOTAL NUMBER OF	F INSERTED PATHS= 202		
RESULTS OF THE			1 200457(01727055.00
N C	3.60954230827205E+00	NET CHARGE	1.39045769172795E+00
G	2.41/142001321/0E+01		2 400040207041245+01
N I	2.39/68136246011E+01	E (ATOM)	-2.40084838784134E+01
با ۲	-1.94606988616520E-01		
⊥ ₽/1\	4.546054/503/04/E-01		
(I-)) 1 (I-)			
	A 76322467161421E+00		
RZ PA	3 236837648017188+01		
GP(-1)	-1 94721075343547F±01		
GR(I)	-7 44132382024344E+00		
GR1	-6 13328682767615E+00		
GR2	-1,17524158698944E+01		
VNEO	-5.38987312685880E+01	VNEO (COR)	-5 39343043834433E+01
VNET	-7.97944275635592E+01	VNET (COR)	-7.98470918150122E+01
VEET	1,97717381054962E+01	VEET (COR)	1.97847874351179E+01
EHF	-3.60458758334619E+01		
		VREP (COR)	3.18221793901664E+01
		V (ATOM)	-4.80249124248459E+01
EL DX	-7.89535815936418E-01		
EL DY	-1.21531767199872E-01		
EL DZ	-3.62434916248905E-02		
EL DIPOLE MAG	7.99656404820390E-01		
QXX	-1.07568124184693E+00	QXX (DIAG)	2.09110781424446E-01
QXY	-7.22955397811525E-01		
QXZ	-4.11430641010697E-01		
QYY	2.88204043081034E-01	QYY (DIAG)	1.39874499294432E+00
QYZ	-8.18921138787287E-01		
QZZ	7.87477198765900E-01	QZZ (DIAG)	-1.60785577436877E+00
FAXA	8.08016429205461E-01		
FAYA	-3.94139858965521E-02		
FAZA	5.58124115162565E-02		
FBXA	-3.06077050780627E+00		
FBYA	3.71001131811028E-02		
FBZA	-1.54825911000478E+00		
RHO*L	3.92349029696389E+02		
VOL1	3.11310678096135E+01		
VOL2	2.95461130686487E+01		
N(VOL1)	3.60780562973275E+00		
N(VOL2)	3.60549356850861E+00		

0.003898							
0.003895	0.00394	4					
-0.000038	0.00478	0.498086					
0.000000	0.00481	18 0.498106	0.498136				
0.000356	0.00061	9 -0.006741	-0.007505	0.142001			
0.000764	0.00060)2 - 0.000012	-0.000010	0.001737	0.037854		
0.000442	0.00046	53 -0.008303	-0.008419	0.070546	-0.001029	0.073853	
-0 000775	-0 00070	15 - 0 0.04196	-0 004679	0 076076	-0 001652	0 043125	
0 079255	0.000/0	0.001190	0.0010/9	0.0,00,0	0.001002	0.0.0100	
0 000799	0 00071	8 -0 000014	-0 000003	-0 001217	0 030735	0 001504	
0.000785	0.000/1		0.000000	0.001217	0.000700	0.001301	
0 040153							
-0 000112	_0 00023		-0 000055	_0 031220	-0 000055	-0 007300	
0.017152	-0.00023	59 -0.000255	-0.000035	-0.031220	-0.000035	-0.007300	
0.01/155	0 04504						
0.000266	0.04504			0 000505	0 000040	0 000001	
0.000944	0.00105	58 -0.000006	0.000005	0.000596	-0.028348	-0.000261	-
0.001734							
-0.027175	0.00053	31 0.027791					
0.000731	0.00051	L9 -0.002490	-0.002027	-0.049814	0.000687	0.006511	-
0.004271							
-0.000122	0.03992	23 0.001249	0.067462				
0.000352	0.00040	0.002920	0.002956	-0.010100	-0.000780	-0.017922	-
0.044664							
0.001044	-0.03952	27 -0.000180	-0.038929	0.062138			
-0.000241	-0.00010	0.000007	0.000009	-0.000694	-0.031117	0.000440	-
0.000384							
-0.029390	0.00080	0 0.025411	0.000484	0.000349	0.029437		
0.000322	0.00058	0.003207	0.002229	0.096139	0.000301	-0.011726	
0.074510							
0.000094	-0.00957	79 0.000505	-0.073477	-0.010968	0.000164	0.195714	
	NA 1	.8047711541	3602E+00				
	NB 1	8047711541	3602E+00				
	N	8 6095423082	7205E+00				
	FOOA -1	1768096633	3664E+00				
	FOOB -1	1768096633	36645+00				
	ALOC 6	5205478303	42495-01				
	RLOC 6	5205470303	42495-01				
		5.32034/0303	4249E-01				
	FLA 6	5.2/961490/9	9388E-01				
	FLB 6	5.2/961490/9	9388E-01				
	FL Z	2.432/326449	3541E+00				
ERROR EST.	IMATE FOF	R DIFFERENTI	AL EQUATIO	NS			
FOR SURFA	CE # 1	EPSD 5.54	59///18820	43E-07			
FOR SURFA	CE # 2	EPSD 5.54	59///18820	43E-07			
FOR SURFA	CE # 3	EPSD 6.25	1859369923	/1E-07			
FOR SURFAC	CE # 4	EPSD 6.25	1859894239	58E-07			
MAXIMUM D	ISTANCE F	REACHED FROM	NUCLEUS =	9.998012	4934E+00		
B4H10-H3

PROAIM STELLIX VERSION 0.95

B4H10 OPTIMIZATI -V/T FOR THIS W MOLECULAR SCF E	ON USING VD SET (Renorm AVEFUNCTION =	malized) d=0.75, 2.00132087000 4.47774919276	p=1.0725
H3 of B4H10 9s/5 INTEGRATION IS 120 PHI PLANE 80 PATHS WITH RADIUS OF BETA VOL1 RHO CONTOU VOL2 RHO CONTOU	p + 1d on B, F OVER ATOM H 3 S 96 THETA PLANES 141 POINTS PER PATH SPHERE 1.2750 WITH WR THRESHOLD= 0.0010 WR THRESHOLD= 0.0020	120 POINTS PER	PATH
INSERTION LIMIT INSERTION LIMIT FOR SURFACE # 1 TOTAL NUMBER OF	USED = 6 REACHED 0 TIMES NUMBER OF INSERTED P. INSERTED PATHS= 4	FOR SURFACE 1 ATHS = 48 8	
RESULTS OF THE	INTEGRATION		
N	1.66261263423254E+0	0 NET CHARGE	-6.62612634232541E-01
G	8.52362581907736E-0	1	
K	8.52505134958878E-0	1 E(ATOM)	-8.53631183416491E-01
L T	3 576191509403038-0	4	
R(-1)	1 68629936445736E+0	0	
R(1) R1	2 23910994248174F+0	0	
R1 B2	3 72768554588357E+0	0	
R2 R4	1,71426704695144E+0	1	
GR(-1)	-2.54029862483125E+0	0	
GRO	-3.42835687226674E+0	0	
GR1	-5.86534071274163E+0	0	
GR2	-1.21122416843638E+0	1	
VNEO	-1.68629936445736E+0	0 VNEO (COR)	-1.68741232054297E+00
VNET	-1.34804963282913E+0	1 VNET (COR)	-1.34893934439173E+01
VEET	5.84568594874522E+0	0 VEET (COR)	5.84954409628911E+00
EHF	-6.78230524458722E+0	0	
		VREP (COR)	1.17782181574598E+01
		V (ATOM)	-1.71117528645750E+00
EL DX	-1.34999939778346E-0	1	
EL DY	1.38034939080335E-0	5	
EL DZ	-3.30370972577564E-0	1	
EL DIPOLE MAG	3.56889287388315E-0	1	
QXX	-1.49973315716207E-0	1 QXX (DIAG)	-3.18983953592454E-01
QXY	4.23939662978942E-0	5	
QXZ	3.49213921/81385E-0		2 0711177200000445 01
QYY	-3.18983861765472E-0	L QYY(DIAG)	-3.0/111//3809944E-01
QYZ			
QZZ	4.0090/1//4010/96-0	I QZZ (DIAG)	0.20093/2/40239/8-01

	FAXA 1.4	4595185378	1552E-01				
	FAYA -1.2	25442617278	8376E-06				
	FAZA 3.3	1041139977	5002E-01				
	FBXA -1.	6274441018	3759E+00				
	FBYA -9	97977599020	6031E-06				
	FB7A _2	52093039707	75198+00				
T	$\frac{1}{2} \frac{1}{2} \frac{1}$	120030303070	COUNE-00				
1		4201099210	00945-02				
	VOLI /.8	39652270350	J6/2E+U1				
	VOL2 6.	1858088364	9522E+01				
N (V	VOL1) 1.0	6297502170:	3342E+00				
N (V	VOL2) 1.0	50505976074	4877E+00				
THE ATO	MIC OVERLAN	P MATRIX AG	: MC				
0.00000							
0.00000	0.000000						
0.00000	0.000004	0.000376					
0.00000	0.000004	0.000376	0.000375				
0 000000	0 000012	0 001469	0 001457	0 023524			
0.000000	0.000012	0.001409	0.001437	0.025524	0 004771		
0.000000	0.000000	0.000000	0.000000	0.000000	0.004//1	0 004570	
0.000000	0.000019	0.002336	0.002327	0.03/055	0.000000	0.064572	
0.000000	0.000027	0.003303	0.003277	0.054972	0.000000	0.088166	
0.136116							
0.000001	0.000000	0.000000	0.000000	0.000000	0.006844	0.000000	
0.000000							
0.010306							
0.00000	0.000016	0.002205	0.002188	0.038650	0.000000	0.062721	
0.096841							
0.00000	0.069901						
0.00000	0 000000	0 00000	0 00000	0 00000	-0 004741	0.000000	
0 000000	0.000000	0.000000	0.000000	0.000000	0.001/11	0.000000	
-0 006766	0 000000	0 004904					
-0.000700	0.000000	0.004004	0 002120	0 054010	0 000000	0 002722	
0.000000	0.000026	0.003134	0.003138	0.054219	0.000000	0.093722	
0.13/233							
0.000000	0.098772	0.000000	0.146182				
0.000000	-0.000039	-0.004913	-0.004883	-0.083308	0.000000	-0.140661	-
0.210868							
0.00000	-0.151756	0.000000	-0.220432	0.337483			
-0.000001	0.000000	0.000000	0.000000	0.000000	-0.003814	0.000000	
0.000000							
-0.005694	0.000000	0.003660	0.000000	0.000000	0.003576		
0.00000	0.000000	0.000108	0.000088	0.003187	0.000000	-0.006873	
0 010701							
0 000000	0 006857	0 00000	-0 001654	-0 005670	0 00000	0 029319	
0.000000	0.000007	0.000000	0.001034	0.005070	0.000000	0.029919	
	NTA 0 *	2120621711	COTOR 01				
	NA O.	2120621/11	6270E-01				
	NB 8.	3130631/110	6270E-01				
	N 1.0	626126342	3254E+00				
	FOOA -5.8	35707049108	8468E-01				
	FOOB -5.8	35707049108	8468E-01				
	ALOC 7.0	0456224985	7833E-01				
	BLOC 7.0	0456224985 [.]	7833E-01				

FLA 2.45599268007802E-01 FLB 2.45599268007802E-01 FL 1.07690558512407E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 6.07421207955121E-08

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9957538136E+00

B4H10-B5

PROAIM VERSION 0.90

B4H10 OPTIMIZATION -V/T FOR THIS WAVE MOLECULAR SCF ENER	USING VD SET (Renorm EFUNCTION = 2 RGY (AU) = -104	alized) d=0.75, p .00132087000 .47774919276	p=1.0725
B5 of B4H10 9s/5p - INTEGRATION IS OVE 120 PHI PLANES 80 PATHS WITH 14 RADIUS OF BETA SPE VOL1 RHO CONTOUR 2 VOL2 RHO CONTOUR 2	+ 1d on B, F ER ATOM B 5 96 THETA PLANES 41 POINTS PER PATH HERE 0.9543 WITH THRESHOLD= 0.0010 THRESHOLD= 0.0020	120 POINTS PER	PATH
INSERTION LIMIT US INSERTION LIMIT RE INSERTION LIMIT RE INSERTION LIMIT RE INSERTION LIMIT RE FOR SURFACE # 1 NU FOR SURFACE # 2 NU FOR SURFACE # 3 NU FOR SURFACE # 4 NU TOTAL NUMBER OF IN	SED = 15 EACHED 0 TIMES EACHED 1 TIMES EACHED 0 TIMES EACHED 0 TIMES JMBER OF INSERTED PA JMBER OF INSERTED PA JMBER OF INSERTED PA NSERTED PATHS= 357	FOR SURFACE 1 FOR SURFACE 2 FOR SURFACE 3 FOR SURFACE 4 THS = 130 THS = 105 THS = 66 THS = 56	
RESULTS OF THE INT	FCRATION		
N G Z	3.04264717086716E+00 2.44391710881151E+01	NET CHARGE	1.95735282913284E+00
K L -5 I 3 R(-1) 1 R1 2 R2 3 R4 GR(-1) -1 GR0 -6 GR1 -5 GR2 -1	2.38414171977327E+01 5.97753890382418E-01 3.36050966649339E-01 1.04183722238174E+01 2.13853271241273E+00 3.26433899766700E+00 2.92203891495882E+01 1.91800983878207E+01 6.89049474533851E+00 5.28040879678611E+00 1.10442599463640E+01	E (ATOM)	-2.38729086104666E+01
VNEO -5	5.20918611190872E+01	VNEO (COR)	-5.21262417012457E+01

A19

	VNET VEET	-7.2 1.6	24752 51392	23707 12883	2070E+01 5397E+01	VNET (CO VEET (CO	DR) -7.25 DR) 1.61	2305729060 4986474973	34E+01 52E+01
	EHF	-3.2	24945	93625	9346E+01				
						VREP (CC	DR) 2.47	7154976520	31E+01
						V (ATC	DM) -4.77	5150752540	02E+01
E	EL DX	-1.8	32680	21688	6464E-01				
H	EL DY	2.	71494	01060	5441E-01				
H DIDAL	SL DZ	1.6	52047	91282	1003E-01				
EL DIPOLE	S MAG	3.6	5158	30195	4038E-01	0101 (5 7)		0007401015	267100
	QXX	1.3	0/663	42849	9803E-01	QXX (DIA	AG) 1.33	886/461815	265+00
	QXY	1.3	5654	58045	8670E+00				
	QXZ	8.6	3905	4/000	1508E-01		1 00	10177000077	120.00
	QYY	-/.8	36623	53344	5223E-01	QYY (DIA	AG) 1.28	494//9086/	13E+00
	QYZ	-1.2	21459	93632	3703E+00	000 (57)		2015252602	202100
	QZZ	6.4	28960	10494	5419E-01	QZZ (DIA	AG) = 2.62	3815252682	38E+00
	FAXA	-1		74435	8280E-02				
	FAIA	-1.8	32541	51025	20488-01				
	FAZA	-1.0)2/48	41235	2619E-01				
	FBXA	1.5	9//40	20402	06255+00				
	FBIA	2.0	36048 1260	12000	0490E+00				
T	E D 4A	2	1762	32840	385/E+UU				
t	NOT 1	3.3	91/62 04240	40052	0453E+02				
	VOL 2	1.2	94340	37005	52/8E+UI				
NT / T		1.0	34460	37995	41536+01				
		3.0	2000	12257	2375E+00				
14 ()	/062)	5.0	13909	43337	TIOZETOO				
THE ATOM	AIC OV	VERLA	P MAT	RIX A	OM :				
0 498431									
0 498408	0 4	98386							
-0.004842	-0 00	14685	0 0	16353					
0.00000	-0.00	0157	-0.0	16313	0 016320				
-0.006567	-0.00	06570	-0.0	00705	0 000860	0.054885			
-0.009267	-0.00	9263	0.0	00343	-0.000161	0.064051	0.085925		
0.000000	-0.00	00004	-0.0	00351	0.000378	-0.001574	-0.000048	0.020726	
0.006233	0.00	06224	-0.0	01343	0.001269	-0.027717	-0.046965	-0.001011	
0.046477									
-0.000001	-0.00	00003	-0.0	00199	0.000239	-0.000278	-0.000858	0.027540	
0.000415			•••						
0.043498									
-0.003492	-0.00	03502	-0.0	00342	0.000366	0.004293	0.023589	-0.000088	-
0.017086									
0.000615	0.0	55030							
-0.002397	-0.00	02402	-0.0	00123	0.000108	-0.000020	0.006469	-0.000055	-
0.034856									
0.000623	-0.0	14836	0.0	64179					
-0.000034	-0.00	00032	0.0	00490	-0.000539	-0.012052	-0.011916	-0.001037	-
0.017125									
0.000830	-0.0	16663	0.0	48580	0.041489				
-0.000001	-0.00	00010	-0.0	01022	0.001040	0.000326	-0.000658	0.012164	
0.000710									

0.020650 0.000532 0.000513 0.000939 0.010730 -0.002483 -0.002493 -0.000174 0.000163 -0.008517 0.008541 0.000018 -0.016700 0.000851 0.051825 -0.004777 -0.006594 0.000663 0.055282 -0.001660 -0.001688 -0.003056 0.003103 0.015640 0.017292 0.002010 -0.011109 -0.000325 -0.009512 0.011491 0.004181 -0.000681 -0.011516 0.013613 1.52132358543358E+00 NA 1.52132358543358E+00 NB Ν 3.04264717086716E+00 FOOA -1.05914065570694E+00 FOOB -1.05914065570694E+00 6.96196828766765E-01 ALOC 6.96196828766765E-01 BLOC FLA 4.62182929726637E-01 FLB 4.62182929726637E-01 FL 1.98350651516022E+00 ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 1.12059638462374E-03

 FOR SURFACE # 1
 EPSD
 1.12059638462374E-03

 FOR SURFACE # 2
 EPSD
 1.12059638462374E-03

 FOR SURFACE # 3
 EPSD
 1.12059638462374E-03

 FOR SURFACE # 4
 EPSD
 1.12059638462374E-03

B4H10-H7

PROAIM STELLIX VERSION 0.95

B4H10 OPTIMIZATION USING VD SET(Renormalized) d=0.75, p=1.0725 -V/T FOR THIS WAVEFUNCTION = -104.47774919276 MOLECULAR SCF ENERGY (AU) = H7 of B4H10 9s/5p + 1d on B, F INTEGRATION IS OVER ATOM H 7 120 PHI PLANES 96 THETA PLANES 80 PATHS WITH 141 POINTS PER PATH RADIUS OF BETA SPHERE 1.4122 WITH 120 POINTS PER PATH VOL1 RHO CONTOUR THRESHOLD= 0.0010 VOL2 RHO CONTOUR THRESHOLD= 0.0020

INSERTION LIMIT USED = 6 INSERTION LIMIT REACHED 1 TIMES FOR SURFACE 1 INSERTION LIMIT REACHED 0 TIMES FOR SURFACE 2 FOR SURFACE # 1 NUMBER OF INSERTED PATHS = 70 FOR SURFACE # 2 NUMBER OF INSERTED PATHS = 130 TOTAL NUMBER OF INSERTED PATHS= 200

RESULTS OF THE INTEGRATION

	N 1.7	169344642	2685E+00	NET CHARGE	-7.169	34464226847E-0
	G 9.1	962589629	6864E-01		0 210	007522202645 .01
	л 9.2 т. 11	386467615	03/35-UI 11195-03	E (ATOM)	-9.219	80/55520564E-0.
	I 3.5	570737004	3976E-01			
R (-	1) 1.7	220823217	3277E+00			
	R1 2.2	914778415	9376E+00			
I	R2 3.7	542494311	6469E+00			
1	R4 2.0	170729424	6790E+01			
GR (-	1) -2.1	429463903	5737E+00			
G	R0 -2.6	589863816	5277E+00			
G	R1 - 4.2	384529209	9911E+00			
G. VNI	KZ -8.6	648643004 220922217	4561E+00 3277E+00	WIED (COP)	_1 723	219994539465+00
VN	EU -1./ FT -1.6	220823217	52776+00 5884F+01	VNEU (COR)	-1 607	21009400400+00
VE	EI -1.0 ET 70	0502202700	1239E+00	VEET (COR)	7 009	64534494650E+0
Ē	HF -8.1	363161269	1766E+00		7.005	013311310302.0
				VREP (COR)	1,422	39807185438E+0
				V (ATOM)	-1.848	72296159169E+00
EL 1	DX -5.0	540612181	8854E-01			
EL 1	DY -1.8	958507842	4802E-01			
EL I	DZ 2.3	615085047	0211E-01		,	
EL DIPOLE M	AG 5.8	919018500	9150E-01			
Q	xx - 1.2	336671972	0470E+00	QXX (DIAG)	1.138	08791204040E+00
Q	XI -3.2	033000510	122/E-UI 9912E-01			
Q.	NU 9.9	103608308	2032E-01	OVV (DIAG)	2 611	168564439518-0
Q.	Y732	253742702	9238E-01	QII (DING)	2.011	100504455516 0.
Õ	ZZ 3.7	173021412	2668E-01	OZZ (DIAG)	-1.399	20476848435E+0
FA	XA 2.7	439981210	3809E-01	2 (,		
FA	YA 1.4	689626118	0138E-01			
FA	ZA -1.3	858459535	9301E-01			
FB	XA -2.3	530932514	5992E+00			
FB	YA -1.3	372731396	2191E+00			
FB	ZA 7.7	253939389	5004E-01			
RHO	*L 8.2	110598300	5335E-02			
VO.		962460697	6272E+01			
	LZ 4./ 1) 17	000020244	00//E+U1 2373E+00			
N (VOL	2) 1.7	911038907	22135+00			
N (VOL	2) 1.0	911030907	22131100			
THE ATOMIC	OVERLAP	MATRIX A	ом :			
0 000146						
-0.000146 0	000146					
-0.000008 0	.000011	0.000322				
-0.000008 0	.000011	0.000311	0.000321			
-0.001616 0	.001637	0.002637	0.002518	0.116381		
0.001651 -0	.001664	-0.001898	-0.001804	-0.101774 0	.098280	
-0.001278 0	.001300	0.002983	0.003110	0.129979 -0	.115377	0.166624
0.000293 -0	.000289	0.000483	0.000448	-0.005134 0	.006777	-0.005826
0.011772						

0.001707 -0.001723 -0.002594 -0.002715 -0.135973 0.132111 -0.169524 0.009114 0.190473 0.000373 - 0.000383 - 0.000994 - 0.000955 - 0.037125 0.024152 - 0.0391610.005192 0.032679 0.026898 -0.000482 0.000490 0.001199 0.001130 0.041284 -0.0390580.047017 0.007703 -0.052764 -0.003978 0.028026 0.001593 0.004535 0.002291 - 0.008826 0.015770-0.000774 0.000782 0.000930 0.000959 0.058002 - 0.050720 0.068624 -0.012323 -0.071680 -0.0250140.012903 - 0.0039290.041852 -0.000925 0.000938 0.001798 0.001707 0.076202 -0.067787 0.088098 -0.001436 -0.094244 -0.027176 0.027554 -0.003754 0.037751 0.056774 0.000037 -0.000048 -0.001711 -0.001669 -0.072521 0.064207 -0.112124 0.001938 0.106778 0.020701 - 0.027980 - 0.015227 - 0.042123 - 0.052890 0.104682

NA 8.58467232113424E-01 NB 8.58467232113424E-01 Ν 1.71693446422685E+00 FOOA -5.14732898951439E-01 FOOB -5.14732898951439E-01 ALOC 5,99595278301118E-01 5.99595278301118E-01 BLOC FLA 3.43734333161985E-01 3.43734333161985E-01 FLB FL 1.20220156527541E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 6.77871966340550E-04 FOR SURFACE # 2 EPSD 6.77871966340550E-04

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9978159098E+00

B4H10-H11

PROAIM STELLIX VERSION 0.95

B4H10 OPTIMIZATION USING VD SET(Renormalized) d=0.75, p=1.0725-V/T FOR THIS WAVEFUNCTION = 2.00132087000 MOLECULAR SCF ENERGY (AU) = -104.47774919276

H11 of B4H10 9s/5p + 1d on B, F INTEGRATION IS OVER ATOM H 11 120 PHI PLANES 96 THETA PLANES 80 PATHS WITH 141 POINTS PER PATH

A23

VOL1 RHO CONTOU	R THRESHOLD= 0.0010		
VOL2 RHO CONTOU	R THRESHOLD= 0.0020		
INSERTION LIMIT			
INSERTION LIMIT	BEACHED 0 TIMES FOR	SURFACE 1	
FOR SUBFACE # 1	NUMBER OF INSERTED PATHS	= 66	
TOTAL NUMBER OF	INSERTED PATHS= 66	00	
RESULTS OF THE	INTEGRATION		
N	1.69359303999623E+00	NET CHARGE	-6.93593039996230E-01
G	8.76413391374559E-01		
K	8.76526757386021E-01	E (ATOM)	-8.77684535284049E-01
L	1.13366011460783E-04		
I	3.63070277472310E-01		
R(-1)	1.71374565257926E+00		
R1	2.27999870751202E+00		
R2	3.77377190044459E+00		
R4	1.67668250187917E+01		
GR(-1)	-2.58114311636235E+00		
GR0	-3.45918917854526E+00		
GR1	-5.84107939574608E+00		
GR2	-1.18420246864733E+01		
VNEO	-1.71374565257926E+00	VNEO (COR)	-1.71487672319070E+00
VNET	-1.36201400681936E+01	VNET (COR)	-1.36291293485642E+01
VEET	5.88206025819449E+00	VEET (COR)	5.88594241275037E+00
EHF	-6.86155305261309E+00		
		VREP (COR)	1.18698109300794E+01
		V (ATOM)	-1.75931841848474E+00
EL DX	8.46764009886081E-06		
EL DY	-8.12471355645476E-03		
EL DZ	3.85566775684772E-01		
EL DIPOLE MAG	3.85652368790893E-01		
QXX	-2.57764787929855E-01	QXX (DIAG)	-2.57765233004933E-01
QXY	-8.23418955451435E-05		
QXZ	1.70382135620637E-05		
QYY	-2.39413258816131E-01	QYY (DIAG)	-2.42193815976970E-01
QYZ	4.53452963484025E-02		
QZZ	4.97178046745986E-01	QZZ (DIAG)	4.99959048981903E-01
FAXA	3.57221228874287E-07		
FAYA	-1.09969074370279E-02		
FAZA	-3.48396818174736E-01		
FBXA	3.13303280362559E-06		
FBYA	8.39281690751551E-01		
FBZA	2.78008719468831E+00		
RHO*L	9.73565487219362E-02		
VOL1	7.86239453886096E+01		
VOL2	6.23897016284862E+01		
N(VOL1)	1.66357367102601E+00		
N(VOL2)	1.64004954461410E+00		

0.000394 0.000394 0.000394 -0.000004 - 0.0000040.000000 0.000000 0.000000 0.000000 0.000000 0.001610 0.001608 -0.000017 0.000000 0.028983 0.002783 0.002785 - 0.0000270.000000 0.046095 0.080353 0.000000 0.000000 0.000000 0.00003 0.000000 0.000000 0.006955 -0.003627 - 0.0036270.000039 0.000000 - 0.063812 - 0.1121610.000000 0.161005 0.000000 0.000000 0.000000 0.000005 0.000000 0.000000 0.009741 0.000000 0.014233 -0.000163 -0.000158 0.000002 0.000000 - 0.008025 - 0.0052550.000000 0.007088 0.000000 0.014291 0.004826 0.004830 -0.000049 0.000000 0.086066 0.153509 0.000000 -0.221151 0.000000 -0.011638 0.310176 0.003272 0.003273 -0.000036 0.000000 0.061787 0.107928 0.000000 -0.157453 0.000000 - 0.0113120.219921 0.158469 0.000000 0.000000 0.000000 0.000003 0.000000 0.000000 0.005988 0.00000 0.008344 0.000000 0.000000 0.000000 0.005199 -0.000083 - 0.0000800.000000 0.000000 - 0.004599 - 0.0002820.000000 -0.001489 0.000000 0.013450 -0.000765 -0.002781 0.000000 0.014107 0.001845 0.001844 - 0.0000200.000000 0.034671 0.060179 0.000000 -0.088552 0.000000 - 0.007222 0.1246250.000000 - 0.0019010.089560 0.052237 8.46796519998115E-01 NA NB 8.46796519998115E-01

Ν 1.69359303999623E+00 -6.06937409357890E-01 FOOA FOOB -6.06937409357890E-01 7.16745280624489E-01 ALOC BLOC 7.16745280624489E-01 FLA 2.39859110640225E-01 FLB 2.39859110640225E-01 1.08665563063834E+00 FL

THE ATOMIC OVERLAP MATRIX AOM :

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 1.41906479808386E-07

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9957610057E+00

PROAIM STELLIX VERSION 0.95

B4H10 OPTIMIZATI -V/T FOR THIS W MOLECULAR SCF E	ON USING VD SET(Renorma AVEFUNCTION = 2. NERGY (AU) = -104.	lized) d=0.75, p 00132087000 47774919276	p=1.0725
H13 of B4H10 9s/ INTEGRATION IS 120 PHI PLANE 80 PATHS WITH RADIUS OF BETA VOL1 RHO CONTOU VOL2 RHO CONTOU	5p + 1d on B, F OVER ATOM H 13 S 96 THETA PLANES 141 POINTS PER PATH SPHERE 1.2838 WITH R THRESHOLD= 0.0010 R THRESHOLD= 0.0020	120 POINTS PER	РАТН
INSERTION LIMIT INSERTION LIMIT FOR SURFACE # 1 TOTAL NUMBER OF	USED = 6 REACHED 0 TIMES F NUMBER OF INSERTED PAT INSERTED PATHS= 56	OR SURFACE 1 HS = 56	
RESULTS OF THE	INTEGRATION		
N	1.70028248487267E+00	NET CHARGE	-7.00282484872674E-01
G	8.79093365692239E-01		
K	8.79194944377953E-01	E (ATOM)	-8.80356246604133E-01
L	1.01578685713290E-04		
I	3.65110354360603E-01		
R(-1)	1.71848533904382E+00		
R1	2.29757323368980E+00		
R2	3.82978386646082E+00		
R4	1.74594447946970E+01		
GR(-1)	-2.62097817451986E+00		
GR0	-3.54661657980782E+00		
GR1	-6.06385787778445E+00		
GR2	-1.24783220177573E+01		
VNEO	-1.71848533904382E+00	VNEO (COR)	-1.71961953784413E+00
VNET	-1.32960338277834E+01	VNET (COR)	-1.33048091983226E+01
VEET	5.71910238183454E+00	VEET (COR)	5.72287698433648E+00
EHF	-6.69773650157087E+00		
		VREP (COR)	1.15402572393032E+01
		V (ATOM)	-1.76455195901936E+00
EL DX	1.03791868339624E-06		
EL DY	3.35816155775271E-01		
EL DZ	-2.11126377442170E-01		
EL DIPOLE MAG	3.96669683404986E-01		
QXX	-2.99629674565116E-01	QXX (DIAG)	-2.99629676456025E-01
ŌXY	-1.53849943507491E-06	,	
QXZ	-1.00236383318665E-05		
QYY	3.76633413129353E-01	QYY (DIAG)	-2.50690361345938E-01
QYZ	-3.30087487317559E-01		
QZZ	-7.70037385642364E-02	QZZ (DIAG)	5.50320037801962E-01

Ε	FAXA 5 FAYA -3 FAZA 1 FBXA 7 FBYA 2 FBYA 2 FBZA -9 RHO*L 9 VOL1 7	6.4010553479 0.0598882487 0.7599535692 0.0975625672 0.7951092998 0.6675658514 0.8733347794 0.887385443	5250E-07 9958E-01 8586E-01 0090E-06 0510E+00 2204E-01 1389E-02			
	VOL2 6	2734320394	7054E+01			
N ()	VOL1) 1	.6674133787	9011E+00			
N (V	VOL2) 1	.6426211386	3834E+00			
	-					
THE ATOM	MIC OVERL	AP MATRIX A	ом :			
0 000403						
0.000403	0 00040	13				
-0 000003	-0 000040					
0 000000	0.00000		0 00000			
0 001432	0 00143	1 = 0 0000000	0.000000	0 021457		
0 003054	0.00143	3 = 0.000010	0.000000	0.021437	0 098176	
0 000000	0.00000		0 000000	0 000000	0 000000	0 005851
-0 002143	-0 00214		0.000004	-0 029316	-0 069101	0.000000
0 056180	0.00211	0.000020	0.000000	0.029910	0.009101	0.000000
0.00000	0.00000	0 0.00000	0.000007	0 000000	0.00000	0.009607
0.000000						
0.015824						
0 004540	0 00454	u -0 000038	0 00000	0 069911	0 157304	0 000000 -
0.114581	0.00131	1 0.000000	0.000000	0.0000011	0.10/001	0.000000
0.000000	0.26291	0				
-0.001344	-0.00134	3 0.000006	0.00000	-0.024186	-0.048401	0.00000
0.025287						•••••
0.000000	-0.07927	1 0.039610				
-0.002001	-0.00200	0.000013	0.00000	-0.032130	-0.068879	0.000000
0.044250						•••••
0.000000	-0.11453	31 0.044697	0.057078			
0.000000	0.00000	0 0.000000	0.000003	0.000000	0.000000	0.003154
0.000000						
0.005274	0.00000	0.000000	0.000000	0.002379		
0.004553	0.00455	5 -0.000041	0.000000	0.069635	0.160507	0.000000 -
0.121651						
0.000000	0.27272	4 -0.077080	-0.116129	0.000000	0.286469	
-0.000351	-0.00035	0.000002	0.000000	-0.005971	-0.013204	0.000000
0.009092						
0.00000	-0.02203	3 0.008301	0.010672	0.000000	-0.022583	0.003402
	NA 8	5014124243	6337E-01			
	NB 8	3.5014124243	6337E-01			
	N 1	.7002824848	7267E+00			
	FOOA -6	.1769698853	7365E-01			
	FOOB -6	.1769698853	7365E-01			

ALOC

7.26581605154418E-01

BLOC 7.26581605154418E-01

A26

FLA 2.32444253898972E-01 FLB 2.32444253898972E-01 FL 1.08258549633531E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 1.17753203968139E-07

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9957581231E+00

B5H9-H6 (B1 & B5 n/a)

PROAIM STELLIX VERSION 0.95

B5H9 SINGLE POIN -V/T FOR THIS W	NT USING VD SET(Renormal. NAVEFUNCTION = 2.0	ized) d=0.75, p= 00144494000	=1.0725
MOLECULAR SCF E	(AU) = -128.2	59/8625/58/	
B5H9 Integration INTEGRATION IS 120 PHI PLANE 80 PATHS WITH RADIUS OF BETA VOL1 RHO CONTOU VOL2 RHO CONTOU	of H6 (Terminal at play OVER ATOM H 6 CS 96 THETA PLANES 141 POINTS PER PATH SPHERE 1.2724 WITH JR THRESHOLD= 0.0010 JR THRESHOLD= 0.0020	ne) 120 points per	РАТН
INSERTION LIMIT	= 6		
INSERTION LIMIT	REACHED 0 TIMES FO	OR SURFACE 1	
FOR SURFACE # 1	NUMBER OF INSERTED PATH	HS = 46	
TOTAL NUMBER OF	' INSERTED PATHS= 46		
DESILTS OF THE	INTEGRATION		
NESOLIS OF THE	1 68278486606256F+00	NET CHARGE	-6 827848660625598-01
C .	9 596069865651432-01	NEI CHARGE	-0.02/04000002559E 01
R. G.	8 50600527800584E-01	ድ (አጥ ር M)	-9 609417421264145-01
I.	9 25413254402518E-05	E(RIOH)	-0.00341/42120414E-01
T.	3 26401255933370E-01		
R(-1)	1.69591584011694E+00		
R1	2.28846337893534E+00		
R2	3.85700247042721E+00		
R4	1.82321311091933E+01		
GR(-1)	-2.60273862370003E+00		
GR0	-3.56036289137520E+00		
GR1	-6.17900917062421E+00		
GR2	-1.29420501621178E+01		
VNEO	-1.69591584011694E+00	VNEO (COR)	-1.69714020386787E+00
VNET	-1.43372554497144E+01	VNET (COR)	-1.43476062085464E+01
VEET	6.25074233636126E+00	VEET (COR)	6.25525504987687E+00
EHF	-7.22681358546253E+00		
		VREP (COR)	1.26211268932130E+01

				V (ATO	M) -1.72	64793153334	0E+00
F	EL DX 4.	3433137998	4838E-06	•	•		
F	EL DY 3.	9737562446	9444E-01				
F	ELDZ 5.3	2984221845	0188E-02				
EL DIPOLE	E MAG 4.	0089239791	4786E-01				
	oxx -2.	8458188399 [.]	7205E-01	OXX (DIA	G) -2.84	58188452234	9E-01
	OXY -2.2	2042841267	3105E-05				
	OXZ -4.	1782942052	7383E-06				
	OYY 6.	3986065438	4235E-01	OYY (DIA	G) -3.88	38896673641	8E-01
	OYZ 1.	8451435405	1375E-01		-,		
	0zz -3.	5527877038	7031E-01	OZZ (DIA	G) 6.72	97085125876	57E-01
	FAXA -6.	9388180945	9939E-07		-,		
	FAYA -3.	5090024000	8978E-01				
	FAZA -4.	72306892112	2481E-02				
	FBXA -7	1063746923	3854E-06				
	FRYA 3	1759923213	12895+00				
	FBZA 2	223366664471	17825-01				
Ŧ	2 D 2 1 2 1	6383133747	13195-02				
•		15278131400	0665E+01				
	VOL2 6	3265591106	6545E+01				
N (3	701.1 1	6476556481	4653E+00				
N (N	(01.2) 1.	6212516452	B025E+00				
		0212010102					
THE ATON	IC OVERLA	P MATRIX A	: мо				
0 000200							
0.000200	0 000000						
0.000000	0.000000	0 000300					
0.000282	0.000000	0.000399	0 000000				
0.000200	0.000000	0.000282	0.000200				
-0.000002	0.000000	-0.000002	-0.000002	0.000000	0 000011		
0.000687	0.000000	0.000972	0.000688	-0.000005	0.009911	0 004650	
0.000000	0.000003	0.000000	0.000000	0.000000	0.000000	0.004652	
0.002054	0.000000	0.002906	0.002058	-0.000015	0.029414	0.000000	
0.090333							
-0.000689	0.000000	-0.000976	-0.000692	0.000009	-0.010000	0.000000	-
0.032302							
0.016685							
0.002812	0.000000	0.003981	0.002821	-0.000020	0.041125	0.000000	
0.129678							
-0.045483	0.191679						
0.002384	0.000000	0.003375	0.002392	-0.000016	0.035250	0.000000	
0.110838							
-0.037417	0.164240	0.141413					
0.000000	0.000006	0.000000	0.000000	0.000000	0.000000	0.007948	
0.00000							
0.000000	0.000000	0.000000	0.013682				
0.00000	-0.000002	0.000000	0.000000	0.000000	0.000000	-0.003426	
0.00000							
0.000000	0.00000	0.000000	-0.005921	0.002709			
0.003368	0.000000	0.004767	0.003380	-0.000022	0.050334	0.000000	
0.160213							
-0.053485	0.240651	0.207303	0.00000	0.000000	0.305892		

-0.000967 0.000000 -0.001368 -0.000970 0.000004 -0.014388 0.000000 -0.045421 0.012927 -0.069119 -0.060228 0.000000 0.000000 -0.089461 0.027458 0.000000 0.000001 0.000000 0.000000 0.000000 0.000000 0.001298 0.000000 0.000000 0.000000 0.002129 -0.000731 0.000000 0.000000 0.001219 -0.000537 0.000000 -0.000761 -0.000541 0.000013 -0.008626 0.000000 -0.030823 0.022025 -0.043750 -0.034202 0.000000 0.000000 -0.049024 0.009149 0.000000 0.034961

NA	8.41392433031279E-01
NB	8.41392433031279E-01
N	1.68278486606256E+00
FOOA	-6.06250235064147E-01
FOOB	-6.06250235064147E-01
ALOC	7.20532074290249E-01
BLOC	7.20532074290249E-01
FLA	2.35142197967132E-01
FLB	2.35142197967132E-01
FL	1.07653463099841E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 3.81707798297546E-08

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9957525913E+00

B5H9-H10

OMEGA DEVELOPMENT VERSION

B5H9 SINGLE POIN	NT USING VD SE	T(Renormali	lzed) d=0.75, p	=1.0725
-V/T FOR THIS W	WAVEFUNCTION =	2.0	0144494000	
MOLECULAR SCF H	ENERGY (AU) =	-128.9	59786257587	
в5н9_н10				
INTEGRATION IS	OVER ATOM H	10		
QUADRATURE ORDE	ER OVER THETA	64 PHI 64	AND S 64 WIT	H 200 POINTS/PATH
RADIUS OF BETA	SPHERE 1.64	46		
VOL1 RHO CONTOU	JR THRESHOLD=	0.0020		
VOL2 RHO CONTOU	JR THRESHOLD=	0.0010		
RESULTS OF THE	INTEGRATION			
N	1.673633760	47203E+00	NET CHARGE	-6.73633760472032E-01
G	8.921059436	72869E-01		
K	8.921221273	38700E-01	E (ATOM)	-8.93411190285377E-01
L	1.618366583	10642E-05		
VNEO	-1.700272519	18397E+00	VNEO (COR)	-1.70150002823244E+00
VNET	-1.696570189	52196E+01	VNET (COR)	-1.69779502567940E+01

VEET	7.48355926908721E+00	VEET (COR)	7.48896201283207E+00
		VREP (COR)	1.51855713213403E+01
		V (ATOM)	-1.79237893545366E+00
EL DX	1.22779940828305E-01		
EL DY	1.22779940828320E-01		
EL DZ	-3.66623648147176E-01		
EL DIPOLE MAG	4.05663317444839E-01		
QXX	1.98416908565869E-01		
QXY	-2.41312830355038E-01		
QXZ	3.18747111346181E-02		
QYY	1.98416908565869E-01		
QYZ	3.18747111345817E-02		
QZZ	-3.96833817131739E-01		
FAXA	-1.09342083836614E-01		
FAYA	-1.09342083836624E-01		
FAZA	2.78564387655329E-01		
FBXA	1.43463214618769E+00		
FBYA	1.43463214618769E+00		
FBZA	-2.42293358214650E+00		
VOL1	4.82615272401620E+01		
VOL2	5.74118045553173E+01		
N(VOL1)	1.64523025574756E+00		
N(VOL2)	1.65839938152720E+00		

B5H9-H14

PROAIM STELLIX VERSION 0.95

B5H9 SINGLE POINT USING VD SET(Renormalized) d=0.75, p=1.0725 -V/T FOR THIS WAVEFUNCTION = 2.00144494000 MOLECULAR SCF ENERGY (AU) = -128.59786257587 B5H9 Integration of H14(Apex) INTEGRATION IS OVER ATOM H 14 96 THETA PLANES 120 PHI PLANES 80 PATHS WITH 141 POINTS PER PATH RADIUS OF BETA SPHERE 1.2727 WITH 120 POINTS PER PATH VOL1 RHO CONTOUR THRESHOLD= 0.0010 VOL2 RHO CONTOUR THRESHOLD= 0.0020 INSERTION LIMIT USED 6 0 TIMES FOR SURFACE 1 INSERTION LIMIT REACHED FOR SURFACE # 1 NUMBER OF INSERTED PATHS = 36 TOTAL NUMBER OF INSERTED PATHS= 36 RESULTS OF THE INTEGRATION Ν 1.67919810622205E+00 NET CHARGE -6.79198106222046E-01 G 8.38914385132822E-01 8.38998018456750E-01 E(ATOM) -8.40210320253539E-01 к L 8.36333239280315E-05 I 3.27487261887332E-01

R	(-1)	1.6	8356013614	969E+00			
	RI DO	2.3	0413490942	622E+00			
	RZ D/	1 0	3594403/12	0395700			
CP	(_1)	-2 5	JJ84208340 71828200 <i>11</i>	020E+01			
Gr		-2.5	7102920044	222E+00 047E+00			
	CP1	-5.5	1092011021	170E+00			
	GRI GR2	-0.2	2615563800	5602+00			
	NFO	-1 6	8356013614	060E+01	MILEO (CO	D) _1 694	775570710748+00
	INFT	-1 4	6978273731	969E+00	VNEO (CO	R = 1.004	84384463560E+01
	7887	6 4	8539863157	493E+00	VNEI (CO	R) -1.470 P) 6.490	0900940000000000
	EHE	-7 3	7343072316	4888+00	VEET (CO	K) 0.490	000/04000/06/00
			/0100/2010	1000100	VREP (CO	R) 1 302	33011577420E+01
					VILL (CO	M) = 1.685	13728861481E+00
E		-1.3	5978197597	441E-06	• (, 1.000	10/200011010.00
E	LDY	-1.2	2407099423	630E-05			
E		3.5	5311741666	443E-01			
EL DIPOLE	MAG	3.5	5311741879	895E-01			
	oxx	-3.8	8453494114	149E-01	OXX (DIA	G) -3.884	34526044639E-01
	OXY	4.2	2610583005	137E-05	1 (-,	
	ōxz	1.4	3662032310	680E-06			
	ŌYY	-3.8	8528681307	952E-01	QYY (DIA	G) -3.885	47651891906E-01
	QYZ	5.4	1160072060	502E-05	x v	-,	
	QZZ	7.7	6982175422	101E-01	QZZ (DIA	G) 7.769	82177936545E-01
I	FAXA	3.9	4498486094	982E-08			
I	FAYA	1.3	6838763849	384E-06			
I	FAZA	-3.3	5741549129	296E-01			
I	FBXA	1.2	2559454369	627E-07			
I	FBYA	1.0	0956840536	270E-05			
I	FBZA	3.2	2602946941	167E+00			
RI	HO*L	9.2	3189979757	792E-02			
7	VOL1	8.3	6591205940	314E+01			
7	VOL2	6.5	0696081010	147E+01			
N (V(CL1)	1.6	4233229303	064E+00			
N (V(DL2)	1.6	1557468804	323E+00			
THE ATOM	C OVE	TRLAP	MATRIX AO	м.			
0.00000							
0.000000	0.000	0000					
0.000000	0.000	0000	0.000000				
0.000000	0.000	0000	0.000000	0.000000			
0.000006	0.000	0000	0.000000	0.000000	0.000768		
0.000013	0.000	0000	0.000000	0.000000	0.001007	0.005930	
0.000000	0.000	0004	0.000000	0.000000	0.00000	0.000000	0.001931
0.000000	0.000	0000	0.000004	0.000000	0.000000	0.000000	0.000000
.001931							
0.000049	0.000	1000	0.000000	0.000000	0.004657	0.026706	0.00000
0.12/6/4	0 00/		0 000000	0 000001	0 000000	0 00000	0 00000
.000000	0.000	1000	0.000000	0.000001	0.000000	0.000000	0.00000

0.000000 0.000240 0.000041 0.000000 0.000000 0.000000 0.004062 0.023898 0.000000 0.000000 0.000000 0.116383 0.106970 0.00000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000098 0.000000 0.000001 0.000000 0.000000 0.000000 0.000000 0.000539 0.000000 0.000000 0.000000 0.00000 0.000000 0.000332 0.000000 0.00000 0.00000 0.000001 0.000000 0.000000 0.000000 0.000539 0.00000 0.000000 0.000000 0.000000 0.000000 0.000332 0.000080 0.000000 0.000000 0.000000 0.008700 0.051581 0.000000 0.000000 0.257240 0.000000 0.237736 0.00000 0.000000 0.000000 0.533624 0.000000 0.000016 0.000000 0.000000 0.000000 0.000000 0.007534 0.000000 0.000000 0.000000 0.000000 0.000000 0.002191 0.000000 0.000000 0.029884 0.000000 0.000000 0.000016 0.000000 0.000000 0.000000 0.000000 0.007534 0.000001 0.000000 0.000001 0.000000 0.000000 0.002191 0.00001 -0.000001 0.029885 9 39599053111022E-01 313

INT	0.333330331110226-01
NB	8.39599053111022E-01
N	1.67919810622204E+00
FOOA	-5.95166557128449E-01
FOOB	-5.95166557128449E-01
ALOC	7.08869971831362E-01
BLOC	7.08869971831362E-01
FLA	2.44432495982573E-01
FLB	2.44432495982573E-01
FL	1.08403154909360E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 1.81362428494212E-08

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9957527366E+00

B6H10-B1

OMEGA DEVELOPMENT VERSION

B6H10	OPTI	MIZA?	TION	USI	NG	VD	SE	T(Renormalized)	d=0.75,	p=1.0725
-V/T	FOR	THIS	WAVE	EFUN(CTI	ON	=	2.001281	56000	
MOLEC	CULAR	R SCF	ENE	RGY	(AU	J)	=	-153.860373	91838	

B6H10 B1			
INTEGRATION IS	OVER ATOM B 1		
QUADRATURE ORDE	ER OVER THETA 64 PHI 64	AND S 64 WITH	H 200 POINTS/PATH
RADIUS OF BETA	SPHERE 0.9870		
VOL1 RHO CONTOU	JR THRESHOLD= 0.0020		
VOL2 RHO CONTOU	JR THRESHOLD= 0.0010		
RESULTS OF THE	INTEGRATION		
N	3.50797611235428E+00	NET CHARGE	1.49202388764572E+00
G	2.40006412878527E+01		
K	2.40008582133470E+01	E (ATOM)	-2.40316167531989E+01
L	2.16925494310568E-04		
VNEO	-5.37899015794385E+01	VNEO (COR)	-5.38243470006355E+01
VNET	-8.49482581260142E+01	VNET (COR)	-8.50026564135215E+01
VEET	2.23554890638078E+01	VEET (COR)	2.23698048408265E+01
		VREP (COR)	3.69300989364870E+01
		V (ATOM)	-4.80725574770344E+01
EL DX	4.58703443101503E-01		
EL DY	-3.79222060077531E-01		
EL DZ	6.50608981966894E-07		
EL DIPOLE MAG	5.95162347232286E-01		
QXX	-2.07261483239994E-01		
QXY	6.14110573651539E-01		
QXZ	-1.68788197969783E-06		
QYY	-2.16951000921685E-01		
QYZ	1.09799681800860E-06		
QZZ	4.24212484161678E-01		
FAXA	-7.84459949543004E-01		
FAYA	5.05923552381802E-01		
FAZA	-4.64525982124542E-07		
FBXA	4.38230954404520E+00		
FBYA	-1.47023848469395E-01		
FBZA	1.37726539832517E-07		
VOL1	2.80903824183712E+01		
VOL2	2.97243726849131E+01		
N(VOL1)	3.50367150053717E+00		
N(VOL2)	3.50603797565461E+00		

B6H10-B2 (not available)

B6H10-H3

PROAIM STELLIX VERSION 0.95

B6H10	OPT	IMIZA	FION 1	USING	VD	SE	ET (Renormalized)	d=0.75,	p=1.0725
-V/T	FOR	THIS	WAVE	FUNCT	ION	=	2.001281	56000	
MOLEC	CULAR	R SCF	ENER	GY (A	J)	=	-153.860373	91838	

