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Abstract

Recent years have witnessed the remarkable successes of deep learning methods

in the field of image restoration. However, despite the similarities across different

image restoration tasks, researchers often adopt a problem-specific approach. Most

deep learning based image restoration algorithms are tailored to a specific type of

degradation, performing poorly when being applied to degradations that are deviated

from those of the training dataset. This lack of universality limits the adaptability

and robustness of these algorithms in real-world scenarios. The approach of training

and storing multiple models for various degradation types wastes resources and

reduces efficiency, and it still tends to struggle with unseen and complex degradation

sources. In this thesis, we depart from current problem-specific methodologies for

image restoration and strive to improve the universality and robustness of the existing

methods. We propose three novel methods to achieve the above goal; they are a new

inference method, a new network model, and a new training method, respectively.
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Chapter 1

Introduction

In the rapidly advancing landscape of digital image processing, the pivotal role of digital

images spans diverse domains, ranging from video surveillance [32] and autonomous

driving [53] to medical imaging [20] and remote sensing [22]. The inherent quality

of images captured by cameras directly influences the efficacy of systems operating

in these domains. However, the challenge lies in the fact that images obtained are

not consistently clear, and they can suffer from a spectrum of degradations arising

from various sources, including capture processes, device defects, and environmental

conditions [43]. Surveillance and medical imaging outputs often exhibit low resolution,

images from moving cameras may manifest motion blur, and those captured in

adverse weather conditions may display color distortions, blurs, and noise. These

degradations significantly impede the performance of visual systems in critical tasks

such as segmentation, detection, and target tracking [36].

Moreover, beyond contemporary images, there is a burgeoning demand for the

digitization of historical and cultural artifacts [124]. However, digitized images may

carry inherent degradation, or the digitization process itself may introduce noise from
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the environment. Therefore, the development of efficient image restoration algorithms

becomes imperative for the recovery of degraded images [146]. This not only impacts

the functionality of modern technological systems but also plays a crucial role in the

preservation of cultural and historical facets encapsulated in digitized imagery.

The research landscape on image restoration has been a focal point for several

decades, consistently captivating researchers due to its evolving challenges and wide-

ranging applications. The spectrum of image restoration tasks includes image super-

resolution [39], deblurring [40], denoising [181], inpainting [33], and the removal

of compression artifacts [38]. At its core, image restoration aims to reconstruct a

high-quality image with optimal visibility and unblemished content from a degraded

counterpart. The complexity of this task is compounded by the multitude of potential

mappings between degraded observations and their corresponding restored images,

presenting a formidable challenge in determining the inverse function.

Historically, conventional image restoration methods treated the restoration process

as signal processing, employing hand-crafted algorithms to mitigate artifacts from both

spatial and frequency perspectives [8]. However, the advent of deep learning has ushered

in a transformative shift in the landscape of image restoration [37]. Contemporary

endeavors in image restoration have curated extensive datasets tailored to specific

tasks, fostering the training of deep learning models. These models leverage well-

designed backbones, often rooted in Convolutional Neural Networks or Transformer

architectures, to learn intricate mappings and patterns from the data. This paradigm

shift towards deep learning not only signifies a departure from traditional methods

but also underscores the potential for more adaptive and sophisticated approaches in

addressing the complexities of image restoration.

2
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1.1 Problem Formulation of Image Restoration

In the realm of image restoration, traditional methodologies have conventionally

harnessed sophisticated mathematical techniques and probabilistic models to address

inverse problems. These methodologies predominantly rely on either maximum likeli-

hood or Bayesian approaches, employing iterative processes to rectify the estimated

degradations [48, 133]. Within the conventional image restoration framework, the

degraded image y is elegantly conceptualized through the following expression:

y = (x⊗ k) ↓s +n (1.1.1)

In this equation, the convolution between the blurry kernel k and the unknown

high-quality image x is denoted by x⊗ k, where the downsampling operator with a

scale factor of s is represented by ↓s, and n encapsulates the independent noise term.

This formulation succinctly captures the intricate interplay between the blurred input,

the unknown high-quality image, and the additive noise, forming a foundational basis

for addressing challenges in image restoration.

Applying maximum a posteriori estimation yields the formulation for the latent

image x̂:

x̂ = argmax
x

log(p(y|x)) + log(p(x)) (1.1.2)

where p(y|x) denotes the likelihood of the degraded observation y given the clean

image x, while p(x) represents the prior distribution of the clean image x.

Furthermore, the problem can be cast as a constrained maximum likelihood

3
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estimation:

x̂ = argmin
x
‖y − (x⊗ k) ↓s‖2 + λφ(x) (1.1.3)

In this formulation, the fidelity term ‖y − (x⊗ k) ↓s‖2 approximates the likelihood

p(y|x), while the regularization term φ(x) represents priors of the latent image x or

constraints on the solution. The choice of priors can be adapted depending on the

specific requirements of various image restoration tasks.

1.2 Deep Learning for Image Restoration

Deep learning [93], a subset of machine learning [13], is distinguished by its intrinsic

ability to autonomously acquire diverse representations of data, marking a departure

from traditional task-specific algorithms reliant on manually crafted features. This

capacity for holistic learning is underpinned by the high approximating capacity

and hierarchical nature of artificial neural networks, constituting the foundation for

contemporary deep learning models. While the roots of deep learning can be traced

back to the perceptron algorithms of the 1960s, a pivotal moment occurred in the

1980s with the introduction of the multilayer perceptron and the backpropagation

algorithm [135]. Concurrently, the emergence of the convolutional neural network [91]

and recurrent neural network [42] played crucial roles, leaving enduring impacts in

computer vision and speech recognition, respectively.

Despite early successes, inherent deficiencies impeded the progress of neural net-

works. A resurgence in modern artificial neural networks commenced with the advent

of pretraining techniques, notably leveraging the restricted Boltzmann machine in

4
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2006 [138]. Harnessing the surge in computing power and advancements in algorithms,

deep neural network models showcased exceptional performance across various super-

vised tasks [87]. Simultaneously, the rise of unsupervised algorithms, including the

deep Boltzmann machine [137], variational autoencoder [83], and generative adversar-

ial nets [55], gained prominence for their efficacy in addressing challenging unlabeled

data.

Image restoration, an essential aspect of computer vision, has undergone trans-

formative advancements through the incorporation of deep learning methodologies.

The advent of convolutional neural networks has marked a paradigm shift in this

domain, offering robust solutions to address a myriad of challenges associated with

restoring degraded or corrupted images. Neural networks excel at automatically

learning hierarchical features from input data, which proves particularly advantageous

in tasks such as denoising, deblurring, and super-resolution.

One prominent architecture in the realm of image restoration is the U-Net [134],

renowned for its success in various medical imaging tasks. The U-Net’s unique

architecture, featuring contracting and expansive pathways, enables the network to

capture both local and global contextual information effectively. Additionally, deep

residual networks have demonstrated exceptional performance by facilitating the

training of remarkably deep networks, mitigating the vanishing gradient problem,

and enhancing the overall representational capacity for image restoration tasks [103].

Generative adversarial networks have also emerged as a pivotal tool in image restoration,

leveraging a generative model’s ability to synthesize realistic-looking images and a

discriminative model’s capacity to provide feedback for refinement [94].

The success of deep learning methods in image restoration can be attributed to their

5
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ability to learn intricate and nonlinear mappings between degraded input and ground

truth images. The models’ capacity for automatic feature extraction and representation

learning allows them to adapt to diverse data distributions, resulting in improved

generalization performance. The availability of large-scale datasets has played a pivotal

role in training these deep models effectively. Moreover, the continuous evolution of

deep learning techniques, including the development of attention mechanisms [190],

self-supervised learning [90], and transfer learning [192], further enhances the efficacy

of image restoration algorithms. These advancements contribute to the field’s ability

to handle real-world challenges, such as varying lighting conditions, diverse image

modalities, and complex noise patterns.

1.2.1 Deep Learning for Image Super-Resolution.

The pursuit of generating high-resolution images with enhanced edge structures and

intricate texture details from low-resolution counterparts has been a focal point in

computer vision. In a groundbreaking contribution, Dong et al.[37] introduced the

Super-Resolution Convolutional Neural Network (SRCNN), marking a significant

advancement in the application of deep learning to single-image super-resolution (SR).

Building on the success of SRCNN, subsequent developments have witnessed the emer-

gence of more efficient and intricate architectures. Shi et al.[142] proposed the Efficient

Sub-Pixel Convolutional Network (ESPCN), incorporating a sub-pixel convolution

layer to facilitate real-time SR. Lim et al.[103] elevated SR outcomes by strategi-

cally modifying ResNet, selectively omitting batch normalization layers to enhance

model performance. Extending the capabilities of SR frameworks, Zhang et al.[190]

introduced residual channel attention, augmenting the overall SR quality. Departing

6
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from conventional Mean Squared Error (MSE)-minimizing approaches, contemporary

methodologies integrate perceptual constraints to achieve superior visual quality. The

Super-Resolution Generative Adversarial Network (SRGAN) [94] exemplifies this

paradigm shift, leveraging generative adversarial networks and employing a multi-task

loss function comprising MSE, perceptual, and adversarial components to predict

high-resolution outputs. This dynamic landscape of deep learning methodologies

underscores the continual pursuit of more sophisticated and effective solutions in the

domain of image super-resolution. The evolution from SRCNN to advanced architec-

tures reflects the ongoing commitment to pushing the boundaries of computational

image enhancement.

1.2.2 Deep Learning for Image Denoising.

Image denoising, a pivotal task in the field of image processing, plays a crucial role

in restoring the true representation of corrupted images by eliminating unwanted

noise. In recent years, substantial strides have been made in this domain through the

application of deep learning techniques. A notable contribution comes from Zhang

et al. [181], who introduced the Denoising Convolutional Neural Network (DnCNN),

a simple yet remarkably effective method that has established a new benchmark

for denoising performance. Their research underscores the potency of integrating

residual learning and batch normalization to enhance the overall denoising outcomes.

In the pursuit of achieving clearer images, Mao et al. [117] developed the Residual

Encoder-Decoder Network with 30 layers (RED30), a deep architecture characterized

by multiple convolutions and subsequent transposed convolutions. This approach

highlights the significance of employing intricate network architectures to capture

7
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and restore intricate details in images. These advancements collectively emphasize

the diverse approaches and innovations within the realm of deep learning for image

denoising. Addressing the challenge of training complexity, Liu et al. [105] proposed

the Multi-level Wavelet Convolutional Neural Network (MWCNN), which integrates

a U-Net architecture with wavelet transformations to capture frequency features

for image restoration tasks. This innovative combination showcases a thoughtful

integration of traditional signal processing techniques with modern deep learning

architectures. Tai et al. [150] introduced the Persistent Memory Network (MemNet), a

deep architecture that employs recursive and gate units to recover high-quality images

by delving into more accurate information. This approach underlines the importance

of memory and recursive structures in learning long-range dependencies, thereby

contributing to improved image denoising outcomes. In the quest for flexibility and

speed, Zhang et al. [183] presented FFDNet, a fast and flexible denoising Convolutional

Neural Network. FFDNet incorporates a tunable noise level map as input, catering to

diverse denoising requirements. This adaptability is particularly valuable in real-world

scenarios where noise characteristics can vary significantly.

1.2.3 Deep Learning for Image Deblurring.

In the realm of image processing, the challenge of image deblurring arises when

confronted with a blurred image corrupted by an unknown blur kernel or a spatially

variant kernel. The objective of image deblurring is to restore the sharp rendition of the

original image by mitigating or eliminating the undesirable blur present in the degraded

image. Noteworthy contributions to this field include the work of Sun et al. [147],

who introduced a CNN-based model designed to estimate blur kernels and effectively

8
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eliminate non-uniform motion blur. Chakrabarti [26], on the other hand, employs

a network-centric approach to compute estimations of sharp images that have been

blurred by elusive motion kernels. In the pursuit of enhancing deblurring efficacy, Nah

et al. [123] proposed a multi-scale loss function, implementing a coarse-to-fine strategy

and introducing an adversarial loss into the framework. Kupyn et al. [88] presented

DeblurGAN, a model leveraging adversarial learning to eliminate blur kernels. Beyond

CNN-centric approaches, RNN-based methodologies have emerged in the literature.

Zhang et al. [180] proposed a spatially variant neural network, incorporating three

CNNs and one RNN for comprehensive image deblurring. Additionally, Tao et al. [151]

introduced SRN-DeblurNet, a model integrating one LSTM unit alongside CNNs to

address multi-scale image deblurring challenges. Shen et al. [141] contributed a human-

aware deblurring method aimed at selectively removing blur from foreground humans

and background elements. Gao et al. [52] introduced a nested skip connection structure,

showcasing state-of-the-art performance in image deblurring tasks. These diverse

methodologies collectively contribute to the evolving landscape of image deblurring

techniques, offering valuable insights and advancements in the pursuit of high-fidelity

image restoration.

1.2.4 Deep Learning for Image Compression Artifacts Re-

moval.

To address the challenge of mitigating artifacts induced by image compression, a

multitude of methodologies have been advanced within the realm of image processing.

Pioneering this endeavor, Dong et al. [38] leveraged the efficacy of deep learning,

drawing inspiration from the remarkable achievements of super-resolution networks,

9
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in order to effectively eliminate JPEG artifacts. In a similar vein, Guo et al. [61]

devised a highly precise methodology for artifact removal in JPEG-compressed images.

Their approach involved the joint learning of an intricate convolutional network

operating seamlessly in both the Discrete Cosine Transform (DCT) and pixel domains.

Building on this foundation, Zhang et al. [189] integrated batch normalization and

residual learning strategies, strategically enhancing the training process and overall

performance, particularly in the domain of general blind image restoration tasks. Fu et

al. [49] introduced a novel paradigm by proposing a deep convolutional sparse coding

network that amalgamates traditional model-based techniques with the power of deep

learning. Ehrlich et al. [41] further expanded the frontier by training their networks

with the incorporation of quantization tables as prior information. This innovative

approach empowers a singular model to rectify artifacts across a spectrum of quality

factors, achieving state-of-the-art results in the process.

1.2.5 Dataset

In the realm of deep learning-based image restoration methodologies, the significance

of datasets, whether employed for model training or testing, cannot be overstated.

A pivotal requirement for the efficacy of such methods lies in the inclusion of not

only pristine images but also their corresponding degraded counterparts. Recent

strides in research have witnessed a substantial augmentation in both the volume and

diversity of images incorporated into datasets. Moreover, there has been a concerted

effort to ensure that the degradation introduced in these datasets is more reflective

of the complexities encountered in real-world scenarios. This evolving landscape of

dataset composition and quality plays a pivotal role in advancing the robustness and

10
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generalization capabilities of deep learning models in the domain of image restoration.

