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ABSTRACT

The bending and springback behaviors of DP780 and DP980 were
investigated using experiments, analytical models, and FEA. An FEA study using
3D shells was first performed of the work by Queener and DeAngelis (1968) and
demonstrated that the 3D shell element behavior in bending and springback, is
similar to that from simple bending theory.

Experimental and FE studies were then performed using DP780 and
DP980 steels under simple and general bending conditions. Simple bending
conditions were studied in V-die bending. General bending was studied for
DP780 using a commercial bending machine. The FEA examined the effect of
element formulation and material hardening assumptions on springback, bending
stresses, and the residual stress distributions after springback. Corresponding
simple and general bending analytical models were also compared. The simple
bending model was from Queener and DeAngelis (1968), and the general bending
model was from Tan et al. (1995), modified for Ludwig hardening.

Overall, the FEA predicted the springback magnitude in the order; 2D
continuum >3D continuum > 3D shells, and kinematic hardening > mixed
hardening> isotropic hardening.

In the V-die bending study the 3D shell FEA, using a calibrated mixed
hardening assumption, produced the most accurate results. The FEA using pure

isotropic hardening demonstrated that bending and springback behaviors for both
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steels were consistent with that described by simple bending theory. The
behaviors demonstrated by the FEA using mixed or pure kinematic hardening
were not.

In the general bending study, the 3D continuum element FEA using pure
kinematic hardening was the most accurate. The 3D continuum element FEA
captured the bending stress interaction with the hardening assumption as well as
thinning deformation, in agreement with the analytical model and thinning
measured experimentally. 3D Shell elements could not capture these behaviors
and significantly under-predicted springback under the pure isotropic hardening

assumption.
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Master Thesis - T. Lim, McMaster University Mechanical Engineering

CHAPTER 1
INTRODUCTION

Net shape sheet metal forming is challenging because of the phenomenon
of springback. Springback is an elastic recovery process resulting in a shape
change, due to the removal of tooling forces. Springback guidelines for a variety
of materials are generally available for process engineers, but they are at best,
estimates for the expected springback (Eary and Reid, 1974; Frank et al., 1985).
Currently, compensating for springback is a costly and often time-consuming
process, consisting of trial and error. To reduce die tryout costs, and save time,
recent efforts in the automotive sheet metal forming industry have been focusing
on the use of finite element analysis (FEA) methods to predict springback, and to
use these results for die compensation. Die compensation is an FEA technique in
which the predicted springback is used to alter the original die geometry in order
to design tooling capable of manufacturing near net shape stampings. Accurate

springback predictions using FEA are therefore important.

A major challenge in sheet metal forming and springback FEA is the
accurate modeling of material behaviors, especially for the new advanced high
strength steel (AHSS) grades such as the Dual Phase (DP) steels. DP steels exhibit
unique behaviors such as, high initial work hardening, good energy absorption at
strain rates above 250 sec”', non-linear elasticity during springback, and
pronounced Bauschinger effect. The American Iron and steel Institute (AISI) has

stated that the FEA of springback in stampings of DP steels is currently not
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accurate enough to be used as a production tool. Two issues have been identified
that affect the accuracy of the springback FEA. The first is the accurate modeling
of isotropic, mixed isotropic, and kinematic hardening behaviors. The second is
that the 3D shell element fails to properly capture the forming and residual
stresses, when the radius to thickness ratio (Rp/t) is small (AISI, 2006). Despite
this, the 3D shell element is currently the recommended element for the FEA of

forming and springback, using LSDYNA3D (Maker and Zhu, 2001).

Pure bending deformation has different kinematics, depending if bending
occurs under simple (large radius) or general bending (small radius) conditions. In
DP steels, the interaction of material hardening assumption with the kinematics of
bending has not been studied. Further, the ability of a given element formulation
to capture this interaction, as well as the effect on the accuracy of the springback

from the FEA, has not been reported in the peer reviewed literature.

The objective of this thesis is to therefore examine bending and springback
behaviors for two DP steels, DP780 and DP980, and to compare FEA results from
separate models using 2D and 3D continuum elements, as well as 3D shells, for
the blank. The behaviors of the various element formulations under simple and
general bending conditions, and as a function of the hardening assumption, were
therefore studied. Experiments were performed under simple bending conditions
using a laboratory V-die, and for general bending using a commercial bending
machine. Analytical and FEA models were both used to model the experiments,

and all results were then compared. The FEA, in conjunction with the analytical
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models, were used to investigate the interaction of the hardening assumption on
the bending and residual stresses, as well as the effect on the accuracy of

springback from the FEA.

This thesis is divided into 9 Chapters. Chapter 1 contains an introduction
to the work. Chapters 2-4 review existing literature as applied to the
understanding of bending and springback, as well as an overview of DP steels.
Chapter 2 reviews simple and general bending theories, from which closed form
solutions are shown for large radius (simple bending conditions) and small radius
bending (general bending conditions ) respectively. Chapter 3 is a literature
review examining past and current understanding of plane strain bending and

springback. In Chapter 4, general principles of non-linear FEA are reviewed.

Original work for this thesis is presented in Chapters 5-10. In Chapter 5,
analytical and numerical procedures were developed that were used to model
bending and springback for large radius and small radius bending. Regarding
general bending, the original work in chapter 5 is in the modification of the
general bending model by Tan et al., (2005) incorporating Ludwig work
hardening and the pure isotropic hardening assumption. Chapter 6 describes the
experimental aspects of this work. It describes the material characterization
activities and aspects of the bending experiments performed. Chapter 7 outlines
the development of FEA models used to model the bending and springback of the
DP steels on a laboratory V-die, and a commercial bending machine. In Chapter
8, experimental, analytical and FEA results are presented and discussed, in order
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to gain new insights into the bending and springback behaviors of these DP steels,
and the limitations of FEA and analytical methods to predict bending stresses and
springback. In Chapter 9, findings are summarized and conclusions are drawn

from the work performed.
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CHAPTER 2
SIMPLE AND GENERAL BENDING THEORY

2.1 Simple bending theory

In the bending of a wide sheet over a punch radius, the development of
longitudinal bending stresses results in an internal bending moment. Springback is
the release of the internal bending moment which manifest as a shape change. For
simple bending conditions, assumptions regarding the mechanics of deformation
(loading) and springback (unloading) are generally used to simplify the
development of closed form solutions. These assumptions are summarized below
for a wide blank bent to a given radius (Queener and De Angelis 1968; Wang,

1993; Marciniak et al., 2002).

1. Plane sections remain plane during bending.

2. The magnitude of the bending strain in a given bending fiber is

proportional to the distance from the neutral axis.
3. The mid-surface is the neutral surface, and does not shift during bending.
4. There is no thinning of the sheet.
5. There are no axial or torsion forces present.

6. The bending curvature is such that the specimen conforms exactly to the

bending tools used.

7. Work hardening of the blank material can be described by an analytical
hardening law, and deformation theory is used to determine the final

bending stresses-strains in the bent sheet.