B6H10_H3

INTEGRATION IS 120 PHI PLANE	OVER ATOM H 3 S 96 THETA PLANES		
80 PATHS WITH	141 POINTS PER PATH		
RADIUS OF BETA	SPHERE 1.2714 WITH	120 POINTS PER	PATH
VOLI RHO CONTOU	IR THRESHOLD= 0.0010		
VOLZ RHO CONTOU	DR THRESHOLD= 0.0020		
INSERTION LINT			
INSERTION LIMIT		DE SUDEACE 1	
FOR SURFACE # 1	NUMBER OF INSERTED PATH	HS = 30	
TOTAL NUMBER OF	INSERTED PATHS= 30	10 - 50	
RESULTS OF THE	INTEGRATION		
N	1.67270485891950E+00	NET CHARGE	-6.72704858919497E-01
G	8.58485353420571E-01		
K	8.58604724340066E-01	E (ATOM)	-8.59705077810591E-01
L	1.19370919493893E-04		
I	2.81995730167497E-01		
R(-1)	1.69235728001815E+00		
R1	2.26148638332394E+00		
R2	3.78329232965790E+00		
R4	1.75753566652362E+01		
GR(-1)	-2.57269873657130E+00		
GR0	-3.48965390109662E+00		
GR1	-5.99394961964082E+00		
GR2	-1.24073543519514E+01		
VNEO	-1.69235728001815E+00	VNEO (COR)	-1.69344101428080E+00
VNET	-1.56697344477633E+01	VNET (COR)	-1.56797688703455E+01
VEET	6.91492456525035E+00	VEET (COR)	6.91935267317028E+00
EHF	-7.89620515817291E+00		1 2055050752520(7.01
		VREP (COR)	1.39558527535326E+01
ET DY	2 590000464042075 01	V (ATOM)	-1./239161168128/E+00
EL DX	3.58009046494397E-01		
	1.4/089110/356/2E-01		
EL DIDOLE MAC	-2.87303298367512E-08		
EL DIFULE MAG	A 74237499272135E-01	OVY (DTAC)	6 594423100699645-01
	4.74257455272155E-01	QXX (DIAG)	0.394423100000046-01
087	-1 16739629122048 F =05		
OXX OXX	-2 31079636154901 F -01	OVY (DIAC)	-4 162844500181378-01
072	2 00246686718436E-05	QII (DIRG)	4.102044500101578 01
07.7	-2 43157863117235E-01	OZZ (DIAG)	-2 43157860050727E-01
FAYA	-3 26718473638726E-01	Q12 (D1110)	2.1313/000030/2/8 01
FAYA	-1 33544016100482E-01		
FAZA	5.85569852418911E-08		
FRYA	3 17850743252954E+00		
FRYA	9.09264926419164E-01		
FB7A	-2.38707329206926E-07		
RHO*T.	9.60252759514233E-02		
VOL1	8.00422024328400E+01		
VOL2	6.24601475242027E+01		

N(VOL1) 1.63895790775575E+00

A34

N(VOL2) 1.61361084755188E+00

THE ATOMIC OVERLAP MATRIX AOM :

```
0.000000
  0.000000
            0.000001
                       0.000773
  0.00000
            0.000030
  0.000000
            0.000000
                       0.000000
                                  0.000000
  0.00000
            0.000000
                       0.000000
                                  0.000000
                                             0.000000
  0.000000
            0.000000 - 0.000004
                                  0.000000
                                             0.000000
                                                       0.000000
  0.000000
            0.000064
                       0.001641
                                  0.000001
                                             0.000000 -0.000006
                                                                  0.014238
  0.000002
            0.000000
                       0.000000
                                  0.000000
                                             0.000000
                                                      0.000000
                                                                  0.000000
0.003175
  0.00000
            0.000147
                       0.003786
                                  0.000002
                                             0.000000 - 0.000016
                                                                  0.032769
0.00000
  0.078033
  0.000000
            0.000025
                                                                  0.005800
                       0.000626
                                  0.000000
                                             0.000000
                                                       0.000001
0.000000
  0.011546
            0.007337
            0.000000
                       0.000000
  0.000004
                                  0.000000
                                             0.000000
                                                       0.000000
                                                                  0.000000
0.005951
  0.000000
            0.000000
                       0.011208
  0.000000 - 0.000117 - 0.003037 - 0.000002
                                             0.000000
                                                       0.000015 -0.026331
0.000000
 -0.065290 -0.007564
                       0.000000
                                  0.057415
  0.000000
            0.000240
                       0.006250
                                  0.000004
                                             0.000000 - 0.000026
                                                                  0.056514
0.00000
  0.136821
            0.023270
                       0.000000 - 0.116530
                                             0.248893
 -0.000002
            0.000000
                       0.000000
                                  0.000000
                                             0.000000
                                                       0.000000
                                                                  0.000000 -
0.002662
            0.000000 - 0.005048
                                  0.000000
                                             0.000000
                                                       0.002852
  0.000000
  0.00000
            0.000276
                       0.007194
                                  0.000004
                                             0.000000 - 0.000027
                                                                  0.065967
0.000000
                       0.000000 - 0.136074
                                             0.295334
                                                       0.000000
                                                                  0.354640
  0.159599
            0.031096
 -0.00003
            0.000000
                       0.000000
                                  0.000000
                                             0.000000
                                                       0.000000
                                                                  0.000000 -
0.004102
  0.000000
            0.000000 - 0.007735
                                  0.000000
                                             0.000000
                                                       0.003591
                                                                  0.000000
0.005383
  0.000000 - 0.000064 - 0.001677 - 0.000001
                                             0.000000
                                                       0.000006 - 0.015584
0.00000
 -0.037383 -0.008180 0.000000
                                 0.031367 - 0.069948
                                                       0.000000 - 0.084681
0.000000
  0.020951
  0.000000 - 0.000003 - 0.000111 - 0.000001
                                             0.000000
                                                       0.000006 - 0.001202
0.000000
            0.006381
                       0.000000
                                                       0.000000 - 0.004590
 -0.006283
                                  0.008488 - 0.008127
0.000000
 -0.000362
            0.010501
  0.000000
            0.000000
                       0.000000
                                  0.000000
                                             0.000000
                                                       0.000000
                                                                  0.000000 -
0.000132
```

0.000000 0.000000 -0.000362 0.000000 0.000000 0.000393 0.000000 0.000235 0.000000 0.000000 0.000581 0.000000 -0.000032 -0.000856 -0.000001 0.000000 0.000011 -0.007718 0.000000 -0.023256 0.004421 0.000000 0.024411 -0.039776 0.000000 -0.042466 0.000000 0.008565 0.012754 0.000000 0.020370

- NA 8.36352429459748E-01 NB 8.36352429459748E-01 N 1.67270485891950E+00 FOOA -5.96355937210708E-01 FOOB -5.96355937210708E-01 ALOC 7.13043827224764E-01 BLOC 7.13043827224764E-01
 - FLA 2.39996492249040E-01 FLB 2.39996492249040E-01
 - FL 1.07634892170879E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 4.40457291031235E-08

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9957520941E+00

B6H10-B4

OMEGA DEVELOPMENT VERSION

B6H10 OPTIMIZATION USING VD SET(Renormalized) d=0.75, p=1.0725 -V/T FOR THIS WAVEFUNCTION = 2.00128156000 MOLECULAR SCF ENERGY (AU) = -153.86037391838

B6H10_B4

INTEGRATION IS OVER ATOM B 4 QUADRATURE ORDER OVER THETA 64 PHI 64 AND S 64 WITH 200 POINTS/PATH RADIUS OF BETA SPHERE 0.9527 VOL1 RHO CONTOUR THRESHOLD= 0.0020 VOL2 RHO CONTOUR THRESHOLD= 0.0010

RESULTS OF THE INTEGRATION

N	3.77928097794298E+00	NET CHARGE	1.22071902205702E+00
G	2.41052970916774E+01		
к	2.41054272624513E+01	E (ATOM)	-2.41363198138138E+01
L	1.30170773931560E-04		
VNEO	-5.44151590269754E+01	VNEO (COR)	-5.44500048440740E+01
VNET	-8.86131316269145E+01	VNET (COR)	-8.86698767882339E+01
VEET	2.40486505647015E+01	VEET (COR)	2.40640505909815E+01
		VREP (COR)	4.03867845769294E+01
		V (ATOM)	-4.82830922113045E+01
EL DX	3.92037431820375E-01		
EL DX	3.92037431820375E-01		

	EL DY	-7.96707875179496E-01
	EL DZ	7.55732569546060E-01
EL	DIPOLE MAG	1.16600536147740E+00
	QXX	1.16135709184301E+00
	QXY	1.13038634468558E+00
	QXZ	-6.95422210254328E-01
	QYY	-8.19946480656695E-01
	QYZ	1.40252114991514E+00
	QZZ	-3.41410611186319E-01
	FAXA	-3.17117723701131E-01
	Faya	6.43425400838034E-01
	FAZA	-9.37732468413390E-01
	FBXA	1.26038851615795E+00
	FBYA	-2.94844684924364E-01
	FBZA	4.72325595272576E+00
	VOL1	3.36351444917007E+01
	VOL2	3.55037074443572E+01
	N(VOL1)	3.77442210415179E+00
	N(VOL2)	3.77712867442037E+00

B6H10-H6

OMEGA DEVELOPMENT VERSION B6H10 OPTIMIZATION USING VD SET (Renormalized) d=0.75, p=1.0725 -V/T FOR THIS WAVEFUNCTION = 2.00128156000 MOLECULAR SCF ENERGY (AU) = -153.86037391838 B6H10 H6 INTEGRATION IS OVER ATOM Н 6 QUADRATURE ORDER OVER THETA 64 PHI 64 AND S 64 WITH 200 POINTS/PATH RADIUS OF BETA SPHERE 1.4994 0.0020 VOL1 RHO CONTOUR THRESHOLD= VOL2 RHO CONTOUR THRESHOLD= 0.0010 RESULTS OF THE INTEGRATION Ν 1.70077874666383E+00 NET CHARGE -7.00778746663831E-01 G 9.11652099678939E-01 к 9.11666270603710E-01 E(ATOM) -9.12834625629465E-01 1.41709247711506E-05 L -1.71592552715173E+00 -1.71702435380488E+00 VNEO VNEO (COR) VNET -1.87791436293304E+01 VNET (COR) -1.87911692232252E+01 VEET 8.35466646015256E+00 VEET (COR) 8.36001653510587E+00 1.69599928080506E+01 VREP (COR) V (ATOM) -1.83117641517461E+00 EL DX 1.76593314502407E-01 EL DY -4.34247530008916E-01 EL DZ 1.53476155517653E-01

EL DIPOLE MAG 4.93265695501186E-01 QXX 1.60218672228304E-01 QXY 2.30897871830219E-01 A37

QXZ	-2.90768860054938E-01
QYY	-6.32090139669447E-01
QYZ	-1.88570614359579E-02
QZZ	4.71871467441141E-01
FAXA	-1.30390803905582E-01
FAYA	2.84774286748083E-01
FAZA	-1.21535047415928E-01
FBXA	1.82769479947222E+00
FBYA	-2.31681490060750E+00
FBZA	1.39298009019296E+00
VOL1	4.81573840087751E+01
VOL2	5.69277050113039E+01
N(VOL1)	1.67368655229294E+00
N(VOL2)	1.68630760056994E+00

B6H10-H8

PROAIM STELLIX VERSION 0.95 B6H10 OPTIMIZATION USING VD SET (Renormalized) d=0.75, p=1.0725 -V/T FOR THIS WAVEFUNCTION = 2.00128156000 MOLECULAR SCF ENERGY (AU) = -153.86037391838 B6H10 H8 INTEGRATION IS OVER ATOM 8 н 96 THETA PLANES 120 PHI PLANES 80 PATHS WITH 141 POINTS PER PATH RADIUS OF BETA SPHERE 1.2763 WITH 120 POINTS PER PATH VOL1 RHO CONTOUR THRESHOLD= 0.0010 VOL2 RHO CONTOUR THRESHOLD= 0.0020 INSERTION LIMIT USED 6 INSERTION LIMIT REACHED 0 TIMES FOR SURFACE 1 FOR SURFACE # 1 NUMBER OF INSERTED PATHS = 28 TOTAL NUMBER OF INSERTED PATHS= 28 RESULTS OF THE INTEGRATION 1.68340504606343E+00 NET CHARGE -6.83405046063434E-01 Ν G 8.54173545021851E-01 Κ 8.54292986131487E-01 E(ATOM) -8.55387813850794E-01 L 1.19441109636866E-04 Ι 2.84351771015803E-01 1.69683660674887E+00 R(-1)2.28664423993142E+00 R1 R2 3.84391522250878E+00 R4 1.79729609776004E+01 GR (-1) -2.56788522235097E+00 GR0 -3.48467747791210E+00 GR1 -5.99601092589080E+00 GR2 -1.24424646651501E+01 VNEO -1.69683660674887E+00 VNEO(COR) -1.69792320943648E+00

	VNET VEET EHF	-1.6 7.5 -8.4	57885858826 50830744245 12598545404	5331E+01 5602E+00 4561E+00	VNET (CO VEET (CO	DR) -1.67 DR) 7.51	993367837326E+0 311553476960E+0	10
					VREP (CO	DR) 1.50	837131749644E+0	11
					V (ATC	OM) -1.71	562360876815E+0	0
E	EL DX	3.5	57856686473	3226E-03				
E	EL DY	3.6	51012437996	5471E-01				
E	EL DZ	3.2	20811099810	046E-06				
EL DIPOLE	E MAG	3.6	51030174001	L084E-01				
	QXX	-3.6	58938128493	3064E-01	QXX (DI)	AG) -3.70	863317788765E-0	11
	QXY	-4.4	6406610631	977E-02				
	QXZ	-4.6	5188201996	5484E-07				
	QYY	6.6	4249764634	106E-01	QYY (DI)	AG) 6.66	174953944969E-0	11
	QYZ	-4.5	0801926802	2728E-06	000 (0.7)		211 (2(15(2045 0	
	QZZ	-2.5	3311036141			AG) -2.95	311636156204E-0	1
	FAAA	1.0	00010040904	19/8E-03				
	FAIA FA7A	-3.4	10401/9002 10019970705	2223E-01 537E-07				
	FRYA	-2.5	8411051274	1603E-02				
	FBYA	3.4	7278724793	3792E+00				
	FBZA	-2.5	0533436989	359E-06				
F	RHO*L	9.4	5590549930	682E-02		-		
	VOL1	8.1	3960610534	1643E+01				
	VOL2	6.3	35193310178	3447E+01				
N (\	/OL1)	1.6	54986542331	414E+00				
N (\	/OL2)	1.6	52414216609	349E+00				
THE ATON	IIC OV	ERLAP	MATRIX AC)M :				
0 00000								
0.000000	0.00	0000						
0.000000	0.00	0000	0.000000					
0.000000	0.00	0000	0.000000	0.000000				
0.00000	0.00	0000	0.000000	0.000000	0.000000			
0.00000	0.00	0005	0.000004	0.000019	0.000000	0.000764		
0.000000	0.00	0013	0.000010	0.000035	0.000000	0.001392	0.010757	
0.000004	0.00	0000	0.000000	0.00000	0.000001	0.00000	0.00000	
0.002259								
0.00000	-0.00	0005	-0.000001	-0.000018	0.000000	-0.000637	-0.004569	
0.000000								
0.004970								
0.000000	0.00	0042	0.000035	0.000130	0.000000	0.005275	0.040704	
0.000000								
-0.018281	0.16	2851						
0.000000	0.00	0000	0.000000	0.000000	0.000000	0.000000	0.000000 -	
0.000031	0 00	0000	0 000013					
0.000000	0.00	0000	0.000213	0 000073	0 000000	0 002072	0 023572	
0.000000	0.00	0023	0.000020	0.000072	0.000000	0.002972	0.023373	
	0 00	5337	0 000000	0 056755				
0 000000	0.09	0018	0 000015	0 000060	0 00000	0 002428	0 019751	
0.000000	0.00		0.00010	0.000000	3.000000	0.002.120	J. U. L. J. U. L.	

0.000000 -0.0100370.047004 0.040849 0.080494 0.000002 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001132 0.000000 0.000000 0.000000 0.000000 0.000000 0.000850 0.000000 0.000002 0.000003 0.000003 0.000000 0.000175 0.001614 0.000000 0.001145 0.006383 0.000000 0.004299 0.002563 0.000000 0.001723 -0.000003 0.000000 0.000000 0.000000 - 0.0000010.000000 0.000000 -0.001672 0.000000 0.000000 0.000148 0.000000 0.000000 - 0.0008610.000000 0.001427 0.000000 0.000054 0.000047 0.000185 0.000000 0.007543 0.060322 0.000000 -0.0284000.251156 0.000000 0.148402 0.126023 0.000000 0.009572 0.000000 0.398462 0.000000 -0.000024 -0.000015 -0.000093 0.000000 -0.003586 -0.028283 0.000000 0.019153 -0.119395 0.000000 -0.068789 -0.062171 0.000000 -0.001061 0.000000 -0.1913780.103424 0.000013 0.000000 0.000000 0.000000 0.000003 0.000000 0.000000 0.007478 0.000000 0.000000 - 0.0000840.000000 0.000000 0.003709 0.000000 -0.005482 0.000000 0.000000 0.024953 0.000000 0.000010 0.000016 0.000024 0.000000 0.001253 0.011229 0.000000 0.021473 0.000000 0.001626 0.047327 0.000000 0.030291 0.006426 0.000000 0.075160 - 0.0227270.000000 0.031445

NA	8.41702523031717E-01
NB	8.41702523031717E-01
N	1.68340504606343E+00
FOOA	-5.97326515973104E-01
FOOB	-5.97326515973104E-01
ALOC	7.09664637598569E-01
BLOC	7.09664637598569E-01
FLA	2.44376007058613E-01
FLB	2.44376007058613E-01
FL	1.08607853009033E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 2.55806253206157E-08

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9957544428E+00

B6H10-B9 (not available)

B6H10-H11

PROAIM STELLIX VERSION 0.95

B6H10 OPTIMIZATI -V/T FOR THIS W MOLECULAR SCF E	ON USING VD SET(Re AVEFUNCTION = NERGY (AU) =	normalized) d=0. 2.00128156000 -153.86037391838	75, p=1.0725
B6H10_H11 INTEGRATION IS 120 PHI PLANE 80 PATHS WITH RADIUS OF BETA VOL1 RHO CONTOU VOL2 RHO CONTOU	OVER ATOM H 11 S 96 THETA PLA 141 POINTS PER PA SPHERE 1.2730 WI WR THRESHOLD= 0.0 WR THRESHOLD= 0.0	NES TH TH 120 POINTS 010 020	PER PATH
INSERTION LIMIT INSERTION LIMIT FOR SURFACE # 1 TOTAL NUMBER OF	USED = REACHED 0 TI NUMBER OF INSERTE INSERTED PATHS=	6 MES FOR SURFACE D PATHS = 25 25	1
RESULTS OF THE	INTEGRATION		
N N	1.68855443272503	E+00 NET CHA	RGE -6.88554432725032E-01
G	8.70105188688871	E-01	
К	8.70222778960726	E-01 E(AT	OM) -8.71338021665331E-01
L	1.17590271854761	E-04	
I	2.84443068654535	E-01	
R(-1)	1.70613676656944	E+00	
RI	2.28573095031045	E+00	
RZ DA	3.822906994/9039	E+00 E+01	
CP (-1)		E+01 E+00	
	-2.01201192550500	E+00 E+00	
GR1	-6 08053535431602	E+00	
GR2	-1.25207468418131	E+01	
VNEO	-1.70613676656944	E+00 VNEO (C	OR) -1.70722932479726E+00
VNET	-1.58604631757013	E+01 VNET (C	OR) -1.58706197351748E+01
VEET	6.99764798377156	E+00 VEET (C	OR) 7.00212906525920E+00
EHF	-7.99259241296902	E+00	
		VREP (C	OR) 1.41233834565629E+01
		V (AT	OM) -1.74723627861195E+00
EL DX	1.20862341676508	E-01	
EL DY	1.06108609470715	E-01	
EL DZ	3.76606977461368	E-01	
EL DIPOLE MAG	4.09511365058316		
<u>UXX</u>	-1.33333772/828233 6 A753338272647	ビー0.2 ひて ひて ひて ひて	AG) -4.203/3340023/09E-01
UXI OV7	0.4/33440343004/	5-V2 F=01	
			AG) $-1.89724231110571E-01$
Q11 0V7	2 89405350515376	E-01 2 01 011(D1	, 1.0 <i>912</i> -2311103/16-01
07.7	4.68103859238648	E-01 027 (DT	AG) 6.16099577136279E-01
X00		¥(D1	

FAXA -1.03365848018030E-01 FAYA -9.43651304862180E-02 -3.30254187906054E-01 FAZA 9.53749043548952E-01 FBXA FBYA 5,95936514707352E-01 FBZA 3.15675852387577E+00 RHO*L 9.83077546137186E-02 VOL1 8.05059771110096E+01 VOL2 6.29365088755945E+01 N(VOL1) 1.65516079340407E+00 N(VOL2) 1.62978610662280E+00 THE ATOMIC OVERLAP MATRIX AOM : 0.000404 0.000404 0.000404 -0.000015 -0.0000150.000001 -0.000002 - 0.0000020.000000 0.000000 -0.000002 - 0.0000020.000000 0.000000 0.000000 -0.000002 -0.0000020.000000 0.000000 0.000000 0.000000 0.001099 0.001098 - 0.000041 - 0.000005 - 0.000006 - 0.0000060.012303 0.002316 0.002315 -0.000088 -0.000010 -0.000012 -0.000013 0.025665 0.055371 0.000444 - 0.000014 - 0.000003 - 0.000004 - 0.0000030.000444 0.005407 0.010093 0.006403 -0.001468 -0.001467 0.000057 0.000006 0.000008 0.000011 - 0.016101 -0.036981 -0.0061720.029747 0.001930 0.001931 - 0.000070 - 0.000010 - 0.000013 - 0.0000110 022395 0.046548 0.015280 - 0.029928 0.0504690.004325 0.004326 - 0.000166 - 0.000019 - 0.000023 - 0.0000230.049110 0.107819 0.019233 -0.071103 0.093391 0.219961 0.001742 0.001742 - 0.000067 - 0.000009 - 0.000010 - 0.0000090.020636 0.044988 0.008817 - 0.029190 0.0401620.092099 0.039240 0.004648 0.004649 - 0.000180 - 0.000021 - 0.000026 - 0.0000240.053973 0.119306 0.104304 0.247856 0.104241 0.281525 0.020969 - 0.0780220.000027 0.000004 0.000005 0.000004 - 0.008732 --0.000743 -0.000743 0.018271 0.011685 - 0.020669 - 0.037662 - 0.016205 - 0.0425640.009133 -0.0063190.001120 0.001121 - 0.000045 - 0.000004 - 0.000005 - 0.0000080.012281 0.029397 0.002222 - 0.0231710.020786 0.059625 0.023904 0.066671 -0.007888 0.020949 -0.002197 -0.002197 0.000084 0.000011 0.000013 0.000011 - 0.025819 -0.056183 -0.011943 0.035263 -0.052797 -0.118236 -0.050212 -0.135016 0.021715 -0.029629

0.066493 -0.001024 -0.001024 0.000038 0.000005 0.000006 0.000007 -0.012214 -0.027372 -0.006973 0.020714 -0.026912 -0.055613 -0.023312 -0.062225 0.011001 -0.015832 0.029910 0.017194 -0.000704 - 0.000704 0.000027 0.000004 0.000005 0.000010 - 0.008595 -0.021368 -0.005818 0.022905 -0.020123 -0.039311 -0.016063 -0.041889 0.007898 -0.015561 0.018238 0.016014 0.025228 0.000545 0.000545 - 0.000019 - 0.000003 - 0.000004 - 0.000004 0.0071300.014845 0.006716 -0.009989 0.019463 0.031545 0.013717 0.035656 -0.007810 0.006776 -0.018903 -0.010306 -0.008491 0.009451NA 8.44277216362516E-01 NB 8.44277216362516E-01 N 1.68855443272503E+00 FOOA -6.11456825392761E-01 FOOB -6.11456825392761E-01 ALOC 7.24237032034527E-01 7.24237032034527E-01 BLOC FLA 2.32820390969755E-01 FLB 2.32820390969755E-01 FL 1.07709760733227E+00 ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 3.60151196437524E-08 MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9957528597E+00 B6H10-H13 OMEGA DEVELOPMENT VERSION B6H10 OPTIMIZATION USING VD SET(Renormalized) d=0.75, p=1.0725 -V/T FOR THIS WAVEFUNCTION = 2.00128156000 MOLECULAR SCF ENERGY (AU) -153.86037391838 = B6H10 H13 INTEGRATION IS OVER ATOM Н 13 QUADRATURE ORDER OVER THETA 64 PHI 64 AND S 64 WITH 200 POINTS/PATH RADIUS OF BETA SPHERE 1.5774 VOL1 RHO CONTOUR THRESHOLD= 0.0020 VOL2 RHO CONTOUR THRESHOLD= 0.0010 RESULTS OF THE INTEGRATION N 1.71883620817223E+00 NET CHARGE -7.18836208172234E-01 G 9.19379222342972E-01

	K	9.19394543789713E-01	E (ATOM)	-9.20572803061252E-01
	L	1.53214467411983E-05		
	VNEO	-1.72582806860141E+00	VNEO (COR)	-1.72693323654170E+00
	VNET	-1.90307459545517E+01	VNET (COR)	-1.90429326669429E+01
	VEET	8.48502995205652E+00	VEET (COR)	8.49046350783533E+00
			VREP (COR)	1.71962121634796E+01
			V (ATOM)	-1.84672050346335E+00
	EL DX	-3.69353694003519E-02		
	EL DY	-4.48634924103093E-01		
	EL DZ	9.94430510618108E-02		
EL	DIPOLE MAG	4.61005896971189E-01		
	QXX	5.00395613859065E-01		
	QXY	7.67018146136258E-03		
	QXZ	8.21657381909888E-02		
	QYY	-5.48557931249652E-01		
	QYZ	-4.71028413201757E-02		
	QZZ	4.81623173905866E-02		
	FAXA	NaN0xffffffffffff		
	FAYA	NaN0xfffffffffff		
	FAZA	NaN0xffffffffffff		
	FBXA	-5.84806969247165E-01		
	FBYA	-2.80280086708306E+00		
	FBZA	1.71926191269175E+00		
	VOL1	5.00994108073769E+01		
	VOL2	5.98228226592961E+01		
	N(VOL1)	1.68845480786696E+00		
	N(VOL2)	1.70243666977697E+00		

B6H10-H15

PROAIM STELLIX VERSION 0.95
B6H10 OPTIMIZATION USING VD SET(Renormalized) $d=0.75$, $p=1.0725$ -V/T FOR THIS WAVEFUNCTION = 2.00128156000 MOLECULAR SCF ENERGY (AU) = -153.86037391838
B6H10 H15
INTEGRATION IS OVER ATOM H 15
120 PHI PLANES 96 THETA PLANES
80 PATHS WITH 141 POINTS PER PATH
RADIUS OF BETA SPHERE 1.2797 WITH 120 POINTS PER PATH
VOL1 RHO CONTOUR THRESHOLD= 0.0010
VOL2 RHO CONTOUR THRESHOLD= 0.0020
INSERTION LIMIT USED = 6
INSERTION LIMIT REACHED U TIMES FOR SURFACE I
FOR SURFACE # I NUMBER OF INSERTED PATHS = 50
IVIAL NUMBER OF INSERTED FAINS- 50
RESULTS OF THE INTEGRATION
N 1.70069703105939E+00 NET CHARGE -7.00697031059390E-01

G	8.65263277378957E-01			
К	8.65371966045888E-01	E (ATOM)	-8.664	80992142694E-01
\mathbf{L}	1.08688666930458E-04			
I	2.87658460060504E-01			
R(-1)	1.70750000161219E+00			
R1	2.32459303971316E+00			
R2	3.94231784940900E+00			
R4	1.89312580924849E+01			
GR (-1)	-2.61738931583945E+00			
GRO	-3.58434572073517E+00			
GR1	-6 23204432256008E+00			
GR2	-1 30906148375076E+01			
VNEO	-1 7075000161219F+00	WIEO (COP)	-1 708	503432814385+00
VNEU	-1.581046924427685+01	VNEU (COR)	-1.582	050379015325+00
	7 002240573479745+00	VNEI (COR)	-1.302	733601694945+01
VELI	-7 042947704752125+00	VEEI (COR)	1.006	/33001004046+00
LUL	=7.94284770475213E+00		1 400	210021420420+01
		VREP (COR)	1.408	310031429436+01
	2 (21450452575078 01	V (ATOM)	-1./3/	4934/48589/6+00
EL DX	-2.62145945257587E-01			
EL DI	1.22065425289498E-01			
EL DZ	2.63233586272284E-01			
EL DIPOLE MAG	3.910401329887618-01			
QXX	3.0818/926551054E-01	QXX (DIAG)	-5.338	3561486/044E-01
QXY	-2.80367588167379E-01			
QXZ	-3.69251700850293E-01			
QYY	-4.40327906864368E-01	QYY (DIAG)	-1.4/5	01200294571E-01
QYZ	1.31/60918522026E-01			
QZZ	1.32139980313313E-01	QZZ (DIAG)	6.813	36815161614E-01
FAXA	2.43/016/4110835E-01			
FAYA	-9.87722967568209E-02			
FAZA	-2.2/1098036595/2E-01			
FBXA	-2.51/68613990229E+00			
FBYA	5./3635/419/83/4E-01			
FBZA	2.07300476877528E+00			
RHO*L	9.62254140440785E-02			
VOL1	8.29544854696553E+01			
VOL2	6.45533924959749E+01			
N(VOL1)	1.66544275229673E+00			
N(VOL2)	1.63889936334930E+00			
THE ATOMIC OV	ERLAP MATRIX AOM :			
0.000000				
0.000000 0.00	10000			
0.000000 0.00				
0.000002 0.00	0002 0.000000 0.000402			
0.000002 0.00	0002 0.000000 0.000402	0.000402		
0.000000 0.00	0000 0.000000 -0.000009	-0.000009 0.	000000	
0.000007 0.00	0008 -0.000001 0.000758	0.000756 -0.	000017	0.006199
0.000013 0.00	0014 -0.000001 0.001334	0.001335 -0.	000032	0.010936

0.020621

0.024399 0.032425 -0.000007 -0.0000070.000000 - 0.000772 - 0.000772 0.000020 - 0.005996 -0.012633 0.014135 0.010470 -0.000022 -0.0000240.000001 - 0.002730 - 0.0027290.000066 - 0.021821 -0.040692 0.085133 0.051311 0.025362 -0.000005 -0.0000060.000000 -0.001117 -0.001109 0.000027 -0.007799 -0.012840 0.020737 0.008057 0.031451 0.017763 0.000024 0.000026 - 0.0000010.003326 0.003318 - 0.0000800.026765 0.047985 -0.065164 -0.028656 -0.105003 -0.0442590.136495 0.000009 0.000010 0.000000 0.001158 0.001158 - 0.0000270.010045 0.018205 -0.024007 -0.010139 -0.039171 -0.0151350.050743 0.019827 -0.000015 -0.000017 0.000000 -0.002433 -0.0024250.000058 - 0.019491 -0.033921 0.035590 - 0.104236 - 0.0387200.048800 0.019236 0.077283 0.081865 -0.000030 - 0.0000340.000000 -0.004354 -0.004348 0.000104 -0.035400 -0.064139 0.086874 0.037925 0.141866 0.059298 - 0.184453 - 0.0691860.141648 0.252099 0.000008 0.000009 $0.000000 \quad 0.000826 \quad 0.000829 \quad -0.000021$ 0.007122 0.014761 0.033886 0.012588 -0.023337 --0.016398 -0.010702 -0.029772 -0.0086950.046290 0.012708 0.000021 0.000024 - 0.000001 0.0026790.002682 -0.000066 0.022488 0.043856 -0.053774 - 0.028872 - 0.092706 - 0.032690 0.113469 0.042967 - 0.083289 - 0.0832890.155407 0.034235 0.104909 -0.000009 - 0.0000100.000000 - 0.001488 - 0.001485 0.000039 - 0.011708 -0.022857 0.030182 0.017761 0.051453 0.022146 -0.065236 -0.023050 0.048672 0.088101 -0.018973 -0.0580310.037906 -0.000010 -0.0000110.000001 -0.000483 -0.000496 0.000006 -0.006287 -0.011933 0.019532 -0.001107 -0.020187 -0.011348 0.013892 0.001582 0.010665 0.030848 -0.007093 -0.022467 0.000906 0.031126 NA 8.50348515529695E-01

NA 8.50348515529695E-01 NB 8.50348515529695E-01 N 1.70069703105939E+00 FOOA -6.13666229825418E-01 FOOB -6.13666229825418E-01 ALOC 7.21664374804202E-01 BLOC 7.21664374804202E-01 FLA 2.36682285704277E-01 FLB 2.36682285704277E-01 FL 1.08703080123397E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 6.10427306056258E-08

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9957561066E+00

B6H6(2-)-B1(difference)

B6H6(2-)-H7

PROAIM VERSION 0.90

B6H6(2-) OPTIMIZ -V/T FOR THIS W MOLECULAR SCF E	ATION USING VD SET(Renorm AVEFUNCTION = 2.0 NERGY (AU) = -151.4	malized); d=0.7 0103013000 6609702870	75, p=1.0725
H7 of B6H6 9s/5p INTEGRATION IS 120 PHI PLANE 80 PATHS WITH RADIUS OF BETA VOL1 RHO CONTOU VOL2 RHO CONTOU	+ 1d on B, F OVER ATOM H 7 S 96 THETA PLANES 141 POINTS PER PATH SPHERE 1.3340 WITH R THRESHOLD= 0.0010 R THRESHOLD= 0.0020	120 POINTS PER	PATH
INSERTION LIMIT	USED = 15		
INSERTION LIMIT	REACHED 0 TIMES FOR	R SURFACE 1	
TOTAL NUMBER OF	INSERTED PATHS= 24	5 = 24	
TOTAL NONDER OF	INGERTED FAILO- 24		
RESULTS OF THE	INTEGRATION		
N	1.80074679715924E+00	NET CHARGE	-8.00746797159236E-01
G	8.39306651714599E-01		
ĸ	8.39388440877932E-01	E (ATOM)	-8.40253120092534E-01
ц т	8.1/891633335962E-05		
P(-1)	1 730303780418368+00		
P1	2 635355588667328+00		
B2	4 91837399154160E+00		
R4	3 10078177019374E+01		
GR (-1)	-2.70105107396883E+00		
GR0	-3.89693556340408E+00		
GR1	-7.35325420128882E+00		
GR2	-1.72793921506833E+01		
VNEO	-1.73030378041836E+00	VNEO (COR)	-1.73119454053567E+00
VNET	-1.53854136448303E+01	VNET (COR)	-1.53933340533840E+01
VEET	7.12401786835160E+00	VEET (COR)	7.12768531164328E+00

EHE	-7.	42200733560	075E+00				
				VREP (CO	DR) 1.37	9439527151	L5E+01
				V (ATC	DM) -1.68	38945262325	52E+00
EL DY	C -6.	14172604600	043E-06				
EL DY	1.	18796372204	766E-06				
EL D2	4 -2.	44187416347	7490E-01				
EL DIPOLE MAG	3 2.	44187416427	617E-01				
QXX	∠ -4.	34946467703	815E-01	QXX (DI	AG) -4.35	16004436261	0E-01
QXX	<i>∠</i> −4.	86455143049	101E-06				
QXZ	5 -5.	59684818249	574E-06				
QYY	-4.	35159933560	785E-01	OYY (DI	AG) -4.34	94635693029	7E-01
- OY2	2.	37002430564	518E-06				
072	8.	70106401264	601E-01	022 (01)	AG) 8 70 ⁻	0640129290	7E - 01
FAXA	3	16563965031	239E-07	200 (01)			
FAY	-4	73087754393	2002 07				
FA22	2	84704533173	427E-01				
FRY	2.	28323022633	3638-06				
FBVI	3	70169050196	2738-07				
F D 17	-3.	70109030190	130ET00				
r Dar DUAT	·	22900391309	0108-02				
	· 0.	033304331/2	-010E-02				
	· · · ·	04312143005	1025+02				
	. /.	83426380356	486E+U1				
N(VOLI)	1.	1502051154	282E+00				
N(VOL2)	1.	71389482855	467E+00				
THE ATOMIC C	VERLA	P MATRIX AC)M :				
0 000100							
0.000122							
0.000212 0.0	00368						
		0.000000					
	000000	0.000000	0.000000				
0.000163 0.0	00283	0.000000	0.000000	0.000217			
-0.000058 -0.0	00101	0.000000	0.000000	-0.000078	0.000028		
0.000418 0.0	00722	0.000000	0.000000	0.000554	-0.000198	0.006776	
-0.002101 -0.0	03635	0.000000	0.000000	-0.002794	0.000999	-0.034651	
0.189224							
-0.000001 -0.0	00002	0.000004	0.000000	-0.000001	0.000000	-0.000016	
0.000087							
0.003724							
0.000003 0.0	00005	0.000000	0.000004	0.000004	-0.000001	0.000049	-
0.000262							
0.000000 0.0	03724						
-0.001551 -0.0	02685	0.00000	0.000000	-0.002065	0.000738	-0.026524	
0.148112							
0.000070 -0.0	00209	0.116907					
0.002319 0.0	04016	0.000000	0.000000	0.003089	-0.001104	0.039397	-
0.221256	• - •		, •	, . _			
-0.000104 0.0	00312	-0.174782	0.261824				
0.000419 0.0	00726	0.000000	0.000000	0.000558	-0.000200	0.007118	_
0.039975				0.000000	0.000200	0.00,110	
	00056	-0 031578	0 047267	0 008750			
0.000010 0.0		0.0010/0	0.04/20/	0.000/00			

0.001926 0.003340 0.000000 0.000000 0.002571 -0.000919 0.035056 -0.204241 -0.000095 0.000295 -0.163387 0.245317 0.044322 0.234354 -0.000003 -0.000006 0.000000 0.000004 -0.000005 0.000002 - 0.0000620.000367 -0.0000710.003899 0.000289 - 0.000434 - 0.000078 - 0.0004070.004281 $0.000001 \quad 0.000001 \quad -0.000004$ 0.000000 0.000001 0.000000 0.000010 -0.000055 0.000012 -0.003899 -0.000071 -0.0000460.000068 0.000064 0.000000 0.004280 $0.000000 \quad 0.000000 \quad -0.000013$ 0.000000 0.000000 0.000000 0.000000 0.000005 -0.010829 - 0.0000310.000000 0.000000 0.000000 - 0.0000030.000173 0.011227 0.032512 0.000000 0.000000 0.000000 0.000013 0.000000 0.000000 0.00000 0.000015 -0.000031 0.010829 0.000000 0.000000 0.000000 0.000020 0.011227 -0.000173 0.000001 0.032514 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000078 0.000054 0.000000 0.000000 0.000000 0.000000 0.000055 -0.000082 0.000158 -0.000230 0.000768

NA	9.00373398579618E-01
NB	9.00373398579618E-01
N	1.80074679715924E+00
FOOA	-6.59600320425087E-01
FOOB	-6.59600320425087E-01
ALOC	7.32585304569901E-01
BLOC	7.32585304569901E-01
FLA	2.40773078154532E-01
FLB	2.40773078154532E-01
FL	1.14114647673415E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 3.28904670960360E-08

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9957825546E+00

B7H7(2-)-B1(not available)

PROAIM STELLIX VERSION 0.95

B7H7	2-	OP	TIMI	ZATION	USING	VD	SET	ON	H	&	9S/5P+1D	ON	в
-V/1	r fo	R	THIS	WAVEFU	UNCTION	- 1			2	.00	10494000)	
MOLE	ECUL	AR	SCF	ENERG	Y (AU)	-		-1	76	.75	5968995430)	

B7 of B7H7(2-) 9s/5p + 1d on B, F

INTEGRATION IS OVER ATOM в 7 120 PHI PLANES 96 THETA PLANES 80 PATHS WITH 141 POINTS PER PATH RADIUS OF BETA SPHERE 0.9594 WITH 120 POINTS PER PATH VOL1 RHO CONTOUR THRESHOLD= 0.0010 VOL2 RHO CONTOUR THRESHOLD= 0.0020 INSERTION LIMIT USED 6 INSERTION LIMIT REACHED **0 TIMES FOR SURFACE** 1 INSERTION LIMIT REACHED **3 TIMES FOR SURFACE** 2 INSERTION LIMIT REACHED 2 TIMES FOR SURFACE 3 INSERTION LIMIT REACHED 2 TIMES FOR SURFACE 4 INSERTION LIMIT REACHED 2 TIMES FOR SURFACE 5 INSERTION LIMIT REACHED 2 TIMES FOR SURFACE 6 FOR SURFACE # 1 NUMBER OF INSERTED PATHS = 15 FOR SURFACE # 2 NUMBER OF INSERTED PATHS = 21 FOR SURFACE # 3 NUMBER OF INSERTED PATHS = 20 FOR SURFACE # 4 NUMBER OF INSERTED PATHS = 21 FOR SURFACE # 5 NUMBER OF INSERTED PATHS = 21 FOR SURFACE # 6 NUMBER OF INSERTED PATHS = 21 TOTAL NUMBER OF INSERTED PATHS= 119 RESULTS OF THE INTEGRATION 1.42552628463911E+01 Ν NET CHARGE -9.25526284639111E+00 G 5.20939579501510E+01 E(ATOM) -4.82213141381309E+01 к 4.81707637386635E+01 L -3.92319421148749E+00 Τ 1.79713636800870E+00 1.21564664204503E+01 R(-1)4.64892868775494E+01 **R1** R2 1.92708223375180E+02 4.56713080297892E+03 R4 GR(-1)-2.15444631825038E+01 -3.56127370727284E+01 GR0 GR1 -1.63773015865307E+02 -8.88976036717321E+02 GR2 VNEO -6.07823321022513E+01 VNEO (COR) -6.08142078666917E+01 VNET -2.60295554492543E+02 VNET (COR) -2.60432059945574E+02 VEET 9.04385391049488E+01 VEET (COR) 9.04859673208322E+01 EHF -1.21686251648931E+02 VREP (COR) 1.63950904831632E+02 V (ATOM) -9.64811551139419E+01 EL DX -2.20721100688676E+00 -3.45692652078140E+00 EL DY EL DZ 2.81058381125221E+01 EL DIPOLE MAG 2.84035254397461E+01 5.26041602646179E+01 6.83341701383365E+01 QXX (DIAG) QXX 1.91421177858890E+01 OXY 1.20548169543276E+01 QXZ QYY(DIAG) 2.18497631830605E+01 2.51063512223305E+01 QYY OYZ 3.75511922200811E+01 QZZ(DIAG) -9.01839333213970E+01 OZZ -7.77105114869484E+01

FAXA 4.89304165142979E-01 FAYA -2.13674338726150E+00 FAZA 3.28304808515742E+00 FBXA -1.18669739431977E+01 FBYA -2.13182572003148E+02 FBZA -8.18858173271039E+01 RHO*L 6.93095079558815E+02 VOL1 3.87753523037049E+02 VOL2 3.18981312884027E+02 N(VOL1) 1.41320154320612E+01 N(VOL2) 1.40331438964283E+01 THE ATOMIC OVERLAP MATRIX AOM : 0.415588 0.407221 0.415564 -0.005071 - 0.002074 0.2421780.001690 0.136691 0.212501 -0.000029 0.000026 -0.002155 -0.176148 -0.052305 0.271604 -0.0000020.000154 0.012939 0.382973 0.186964 0.087608 0.000014 - 0.001035 - 0.0839490.011534 0.119183 0.070589 0.100781 -0.0039810.004914 0.027302 -0.000490 0.011426 -0.003552 0.001842 0.479510 0.000245 -0.009758 0.019575 0.002210 -0.014567 0.004493 -0.0014980.047791 0.392493 -0.000293 -0.001053 -0.018934 -0.002074 -0.016761 0.009476 0.000600 -0.026141 0.056175 0.426787 0.004282 -0.005594 -0.013449 -0.008048 0.008251 -0.000478 0.004769 0.048247 -0.035869 - 0.0359180.324852 0.011719 -0.014657 0.001623 -0.007478 -0.000754 0.001671 0.015454 0.045917 0.010095 0.040576 0.034488 0.220548 0.004017 0.000392 0.005083 - 0.0013980.004494 -0.001076 0.001270 0.025162 -0.002260 - 0.014985 - 0.0361530.007365 0.158202 0.000199 - 0.000104 0.004989 0.011138 - 0.003589 - 0.0013080.006966 -0.026640 0.001661 - 0.039722 0.0087020.003404 - 0.0024660.168696 -0.000012 0.000019 -0.003240 0.018340 0.011760 0.015901 0.001284 0.009841 0.026334 - 0.0304820.001330 -0.016666 0.003058 -0.016914 0.245119 -0.0003290.000927 0.000082 0.007350 0.024302 0.007968 0.011600 0.020736 0.024837 - 0.1298050.014798 -0.002117 0.004921 -0.002745 -0.019656 0.266191 -0.001494 0.000092 0.009828 0.026562 -0.016975 0.005947 -0.001676 0.038466 0.156177 0.088385 -0.025551 0.009241 0.000276 -0.019296 -0.004525 -0.016945

A51
-0.006012 -0.000249 0.019380 0.011425 -0.011737 0.000677 -0.006791 -0.0067910.039428 - 0.173910 - 0.043546 0.014886 - 0.008198 - 0.002180 - 0.00280 - 0.00280 - 0.00280 - 0.00280 - 0.00280 - 0.00280 - 0.00280.275427 0.000445 0.011769 - 0.013527 - 0.003636 0.020477 0.0040690.117888 - 0.009759 - 0.030905 0.013041 - 0.036002 - 0.089934 -0.008191 0.417220 0.000239 -0.000329 0.001246 -0.001182 0.002880 0.010633 0.011180 -0.070219 - 0.0091590.039223 -0.012475 0.056788 -0.188807

-0.0044490.019886 -0.019212 0.015290 0.030610 0.492844 0.000795 - 0.002362 - 0.016616 - 0.021547 0.010758 - 0.014409 - 0.001528 - 0.00158 - 0.00158 - 0.001528 - 0.0.060908 -0.011751 -0.023992 0.055511 0.009019 0.012236 0.004670 0.021037 0.025609 0.039066 - 0.035806 - 0.0087090.021431 0.465447 0.001384 - 0.000243 0.0113300.000049 - 0.024249 - 0.010537 - 0.0115890.042175 0.017075 -0.002259 -0.003027 -0.004703 -0.003629 -0.012692 0.033988 0.057088 -0.010156 -0.008196 -0.028564 -0.041427 -0.055934 0.470882

NA	7.12763142319556E+00
NB	7.12763142319556E+00
N	1.42552628463911E+01
FOOA	-3.63355413713479E+00
FOOB	-3.63355413713479E+00
ALOC	5.09784235659278E-01
BLOC	5.09784235659278E-01
FLA	3.49407728606076E+00
FLB	3.49407728606076E+00
FL	1.06217087092563E+01

0.282225

-0.000378 0.063555 -0.064347

0.029984 0.034818

0.018166 0.023756

0.000521 0.004375

0.052561

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 3.82716945995915E-08 FOR SURFACE # 2 EPSD 2.38878791124776E-02 FOR SURFACE # 3 EPSD 2.38878791124776E-02 FOR SURFACE # 4 EPSD 2.38889550021266E-02 FOR SURFACE # 5 EPSD 2.38889550021266E-02 FOR SURFACE # 6 2.39547605277163E-02 EPSD

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 1.000000000E+01

B7H7(2-)-B7(not available)

B7H7(2-)-H14

PROAIM STELLIX	VERSION 0.95		
B7H7 2- OPTIMIZA -V/T FOR THIS W MOLECULAR SCF EN	FION USING VD SET ON H AVEFUNCTION = 2. NERGY (AU) = -176 .	& 9S/5P+1D ON B 00104940000 75968995430	
H14 of B7H7(2-) INTEGRATION IS (120 PHI PLANE: 80 PATHS WITH RADIUS OF BETA VOL1 RHO CONTOU VOL2 RHO CONTOU	9s/5p + 1d on B, F OVER ATOM H 14 S 96 THETA PLANES 141 POINTS PER PATH SPHERE 1.3370 WITH R THRESHOLD= 0.0010 R THRESHOLD= 0.0020	120 POINTS PER	РАТН
INSERTION LIMIT	USED = 6		
INSERTION LIMIT FOR SURFACE # 1 TOTAL NUMBER OF	REACHED 0 TIMES F NUMBER OF INSERTED PAT INSERTED PATHS= 15	OR SURFACE 1 HS = 15	
RESULTS OF THE	INTEGRATION		
N	1.79569026860446E+00	NET CHARGE	-7.95690268604455E-01
G	8.52552551019213E-01	- (
K	8.52645069916092E-01	E (ATOM)	-8.53539835652462E-01
ىل +	9.251889687897138-05		
L P/-1)	1 729705794022615+00		
R1	2 59376200289450E+00		
R2	4 74772090487417E+00		
R4	2.83634138984197E+01		
GR(-1)	-2.70971090804039E+00		
GR0	-3.86426209805032E+00		
GR1	-7.15671494080445E+00		
GR2	-1.64102808636530E+01		
VNEO	-1.73870578492261E+00	VNEO (COR)	-1.73961760541574E+00
VNET	-1.73235455241544E+01	VNET (COR)	-1.73326304216453E+01
VEET	8.06603077741448E+00	VEET (COR)	8.07026080426830E+00
EHF	-8.40486967682387E+00		1 5 601 500 6 45 400 50 101
		VREP (COR)	1.56215906454397E+01
ET DV	1 010630304555305-05	V (ATOM)	-1./11039//6203358+00
EL DX			
EL DZ	2 67934453439250F-01		
EL DIPOLE MAG	2.67934453835906E-01		
OXX	-3.52865375701862E-01	OXX (DIAG)	-3.52814791924183E-01
QXY	-7.20362553420585E-05	_ () =()	

-3.52967963326018E-01

7.05782755250201E-01

QXZ	-3.41766215832166E-05
QYY	-3.52917377964891E-01
QYZ	-2.25477956500224E-05
QZZ	7.05782753666753E-01
FAXA	-5.73207535397311E-07
FAYA	-4.00736470521334E-07
FAZA	-2.94129793313684E-01
FBXA	-4.34293589546628E-06
FBYA	-3.00942125998268E-06
FBZA	3.48897716033879E+00
RHO*L	9.11397811390659E-02
VOL1	1.02048367701089E+02
VOL2	7.71590880905324E+01
N(VOL1)	1.74965479737104E+00
N(VOL2)	1.71589026654640E+00

OYY (DIAG)

QZZ (DIAG)

THE ATOMIC OVERLAP MATRIX AOM :

0.000374 0.000374 0.000374 -0.000005 -0.000005 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000821 0.000821 - 0.0000080.000000 0.000000 0.000000 0.000000 0.008210 0.000000 0.000000 0.000000 0.000004 - 0.0000010.000000 0.000000 0.00000 0.003687 0.000000 0.000000 0.000000 - 0.000001 - 0.0000040.000000 0.000000 0.000000 0.000000 0.003687 0.003922 0.003922 - 0.0000450.000000 0.000000 0.000000 0.000000 0.040407 0.00000 0.000000 0.212188 -0.000524 - 0.0005240.000006 0.000000 0.000000 0.000000 0.000000 -0.005984 0.000000 0.000000 - 0.0320610.005020 -0.004952 -0.0049520.000000 0.000000 0.000000 -0.000060 0.000000 0.052464 0.000000 0.000000 - 0.2828120.043049 0.380882 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000224 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000224 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000002 0.00003 0.000000 0.000000 0.000000 0.001175 - 0.0029030.000000 0.000000 0.000000 0.000000 0.000000 0.002841

