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Abstract

As a crucial factor in improving radar performance for multiple target tracking

(MTT), resource management problems are analyzed in this thesis with regard to

sensor platform path planning, beam scheduling, and burst parameter design. This

thesis addresses problems to deploy or adapt radar configurations for multisensor-

multitarget tracking, including 1) the path planning of movable receivers and power

allocation of transmitted signals, 2) the optimal beam steering of high-precision pen-

cil beams, and 3) the pulsed repetition frequency (PRF) set selection and waveform

design.

Firstly, the coordinated sensor management on the ends of both receivers and

transmitters for a multistatic radar is studied. A multistatic radar system consists of

fixed transmitters and movable receivers. To form better transmitter-target-receiver

geometry and to establish an effective power allocation scheme to illuminate targets

with different priorities, a joint path planning and power allocation problems, which

determines the moving trajectories of receivers mounted on unmanned airborne ve-

hicles (UAVs) and the power allocation scheme of transmitted signals over a limited

time horizon, is formulated as a weighted-sum optimization. The problem is solved

with a genetic algorithm (GA) with a novel pre-selection operator. The pre-selection

operator, which takes advantage of the receding horizon control (RHC) framework
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to improve population structures prior to the next generation, can accelerate the

convergence of GA.

Secondly, the beam steering strategies for a cooperative phased array radar sys-

tem with high-precision beams are developed. Pencil beams with narrow beamwidth,

which are designated to track targets for a phased array radar, offer efficient per-

formance in an energy-saving design, but can cause partial observations. The novel

concept of expected Cramér-Rao lower bound (EPCRLB) is proposed to model partial

observations. A formulation based on PCRLB is given and solved with a hierarchical

genetic algorithm (HGA). An optimal strategy based on EPCRLB, which is effective

in performance and efficient in time, is proposed.

Finally, a joint pulsed repetition frequency (PRF) set selection and waveform de-

sign is studied. The problem tries to improve blind zone maps while preventing targets

from falling into blind zones. Waveform parameters are then optimized for the system

to provide better tracking accuracy. The problem is first formulated as a bi-objective

optimization problem and solved with a multiple-objective genetic algorithm. Then,

a two-step strategy that prioritizes the visibility of targets is developed. Numerical

results demonstrate the effectiveness of proposed strategies over simple approaches.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Background of Multisensor-multitarget Tracking

Multiple target tracking (MTT) has a long history of almost a century and draws con-

sistent research interests due to recent advancements in computer vision and artificial

intelligence areas. Multisensor-multitarget tracking refers to the joint estimation of

multiple targets’ state by using observation data from multiple sensors in a simul-

taneous or sequential manner. MTT aims to monitor targets of interest and obtain

their accurate state estimation over time.

Tracking algorithms generally solve the tracking problem in two stages: data as-

sociation, which establishes target-measurement association in the presence of missed

detection or clutters, and state estimation, which updates the target’s state with the

given measurements. In the scenarios where multiple media are used, characteristic
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extraction must be performed to convert complex information, i.e., videos, into kine-

matic measurements, i.e., angle-of-arrival, for the tracker to process. Classic data

association techniques include the global nearest neighbor (GNN)[41], joint proba-

bilistic data association (JPDA)[7] and multiple hypothesis tracking (MHT)[9]. GNN

associates the nearest measurement in the gate to the target. JPDA fuses all valid

measurements with different weights in the gate to update the track. In MHT, every

hypothesis of measurement-target association is propagated into the future in antici-

pation that future observations will solve the uncertainty[9]. The computational load

of MHT is high due to the exploding increase of hypotheses.

Under the framework of recursive Bayesian filtering, Kalman filter (KF)[8] and its

variations have shown effectiveness in handling state estimation problems. KF is the

optimal linear minimum mean squared error (LMMSE) under the Gaussian assump-

tion. Extend Kalman filter (EKF) and unscented Kalman filter (UKF) are used to

handle nonlinear tracking problems. EKF uses the Jacobian matrix as a linear ap-

proximation of the state and/or measurement equations while UKF uses sigma points

to represent the Gaussian distribution of the target and unscented transform (UT)

to approximate the nonlinear evolution between the state and measurement spaces.

Particle filter (PF)[5], as a Monte-Carlo realization of Bayesian filter that generates

numbers of particles to represent the target distribution, has also shown efficiency in

target tracking. PF is feasible for nonlinear tracking and it does not require Gaus-

sian assumption. Multiple model filters, such as generalized pseudo Bayesian (GPB)

filter[28] and interacting multiple model (IMM) filter[48], are developed to handle

tracking problems of maneuvering target, where the target’s motion is complex and

cannot be described by a single kinematic model. The basic idea of these filters is to

2
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use multiple motion models with respective weights to describe the target’s motion.

The state estimation is obtained by running multiple local filters for each motion

model and then fusing the outputs of all filters.

1.1.2 Radar Resource Management for Multiple Target Track-

ing: A Brief Review

Technological advances in radar systems have enabled the diversification of radar

functions and configurations. Multiple functionalities and complicated deployments

have become a trend in the civil and military radar industries. Requirements arise

for effective and efficient radar resource management algorithms to meet the need for

accurate detection and tracking abilities.

In the narrow sense, radar resource management (RRM) refers to the methods

with which the sensors are deployed or configured, such as path planning[90, 80],

sensor selection[82, 85] or sensor placement[25]. These problems are also called sen-

sor management. With the advancement of radar technologies, sensor management

problems are extended rapidly into fields of resource-aware system design. Prob-

lems are studied on the allocation of limited radar resources, such as time[49] and

power[94, 92]. Furthermore, problems related to the configuration or selection of

radar parameters, such as beamforming[44] are also classified into RRM problems.

This thesis considers the optimization of path planning, power allocation, beam

scheduling, and burst beam design, in the context of target tracking. Algorithms and

strategies are developed to allocate resources or adapt radar parameters accordingly

in the dynamic environments of target tracking.

Although considerable effort has been dedicated to sensor path planning for target

3

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – A. Deng; McMaster University – Electrical and Computer Engineering

localization, search, or tracking, existing algorithms have not considered the multi-

static radar system due to the complex transmitter-target-receiver geometry or com-

bined the path planning problem with RRM from the fixed transmitter side. There-

fore, it is worth studying a joint optimization of both receivers and transmitters and

combining the power allocation of transmitted signals into the RRM problem design.

In the current literature, it is often assumed that a beam can cover the entire area

of interest. However, this assumption no longer holds with the utilization of pencil-

beams. Therefore, we investigate the characteristics of pencil-beams and propose

the concept of expected PCRLB, with which an effective and efficient strategy is

developed to guide the steering of beams.

RRM problems are typically formulated into optimization problems where one

or more objective functions are to be minimized subject to system constraints. In

radar resource management problems, the objective function is generally referred to

as quality of service (QoS), which explicitly defines what task qualities are required.

The Cramér-Rao lower bound (CRLB), which is defined by the inverse of the Fisher

Information Matrix (FIM), provides a lower achievable minimum estimation of the

mean squared error (MSE) for any unbiased estimator of an unknown parameter[86].

The posterior Cramér-Rao lower bound (PCRLB) gives a lower bound on the MSE

for an unbiased estimator of an unknown variable. The PCRLB can be calculated

recursively[86] and it is shown in [57] that the estimation error asymptotically ap-

proaches the PCRLB in areas with high signal-to-noise ratio (SNR) if the measure-

ment noise is Gaussian. Therefore, many optimal resource management problems, as

this thesis, use PCRLB as a criterion to optimize[94, 96, 82, 62, 55, 54]. The selection

of objectives is highly dependent on the mission profiles and the requirements of users.

4
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In[74], information gain is used as the objective function instead of estimated error.

Tracking completeness is more important than tracking accuracy for surveillance and

tracking missions of large numbers of targets.

For the solution techniques, some problems are solved analytically[92, 94, 95] with

necessary convex relaxation[10]. Others, however, use heuristic algorithms to obtain

rapid and near-optimal results due to the complexity of objective functions. Heuristic

algorithms refer to a set of methods characterized by self-learning and discovery.

These methods are usually inspired by selection processes in nature. They have

the advantage of quick search at the cost of optimality. Classic heuristic algorithms

include genetic algorithm (GA)[64, 1, 60, 14], particle swarm optimization (PSO)[64],

simulated annealing (SA)[2] and ant colony optimization (ACO). GA mimics the

process of natural evolution and the optimal candidate is found by eliminating other

individuals that fail the competition. PSO is inspired by birds searching for food,

every candidate tries to reach the optimal point through individual learning and group

learning. SA and ACO, search for the optimum by imitating annealing and ant colony,

respectively. In this thesis, where PCRLB is selected as the objective, convexity

can hardly be preserved due to complex matrix operations such as multiplication

and inversion. Therefore, we use strategies based on genetic algorithms as solvers.

Despite its effectiveness, GA suffers from early maturing and may be trapped in a

local optimum. In this thesis, a custom pre-selection operator is developed to take

advantage of the information in the RHC framework and accelerate the convergence

of the algorithm.

5
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1.2 Theme and Objectives of Dissertation

In compliance with the terms and regulations of McMaster University, this disserta-

tion has been written in sandwich thesis format by assembling three articles. These

articles represent the independent research performed by the author of this disserta-

tion, Anbang Deng.

The articles in the dissertation focus on the resource management algorithms for

multisensor networks. The general theme is based on the following:

1. To propose a joint path planning and power allocation strategy of multitarget

tracking for a multistatic radar system (Paper I).

2. To propose the concept and derive the expression of expected PCRLB (EPCRLB)

and validate its utilization in describing partial observation (Paper II).

3. To propose beam scheduling algorithms for phased array radars with high-

precision pencil beams (Paper II).

4. To propose burst parameter designing strategies for pulsed Doppler radars (Pa-

per III).

5. To design closed-loop multisensor-multitarget tracking frameworks with incor-

porated resource management algorithms (Paper I, II, and III).

1.3 Summary of Enclosed Articles

The papers enclosed in this thesis are listed as follows:

6
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1.3.1 Paper I (Chapter 2)

A. Deng, R. Tharmarasa, T. Kirubarajan

Joint Path Planning and Power Allocation for Multitarget Tracking in Multistatic

Radar System, submitted to Elsvier Signal Processing, Oct 2022.

Preface: Multistatic radar systems have the advantage of practicability and potential

tracking capabilities over traditional monostatic radar systems. They can be improved

by optimizing limited power and efficient deployment of sensors for multitarget track-

ing applications. This paper presents a joint path planning and power allocation

(JPPPA) strategy for tracking multiple targets in a multistatic radar system having

a fixed transmitter and multiple moving receivers.

The proposed approach optimizes and controls the allocation scheme for trans-

mitted power and the receivers’ path to obtain accurate speed and heading angle es-

timation. To measure the optimal performance of an unbiased estimating approach,

the Posterior Cramer-Ratio Lower Bound (PCRLB) is derived and used as the basis

for the resource management strategy. A modified genetic algorithm (GA) with a

custom pre-selection operator is developed to determine the power allocation scheme

and sensor movement simultaneously. A receding horizon control (RHC) framework

is applied to offer fault tolerance and provide the system with long-term guidance.

Results show that the tracking performance in terms of estimation accuracy can be

improved using the JPPPA strategy. The effectiveness of the proposed pre-selection

operator is verified through comparison with the ordinary genetic algorithm.

1.3.2 Paper II (Chapter 3)

A. Deng, F. Pektas, F. Kumru, R. Tharmarasa, M. Efe, T. Kirubarajan

7
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Adaptive Beam Scheduling for Cooperative Phased Array Radars with High-Precision

Pencil-Beam, accepted in final form for to IEEE Transactions on Aerospace and Elec-

tronic Systems, Aug 2023. (doi: 10.1109/TAES.2023.3308549)

Preface:Phased array radar (PAR) has attracted considerable attention in civil and

military applications due to its capability of performing multiple tasks such as surveil-

lance, tracking, and weapon engagement simultaneously. To make better use of lim-

ited radar resources and to offer the best operating performance, an efficient resource

allocation strategy is necessary. Traditional PAR schedulers are inefficient in using

pencil-beams with super narrow beamwidth to cover areas of interest, especially in

cases of maneuvering targets with high motion uncertainty, which results in missed

detection. To utilize the limited time and energy resources required for PAR with

pencil beams, it is necessary to provide an efficient beam scheduling algorithm. How-

ever, existing works often assume that a beam can cover the entire area of interest;

thus, the problem of scheduling small-beamwidth pencil-beam to perform search and

track (SAT) efficiently is barely discussed or addressed in the literature. In this paper,

the problems of tracking with a pencil-beam and its beam scheduling optimization are

addressed. Three beam scheduling strategies, fixed linear wipe, open-loop linear wipe

that uses a hierarchical genetic algorithm (HGA), and expected posterior Cramér–Rao

lower bound (EPCRLB) based optimal solution, are proposed to solve the mixed inte-

ger nonlinear problem (MINP). To handle the partially covered target existence area

by pencil-beam, a new concept of predicted expected posterior Cramér–Rao lower

bound (P-EPCRLB) is proposed and used as the main optimization criterion for the

scheduling strategy. Numerical results demonstrate the superior performance of the

proposed EPCRLB-based optimal solution strategy and its effectiveness as a proposed

8
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solution.

1.3.3 Paper III (Chapter 4)

A. Deng, R. Tharmarasa, T. Kirubarajan

Joint PRF Set Selection and Waveform Design for Pulsed Doppler Radars, to be

submitted to IEEE Transactions on Aerospace and Electronic Systems, Aug 2023.

Preface:This paper considers the problem of pulse repetition frequency (PRF) selec-

tion and waveform design for pulsed Doppler radars. Burst parameter design is an

essential step in radar resource management. A proper configuration of burst param-

eters, including PRF, pulse width, and waveform bandwidth, significantly impacts

the system performance on target tracking and detection. We address the problem of

comprehensive waveform design by jointly optimizing the radar blind rate and track-

ing accuracy. The posterior Cramér-Rao lower bound (PCRLB) is utilized as the

performance metric and a joint PRF set selection and waveform design (JPSSWD)

problem is formulated. Two formulations and corresponding solution methodologies

based on genetic algorithm (GA) are proposed. Numerical simulations are conducted

to evaluate the performance of proposed strategies.

9
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Chapter 2

Joint Path Planning and Power

Allocation for Multitarget Tracking

in Multistatic Radar System

2.1 Introduction

Multistatic radar systems, characterized by the separation between transmitters and

receivers, have attracted considerable interest in recent years. Since passive receivers

are cheap and hard to detect, multistatic radars provide the capability to handle

more difficult tasks, especially in dangerous or hostile environments. Multistatic

radars offer significant advantages over traditional monostatic radars in civil and

military applications such as surveillance and environmental monitoring by utilizing

illuminators of opportunity with passive receivers and working cooperatively with

several transmitters and receivers[23].

With the discovery of new applications for multistatic radars, there is a rising

10
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challenge in the system’s resource management, which ensures that better tracking

performance and adequate resource allocation are met. The configuration of resources

in radar systems affects the capability of trackers, especially in multistatic radars

where tracking accuracy is affected by the bistatic geometry, and a small change in

the receivers’ position may bring significant improvement.

The aim of resource management, in the field of target tracking, is to achieve

accurate state estimation by properly deploying limited resources and to lower the

the estimation errors to a certain threshold[27]. Originally, resource management

only focused on the deployment of sensors, and is commonly referred to as sensor

management. Based on the configuration of sensors, the main problems of sensor

management include optimal sensor selection[85, 97, 84], optimal sensor placement[93,

54] and path planning of mobile sensors[83, 24, 30, 67]. The objective of sensor

management is to determine the behaviors of sensors, such as the trajectories of

movable sensors, to optimize the tracking performance subject to their operational

constraints. Sensor management has been studied for decades, considerable concepts

and algorithms have been addressed in the literature[82, 85, 25, 16, 17]. Recently,

other resources such as power and communication channels are incorporated into

sensor management, making them more practical in real-life scenarios.

Multistatic radar systems could integrate the use of receivers mounted on small

and affordable Unmanned Aerial Vehicle (UAVs). UAVs have been well studied in

literature and widely employed in real-life applications[61]. Studies on UAV path

planning have provided fundamental background for sensor management problems in

multistatic radar systems. The positions or trajectories of sensors are important in

multistatic radars due to the complicated transmitter-target-receiver triangle.
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In [26], an optimal path planning problem using bearing-only measurement was

presented and a searching technique was developed. This work provided a basic

framework for the path planning problem in multistatic radar systems. In [18], a

nonlinear programming problem that maximizes the determinant of the Fisher Infor-

mation Matrix (FIM) to minimize localization uncertainty was presented. Conven-

tional optimization algorithms such as gradient descent are used to solve the path

planning problem[11]. In [63], path planning is modeled as a partially observable

Markov decision process and solved through nominal belief-state optimization (NBO)

approximation. Convex relaxation is also studied in some papers[92][95]. Heuristic

methods such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)

were presented in [64]. Although heuristic algorithms cannot guarantee an optimal

solution, they are suitable for problems with complicated objective functions that are

hard to solve analytically. Besides, their computational budgets are decent compared

to exhaustive search approaches.

Power allocation is another critical problem in resource-aware systems. In a radar

system, the transmitters have limited power budgets to generate multiple beams that

illuminate different targets. Proper allocation of the power resources determines the

optimal performance of the radar system. Some UAVs that carry the receivers are

equipped with batteries, however, the UAVs’ trajectories need to be optimized under

the constraint of a limited power supply.

Several authors have focused on the power allocation problem in radar systems[4,

47]. In [95], a joint beam selection and power allocation strategy that minimizes the

trace of Posterior Cramer-Rao Lower Bound (PCRLB) was proposed to handle the

scenario where the transmitter cannot launch enough beams to track all the targets
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simultaneously. The nonconvex problem was solved by a two-step gradient projection

method after variable partitioning.

In [92], a similar problem where the selection of fusion nodes was considered in a

decentralized radar network. A large number of studies regarding the low probability

of interception (LPI) address the issue of power allocation[71][22].

Although path planning and power allocation are both important issues to address

in multistatic radar systems, they are barely considered together to the best of our

knowledge. In a multi-static radar system, it is practically meaningful and technically

feasible to consider the path planning problem from the receiver side and the power

allocation problem from the transmitter side jointly. In the literature, the criteria used

for these two problems are generally different. Therefore, it is hard to formulate them

into an integral problem. A common approach would be the adoption of a weighted-

sum model where multiple objectives are integrated into one metric with respective

user-defined weights. The result of such an optimization problem is essentially a

Pareto trade-off that depends on how much weight the user gives to each individual

problem. Therefore, the result is subjective and does not offer adequate guidance to

the system. Besides, measurement origin uncertainty (MOU) is often neglected in

similar works because it will change the convexity of functions that contain PCRLB,

making it hard to use convex optimization techniques to solve the problem, while

MOU is a realistic issue that needs to be considered in general situations.