Master Thesis - T. Lim, McMaster University Mechanical Engineering

8. The blank width to thickness ratio is sufficiently large such that transverse

strains are zero (i.e., plane strain bending).

9. The blank material is isotropic and behaves according to Von Mises

criterion, having the same stress strain curve in tension and compression.
10. Unloading or springack is linear elastic.

The assumptions for simple bending are generally applicable to bending
conditions in which the ratio of Ry/t is greater than 4 to 5 (Wang, 1993;
Marciniak et al., 2002). Under these conditions transverse (radial stresses), as well
as shear stresses are negligible compared to the bending stresses. Pure bending
conditions also imply the absence of torsion or axial forces. Axial tension has the

effect of shifting the neutral axis towards the tooling surface.

2.1.1 Mechanics of simple bending and springback (Marciniak, 2002)

The geometry of simple bending is shown schematically in Error! Reference
source not found.. Bending results in extension and compression of fibers above
and below the neutral axis respectively. The neutral axis does not change in length
and is the reference length in the determination of the through-thickness bending

strain distribution. The engineering strain in fiber A’B’, a distance “y” above the

neutral axis is given by Eq. 1.

Loy =l _OR,+Y)-R,EO_y
Ls R6 R

m

e =

Eq. 1

Since plane sections remain plane, the strain distribution is linear through the
thickness reaching maximum tension-compression on the outside and inside fibers

respectively (Eq. 2).
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_+(t12)
emax/min - R Eq 2

m

The true bending strain is given by Eq. 3.

Lyg y
€ =In(2&)=In(1+—=
. (l ) =In( R)

AB 'm

Eq. 3

The maximum-minimum true bending strains at the outermost fibers are
given by Eq. 4. The true bending strain distribution is actually non-linear;

however, for small ratios of y/Ry, the true bending strain is linear, approximately

equivalent to the engineering strain.

t/2
— .4
R ) Eq

i

auter bending fiber / R
ot m
Neutrol fibee /S
/ Vi o Ri
A
A B A’ B/
ol .\ i

inner bending fiher

€. =+In(l+

Figure 2.1 Geometry of simple bending
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2.1.2 Bending stresses and work hardening

Bending stresses develop in response to bending strains. The assumption
in simple bending is that the mid-surface is also the neutral surface, and that there
is no net tension in the sheet. This necessarily restricts the stress distribution to be

anti-symmetric about the neutral axis. This can be seen from Eq. 5.
Tension = (j[o-xdx +”Jg0'xdx =0 Eq.5
-2 0

Bending stresses develop from the work hardening of the material during
bending. In modeling work hardening, researchers have assumed analytical
hardening laws such as Hollomon or Swift hardening (Queener and De Angelis,
1968; Hosford and Cadell, 1993; Wang et al., 1993; Tseng et al., 1994; Marciniak
et al., 2002). The determination of bending stresses allows for the determination

of the internal bending moment at the end of bending, and also springback due to

elastic unloading.

Analytical expressions for the internal bending stress distribution and
bending moment assume the application of a pure moment couple (i.e., pure
moment bending) that balances the internal bending moment. Three approaches
have been used to develop analytical equations for bending stresses and the
internal bending moment. These are; plastic bending only in which the elastic
portion of the hardening curve is ignored, elastic-plastic bending, and elastic-

plastic bending using true strain (Queener and De Angelis, 1968; Wang et al.,
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1993; Tseng et al., 1994). A comparison between the plastic and elastic-plastic

bending approaches is shown in Figure 2.2.

2.1.3 Plastic bending

In plastic bending, a hardening law is assumed and the elastic portion of the work
hardening curve is ignored. Work hardening in bending is also assumed to occur
under a state of plane strain. For Hollomon hardening and assuming (Eq. 6), the
plane strain deformation is related to the uni-axial state through Eq. 7, assuming

Von Mises criterion.

o=kt Eq. 6

1/2 1/2
o, =(§) o, & =(%) £ Eq.7

From Eq. 7, the bending stress distribution through the thickness and the resulting

internal bending moment is given by Eqgs. 8 and 9 respectively.

4 (n+1)/2 n
o =H=| KL Eq. 8
3 R,
/2 4)(n+l)/2 k (f )n+2
M =2 \o,ydy =2 — —_—| = Eq. 9



Master Thesis - T. Lim, McMaster University Mechanical Engineering

Plastic Bending Elastic/plastic

Bending
3k
Elaglic core Y
9 - v
B a A
| M x}h %
] " /———\, M }
T \)' o
>\ A
‘v“\ [
' Y
P | -
!
€ =+}/R‘N Gy \7 = +t/2 €y
e BEAE I
wwwwwwwwwwwwwwwww g b€
. - ,)5

CvR y =12

Figure 2.2 Schematic comparison of developed bending stresses assuming
pure plastic bending (left) and elastic-plastic bending (right) in
conjunction with an analytical hardening law such as Hollomon
hardening. The bending fiber separating the elastic and plastic
regions is at the position y* relative to the neutral axis. Note that
Rn=Rp.

2.1.4 Elastic-plastic bending

In elastic-plastic bending, the total bending moment is determined by
elastic and plastic regions of the work hardening curve. The elastic contribution is
based solely on bending stresses less than or equal to the plane strain elastic limit
for the material. In the elastic region, the bending stresses are given by Eq. 10,
where y is the distance from neutral axis to the elastic-plastic interface (Figure
2.2), and g1y is the yield strain in plane strain. The plastic contribution is given by

Eq. 8 for bending strains beyond the plane strain elastic limit.

10
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E _|y|_ E
(1—V2)|Rm|_i(1_vz)l€1yl Egq. 10

o, =+

Assuming Hollomon work hardening and Von Mises criterion, there is a
discontinuity in the bending stress-strain distribution at the bending fiber
corresponding to the position y* in Figure 2.2. This discontinuity arises from the
difference between elastic and plastic theories, in defining the plane strain yield
limit (Queener and De Angelis, 1968). This is due to the change in the Poisson’s
ratio from = 0.3 (for steel) in the elastic region to 0.5 in the plastic region. The
yield strain in uni-axial tension is given by Eq. 11. From plastic theory, the plane
strain yield strain is given by Eq. 12. Using elastic theory, it is given by Eq. 13.

_ k 1/(1-n)
Sy = (EJ Eq 11

1/(1~n)
£, = (£J ﬁ Eq. 12

E 2
k)l/(l—n) (1—V2)
g, =|~| —XL Eq. 13
" (E Nl—v +v? 1

Plastic theory predicts a yield strain that is approximately 15% greater than elastic
theory and this problem has been addressed by simply extending the elastic stress-
strain distribution to the distribution given by plastic bending in Eq. 8 (Soldaat,

1985).