0.000000 0.000000 0.000000 0.000003 - 0.0000020.000000 0.000000 0.000000 0.002903 0.001175 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.002841 0.003172 0.003173 - 0.0000430.000000 0.000000 0.000000 0.000000 0.036336 0.000000 0.205625 - 0.031771 - 0.2821270.000000 0.000000 0.000000 0.000000 0.000000 0.215945 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 - 0.000190 - 0.0001140.000000 0.000000 0.000000 0.000373 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000114 - 0.0001900.000000 0.000373 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000014 - 0.0000030.000000 0.000000 0.000000 0.010332 0.001225 -0.000001 0.000000 0.000001 0.000000 0.000000 0.002276 0.008331 0.000000 0.000000 0.000000 0.030302 0.000000 0.000000 0.000000 0.000003 0.000014 0.000000 0.000000 0.00000 0.001225 -0.010331 0.000000 0.000000 0.000000 0.000000 0.000000 0.008331 -0.002276 0.000000 0.000000 0.000000 0.000000 0.030301

NA	8.97845134302228E-01
NB	8.97845134302228E-01
N	1.79569026860446E+00
FOOA	-6.62657729074756E-01
FOOB	-6.62657729074756E-01
ALOC	7.38053483566238E-01
BLOC	7.38053483566238E-01
FLA	2.35187405227472E-01
FLB	2.35187405227472E-01
FL	1.13303253952970E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 2.94889278462971E-08

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9957840200E+00

B12H12(2-)-B1(difference)

B12H12(2-)-H13

PROAIM VERSION 0.90

B12H12 OPTIMIZAT -V/T FOR THIS W MOLECULAR SCF E	ION USING VD SET (Renorma AVEFUNCTION = 2.0 NERGY (AU) = -303.3	lized) d=0.75, 0077777000 2680385098	p=1.0725
B12H12(2-) Integ INTEGRATION IS 120 PHI PLANE 80 PATHS WITH	ration of H13 OVER ATOM H 13 S 96 THETA PLANES 141 POINTS PER PATH		
RADIUS OF BETA	SPHERE 1.3120 WITH	120 POINTS PER	PATH
VOL1 RHO CONTOU	R THRESHOLD= 0.0010		
VOL2 RHO CONTOU	R THRESHOLD= 0.0020		
INSERTION LIMIT	0SED = 15	D CUDENCE 1	
FOR SUPERCE # 1	NUMBER OF INCEPTED DATE	c = 30	
TOTAL NUMBER OF	INSERTED PATHS= 30	5 - 50	
RESULTS OF THE	INTEGRATION		
N	1.73930321163559E+00	NET CHARGE	-7.39303211635592E-01
G	8.56592185636492E-01		
К	8.56726349009029E-01	E (ATOM)	-8.57392685061498E-01
L	1.34163372535944E-04		
I	1.74819248524263E-01		
R(-1)	1.72593404948332E+00		
R1	2.41988375263777E+00		
R2	4.20577669621930E+00		
R4	2.1/2141882398856+01		
GR (-1)	-2.632/00390/8098E+00		
GRU CP1			
GRI GR2	-0.300390420023072+00		
VNEO	-1.72593404948332E+00	VNEO (COR)	-1 72660497843195E+00
VNET	-2 41010155604970E+01	VNET (COR)	-2 41103844405163E+01
VEET	1 14149708824525E+01	VEET (COR)	1 14194082677715E+01
EHF	-1.18293183290355E+01		1.1.1.1.1.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0
	1.102501000500000.01	VREP (COR)	2.23913339117455E+01
		V (ATOM)	-1.71905052877084E+00
EL DX	-6.12392827532609E-06		
EL DY	-5.94151331159713E-06		
EL DZ	2.71748299310967E-01		
EL DIPOLE MAG	2.71748299444922E-01		
QXX	-2.71918910820894E-01	QXX (DIAG)	-2.71846156363324E-01

QXY	-3.17248602973391E-05		
QXZ	1.65486481635199E-05		
QYY	-2.71859990107817E-01	QYY (DIAG)	-2.71932744942060E-01
QYZ	5.77916051216250E-06		
QZZ	5.43778900928711E-01	QZZ (DIAG)	5.43778901305384E-01

QZZ	5.43778900928711E-01
FAXA	5.46101809414013E-07
FAYA	1.93374812368979E-07
FAZA	-3.05155534694159E-01
FBXA	3.94414788716782E-06
FBYA	1.85005323027382E-06
FBZA	4.26358577491424E+00
RHO*L	9.30195406499754E-02
VOL1	8.78980973569109E+01
VOL2	6.83937819963783E+01
(VOL1)	1.69959887287177E+00
(VOL2)	1.67060530937222E+00

THE ATOMIC OVERLAP MATRIX AOM :

Ν Ν

0.000062							
0.000108	0.000186						
-0.000001	-0.000002	0.000000					
0.000000	0.000000	0.000000	0.000000				
0.000139	0.000240	-0.000003	0.000000	0.000309			
0.000000	-0.000001	0.000000	0.000000	-0.000001	0.000000		
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
0.000000							
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
0.000000							
0.000000							
0.000107	0.000186	-0.000002	0.000000	0.000240	-0.000001	0.00000	
0.000000							
0.000000	0.000186						
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
0.000000							
0.000000	0.000000	0.000000					
0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	0.000000	
0.00000							
0.000000	0.000000	0.000000	0.000000				
0.000246	0.000424	-0.000005	0.000000	0.000544	-0.000001	0.00000	
0.000000							
0.000000	0.000421	0.000000	0.000000	0.004247			
0.000000	0.000000	0.000001	0.000000	0.000000	0.000000	0.00000	
0.000002							
0.000000	0.000000	0.000000	0.000000	-0.000001	0.001270		
0.000000	0.000000	0.000000	-0.000001	0.000000	0.000000	0.00000	
0.000000							
0.000002	0.000000	0.000000	0.00000	0.000000	0.000000	0.001270	
0.000705	0.001215	-0.000014	0.000000	0.001562	-0.00004	0.000000	-
0.000001							

0.00000	0.202	0.00000	-0.000	0.08178	0.000		0.00041	0.000	0.00000	0.000	0.0000	0.000	0.0010	0.000	0.00000	-0.000	0.0425	0.00	0.00000	0.000	0.000		0.00000	0.000	0.000			0.000	-0.000	0.0748	0.0000	0.00	0.0000	0.000	0.0000	0.000	0.0000	00000	-0.00	0.000
8	2397	ő	084	99		1013	5	1000	8	0000			202	0000	8	020		0000	ŭ	0775	0000	2005	202	0000	0001			0000	0079	62 62	202	1433		0000	0	0000	37	0000	0001	0000
	0_00000		0.000000		0.002606	0.002611		0.000308		0.000000		0.000000		-0.000034		-0.000034		0.001332		0.001336	0.000001	0.000000		0.000000	0.000000	0.00000		0.000000	0.000000	0.002464		0.002472	0.000249	0.000000		0.000000		-0.000001	-0.000001	0.001209
	0.000000		0.180352		0.000001	620000.0-		0.000000		0.000000		0.000000	002340	0.000000		0.000000	0 000000	0.000001		-0.000015	0.000000	0.00000		0.000000	-0.000015	0.00000		0.000003	0.162358	0.00001	00000	-0.000028		0.000000		0_000000		0.000000	0.000000	0.000001
	0_000000		-0.000017		0.000000	0.000000		0.000000		0.000000		0.000000		0.000000		0.000000	000000	0.000000		0.000000	0.000000	0.000000		0.000003	0.005947	0.00000		0.000000		0.000000		0.000000		0.000000		0.000000		0.000000	0.000000	0.00000
	0_00000		0.000000		0.026907	0.003364		0.000000		0.000000		0.000000		-0.000349		-0.000044	000000	0.014181		0.001720	0.005947	0.000000		0.000000		-0.000002		0.000000		0.02016		0.003181		0.000000		0.000000		-0.000012	-0.000002	0.012138
	0.000000		0.103153		600000 0-	-0-00008		0.000000		0.000000		0.000000	055 LUU U-	0.000000		0.000000	0.0000	-0.000005		-0.000004		0.00001		0.000000		0.002/3/	LELCUU U	0.000000		-0.00008		-0.000007		0.000000		0.00000		0.000000	0.000000	-0.000004
	0.000000		-0.002621		0.000000	0.000000 -		0.000000		0.000000		0.000000	0 000450	0.000000 -		0.00000		0.000000		0.000000 -		-0.002737		0.000000		- TOOOOT -		0.00000		0.00000		0.000000 -		-0.000001		0.000000		0.000000 -	0.000000	0.000000

A58

0.000000	0.000000	0.00000	0.000000	0.000000	0.000000	0.000204	
0.000000				0 000540			
0.000000	0.000000	0.000000	0.000000	-0.000548	0.000000	0.000000	
0.000000							
0.000000	0.000369						
0.000001	0.000002	0.000000	0.000000	0.000003	0.000000	0.000000	
0.000000							
0.000000	0.000002	0.000000	0.000000	0.000025	0.000204	0.000000	
0.000076							
0.000000	0.000000	0.000168	0.000547	0.000000	0.000097	-0.000002	
0.000000							
0.000189	0.000000	0.000369		0 000000	0 000007		
0.001263	0.002178	-0.000024	0.000000	0.002806	-0.000007	0.000000	-
0.000002	0 000174	0 000001		0 000515			
0.000000	0.0021/4	0.000001	0.000000	0.023515	-0.000008	0.000000	
0.0/161/					0 001165		
-0.000078	0.000000	0.158313	-0.000015	0.000000	0.091165	-0.002308	
0.000000		0 0001 67	0 157044				
0.1//834	0.000000	0.000167	0.15/244	0 000000	0 000000	0 000000	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
0.000000				0 000000	0 00000		
0.000000	0.000000	0.000000	0.000000	-0.000003	-0.000001	0.000000	-
0.000010	0 000000	0 000000	0 000000	0 000000	0 000012	0 000007	
0.000139	0.000000	-0.000022	-0.000003	0.000000	-0.000013	0.000227	
-0 000001	0 000000	0 000000	_0 000022	0 000172			
-0.000022	0.000000	0.000000	-0.000022	0.000173	0 000000	0 000000	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
0.000000	0 000000	0 000000			0 000000	0 000000	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000002	
0.000000	_0 000120	0 000000	0 000000	-0 000003	0 000000	0 000001	_
0.000000	-0.000139	0.000000	0.000000	-0.000003	0.000000	0.000001	_
0.000227	0 000000	0 00000	0 00000	0 000000	0 000173		
0.001297	0.000000	-0 000025	0.000000	0 002887	-0 000007	0 00000	-
0 00000237	0.002255	0.000025	0.000000	0.002007	0.000007	0.000000	
0 000002	0 002238	0 000001	0 00000	0 024351	-0.000011	0.00000	
0 075485	0.002200	0.000001	0.000000	0.02.001	0.000011		
-0 000083	0 000000	0 169839	-0 000021	0 00000	0.097700	-0.002503	
0.000000	0.000000	0.109039	0.000021	0.000000	0.05.00		
0 192856	0 00000	0 000181	0.170222	-0.000024	0.00000	0.186613	
-0 000001	-0 000002	-0 000003	0.000000	-0.000003	0.000000	0.000000	_
0.000004	0.000002	0.000000			•••••		
0.000000	-0.000002	0.00000	0.00000	-0.000023	-0.002464	0.000002	-
0.000072	0.000002						
-0.000001	0.000000	-0.000162	-0.005237	-0.000005	-0.000093	0.000002	
0.000000			•••••				
-0.000183	0.000000	-0.000078	-0.000161	0.000003	0.000000	-0.000172	
0.005156					. –		
0.000000	0.00000	0.000000	0.000003	0.00000	0.000000	0.000000	
0.000000							
-0.000004	0.000000	0.000000	0.000000	0.00000	-0.000002	-0.002464	
0.000000							

0.000001	0.000000	-0.000005	0.005237	0.000000	0.000000	
-0.000078	0.00000	0.00000	0.00000	-0.000003	0.000000	
0.00000	0.00000	0.00000	0.000000	0.000000	0.000000	
0.000000	0.000000	0.00000	0.000000	0.000000	0.000000	
0.000301	0.000000	0.00000	-0.000001	0.00000	0.000000	
0.000000	0.000000	0.00000	0.000000	-0.000113	0.000000	
0.000489						
0.00000	0.000000	0.00000	0.000000	0.000000	0.000000	
0.000000	0.00000	0.000000	0.00000	-0.000002	0.000000	
0.000001	0.000000	-0.000003	0.000000	0.000000	-0.000356	
0.000000	0.000000	0.000000	-0.000113	0.000000	0.000000	
0.000000	0.000489					
0.000000	0.000006	0.000000	0.000000	0.000001	0.000000	
					0 000001	
0.000000	0.000000	0.000000	0.00000	0.004941	0.000001	
0 000000	0 000001	0 010745	0 000001		0 000000	
0.000000	0.000001	0.010/45	0.000001	0.000000	0.000000	
0 000000	0 000025	-0 000001	-0 000005	0 000000	_0 000009	_
0.000000	0.000925	-0.000001	-0.000005	0.000000	-0.000009	
0 00000	-0 000006	0 019552				
0.000000	0 000000	0.019352	0 00000	0 00000	0 000000	
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
0 00000	0 000000	0 000000	0 000000	0 000001	-0 004941	
0.000000	0.000000	0.000000	0.000000	0.000001	0.001941	
0 000002	0 000000	0 000000	0 010745	0 000000	0 000000	
0.000002	0.000000	0.000000	0.010/15	0.000000	0.000000	
-0.000925	0,00000	0,00000	0,00000	-0.000006	0.000000	_
-0.000002	0.00000	0.000000	0.019552			
	0.000001 -0.000078 0.000000 0.000000 0.000000 0.000000 0.000000	0.000001 0.000000 -0.000078 0.000000 0.000000 0.000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000001 0.000000 -0.000005 0.005237 -0.000078 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0	0.000001 0.000000 -0.000005 0.005237 0.000000 -0.000078 0.000000 0.000000 0.000000 -0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.000000 0.00	0.000001 0.000000 -0.000005 0.005237 0.000000 0.000000 -0.000078 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.000000 0.000000

NA	8.69651605817797E-01
NB	8.69651605817797E-01
N	1.73930321163559E+00
FOOA	-6.31439588182893E-01
FOOB	-6.31439588182893E-01
ALOC	7.26083392428286E-01
BLOC	7.26083392428286E-01
FLA	2.38212017634904E-01
FLB	2.38212017634904E-01
FL	1.10786362345270E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 3.45525240107631E-08

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9957718517E+00

C2B3H5-C1

PROAIM STELLIX VERSION 0.95

C2B3H5 USING D95 -V/T FOR THIS W MOLECULAR SCF E	AND VAN DU AVEFUNCTION NERGY (AU)	IJNEVELDT BA I = 2 = −152	ASES (Renorm .00085433000 .70856566945	alize	ed)
C1 of C2B3H5 9s/ INTEGRATION IS 120 PHI PLANE 80 PATHS WITH RADIUS OF BETA VOL1 RHO CONTOU VOL2 RHO CONTOU	5p +1d on B OVER ATOM S 96 TH 141 POINTS SPHERE 1. R THRESHOLD R THRESHOLD	C 6s/4,1, C 1 ETA PLANES PER PATH 2242 WITH = 0.0010 = 0.0020	1 + 1d on H 120 POINTS	PER	PATH
INSERTION LIMIT	USED	= 6			
INSERTION LIMIT	REACHED	0 TIMES	FOR SURFACE	1	
INSERTION LIMIT	REACHED	0 TIMES	FOR SURFACE	2	
INSERTION LIMIT	REACHED	0 TIMES 1	FOR SURFACE	3	
INSERTION LIMIT	REACHED	0 TIMES	FOR SURFACE	4	
FOR SURFACE # 1	NUMBER OF	INSERTED PA	THS = 24		
FOR SURFACE # 2	NUMBER OF	INSERTED PA	THS = 16		
FOR SURFACE # 3	NUMBER OF	INSERTED PA	THS = 16		
FOR SURFACE # 4	NUMBER OF	INSERTED PA	THS = 16		
TOTAL NUMBER OF	INSERTED P	ATHS = 72			
RESULTS OF THE	INTEGRATION	E0201218100	NEM OUR	DCE	2 102126459291215100
N	3 9901662	2001065E+00	NET CHA	RGE	-2.10313645858131E+00
G	3 9901773	77328568+01	ድ / እጥ		-3 883492329267335+01
T.	1 1137409	9025115E-04	E (AI	011)	-5.005492529207552701
ц Т	1 1967158	0759378E+00			
$\mathbb{R}(-1)$	1 5934775	27225988+01			
R(1)	1 0898508	4272131E+01			
R2	2 0835617	8133575E+01			
R4	1 1863347	1719430E+02			
GR (-1)	-2.8876465	2944701E+01			
GR0	-1.7410594	6270234E+01			
GR1	-2.6735847	5929877E+01			
GR2	-6.0631705	5744567E+01			
VNEO	-9.5608651	6335590E+01	VNEO (C	OR)	-9.56494748649784E+01
VNET	-1.6039865	8930278E+02	VNET (C	OR)	-1.60467146367984E+02
VEET	4.7590826	7880783E+01	VEET (C	OR)	4.76111472434160E+01
EHF	-7.4006058	3689142E+01			

				VREP (CO	R) 8.278	82282319656	9E+01
E	-2 20 17	11078058301	6648-07	V (ATO	m) -/./00	94004040320	36401
E E		110/0900000					
2		00014567560	14006-03				
		0091450/500	5500.00				
	$\Delta MAG 2.$	0091430//93	0000505400		C) 2 3 5 6		20100
	QXX - 2.	20922849148	5033E+00	QXX (DIA	G) = 2.25	204434/529	3E+00
	QXI = 1.	10221/05402	23866-04				
	QXZ = 1.	593/8/53/1	784E-04	0.000 (0.7.)		22222660014	47.00
	QYY -2.	259/0912624	1328E+00	QYY (DIA	G) -2.25	/332660014	46+00
	QYZ 7.	330954/4120)840E-04		~		
	QZZ 4.	51893761772	2361E+00	QZZ (DIA	G) 4.518	39377007543	6E+00
	FAXA -8.	85823425994	1525E-06				
	FAYA -2 .	33317900894	1759E-05				
	FAZA -2 .	0081830492	7861E+00			÷	
	FBXA 4.	42054564550)771E-06				
	FBYA -2.	87228275479	9324E-05				
_	FBZA 1.	23391706559	9768E+01				
F	CHO*L 1.	03100464608	3994E+03				
	VOL1 1.	34177105214	1986E+02				
	VOL2 1.	17432689673	3593E+02				
N (V	70L1) 8.	07660452663	3413E+00				
N (V	70L2) 8.	05256573090	0993E+00				
THE ATOM	IC OVERLA	P MATRIX A	см :				
0.499995							
0.499995	0.499995						
-0 000119	-0 000116	0 001065					
0 0000000	0 0000110	0.001000	0 001016				
0 000000	0 000000	0 000000	0 000000	0 001016			
-0 000311	-0 000234	0 011536	0 000000	0 000000	0 427239		
-0 000458	-0 000469	0 006713	0 000000	0 000000	0.341317	0.388942	
-0 000515	-0 000574	-0 004073	0 000000	0 000000	-0 025365	0.143502	
0 273805	0.000071	0.0010/3	0.000000		0.000000	01210002	
0 000000	0 000000	0 00000	0 005982	0 00000	0 000000	-0.000002	-
0 000003	0.000000	0.000000	0.005502	0.000000	0.000000	0.000002	
0 189309							
0 000000	0 000000	0 00000	0 00000	0 005982	0 00000	0 00000	
0 000000	0.000000	0.000000	0.000000	0.000002	0.000000	0.000000	
0.000000	0 199309						
0.000000	0.109309	-0 000024	0 000000	0 000000	-0 052051	-0 041635	_
0.000104	0.000085	-0.000934	0.000000	0.000000	-0.052051	-0.041035	
0.005170	• • • • • • •	0 004000					
0.000000	0.000000	0.034332					
-0.000452	-0.000461	-0.007283	0.000000	0.000000	-0.214354	-0.089654	
U.198781							
-0.000002	0.00000	0.004502	0.288901				
0.000000	0.000000	0.00000	-0.005738	0.000001	0.000000	0.000002	
0.000004							
-0.188957	-0.000002	0.000000	0.000003	0.225922			
0.000000	0.000000	0.000000	0.000000	0.005738	0.000001	0.000000	-
0.000001							

-0.000002 0.188956 0.000000 0.000000 0.000000 0.225922 0.000000 0.000000 0.000000 0.000000 -0.007246 0.000000 0.000000 0.000000 0.000000 - 0.257736 0.0000000.000000 0.000001 - 0.253579 0.4023990.000000 0.000000 0.000000 0.007246 0.000000 - 0.000002 - 0.000004 -0.000006 0.257738 - 0.000001 0.000001 - 0.000005 - 0.253582 - 0.000002 0.0000010.402402

> 4.05156822919066E+00 NA NB 4.05156822919066E+00 Ν 8.10313645838131E+00 FOOA -3.12919100611633E+00 FOOB -3.12919100611633E+00 ALOC 7.72340691086281E-01 BLOC 7.72340691086281E-01 FLA 9.22377223074326E-01 9.22377223074326E-01 FLB 4,97394545226498E+00 FL

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 7.40854805071791E-06 FOR SURFACE # 2 EPSD 3.50120080092734E-02 FOR SURFACE # 3 EPSD 3.50158873266090E-02 FOR SURFACE # 4 EPSD 3.50158889376883E-02

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9981467064E+00

C2B3H5-B2

PROAIM STELLIX VERSION 0.95

C2B3H5 USING D95 AND VAN DUIJNEVELDT BASES (Renorma -V/T FOR THIS WAVEFUNCTION = 2.00085433000 MOLECULAR SCF ENERGY (AU) = -152.70856566945	alized)
B2 of C2B3H5 $9s/5p$ +1d on B, C $6s/4,1,1$ + 1d on H	
120 DUT DIANES OF THETA DIANES	
120 PRI PLANES 90 IREIA PLANES 90 DATUS WITH 141 DOINTS DED DATU	
OU PAINS WIIN 141 PUINIS PER PAIN	
RADIUS OF BETA SPHERE 0.9501 WITH 120 POINTS	PER PATH
VOL1 RHO CONTOUR THRESHOLD= 0.0010	
VOL2 RHO CONTOUR THRESHOLD= 0.0020	
INSERTION LIMIT USED = 6	
INSERTION LIMIT REACHED 0 TIMES FOR SURFACE	1
INSERTION LIMIT REACHED 0 TIMES FOR SURFACE	2
INSERTION LIMIT REACHED O TIMES FOR SURFACE	3
FOR SUPPORE # 1 NUMBER OF INCEPTED DATUS - 06	5
FOR SURFACE # 1 NUMBER OF INSERTED PATHS = 90	
FOR SURFACE $\#$ 2 NUMBER OF INSERTED PATHS = 16	
FOR SURFACE # 3 NUMBER OF INSERTED PATHS = 16	

RESULTS OF THE	INTEGRATION		
N	2.87231604364235E+00	NET CHARGE	2.12768395635765E+00
G	2.37041732419884E+01		
K	2.37045970384459E+01	E (ATOM)	-2.37248485868338E+01
L	4.23796457484551E-04		
I	2.96614502376363E-01		
R(-1)	1.03517273022969E+01		
R1	1.69256697280122E+00		
R2	1.83009501998325E+00		
R4	6.41300259812505E+00		
GR (-1)	-1.91422033685233E+01		
GR0	-6.66307776929486E+00		
GR1	-4.12881317535596E+00		
GR2	-5.16134270585846E+00		
VNEO	-5.17586365114844E+01	VNEO (COR)	-5.17807365490873E+01
VNET	-7.46301385181887E+01	VNET (COR)	-7.46620042893667E+01
VEET	1.75988858925349E+01	VEET (COR)	1.76064003107307E+01
EHF	-3.33266555872079E+01		
		VREP (COR)	2.72082073111048E+01
		V (ATOM)	-4.74537969782619E+01
EL DX	-9.38130097164408E-04		
EL DY	-1.75772490704479E-01		
EL DZ	3.05979875615121E-05		
EL DIPOLE MAG	1.75774996836217E-01		
QXX	-3.51459086902961E-01	QXX (DIAG)	-3.51470410226994E-01
QXY	-3.39600911113033E-03		
QXZ	-2.77480459602437E-05		
QYY	6.69164168906318E-01	QYY (DIAG)	6.69175490320804E-01
QYZ	-1.46436766723505E-04		
QZZ	-3.17705082003356E-01	QZZ (DIAG)	-3.17705080093810E-01
FAXA	1.51605420273468E-04		
FAYA	6.22788868550726E-02		
FAZA	-2.85596089915433E-05		
FBXA	1.69477789893336E-04		
FBYA	4.28858039430607E+00		
FBZA	4.33486067489704E-05		
RHO*L	3.93973998752544E+02		
VOL1	2.18127253695636E+01		
VOL2	1.96439587936249E+01		
N(VOL1)	2.86947328941295E+00		
N(VOL2)	2.86632258544392E+00		
THE ATOMIC O	VERLAP MATRIX AOM :		
0.00000			
0.000000 0.0	00000		
0.000000 0.0	00078 0.332344		
0.000000 0.0	00110 0.470027 0.664751		
0.000000 0.0	00000 0.000000 0.000000	0.00000	
0.000000 0.0	00067 -0.008146 -0.011603	0.000000 0.	038954

TOTAL NUMBER OF INSERTED PATHS= 128

0.000039 0.000000 0.000000 0.000000 0.000000 - 0.0000070.015257 0.000000 -0.013571 0.000004 0.000000 - 0.000024 0.002390 0.0034140.007343 0.000000 0.000078 - 0.009711 - 0.013810 $0.000000 \quad 0.049516 \quad -0.000001 \quad -$ 0.005981 0.117482 0.000000 0.000000 0.000000 -0.000001 0.000016 - 0.000014 0.0000000.000004 -0.000190.013718 0.000000 0.000015 -0.003161 -0.004473 0.000000 0.012985 0.000002 0.005875 0.067910 - 0.0000110.053237 -0.0000440.000000 0.000000 0.000000 $0.000000 \quad 0.000010 \quad -0.017220 \quad -$ 0.000005 0.000002 0.000000 -0.000003 0.019800 0.000000 - 0.000041 0.001807 0.0026150.000000 -0.020046 0.000002 0.015551 0.018252 $0.000000 \quad 0.035441 \quad -0.000002$ 0.048223 0.000000 0.000000 - 0.000001 - 0.0000010.000027 - 0.0000210.000000 0.000005 -0.000029 0.022820 - 0.000017 0.000000 - 0.0000010.038057 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000004 0.00000 0.000000 - 0.0000020.000000 0.000000 0.00000 0.000000 0.001533 0.000087 0.000000 0.000000 0.000000 0.000000 - 0.0000030.035834 0.000002 $0.000000 \quad 0.000001 \quad -0.040085$ 0.000001 0.000000 0.000014 -0.000001 0.085459

NA	1.43615802182117E+00
NB	1.43615802182117E+00
N	2.87231604364235E+00
FOOA	-1.05224055375370E+00
FOOB	-1.05224055375370E+00
ALOC	7.32677419730853E-01
BLOC	7.32677419730853E-01
FLA	3.83917468067470E-01
FLB	3.83917468067470E-01
FL	1.82007548988864E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 1.15987619707011E-05 FOR SURFACE # 2 EPSD 3.38289672895031E-02 FOR SURFACE # 3 EPSD 3.38289672895031E-02

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9980060079E+00

C2B3H5-H6

PROAIM STELLIX VERSION 0.95 C2B3H5 USING D95 AND VAN DUIJNEVELDT BASES (Renormalized) -V/T FOR THIS WAVEFUNCTION = 2,00085433000 MOLECULAR SCF ENERGY (AU) = -152.70856566945 H6 of C2B3H5 9s/5p +1d on B, C 6s/4,1,1 + 1d on H INTEGRATION IS OVER ATOM н 6 120 PHI PLANES 96 THETA PLANES 80 PATHS WITH 141 POINTS PER PATH RADIUS OF BETA SPHERE 0.7940 WITH 120 POINTS PER PATH VOL1 RHO CONTOUR THRESHOLD= 0.0010 VOL2 RHO CONTOUR THRESHOLD= 0.0020 INSERTION LIMIT USED 6 INSERTION LIMIT REACHED **0 TIMES FOR SURFACE** 1 FOR SURFACE # 1 NUMBER OF INSERTED PATHS = 24 TOTAL NUMBER OF INSERTED PATHS= 24 RESULTS OF THE INTEGRATION 1.03048190669061E+00 NET CHARGE -3.04819066906079E-02 Ν 6.36345188075564E-01 G K 6.36422148974628E-01 E(ATOM) -6.36965863509161E-01 7.69608990632914E-05 L 2.05324327728400E-01 Т R(-1) 1.31070142267701E+00 1.14096807564720E+00 R1 R2 1.66541403074919E+00 **R4** 7.23059837922681E+00 -1.85746228541086E+00 GR (-1) GR0 -2.17352618872189E+00 GR1 -3.32380865958111E+00 GR2 -6.38434221456790E+00 VNEO -1.31070142267701E+00 VNEO (COR) -1.31126106938874E+00 VNET -9.03271314293090E+00 VNET (COR) -9.03656995434575E+00 VEET 3.85972833410359E+00 VEET (COR) 3.86137637097376E+00 EHF -4.53656265985268E+00 VREP (COR) 7.76097316731728E+00 V (ATOM) -1.27559678702848E+00 -9.38021532008058E-06 EL DX EL DY -1.65469985021097E-05 EL DZ -8,42764932702719E-02 EL DIPOLE MAG 8.42764954167281E-02 QXX -2.53459609192919E-01 OXX(DIAG) -2.53531502758376E-01 QXY 5.30071821821104E-05 1.29324712546127E-05 QXZ QYY -2.53492420513762E-01 OYY(DIAG) -2.53420527235055E-01

QYZ 7.12654898990188E-06 OZZ 5.06952029706682E-01 5.06952029993431E-01 OZZ (DIAG) FAXA 2.89926834343092E-06 FAYA 2.47269326410777E-06 FAZA -2,44206986404587E-01 FBXA 7.75265988755541E-06 8.09723666100120E-06 FBYA FBZA 2.11583089616130E+00 RHO*L 9.13157357731435E-02 VOL1 4.79055355369642E+01 VOL2 3.65482809586754E+01 N(VOL1) 1.00519327613759E+00 N(VOL2) 9.89018661007735E-01 THE ATOMIC OVERLAP MATRIX AOM : 0.000004 0.000004 0.000004 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.008771 0.000131 0.000132 - 0.0000010.000000 0.000000 0.000395 0.000398 -0.000007 0.000000 0.000000 0.026902 0.083518 0.000610 -0.000013 0.000604 0.000000 0.000000 0.042431 0.132721 0.212053 0.000000 0.000000 0.000002 0.000000 0.00000 0.000000 0.000000 0.000000 0.001843 0.000000 0.000000 0.00000 0.000000 0.000002 0.000000 0.000000 0.000000 0.000000 0.001843 0.000000 0.000000 - 0.007261 - 0.022698 --0.000104 - 0.0001050.000002 0.036236 0.000000 0.000000 0.006272 0.000000 0.000000 0.038117 0.000524 0.000528 - 0.0000120.120112 0.192950 0.00000 0.000000 - 0.0329720.176585 0.000000 0.000000 0.000000 - 0.0000020.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.002541 -0.0021230.000000 0.000000 0.000000 0.000000 0.000002 0.000000 0.000000 0.00000 0.000000 0.002123 0.000000 0.000000 0.000000 0.002541 0.000000 0.000000 0.00000 0.000000 - 0.0000040.000000 0.000001 0.000001 0.000000 - 0.0042040.000000 0.000001 0.000000 - 0.0048840.009632 0.000000 0.000000 0.000004 0.000000 0.000000 0.000001 0.000000 0.000001 0.000000 0.000000 0.004204 0.000000 0.000000 0.000001 - 0.0048840.009633

NA 5.15240953345304E-01

 NB
 5.15240953345304E-01

 N
 1.03048190669061E+00

 FOOA
 -2.36066431042767E-01

 FOOB
 -2.36066431042767E-01

 ALOC
 4.58167056617023E-01

 BLOC
 4.58167056617023E-01

 FLA
 2.79174522302537E-01

 FLB
 2.79174522302537E-01

 FL
 7.94415475647841E-01

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 2.63323810653399E-09

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9955197656E+00

C2B3H5-H8

PROAIM STELLIX VERSION 0.95

C2B3H5 USING D95 -V/T FOR THIS W MOLECULAR SCF E	AND VAN DUIJNEVELDT BAS AVEFUNCTION = 2.0 NERGY (AU) = -152.7	SES (Renormalize 00085433000 70856566945	ed)
H8 of C2B3H5 9s/	5p + 1d on B, C 6s/4, 1, 1	+ 1d on H	
INTEGRATION IS	OVER ATOM H 8		
120 PHI PLANE	S 96 THETA PLANES		
80 PATHS WITH	141 POINTS PER PATH	100	
RADIUS OF BETA	SPHERE 1.2769 WITH	120 POINTS PER	PATH
VOLI RHO CONTOU	R THRESHOLD= 0.0010		
VOLZ RHO CONTOU	R THRESHOLD = 0.0020		
TNSERTION LIMIT	USED = 6		
INSERTION LIMIT	REACHED 0 TIMES FO	DR SURFACE 1	
FOR SURFACE # 1	NUMBER OF INSERTED PATH	IS = 96	
TOTAL NUMBER OF	INSERTED PATHS= 96		
RESULTS OF THE	INTEGRATION		
N	1.70325897554193E+00	NET CHARGE	-7.03258975541928E-01
G	8.62035172573210E-01		
К	8.62075494266486E-01	E (ATOM)	-8.62811991223503E-01
L	4.03216932761300E-05		
I	3.50278355140750E-01		
R(-1)	1.70345754883351E+00		
R1	2.35185417472863E+00		
R2	4.0568854049863/E+00		
R4	2.04022608900061E+01		
GR (-1)			
GRU	-3.1/003230344309E+00 -6 735779671009665+00		
GRI CP2			
VNEO	-1.70345754883351E+00	VNEO (COR)	-1.70418489558028E+00
11100	1		

A69

VNI VEI EI	ET -1.43 ET 6.25 HF -7.22	3455264798 3436653560 908444993	L46E+01 978E+00 330E+00	VNET (COI VEET (COI	R) -1.435 R) 6.257	516517701237E+03 703704134438E+00	L 0
				VREP (CO	R) 1.262	233095000592E+0	1
				V (ATO	M) -1.728	34227006450E+00	0
EL I	DX -1.41	493054485	529E-06				
EL I	OY 4.20	537469650	L27E-01				
EL I	DZ -5.13	602155140	060E-07				
EL DIPOLE M	AG 4.20	5374696528	321E-01	0			•
Q	XX - 5.30	518/40031	J98E-01	QXX (DIA	∡00./ (د	219494342/95E-0.	T
Q.	AI /.01	420071224	4285-06				
0.	<u>4</u> 4.04 7 7 00	1429071324	726E-01	OVY (DTA)		107422202605-0-	1
Q.		1423424230	1028-01	QII (DIA	3) -3.303	DI0/42320300E-0.	T
Q.	12 2.07	700754250	526-00 520F-01	077 (DTA)	-1 697	1007520224355-0	1
54 Fa	22 - 1.03 YA 1.50	114339767	307F-07	Q00 (D1A)	3) -1.09	007520224556-0.	-
FA	VA -3 52	2643417080	758E-01				
FA	ZA 1 01	082334304	549E-07				
FB	XA 162	5694936120	593E-06				
FB	YA 3.28	351641514	366E+00				
FB	ZA 1.14	9774494394	453E-06				
RHO	*L 9.75	5765313140	557E-02				
VO	L1 8.69	371061869	513E+01				
VO	L2 6.67	955391266	952E+01				
N (VOL	1) 1.66	3522652154	446E+00				
N (VOL	2) 1.63	8441693681	671E+00				
THE ATOMIC	OVERLAP	MATRIX AON	4:				
0.000000							
0.000000 0	.000000						
0.000000 0	.000000	0.000280					
0.000000 0	.000000	0.000396	0.000561				
0.000000 0	.000000	0.000000	0.000000	0.000000	0 000455		
0.000000 0	.000001	0.000448	0.000633	0.000000	0.003455	0 000105	
0.000004 0	.000000	0.000000	0.000000	0.000000	0.000000	0.003105	
0.000000 0	.000000	0.000339	0.000479	0.000000	0.002312	0.000000	
0.002020	000001	0 004000	0 005800	0 000000	0 029767	0 00000	
0.0000000000	.000001	0.004033	0.003003	0.000000	0.020707	0.000000	
0.022032							
0 000000 0	00000	0 000000	0 00000	0 000001	0 000000	0 00000	
0.00000000000		0.000000	0.000000	0.000001	0.000000	0.000000	
0 000000 0	003103						
0.000000 0	000000	0 003784	0 005366	0 000000	0.026569	0.00000	
0.021720		0.000/01	0.000000	0.000000	0.020009	0.000000	
0.263956 0	. 000000	0.253002					
-0.000004 0	.000000	0.000000	0.000000	0.000000	0.00000	-0.003088	
0.000000							
0.000000 0	.000000	0.00000	0.003207				
0.000000 -0	.000002	0.003575	0.005076	0.000000	0.025350	0.000000	
0.021928			•				

0.265234 0.000000 0.256859 0.000000 0.265266 0.000000 0.000000 0.000000 0.000000 0.000002 0.000000 0.000000 0.00000 0.000000 0.005565 0.000000 0.000000 0.000000 0.010075 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000456 0.009499 0.000011 0.000000 0.00000 0.000000 0.00000 0.000000 0.00000 0.000000 0.000000 0.000000 - 0.0094380.000000 0.000000 0.000000 0.029853

> NA 8.51629487770963E-01 NB 8.51629487770963E-01 Ν 1.70325897554193E+00 FOOA -6.32291333970070E-01 FOOB -6.32291333970070E-01 ALOC 7.42448850174289E-01 BLOC 7.42448850174289E-01 2.19338153800893E-01 FLA FLB 2.19338153800893E-01 FL 1.07096764157186E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 2.29236980888057E-08

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9957547805E+00

(net used) C2B4H6-B1

PROAIM VERSION 0.90

C2B4H6 OPTIMIZATION USING VD SET(Renormalized); d=0	.75, p=1.0725
-V/T FOR THIS WAVEFUNCTION = 1.99999917000	
MOLECULAR SCF ENERGY (AU) = -177.93948958540	
B1 of C2B4H6 $9s/5p + 1d$ on B, $6s/4, 1, 1 + 1p$ on H,	D95* on C
INTEGRATION IS OVER ATOM B 1	
120 PHI PLANES 96 THETA PLANES	
80 PATHS WITH 141 POINTS PER PATH	
RADIUS OF BETA SPHERE 0.9513 WITH 120 POINTS	PER PATH
VOL1 RHO CONTOUR THRESHOLD= 0.0010	
VOL2 RHO CONTOUR THRESHOLD = 0.0020	
INSERTION LIMIT USED = 15	
INSERTION LIMIT REACHED 0 TIMES FOR SURFACE	1
INSERTION LIMIT REACHED 1 TIMES FOR SURFACE	2
INSERTION LIMIT REACHED 2 TIMES FOR SURFACE	3
INSERTION LIMIT REACHED 3 TIMES FOR SURFACE	4
INSERTION LIMIT REACHED 5 TIMES FOR SURFACE	5
EOD CUDENCE $= 1$ NUMBER OF INCEPTED DATUS - 24	5
FOR SURFACE # I NUMBER OF INSERTED PATHS = 54	

FOR SURFACE # 2	NUMBER OF INSERTED PATHS	= 201	
FOR SURFACE # 3	NUMBER OF INSERTED PATHS	= 181	
FOR SURFACE # 4	NUMBER OF INSERTED PATHS	= 171	
FOR SURFACE # 5	NUMBER OF INSERTED PATHS	= 156	
TOTAL NUMBER OF	INSERTED PATHS= 743		
RESULTS OF THE	INTEGRATION		
N	3.88894943048254E+00	NET CHARGE	1.11105056951746E+00
G	2.45060966842442E+01		
К	2.40822016402892E+01	E (ATOM)	-2.40821816520619E+01
L	-4.23895043954916E-01		
I	4.40847431178414E-01		
R(-1)	1.08042761637345E+01		
R1	4.74197746575767E+00		
R2	1.34490868832680E+01		
R4	2.63766931381640E+02		
GR(-1)	-1.97929389357993E+01		
GR0	-9.08099758196928E+00		
GR1	-1.49499498783720E+01		
GR2	-6.02729509829059E+01		
VNEO	-5.40213808186723E+01	VNEO (COR)	-5.40213583997899E+01
VNET	-9.05369736541524E+01	VNET (COR)	-9.05369360812927E+01
VEET	2.49936095364642E+01	VEET (COR)	2.49935991641119E+01
EHF	-4.14611624773989E+01		
		VREP (COR)	4.23725799894490E+01
		V (ATOM)	-4.81643560918437E+01
EL DX	-9.21492740151795E-01		
EL DY	-1.21972524359266E+00		
EL DZ	3.35995663521777E-01		
EL DIPOLE MAG	1.56517463112429E+00		
QXX	3.75647794301294E+00	QXX (DIAG)	6.79891865585010E+00
QXY	-7.88105546911312E+00		
QXZ	2.15087666924656E+00		
QYY	-1.29473420541713E+01	QYY (DIAG)	1.00471859624293E+01
QYZ	3.95418095448295E+00		
QZZ	9.19086411115834E+00	QZZ (DIAG)	-1.68461046182794E+01
FAXA	3.79920530857507E-01		
FAYA	1.78031846309422E-01		
FAZA	-3.07305905263249E-02		
FBXA	-6.14777665806513E+00		
FBYA	4.46689543769777E-01		
FBZA	-7.87442283012301E-01		
RHO*L	3.93007416909655E+02		
VOT.1	6 368453866384108+01		

VOL1 6.36845386639410E+01 VOL2 5.35911057155735E+01 N(VOL1) 3.87147994532255E+00 N(VOL2) 3.85701677713484E+00

THE ATOMIC OVERLAP MATRIX AOM :

0.000000

0.000000 0.000000

0.000004 0.000055 0.252221 -0.000006 -0.000031 -0.1255610.064404 0.000002 - 0.000064 - 0.3297740.160083 0.440058 0.000004 - 0.000045 - 0.2467900.118369 0.332451 0.252242 0.007452 0.000007 0.000100 - 0.002215 - 0.0007160.007268 0.062124 -0.000038 -0.000004 -0.0018410.002449 - 0.000901 - 0.001823 - 0.0030730.016998 -0.000001 - 0.000104 0.006008 - 0.002922 - 0.008616 - 0.006911 - 0.0718240.000551 0.132383 -0.000013 -0.000024 -0.003928 0.005478 -0.001831 -0.003625 -0.0149040.006821 0.004747 0.080965 -0.000002 -0.000036 0.000414 0.000279 -0.001789 -0.001801 -0.021259 0.000652 0.017306 0.002875 0.010045 0.000006 0.003807 0.003795 0.020016 -0.000016 - 0.001053 - 0.0004200.004201 -0.060638 -0.020228 0.006599 0.091890 0.000006 - 0.0000170.004913 - 0.003676 - 0.003551 - 0.001608 - 0.011353 - 0.001608 - 0.011353 - 0.001608 - 0.011353 - 0.0016080.004227 0.051378 - 0.0200630.000402 - 0.0097940.083136 0.000044 0.000005 0.002241 - 0.0029810.001098 0.002221 0.003792 -0.019262 -0.000605 -0.008283 -0.0008030.005033 0.005119 0.022227 0.000000 - 0.000044 - 0.0008320.000443 0.000747 0.000357 - 0.0242800.000346 -0.001233 0.003194 0.017193 0.042810 -0.040169 -0.000380 0.070183 0.000002 - 0.000011 - 0.0004960.000564 - 0.000079 - 0.000308 - 0.003469 -0.002796 0.002137 - 0.0034440.004562 0.026451 0.026940 0.003314 0.001624 0.072769 0.000066 0.000000 0.000051 - 0.0000840.000018 0.000048 0.000304 -0.031409 -0.002149 -0.000884 -0.000003 0.0004670.000514 0.035171 - 0.0010320.000263 0.072964 0.000017 0.000009 0.004225 - 0.0055390.002035 0.004189 0.006684 -0.006795 0.007960 - 0.000985-0.001492 - 0.016243 - 0.000847 0.0130800.013424 0.009854 0.000673 0.020971 -0.000002 -0.000009 -0.000455 0.001044 -0.000080 -0.000128 -0.0057560.001300 0.017369 0.094344 0.002146 -0.001638 -0.001691 -0.001472 0.008896 0.035228 -0.004283 -0.002715 0.198894 1.94447471524127E+00 NA

NB 1.94447471524127E+00 N 3.88894943048254E+00 FOOA -1.16520062222670E+00 FOOB-1.16520062222670E+00ALOC5.99236705467842E-01BLOC5.99236705467842E-01FLA7.79274093014572E-01FLB7.79274093014572E-01FL2.72374880825584E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 2.31255146824405E-02 FOR SURFACE # 2 EPSD 2.32235720699789E-02 FOR SURFACE # 3 EPSD 2.32235720699789E-02 FOR SURFACE # 4 EPSD 2.36358436747061E-02 FOR SURFACE # 5 EPSD 2.36358436747061E-02

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9977365554E+00

C2B4H6-C5

PROAIM VERSION 0.90

C2B4H6 OPTIMIZATION USING VD SET(Renormalized); d=0.75, p=1.0725 -V/T FOR THIS WAVEFUNCTION = 1.99999917000 MOLECULAR SCF ENERGY (AU) = -177.93948958540 C5 of C2B4H6 9s/5p + 1d on B, 6s/4,1,1 + 1p on H, D95* on C INTEGRATION IS OVER ATOM C 5 120 PHI PLANES **96 THETA PLANES** 80 PATHS WITH 141 POINTS PER PATH RADIUS OF BETA SPHERE 1.2270 WITH 120 POINTS PER PATH VOL1 RHO CONTOUR THRESHOLD= 0.0010 VOL2 RHO CONTOUR THRESHOLD= 0.0020 INSERTION LIMIT USED = 15 INSERTION LIMIT REACHED 1 TIMES FOR SURFACE 1 INSERTION LIMIT REACHED 1 TIMES FOR SURFACE 2 INSERTION LIMIT REACHED 2 TIMES FOR SURFACE 3 4 TIMES FOR SURFACE INSERTION LIMIT REACHED 4 INSERTION LIMIT REACHED 0 TIMES FOR SURFACE 5 FOR SURFACE # 1 NUMBER OF INSERTED PATHS = 201 FOR SURFACE # 2 NUMBER OF INSERTED PATHS = 196 FOR SURFACE # 3 NUMBER OF INSERTED PATHS = 181 FOR SURFACE # 4 NUMBER OF INSERTED PATHS = 252 FOR SURFACE # 5 NUMBER OF INSERTED PATHS = - 8 TOTAL NUMBER OF INSERTED PATHS= 838 RESULTS OF THE INTEGRATION N 8.00318113656391E+00 NET CHARGE -2.00318113656391E+00 G 3.87554388145008E+01 ĸ 3.87578333200647E+01 E(ATOM) -3.87578011510631E+01

	L 2.	39450556391	.561E-03			
P /	1 1. _1\ 1	01910/10191	10645+00			
K(-1) I. D1 1	06005673561	0045+01			
	R1 1. R2 1	97843914960	004E+01			
	R2 1.	03984848280)511E+02			
GR (-1 -2	81021351970	077E+01			
U.(GR0 -1	54824937493	989E+01			
	GR1 -2.	16506353887	147E+01			
	GR2 -4.	61076186561	693E+01			
v	NEO -9.	53269925221	451E+01	VNEO (COR) -9.532	269529614268E+01
v	NET -1.	72430338217	858E+02	VNET (COR) -1.724	30266659238E+02
v	EET 5.	34742011346	5809E+01	VEET (COR	.) 5.347	41789428782E+01
	EHF -8.	01983037631	123E+01		-	
				VREP (COR	.) 9.491	46815549275E+01
		i.		V (ATOM) -7.751	55851043104E+01
EL	DX -3.	75707738061	035E-02			
EL	DY 4.	92818359636	5564E-02			
EL	DZ -1.	59336787408	3274E+00			
EL DIPOLE	MAG 1.	59457249586	5191E+00			
	QXX -2.	74362552943	825E+00	QXX (DIAG) -2.918	355078175617E+00
	QXY -1.	80770478114	299E-01			
	QXZ -1.	61359037897	593E-01			·
	QYY -2.	73159720537	/010E+00	QYY (DIAG	-2.564	193378718347E+00
	QYZ 2.	01033918099	9512E-01	000 (0000		
-	QZZ 5.	4/5222/3480	0835E+00	QZZ (DIAG	i) 5.483	348456893963E+00
F.	AXA I.	25146504009	484E-02			
F	AYA -1.	43690236658	3928E-UZ			
F	AZA 1.	20222220220	35285+UU			
r F	$\begin{array}{ccc} BXA & Z \\ DYA & -2 \end{array}$	103333718338	280E-02			
E E	DIA -2. 971 -1	30745017797	3940E-02			
r RH	$0 \times T$. 1	03267915630	1492+03			
101	OL 1.	13877503717	7660E+02			
v	012 1	02125050724	206E+02			
N (VO	L1) 7.	98610430504	920E+00			
N (VO	L2) 7.	96919516555	5806E+00			
	, .,					
THE ATOMI	C OVERLA	P MATRIX AC)M :			
0.499996						
0.499996	0.499996					
-0.000102 -	0.000100	0.000629				
0.000000	0.00000	0.000002	0.000586			
0.00000	0.000000	0.000001	0.000000	0.000588		
0.00000	0.00000	0.000000	0.000000	0.000000	0.000545	
-0.000304 -	0.000265	0.008895	0.000064	0.000021 -	0.000010	0.392178
0.000448	0.000471	-0.005456	-0.000017	-0.000006	0.000002	-0.326465
0.388385						
0.000002	0.000003	0.000060	0.002080	0.005764	0.000008	0.001902 -
0.000594						
0.238452						

0.000002 0.000003 0.000063 0.005720 -0.002155 0.000008 0.002091 -0.000683 -0.0019780.238330 0.163647 -0.000728 -0.000764 0.275449 0.000082 0.000064 - 0.0007050.000001 - 0.0000010.000000 - 0.0554240.043998 0.000229 0.030268 0.000443 - 0.0042220.000000 0.000000 - 0.0000010.000001 0.000000 0.000886 - 0.0000170.000006 0.000021 0.000025 0.000006 - 0.0000060.012122 0.000445 0.000443 0.005771 0.000021 0.000007 - 0.0000030.209247 -0.082402 0.000702 0.000799 - 0.193227 - 0.012257 - 0.0000070.287849 0.000001 0.000002 0.000041 0.001351 0.003744 0.000005 0.001238 -0.000332 0.148655 - 0.001126 - 0.000513 - 0.0000060.000013 0.000404 0.107019 0.000001 0.000002 0.000040 0.003715 - 0.0014000.000005 0.001275 -0.000346 -0.001136 0.148591 -0.0005250.000003 0.000011 0.000421 - 0.0007240.106973 -0.000001 -0.000001 -0.000020 -0.002033 -0.005562 -0.000002 -0.0006610.000248 -0.289563 0.000790 0.000231 -0.000153 -0.000007 -0.000288 -0.178458 0.000418 0.396376 -0.000001 -0.000001 -0.000022 -0.005547 0.002059 -0.000003 -0.0007630.000292 0.178428 -0.0003440.396345 0.000002 0.000004 0.000076 - 0.000077 - 0.000026 - 0.0000060.002407 -0.000854 -0.003247 -0.002739 -0.000850 0.000528 -0.000018 0.000994 -0.001486 -0.001417 0.001346 0.001147 0.129506 NA 4.00159056828196E+00 NB 4.00159056828196E+00 Ν 8.00318113656392E+00 FOOA -2.93672288555361E+00 FOOB -2.93672288555361E+00