The Posterior Cramér-Rao lower bound (PCRLB), which is defined as the inverse

of the Fisher Information Matrix, provides a lower bound of the estimation mean

squared error (MSE) for any unbiased estimator. The PCRLB can be calculated in

a recursive manner[86], and it is shown in[57] that under the assumption, that the
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measurement noise is Gaussian, the estimation error asymptotically approaches the

PCRLB in high SNR. Therefore, PCRLB is a suitable criterion where the tracking

performance is the objective to optimize[25, 82, 62]. Error covariance is also used in

some works[17].

In this paper, a multistatic radar system with one fixed transmitter and several

movable receivers tracking multiple airborne targets is presented. The transmitter

is capable of launching multiple beams to illuminate all the targets simultaneously.

A beam with more power allocated will lead to more accurate measurements of the

target it illuminates. The total power to launch these beams is limited and needs

to be allocated properly. Besides, the receivers are mounted on UAVs whose tra-

jectories need to be optimized so that the radar system can achieve better tracking

performance. The system is designed as a closed-loop signal processing framework.

A receding horizon control (RHC) framework[20] where the system makes decisions

for a continuous time sequence is used. At each time step, three processes are carried

out. First, the state estimations of targets are achieved by trackers. Second, decisions

regarding how much power the transmitter should allocate to each launched beam,

and what speed and angle the receiver should move are made. Finally, the decision

variables are sent back to the system.

A solution based on GA is developed to solve the JPPPA optimization problem.

A custom pre-selection is developed to improve the structure of the initial population

by taking advantage of the decisions obtained by the RHC framework on future steps.

Comparisons are made between the proposed JPPPA and an approach that makes

decisions on path planning and power allocation separately to verify the effectiveness

of our algorithm. The modified GA is compared with the traditional GA to verify
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the effectiveness of the custom pre-selection operator.

This paper makes the following contributions:

1) A joint path planning and power allocation (JPPPA) strategy is comprehensively

analyzed and formulated as an optimization problem. The JPPPA strategy solves

the problem of maximizing a performance metric subject to constraints on UAV

kinematics and power budgets.

2) A modified GA with user-customized operators that take advantage of prior in-

formation is developed to solve the nonconvex JPPPA problem. The JPPPA problem

is hard to solve with gradient-based methods due to the complexity of the objective

function and the existence of both equality and inequality constraints. We use GA to

obtain real-time solutions and develop a custom operator to accelerate the algorithm.

3) A JPPPA-based framework for multitarget tracking is developed. A particle

filter is employed to handle the nonlinear filtering. A closed-loop signal processing

framework is established for the radar system. Details of the framework are illustrated

in Fig.2.1.

The remainder of the paper is organized as follows. Section II presents a descrip-

tion of the problem and introduces the system model. The problem is mathematically

formulated in Section III. In Section IV, the solution technique of the JPPPA opti-

mization problem is presented and a multitarget tracking algorithm based on the

JPPPA strategy is developed. The simulation results are presented and discussed in

Section V and conclusions and recommendations are stated in Section VI.
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Figure 2.1: JPPPA-based multitarget tracking framework in a multistatic radar
system

2.2 Problem Description

Consider a 2-D surveillance area where a multistatic radar system with one trans-

mitter and N receivers is deployed. The position of the transmitter is denoted by

(xTx, yTx). The receivers are mounted on UAVs. The nth receiver has the initial

position (xRn,1, y
R
n,1), initial velocity (ẋRn,1, ẏ

R
n,1) and initial heading angle θn,1. There

are Q airborne targets in the surveillance area. The qth target is intially located at

(xq,1, yq,1) with a initial velocity (ẋq,1, ẏq,1). At time step k, the qth target is located

at (xq,k, yq,k) with velocity (ẋq,k, ẏq,k).

For simplicity, it is assumed that the number of targets is fixed and known to the

system and all the trackers are already initialized. The multistatic radar should track

all the targets in the surveillance area while efficiently utilizing limited resources. The
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transmitter launches multiple beams that point at different targets simultaneously.

The signal-to-noise ratio (SNR) level of the echoes is proportional to the power ra-

diation that is allocated to generate that beam. Let Pq,k denote the power that is

allocated to launch the beam, which tracks target q at time step k, then we define

a power allocation vector Pk = [P1,k, P2,k, ..., Pq,k] that denotes the power scheme at

time step k.

Meanwhile, the trajectories of UAVs that carry the receivers need to be optimized

for the system to obtain better tracking performance. The maneuver of receiver n at

time step k is described by two variables: speed Vn,k and heading angle θn,k

2.2.1 Signal Model

The transmitter launches all beams to track different targets simultaneously. The

transit beam for target q at time step k is given by the following equation.

sq,k(t) =
√
Pq,kEq,k(t)e

−j2πfct (2.2.1)

where fc is the carrier frequency, and Pq,k is the transmit power. Eq,k(t) is the

normalized complex envelope of the transmit signal, which has an effective bandwidth

of βN

β2
N =

∫
f 2|Eq,k(f)|2df∫
|Eq,k(f)|2df

(2.2.2)

and an effective time duration TN

T 2
N =

∫
t2|Eq,k(t)|2dt∫
|Eq,k(t)|2dt

(2.2.3)
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The signal received by the nth receiver is an attenuated version of the transmit signal,

which is delayed by

rn,q,k(t) =hn,q,k
√
αn,q,kPq,kEq,k(t− τn,q,k)e−j2πfn,q,kt

+ ωkn,q(t)

(2.2.4)

The term αn,q,k ∝ 1/(Rn,q,k)
4 denotes the variation in the signal strength due

to loss effects along the signal transmission path (transmitter-target-receiver), where

Rn,q,k is the bistatic, i.e. the sum of the distance from the transmitter to the target

and the distance from the target to the receiver. hn,q,k denotes target RCS, also

referred to as reflectivity, which is a random variable. ωnq,k is a zero-mean complex

Gaussian noise.

The time delay is proportional to the bistatic range, and it is given by

τn,q,k =
1

c
Rn,q,k

=
1

c
(
∥∥(xTx, yTx)− (xq,k, yq,k)

∥∥
+
∥∥(xq,k, yq,k)− (xRn,k, y

R
n,k)
∥∥)

(2.2.5)

where ‖·‖ denotes the Euclidean norm. c is the speed of light. The Doppler shift

fn,q,k is proportional to the derivative of the bistatic range, which is given by

fn,q,k = −fc
c

{
ẋq,k

(
xq,k − xTx

)
+ ẏq,k

(
yq,k − yTx

)
‖(xTx, yTx)− (xq,k, yq,k)‖

+
ẋq,k

(
xq,k − xRn,k

)
+ ẏq,k

(
yq,k − yRn,k

)∥∥(xRn,k, y
R
n,k)− (xq,k, yq,k)

∥∥
} (2.2.6)
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2.2.2 Target Dynamics

Let xq,k = [xq,k, ẋq,k, yq,k, ẏq,k]
T denote the state vector of the qth target, where

[xq,k, yq,k] and [ẋq,k, ẏq,k] denote the position and velocity of the target respectively.

The target’s motions are assumed to follow a constant-velocity (CV) model in

which the state of the target evolves as:

xq,k+1 = Fkxq,k + wq,k (2.2.7)

Fk is the transition matrix

Fk = I2 ⊗

1 T

0 1

 (2.2.8)

where ⊗ is the Kronecker operator, and I2 denotes the 2 × 2 identity matrix. wk is

the process noise that describes the inaccuracy of the motion model. It is assumed

to be zero-mean Gaussian distributed with a known covariance Γk.

The covariance matrix is denoted by

Γk = κI2 ⊗

1
3
T 3 1

2
T 2

1
2
T 2 T

 (2.2.9)

where κ is the intensity of process noise.

2.2.3 UAV Kinematic Model

UAVs are constrained by their kinematic capacities. In this paper, a 2-D maneuvering

model is used. The heading angle and speed of each UAV might change at each
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observation point, while within the time interval, the UAVs are assumed to move at

a constant velocity with fixed heading angles.

Let θn,k and Vn,k denote the heading angle and the speed of the nth receiver at

time step k, then the position of this receiver [xRn,k, y
R
n,k]

T evolves as:

[xRn,k, y
R
n,k]

T = [xRn,k−1, y
R
n,k−1]

T + Vn,kT [cos(θn,k), sin(θn,k)]
T (2.2.10)

where T is the time interval.

At each time step, the maneuver of each UAV must satisfy the kinematic con-

straints, i.e., the acceleration and the angular acceleration must be within a specified

interval, given by:

 |θn,k − θn,k−1| ≤ θmax

|Vn,k − Vn,k−1| ≤ amax

(2.2.11)

θmax and amax are the maximum angular and linear accelerations of each UAV, which

are assumed to be constants.

2.2.4 Measurement Model

In a general case where measurement origin uncertainty(MOU) exists, measurements

originate from one of the targets or clutter. The measurement is given by:

zn,q,k =


hn(xq,k) + wn,q,k if originated from target q

υn,q,k if false alarm

(2.2.12)

20

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – A. Deng; McMaster University – Electrical and Computer Engineering

where zn,q,k is the measurement of target q at time step k that is obtained by the

nth receiver, hn is the nonlinear observation function. The measurements consist of

bistatic range Rn,q,k, bearing from target to sensor θn,q,k, and Doppler shift fn,q,k, i.e.,

hn(xq,k) = [Rn,q,k, θn,q,k, fn,q,k]
T (2.2.13)

The bearing is given by:

θn,q,k = arctan (
yq,k − yRn,k
xq,k − xRn,k

) (2.2.14)

and the expressions of Rn,q,k and fn,q,k can be found in equations (2.2.5) and (2.2.6).

wn,q,k is the measurement noise, which is assumed to be a zero-mean Gaussian random

variable with covariance Σn,q,k.

Σn,q,k = diag
(
σ2
Rn,q,k

, σ2
θn,q,k

, σ2
fn,q,k

)
(2.2.15)

where σ2
Rn,q,k

, σ2
θn,q,k

and σ2
fn,q,k

are the Cramér-Rao Lower Bounds (CRLBs) on the

estimation MSE of the qth target’s bistatic range, bearing and Doppler shift estimates,

which satisfy


σ2
Rn,q,k

∝ (µn,q,kβ
2
N)
−1

σ2
θn,q,k

∝ (µn,q,k/BW )−1

σ2
fn,q,k

∝ (µn,q,kT
2
N)
−1

(2.2.16)

where BW is the null-to-null width of the receiver antennas, βN and TN are the

effective bandwidth and time duration of the transmit signal respectively as previously

defined in equations (2.2.2) and (2.2.3). µn,q,k is the SNR which satisfies µn,q,k ∝
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αn,q,kP
k
q |hn,q,k|

2, thus we have


σ2
Rn,q,k

∝
(
αn,q,kP

k
q |hn,q,k|

2β2
N

)−1
σ2
θn,q,k

∝
(
αn,q,kP

k
q |hn,q,k|

2/BW

)−1
σ2
fn,q,k

∝
(
αn,q,kP

k
q |hn,q,k|

2T 2
N

)−1
(2.2.17)

Note that the elements in equation (2.2.16) are inversely proportional to the al-

located power P k
q , which yields an intuitive conclusion that for a single target, the

covariance of the measurement noise is inversely proportional to the power that is as-

signed to track it, i.e., the more power assigned to track a target, the more accurate

the measurements of that target will be.

The term υn,q,k in equation (2.2.12) represents the measurement generated by

clutters, which is a zero-mean Gaussian random variable uniformly distributed in the

measurement space (within the observation volume V ). The number of false alarms

at each frame satisfies the Poisson distribution, given by

p(nfa) =
e−λV (λV )nfa

nfa!
(2.2.18)

where nfa is the number of false alarms, λ is the spatial density, i.e., the average

number of false alarms at each frame.

2.2.5 FIM and PCRLB

The Posterior Cramér-Rao lower bound (PCRLB), which is defined to be the inverse

of the Fisher information matrix (FIM), gives a lower bound of the error covariance
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matrix of an unbiased estimate. It gives a measure of the achievable optimum perfor-

mance and can be calculated predictively. Furthermore, the PCRLB is independent

of the filtering algorithm, thus it is often used as an effective criterion in optimal

sensor resource management problems. For simplicity, the receiver index n is omitted

in this subsection. Let x̂k be an unbiased estimate of xk based on the measurement

zk, Ck be the error covariance matrix, and J(xk) be the FIM, we have

Ck = E[(x̂k − xk)(x̂k − xk)
T ] ≥ J(xk)

−1 (2.2.19)

where E denotes expectation operator.

A decent recursive formula for the calculation of PCRLB is developed in[86]

Jk = JX(xk) + JZ(xk) (2.2.20)

where JX(xk) and JZ(xk) are the prior knowledge and the information obtained from

measurements at time step k respectively.


JX(xk) = D22

k−1 −D21
k−1(Jk + D11

k−1)
−1D12

k−1

JZ(xk) = E{−∆xk
xk

ln p(zk|xk)}
(2.2.21)

where 
D11
k−1 = E{−∆

xk−1
xk−1 ln p(xk|xk−1}

D12
k−1 = E{−∆

xk−1
xk ln p(xk|xk−1} = (D21

k−1)
T

D22
k−1 = E{−∆xk

xk
ln p(xk|xk−1}

(2.2.22)
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The prior information is given by

JX(xk) = [Γk−1 + FkJ(xk−1)
−1FT

k−1]
−1 (2.2.23)

It is assumed that the measurements collected from different bistatic pairs are

independent, hence, the total measurement contribution is equal to the summation

of measurement contributions obtained by all bistatic pairs.

JZ(xk) =
N∑
n=1

JZn(xk) (2.2.24)

The measurement contribution obtained by a single bistatic pair is given by

JZn(xk) = E{q(Pn,q,k,Σq,k)H
T
q,kΣ

−1
q,kHq,k} (2.2.25)

where Hq,k = [∆xq,k
hTn (xq,k)]

T is the Jacobian matrix of the measurement function

hn(xq,k) with respect to the target state xq,k and E denotes expectation with respect to

the target state. The term q(Pn,q,k,Σq,k) is the information reduction factor (IRF)[58]

which modifies the information obtained from measurements due to MOU. The reader

is referred to [82, 25] for details about IRF.

This expected value in equation (2.2.25) can be calculated through Monte Carlo

techniques, but it will lead to extra computational costs. To maintain efficiency in

real-time applications, the measurement contribution can be approximated using the

Jacobian and measurement noise covariance evaluated at the prediction phase.

JZn(xk) = q(Pn,q,k,Σq,k)H
T
q,kΣ

−1
q,kHq,k

∣∣∣∣
xq
k|k−1

(2.2.26)
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where xqk|k−1 denotes the predicted state of the qth target at time step k. Substitut-

ing the prior information and measurement contributions into equation (2.2.20), the

predicted FIM is gotten as

J|xk
=[Γk−1 + FkJ(xk−1)

−1FT
k−1]

−1

+
N∑
n=1

[q(Pn,q,k,Σq,k)H
T
q,kΣ

−1
q,kHq,k]

∣∣∣∣
xq
k|k−1

(2.2.27)

Note the power allocation scheme changes the FIM through Σq,k and the path

planning variables change the FIM through Hq,k. The predictive PCRLB is defined

as the inverse of FIM:

CPCRLB = (J|xk
)−1 (2.2.28)

2.3 Optimization Formulation

At every time step k, decisions are made on the power allocation scheme of the

transmitter and the maneuver of each receiver, which is controlled by its heading

angle and speed. The decision variables are displayed as follows:


Pk = [P1,k, P2,k, ..., Pq,k]

T

Vk = [V1,k, V2,k, ..., Vn,k]
T

Θk = [θ1,k, θ2,k, ..., θn,k]
T

(2.3.1)

The PCRLB is used as a criterion to be minimized, hence the trace of PCRLB is

taken as a scalar metric.
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2.3.1 Objective

The diagonal elements of the PCRLB matrix are the lower bounds on the estimation

MSE of the target position and velocity. To minimize such lower bounds, the trace of

the PCRLB matrix is selected as the objective to minimize. The PCRLB is obtained

by taking the inverse of FIM.

min tr(J|xq,k
)−1 (2.3.2)

Since the information of all targets obtained from all bistatic pairs are indepen-

dent, the goal of the JPPPA optimization is to minimize the summation of the traces

of all PCRLB matrices, i.e., the summation of lower bounds on the estimation MSE

of all targets, which is given by

Uk(Pk,Vk,Θk) =

Q∑
q=1

tr(J|xq,k
)−1 (2.3.3)

In some works[92], only the position root-mean-square error (RMSE) is considered,

which is an alternative objective since the position RMSE is much larger than the

velocity RMSE. In that case, the objective function is defined as the summation of the

first and the third elements on the diagonal of the PCRLB matrix, which represent the

lower bounds on the estimation errors of position in x and y coordinates, respectively.

2.3.2 Constraints

1) Constraints on UAVs’ maneuverability: The UAVs are constrained by their kine-

matic capabilities. The path planning variables, which are heading angles and speeds,

have upper and lower limits, given by equation (2.2.11).
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A minimum and maximum speed of UAVs is also defined to maintain the UAVs’

speeds in a reasonable range if a UAV receives consecutive acceleration/deceleration

commands.

Vmin < Vn,k < Vmax (2.3.4)

where Vmin and Vmax are the minimum and maximum speeds.

2) Constraints on power budget: The summation of power allocated to all beams

must not exceed the total power budget, denoted as:

1TPk = Ptotal (2.3.5)

Each power radiation is constrained by a minimum value Pmin to ensure suffi-

cient signal intensity for detection, and a maximum value Pmax to ensure reasonable

allocation to other beams.

Pmin ≤ Pq,k ≤ Pmax (2.3.6)

Mathematically, a beam with very weak power radiation will make the correspond-

ing covariance of measurement noise in equation (2.2.15) close to singular. This will

be avoided by the power constraint.

Since the power radiations and speeds of UAVs are not direct decision variables,

constraints in equations (2.3.4) and (2.3.6) may be violated during the optimiza-

tion process. Penalty functions are defined to restrain these variables within their

constrained ranges.
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The penalty function for constraint in equation (2.3.4) is expressed as

F1(k) = U
N∑
n=1

[max (|Vmax − Vn,k|, 0)+

max (|Vmin − Vn,k|, 0)]

(2.3.7)

where U is a large positive constant.