Assuming Hollomon hardening, the elastic and plastic components of the
bending moment are given by Tseng et al., 1996, in Egs. 14 and 15 respectively

(see also Figure 2.2). The total bending moment is therefore given by Eq. 16.
11
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vt
s E 2 FE 2 3
M, =2 dy=— R .14
e Jh_vzisly y 3 (l_vzj( m) 6'l_v Eq 1

t12 t2 (n+1)/2 y
M,=2[o,ydy=2 j(—] k=)' ydy

3
A\ w 2 | (12)" Ee- 13
=9 = 'm e _8n+2
2(3) (n+2) (RJ
M, =M,+M, Eq. 16

2.1.5 Elastic-plastic bending using true bending strain

At the Rpy/t ratio of 4-5, the engineering strain is approximately .10-.12. At these
levels, the difference between engineering strain and true strain can be significant.
Wang et al., 1993, developed an expression for the maximum bending moment
using the true bending strain using the Swift hardening law. If Hollomon
hardening is used instead, the elastic bending moment is still given by Eq. 14, and
the plastic bending moment is given by Eq. 17. As before, the total bending

moment is the sum of elastic and plastic components given by Eq. 16.

A
8l=ln[l+;], 0-1=2k(§J £

n+l

4 THZ
M,= Zk(g) &'ydy,

.

‘ Y 2 -1 12 Y™

=% =|" 2N | ——— || In+=>)| - .
ey .r_(,[ﬂwm((m )" H B 17

12
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2.1.6 Elastic-plastic bending close to the plane strain yield limit

Previously, the equations used to determine the internal bending stresses
and moments assumed that the material work hardened according to a Hollomon
hardening law. Hollomon hardening does not provide a good fit to most materials
at small bending strains (Marciniak et al., 2002). Sidebottom and Gebhardt (1979)
showed that modeling hardening using a piece-wise linear curve from
experimental tensile tests significantly increased the accuracy of the predicted
springback, and therefore the internal bending moment, however, only at low
bending curvatures. In light of these results, the work in this thesis also
investigated piece-wise linear work hardening as applied to the experimental DP

steels. Details of this method are described in Chapter 5.

2.1.7 Springback in simple bending

Springback is an elastic recovery process causing a decrease in the radius
of curvature from the initial (formed) state to the final (sprung) state (Figure 2.3).
The relative springback is given by d@/8, where d@is the change in springback

angle and @; is the bend angle before springback. In this definition, @j is the

angle of wrap of the blank around the punch radius as shown in Figure 2.4.

13
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Figure 2.3 Schematic showing a decrease in curvature with springback.
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Figure 2.4 Nomenclature to describe springback in terms of the relative
springback in relation to the usual experimentally measured angles.

14
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In terms of V-die and small radius bending, the usual experimental angles
before and after springback (i.e., 6; and O¢) are shown in Figure 2.3-2.4. The
relative springback measure used in this thesis is determined from the
experimentally measured angles, as shown in Figure 2.4. The advantage of this
measure is that the relative springback can be directly related to the springback
ratio K, which is the ratio of the initial bending curvature to the final bending

curvature, using Eq. 19.

Analytically, springback is treated by applying an equal but opposite
elastic moment to the blank, resulting in unloading to zero net bending moment.
The unloading sequence is shown schematically in Figure 2.5. Springback is

treated using the equations from Queener and DeAngelis (1968) in Egs. 18-21.

M _ 2E (LI: M,
o0(/R,) 31-v»)\2) (1/R,-1/R.) Eq. 18
KS: —d—eer,”
¢ R, Eq. 19
2
K,=1-M,2"V)p.
Et Eq. 20
de 121-v?)
__.=M—
6 ' Er R Egq. 21

From the equations above, springback increases with increasing internal
bending moment, bend radius, strength coefficient, and n-value. Springback also

increases with decreasing Elastic modulus, and blank thickness. From Eq. 19, a

15
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larger magnitude for K, indicates less springback. In Eq. 21, a larger magnitude
for the relative springback indicates more springback.

After springback, the bending stresses are re-distributed, due to the release
of the elastic moment, with surface and near surface bending fibers undergoing a
reversal of stress from tension to compression. An analytical expression for the
residual stress after plastic bending as a function of position through the specimen
thickness is shown in Eq. 22 , assuming Hollomon work hardening. In this
equation y refers to the distance from the neutral surface to the top and bottom
surfaces (y= % t/2), where t is the blank thickness. The first and second terms on
the right side of Eq. 22 represent the stress distribution at the end of bending and
after elastic unloading respectively. The elastic unloading moment is equal in

magnitude but opposite in sign to the bending moment in the loaded state.

=
[}
£
]
=
(@)]
£
©
S Slope:
@ §

oM 2E [ 1 j i

A/R,) 30-vH2)
I/R;:I 1/R,.:"/)ringhuck I/R'I:Ieml
Bending curvature
Figure 2.5 Schematic of the moment curvature relationships for bending and

the unloading sequence during springback (adapted from Queener
and DeAngelis 1968).

16
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A DAY [ M, Eq. 22
o-residual(y)_i[3] k[R ) I:Z(Z/Z)E! (y)] 9.

m

2.2 General bending theory (from Tan et al., 1995)

General bending theory is used in small radius bending and the
assumptions for simple bending theory do not apply. The nomenclature for
general bending is shown in Figure 2.6, for the case of plane strain bending with a
pure moment load. Also shown are three distinct zones through the thickness.
Each zone has different deformation characteristics as bending progresses. Zone I
is bounded by the unstretched surface and outer surface bending fibers. In this
zone bending deformation is tensile. Zone II is bounded by the neutral surface and
the surface at the inside bending radius. In this zone, bending deformation is
compressive. Zone III is bounded by the unstretched surface and neutral surface
fiber. This zone represents bending fibers that were prestrained in compression
and undergo reverse loading into tension due to neutral axis shifting. The
unstretched surface fiber is between the mid surface and neutral surface and
represents the bending fiber that has a zero net strain. The predicted bending
stresses in Zone III will, therefore, depend on whether or not deformation is
modeled using isotropic or kinematic hardening. The application of isotropic and
kinematic hardening in this bending zone will be explained further in this section.

General bending is therefore a complex forming process and different

regions though the thickness experience, tension, compression, and compression —

17
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tension deformation. There are non-linear geometric effects to consider such as

neutral axis shifting towards the inside bend radius, and thinning deformation.

R o il

X R
,T
Zone |
Rm
|| R
M \ | M
\\\\ \, Rn
} X Rkl % 1 Ny | 4
e L
oy ) Zone Il
N\ \ | Zone I
e \\ \ \
V\\ ‘\\ '\. 1
X \\ '\,\
“\\|/ // 6
\‘;\l\\‘
v
Figure 2.6 Nomenclature and deformation zones in general bending (from
Tan et al., 1995).
2.3

Stress distribution
Using the convention from Tan et al. (1995), the principle stresses in small
radius bending are designated by o, in the tangential direction, o, in the radial

direction, and G, in the transverse direction (z direction). The radial stress is

continuous through the different thickness zones from Figure 2.6, having a value

of zero at the free surfaces.