ALOC 7.33888896288172E-01 BLOC 7.33888896288172E-01 FLA 1.06486768272835E+00 FLB 1.06486768272835E+00 FL 5.06645825101030E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 2.67904499798986E-02 FOR SURFACE # 2 EPSD 2.67904556159878E-02

FOR SURFACE # 3 2.67904556159878E-02 EPSD FOR SURFACE # 4 EPSD 2.71792536656819E-02 FOR SURFACE # 5 EPSD 2.71792536656819E-02 MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9981460757E+00 C2B4H6-H7 PROAIM VERSION 0.90 C2B4H6 OPTIMIZATION USING VD SET(Renormalized); d=0.75, p=1.0725 -V/T FOR THIS WAVEFUNCTION = 1.99999917000 MOLECULAR SCF ENERGY (AU) = -177.93948958540 9s/5p + 1d on B, 6s/4,1,1 + 1p on H, D95* ON C H7 of C2B4H6 INTEGRATION IS OVER ATOM H 7 120 PHI PLANES 96 THETA PLANES 80 PATHS WITH 141 POINTS PER PATH RADIUS OF BETA SPHERE 1.2634 WITH 120 POINTS PER PATH VOL1 RHO CONTOUR THRESHOLD= 0.0010 VOL2 RHO CONTOUR THRESHOLD= 0.0020 INSERTION LIMIT USED 15 INSERTION LIMIT REACHED **0 TIMES FOR SURFACE** 1 FOR SURFACE # 1 NUMBER OF INSERTED PATHS = 34 TOTAL NUMBER OF INSERTED PATHS= 34 RESULTS OF THE INTEGRATION 1.69472037265554E+00 NET CHARGE -6.94720372655540E-01 Ν 8.51335716242103E-01 G E(ATOM) -8.51409975890623E-01 к 8.51410682561489E-01 L 7.49663193855213E-05 3.00779415289706E-01 Ι R(-1)1.69580989071493E+00 2.33668762276984E+00 R1 4.02132289351011E+00 R2 2.01312588459062E+01 R4 GR (-1) -2.63873526204675E+00 GR0 -3.66399283043740E+00 GR1 -6.48402544052692E+00 GR2 -1.38901806486695E+01 VNEO -1.69580989071493E+00 VNEO(COR) -1.69580918695354E+00 -1.60075402686225E+01 VNET (COR) -1.60075336254905E+01 VNET 7.09621347032448E+00 VEET (COR) 7.09621052539467E+00 VEET -8.05991611573648E+00 EHF VREP (COR) 1.43047166652405E+01 V(ATOM) -1.70281696024995E+00 EL DX -4.08217697351173E-01 EL DY -5.94775837641725E-13

EL DZ

EL DIPOLE MAG

-1.53945332744948E-13

4.08217697351173E-01

0.020048

0.310590

0.000000

	QXX 8.	2418081851:	L461E-01	QXX (DIA	G) 8.243	L80818511461	E-01
	QXY -1.	3809503290	5831E-12				
	QXZ -9.	7043698323	5620E-13				
	QYY -4.	09569170852	2913E-01	QYY (DIA	G) -4.095	569125614901	E-01
	QYZ -1.	51034324554	4802E-05				
	QZZ -4.	14611647658	3549E-01	QZZ (DIA	G) -4.14	511692896561	E-01
	FAXA 3.	5379792866	7319E-01				
	FAYA 2.	67176815814	4027E-14				
•	FAZA 3.	43695086588	3274E-14				
	FBXA -3.	5304395630	5592E+00				
	FBYA 2.	5916816313	L693E-13				
	FBZA 3.	9938974407:	L252E-13				
I	RHO*L 9.	60510946330	5808E-02				
	VOL1 8.	53812197999	9240E+01				
	VOL2 6.	5913543374	5884E+01				
N (V	/OL1) 1.	65624275880)377E+00				
N (V	/OL2) 1.	62811623194	1034E+00				
THE ATOM	IC OVERLA	P MATRIX A	: MC				
0.000000							
0.000000	0.000000						
0.000000	0.00000	0.000201					
0.000000	0.000000	-0.000098	0.000048				
0.000000	0.00000	-0.000267	0.000130	0.000354			
0.000000	0.000000	-0.000201	0.000098	0.000267	0.000201		
0.000000	0.00000	0.000268	-0.000130	-0.000353	-0.000266	0.001794	
-0.000003	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
0.002093							
0.000000	0.000000	-0.002094	0.001021	0.002771	0.002086	-0.012268	
0.000000							
0.094820							
0.000000	0.000000	0.000000	0.000004	-0.000001	0.000000	0.000000	
0.000000							
0.000000	0.003985						
0.000000	0.00000	0.000212	-0.000103	-0.000280	-0.000211	0.001239	
0.000000							
-0.009672	0.000000	0.001107					
0.000000	-0.000002	0.002743	-0.001338	-0.003632	-0.002735	0.016027	
0.000000							
-0.129373	0.00000	0.013146	0.179436				
0.00000	0.00003	-0.002859	0.001394	0.003786	0.002851	-0.016612	
0.00000							
0.135603	0.00000	-0.013861	-0.188620	0.198862			
0.000003	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000 -	

0.000000 0.000000 0.000000 0.002265

0.003423 - 0.001670 - 0.004535 - 0.003416

0.000000 0.000002 -0.000001 0.000000

0.234940 -0.247946 0.000000

0.017052

0.002099

0.000000

0.000000

-0.167441

0.000000 0.000000

0.000000 - 0.000005

0.000000 0.000000

0.000000

0.000000	0.001874	0.000000	0.000000	0.000000	0.000000	0.000000
0.001028						
0.00008	0.000000	0.000000	0.000000	0.00000	0.000000	0.000000 -
0.006302						
0.00000	0.00000	0.000000	0.000000	0.000000	0.006266	0.000000
0.000000						
0.020054						
0.00000	0.000000	0.000000	0.000000	0.00000	0.000000	0.000000
0.000000						
0.00000	0.000000	0.000000	0.000000	0.00000	0.000000	0.000000
0.000000						
0.00000	0.000396					
0.00000	0.000000	0.000000	0.000012	-0.000004	0.000000	0.000000
0.000000						
0.00000	0.010738	0.000000	0.00000	0.00000	0.000000	0.000000
0.004850						
0.000000	0.000000	0.030127				

NA 8.47360186327770E-01 NB 8.47360186327770E-01 N 1.69472037265554E+00 FOOA -6.13747213890230E-01 FOOB -6.13747213890230E-01 ALOC 7.24304993075076E-01 BLOC 7.24304993075076E-01 FLA 2.33612972437540E-01 FLB 2.33612972437540E-01 FL 1.08097315876531E+00

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 1.62162870787286E-08

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9957481695E+00

C2B4H6-H11

PROAIM VERSION 0.90

C2B4H6 OPTIMIZATION USING VD SET(Renormalized); d=0.75, p=1.0725 -V/T FOR THIS WAVEFUNCTION = 1.99999917000 MOLECULAR SCF ENERGY (AU) = -177.93948958540

H1 lof C2B4H6 9s/5p + 1d on B, 6s/4,1,1 + 1p on H, D95* ON C INTEGRATION IS OVER ATOM H 11 120 PHI PLANES 96 THETA PLANES 80 PATHS WITH 141 POINTS PER PATH RADIUS OF BETA SPHERE 0.7846 WITH 120 POINTS PER PATH VOL1 RHO CONTOUR THRESHOLD= 0.0010 VOL2 RHO CONTOUR THRESHOLD= 0.0020

INSERTION LIMIT USED = 15

INSERTION LIMIT	REACHED 0 TIMES FOR	SURFACE 1	
FOR SURFACE # 1	NUMBER OF INSERTED PATHS	= 8	
TOTAL NUMBER OF	INSERTED PATHS= 8		
RESULTS OF THE	INTEGRATION		
N	9.88952122393712E-01	NET CHARGE	1.10478776062878E-02
G	6.27659405023357E-01		
K	6.27753095078199E-01	E (ATOM)	-6.27752574043130E-01
L	9.36900548423319E-05		
I	1.69614501015834E-01		
R(-1)	1.28284759283460E+00		
R1	1.07022233562541E+00		
R2	1.52320349000818E+00		
R4	6.27255375601138E+00		
GR (-1)	-1.80024034261296E+00		
GR0	-2.06933534166171E+00		
GR1	-3.10321413841353E+00		
GR2	-5.82669818943966E+00		
VNEO	-1.28284759283460E+00	VNEO (COR)	-1.28284706045263E+00
VNET	-9.88613346004028E+00	VNET (COR)	-9.88612935729319E+00
VEET	4.28954247950746E+00	VEET (COR)	4.28954069934659E+00
EHF	-4.96883788545462E+00		
		VREP (COR)	8.63062601075809E+00
		V (ATOM)	-1.25550334653511E+00
EL DX	-1.19433272346517E-05		
EL DY	4.38636659492029E-07		
EL DZ	8.36465355724948E-02		
EL DIPOLE MAG	8.36465364262987E-02		
QXX	-2.23863825939210E-01	QXX (DIAG)	-2.23944840148932E-01
QXY	-1.97748178261688E-06		
QXZ	-8.54849407974452E-06		
QYY	-2.23944791880393E-01	QYY (DIAG)	-2.23863777779471E-01
QYZ	4.20103599545057E-08		
QZZ	4.47808617819603E-01	QZZ (DIAG)	4.47808617928404E-01
FAXA	2.99838738516793E-06		
Faya	-7.84881254390866E-08		
FAZA	2.44751859471421E-01		
FBXA	8.35227766491836E-06		
FBYA	-2.39889447974117E-07		
FBZA	-2.23054936637918E+00		
RHO*L	9.11827002216045E-02		
VOLI	4.48541162356032E+01		
VOL2	3.45172460729587E+01		
N(VOL1)	9.65436961494520E-01		
N(VOL2)	9.50789844182718E-01		

THE ATOMIC OVERLAP MATRIX AOM :

0.000004

0.000004	0.000004		
0.000000	0.000000	0.000000	
0.000000	0.000000	0.000000	0.000000

0.000000	0.00000	0.000000	0.00000	0.00000			
0.000000	0.00000	0.000000	0.00000	0.000000	0.000000		
0.000114	0.000115	5 -0.000001	0.000000	0.000000	0.000000	0.006671	
-0.000386	-0.000388	0.000007	0.000000	0.000000	0.000000	-0.023063	
0.080567							
0.000000	0.00000	0.000000	0.000000	0.000001	0.000000	0.000000	
0.000000							
0.001937							
0.000000	0.00000	0.000000	0.000001	0.000000	0.00000	0.000000	
0.000000		•••••		••••••			
0.000000	0.001935	7					
0.000596	0.000599	-0.000014	0.00000	0 00000	0 000000	0 036611	_
0 128720	0100000		0.000000	0.000000	0.000000	0.000011	
0.000000	0.00000	0 206632					
-0 000087	-0 000088	3 0 000002	0 000000	0 000000	0 000000	-0 005311	
0.0000007	0.000000	0.000002	0.000000	0.00000	0.000000	-0.005511	
0.000000	0 00000	-0 029997	0 004445				
0.000000	0.000000		0.0004445	0 00000	0 000000	0 000000	
0 000000	0.00000		0.000000	0.00000	0.000000	0.000000	
0.000000	0 00000	0 000000	0 000000	0 000063			
-0 000516	-0 000510		0.000000	0.000000	0 000000	-0 032988	
0 116768	0.00001.	0.000015	0.000000	0.000000	0.000000	0.052500	
0.000000	0 00000	-0 188434	0 027396	0 000000	0 172982		
0.000000	0.000000		0.02/390	0.000000	0 000000	0 000000	
0 0000000	0.00000	0.000000	0.000000	0.000001	0.000000	0.000000	
0 001332	0 00000	0 000000	0 000000	0 000000	0 000000	0 000970	
0.001002	0.000000		0.000000	0.000000	0.000000	0.0000000	
0.000000	0.000000	0.000000	0.000001	0.000000	0.000000	0.000000	
0.000000	0 001333	>	0 00000	0 00000	0 000000	0 00000	
0.000000	0.001552	. 0.000000	0.000000	0.000000	0.000000	0.000000	
0 000000	0 00000		-0 000001	-0 000002	0 000000	0 000000	
0.000000	0.000000	0.000000	0.000001	0.00002	0.000000	0.000000	
-0 004059	0 00000	-0 000001	0 000000	0 00000	0 000001	-0 002773	
0.00000	0.00000	0.000001	0.000000	0.000000	0.000001	0.002775	
0.000000							
0.0000000	0 00000	0 000000	-0 000002	0 000001	0 000000	0 00000	
0 000000	0.00000		0.000002	0.000002	0.000000	0.000000	
0.000000	-0 004059	• • • • • • • • •	0 00000	0 000000	0 000000	0 00000	_
0.000000	0.00405.		0.000000	0.00000	0.000000	0.000000	
0.002775	0 00858/	1					
0.000000	0.000000		0 00000	0 000000	0 00000	0 000000	
0.000000	0.00000	0.000000	0.000000	0.000000	0.000000	0.000000	
0.000000	0 00000	0 000000	0 000000	0 000000	0 000000	0 00000	
0.000000	0.00000	,	0.000000	0.00000	0.000000	0.000000	
0.000000	0 00000	0 000126					
0.000000	0.000000	0.000120					
	NA A	9447606119	68562-01				
	NR /	0447606110	68568-01				

INW	4.944/00011900305-01
NB	4.94476061196856E-01
N	9.88952122393712E-01
FOOA	-2.20837687396565E-01
FOOB	-2.20837687396565E-01
ALOC	4.46609461461163E-01

BLOC 4.46609461461163E-01 FLA 2.73638373800291E-01 FLB 2.73638373800291E-01 FL 7.68114434997147E-01

ERROR ESTIMATE FOR DIFFERENTIAL EQUATIONS FOR SURFACE # 1 EPSD 1.38635976382147E-09

MAXIMUM DISTANCE REACHED FROM NUCLEUS = 9.9955151541E+00

Appendix B: SADDLE Output

BH

SADDLE BH OPTIMIZATION

В	1	0.0000000	0.00000000	0.2212	3918
н	2	0.0000000	0.00000000	-2.1109	3683
SEARCHING NUMBER OF	BETWEEN A PERFORMED	TOMS 1 2 NEWTON ITERATIO	N STEPS : 6	5	
COORDINAT	ES OF CRIT X = 0.00 Y = 0.00 Z = -7.41 R = 7.41	ICAL POINT 000000E+00 000000E+00 358640E-01 358640E-01			
VECTORS FILENGTHS A	ROM NUCLEI ND ANGLES	TO CRITICAL POI MADE WITH PROJEC	NT TIONS ONTO YZ/	XZ/XY PLA	NES OF MCS
NUCLEUS B 1 H 2	LENG 9.625978 1.369578	TH YZ ANG 20E-01 0.000000 19E+00 0.000000	LE XZ A 00E+00 0.0000 00E+00 0.0000	NGLE 00000E+00 00000E+00	XY ANGLE 9.00000000E+01 9.00000000E+01
EIGENVALU	ES OF THE 26200E-01	HESSIAN -4.69926200E-0	1 5.1815321	4E-01	
THE ELLIP	TICITY IS	0.00000			
EIGENVECT 1.000 0.000 0.000	ORS OF THE 00000E+00 00000E+00 00000E+00	HESSIAN 0.00000000000000000000000000000000000	0 0.0000000 0 0.0000000 0 1.0000000	00E+00 00E+00 00E+00	
EIGENVALU	es of the	STRESSIAN			
-1.174	81550E-01	-1.17481550E-0	1 -8.3111313	5E-02	
THE TRACE	OF THE ST	RESSIAN IS -0.3	1807441		
EIGENVECT 1.000 0.000 0.000	ORS OF THE 00000E+00 00000E+00 00000E+00	STRESSIAN 0.00000000E+0 1.00000000E+0 0.00000000E+0	0 0.0000000 0 0.0000000 0 1.0000000	00E+00 00E+00 00E+00	
VALUES RHO GRAD DEL2	1.795282 4.510281 -4.216991	4469E-01 0375E-17 8564E-01			

G (X)	1.0632480844E-01
K (X)	2.1174960485E-01

L(X) 1.0542479641E-01

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 0.00000000E+00 0.0000000E+00 -5.98402649E-01

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.598403

CRITICAL POINTS					
0.0000000E+00	0.0000000E+00 -7.41358640E-01	в	1	Н	2

BH3

SADDLE BH3

в	1	0.0000000	0.0000000	0.0000000
Н	2	0.0000000	2.25084129	0.0000000
н	3	1.94928573	-1.12542064	0.0000000
н	4	-1.94928573	-1.12542064	0.0000000

SEARCHING BETWEEN ATOMS 1 2 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 6

COORDINATES OF CRITICAL POINT

X = 3.17375445E-18 Y = 9.51101516E-01 Z = 0.0000000E+00 R = 9.51101516E-01

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS 'AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLEUS	LENGT	гн	YZ ANGLE	XZ ANGLE	XY ANGLE
в 1	9.5110151	L6E-01 0.	0000000E+0	0 9.0000000E+0	1 0.0000000E+00
Н 2	1.2997397	77E+00 0.	0000000E+0	0 9.0000000E+0	1 0.0000000E+00
н 3	2.8480974	46E+00 4.	31897585E+0	1 4.68102415E+0	1 0.0000000E+00
н 4	2.8480974	46E+00 4.	31897585E+0	1 4.68102415E+0	1 0.0000000E+00
EIGENVALU	JES OF THE H 745806E-01	HESSIAN -3.73411	847E-01	5.99325496E-01	
THE ELLIP	TICITY IS	0.274	05		
EIGENVECT	CORS OF THE	HESSIAN			
0.000	00000E+00	1.00000	000E+00	0.00000000E+00	
0.000	00000E+00	0.00000	000E+00	1.00000000E+00	
1.000	00000E+00	0.00000	000E+00	0.00000000E+00	
EIGENVALU	JES OF THE S	STRESSIAN			

-1.50207847E-01 -1.18936452E-01 -8.68420865E-02

THE TRACE OF THE STRESSIAN IS -0.35598638

EIGENVECTORS OF THE STRESSIAN

1.00000000E+00	0.0000000E+00	0.0000000E+00
0.0000000E+00	0.0000000E+00	1.00000000E+00
0.0000000E+00	1.00000000E+00	0.0000000E+00

VALUES

RHO	1.8269295555E-01
GRAD	3.1918939349E-16
DEL2	-2.4983215695E-01
G (X)	1.4676417281E-01
K (X)	2.0922221204E-01
L(X)	6.2458039238E-02

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 1.39347508E-19 6.28300077E-01 0.0000000E+00

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.628300

CRITICAL PO	INTS					
3.17375445	E-18 9.51101516E-0	1 0.0000000E+00	в	1	н	2
8.23678077	E-01 -4.75550758E-0	1 0.0000000E+00	в	1	Н	3
-8.236780771	E-01 -4.75550758E-0	1 0.0000000E+00	в	1	н	4

B2H6

SADDLE

B2H6 USING D95 AND VAN DUIJNEVELDT BASES (Renormalized)

в	1	-1.69819114	0.0000000	0.0000000
Н	2	0.0000000	0.0000000	1.85138799
н	3	-2.77735215	1.96393642	0.0000000
н	4	-2.77735215	-1.96393642	0.0000000
в	5	1.69819114	0.0000000	0.0000000
н	6	2.77735215	-1.96393642	0.0000000
H	7	2.77735215	1.96393642	0.00000000
Н	8	0.0000000	0.0000000	-1.85138799

SEARCHING BETWEEN ATOMS 1 2 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 8

COORDINATES OF CRITICAL POINT

х	=	-8.49030624E-01
Y	=	-6.15050639E-18
\mathbf{Z}	=	5.19879641E-01
R	=	9.95554037E-01

VECTORS FROM NUCLEI TO CRITICAL POINT

LENGTHS	ANE	A	NGI	ES	MAD	ΕW	ITH	PR	OJE	ECT:	IONS	C	ONT	0	YZ	/x	Z/3	KΥ	PLA	NES	5 0	FN	ICS	
NUCLEUS			I	ENG	ЭTН			YZ	AN	IGLI	E			x	z	AN	GLE	Ξ			хү		IGLE	
В	1	9.9	956	648	314E	-01	5	.85	238	3749	- 9E+0	1	0	.0	00	00	000	- DEH	-00	з.	.14	761	251	E+01
н	2	1.5	579	166	571E	+00	3	.25	234	47	5E+0	1	0	.0	00	00	000)EH	-00	5.	.74	765	525	E+01
н	3	2.8	301	.025	571E	+00	4	. 35	062	2794	4E+0	1	4	. 4	51	92	626	6E4	-01	1.	.06	963	3087	E+01
H	4	2.8	801	.025	571E	+00	4	.35	062	2794	4E+0	1	4	. 4	51	92	62(6E-1	-01	1.	.06	963	3087	E+01
в	5	2.5	599	733	336E	+00	7	. 84	645	5481	7E+0	1	0	.0	00	00	000)EH	-00	1.	.15	354	1513	E+01
H	6	4.3	156	678	314E	+00	6	.07	414	1732	2E+0	1	2	. 8	19	52	296	6E-1	-01	7.	. 18	485	5248	E+00
H	7	4.:	156	678	314E	+00	6	.07	414	1732	2E+0	1	2	.8	19	52	296	6E-	-01	7.	.18	485	5248	E+00
н	8	2.5	518	682	283E	+00	1	.96	998	3692	2E+0	1	0	.0	00	00	000)E+	-00	7.	.03	001	1308	E+01
EIGENVA	LUES	5 OF	FI	HE	HES	SIA	N																	
-1.6	7080	384	4E-	-01	-	1.0	671	342	1E-	-01		4.	. 60	16	91	50	E-(01						
THE ELL	IPTI	CI	ſY	IS		0	.56	569	1															
EIGENVE	CTOF	s c	DF	THE	E HE	SSI	AN																	
0.0	0000	000)E+	-00	-	6.1	768:	248	9E-	-01		7.	.86	42	75	83	E-(01						
1.0	0000	000)E+	-00		0.0	000	000	0E+	+00		0.	.00	00	00	00	E+(00						
0.0	0000	000)E+	-00		7.8	642	758	3E-	-01		6.	. 17	68	24	89	E-(01						
EIGENVA	LUES	5 OI	5 1	HE	STR	ESS	IAN																	
-1.0	1856	408	8E-	-01	-	8.6	652	621	1E-	-02	-	4.	. 65	94	66	78	E-(02						
THE TRA	CE C)F :	THE	: 57	TRES	SIA	N I	S	-0.	.23	5103	7()											
EIGENVE	CTOF	s c	DF	THE	E ST	RES	SIA	N																
0.0	0000	000)E+	-00	-	5.7	533	458	8E-	-01		8.	. 17	91	81	57	E-(01						
1.0	0000	000)E+	-00		0.0	000	000	0EH	+00		0.	.00	00	00	0.0	E+(00						
0.0	0000	000)E+	-00		8.1	791	815	7E-	-01		5.	.75	33	45	88	E→(01						
VALUES																								
RHO		1.3	145	5963	3761	8E-	01																	
GRAD		1.9	971	.127	7909	3E-	17																	
DEL2		1.8	863	753	3451	4E-	01																	
G (X)		1.4	408	487	7666	7E-	01																	
K (X)		9.4	425	6493	3038	8E-	02																	
L(X)	-	-4.0	659	383	3628	5E-	02																	
COMPONE 2.9	NTS 5354	OF 1764	тн 4е-	IE I -01	DIVE -	RGE 6.5	NCE 814	OF 714	ТН 8Е-	HE 5 -19	STRE	ss 1.	SIA .78	N 67	96	98	E-(01						
MAGNITU	DE C)F :	THE	: DI	IVER	GEN	CE (OF	THE	E St	TRES	S1	[AN				(0.3	3451	97				
SEARCHI NUMBER	NG E OF E	ET	TOF	IN A	ATOM D NE	S WTO	1 N I	rer	3 AT]	ION	STE	PS	5:			6								
COORDIN	ATES	01	F (RII	TICA	L P	OIN	r																
	X V		2- م	. 13	5133 5772	५०/ ४२१	E-0	U 1																
	-	-	0	• • • •		101	<u> </u>	-																

Z = -3.80860217E-19 R = 2.29898398E+00

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCL	EUS	LI	ENGTH		YZ	ANGLE	3	X	Z ANGL	E	XY	ANGL	E
в	1	9.5388	82602E	2-01	2.741	29473	E+01	6.2	587052	7E+01	0.000	00000	0E+00
н	2	2.951	77317E	5+00	4.639	34703	E+01	1.6	670604	5E+01	3.884	44738	1E+01
н	3	1.2874	496228	5+00	2.980	72304	E+01	6.0	192769	6E+01	0.000	00000	0E+00
н	4	2.882	65076E	2+00	1.282	74393	E+01	7.7	172560	7E+01	0.000	00000	0E+00
в	5	3.9279	908981	2+00	7.755	05356	E+01	1.2	449464	4E+01	0.000	00000	0E+00
н	6	5.661	66677E	2+00	6.023	48881	E+01	2.9	765111	9E+01	0.000	00000	0E+00
н	7	5.0400	08350E	2+00	7.719	36924	E+01	1.2	806307	6E+01	0.000	00000	0E+00
Н	8	2.951	773178	:+00	4.639	34703	8E+01	1.6	670604	5E+01	3.884	44738	1E+01
EIGE	NVALUE	S OF TH	HE HES	SIAN									
-	4.3418	8854E-(01 -	-4.052	270084	E-01	5.	8116	3742E-	01			
THE	ELLIPT	ICITY :	IS	0.0)7136								
					_								
EIGE	INVECTO	RS OF !	THE HE	SSIAN	1								
	0.0000	0000E+0	00	8.716	95670	E = 01	4.	9004	7608E-	01			
	0.0000	0000E+0	00	4.900	47608	E-01	-8.	7169	5670E-	01			
	1.0000	0000E+0	00	0.000	00000	E+00	0.	0000	0000E+	00			
DIOD				BOOT									
EIGE	INVALUE	S OF TH	HE STR	(F221)			•			^ 2			
-	.1.42/2	8340E-0	- 10	-1.308	\$24183	E-01	-8.	4890	06548-	02			
TUT	ሞዋልሮም		CUDEC	STAN	TS _	.0 359	144250						
110	INACE	OF INE	DIREC	JUL	15 -	0.550	11233	·					
ETGE	NVECTO	RS OF	THE ST	RESSI	AN								
1101	8 8232	09328-0	1110 01 N1		00000	E+00	4	7064	8248E-	01			
	4 7064	8248E-	01	0.000	000000	E+00	-8	8232	0210E	01			
	0 0000	00005+0	00	1 000	000000		0. 0	0202	00005+	00			
	0.0000	000051	00	1.000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100	0.	0000	00000	00			
VALU	JES												
RHO		1.845	784642	28E-01	L								
GRAD)	5.0040	050482	28E-17	,								
DEL2		-2.582	951961	5E-01									
$G(\mathbf{X})$	•	1.469	343946	58E-01									
K(X)		2 1150	081937	72E-01									
T. (Y)		6 457	379903	88E-02	>								
ц(л)		0.457.	57550.		•								
COME	ONENTS	OF TH	E DTVE	RGENO	E OF	THE S	TRESS	TAN					
	.2 9734	2648E-0	01	5 572	266148	E-01	6	6836	6615E-	13			
	2.9194	20100		5.572			•••	0000	00102	10			
MAGN	IITUDE	OF THE	DIVE	GENCE	COF T	HE ST	RESSI	AN		0.63163	31		
STAF	TING C	OORDINA	ATES										

0.000000 0.000000 0.000000

COORDINATES OF CRITICAL POINT

X =	7.17196068E-15
Y =	8.54063072E-19
Z =	1.01423736E-17
R =	7.17196790E-15

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLEUS	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
B 1	1.69819114E+00	9.00000000E+01	0.00000000E+00	0.00000000E+00
н 2	1.85138799E+00	0.00000000E+00	0.00000000E+00	9.00000000E+01
н 3	3.40157776E+00	5.47348968E+01	3.52651032E+01	0.00000000E+00
н 4	3.40157776E+00	5.47348968E+01	3.52651032E+01	0.00000000E+00
в 5	1.69819114E+00	9.00000000E+01	0.00000000E+00	0.00000000E+00
н 6	3.40157776E+00	5.47348968E+01	3.52651032E+01	0.00000000E+00
Н 7	3.40157776E+00	5.47348968E+01	3.52651032E+01	0.00000000E+00
н 8	1.85138799E+00	0.0000000E+00	0.00000000E+00	9.00000000E+01
EIGENVALUE	ES OF THE HESSIAN			
-1.5812	20842E-01 2.10	472539E-03 1.	.10948387E-01	
EIGENVECTO	DRS OF THE HESSIAL	N		
-1.2359	99048E-16 -1.00	000000E+00 0.	.00000000E+00	
-1.0000	0000E+00 -2.09	467860E-16 0.	.00000000E+00	
0.0000	0.0000E+00 0.000	000000E+00 1.	.00000000E+00	
EIGENVALUE	ES OF THE STRESSI	AN		
-5.6189	95421E-02 -4.65	533502E-02 -2.	.62873798E-03	
THE TRACE	OF THE STRESSIAN	IS -0.10537163	5	
EIGENVECTO	DRS OF THE STRESS.		0000000000000000	
-3.7058	30303E-16 0.000	00000E+00 -1.	.00000000E+00	
-1.0000			485356988-16	
0.0000	0000E+00 1.000	JUUUUUE+00 0.	.0000000E+00	
177 T TTP C				
ANTOF2	1 09212692775-0	1		
CRAD	2 61055500055-1	1		
GRAD	-4.5067729130 r = 0	י ר		
	4 70523490198-02	2		
G(X) V(V)	5 9310201302F_0	2		
	1 12660222025-02			
	1.12009522056-07	2		
COMPONENTS	OF THE DIVERGEN	יד הר דער כייסדכי	TAN	
6 1582	23559E - 13 - 1 29	160260E-19 -2	69230055E-13	
0.1002				
MAGNITUDE	OF THE DIVERGENCE	E OF THE STRESS	IAN 0.0000	00
CRITICAL POINTS

-8.49030624E-01	-6.15050639E-18	5.19879641E-01	в	1	н	2
-8.49030624E-01	9.62010927E-19	-5.19879641E-01	в	1	Н	8
-2.13735907E+00	8.46772431E-01	-3.80860217E-19	в	1	н	3
-2.13735907E+00	-8.46772431E-01	-1.25739511E-18	в	1	н	4
7.17196068E-15	8.54063072E-19	1.01423736E-17				

B4H10

SADDLE	2				
B4H10	USING	VD	SET (Renormalized)	d=0.75, p=1.0725	
	в	1	-1.64935284	0.0000000	-0.90345247
	в	2	1.64935284	0.0000000	-0.90345247
	н	3	-2.61283291	0.0000000	-2.91359814
	н	4	2.61283291	0.0000000	-2.91359814
	в	5	0.0000000	2.71798625	0.77700618
	в	6	0.0000000	-2.71798625	0.77700618
	н	7	-2.50163768	-1.75439713	0.44702994
	н	8	2.50163768	-1.75439713	0.44702994
	H	9	2.50163768	1.75439713	0.44702994
	H :	L 0	-2.50163768	1.75439713	0.44702994
	н	L1	0.0000000	2.73238695	3.02214344
	H I	L2	0.0000000	-2.73238695	3.02214344
	H :	13	0.0000000	4.63882914	-0.37037368
	H I	L4	0.0000000	-4.63882914	-0.37037368

SEARCHING BETWEEN ATOMS 1 2 B-B Bond NUMBER OF PERFORMED NEWTON ITERATION STEPS : 3

COORDINATES OF CRITICAL POINT

 $\begin{array}{rcl} X &=& 1.22279194E-17\\ Y &=& 2.30062967E-18\\ Z &=& -8.23212564E-01\\ R &=& 8.23212564E-01 \end{array}$

NUCLE	JS	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	1.65130350E+00	8.72147948E+01	0.0000000E+00	2.78520520E+00
в	2	1.65130350E+00	8.72147948E+01	0.0000000E+00	2.78520520E+00
н	3	3.34613324E+00	5.13385973E+01	0.0000000E+00	3.86614027E+01
Н	4	3.34613324E+00	5.13385973E+01	0.00000000E+00	3.86614027E+01
в	5	3.15406869E+00	0.0000000E+00	5.95124827E+01	3.04875173E+01
в	6	3.15406869E+00	0.0000000E+00	5.95124827E+01	3.04875173E+01
н	7	3.30902046E+00	4.91133062E+01	3.20180395E+01	2.25737718E+01
н	8	3.30902046E+00	4.91133062E+01	3.20180395E+01	2.25737718E+01
н	9	3.30902046E+00	4.91133062E+01	3.20180395E+01	2.25737718E+01
Н	10	3.30902046E+00	4.91133062E+01	3.20180395E+01	2.25737718E+01
н	11	4.71727689E+00	0.0000000E+00	3.53963832E+01	5.46036168E+01

12 4.71727689E+00 0.00000000E+00 H 3.53963832E+01 5.46036168E+01 H 13 **4.66087962E+00 0.0000000E+00 8.44244965E+01 5.57550350E+00 4.66087962E+00** 0.0000000E+00 8.44244965E+01 5.57550350E+00 н 14 EIGENVALUES OF THE HESSIAN -1.78178604E-01 -1.47958835E-01 2.03548016E-02 THE ELLIPTICITY IS 0.20424 EIGENVECTORS OF THE HESSIAN 0.0000000E+00 3.46944695E-17 1.00000000E+00 0.0000000E+00 -1,0000000E+00 2.08166817E-17 1.0000000E+00 0.0000000E+00 0.0000000E+00 EIGENVALUES OF THE STRESSIAN -6.45684557E-02 -6.25270712E-02 1.14145826E-03 THE TRACE OF THE STRESSIAN IS -0.12595407 EIGENVECTORS OF THE STRESSIAN -1.00000000E+00 0.0000000E+00 6.93889390E-18 0.0000000E+00 -1.0000000E+00 1.38777878E-17 1.0000000E+00 0.0000000E+00 0.0000000E+00 VALUES RHO 1.3783595298E-01 GRAD 9.9792341496E-18 DEL2 -3.0578263729E-01 G(X) 2.4754204698E-02 K (X) 1.0119986402E-01 L(X) 7.6445659322E-02 COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -2.43043830E-13 -7.94168894E-14 1.88926782E-03 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.001889 SEARCHING BETWEEN ATOMS 1 3 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 5 COORDINATES OF CRITICAL POINT X = -2.06761096E+00 -4.04663287E-19 Y = Z = -1.76110078E+00 R = 2.71596963E+00 VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS NUCLEUS LENGTH YZ ANGLE XZ ANGLE XY ANGLE 9.54201489E-01 2.59975760E+01 0.0000000E+00 6.40024240E+01 в 1

3.81462718E+00 7.70070306E+01 0.0000000E+00 1.29929694E+01

В

2

н 1.27495770E+00 2.53178340E+01 0.0000000E+00 6.46821660E+01 3 н 4 4.82024947E+00 7.61668696E+01 0.0000000E+00 1.38331304E+01 в 5 4.25493258E+00 2.90735997E+01 3.97012645E+01 3.66203034E+01 в 4.25493258E+00 2.90735997E+01 3.97012645E+01 3.66203034E+01 6 7 н 2.85344174E+00 8.74901473E+00 3.79399646E+01 5.07007218E+01 5.36952360E+00 5.83162146E+01 1,90705627E+01 2.42823770E+01 н 8 5.83162146E+01 2.42823770E+01 н 9 5.36952360E+00 1.90705627E+01 н 10 2.85344174E+00 8.74901473E+00 3.79399646E+01 5.07007218E+01 5.88390846E+00 2.76702969E+01 н 11 2.05730267E+01 5.43838402E+01 н 12 5.88390846E+00 2.05730267E+01 2.76702969E+01 5.43838402E+01 Н 13 5.26572623E+00 2.31197696E+01 6.17568898E+01 1.53140321E+01 2.31197696E+01 н 5.26572623E+00 6.17568898E+01 1.53140321E+01 14 EIGENVALUES OF THE HESSIAN -4.14545303E-01 -3.72324233E-01 5.77421700E-01 THE ELLIPTICITY IS 0.11340 EIGENVECTORS OF THE HESSIAN 0.0000000E+00 9.04107154E-01 4.27305808E-01 1.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 -4.27305808E-01 9.04107154E-01 EIGENVALUES OF THE STRESSIAN -1.41202139E-01 -1.34208278E-01 -8.47333443E-02 THE TRACE OF THE STRESSIAN IS -0.36014376 EIGENVECTORS OF THE STRESSIAN 8.90992457E-01 0.0000000E+00 4.54018108E-01 1.0000000E+00 0.0000000E+00 0.0000000E+00 -4.54018108E-01 0.0000000E+00 8.90992457E-01 VALUES RHO 1.8314334158E-01 5.2858686965E-16 GRAD DEL2 -2.0944783581E-01 G(X) 1.5389090085E-01 2.0625285980E-01 K(X) L(X) 5.2361958952E-02 COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -2.73140175E-01 -9.81499753E-14 -5.63784669E-01 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.626465 SEARCHING BETWEEN ATOMS 5 10 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 9 COORDINATES OF CRITICAL POINT X = -7.88541936E-01 Y = 2.08481150E+00

Z = 4.69579194E-01

R = 2.27788103E+00

NUCLEU	S LENG	GTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1 2.64057	765E+00	1.90257711E+	01 5.21414774E	+01 3.13305059E+01
в	2 3.48926	724E+00	4.43215067E+	01 3.66905316E	+01 2.31725451E+01
H	3 4.37268	401E+00 2	2.46580415E+	01 2.84753570E	+01 5.06879743E+01
н	4 5.23083	920E+00	4.05607657E+	01 2.34882862E	+01 4.02989085E+01
B	5 1.05698	628E+00	4.82475192E+	01 3.68010171E	+01 1.69089942E+01
B	6 4 87679	977E+00	9 30514852E+	00 8 00059238E	+01 3 61424637E+00
н	7 4 20413	230E+00	2 40465694E+	01 6 59512159E	+01 3.07312710E-01
н	8 5 05621	531E+00	4 05958967E+	01 0.000121002 01 4 94029501E	+01 2 55523410E-01
 U	0 3 30680	571 E+00	9 42520917E4	01 5 734534875	+00 3 90705478E-01
п и	10 1 74491	103E+00 3	7 0050317/51	01 0.10400407015	+01 7 40497164 -01
п.	11 2 74901	4936+00	1.903031/464	01 1 262522075	+01 7.40407104E-01
п 17	10 E E00400		1.00033/4351		+01 0.02113041E+01
п ,,		0416+00 ×	0.2302/30351	01 6 572021005	+01 2.70002350E+01
п		320E+00	1.03439/9467	OL 0.57203100E	+01 1./444/39/6+01
H	14 0.82163.	1965+00	0.03/9059364	00 8.02/681485	+01 7.07282355E+00
EIGENV	ALUES OF THE	HESSIAN		0 400710045 01	
-1.	01022988E-01	-6.531	50933E-02	2.492/12948-01	
THE EL.	LIPTICITY IS	0.5	4670		
EIGENV	ECTORS OF THI	E HESSIAN			
-2.	37235293E-01	-5.190	49518E-01	-8.21161990E-01	
7.	12465604E-01	4.816	62933E-01	-5.10287745E-01	
-6.	60387900E-01	7.061	07936E-01	-2.55537481E-01	
EIGENV	ALUES OF THE	STRESSIA	N		
-7.	77906838E-02	-6.258	51348E-02	-2.85052844E-02	
THE TR	ACE OF THE ST	TRESSIAN	IS -0.16888	110	
EIGENV	ECTORS OF TH	E STRESSI	AN		
-4.	06572178E-02	5.902	71642E-01	-8.06180116E-01	
4.	87589455E-01	-6.925	33728E-01	-5.31651727E-01	
-8.	72125859E-01	-4.147	00404E-01	-2.59653734E-01	
VALUES					
RHO	9.47127	21178E-02			
GRAD	6,99327	47303E-18			
DEL2	8 29332	120365-02			
$C(\mathbf{X})$	0.48072	130068-02			
U(A)	7 10720	00000 <u>0</u> -02			
1 (A) T (V)	-2 0100	03000E-02			
п(х)	-2.0/333	030096-02			
COMDON		DIVEDCENC		PCCTAN	
	6NIS UP THE 1 000027700 01	LIVERGENU	5 OF INS STR	_C 00001070E-00	
-+.	00032110E-0T	-1.407	T22548-0T	-0.3003T0/0E-02	

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN

SEARCHING BETWEEN ATOMS 1 10 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 6

COORDINATES OF CRITICAL POINT

- X = -1.90456356E+00
- Y = 7.34684647E-01
- Z = -3.26222341E-01
- R = 2.06725540E+00

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCI	LEUS	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
В	1	9.68549774E-01	1.52777100E	+01 4.93357379E+01	3.65820715E+01
в	2	3.67468066E+00	7.52703085E	+01 1.15329571E+01	9.03762769E+00
н	3	2.78135228E+00	1.47528042E	+01 1.53162476E+01	6.84751011E+01
Н	4	5.25748475E+00	5.92304041E	+01 8.03284249E+00	2.94807997E+01
В	5	2.96276235E+00	4.00034492E	+01 4.20215148E+01	2.18615370E+01
в	6	4.09455881E+00	2.77196066E	+01 5.74832064E+01	1.56308097E+01
Н	7	2.67393805E+00	1.29025750E	+01 6.85704340E+01	1.68089346E+01
Н	8	5.11938048E+00	5.93941808E	+01 2.90916224E+01	8.68743923E+00
Н	9	4.58828312E+00	7.38045629E	+01 1.28407925E+01	9.70222085E+00
Н	10	1.41217214E+00	2.50118364E	+01 4.62271356E+01	3.31999396E+01
Н	11	4.33932371E+00	2.60342231E	+01 2.74111022E+01	5.05007667E+01
н	12	5.18261529E+00	2.15609529E	+01 4.19884731E+01	4.02464334E+01
н	13	4.34415192E+00	2.60031213E	+01 6.39893697E+01	5.82329764E-01
Н	14	5.70122462E+00	1.95155201E	+01 7.04790241E+01	4.43713565E-01
EIGE	ENVALUI	ES OF THE HESSIA	N		
-	-2.540	33332E-01 -1.7	7833163E-01	5.91668814E-01	
THE	ELLIP'	FICITY IS 0	.42849		
EIGE	ENVECT	ORS OF THE HESSI	AN		
-	-8.587	79169E-02 9.5	7921780E-01	2.73881083E-01	
	5.740	25697E-01 2.7	2256988E-01	-7.72250369E~01	
-	-8.1432	21486E-01 9.0	8955263E-02	-5.73252580E-01	
EIG	ENVALUI	ES OF THE STRESS	IAN		
	-1.208	55458E-01 -1.1	.3908380E-01	-5.53680903E-02	
THE	TRACE	OF THE STRESSIA	N IS -0.2901	3193	
EIG	ENVECT	ORS OF THE STRES	SIAN		
	9.172	97355E-01 3.0	2778015E-01	2.58633016E-01	
-	-1.544	32558E-03 6.5	2200653E-01	-7.58044803E-01	
	3.981	99922E-01 -6.9	4953079E-01	-5.98729522E-01	

VALUES

0.239366

RHO	1.3482172022E-01
GRAD	4.6100908736E-18
DEL2	1.5980231867E-01
G (X)	1.6504125409E-01
K (X)	1.2509067442E-01
L(X)	-3.9950579668E-02

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -1.17185719E-01 3.32820055E-01 2.53714710E-01

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.434595

SEARCHING BETWEEN ATOMS 5 11 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 6

COORDINATES OF CRITICAL POINT

X = -1.64072020E-19 Y = 2.69259426E+00 Z = 1.73302154E+00 R = 3.20209736E+00

NUCLE	EUS	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	4.11356583E+00	2.36378641E+(1 4.08866381E+01	3.98605901E+01
в	2	4.11356583E+00	2.36378641E+(1 4.08866381E+01	3.98605901E+01
н	3	5.97227211E+00	2.59440942E+(1 2.67981825E+01	5.10807520E+01
н	4	5.97227211E+00	2.59440942E+(01 2.67981825E+01	5.10807520E+01
в	5	9.56352511E-01	0.0000000E+0	0 1.52143169E+00	8.84785683E+01
в	6	5.49439230E+00	0.0000000E+(0 7.99796247E+01	1.00203753E+01
H	7	5.26191010E+00	2.83869520E+(01 5.76857306E+01	1.41461625E+01
н	8	5.26191010E+00	2.83869520E+0	01 5.76857306E+01	1.41461625E+01
н	9	2.96516093E+00	5.75304490E+(1.84457629E+01	2.57026297E+01
н	10	2.96516093E+00	5.75304490E+0	1.84457629E+01	2.57026297E+01
н	11	1.28973591E+00	0.0000000E+0	0 1.76804819E+00	8.82319518E+01
н	12	5.57604307E+00	0.0000000E+0	0 7.66328948E+01	1.33671052E+01
н	13	2.86567648E+00	0.00000000E+0	0 4.27775482E+01	4.72224518E+01
H	14	7.62719086E+00	0.0000000E+0	00 7.39917435E+01	1.60082565E+01
EIGEN	VALU	ES OF THE HESSIAN	1		
-4	1.239	52191E-01 -4.03	844210E-01	5.66449326E-01	
THE E	ELLIP	TICITY IS 0	.04979		
EIGEN	IVECT	ORS OF THE HESSI	N		
1		00000E+00 2.30	025132E-18 -	-3.62990061E-20	
2	2.300	53771E-18 -9.99	875512E-01	1.57784878E-02	
(0.000	00000E+00 1.57	784878E-02	9.99875512E-01	
EIGEN	IVALU	ES OF THE STRESS	IAN		
-1	.419	57327E-01 -1.33	3543213E-01 -	-8.34664680E-02	

THE TRACE OF THE STRESSIAN IS -0.35896701 EIGENVECTORS OF THE STRESSIAN 1.17464994E-16 1.00000000E+00 1.63652772E-19 -9.99999029E-01 1.17465108E-16 -1.39320326E-03 -1.39320326E-03 0.0000000E+00 9.99999029E-01 VALUES RHO 1.8463048969E-01 GRAD 1.8733420948E-16 DEL2 -2.6134707571E-01 G (X) 1.4681511920E-01 2.1215188813E-01 K (X) L(X) 6.5336768928E-02 COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -2.74086484E-13 -8.49495085E-03 6.27977766E-01 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.628035 SEARCHING BETWEEN ATOMS 5 13 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 6

COORDINATES OF CRITICAL POINT

X = 1.13544397E-19Y = 3.52300347E+00

Z = 2.64534545E-01

R = 3.53292117E+00

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLE	us	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	4.06154058E+00	2.39594784E+01	6.01585510E+01	1.67126754E+01
в	2	4.06154058E+00	2.39594784E+01	6.01585510E+01	1.67126754E+01
н	3	5.41654656E+00	2.88409494E+01	4.05729032E+01	3.59263762E+01
н	4	5.41654656E+00	2.88409494E+01	4.05729032E+01	3.59263762E+01
в	5	9.54295502E-01	0.0000000E+00	5.75192875E+01	3.24807125E+01
в	6	6.26199488E+00	0.0000000E+00	8.53057552E+01	4.69424481E+00
н	7	5.84315435E+00	2.53490305E+01	6.45788179E+01	1.78977244E+00
н	8	5.84315435E+00	2.53490305E+01	6.45788179E+01	1.78977244E+00
н	9	3.06911454E+00	5.45973289E+01	3.51878820E+01	3.40892702E+00
н	10	3.06911454E+00	5.45973289E+01	3.51878820E+01	3.40892702E+00
н	11	2.86870725E+00	0.0000000E+00	1.59977901E+01	7.40022099E+01
н	12	6.83625015E+00	0.0000000E+00	6.62103295E+01	2.37896705E+01
н	13	1.28381283E+00	0.0000000E+00	6.03599912E+01	2.96400088E+01
Н	14	8.18649009E+00	0.00000000E+00	8.55519242E+01	4.44807580E+00

EIGENVALUES OF THE HESSIAN

-4.39432003E-01 -4.11650179E-01 5.72862655E-01

THE ELLIPTICITY IS 0.06749 EIGENVECTORS OF THE HESSIAN 1.0000000E+00 9.28095801E-20 -1.59220126E-19 -8.63941398E-01 -1.84295053E-19 5.03592357E-01 0.0000000E+00 8.63941398E-01 5.03592357E-01 EIGENVALUES OF THE STRESSIAN -1.43569060E-01 -1.34195566E-01 -8.57366048E-02 THE TRACE OF THE STRESSIAN IS -0.36350123 EIGENVECTORS OF THE STRESSIAN 3.47219200E-19 1.00000000E+00 -5.75411389E-19 5.16652085E-01 -6.72056128E-19 -8.56195435E-01 8.56195435E-01 0.0000000E+00 5.16652085E-01 VALUES 1.8715238892E-01 RHO GRAD 1.1553530283E-17 -2.7821952679E-01 DEL2 1.4697317445E-01 G(X) K (X) 2.1652805615E-01 L(X)6.9554881698E-02 COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -2.00407223E-13 5.44332363E-01 -3.37968498E-01 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.640719 1-2-5 Ring NUMBER OF PERFORMED NEWTON ITERATION STEPS : 7 COORDINATES OF CRITICAL POINT X = -1.15851246E - 17Y = 1.39930475E+00 Z = -3.17042787E-02R = 1.39966387E+00 VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS NUCLEUS LENGTH YZ ANGLE XZ ANGLE XY ANGLE 1 В 2.33202991E+00 4.50124640E+01 3.68725636E+01 2.19511030E+01 в 2 2.33202991E+00 4.50124640E+01 3.68725636E+01 2.19511030E+01 4.41958928E+01 1.97845288E+01 Н 3 4.13403699E+00 3.92000071E+01 н 4 4.13403699E+00 3.92000071E+01 1.97845288E+01 4.41958928E+01 5.84803758E+01 в 5 1.54691095E+00 0.00000000E+00 3.15196242E+01 в **4.19596208E+00** 0.0000000E+00 7.88875374E+01 1.11124626E+01 6 4.05378997E+00 3.81054574E+01 5.10745198E+01 7 6.78219928E+00 H