Similarly, the penalty function for constraint in equation (2.3.6) is expressed as

F2(k) = U
Q∑
q=1

[max (|Pmax − Pq,k|, 0)+

max (|Pmin − Pq,k|, 0)]

(2.3.8)

2.3.3 Receding Horizon Control

Receding horizon control (RHC) frameworks are popular for the control of UAVs.

By extending a one-step optimization to a control sequence, these approaches of-

fer the potential of responding to a dynamic environment[20] with an increase in

computational cost. Since the UAVs are constrained by their kinematic capabilities,

the controlling decision made on UAVs at time step k (Vk,Θk) will affect the future

moves. Therefore, it is practical and technically useful to consider future steps instead

of performing only a greedy one-step optimization. The weighted sum of predicted

PCRLB in the next H steps is given below.

H∑
h=1

wk+hUk+h = WT
k Uk (2.3.9)

where Wk = [wk+1, wk+2, ..., wk+H ]T is the vector of weights on predicted worst-case

PCRLBs, also referred to as receding horizon decay factors.
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Remark 1: Since the hard constraints in equations (2.3.4) and (2.3.6) are trans-

formed into penalty functions and added to the objective function, it is possible that

these constraints might be violated due to the long-term multi-step planning of RHC.

This can be avoided by increasing the penalty factor F .

When the fitness value is being evaluated, the updated tracks from previous time

steps are required to predict the current states of targets, which are needed in the

predictive PCRLB. When planning for future steps in the RHC sequence, such up-

dated tracks will not be available. To handle this, predicted tracks from previous

time steps are used as if no valid measurements were obtained.

Remark 2: While RHC introduces extra computational load without being able

to significantly improve the optimization result, it is still meaningful to apply RHC

in this case as it is most suitable in obstacle avoidance[20] where the environment

is dynamic. Sending sequenced commands to UAVs is advantageous over contin-

uously sending one-step commands due to possible communication failure or other

unexpected situations.

2.3.4 Problem Formulation

By adding the weighted sum of PCRLB at all time steps in the RHC sequence with

the penalty functions, the objective function of the JPPPA optimization is obtained.

F(Pk,Vk,Θk) = WT
k Uk + F1 + F2 (2.3.10)

The optimization problem is summarized as
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min F(Pk,Vk,Θk)

s.t. 1TPk = Ptotal

Pmin ≤ P q
k,m ≤ Pmax

|Vn,k − Vn,k−1| ≤ amax

|θn,k − θn,k−1| ≤ θmax

Vmin < Vn,k < Vmax. (2.3.11)

2.4 Joint Path Planning and Power Allocation Strat-

egy

2.4.1 Solution Technique Based on Genetic Algorithm

In problem (2.3.11), the mappings from the decision variables to the objective are not

primary functions, making it hard to solve the problem with gradient-based methods.

Hence, a genetic algorithm (GA) with a custom operator was developed.

Genetic algorithm is an evolutionary searching technique inspired by natural se-

lection [64]. The parallel searches are called generations. The decision variables in

the solution space are represented as individuals (also referred to as chromosomes).

The basic idea of GA is to evaluate each individual’s fitness value and eliminate those

with low values. GA is capable of finding sub-optimal solutions quickly, but a global

optimum is not guaranteed. In the scenario where the receivers await their moving

commands at each time step, the decision variables must be determined online in a
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limited time and sent to receivers. Therefore, it is more desirable to quickly obtain a

sub-optimal solution than to spend extra time searching for the global optimum.

The individuals are structured as follows: for each time step, the first Q genes

represent the power radiations that are allocated to Q targets, and the rest of the

genes represent the path planning variables (speeds and heading angles). The same

structure repeats for every time step that is in the RHC sequence. The total length

of a single individual is H(Q+ 2N). The power radiations are random numbers from

0 to 1 that satisfy constraint in equation (2.3.5) when generated. For simplicity, the

speeds and heading angles are mapped to continuous values from 0 to 1. The mapping

functions are given by

V̄n,k =
Vn,k + amax

2amax
, θ̄n,k =

θn,k + θmax
2θmax

(2.4.1)

When evaluating the fitness value of an individual, these intermediate values are

converted back to real ones.

Remark 3: A proper encoding method is vital to the performance of GA. In this

work, real number encoding, where each decision variable is represented by one gene,

is adopted. Gray encoding is more suitable for local search because the randomness

introduced in crossover and mutation operations is smaller. However, its encoding

efficiency is low since a decision variable is represented by multiple binary genes.

Therefore, the computational cost is increased due to the large chromosome length.

Numerical experiments showed that gray encoding offered worse integral performance.

Individuals are evaluated and updated through the selection operation, where the

traits of two parent chromosomes are exchanged to breed new offspring. Those with

high fitness values are more likely to be selected and copied to the next generation,
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while those with low fitness values will be eliminated. Roulette wheel and tourna-

ment schemes are the most used strategies for selection [64, 56]. To protect the elite

individuals, a binary tournament selection is adopted in this paper.

The information of the population is shared and exchanged in the crossover op-

eration where a random locus is selected, and then the genes before and after that

locus are exchanged between two chromosomes.

To maintain the diversity of the population, a mutation operation is performed.

Each gene has a small probability Pm to mutate. Binary variables are flipped, and

continuous variables are replaced by a random value. In this case, where all the genes

are continuous variables, they will mutate to a random value between 0 and 1.

In the crossover and mutation operations, the power constraint in equation (2.3.5)

may be violated, hence, a repair operation is provided to rectify infeasible individuals.

If the summation of power radiations is not equal to 1, the whole power scheme will

be scaled so that the power constraint is met.

Elitism is adopted to protect highly fitted individuals. A few individuals with high

fitness values are preserved after the selection operation and are directly copied to

the next generation without participating in the crossover and mutation operations.

Elitism prevents the loss of top-ranked individuals and preserves fitted genes, which

might improve the performance of the algorithm[1]. The population keeps evolving

until some termination conditions are met, e.g., the maximum number of iterations

is reached, or there is no improvement found in the population for a certain number

of generations.

From the second step, the JPPPA decision is based on the previous RHC sequence,
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and it will become available under the RHC framework. The previously obtained de-

cision will be referred to as a prior. Since the prior was already a near-optimal solu-

tion, taking advantage of it will significantly improve the structure of the population

and reduce the computational cost. Based on the prior information, a pre-selection

operator that will replace the normal population generation is developed.

The pre-selection operation includes the following steps:

1) Generate the elite individual: Generate random sets of genes that represent the

decision variables at the last time step in the current RHC sequence (where there is

no prior available). Combine the random genes with the prior information to generate

new individuals. Find the fittest one among those individuals and preserve it as an

elite.

2) Generate population: Randomly generate individuals and put them together

with the elite to establish a population.

3) Small-scale crossover: Choose the elite individual as a parent and crossover

with other individuals.

4) Small-scale mutation: Mutate the elite individual. In this phase, genes to be

mutated are not replaced by a random value, but an increment that satisfies a zero-

mean Gaussian distribution will be added. i.e., the mutated individuals are more

likely to be around the elite in the solution space.

5) Repair and replace: Repair the individuals generated from previous crossover

and mutation. Use them to replace random individuals.

By essentially changing the structure of the population, the pre-selection operator

achieves the aim of providing guidance to the randomly generated population and

searching the space around the prior information. This operation is equivalent to
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giving more weight to the prior information and can be seen as an extra generation

of evolution. Note that the pre-selection is performed only once at each time step.

Limited time is spent to crossover and mutate the elite individual that could breed

better offspring. To preserve the population’s diversity that may be reduced by the

pre-selection operation, only a limited portion of individuals will be replaced.

Figure 2.2: Flow chart of the modified genetic algorithm with custom pre-selection
operator
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2.4.2 Multiple Target Tracking

It is assumed that the targets are widely separated in the surveillance area. Therefore,

after the decisions are made by the JPPPA strategy, the multitarget tracking problem

becomes several single target tracking problems that can be handled independently.

In this work, the measurements in equation (2.2.13) are highly nonlinear, hence

a particle filter (PF), which has a strong potential when dealing with nonlinear mea-

surements [5], is an ideal choice.

The particle filter is a Monte Carlo technique that represents the density p(xk|zk)

as a random set of samples (particles) {xpk : p = 1, ..., P} with corresponding weights

{wpk : p = 1, ..., P}. At each time step, particles are generated by sampling from the

prior. Then, they are predicted and updated under the Bayesian filtering framework.

The weight of each particle is updated correspondingly after measurements are col-

lected. Finally, resampling is performed to eliminate particles with low weights. In

this paper, a Sampling Importance Resampling (SIR) is used as the resampling strat-

egy. A brief summary of SIR-PF is given in Algorithm 1. Note that other nonlinear

filters can also be used, for example, the extended Kalman filter (EKF)[8].

The entire signal processing framework that incorporates a JPPPA optimization

module and a particle filter is structured as follows. First, the estimated state of each

target is obtained by PF. Then, based on the estimated tracks, the predictive PCRLB

is evaluated by JPPPA, and optimal resource management deployment is obtained.

Finally, the resource management decisions are sent back to the transmitter and

receivers to guide their behaviors in the next few steps.
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Algorithm 1 Multi-target Tracking with JPPPA

1: Let k = 1; assume initial JPPPA decisions; assume initial density p(xk−1)
2: Sample Np particles from the prior p(xk|k−1) and define corresponding weights.
3: for each q ∈ [1, Q] do
4: Obtain measurements in the environment that are determined by the JPPPA

decisions.
5: Update particles’ weight based on the posterior p(xk|zk).
6: Resample with SIR strategy and perform weight normalization.
7: Calculate the estimation based on particles and weights.
8: end for
9: Formulate the JPPPA optimization problem (2.3.11) and solve it with the pro-

posed GA.
10: Let k = k + 1, and go to step 3.

2.4.3 Analysis of Computational Complexity

The computational complexity of GA depends on the size of individuals, the popula-

tion size, and the number of generations, while the size of individuals is determined by

the size of the problem, i.e., the number of transmitters, receivers and targets, and the

length of the RHC sequence. The complexity is on the order of O(gpL(MQ+ 2N)),

where g is the number of generations, p is the population size and L is the length of

the RHC sequence. The size of the problem increases the complexity by the order of

3 at most. The complexity arises from the enlarged size of individuals. Note that in

this paper, the number of transmitters M = 1.

However, the complexity given above is the maximum one where the generation

of the population reaches its maximum limit. The population will quit evolving if no

improvement is found for a certain value of generations. Therefore, the performance of

GA cannot be evaluated simply by its complexity. The custom pre-selection operator,

which improves the distribution of individuals, can make the population converge

faster, although it does not change the maximum complexity. The evaluation of the
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pre-selection operator is presented in the next section.

2.5 Simulation Result and Discussion

A multistatic radar with one transmitter and N = 5 movable receivers is considered.

The area is surveilled for 30 frames with the time interval ∆T = 1s. The signal

effective bandwidth and effective time duration are set to βn = 1 MHz and Tn = 1

ms, respectively. The carrier wavelength λ = 0.2 m and the detection probability

Pn,q,k is modeled as a function of bistatic range[74]. The lower and upper bounds

for power constraints are Pmin = 0.1Ptotal and Pmax = 0.8Ptotal, respectively. The

maximum linear and angular accelerations per frame are set to amax = 300 m/s2

and θmax = 15◦/s, respectively. The lower and upper bounds for UAVs’ speed are

Vmin = 200 m/s and Vmax = 400 m/s. Q = 5 targets are widely separated in the

surveillance region with κ = 50m2/s3 for all targets. The initial states of targets

and receivers are given respectively in Table 2.1 and Table 2.2. The transmitter is

located at the origin. Fig.2.3. illustrates the trajectories of targets and the initial

radar deployment.

Table 2.1: Initial Target States

Target Index Position (km) Velocity (m/s)

1 (40,45) (-200,-250)
2 (-50,35) (300,0)
3 (-45,-40) (100,250)
4 (35,-30) (-150,200)
5 (0,-55) (250,50)

It is assumed that the probability of detection decreases with the bistatic range,

shown in Fig.2.4.
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Table 2.2: Initial Receiver States

Receiver Index Position (km) Speed (m/s) Heading Angle (◦)

1 (20,20) 300 90
2 (-25,15) 300 120
3 (-5,-20) 300 270
4 (55,5) 300 120
5 (-55,-5) 300 240

The population of GA is 101. The probabilities of crossover and mutation are set

to Pc = 0.6 and Pm = 0.1 respectively. The maximum generation is 30. The GA

terminates when the maximum generation is reached or when there is no improvement

in the population for five generations. All the results are averaged over 100 Monte

Carlo runs.

2.5.1 Demonstration of the JPPPA Strategy

The JPPPA strategy is compared to a two-step algorithm that incorporates typical

algorithms in path planning[26] and power allocation[95], respectively.

In the first step, it is assumed that the power scheme remains the same as the

last time step. Then, the solution space is discretized, and a dynamic programming

(DP) is used to find the optimal path planning decisions. Due to the high complexity

of DP, the searching technique proposed in [26] is used. Note that DP is applied in

dynamic environments under the RHC framework, it reduces to a greedy search if the

problem is a one-step planning.

After the optimal sensor deployment is obtained, the succeeding power allocation

problem is convex[10] and thus can be solved with basic optimization techniques. In

this simulation, a pattern search technique[42] is used to find the optimal solution.
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Figure 2.3: Target trajectories and initial radar deployment

Pattern search searches the solution space in pre-defined directions. Since it is not

required to determine the gradient or the step length, pattern search is suitable in

this scenario. This two-step algorithm is referred to as dynamic programming-linear

search (DP-LS).

Remark 4: Since the power allocation problem with a fixed receiver deployment is

convex, it can be solved easily, e.g., with the CVX toolbox, and no advanced algorithm

is required. The gradient projection (GP) used in [95] is a favorable solution due to

the existence of equality constraints. However, in the proposed scenario, the gradient

is hard to determine due to the large scale of the problem. Several similar works

[92, 47] have made contributions to transforming or relaxing their original problems

into convex ones that are easy to solve. This approach, however, is infeasible in our
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Figure 2.4: Detection probability with respect to bistatic range

scenario due to the complexity of the objective function introduced by sensor mobility.

The proposed JPPPA strategy is also compared with the following strategies:

1) One-step JPPPA (1-JPPPA): The same algorithm is adopted, except that RHC

is not considered. At each time step, the solver only seeks the decision variables for

the next frame without considering the future.

2) Uniform Power Allocation (UPA): By assuming the power is uniformly allo-

cated to all targets, the joint optimization degrades into a pure path planning, which

is also nonconvex.

Fig.2.5 displays the real PCRLB values after the optimization result is obtained.

Concerning resource management strategies, the UPA strategy demonstrates a higher

PCRLB than JPPPA because power allocation, as an important issue to address in
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Figure 2.5: Optimized PCRLB results of different algorithms

any resource-aware system, is ignored. The inefficient utilization of power resources

causes the unsatisfactory performance of the radar system. With respect to algo-

rithms, GA-based JPPPA offers better performance than dynamic programming be-

cause of the following: first, DP-LS is a two-step algorithm where path planning and

power allocation are considered separately, so the result obtained by path planning

may not remain optimal when power allocation is considered. Second, the dynamic

programming based on space discretization may be inaccurate due to the nonconvex-

ity of the objective function.

It is important to note that 1-JPPPA and JPPPA have similar performance, and 1-

JPPPA achieves slightly better results than JPPPA. The explanations for the slightly

better results are: First, under the RHC framework, with the chromosomes becoming
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RMSEk =
1

NMC

√√√√NMC∑
j=1

[(
xq,k − x̂jq,k

)2
+
(
yq,k − ŷjq,k

)2]
(2.5.1)

longer and more complex, it is generally more difficult for the JPPPA strategy to

find the optimal combination of genes. Second, the performance of RHC used in the

JPPPA depends not only on the trackers but also on the accuracy of the state model.

When the solver makes decisions on future steps in the RHC sequence, future states

are predicted with the current predicted state using the state model. Therefore, the

errors introduced by the state model will be accumulated in RHC, which may cause

the solver to make inaccurate decisions on future steps. Since future steps and the

current step are constrained, some sacrifice on the performance in the current step

may be made to compensate for future steps. However, this does not indicate that the

1-JPPPA is a better strategy than the long-term JPPPA under the RHC framework.

As previously stated in Section IV, RHC provides the system with time to deal with a

dynamic environment, which is more meaningful in practice. More discussions about

RHC and our proposed custom pre-selection operator will be provided in the following

subsections.

2.5.2 Performance of the Multitarget Tracker

A SIR particle filter with Np = 500 particles is used in the system. The root mean

squared error (RMSE) of the position is used to evaluate its performance.

Fig.2.6 presents the position RMSE of target 1 with the four resource management

strategies. Table 2.3 gives the position RMSE of all targets in the last surveillance
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epoch.

Figure 2.6: Comparison of position MSE of Target 1 between different resource
management strategies

Fig.2.6 shows that trackers achieve better tracking performance in environments

where the targets have lower PCRLB. The result of the JPPPA optimization is nearly

consistent with the tracking accuracy. The lower PCRLB the target has in the envi-

ronment, the better performance the trackers will achieve. The proposed algorithm

outperforms the DP-LS algorithm, which handles the joint optimization in a decou-

pled manner. Fig.2.6 shows that when the filter starts to converge, the estimation er-

ror approaches the PCRLB value, which verifies the previous statement that PCRLB
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is a good choice for objective functions in optimization problems that are related to

tracking.

Remark 5: The true PCRLB depends only on the estimator and is irrelevant to

the trackers employed. However, the predictive PCRLB evaluated by the solver, as

approximated in equation (2.2.27), is dependent on the targets’ predicted states, thus

it is affected by the performance of the tracker. Therefore, the choice of trackers will

in return affect the JPPPA solver. It is reasonable to use trackers that offer better

nonlinear tracking performances, such as unscented Kalman filter (UKF) or PF that

is adopted in this work.