The governing differential equations for general bending can be found

considering the state of equilibrium, as shown for the element in Figure 2.7. The

resulting governing differential equation for general bending is then given by Eq.
23.

18
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Figure 2.7 Stresses acting on a small volume element for small radius plane
strain bending using a pure bending moment load.

d
r—o,=0,-0 Eq. 23

dr

r

Eq. 23 can be written as Eq. 24 (Proska 1959), to describe bending in terms of the

key geometric parameters (Eqgs. 25-27).

— 12 R R.
dn:_n(l K /4_1): n( , ,_lj s

dxe  2x\ n’p’ 2k R

n

Relative KZZ/RN :(Ry _R)/Rm Eq 25

curvature

Thinning

from n=tlt, Eq. 26
bending

Relative

curvature of .
the neutral =i, /R, Eq. 27

surface
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Egs. 23-24 describe the stress distribution and the geometry of general bending
respectively, where the geometric variables are described in Eqs. 25-27. In terms
of the geometry of bending, the progression of bending is measured by the
relative bending curvature, k. As bending curvature, K, increases, the progression

of neutral axis shifting is determined by p, and the thinning deformation is

determined by the variable n.

The modeling of deformation using kinematic or isotropic hardening is
important in Zone III. With increasing bending curvature, fibers that are
prestrained in compression are eventually overtaken by the neutral surface and are
then re-loaded in tension. For isotropic hardening, the cycle of loading and re-
loading causes the yield surface to continually expand as shown in Figure 2.8. For
kinematic hardening, the yield surface is translated resulting in the Baushinger
affect as shown in Figure 2.9. Considering plastic deformation and Ludwig work
hardening (Eq. 28), for pure isotropic hardening, the magnitude of the forward
and reverse stress is equal (Eq. 29). The relationship between the forward and
reverse stress under kinematic hardening is given by Eq. 30. For pure kinematic
hardening, the substitution Ludwig’s hardening equation for the forward stress

into Eq. 30 yields Eq. 31.

c=0,+k (e, )" Eq. 28

O,

reverse |

Io.forward Eq 29
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Figure 2.8 Pure isotropic hardening behavior showing expansion of the yield
surface (left) with forward and reverse loading in uni-axial tension.
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Figure 2.9 Pure kinematic hardening behavior showing translation of the yield
surface (left) with forward and reverse loading in uni-axial tension.

Ludwig work hardening in the three bending zones can be incorporated

into the governing differential equation for bending (Eq. 23). From the Levy-Mise
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flow rule, assuming Von Mises criterion, and using ¢, =0 for plane strain

bending, Eq. 23 can be written as Eq. 32 (Appendix A).

rdid, =C[0'0 + k(Cee)"Ll where C =2/~3 Eq. 32
r

To account for the different hardening characteristics in each bending
zone, Eq. 32 is parameterized across the three bending zones with different forms
of the plane strain Ludwig hardening equation. Using the definition of the true
bending strain (Eq. 33), and considering that the bending fibers in Zones I and II
undergo tension and compression respectively, the differential equations for
bending in Zones I and II, incorporating Ludwig hardening are given by Eq. 34

and Eq. 35 respectively.

,
gazln—— Eq. 33
R,
r2 6 =clo +il cml- - Eq. 34
dr r 0 Ru q'
rdg = C{0'0+k[Cln§—L-t-) } Eq. 35
dr r

Eq. 34 also applies to Zone III for isotropic hardening, as fibres
prestrained in compression are re-loaded in tension and the forward flow stress is
equal in magnitude to the reverse flow stress (similar to Eq. 29). In contrast, under
pure kinematic hardening, fibres that are re-loaded in tension after being

prestrained in compression will have a flow stress that is less in magnitude,
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compared to that for the pure isotropic hardening case. Under pure kinematic

hardening, the concepts from Eq. 31 are applied, resulting in Eq. 36.

To solve for the bending stresses, Eqs. 34-36 are integrated and the
boundary conditions in Eqs. 37-39 are applied. The resulting expressions for the
bending stresses are given by Egs. 40-44. The governing differential equations for
general bending (Eq. 24) can be written as Eqgs. 45-47. These equations can be
solved numerically, yielding 7}, 0 as a function of & . In determining this, the
bending stresses for both pure isotropic and kinematic hardening assumptions can

be found. Examples showing the calculation of the bending stresses, using

MATHCAD sheets, are shown in Appendix D.

rLo =C{0'0 —k[cmij } Eq. 36
dr R,
o,(Zonel),_,, =0,(Zonell)|, ., =0 Eq. 37
o,(Zonel),_, =0,(Zonell)_,, Eq. 38
o, (ZoneII)I eein = Or (ZoneIII)I R Eq. 39
R R ny+1 ny 7
o.(Zonel)=—kl| In=>—-In— |-k2|[ =~ | —|m-= Eq. 40
R, R, R, R,
R R R np+l R ny +l T
o;(ZoneII)zkl[ln—"—ln ")—kZ[[ln J -(m J Eq. 41
r R, R, r
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ny+ R ny+l
Pure ) o, (Zonelll) =kl ln&—ln& —k2, (In&) +|In—= Eq. 42
1sotropic R, r r R

hardening

ny +| ny+l
Pure R, | R RY™ (R

. . 0,(Zone Il =—k1| In—L-In— |-k2|| In—= —{In— Eq. 43
kinematic (Zone D ( " R, r J [[ R, R, d
hardening

n

0'3=r£'-0',+0'r Eq. 44
dr
41 (exp(~A)-1) Eq. 45
dx 2k
Pure k2 1 ny+l 1+x/2 ny+l ny+1
isotropic A=-k—1{(- 2)“{;} —ln( 77/ ] +1n(£{/—zj Eq. 46
hardening
Pure k2 1+ x/2 n;+l n+
kinematic A=',;l‘[1“( 77/ J + 1“(:%/—2] Eq. 47
hardening
kl=Ca, Eq. 48
k CnL+l
2=—L
k n 1 Eq. 49

A complete derivation of the differential equations is given in Appendix A, and
the numerical procedure for solving them is described in Chapter 5 and Appendix

B.

The solution to the general bending equations has been presented by Tan
et al, (1995) for steel and aluminum. An example of their solution gives insights
to the characteristics of general bending for the case of pure isotropic and pure
kinematic hardening (Figure 2.10-2.11). General bending allows for neutral axis

shifting, in contrast to simple bending. The bending stress distributions in Zone I
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show a maximum at the surface fibres for the tensile portion of the bend. For the
compression side (Zone II), the largest compressive bending stress is not at the
innermost bending fibre, as it is for simple bending. The general bending model
also shows increasing thinning deformation and neutral axis shifting, with
increasing bending curvature. Thinning and neutral axis shifting is more
pronounced for bending under pure kinematic hardening, compared to pure
isotropic hardening. This is in contrast to simple bending theory in which thinning

and neutral axis shifting is assumed to be negligible.