For the training and evaluation of super-resolution models, pivotal datasets such

as Set5 [10], Set14 [178], Urban100 [68], Manga109 [50], and DIV2K [3] are extensively

employed. It is noteworthy that these datasets exclusively comprise high-resolution

images. Consequently, the corresponding low-resolution counterparts must be synthet-

ically generated using assumed degradation models. The widely embraced bicubic

downsampling model emerges as the predominant choice for both training and testing.

The DIV2KRK [9] dataset stands out by introducing LR images through a distinctive

process involving random kernel-blurring and downsampling of HR counterparts. Re-

alSR [21] and DRealSR [166] datasets offer a unique perspective by providing HR and

LR image pairs derived from identical scenes, achieved by adjusting the focal length

of digital cameras. Meanwhile, the SupER [86] dataset introduces HR and LR image

pairs through camera hardware binning, a technique that aggregates adjacent pixels

on the sensor array. Furthermore, the ImagePairs [76] dataset contributes aligned HR

and LR image pairs captured by separate HR and LR cameras mounted on a rig with

a beam splitter.

Within the domain of image denoising, similar to challenges encountered in super-

resolution studies, the evaluation of previous denoising algorithms has predominantly

relied on synthetic data. This involves the introduction of additive white Gaussian

noise at varying levels into a clean image to simulate the corresponding noisy input.

Commonly utilized datasets for such synthetic evaluations include CBSD68 [118],

Kodak24 [46], and McMaster [186], recognized for their widespread use in generating

noisy images. Acknowledging the necessity to broaden assessments beyond synthetic

contexts, datasets such as DND [130], SIDD [1], and PolyU [169] have been established
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to address real-world image denoising challenges. These datasets comprise noisy and

ground truth images captured under diverse lighting conditions, featuring distinct ISO

values and exposure times.

In the pursuit of constructing a image deblurring dataset, Levin et al. [96] laid the

groundwork by securing the camera on a tripod, deliberately inducing blur through

actual camera shake. Building upon this foundation, Sun et al. [148] and Köhler et

al. [85] expanded the dataset’s richness by introducing a diverse set of blur kernels

and incorporating a heightened degree of freedom in simulating camera shake. The

dataset’s evolution continued with Nah et al. [123], who innovatively devised the

GoPro dataset. This expansive dataset seeks to emulate real-world blur scenarios

through frame averaging. High-speed captures from a GoPro camera provide sharp

images, which are subsequently averaged over time windows of varying durations to

synthesize blurred counterparts, and the sharp image at the temporal midpoint of

each time window serves as the ground truth reference.

The dataset employed for compression artifacts removal tasks is notably straightfor-

ward to construct, owing to the controlled nature of the degradation process induced

by artificial compression algorithms. The construction of such a dataset involves

the manipulation of pristine images through image compression algorithms, thereby

introducing compression artifacts at various compression levels. This controlled ap-

proach ensures a systematic and reproducible generation of degradation. Widely

adopted datasets for conducting comprehensive evaluations in this domain encompass

Classic5 [45], LIVE1 [140], and BSD500 [5].

12
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1.2.6 Image Quality Assessment

To comprehensively evaluate the efficacy of diverse image restoration algorithms, a

crucial facet lies in image quality assessment. This pivotal process aims to precisely

forecast the perceived quality of images as perceived by human observers. The

landscape of image quality assessment can be broadly classified into two distinct

categories: subjective assessment reliant on human perception and objective assessment

grounded in quality metrics. Subjective assessment, often quantified through the

Mean Opinion Score (MOS), entails the derivation of average scores through manual

assignment by a multitude of human evaluators. This approach, while providing

valuable insights, is burdened by notable drawbacks, including elevated costs, time-

intensive nature, and vulnerability to individual preferences, thus rendering assessment

results susceptible to personal biases.

In light of these limitations, the utilization of objective assessment methods has

become prevalent in the evaluation of various image restoration algorithms. Notably,

full-reference objective assessment metrics prove most accurate when ground truth

images are available for comparison, while no-reference objective assessment metrics

find utility when ground truth images are absent from the dataset. Among the most

widely adopted full-reference metrics are Peak Signal-to-Noise Ratio (PSNR), Struc-

tural Similarity Index (SSIM) [164], and Learned Perceptual Image Patch Similarity

(LPIPS) [188]. PSNR and SSIM primarily gauge disparities in signal characteristics,

while LPIPS is employed to evaluate distinctions in human-perceived differences. Con-

versely, the realm of no-reference objective assessment metrics encompasses widely-used

measures such as Naturalness Image Quality Evaluator (NIQE) [121] and No-Reference

Quality Metric (NRQM) [112]. These metrics facilitate the quantitative evaluation of
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image quality in the absence of direct comparisons with original images.

1.3 Universality Issue in Image Restoration Meth-

ods

As discussed in section 1.1, different image restoration tasks, such as super-resolution,

deblurring and denoising, are the same of type of inverse problems. The only differences

are in the type and severity of the degradations. The same mathematical formulation

and similar architectures of restoration DNNs seem to suggest that a unified algorithms

should be able to perform diverse image restoration tasks. Unfortunately the current

methods fall far short of the universality expectation. Despite great efforts have

been devoted to deep learning based image restoration with a large number of papers

published in this fields, the issue of algorithm universality largely remains open.

The current state of the art is still at the level of one solution per degradation type

or even per degradation severity. Most image restoration DNNs are designed for a

rather narrow domain of degradation data. For example, networks specifically trained

for super-resolution are not suited for denoising, while those trained for denoising will

fail on supere-resolution tasks. Moreover, even within the same type of degradations,

the DNN restoration methods cannot adapt well across different levels of degradations.

For example, a model trained for the 2× super-resolution task may falter when applied

to 3× super-resolution, and a denoising model trained for noise variance 15 may

struggle if the noise variance increases to 25 at inference time.

Finally, real-world image degradations are caused by multiple compounded sources.

In the image acquisition process, which is carried out by the image signal processing
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pipeline (ISP) of the camera, each ISP step introduces some noises or artifacts, in-

cluding sensor noises, insufficient sampling rate, color demosaicing errors, compression

artifacts, camera jitters, etc. To aggravate the problem, these degradation sources

are compounded to each other, making their effects very difficult to model precisely.

Sequentially applying restoration algorithms designed to neutralize each of the degra-

dation sources alone the ISP pipeline is too simplistic and cumbersome to remove

the complex degradation effects. Furthermore, for the deep learning based image

restoration approach, it is difficult and expensive to acquire or synthesize large training

datasets of clean and degraded image pairs, due to the complex compound mechanism

of the cascaded ISP degradation sources. In the current state of the art, any deviations

in data domain between the training to inference stages can significantly reduce the

performance of the learnt restoration DNN models. Therefore, making trained models

more universal and robust against the complex reality of diverse degradation scenarios

in practice is a much desired and worthy goal, which is the central topic of this thesis.

The lack of universality in restoration DNNs, which are specifically trained for

particular image degradations, has two main drawbacks. Firstly, there is a decline in

their restoration performance due to domain shift during inference. Secondly, there is

a waste of resources caused by the need to train and store multiple models to address

different degradations. Here, we will discuss these two points in detail.

The technical challenge for the DNN domain generalization is the well known

fragility of deep learning models with respect to slight domain shifts; the good model

performance heavily depends on the strict assumption of working on independent

and identically distributed (i.i.d.) data in training and inference. However, this

assumption, while foundational, is too idealistic and often unrealistic in practice.
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This problem is particularly acute with deep neural networks, which are the most

complicated but also the most fragile systems in modern machine learning. These

networks become highly vulnerable when dealing with out-of-distribution (OOD)

situations [102]. Despite many state-of-the-art image restoration networks performing

well in controlled settings or on certain datasets, their usefulness is limited when

faced with diverse and unpredictable conditions. These conditions include changes in

lighting, shifts in image content, and the presence of complex artifacts. In such cases,

the performance of deep neural networks can even decline to the levels comparable

to the simplest baseline methods. This sensitivity to mismatches between assumed

and real data distributions is a major hurdle in creating robust and widely applicable

machine learning systems.

An important side benefit of unifying image restoration models for different degra-

dation sources is improved computational and storage efficiencies of the deployed

system. Nowadays, as DNN models are getting larger and larger, and accordingly

their training costs are steadily increasing, training and storing multiple DNN models,

one for each type of image degradation or even distinct levels of degradation severity,

becomes inefficient and computationally expensive. This is especially true when

restoration networks are deployed on edge devices with limited performance, such

as smartphones. Collectively, multiple degradation-specific restoration networks put

heavy resource burdens on end devices. These burdens can be greatly alleviated if

these designated networks can be merged into one without material performance loss

across different restoration tasks and degradation sources.

In this thesis, we depart from the current problem-specific methodology for image

restoration and strive to improve the domain adaptability and efficiency of the existing
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methods. We propose three novel methods to achieve the above goal; they are a new

inference method, a new network model, and a new training method, respectively. In

Chapter 2, we abstract any image degradation process as a many-to-one function and

propose a general method with only one trained model for various image restoration

problems. The general image restoration is formulated as a constrained optimization

problem. Its objective is to maximize a posteriori probability of latent variables, and

its constraint is that the image generated by these latent variables must be the same

as the degraded image. In Chapter 3, we propose a novel system called the functional

neural network (FuncNet) to solve a parametric image restoration problem with a

single model. Unlike a plain neural network, the smallest conceptual element of our

FuncNet is no longer a floating-point variable, but a function of the degradation

intensity parameter of the problem. In Chapter 4, we propose a novel adversarial

neural degradation (AND) model to solve the task of real-world super-resolution,

which is the most common complex degradation combination. Instead of attempting

to exhaust all degradation variants in simulation, which is unwieldy and impractical,

the AND model, when trained in conjunction with a deep restoration neural network

under a minmax criterion, can generate a wide range of highly nonlinear complex

degradation effects without any explicit supervision.
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Chapter 2

Maximum a Posteriori on a

Submanifold: a General Image

Restoration Method with GAN

We propose a general method for various image restoration problems, such as denoising,

deblurring, super-resolution and inpainting. The method can use only one model, after

only one-time training procedure, to handle any type of image degradation, as long as

the degradation can be modeled and is differentiable. The problem is formulated as a

constrained optimization problem. Its objective is to maximize a posteriori probability

of latent variables, and its constraint is that the image generated by these latent

variables must be the same as the degraded image. We use a Generative Adversarial

Network (GAN) as our density estimation model. Convincing results are obtained on

MNIST dataset.

18
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2.1 Introduction

Image restoration has been researched for many years, but in a case-by-case way [127,

116, 59, 126, 181]. Almost all image restoration algorithms are only designed for

certain type of images or degradation. This research paradigm has some obvious

disadvantages. It is exhausting to invent new algorithms or train new models for

slightly different situations. Even if we can, those specialized solutions are not so

elegant, because they are very unlike one another even though the problems they focus

on are fundamentally so similar.

It is worth noting that any image degradation process can be abstracted as a many-

to-one function. More specifically, for any given degradation process, one degraded

image could be degraded from any of many possible original images. From that point

of view, we propose a general method for various image restoration problems, such

as denoising, deblurring, super-resolution and inpainting. Our algorithm chooses the

most probable original image from all those possible original images, and uses it as

the restoration of the given degraded image. To be more precise, the general image

restoration is formulated as a constrained optimization problem. Its objective is to

maximize a posteriori probability of latent variables, and its constraint is that the

image generated by these latent variables must be the same as the degraded image.

Recent progress of density estimation techniques makes our algorithm possible.

In the field of image generation, Generative Adversarial Networks (GANs) make a

huge success in recent years [55, 132, 16]. As research continues, images generated by

GANs become more and more realistic and clear, and training procedure of GANs

become more and more stable [139, 6]. Besides being an image generation technique,

GANs can also be used for density estimation. The generator part of a GAN is an
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Figure 2.1: An illustration of our image restoration method.

implicit probability distribution model, and it will converge to a good estimator of

the data distribution after training. In this work, we solve the inference problem with

the probability density estimated by a GAN.

Figure 2.1 provides an illustration of how our image restoration method works.

There are four dashed boxes from left to right in Figure 2.1, corresponding to four

different phases of image capture and restoration process. Images in the first dashed

box are original images, which are clear and undegraded. These images undergo a

series of degradation in the second dashed box, and then are captured by our camera.

In the image restoration process, we hope to estimate the original images with the

degraded images we captured. As we pointed out before, every degraded image could

be degraded from any of many possible original images. To be more precise, there

is a particular subset of the original image manifold for any degraded image, and all

image samples on the submanifold could be degraded to the given degraded image.

Images in the third dashed box are those samples on the submanifold, and they are

arranged in ascending order of log-likelihood from left to right. Images marked by

yellow boxes are samples with the highest log-likelihood in their group, and they are

placed in the last dashed box as restoration outputs. Overall, the contributions of
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this work are mainly in two aspects:

1. We propose a general method for various image restoration problems. In the

method, we explicitly use density information estimated by a GAN, an implicit

model; and we directly solve the image restoration problem, an inference problem,

with a GAN, a generative model. To the best of our knowledge, our work is the

first to do those two things.

2. We propose a new algorithm to solve the optimization problem in our method.

It is a first-order iterative algorithm for constrained problems, and it works well

even for problems with highly nonlinear objective and constraints. These features

make it especially suited to neural network related constrained optimization

problems.

2.2 Related Work

The most similar works to ours are found in [171, 172]. [171] propose a image inpainting

method, which can generate missing content with a trained GAN. They search in the

latent space of the GAN for the image which is close to the corrupted image, and use

the discriminator loss as an indicator of how realistic their restoration is. [172] then

improve their theory and apply it to various image restoration problems. Unfortunately,

there is a major theoretical flaw in their method. [55] prove that the discriminator is

unable to identify how realistic an input is after several steps of training, if the GAN

has enough capacity. During the training, the information of the data distribution

gradually transfer from the discriminator to the generator. Ideally, the generator will

have all the information of the data distribution while the discriminator will have
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none. That is why we use the generator instead of discriminator to measure how

realistic the restoration is. Even worse, [172] ignore a term | ∂z
∂x
| intentionally in their

Eq. (5), because they think it is intractable. We will demonstrate in Section 2.3.1

that | ∂z
∂x
| directly determines the density of data space. Another difference between

their work and ours is that we use a more radical strategy of optimization. They

simply add their image prior term to their distortion. This will lead to a compromise

between plausibility and visual quality of restoration. However, we choose the most

probable image only from images which could degrade to the input. This makes our

restorations more plausible while still keeps them similar to the real.

The maximum a posteriori (MAP) has existed for a long time as a classic estimation

method [154, 23]. But before GANs, people do not have a probability density model

which is good enough to describe the distribution of images. After GANs make a huge

success in image generation, researchers start to use them in image restoration tasks

to get more realistic results [72, 15]. [94] and [144] try to use the MAP estimation

on GANs to solve image super-resolution problem. However, they only use the MAP

estimation implicitly and indirectly, while our method use it explicitly and directly.