Table 2.3: Comparison of Position PCRLB between Different Resource Management
Strategies

Strategy
PCRLB (m)

Target 1 Target 2 Target 3 Target 4 Target 5

1-JPPPA 305.4 461.6 489.1 317.2 563.2
JPPPA 318.1 471.2 478.3 388.6 621.1
DP-LS 481.5 492.7 488.7 547.0 794.7
UPA 497.9 492.3 477.7 553.8 822.6

Table 2.4: Comparison of Position RMSE between Different Resource Management
Strategies

Strategy
RMSE (m)

Target 1 Target 2 Target 3 Target 4 Target 5

1-JPPPA 354.2 546.1 538.6 436.2 912.6
JPPPA 446.7 538.1 472.2 489.4 870.9
DP-LS 559.3 876.6 666.9 797.7 1248.6
UPA 604.0 598.4 592.1 654.8 1472.3
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2.5.3 Evaluation of the Custom Pre-selection Operator

In this subsection, three simulations are conducted to evaluate the performance of

the pre-selection operator. Simulations I and II are identical to the previous simu-

lations on 1-JPPPA and JPPPA, respectively. In the population generated by the

pre-selection operator, 10% of individuals are offsprings of the elite and another ran-

dom individual; 10% of the individuals are mutated from the elite. Note that the

mutation in the pre-selection operator is different from the normal mutation. In

simulation III, the pre-selection operator is not used, and the initial population at

each time step is generated randomly. All simulations are conducted using MATLAB

R2019a on a laptop with a Core™ i5 2.6 GHz CPU and 8 GB RAM.

Figure 2.7: Comparison between algorithms with and without the pre-selection
operator
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Table 2.5: Comparison of Speed between Different Algorithms

Simulation Generations Time per Frame (s) Total Time (s)

I 24.28 1.451 60.85
II 15.74 2.732 95.64
III 22.19 3.827 131.40

The true PCRLB values calculated with the optimization results that are obtained

by three algorithms are presented in Fig.2.7. The three algorithms have similar

performance. Table 2.5 demonstrates the speed of three algorithms. The average

number of generations when the GA terminates is recorded in column 2. Columns

3 and 4 give the average processing time of one frame and of the whole surveillance

period, respectively. Note that the particle filter requires a certain amount of time

due to a large number of particles.

It can be seen in Table 2.5 that Simulation II takes less time while it achieves

nearly the same result as Simulation III in Fig.2.7, which verifies the efficiency of the

proposed pre-selection operator under the RHC framework. The population spends

fewer generations evolving due to the existence of the prior information. From Table

2.5, it can be seen that Simulation II takes about one second less to make decisions

at each epoch compared to Simulation III, which is vital in practice. Moreover, in a

radar system that adopts RHC, the receivers will get commands on speed and heading

angle in future steps, which makes the system less vulnerable to emergency situations

such as communication failure.

Note that the average generation in Simulation III is less than in Simulation I,

which means the solver terminates in Simulation I when the maximum generation

is reached, while in Simulation III, no improvement can be found in the past five

generations. It can be inferred that the solver in Simulation III is stuck at a local
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minimum, and the crossover and mutation operators cannot get it out of the local

minimum. This is consistent with the previous statement that it is more difficult

to find the best combination of genes when chromosomes become longer. Further

research can be done on the modification of crossover and mutation operators to

reduce the probability of the solver being stuck in the local minimum.

GA is characterized as an unguided heuristic algorithm, which is both an advan-

tage and a disadvantage. GA is advantageous because the user does not need to know

how the population evolves, only discarding unfitted individuals is required. On the

other hand, it also causes inefficiency when the algorithm starts to converge since

improvement is generally achieved by randomness.

With the pre-selection operator, a small proportion of individuals are more likely

to be generated around the prior information, and the solver is more likely to search for

candidates in that area. As previously stated in Section IV, the pre-selection operator

is similar to giving more weight to an individual in a particle swarm optimization

(PSO), i.e., advantages of PSO are incorporated into the solver through the custom

pre-selection operator. When applying GA, there might exist useful information

to provide guidance for the evolution of the population, depending on the specific

problem formulation. Modifying the algorithm by making use of such information

will improve the performance.

2.5.4 Factors that Affect JPPPA Results

To demonstrate other factors that affect the JPPPA result, another set of simulations

is presented in this subsection. The simulations are conducted to reveal the effect of

target RCS and bistatic ranges on the JPPPA optimization results. To enhance the
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effect of these factors, the simulation case is simplified by removing target 5, receiver

4, and receiver 5. The original target state and sensor deployment are displayed in

Table 2.1 and Table 2.2, respectively.

Two different RCS models H1 and H2 are provided. In H1, all targets’ RCS are

modeled by the Swerling I model, i.e., the RCS is a random number that satisfies a

chi-squared distribution with two degrees of freedom but remains constant over the

measurement scan. In H2, the RCS model of targets 3, and 4 remain unchanged,

while targets 1 and 2 are assumed to have larger RCS. Fig.2.8 shows the RCS of all

targets in this scenario.

Figure 2.8: RCS of different targets in scenario H2

There are also two different transmitter locations, Tx1 : (0, 0) and Tx2 : (40, 10)

available. In case Tx1, all targets have similar overall bistatic ranges with respect
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to all bistatic pairs while in Tx2, with the transmitter located in the first quadrant,

some targets will have significantly increased bistatic ranges, as shown in Fig.2.9.

Figure 2.9: Different transmitter locations Tx1 and Tx2

Simulations are conducted on three different scenarios:

(1) case 1: H1 and Tx1;

(2) case 2: H2 and Tx1;

(3) case 3: H1 and Tx2.

The power allocation results are presented in Fig.2.10. It can be intuitively seen

that in case 1, targets 1 and 2 are allocated with more power while in case 2, with

their RCS becoming larger, they are allocated with less power. The power radiation

values at time step 30 are given in Table 2.6. It can be concluded that the transmitter

tends to illuminate the target with relatively low RCS.
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Figure 2.10: Power allocation result of 3 cases

Table 2.6: Comparison of the Power Allocated in Case 1 and 2

Target Index
Case 1 Case 2

RCS (m2) Power Allocated RCS (m2) Power Allocated

1 2.11 0.2641 8.71 0.2438
2 1.58 0.3045 7.74 0.2652
3 1.71 0.2280 2.06 0.2587
4 2.19 0.2034 1.60 0.2323

Table 2.7: Power Allocation Result and Bistatic Range

Target Index
Bistatic Range (km)

Power Allocated
R1 R2 R3

1 98.34 138.32 145.89 0.2641
2 131.35 91.52 131.16 0.3045
3 141.40 111.31 97.33 0.2280
4 99.19 122.02 87.91 0.2034
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From the result of case 3 shown in Fig.2.10, it can easily be seen that after the

transmitter is moved from the origin to (40,10), there is a significant increase in the

power radiation that is allocated to track target 3, which is located in the third quad-

rant and thus has the largest overall bistatic ranges. Meanwhile, target 1 located in

the first quadrant, since it’s closer to the transmitter, is now assigned with less power.

Table 2.7 gives the power allocation result and the bistatic ranges with respect to three

receivers at time step 30. Although the exact mathematical relationship between the

bistatic range and the allocated power is hard to determine with the simulation re-

sults presented since the system is configured with more than one receiver, it can

be concluded that the transmitter tends to assign more power to targets with large

bistatic ranges under the objective of optimizing overall tracking performance.

Remark 6: When tracking multiple targets, the transmitter will allocate more

power to illuminate targets with low SNR (small RCS, large bistatic range, etc.).

Therefore, the tracking performance of targets with high SNR will be degraded. Such

compromise may not be a wise resource management strategy if these factors that

affect the optimization result have a significant difference among targets. For example,

if target 1 and target 2 have a RCS of 1 unit and 100 units, respectively, and other

parameters are identical, the transmitter would allocate 100 units of power to target

1 and 1 unit to target 2, which might waste limited resources on targets that are

already hard enough to track. However, in a multistatic radar system with multiple

transmitters, a clever approach for a transmitter is to discard such targets and let

other transmitters with better bistatic geometries illuminate them. These problems

are addressed in the literature as beam selection[95], base station selection[78], etc.

Future research will investigate multistatic radar systems with multiple transmitters.
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2.6 Conclusion

In this paper, a JPPPA strategy for multitarget tracking in a multistatic radar system

was proposed. The radar adopts a multibeam mode that tracks multiple targets

simultaneously, and the receivers are mounted on UAVs whose trajectories are to

be optimized for better tracking performance. The basis of the proposed strategy is

the cooperative receding horizon control of both power allocation patterns and UAV

trajectories based on PCRLB. The formulated problem is a three-variable nonconvex

problem, and a modified GA with a custom pre-selection operator was proposed to

solve the problem. It was shown that our method does not depend on the convexity of

the objective function, and can be applied to more complicated scenarios. Numerical

simulations were performed to demonstrate the effectiveness of the proposed JPPPA

strategy and its advantage over methods that consider path planning and power

allocation, respectively.

This work can be extended by considering the following issues. First, the JPPPA

problem can be tackled jointly with beamforming, beam selection, and radar mode

selection in more complex radar configurations. Second, the number of targets is

assumed to be known and fixed in this work. Future research will explore scenarios

where the number of targets is unknown by applying optimal resource management

strategies to tracking problems based on a random finite set (RFS).
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Chapter 3

Adaptive Beam Scheduling for

Cooperative Phased Array Radars

with High-Precision Pencil-Beam

3.1 Introduction

3.1.1 Background and Motivation

Recent advancement in phased array technology enables the control and adaptation

of a radar’s beam instantaneously [19, 87, 59]. The use of phased array antennas or

electronically steered antennas (ESA) has enhanced the flexibility and effectiveness

of radars by allowing them to swiftly switch tasks when necessary. These advan-

tages of phased array radars provide them with the capability to carry out multiple

functions simultaneously, which typically include surveillance, tracking, and weapon

engagement. This, however, leads to issues with radar resource management.
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The problem of resource management[15, 51, 62, 82, 27, 66] arises when a radar

does not have sufficient resources to handle all tasks. An effective resource manage-

ment algorithm is required to properly allocate limited radar resources to different

tasks and to maintain the tracking error under a certain threshold. The three major

resources in a radar system are time, power, and processing budget. Time is the

most constraining resource that determines whether a task or function should be ex-

ecuted or delayed. Correspondingly, several typical resource management problems

involve time allocation, such as task prioritization[43] and sensor scheduling[53]. The

performance of a certain task is dependent on the power allocated to it, thus power

allocation problems arise to maximize the overall performance by efficiently allocat-

ing limited power to all tasks [71, 94]. The processing budget is consumed by signal

processing operations such as confirming or updating tracks, and it is limited by the

capacity of computer processors[81]. These issues often appear as constraints (e.g.,

battery life) in resource management problems. In a more generalized sense, certain

radar parameters that affect radar performances such as waveform or bandwidth, are

also considered as special resources and need to be optimized during task execution.

Considerable efforts have been dedicated to investigating waveform design[39], band-

width allocation[60], and tracking update scheduling[29], in terms of radar resource

management.

Due to the broad definition of resource management problems, detailed mathe-

matical modeling varies. Generally, radar resource management is treated either as

an optimization problem with a predefined criterion or an objective function with

several operational constraints. One typical criterion for resource management prob-

lems is quality of service (QoS)[21]. QoS-based radar allocation model (Q-RAM)
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algorithms are defined to optimize the radar system and maintain an acceptable level

of QoS. Q-RAM allows multiple QoS requirements such as timeliness, cryptography,

and reliable data delivery to be addressed and traded off against each other. In [33],

Q-RAM for single and multiple resource types was comprehensively studied and a

gradient projection algorithm was developed.

Solution techniques for resource management optimization can be categorized into

AI approaches and non-AI approaches[15]. A recent research[69] proposed a ma-

chine learning-based branch-and-bound (B&B) method to solve the non-deterministic

polynomial-time hard (NP-hard) problem while maintaining a modest computational

cost. In [34], a neural network approach was adopted to solve the time schedul-

ing problem of transmitting and receiving pulses. In [50, 49], a fuzzy logic method

was developed to determine the priority of tasks, and thereafter allocate power to

them. Rule-based heuristic searches, such as genetic algorithm (GA)[98] or particle

swarm optimization (PSO)[100] are also in this category. Non-AI approaches include

dynamic programming [79, 12, 88] and convex optimization techniques [10, 45, 96].

Due to the complexity of radar models, either the objectives or the constraints are

significantly nonlinear. Therefore, it’s hard to model or solve radar resource manage-

ment problems from the view of pure mathematical optimization. Usually, different

techniques are combined into the solution. [68] incorporated a graph theory-based

approach with simulated annealing (SA).

Another radar resource management constraint is beam scheduling, where the

radar beams are scheduled to determine the steering direction and operation time to

perform certain tasks. Additionally, power allocated to each beam and beam parame-

ters, e.g., beamwidth, may also be considered as variables to be optimized. Recently,
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a task scheduling problem has been studied in [98] and a hybrid adaptively genetic

algorithm utilizing chaotic sequence was proposed that outperforms both adaptive

GA and high priority and earliest deadline first (HPEDF) algorithm.

Radars have flexible beam generation modes to satisfy different requirements.

They can generate pencil beams with narrow beamwidth to provide measurements

with high angle resolution which are preferred in high-precision tracking, and also

fan-beams with wide beamwidth to search for potential targets. Fig 3.1 shows the

different types of beams that can be generated by PAR. Recent works have studied

resource management problems in multi-functional radars[49, 96, 68]. [96] provides

a good trend of compound resource management problems by jointly considering

tracking and detecting missions and formulating a bi-objective problem. Existing

works don’t make special assumptions on the size of beams. It is often assumed a

beam can cover the whole area of interest once a mission is assigned to it. In fact, a

beam can be generated to be extremely thin for accurate tracking and the saving of

energy.

In the literature, it is assumed that the radar’s scan resolution cell size is large

enough to cover the potential location of the targets[25, 8, 96]. Hence, the beam

steering problem coincides with the task scheduling problem where steering a beam

to point at a certain target is equivalent to assigning the beam to that tracking task.

However, for tracking highly maneuvering targets with pencil-beams, the previously

stated assumption may not hold and it is not guaranteed that the target can be de-

tected within one scan due to the small coverage size of the pencil-beams. Thus, our

interest is to develop an adaptive scheduling algorithm for pencil-beams to make best
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Figure 3.1: Illustration of Pencil-beam and Fan-beam PAR beam modes
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use of limited resources and produce the best tracking performance. At each schedul-

ing interval, the scheduler controls the radar’s beams and uses the measurement data

to maximize tracking performance. Searching functions can be fulfilled using the gap

time[38].

Existing research on beam scheduling in terms of resource management mainly

focuses on normal-size beams to increase tracking accuracy, but pencil-beams are

barely considered. In practice, however, the adoption of pencil-beams is necessary

when high-resolution tracking is required. Furthermore, launching narrow beams is an

effective and efficient method of resource allocation since it concentrates the power for

beam generation. Pencil beams have great prospects in large-volume surveillance and

highly maneuvering target tracking applications, hence the pencil beam scheduling

problem needs to be addressed. Our work models the tracking problem and the beam

scheduling optimization, with the objective of more tracking accuracy.

The Posterior Cramér-Rao lower bound (PCRLB), given by the inverse of the

Fisher Information Matrix, provides a lower achievable minimum estimation of the

mean squared error (MSE) for any unbiased estimator[86]. [57] states that the estima-

tion error asymptotically approaches the PCRLB in areas with a high signal-to-noise

ratio (SNR) if the measurement noise is Gaussian. Hence, PCRLB is often used as a

criterion to minimize[94, 96, 82, 62]. However, In the case of high-accuracy tracking

with pencil-beams, partial observations occur due to the small width of the beams. In

these scenarios, PCRLB cannot accurately give the accuracy of the estimator. Fur-

thermore, PCRLB cannot be obtained analytically[86]. In our paper, we propose a

new concept of expected PCRLB (EPCRLB) that uses the Monte Carlo technique to

handle the issue of partial observations.
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3.1.2 Main Contributions

In this paper, the problem of pencil-beam scheduling for cooperative phased array

radars is addressed. All radar nodes in the system work in a cooperative fashion shar-

ing measured data and making decisions on beam control. The information exchange

among radar nodes will be realized via wireless communication.

This paper makes the following contributions:

1) The pencil-beam scheduling problem is addressed and formulated as an opti-

mization problem. Pencil beams are suitable for high-accuracy tracking with the cost

of moderate energy consumption. However, they cannot cover the entire area of in-

terest and lead to partial observations in tracking missions. This paper addresses this

novel problem of tracking with pencil-beams and formulated a corresponding beam

scheduling problem as to where to steer the beams to obtain better tracking accuracy.

2) The concept of expected posterior Cramér-Rao lower bound (EPCRLB) is pro-

posed and utilized as the criterion to minimize. The PCRLB, which gives an achiev-

able lower bound for any unbiased estimator, is utilized as the metric that needs

to be optimized. However, due to partial observations obtained by pencil-beams,

PCRLB cannot be obtained analytically. Hence, we propose a new concept of ex-

pected PCRLB that applies the idea of the Monte Carlo trial. EPCRLB is also used

as a criterion to guide real-time optimization. Our results show that it offers superior

performance over those strategies that don’t involve the concept of EPCRLB.

3) An alternative linear wipe solution is proposed. A target-driven solution that

utilizes a linear wipe strategy is proposed. It has less computational complexity and

is shown to be effective while the maneuvering level of targets is low.

4) An ABS-based framework for multitarget tracking is developed. An interacting
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multiple model (IMM) algorithm is employed to handle maneuvering target tracking.

The nonlinear filtering is dealt with by a local unscented Kalman filter (UKF). A

closed-loop signal processing framework based on adaptive beam scheduling (ABS) is

established for the radar system. Details of the framework are illustrated in Fig.3.2.

Figure 3.2: ABS-based multitarget tracking framework in a cooperative radar
system

5) A starter of hybrid beam scheduling in PAR systems is given through this paper.

PARs launch different types of beams to perform different tasks. This work provides

a perspective on hybrid beam scheduling and resource allocation research in PARs.

It’s promising to extend our work by considering target detection applications with

fan-beams.

The remainder of the paper is organized as follows. Section II describes the prob-

lem and introduces preliminary knowledge. Problems formulations and corresponding

solution techniques are presented in Section III. Numerical simulations are demon-

strated in Section IV and conclusions are given in Section V.
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3.2 Problem Description

For simplicity, a 2-D surveillance area is assumed where a radar system with N

cooperative phased array radar nodes is deployed. The position of the nth node is

denoted by (xn, yn). There are Q airborne targets to be tracked. The qth target is

initially located at (xq,1, yq,1) with an initial velocity (ẋq,1, ẏq,1). At time step k, the

qth target is located at (xq,k, yq,k) with velocity (ẋq,k, ẏq,k).

The assumptions used to define the problem are as follows:

1. The radars can provide a pencil-beam mode for high-accuracy target track-

ing. Such pencil-beam cannot cover the entire confidence region of the target

location.

2. Each radar can only launch a single beam for target tracking.

3. The number of radar nodes N is less than the number of targets Q, i.e., there

will always be targets that are not illuminated by any radar in each time step.