2.2.2 Bending moment and springback in general bending

The bending moment in general bending is given by Eq. 50. In this thesis
springback after general bending was assumed to occur through elastic unloading
of the bending fibres, similar to that in simple bending theory. An elastic
unloading moment is mathematically applied to the total bending moment, as in
the case shown for Eq. 22. Springback is then a function of the internal bending
moment at the end of bending, and the cross- section properties, specifically
thickness of the blank at the end of bending. For the general bending model
presented here, material thinning, and internal bending moment at the end of
bending depends on the bending curvature and hardening assumption (i.e. pure

isotropic and kinematic hardening).

RY Rn Ru
M= Idgrdr+ J'O',,rdr+ jdardr Eq. 50
Ra RI Rn
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DP steels sheets are known to have pronounced Baushinger effect,
compared to conventional steels, and the general bending behavior is therefore an
important consideration in the determination of springback. Other considerations

important to springback as well as work by other researchers are reviewed in

Chapter 3.
Hardening of fibers Softening of fibers
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compression compression
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Figure 2.10  General bending under pure isotropic and kinematic hardening for
an aluminum alloy (from Tan et al., 1995).
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Figure 2.11  The geometry of bending (vis a vie Eq. 24) with increased bending
curvature for the same aluminum alloy from Figure 2.10 (from Tan
et al., 1995).
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CHAPTER 3
LITERATURE REVIEW

3.1 Overview of advanced high strength steels (IIS1, 2003)

Advanced high strength steels are being increasingly used in automotive
applications such as automotive underbody, structural, and body panels, as a
replacement for mild steel or micro-alloyed high strength low allow steels
(HSLA). The motivation for the utilization of these steels is the ability to save
weights because of superior energy absorption in impact events, higher tensile
strength compared to traditional steel grades, and good formability. This allows
material substitutions at lower thicknesses (gauge), especially between DP and
HSLA steels in structural parts. A comparison of steel grades and properties in
terms of tensile strength and total elongation highlights these substitution

opportunities and as shown in Figure 3.1.

AHSS steel grades are classified in terms of their microstuctural
composition, and on their physical behavior. In DP steels, the main
microstructural constituents are ferrite phase and a varying volume fraction of
martensite phase. Variations in the microstructures exist as many times
intermediate complex phases such as bainite can also be present as a constituent
phase. Complex phase (CP) steels have a microstructure composed primarily of
ferrite and transformation products such as bainite and martensite, as well as fine
precipitates that contribute to hardening. Martensitic (Mart) steels have a
microstructure that is almost entirely martensite. Transformation induced

plasticity steels (TRIP) have a microstructure primarily composed of ferrite,
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retained meta-stable austenite and bainite. TRIP steels have unique behaviors in
that the retained austenite transforms during deformation, resulting in higher work
hardening at higher strain levels (compared to DP steels). The two DP steels
studied in this thesis are DP780 and DP980, and are, therefore, emphasized in the

sections below.

70 | LOW STRENGTH E ULTRA HIGH STRENGTH
STEELS (<270MPa) | STEELS (>700MPa)
60 T T ; T T T pp—
o8 :
< 50 P o
S /() CONVENTIONAL HSS
o E O AHss
o 30 <\
w
‘g 20
" 10
0 H ;
0 300 600 900 1200 1700
Tensile Strength (MPa)
Figure 3.1 Overview of tensile properties of AHSS's in relation to other
grades, showing potential material substitution opportunities (IISI,
2003)

3.1.1 Dual phase steels work hardening characteristics (IISI, 2003)

The microstructure of DP steels result in unique behaviors during forming,
in terms of strength and work hardening. The control of tensile strength is
determined by the volume fraction of marteniste in the ferrite matrix, with higher
fraction martensite resulting in higher tensile strength. During initial deformation,
strain is localized in the softer ferrite phase resulting in high initial work

hardening compared to say high strength low allow (HSLA) steels. The high
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initial work hardening benefits forming applications by reducing strain gradients
at embossments or bends. Figure 3.2 -Figure 3.4 illustrate high initial work
hardening through the instantaneous “n” values, or work hardening index from
Hollomon’s law. In these figures, DP800 and DP980 are compared to

* conventional high strength steels. The combination of high initial work hardening
and high tensile strength has a significant impact on forming loads and springback
compared to conventional steels, with the result being larger press tonnage
requirements (Fekete, 2006) and more springback (Fekete, 2008), as shown in the

example in Figure 3.5.
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Figure 3.2 Instantaneous “n” values measured in a tensile test, according to
ASTM ES8, for DP800 (from Sadagopan, 2003).
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Figure 3.3 Instantaneous “n” values measured in a tensile test, according to
ASTM ES8, for DP980 (from Sadagopan, 2003).
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Figure 3.4 Instantaneous "n" values (measured in a tensile test using ASTM
EB) for conventional high strength steels (from Sadagopan, 2003).
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Figure 3.5 Laser scan data of a fender beam cross section showing springback
as a function of steel grade strength (from Fekete, 2006).

3.1.2 Normal and planar anisotropy (AISI, 2002)

Sheet normal anisotropy is defined by the Lankford coefficient r, which
is the ratio of average in-plane strain to the thickness strain (Eq. 51 and Figure
3.6). For r greater than 1, deformation in the plane is preferred over the thickness
direction, and therefore benefits sheet metal forming processes such as cup
drawing, hole expansion, and bending. DP steels, are for the most part, considered
to be planar isotropic and therefore are typically assumed to have a r value of 1.
This assumption was used for this thesis, however DP steels in general do show a
small degree of normal anisotropy, having an r of less than 1 (Figure 3.7).

Normal anisotropy is important for describing the yield surface for the material.

For a r value of 1, deformation can be described using Von Mises criterion.

de, de,, de, - r+2r .+
de, de, 4
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3.1.3 Strain rate sensitivity

Stamping processes typically have a nominal strain rate of 10/s. DP steels
have positive strain rate sensitivity, and in the typical stamping processes, the
expected change in yield and tensile stress due to strain rate sensitivity is
approximately 16-20 MPa (Figures 3.8-3.9). The strain rate sensitivity for DP
steels is similar to that of conventional steels under medium strain rates of 10 to

10'/s (Sadagopan, 2003).

Figure 3.6 Sheet steel showing principle directions used to define ro, 45, and
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Figure 3.7 Normal anisotropy ( R ) compared for conventional steels and
AHSS’s (from Sadagopan, 2003).
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Figure 3.8 Strain rate sensitivity of the engineering yield stress (0.2% offset)
measured in a hydraulic tensile test comparing conventional steels
and AHSS’s. (from Sadagopan, 2003)
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Figure 3.9 Strain rate sensitivity of the engineering tensile strength measured
in a hydraulic tensile test comparing conventional steels and
AHSS’s (from Sadagopan, 2003).
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3.1.4 Bauschinger effect

The Bauschinger effect manifests as a reduction in the flow stress due to
prior deformation in the opposite direction. The AISI (American Iron and Steel
Institute) has quantified Baushinger effect in terms of a Bauschinger effect
parameter (BEF) (Sadagopan 2003). In this method uni-axial tension-compression
tests are used in which the forward flow stress is compared to the reverse yield
stress as measured using the 0.2% offset method (shown in Figure 3.10, and Eq.
52). Note that in Figure 3.10, the authors have re-plotted the compressive stage in
order to better illustrate the differences between the forward flow stress and the

reverse flow stress.