We suspect that all methods do implicit MAP estimation on GANs would require

redesigning or retraining when the image restoration task changes, and this makes

implicit methods not as general as our explicit method.

[157] is another work which is seemingly similar to ours, but they are actually

quite different. They use a randomly-initialized neural network as a prior to solve

image restoration problems. The prior in their method is elaborate, neural network

related but still handcrafted, while in our method the prior is learned from data. So

our data-driven prior has better adaptability to specific image distribution.
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2.3 Maximum a Posteriori on a Submanifold

2.3.1 Formulation

Consider a general image degradation model x̃ = F (x,Ω), where x, x̃, andΩ represent

the original image, the degraded image, and the parameters of the degradation model,

respectively. The image degradation function F is a deterministic function. That

means, given an original image x and a particular set of parameters Ω, the image

degradation model will always produce the same degraded image x̃.

Our goal is to get a reasonable estimate of x with given x̃ and F . In this paper,

we use the maximum a posteriori probability (MAP) estimate of x as the restoration

of x̃. Compared to MSE-based method, MAP estimate of x is perceptually more

convincing [94, 14]. We can perform inference by maximizing the posterior p(x,Ω|x̃):

{x̂, Ω̂} = argmax
x,Ω

p(x,Ω|x̃)

= argmax
x,Ω

p(x̃|x,Ω)p(x|Ω)p(Ω)

p(x̃)
(2.3.1)

where x̂ and Ω̂ represent MAP estimate of x and Ω. Note that p(x̃) is always

positive and does not depend on x and Ω, and typically we assume that x and Ω are

independent. Therefore,

{x̂, Ω̂} = argmax
x,Ω

p(x̃|x,Ω)p(x)p(Ω) (2.3.2)

Note that x̃ = F (x,Ω) is a deterministic function, i.e., p(x̃|x,Ω) = δ(x̃− F (x,Ω)).
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Therefore, the estimation is equivalent to

{x̂, Ω̂} = argmax
x,Ω

p(x)p(Ω)

s.t. ‖x̃− F (x,Ω)‖ = 0

(2.3.3)

Here we write p(x) more specifically as pr(x), which stand for the probability density

of real data distribution. We can estimate pr(x) with the generator part of a trained

GAN, which is an implicit probability distribution model with distribution pG(x). The

trained generator G represents a mapping from latent space of z to data distribution

of original image x, i.e., pr(x) = pG(x), and pG(x) is a probability density function

implicitly defined by x = G(z), where z is typically sampled from some simple

distribution, such as the uniform distribution or the normal distribution. Assuming

G : Rn → Rm is an injective function, the estimation is equivalent to

{ẑ, Ω̂} = argmax
z,Ω

pG(G(z))p(Ω)

s.t. ‖x̃− F (G(z),Ω)‖ = 0

(2.3.4)

and x̂ = G(ẑ) (2.3.5)

Generally the dimension of vector space of z is far lower than the dimension of vector

space of x. Note that pG(x) is nonnegative if and only if x is on the low dimensional

manifoldM defined by x = G(z), we can replace the probability density on the original

space pG(G(z)) in Eq. (2.3.4) by the probability density on the manifold pM(z), and

end up with the same estimation result ẑ. According to [129], the probability density
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on the manifold can be calculated by

pM(z) =
p(z)√

detGram( ∂G
∂z1

, . . . , ∂G
∂zn

)
(2.3.6)

where Gram represents the Gram matrix, and
√

detGram( ∂G
∂z1

, . . . , ∂G
∂zn

) is the volume

of the parallelotope spanned by the vectors ( ∂G
∂z1

, . . . , ∂G
∂zn

), so the square root of the

Gram determinant can serve as a local scale factor. It has an effect similar to the

Jacobian determinant, but we can only use the Gram determinant here because G is

a function from Rn to Rm, and generally n is much less than m.

The Gram matrix can be simply calculated by Gram( ∂G
∂z1

, . . . , ∂G
∂zn

) = V TV , where

V is an m× n matrix, whose entries are given by V ij = ∂xi

∂zj
. Therefore, Eq. (2.3.4) is

equivalent to

{ẑ, Ω̂} = argmax
z,Ω

p(z)p(Ω)√
detV TV

s.t. ‖x̃− F (G(z),Ω)‖ = 0

(2.3.7)

To solve the estimation problem efficiently, we represent probabilities in Eq. (2.3.7) in

logarithmic space, i.e.,

log
p(z)p(Ω)√
detV TV

=− 1

2
log detV TV + log p(z) + log p(Ω) (2.3.8)

Matrix V TV is a positive-definite matrix, so we can use Cholesky decomposition to

calculate log detV TV efficiently, i.e.,

log detV TV = 2 tr(log(chol(V TV ))) (2.3.9)
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Figure 2.2: A toy example to show the basic idea of our formulation.

Finally we deduce a set of expressions which can be calculated directly, and their final

outcome x̂ is the restored image we want, i.e.,

{ẑ, Ω̂} = argmax
z,Ω

− tr(log(chol(V TV ))) + log p(z) + log p(Ω)

s.t. ‖x̃− F (G(z),Ω)‖ = 0

(2.3.10)

and x̂ = G(ẑ) (2.3.11)

Note that (G(z),Ω) form a low dimensional manifold which is embedded in the space

of (x,Ω), and the feasible solutions of Eq. (2.3.10) is on a subset of the manifold,

which is defined by ‖x̃− F (G(z),Ω)‖ = 0. So our method basically makes a MAP

estimate on a submanifold.

Figure 2.2 is a toy example to show the basic idea of our formulation in a very

visible way. Suppose there is a grayscale original image x, which has only three pixels.

Then it is downsampled to only one pixel during the image capture process, and our

task is to estimate x with the one pixel image we captured. Suppose we have trained
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a GAN as an implicit model of data distribution of x. More specifically, the generator

of the trained GAN represents a mapping from its input noise z to data distribution

of x. The left part of Figure 2.2 describes the two dimensional latent space of z. We

use the saturation of orange color to represent probability density level, i.e., a thicker

orange color means a higher probability density. So the uniform orange color in the

latent space means that the input noise z is sampled from a uniform distribution.

Then the two dimensional vector z is mapped to three dimensional space of image

x by the generator of the trained GAN, and the big orange square in the latent space

of z is transformed into a twisted torus in the three dimensional data space of x, which

is described in the right part of Figure 2.2. Some areas in space of z expand during the

transformation, while other areas shrink. We can find this out by comparing the red

and blue quadrilateral between the latent and data space. Therefore, the probability

density on the torus is no longer uniform. The orange colors of the expanded areas

become lighter, and the colors of the shrunken areas become thicker. Quantitatively

speaking, the square root of the Gram determinant in Eq. (2.3.6) is the local area

scale factor of the mapping, and its inverse, of course, is the local density scale factor.

The pale yellow plane in the data space represents the constraint in the toy example.

All points on the plane would exactly be downsampled to the one pixel image we

captured. So the intersection curve of the plane and the torus is the submanifold we

are looking for, and that white curve is the feasible set of the toy problem. In this

problem, p(z) is a constant in the domain, and degradation parameters Ω does not

exist at all. According to Eq. (2.3.7), what we need to do is to maximize the inverse

of the square root of the Gram determinant on the submanifold. In other words, the

point with the thickest orange color on the intersection curve is the restored image
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x̂, the MAP estimate on the submanifold. We can find out that the method is both

intuitive and rational for this toy example.

2.3.2 Optimization Algorithm

We propose a new optimization algorithm to solve Eq. (2.3.10). Note that the objective

function and the equality constraint in Eq. (2.3.10) are both highly nonlinear, so

gradient-based method seems a natural choice for the problem. Our algorithm is

inspired by Projected Gradient Descent Method.

To solve an unconstrained problem with ordinary Gradient Descent Method, we

take small steps in the direction of the negative gradient. To solve a constrained

problem, we can try to use Projected Gradient Descent Method, take small step

as usual and then project variables back onto the feasible set. But unfortunately,

Projected Gradient Descent Method is only valid for problems with very simple feasible

set, such as solution set of linear equations, some simple polyhedra and simple cone,

etc. If constraints of a problem is too complex, like the constraint in Eq. (2.3.10), it is

very hard to project variables back onto the feasible set.

To overcome this shortage, we propose a new optimization algorithm called Quasi

Projected Gradient Descent Method. In our algorithm, the gradient information is

not only used to improve the objective function, but helps to satisfy the constraints

as well. Consider the standard form of continuous optimization problem,

minimize
u

f(u)

s.t. hi(u) = 0, i = 1, . . . ,m

hj(u) ≤ 0, j = m+ 1, . . . ,m+ p

(2.3.12)
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where f, hi, hj : Rn → R, and they are all highly nonlinear. Algorithm 1 is the

proposed algorithm for the problem.

Algorithm 1 Quasi Projected Gradient Descent Method

Input: objective function f(u), equality constraints hi(u) and inequality constraints

hj(u)

Parameter: step size η‖ and η⊥, positive factors ci and cj, number of iterations n,

small positive constant ε for numerical stability, initial guess u0

Output: local optimum un

Let h(u) =
m∑
i=1

ci · ‖hi(u)‖2 +
m+p∑
j=m+1

cj ·H(hj(u)) · ‖hj(u)‖2, where H represents the

Heaviside step function

for i = 1 to n do

gf = ∇f(ui−1)

gh = ∇h(ui−1)

g‖ = gf −
gf ·gh
gh·gh+ε

· gh
g⊥ = gh

ui = ui−1 − η‖ · g‖ (or use more advanced optimizer)

ui = ui − η⊥ · g⊥ (or use more advanced optimizer)

end for

return un

To solve Eq. (2.3.10) with Algorithm 1, we only need to set u = {ẑ, Ω̂}, objective

function f(u) = −(− tr(log(chol(V TV )))+ log p(z)+ log p(Ω)), and the only equality

constraint function h1(u) = ‖x̃− F (G(z),Ω)‖.

In the proposed algorithm, we first define an overall constraint function h(u) :

Rn → R≥0, and the feasible set of the optimization problem is the region where

h(u) = 0. In each iteration of the algorithm, we calculate the gradients of f(u) and

h(u) at ui−1. If we take a small step in the direction of the negative gf , the value
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of f(u) will decrease a little bit, but it may have a unwanted impact on the value of

h(u). In order to avoid this problem, we calculate g‖, the tangential component of gf

on the isocontour of h(ui−1), which can be calculated by vector rejection of gf on gh.

In each iteration, we actually take a small step in the direction of the negative g‖, the

value of f(u) will still decrease, while it has almost no impact on the value of h(u).

We also take a small step in the direction of the negative g⊥, i.e., gh itself, which is

perpendicular to the isocontour of h(ui−1). Repeat these steps, and the sequence u

will converge to the desired optimal solution.

Behaviors of our Quasi Projected Gradient Descent Method is similar to behaviors

of the original Projected Gradient Descent Method. Consider a point u which is very

close to the feasible region. The summation of two moves against g‖ and g⊥ is actually

an inaccurate Projected Gradient Descent. That is why we name our method as Quasi

Projected Gradient Descent Method.

Here we use the same toy example we used in Section 2.3.1, to show how our Quasi

Projected Gradient Descent Method works. In Figure 2.3, solid curves in black and

white are isocontour of constraint function h. The whiter the curve, the lower value of

h it corresponds; Dashed lines in color are isocontour of objective function f . The

redder the line, the lower value of f it corresponds. Note that the white solid curve

is the feasible set of the toy problem, so intersection points of the white solid curve

and the red dashed line in the latent space is ẑ in Eq. (2.3.10), while the intersection

points in the data space is x̂ in Eq. (2.3.11).

Our iterative optimization algorithm starts from the bottom left corner of the

latent space. The red vector is a gradient step of h. It is pointing towards the direction

of the negative gh, and is perpendicular to the black solid curve, an isocontour of
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Figure 2.3: A toy example to show how our Quasi Projected Gradient Descent Method
works.

h. The green vector is a gradient step of f . It is pointing towards the direction of

the negative gf , and is perpendicular to the yellow dashed line, an isocontour of f .

The blue vector is a projected gradient step. It is pointing towards the direction of

the negative g‖, and is the tangential component of the green vector on the black

solid curve, which can be calculated by vector rejection of the green vector on the red

vector. We only plot green, red and blue vector for the first iteration to keep Figure

2.3 clean and easy to understand. Black vectors are combined gradient steps, which

are vector sums of red and blue vectors. We move along these black vectors and we

can find out that our optimization algorithm reaches a desired solution quickly.
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2.4 Experiments

In this Section, we use MNIST dataset [92] to test our image restoration method. The

dataset is divided in 50k for the training set, 10k for each of the validation and test set.

We use a WGAN-GP [60] trained on the training set as the density estimation model.

The architecture of the WGAN-GP we used is shown in Table 2.1 and Table 2.2, and

we add a L2 weight decay term with decay parameter of 0.001 on the generator loss

to prevent over-fitting. The network we used is very simple, but it is enough to prove

the effectiveness of our method.

Table 2.1: Architecture of the generator

Kernel size Output shape

z - 16
Linear, tanh - 64× 4× 4
Deconv, tanh 5× 5 32× 7× 7
Deconv, tanh 5× 5 16× 14× 14
Deconv, sigmoid 5× 5 1× 28× 28

Table 2.2: Architecture of the discriminator

Kernel size Output shape

G(z) - 1× 28× 28
Conv, LeakyReLU 5× 5 16× 14× 14
Conv, LeakyReLU 5× 5 32× 7× 7
Conv, LeakyReLU 5× 5 64× 4× 4
Linear - 1

We use four different kinds of degradation to test the generality of our method.

The first three kinds of degradation are relatively simple. They are 7× downsampling,

making a 14×14 square hole in the center of the image, and adding Gaussian white

noise with a standard deviation of 1.0, respectively. The last kind of degradation is a
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Table 2.3: Quantitative comparison with other general image restoration methods.

Downsample Hole Noise Composition

PSNR
SSIM

PSNR
SSIM

PSNR
SSIM

PSNR
SSIM

Total Variation 12.88 0.4556 11.06 0.5928 11.94 0.1736 12.64 0.2559
[172] 13.23 0.6612 12.13 0.6205 11.99 0.5910 12.79 0.6434
Ours 17.02 0.8287 14.63 0.7815 14.47 0.7238 14.73 0.7403

composition of a series of degradation in order, which are (a) adding linear motion

blur by at most 14 pixels in any direction, (b) 4× downsampling, (c) adding uniform

noise between -0.05 and 0.05, (d) randomly removing 10% of the pixels.