4. The radars can switch the direction of their beams instantaneously.

5. The number of targets is known and remains constant. All tracks are already

confirmed.

3.2.1 Target Dynamics

Let xkq = [xq,k, ẋq,k, yq,k, ẏq,k]
T denote the state vector of the qth target, where [xq,k, yq,k]

and [ẋq,k, ẏq,k] denote the position and velocity of the target respectively.
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The state space model that describes the qth target’s motion is given by

xq,k+1 = Fkxq,k + wq,k (3.2.1)

Fk denotes the state transition matrix, and wq,k is the process noise that describes the

inaccuracy of the motion model. It is assumed to be zero-mean Gaussian distributed

with a known covariance Γk.

Γk = κI2 ⊗

1
3
T 3 1

2
T 2

1
2
T 2 T

 (3.2.2)

where κ is the intensity of process noise. In this paper, two target dynamic models are

considered which are constant velocity (CV) and constant turn (CT) with a known

turn rate.

For the CV model, the transition matrix is given by

Fk = I2 ⊗

1 T

0 1

 (3.2.3)

where ⊗ is the Kronecker operator, and I2 denotes the 2× 2 identity matrix.

For the CT model, the transition matrix is given by

Fk =



1 sinωT
ω

0 −1−cosωT
ω

0 cosωT 0 − sinωT

0 1−cosωT
ω

1 sinωT
ω

0 sinωT 0 cosωT


(3.2.4)
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3.2.2 Measurement Model

A binary variable okm,n,q is defined to indicate whether the qth target is illuminated

by the mth scan of the nth radar node at time step k. Failure to illuminate a certain

target may be caused by task assignment schemes (as previously mentioned, there are

always targets that are not tracked) or missed detection due to partial observation.

The measurement is given by:

zn,q,k =


hn(xq,k) + wn,q,k if on,q,k = 1

0 if on,q,k = 0

(3.2.5)

where zn,q,k is the measurement of target q at time step k that is obtained by the nth

radar, hn is the nonlinear observation function. Generally the measurements include

range Rn,q,k and bearing θn,q,k:

hn(xq,k) = [Rn,q,k, θn,q,k]
T (3.2.6)

which are given by:


Rn,q,k =

√
(xn,q,k − xn,k)2 + (yn,q,k − yn,k)2

θn,q,k = arctan (
yn,q,k−yn,k

xn,q,k−xn,k
)

(3.2.7)

vn,q,k is the measurement noise, which is assumed to be a zero-mean Gaussian random

variable with covariance Σn,q,k.

Σn,q,k = diag
(
σ2
Rn,q,k

, σ2
θn,q,k

)
(3.2.8)

In practical scenarios, the probability of detection Pd of each target is always less
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than unity due to imperfect interference. Besides, there exist false alarms over the

surveillance area due to inevitable clutters. They are assumed to be a zero-mean

Gaussian random variable uniformly distributed in the measurement space (within

the observation volume V ) with their number being a Poisson-distributed variable,

given by

p(nfa) =
e−λV (λV )nfa

nfa!
(3.2.9)

where nfa is the number of false alarms, λ is the spatial density, i.e., the average

number of false alarms at each frame.

3.2.3 PCRLB and EPCRLB

The Cramér-Rao lower bound (CRLB), given by the inverse of the Fisher information

matrix (FIM), provides a lower bound of the error covariance matrix of any unbiased

estimator for a certain parameter. The Posterior Cramér-Rao lower bound (PCRLB)

gives a measure of the achievable accuracy for dynamic state estimation. Since the

PCRLB is irrelevant to the tracker, it is often adopted as a criterion to minimize

resource management problems. Let x̂k be an unbiased estimate of xk based on the

measurement zk, Ck be the error covariance matrix, and J(xk) be the FIM, then

Ck = E[(x̂k − xk)(x̂k − xk)
T ] ≥ J(xk)

−1 (3.2.10)

where E denotes expectation operator.
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The FIM can be calculated with the following recursion[86]:

Jk = JX(xk) + JZ(xk) (3.2.11)

JX(xk) and JZ(xk) are referred to as the prior knowledge and the measurement

contribution at time step k respectively.


JX(xk) = D22

k−1 −D21
k−1(Jk + D11

k−1)
−1D12

k−1

JZ(xk) = E{−∆xk
xk

ln p(zk|xk)}
(3.2.12)

where 
D11
k−1 = E{−∆

xk−1
xk−1 ln p(xk|xk−1)}

D12
k−1 = E{−∆

xk−1
xk ln p(xk|xk−1)} = (D21

k−1)
T

D22
k−1 = E{−∆xk

xk
ln p(xk|xk−1)}

(3.2.13)

and ∆y
x is the second-order partial derivative operator, given by

∆y
x =

∂2

∂x∂y
(3.2.14)

and x, y are vectors.

The prior information JX(xk) is the knowledge we already know once the estima-

tion of the previous step is acquired. It can be calculated by:

JX(xk) = [Γk−1 + FkJ(xk−1)
−1FT

k−1]
−1 (3.2.15)

The measurement contribution calculates how much information we can get from the
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current measurement, which is given by

JZn(xk) = E{HT
q,kΣ

−1
q,kHq,k} (3.2.16)

where Hq,k = [∆xk
q
hTn (xkq)]

T is the Jacobian matrix of the measurement function

hn(xkq) with respect to the target state xkq and E denotes expectation with respect to

the target state.

This expected value in equation (3.2.16) cannot be obtained analytically. The ap-

proximation is usually made by using the Jacobian and measurement noise covariance

evaluated at the prediction phase to avoid extra computational costs.

JZn(xk) = HT
q,kΣ

−1
q,kHq,k

∣∣∣∣
xq
k|k−1

(3.2.17)

where xqk|k−1 denotes the predicted state of the qth target at time step k.

Note that in the calculation of JZn(xk), an important assumption is that the target

is scanned by the radar beam at time k with a known target detection probability,

false alarm rate, and gating sizes. However, in the cases with pencil-beam radar

and a target (i.e., drone) with high motion uncertainty, one beam scan will not be

able to provide a full observation of the target, which makes the traditional PCRLB

calculation inapplicable. Hence, an expected PCRLB (EPCRLB) is introduced to

handle the partial observation problem as the calculation of JX(k) in E-PCRLB is the

same as that in traditional PCRLB. Thus, only the new measurement contribution

part denoted as EJZ(k + 1) is detailed. EJX(k) is calculated based on the target

existence density Dt (i.e., tracker outputs) and the angle coverage capability Cp of
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radar. Thus, one arrives at

EJZn(xk) =

∫
xk∈Cp

Dt(xk)E
{
−∆xk

xk
ln p(zk|xk)

}
dxk (3.2.18)

Note that the intersection of target existence density (TED) Dt and beam cover-

age Cp cannot be obtained analytically, hence the Monte-Carlo approach can be im-

plemented. An artificial dataset S of {Xk}Np

1 is obtained from the TED. Next, an

averaged PCRLB over the whole dataset S is calculated with

EJZn ≈
1

Np

∑
xk∈Cp
xk∈S

E
{
−∆xk

xk
ln p(zk|xk)

}
(3.2.19)

where Np is the total number of points covered under one beam.

When the coverage of a single beam is larger than the target existence area and

can provide a full observation of the target, the EPCRLB reduces to PCRLB. This is

the first time an expression for EPCRLB has been derived. The EPCRLB is one of

the critical formulations needed to address the measurement realization in CRLB and

verify the accuracy of target state estimates obtained from actual measurement real-

izations. Starting with the concepts in[76], the predictive EPCRLB (PE-PCRLB) is

used by introducing the latest available measurement information to refine EPCRLB

and formulate the ABS strategy for multitarget tracking in a multiple-function phased

array radar.

3.2.4 Cooperative multitarget tracking

In this paper, cooperative tracking is considered as opposed to independent tracking

where tracks of a target are initialized and maintained separately by different radars.
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In a cooperative tracking framework, there is only one track for a single target. If there

is more than one detection from multiple radars (or from false alarms), a detection-

to-track data association is conducted[52].

Since there are multiple models for target motion (Section 3.2.1) and the measure-

ment equations are nonlinear (Section 3.2.2), Interacting Multiple Model Unscented

Kalman Filter (IMM-UKF) is used to handle the multitarget tracking. The IMM

algorithm blends various motion models to offer better tracking accuracy against ma-

neuvering targets. In brief, IMM runs local filters for each model in the library and

then evaluates the model probability µj−k at each time step. By combining all tracking

outputs of different motion models, IMM can achieve better tracking performance, as

opposed to a single filter.

The updated state estimation is given by

x̂k =
J∑
j=1

µj−k x̂jk (3.2.20)

The updated covariance matrix is given by

P̂k =
J∑
j=1

µj−k {P̂
j
k + [x̂k − x̂jk] · [x̂k − x̂jk]

T} (3.2.21)

where J is the number of motion models and j is the model index, and x̂jk and P̂ j
k are

the estimated state and covariance of the filter that adopts the jth motion model.

Due to the nonlinearity of the measurement function in equation (3.2.5), the

unscented Kalman filter (UKF) is used to perform the local filtering with one single

motion model. A brief introduction to UKF is given below. For more information,

the reader is referred to [8]. Note each single filter can only assume one motion model,
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so the model index j is omitted below.

Unscented transform (UT) is the core to approximate nonlinear evolution. We

generate a set of samples, referred to as sigma points σik, with corresponding weights

wi, to represent the state distribution xk.

The prediction is completed by predicting all sigma points and adding them up

by weight.

x−k+1 =
∑
i

wi · Fkσ
i
k (3.2.22)

P−k+1 =
∑
i

wi · [x−k+1 − σ
i
k] · [x−k+1 − σ

i
k]
T + Γk (3.2.23)

where the superscript − denotes prediction.

Similarly, the prediction of measurements is given by

z−k+1 =
∑
i

wi · h(σik) (3.2.24)

In the update step, firstly, the innovation is obtained by

Sk+1 =
∑
i

wi · [z−k+1 − zk+1] · [z−k+1 − zk+1]
T + Σk+1 (3.2.25)

The Kalman filter gain is given by

Kk+1 = (
∑
i

wi · [x−k+1 − σ
i
k] · [z−k+1 − zk+1]

T ) · S−1k+1 (3.2.26)
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Finally, filter gain is used to update the predicted state and covariance.

x̂k+1 = x−k+1 +Kk+1 · [z−k+1 − zk+1] (3.2.27)

P̂k+1 = P−k+1 −Kk+1 · Sk+1 ·KT
k+1 (3.2.28)

Probabilistic data association (PDA)[8] is used to handle measurement origin un-

certainty that rises from missed detection and false alarms. If a missed detection

occurs when tracking a target, whether due to the partial observation or because this

target was not assigned to any radar node, the tracker will simply predict the target’s

state and covariance and use them as the filter output.

3.3 Beam Scheduler for Cooperative Phased Ar-

ray Radar

In this section, detailed mathematical formulations of the beam scheduling problem

are presented. Sections 3.3.1 to 3.3.3 present three mathematical modeling and cor-

responding solution techniques. Section 3.3.4 gives the complexity analysis of these

schedulers.

3.3.1 Beam Scheduler 1: Fixed Linear Wipe

Since pencil-beams with small beamwidth cannot cover the entire area of interest, a

straightforward solution is to rapidly scan a position of potential target existence and

its adjacent cells[40]. If the radar scans the area in a linear fashion, such a technique
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is referred to as linear wipe.

Before scheduling precise beam steering directions, the radar system will roughly

assign tracking tasks to each node with the task scheduler.

Let A be the radar-to-target assignment matrix, such that

A =


a11 a1Q

. . .

aN1 aNQ


N×Q

(3.3.1)

where an,q takes value 1 if the qth target is assigned to the nth radar and 0 otherwise.

Since every radar will be assigned to a tracking task, A satisfies
∑

n∈R an,q = 1.

To meet the requirement of tracking accuracy, the radar-to-target task assignment

is completed by maximizing the worst-case PCRLB.

min max
q
{PCRLBq}, q = 1, · · · , Q (3.3.2)

where PCRLBq is the PCRLB of the qth target. Since it depends on the Jacobian

matrix, which is relevant to the target’s state, the PCRLB is evaluated with the

predicted state x−k at time k.

Remark 1: The diagonal elements of the PCRLB matrix directly give the lower

bounds of the squared estimation errors. Therefore, the trace of the PCRLB matrix is

often used as a scalar characteristic while evaluating PCRLB. As an alternative, the

sum of the first and the third diagonal elements, which represent the lower achievable

squared errors of target position estimation, can be used for evaluation.

71

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – A. Deng; McMaster University – Electrical and Computer Engineering

The PCRLB is calculated as

PCRLBq = JqX +
∑
n∈N

JqZn
(3.3.3)

where N is the set of radars that are assigned to target q. Note that during the

task scheduling phase, multiple radars may be assigned with the same tracking task.∑
n∈N JqZn

is the sum of measurement contributions obtained from all the radars

tracking target q. A coordinated tracking framework is used where there exists one

single track for each target. If there are multiple detections from different radars, a

detection-to-track data association is performed.

Remark 2: Although it is possible that a single tracking task is assigned to multiple

radar nodes, this situation does not commonly happen unless one target’s motion

uncertainty is significantly greater than the others. Besides the data association

technique, the issue of overlapped tasks can be handled by giving the current task only

to the radar that provides the most measurement contribution JqZ and assigning other

radars with different tasks. In this case, the overall estimation errors for multitarget

tracking will be reduced.

It is assumed that the target does not move too much duringNs successive tracking

scans. Typically, a scan takes 0.05 s while a complete dwell for a tracking task is 2 s.

During a tracking task, Ns scans will be used on a target with predicted state x−k and

predicted covariance P−k . The mean mk and covariance Rk in the polar measurement

space with unscented transform (UT) will be computed as shown in Fig.3.3. UT

handles the nonlinear mapping from target state to sensor measurement[8].

Using a gating technique, the range of bearing around mk can be determined. For

simplicity, the range information is ignored here. Fig.3.4 shows an illustration of the
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Figure 3.3: Illustration of Unscented Transform for nonlinear mapping of target
state to measurement

fixed linear wipe beam scheduling approach. c0 is the value of bearing from the mk,

where the target exists with the highest possibility. cli, crj are the bearing cells on

the left and right sides of the mean bearing value. Note that the cell size here is θtrack.

Let Ns = 18, then we have a sequence of scans as the pattern below

c0, cl1, cr1, cl2, cr2, cl3, cr3, cl4, cr4, cr5, c0,

cl1, cr1, cl2, cr2, cl3, cr3, cl4

The effective probability of detection can be computed using p̄d = 1 −
∏S

s=1(1 −

psgpd)[8], where S denotes the number of times the radar covers the covariance area,
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which is S = 2 in this case. The probability of gate, i.e., pg, is the modifier due to a

single scan. For example, the first scan covers the entire target existence region, so

we have pg = 1. It can be seen that for the second scan, the radar cannot guarantee

a full pg.

Figure 3.4: Illustration of the linear wipe beam scheduler approach

Remark 3: The number of scans NS is determined by the total time of the mission

interval. The total scan width for a batch scan (in the previous example, 10 cells) is

determined by both the width of the target distribution (along the bearing direction)

and the beamwidth. The radar will continue scanning linearly until the beam reaches

the edge of the gate or until all scans have been used.
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3.3.2 Beam Scheduler 2: Open-loop Linear Wipe

With the fixed scanning pattern, a linear wipe can be used to perform tracking tasks.

However, the size of the target spatial existence area changes during the surveillance

period and its shape is dependent on the target-sensor geometry. Therefore, the

fixed linear wipe will not be suitable in this scenario. Fig.3.5 shows a scenario where

the target’s existence area is small and only limited scans are required to track this

target. With the fixed linear wipe strategy, the radar will continue to scan the area

repeatedly while these scans could be allocated to other targets. Hence, an open-loop

linear wipe beam schedule solution that allocates tracking scans based on the specific

target distribution P−k is developed. Note that there is no task scheduling module

before the beam scheduler. The evaluation of PCRLB, which is accomplished by the

task scheduler, is incorporated into the beam scheduling process here.

Assume that Ns scans are allocated for the tracking mission at time k, then

the radar will scan the area of interest from the centroid to the edge successively.

Assume there are MS batch scans in total. The solver will determine, for each series

of batch scans, which target to scan and the length of the scan sequence. Note

that MS determines the size of the sequence and NS =
∑MS

m=1Ns,m, denoting the

total number of tracking scans cost in this mission interval. The total number of

scans should be less than the restricted value from the duty cycle. 0 ≤ Ns,m ≤ NS,

tstart ≤ tm ≤ tstart + tplan.
∑MS

m=1Ns,m = NS. tstart is the time point the batch scan

starts and tplan is the duration of the planned batch scan. The scanning pattern is

denoted as S, which is a sequential order of beam schedules. Each beam schedule
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Figure 3.5: Illustration of open-loop linear wipe with a target with a small existence
area

consists of the angle of the beam and the time when the beam is steered.

S = {(t1, θ1), (t2, θ2), ..., (tNS
, θNS

)} (3.3.4)

where ti is the time when the ith scan is made and θi is the angle of the steered beam,

i = 1, 2, ..., NS.

Objective functions To achieve a feasible beam scheduler that can aid the tracker

with minimum track drops, errors, and resources (time), multiple objective functions

are adopted.
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1. Accuracy:

min
S

max
q
{tr(PCRLBq,t−scan

)}

s.t. t−scan ∈ (tstart, tstart + tplan) (3.3.5)

where PCRLBq,t−scan
is the PCRLB matrix of target q at time tscan without

update.

2. Maximum average probability detection

max
S

min
q
{ 1

N̄i

MS∑
m=1

O(m, q)p̄md } (3.3.6)

where N̄q is the total number of batch scans over a single target, i.e.,

N̄q =
Ms∑
m=1

O(m, q)Ns,m, q = 1, · · · , Q (3.3.7)

and O(m, q) equals one or zero depending whether or not the target q is illumi-

nated by mth batch scan.

Using this objective function, a good probability of detection (maximum pd)

could be guaranteed.

p̄md = 1−
Im∏
i=1

(1− pigpd) (3.3.8)

Where Im = ceil(Ns,m/N̂g,m), ceil(γ) returns the smallest integer value that is

bigger than or equal to a number γ, and N̂g,m is minimum number of scans
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that one needs to get a full pg at mth batch scan. N̂g varies with the state of

the target and size of covariance (mainly on bearing and elevation directions).