4.05378997E+00 3.81054574E+01 5.10745198E+01 6.78219928E+00

Ħ

8

Н 9 2.57166641E+00 7.65983300E+01 7,93668466E+00 1.07286072E+01 Н 10 2.57166641E+00 7.65983300E+01 7,93668466E+00 1.07286072E+01 H 11 3.33213056E+00 0.0000000E+00 2.35824932E+01 6.64175068E+01 Н 12 5.13778768E+00 0.0000000E+00 5.35308675E+01 3.64691325E+01 н 13 3.25717903E+00 0.0000000E+00 8.40318104E+01 5.96818964E+00 н 14 6.04762415E+00 0.0000000E+00 8.67897337E+01 3.21026627E+00 EIGENVALUES OF THE HESSIAN -1.00371144E-01 2.99419602E-02 4.26577631E-02 EIGENVECTORS OF THE HESSIAN 1.94980329E-21 1.0000000E+00 3.15360537E-21 -5.25880987E-01 3.70768927E-21 -8.50558163E-01 8.50558163E-01 0.0000000E+00 -5.25880987E-01 EIGENVALUES OF THE STRESSIAN -3.99254597E-02 -2.98658903E-02 -3.02863609E-03 THE TRACE OF THE STRESSIAN IS -0.07281999 EIGENVECTORS OF THE STRESSIAN -9.19265130E-18 -5.81181632E-18 1.00000000E+00 -5.34382792E-01 -1.08757550E-17 -8,45242588E-01 8.45242588E-01 0.0000000E+00 -5.34382792E-01 VALUES 8.3987372112E-02 RHO GRAD 2.6324718745E-18 DEL2 -2.7771420607E-02 G(X) 3.2938565466E-02 K(X) 3.9881420618E-02 L(X) 6.9428551519E-03 COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 9.07432116E-15 -4.93556417E-02 -3.07082269E-02 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.058129 CRITICAL POINTS 1.22279194E-17 2.30062967E-18 -8.23212564E-01 2 B-B Bond 1 -2.06761096E+00 -4.04663287E-19 -1.76110078E+00 ٦ 1 2.06761096E+00 -3.47107465E-19 -1.76110078E+00 2 4 -1.90456356E+00 -7.34684647E-01 -3.26222341E-01 7 1 -7.88541936E-01 -2.08481150E+00 4.69579194E-01 7 6 7.88541936E-01 -2.08481150E+00 4.69579194E-01 6 8 1.90456356E+00 -7.34684647E-01 -3.26222341E-01 2 8 1.90456356E+00 7.34684647E-01 -3.26222341E-01 2 9 7.88541936E-01 2.08481150E+00 4.69579194E-01 5 9 -7.88541936E-01 2.08481150E+00 4.69579194E-01 5 10 -1.90456356E+00 7.34684647E-01 -3.26222341E-01 10 1 -1.64072020E-19 2.69259426E+00 1.73302154E+00 11 5

1.13544397E-19	3.52300347E+00	2.64534545E-01	5	13	
4.89434994E-20	-2.69259426E+00	1.73302154E+00	6	12	
1.04727149E-19	-3.52300347E+00	2.64534545E-01	6	14	
-1.15851246E-17	1.39930475E+00	-3.17042787E-02	1-	·2-5	Ring
-2.94267484E-17	-1.39930475E+00	-3.17042787E-02	1-	2-6	Ring

B5H9

SADD	LE				
B5H9	Using	9s/5p+1d	on B, 6s/4,1,1	+1p on H	
	в	1	0.00000000	2.43415605	-0.27283475
	В	2	2.43415605	0.0000000	-0.27283475
	в	3	0.0000000	-2.43415605	-0.27283475
	в	4	-2.43415605	0.00000000	-0.27283475
	в	5	0.0000000	0.00000000	1.85480774
	н	6	0.00000000	4.64360457	-0.01214649
	н	7	4.64360457	0.00000000	-0.01214649
	н	8	0.0000000	-4.64360457	-0.01214649
	н	9	-4.64360457	0.00000000	-0.01214649
	н	10	1.82099785	1.82099785	-1.96208496
	н	11	1.82099785	-1.82099785	-1.96208496
	H	12	-1.82099785	-1.82099785	-1.96208496
	H	13	-1.82099785	1.82099785	-1.96208496
	н	14	0.0000000	0.0000000	4.07958214

SEARCHING BETWEEN ATOMS 1 5 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 8

COORDINATES OF CRITICAL POINT

Х	=	-3.55919379E-16
Y	=	8.18940526E-01
Z	=	1.10430863E+00
R	=	1.37483131E+00

NUCLE	US	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	2.12260337E+00	0.0000000E+00	4.95488719E+01	4.04511281E+01
в	2	2.91415565E+00	5.66457244E+01	1.63211832E+01	2.82012694E+01
в	3	3.53258563E+00	0.0000000E+00	6.70554524E+01	2.29445476E+01
в	4	2.91415565E+00	5.66457244E+01	1.63211832E+01	2.82012694E+01
в	5	1.11081614E+00	0.0000000E+00	4.74970194E+01	4.25029806E+01
H	6	3.98428502E+00	0.0000000E+00	7.37269826E+01	1.62730174E+01
н	7	4.84563711E+00	7.33967363E+01	9.73001620E+00	1.33208696E+01
H	8	5.57547047E+00	0.0000000E+00	7.84487657E+01	1.15512343E+01
н	9	4.84563711E+00	7.33967363E+01	9.73001620E+00	1.33208696E+01
н	10	3.70444621E+00	2.94438828E+01	1.56940962E+01	5.58693518E+01
H	11	4.43712491E+00	2.42299900E+01	3.65102070E+01	4.37153987E+01
н	12	4.43712491E+00	2.42299900E+01	3.65102070E+01	4.37153987E+01

H 13 3.70444621E+00 2.94438828E+01 1.56940962E+01 5.58693518E+01 H 14 3.08592224E+00 0.0000000E+00 1.53895045E+01 7.46104955E+01 EIGENVALUES OF THE HESSIAN -1.64580032E-01 -4.83504622E-02 1.03899732E-01 THE ELLIPTICITY IS 2.40390 EIGENVECTORS OF THE HESSIAN 3.07619700E-16 -2.62461961E-16 1.00000000E+00 6.49061769E-01 4.04371315E-16 -7.60735710E-01 7.60735710E-01 0.0000000E+00 6.49061769E-01 EIGENVALUES OF THE STRESSIAN -9.70830955E-02 -9.18329343E-02 -2.96326719E-02 THE TRACE OF THE STRESSIAN IS -0.21854870 EIGENVECTORS OF THE STRESSIAN 1.91248120E-16 1.00000000E+00 2.07235443E-16 2.81997114E-16 -7.34884980E-01 -6.78191763E-01 0.0000000E+00 -6.78191763E-01 7.34884980E-01 VALUES RHO 1.3499858609E-01 GRAD 1.0409563458E-16 DEL2 -1.0903076243E-01 9.5645505563E-02 G (X) K (X) 1.2290319617E-01 2.7257690609E-02 L(X) COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -2.78565276E-14 1.89003785E-01 -1.60126463E-01 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.247715 SEARCHING BETWEEN ATOMS 1 6 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 6 COORDINATES OF CRITICAL POINT X = -1.52837156E - 183.38237572E+00 Y = -1.80731906E-01 Z = 3.38720084E+00 R = VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS 'AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS YZ ANGLE NUCLEUS LENGTH XZ ANGLE XY ANGLE 9.52682256E-01 0.0000000E+00 8.44521278E+01 5.54787222E+00 B 1 в 2 **4.16822074E+00** 3.57309390E+01 5.42395603E+01 1.26613586E+00

в 3 5.81726094E+00 0.0000000E+00 8,90928162E+01 9.07183773E-01 в 4 4.16822074E+00 3.57309390E+01 5.42395603E+01 1.26613586E+00 5 3.94764324E+00 в 0.0000000E+00 5.89601485E+01 3.10398515E+01 Н 6 1.27244617E+00 0.0000000E+008.23865407E+01 7.61345933E+00 Н 7 5.74734286E+00 3.60514304E+01 5.38967799E+01 1.68088432E+00 Н 8 8.02775066E+00 0.0000000E+00 8.87966812E+01 1.20331876E+00 9 1.68088432E+00 Η 5.74734286E+00 5.38967799E+01 3.60514304E+01 H 10 2.98783412E+00 3.75512530E+01 3.15053716E+01 3.65983764E+01 Н 11 5.79347464E+00 1.83196937E+01 6.39151461E+01 1.79071741E+01 Н 12 5.79347464E+00 1.83196937E+01 6.39151461E+01 1.79071741E+01 н 13 2.98783412E+00 3.75512530E+01 3.15053716E+01 3.65983764E+01 н 14 5.43973725E+00 0.0000000E+00 3.84469881E+01 5.15530119E+01 EIGENVALUES OF THE HESSIAN -4.34028730E-01 -3.98182816E-01 5.77573963E-01 THE ELLIPTICITY IS 0.09002 EIGENVECTORS OF THE HESSIAN 1.0000000E+00 -5.72725482E-19 -4.55843567E-18 -4.59427364E-18 -1.24660725E-01 -9,92199427E-01 0.0000000E+00 9.92199427E-01 -1.24660725E-01 EIGENVALUES OF THE STRESSIAN -1.40105306E-01 -1.33388826E-01 -8,91865162E-02 THE TRACE OF THE STRESSIAN IS -0.36268065 EIGENVECTORS OF THE STRESSIAN 2.07168258E-19 1.00000000E+00 2.31206137E-18 -8.92457198E-02 2.32132429E-18 -9.96009639E-01 9.96009639E-01 0.0000000E+00 -8.92457198E-02 VALUES RHO 1.8690945034E-01 6.7655281192E-17 GRAD DEL2 -2.5463758215E-01 1.4951062610E-01 G(X) 2.1317002164E-01 K(X) L(X) 6.3659395537E-02 COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 5.04661125E-19 6.37728855E-01 6.86708727E-02 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.641415 SEARCHING BETWEEN ATOMS 5 14 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 6 COORDINATES OF CRITICAL POINT X = -1.27430319E - 18

Y = -8.94102280E-19 Z = 2.80683740E+00

R = 2.80683740E+00

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS 'AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLEUS	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
B 1	3.92549312E+00	0.0000000E+00) 3.83226516E+01	5.16773484E+01
в 2	3.92549312E+00	3.83226516E+0	L 0.0000000E+00	5.16773484E+01
в 3	3.92549312E+00	0.0000000E+00	3.83226516E+01	5.16773484E+01
в 4	3.92549312E+00	3.83226516E+0	L 0.00000000E+00	5.16773484E+01
в 5	9.52029664E-01	0.0000000E+00	0.0000000E+00	9.00000000E+01
н 6	5.43228622E+00	0.0000000E+00	5.87394008E+01	3.12605992E+01
н 7	5.43228622E+00	5.87394008E+0	0.0000000E+00	3.12605992E+01
н 8	5.43228622E+00	0.0000000E+00) 5.87394008E+01	3.12605992E+01
н 9	5.43228622E+00	5.87394008E+0	L 0.0000000E+00	3.12605992E+01
н 10	5.41984196E+00	1.96325839E+0	L 1.96325839E+01	6.16303790E+01
н 11	5.41984196E+00	1.96325839E+0	L 1.96325839E+01	6.16303790E+01
н 12	5.41984196E+00	1.96325839E+0	L 1.96325839E+01	6.16303790E+01
н 13	5.41984196E+00	1.96325839E+0	L 1.96325839E+01	6.16303790E+01
н 14	1.27274474E+00	0.0000000E+00	0.0000000E+00	9.00000000E+01
EIGENVALUE	ES OF THE HESSIAN	1		
-3.723	63680E-01 -3.72	363680E-01	5.08473153E-01	
THE ELLIPS	TICITY IS 0.	00000		
EIGENVECTO	ORS OF THE HESSIA	N		
5.3425	56688E-01 -8.45	322300E-01 (0.00000000000000000000000000000000000	
-8.4532	22300E-01 -5.34	256688E-01	0.0000000E+00	
0.0000	0.000E+00 0.00	000000E+00	L.00000000E+00	
EIGENVALUE	ES OF THE STRESS	AN		
-1.3268	36028E-01 -1.32	2686028E-01 -8	3.42078979E-02	
THE TRACE	OF THE STRESSIAN	IIS -0.349579	95	
			-	
EIGENVECTO	ORS OF THE STRESS	SIAN		
6.940	77898E - 01 - 7.19	899904E-01	0.0000000000000000000000000000000000000	
-7 1980	9904F-01 - 694	1077898F-01 (0.00000000000000000000000000000000000	
> 0 000	0.000 = 0.01	000000E+00	000000000000000000000000000000000000000	
0.0000	0.00 UL+00	100000E+00 .	L.0000000E+00	
VALUES				
VALUE3	1 77215216105-0	11		
GRAD	1 /5730305668-1	6		
	-1 3625/207/05-/	. 0		
	-1.J02J420/40E-(1		
	1 01001750075 /) <u>1</u>		
Λ(A) Ι(V)	3 A063551060m /	12		
м (м)	2.40000000008-0			
COMPONENTS	S OF THE DIVERGEN	ICE OF THE STRE	SSTAN	
COLIF OTHER T	A OF THE DIARCOR	ישאונט שנוג בט איטי	· · · · · · · · · · · · · · · · · · ·	

B19

.

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.606706

SEARCHING BETWEEN ATOMS 1 10 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 9

COORDINATES OF CRITICAL POINT

 $\begin{array}{rcl} X &=& 7.97172045 \text{E-01} \\ Y &=& 1.90177103 \text{E+00} \\ Z &=& -6.77580053 \text{E-01} \\ R &=& 2.17056008 \text{E+00} \end{array}$

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS 'AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLE	US	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	1.04054593E+00	5.00057926E+01	3.07731374E+01	2.28906731E+01
в	2	2.54170582E+00	4.00944371E+01	4.84369637E+01	9.16287878E+00
в	3	4.42713967E+00	1.03735346E+01	7.83493033E+01	5.24551438E+00
в	4	3.77121109E+00	5.89637141E+01	3.02840035E+01	6.16113749E+00
в	5	3.26576243E+00	1.41286426E+01	3.56150127E+01	5.08445240E+01
н	6	2.93188271E+00	1.57772199E+01	6.92569943E+01	1.31184302E+01
н	7	4.34218586E+00	6.23536651E+01	2.59747814E+01	8.81523035E+00
н	8	6.62723373E+00	6.90868371E+00	8.09853177E+01	5.76271997E+00
н	9	5.80186048E+00	6.96793978E+01	1.91344747E+01	6.58592582E+00
н	10	1.64459613E+00	3.85018092E+01	2.81517451E+00	5.13564281E+01
н	11	4.06905152E+00	1.45729751E+01	6.61913081E+01	1.84016726E+01
н	12	4.72903527E+00	3.36169004E+01	5.19260324E+01	1.57607438E+01
н	13	2.91741165E+00	6.38221552E+01	1.58652754E+00	2.61223361E+01
н	14	5.18486340E+00	8.84429970E+00	2.15179620E+01	6.65646827E+01

EIGENVALUES OF THE HESSIAN -1.82212873E-01 -2.29319107E-02 2.83854408E-01

THE ELLIPTICITY IS 6.94582

EIGENVECTORS O	F THE	HESSIAN	
-6.08163375	E-01	-2.17592444E-01	-7.63407386E-01
-6.60896420	E-01	6.71508709E-01	3.35099949E-01
-4.39719492	E-01	-7.08328725E-01	5.52193070E-01

EIGENVALUES OF THE STRESSIAN -8.88780989E-02 -8.34605285E-02 -3.89868087E-02

THE TRACE OF THE STRESSIAN IS -0.21132544

EIGENVECTORS OF THE	STRESSIAN	
1.19370515E-02	6.59111640E-01	7.51950366E-01
7.17003933E-01	5.18517126E-01	-4.65881262E-01
-6.96966905E-01	5.44712619E-01	-4.66396072E-01

VALUES RHO 1.1355555229E-01 GRAD 5.6638123765E-17 DEL2 7.8709624208E-02 G(X) 1.1550142105E-01 K(X) 9.5824014998E-02

L(X) -1.9677406052E-02

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 2.31030164E-01 -1.49766152E-01 -1.08738288E-01

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.296022

1-5-2-10 RING NUMBER OF PERFORMED NEWTON ITERATION STEPS : 3

COORDINATES OF CRITICAL POINT

- X = 1.23152620E+00
- Y = 1.23152620E+00
- z = -2.77838961E-01
- R = 1.76366325E+00

NUCLEU	s	LENG	тн	YZ ANGLE	X2	Z ANGLE	XY A	NGLE
в	1	1.721336	80E+00	4.56798897	S+01 4.43	3196259E+0)1 1.6656	8550E-01
в	2	1.721336	80E+00	4.431962598	E+01 4.50	6798897E+0)1 1.6656	8550E-01
в	3	3.867028	34E+00	1.85703235	E+01 7.14	4295176E+0)1 7.4144	8540E-02
в	4	3.867028	34E+00	7.14295176	2+01 1.85	5703235E+0)1 7.4144	8540E-02
в	5	2.753451	56E+00	2.65684299	2+01 2.65	5684299E+0	01 5.0762	9620E+01
н	6	3.637241	82E+00	1.979086681	E+01 6.97	7340588E+0)1 4.1890	6108E+00
н	7	3.637241	82E+00	6.97340588	E+01 1.97	7908668E+0	01 4.1890	6108E+00
н	8	6.008694	60E+00	1.18270031	E+01 7.78	8968121E+0)1 2.5343	3123E+00
Н	9	6.008694	60E+00	7.78968121	E+01 1.18	3270031E+0)1 2.5343	3123E+00
н	10	1.879265	35E+00	1.82806215	E+01 1.82	2806215E+0)1 6.3666	3105E+01
Н	11	3.535825	86E+00	9.59681835	E+00 5.90	6906145E+0	01 2.8446	4620E+01
Н	12	4.633841	90E+00	4.12042930	C+01 4.12	2042930E+0)1 2.1313	2350E+01
н	13	3.535825	86E+00	5.96906145	E+01 9.59	9681835E+C	0 2.8446	4620E+01
н	14	4.692593	34E+00	1.52149179	2+01 1.52	2149179E+0)1 6.8213	6385E+01
EIGENV	ALUE	S OF THE	HESSIAN					
-1.	5652	1078E-01	2.87	858638E-02	4.90383	1870E-02		
EIGENV	ЕСТО	RS OF THE	HESSIA	N				
-6.	2946	2766E-01	7.07	106781E-01	-3.22143	3796E-01		
-6.	2946	2766E-01	-7.07	106781E-01	-3.22143	3796E-01		
-4.	5558	0126E-01	0.00	000000E+00	8.90194	4781E-01		
EIGENV	ALUE	S OF THE	STRESSI	AN				
-5.	2948	3553E-02	-4.91	299146E-02	-9.1723	5813E-05		

B22

5

5

5

5

6

7

8

9

14

10

10

11

11

12

12

13 13

2

3

4

4

B

В

В

R

Н

Н

н

Н

Η

H

H

Н

Н

Н

Η

Н

н

В

В

В

В

EIGENVECTORS OF THE STRESSIAN 5.12711243E-01 -4.86957063E-01 7.07106781E-01 5.12711243E-01 -4.86957063E-01 -7.07106781E-01 6.88661283E-01 7.25083193E-01 -5.12471356E-15 VALUES RHO 1.1095363237E-01 GRAD 3.0456626572E-17 DEL2 -7.8697026912E-02 G(X) 4.1247868364E-02 6.0922125092E-02 K (X) 1.9674256728E-02 L(X) COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 2.36047981E-03 2.36047981E-03 2.37127971E-03 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.004095 CRITICAL POINTS -3.55919379E-16 8.18940526E-01 1.10430863E+00B 1 8.18940526E-01 5.95729360E-17 1.10430863E+00 2 В 2.56322460E-16 -8.18940526E-01 1.10430863E+00 В 3 -8.18940526E-01 -1.82814063E-16 1.10430863E+00 R 4 -1.52837156E-18 3.38237572E+00 -1.80731906E-01 в 1 3.38237572E+00 -4.54931409E-19 -1.80731906E-01 R 2 3.47604404E-20 -3.38237572E+00 -1.80731906E-01 3 B -3.38237572E+00 7.05647129E-20 -1.80731906E-01 4 В -1.27430319E-18 -8.94102280E-19 2.80683740E+00 B 5 7.97172045E-01 1.90177103E+00 -6.77580053E-01 B 1 1.90177103E+00 7.97172045E-01 -6.77580053E-01 в 2 1.90177103E+00 -7.97172045E-01 -6.77580053E-01 2 R 7.97172045E-01 -1.90177103E+00 -6.77580053E-01 3 B -7.97172045E-01 -1.90177103E+00 -6.77580053E-01 B 3 -1.90177103E+00 -7.97172045E-01 -6.77580053E-01 В 4 -1.90177103E+00 7.97172045E-01 -6.77580053E-01 В 4 -7.97172045E-01 1.90177103E+00 -6.77580053E-01 1 В 1.23152620E+00 1.23152620E+00 -2.77838961E-01 1 B 1.23152620E+00 -1.23152620E+00 -2.77838961E-01 2 B -1.23152620E+00 -1.23152620E+00 -2.77838961E-01 В 3 -1.23152620E+00 1.23152620E+00 -2.77838961E-01 В 1 **B6H10**

THE TRACE OF THE STRESSIAN IS -0.10216999

SADDLE B6H10 OPTIMIZATION USING VD SET(Renormalized) d=0.75, p=1.0725

в	1	2.84236207	-0.11692499	0.0000000
в	2	0.0000000	1.64074943	0.0000000
H	3	4.91057066	0.70327194	0.0000000
В	4	0.70224922	-0.21088470	2.69922671
в	5	0.70224922	-0.21088470	-2.69922671
H	6	2.60859821	-1.77116675	1.79789076
H	7	2.60859821	-1.77116675	-1.79789076
H	8	-0.01128123	3.86981331	0.0000000
В	9	-2.43040813	-0.35556816	1.54955953
в	10	-2.43040813	-0.35556816	-1.54955953
Н	11	1.36769926	0.34747057	4.74802345
Н	12	1.36769926	0.34747057	-4.74802345
Н	13	-0.92214902	-2.10902166	2.63831555
H	14	-0.92214902	-2.10902166	-2.63831555
Н	15	-3.96890378	0.26887843	3.04215026
Н	16	-3.96890378	0.26887843	-3.04215026

SEARCHING BETWEEN ATOMS 1 2 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 6

COORDINATES OF CRITICAL POINT

X = 1.10054963E+00 Y = 9.05150686E-01 Z = 1.35635635E-16 R = 1.42495869E+00

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
2.01954184E+00	5.95960752E+01	3.04039248E+01	0.00000000E+00
1.32375036E+00	5.62415432E+01	3.37584568E+01	0.00000000E+00
3.81536568E+00	8.69669476E+01	3.03305244E+00	0.00000000E+00
2.94788111E+00	7.76521998E+00	2.22463099E+01	6.62981746E+01
2.94788111E+00	7.76521998E+00	2.22463099E+01	6.62981746E+01
3.55939555E+00	2.50672090E+01	4.87554242E+01	3.03387381E+01
3.55939555E+00	2.50672090E+01	4.87554242E+01	3.03387381E+01
3.16629000E+00	2.05574410E+01	6.94425590E+01	0.00000000E+00
4.05687188E+00	6.05010386E+01	1.81051169E+01	2.24550928E+01
4.05687188E+00	6.05010386E+01	1.81051169E+01	2.24550928E+01
4.78812100E+00	3.19843603E+00	6.68851199E+00	8.25797671E+01
4.78812100E+00	3.19843603E+00	6.68851199E+00	8.25797671E+01
4.48745515E+00	2.67915022E+01	4.21975238E+01	3.60103473E+01
4.48745515E+00	2.67915022E+01	4.21975238E+01	3.60103473E+01
5.94633320E+00	5.84884006E+01	6.14254892E+00	3.07705333E+01
5.94633320E+00	5.84884006E+01	6.14254892E+00	3.07705333E+01
	LENGTH 2.01954184E+00 1.32375036E+00 3.81536568E+00 2.94788111E+00 3.55939555E+00 3.55939555E+00 3.16629000E+00 4.05687188E+00 4.05687188E+00 4.78812100E+00 4.78812100E+00 4.48745515E+00 5.94633320E+00 5.94633320E+00	LENGTHYZ ANGLE2.01954184E+005.95960752E+011.32375036E+005.62415432E+013.81536568E+008.69669476E+012.94788111E+007.76521998E+002.94788111E+007.76521998E+003.55939555E+002.50672090E+013.16629000E+002.05574410E+014.05687188E+006.05010386E+014.05687188E+003.19843603E+004.78812100E+003.19843603E+004.48745515E+002.67915022E+014.48745515E+005.84884006E+015.9463320E+005.84884006E+01	LENGTHYZ ANGLEXZ ANGLE2.01954184E+005.95960752E+013.04039248E+011.32375036E+005.62415432E+013.37584568E+013.81536568E+008.69669476E+013.03305244E+002.94788111E+007.76521998E+002.22463099E+012.94788111E+007.76521998E+002.22463099E+013.55939555E+002.50672090E+014.87554242E+013.55939555E+002.50672090E+014.87554242E+013.16629000E+002.05574410E+016.94425590E+014.05687188E+006.05010386E+011.81051169E+014.05687188E+006.05010386E+011.81051169E+014.78812100E+003.19843603E+006.68851199E+004.48745515E+002.67915022E+014.21975238E+015.94633320E+005.84884006E+016.14254892E+005.94633320E+005.84884006E+016.14254892E+00

EIGENVALUES OF THE HESSIAN

-1.62457366E-01 -5.65499135E-02 1.97702799E-02

THE ELLIPTICITY IS 1.87281

EIGENVECTORS OF THE HESSIAN 5.09151191E-01 0.0000000E+00 8.60677097E-01 8.60677097E-01 0.0000000E+00 -5.09151191E-01 1.0000000E+00 0.0000000E+00 0.0000000E+00EIGENVALUES OF THE STRESSIAN -6.83077814E-02 -6.77567601E-02 -6.47921043E-03 THE TRACE OF THE STRESSIAN IS -0.14254375EIGENVECTORS OF THE STRESSIAN 0.0000000E+00 5.56830915E-01 8.30625868E-01 0.0000000E+00 8.30625868E-01 -5.56830915E-01 1.0000000E+00 0.0000000E+00 0.0000000E+00 VALUES RHO 1.2618468000E-01 GRAD 8.2305189803E-17 DEL2 -1.9923699953E-01 G(X) 4.6367251041E-02 9.6176500922E-02 K(X) L(X) 4.9809249882E-02 COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 8.01048857E-02 -4.80802494E-02 2.84811774E-13 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.093426 SEARCHING BETWEEN ATOMS 1 3 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 6 COORDINATES OF CRITICAL POINT 3.73375050E+00 X = Y =2.22008455E-01 Z =-3.35153950E-19 3.74034497E+00 R =VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS NUCLEUS LENGTH YZ ANGLE XZ ANGLE XY ANGLE в 1 9.53650464E-01 6.91816484E+01 2.08183516E+01 0.0000000E+00 0.0000000E+00 в 2 3.99421065E+00 6.91943382E+01 2.08056618E+01 Η 3 1.27142449E+00 6.77577726E+01 2.22422274E+01 0.0000000E+00 в 4 4.08206091E+00 4.79567821E+01 6.08753216E+00 4.13945998E+01 4.13945998E+01 в 5 4.08206091E+00 4.79567821E+01 6.08753216E+00 2.91051993E+00 2.27419382E+01 4.32212623E+01 3.81499372E+01 Н 6 4.32212623E+01 2.27419382E+01 3.81499372E+01 7 2.91051993E+00 Η 4.42465181E+01 0.0000000E+00 Н 8 5.22797694E+00 4.57534819E+01 5.19231707E+00 1.40516579E+01 в 9 6.38212982E+00 7.49824796E+01 7.49824796E+01 1.40516579E+01 B 10 6.38212982E+00 5.19231707E+00

H 11 5.30637973E+00 2.64801691E+01 1.35480685E+00 6.34797258E+01 н 12 5.30637973E+00 2.64801691E+01 1.35480685E+00 6.34797258E+01 н 13 5.83710636E+00 5.29051635E+01 2.35373541E+01 2.68714525E+01 5.83710636E+00 5.29051635E+01 н 14 2.35373541E+01 2.68714525E+01 2.15510954E+01 н 15 8.28177263E+00 6.84462191E+01 3.24262235E-01 Н 16 8.28177263E+00 6.84462191E+01 3.24262235E-01 2.15510954E+01 EIGENVALUES OF THE HESSIAN -4.27293821E-01 -3.97559820E-01 5,70559040E-01 THE ELLIPTICITY IS 0.07479 EIGENVECTORS OF THE HESSIAN 0.0000000E+00 3.74064280E-01 -9.27402779E-01 0.0000000E+00 -9.27402779E-01 -3.74064280E-01 1.0000000E+00 0.0000000E+00 0.0000000E+00 EIGENVALUES OF THE STRESSIAN -1.40838005E-01 -1.35859890E-01 -8.77453258E-02 THE TRACE OF THE STRESSIAN IS -0.36444322 EIGENVECTORS OF THE STRESSIAN 0.0000000E+00 9.35484278E-01 3.53368314E-01 -9.35484278E-01 0.0000000E+00 3.53368314E-01 0.0000000E+00 1,0000000E+00 0.0000000E+00 VALUES 1.8726999512E-01 RHO 4.0609675207E-17 GRAD -2.5429460089E-01 DEL2 G(X) 1.5043478533E-01 K(X) 2.1400843555E-01 L(X) 6.3573650222E-02 COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 5.98411407E-01 2.31365050E-01 4.12580017E-14 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.641581 SEARCHING BETWEEN ATOMS 2 8 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 6 COORDINATES OF CRITICAL POINT X = -7.38687359E-03Y = 2.59356866E+00 Z = 1.30404105E-18 R =2.59357918E+00 VECTORS FROM NUCLEI TO CRITICAL POINT

LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLEUS B 1 B 2 H 3 B 4 B 5 H 6 H 7 H 8	LENGTH 3.93291811E4 9.52847866E- 5.26873116E4 3.95655998E4 3.95655998E4 5.39691619E4 5.39691619E4 1.27625059E4	YZ ANGLE -00 4.64346627E -01 4.44185200E -00 6.89749266E -00 1.03322998E -00 1.03322998E -00 2.89940305E -00 2.89940305E -00 1.74832854E	XZ ANGLE +01 4.35653373E+01 -01 8.95558148E+01 +01 2.10250734E+01 +01 4.51382598E+01 +01 4.51382598E+01 +01 5.39736112E+01 +01 5.39736112E+01 -01 8.98251671E+01	XY ANGLE 0.00000000000000000000000000000000000
B 9 B 10 H 11 H 12	4.11941437E4 4.11941437E4 5.42950690E4 5.42950690E4	-00 3.60290642E -00 3.60290642E -00 1.46706069E -00 1.46706069E -00 6.62842200E	+01 4.57179638E+01 +01 4.57179638E+01 +01 2.44364453E+01 +01 2.44364453E+01 +01 2.44364453E+01	2.20960354E+01 2.20960354E+01 6.09841081E+01 6.09841081E+01
H 13 H 14 H 15 H 16	5.46917311E4 5.46917311E4 5.50930840E4 5.50930840E4	9.62842288E -00 9.62842288E -00 9.62842288E -00 4.59768310E -00 4.59768310E	+00 5.92981410E+01 +00 5.92981410E+01 +01 2.49581912E+01 +01 2.49581912E+01	2.88421053E+01 2.88421053E+01 3.35169528E+01 3.35169528E+01
EIGENVALUE -3.9145	S OF THE HESS 56887E-01 -3	IAN 8.84276775E-01	5.91821653E-01	
THE ELLIPT	CICITY IS	0.01868		
EIGENVECTO 0.0000 1.0000 EIGENVALUE -1.3630	DRS OF THE HES 000000E+00 9 9 9 00000E+00 4 4 9 00000E+00 6 6 9 00000E+00 6 6 9 00000E+00 6 6 9 00000E+00 6 6 9 010000E+00 6 6 9 010000E+00 6 6 9	SIAN 9.99990856E-01 4.27643220E-03 9.00000000E+00 SSIAN 36074791E-01	-4.27643220E-03 9.99990856E-01 0.00000000E+00 -8.46435471E-02	
THE TRACE	OF THE STRESS	SIAN IS -0.3570	2250	
EIGENVECTO 9.9997 -7.5190 0.0000	DRS OF THE STF 71732E-01 (03642E-03 (00000E+00 1	RESSIAN 0.00000000E+00 0.00000000E+00 .00000000E+00	-7.51903642E-03 -9.99971732E-01 0.00000000E+00	
VALUES RHO GRAD DEL2 G(X) K(X) L(X) COMPONENTS -5.5887	1.8129777167 1.5488761465 -1.8391200848 1.5552225087 2.0150025298 4.5978002119 5 OF THE DIVER 28613E-03	YE-01 SE-01 YE-01 SE-01 SE-01 SE-02 RGENCE OF THE ST 5.20630997E-01	RESSIAN 3.45802918E-13	

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.620656

2-4 Bond

NUMBER OF PERFORMED NEWTON ITERATION STEPS : 5

COORDINATES OF CRITICAL POINT

- X = 2.17911909E-01 Y = 9.08930599E-01 Z = 1.00608502E+00 R = 1.37326163E+00
- VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUC	LEUS	LENG	гн	YZ ANGLE		XZ ANGLE	XY ANGLE
в	1	2.992043	58E+00	6.12996221	E+01	2.00512880E+01	1.96487778E+01
в	2	1.263032	65E+00	9.93499213	E+00	3.54093389E+01	5.28031311E+01
н	3	4.803701	56E+00	7.76565940	E+01	2.45372774E+00	1.20895096E+01
в	4	2.0869350	00E+00	1.34196015	E+01	3.24513777E+01	5.42236717E+01
в	5	3.9010132	20E+00	7.13206459	E+00	1.66818777E+01	7.17745403E+01
н	6	3.6776703	34E+00	4.05457141	E+01	4.67815925E+01	1.24331811E+01
Н	7	4.5563782	27E+00	3.16473793	E+01	3.60299328E+01	3.79806811E+01
Н	8	3.1355323	33E+00	4.19179908	E+00	7.07866731E+01	1.87152916E+01
В	9	2.9846139	99E+00	6.25389017	E+01	2.50666635E+01	1.04916401E+01
в	10	3.8915132	23E+00	4.28856465	E+01	1.89617913E+01	4.10503934E+01
Н	11	3.9546620	00E+00	1.69023990	E+01	8.16210164E+00	7.11219564E+01
н	12	5.894659	57E+00	1.12479812	E+01	5.46564745E+00	7.74630391E+01
Н	13	3.6155153	35E+00	1.83804107	E+01	5.65869611E+01	2.68368613E+01
Н	14	4.8671788	38E+00	1.35465001	E+01	3.83206560E+01	4.84839975E+01
Н	15	4.6994312	25E+00	6.29890394	E+01	7.82788820E+00	2.56744866E+01
Н	16	5.8589505	53E+00	4.56105621	E+01	6.27170759E+00	4.37052676E+01
EIG	ENVALUI	ES OF THE H	HESSIAN				
•	-1.6743	26629E-01	-4.78	898016E-02	2.	83207930E-02	
			2	40.000			
THE	EPPT5.	FICITI IS	۷.	49608			
ETG	ENVECTO	ARS OF THE	HESSTA	N			
0101	1 510	188875-01	9 77	9231238-01	1	44428739E-01	
	8 410	66755E-01	-5 03	413728E-02	-5	38583754E-01	
	5.194	22766E-01	-2 02	810530E-01	8	30101126E-01	
	5.151		2.02	0103300 01	•••	501011201 01	
EIG	ENVALUI	ES OF THE S	STRESSI	AN			
	-7.229	36218E-02	-6.93	484749E-02	-9.	51464732E-03	
THE	TRACE	OF THE STR	RESSIAN	IS -0.151	15674		
EIG	ENVECT	ORS OF THE	STRESS	IAN			
-	-9.1223	37826E-01	3.56	248936E-01	2.	02259352E-01	
	1.812	74814E-01	7.93	790502E-01	-5.	80548086E-01	
	3.673	71190E-01	4.92	933397E-01	7.	88704681E-01	
	12.0						
VALU	JES	1 246555		1			
KHO		1.2403350	00005-0	T			

GRAD 5.9285935503E-17 DEL2 -1.8699563806E-01

- G(X) 5.2203917244E-02
- K(X) 9.8952826758E-02
- L(X) 4.6748909514E-02

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 1.90089279E-02 -6.67738230E-02 1.01956381E-01

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.123350

SEARCHING BETWEEN ATOMS 2 9 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 6

COORDINATES OF CRITICAL POINT

Х	=	-1.09381897E+00
Y	-	5.42788593E-01
Z	=	9.79091496E-01
R	=	1.56514521E+00

NUCI	LEUS	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	4.10942372E+00	7.33040060E+01	9.23805324E+00	1.37835826E+01
в	2	1.83318796E+00	3.66321914E+01	3.67936766E+01	3.22823715E+01
Н	3	6.08580889E+00	8.06173085E+01	1.51107020E+00	9.25804084E+00
В	4	2.59860530E+00	4.37224958E+01	1.68597474E+01	4.14484208E+01
В	5	4.16220004E+00	2.55639951E+01	1.04324226E+01	6.20973190E+01
Н	6	4.44215201E+00	5.64572493E+01	3.13932207E+01	1.06217757E+01
Н	7	5.17435143E+00	4.56868654E+01	2.65639993E+01	3.24580654E+01
Н	8	3.63312559E+00	1.73353093E+01	6.63120682E+01	1.56339290E+01
В	9	1.70849326E+00	5.14735245E+01	3.17233365E+01	1.95057373E+01
В	10	2.99793120E+00	2.64769132E+01	1.74371168E+01	5.75078796E+01
Н	11	4.50578175E+00	3.31136925E+01	2.48445369E+00	5.67687684E+01
Н	12	6.23675129E+00	2.32459902E+01	1.79464082E+00	6.66766295E+01
Н	13	3.13282503E+00	3.14121996E+00	5.78286737E+01	3.19801556E+01
Н	14	4.48856346E+00	2.19187341E+00	3.62132765E+01	5.36988531E+01
н	15	3.54927470E+00	5.41006748E+01	4.42612018E+00	3.55393590E+01
Н	16	4.95091150E+00	3.55010785E+01	3.17151973E+00	5.43136482E+01
EIGE	ENVALUE	ES OF THE HESSIAN			
-	-1.3186	53501E-01 -7.47	293706E-03 4.	65461153E-02	
THE	ELLIPI	TICITY IS 16.	64547		
EIGE	INVECTO	ORS OF THE HESSIA	N		

-4.46148755E-01	4.09807414E-01	7.95618735E-01
7.95952822E-01	-2.24740013E-01	5.62095215E-01
4.09158151E-01	8.84053059E-01	-2.25919890E-01

EIGENVALUES OF THE STRESSIAN -5.02222294E-02 -4.20996884E-02 2.38215554E-03 THE TRACE OF THE STRESSIAN IS -0.08993976 EIGENVECTORS OF THE STRESSIAN 1.39112261E-01 7.10072411E-01 -6.90249918E-01 -7.25069315E-01 -4.01711067E-01 -5.59377070E-01 -6.74479256E-01 5.78295245E-01 4.58968782E-01 VALUES RHO 1.0680479036E-01 GRAD 6.5467140175E-17 -9.2790323143E-02 DEL2 G(X) 3.3371090728E-02 K (X) 5.6568671514E-02 L(X) 2.3197580786E-02 COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 1.97997016E-02 4.80140090E-03 6.81953866E-03 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.021485 (3,-3) BETWEEN ATOMS 9 10

NUMBER OF PERFORMED NEWTON ITERATION STEPS : 4

COORDINATES OF CRITICAL POINT

Х	H	-2.45610400E+00
Y	=	-4.53891194E-01
Z	=	-4.20522952E-15
R	=	2.49769175E+00

NUCLE	US	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	5.30917027E+00	8.63610647E+01	3.63893529E+00	0.00000000E+00
в	2	3.22799724E+00	4.95414405E+01	4.04585595E+01	0.00000000E+00
H	3	7.45700490E+00	8.10728800E+01	8.92712002E+00	0.00000000E+00
в	4	4.16173907E+00	4.93675197E+01	3.34743967E+00	4.04347336E+01
в	5	4.16173907E+00	4.93675197E+01	3.34743967E+00	4.04347336E+01
н	6	5.53342883E+00	6.62472052E+01	1.37719349E+01	1.89603896E+01
н	7	5.53342883E+00	6.62472052E+01	1.37719349E+01	1.89603896E+01
H	8	4.96704933E+00	2.94858286E+01	6.05141714E+01	0.00000000E+00
в	9	1.55288842E+00	9.48124906E-01	3.63018082E+00	8.62477255E+01
в	10	1.55288842E+00	9.48124906E-01	3.63018082E+00	8.62477255E+01
н	11	6.14877051E+00	3.84536221E+01	7.48859171E+00	5.05510221E+01
н	12	6.14877051E+00	3.84536221E+01	7.48859171E+00	5.05510221E+01
Н	13	3.47176953E+00	2.62211248E+01	2.84726842E+01	4.94583758E+01
н	14	3.47176953E+00	2.62211248E+01	2.84726842E+01	4.94583758E+01

H 15 3.47356262E+00 2.58182730E+01 1.20097024E+01 6.11399378E+01 н 16 **3.47356262E+00 2.58182730E+01 1.20097024E+01 6.11399378E+01** EIGENVALUES OF THE HESSIAN -2.59572980E-01 -1.92299305E-01 -7.59341966E-03 THE ELLIPTICITY IS 0.34984 EIGENVECTORS OF THE HESSIAN 0.0000000E+00 7.68069340E-01 -6.40366683E-01 -6.40366683E-01 -7.68069340E-01 0.0000000E+00 0.0000000E+000.0000000E+001.0000000E+00 EIGENVALUES OF THE STRESSIAN -8.65130137E-02 -7.76727178E-02 -5.31635884E-03 THE TRACE OF THE STRESSIAN IS -0.16950209 EIGENVECTORS OF THE STRESSIAN -7.46458026E-01 6.65432502E-01 0.0000000E+00 -6.65432502E-01 -7.46458026E-01 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.0000000E+00 VALUES 1.6980610970E-01 RHO 7.8223157467E-17 GRAD DEL2 -4.5946570424E-01 2.7317832149E-02 G(X) K (X) 1.4218425821E-01 L(X) 1.1486642606E-01 COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -1.33718714E-02 -1.59018823E-02 -3.15812499E-12 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.020777 (3,-1) btw non-nuclear attractor and atom 9 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 6 COORDINATES OF CRITICAL POINT X = -2.45839407E+00Y = -4.63370629E-01 3.87414898E-01 Z = R = 2.53150233E+00 VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS NUCLEUS LENGTH YZ ANGLE XZ ANGLE XY ANGLE в 1 5.32617410E+00 8.44001917E+01 3.72948699E+00 4.17126035E+00 2 3.25900490E+00 4.89676352E+01 4.02131280E+01 6.82719231E+00 B

Н	3	7.470795	57E+00	8.052916	22E+01	8.9841029	6E+00	2.97253474E+00
В	4	3.924014	40E+00	5.365486	73E+01	3.6891757	7E+00	3.60963284E+01
ы ц	5	4.423010	548+00	4.000010	915+01	3.2/10023	22+01	4.42302306E+01
л ц	7	5 671005	346+00 416+00	6 331525	64E±01	1 3333045	45+01	2 266520225+01
н	8	4 991486	21E+00	2 935749	84E+01	6 0240321	18+01	4 45149695E+00
в	9	1.167469	37E+00	1.373594	97E+00	5.2981584	9E+00	8.45256920E+01
в	10	1.940173	84E+00	8.264888	58E-01	3.1851831	8E+00	8.67091209E+01
н	11	5.857590	00E+00	4.078221	39E+01	7.9567605	3E+00	4.81107910E+01
н	12	6.455166	97E+00	3.635012	03E+01	7.2160525	3E+00	5.27076787E+01
н	13	3.183515	34E+00	2.885289	57E+01	3.1126471	6E+01	4.49953008E+01
н	14	3.771373	88E+00	2.403807	35E+01	2.5871430	9E+01	5.33492112E+01
н	15	3.140931	09E+00	2.874494	68E+01	1.3481489	4E+01	5.76940671E+01
н	16	3.818343	28E+00	2.330296	03E+01	1.1056179	5E+01	6.39200488E+01
EIGEN	VALUE	S OF THE	HESSIAN					
-2	.7749	8680E-01	-2.03	658623E-0	3.	01365440E-	02	
THE E	LLIPT	ICITY IS	0.	36257				
FICEN	VECTO		UPCCTA	NT				
EIGEN 7	4064	NS OF 111	-6 71	N 885599F-0	1 -2	82671264F-	.03	
-6	7163	03925-01	-7 40	237829F-0	1 -3	020712045	.02	
-1	8731	3774E-02	-2 48	535310E-0	12 9	99515601E-	.01	
-		0,,10,02	2.10	5555100 0	2 .	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	01	
EIGEN	VALUE	S OF THE	STRESSI	AN				
-1	.0003	2664E-01	-8.89	015748E-0	-2.	43922015E-	02	
THE T	RACE	OF THE ST	RESSIAN	IS -0.2	1332644			
PTOPN	The case		CODECC	* * *				
EIGEN	VECTO	KS OF THE	STRESS	1AN 9211275-0	-2	657767345-	.02	
-6	1150	14178-01	-7 00	0012425-0	-2.	600305305-	.02	
-3	1376	14176-01	-7.90	591242E-0	13 0	099393930E-	.01	
-5	.13/0	40196-02	2.70	0440/26-0	5 5.	333037346-	01	
VALUE	s							
RHO		1.694546	9295E-0	1				
GRAD		5.724587	4707E-1	7				
DEL2		-4.510207	5907E-0	1				
G(X)		5.028562	5112E-0	2				
K(X)		1.630408	1488E-0	1				
L(X)		1.127551	8977E-0	1				
COMPO	NENTS	OF THE D	IVERGEN	CE OF THE	STRESS	LAN	01	
-2	.0410	034/6-02	-3.04	939274E-U	-2.	24U36322E-	.01	
MAGNT	TUDE	OF THE DI	VERGENC	E OF THE	STRESST	AN	0.2270	4 1
				1110	0111001	·		

SEARCHING BETWEEN ATOMS 4 11 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 5

COORDINATES OF CRITICAL POINT

х	=	9.97710605E-01
Y	=	1.23300481E-02
z	×	3.57699307E+00

- - R = 3.71355058E+00

- VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLI	EUS	LENGI	гн	YZ A	NGLE	XZ	ANGLE	XY ANGLE
в	1	4.0267015	54E+00	2.7264	8837E+0	1 1.839	948089E+00	6.26626925E+01
в	2	4.0548804	16E+00	1.4243	9999E+0	1 2.36	779224E+01	6.19022223E+01
н	3	5.3462841	L3E+00	4.7044	5737E+0	1 7.425	554877E+00	4.19946750E+01
в	4	9.5267835	51E-01	1.8067	5236E+0	1 1.35	505005E+01	6.71267484E+01
в	5	6.2871342	24E+00	2.6935	8456E+0	0 2.034	462354E+00	8.66234337E+01
н	6	2.9901546	54E+00	3.2597	2626E+0	1 3.661	L65236E+01	3.65116857E+01
н	7	5.8877156	58E+00	1.5878	6876E+0	1 1.763	329673E+01	6.59089561E+01
н	8	5.3565960)3E+00	1.0857	3460E+0	1 4.600	657966E+01	4.18954569E+01
в	9	3.9997292	23E+00	5.8991	1461E+0	1 5.277	757010E+00	3.04570747E+01
в	10	6.1780975	50E+00	3.3702	6282E+0	1 3.413	391382E+00	5.60776552E+01
н	11	1.2729976	51E+00	1.6896	4935E+0	1 1.520	641085E+01	6.69114526E+01
н	12	8.3399706	58E+00	2.5426	6459E+0	0 2.303	304278E+00	8.65683641E+01
н	13	3.0111641	L5E+00	3.9611	6411E+0	1 4.478	388037E+01	1.81636659E+01
н	14	6.8422259)0E+00	1.6295	4162E+0	1 1.80	615353E+01	6.52817791E+01
н	15	5.0019128	37E+00	8.3189	1184E+0	1 2.939	999362E+00	6.13823839E+00
н	16	8.2792592	26E+00	3.6861	7565E+0	1 1.775	570147E+00	5.30809486E+01
EIGEN THE EIGEN	NVALUE 4.3460 ELLIPI NVECTO	SOF THE H 01024E-01 TICITY IS DRS OF THE	HESSIAN -4.238 0.0 HESSIAN	78879E 2530	-01	5.747283	147E-01	
-	9.1733	30198E-01	2.658	53192E	-01	2.963568	359E-01	
-	1.9142	27867E-01	-9.472	13589E	-01	2.571804	459E-01	
	3.4908	35491E-01	1.791	.88440E	-01	9.197993	339E-01	
ETGEI	NVALUE 1 2004	LS OF THE S	1 201	124205	-01	0 001020	A 3 E - 0 3	
	1.3002	./2406-01	-1.301	124305	-01 -	9.001930	5432-02	
THE !	IRACE	OF THE STR	RESSIAN	IS -0	.366959	05		
EIGE	NVECTO	DRS OF THE	STRESSI	AN				
1	5.4802	24733E-01	-7.790	75268E	-01	3.044843	184E-01	
	8.3590	0820E-01	-4.967	50756E	-01	2.33470	567E-01	
:	3.0638	3960E-02	3.824	66224E	-01	9.234613	356E-01	
VALU	ES							
RHO		1.8960591	820E-01					
GRAD		9.5366413	3231E-17	1				
DEL2		-2.8375175	506E-01					

- G(X) 1.4801055445E-01
- K(X) 2.1894849322E-01
- L(X) 7.0937938765E-02

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 1.98531797E-01 1.57434892E-01 6.00045772E-01

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.651349

SEARCHING BETWEEN ATOMS 9 15 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 5

COORDINATES OF CRITICAL POINT

X = -3.06935471E+00 Y = -9.25853457E-02 Z = 2.20686063E+00 R = 3.78150026E+00

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLE	US	LENGTH	H	YZ ANGLE		XZ ANGLE	XY ANGLE
в	1	6.31024734	4E+00	6.95281124	E+01	2.20999634E-0	01 2.04705867E+01
в	2	4.15880050)E+00	4.75645892	E+01	2.46319149E+0	01 3.20492718E+01
Н	3	8.31762175	5E+00	7.36174434	E+01	5.49064772E+0	00 1.53861770E+01
в	4	3.80544548	3E+00	8.23531536	E+01	1.78143294E+0	0 7.43403272E+00
В	5	6.18940093	3E+00	3.75435981	E+01	1.09517327E+0	00 5.24347435E+01
н	6	5.93498452	2E+00	7.30760765	E+01	1.64290775E+0	01 3.95128773E+00
н	7	7.14806397	7E+00	5.25924307	E+01	1.35816148E+0	01 3.40735585E+01
Н	8	5.47015999	9E+00	3.39898784	E+01	4.64161433E+0	01 2.37931693E+01
в	9	9.53654773	3E-01	4.20668930	E+01	1.60074962E+0	01 4.35703172E+01
в	10	3.81943780)E+00	9.63018199	E+00	3.94815606E+0	00 7.95775957E+01
н	11	5.13211512	2E+00	5.98332234	E+01	4.91889695E+0	00 2.96795908E+01
Н	12	8.26144719	9E+00	3.24850485	E+01	3.05337362E+0	00 5.73357980E+01
н	13	2.97702217	7E+00	4.61585697	E+01	4.26356091E+0	01 8.33313024E+00
н	14	5.67029452	2E+00	2.22517087	E+01	2.08310819E+0	01 5.87027807E+01
н	15	1.27966924	4E+00	4.46645162	E+01	1.64074724E+0	01 4.07484073E+01
н	16	5.33778605	5E+00	9.70205613	E+00	3.88292261E+0	00 7.95357878E+01
EIGEN	VALUI	ES OF THE HE	ESSIAN				
-4	.279	00921E-01	-3.81	647269E-01	5.8	9126535E-01	
THE E	LLIP	FICITY IS	0.3	12119			
EIGEN	VECT	ORS OF THE H	HESSIAN	N			
8	.281	72686E-02	7.14	588171E-01	6.9	4625832E-01	
-8	.829	64126E-01	3.758	802541E-01	-2.8	1330415E-01	
4	.620	77539E-01	5.900	030674E-01	-6.6	2078659E-01	
EIGEN	VALUI	ES OF THE ST	[RESSI	AN			
-1	. 4194	49361E-01	-1.304	483375E-01	-8.5	6957021E-02	