We use two independent ADAM optimizer [82] with g‖ and g⊥ respectively in the

Quasi Projected Gradient Descent Method. For all four kinds of degradation, we run

the algorithm with the same settings. Settings for both ADAM optimizer are learning

rate α = 0.01 (decayed linearly to 0), β1 = 0.9, β2 = 0.99, and number of iterations

n = 500.

In the experiments, we compare our method with two other general image restora-

tion methods. The first is Total Variation (TV) [2], a traditional method; and the

second is [172], a GAN based state-of-the-art approach. We use the SSIM index [164]

and PSNR value as quantitative metrics for these restoration methods, and the results

are shown in Table 2.3. We also present some restoration images in Table 2.4 without

cherry-picking. We can find out that our general image restoration method is better

than two baseline methods by large margins. This is due to the more accurate prior

information of images and the more radical strategy of optimization in our method.
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Table 2.4: Visual comparison with other general image restoration methods.

Downsample Hole Noise Composition

Original image

Degraded image

Total Variation

[172]

Ours

2.5 Conclusions

We propose a general image restoration method in this work. Compared with tra-

ditional image restoration algorithms, our method is much more powerful. Image

restoration is an inherently ill-posed problem, so additional prior knowledge is needed.

In our method, we use all prior knowledge of original images, i.e., the probability

distribution of original images; and we use all prior knowledge of degradation, i.e.,

the degradation model itself. Traditional image restoration like Total Variation, by

contrast, just uses a small part of the prior, typically some statistical properties.

Besides, unlike our method, there is usually no guarantee that an output restora-

tion from a traditional method can be degraded back accurately to its input. This

makes restorations from a traditional method less plausible than restorations from

our method.

To solve the constrained optimization problem in our method, we propose a new

first-order iterative algorithm. It works well even for problems with highly nonlinear

objective and constraints. These features make it especially suited to neural network

related constrained optimization problems. To our best knowledge, it is the first

gradient-based method which can handle highly nonlinear constraints directly, rather

than convert the problem into an equivalent unconstrained one.
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For future work, we think our method can be straightforwardly extended to other

domains which GANs are gifted in, such as video, audio and language. We will try to

solve restoration problems and other inference problems in these domains with our

paradigm. The convergence and other properties of the Quasi Projected Gradient

Descent Method would be interesting as well.
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Chapter 3

Functional Neural Networks for

Parametric Image Restoration

Problems

Almost every single image restoration problem has a closely related parameter, such as

the scale factor in super-resolution, the noise level in image denoising, and the quality

factor in JPEG deblocking. Although recent studies on image restoration problems

have achieved great success due to the development of deep neural networks, they

handle the parameter involved in an unsophisticated way. Most previous researchers

either treat problems with different parameter levels as independent tasks, and train

a specific model for each parameter level; or simply ignore the parameter, and train

a single model for all parameter levels. The two popular approaches have their own

shortcomings. The former is inefficient in computing and the latter is ineffective in

performance. In this work, we propose a novel system called functional neural network

(FuncNet) to solve a parametric image restoration problem with a single model. Unlike
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a plain neural network, the smallest conceptual element of our FuncNet is no longer a

floating-point variable, but a function of the parameter of the problem. This feature

makes it both efficient and effective for a parametric problem. We apply FuncNet to

super-resolution, image denoising, and JPEG deblocking. The experimental results

show the superiority of our FuncNet on all three parametric image restoration tasks

over the state of the arts.

3.1 Introduction

Image restoration [120] is a classical yet still active topic in low-level computer vision,

which estimates the original image from a degraded measurement. For example, single

image super-resolution [47] estimates the high-resolution image from a downsampled

one, image denoising [17] estimates the clean image from a noisy one, and JPEG

deblocking [27] estimates the original image from a compressed one. It is a challenging

ill-posed inverse problem which aims to recover the information lost to the image

degradation process [12], and it is also important since it is an essential step in various

image processing and computer vision applications [195, 173, 11, 97, 145, 89, 63].

Almost every single image restoration problem has a closely related parameter,

such as the scale factor in super-resolution, the noise level in image denoising, and the

quality factor in JPEG deblocking. The parameter in an image restoration problem

tends to have a strong connection with the image degradation process. In the super-

resolution problem, the blur kernel of the downsampling process is determined by

the scale factor [184]. In the image denoising problem, the standard deviation of the

additive white Gaussian noise is determined by the noise level [34]. In the JPEG

deblocking problem, the quantization table for DCT coefficients is determined by the
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Figure 3.1: The difference between a plain neural network and our functional neural
network (FuncNet). The left and right figure visualize a 3× 3 convolution kernel in a
plain neural network and its counterpart in a FuncNet respectively. For the kernel in
a plain network, its weights remain unchanged for different problem related parameter
levels, so the network only has a limited adaptability to parametric image restoration
problems. Unlike a plain network, the smallest conceptual element of our FuncNet is
no longer a floating-point variable, but a function of the problem related parameter.
In other words, the kernel weights of our FuncNet can change for different situations
and make our FuncNet perform better for parametric image restoration problems.
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quality factor [128]. When we try to restore the clean image from a corrupt one, we

might know the value of the corresponding parameter for various reasons. In the

super-resolution problem, the scale factor is specified by users [79]. In the image

denoising problem, the noise level could be measured by other devices [131, 106]. In

the JPEG deblocking problem, the quality factor could be derived from the header of

the JPEG file [31]. Therefore, it is very important to use the known parameter well

in such a parametric image restoration problem.

Recently, deep convolutional neural network based methods are widely used to

tackle the image restoration tasks, including super-resolution [37, 79, 142, 103, 149,

155, 191, 190, 35, 125], image denoising [73, 19, 182, 95, 150, 181, 183, 175, 4], and

JPEG deblocking [107, 38, 165, 61, 25, 51, 105, 189, 41]. They have achieved significant

improvements over conventional image restoration methods due to their powerful

learning ability. However, they have not been paying attention to the parameter

involved in an image restoration problem, and handled it in an unsophisticated way.

Most previous researchers either treat problems with different parameter levels as

independent tasks, and train a specific model for each parameter level [37, 142, 190,

181, 189]; or simply ignore the parameter, and train a single model for all parameter

levels [79, 175]. The two popular approaches have their own shortcomings. The former

is inefficient in computing, because they may have to train and store dozens of models

for different parameter levels. The latter is ineffective in performance, since they

ignore some important information that could have helped the restoration process.

To overcome these weaknesses, we propose a novel system called functional neural

network (FuncNet) to solve a parametric image restoration problem with a single

model. The difference between a plain neural network and our FuncNet is shown in
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Figure 4.1. Unlike a plain neural network, the smallest conceptual element of our

FuncNet is no longer a floating-point weight, but a function of the parameter of the

problem. When we train a FuncNet, we gradually change these functions to reduce

the value of the loss function. When we use the trained FuncNet to restore a degraded

image with a given parameter, we first evaluate those functions with the parameter,

use the evaluation values as weights of the network, and then do inference as normal.

This feature makes it both efficient and effective for a parametric problem. By this

way, we neatly blend the parameter information into a neural network model, use it

to help the restoration process, and only increase a negligible amount of computation

as we will demonstrate later. We apply FuncNet to super-resolution, image denoising,

and JPEG deblocking. The experimental results show the superiority of our FuncNet

on all three parametric image restoration tasks over the state of the arts.

The remainder of the chapter is organized as follows. Section 3.2 provides a brief

survey of related work. Section 3.3 presents the proposed FuncNet model, discusses

the details of implementation, and analyses its storage and computational efficiency.

In Section 3.4, extensive experiments are conducted to evaluate FuncNets on three

parametric image restoration tasks. Section 3.5 concludes the paper.

3.2 Related Work

Neural networks for parametric problems. To the best of our knowledge, there

are seven ways to solve a parametric problem with neural network based methods.

We list them below roughly in the order of popularity, and discuss their advantages

and disadvantages.

The first method treats problems with different parameter levels as independent
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tasks, and trains a specific model for each parameter level [37, 142, 190, 181, 189].

The overwhelming majority of previous papers use this approach. This method is

easy to understand, and generally has good performance since the parameter level is

implied in a model. But it is inefficient in computing, because we may have to train

and store dozens of models for different parameter levels.

The second method simply ignores the parameter, and trains a single model for

all parameter levels [79, 175]. This method is also easy to understand, and is very

efficient since we only need to train and store a single model. But its performance is

typically lower than the first method, since we ignore some important information

that could have helped the restoration process.

The third method trains a model with a shared backbone for all parameter levels

and multiple specific blocks for each parameter level [103]. It is a compromise between

the first and the second method, and has acceptable performance and efficiency. But

we may still have to store dozens of specific blocks for different parameter levels.

And if the capacity of a specific block is not large enough, the block cannot take full

advantage of the parameter information.

The fourth method converts the parameter scalar into a parameter map, and treats

the map as an additional channel of the input degraded image [183]. It is another

way to blend the parameter information into a neural network model. However, the

performance of this method is only marginally higher than the second method, and it is

still not as good as the first method. Due to the huge semantic difference between the

corrupt image and the parameter map, it is hard to make much use of the parameter

information for the model.

The fifth method conditions a network by modulating all its intermediate features
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by scalar parameters [30, 64] or maps [160]. It is another way to make a network adapt

to different situations. But unlike our FuncNet, the method changes only features

rather than parameters.

The sixth method trains a model with a relatively shallow backbone network,

and each filter of the backbone network is generated by a different filter generating

network [84, 74, 77, 41]. The filter generating networks are usually multilayer percep-

trons, and they take the parameter as input. Since the total size of a model is limited,

assigning each filter a unique complex network severely limits the size of the backbone

network. Such a shallow backbone network only leads to a mediocre performance.

Considering the universal approximation ability of the multilayer perceptron, this

method is not that different from training a unique shallow model for each parameter

level.

The seventh method searches in the latent space of a generative model, and returns

the most probable result which is not contradicting the degradation model with the

parameter [171, 109]. It is a general image restoration method which can solve various

image restoration problems with a single model, as long as the degradation model is

continuously differentiable. However, this method is slower than a feedforward neural

network based method, since it requires multiple forward and backward passes in a

search. And due to the limited representation ability of the generative model, the

performance of this method is also worse than a discriminative model based method.

Neural network interpolation. In order to attain a continuous transition

between different imagery effects, the neural network interpolation method [161, 162,

159] applies linear interpolation in the parameter space of two trained networks.

Although at first glance it is similar to our method, there is a big difference between
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network interpolation and our FuncNet. The former is a simple interpolation technique

while the latter is a regression technique. In the network interpolation method, two

CNNs are trained separately for two extreme cases, and then blended in an ad hoc

way. This may suffice for tasks [161] and [162], because users will accept roughly

characterized visual results, such as ”half GAN half MSE” or ”half photo half painting”.

However, this is not good enough for an image restoration task whose goal is to restore

the signal as accurately as possible. FuncNet is optimized for the entire value range of

the task parameter (e.g., the noise level, SR scale factor), so its accuracy stays high

over the entire parameter range, rather than just for the two extreme points like in

the network interpolation method.

Deep CNN for Single Image Super-Resolution. The first convolutional

neural network for single image super-resolution is proposed by Dong et al. [37] called

SRCNN, and it achieved superior performance against previous works. Shi et al. [142]

firstly proposed a real-time super-resolution algorithm ESPCN by proposing the sub-

pixel convolution layer. Lim et al. [103] removed batch normalization layers in the

residual blocks, and greatly improved the SR effect. Zhang et al. [190] introduced

the residual channel attention to the SR framework. Hu et al. [67] proposed the

Meta-Upscale Module to replace the traditional upscale module.

Deep CNN for Image Denoising. Zhang et al. [181] proposed DnCNN, a plain

denoising CNN method which achieves state-of-the-art denoising performance. They

showed that residual learning and batch normalization are particularly useful for

the success of denoising. Tai et al. [150] proposed MemNet, a very deep persistent

memory network by introducing a memory block to mine persistent memory through

an adaptive learning process. Zhang et al. [183] proposed FFDNet, a fast and flexible
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denoising convolutional neural network, with a tunable noise level map as the input.

Deep CNN for JPEG deblocking. Dong et al. [38] proposed ARCNN, a

compact and efficient network for seamless attenuation of different compression arti-

facts. Guo and Chao [61] proposed a highly accurate approach to remove artifacts of

JPEG-compressed images, which jointly learned a very deep convolutional network in

both DCT and pixel domains. Zhang et al. [189] proposed DMCNN, a Dual-domain

Multi-scale CNN to take full advantage of redundancies on both the pixel and DCT

domains. Ehrlich et al. [41] proposed a novel architecture which is parameterized by

the JPEG files quantization matrix.

3.3 Functional Neural Network (FuncNet)

In this section, we describe the proposed FuncNet model. To transform a plain

neural network into a FuncNet, we replace every trainable variable in a plain neural

network by a specific function, such as weights and biases in convolution layers or

fully connected layers, affine parameters in Batch Normalization layers [71], and slopes

in PReLU activation layers [65]; and keep other layers without trainable variables

unchanged, such as pooling layers, identity layers, and pixel shuffle layers [142]. We

first describe the method to specify the functions in our FuncNet models, then we

describe the initialization, training and inference method for these functions, next we

describe the network architectures to contain those functions, and finally we analyse

the storage and computational efficiency of our FuncNet models.
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3.3.1 Specification of Functions

The functions used in our FuncNet model should be simple enough. Let us consider

the following failure case as a negative example. Suppose the number of the parameter

levels is large but still finite, and we use polynomial functions in our FuncNet. If

the polynomial function is too complex, and its degree is greater than or equal to

the number of the parameter levels minus one, then our FuncNet is no different from

training a specific model for each parameter level. In this case, the failing FuncNet

takes as much or even more storage space than multiple independent models, and its

inference speed is also slightly slower than a same size plain neural network. This

negative example demonstrates the necessity of choosing simple functions for our

FuncNet.

We choose the simplest and the most basic kind of function, the linear function,

as the functions used in our FuncNet model. In this case, the FuncNet model takes

exactly double storage space than a same size plain neural network, and it is still

more efficient than storing dozens of models for different parameter levels. And it only

increases a negligible amount of computations than a same size plain neural network,

as we will demonstrate later. Choosing such a simple function does not lead to a poor

performance of the final FuncNet model. With multiple activation layers, the final

FuncNet model retains the power of nonlinear fitting. The linear function used in our

FuncNet model can be defined as:

G(x; θa, θb) =
x− xa
xb − xa

(θb − θa) + θa (3.3.1)

where x is the parameter of the problem, xa and xb are lower and upper bound of the
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support of the parameter distribution respectively, θa and θb are trainable variables,

and G(x; θa, θb) is the function used in our FuncNet model to generate variables for

different parameter levels.