From equation (3.3.8), the practical p̄d can increase infinitely close to 1 when

N̂g << Ns,m. As mentioned above, the value of pig is determined by the size of

the area of interest scanned within mth batch scan. For the case in Figure 3.4,

with a full pg = 0.95, one has S = 2, p1g = 0.95 and p2g = 0.8 ∗ 0.95

3. Measurement contribution (Reward):

max
S

min
q
{
MS∑
m=1

O(s, q)Jm,qZ } (3.3.9)

where the measurement contribution from the mth batch scan Jm,qZ is given by

Jm,qZ = p̄md ∗ JqZ (3.3.10)

Optimization method The optimization problem is a mixed-integer nonlinear

programming (MINLP). It combines both mixed-integer programming and nonlinear

programming, which is generally hard to solve within polynomial time. To meet

the real-time requirements, a fast method is needed. Hence, a hierarchical genetic

algorithm is used.

Genetic algorithm (GA) is a heuristic searching technique that imitates the process

of natural selection. Feasible solutions to the optimization problem are represented as

individuals (also referred to as chromosomes) and are searched in a parallel manner

that is called generations. In each generation, the fitness value of each individual is

evaluated, and then a selection operation is conducted. Individuals with high fitness
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values are more likely to be reproduced into the next generation, while those with

low fitness will be eliminated. Common selection techniques include roulette wheel

and tournament selection. A binary tournament selection strategy is adopted in this

work.

To maintain the diversity and prevent early maturing, crossover and mutation

operations are performed. In a crossover operation, a locus is randomly chosen and

the genes before and after this locus between two parent chromosomes are exchanged.

In a mutation operation, each gene has a probability Pm to be replaced by a random

value.

Elitism is adopted in this paper to prevent the loss of highly fitted individuals.

After each selection, a few individuals with the highest fitness values will be directly

copied into the next generation without participating in the crossover and mutation

operation.
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Figure 3.6: Hierarchical representation of the genetic algorithm.

In the optimization problem, the length of chromosomes is determined by the num-

ber of batch scans MS, thus individuals that represent diverse MS values will have

different chromosome lengths. Chromosomes with different lengths cannot crossover

with each other. Therefore, a hierarchical genetic algorithm (HGA) is applied. Hier-

archy refers to the presence of modules at multiple levels. Its basic idea is to group

individuals with similar characteristics and have them evolve independently within
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their own group. In the MINLP, the structure of chromosomes is hierarchically di-

vided into two different gene sequences that control MS and nS, respectively. The

entire population is split into several groups based on their MS value. Within each

group, the individuals evolve independently, and the best one is found. Then, a global

optimum is found among all groups by comparing their local optimum. The flow chart

of HGA is presented in Fig.3.6, and a brief pseudo-code is given below.

Algorithm 2 Hierarchical Genetic Algorithm

Input:
Estimates of all targets x̂k,q, P̂k,q. System configuration parameters. Maximum
iteration imax

Output:
The beam steering sequence S

1: Generate a random number of groups N ;
2: for Each group n in N do
3: Generate random population
4: Evaluate individual fitness and selection
5: while i < imax do
6: Crossover
7: Mutation
8: Selection by fitness value
9: end while
10: Selection by fitness value
11: end for

3.3.3 Beam Scheduler 3: EPCRLB-based optimal solution

In previous sections, it is assumed that the mobility of one target is low compared

with the speed of tracking scans. This assumption might hold in some cases, but it is

clearly not an optimal solution for the narrow beam scheduling problem. Therefore, an

optimal open-loop beam scheduler, which considers the target motion characteristics

in the formulation, is proposed.
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Objective functions Based on [82, 62, 25], the method proposed in Section 3.2.3

utilizes the predictive PCRLB where the JZ can be computed as in equation (3.2.17).

Note that JZ is determined by the predictive target state xk with a fixed state of

sensor xn, which is valid as it is assumed that the area where the target potentially

exists can be covered with one scan or multiple combined scans[76]. However, in prac-

tical cases with narrow beam scans, this assumption no longer holds due to the smaller

coverage area of the beam compared with the target localization uncertainty, as dis-

cussed in Section 3.2.3. Thus, an EPCRLB is proposed and adopted for the objective

formulation. EPCRLB is calculated based on the target localization distribution and

the scan capability of the radar. With a set of state vectors xmk , covariance matrices

Pm
k and corresponding weight values wmk , m = 1, · · · ,M , a target localization distri-

bution can be formulated. However, it is hard to analytically calculate the possible

states covered by one beam scan. Several particles extracted from the distribution

are used to represent all the potential target states, which can be used to calculate

the EPCRLB. As shown in Fig.3.7, a set of particles ξp,i, i = 1, · · · , Np(points) are

extracted from two Gaussian distributions with known mean, covariance and weights.
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Figure 3.7: Illustration of particles scanned by the radar at different times

All the red points represent the part of the target existence that is illuminated by

the radar. Ō(i) denotes whether or not one point ξp,i is included inside the scan area.

Using equation (3.2.17),

Jz(ξp,i) = E[Hk(ξp,i)R
−1
s Hk(ξp,i)

′] (3.3.11)

The expected measurement contribution from this scan is given by

EJZ =
pdp̄gpn

N̂p

Np∑
i=1

Ō(i)JZi
(3.3.12)

and p̄g ≈ N̂p

Np
pg, where Np is the total number of points used to represent the distri-

bution, N̂p is the number of points covered by one scan beam, and pn is the ratio of

new particles scanned to the total number of particles scanned.

An example of a practical scenario is illustrated in Fig.3.8. Twelve particles are

used to represent the target existence distribution, and three scans are included. At
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time k − 2, the central part of the area of interest is scanned and six out of twelve

particles are illuminated. This is taken as the first scan, so pn = 1 as all the particles

are scanned for the first time. Then, at time k − 1, there is a new covariance matrix

from the propagation of the target state. The beam moves to the left of the area of

Figure 3.8: Illustration of beam scheduler for targets in motion

interest and six particles are scanned but three of them are scanned for the second

time, thus pn = 3/6. For the current scan at time k that illuminates the right part of

the area of interest, three new particles are included, thus pn = 1. From the process

described in the figure, it can be seen that pn denotes the ratio of new information

to the total information obtained in the scan. This parameter, pn, ensures that the

radar goes through the area of interest instead of only focusing on the subregion

that provides the highest JZ . Without using pn in the formula, the radar tends to

point to the central part around the mean target state (shown as the red rectangle in
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Fig.3.8) as it provides the higher pg. Although it will return a high reward, the other

regions with high target existence possibilities are ignored, which may result in missed

detections, especially for the scenarios with highly maneuvering targets. This is a new

problem arising from pencil-beam scheduling as only a small section of the area of

interest can be covered with a single scan. Thus, finding a good combination of scans

to not only increase the tracking accuracy but also the target detection possibility is

vital.

The expected FIM is given by

EJ = JX + EJZ (3.3.13)

where JX is calculated as in equation (3.2.15).

To provide an optimal beam scheduler that aids the tracker with minimum track

drops, errors, and resources (time), multiple objects are adopted.

1. Accuracy:

min
S

max
q
{EPCRLBq,t}

s.t. t ∈ (tstart, tstart + tplan) (3.3.14)

2. Measurement contribution (Reward):

max
S

min
q
{
NS∑
s=1

O(s, q)EJZs,q} (3.3.15)

where O(s, q) equals one or zero depending on whether or not the target q is
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illuminated by sth single narrow beam scan and EJZs,q is the expected mea-

surement contribution calculated with aforementioned Monte-Carlo approach.

3.3.4 Complexity Analysis

The complexity of the task scheduler incorporated in beam scheduler 1 is O(Q×N).

The search volume is enlarged when the number of radar nodes and/or targets is

increased. The beam scheduler itself does not consume much computational budget,

once the target existence area is calculated, the scanning pattern can be obtained.

The complexity of beam scheduler 2 is of the order of O(N1
pop×N2

pop), where N1
pop

and N2
pop are the population size of the first and the second level respectively. N2

pop is

independent of the problem size while N1
pop is proportional to the value of Q×N . Note

that the complexity of GA is also relevant to the GA parameters. The complexity

grows with the increase of maximum iteration times. With the increase in the problem

size, more combinations of radar-to-target assignment need to be investigated.

The complexity of beam scheduler 3 is of the order of O(Q × N × Np/β), where

Np is the number of particles that represent the distribution of each target and β is

the beamwidth. When β is large enough to cover the whole area of interest, beam

scheduler 3 reduces to a normal-beam scheduling strategy.

3.4 Simulation

In this section, numerical results are presented to demonstrate the performance of the

proposed strategies. Assume a phased array radar system with N = 2 radar nodes

is used to track Q = 3 airborne targets. The radar nodes are located at (−10, 5)
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km and (5,−10) km. The area is surveilled for 50 frames with the time interval

∆T = 1s. The targets’ motions are modeled by two dynamic models: the constant

velocity (CV) model and the constant turn (CT) model with the turn rate known.

Each target will perform two turning maneuvers during the surveillance period. The

detailed information on targets is provided in Table 3.1 and their trajectories are

shown in Fig.3.9. The beamwidth of the pencil-beam is set to β = 0.15◦.

Table 3.1: Initial Target States

Target Index 1 2 3

Position (km) (30,35) (-40,25) (-25,-20)
Velocity (m/s) (-200,-250) (300,0) (100,25)

Turning Interval 1 (s) (10,20) (5,20) (10,15)
Turn Rate 1(◦) 3 4 -4

Turning Interval 2 (s) (35,45) (25,35) (35,45)
Turn Rate 2(◦) -3 2 5

For the hierarchical cooperative GA used in the beam schedulers, the number

of groups (first-level population size) is 15. Each group has 101 individuals. The

probabilities of crossover Pc = 0.6 and the probability of mutation Pm = 0.6. Each

group stops evolving if it reaches the maximum of 30 iterations or if there is no

improvement within the latest five generations. For the optimal beam scheduler, each

target’s distribution is represented by Np = 500 particles. All results are averaged

over 100 Monte Carlo runs.

3.4.1 Comparison among ABS Strategies

From Fig.3.10, there are no significant differences between the worst-case PCRLB of-

fered by the three algorithms, although the optimal beam scheduler obtains a slightly

lower PCRLB. Table 3.2 presents detailed data for the PCRLB of the three beam
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Figure 3.9: Layout of target trajectories and radar deployment
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scheduler algorithms at different frames. Note the bold numbers, the optimal solution

already gives a lower PCRLB for target 1 though it does not change the worst-case

PCRLB. This is because the worst-case PCRLB comes from the target that is not

tracked.

Figure 3.10: Worst-case PCRLB

To demonstrate the effectiveness of proposed strategies, an information reduction

factor (IRF) ξq is defined to describe how much information was obtained from im-

perfect observation. The proposed beam schedulers essentially try to maximize this

factor.

89

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – A. Deng; McMaster University – Electrical and Computer Engineering

Table 3.2: PCRLB of Each Target

Time Index Algorithm
PCRLB of Target No.

Worst-case PCRLB
1 2 3

2
FLW 693.6 1424.2 558.5 1424.2

OLW 693.6 1424.2 558.5 1424.2

Optimal 693.6 1424.2 558.5 1424.2

3
FLW 470.1 428.3 558.5 558.5

OLW 467.8 428.3 558.5 558.5

Optimal 466.5 428.2 558.5 558.5

· · · · · ·

50
FLW 192.5 189.0 206.5 206.5

OLW 192.6 189.0 206.4 206.4

Optimal 192.6 187.9 197.6 197.6

For the linear wipe strategies, ξq is expressed as the actual probability of detection

ξ = p̄d = 1−
MS∏
i=1

(1− pigpd) (3.4.1)

For the EPCRLB-based optimal solution, ξq is defined as the expected measurement

contribution, EJZ , over the total measurement contribution JZ . Since they are both

matrices, their trace is used as their scalar metric to perform the division.

ξ =
trace(EJZ)

trace(JZ)
(3.4.2)

For simplicity, the target index q is omitted in the equations of ξq above.

Fig.3.11 shows the IRF of target 1 over the entire surveillance period. Note that

at time step k = 1, the IRFs are all set to 0. It can be seen from the figure that the
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optimal solution offers significantly better IRF than the linear wipe strategies. The

average IRFs over the 50 time steps are given in Table 3.3. In practice, a large IRF

will guarantee a high probability of detection.

Table 3.3: Average Information Reduction Factor

Strategy FLW OLW Optimal

Average IRF 0.4613 0.5183 0.7854
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Figure 3.11: Information reduction factor for Target 1 using the proposed beam
scheduler strategies

3.4.2 Performance of the Multitarget Tracker

The optimal beam scheduler offers a higher IRF and thus, a lower PCRLB. However,

PCRLB is only a theoretically lower bound and may not be achieved in real-life cases,
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RMSEk =

 1

NMC

√√√√NMC∑
j=1

max
q

[(
xkq − x̂

k,j
q

)2
+
(
ykq − ŷ

k,j
q

)2] (3.4.3)

hence the actual estimation error of the tracker is of more importance in practice.

The performance of the multitarget tracker is evaluated by the worst-case RMSE

Fig.3.12 shows the worst-case RMSE of all three tracks, along with the PCRLB

offered by the optimal beam scheduler. The actual estimation errors for the optimal

beam scheduler are smaller when compared to the other two strategies. Table 3.4

gives the worst-case RMSE at selected time intervals.
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Figure 3.12: Worst-case RMSE for the proposed beam scheduler strategies

Note that the number of radars is less than the number of targets, so there will be

targets whose state and covariance are only predicted by the tracker but not updated
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Table 3.4: Worst-case RMSE of Target Position Estimation

Time Index
Worst-case Position RMSE (m)

FLW OLW Optimal

5 1210.3 508.2 961.9
15 481.5 392.3 387.4
25 341.1 257.2 235.5

due to missed measurements. At time k = 1, since target 2 has the least PCRLB and

therefore, is not being tracked, its state will only be predicted and the error from the

motion model is preserved, so the worst-case estimation error remains high.

The RMSE of target 3 is presented in Fig.3.13, which shows a better convergence

than the worst-case RMSE.
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Figure 3.13: The RMSE for target 3 using the developed beam scheduling strategies
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3.4.3 Evaluation of algorithm speed

To evaluate the efficiency of the proposed algorithms, each algorithm’s run time was

recorded. All simulations are conducted using MATLAB R2019a on a laptop with a

Core™ i5 2.6 GHz CPU and 8 GB RAM.

Table 3.5: Average Time Cost

Strategy FLW OLW Optimal

Time spent per frame (s) 0.0042 1.2181 0.5462

Table 3.5 gives the average time cost of the three algorithms. Due to the hierar-

chical structure of HGA, the open-loop line wipe beam scheduling strategy takes a

considerably longer time. It can be fastened by decreasing the population size and the

maximum number of generations. Furthermore, intelligent operations can be utilized

to reduce the time of deficient evolution, e.g., eliminating groups with low average

fitness.

Though the EPCRLB-based optimal solution takes less time than the open-loop

linear wipe strategy, its computational cost is high compared with real-time require-

ments. In practice, sub-optimal strategies may be adopted to save time and budget.

3.5 Conclusion

An adaptive beam scheduling problem for cooperative phased array radars with pen-

cil beams was presented and addressed. Traditional phased array radar schedulers

have challenges with pencil-beams as they do not cover the area of interest due to

their narrow beamwidth. Therefore, a more precise beam scheduler that controls the

steering direction and operation time of the radar beam needs to be developed. In
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this paper, the problems of tracking with pencil-beam and of beam scheduling were

presented and three beam scheduling strategies namely fixed linear wipe, open-loop

liner wipe and EPCRLB-based optimal solution were developed. The concept of ex-

pected PCRLB was proposed and the predictive EPCRLB was adopted as a criterion

to minimize. Numerical simulations were presented along with results that showed the

EPCRLB-based optimal solution beam scheduler achieved a lower worst-case PCRLB

and a smaller estimation error for the tracker working with it.

This work can be further extended by considering the following issues. First, the

scheduling of wide fan-beams can be jointly considered by adding the performance

metrics of target detection into the optimization. More mission and corresponding

beam types can be incorporated in the future. Second, the simultaneous multibeam

(SM) working mode of PARs where a PAR can simultaneously launch multiple beams

could be explored. In this working mode, the issue of power allocation that determines

how much power a radar assigns to each beam can be incorporated into the resource

management problem. In parallel, the duration of each beam can also be studied to

get better SNR.
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Chapter 4

Joint PRF Set Selection and

Waveform Design for Pulsed

Doppler Radars

4.1 Introduction

4.1.1 Background and Motivation

Pulsed Doppler radar systems use a train of pulses to reject clutter returns and achieve

good range and Doppler resolutions. Adaptive design of burst pulses and waveform

is a fundamental component in resource management to ensure detection capability

and tracking accuracy[46]. Pulsed Doppler radar systems suffer from ambiguities,

blind zones, and multipaths. Typically, burst parameters can be designed to resolve

range or Doppler resolution, but not both simultaneously. The strategy to transmit

pulses with a set of pulse repetition frequencies (PRF) is adopted to compromise the

96



Ph.D. Thesis – A. Deng; McMaster University – Electrical and Computer Engineering

Figure 4.1: Range ambiguity in pulsed Doppler radar

drawbacks of low PRF systems and high PRF systems. With a proper selection of

the PRF scheme, the blind zone rate can be significantly reduced. This problem has

been examined in works [32, 31, 6, 91, 35, 3, 13, 89].

The problem of PRF set selection is typically applied to target monitoring and

localization scenarios. In the context of target tracking, however, maneuvering targets

make sudden and unpredictable moves. Therefore, they can fall into blind zones and

the solution of finding an optimal set of PRF and generating a good blind zone map

may not be favorable for the radar system. In this paper, we extend the PRF set

selection problem and incorporate waveform design.

Considerable interest has been drawn to the issue of waveform selection[39, 65, 70,

44, 37, 36]. In [55], the adaptive waveform selection in a multistatic radar system is

studied and the transmitted waveforms are selected from the library to minimize the

tracking mean squared error. [65] implements a fractional Fourier transform on a base

waveform to obtain the waveform library. A joint transmit resource management and

waveform selection problem is addressed, and a fast solution based on particle swarm
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optimization (PSO) is developed in [72]. Waveform selection problems are further

extended by jointly considering other resource management problems such as power

allocation[92] and beam assignment[94, 99].

The waveform selection issues are mathematically formulated into optimization

problems, where one or multiple objective functions are minimized subject to sys-

tem constraints[10]. The tracking accuracy is optimized by minimizing the posterior

Cramér-Rao lower bound (PCRLB), which is defined to be the inverse of Fisher in-

formation matrix (FIM) and gives a mean squared error bound on the performance

of any unbiased estimator [8, 25, 82]. The PCRLB is independent of the estimation

algorithm and can be calculated recursively [86].