S :
BEF = —reverse yield stress Eq. 52

Jorward flow

From Eq. 52, a smaller value of BEF parameter implies larger Baushinger effect
and DP steels generally show larger Baushinger effect, compared to conventional
steels (Figure 3.11). The BEF is linear with material strength for most steels,
however, the DP800 and DP980 steels, deviate from this linear behavior showing
the largest degree of Bauschinger effect. These results highlight the importance of
this material behavior, for the steels studied in this thesis. The BEF parameter is
also dependent on the prestrain in the forward (tensile) direction, and saturates to
a constant value, in this case between 2-5% prestrain. Figure 3.12 shows the BEF
parameter as a function of strain in the forward flow direction for DP800, and

DP980 steels.
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Baushinger effect plays a significant role in springback. Springback is an
unloading processes resulting from the removal of tooling forces from the
stamping, causing a shape change in the part. Steels with larger Baushinger effect
(or smaller BEF parameter) may potentially show more springback from larger
recovery strains, compared to equivalent steels with smaller Baushinger effect

(Figure 3.13).

True Stress (MPa)

o 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

True Strain

Figure 3.10  Bauschinger effect resulting from uni-axial (forward) tension,
followed by uni-axial (reverse flow) compression (from
Sadagopan, 2003)
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Figure 3.11  Bauschinger effect factor (BEF) for a wide range of steel grades at
a prestrain of 5% (from Sadagopan, 2003).
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3.1.5 Unloading modulus

Non-linear elasticity has been recently identified as an important
consideration in the simulation of springback (Cleveland et al., 2002; Levy et al.,
2006; Zhu, 2005). It has been identified that steel materials show what is referred
to as an “apparent” decrease in the elastic modulus (Figure 3.14) as a function of
prior strain (Figure 3.15). The reason for this decrease in the apparent modulus is
not yet known. The decrease in apparent modulus results in non-linear unloading
behavior and higher recovery strain in springback (Figure 3.14). Levy et al.
(2006), has shown that the decrease in the apparent modulus is a function of
prestrain, and is more prominent in DP steels (Figure 3.15). In this thesis, non-
linear elasticity during springback is not investigated, as a working commercial
material model within the LSDYNAS3D code is not yet available. Further, the
implementation of non-linear elasticity into the FEA models used in this thesis is

beyond the scope of this thesis work.
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Figure 3.14  Experimentally observed non-linear unloading compared to
assumed linear unloading (from Cleveland et al., 2002).
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Figure 3.15  Effective unloading modulus for dual phase (DP) and conventional
steels as a function of prestrain (from Levy et. al., 2006).

3.2 FEA modeling of sheet metal forming and springback using shell

Elements

Towards the late 1980’s the explicit-dynamic FEA (finite element
analysis) method, using the shell element formulation, emerged as a numerical
method applied to commercial sheet metal forming problems. Explicit dynamic
codes have found wide use because of the ability to provide good solutions for
problems involving contact, large degrees of freedom, and also large
deformations, translations, and rotations (Finn et al., 1995). The current state of
the art is to simulate forming and springback in two separate stages. The forming
stage is simulated using the explicit dynamic codes (such as LSDYNA3D) and the
springback stage is simulated using a static implicit code (such as LSDYNA3D
Implicit). Historically, springback was simulated using the dynamic relaxation
technique, using a dynamic explicit code, and today, this technique is not

commonly used (Maker and Zhu, 2001).
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In industrial explicit forming simulations, the simulation time is scaled so
that the total computation time is not prohibitive. Actual stamping processes are in
the order of approximately 1 second. The computation time would be prohibitive
if a simulation was run in real (actual) time. Also, simulations run in real time
would result in too many time steps, which could result in the accumulation of
numerical error since at each time step, equilibrium between internal and external
forces is not truly met (Finn et al., 1995). To deal with this problem, a number of
techniques are used. First, the punch velocity is scaled upward, for example, a
typical punch velocity would have a peak value of 2 m /sec. Also, mass scaling is
selectively applied to the smallest elements to maintain a minimum acceptable
time step according to the courant conditions as will be explained later in Chapter
4. Scaling the velocity or time step unfortunately creates excessive dynamic
effects in the simulation, which in turn can alter forming stresses or create areas
showing artificial plasticity. These effects degrade the quality of the predicted
stress distribution within the part at the end of forming and are therefore
detrimental to the quality and accuracy of the springback simulation (Galbraith,
1998). As a quality check in an explicit simulation, it is assumed that quasi-static
conditions are achieved if the kinetic energy of the part is less than 5% of its
internal energy (Galbraith, 1998). Guidelines have also been established by LSTC
(Livermore Software technology Corporation) that account for the combined
effect of mass scaling in combination with velocity scaling on the time step in the

simulations. The effect of mass scaling and punch velocity scaling should be such
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that the number of cycles per’ mm of deformation (or punch displacement) is in
the area of 500-1000, where 1 cycle represent one time step calculation in the FE
differential equations. To properly capture the deformation history, more cycles
are required for deformation that changes rapidly, and less is required for a

gradual forming process (Maker and Zhu, 2001).

Over a period of 20 years a high level of confidence has been established
for FEA to predict strains, thickness and wrinkling in sheet metal stamping
processes. The prediction of springback still remains a challenge (Du et al., 2007).
Typically, FEA of springback under predict actual springback, and the reported
accuracies are in the order of 70% or better (i.e. predicting 70% of the actual
springback) (Maker and Zhu, 2001). Efforts by the sheet metal forming simulation
community have therefore been focused on improving the accuracy and reliability
of springback FEA. The approaches taken by researches have been in two key
areas; the first is examining the effects of numerical parameters in the forming

simulations, and more recently, incorporating more complex material behaviors.