The parameters have different properties for different problems, and we can make

the linear function 3.3.1 to suit different problems better by replacing x with H(x),

where H(x) is a problem-related function. Then the linear function 3.3.1 will become:

G(H(x); θa, θb) =
H(x)−H(xa)

H(xb)−H(xa)
(θb − θa) + θa (3.3.2)

The chosen H(x) should have a physical interpretation related to the problem, and

of course should make the final FuncNet model perform well. In the super-resolution

problem, we use H(x) = 1/x because the reciprocal of the scale factor is the rescaled

length on a low-resolution image from a unit length on a high-resolution image. In

the image denoising problem, we use H(x) = x because the noise level is equal to the

standard deviation of the additive white Gaussian noise. In the JPEG deblocking

problem, we use H(x) = 5000/x for x ≤ 50 and H(x) = 200− 2x for x > 50. This is

the formula used in JPEG standard [128], and it transforms the quality factor into a

scale factor of the quantization table for DCT coefficients. The choices of H(x) for

different problems are still empirical, just like when people determine the depth, the

width or other configuration for a neural network. But we hope that we can determine

H(x) automatically in the future, just like what people do in Neural Architecture

Search right now [194].
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3.3.2 Initialization, Training and Inference

Proper initialization is crucial for training a neural network. Even with modern

structures and normalization layers, a bad initialization can still hamper the learning

of the highly nonlinear system. The goal of initialization for a plain neural network is

to set the value of every trainable variable in a proper range, and to avoid reducing

or magnifying the magnitude of input signals exponentially. To properly initialize

a function in FuncNet, we have to guarantee that all possible output values of the

function are in a proper range. Suppose H(x) in function 3.3.2 is a monotonic function,

then what we need to do is to use initialization algorithm for a plain neural network [65]

to initialize θa and θb independently. In this way, all possible output values of the

function 3.3.2 lie somewhere between θa and θb, and must also be in a proper range if

θa and θb are well set. If θa and θb are both sampled from a zero-mean distribution

whose standard deviation is σ, then for all possible output values of the function 3.3.2,

their expected values are still zero, and their standard deviations are between σ/
√

2

and σ. Experiments have shown that such a small deviation is acceptable for training.

Training a FuncNet is not very different from training a plain neural network. In

every iteration, we first sample a fixed number of parameter levels uniformly, use them

to construct a minibatch, and then perform stochastic gradient based optimization

as normal. As suggested in [193], we train our FuncNet using L1 loss. During the

training, we gradually change the values of trainable variables θa and θb to reduce the

value of the loss function. The problem can be formulated as

min
θa,θb

EIO,ID,x‖F (ID;G(H(x); θa, θb))− IO‖1 (3.3.3)
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where ID is the degraded version of its original counterpart IO, and F is our FuncNet

model.

When we use the trained FuncNet to restore a degraded image with a given

parameter x, we first evaluate function 3.3.2 with x, trained θa and θb, use the

evaluation values as variables of the corresponding plain neural network, and then do

inference with the generated plain neural network as normal.

3.3.3 Network Architectures

The requirements of the networks for the three image restoration problems are very

different. For the super-resolution problem, the degradation is deterministic and

relatively mild, and the network can concentrate on a relatively small area. For the

image denoising problem, the degradation is random and relatively severe, and the

network needs to pay attention to a larger area. For the JPEG deblocking problem,

the degradation occurs in the DCT domain, and the network should have the ability

to utilize the information in the DCT domain. So we use individually designed

architectures for the three image restoration problems to meet their own requirements.

We directly use architectures of the state-of-the-art plain neural networks for the

three tasks as the architectures of our FuncNet models, and we only make essential

modifications to them. For the super-resolution problem, we use the architecture of

RCAN [190], and replace the upscale module for integer scale factors [142] with the meta

upscale module for non-integer scale factors [67]. For the image denoising problem, we

apply a modified U-net [134] structure as the backbone and use RCAB [190] as residual

blocks. For the JPEG deblocking problem, we use the architecture of DMCNN [189]

for reference. For the DCT domain branch of our JPEG deblocking model, we use
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frequency component rearrangement to get a more meaningful DCT representation as

suggested in [41]; and for the pixel domain branch, we use the same architecture of

our image denoising model.

For the backbone of our super-resolution network, we use the architecture of

RCAN [190] directly. It has 10 residual groups with 20 residual channel attention

blocks (RCAB) each. For our image denoising network and the pixel domain branch

of our JPEG deblocking network, we apply a modified U-net [134] structure with

identity shortcuts as the backbone. The network has a similar size as RCAN [190].

It has 4 scale levels. Each scale level has 4 residual groups, and each residual group

has 10 RCABs. We set 3×3 as the size of all convolution layers in RCABs, and set

1×1 as the size of all channel attention layers in RCABs. The number of features of

RCAB is set as 64, and the reduction ratio of RCAB is set as 16.

3.3.4 Storage and Computational Efficiency Analysis

Our FuncNet models have high storage efficiency. As we described in Section 3.3.1,

we use two-degree-of-freedom functions in FuncNet models. This takes only twice as

much space as what a plain neural network with the same architecture will take. So

storing a FuncNet model is much cheaper than storing dozens of plain networks for

different parameter levels. Take the super-resolution task as an example. Suppose

the scale factor varies from 1.1 to 4 with stride 0.1 as suggested in [67], we can save

93.3% on storage space by using FuncNet rather than plain neural networks.

Our FuncNet models have high computational efficiency as well. For the training

phase, we only need to train one FuncNet model rather than to train dozens of plain

networks individually. The computational efficiency analysis for this phase is similar
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to the preceding storage efficiency analysis. For the inference phase, as we described in

Section 3.3.2, we first evaluate functions with the problem related parameter, use the

evaluation values as variables of the corresponding plain neural network, and then do

inference with the generated plain neural network as normal. So compared to a plain

neural network with the same architecture, our FuncNet model only needs a little

extra effort to evaluate functions. This part of computation is directly proportional to

the number of parameters in the corresponding plain network, and it is several orders

of magnitude smaller than the number of multi-adds for a plain image restoration

network. Still take the super-resolution task as an example. Suppose we need to double

the size of a 360p image, our FuncNet model only needs extra 0.0001% computation

than a plain neural network with the same architecture.

3.4 Experiments

3.4.1 Training Settings

Training datasets. Following [190, 67, 175], we use the DIV2K dataset [153] for

training. There are 1000 high-quality images in the DIV2K dataset, 800 images for

training, 100 images for validation and 100 images for testing. All our three FuncNet

models for the three parametric image restoration tasks are trained with the DIV2K

training images set.

Parametric settings. In all three parametric problems, the problem related

parameters are sampled uniformly. In the super-resolution problem, the training scale

factors vary from 1.1 to 4 with stride 0.1. In the image denoising problem, the training

noise levels are sampled from the uniform distribution on the interval (0, 75]. In the
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JPEG deblocking problem, the quality factors vary from 10 to 80 with stride 2.

Degradation models. In the super-resolution problem, we use the bicubic

interpolation by adopting the Matlab function imresize to simulate the LR images.

In the image denoising problem, we generate the additive white Gaussian noise

dynamically by using the Numpy function. In the JPEG deblocking problem, we use

the Matlab JPEG encoder to generate the JPEG images.

Data augmentations. In all three parametric problems, we use the same data

augmentation method. We randomly augment the image patches by flipping horizon-

tally, flipping vertically and rotating 90◦.

Optimization settings. In the super-resolution problem, we randomly extract

32 LR RGB patches with the size of 40× 40 as a batch input. In the image denoising

problem, we randomly extract 32 RGB patches with the size of 96× 96 as a batch

input. In the JPEG deblocking problem, we randomly extract 32 gray patches with the

size of 96× 96 as a batch input, and we make sure that the image patches are aligned

with boundaries of Minimum Coded Unit blocks. All our three FuncNet models are

trained by ADAM optimizor with β1 = 0.9, β2 = 0.999, and ε = 10−8. The initial

learning rate is set to 10−4 and then decreases by half for every 2× 105 iterations of

back-propagation. All experiments run in parallel on 4 GPUs.
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Urban100 (4×): img046

HR Bicubic EDSR [103] RCAN [190] SAN [35]

CSNLN [119] MIRNet [177] Meta-SR [67] LIIF [29] FuncNet

Urban100 (4×): img062

HR Bicubic EDSR [103] RCAN [190] SAN [35]

CSNLN [119] MIRNet [177] Meta-SR [67] LIIF [29] FuncNet

Figure 3.2: Visual comparison between different super-resolution methods
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HR Bicubic
RCAN [190] (dse×)

+ Downsample

SAN [35] (dse×)

+ Downsample

Meta-SR [67] FuncNet

2.0×

2.2×

2.4×

2.6×

2.8×

3.0×

3.2×

3.4×

3.6×

3.8×

4.0×

Figure 3.3: Visual comparison between different decimal upscale super-resolution
methods
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Kodak24 (σ = 35): kodim08

Clean Noisy IRCNN [182] DnCNN [181]CBDNet [62]

RIDNet [4] MIRNet [177] FFDNet [183] CResMD [64] FuncNet

McMaster (σ = 35): 6

Clean Noisy IRCNN [182] DnCNN [181]CBDNet [62]

RIDNet [4] MIRNet [177] FFDNet [183] CResMD [64] FuncNet

Figure 3.4: Visual comparison between different image denoising methods
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LIVE1 (q = 20): church

Ground-truth JPEG ARCNN [38] DMCNN [189]

AGARNet [81] CResMD [64] QGAC [41] FuncNet

BSDS500 (q = 20): 43

Ground-truth JPEG ARCNN [38] DMCNN [189]

AGARNet [81] CResMD [64] QGAC [41] FuncNet

Figure 3.5: Visual comparison between different JPEG deblocking methods

55

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – Fangzhou Luo; McMaster University – Electrical & Computer Engineering

Table 3.1: Results of decimal upscale SR on B100. Best and second best results are
highlighted and underlined

Method
Scale ×1.1 ×1.2 ×1.3 ×1.4 ×1.5 ×1.6 ×1.7 ×1.8 ×1.9

Meta-SR [67] 42.82 40.04 38.28 36.95 35.86 34.90 34.13 33.45 32.86
FuncNet 43.43 40.41 38.55 37.16 36.02 35.08 34.26 33.60 32.98

FuncNet+ 43.36 40.46 38.59 37.21 36.06 35.12 34.30 33.64 33.02

Method
Scale ×2.1 ×2.2 ×2.3 ×2.4 ×2.5 ×2.6 ×2.7 ×2.8 ×2.9

Meta-SR [67] 31.82 31.41 31.06 30.62 30.45 30.13 29.82 29.67 29.40
FuncNet 31.99 31.59 31.23 30.87 30.58 30.30 30.05 29.77 29.59

FuncNet+ 32.02 31.62 31.26 30.90 30.62 30.34 30.09 29.81 29.63

Method
Scale ×3.1 ×3.2 ×3.3 ×3.4 ×3.5 ×3.6 ×3.7 ×3.8 ×3.9

Meta-SR [67] 28.87 28.79 28.68 28.54 28.32 28.27 28.04 27.92 27.82
FuncNet 29.17 29.02 28.81 28.62 28.46 28.34 28.21 28.06 27.93

FuncNet+ 29.20 29.06 28.85 28.67 28.51 28.38 28.26 28.11 27.97

Table 3.2: Results of integer upscale SR. Best and second best results are highlighted
and underlined. B100, Urban and Manga represent datasets B100, Urban100, and
Manga109 respectively.

Method
Scale = 2 Scale = 3 Scale = 4

B100 Urban Manga B100 Urban Manga B100 Urban Manga
EDSR [103] 32.32 32.93 39.10 29.25 28.80 34.17 27.71 26.64 31.02
RCAN [190] 32.41 33.34 39.44 29.32 29.09 34.44 27.77 26.82 31.22

SAN [35] 32.42 33.10 39.32 29.33 28.93 34.30 27.78 26.79 31.18
CSNLN [119] 32.40 33.25 39.37 29.33 29.13 34.45 27.80 27.22 31.43
MIRNet [177] - - - 27.04 24.53 26.99 25.96 23.24 25.50
Meta-SR [67] 32.35 - 39.18 29.30 - 34.14 27.75 - 31.03

LIIF [29] 32.32 32.87 - 29.26 28.82 - 27.74 26.68 -
FuncNet 32.48 33.61 39.73 29.39 29.42 34.90 27.87 27.15 31.71

FuncNet+ 32.51 33.78 39.87 29.43 29.57 35.10 27.90 27.29 31.97
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Table 3.3: Results of image denoising. Best and second best results are highlighted
and underlined. CBSD, Kodak and Mac represent datasets CBSD68, Kodak24 and
McMaster respectively.

Method
σ = 15 σ = 35 σ = 75

CBSD Kodak Mac CBSD Kodak Mac CBSD Kodak Mac
CBM3D [34] 33.52 34.28 34.06 28.89 29.90 29.92 25.74 26.82 26.79
DnCNN [181] 33.89 34.48 33.44 29.58 30.46 30.14 24.47 25.04 25.10
CBDNet [62] 32.67 33.32 32.87 28.11 28.87 28.77 24.05 24.64 24.38
MIRNet [177] 27.44 28.30 27.92 22.39 23.19 22.47 18.77 18.88 18.76
FFDNet [183] 33.87 34.63 34.66 29.58 30.57 30.81 26.24 27.27 27.33
CResMD [64] 33.97 34.80 34.80 29.70 30.75 31.00 26.26 27.36 27.39

FuncNet 34.26 35.21 35.39 30.02 31.24 31.61 26.72 27.98 28.18
FuncNet+ 34.28 35.25 35.44 30.05 31.29 31.67 26.76 28.05 28.26

Table 3.4: Results of JPEG deblocking. Best and second best results are highlighted
and underlined. LIVE and BSDS represent datasets LIVE1 and BSDS500 respectively.

Method
Quality = 10 Quality = 20 Quality = 30 Quality = 40
LIVE BSDS LIVE BSDS LIVE BSDS LIVE BSDS

ARCNN [38] 29.13 29.10 31.40 31.28 32.69 32.64 33.63 33.55
DMCNN [189] 29.73 29.67 32.09 31.98 - - - -
CResMD [64] 27.89 27.92 30.58 30.55 32.46 32.37 33.87 33.73
QGAC [41] 29.53 29.54 31.86 31.79 33.23 33.12 - -

FuncNet 29.77 29.68 32.20 32.05 33.63 33.44 34.63 34.41
FuncNet+ 29.81 29.71 32.23 32.07 33.66 33.47 34.66 34.44
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3.4.2 Evaluation on Standard Benchmark Datasets

In the super-resolution problem, we use the B100 dataset for non-integer scale factor

testing, and we use five standard benchmark datasets for integer scale factor testing:

Set5, Set14, B100, Urban100, and Manga109. The results are evaluated with PSNR and

SSIM [164] on Y channel of transformed YCbCr space. In the image denoising problem,

we use three standard benchmark datasets: CBSD68, Kodak24, and McMaster. The

results are evaluated with PSNR and SSIM [164] on RGB channel as suggested in [181].