B33

THE TRACE OF THE STRESSIAN IS -0.35812844

EIGENVECTORS OF THE STRESSIAN

7.41541910E-01	2.92791829E-02	6.70267354E-01
3.01723959E-01	-9.06869676E-01	-2.94193886E-01
5.99231381E-01	4.20392816E-01	-6.81316103E-01

VALUES

1.8321214125E-01
1.4724726891E-16
-2.2042165542E-01
1.5151151223E-01
2.0661692608E-01
5.5105413855E-02

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -4.26276651E-01 1.71422528E-01 4.24874150E-01

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.625792

SEARCHING BETWEEN ATOMS 1 6 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 6

COORDINATES OF CRITICAL POINT

X = 2.58870255E+00 Y = -6.79457960E-01 Z = 7.70324424E-01R = 2.78503927E+00

NUCLE	US	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	9.87008719E-01	1.48920236E+01	3.47458455E+01	5.13030460E+01
в	2	3.56063800E+00	4.66382620E+01	4.06643734E+01	1.24944177E+01
н	3	2.81005573E+00	5.57175835E+01	2.94763946E+01	1.59102561E+01
в	4	2.73841763E+00	4.35418684E+01	9.85241870E+00	4.47799391E+01
в	5	3.97694005E+00	2.83169031E+01	6.76645297E+00	6.07407673E+01
н	6	1.49937203E+00	7.60298847E-01	4.67282386E+01	4.32616545E+01
н	7	2.79069044E+00	4.08482077E-01	2.30289798E+01	6.69669760E+01
н	8	5.29614808E+00	2.94010531E+01	5.92019536E+01	8.36333512E+00
в	9	5.08955636E+00	8.04560740E+01	3.64866127E+00	8.80689279E+00
в	10	5.53879393E+00	6.49818592E+01	3.35237443E+00	2.47615501E+01
н	11	4.28573457E+00	1.65528365E+01	1.38638493E+01	6.81444565E+01
н	12	5.74435327E+00	1.22722493E+01	1.02982304E+01	7.38745905E+01
н	13	4.22600544E+00	5.61782345E+01	1.97719813E+01	2.62330207E+01
н	14	5.09789737E+00	4.35262000E+01	1.62854058E+01	4.19619120E+01
н	15	7.00447966E+00	6.94231764E+01	7.78117138E+00	1.89255325E+01
н	16	7.64437740E+00	5.90742400E+01	7.12628585E+00	2.99159640E+01

EIGENVALUES OF THE HESSIAN -2.23241472E-01 -1.15458814E-01 4.89348982E-01 THE ELLIPTICITY IS 0.93352 EIGENVECTORS OF THE HESSIAN -5.87595763E-01 7.86859982E-01 -1.88633474E-01 -5.68493686E-01 -5.67349565E-01 -5.95759515E-01 -5.75800441E-01 -2.42828828E-01 7.80697133E-01 EIGENVALUES OF THE STRESSIAN -1.08256703E-01 -1.01464606E-01 -5.05003348E-02 THE TRACE OF THE STRESSIAN IS -0.26022164 EIGENVECTORS OF THE STRESSIAN 9.68501228E-01 -1.17282471E-01 -2.19659267E-01 -2.30944789E-01 -7.52927626E-01 -6.16250350E-01 7.56297106E-01 9.31121665E-02 -6.47568384E-01 VALUES RHO 1.2543925263E-01 4.6547515373E-17 GRAD 1.5064869573E-01 DEL2 G(X) 1.4894190888E-01 K (X) 1.1127973494E-01 L(X) -3.7662173932E-02 COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -9.75447821E-02 -2.13801155E-01 3.05837832E-01 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.385698 4 6 SEARCHING BETWEEN ATOMS NUMBER OF PERFORMED NEWTON ITERATION STEPS : 10 COORDINATES OF CRITICAL POINT X = 1.46140336E+00Y = -3.19791284E-01Z = 1.73539686E+00R = 2.29119368E+00VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS I ENCONT NUCLEUS WE ANOTE

IUCTE	US	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	2.22706173E+00	3.83220514E+01	5.22640080E+00	5.11902744E+01
в	2	2.99850328E+00	2.91683646E+01	4.08317341E+01	3.53629788E+01
н	3	3.99437301E+00	5.97126093E+01	1.48403228E+01	2.57509627E+01
в	4	1.23172385E+00	3.80489654E+01	5.07260347E+00	5.14904905E+01
в	5	4.50045129E+00	9.71131298E+00	1.38663800E+00	8.01882876E+01
н	6	1.85106787E+00	3.82977046E+01	5.16351791E+01	1.93473049E+00

H B B H H H H H EIGE	7 8 9 10 11 12 13 14 15 16	3.988316 4.767933 3.896410 5.092977 3.087059 6.518340 3.114149 5.292638 5.616259 7.256702 S OF THE	46E+00 39E+00 16E+00 04E+00 74E+00 10E+00 87E+00 99E+00 62E+00 01E+00 HESSIAN	1.67166515 1.79913089 8.72160312 4.98316596 1.73941369 8.23681189 4.99420781 2.67662922 7.52150231 4.84447253	5E+01 2. 9E+01 6. 2E+01 5. 5E+01 4. 9E+00 1. 9E-01 5. 1E+01 3. 2E+01 1. 1E+01 6. 3E+01 4.	13403206E+01 14864825E+01 26097804E-01 02491680E-01 24828879E+01 87547980E+00 50680249E+01 97587324E+01 01652302E+00 65299416E+00	6.23636588E+01 2.13443651E+01 2.73373055E+00 4.01654723E+01 7.73926212E+01 8.40666625E+01 1.68544039E+01 5.57282949E+01 1.34545087E+01 4.11751766E+01
-	1.5215	40366-01	-1.01	0881938-02	0.104	26811E-02	
THE	ELLIPT	ICITY IS	8.	44539			
EIGE	NVECTO	RS OF THE 7994E-01	HESSIA	N 060723E-01	7.667	26416E-01	
	5.1823	3607E-01	-5.05 8.36	466573E-01	-0.16/	43870E-01	
EIGE	NVALUE	S OF THE 4323F-02	STRESSI	AN 7429765-02	-1 394	249585-02	
	0.3410	45258 02	5.50	1425700 02	1.004		
THE	TRACE	OF THE ST	RESSIAN	IS -0.137	23523		
EIGE - -	NVECTO 7.5000 7.6176	RS OF THE 1759E-01 6976E-02 4605E-01	STRESS 1.60 9.90 -1.33	IAN 495550E-02 957569E-01 212267E-01	6.612 -1.104 -7.419	41086E-01 54548E-01 97317E-01	
VALU RHO GRAI DEL2 G(X) K(X) L(X)		1.081773 2.207942 -8.642019 5.781508 7.942013 2.160504	7805E-0 5200E-1 4265E-0 8582E-0 7148E-0 8566E-0	1 7 2 2 2 2 2			
SEAF NUME	CHING BER OF	BETWEEN A PERFORMED	TOMS NEWTON	4 13 ITERATION	STEPS :	8	
COOF	DINATE X Y Z R	$\begin{array}{rcrr} S & OF & CRIT \\ = & -1.67 \\ = & -7.33 \\ = & 2.48 \\ = & 2.59 \end{array}$	ICAL PO 114630E 037335E 132904E 273308E	INT -01 +00 +00			
VECI	ORS FR	OM NUCLEI	TO CRI	TICAL POINT	2		

LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLEUS	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
B 1	3.94886543E+00	4.96507194E+01	8.97610987E+00	3.89296018E+01
в 2	3.43799137E+00	2.78614358E+00	4.36663311E+01	4.61981604E+01
н З	5.83119765E+00	6.05493075E+01	1.42595374E+01	2.51839927E+01
в 4	1.03726384E+00	5.69433690E+01	3.02248158E+01	1.21264352E+01
в 5	5.27888196E+00	9.47905895E+00	5.67660782E+00	7.89241330E+01
н б	3.04127972E+00	6.58782678E+01	1.99589159E+01	1.29864504E+01
н 7	5.20519130E+00	3.22258884E+01	1.15042818E+01	5.52961868E+01
н 8	5.23139674E+00	1.70698526E+00	6.16244177E+01	2.83147478E+01
в 9	2.47652475E+00	6.60498514E+01	8.76713138E+00	2.21010189E+01
в 10	4.63821550E+00	2.92070089E+01	4.66803136E+00	6.03496134E+01
н 11	2.94296697E+00	3.14342142E+01	2.15399068E+01	5.03725009E+01
н 12	7.46904869E+00	1.18581774E+01	8.31786488E+00	7.54452783E+01
н 13	1.57735683E+00	2.85986149E+01	6.07311821E+01	5.71182132E+00
H 14	5.35482684E+00	8.10575719E+00	1.48898443E+01	7.29560736E+01
н 15	3.97139225E+00	7.31949053E+01	1.46126647E+01	8.11817472E+00
н 16	6.77984214E+00	3.41076063E+01	8.49821663E+00	5.45568627E+01
EIGENVALUE	S OF THE HESSIA	N		
-2.2522	29557E-01 -7.4	0984049E-02 2	.77710497E-01	
THE ELLIPT	CICITY IS 2	.03960		
EIGENVECTO	ORS OF THE HESSI	AN		
-3.9139	7160E-01 5.5	1752747E-01 7	.36462605E-01	
3.7887	6366E-01 -6.3	2707964E-01 6	.75376437E-01	
8.3860	6560E-01 5.4	3368695E-01 3	.85940251E-02	
EIGENVALUE	S OF THE STRESS	IAN		
-9.7307	2433E-02 -8.8	7917050E-02 -4	.56869363E-02	
THE TRACE	OF THE STRESSIA	N IS -0.2317858	8	
EIGENVECTO	ORS OF THE STRES	SIAN		
-2.5353	80091E-02 6.2	7008094E-01 -7	.78600074E-01	
2.6054	8040E-01 -7.4	7787533E-01 -6	.10678740E-01	
-9.6512	27942E-01 -2.1	.8345267E-01 -1	.44407066E-01	
VALUES				
RHO	1.3002207852E-	01		
GRAD	5.9995872871E-	.17		
DEL2	-2.1617464247E-	.02		
G(X)	1.1319075927E-	01		
K (X)	1.1859512534E-	01		
L(X)	5.4043660619E-	03		
COMPONENTS	OF THE DIVERGE	NCE OF THE STRES	SIAN	
-2.9074	2970E-01 -1.6	2802388E-01 -6	.80256162E-02	
MAGNITUDE	OF THE DIVERGEN	CE OF THE STRESS	IAN 0.3400	93

9-13 Bond

NUMBER OF PERFORMED NEWTON ITERATION STEPS : 3

COORDINATES OF CRITICAL POINT

X =	-1.32333302E+00
Y =	-2.25029197E-01
z =	1.83842254E+00
R =	2.27632288E+00

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCI	LEUS	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	4.55461300E+00	6.61504180E+01	1.36004893E+00	2.38059107E+01
В	2	2.93464438E+00	2.68036701E+01	3.94776175E+01	3.87890579E+01
Н	3	6.56529478E+00	7.17179508E+01	8.12858822E+00	1.62614774E+01
в	4	2.20094691E+00	6.69733600E+01	3.68216780E-01	2.30233532E+01
В	5	4.96924987E+00	2.40556241E+01	1.63087211E-01	6.59437523E+01
H	6	4.22519436E+00	6.85272548E+01	2.14650052E+01	5.49639963E-01
Н	7	5.57435189E+00	4.48587278E+01	1.61030820E+01	4.07174554E+01
Н	8	4.67643160E+00	1.62940404E+01	6.11200983E+01	2.31490912E+01
В	9	1.15156309E+00	7.40219675E+01	6.50892975E+00	1.45274778E+01
В	10	3.56666206E+00	1.80830542E+01	2.09748003E+00	7.17872901E+01
Н	11	4.00439611E+00	4.22231230E+01	8.21961759E+00	4.66022517E+01
Н	12	7.13797461E+00	2.21481165E+01	4.60033727E+00	6.73289824E+01
Н	13	2.08571451E+00	1.10898703E+01	6.45931439E+01	2.25512892E+01
Н	14	4.87355724E+00	4.72184667E+00	2.27415157E+01	6.67189427E+01
Н	15	2.94821129E+00	6.38116012E+01	9.64411657E+00	2.40975143E+01
H	16	5.57341729E+00	2.83382954E+01	5.08413279E+00	6.11264660E+01
EIG	ENVALUE	ES OF THE HESSIAN 55936E-01 -1.10	759877E-02 8	.21501337E-02	
THE	ELLIPT	FICITY IS 10.	38191		
EIG	ENVECTO	ORS OF THE HESSIA	N		
-	-2.6260	03097E-01 3.23	296093E-01 -9	.09131041E-01	
	5.4038	32779E-01 8.29	856144E-01 1.	.39015226E-01	
	7.993	91059E-01 -4.54	772929E-01 -3	.92626434E-01	
EIGH	ENVALUE	ES OF THE STRESSI	AN		
	-7.7163	34253E-02 -6.99	072886E-02 -1	.99840928E-02	
THE	TRACE	OF THE STRESSIAN	IS -0.1670548	1	
EIGE	INVECTO	DRS OF THE STRESS	TAN		
2101	2 449	10099E = 01 9 26	448180E-02 9	65109310E-01	
	-4.414	38798E-01 8 96	916834E-01 2	59225797E-02	
	-8.6322	21195E-01 -4.32	385396E-01 2	.60561008E-01	
VALU	JES				

B38

RHO	1.1114319771E-01
GRAD	7.7287722784E-17

- DEL2 -5.4991789902E-02 G(X) 7.6653429634E-02
- K(X) 9.0401377109E-02
- L(X) 1.3747947476E-02

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 1.72059324E-01 2.22818392E-02 4.65924357E-02

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.179643

1-2-4-6 Ring NUMBER OF PERFORMED NEWTON ITERATION STEPS : 11

COORDINATES OF CRITICAL POINT

.

X = 1.53301153E+00 Y = -5.65382657E-03 Z = 1.27472691E+00 R = 1.99376153E+00

LEUS	LENG	STH	YZ ANGLE		XZ ANGLE	XY ANGLE
31	L 1.830767	27E+00	4.56589558E	+01	3.48449516E+0	00 4.41293167E+01
32	2.585671	43E+00	3.63621625E	:+01	3.95492382E+0	01 2.95377225E+01
н З	3.679050)17E+00	6.66429297E	+01	1.11099635E+0	01 2.02723263E+01
3 4	1.661771	76E+00	2.99950804E	+01	7.09421251E+0	00 5.90055821E+01
3 5	4.065045	528E+00	1.17924636E	+01	2.89390725E+0	00 7.78476973E+01
I 6	5 2.132515	65E+00	3.02898442E	+01	5.58837718E+0	01 1.42011642E+01
I 7	3.703363	860E+00	1.68840050E	+01	2.84721978E+0	01 5.60661841E+01
I 8	4.362225	585E+00	2.07330793E	+01	6.26747547E+0	01 1.69908736E+01
39	3.988316	549E+00	8.35946773E	+01	5.03330777E+0	00 3.95135089E+00
3 10	4.879316	549E+00	5.43202712E	+01	4.11242825E+0	00 3.53681733E+01
I 11	3.495112	285E+00	2.71099415E	+00	5.79870214E+0	00 8.35949305E+01
I 12	6.035358	806E+00	1.56956390E	+00	3.35424990E+0	00 8.62959262E+01
I 13	3.508752	242E+00	4.44049166E	+01	3.68314594E+0	01 2.28689651E+01
1 14	5.075812	234E+00	2.89272076E	+01	2.44809320E+0	01 5.04365267E+01
I 15	5.785345	574E+00	7.19911741E	+01	2.71988047E+0	00 1.77882499E+01
1 16	6.998704	78E+00	5.18256221E	+01	2.24806971E+0	00 3.80836194E+01
ENVAL	LUES OF THE	HESSIAN				
-1.45	633911E-01	1.487	779273E-02	5.0	08552359E-02	
ENVEC	TORS OF THE	HESSIAN	J			
-5.81	017518E-01	2.857	757978E-01	-7.0	62076782E-01	
-6.47	061909E-01	-7.301	L44618E-01	2.	L9544354E-01	
-4.93	689711E-01	6.206	569973E-01	6.0	09129916E-01	
	LEUS 3 1 3 2 1 3 2 4 3 2 1 3 3 4 3 5 1 6 1 7 1 8 3 5 1 6 1 7 1 8 3 10 1 12 1 1	LEUS LENG 3 1 1.830767 3 2 2.585671 4 3.679050 3 3.679050 3 4 1.661771 3 5 4.065045 4 1.661771 5 4.065045 6 2.132515 1 7 3.703363 4 8 4.362225 3 9 3.988316 3 10 4.879316 4 13 3.508752 4 12 6.035356 4 13 3.508752 4 14 5.0785345 4 15 5.785345 4 16 6.998704 SENVALUES OF THE -1.45633911E-01 - SENVECTORS OF THE - -5.81017518E-01 - -6.47061909E-01 - -4.93689711E-01 -	LEUS LENGTH 3 1 1.83076727E+00 3 2 2.58567143E+00 4 3.67905017E+00 3 3.67905017E+00 3 3.67905017E+00 3 3.67905017E+00 3 3.67905017E+00 3 4.06504528E+00 6 2.13251565E+00 1 7 3.70336360E+00 4 8 4.36222585E+00 3 9 3.98831649E+00 3 10 4.87931649E+00 4 13 4.9511285E+00 4 12 6.03535806E+00 4 13 3.50875242E+00 4 14 5.07581234E+00 4 15 5.78534574E+00 4 16 6.99870478E+00 5 5.78534574E+00 16 6 5.99870478E+00 1.487 GENVALUES OF THE HESSIAN -1.45633911E-01 1.487 GENVECTORS OF THE HESSIAN -5.81017518E-01 2.857 -6.47061909E-01 -7.	LEUS LENGTH YZ ANGLE 3 1 1.83076727E+00 4.56589558E 3 2 2.58567143E+00 3.63621625E 4 3 3.67905017E+00 6.66429297E 4 1.66177176E+00 2.99950804E 5 4.06504528E+00 1.17924636E 6 2.13251565E+00 3.02898442E 7 3.70336360E+00 1.68840050E 8 4.36222585E+00 2.07330793E 9 3.98831649E+00 8.35946773E 3 10 4.87931649E+00 5.43202712E 11 3.49511285E+00 2.71099415E 12 6.03535806E+00 1.56956390E 13 3.50875242E+00 4.44049166E 14 5.07581234E+00 2.89272076E 15 5.78534574E+00 7.19911741E 16 6.99870478E+00 5.18256221E SENVALUES OF THE HESSIAN -1.45633911E-01 1.48779273E-02 SENVECTORS OF THE HESSIAN -5.81017518E-01 2.85757978E-01 -6.47061909E-01 -7.30144618E-01 -4.93689711E-01 6.20669973E-01	LEUS LENGTH YZ ANGLE 3 1 1.83076727E+00 4.56589558E+01 3 2 2.58567143E+00 3.63621625E+01 4 3 3.67905017E+00 6.66429297E+01 3 3 67905017E+00 2.99950804E+01 3 4 1.66177176E+00 2.99950804E+01 4 1.66177176E+00 2.99950804E+01 5 4.06504528E+00 1.17924636E+01 4 2.13251565E+00 3.02898442E+01 4 7 3.70336360E+00 1.68840050E+01 4 8 4.36222585E+00 2.07330793E+01 3 9 3.98831649E+00 8.35946773E+01 3 10 4.87931649E+00 5.43202712E+01 4 11 3.49511285E+00 2.71099415E+00 4 12 6.03535806E+00 1.56956390E+00 4 13 3.50875242E+00 4.44049166E+01 4 5.07581234E+00 2.89272076E+01 4 16 6.99870478E+00 5.18256221E+01 SENVALUES OF THE HESSIAN -1.45633911E-01 1.48779273E-02 5.0 SENVECTORS OF THE HESSIAN -5.81017518E-01 2.85757978E-01 -7.0	LEUS LENGTH YZ ANGLE XZ ANGLE 3 1 1.83076727E+00 4.56589558E+01 3.48449516E+0 3 2 2.58567143E+00 3.63621625E+01 3.95492382E+0 4 3.67905017E+00 6.66429297E+01 1.11099635E+0 3 4.66177176E+00 2.99950804E+01 7.09421251E+0 3 5 4.06504528E+00 1.17924636E+01 2.89390725E+0 4 6 2.13251565E+00 3.02898442E+01 5.58837718E+0 4 7 3.70336360E+00 1.68840050E+01 2.84721978E+0 4 3.6222585E+00 2.07330793E+01 6.26747547E+0 5 9 3.98831649E+00 8.35946773E+01 5.03330777E+0 6 0.3535806E+00 1.56956390E+00 3.35424990E+0 11242825E+0 11 3.49511285E+00 2.71099415E+00 5.79870214E+0 12 6.03535806E+00 1.56956390E+00 3.68314594E+0 13 3.50875242E+00 4.44049166E+01 3.68314594E+0 <td< td=""></td<>

-4.96907414E-02 -4.44306791E-02 -4.11219402E-04 THE TRACE OF THE STRESSIAN IS -0.09453264 EIGENVECTORS OF THE STRESSIAN 4.34986268E-01 6.69046937E-01 -6.02630188E-01 8.20979911E-01 -5.69571630E-01 -3.97510230E-02 3.69836358E-01 4.77456129E-01 7.97029932E-01 VALUES 1.0710928719E-01 RHO GRAD 5.9704862718E-16 DEL2 -7.9900747748E-02 G(X) 3.7278726508E-02 K(X) 5.7253913445E-02 L(X) 1.9975186937E-02

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -4.66593232E-05 1.16797225E-02 -2.22869008E-02

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.025162

2-4-13-9 Ring NUMBER OF PERFORMED NEWTON ITERATION STEPS : 4

COORDINATES OF CRITICAL POINT

EIGENVALUES OF THE STRESSIAN

X =	-1.00804581E+00
Y =	4.87786668E-01
z =	1.15260406E+00
R ==	1.60704334E+00

NUCLEUS	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в 1	4.06445730E+00	7.13225314E+01	8.55625665E+00	1.64740644E+01
в 2	1.91676175E+00	3.17295818E+01	3.69785468E+01	3.69651260E+01
н 3	6.03365154E+00	7.87938847E+01	2.04669140E+00	1.10128574E+01
в 4	2.40941744E+00	4.52217015E+01	1.68564729E+01	3.99341898E+01
в 5	4.27198444E+00	2.36001492E+01	9.41285249E+00	6.43756831E+01
н б	4.31269978E+00	5.69929180E+01	3.15868909E+01	8.60518187E+00
н 7	5.18540299E+00	4.42240795E+01	2.58258343E+01	3.46805291E+01
н 8	3.70946626E+00	1.55874209E+01	6.57453410E+01	1.81026053E+01
в 9	1.70056919E+00	5.67622824E+01	2.97307664E+01	1.34988037E+01
B 10	3.16797254E+00	2.66783823E+01	1.54390298E+01	5.85354271E+01
н 11	4.31171588E+00	3.34354789E+01	1.86490487E+00	5.64985711E+01
н 12	6.36248837E+00	2.19253790E+01	1.26368358E+00	6.80344262E+01
н 13	2.99301360E+00	1.64456297E+00	6.01836152E+01	2.97616592E+01
н 14	4.59585283E+00	1.07092421E+00	3.44045801E+01	5.55739570E+01
н 15	3.51923082E+00	5.72815399E+01	3.56629653E+00	3.24742302E+01

H 16 5.13912099E+00 3.51795718E+01 2.44133467E+00 5.47101208E+01 EIGENVALUES OF THE HESSIAN -1.31578855E-01 8.44173771E-03 4.38951817E-02 EIGENVECTORS OF THE HESSIAN -3.73268223E-01 4.21476288E-01 8.26455427E-01 7.87100677E-01 -3.27665915E-01 5.22596950E-01 4.91063496E-01 8.45572461E-01 -2.09436998E-01 EIGENVALUES OF THE STRESSIAN -4.99656031E-02 -3.57087608E-02 -3.04617560E-04 THE TRACE OF THE STRESSIAN IS -0.08597898 EIGENVECTORS OF THE STRESSIAN 6.68440196E-01 -7.21024375E-01 -1.82514533E-01 7.46082347E-01 -3.83460354E-01 -5.44352173E-01 6.40351135E-01 6.37295740E-01 4.28724343E-01 VALUES 1.0675049840E-01 RHO GRAD 4.1930458984E-17 DEL2 -7.9241935192E-02 G(X) 3.3084248835E-02 5.2894732633E-02 K (X) 1.9810483798E-02 L(X) COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 3.09259300E-02 1.02085067E-02 8.87130752E-03 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.033754 2-9-10 Ring NUMBER OF PERFORMED NEWTON ITERATION STEPS : 3 COORDINATES OF CRITICAL POINT X = -1.30450018E+00Y = 6.01713700E-01 Z = 6.69814603E-16 1.43658627E+00 R = VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS NUCLEUS YZ ANGLE XZ ANGLE XY ANGLE LENGTH 4.20867059E+00 8.01684584E+01 9.83154161E+00 0.0000000E+00 В 1 в 2 1.66772779E+00 5.14626424E+01 3.85373576E+01 0.00000000E+00 H 3 6.21590055E+00 8.90638336E+01 9.36166437E-01 0.00000000E+00

3.46022892E+00 3.54468155E+01 1.35821615E+01 5.12671421E+01

B

4

B H H B B J H J H J H J H J H J H J	5 6 7 8 9 10 11 12 13 14 15 16	3.4602 4.9160 3.514 2.1412 2.1412 5.4542 5.4542 3.8019 3.8019 4.0570	22892 83962 83962 66788 30614 30614 26586 97153 97153 97153 64760	E+00 E+00 E+00 E+00 E+00 E+00 E+00 E+00	3.54 5.27 5.27 2.15 3.17 2.93 2.93 5.77 5.77 4.10 4.10	4681 3622 8918 2240 2240 3587 1795 1795 4393 4393	55E+ 20E+ 20E+ 31E+ 31E+ 20E+ 20E+ 91E+ 12E+ 12E+	01 01 01 01 01 01 01 00 00 00 00 00	1. 2. 2. 2. 2. 2. 4. 4. 4.	3582 8855 8855 8410 6554 6554 6717 5478 5478 7050 7050	21615 5318 5318 85318 8994 8994 3235 3235 80185 0185 0185 0185 0185 0185 0185 01	5E+0: 3E+0: 3E+0: 3E+0: 1E+0: 9E+0: 9E+0: 9E+0: 9E+0: 1E	1 5 1 2 1 2 1 0 1 4 0 6 1 4 0 6 1 4 0 6 1 4 0 6 1 4 0 4 0 4 0 4	12671 14481 14481 00000 63567 63567 05186 05186 39422 39422 85672 85672	421E+01 957E+01 957E+01 000E+00 888E+01 888E+01 094E+01 946E+01 946E+01 111E+01
-1.3	30471	986E-0	01	2.093	34963	4E-0	2	7.	534	6760)1E-()2			
EIGENVE 6.3 -7.7 0.0 EIGENVE -4.6	ECTOR 33375 73844 00000 ALUES 53071	S OF 5 522E-(589E-(000E+(OF TI 834E-(FHE H 01 01 00 HE ST 02	1ESSIA 0.000 0.000 1.000 2RESSIA -3.09	1 00000 00000 00000 AN 72900	0E+0 0E+0 0E+0 0E-0	0	7. 6. 0.	738 333 000 713	4458 7552 0000	9E-(2E-(0E+()1)1)0			
THE TRA	ACE O	F THE	STRE	SSIAN	IS	-0.0	8699	308							
EIGENVE 6.3 -7.6 0.0	ECTOR 38806 59367 00000	S OF 1 102E-0 769E-0 000E+0	THE S 01 01 00	TRESS: 0.000 0.000 1.000	IAN 00000 00000 00000	0E+0 0E+0 0E+0	0	-7. -6. 0.	693 388 000	6776 0610 0000	9E-(2E-(0E+()1)1)0			
VALUES RHO GRAD DEL2 G(X) K(X) L(X)	-	1.032 6.901 3.4190 3.9222 4.7770 8.547	47560 97559 02629 27595 03252 56574	065E-0 024E-1 071E-0 05E-0 248E-0 28E-0	1 7 2 2 2 3										
COMPONE -3.4	ENTS 46289	OF THE 221E-0	E DIV 02	-2.27	CE OF 33203	THE 8E-0	STR	ESS 1.	IAN 207	6073	84E-1	12			
MAGNITU	JDE O	F THE	DIVE	RGENCI	E OF	THE	STRE	SSI	AN		(0.04	1424		
CRITICA 1.1005 3.7337 -7.3868 2.1791 2.1791 -1.0938	AL PO 54963 75050 37359 1909 1909 1909 31897	INTS E+00 E+00 E-03 E-01 E-01 E+00	9.05 2.22 2.59 9.08 9.08 5.42	15068 00845 35686 93059 93059 78859	6E-01 5E-01 6E+00 9E-01 9E-01 3E-01	1. -3. 1. 1. -1. 9.	3563 3515 3040 0060 0060 7909	563 395 410 850 850	5E- 0E- 5E- 2E+ 2E+ 6E-	16 19 18 00 00	B B B B B B	1 1 2 2 2 2	B H B B B	2 3 8 4 5 9	
VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

X =	1.90111760E-10
Y =	7.06271497E-10
Z =	-3.29694296E+00
R =	3.29694296E+00

в

в

в

1

2

3

SEARCHING BETWEEN ATOMS

NUMBER	OF	PERFO	ORMED	NEWTON	ITERATION	STEPS	:	
COORDIN	ITAV	ES OF	CRIT: 1,903	ICAL PO: 111760E-	INT -10			
	3	Ľ =	7.062	271497E-	-10			

0	5	2.0000172	0.0000000	0.0000000
в	4	0.0000000	2.33569172	0.0000000
в	5	0.00000000	-2.33569172	0.00000000
в	6	0.0000000	0.00000000	2.33569172
Н	7	0.0000000	0.0000000	-4.63095754
н	8	4.63095754	0.0000000	0.0000000
н	9	-4.63095754	0.00000000	0.0000000
Н	10	0.0000000	4.63095754	0.00000000
Н	11	0.0000000	-4.63095754	0.00000000
н	12	0.0000000	0.0000000	4.63095754

SADDLE B6H6(2-) OPTIMIZATION USING VD SET(Renormalized); d=0.75, p=1.0725

0.00000000

2.33569172

1 7

-2.33569172

B6H6(2-)

0.00000000

0.00000000

0.00000000

6

-2.33569172

0.00000000

0.00000000

-2.45610400E+00	-4.53891194E-01	-4.20522952E-15	в	9	в	10	attr
-2.45839407E+00	-4.63370629E-01	3.87414898E-01	att	r	в	9	
-2.45839407E+00	-4.63370629E-01	-3.87414898E-01	att	r	в	10	
9.97710605E-01	1.23300481E-02	3.57699307E+00	в	4	н	11	
9.97710605E-01	1.23300481E-02	-3.57699307E+00	в	5	Н	12	
-3.06935471E+00	-9.25853457E-02	2.20686063E+00	в	9	н	15	
-3.06935471E+00	-9.25853457E-02	-2.20686063E+00	в	10	н	16	
2.58870255E+00	-6.79457960E-01	7.70324424E-01	в	1	Н	6	
2.58870255E+00	-6.79457960E-01	-7.70324424E-01	в	1	Н	7	
1.46140336E+00	-3.19791284E-01	1.73539686E+00	в	4	Н	6	
1.46140336E+00	-3.19791284E-01	-1.73539686E+00	в	5	Н	7	
-1.67114630E-01	-7.33037335E-01	2.48132904E+00	в	4	н	13	
-1.67114630E-01	-7.33037335E-01	-2.48132904E+00	в	5	н	14	
-1.32333302E+00	-2.25029197E-01	1.83842254E+00	В	9	н	13	
-1.32333302E+00	-2.25029197E-01	-1.83842254E+00	в	10	Н	14	
1.53301153E+00	-5.65382657E-03	1.27472691E+00	1-2	-4-6	ri	ng	
1.53301153E+00	-5.65382657E-03	-1.27472691E+00	1-2	-5-7	ri	ng	
-1.00804581E+00	4.87786668E-01	1.15260406E+00	2-4	-13-	9 r	ing	
-1.00804581E+00	4.87786668E-01	-1.15260406E+00	2-5	-14-2	10	ring	
-1.30450018E+00	6.01713700E-01	6.69814603E-16	2-9	-10 :	rin	g	

-1.09381897E+00 5.42788593E-01 -9.79091496E-01 B 2 B

10

NUCLEU	JS	LENG	гн	YZ AN	GLE	XZ ANGI	ιE.	XY ANGLE
В	1	0 6125123	388-01	0 00000	0005+00	0 000000	05+00	9 00000005+01
5	5	J.012.512.		0.00000	4602+00	0.0000000		9.0000000E+01
в	2	4.0404564	49E+00	3.53153	4606+01	0.0000000	10E+00	5.468465408+01
в	3	4.0404564	49E+00	3.53153	460E+01	0.000000)0E+00	5.46846540E+01
в	4	4.0404564	49E+00	0.00000	000E+00	3.5315346	50E+01	5.46846540E+01
в	5	4.0404564	49E+00	0 00000	000E+00	3 5315346	50E+01	546846540E+01
5	č	5 6326344	292100	0.00000	0005+00	0 0000000	000.01	9.0000000000000000000000000000000000000
D 	0	5.0520540	505-00	0.00000	0005+00	0.0000000		9.0000000E+01
н	7	1.3340145	58E+00	0.00000	000E+00	0.0000000	JOE+00	9.00000000E+01
н	8	5.6846812	22E+00	5.45515	873E+01	0.000000)0E+00	3.54484127E+01
н	9	5.6846812	22E+00	5.45515	873E+01	0.000000	0E+00	3.54484127E+01
н	10	5 6846812	222+00	0 00000	0006+00	5 4551587	732+01	3 54484127E+01
17	11	5.0040012	220100	0.00000	00000100	5.4551507	735101	2 544041278:01
п	11	5.0040014	226+00	0.00000	000000000	5.455158	36+01	3.544841276+01
н	12	7.9279005	50E+00	0.00000	000E+00	0.000000)0E+00	9.0000000E+01
			,					
EIGEN	ALUE	S OF THE H	HESSIAN					
-3	1141	28085-01	-3 11	4127678-	01 6	027849395-	-01	
-5.		20006-01	-3.11	412/0/6-	01 0.	.02/049595-	-01	
THE EI	LILL	ICITY IS	0.0	00000				
ETGEN	ЛЕСТС	BS OF THE	HESSTA	N				
	6250	25678-06	1 000	000000	00 C	216204175	.10	
-2.	. 0330	230/6-00	1.000		00 6.	315284176-	-10	
-1,	.0000	0000E+00	-2.63	582567E-	06 7.	.61147756E-	-10	
7.	.6114	9420E-10	-6.31	526410E-	10 1.	.0000000E+	+00	
FIGENS		S OF THE (CTDECCT:	אז				
EIGEN		S OF THE C	SIRESSIA					
-1.	.1750	0143E-01	-1.17	500134E-	01 -6.	.73315292E-	-02	
THE TE	RACE	OF THE STR	RESSIAN	IS -0.	30233181	L		
FICEN	TECHO		CODECC	T 7 NI				
EIGEN		RS OF THE	STRESS.				• •	
-1.	.0000	0000E+00	-3.23	04//938-	06 -1.	.61511259E-	-09	
3.	.2304	7793E-06	-1.00	000000E+	00 -1.	.29684228E-	-09	
-1.	6151	0840E-09	-1.29	684750E-	09 1.	.00000000EH	+00	
				•••••			•••	
VALUES	>							
RHO		1.5310409	9467E-0	1				
GRAD		8.3270205	5693E-1	7				
DEL2		-2.0040636	6310E-0	2				
G(X)		1 4956091	23728-0	-				
G(X)		1.4000002	23728-0	-				
K(X)		1.536/098	32/9E-0	1				
L(X)		5.0101590	0776E-0	3				
COMPON	IENTS	OF THE DI	VERGEN	CE OF TH	E STRESS	SIAN		
_7	9077	99316-11	-2 44	4987615-	11 _5	069845005-	-01	
-7.		22210-11	-2.44				0 T	
					-			_
MAGNI	TUDE	OF THE DIV	VERGENCI	e of the	STRESSI	(AN	0.50698	5
SEARCH	IING	BETWEEN AT	TOMS	1 2				
MITMORT		DEDECOMEN	NEWMON		ON CORDO			
NOLIDEL		E BRE URMED	NEWTON	TIERATI	ON STEPS): J		

COORDINATES OF CRITICAL POINT

X = 1.18716482E+00 Y = 2.04904328E-09 Z = -1.18716372E+00 R = 1.67890381E+00

NUCLEUS	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в 1	1.65181018E+00	4.59476953E+01	0.0000000E+00	4.40523047E+01
в 2	1.65180863E+00	4.40523038E+01	0.0000000E+00	4.59476962E+01
в 3	3.71750937E+00	7.13767521E+01	0.0000000E+00	1.86232479E+01
B 4	2.87648637E+00	2.43754084E+01	5.42912805E+01	2.43753844E+01
в 5	2.87648637E+00	2.43754084E+01	5.42912805E+01	2.43753844E+01
в 6	3.71750868E+00	1.86232693E+01	0.0000000E+00	7.13767307E+01
н 7	3.64267431E+00	1.90203973E+01	0.0000000E+00	7.09796027E+01
н 8	3.64267292E+00	7.09796134E+01	0.00000000E+00	1.90203866E+01
н 9	5.93800518E+00	7.84673476E+01	0.0000000E+00	1.15326524E+01
н 10	4.92589949E+00	1.39458449E+01	7.00724323E+01	1.39458317E+01
Н 11	4.92589949E+00	1.39458448E+01	7.00724323E+01	1.39458317E+01
H 12	5.93800432E+00	1.15326649E+01	0.0000000E+00	7.84673351E+01
EIGENVALUE	S OF THE HESSIAN	ſ		
-1.4584	4380E-01 -4.45	209363E-02 2	.11906998E-02	
THE FILTON		27586		
IIIG GUDIEI		27500		
EIGENVECTO	ALSOF THE HESSIA	N		
-7 0710	6803E-01 3 34	041725E-09 -7	07106759E-01	
-2 1647	3735E-09 -1 00	1000000E+00 -2	55932604E-09	
7 0710	6759E-01 2 79	016438E-10 -7	07106803E-01	
/.0/10	0,000 01 2.00	0104000 10 /	.0/1000051 01	
ETGENVALUE	S OF THE STRESS	AN		
-6 4289	7944E = 02 = 6 00	668637E-02 -2	45823794E-03	
0.4205	0.00		. 100207911 00	
THE TRACE	OF THE STRESSIAN	IIS -0.1268149	0	
EIGENVECTO	RS OF THE STRESS	IAN		
-4.5013	7985E-09 -7.07	106719E-01 7	.07106844E-01	
-1.0000	0000E+00 7.15	154351E-09 7	.85629740E-10	
5.6124	2942E-09 7.07	106844E-01 7	.07106719E-01	
VALUES				
RHO	1.2509513417E-0	1		
GRAD	4.3662532430E-1	7		
DEL2	-1 6917461602E-0	11		
$G(\mathbf{X})$	4 2260621023E-0	12		
K(X)	8 45542750298=-0	12		
	4 22936540055-0	2		
ц (V)	4.22730340036-0			
COMPONENTS	OF THE DIVERGEN	ICE OF THE STRES	SIAN	

4.83600955E-03 1.54496435E-10 -4.83621869E-03

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.006839

STARTING COORDINATES 1.000000-1.000000 1.000000 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 7

COORDINATES OF CRITICAL POINT X = 8.98235840E-01 Y = -8.98235581E-01 Z = 8.98235522E-01

R = 1.55578978E+00

NUCLE	US	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	3.47446977E+0	0 1.49825340E+0	1 1.49825296E+01	6.85549388E+01
в	2	1.91831531E+0	0 4.85325844E+0	1 2.79202341E+01	2.79202321E+01
в	3	3.47446999E+0	0 6.85549442E+0	1 1.49825286E+01	1.49825276E+01
в	4	3.47446981E+0	0 1.49825338E+0	1 6.85549398E+01	1.49825284E+01
в	5	1.91831562E+0	0 2.79202378E+0	1 4.85325854E+01	2.79202271E+01
в	6	1.91831569E+0	0 2.79202367E+0	1 2.79202279E+01	4.85325856E+01
н	7	5.67323811E+0	0 9.10989541E+0	0 9.10989276E+00	7.70611848E+01
н	8	3.94295137E+0	0 7.12058493E+0	1 1.31680496E+01	1.31680487E+01
н	9	5.67323837E+0	0 7.70611878E+0	1 9.10989234E+00	9.10989173E+00
Н	10	5.67323816E+0	0 9.10989533E+0	0 7.70611854E+01	9.10989207E+00
Н	11	3.94295167E+0	0 1.31680524E+0	1 7.12058480E+01	1.31680477E+01
Н	12	3.94295174E+0	0 1.31680522E+0	1 1.31680483E+01	7.12058477E+01
EIGEN -1 EIGEN 5 -5 5 EIGEN -5	VALU .356 VECT .773 .773 .773 .773 VALU .387	ES OF THE HESSI 52101E-01 4. ORS OF THE HESS 50271E-01 8. 50269E-01 4. 50267E-01 -3. ES OF THE STRES 36219E-02 -2.	AN 62454655E-02 IAN 14872151E-01 52017813E-01 - 62854343E-01 - SIAN 18528313E-02 -	4.62454827E-02 5.14785525E-02 6.79960708E-01 7.31439262E-01 2.18528135E-02	
THE T	RACE	OF THE STRESSI	AN IS -0.097579	27	
EIGEN	VECT	ORS OF THE STRE	SSIAN		
5	.773	50232E-01 5.	83024522E-02	8.14412385E-01	
-5	.773	50284E-01 -6.	76150573E-01	4.57697555E-01	
5	.773	50291E-01 -7.	34453011E-01 -	3.56714753E-01	
VALUE	S				

 RHO
 1.1592836213E-01

 GRAD
 4.1233906303E-17

 DEL2
 -4.3161152644E-02

 G(X)
 4.3394489264E-02

 K(X)
 5.4184777425E-02

 L(X)
 1.0790288161E-02

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 1.02638406E-02 -1.02638734E-02 1.02638806E-02

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.017778

STARTING COORDINATES 0.000000 0.000000 0.000000 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 1

COORDINATES OF CRITICAL POINT X = 2.56031172E-12 Y = -2.58139969E-13 Z = -3.30662485E-12 R = 4.18994036E-12

B 1 2.33569172E+00 0.0000000E+00 0.0000000E+00 9.0000000E+00 B 2 2.33569172E+00 9.0000000E+01 0.0000000E+00 0.0000000E+01 B 3 2.33569172E+00 9.0000000E+01 9.0000000E+01 0.0000000E+01 B 4 2.33569172E+00 0.0000000E+00 9.0000000E+01 0.0000000E+01 B 5 2.33569172E+00 0.0000000E+00 9.0000000E+01 0.0000000E+01 B 6 2.33569172E+00 0.0000000E+00 9.0000000E+01 9.0000000E+01 B 6 2.33569172E+00 0.0000000E+00 9.0000000E+01 9.0000000E+01 H 7 4.63095754E+00 9.0000000E+01 0.0000000E+00 9.00000000E+01 H 9 4.63095754E+00 9.0000000E+00 9.0000000E+01 0.0000000E+01 H 10 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E+01 H 14 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E+01 H 14 4.63095754E+00 0.0000000E+00 9.00000000E+01 0.00000000E+01 <th>NUCLE</th> <th>US</th> <th>LENGT</th> <th>Н</th> <th>YZ ANGLE</th> <th></th> <th>XZ ANGLE</th> <th>2</th> <th>XY ANG</th> <th>SLE</th>	NUCLE	US	LENGT	Н	YZ ANGLE		XZ ANGLE	2	XY ANG	SLE
B 2 2.33569172E+00 9.00000000E+01 0.0000000E+00 0.0000000E+00 B 3 2.33569172E+00 9.0000000E+00 9.0000000E+01 0.0000000E+01 B 4 2.33569172E+00 0.0000000E+00 9.0000000E+01 0.0000000E+01 B 5 2.33569172E+00 0.0000000E+00 9.0000000E+01 0.0000000E+01 B 6 2.33569172E+00 0.0000000E+00 0.0000000E+01 9.0000000E+01 H 7 4.63095754E+00 0.0000000E+01 0.0000000E+00 9.0000000E+01 H 7 4.63095754E+00 9.0000000E+01 0.0000000E+00 0.0000000E+01 H 1 4.63095754E+00 0.0000000E+01 0.0000000E+01 0.0000000E+01 H 14 4.63095754E+00 0.0000000E+00 9.00000000E+01 0.00000000E+01 H 14 4.63095754E+00 0.0000000E+00 9.00000000E+01 0.00000000E+01 H 14 4.63095754E+00 0.0000000E+00 9.00000000E+01 0.00000000E+01 H 12 4.63095754E+00 0.00000000E+00 9.00000000E+01 0.00000000	в	1	2.3356917	2E+00	0.00000000	E+00 (0.00000000)E+00	9.000000)00E+01
B 3 2.33569172E+00 9.0000000E+01 0.0000000E+00 0.0000000E B 4 2.33569172E+00 0.0000000E+00 9.0000000E+01 0.0000000E B 5 2.33569172E+00 0.0000000E+00 9.0000000E+01 0.0000000E H 7 4.63095754E+00 0.0000000E+00 0.0000000E+00 9.0000000E H 8 4.63095754E+00 9.0000000E+01 0.0000000E+00 0.0000000E H 9 4.63095754E+00 9.0000000E+01 0.0000000E+00 0.0000000E H 10 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E H 11 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E H 12 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E H 12 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E EIGENVALUES OF THE HESSIAN 8.33710342E-02 8.33710610E-02 8.33710684E-02 EIGENVECTORS OF THE HESSIAN 9.99999357E-01 -6.37074153E-04 9.38491479E-04 -6.29507771E-04 -9.99967475E-01 -8.04063299E-03 -9.43583434E-04 -8.04003703E-03 9.99967233E-01 EIGENVALUES OF THE STRESSIAN	в	2	2.3356917	2E+00	9.00000000	C+01 (0.00000000)E+00	0.00000	00E+00
B 4 2.33569172E+00 0.0000000E+00 9.0000000E+01 0.0000000E B 5 2.33569172E+00 0.0000000E+00 9.0000000E+01 0.0000000E B 6 2.33569172E+00 0.0000000E+00 0.0000000E+00 9.0000000E H 7 4.63095754E+00 9.0000000E+01 0.0000000E+00 0.0000000E H 8 4.63095754E+00 9.0000000E+01 0.0000000E+00 0.0000000E H 9 4.63095754E+00 0.0000000E+01 0.0000000E+01 0.0000000E H 10 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E H 11 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E H 12 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E H 12 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E EIGENVALUES OF THE HESSIAN 8.33710342E-02 8.33710610E-02 8.33710684E-02 EIGENVECTORS OF THE HESSIAN 9.99999357E-01 -6.37074153E-04 9.38491479E-04 -6.29507771E-04 -9.99967475E-01 -8.04063299E-03 -9.43583434E-04 -8.04003703E-03 9.99967233E-01 EIGENVALUES OF THE STRESSIAN	в	3	2.3356917	2E+00	9.00000000	E+01 (0.00000000)E+00	0.00000	00E+00
B 5 2.33569172E+00 0.0000000E+00 9.0000000E+01 0.0000000E+ B 6 2.33569172E+00 0.0000000E+00 0.0000000E+00 9.0000000E+ H 7 4.63095754E+00 9.0000000E+00 0.0000000E+00 9.0000000E+ H 8 4.63095754E+00 9.0000000E+01 0.0000000E+00 0.0000000E+ H 9 4.63095754E+00 0.0000000E+01 0.0000000E+01 0.0000000E+ H 10 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E+ H 11 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E+ H 12 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E+ H 12 4.63095754E+00 0.0000000E+00 9.0000000E+00 9.0000000E+ H 12 4.63095754E+00 0.0000000E+00 9.0000000E+00 9.0000000E+ EIGENVALUES OF THE HESSIAN 8.33710342E-02 8.33710610E-02 8.33710684E-02 EIGENVECTORS OF THE HESSIAN 9.99999357E-01 -6.37074153E-04 9.38491479E-04 -6.29507771E-04 -9.99967475E-01 -8.04063299E-03 -9.43583434E-04 -8.04003703E-03 9.99967233E-01 EIGENVALUES OF THE STRESSIAN	в	4	2.3356917	2E+00	0.00000000	E+00	9.00000000)E+01	0.000000)00E+00
B 6 2.33569172E+00 0.0000000E+00 0.0000000E+00 9.0000000E H 7 4.63095754E+00 0.0000000E+00 0.0000000E+00 9.0000000E H 8 4.63095754E+00 9.0000000E+01 0.0000000E+00 0.0000000E H 9 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E H 10 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E H 12 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E H 12 4.63095754E+00 0.0000000E+00 9.0000000E+00 9.0000000E EIGENVALUES OF THE HESSIAN 8.33710342E-02 8.33710610E-02 8.33710684E-02 EIGENVECTORS OF THE HESSIAN 9.99999357E-01 -6.37074153E-04 9.38491479E-04 -6.29507771E-04 -9.99967475E-01 -8.04063299E-03 -9.43583434E-04 -8.04003703E-03 9.99967233E-01 EIGENVALUES OF THE STRESSIAN	в	5	2.3356917	2E+00	0.0000000	E+00	9.00000000)E+01	0.00000	00E+00
H 7 4.63095754E+00 0.0000000E+00 0.000000E+00 9.0000000E H 8 4.63095754E+00 9.0000000E+01 0.0000000E+00 0.0000000E H 9 4.63095754E+00 9.0000000E+01 0.0000000E+00 0.0000000E H 10 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E H 12 4.63095754E+00 0.0000000E+00 9.0000000E+01 9.0000000E H 12 4.63095754E+00 0.0000000E+00 9.0000000E+00 9.0000000E EIGENVALUES OF THE HESSIAN 8.33710342E-02 8.33710610E-02 8.33710684E-02 EIGENVECTORS OF THE HESSIAN 9.99999357E-01 -6.37074153E-04 9.38491479E-04 -6.29507771E-04 -9.99967475E-01 -8.04063299E-03 -9.43583434E-04 -8.04003703E-03 9.99967233E-01 EIGENVALUES OF THE STRESSIAN	в	6	2.3356917	2E+00	0.0000000	E+00	0.00000000)E+00	9.00000	00E+01
H 8 4.63095754E+00 9.0000000E+01 0.0000000E+00 0.0000000E H 9 4.63095754E+00 9.0000000E+01 0.0000000E+00 0.0000000E H 10 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E H 11 4.63095754E+00 0.0000000E+00 0.0000000E+01 0.0000000E H 12 4.63095754E+00 0.0000000E+00 0.0000000E+00 9.0000000E EIGENVALUES OF THE HESSIAN 8.33710342E-02 8.33710610E-02 8.33710684E-02 EIGENVECTORS OF THE HESSIAN 9.99999357E-01 -6.37074153E-04 9.38491479E-04 -6.29507771E-04 -9.99967475E-01 -8.04063299E-03 -9.43583434E-04 -8.04003703E-03 9.99967233E-01 EIGENVALUES OF THE STRESSIAN	н	7	4.6309575	4E+00	0.0000000	E+00 (0.00000000)E+00	9.000000	00E+01
H 9 4.63095754E+00 9.0000000E+01 0.0000000E+00 0.0000000E H 10 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E H 11 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E H 12 4.63095754E+00 0.0000000E+00 0.0000000E+00 9.0000000E EIGENVALUES OF THE HESSIAN 8.33710342E-02 8.33710610E-02 8.33710684E-02 EIGENVECTORS OF THE HESSIAN 9.99999357E-01 -6.37074153E-04 9.38491479E-04 -6.29507771E-04 -9.99967475E-01 -8.04063299E-03 -9.43583434E-04 -8.04003703E-03 9.99967233E-01 EIGENVALUES OF THE STRESSIAN	н	8	4.6309575	4E+00	9.00000000	E+01 (0.00000000)E+00	0.000000	00E+00
H 10 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E H 11 4.63095754E+00 0.00000000E+00 9.0000000E+01 0.0000000E H 12 4.63095754E+00 0.0000000E+00 0.0000000E+00 9.0000000E EIGENVALUES OF THE HESSIAN 8.33710342E-02 8.33710610E-02 8.33710684E-02 EIGENVECTORS OF THE HESSIAN 9.99999357E-01 -6.37074153E-04 9.38491479E-04 -6.29507771E-04 -9.99967475E-01 -8.04063299E-03 -9.43583434E-04 -8.04003703E-03 9.99967233E-01 EIGENVALUES OF THE STRESSIAN	н	9	4.6309575	4E+00	9.00000000	E+01 (0.00000000)E+00	0.000000)00E+00
H 11 4.63095754E+00 0.0000000E+00 9.0000000E+01 0.0000000E H 12 4.63095754E+00 0.0000000E+00 0.0000000E+00 9.0000000E+ EIGENVALUES OF THE HESSIAN 8.33710342E-02 8.33710610E-02 8.33710684E-02 EIGENVECTORS OF THE HESSIAN 9.99999357E-01 -6.37074153E-04 9.38491479E-04 -6.29507771E-04 -9.99967475E-01 -8.04063299E-03 -9.43583434E-04 -8.04003703E-03 9.99967233E-01 EIGENVALUES OF THE STRESSIAN	н	10	4.6309575	4E+00	0.00000000	E+00	9.00000000)E+01	0.000000	00E+00
H 12 4.63095754E+00 0.0000000E+00 0.0000000E+00 9.0000000E+ EIGENVALUES OF THE HESSIAN 8.33710342E-02 8.33710610E-02 8.33710684E-02 EIGENVECTORS OF THE HESSIAN 9.99999357E-01 -6.37074153E-04 9.38491479E-04 -6.29507771E-04 -9.99967475E-01 -8.04063299E-03 -9.43583434E-04 -8.04003703E-03 9.99967233E-01 EIGENVALUES OF THE STRESSIAN	н	11	4.6309575	4E+00	0.00000000	E+00	9.00000000)E+01	0.000000	00E+00
EIGENVALUES OF THE HESSIAN 8.33710342E-02 8.33710610E-02 8.33710684E-02 EIGENVECTORS OF THE HESSIAN 9.99999357E-01 -6.37074153E-04 -6.29507771E-04 -9.99967475E-01 -8.04063299E-03 -9.43583434E-04 -8.04003703E-03 9.99967233E-01 EIGENVALUES OF THE STRESSIAN	Н	12	4.6309575	4E+00	0.0000000	E+00	0.00000000)E+00	9.00000	000E+01
8.33710342E-02 8.33710610E-02 8.33710684E-02 EIGENVECTORS OF THE HESSIAN 9.99999357E-01 -6.37074153E-04 9.38491479E-04 -6.29507771E-04 -9.99967475E-01 -8.04063299E-03 -9.43583434E-04 -8.04003703E-03 9.99967233E-01 EIGENVALUES OF THE STRESSIAN	EIGEN	IVALUI	ES OF THE H	ESSIAN						
EIGENVECTORS OF THE HESSIAN 9.99999357E-01 -6.37074153E-04 9.38491479E-04 -6.29507771E-04 -9.99967475E-01 -8.04063299E-03 -9.43583434E-04 -8.04003703E-03 9.99967233E-01 EIGENVALUES OF THE STRESSIAN	8	3.337	10342E-02	8.33	710610E-02	8.3	3710684E-0)2		
9.99999357E-01 -6.37074153E-04 9.38491479E-04 -6.29507771E-04 -9.99967475E-01 -8.04063299E-03 -9.43583434E-04 -8.04003703E-03 9.99967233E-01 EIGENVALUES OF THE STRESSIAN	EIGEN	IVECT	ORS OF THE	HESSIA	N					
-6.29507771E-04 -9.99967475E-01 -8.04063299E-03 -9.43583434E-04 -8.04003703E-03 9.99967233E-01 EIGENVALUES OF THE STRESSIAN	9	.9999	99357E-01	-6.37	074153E-04	9.3	8491479E-0) 4		
-9.43583434E-04 -8.04003703E-03 9.99967233E-01 EIGENVALUES OF THE STRESSIAN	-6	5.2950	07771E-04	-9.99	967475E-01	-8.0	4063299E-0	3		
EIGENVALUES OF THE STRESSIAN	-9	.435	83434E-04	-8.04	003703E-03	9.9	9967233E-0)1		
	EIGEN	IVALUI	ES OF THE S	TRESST	AN					
-2.65436806E-02 -2.65436799E-02 -2.65436735E-02	-2	.654	36806E-02	-2.65	436799E-02	-2.6	5436735E-0)2		