Genetic algorithm (GA) is a heuristic search technique inspired by the process of

natural evolution, which offers fast and near-optimal solutions at a modest compu-

tational cost compared to an exhaustive search. Due to the time budget, it is more

favorable for the system to obtain a suboptimal result than to wait for the global

optimum. Therefore, GA is widely used in the selection of PRF scheme selection

[3, 31, 89, 32] or resource management problems that are NP-hard[77, 73, 64]. Be-

sides GA, other heuristic algorithms such as simulated annealing (SA)[2] or PSO[72]

can also be used.

In this paper, two formulations and corresponding solutions are proposed. Firstly,

a dual-objective problem is formulated, and the solver uses non-dominated sorting

genetic algorithm II (NSGA-II) to find the Pareto optimum. Secondly, the problem is

solved sequentially by obtaining a blind zone map where all targets are visible during

consecutive intervals and then optimizing the waveform selection.

98

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – A. Deng; McMaster University – Electrical and Computer Engineering

4.1.2 Main Contributions

This paper makes the following contributions:

1) A joint PRF selection and waveform design (JPSSWD) problem is analyzed and

formulated. The novel problem of jointly optimizing the global detection capability

and ensuring current tracking accuracy is addressed. Solutions to the problem seek

to prevent target under tracking from falling into blind zones by adaptively selecting

the PRF scheme and minimizing the tracking accuracy through proper waveform

tailoring.

2) Algorithms based on genetic algorithms are proposed to solve the problem in

real-time. Searching for an optimal combination of PRFs requires an enormous time,

and thus, may not meet the real-time requirements. Therefore, we develop solu-

tion techniques based on GA to obtain quick solutions. Numerical results show the

efficiency of the proposed strategies.

3) A JPSSWD-based multitarget tracking framework is developed. We develop a

closed-loop signal processing framework to handle real-time tracking scenarios. An

interacting multiple model (IMM) unscented Kalman filter (UKF) is used to deal with

maneuvering multiple target tracking. Fig. 4.2 illustrates details of the framework.

The remainder of the paper is organized as follows. Section II gives preliminary

knowledge of ambiguity, target tracking, and PCRLB. Two mathematical formula-

tions and corresponding solution techniques are presented in Section III. Numerical

simulations are demonstrated in Section IV and conclusions are given in Section V.
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Figure 4.2: JPSSWD-based multitarget tracking framework in a cooperative radar
system

4.2 Background and Problem Description

4.2.1 Ambiguities and Blind Zones

Pulsed Doppler radars have shown the capability to discriminate targets from large

clutter returns by using multiple pulses. However, the issue of ambiguity arises with

the use of multiple pulses. When the radar is transmitting a pulse while a target

return arrives, it will fail to receive the returning signal. This is referred to as the

ambiguity through eclipse, which yields the failure to detect the target’s range. If the

target’s Doppler shift is close to a multiple of the radar’s PRF, the velocity of the

target will be hard to detect. The range and Doppler ambiguities result in the blind

zones of a radar. If a target’s range or Doppler shift falls into blind zones, it will be

challenging for the radar to detect the target. Low PRF radars have an unambiguous

range while having limited capacity for velocities. On the opposite, high PRF radars

have clear Doppler intervals but highly ambiguous ranges, as shown in Fig.4.3.
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Figure 4.3: Ambiguities in pulsed Doppler radar
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Generally, medium PRF radars are selected as a compromise solution to overcome

the drawbacks of both low and high PRF radars. However, the ambiguities are simply

confined to an acceptable level but not ideally resolved. Furthermore, the system still

suffers from a number of blind zones where targets will be completely undetectable.

To alleviate these problems, the radar system may operate on multiple PRFs. The

radar transmits pulses with N different PRFs and a target is considered detected if

it is observable by more than M PRFs, which is known as a M of N scheme. In the

literature[13, 3], M and N are typically set to 3 and 8, while in the industry, they

are selected to be smaller due to system constraints.

To ensure a proper PRF scheme, the decodability must be satisfied. For a M of N

PRF set to be decodable, the lowest common multiple (LCM) of any set of M PRIs

from N PRIs must be greater than the time delay of the maximum range of interest.

Similarly, the LCM of any set of M PRFs from N PRFs must be greater than the

Doppler bandwidth.

Fig.4.4 shows the blind map of a system with a single PRF and Fig.4.5 show the

blind map of that with a 3 of 8 PRF set. The gray areas in Fig.4.5 are marginal

detectable areas where targets are seen by exactly M PRFs. It can be seen that the

detecting ability is significantly improved with a multiple PRF scheme.

4.2.2 Signal Model

Consider a distributed pulsed Doppler radar network with N spatially diverse radar

nodes. The position of the nth node is denoted by (xn, yn). There are Q airborne

targets to be tracked. The qth target is initially located at (xq,1, yq,1) with an initial

velocity (ẋq,1, ẏq,1). At time step k, the qth target is located at (xq,k, yq,k) with velocity

102

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – A. Deng; McMaster University – Electrical and Computer Engineering

Figure 4.4: Blind map of a single PRF
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Figure 4.5: Blind map of a PRF set
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(ẋq,k, ẏq,k).

For simplicity, the following assumptions are made.

1. Each radar node transmits a narrow-band signal to track one single target.

2. The number of radar nodes N is less than the number of targets Q, i.e., there

will always be targets that are not illuminated by any radar in each time step.

3. The number of targets is known and remains constant. All tracks are already

confirmed.

The transmit signal of the nth radar node is given by:

sn,k(t) =
√
Pn,kEn,k(t)e

−j2πfct (4.2.1)

where fc is the carrier frequency, and Pn,k is the transmit power of radar node n at

time step k.

The term En,k(t) is the normalized complex envelope of the transmit signal with

unit power, which can be expressed by

En,k(t) =
( 1

πλ2n,k

) 1
4 exp

[
−
( 1

2λ2n,k
− j2πbn,k

)
t2
]

(4.2.2)

where bn,k is the the frequency modulation rate, bn,k = Wn,k/2Tn,k, Wn,k is the band-

width of the transmit waveform, Tn,k is the effective pulse length and λn,k is the

Gaussian pulse length parameter. The effective pulse length is approximated with

Tn,k = 7.4338λn,k [55].

The signal received by the nth receiver is an attenuated version of the transmit

105

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – A. Deng; McMaster University – Electrical and Computer Engineering

signal, which is delayed by

rn,k(t) =hq,k
√
αn,q,kPn,kEn,k(t− τn,q,k)e−j2πfn,q,kt

+ ωn,k(t)

(4.2.3)

The term αkn,q ∝ 1/(Rn,q,k)
4 denotes the variation in the signal strength due to

loss effects along the signal transmission path, where Rn,q,k is the range from the nth

radar to the qth target. hq,k denotes the target RCS, also referred to as reflectivity,

which is a random variable. ωn,k is a zero-mean complex Gaussian noise. τn,q,k and

fn,q,k denote the time delay and Doppler shift of target q with respect to radar n,

respectively.

4.2.3 Target Dynamics

Let xkq = [xq,k, ẋq,k, yq,k, ẏq,k]
T denote the state vector of the qth target, where [xq,k, yq,k]

and [ẋq,k, ẏq,k] denote the position and velocity of the target, respectively.

The state space model that describes the qth target’s motion is given by:

xq,k+1 = Fkxq,k + wq,k (4.2.4)

where xq,k = [xq,k, yq,k, ẋq,k, ẏq,k]
T is the column state vector of the qth target, and

[xq,k, yq,k] and [ẋq,k, ẏq,k] denote the position and velocity of the target, respectively.

Fk denotes the state transition matrix. wq,k is the process noise assumed to be the

model input to control the evolution of target state xq,k. wk is the process noise

that describes the inaccuracy of the motion model. It is assumed to be zero-mean
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Gaussian distributed with a known covariance Γk.

Γk = κI2 ⊗

1
3
T 3 1

2
T 2

1
2
T 2 T

 (4.2.5)

where κ is the intensity of process noise.

In this paper, we consider two target dynamic models: constant velocity (CV)

and constant turn (CT) with a known turn rate.

For the CV model, the transition matrix is given by:

Fk = I2 ⊗

1 T

0 1

 (4.2.6)

where ⊗ is the Kronecker operator, and I2 denotes the 2× 2 identity matrix.

For the CT model, the transition matrix is given by:

Fk =



1 sinωT
ω

0 −1−cosωT
ω

0 cosωT 0 − sinωT

0 1−cosωT
ω

1 sinωT
ω

0 sinωT 0 cosωT


(4.2.7)

4.2.4 Measurement Model

Let Zq,k be the stacked measurements of target q from multiple radar nodes at the kth

time step, it has the form Zq,k = [zT1,q,k, ..., z
T
n,q,k, ..., z

T
N,q,k]

T , where the measurement
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obtained by the nth radar zn,q,k is given by:

zn,q,k =


hn(xq,k) + vn,q,k if originated from target q

υn,q,k if false alarm

(4.2.8)

where hn is the nonlinear observation function. The measurements consist of three

components: the range measurement Rn,q,k, the fn,q,k and the bearing θn,q,k, i.e.,

hn(xq,k) = [Rn,q,k, fn,q,k, θn,q,k]
T (4.2.9)


Rn,q,k =

√
(xn,q,k − xn)2 + (yn,q,k − yn)2

fn,q,k =
ẋn,q,k(xn,q,k−xn)+ẏn,q,k(yn,q,k−yn)

Rn,q,k

θkn,q = arctan (
yn,q,k−yn
xn,q,k−xn

)

(4.2.10)

vn,q,k is the measurement noise, which is assumed to be a zero-mean Gaussian

random variable with covariance Σn,q,k. It is assumed the observation error covariance

can reach the Cramér-Rao lower bound (CRLB) for the radar estimates Cn,k, given

by:

Cn,k =
1

SNRn,k


2λ2n,k −4bn,kλ

2
n,k 0

−4bn,kλ
2
n,k

1
2π2λ2n,k

+ 8b2n,kλ
2
n,k 0

0 0 σ2
θ

 (4.2.11)

The frequency modulate rate bn,k and the Gaussian pulse length parameter λn,k

constitute the waveform parameter Ωn,k. The signal-to-noise-ratio for the nth radar

at time step k SNRn,k is a function of the radar’s transmit power and dwell time and
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does not depend on the waveform parameter Ωn,k. Therefore, it is assumed to be a

certain value throughout the course of this paper.

Generally, the probability of detection Pd of each target is always less than unity

due to the inevitable interference. Furthermore, clusters in the surveillance area will

result in false alarms, which are assumed to be a zero-mean Gaussian random variable

uniformly distributed in the measurement space (within the observation volume V )

with their number being a Poisson-distributed variable, given by

p(nfa) =
e−λV (λV )nfa

nfa!
(4.2.12)

where nfa is the number of false alarms, λ is the spatial density, that is, the average

number of false alarms within each frame.

4.2.5 FIM and PCRLB

The Cramér-Rao lower bound (CRLB), defined to be the inverse of the Fisher in-

formation matrix (FIM), provides a lower bound of the error covariance matrix of

any unbiased estimator for a certain parameter. The posterior Cramér-Rao lower

bound (PCRLB) gives a measure of the achievable accuracy for dynamic state esti-

mation. Under the assumption of Gaussian measurement noise, the estimation error

asymptotically approaches the PCRLB in high SNR[57]. PCRLB is often utilized as

a criterion to minimize in resource management problems due to its independence in

tracking algorithms. Let x̂k be an unbiased estimate of xk based on the measurement

zk, Ck be the error covariance matrix, and J(xk) be the FIM, we have

Ck = E[(x̂k − xk)(x̂k − xk)
T ] ≥ J(xk)

−1 (4.2.13)
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where E denotes expectation operator.

The FIM can be calculated with the following recursion[86].

Jk = JX(xk) + JZ(xk) (4.2.14)

JX(xk) and JZ(xk) are referred to as the prior knowledge and the measurement

contribution at time step k, respectively.


JX(xk) = D22

k−1 −D21
k−1(Jk + D11

k−1)
−1D12

k−1

JZ(xk) = E{−∆xk
xk

ln p(zk|xk)}
(4.2.15)

where 
D11
k−1 = E{−∆

xk−1
xk−1 ln p(xk|xk−1}

D12
k−1 = E{−∆

xk−1
xk ln p(xk|xk−1} = (D21

k−1)
T

D22
k−1 = E{−∆xk

xk
ln p(xk|xk−1}

(4.2.16)

The prior information can be calculated by:

JX(xk) = [Γk−1 + FkJ(xk−1)
−1FT

k−1]
−1 (4.2.17)

The measurement contribution is given by

JZn(xk) = E{HT
q,kΣ

−1
q,kHq,k} (4.2.18)

where Hq,k = [∆xk
q
hTn (xkq)]

T is the Jacobian matrix of the measurement function

hn(xkq) with respect to the target state xkq . and E denotes expectation with respect

to the target state.
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4.2.6 IMM-UKF filter

1) Unscented Kalman Filter: Kalman filter (KF) is an optimal LMSE tracking al-

gorithm in linear systems[8]. Extended Kalman filter (EKF) and unscented Kalman

filter (UKF) were developed to deal with the nonlinearity between the observation

vector and the target state vector. UKF has been proven to offer better performance

than EKF and, therefore, is adopted as the tracking algorithm in this paper.

The UKF uses unscented transform (UT) to approximate nonlinear transforma-

tion. The main idea of UT is to use a set of samples, referred to as sigma points σik,

with corresponding weights wi, to represent the state distribution xk.

When we generate a set of sigma points (typically 5) to approximate the distri-

bution of the target’s estimated state, the prediction is completed by predicting all

sigma points and adding them up by weight.

x−k+1 =
∑
i

wi · Fkσ
i
k (4.2.19)

P−k+1 =
∑
i

wi · [x−k+1 − σ
i
k] · [x−k+1 − σ

i
k]
T + Γk (4.2.20)

where the superscript − denotes prediction.

Similarly, the prediction of measurements is a weighted summation of each sigma

point’s predicted measurements:

z−k+1 =
∑
i

wi · h(σik) (4.2.21)
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In the update step, firstly, the innovation is obtained by

Sk+1 =
∑
i

wi · [z−k+1 − zk+1] · [z−k+1 − zk+1]
T + Σk+1 (4.2.22)

The Kalman filter gain is given by

Kk+1 = (
∑
i

wi · [x−k+1 − σ
i
k] · [z−k+1 − zk+1]

T ) · S−1k+1 (4.2.23)

Finally, filter gain is used to update the predicted state and covariance.

x̂k+1 = x−k+1 +Kk+1 · [z−k+1 − zk+1] (4.2.24)

P̂k+1 = P−k+1 −Kk+1 · Sk+1 ·KT
k+1 (4.2.25)

2) Interacting Multiple Model: The UKF can only handle a single motion model.

In our assumed scenario where a target has multiple dynamic models, the interacting

multiple model (IMM) algorithm is used.

The core idea of IMM is to run multiple tracking filters in parallel, where each

filter is responsible for a specific motion model, and the final estimate of state and

covariance is a weighted combination of the estimates from individual local filters.

i.e.,

x̂k =
J∑
j=1

µj−k x̂jk (4.2.26)

P̂k =
J∑
j=1

µj−k {P̂
j
k + [x̂k − x̂jk] · [x̂k − x̂jk]

T} (4.2.27)
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where J is the number of motion models, j is the model index and µj−k is the model

probability.

3. Cooperative Multitarget Tracking: In this paper, we adopt a cooperative track-

ing framework instead of independent tracking where tracks of a target are initialized

and maintained separately by multiple radar nodes.

In a cooperative tracking framework, only one single track is maintained for each

target. If there is more than one detection from different radars (or from false alarms),

a detection-to-track data association is performed[52] to decide which measurement

the system will adopt and then pass to the filter. Probabilistic data association (PDA)

is used if multiple detections occur.

A target may receive no measurement at a time step due to one or more of the

following reasons: (1) the target falls into the blind zone; (2) the radar’s imperfect

detection due to interference; (3) the target is not assigned to any radar nodes, the

reader is reminded that it is assumed that number of radars is smaller than the

number of targets. When a target has no measurement in a tracking interval, the

tracker will simply predict the target’s state and covariance and use them as the filter

output. For more information about IMM, UKF, and PDA, the reader is referred to

[8].

4.3 JPSSWD Strategies

Mathematically speaking, the JPSSWD problem can be formulated as a bi-objective

optimization problem subject to several system constraints. At every time step k,

optimization will be made to determine the selection of the PRF scheme τk, the

task assignment matrix Uk, and the waveform parameter of all radar nodes Ωk =
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[Ω1,k,Ω2,k, ...,Ωn,k].

Uk is the radar-to-target assignment matrix, such that

Uk =


u11 u1Q

. . .

uN1 uNQ


N×Q

(4.3.1)

where un,q takes value 1 if the qth target is assigned to the nth radar and 0 otherwise.

We assumed every radar would be assigned to only one tracking task, hence, Uk

satisfies
∑

n∈R un,q = 1.

4.3.1 Objective

The JPSSWD problem aims to jointly optimize the overall detection ability and the

tracking accuracy. The metric for the detection ability is the total blind rate, which

is a function of the PRF scheme only, denoted as F1(τk). The metric for the tracking

accuracy is the worst-case PCRLB, which is a function of the task assignment scheme

and the waveform parameter, denoted as F2(τk, Uk,Ωk). Note that the PCRLB is

dependent on the blind zone map of the radar. For targets in the areas where the radar

is blind due to its specific PRF scheme, no information will be obtained. Therefore,

F2 is also dependent on the PRF scheme τk.

F1 is calculated after the blind zone map is generated based on a given PRF

scheme[13, 3].

As previously stated in ??, PCRLB gives a theoretically achievable lower optimum

for any unbiased estimator. Therefore, we adopt PCRLB as the criterion to minimize.

In the assumed scenario where the number of radar nodes is smaller than the number
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of targets to be tracked, we use worst-case PCRLB as an objective.

F2 = max (Jq,k)
−1 (4.3.2)

where Jq,k is the predicted FIM of the qth target.

Since the targets have different motion models, the predicted FIM of a target is

calculated as follows[8]:

Jq,k =
J∑
j=1

µj−k JjX + JZ (4.3.3)

where µj−k is the predicted probability of motion model j at time step k, and JjX is

the prior information related with the jth model.

Remark 1: The calculation of the measurement contribution (4.2.18) requires an

expectation operation and is computationally expensive. A general approach to han-

dle this is to approximate the measurement contribution using the Jacobian evaluated

with the predicted state estimation.