In the JPEG deblocking problem, we use two standard benchmark datasets: LIVE1

and BSDS500. The results are evaluated with PSNR, SSIM [164], and PSNR-B [174]

on Y channel.

We compare our results with those of state-of-the-art methods for all three para-

metric problems. Similar to [103], we also apply a self-ensemble strategy to further

improve our FuncNet model and denote the self-ensembled one as FuncNet+. The

quantitative results are shown in Table 4.1, 4.2, 3.3, and 3.4. The visual comparisons

are shown in Figure 4.2, 3.3, 4.4, and 3.5.

3.4.3 Kernel Visualization and Interpretation

We visualize kernels of our FuncNet model and try to understand and interpret them.

The key point of the analysis is to find out how kernels change with the problem

related parameter. Here we show samples of kernels from the first and the last layer

of the denoising FuncNet, since the denoising problem has the most definite physical

meaning among the three image restoration problems. The first and the last layer

are also easier to understand. The results are shown in Figure 3.6. We can find out

that the FuncNet uses more radical kernels for features when the noise level is low.
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Figure 3.6: Kernel visualization of the denoising FuncNet. The left part is sampled
from the first layer and the right part is sampled from the last layer. We can find out
that the FuncNet uses more radical kernels when the noise level is low, and uses more
moderate kernels when the noise level is high.

By doing so, the FuncNet can get more information. And the FuncNet uses more

moderate kernels when the noise level is high, so the FuncNet can get less error.

3.4.4 Ablation Study

As we discussed earlier, using functional kernels instead of numerical kernels is the

key to making networks perform better for parametric image restoration problems.

To verify the effectiveness of our FuncNet models, we train plain counterparts of

our FuncNet models, and compare their evaluation results with FuncNets. And to

measure the impact of choice on the problem-related function H(x), we train another

two versions of FuncNet. The first one always uses the simplest non-trivial mapping

H(x) = x, and the second one uses a small multilayer perceptron (MLP) with a

hidden layer as a universal function approximator for any possible H(x). We then

also compare their evaluation results with FuncNet which uses H(x) with a physical

interpretation related to the problem. All the networks for ablation study share the

same architectures with their corresponding FuncNet models, and all training and
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Table 3.5: Results of the ablation study. Super-resolution, denoising and deblocking
are tested on Urban100, Kodak24 and LIVE1 respectively.

Method
Super-resolution Denoising Deblocking

s = 2 s = 3 s = 4 σ = 15 σ = 35 q = 10 q = 20
FuncNet 33.61 29.42 27.15 35.21 31.24 29.77 32.20
Plain net 33.07 28.93 26.70 34.83 30.89 29.58 31.94

FuncNet (H(x) = x) 33.48 29.33 27.05 35.21 31.24 29.64 32.16
FuncNet (H is a MLP) 33.60 29.38 27.02 35.19 31.20 29.69 32.17

evaluation settings remain unchanged. The evaluation results are shown in Table 3.5.

This ablation study shows that the adaptability of our FuncNet model is important

for parametric image restoration problems. Once our FuncNet degenerates into a plain

network, its adaptability to different parameter levels disappears, and its performance

drops remarkably. The results also prove that both identity function and MLP are

acceptable choices for H(x). We can simply use those functions for a problem which

is hard to design a H(x) with a physical interpretation.

3.5 Conclusions

We propose a novel neural network called FuncNet to solve parametric image restoration

problems with a single model. To transform a plain neural network into a FuncNet,

all trainable variables in the plain network are replaced by functions of the parameter

of the problem. Our FuncNet has both high storage efficiency and high computational

efficiency, and the experimental results show the superiority of our FuncNet on three

common parametric image restoration tasks over the state of the arts.
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Chapter 4

AND: Adversarial Neural

Degradation for Learning Blind

Image Super-Resolution

Learnt deep neural networks for image super-resolution fail easily if the assumed

degradation model in training mismatches that of the real degradation source at the

inference stage. Instead of attempting to exhaust all degradation variants in simulation,

which is unwieldy and impractical, we propose a novel adversarial neural degradation

(AND) model that can, when trained in conjunction with a deep restoration neural

network under a minmax criterion, generate a wide range of highly nonlinear complex

degradation effects without any explicit supervision. The AND model has a unique

advantage over the current state of the art in that it can generalize much better

to unseen degradation variants and hence deliver significantly improved restoration

performance on real-world images.
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4.1 Introduction

Deep learning has made great strides in the applications of image restoration. It has

demonstrated superior performances over traditional methods on almost all common

image restoration tasks, including super-resolution [39], denoising [181], compression

artifacts removal [38], deblurring [147], etc. But the margin of performance gains made

by deep learning methods of image restoration decreases sharply if the degradation

processes assumed in training mismatch those of the real world images at inference

stage [21]. It is well known that, for any real-world problems, the efficacy of a

machine learning technique relies not only on the design of the technique itself but

also, sometimes even more critically, on the statistical agreement between the training

and test data [158].

In reality, it is either intractable or highly expensive to obtain both degraded images

and the corresponding latent images (ground truth). The most common practice

in literature is to use a degradation model to generate paired degraded and ground

truth images for training the restoration networks [185, 163, 100, 99]. This synthesis

approach cannot accurately simulate the realistic digital imaging pipeline that is

affected by multiple complex and compounded degradation sources; for instances,

insufficient sampling rate, color demosaicing errors, sensor noises, camera jitters,

compression distortions and etc. In this paper, we focus on the task of super-resolution,

namely assuming that the dominant degradation cause is insufficient sampling rate,

which is compounded by other degradation sources in the imaging pipeline. The

said complex nonlinear phenomena often defy explicit analytical modeling. A brute

force approach may be to build multiple simpler parametric degradation models, one

for each type of degradation (e.g., downsampling, noises, compression, motion, etc.)

62

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – Fangzhou Luo; McMaster University – Electrical & Computer Engineering

and apply them in different combinations, orders and parameter setting to generate

training data, in hope to simulate as wide a range of degradations encountered in

practice as possible. This amounts, however, to fighting a losing battle because it is

impossible to exhaust all degradation variants, many of which are not even known or

understood.

This work represents a fundamental departure from the current ways of coping

with mismatches between the simulated training and real-world image data. Instead

of attempting to exhaust all degradation types in simulation, we propose a novel

adversarial neural degradation (AND) model that can, when trained in conjunction

with a deep restoration neural network under a minmax criterion, generate a wide

range of highly nonlinear complex degradation effects without any explicit supervision.

Adversarial attack and defense (training) [57, 115] is a proven learning strategy

to vaccinate neural network models of signal classification against being misled by

imperceptible disturbances in input signals. But regrettably, adversarial learning has

not been applied to neural network models of signal restoration. The AND model,

the main contribution of this paper, demonstrates for the first time how adversarial

learning can effectively boost the robustness of deep networks for signal restoration.

In particular, we adopt the minmax optimization criterion when training the AND

model, aiming to withstand the attacks by the most difficult but nuance degradations

that otherwise defy modeling. As a result, the AND model enjoys a unique advantage

over the current state of the art in being generic in terms of degradation types. It can

generalize much better to unseen degradation types and variants and hence deliver

significantly improved restoration performance on real-world images.

Our insight of the AND model comes from the following observations. We observe
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Figure 4.1: We observe two properties in most image degradations. Firstly, almost
all types of image degradation could find a corresponding operation in a standard
convolutional neural network. Secondly, almost all moderate image degradations
could be considered as small deviations from the identity transformation. The neural
degradation prior proposed for our real-world super-resolution method is inspired by
these observations.

64

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – Fangzhou Luo; McMaster University – Electrical & Computer Engineering

two properties in most image degradations, as shown in Fig. 4.1. Firstly, almost

all types of image degradation could find a corresponding operation in a standard

convolutional neural network. For example, blur and ringing could correspond to a

convolution layer, downsampling could correspond to a pooling layer, color fading

and posterization [136] could correspond to a non-linear activation layer, sensor

noise and film grain could correspond to a noise injection layer [78]. Secondly, most

moderate image degradations could be considered as small deviations from the identity

transformation. For example, blur, noise and lossy image compression all obviously

tend to the identity transformation pointwise as the degradation level approaches

the slightest level. As the degradation level get higher, those degradations gradually

deviate from the identity transformation. Inspired by the two observations of image

degradations, we initialize untrained convolutional neural networks to the identity

transformation, make parameters of these networks slightly deviated from the start,

and take them as prior for various real-world image degradations. When we train a SR

model with HR and LR image pairs constructed by the proposed degradation prior,

we adversarially search small deviations which could make the SR model perform the

worst, and optimize the SR model based on the worst degradation case to achieve a

good lower performance bound for various real-world image degradations.

4.2 Related Work

Single Image Super-Resolution. The first convolutional neural network for single

image super-resolution is proposed by Dong et al. [37] called SRCNN, and it achieved

superior performance against previous works. Since that the field has witnessed a

variety of developments. Shi et al. [142] firstly proposed a real-time super-resolution
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algorithm ESPCN by proposing the sub-pixel convolution layer. Lim et al. [103]

removed batch normalization layers in the residual blocks, and greatly improved

the SR effect. Zhang et al. [190] introduced the residual channel attention to the

SR framework. To achieve photo-realistic results with detailed textures, Ledig et

al. [94] introduced the generative adversarial network [56] into the SR framework,

and employed it as loss supervisions to push the SR solutions closer to the natural

manifold. Wang et al. [161] later improved the GAN based SR method, and achieved

better SR visual quality with more realistic and natural textures.

Blind Image Super-Resolution. The field is also named as real-world image

super-resolution. Different from the classical SR field which assumes that the image

degradation model is an ideal bicubic downsampling, the blind SR field aims to solve

SR problems with unknown degradation. Researchers tried to solve the problem by

implicitly or explicitly estimating the degradation model. Gu et al. [58] proposed a

method to iteratively estimate the blur kernel. Kligler et al. [9] introduced KernelGAN,

which trains solely on the LR test image at test time, and learns its internal distribution

of patches. Researchers also built complex models for image degradation, to augment

the robustness of the SR model. Zhang et al. [185] designed a complex degradation

model that consists of randomly shuffled blur, downsampling and noise degradations.

Wang et al. [163] used a high-order degradation model to better simulate complex

real-world degradations.

Degradation Learning. In order to enhance the performance of super-resolution

models on real-world images, researchers have explored a two-stage learning ap-

proach [18, 98]. They employ a trained network to emulate degradation effects using

a provided LR image dataset. Subsequently, the acquired knowledge of degradation
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is utilized to train the super-resolution model. It is important to note that this

methodology differs significantly from our own, and this dissimilarity in approach can

result in the former’s limited generalization capabilities compared to the latter. Their

approach is vulnerable to failure if the degradation inherent in the chosen LR training

images does not align with the actual degradation encountered during the inference

stage. In contrast, our method demonstrates superior generalization to unforeseen

degradation variations by leveraging an untrained neural degradation prior.

Adversarial Training. Adversarial training improves the model robustness by

training on adversarial examples generated by gradient-based method [57]. Madry

et al. [115] studied the adversarial robustness of neural networks through the lens of

robust optimization. Tramer et al. [156] proposed an ensemble adversarial training

on adversarial examples generated from a number of pretrained models. Kolter and

Wong [168] developed a provable robust model that minimizes worst-case loss over

a convex outer region. Athalye et al. [7] demonstrated that adversarial training on

PGD adversarial examples was to be the state-of-of-art defense model.

Researchers have also attempted to utilize adversarial examples during training

to enhance the capacity of SR models in processing noisy inputs [24, 176]. They

borrowed the earlier research in adversarial training for image classification tasks,

but did not account for the differences between the classification and restoration

tasks. In the previous research on adversarial training for image classification tasks,

Out-of-Distribution (OOD) perturbations are introduced through the deliberate efforts

of malicious attackers. This approach utilizes pixelwise additive high-frequency

noise as a concealed and effective perturbation attack. Note that the adversarial

attack is very different from the type of signal degradations in restoration tasks.
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Specifically, the perturbations in super-resolution tasks encompass a mixture of blur,

noise, and nonlinear transformations. As a result, for restoration tasks noise no longer

predominantly influences the OOD perturbation as in classification tasks. Therefore,

the proposed neural degradation prior is a more suitable perturbation model for

real-world image restoration.

Domain Generalization. Domain generalization aims to achieve out-of-distribution

generalization by using only source data for model learning. Most existing approaches

belong to the category of domain alignment [122], where the central idea is to minimize

the difference among source domains for learning domain-invariant representations.

Meta-learning [44] are also used to solve domain generalization by exposing a model

to domain shift during training with a hope that the model can better deal with

domain shift in unseen domains. In the context of domain generalization, the work

most related to ours is RandConv [170]. It is based on the idea of using randomly

initialized, single-layer convolutional neural network to transform the input images to

novel domains. Since the weights are randomly sampled from a Gaussian distribution

at each iteration and no learning is performed, the transformed images mainly contain

random color distortions, which do not contain meaningful variations and are best to

be mixed with the original images before passing to the task network.

Identity Mapping in Deep Learning. Identity mappings are widely used in

deep learning methods, typically as network layers rather than degradation priors.

Sun et al. [66] used identity mappings as the skip connections and after-addition

activation, to make the training easier and improves model generalization. Zhang et

al. [179] used an identity mapping task to study memorization and generalization of

overparameterized networks in the extreme cases.
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4.3 Adversarial Neural Degradation for Blind Super-

Resolution

Before discussing our new robust real-world SR method, we would like to emphasize

once again that the degradation prior employed in our approach is inspired by the

following two observations of image degradations.

1. Almost all types of image degradation could find a corresponding operation in a

standard convolutional neural network.

2. Almost all moderate image degradations could be considered as small deviations

from the identity transformation.

Once we identify the commonalities among various image degradations, we can

naturally propose a simple and elegant degradation prior that encompasses all of these

degradations. That is, we take slightly deviated identity convolutional neural networks

as prior for various real-world image degradations.

We illustrate the entire training procedure of our SR method with the proposed

degradation prior in Fig. 4.2. The entire neural network can be divided into three

parts: a degradation network, a restoration network, and an optional discriminator

network. A single optimization step of the entire network can be further divided into

the following four sub-steps. First, we initialize the degradation network to the identity

transformation. Next, we adversarially search for a small deviation of the initialized

degradation network that would cause the restoration network to perform the worst.

Then, we optimize the restoration network based on the identified degradation case.