B48

THE TRACE OF THE STRESSIAN IS -0.07963103

EIGENVECTORS OF THE STRESSIAN

-5.73576279E-04	1.28524500E-03	9.99999010E-01
-9.99781292E-01	2.09047300E-02	-6.00319127E-04
2.09054808E-02	9.99780646E-01	-1.27297345E-03

VALUES

RHO	6.4205563001E-02
GRAD	2.5625558875E-17
DEL2	2.5011316369E-01
G (X)	7.1079662453E-02
K (X)	8.5513715303E-03
L(X)	-6.2528290923E-02

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 2.29730690E-14 2.60865088E-13 1.85266919E-12

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.000000

CRITICAL POINTS

1.90111760E-10	7.06271497E-10	-3.29694296E+00	В	1	Н	7
3.29694294E+00	-2.29825066E-10	1.84086656E-10	в	2	Н	8
-3.29694294E+00	2.29471319E-10	-1.83237296E-10	в	3	Н	9
2.44768782E-10	3.29694296E+00	4.14380540E-11	В	4	Н	10
-2.50455268E-10	-3.29694296E+00	-3.83858950E-11	в	5	Н	11
-1.87540653E-10	-7.05899446E-10	3.29694296E+00	в	6	Н	12
1.18716482E+00	2.04904328E-09	-1.18716372E+00	В	1	В	2
-1.18716482E+00	2.17661984E-09	-1.18716372E+00	в	1	в	3
-1.23017901E-09	1.18716431E+00	-1.18716418E+00	В	1	в	4
-9.76785490E-10	-1.18716431E+00	-1.18716418E+00	В	1	в	5
1.18716469E+00	1.18716386E+00	-8.48730293E-10	в	2	в	4
-1.18716469E+00	1.18716386E+00	-3.04553520E-09	В	3	В	4
-1.18716469E+00	-1.18716386E+00	8.01671722E-10	В	3	в	5
1.18716469E+00	-1.18716386E+00	2.99847645E-09	в	2	в	5
1.18716482E+00	-2.17622837E-09	1.18716372E+00	В	2	в	6
-1.18716482E+00	-2.04865176E-09	1.18716373E+00	В	3	В	6
9.75453402E-10	1.18716431E+00	1.18716419E+00	В	4	В	6
1.22884687E-09	-1.18716431E+00	1.18716418E+00	В	5	В	6
8.98235843E-01	8.98235580E-01	8.98235521E-01	2-4-6	5 R.	ing	
8.98235840E-01	-8.98235581E-01	8.98235522E-01	2-5-6	5 R.	ing	
-8.98235839E-01	-8.98235582E-01	8.98235522E-01	3-5-6	5 R.	ing	
-8.98235842E-01	8.98235581E-01	8.98235520E-01	3-4-6	5 R:	ing	
8.98235839E-01	8.98235583E-01	-8.98235522E-01	1-2-4	R	ing	
8.98235842E-01	-8.98235581E-01	-8.98235520E-01	1-2-5	5 R.	ing	
-8.98235843E-01	-8.98235580E-01	-8.98235521E-01	1-3-5	5 R.	ing	
-8.98235840E-01	8.98235582E-01	-8.98235522E-01	1-3-4	R	ing	
2.56031172E-12	-2.58139969E-13	-3.30662485E-12	Cage			

B7H7(2-)

SADDLE B7H7 2- OPTIMIZATION USING VD SET ON H & 9S/5P+1D ON B

в	1	0.82777604	2.54763270	0.00000000
в	2	-2.16714582	1.57452360	0.0000000
в	3	-2.16714582	-1.57452360	0.0000000
в	4	0.82777604	-2.54763270	0.00000000
в	5	2.67873955	0.0000000	0.00000000
в	6	0.0000000	0.0000000	-2.24056705
в	7	0.0000000	0.0000000	2.24056705
H	8	1.53721263	4.73105400	0.0000000
Н	9	-4.02447491	2.92395217	0.0000000
Н	10	-4.02447491	-2.92395217	0.0000000
Н	11	1.53721263	-4.73105400	0.0000000
Н	12	4.97452456	0.0000000	0.00000000
Н	13	0.0000000	0.00000000	-4.53698226
Н	14	0.0000000	0.00000000	4.53698226

SEARCHING BETWEEN ATOMS 7 14 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 6

COORDINATES OF CRITICAL POINT

X = 3.05178418E - 11

Y = -1.47143907E-11

Z = 3.19995675E+00

R = 3.19995675E+00

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLE	EUS	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	4.17317251E+00	1.14408701E+01	3.76241202E+01	5.00667120E+01
в	2	4.17317251E+00	3.12855871E+01	2.21663251E+01	5.00667120E+01
в	3	4.17317251E+00	3.12855871E+01	2.21663251E+01	5.00667120E+01
в	4	4.17317251E+00	1.14408701E+01	3.76241202E+01	5.00667120E+01
в	5	4.17317251E+00	3.99332880E+01	0.00000000E+00	5.00667120E+01
в	6	5.44052380E+00	0.0000000E+00	0.00000000E+00	9.00000000E+01
в	7	9.59389702E-01	0.0000000E+00	0.0000000E+00	9.00000000E+01
н	8	5.91486414E+00	1.50635211E+01	5.31165864E+01	3.27519148E+01
н	9	5.91486414E+00	4.28749262E+01	2.96262189E+01	3.27519148E+01
н	10	5.91486414E+00	4.28749262E+01	2.96262189E+01	3.27519148E+01
н	11	5.91486414E+00	1.50635211E+01	5.31165864E+01	3.27519148E+01
н	12	5.91486414E+00	5.72480852E+01	0.00000000E+00	3.27519148E+01
н	13	7.73693901E+00	0.00000000E+00	0.00000000E+00	9.00000000E+01
н	14	1.33702551E+00	0.0000000E+00	0.00000000E+00	9.00000000E+01

EIGENVALUES OF THE HESSIAN

-3.31020010E-01 -3.31020010E-01 5.92906708E-01

THE ELLIPTICITY IS 0.0000 EIGENVECTORS OF THE HESSIAN -9.99345845E-01 -3.61646609E-02 -1.76655402E-11 -1.99694796E-12 -9.99345845E-01 3.61646609E-02 -1.75817653E-11 -2.63450992E-12 1.00000000E+00 EIGENVALUES OF THE STRESSIAN -1.19933152E-01 -1.19933152E-01 -7.12528048E-02 THE TRACE OF THE STRESSIAN IS -0.31111911 EIGENVECTORS OF THE STRESSIAN -1.85820647E-02 9.99827339E-01 -2.89643904E-11 -9.99827339E-01 -1.85820647E-02 4.59930586E-11 4.54468992E-11 2.98140353E-11 1.00000000E+00 VALUES 1.5817579195E-01 RHO GRAD 9.0238305158E-17 DEL2 -6.9133312631E-02 1.4691789020E-01 G (X) 1.6420121835E-01 K (X) 1.7283328158E-02 L(X) COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 9.07957196E-12 -5.57255428E-12 5.28530881E-01 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.528531 SEARCHING BETWEEN ATOMS 1 7 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 4 COORDINATES OF CRITICAL POINT X = 4.04450557E-01 Y = 1.24477084E+00 1.17938310E+00 Z = R = 1.76181134E+00VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS NUCLEUS LENGTH YZ ANGLE YZ ANGLE XY ANGLE

в	1	1.80764985E+00	1.35436189E+01	4.61163557E+01	4.07258222E+01
в	2	2.84829586E+00	6.45358362E+01	6.64815181E+00	2.44605256E+01
в	3	3.99405478E+00	4.00799610E+01	4.49000956E+01	1.71746074E+01
в	4	3.99405478E+00	6.08414446E+00	7.17158222E+01	1.71746074E+01
в	5	2.84829587E+00	5.29845860E+01	2.59140913E+01	2.44605255E+01
в	6	3.66184294E+00	6.34125681E+00	1.98726189E+01	6.90579383E+01
в	7	1.68497658E+00	1.38885081E+01	4.76247603E+01	3.90347426E+01
н	8	3.85074859E+00	1.71075769E+01	6.48707413E+01	1.78348104E+01
н	9	4.88118584E+00	6.51411553E+01	2.01214316E+01	1.39820646E+01

H 10 H 11 H 12 H 13	6.1955287 6.1955287 4.8811858 5.8642874	8E+00 4.5 9E+00 1.0 5E+00 6.9 7E+00 3.9	6315915E 5349584E 4331685E 5473801E	+01 4.2 +01 7.4 +01 1.4 +00 1.2	2881806E+01 6958506E+01 7744161E+01 2549988E+01	1.09738152E+01 1.09738152E+01 1.39820646E+01 7.71037421E+01
H 14	3.6036796	3E+00 6.4	4403480E	+00 2.0	2072299E+01	6.87036099E+01
EIGENVALUE -1.2608	ES OF THE H 87912E-01	ESSIAN -1.562565	70E-02	4.7670	3734E-02	
THE ELLIP:	FICITY IS	7.0692	9			
EIGENVECTO	ORS OF THE 85274E-01	HESSIAN 9.510565	18E-01	2.3044	0346E-01	
-6.336 -7.4572	49732E-01 20639E-01	-3.090169 -1.899673	88E-01 86E-10	7.0922 -6.6625	2475E-01 8755E-01	
EIGENVALU	ES OF THE S 15331E-02	TRESSIAN -4.865928	33E-02	2.3002	0035E-03	
THE TRACE	OF THE STR	ESSIAN IS	-0.0957	1062		
EIGENVECT	ORS OF THE	STRESSIAN		• • • • • •		
9.510	56507E-01	-1.938821	.05E-01	-2.4062	6787E-01	
-3.090.	75891E-08	-7.786846	93E-01 46E-01	6.2741	5510E-01	
VALUES						
RHO	1.0645429	647E-01				
GRAD	3.7670370	058E-17				
	-9.4043195	915E-02				
G(A) K(X)	5 9610702	507E-02				
L(X)	2.3510798	979E-02				
COMPONENTS 4.272	S OF THE DI 03313E-03	VERGENCE C 1.314796)F THE ST 573E-02	RESSIAN -5.9018	3229E-03	
MAGNITUDE	OF THE DIV	VERGENCE OF	THE STR	ESSIAN	0.0150)32
3-4-7 Ring NUMBER OF	PERFORMED	NEWTON ITE	RATION S	TEPS :	7	
COORDINAT	ES OF CRITI X = -4.033 Y = -1.240 Z = 1.132 P = 1.727	CAL POINT 69638E-01 82851E+00 248328E+00				
			T DOINT			

NUCLEUSLENGTHYZ ANGLEXZ ANGLEXY ANGLEB14.14127806E+001.72917931E+016.61780268E+011.58703961E+01B23.51003388E+003.01690139E+015.33298490E+011.88227588E+01B32.12261225E+005.62057441E+019.04497013E+003.22444648E+01B42.12261226E+003.54449285E+013.79997804E+013.22444646E+01B53.51003390E+006.14054284E+012.07020910E+011.88227587E+01B63.61658259E+006.40052668E+002.00655020E+016.88537004E+01B71.71173912E+001.36229947E+014.64599867E+014.03416369E+01H86.38051585E+001.77046613E+016.93831571E+011.02236438E+01H95.63398335E+003.99980164E+014.76654293E+011.15959887E+01H104.15081624E+006.07425054E+012.39219753E+011.58329687E+01
B 1 4.14127806E+00 1.72917931E+01 6.61780268E+01 1.58703961E+01 B 2 3.51003388E+00 3.01690139E+01 5.33298490E+01 1.88227588E+01 B 3 2.12261225E+00 5.62057441E+01 9.04497013E+00 3.22444648E+01 B 4 2.12261226E+00 3.54449285E+01 3.79997804E+01 3.22444646E+01 B 4 2.12261226E+00 3.54449285E+01 2.07020910E+01 1.88227587E+01 B 5 3.51003390E+00 6.14054284E+01 2.00655020E+01 6.88537004E+01 B 6 3.61658259E+00 1.36229947E+01 4.64599867E+01 4.03416369E+01 H 8 6.38051585E+00 1.77046613E+01 6.93831571E+01 1.02236438E+01 H 9 5.63398335E+00 3.99980164E+01 4.76654293E+01 1.15959887E+01 H 10 4.15081624E+00 6.07425054E+01 2.39219753E+01 1.58329687E+01 H 11 4.15081624E+00 6.7425054E+01 5.72026282E+01 1.58329687E+01
B 2 3.51003388E+00 3.01690139E+01 5.33298490E+01 1.88227588E+01 B 3 2.12261225E+00 5.62057441E+01 9.04497013E+00 3.22444648E+01 B 4 2.12261226E+00 3.54449285E+01 3.79997804E+01 3.22444646E+01 B 4 2.12261226E+00 3.54449285E+01 3.79997804E+01 3.22444646E+01 B 5 3.51003390E+00 6.14054284E+01 2.07020910E+01 1.88227587E+01 B 6 3.61658259E+00 6.40052668E+00 2.00655020E+01 6.88537004E+01 B 7 1.71173912E+00 1.36229947E+01 4.64599867E+01 4.03416369E+01 H 8 6.38051585E+00 1.77046613E+01 6.93831571E+01 1.02236438E+01 H 9 5.63398335E+00 3.99980164E+01 4.76654293E+01 1.15959887E+01 H 10 4.15081624E+00 6.07425054E+01 2.39219753E+01 1.58329687E+01 H 11 4.15081624E+00 2.787010667E+01 5.7202282E+01 1.58329687E+01
B 3 2.12261225E+00 5.62057441E+01 9.04497013E+00 3.22444648E+01 B 4 2.12261226E+00 3.54449285E+01 3.79997804E+01 3.22444646E+01 B 5 3.51003390E+00 6.14054284E+01 2.07020910E+01 1.88227587E+01 B 6 3.61658259E+00 6.40052668E+00 2.00655020E+01 6.88537004E+01 B 7 1.71173912E+00 1.36229947E+01 4.64599867E+01 4.03416369E+01 H 8 6.38051585E+00 1.77046613E+01 6.93831571E+01 1.02236438E+01 H 9 5.63398335E+00 3.99980164E+01 4.76654293E+01 1.15959887E+01 H 10 4.15081624E+00 6.07425054E+01 2.39219753E+01 1.58329687E+01 H 10 4.15081624E+00 2.787010667E+01 5.7202823E+01 1.58329687E+01
B 4 2.12261226E+00 3.54449285E+01 3.79997804E+01 3.22444646E+01 B 5 3.51003390E+00 6.14054284E+01 2.07020910E+01 1.88227587E+01 B 6 3.61658259E+00 6.40052668E+00 2.00655020E+01 6.88537004E+01 B 7 1.71173912E+00 1.36229947E+01 4.64599867E+01 4.03416369E+01 H 8 6.38051585E+00 1.77046613E+01 6.93831571E+01 1.02236438E+01 H 9 5.63398335E+00 3.99980164E+01 4.76654293E+01 1.15959887E+01 H 10 4.15081624E+00 6.07425054E+01 2.39219753E+01 1.58329687E+01 H 11 4.15081624E+00 6.7425054E+01 5.7202282E+01 1.58329687E+01
B 5 3.51003390E+00 6.14054284E+01 2.07020910E+01 1.88227587E+01 B 6 3.61658259E+00 6.40052668E+00 2.00655020E+01 6.88537004E+01 B 7 1.71173912E+00 1.36229947E+01 4.64599867E+01 4.03416369E+01 H 8 6.38051585E+00 1.77046613E+01 6.93831571E+01 1.02236438E+01 H 9 5.63398335E+00 3.99980164E+01 4.76654293E+01 1.15959887E+01 H 10 4.15081624E+00 6.07425054E+01 2.39219753E+01 1.58329687E+01
B 6 3.61658259E+00 6.40052668E+00 2.00655020E+01 6.88537004E+01 B 7 1.71173912E+00 1.36229947E+01 4.64599867E+01 4.03416369E+01 H 8 6.38051585E+00 1.77046613E+01 6.93831571E+01 1.02236438E+01 H 9 5.63398335E+00 3.99980164E+01 4.76654293E+01 1.15959887E+01 H 10 4.15081624E+00 6.07425054E+01 2.39219753E+01 1.58329687E+01 H 10 4.15081624E+00 2.7701066E+01 5.72020282E+01 1.58329687E+01
B 7 1.71173912E+00 1.36229947E+01 4.64599867E+01 4.03416369E+01 H 8 6.38051585E+00 1.77046613E+01 6.93831571E+01 1.02236438E+01 H 9 5.63398335E+00 3.99980164E+01 4.76654293E+01 1.15959887E+01 H 10 4.15081624E+00 6.07425054E+01 2.39219753E+01 1.58329687E+01 H 11 4.15081627E+00 2.78701066E+01 5.72202823E+01 1.58329687E+01
H 8 6.38051585E+00 1.77046613E+01 6.93831571E+01 1.02236438E+01 H 9 5.63398335E+00 3.99980164E+01 4.76654293E+01 1.15959887E+01 H 10 4.15081624E+00 6.07425054E+01 2.39219753E+01 1.58329687E+01 H 10 4.15081627E+00 2.78701066E+01 5.72202823E+01 1.58329687E+01
H 9 5.63398335E+00 3.99980164E+01 4.76654293E+01 1.15959887E+01 H 10 4.15081624E+00 6.07425054E+01 2.39219753E+01 1.58329687E+01
H 10 4.15081624E+00 6.07425054E+01 2.39219753E+01 1.58329687E+01
U 11 / 150016070100 0 707010660101 5 7000000001 1 500006060101
и тт 4.ТЭЛ9Т65/Е+ЛЛ 5./6/ЛТЭ66Е+ЛТ Э./53Л5832E+ЛТ 1.28353686Е+ЛТ
H 12 5.63398337E+00 7.26517680E+01 1.27231299E+01 1.15959887E+01
H 13 5.81764906E+00 3.97384727E+00 1.23150447E+01 7.70404474E+01
H 14 3.64593122E+00 6.34879162E+00 1.98971268E+01 6.90319892E+01
EIGENVALUES OF THE HESSIAN
-1.23957457E-01 1.71479490E-02 6.74918215E-02
EIGENVECTORS OF THE HESSIAN
-2.16423198E-01 9.51056514E-01 -2.20573134E-01
-6.66082100E-01 -3.09017002E-01 -6.78854277E-01
7.13789630E-01 -2.72244051E-09 -7.00360167E-01
EIGENVALUES OF THE STRESSIAN
-4.68939479E-02 -3.03897482E-02 -6.96477759E-03
THE TRACE OF THE STRESSIAN IS -0.08424847
EIGENVECTORS OF THE STRESSIAN
2.15320043E-01 9.51056512E-01 -2.21650151E-01
6.62686958E-01 -3.0901/00/E-01 -6.8216895/E-01
-7.17274895E-01 -1.52495205E-08 -6.96790302E-01
VALUES
RHO 1.0421330140E-01
GRAD 5.5592829820E-17
DEL2 -3.931/6863/2E-02
G(X) = 3.7209526077E - 02
K(X) 4.7038947670E-02
L(X) 9.8294215929E-03
COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN
-1.06000775E-02 -3.26236851E-02 -1.70706869E-02
MACNIEUDE OF EUE DIVEDCENCE OF EUE CEDECCIAN 0.020215
MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.030313
CAGE
0 000000 0 000000 0.000000
NUMBER OF PERFORMED NEWTON ITERATION STEPS : 1

COORDINATES OF CRITICAL POINT

- $\begin{array}{rcl} X &=& -1.26328315E-09 \\ Y &=& -6.07672990E-11 \end{array}$
- Z = 5.43924972E-12
- R = 1.26475554E-09
- VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCI	LEUS	LENG	ГН	YZ ANG	LE	XZ ANG	LE	XY ANGLE
в	1	2.6787395	54E+00	1.800000	00E+01	7.200000	00E+01 (0.00000000E+00
В	2	2.6787395	55E+00	5.400000	00E+01	3.600000	00E+01 (0.00000000E+00
в	3	2.6787395	55E+00	5.400000	00E+01	3,600000	00E+01 (0.00000000E+00
в	4	2.6787395	54E+00	1.800000	00E+01	7.200000	00E+01	0.0000000E+00
В	5	2.6787395	55E+00	9.00000	00E+01	0.000000	00E+00	0.00000000E+00
в	6	2.2405670)5E+00	0.00000	00E+00	0.000000	00E+00	9.00000000E+01
в	7	2.2405670)5E+00	0.000000	00E+00	0.000000	00E+00	9.00000000E+01
Н	8	4.9745245	56E+00	1.800000	00E+01	7.200000	00E+01	0.00000000E+00
Н	9	4.9745245	56E+00	5.400000	00E+01	3.600000	00E+01	0.00000000E+00
Н	10	4.9745245	56E+00	5.400000	00E+01	3.600000	00E+01	0.00000000E+00
Н	11	4.9745245	56E+00	1.800000	00E+01	7.200000	00E+01	0.00000000E+00
Н	12	4.9745245	56E+00	9.00000	00E+01	0.000000	00E+00	0.00000000E+00
н	13	4.5369822	26E+00	0.00000	00E+00	0.000000	00E+00	9.00000000E+01
Н	14	4.5369822	26E+00	0.000000	00E+00	0.000000	00E+00	9.00000000E+01
EIGE	INVALUE	IS OF THE H	HESSIAN					
	5.8026	53183E-02	5.802	263188E-0	2 8.	32636120E	-02	
EIGE	INVECTO	ORS OF THE	HESSIAN	1				
	9.9977	5006E-01	-2.121	17368E-0	2 -6.	99418488E	-12	
	2.1211	7368E-02	9.997	775006E-0	1 1.	47980233E	-12	
	6.9612	2206E-12	-1.627	782819E-1	2 1.	00000000E	+00	
EIGE	INVALUE	IS OF THE S	STRESSIA		~ 1	0.0001105-		
-	-1.9514	6177E-02	-1.951	L46177E-0	2 -1.	86601135E	-02	
ጥዛፍ	TRACE	OF THE STE	NECCTAN	TS _0 0	5768939			
11111	INACE	OF THE ST	1555THI	15 0.0	5700955	,		
EIGE	INVECTO	RS OF THE	STRESS	IAN				
	1.4566	52507E-01	9.893	334339E-0	1 5.	16423145E	-11	
	9.8933	34339E-01	-1.456	62507E-0	1 -1.	09268934E	-11	
	3.2880	0185E-12	-5.268	31537E-1	1 1.	0000000E	+00	
VALU	JES							
RHO		4.8523040)836E-02	2				
GRAD)	6.0953988	3825E-18	3				
DEL2	2	1.9931624	4901E-01	L				
G (X)		5.3759205	5579E-02	2				
K (X)		3.9301433	3249E-03	3				
L(X)		-4.9829062	2254E-02	2				

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -8.42319828E-12 6.91087834E-12 2.63275707E-13

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.000000

SEARCHING BETWEEN ATOMS 1 2 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 9

COORDINATES OF CRITICAL POINT x = -3.22857638E-01 y = 2.20095531E+00 z = -8.93387032E-13 R = 2.22450923E+00

NUCLEUS	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в 1	1.20172504E+00	7.32328356E+01	1.67671644E+01	0.00000000E+00
в 2	1.94777195E+00	7.12394087E+01	1.87605913E+01	0.00000000E+00
в 3	4.20186148E+00	2.60351015E+01	6.39648985E+01	0.00000000E+00
в 4	4.88600511E+00	1.36208502E+01	7.63791498E+01	0.00000000E+00
в 5	3.72206797E+00	5.37488431E+01	3.62511569E+01	0.00000000E+00
в 6	3.15730614E+00	5.86917142E+00) 4.41947264E+01	4.52060527E+01
в 7	3.15730614E+00	5.86917142E+00) 4.41947264E+01	4.52060527E+01
н 8	3.14026444E+00	3.63224688E+01	5.36775312E+01	0.00000000E+00
н 9	3.77156398E+00	7.89481742E+01	1.10518258E+01	0.0000000E+00
н 10	6.32191799E+00	3.58398219E+02	L 5.41601781E+01	0.00000000E+00
н 11	7.17722889E+00	1.50203876E+0	L 7.49796124E+01	0.0000000E+00
н 12	5.73641547E+00	6.74381022E+0	L 2.25618978E+01	0.00000000E+00
н 13	5.05298420E+00	3.66337774E+0	2.58219093E+01	6.38810137E+01
H 14	5.05298420E+00	3.66337774E+0	2.58219093E+01	6.38810137E+01
EIGENVALU -1.895	JES OF THE HESSIAN 664811E-01 -1.27	1 7651630E-01	2.31375176E-02	
THE ELLIP		40302		
EIGENVECT	CORS OF THE HESSIA	AN		
3.255	593454E-01 0.00)000000E+00	9.45509864E-01	
-9.455	509864E-01 0.00)000000E+00	3.25593454E-01	
0.000	000000E+00 1.0	000000E+00	0.00000000E+00	
PTOPNUAL		τοΝ		
EIGENVAL	451713E = 02 = 851	7235914E-02 -	1 83682918E-02	
0.90	101/102 0.0	2000112 02	1.000029102 02	
THE TRAC	E OF THE STRESSIA	N IS -0.193737	05	
EIGENVEC'	TORS OF THE STRES	SIAN		
0.00	000000E+00 -3.4	5345339E-01	9.38475677E-01	
0.00	000000E+00 9.3	8475677E-01	3.45345339E-01	

0.00

VALUES

RHO	1.4816538107E-01
GRAD	3.9667462456E-17
DEL2	-2.9407892293E-01
G (X)	6.0108661854E-02
K (X)	1.3362839259E-01
L(X)	7.3519730732E-02

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -1.60597767E-01 -3.60859233E-02 -1.24393647E-13

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.164602

STARTING COORDINATES -0.700000 2.000000 0.000000 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 6

COORDINATES OF CRITICAL POINT X = -6.76656725E-01 Y = 2.08253532E+00 Z = -8.56593484E-13 R = 2.18970721E+00

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLE	US	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	1.57468521E+00	7.28209367E+01	1.71790633E+01	0.00000000E+00
в	2	1.57468525E+00	7.11790634E+01	1.88209366E+01	0.00000000E+00
в	3	3.94913125E+00	2.21740878E+01	6.78259122E+01	0.00000000E+00
в	4	4.86844675E+00	1.79999998E+01	7.20000002E+01	0.00000000E+00
в	5	3.94913123E+00	5.81740874E+01	3.18259126E+01	0.00000000E+00
в	6	3.13288340E+00	1.24733384E+01	4.16619513E+01	4.56577304E+01
в	7	3.13288340E+00	1.24733384E+01	4.16619513E+01	4.56577304E+01
н	8	3.45193696E+00	3.98919015E+01	5.01080985E+01	0.00000000E+00
н	9	3.45193698E+00	7.58919019E+01	1.41080981E+01	0.00000000E+00
н	10	6.02269072E+00	3.37704885E+01	5.62295115E+01	0.00000000E+00
н	11	7.16423177E+00	1.79999999E+01	7.20000001E+01	0.00000000E+00
н	12	6.02269070E+00	6.97704883E+01	2.02295117E+01	0.00000000E+00
н	13	5.03775999E+00	7.71912622E+00	2.44176646E+01	6.42364089E+01
н	14	5.03775999E+00	7.71912622E+00	2.44176646E+01	6.42364089E+01

EIGENVALUES OF THE HESSIAN

-1.86301986E-01 -1.24045565E-01 -6.07966677E-03

THE ELLIPTICITY IS 0.50188

EIGENVECTORS OF THE HESSIAN 3.09016995E-01 0.0000000E+00 9.51056516E-01

-9.51056516E-01 0.0000000E+00 3.09016995E-01 0.0000000E+00 1.0000000E+00 0.0000000E+00 EIGENVALUES OF THE STRESSIAN -7.86354538E-02 -7.36220800E-02 -6.13087783E-03 THE TRACE OF THE STRESSIAN IS -0.15838841 EIGENVECTORS OF THE STRESSIAN 0.0000000E+00 3.09016996E-01 9.51056516E-01 0.0000000E+00 -9.51056516E-01 3.09016996E-01 1.0000000E+00 0.0000000E+00 0.0000000E+00 VALUES 1.4842449275E-01 RHO GRAD 4.7854916600E-17 DEL2 -3.1642721724E-01 G(X) 3.9640803667E-02 K (X) 1.1874760798E-01 7.9106804310E-02 L(X) COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -3.33628675E-03 1.02680211E-02 3.89023512E-14 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.010796 STARTING COORDINATES -1.000000 1.800000 0.000000NUMBER OF PERFORMED NEWTON ITERATION STEPS : 7 COORDINATES OF CRITICAL POINT X = -1.03249177E+00 Y = 1.97038120E+00 Z = -4.13564599E-13 R = 2.22450924E+00 VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS YZ ANGLE XZ ANGLE XY ANGLE NUCLEUS LENGTH 7.27605914E+01 0.0000000E+00 1.94777197E+00 1.72394086E+01 В 1 1.20172503E+00 7.07671645E+01 1.92328355E+01 0.0000000E+00 B 2 3.72206796E+00 1.77488429E+01 7.22511571E+01 0.0000000E+00 В 3 в 4.88600511E+00 2.23791499E+01 6.76208501E+01 4 в 5 4.20186149E+00 6.20351017E+01 2.79648983E+01 3.15730614E+00 1.90877998E+01 3.86139874E+01 в 6

0.0000000E+00 0.0000000E+00 4.52060527E+01 1.90877998E+01 4.52060527E+01 3.86139874E+01 7 3.15730614E+00 в Н 8 3.77156400E+00 4.29481742E+01 4.70518258E+01 0.00000000E+00 1.76775313E+01 0.0000000E+00 9 3.14026443E+00 7.23224687E+01 н 10 5.73641545E+00 3.14381022E+01 5.85618978E+01 0.0000000E+00 Н 0.0000000E+00 7.17722889E+00 2.09796126E+01 6.90203874E+01 Н 11

7.18398219E+01 1.81601781E+01 0.0000000E+00

6.32191801E+00

н

12

-

н н	13 14	5.0529 5.0529	8420E+00 8420E+00	1.179 1.179	04604E 04604E	2+01 2+01	2.2951 2.2951	.0190E .0190E	E+01 E+01	. 6. . 6.	.3881(.3881()137E+01)137E+01
EIGE	NVALUE	SOF TH	E HESSIAN	651630	F-01	2	31 375 21	65-01	>			
	1.0550	,40110 0	1.21	031030	6-01	۷.	515/521		<u> </u>			
THE	ELLIP	TICITY 1	is 0.	48502								
EIGE	ENVECT	ORS OF 7	THE HESSIA	N								
	2.923	46116E-0	0.00	000000	E+00	-9.	5631257	79E-0	1			
-	-9.563	12579E-(0.00	000000	E+00	-2.	923461	16E-0	1			
	0.000	00000E+0	1.00	000000	E+00	0.	0000000)0E+0	0			
EIG	ENVALU	ES OF TI	HE STRESSI	AN								
	-8.964	51721E-	02 -8.57	235922	E-02	-1.	8368293	30E-0	2			
THE	TRACE	OF THE	STRESSIAN	IIS -	-0.193	73706	i					
EIG	ENVECT	ORS OF	THE STRES	SIAN								
	0.000	00000E+	00 2.72	2231912	2E-01	9.	622316	70E-0	1			
	0.000	00000E+	00 -9.6	2231670)E-01	2.	722319	12E-0	1			
	1.000	00000E+	00 0.00	000000)E+00	0.	000000	00E+0	0			
VAT	TIES											
RHC		1,481	6538098E-	01								
GRA	D	8.912	5629451E-	17								
DEI	.2	-2.940	7891915E-	01								
G ()	()	6.010	8663777E-	02								
К ()	()	1.336	2839356E-	01								
L()	()	7.351	9729787E-	02								
CON	PONEN	IS OF TH	E DIVERGE	NCE OF	THE S	TRESS	SIAN					
	1.51	137106E-	01 6.5	202877	3E-02	1	212060	72E-1	2			
MAG	GNITUD	E OF THE	E DIVERGEN	CE OF	THE SI	RESS	IAN	0	.16	4602		
CD	TUTCAL	DOINTS										
-3	22857	638E-01	2.200955	31E+00	-8.93	33870	32E-13	в	1	в	2	
-6	.76656	725E-01	2.082535	32E+00	-8.56	55934	84E-13					
-1	.03249	177E+00	1.970381	20E+00	-4.13	35645	99E-13					
3	.05178	418E-11	-1.471439	07E-11	3.19	99956	75E+00	В	7	Н	14	
4	.04450	557E-01	1.244770	84E+00	1.17	79383	10E+00	В	1	В	7	
-1	.05886	532E+00	7.693106	94E-01	1.17	79383	10E+00	В	2	В	7	
-1	.05886	532E+00	-7.693106	94E-01	1.17	79383	09E+00	В	3	В	7	
4	.04450	556E-01	-1.244770	84E+00	1.1	79383	10E+00	В	4	В	7	
1	.30882	952E+00	1.288533	36E-09	1.1	19383	09E+00	B	, 5	В	/	
-4	.03169	170E-01	-1.240828	90E 01	1.1.	32483	205+00	3-4-	א / -	ing		
لـ ۱	30460	1312TUU	-1 0/211	335-01	1 1 1	22403 22483	288+00	2-3-	אי ס 7-	ing		
-1	05551	179E+00	7.66874	90E-01	1.1	32483	27E+00	1-5-	-7 R	ing		
-4	.03169	635E-01	1.240828	351E+00	1.1	32483	28E+00	1-2-	-7 F	ing		
-1	.26328	315E-09	-6.076729	90E-11	5.4	39249	72E-12	Cage	9	2		

B12H12(2-)

SADDLE B12H12 OPTIMIZATION USING VD SET(Renormalized) d=0.75, p=1.0725 B12H12(2-) В 1 0.00000000 0.00000000 3.23340418 В 2 0.00000000 2.89204464 1.44602225 в 3 2.75049790 0.89369094 1.44602225 в 4 1.69990119 -2.33971327 1.44602225 в 5 -1.69990119-2.339713271.44602225 в 6 -2.750497900.89369094 1.44602225 в 7 0.00000000 0.00000000 -3.23340418в 8 0.00000000 -2.89204464 -1.44602225 в 9 2.75049790 -0.89369094-1.44602225 10 в 1.69990119 2.33971327 -1.44602225 в 11 -1.69990119 2.33971327 -1.44602225в 12 -2.75049790 -0.89369094 -1.44602225Н 13 0.00000000 0.00000000 5.50293878 н 14 0.00000000 4.92197813 2.46098894 Η 15 4.68107937 1.52097489 2.46098894 Н 16 2.89306616 -3.98196395 2.46098894 н 17 -2.89306616 -3.981963952.46098894 Н 18 -4.68107937 1.52097489 2.46098894 Н 19 0.00000000 0.00000000 -5.50293878Н 20 0.00000000 -4.92197813-2.46098894Н 21 4.68107937 -1.52097489-2.46098894 Н 22 2.89306616 3.98196395 -2.46098894 23 н -2.89306616 3.98196395 -2.46098894н 24 -4.68107937 -1.52097489-2.46098894SEARCHING BETWEEN ATOMS 1 2 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 3

COORDINATES OF CRITICAL POINT

- X = 2.70182614E-09Y = 1.42077990E+00
- Z = 2.29887015E+00
- R = 2.70248395E+00

NUCLEUS		LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	1.70057913E+00	0.0000000E+00	5.66646291E+01	3.33353709E+01
В	2	1.70057916E+00	0.00000000E+00	5.99004207E+01	3.00995793E+01
В	3	2.92752643E+00	6.99727175E+01	1.03724300E+01	1.69370175E+01
В	4	4.21406247E+00	2.37901348E+01	6.31722938E+01	1.16762521E+01
в	5	4.21406247E+00	2.37901349E+01	6.31722937E+01	1.16762521E+01
в	6	2.92752644E+00	6.99727175E+01	1.03724300E+01	1.69370175E+01
в	7	5.71180137E+00	0.00000000E+00	1.44032381E+01	7.55967619E+01

B 8 B 9 B 10 B 11 B 12 H 13 H 14 H 15 H 16 H 17 H 16 H 17 H 16 H 27 H 27 H 27 H 27 H 27 H 27 H 27 H 27	5.7 5.1 4.2 4.2 5.1 3.5 5.4.6 5.6.7 6.3 4.6 7.6.7 7.6.7 7.7 1.7.7 2.6.3 4.7 1.7.7 2.6.3 4.7 1.7.	<pre>/1180 .9097 21406 21406 21406 19097 50494 50494 50494 50494 50494 50494 50494 2053 13072 2953 13072 2953 13072 2953 F TH 2E-0 TY I</pre>	135E 612E 5237E 5238E 7612E 1954E 5737E 2226E 5738E 2220E 2220E 8785E 2215E 8785E 2215E 8785E 1 5	+00 +00 +00 +00 +00 +00 +00 +00 +00 +00	0.00 3.1 2.3 3.1 0.0 0.0 8.7 2.8 2.8 8.7 0.0 0.0 0.0 3.9 2.8 3.9 2.3 7917 7917	00000 99609 79013 79013 99609 00000 66858 1574 66858 00000 9149 1574 1574 9149 9149	000E+ 10E+ 54E+ 54E+ 10E+ 000E+	00 01 01 01 01 00 00 00 00 00 00 00 00 0	4.9 2.6 1.2 2.6 2.3 8.7 1.2 6.1 1.2 1.0 5.3 2.4 2.4 2.3 2.4 2.3	031 478 595: 595: 478 913 348 254 794 3254 3780 8113 3780 4693 3780	7115E 6486E 3209E 3209E 6486E 9310E 8812E 5140E 4068E 4067E 5140E 9771E 9777E 3870E 3870E 3870E 3870E 5624E 7E-0	E+01 E+01 E+01 E+01 E+01 E+01 E+01 E+01	4.0968 4.6172 6.2706 4.6172 6.6086 2.6511 1.9830 1.5152 1.5152 1.9830 7.9679 3.6886 4.0726 5.0931 5.0931 4.0726	2885E+ 1365E+ 0468E+ 1365E+ 0690E+ 1875E- 6543E- 8722E- 6543E- 0229E- 0273E- 4039E- 6364E- 6363E- 4039E-	-01 -01 -01 -01 +01 +00 +00 +00 +00 +01 +01 +01 +01
EIGENVE	CTORS	OF T	HE HI	ESSIA	N										
-2.2	614292	2E-0	9	1.00	0000)00E+	00	1	.104	6595	0E-0	9			
-5.2	573111	6E-0	1 .	-2.12	8583	321E-	09	8	.506	5080	6E-0	1			
-8.5	065080	6E-0	1 ·	-1.34	2932	272E-	09	-5	.2573	3111	6E-0	1			
EIGENVA	LUES C	F TH	E ST	RESSI	AN										
-5.4	947573	86E-0	2	-5.46	50123	313E-	02	2	.107	8559	92E-0	3			
THE TRA	ACE OF	THE	STRE	SSIA	IS IS	-0.	1074	409	5						
EIGENVE	ECTORS	OF 1	CHE S	TRES	SIAN										
1.0	000000	00E+0	00	2.2	7148	087E-	-08	-5	.149	9936	56E-1	.0			
1.1	150379	72E-0	28	-5.2	5731	120E-	-01	-8	.506	5080	D3E-0	1			
1.9	959312	15E-(08	-8.5	0650	803E-	-01	5	.257	3112	20E-0	1			
VALUES	1	1780	91772	93F-	0.1										
CRAD	a I	157	58485	532E-	17										
0,000	_1	613	68892	92E-	01										
G(X)	1 7	354	93628	349E-	02										
K (X)	כ ר	389	15860)79E-	02										
$L(\mathbf{X})$	4	.034	22232	230E-	02										
L (11)	-														
COMPON 1.	ENTS 0 992981	F TH	E DIV 10	VERGE -5.5	NCE 1101	OF TI 655E-	HE ST -04	RES -8	SIAN .917	056	96E-()4			

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.001048

SEARCHING BETWEEN ATOMS 1 13 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 6

COORDINATES OF CRITICAL POINT

X = -4.18863135E-10 Y = -2.69050368E-10 Z = 4.19091652E+00

R = 4.19091652E+00

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLEU	JS	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	9.57512343E-01	0.0000000E+00	0.00000000E+00	9.00000000E+01
в	2	3.98727561E+00	0.00000000E+00	4.64953472E+01	4.35046528E+01
в	3	3.98727561E+00	4.36157715E+01	1.29520614E+01	4.35046528E+01
в	4	3.98727561E+00	2.52349721E+01	3.59298978E+01	4.35046528E+01
в	5	3.98727561E+00	2.52349721E+01	3.59298978E+01	4.35046528E+01
в	6	3.98727561E+00	4.36157715E+01	1.29520614E+01	4.35046528E+01
в	7	7.42432070E+00	0.0000000E+00	0.00000000E+00	9.00000000E+01
в	8	6.33553478E+00	0.0000000E+00	2.71601977E+01	6.28398023E+01
в	9	6.33553478E+00	2.57304712E+01	8.10919220E+00	6.28398023E+01
в	10	6.33553478E+00	1.55638568E+01	2.16724556E+01	6.28398022E+01
в	11	6.33553478E+00	1.55638568E+01	2.16724556E+01	6.28398022E+01
в	12	6.33553478E+00	2.57304712E+01	8.10919220E+00	6.28398023E+01
н	13	1.31202226E+00	0.00000000E+00	0.00000000E+00	9.00000000E+01
н	14	5.21713697E+00	0.00000000E+00	7.06349557E+01	1.93650443E+01
н	15	5.21713697E+00	6.37989941E+01	1.69498406E+01	1.93650443E+01
н	16	5.21713697E+00	3.36784434E+01	4.97512853E+01	1.93650443E+01
н	17	5.21713697E+00	3.36784434E+01	4.97512853E+01	1.93650443E+01
н	18	5.21713697E+00	6.37989941E+01	1.69498406E+01	1.93650443E+01
н	19	9.69385530E+00	0.00000000E+00	0.00000000E+00	9.00000000E+01
н	20	8.27488459E+00	0.0000000E+00	3.64990372E+01	5.35009628E+01
н	21	8.27488459E+00	3.44507229E+01	1.05915378E+01	5.35009629E+01
н	22	8.27488459E+00	2.04640818E+01	2.87645121E+01	5.35009628E+01
н	23	8.27488459E+00	2.04640818E+01	2.87645121E+01	5.35009628E+01
н	24	8.27488459E+00	3.44507229E+01	1.05915378E+01	5.35009629E+01
EIGEN	VALU	ES OF THE HESSIAN	ſ		
-3	3.466	58051E-01 -3.46	658050E-01 6	.03376890E-01	
THE P	ELLIP	TICITY IS 0.	00000		
EIGEI	NVECT	ORS OF THE HESSIF	N		
-	5.347	40345E-03 9.99	9985703E-01 -6	5.62335846E-11	
-	9.999	85703E-01 -5.34	1740345E-03 -1	32251014E-10	
-	1.326	03301E-10 6.55	5254381E-11 1	00000000E+00	
EIGE	NVALU	JES OF THE STRESS	I AN		
_	1.275	66338E-01 -1.2	7566337E-01 -7	7.32682815E-02	

THE TRACE OF THE STRESSIAN IS -0.32840096

-9.99996360E-01

 -9.99996360E-01
 2.69803623E-03
 8.46475103E-10

 -2.69803623E-03
 -9.99996360E-01
 3.30536435E-10

 8.47363821E-10
 3.28251412E-10
 1.0000000E+00

 2.69803623E-03 -2.69803623E-03 VALUES RHO 1.6567247580E-01 GRAD 1.2001494860E-16 DEL2 -8.9939211822E-02 G(X) 1.5295807671E-01 K (X) 1.7544287967E-01 L(X) 2.2484802955E-02 COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -3.18852417E-10 -2.64922140E-10 5.57553236E-01 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.557553 STARTING COORDINATES 0.000000 - 1.601500 2.096000NUMBER OF PERFORMED NEWTON ITERATION STEPS : 2

COORDINATES OF CRITICAL POINT X = 1.26391486E-09 Y = -1.60153686E+00 Z = 2.09643893E+00 R = 2.63817673E+00

EIGENVECTORS OF THE STRESSIAN

NUCLE	US	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	1.96408001E+00	0.0000000E+00	5.46282432E+01	3.53717568E+01
в	2	4.54040929E+00	0.0000000E+00	8.17640075E+01	8.23599250E+00
в	3	3.77020454E+00	4.68474640E+01	4.14394534E+01	9.93407630E+00
в	4	1.96408002E+00	5.99392616E+01	2.20761317E+01	1.93389486E+01
в	5	1.96408002E+00	5.99392616E+01	2.20761317E+01	1.93389486E+01
в	6	3.77020455E+00	4.68474640E+01	4.14394534E+01	9.93407629E+00
в	7	5.56526260E+00	0.0000000E+00	1.67247245E+01	7.32752755E+01
в	8	3.77020444E+00	0.0000000E+00	2.00165276E+01	6.99834724E+01
в	9	4.54040920E+00	3.72851308E+01	8.96894750E+00	5.12795751E+01
в	10	5.56526260E+00	1.77851496E+01	4.50876466E+01	3.95336153E+01
В	11	5.56526260E+00	1.77851496E+01	4.50876465E+01	3.95336153E+01
в	12	4.54040920E+00	3.72851308E+01	8.96894750E+00	5.12795751E+01
н	13	3.76419468E+00	0.00000000E+00	2.51801634E+01	6.48198366E+01
Н	14	6.53369302E+00	0.00000000E+00	8.68014981E+01	3.19850194E+00
н	15	5.63874812E+00	5.61154731E+01	3.36253318E+01	3.70680773E+00
н	16	3.76419469E+00	5.02261024E+01	3.92264378E+01	5.55762087E+00
н	17	3.76419469E+00	5.02261024E+01	3.92264378E+01	5.55762087E+00
н	18	5.63874812E+00	5.61154731E+01	3.36253318E+01	3.70680773E+00
н	19	7.76630297E+00	0.00000000E+00	1.19006988E+01	7.80993012E+01
н	20	5.63874800E+00	0.0000000E+00	3.60762542E+01	5.39237458E+01