JZ(xk) = {HT
q,kΣ

−1
q,kHq,k}

∣∣∣∣
xk|k−1

(4.3.4)

Remark 2: PCRLB is a matrix whose diagonal elements give the optimally achiev-

able lower bounds for the variances on the estimations of the target’s position and

velocity in x and y coordinates. Generally, as adopted in this paper, we utilize√
Ck(1, 1) + Ck(3, 3) as a scalar metric to evaluate PCRLB, where Ck(1, 1) and Ck(3, 3)

denote the first and third elements on the diagonal of the PCRLB, which represent

the lower bounds on the variances of the target’s estimated positions on x and y

coordinates, respectively. Some papers use the trace of PCRLB matrices as a scalar

115

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – A. Deng; McMaster University – Electrical and Computer Engineering

metric, which is also reasonable. The lower bounds on the variances of the target’s

estimated velocities are neglected in this paper since they are generally much smaller

than those of estimated positions.

4.3.2 Constraints

The optimization of radar parameter configurations is restricted by system configura-

tions. In the JPSSWD problem, both PRF set and waveform parameters are chosen

from given libraries.

1) Constraints on PRF scheme: The PRF scheme τk is a set of M frequencies of

the transmitted signal. Each of them is constrained by a minimum frequency fmin

and a maximum frequency fmax.

τk = f1, f2, ..., fM , fi ∈ (fmin, fmax), i = 1, 2, ...,M (4.3.5)

Note the decodability of the PRF scheme needs to be satisfied for the range and

Doppler ambiguities to be resolved [13, 3], as aforementioned.

2) Constraints on waveform parameter: The waveform parameter of the nth radar

node Ωn,k consists of the frequency modulation rate bn,k and the Gaussian pulse length

λn,k, each of them must be chosen from their specific range, i.e.,

bn,k ∈ (bmin, bmax), λn,k ∈ (λmin, λmax) (4.3.6)

3) Constraints on target assignment: Each radar node can only track one target at

a time. We define a binary assignment variable un,q to represent if target q is tracked
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by radar n.

un,q =


1 if target qassigned to radar n

0 otherwise

(4.3.7)

It is assumed that the number of radars is smaller than the number of targets.

Therefore, for the radar-to-target assignment matrix (4.3.1), each row adds up to 1.

Q∑
q=1

un,q = 1, n = 1, 2, ..., N (4.3.8)

4.3.3 Strategy 1: Bi-Objective Pareto Optimization

The JPSSWD problem is formulated below as a bi-objective optimization problem

that seeks to jointly optimize the total blind rate and tracking accuracy.

min F(τk, Uk,Ωk) =< F1(τk),F2(τk, Uk,Ωk) >

s.t. un,q ∈ {0, 1}
Q∑
q=1

un,q = 1 ≤M

fi ∈ (fmin, fmax)

bn,k ∈ (bmin, bmax)

λn,k ∈ (λmin, λmax) (4.3.9)

We can see that each frequency in the PRF scheme and waveform parameters

are chosen from continuous ranges while the task assignment variables are binary.
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Therefore, the problem (4.3.9) is a mixed-integer nonlinear programming (MINLP)

problem, which is typically NP-hard and requires enormous search trees.

To ensure the problem is solved in real-time, it is favorable to obtain a near-optimal

solution quickly than to wait for the global optimum. In this paper, we adopt the

genetic algorithm (GA) as a fast and effective heuristic approach. GA was developed

to solve problems with a single objective. To handle the bi-objective problem, the

non-dominated sorting genetic algorithm II (NSGA-II) is used.

GA is inspired by the process of natural selection and the survival of the fittest

candidates. Candidate solutions are called individuals, and the set of individuals

is referred to as the population. Each individual is described by a chromosome,

which consists of several sections called genes. Through decoding, a string of genes

represents a specific decision variable in the problem. The fitness of each individual

is evaluated by a fitness function. In this bi-objective problem, the fitness functions

are F1 and F2.

Remark 3: The encoding method that deciphers genes into decision variables needs

to be selected properly. In this paper, we use real number encoding where a single

gene, which is a real number, represents a decision variable, e.g., a PRF is encoded

into a random number between 0 and 1. Gray encoding that represents a variable

with a string of binary genes can also be used. This method sacrifices efficiency for

local search capability since the randomness introduced during evolution is smaller

due to the long length of chromosomes.

The parallel searches performed among all individuals are called generations. In

each generation, three operations that mimic natural evolution are performed: selec-

tion, crossover, and mutation.
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The fitness function is evaluated in every generation. The constraints (4.3.5),

(4.3.6) and (4.3.8) are automatically satisfied during the generation of chromosomes.

The selection operation chooses individuals with high fitness values and copies

them into the next generation, while those with low fitness will be eliminated. Roulette

wheel and tournament schemes are the most used strategies for selection [64, 56]. In

this paper, a binary tournament selection is adopted.

The crossover operation exchanges traits of two individuals referred to as par-

ent individuals. A random locus is selected, and the subsequences before and after

that locus are exchanged between two chromosomes. Crossover is performed with a

probability Pc, i.e., a fraction Pc of the new generation is bred by crossover.

Each gene has a probability of Pm to mutate. In the mutation operation, binary

variables are flipped and continuous variables are replaced by a random value.

Elitism is adopted to preserve individuals with high fitness values. After the selec-

tion operation, several highly fitted individuals will be directly to the next generation

without participating in the crossover and mutation operations.

The traditional GA, however, only applies to single-objective problems. In a

multi-objective case, an individual has multiple fitness functions. If all the fitness

values of individual a are greater than b, then a is said to be dominated by b, i.e.,

a is completely inferior to b. The purpose of multi-objective optimization is to find

a curve, referred to as the Pareto optimal front, where all the points dominate any

other points in the solution space.

To handle the multi-objective problem, a non-dominated sorting GA-II (NSGA-II)

[14] was developed. Each chromosome has two more attributes: non-dominated rank

and crowding distance. The non-dominated rank gives the level of domination of the
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individual. Individuals from lower non-dominated ranks dominate those from higher

ranks. Crowding distance describes the similarity of a certain individual with others

from the same non-dominated rank. Individuals with higher crowding distances are

clustered and generally more optimal.

In NSGA-II, the normal selection operation is advanced to non-dominated selec-

tion. At first, individuals are sorted into different non-dominated ranks by evaluating

whether they are dominated by other individuals in the population. Until all individ-

uals are ranked, then their crowding distances are calculated. Fig.4.6 shows the flow

chart of the NSGA-II algorithm.

4.3.4 Strategy 2: Two-Step Solution Methodology

Although the Pareto optimum obtained previously remains a feasible solution in gen-

eral scenarios, the issue of blind zones still exists. In a multi-radar system, a radar

node may optimally configure its PRF scheme by ignoring targets that are currently

tracked by other nodes, which may result in those targets falling into blind zones. As

aforementioned, the main focus of this paper is to maintain the system’s high tracking

accuracy while avoiding the blindness of current targets. Therefore, in this subsec-

tion, we give priority to the detectability of targets and formulate the optimization

into a two-step problem.

1. Configure the PRF scheme and generate the blind map: In this step, we solve

the problem of PRF selection with GA. The fitness function is given by

min F(τk) = F1(τk) + P(τk) (4.3.10)

where P(τk) is a penalty function, which takes value 0 if all targets are visible to all
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Figure 4.6: Block diagram of the NSGA-II algorithm
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radars, and grows large quickly when a radar’s blind zone approaches any target’s

existence region (TER).

2. Waveform selection: Solve the following waveform selection problem:

min F(τk, Uk,Ωk) = F2(τk, Uk,Ωk) (4.3.11)

The solution is obtained with a grid search over the variable space [55]. This

approach is computationally cheaper than gradient-based methods [75].

The two-step methodology is referred to as genetic algorithm followed by grid

search (GA-GS). A diagram is presented as Fig.4.7, and a pseudo-code is given in

Algorithm.3. Note the time index k is omitted in the algorithm section.

Algorithm 3 Two-Step GA-GS Algorithm

Input:
Estimates of all targets x̂q, P̂q. System configuration parameters, Maximum iter-
ation imax

Output:
PRF scheme τ , Task assignment matrix U , Waveform parameter Ω = b, λ

1: Generate random population representing the PRF scheme
2: Evaluate individual fitness and selection
3: while i < imax do
4: Crossover
5: Mutation
6: Selection by fitness value
7: end while
8: Obtain τ and generate the blind map
9: Enumerate all possible task assignment schemes and form a set U
10: for Each U in U do
11: Identify a search direction in the solution space (b, λ) in which F2 descends

most quickly
12: Linearly search until converged
13: end for
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Figure 4.7: Block diagram of the GA-GS algorithm
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4.4 Simulation

In this section, numerical experiments are conducted to demonstrate the performance

of the proposed strategies and compare them against other simple strategies. Assume

a pulsed Doppler radar system with N = 2 radar nodes is used to track Q = 4

airborne targets. The radar nodes are located at (−10, 5) km and (5,−10) km. We

track the targets for 50 frames with the time interval ∆T = 1s. The targets’ motions

are modeled by two dynamic models: the constant velocity (CV) model and the

constant turn (CT) model with the turn rate known. Each target will perform two

turning maneuvers during the surveillance period. The detailed information of targets

is provided in Table 4.1 and their trajectories are shown in Fig.4.8.

Table 4.1: Initial Target States

Target Index 1 2 3 4

Position (km) (20,25) (-20,15) (-15,-30) (25,-20)
Velocity (m/s) (-200,-250) (300,0) (-200,-300) (250,-250)

Turning Interval 1 (s) (10,20) (5,20) (10,15) (5,20)
Turn Rate 1(◦) 3 4 -4 -6

Turning Interval 2 (s) (35,45) (25,35) (30,45) (40,50)
Turn Rate 2(◦) -3 2 5 -1

A 2 of 6 PRF scheme is to be determined. The 6 PRIs are chosen from the interval

(50,100) µs. The Gaussian pulse length parameter is chosen from the interval (10,100)

µs. The bandwidth is chosen from the interval (0.1,1) MHz.

When selecting the PRF scheme and generating the blind zone map, we use the

radar parameters, e.g., bin size and blind range due to eclipsing, etc., as in [3].

In the GA method, the number of population is 101. The probabilities of crossover

Pc = 0.6 and the probability of mutation Pm = 0.1. The maximum generation is 30.
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Figure 4.8: Layout of target trajectories and radar deployment
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Table 4.2: Worst-case PCRLB (m)

Frame 2 3 4 5 6 7

NSGA-II 47.4 45.4 40.1 39.7 40.8 43.2
GA-GS 40.9 34.3 29.8 26.5 28.8 31.3

FPS 633.5 633.3 632.9 633.0 47.6 43.4
FW 1792.9 1414.2 1414.2 1266.2 641.7 106.9

The population stops evolving if no improvement in individual fitness is found within

the next five generations.

The two proposed strategies, NSGA-II and GA-GS, and compared with the fol-

lowing two simple strategies:

1.Fixed PRF Scheme (FPS): When the surveillance starts, the system optimizes

the PRF scheme τ1 to minimize the total blind rate. The system will keep using this

PRF scheme throughout the tracking process, whether or not any target falls into the

blind zone. Each time step, the system will optimize the waveform parameter Ωk to

minimize the worst-case PCRLB.

2.Fixed Waveform Parameter (FW): Every radar selects an optimal waveform

parameter from the library and uses it throughout the surveillance. Each time step,

the system will adapt the PRF scheme accordingly by preventing targets from falling

into blind zones.

All the results are averaged over 100 Monte Carlo runs.

4.4.1 Performance of Different JPSSWD Strategies

The worst-case PCRLB obtained by four strategies is shown in Fig.4.9. Table 4.2

gives selected results from intervals 2 to 7.

It can be seen that the two proposed algorithms offer better performance than the
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Figure 4.9: Worst-case PCRLB obtained with different strategies
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Table 4.3: Blind zone rate

Strategy NSGA-II GA-GS FPS FW

Blind zone rate (%) 13.41 14.08 13.09 13.67

other two simple strategies. It is noteworthy that the PCRLBs obtained with the FW

strategy remain relatively high, especially in the first 10 intervals. That is because

the FW does not optimize waveform parameters and uses the same configuration

throughout the entire surveillance, which yields the impact of waveform optimization

in the context of target tracking.

Table 4.3 gives the average blind zone rate during the 30 tracking intervals and

Table 4.4 gives the average tracking lost. Note that only missed detections due to

imperfect measurement or blind zones are counted as lost track; those that result

from task assignment are not counted. For example, if target 1 is not assigned to any

radar nodes at time step 2, then it’s not a lost track; target 3, however, is tracked

by radar 1, but falls into its blind zone, and thus no measurement is obtained, then

target 3 is a lost track at that time step.

Results show that the GA-GS strategy has slightly larger blind zone rates than

the others, but has a significantly reduced tracking loss. That’s because the GA-GS

adds a large penalty value to the objective if any target falls into the blind zone.

The GA-GS strategy successfully avoids tracking loss due to radar blindness, at a

small cost of global blind rate. The FPS strategy has the lowest blind rate because

it selects the optimal PRF scheme at the beginning of the surveillance and does not

adapt accordingly. Its high tracking loss rate indicates it is not a feasible strategy in

target tracking.
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Table 4.4: Track lost

Strategy NSGA-II GA-GS FPS FW

Track lost (%) 31.33 19.08 38.67 37.33

RMSEk =

 1

NMC

√√√√NMC∑
j=1

max
q

[(
xkq − x̂

k,j
q

)2
+
(
ykq − ŷ

k,j
q

)2] (4.4.1)

4.4.2 Evaluation of the IMM-UKF Tracker

The result of the optimization problem only gives a theoretically achievable optimum.

In practice, however, the actual tracking accuracy is more important to the system.

Therefore, the tracking performance of the IMM-UKF is compared with different

JPSSWD strategies applied.

The performance of the multitarget tracker is evaluated by the worst-case root

mean squared error (RMSE).

The worst-case RMSE obtained with different JPSSWD strategies are shown in

Fig.4.10 and the RMSE values at selected time steps are given in Table 4.5.

It can be seen that, consistent with the theoretical PCRLB value, systems with

relatively lower PCRLB offer smaller RMSE and, hence, better tracking accuracy.

There are increments in RMSE during the initial few time intervals. That is

because the number of radars is smaller than the number of targets and there are

always targets that are not being tracked. The state and covariance of those targets

are simply predicted and the errors accumulate due to the noise of their motion

models. Since we use worst-case RMSE as a performance metric, the increments

come from those targets that are not tracked.
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Figure 4.10: Worst-case RMSE obtained with different strategies

Table 4.5: Worst-case RMSE (m)

Frame 2 3 4 5 6 7

NSGA-II 177.8 149.2 52.5 46.2 51.9 48.1
GA-GS 103.1 77.5 61.7 55.3 68.2 76.7

FPS 1271.5 1285.5 1304.4 1327.6 60.5 51.5
FW 2841.2 2871.5 2914.7 1396.4 432.9 293.2
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4.5 Conclusion

A joint PRF selection and waveform design problem for cooperative pulsed Doppler

radars was addressed. The primary objective of the problem is to jointly maintain

a high tracking accuracy and high detection ability by simultaneously optimizing

several radar burst parameters, including PRF scheme, waveform bandwidth, and

pulse width. Two different formulations and corresponding solutions are proposed.

The bi-objective formulation is solved by an NSGA-II and the two-step formulation

is solved by a GA-GS algorithm. Numerical results illustrate the effectiveness of the

proposed strategies.

It is shown that genetic algorithms and methods based on it offer quick and feasible

solutions for NP-hard problems.
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Chapter 5

Conclusions and Future Works

5.1 Conclusions

PCRLB-based resource management algorithms for multisensor-multitarget tracking

were studied in this thesis. PCRLB, which gives a theoretically achievable lower

bound on the mean squared error for any unbiased estimator, is used as the perfor-

mance metric to minimize in the context of multisensor-multitarget tracking.

First, a joint path planning and power allocation in a multistatic radar system is

addressed. The coordination and management of both receivers and transmitters over

a finite time horizon are considered and formulated into a weighted-sum optimization

problem. A modified GA with a custom pre-selection operator is used to solve the

nonconvex problem. The pre-selection operator can improve the distribution of the

population and accelerate the algorithm.

Next, an adaptive beam scheduling problem for accurate tracking with pencil-

beams is studied. Pencil-beams, with narrow beamwidth and concentrated power,

offer efficient high-precision tracking performance but can cause partial observations.
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The concept of EPCRLB is proposed and used as a criterion to optimize. An open-

loop linear wipe strategy that uses PCRLB as the criterion and the optimal strategy

that uses EPCRLB are proposed and compared. A HGA is used as part of the open-

loop linear wipe beam scheduler to solve the optimization problem. Results show

that both strategies offer better performance but the optimal scheduler, which takes

advantage of the EPCRLB to guide the steering of beams, is a quicker and more

efficient strategy.

Finally, a joint PRF set selection and waveform design problem is discussed. To

resolve range and Doppler ambiguities and avoid radar blindness, two formulations

and corresponding solution methodologies are developed. Numerical simulations are

conducted to illustrate the performance and advantages of the proposed strategies.

5.2 Future Works

In the research of radar resource management, there are always more aspects to

explore. Integrated and comprehensive resource management in the context of target

tracking and detection has been a trend in any resource-aware radar system. For

future research, this thesis can be extended in the following ways:

1. Detection capability enhancement: This thesis focuses on the scenario of target

tracking, while target detection is also an important problem to address [52, 15].

The mathematical models of the relations between target detection ability and

radar parameters or resources can be explored in depth. The performance

metrics for detection can be utilized alone, or jointly considered with metrics

for target tracking to formulate a multi-objective optimization problem. It is a

133

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


Ph.D. Thesis – A. Deng; McMaster University – Electrical and Computer Engineering

prospective fashion to extend the research in Chapter 3 by considering target

detection with fan-beams.

2. Resource management in multi-functional radar: Phased array radars have

shown potential in performing various kinds of tasks [49, 50] and related re-

source management problems are worth addressing. Research can be continued

for radar systems that execute missions of different priorities and/or types.

Task prioritization or scheduling can also be incorporated into these resource

management problems.

3. Comprehensive burst parameter design and beamforming: In Chapter 4, as

in the literature, only limited types of waveform parameters are studied and

then optimized to improve system performance [55, 39, 44]. More detailed and

more accurate mathematical descriptions between waveform parameters and

system performance metrics can be studied, and hence, used to support more

comprehensive and effective resource management optimizations.
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