Finally, we upgrade the discriminator network to distinguish restoration outputs

from real images. We repeat the optimization steps of the entire network multiple
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Figure 4.2: Illustration of the training procedure of our real-world super-resolution
method with the proposed adversarial neural degradation model. Every single opti-
mization step of the whole network can be divided into four sub-steps, and we highlight
the internal state of the degradation network in the first two sub-steps.

times during training. Once the training is complete, we can discard the degradation

network and the discriminator network, and only use the trained restoration network

for inference.

In the following subsections, we will first describe the degradation network archi-

tecture and the reason why it can function as a prior to incorporate various image

degradations. Then, we will explain the method used to initialize the degradation

network to the identity transformation. Next, we will discuss the approach to perturb

the degradation network, enabling it to represent complex image degradations. Subse-

quently, we will outline the adversarial training procedure of the SR model. Finally,

we will analyze the training and inference efficiency of the method.
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4.3.1 Degradation Network Architecture

Since we argue that almost all types of image degradation could find a corresponding

operation in a standard convolutional neural network, the degradation network does

not need much design for its architecture to work as a prior to include various image

degradations. We can simply concatenate common convolutional neural network layers

which could represent these image degradations.

Convolution layer, which is the most common layer type, is used in the degrada-

tion network to represent filter related degradations, like blur and ringing. These

degradation types are also very common in the real world. Blur can be caused by

camera movement or out of focus, and ringing can be caused by image compression or

image sharpening technique.

Non-linear activation layer is used in the degradation network to represent global

non-linear color changes, like color fading and posterization [136]. Color fading can

be caused by inaccurate color response of old films, and posterization can be caused

by color quantization in image compression.

Both convolution layer and activation layer can only represent spatially homo-

geneous image degradations, and their abilities are limited by the space invariant

property of normal convolutional neural network. To represent spatially heterogeneous

degradations like block artifacts in compressed images or dust spots in old images,

we need to use a relatively less common layer called noise injection layer [78], which

adds noise to its input in a pixel-wise manner. Combined with other layers, noise

injection layer makes the degradation network able to represent complex spatially

heterogeneous degradations.

Pooling layer is the last layer type we would like to discuss, and it can directly
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represent a downsampling process. We use anti-aliased average pooling layer [187]

rather than a normal average pooling layer to avoid aliasing in the downsampling

process.

For convolution, activation and noise layer, we would like to use multiple layers

of the same type in the degradation network, to make the network able to represent

complicated and higher order degradations. But only one pooling layer is used in

the degradation network, since it is hard to break one pooling layer with integer

downsampling factor down into multiple ones with non-integer factor. We combine a

3× 3 convolution layer, a LeakyReLU activation layer [114] and a noise layer to form

our basic block, put 5 basic blocks before and after an average pooling layer, and put

a 3× 3 convolution layer at the end. Number of channels in the degradation network

are all 64, except for the input channels of the first convolution layer and the output

channels of the last convolution layer, which are both 3 to take RGB images as input

and output of the degradation network.

4.3.2 Identity Degradation Network Initialization

Due to overparameterization of neural networks, there are infinitely many parameter

solutions to make a network represent the identity transformation, even if the network

architecture is fixed [179]. However, two different parameter solutions, which could

identically represent the same function, may have totally different behaviors of functions

in their own parameter neighbourhood. We take slightly deviated identity neural

networks as prior for various real-world image degradations. If all these networks are

deviated from one or a few parameter solutions, their behaviors would be severely

biased and cannot cover a variety of image degradations. Therefore, we need a fast
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initialization method to generate a lot of identity neural networks with different

parameters.

The most straightforward initialization method, which trains networks on the

identity mapping task by minimizing error using gradient descent, is way too slow for

our SR model training. We propose a fast method that can initialize the degradation

network to the identity transformation. Our method only takes a few small matrix

multiplications and one singular value decomposition, while the most straightforward

initialization method takes millions of training steps.

Before discussing our method to initialize the degradation network to the identity

transformation, we would like to first clarify the meaning of the identity transformation

in this work. For convolution, activation and noise layer in our degradation network,

the definition of the identity transformation is strictly applicable, since the size of

their input is the same as the size of their output. But for the pooling layer, the input

feature is downsampled by a scale factor, so the strictly defined identity transformation

no longer exists. In this work, we treat the ideal downsampling operation as a visually

identity transformation1, and use the anti-aliased average pooling layer [187] as an

approximation of the ideal downsampling. This interpretation is reasonable, because

an image and its ideally downsampled counterpart are very similar from the perspective

of the human visual system.

The process of identity degradation initialization is illustrated in Fig. 4.3. To make

the degradation network represent the identity transformation, it must first be linear.

So first we remove all nonlinearities in the network, by setting the negative slopes of

all LeakyReLU activation layers [114] to one. And we set all additive noises in all

1More formally, a function f is a visually identity transformation if for every image X, there
exists a scale factor s such that f(X) = D(X; s), where D is the ideal downsampling function.
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Figure 4.3: Illustration of the identity degradation initialization method in our training
procedure. Only the convolution layers in the degradation network are shown in the
figure.
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noise injection layers to zero. Thus, these two types of layers can be removed from the

degradation network and are not shown in Fig.4.3. Moreover, an output pixel of an

identity network can only be affected by the counterpart pixel of the input. So then

we initialize the center slices of all but the last convolution kernels (conv 1 to n) with

Xavier Initialization [54] of 1× 1 convolutional fan mode. We set all other values of

these kernels to zero and leave the last convolution kernel (output conv) uninitialized.

We can simplify these initialized 3× 3 convolutions (conv 1 to n) to 1× 1 convolutions

and merge them into one 1× 1 convolution, taking advantage of the associativity of

convolution. Finally, we squeeze the merged 1×1 convolution filter (4-D tensor) into a

2-D matrix of the same size, compute the Moore-Penrose pseudoinverse of the merged

matrix, fill the result into the center slice of the last 3× 3 convolution kernel (output

conv), and set all other values of the kernel to zero. This way, each output pixel of

the degradation network is only affected by the counterpart pixel of the HR input.

Computing the output pixel is equivalent to performing a matrix multiplication of the

input pixel, a randomly initialized matrix, and its pseudoinverse. Thus, the property

of the pseudoinverse guarantees that the entire degradation network is initialized to

the identity transformation.

Please note that the anti-aliased average pooling layer [187] is not shown in Fig. 4.3.

Since it is a strictly defined linear operator and we claim it as a visually identity

transformation, as long as the remaining part of the network is a strictly defined

identity transformation, the entire network would be a visually identity transformation

or, in other words, the ideal downsampling.

Due to overparameterization of neural networks, there are infinitely many parameter

solutions to make the degradation network represent the identity transformation. Our
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initialization method only takes n− 1 matrix multiplications, and one Moore-Penrose

pseudoinverse by using the singular value decomposition (SVD). Our method strikes

a nice balance between randomness in the network neighborhood and initialization

speed.

4.3.3 Adversarial Degradation Perturbation

Once we initialize the degradation network to the identity transformation, we are

at the starting point to various image degradations. The next thing we need to do

is to perturb the identity degradation network, and the slightly deviated identity

degradation network would represent a real-world image degradation case. We can

use the network to quickly generate abundant perfectly aligned HR and LR image

pairs, by taking HR images as input of the degradation network and collecting the

outputs. And finally, we can train a SR model with the collected HR and LR image

pairs. Since the degradation prior includes various real-world image degradations, the

SR model trained by this way could reconstruct various real-world degraded images

well.

So how do we perturb the identity degradation network? The most straightforward

way is to add small random numbers to all parameters of the degradation network,

and that means to take a small random step from the original identity transformation

on the degradation space. A lot of degradation networks which are independently

perturbed by this way would cover a neighbourhood of the identity transformation

on the degradation space. If we train a SR model with HR and LR image pairs

constructed by many of those networks, the trained model would have a good average

performance on the covered degradation set.
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However, instead of having a good average performance for regular degradations,

we want our real-world SR model to be as robust as possible. In other word, we

want our SR model to have a good worst-case performance. That is because the

real-world situation is always more complicated than laboratory situations. We want

our real-world SR model to keep having a satisfactory performance, even for images

might have been suffered from rare or unpredictable real-world degradations.

To achieve such a goal, we perturb the identity degradation network adversarially

instead of randomly. That means, we adversarially search small perturbations on all

parameters of the degradation network, which could make the SR model perform the

worst on HR and LR image pairs constructed by the degradation network. During SR

model training, we keep searching those worst cases dynamically, and keep optimizing

the SR model based on the worst degradation case for the moment. By this way, the

worst-case performance of the SR model would be gradually improved, and will finally

converge to the robust model with the highest lower bound.

4.3.4 Super-Resolution Model Training

To better show the advantage of the proposed neural degradation prior and the

adversarial degradation training, we adopt the ESRGAN [161] as our SR model. The

SR model training procedure solves the following optimization problem:

min
θG
{EIHR [max

θF∈S
Lcont(I

HR; θG, θF )]

+ λmax
θD

EIHR [max
θF∈S

LGAN(IHR; θG, θD, θF )]}
(4.3.1)

where S = {θ|‖θ − θid‖2 < ε, and Fθid is the identity transformation}. G and D are

generator (restoration network) and discriminator of the SR model respectively. F
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is the degradation network. θ stands for parameter of network. IHR represents the

high-resolution images. Lcont and LGAN are the content loss and the GAN loss [94]

respectively. λ is the coefficient to balance the two loss terms. The content loss Lcont

is the sum of the 1-norm loss and the VGG loss [75]:

Lcont(I
HR; θG, θF ) =‖IHR −GθG(FθF (IHR))‖1

+
∑
j

cj‖φj(IHR)− φj(GθG(FθF (IHR)))‖22
(4.3.2)

where φj is the feature map of jth convolution layer of the VGG network [143], and

cj is the coefficient for term of the jth layer. The GAN loss LGAN is:

LGAN(IHR; θG, θD, θF ) = logDθD(IHR)

− logDθD(GθG(FθF (IHR)))

(4.3.3)

The purpose of the entire training procedure is to solve the optimization problem

shown in Equation 4.3.1. We present the general algorithm for AND training in

Algorithm 2. The algorithm is more complicated than the training algorithms of

previous GAN-based SR methods [94, 161, 163], because there are not two, but three

players in the minimax problem, i.e., the degradation network F , the generator G,

and the discriminator D. For each single optimization step of the entire network,

we first initialize the degradation network to the identity transformation. Next, we

adversarially perturb the degradation network within a small neighborhood. The

degradation network takes HR images as input and generates LR images with moderate

yet complex image degradations. The restoration network, also known as the generator,
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Algorithm 2 The general algorithm for AND training

Require: epoch number N , batch size m, step size α, perturbation bound ε, pertur-

bation steps K, learning rate η

Require: initial generator parameters θG, initial discriminator parameters θD.

for epoch = 1 to N do

Initialize θF which makes the degradation network F represent the identity

transformation.

Initialize perturbation on parameters of the degradation network δ ← 0

Sample a minibatch {xi}mi=1 from the high-resolution images IHR.

for k = 1 to K do

gF ← ∇θF [ 1
m

∑m
i=1(Lcont(x

i; θG, θF + δ) + λLGAN(xi; θG, θD, θF + δ))]

δ ← δ + α gF
‖gF ‖2

if ‖δ‖2 > ε then

δ ← ε δ
‖δ‖2

end if

end for

θF ← θF + δ

gG ← ∇θG [ 1
m

∑m
i=1(Lcont(x

i; θG, θF ) + λLGAN(xi; θG, θD, θF ))]

θG ←Adam(−gG, θG, η)

gD ← ∇θD [ 1
m

∑m
i=1 λLGAN(xi; θG, θD, θF )]

θD ←Adam(gD, θD, η)

end for
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aims to restore SR images from the degraded LR images. The adversarial degradation

perturbation is designed to cause the restoration network to produce unsatisfactory

results, characterized by low PSNR and easy distinguishability as fake images by the

discriminator network. This adversarial degradation perturbation is accomplished

through K = 5 projected perturbation steps [115]. Finally, we optimize the restoration

network and the discriminator network using the adversarial LR images. We repeat

the optimization steps of the entire network multiple times during training until the

restoration network becomes robust enough to generate perceptually satisfying SR

results, even when the LR input images are affected by complex degradations.

4.3.5 Local Worst-Case Degradation

In our proposed method, it is essential to explicitly clarify that when we mention the

worst-case degradation, we specifically focus on the local worst-case scenario rather

than the global worst-case scenario. This distinction is subtly implied by the proposed

optimization algorithm. Our focus is solely on local worst-case degradations, not

global ones, and this decision is based on the following reasons.

Firstly, searching for the global worst-case degradation poses a formidable challenge

due to the inherent complexity of the image restoration network in our approach.

This network, being highly nonlinear, lacks an efficient algorithm capable of quickly

identifying its corresponding global worst degradation network. In the training phase

of the image restoration network, every optimization step requires a search for the hard

degradation scenario corresponding to the current state of the restoration network,

and the entire training process demands numerous searches for hard degradations.

Given these complexities, the pursuit of the global worst-case scenario proves to be an
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impractical endeavor.

Secondly, it’s crucial to note that even if we pinpoint the global worst-case scenario,

its practical impact remains limited. The model training process involves searching for

hard degradation within a small neighborhood centered around a randomly selected

initial point that corresponds to the identity transformation. As a result, the global

worst-case scenario is very likely to fall outside of this neighborhood. This implies

that the global worst-case degradation is exceptionally severe, but such extreme

circumstances are not commonly encountered in typical image restoration tasks.

Thirdly, we observed that the image restoration model, when trained using local

worst-case scenarios, exhibits commendable performance in real-world image restora-

tion tasks. This approach not only guarantees a robust lower performance limit but,

crucially, by taking into account a diverse array of local worst-case degradations, it

yields a strong average performance. This dual benefit is particularly significant in

addressing practical tasks, emphasizing the model’s ability to deliver consistent and

reliable results across a spectrum of challenging scenarios.

4.3.6 Training and Inference Efficiency

Compared with previous SR methods, our SR model needs to cost more time during

training phase. When we train our GAN-based SR method with adversarial neural

degradation, we need to perturb the identity degradation network, optimize the

restoration network and the discriminator network, in an alternating manner. The

adversarial perturbation of the identity degradation network is done by taking gradient

steps. In this work, before each operation step of the SR model, we use 5 gradient

steps for adversarial degradation perturbation. That requires additionally 5 forward
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and backward passes through the whole network, including the degradation network

and the SR model. Thankfully, the degradation network is much smaller than the SR

model. That is reasonable because degradation is much easier than restoration, which

is a general property for all inverse problems. So the degradation network itself does

not cost much, most of the additional training cost is due to the adversarial training

procedure. As we mentioned before, we adopt the ESRGAN as our SR model. It

would cost 8.92 TFLOPs for one training step of ESRGAN on a training batch, while

would cost 57.85 TFLOPs for our SR model training with the same training setting.