21 6.53369291E+00 4.57623479E+01 7.06488324E-01 4.42289380E+01 н Н 22 7.76630297E+00 2.18708221E+01 4.59669805E+01 3.59317233E+01 7.76630297E+00 2.18708221E+01 4.59669805E+01 3.59317233E+01 н 23 Н 6.53369291E+00 4.57623479E+01 7.06488323E-01 4.42289380E+01 24 EIGENVALUES OF THE HESSIAN -1.42118189E-01 4.61033205E-02 4.61033229E-02 EIGENVECTORS OF THE HESSIAN -5.02939541E-02 7.75975466E-10 9.98734458E-01 -6.07062007E-01 -3.99663147E-02 -7.93648797E-01 7.94654466E-01 -3.05315493E-02 -6.06293745E-01 EIGENVALUES OF THE STRESSIAN -4.78104527E-02 -1.55705381E-02 -1.55705375E-02 THE TRACE OF THE STRESSIAN IS -0.07895153 EIGENVECTORS OF THE STRESSIAN 2.92977268E-02 -1.13780872E-09 9.99570729E-01 -6.07062004E-01 2.32815688E-02 -7.94313346E-01 7.94654468E-01 1.77855376E-02 -6.06801410E-01 VALUES 1.0973095815E-01 RHO GRAD 2.2234353998E-17 DEL2 -4.9911545712E-02 3.3236820931E-02 G (X) K (X) 4.5714707359E-02 1.2477886428E-02 L(X) COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -7.24468951E-11 -3.89949163E-03 5.10450083E-03 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.006424 STARTING COORDINATES 0.000000 0.000000 0.000000 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 1 COORDINATES OF CRITICAL POINT X = 4.58481793E-14 3.61668322E-14 Y = Z = -3.89315865E-15R = 5.85256523E-14 VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLEUS	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в 1	3.23340418E+00	0.00000000E+00	0.0000000E+00	9.00000000E+01
в 2	3.23340417E+00	0.0000000E+00	6.34349499E+01	2.65650501E+01
в 3	3.23340417E+00	5.82825265E+01	1.60450573E+01	2.65650501E+01
в 4	3.23340418E+00	3.17174747E+01	4.63530736E+01	2.65650500E+01
в 5	3.23340418E+00	3.17174747E+01	4.63530736E+01	2.65650500E+01
в 6	3.23340417E+00	5.82825265E+01	1.60450573E+01	2.65650501E+01
в 7	3.23340418E+00	0.0000000E+00	0.0000000E+00	9.00000000E+01
в 8	3.23340417E+00	0.0000000E+00	6.34349499E+01	2.65650501E+01
в 9	3.23340417E+00	5.82825265E+01	1.60450573E+01	2.65650501E+01
в 10	3.23340418E+00	3.17174747E+01	4.63530736E+01	2.65650500E+01
B 11	3.23340418E+00	3.17174747E+01	4.63530736E+01	2.65650500E+01
B 12	3.23340417E+00	5.82825265E+01	1.60450573E+01	2.65650501E+01
H 13	5.50293878E+00	0.0000000E+00	0.00000000E+00	9.00000000E+01
H 14	5.50293879E+00	0.00000000E+00	6.34349500E+01	2.65650500E+01
H 15	5.50293878E+00	5.82825265E+UI	1.604505/3E+01	2.65650500E+01
H 16	5.502938788+00	3.1/1/4/48E+01	4.63530/35E+01	2.656505000000000
H 1/	5.502938788+00	3.1/1/4/48E+U1	4.63530/35E+01	2.65650500E+01
H 18	5.502938788+00	5.82825265E+01	1.604505/38+01	2.65650500E+01
н 19	5 502938788+00	0.00000000E+00	6 34349500E+01	9.000000000E+01
н 20	5 502938795+00	5 82825265F+01	1 60450573E+01	2.65650500E+01
H 22	5 502938785+00	3.17174748F+01	4 63530735E+01	2.65650500E+01
н 23	5 50293878E+00	3 17174748E+01	4.63530735E+01	2.65650500E+01
н 24	5 50293878E+00	5 82825265E+01	1 60450573E+01	2.65650500E+01
EIGENVALU	JES OF THE HESSIAN			
2.815	590419E-02 2.81	590428E-02 2.	.81590431E-02	
EIGENVECT	FORS OF THE HESSIA	N		
-2.104	147990E-01 9.28	128320E-01 3.	.07065896E-01	
-6.909	934738E-01 8.10	011982E-02 -7.	.18364805E-01	
6.916	507426E-01 3.63	340924E-01 -6.	.24229559E-01	
EIGENVALU	JES OF THE STRESSI	AN	200052025 02	
-5.305	905824E-03 -5.30	905812E-03 -5.	.30905792E-03	
תעה שסאכים	OF THE CTDECCTAN	TS _0 01502717	7	
INE IKACI	L OF THE SIRESSING	15 -0.0159271		
ETGENVECT	ORS OF THE STRESS	TAN		
7.35	519095E-01 6 68	384591E-01 -1	10786731E-01	
-6.742	217663E-01 7.38	185638E-01 -2.	26386211E-02	
6.664	198682E-02 9.13	455089E-02 9.	.93586329E-01	
VALUES				
RHO	1.3586552480E-0	2		
GRAD	1.1388197849E-1	7		
DEL2	8.4477127874E-0	2		
G (X)	1.8523228125E-0	2		
K (X)	-2.5960538436E-0	3		
ц(X)	-2.1119281968E-0	2		

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -4.12885906E-14 4.60621719E-14 2.83183909E-14 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.000000 CRITICAL POINTS 2.70182614E-09 1.42077990E+00 2.29887015E+00 в 1 в 2 3 1.35124200E+00 4.39045150E-01 2.29887014E+00 в 1 в 8.35113491E-01 -1.14943510E+00 2.29887015E+00 4 в 1 в -8.35113490E-01 -1.14943510E+00 2.29887015E+00 в 1 В 5 -1.35124201E+00 4.39045149E-01 2.29887014E+00 в 1 в 6 1.42077974E+00 1.35124205E+00 1.85982508E+00 в 2 3 В 3 2.18635553E+00 -7.10389992E-01 1.42077973E+00 В в 4 9.37610652E-09 -2.29887027E+00 1.42077973E+00 B 4 в 5 -2.18635553E+00 -7.10389987E-01 1.42077973E+00 в 5 в 6 2 -1.35124205E+00 1.85982509E+00 1.42077973E+00 в в 6 8.35113493E-01 2.57021501E+00 -9.18447640E-09 в 2 R 10 3 2.18635547E+00 1.58848024E+00 5.23014110E-11 в В 10 2.70248399E+00 7.91079028E-10 1.38521541E-08 в 3 в 9 9 2.18635547E+00 -1.58848024E+00 6.39409850E-09 в 4 в 8 8.35113493E-01 -2.57021501E+00 9.36104544E-10 в 4 в -8.35113493E-01 -2.57021501E+00 9.18306144E-09 В 5 в 8 -2.18635547E+00 -1.58848024E+00 -5.08395404E-11 в 5 в 12 -2.70248399E+00 -7.90760057E-10 -1.38521342E-08 в 6 в 12 1.58848024E+00 -6.39687372E-09 -2.18635547E+00 R 6 в 11 2 -8.35113493E-01 2.57021501E+00 -9.38055768E-10 в В 11 9 1.35124205E+00 -1.85982509E+00 -1.42077973E+00 в 8 в 9 7.10389987E-01 -1.42077973E+00 в в 10 2.18635553E+00 -9.37734201E-09 2.29887027E+00 -1.42077973E+00 в 10 в 11 -2.18635553E+00 7.10389992E-01 -1.42077973E+00 в 11 в 12 12 -1.35124205E+00 -1.85982508E+00 -1.42077974E+00 в 8 в 7 8 -2.70420474E-09 -1.42077990E+00 -2.29887015E+00 в В 1.35124201E+00 -4.39045149E-01 -2.29887014E+00 в 7 в 9 8.35113490E-01 1.14943510E+00 -2.29887015E+00 в 7 в 10 -8.35113491E-01 1.14943510E+00 -2.29887015E+00 B 7 в 11 -1.35124200E+00 -4.39045150E-01 -2.29887014E+00 В 7 в 12 -4.18863135E-10 -2.69050368E-10 4.19091652E+00 В 1 H 13 в 2 14 3.27293522E-10 3.74846973E+00 1.87423478E+00 н 3 3.56500656E+00 1.15834085E+00 1.87423477E+00 в Н 15 -3.03257572E+00 1.87423478E+00 4 2.20329523E+00 В Н 16 5 -2.20329523E+00 -3.03257572E+00 1.87423478E+00 в Η 17 -3.56500656E+00 1.15834085E+00 1.87423477E+00 в 6 Н 18 7 4.18716741E-10 2.68997408E-10 -4.19091652E+00 в н 19 в -3.26531644E-10 -3.74846973E+00 -1.87423478E+00 8 Н 20 3.56500656E+00 -1.15834085E+00 -1.87423477E+00 в 9 21 н 22 3.03257572E+00 -1.87423478E+00 в 10 2.20329523E+00 Н 23 -2.20329523E+00 3.03257572E+00 -1.87423478E+00 в 11 Н -3.56500656E+00 -1.15834085E+00 -1.87423477E+00 в 12 H 24 1.26391486E-09 -1.60153686E+00 2.09643893E+00 -1.52315206E+00 -4.94902117E-01 2.09643892E+00 1.52315206E+00 -4.94902120E-01 2.09643892E+00

B64

-9.41359752E-01	1.29567052E+00	2.09643892E+00
9.41359748E-01	1.29567052E+00	2.09643893E+00
3.81487126E-09	-2.59134104E+00	4.94902285E-01
-1.52315206E+00	-2.09643893E+00	-4.94902258E-01
-2.46451177E+00	-8.00768437E-01	4.94902273E-01
-2.46451177E+00	8.00768427E-01	-4.94902281E-01
-1.52315205E+00	2.09643893E+00	4.94902269E-01
-3.81688775E-09	2.59134104E+00	-4.94902285E-01
1.52315206E+00	2.09643893E+00	4.94902258E-01
2.46451177E+00	8.00768437E-01	-4.94902273E-01
2.46451177E+00	-8.00768427E-01	4.94902281E-01
1.52315205E+00	-2.09643893E+00	-4.94902269E-01
-1.26431437E-09	1.60153686E+00	-2.09643893E+00
1.52315206E+00	4.94902117E-01	-2.09643892E+00
-1.52315206E+00	4.94902120E-01	-2.09643892E+00
9.41359752E-01	-1.29567052E+00	-2.09643892E+00
-9.41359748E-01	-1.29567052E+00	-2.09643893E+00
4.58481793E-14	3.61668322E-14	-3.89315865E-15

C2B3H5

SADDLE					
C2B3H5	1,5	-dicar	bapentaborane(5)	9s/5p + 1d on B,	С
	С	1	0.0000000	0.0000000	2.10213119
	В	2	0.0000000	2.06718430	0.0000000
	в	3	-1.79023412	-1.03359215	0.0000000
	В	4	1.79023412	-1.03359215	0.0000000
	С	5	0.0000000	0.0000000	-2.10213119
	Н	6	0.0000000	0.0000000	4.12035855
	н	7	0.0000000	0.0000000	-4.12035855
	Н	8	0.0000000	4.29422638	0.0000000
	н	9	-3.71890913	-2.14711319	0.0000000
	н	10	3.71890913	-2.14711319	0.0000000

SEARCHING BETWEEN ATOMS12NUMBER OF PERFORMED NEWTON ITERATION STEPS:8

COORDINATES OF CRITICAL POINT

- X = 1.87272359E-17 Y = 1.46474106E+00 Z = 7.42225183E-01 R = 1.64206108E+00
- VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS 'AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLEU	JS	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
С	1	1.99870226E+00	0.0000000E+00	4.71255224E+01	4.28744776E+01
в	2	9.55947737E-01	0.00000000E+00	3.90652636E+01	5.09347364E+01
B	3	3.16188318E+00	3.44851323E+01	5.21986804E+01	1.35763852E+01

в	4	3.1618	83185	E+00	3.4	4851	323E	+01	5.	219	8680	04E+01	1.35763	852E+01
С	5	3.1993	4830E	E+00	0.0	0000	000E	+00	2.	724	683	60E+01	6.27531	640E+01
Н	6	3.6820	1730E	E+00	0.0	0000	000E	+00	2.	344	1304	42E+01	6.65586	958E+01
н	7	5.0784	03985	5+00	0.0	0000	000E	+00	1.	676	3714	48E+01	7.32362	852E+01
Н	8	2.9252	1544E	E+00	0.0	0000	000E	+00	7.	530	144	73E+01	1.46985	527E+01
H	9	5.2370	4826E	E+00	4.5	2443	133E	+01	4.	360	428	19E+01	8.14772	681E+00
н	10	5.2370	48261	E+00	4.5	2443	133E	+01	4.	360	428:	19E+01	8.14772	681E+00
ETGE	NVAT.III	S OF TH	E HES	STAN										
	2.9482	23635E-0	1 -	-2.92	7072	.95E-	01	6.	180	773	41E-	-01		
THE	ELLIP	FICITY I	S	0.	0072	:3								
EIGE	INVECTO	ORS OF T	HE HE	ESSIA	N									
	1.0000	00000E+0	0	1.20	3203	301E-	17	1.	051	.973	39E-	-17		
	1.5982	23199E-1	7 -	-7.52	8337	67E-	01	-6.	582	106	95E-	-01		
	0.000	00000E+0	0 -	-6.58	2106	595E-	01	7.	528	337	67E-	-01		
RICE	`NIV & T.TII	79 OF TH	5 C T	FCCT	۵N									
5101	1.4972	25598E-0	1 -	-1.33	5500	45E-	01	-7.	446	160	66E-	-02		
			-				-				••-	•-		
THE	TRACE	OF THE	STRES	SSIAN	IS	-0.	3577	3725	i					
EIGE	NVECTO	ORS OF T	HE SI	TRESS	IAN									
-	2.6952	23669E-1	9	1.00	0000	00E+	00	3.	220	761	76E-	-19		
	6.417	66551E-0	1	4.19	9715	512E-	19	-7.	669	000	55E-	-01		
	7.6690	00055E-0	1	0.00	0000	00E+	00	6.	417	665	51E-	-01		
177 T.T	TES													
RHO	100	1 6848	11564	168-0	1									
GRAF	`	7 9867	661 91		- 7									
DEL2	,)	3 0546	41100	105-1	2									
GIN	•	1 8268	60250	34F-0	1									
U(N)		1 7505	03233		1									
Γ.(Λ) Γ.(Υ)		-7 6366	02251	25-0	⊥ ג									
ц(л)		7.0500	02/52	.2.11-0	5									
COME	ONENTS	S OF THE	DIVE	ERGEN	CE C	F TH	E ST	RESS	IAN	1	265	-01		
	1.0492	144000-1	5 -	-5.50	5050	136-	01	ч.	495	520	205-	-01		
MAGN	IITUDE	OF THE	DIVEF	RGENC	E OF	THE	STR	ESSI	AN			0.569	785	
SEAF	CHING	BETWEEN	ATON	1S	1	6								
NUME	BER OF	PERFORM	ED NE	EWTON	ITE	RATI	ON S	TEPS	:		5			
COOR	DINATE	S OF CR	TTTC	Ι Τ. ΡΟ	тмт									
2001		$\zeta = 2$	43344	18225	-19									
	3	- 2. (= -5	70853	32065	-11									
	5	2 = 3. 2 = 3	32632	144E	+00									
	F		32632	2144E	+00									
	-				- •									

VECTORS FROM NUCLEI TO CRITICAL POINT

LENGTHS 'AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

MICT DI	c .	TENC		VC ANOTO	V7 310	1.0	VV ANCIE
NUCLEU	5	LENG.		IZ ANGLE	AL ANG		AI ANGLE
C	T	1.224190	25E+00	0.0000000E+	00 0.000000	UUE+UU 9	.0000000E+01
в	2	3.9163333	14E+00	0.0000000E+	00 3.185940	45E+01 5	.81405955E+01
В	3	3.9163333	14E+00	2.72014205E+	01 1.530269	04E+01 5	.81405955E+01
В	4	3.9163333	14E+00	2.72014205E+	01 1.530269	04E+01 5	.81405955E+01
С	5	5.428452	63E+00	0.0000000E+	00 0.000000	00E+00 9	.00000000E+01
H	6	7.9403710	07E-01	0.0000000E+	00 0.000000	00E+00 9	.00000000E+01
н	7	7.446679	99E+00	0.00000000E+	00 0.000000	00E+00 9	.00000000E+01
н	8	5 431831	60E+00	0 0000000E+	00 5 223852	27E+01 3	77614773E+01
н	ġ.	5 4318310	602+00	4 32081693E+	01 2 328365	395+01 3	77614774E+01
11	10	5 431031	605100	4.3200109351	01 2.320303	30E+01 3	
н	10	5.451651	00E+00	4.520010936+	01 2.328365	39E+01 3	.//014//46701
EIGENV	ALUES	OF THE I	HESSIAN				
-7.	34351	285E-01	-7.343	351285E-01	2.81972209E	-01	
THE EL	LIPTI	CITY IS	0.0	00000			
ETGENV	ECTOR	S OF THE	HESSTAN	v			
-3	58554	2815-09	1 000	000005+00	5 796147658	-19	
-5.	00000	2016-09	2.500	500000E100	1 (1(52)025	10	
-1.	00000	0000000000	-3.583	554281E-09	1.010002005	-10	
1.	61653	283E-10	0.000	000000E+00	T.00000000E	+00	
EIGENV	ALUES	OF THE S	STRESSIA	AN			
-2.	28197	405E-01	-2.283	197405E-01	6.38313871E	-02	
THE TR	ACE C	F THE ST	RESSIAN	IS -0.39256	342		
FICENT	FCTOP	S OF THE	STDESS	ταΝ			
1		OODELOO	-1 263	2105058-07	1 107721625	_10	
1.	26210		-1.363	519505E-07	1.19//31026	-10	
-1.	36319	505E-07	-1.000	JUUUUUE+UU	8./86208/1E	-12	
0.	00000	000E+00	8.786	620871E-12	1.00000000E	+00	
VALUES							
RHO		2.933319	6071E-01	1			
GRAD		2.368008	5477E-10	6			
DEL2	-	1.186730	3605E+00	0			
G(X)		4.794041	6436E-02	2			
K(X)		3 4462300	06558-01	1			
		2 0660250		1			
$\Gamma(X)$		2.900023	90128-0.	L			
COMPON	ENTS	OF THE D	IVERGENO	CE OF THE STR	ESSIAN		
2.	72957	094E-19	7.300	075696E-12	1.51483131E	-02	
MAGNIT	UDE C	F THE DIV	VERGENCE	E OF THE STRE	SSIAN	0.015148	
SEADOU	TNG P	יא והידשרים	TOMS	2 8			
NUMBER	05 0	ETREEN A.	NEWTON		FDS . C		
HOPIDER	Or P	ERF URMED	TAPATON	TIERATION ST			
COORDI	NATES	OF CRIT	ICAL PO:	INT			

B67

X = -8.83335577E-19 Y = 3.01728191E+00 Z = 1.43530899E-18 R = 3.01728191E+00

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS 'AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLEU	'S LENGI	'H	YZ ANGLE	XZ A	NGLE	XY ANGLE
С	1 3.6773558	0E+00 0	.00000000E+	00 5.5135	1899E+01	3.48648101E+01
В	2 9.5009761	3E-01 0.	.00000000E+	00 9.0000	0000E+01	0.0000000E+00
в	3 4.4288281	6E+00 2	.38424443E+	01 6.6157	5557E+01	0.0000000E+00
в	4 4.4288281	6E+00 2	.38424443E+	01 6.6157	5557E+01	0.0000000E+00
С	5 3.6773558	0E+00 0	.00000000E+	00 5.5135	1899E+01	3.48648101E+01
н	6 5.1069897	9E+00 0.	.00000000E+	00 3.6214	8052E+01	5.37851948E+01
н	7 5.1069897	9E+00 0	.00000000E+	00 3.6214	8052E+01	5.37851948E+01
н	8 1.2769444	7E+00 0	.00000000E+	00 9.0000	0000E+01	0.0000000E+00
н	9 6.3640601	7E+00 3	.57578667E+	01 5.4242	1333E+01	0.0000000E+00
н	10 6.3640601	7E+00 3	.57578667E+	01 5.4242	1333E+01	0.0000000E+00
EIGENV	ALUES OF THE H	IESSIAN				
-4.	55408536E-01	-3.86142	2349E-01	5.9766321	8E-01	
THE EL	LIPTICITY IS	0.17	938			
FIGENU	TOTORS OF THE	HESSTAN				
1	000000000000000000000000000000000000000	0 00000	0000E+00	-2 8183074	2E-17	
-2	81830742E-17	0 00000	0000E+00	-1.0000000	0E+00	
ñ.	00000000E+00	1 00000	0000E+00	0 0000000	0E+00	
0.	000000000000000000000000000000000000000	1.0000		0.0000000		
EIGENV	ALUES OF THE S	TRESSIAN				
-1.	44205193E-01	-1.24409	9603E-01	-9.0601824	7E-02	
THE TR	ACE OF THE STF	ESSIAN IS	5 -0.35921	662		
EIGENV	ECTORS OF THE	STRESSIA	N			
0.	00000000E+00	1.00000	0000E+00	3.4084332	4E-17	
0.	00000000E+00	3.40843	3324E-17	-1.0000000	0E+00	
1.	00000000E+00	0.0000	0000E+00	0.000000	0E+00	
VALUES						
RHO	1.8540585	174E-01				
GRAD	1.3909041	362E-17				
DEL2	-2.4388766	587E-01				
G(X)	1.4912235	181E-01				
K(X)	2.1009426	828E-01				
L(X)	6.0971916	468E-02				
COMPON	ENTS OF THE DI	VERGENCE	OF THE STR	ESSIAN		
2.	80623972E-14	6.4087	3469E-01	-6.4424306	6E-13	
MAGNIT	UDE OF THE DIV	ERGENCE (OF THE STRE	SSIAN	0.64087	73

B68

SEARCHING BETWEEN ATOMS 2 3 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 5

COORDINATES OF CRITICAL POINT

X =	-7.13790147E-01
Y =	4.12106927E-01
Z =	-6.05852400E-17
R =	8.24213864E-01

NUCLE	US	LI	ENGTI	н		YZ A	NGLE			X2	Z AN	GLE		XY	AN	GLE	
С	1	2.2579	9380	0E+00	1.8	8428	7289	E+01	1	.05	5162	696E	+01	6.85	906	050E	:+01
в	2	1.8024	4365	4E+00	2.3	3329	2311	E+01	. 6	.66	5707	689E	+01	0.00	000	000E	:+00
в	3	1.8024	4365	3E+00	3.0	6670	7690	E+01	. 5	.33	3292	310E	+01	0.00	000	000E	:+00
в	4	2.8913	3981	7E+00	6.0	0000	0001	E+01	. 2	. 99	9999	999E	+01	0.00	000	000E	:+00
С	5	2.2579	9380	0E+00	1.8	8428	7289	E+01	. 1	.05	5162	696E	+01	6.85	906	050E	+01
H	6	4.2019	9856	1E+00	9.	7802	4477	E+00	5	. 62	2829	264E	+00	7.86	881	668E	:+01
н	7	4.2019	9856	1E+00	9.1	7802	4477	E+00	5	. 62	2829	264E	+00	7.86	881	668E	+01
н	8	3.947	1949:	3E+00	1.0	0418	3874	E+01	. 7	.95	5816	126E-	+01	0.00	000	000E	2+00
н	9	3.947	19493	2E+00	4.9	9581	6126	E+01	4	. 04	1183	874E	+01	0.00	000	000E	:+00
Н	10	5.1184	4402	4E+00	6.0	0000	0000	E+01	. 3	.00	0000	000E	+01	0.00	000	0005	:+00
EIGEN	VALUES	OF TH	не ні	ESSIAN	ſ												
-8	.18565	5905E-0	02	7.87	543	889E	-02	1	.79	639	9622	E-01					
ETGEN	VECTOR	S OF 1	THE 1	HESSTA	N												
8	.66025	404E-0	01	4.99	999	999E	-01	0	. 00	000	0000	E+00					
-4	. 99990	9999E-(01	8.66	025	404E	-01	Ő		000	0000	E+00					
0	.00000	000E+	00	0.00	0000	000E	+00	1	.00	000	0000	E+00					
EIGEN	VALUES	S OF TH	HE S	TRESSI	AN												
-5	.31433	8685E-0	02	-5.00	237	823E	-02	-2	.12	261	1783	E-02					
THE T	RACE C	F THE	STR	ESSIAN	IS	-0	.124	3933	3								
EIGEN	VECTOR	S OF 2	THE :	STRESS	IAN												
8	.66025	5403E-0	01	0.00	000	000E	+00	5	.00	000	002	E-01					
-5	.00000	002E-0	01	0.00	0000	000E	+00	8	. 66	025	5403	E-01					
0	.00000)000E+(00	1.00	000	000E	+00	0	.00	000	0000	E+00					
VALUE	S																
RHO		1.003	1750	220E-0	1												
GRAD		4.4020	0412	428E-1	7												
DEL2		1.765	3742	064E-0	1												
G (X)		8.4263	3842	137E-0	2												
K (X)		4.012	9486	976E-0	2												
L(X)	-	4.413	4355	161E-0	2												

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 4.61394390E-04 -2.66385803E-04 5.83721483E-13

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.000533

STARTING COORDINATES 0.000000 0.000000 0.000000 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 1

COORDINATES OF CRITICAL POINT X = -7.75257164E-17 Y = -1.77055278E-09 Z = -5.34393430E-18 R = 1.77055278E-09

NUC	LEUS	LENGT	н	YZ ANGLE		XZ ANGLE	XY ANGLE
С	1	2.1021311	9E+00	0.0000000	C+00	0.0000000E+00	9.00000000E+01
в	2	2.0671843	0E+00	0.0000000	C+00	9.00000000E+01	0.0000000E+00
в	3	2.0671843	0E+00	6.0000001E	C+01	2.99999999E+01	0.0000000E+00
В	4	2.0671843	0E+00	6.0000001E	2+01	2.99999999E+01	0.0000000E+00
С	5	2.1021311	9E+00	0.0000000	C+00	0.0000000E+00	9.00000000E+01
Н	6	4.1203585	5E+00	0.0000000	5+00	0.0000000E+00	9.0000000E+01
Н	7	4.1203585	5E+00	0.0000000B	C+00	0.00000000E+00	9.00000000E+01
Н	8	4.2942263	8E+00	0.0000000	2+00	9.0000000E+01	0.0000000E+00
н	9	4.2942263	8E+00	6.0000000E	2+01	3.0000000E+01	0.0000000E+00
Н	10	4.2942263	8E+00	6.0000000	2+01	3.0000000E+01	0.0000000E+00
EIG	ENVALUE	ES OF THE H	ESSIAN		•		
	7.3526	53255E-02	7.352	263264E-02	2.	46656839E-01	
DICI				T			
EIG	INVECTO	DRS OF THE	HESSIA		0	000000000000000000000000000000000000000	
	1.0000	10000E+00	1.80.	2443006-08	0.	000000000000000000000000000000000000000	
	1.8024	14300E-08	-1.000	000000E+00	0.	000000000000000000000000000000000000000	
	0.0000	10000E+00	0.000	000000000000000000000000000000000000000	1.	000000000000000000000000000000000000000	
FICI			TOFCCT	λΝ			
CTGI	-4 6105	51158F-02	-4 61	051157F-02	-4	506649378-02	
	4.010.	J1130E V2	1.01	0011076 02		500045576 02	
THE	TRACE	OF THE STR	ESSIAN	IS -0.1372	27673		
EIGH	ENVECTO	ORS OF THE	STRESS	IAN			
	9.7678	32386E-08	1.000	000000E+00	0.	00000000E+00	
	-1.0000	0000E+00	9.76	782386E-08	0.	00000000E+00	
	0.0000	0000E+00	0.000	000000E+00	1.	00000000E+00	
	100						
VALL	JE2	0 0755576	1050 0	2			
KHO		9.0/000/6	TA2E-0'	<u>د</u>			
GRAL)	1.5/40093	003E-1	5			

DEL2	3.	9	3	7	0	9	4	9	0	6	7	E-	0	1	
			_	-	_	-	-			-			-	-	

- G(X) 1.1785204894E-01
- K(X) 1.9424676267E-02
- L(X) -9.8427372669E-02

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 1.02952403E-13 -1.52214936E-10 -3.61115241E-14

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.000000

CRITICAL POINTS	5						
1.87272359E-17	1.46474106E+00	7.42225183E-01	С	1	в	2	
-1.26850297E+00	-7.32370533E-01	7.42225186E-01	С	1	в	3	
1.26850297E+00	-7.32370533E-01	7.42225186E-01	С	1	в	4	
1.86867691E-17	1.46474106E+00	-7.42225183E-01	в	2	С	5	
-1.26850297E+00	-7.32370533E-01	-7.42225186E-01	в	3	С	5	
1.26850297E+00	-7.32370533E-01	-7.42225186E-01	в	4	С	5	
2.43344822E-19	-5.70853206E-11	3.32632144E+00	С	1	н	6	
-2.83440701E-19	-5.70853204E-11	-3.32632144E+00	С	5	н	7	
-8.83335577E-19	3.01728191E+00	1.43530899E-18	в	2	н	8	
-2.61304279E+00	-1.50864096E+00	9.62442530E-19	в	3	н	9	
2.61304279E+00	-1.50864096E+00	9.62442530E-19	В	4	н	10	
-7.13790147E-01	4.12106927E-01	-6.05852400E-17	в	2	в	3	Ring
1.86373285E-16	5 -8.24213862E-01	1.50833835E-16	в	3	в	4	Ring
7.13790147E-01	4.12106927E-01	-5.93610112E-17	в	2	в	4	Ring
-7.75257164E-17	-1.77055278E-09	-5.34393430E-18					Cage

C2B4H6

9

SADDLE C2B4H6 OPTIMIZATION USING VD SET(Renormalized); d=0.75, p=1.0725 0.0000000 -2.293374810.0000000 В 1 0.0000000 в 2 0.00000000 -2.29337481 0.0000000 в 3 2.29337481 0.0000000 0.0000000 2.29337481 0.0000000 в 4 С 5 0.0000000 -2.04619646 0.00000000 С 2.04619646 6 0.00000000 0.00000000

0.0000000 0.0000000 H 7 -4.508018350.0000000 Н 8 0.00000000 -4.508018359 4.50801835 0.00000000 0.0000000 Н 0.0000000 0.0000000 4.50801835 Η 10 0.0000000 0.0000000 -4.05778910 н 11 н 12 0.0000000 0.0000000 4.05778910

SEARCHING BETWEEN ATOMS 1 5 NUMBER OF PERFORMED NEWTON ITERATION STEPS : COORDINATES OF CRITICAL POINT

- X = -1.53078077E+00Y = -2.36670351E-12
- Z = -6.55355620E 01
- R = 1.66516688E+00

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLE	EUS	LE	INGTH		YZ ANGL	ε	XZ AN	IGLE	XY ANGLE
в	1	1.0055	50518E+	00 4.	9325001	5E+01	0.00000	000E+00	4.06749985E+01
в	2	2.8341	L3986E+	00 3.	2691931	7E+01	5.40174	1585E+01	1.33698606E+01
в	3	3.8799	0423E+	00 8.	0275534	9E+01	0.00000)000E+00	9.72446513E+00
в	4	2.8341	L3986E+	00 3.	2691931	7E+01	5.40174	1585E+01	1.33698606E+01
С	5	2.0682	26691E+	00 4.	7742259	3E+01	0.0000	000E+00	4.22577407E+01
С	6	3.1051	0441E+	00 2.	9537197	0E+01	0.00000	000E+00	6.04628030E+01
Н	7	3.0485	51351E+	00 7.	7585911	9E+01	0.00000	000E+00	1.24140881E+01
н	8	4.8057	2681E+	00 1.	8574207	3E+01	6.97268	3336E+01	7.83783162E+00
н	9	6.0742	25598E+	00 8.	3806263	1E+01	0.00000	000E+00	6.19373685E+00
н	10	4.8057	2681E+	00 1.	8574207	3E+01	6.97268	3336E+01	7.83783162E+00
н	11	3.7309	3063E+	00 2.	4223343	8E+01	0.00000	000E+00	6.57766562E+01
н	12	4.9555	50430E+	00 1.	7993261	7E+01	0.0000	000E+00	7.20067383E+01
EIGEN	IVALUE	ES OF TH	IE HESS	IAN					
-2	2.0768	84763E-0)1 -8	.25063	605E-02	3.	77505717	7E-01	
THE B	LLIPI	NICITY I	IS	1.517	20				
EIGEN	IVECTO	ORS OF 1	THE HES	SIAN					
-7	7.0373	37198E-C)1 2	.57780	478E-12	-7.	10460383	3E-01	
-3	3.4754	15986E-1	L2 –1	.00000	000E+00	-1.	86099668	3E-13	
-7	7.1046	50383E-0	01 2	.33821	129E-12	7.	03737198	3E-01	
EIGEN	IVALUE	S OF TH	IE STRE	SSIAN					
-1	1.2582	28246E-0)1 -1	.18794	909E-01	-5.	88652963	3E-02	
_									
THE 1	TRACE	OF THE	STRESS	IAN IS	-0.30	348845	5		
FIGEN	IJ. IJ	NRS OF 1	יעד כיים	FSSTAN	r				
BIGBI	5 0719	194E-1	2 6	05605	9895-01	7	95764659	55-01	
		10000E+0	10 -3	07159	897E-12	4	03607285	7E-12	
-		000005+0	0 3 10 7	95764	6558-01	-6	05605989	AE = 01	
,		0000000	,, ,		0556 01		0500550.		
VALUE	S								
RHO		1.4450	790976	E-01					
GRAD		5.3016	5544898	E-17					
DEL2		8.7314	1593702	E-02					
G (X)		1.6265	5854974	E-01					
K (X)		1.4082	2990132	E-01					
L(X)		-2.1828	8648426	E-02					

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN

3.12433583E-01 -3.78721848E-14 -2.85611289E-01

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.423307

SEARCHING BETWEEN ATOMS 1 2 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 11

COORDINATES OF CRITICAL POINT X = -1.09501230E+00 Y = -1.09501230E+00 Z = -6.76617222E-15R = 1.54858124E+00

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

NUCLE	US	LENGT	'H	YZ ANGLE		XZ ANGLE	XY ANGLE
в	1	1.6233067	0E+00	4.75802705	E+01	4.24197295E+0	0.0000000E+00
в	2	1.6233067	0E+00	4.24197295	E+01	4.75802705E+0	0.0000000E+00
в	3	3.5609295	3E+00	7.20909192	E+01	1.79090808E+0	0.00000000E+00
в	4	3.5609295	3E+00	1.79090809	E+01 '	7.20909191E+0	0.0000000E+00
С	5	2.5661301	3E+00	2.52594159	E+01 3	2.52594159E+0	01 5.28812121E+01
С	6	2.5661301	3E+00	2.52594159	E+01 2	2.52594159E+0	01 5.28812121E+01
н	7	3.5843635	7E+00	7.22119332	E+01	1.77880668E+0	0.0000000E+00
H	8	3.5843635	8E+00	1.77880668	E+01	7.22119332E+0	0.0000000E+00
H	9	5.7090283	2E+00	7.89419399	E+01	1.10580601E+0	0.00000000E+00
H	10	5.7090283	2E+00	1.10580601	E+01 '	7.89419399E+0	01 0.00000000E+00
н	11	4.3432426	0E+00	1.46029163	E+01	1.46029163E+0	01 6.91115566E+01
Н	12	4.3432426	0E+00	1.46029163	E+01	1.46029163E+0	01 6.91115566E+01
EIGEN -1	VALUE .387	ES OF THE H 73222E-01	ESSIAN -2.36	992734E-03	1.3	2792524E-02	
THE E	LLIP	FICITY IS	57.	55590			
EIGEN	VECTO	ORS OF THE	HESSTA	N			
-7	.0710	06781E-01	0.00	000000E+00	7.0	7106781E-01	
-7	.0710	06781E-01	0.00	000000E+00	-7.0	7106781E-01	
0	.0000	00000E+00	1.00	000000E+00	0.0	0000000E+00	
EIGEN	VALUE	ES OF THE S	TRESSI	AN			
-7	.4094	42983E-02	-6.95	612793E-02	-1.1	6013351E-02	
THE T	RACE	OF THE STR	ESSIAN	IS -0.155	25691		
EIGEN	VECTO	DRS OF THE	STRESS	IAN 106781E-01	7 0'	71067818-01	
0	.0000	00000E+00	-7.07	106781E-01	-7.0	7106781E-01	
1	.0000	10000E+00	0.00	000000000000000000000000000000000000000	0.00	1000000E+00	

VALUES

 RHO
 1.2973497634E-01

 GRAD
 7.3340994713E-17

 DEL2
 -1.2786389669E-01

 G(X)
 6.1645469259E-02

- K(X) 9.3611443431E-02
- L(X) 3.1965974172E-02

COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -4.86462958E-03 -4.86462965E-03 -3.00183014E-13

MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.006880

STARTING COORDINATES 1.000000 1.000000 1.000000 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 18

COORDINATES OF CRITICAL POINT

NUC	LEUS	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
В	1	3.55008111E+00	7.20459667E-	+01 1.77760819E+01	2.44082987E+00
В	2	3.55008111E+00	1.77760819E-	+01 7.20459667E+01	2.44082987E+00
В	3	1.63111738E+00	4.78629768E-	+01 4.16418396E+01	5.31842516E+00
в	4	1.63111738E+00	4.16418396E-	+01 4.78629768E+01	5.31842516E+00
С	5	2.43730072E+00	2.64032113E-	+01 2.64032113E+01	5.10324536E+01
С	6	2.67915824E+00	2.38624289E-	+01 2.38624289E+01	5.51025924E+01
н	7	5.69792422E+00	7.89271464E-	+01 1.09653454E+01	1.52047304E+00
н	8	5.69792422E+00	1.09653454E-	+01 7.89271464E+01	1.52047304E+00
Н	9	3.59480212E+00	7.22767828E-	+01 1.75477049E+01	2.41044678E+00
н	10	3.59480212E+00	1.75477049E-	+01 7.22767828E+01	2.41044678E+00
Н	11	4.19653472E+00	1.49673356E-	+01 1.49673356E+01	6.85772422E+01
н	12	4.47938443E+00	1.40022519E-	+01 1.40022519E+01	6.99900602E+01
EIG	ENVALU	ES OF THE HESSIAN			
-	-1.406	40666E-01 4.68	654325E-03	1.53691702E-02	
EIGI	ENVECTO	DRS OF THE HESSIA	N		
-	-6.9253	32071E-01 -1.42	826225E-01	7.07106781E-01	
-	-6.9253	32071E-01 -1.42	826224E-01	-7.07106781E-01	
	2.0198	86783E-01 -9.79	388247E-01	-5.42956593E-10	
EIG	ENVALUI	ES OF THE STRESSI	AN		
-	-7.3524	45262E-02 -6.81	619081E-02	-1.24640118E-02	
THE	TRACE	OF THE STRESSIAN	IS -0.15415	5045	

9.30493032E-01 -3.66309592E-01 3.15095834E-11 VALUES RHO 1.2972129025E-01 6.2338392969E-16 GRAD DEL2 -1.2058495267E-01 6.2002103967E-02 G(X) K (X) 9.2148342136E-02 3.0146238169E-02 L(X) COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 3.36010803E-03 3.36010809E-03 -1.55205474E-02 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.016232 CAGE POINT NUMBER OF PERFORMED NEWTON ITERATION STEPS : 9 COORDINATES OF CRITICAL POINT 2.43484309E-14 X = Y = 4.37899556E-15 Z = 2.77750885E-16 R = 2.47406312E-14 VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS NUCLEUS YZ ANGLE LENGTH XZ ANGLE XY ANGLE 0.0000000E+00 0.0000000E+00 в 1 2.29337481E+00 9.00000000E+01 В 2 2.29337481E+00 0.0000000E+00 9.00000000E+01 0.0000000E+00 3 2.29337481E+00 9.0000000E+01 0.0000000E+00 0.0000000E+00 В 2.29337481E+00 0.0000000E+00 9.0000000E+01 0.0000000E+00 В 4 0.0000000E+00 9.0000000E+01 С 5 2.04619646E+00 0.0000000E+00 С 0.0000000E+00 0.0000000E+00 9.0000000E+01 2.04619646E+00 6 7 4.50801835E+00 9.0000000E+01 0.0000000E+00 0.0000000E+00 Н 0.0000000E+00 4.50801835E+00 0.0000000E+00 9.00000000E+01 Н 8 Н 9 4.50801835E+00 9.0000000E+01 0.0000000E+00 0.0000000E+00 0.0000000E+00 н 10 4.50801835E+00 0.0000000E+00 9.00000000E+01 0.0000000E+00 9.0000000E+01 4.05778910E+00 0.0000000E+00 Η 11 12 4.05778910E+00 0.0000000E+00 0.00000000E+00 9.0000000E+01 H EIGENVALUES OF THE HESSIAN 9.02323337E-02 9.02323337E-02 2.47763484E-01

-6.57957933E-01

-6.57957933E-01

7.07106781E-01

-7.07106781E-01

EIGENVECTORS OF THE STRESSIAN

-2.59019997E-01

-2.59019997E-01

EIGENVECTORS OF THE HESSIAN -9.99962694E-01 -8.63774131E-03 0.00000000E+00 B75

8.63774131E-03 -9.99962694E-01 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.0000000E+00 EIGENVALUES OF THE STRESSIAN -4.19213326E-02 -3.98720054E-02 -3.98720054E-02 THE TRACE OF THE STRESSIAN IS -0.12166534 EIGENVECTORS OF THE STRESSIAN -9.99962789E-01 0.0000000E+00 -8.62676655E-03 0.0000000E+00 -9.99962789E-01 8.62676655E-03 1.0000000E+00 0.0000000E+00 0.0000000E+00 VALUES RHO 7.8029161581E-02 GRAD 9.6854799924E-17 DEL2 4.2822815102E-01 G(X) 1.1436119059E-01 7.3041528377E-03 K (X) L(X) -1.0705703776E-01 COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -1.29231546E-14 3.34504286E-13 3.77284313E-14 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.000000 SEARCHING BETWEEN ATOMS 1 7 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 6 COORDINATES OF CRITICAL POINT X = -3.24465823E+00Y = -8.08026747E - 14Z = -4.27335488E-19R = 3.24465823E+00

NUCLE	US	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
в	1	9.51283422E-01	9.00000000E+01	0.0000000E+00	0.00000000E+00
в	2	3.97333299E+00	5.47467370E+01	3.52532630E+01	0.0000000E+00
в	3	5.53803304E+00	9.00000000E+01	0.0000000E+00	0.00000000E+00
в	4	3.97333299E+00	5.47467370E+01	3.52532630E+01	0.00000000E+00
С	5	3.83597797E+00	5.77630164E+01	0.0000000E+00	3.22369836E+01
С	6	3.83597797E+00	5.77630164E+01	0.0000000E+00	3.22369836E+01
н	7	1.26336012E+00	9.00000000E+01	0.0000000E+00	0.00000000E+00
н	8	5.55428092E+00	3.57445532E+01	5.42554468E+01	0.00000000E+00
н	9	7.75267658E+00	9.0000000E+01	0.0000000E+00	0.00000000E+00
н	10	5.55428092E+00	3.57445532E+01	5.42554468E+01	0.00000000E+00
н	11	5.19552302E+00	3.86462622E+01	0.0000000E+00	5.13537378E+01
н	12	5.19552302E+00	3.86462622E+01	0.0000000E+00	5.13537378E+01

EIGENVALUES OF THE HESSIAN -4,28490090E-01 -3,96238469E-01 5,96447110E-01 THE ELLIPTICITY IS 0.08139 EIGENVECTORS OF THE HESSIAN 0.0000000E+00 1.15359025E-13 1.00000000E+00 -1.15248002E-13 0.0000000E+00 1.0000000E+00 1.0000000E+00 0.0000000E+00 0.0000000E+00 EIGENVALUES OF THE STRESSIAN -1.36825327E-01 -1.32018153E-01 -8.96749215E-02 THE TRACE OF THE STRESSIAN IS -0.35851840 EIGENVECTORS OF THE STRESSIAN -5.50924830E-13 0.0000000E+00 1.0000000E+00 1.0000000E+00 0.0000000E+00 5.51035852E-13 0.0000000E+00 1.00000000E+00 0.0000000E+00 VALUES 1.8573227336E-01 RHO 6.2502255075E-17 GRAD -2.2828144899E-01 DEL2 1.5072401953E-01 G (X) K (X) 2.0779438178E-01 L(X) 5.7070362248E-02 COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN -6.41797297E-01 1.16336238E-12 3.95922484E-19 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.641797 SEARCHING BETWEEN ATOMS 6 12 NUMBER OF PERFORMED NEWTON ITERATION STEPS : 5 COORDINATES OF CRITICAL POINT X = -6.08154996E - 15Y = -5.08729991E-16 3.27322768E+00 Z ≠ 3.27322768E+00 R =

VECTORS FROM NUCLEI TO CRITICAL POINT LENGTHS AND ANGLES MADE WITH PROJECTIONS ONTO YZ/XZ/XY PLANES OF MCS

.

US	LENGTH	YZ ANGLE	XZ ANGLE	XY ANGLE
1	3.99669707E+00	3.50168645E+01	0.0000000E+00	5.49831355E+01
2	3.99669707E+00	0.0000000E+00	3.50168645E+01	5.49831355E+01
3	3.99669707E+00	3.50168645E+01	0.0000000E+00	5.49831355E+01
4	3.99669707E+00	0.0000000E+00	3.50168645E+01	5.49831355E+01
	US 1 2 3 4	LENGTH 1 3.99669707E+00 2 3.99669707E+00 3 3.99669707E+00 4 3.99669707E+00	US LENGTH YZ ANGLE 1 3.99669707E+00 3.50168645E+01 2 3.99669707E+00 0.00000000E+00 3 3.99669707E+00 3.50168645E+01 4 3.99669707E+00 0.0000000E+00	US LENGTH YZ ANGLE XZ ANGLE 1 3.99669707E+00 3.50168645E+01 0.0000000E+00 2 3.99669707E+00 0.0000000E+00 3.50168645E+01 3 3.99669707E+00 3.50168645E+01 0.0000000E+00 4 3.99669707E+00 0.0000000E+00 3.50168645E+01

С 5 5.31942414E+00 0.0000000E+00 0.0000000E+00 9.0000000E+01 С 6 1.22703122E+00 0.0000000E+00 0.0000000E+00 9.0000000E+01 Η 7 5.57101866E+00 5.40169684E+01 0.0000000E+00 3.59830316E+01 5,40169684E+01 3.59830316E+01 Η 8 5.57101866E+00 0.0000000E+00 9 Н 5.57101866E+00 5.40169684E+01 0.0000000E+00 3.59830316E+01 Н 10 5.57101866E+00 0.0000000E+00 5.40169684E+01 3.59830316E+01 н 11 7.33101678E+00 0.0000000E+00 0.0000000E+00 9.0000000E+01 7.84561418E-01 0.0000000E+00 0.0000000E+00 9.0000000E+01 н 12 EIGENVALUES OF THE HESSIAN 2.96990582E-01 -7.39952872E-01 -7.39952872E-01 THE ELLIPTICITY IS 0.00000 EIGENVECTORS OF THE HESSIAN 0.0000000E+00 -9.96349584E-01 8.53668938E-02 -8.53668938E-02 -9.96349584E-01 0.0000000E+00 0.0000000E+00 0.0000000E+00 1.0000000E+00 EIGENVALUES OF THE STRESSIAN -2.36117848E-01 -2.36117848E-01 6.70426749E-02 THE TRACE OF THE STRESSIAN IS -0.40519302 EIGENVECTORS OF THE STRESSIAN 8.05314382E-02 -9,96752069E-01 0.0000000E+00 0.0000000E+00 -9.96752069E-01 -8.05314382E-02 0.0000000E+00 0.0000000E+00 1.0000000E+00 VALUES 2.9693012501E-01 RHO GRAD 5.3777152674E-16 DEL2 -1.1829151610E+00 G(X) 5.4732115283E-02 K (X) 3.5046090554E-01 L(X) 2.9572879026E-01 COMPONENTS OF THE DIVERGENCE OF THE STRESSIAN 2.01476718E-14 1.69684832E-15 -1.33982379E-02 MAGNITUDE OF THE DIVERGENCE OF THE STRESSIAN 0.013398 CRITICAL POINTS 5 -1.53078077E+00 -2.36670351E-12 -6.55355620E-01 C R 1 2 С -9.47087843E-12 -1.53078077E+00 -6.55355620E-01 в 5 2.36372938E-12 -6.55355620E-01 в 3 С 5 1.53078077E+00 1.53078077E+00 -6.55355620E-01 4 С 5 9.45172833E-12 В -1.53078077E+00 -2.36641355E-12 6.55355620E-01 В 1 С 6 -9.47090793E-12 -1.53078077E+00 6.55355620E-01 В 2 С 6 1.53078077E+00 2.36370115E-12 6.55355620E-01 В 3 С 6 С 9.45173011E-12 1.53078077E+00 6.55355620E-01 В 4 6 2 -1.09501230E+00 -1.09501230E+00 -6.76617222E-15 B 1 в
1.09501230E+00	-1.09501230E+00	-1.02557785E-14	в	2	В	3
1.09501230E+00	1.09501230E+00	7.77702253E-15	в	3	в	4
-1.09501230E+00	1.09501230E+00	3.99777517E-15	в	1	В	4
1.08383200E+00	1.08383200E+00	-1.51189554E-01	3-4-	-5 R	ing	
1.08383200E+00	-1.08383200E+00	-1.51189554E-01	2-3-	-5 R	ing	
-1.08383200E+00	-1.08383200E+00	-1.51189554E-01	1-2-	-5 R	ing	
-1.08383200E+00	1.08383200E+00	-1.51189554E-01	1-4-	-5 R	ing	
1.08383200E+00	1.08383200E+00	1.51189554E-01	3-4-	-6 R	ing	
2.43484309E-14	4.37899556E-15	2.77750885E-16	Cage	2		
1.08383200E+00	-1.08383200E+00	1.51189554E-01	2-3-	-6 R	ing	
-1.08383200E+00	-1.08383200E+00	1.51189554E-01	1-2-	-6 R	ing	
-1.08383200E+00	1.08383200E+00	1.51189554E-01	1-4-	-6 R	ing	
-3.24465823E+00	-8.08026747E-14	-4.27335488E-19	В	1	н	7
-2.67926030E-13	-3.24465823E+00	3.39340249E-19	в	2	н	8
3.24465823E+00	8.08117219E-14	-3.26810012E-19	в	3	Н	9
2.68016767E-13	3.24465823E+00	-8.53978143E-19	в	4	Н	10
-6.08154996E-15	-5.08729991E-16	-3.27322768E+00	С	5	Н	11
-6.08154996E-15	-5.08729991E-16	3.27322768E+00	С	6	Н	12