3.2.1 FEA parameters and their effect on the predicted springback

Earlier studies suggest that certain key variables in the forming
simulations that influence the accuracy of springback simulations. For example,
higher punch velocity, increased mass scaling, large element sizes (in areas of the
part with high curvature), and fewer though-thickness integration points, all have
been demonstrated to degrade the accuracy of springback simulations (Du et al.,

2001; Yao et al., 2002; Du et al., 2004; Chen et al., 2005).
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The required number of through-thickness integration points for the 3D
shell element used in the FEA, has been a subject of study over the last few years
(Liet al., 2002; Xu et al., 2004; Wagoner et al., 2007). The integration points
capture the stress distribution though the thickness and therefore in springback
FEA, affect shape changes such as wall curl. Xu et al., (2004) performed FEA
simulations of forming and springback for the Numisheet 93 benchmark hat
channel part using a high strength steel. The FEA simulations used the explicit
technique for forming and the explicit dynamic relaxation technique to calculate
springback. They put forth a number of recommendations with respect to
improving the accuracy of the FEA. For example, they recommended that the
punch velocity should be less than 1 m/sec, mesh resolution should be sufficient
to ensure that 5 elements are around each corner radius, and that 7 integration
points through thickness of the shell element should be used. They also found that
too many or too few integration points created error in the predicted springback.
Li et al., (2002) demonstrated that for coupled forming and springback
simulations, the predicted springback magnitude oscillates depending on the
number of integration points used. The oscillation is due to sampling of the
through thickness stress distributions using fixed integration point schemes and
they argued that their findings may explain the results by Xu et al., (2004). Li et
al. also argued that 25-56 integration points are required for accurate springback
FEA. In response to Li’s work, Zeng et. al., (2006) performed a numerical

analysis and demonstrated that 5-9 integrations points is sufficient. Previously,
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Zeng et al., (2006) shared their results with the Li and Wagoner prior to the
publication of their paper (Wagoner et al., 2007). In the 2007 paper, Wagoner and
Li performed a numerical analysis using a simple beam problem bent under
tension. By comparing the analytical (closed form) solution for the bending
moment, to that determined using numerical integration (both Gaussian and
Simpson’s integration) they were able to quantify the error when using numerical
integration. Their results showed that for a given number of integration points
through the thickness, the error increases with decreasing Ry/t, and increasing
tension. The error also depends on the shape of material hardening curves. They
presented the concept of an assured limit for sufficient integration points through
the thickness. This limit assures a given error in the numerical calculation of the
bending moment. For example, for an IF steel from their study bent to Ry/t of 5,
the assured limit of 26 Gaussian integration points through the thickness was
necessary to have a maximum error of 5% between the numerical and analytical
bending moment. In general, more integration points were required using
Simpson’s rule. Wagoner et. al., (2007) softened his recommending of 26-56
through thickness integration points, and instead recommended that the use of 3-9
integration points should be critically examined for the given forming process
simulated. Currently, the correct number of through thickness integration points is

still a topic of research.

In industrial sheet metal forming and springback simulations, Coulomb

friction is conventionally used, and typical values of the coefficient of friction are
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from 0.10 to 0.20. The effect of friction on springback is usually part and process
specific. For some parts, the effect on friction can be small (De Souza et al.,
2007). In other parts, friction affects springback through the interaction with the
blank holder force (BHF), creating more membrane tension during forming
(Samual, 2000). Springback in parts with large BHF and large surface areas of
contact between the tooling and blank, are therefore affected more. For example,
Lim et al., (2006) demonstrated using the Numisheet2006 benchmark II part (a
high strength steel cross member), that springback was particularly sensitive to

the coefficient of friction.

The contact penalty stiffness factor is another factor that can affect
springback results. In LSDYNA3D, contact in sheet metal forming FEA is
typically modeled using a penalty method in which a restoring force is applied to
penetrating nodes in the blank, preventing them from penetrating into the tooling
surface mesh (Maker and Zhu, 2001). The contact penalty stiffness factor within
the code ultimately controls the magnitude of this restoring force. For sheet metal
forming FEA, a contact stiffness of 0.01 to 0.1 is generally recommended (Maker
and Zhu, 2001). Excessive penetration of the blank nodes into the tooling surface
results from a contact interface with low contact stiffness. If the penetration is
severe, it can create a condition in which the final formed part geometry does not
reflect the actual tooling geometry. A large contact stiffness factor can lead to
contact instabilities and more often large restoring forces for penetrating nodes

that in turn can create numerical stress artifacts. This can affect the accuracy of
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the springback simulation. Parametric studies by Lee et al., (1998) demonstrated
that for a hat channel part, the effect of contact penalty stiffness in the range from
0.01 to 0.1, on springback accuracy was small, when compared to the effect of

clement size. Du et al. (2001) showed similar results.

3.3  Material modeling
3.3.1 Yielding

Accurate springback predictions require accurate stress predictions. The
use of appropriate yield criterion is therefore critical. Hills 1948 yield function is
probably the most popular criterion applied to sheet metal forming simulations for
steel materials (Wagoner and Chenot, 1996; Barlat et al., 1997; Mattiasson et al.,
2007). Mattiasson et al., (2007) proposed several possibilities for its popularity
such as; simplicity in implementation, numerical efficiency, and general lack of
awareness among industrial FEA analysts regarding the effect of yield criterion

choice on the FEA results.

This section focuses mainly on material modeling and yielding of steel
sheets which is commonly modeled using Hill’s 1948 quadratic yield surface. It is
well known that this yield surface fails to describe yielding in other materials such
as aluminum (Barlat et al., 1997). Regarding steel materials, Kuwabara et al.,
(2007) published a review of their experimental work in which anisotropic plastic
behavior of various metals were studied using a specially designed cruciform
specimen to achieve different load paths under bi-axial tension. Tests were

performed for various load paths in which the stress ratio was varied (ox oy, X,y
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coincide with the sheet rolling and transverse direction respectively, Figure 3.6).
They argued that the flow stress evolution over a specific range of plastic
deformation was more important in understanding deformation and anisotropy,
than the initial yield surface. They produced so called “contours of equivalent
work in stress space” for various metals. This representation is the locus of stress
pairs having equivalent plastic work to that from the uni-axial tensile test in the
rolling direction. They also compared the evolution of these stress contours, with
various yield criterion for initial yielding, including that of Von Mises (Eq. 53),
Hosford’s 1979 criterion with exponent M=6 recommended for bcc materials (Eq.

54), and Hill’s 1948 planar anisotropic criterion (Eq. 55).

Gi=0t+0}4(o,-0,f B3
oM = 7500y +”00';” +"90”0(0'x_0'y )M Eq. 54
o~ fy(+1y)

2
o= 1900 +’60';2v +r90’6(0'x_0-y)2
0 ro(1+ 1)

Eq. 55

Figure 3.16 shows the results from Kuwabara et al. (2007) for an IF steel.
For a uni-axial tension of plastic 0.002, the contours of equivalent work are
essentially equal to the initial yield surface of the material. In this case, the initial
yielding of the IF steel is close to Von Mises criterion. With increasing work, the
evolution of the stress contours shows preferential hardening in the bi-axial load

path, and the experimental results are close to Hosford’s yield criterion. Hill’s

46



Master Thesis - T. Lim, McMaster University Mechanical Engineering

1948 yield criterion overpredicted hardening. The authors proposed that the
differential hardening observed was probably due to crystallographic texture.
Hosford (1998) also showed experimental evidence that supported the argument
that a non-quadratic form of the yield surface is superior to the quadratic form
(i.e. Hill’s 1948 criterion). Kuwabara’s results for DP590 steel are also shown in
Figure 3.17. In this case, hardening in the equal-biaxial load path is not as
prominent as in the IF steel from Figure 3.16, and both the Hosford and Von
Mises criterion showed better agreement to the experimental data, when compared

to Hill’s 1948 criterion. This is apparent under plane strain deformation.