So our method need an increase in training time of a factor of 6.49.

However, what is more important for our real-world SR method is inference

efficiency. That is because once we finish the training, the robust SR model we get

would not need retraining or finetune for unpredicted image degradations. Once the

training is done, we can discard the degradation network and the discriminator network,

and only use the trained restoration network for inference. That means, compared

with previous SR methods, our SR method does not need additional computational

and storage cost during inference phase.

4.3.7 Limitations

There is no single SR model that can handle every possible image degradation. This is

a simple deduction drawn from the ”no free lunch” theorem [167], and our method is

certainly not an exception. Our SR method relies on the proposed neural degradation

prior, which is inspired by the commonalities observed in various image degradations.

Therefore, naturally, our SR model cannot effectively deal with a specific image

degradation that deviates significantly from the two summarized commonalities.
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When an image degradation introduces artifacts containing strong structures

that are not accounted for in the neural degradation prior, our SR model struggles

to handle the degradation. An illustrative degradation example is extreme JPEG

compression [189], which produces severe block artifacts characterized by strong spatial

structures in 8× 8 blocks. While networks trained specifically for this task can utilize

such structures, they are not explicitly captured in our proposed neural degradation

prior. As a result, our SR model would not outperform an expert network in this

case. Another similar degradation example is halftoning [80]. Halftone printing is a

technique that uses ink dots of different sizes to simulate different grayscale levels,

and it is used in old publications such as newspapers or books. Since the positions of

the ink dots of a halftone image always have a very strong spatial pattern, which is

not included in the neural degradation prior, our method cannot restore the halftone

image well compared to an expert network.

The prior assumes that image degradations can be viewed as small deviations from

the identity transformation. If this assumption fails for a specific image degradation,

our SR model cannot handle the degradation well. A notable degradation example is

the conversion of truecolor images to grayscale images [70]. This particular degradation

is not a small deviation from the identity transformation, and thus, our SR model

would not be able to colorize the input grayscale images in such cases. For the same

reason, our method is also not suitable for directly enhancing low-light images [108].

Since the image degradations used in our SR training are slightly deviated from

identity degradation networks, our trained model would not automatically adjust the

image brightness, contrast, and color.

For certain image degradations, both assumptions in our neural degradation prior
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can fail simultaneously, representing the most challenging cases for our method. An

example of such a case is image degradation in the image inpainting task [104]. In

this task, the missing pixels often exhibit strong spatial structures, such as forming

holes and stripes on the image. Moreover, the signal of these pixels is entirely absent,

rather than being a small deviation from the identity transformation. Consequently,

our image restoration method is unable to address this type of degradation.

4.4 Experiments

4.4.1 Datasets

Widely used datasets for SR evaluation, like Urban100 [68] and DIV2K [153], are not

suitable for the study of real-world SR, because they only contain HR images and

their LR counterpart need to be generated by bicubic downsampling. We perform

experiments on four datasets constructed for real-world SR evaluation: RealSR [21],

DRealSR [166], SupER [86], and ImagePairs [76]. RealSR and DRealSR are datasets

containing HR and LR image pairs captured on the same scene by adjusting the

focal length of digital cameras. SupER includes HR and LR image pairs constructed

by camera hardware binning, which aggregates adjacent pixels on the sensor array.

ImagePairs includes HR and LR image pairs captured by a HR camera and a LR

camera, which are aligned and mounted on a rig with a beam splitter. These datesets

are constructed in different ways, so they could provide a comprehensive evaluation

for real-world SR methods.
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4.4.2 Quantitative Metrics

We use four quantitative metrics for quality assessment of SR images: PSNR,

SSIM [164], LPIPS [188], and NIQE [121]. PSNR and SSIM are calculated on

Y channel of transformed YCbCr space for fair comparison [152]. They are more

focused on low-level pixel-wise image differences, and they are metrics suitable for

PSNR-oriented SR models. LPIPS is a learned metric for full-reference image quality

assessment. We could use the preceding three full-reference metrics, since all datasets

we used in the experiments have pixel-wise aligned HR and LR image pairs. Consider-

ing that GAN-based SR methods may generate detailed textures, which is although

realistic but different from the ground truth, we also use NIQE, a no-reference metric

for image quality evaluation. Both LPIPS and NIQE agree better with human visual

perception, and they are metrics suitable for perceptual quality-oriented SR models.

4.4.3 Training Details

We use DIV2K [153], Flickr2K [103] and WED [113] as HR image datasets for training.

The training HR patch size is set to 256 and the batch size is set to 48. Following

BSRGAN [185] and Real-ESRGAN [163], we train two SR models with our method:

a PSNR-oriented model noted as ANDNet, and a perceptual quality-oriented model

noted as ANDGAN. First, we train ANDNet with the L1 loss only, for 1×106 iterations

with 1× 10−4 learning rate. Then we use the trained ANDNet as an initialization for

the generator of the ANDGAN, and train the whole ANDGAN model with both the

content loss and the GAN loss in Equation 4.3.1, which are balanced by λ = 0.1, for

5× 105 iterations with 1× 10−4 learning rate. We use Adam optimizer [82] for both

generator and discriminator training.
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Table 4.1: Quantitative comparison with state-of-the-art methods on real-world blind
image super-resolution benchmarks. Best and second best results are highlighted
and underlined

Method
RealSR(×4) [21] DRealSR(×4) [166] SupER(×4) [86] ImgPairs(×2) [76]
PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

KernelGAN [9] 25.13 0.3349 28.56 0.3978 25.65 0.3445 26.74 0.3340
DAN [69] 27.80 0.4114 30.59 0.4111 32.19 0.2064 28.56 0.2802

BSRNet [185] 27.35 0.3084 29.49 0.3411 32.11 0.2532 28.59 0.3915
BSRGAN [185] 26.51 0.2685 28.35 0.2929 29.18 0.2181 28.13 0.3346

Real-ESRNet [163] 26.79 0.2939 28.50 0.3257 30.89 0.2496 28.34 0.3858
Real-ESRGAN [163] 25.85 0.2728 27.92 0.2818 27.55 0.2046 28.12 0.3679
SwinIR-Real [100] 26.43 0.2515 28.29 0.2739 28.27 0.1889 28.11 0.3464

DCLS [110] 27.83 0.4080 28.32 0.4760 32.71 0.1985 28.64 0.2844
PDM-SRGAN [111] 21.96 0.3717 24.32 0.3668 25.31 0.2710 26.11 0.3788

FeMaSR [28] 25.42 0.2937 26.59 0.3374 25.45 0.2419 27.03 0.3400
DASR [101] 27.18 0.3113 29.72 0.2962 29.73 0.1476 28.34 0.3412

ReDegNet [98] 24.77 0.2800 26.24 0.2995 26.60 0.1785 27.06 0.3930
ANDNet (ours) 28.47 0.2599 30.97 0.3381 32.96 0.2125 28.75 0.2786

ANDGAN (ours) 26.34 0.2326 28.95 0.2610 29.85 0.1372 27.78 0.2598

Method
RealSR(×4) [21] DRealSR(×4) [166] SupER(×4) [86] ImgPairs(×2) [76]
SSIM↑ NIQE↓ SSIM↑ NIQE↓ SSIM↑ NIQE↓ SSIM↑ NIQE↓

KernelGAN [9] 0.7407 6.946 0.8314 8.550 0.7831 6.844 0.7467 6.291
DAN [69] 0.7882 8.099 0.8608 9.137 0.8880 5.886 0.7917 5.692

BSRNet [185] 0.8076 7.271 0.8587 8.060 0.8800 6.322 0.8311 6.391
BSRGAN [185] 0.7750 4.650 0.8205 4.681 0.8292 4.549 0.8152 5.450

Real-ESRNet [163] 0.8067 7.142 0.8484 7.829 0.8563 6.408 0.8264 6.026
Real-ESRGAN [163] 0.7735 4.676 0.8247 4.716 0.8082 3.944 0.8192 4.812
SwinIR-Real [100] 0.7865 4.678 0.8272 4.665 0.8360 3.776 0.8133 4.315

DCLS [110] 0.7892 8.023 0.8188 9.273 0.8927 5.892 0.7962 5.773
PDM-SRGAN [111] 0.6815 6.798 0.7728 7.518 0.8048 5.015 0.7788 5.316

FeMaSR [28] 0.7531 4.737 0.7683 4.218 0.7429 4.873 0.7477 4.719
DASR [101] 0.7867 5.969 0.8543 6.347 0.8508 3.881 0.8204 4.830

ReDegNet [98] 0.7754 5.049 0.8124 4.685 0.8305 3.993 0.8130 5.368
ANDNet (ours) 0.8232 7.541 0.8773 8.360 0.9004 6.302 0.8415 5.514

ANDGAN (ours) 0.7854 4.018 0.8244 4.045 0.8579 3.493 0.7858 3.748
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Canon 042 (4×)

HR Bicubic KernelGAN [9] DAN [69] BSRGAN [185]

SwinIR-Real [100] DCLS [110] FeMaSR [28] DASR [101] ANDGAN

Nikon 012 (4×)

HR Bicubic KernelGAN [9] DAN [69] BSRGAN [185]

SwinIR-Real [100] DCLS [110] FeMaSR [28] DASR [101] ANDGAN

DSC 1454 (4×)

HR Bicubic KernelGAN [9] DAN [69] BSRGAN [185]

SwinIR-Real [100] DCLS [110] FeMaSR [28] DASR [101] ANDGAN

Figure 4.4: Qualitative comparisons on real-world images from RealSR [21] and
DRealSR [166] dataset with scale factor 4.
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We use projected gradient descent method [115] to adversarially search a small devi-

ation of the identity degradation network. Before every training step for the restoration

network, we initialize the degradation network to the identity transformation, and

run 5 iterations of projected gradient descent with step size of 6 and perturbation size

ε = 20. We also need to balance the weights for convolutional degradation, noise and

nonlinearity, to make their respective intensity close to real-world degradation. When

we calculate the L2 norm ‖θ − θid‖2 to determine the perturbation set S in Equation

4.3.1, we use scale factors of 1, 10, 50 for term of convolutional degradation, noise and

nonlinearity respectively. Note that a larger scale factor means a stronger suppression

for the degradation type.

4.4.4 Comparisons with Prior Works

We compare both our PSNR-oriented model and the perceptual quality-oriented model

with several state-of-the-art methods. Quantitative results are shown in Table 4.1, and

visual comparison between different methods are shown in Fig. 4.4. The experimental

results show the superiority of our method on all four real-world SR datasets over the

state of the arts. As shown in Fig. 4.4, our ANDGAN model is the only SR method

which could handle the difficult degradations and recover the image details of the

wheel hub, roofing tiles, and cactus spines.

4.4.5 Ablation Study

The ablation studies are intended to investigate the effects of the three major com-

ponents of our method: adversarial perturbation, neural degradation, and identity

initialization. In each ablation setting, we retain only specific components and assess
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the method’s performance. For cases where neural degradation is removed, we either

use an additive noise model for adversarial training or employ bicubic downsampling

for non-adversarial training. In situations where identity initialization is eliminated,

we randomly initialize all 3 × 3 convolution kernels in the degradation network us-

ing Xavier Initialization. The meanings of each specific ablation setting are further

explained below.

If we do not use adversarial perturbation and neural degradation at all, our

method would become a classical SR training method, which assumes that the image

degradation model is an ideal bicubic downsampling. Most SR researches are with

this setting, such as SRCNN [39], EDSR [103] and RCAN [190].

If we retain solely the adversarial perturbation without inducing neural degradation,

it implies the utilization of an adversarial noise training method similar to [24, 176].

The perturbation under this setting is additive noise, following most adversarial

training researches on image classification tasks.

If we employ neural degradation with identity initialization but without adversarial

perturbation, our method becomes similar to SR training with synthetic data augmen-

tation, functioning akin to BSRGAN [185] and Real-ESRGAN [163]. During model

training, neural degradation involves random sampling near the identity initialization

rather than adversarial sampling, and the generated LR patches function as synthetic

data augmentations.

If we only remove the identity initialization from our method, the generated LR

patches would no longer be visually similar to the HR patches. While the skeleton

of the LR patches would remain unaffected, their color and texture would undergo a

dramatic change, as the mapping would no longer be an identity mapping [170]. This
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Table 4.2: Comparisons showing the effects of each component in the AND model,
tested on the RealSR [21] dataset with a scale factor of 4.

Configuration
Adversarial
Perturbation

Neural
Degradation

Identity
Initialization

PSNR↑ of
ANDNet

LPIPS↓ of
ANDGAN

Classical SR training 7 7 - 26.53 0.4245
Adversarial noise training 3 7 - 26.60 0.4194

Synthetic data augmentation 7 3 3 27.31 0.3089
Severe random style shift 3 3 7 11.84 -

Complete AND model 3 3 3 28.47 0.2326

phenomenon is referred to as ”severe random style shift” in our experiments.

The comparisons are shown in Table 4.2. We can observe that all three ma-

jor components, namely adversarial perturbation, neural degradation, and identity

initialization, are necessary.

4.5 Conclusions

We propose a neural degradation prior that encompasses various image degradations in

the real world. Specifically, an untrained convolutional neural network, which deviates

slightly from the identity transformation, can serve as a prior for various real-world

image degradations. We employ adversarial searches to find small deviations in the

degradation network during the training of the SR model. This approach allows the

restoration model to continuously optimize itself on the worst degradation case, thus

achieving robustness.
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Chapter 5

Conclusion

This thesis departs from the current practice of designing an image restoration method

for a given known narrow class of degradations, and it strives for a degree of universality

of restoration methods. We improve the universality of the current DNN methods for

image restoration in three aspects.

1. Network design. We propose a novel system called the functional neural

network (FuncNet) to solve a parametric image restoration problem with a single

model. Unlike a plain neural network, the smallest conceptual element of our

FuncNet is no longer a floating-point variable, but a function of the degradation

severity parameter of the problem.

2. Training strategy. We propose a novel adversarial neural degradation (AND)

model to solve the problem of real-world super-resolution, which is the most

common type of image restoration against complex compounded degradations.

Instead of attempting to exhaust all degradation variants in simulation, which

is unwieldy and impractical, the AND model, when trained in conjunction with
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a deep restoration neural network under a minmax criterion, can generate a

wide range of highly nonlinear complex degradation effects without any explicit

supervision.

3. Inference process. We abstract any image degradation process as a many-to-

one function and propose a general restoration method with only one trained

model for various image restoration problems. The general image restoration is

formulated as a constrained optimization problem. Its objective is to maximize

a posteriori probability of latent variables, and its constraint is that the image

generated by these latent variables must be sufficiently close to the degraded

image.

The above three contributions endow deep learning based image restoration meth-

ods with a much desired degree of universality. They lead to appreciable improvements

of both subjective and objective quality of restored images.
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