Previously, Kuwabara et al., (2004) performed plane strain tension tests on
a high strength IF steel and found that Hill’s 1948 criterion overpredicts
hardening for the entire plastic strain range tested. In contrast to this, Von Mises
and Hosford’s criterion were close to the experimental points up to a plastic strain
of approximately 0.015. Beyond this strain, both Von Mise’s and Hosford’s
criterion predicted hardening that was slightly below the experimental curves. The
effect of yield criterion on the predicted springback was also examined. Bending
under tension experiments were performed for the same high strength IF steel, and
the results were then compared to FEA analysis for various yield criterion (Figure
3.19). The author’s results showed that the FEA analysis using Hill’s criterion
overpredicted springback to a large degree, whereas Von Mises and Hosford’s
criterion showed better agreement with the experiments (but slightly

underpredicting springback (Figure 3.20)). Kuwabara’s work points to the
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inadequacy of Hill’s 1948 criterion, specifically for the case in which the R >1.0.
There is little or no published information regarding the appropriate yield criterion

for DP steels.

Gomes et al., (2005), performed FEA forming and springback simulations
for a hat channel part using a high strength steel, but did not specify if it was a DP
or conventional steel. They examined the effect of different yield criterion such
as, Von Mises, Hill’s 1948 transversely anisotropic, and the Barlet-Lian 3-
parameter planar anisotropic criterion (Barlet et al., 1997). They demonstrated
that the FEA of the planar isotropic models did not agree with the experiments,
specifically, in predicting differences in springback with respect to different
orientations to the rolling direction. The Barlet and Lain model, however, was
able to predict these differences and overall showed better agreement with the
experiments. Geng et al., (2002) investigated 6000 series aluminum and HSLA
steels. They used draw bend tests and simulations to show that the predicted
springback is dependent on material planar anisotropy. They argued that planar
anisotropy affects anticlastic curvature through the second principle stress, which
in turn affects the predicted springback. This effect, however, was more dominant
at high in-plane tension forces. Delanney et al. (2003) performed tests as well as
FEA for of simple bending experiments using textured aluminum. They found
that the FEA in general underpredicted springback. The aluminum sheet itself was
not strongly planar anisotropic, and no significant differences in the springback

with respect to the sheet orientation were found in the experiments and FEA. Leu
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(1997) derived springback equations for simple bending using Hill’s normal
anisotropic yield criterion, and demonstrated that the predicted springback
increases linearly with increasing value of r. His work did not consider the
dependence of anticlastic curvature and springback discussed previously.
Papeleux et al., (2002) performed FEA of the Numisheet 2002 U- channel
benchmark for high strength steel (but did not specify if it was a DP grade) and
found that including planar anisotropy (using Hill’s 1948 yield criterion)
improved the predicted springback accuracy. Alves et al. (2004) performed
forming and springback FEA for the Numisheet 2002 unconstrained bending
problem using an aluminum alloy. They found that a non-quadratic planar
anisotropy yield criterion resulted in better agreement between the experiments

and FEA.

In general the literature of peer reviewed journals provides little
information regarding the appropriate yield criterion for DP steel. The use of Von
Mises criterion has provided reasonably good agreement between experiments
and FEA, for example, the case studied by Du et al, (2007) for a part
manufactured using DP600 steel sheet. At present there are no published
experimental yield surfaces for DP780 and DP980 which are the focus of this
thesis. Von Mises criterion is a reasonable compromise and generally describes
yielding in low carbon steels as shown in Figure 3.21. Further, Von Mises
criterion is also closer to Hosford’s non-quadratic yield criterion under plane

strain deformation (Figure 3.18).
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(planar anisotropic) and Hosford’s (1979) yield criterion with
exponent M=6 (from Kuwabara et al., 2007).
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Figure 3.18  Plane strain tension test for a high strength IF steel, comparing
experimental to predicted curves using various yield criterion,
including Hosford’s criterion with exponent M=6 (from Kuwabara
et al., 2004).
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Figure 3.19  Schematic apparatus used for stretch bend springback tests (from
Kuwabara et al., 2004).
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Experimental springback from bending and tension test (Figure
3.19) for two punch depths. Experiments are compared to that
predicted from FEA simulations using Hill’s 1948 and Von Mises
criterion (from Kuwabara et al., 2004).
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General fit of various metals to Von Mises and Tresca’s yield
criterion (from Wang (2004), who used data from Hill (1950)).
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3.3.2 Unloading modulus experiments and FEA

Zhu et al., (2004) performed uni-axial tension-compression tests and their
finding agreed with those from Clevland et al., (2002). Namely, a decrease in the
apparent unloading modulus as a function of tensile prestrain was observed. Zhu
et al. implemented an experimentally determined unloading modulus into the FEA
springback benchmark developed by Demeri et al (2002). In this benchmark a cup
is drawn, and then a ring is machined from the cup. The ring is then cut open to
release the residual stresses and the subsequent diameter is measured. Zhu
performed FEA for DQSK and BH (bake hardening) steels and the results were
compared to that from Demeri’s study. In Demeri’s study the predicted (FEA)
springback was in error by a factor of almost 50%. In Zhu’s work, the
implementation of the effective unloading modulus resulted in a predicted (FEA)

springback error of only 11-20%.

Levy et al. (2006) compared the unloading modulus for a wide variety of
conventional and DP steels (Figure 3.15). He found that the unloading modulus
saturates to a fixed level at a prestrain of 1-2%. Also it was found that the
decrease in the unloading modulus was greater for DP steels compared to
conventional steels (i.e. approximately a 20% decrease from the initial value of
the elastic modulus). Luzin et al., (2005), used several techniques to measure
Young’s modulus in 1mm thick sheet, as a function of rolling direction, and found

that tensile testing has an uncertainty of about 5%. In terms of Luzin’s work, the
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uncertainty in measuring the modulus associated with tensile testing is not large

enough to negate the independent work by Levy, Ghosh, and Zhu.

Fei et al., (2006) measured the effective unloading modulus as a function
of pre-strain in uni-axial tensile tests for three different TRIP steels, with tensile
strengths ranging from 745 to 883 MPa . They did not observe a level at which the
unloading modulus saturated. They implemented the effective unloading modulus
into their FEA simulations of V-die bending and compared predicted springback
results to experiments. It was found that the error in the FEA, using elastic
unloading vis a vie the elastic modulus, was 15%. The error was decreased to 7%
by implementing an effective unloading modulus. Li et al. (2002) found similar

improvements when simulating air bending of an aluminum alloy.

In summary, the inclusion of nonlinear elasticity in the FEA may be
important. Future developments of material models to support this capability

could be forthcoming.

3.4  Plane strain bending

Bending along a straight line is a common sheet metal forming operation
used in the fabrication of various components (Marciniak et al. 2002). Typical
processes using this operation are; air bending, V-die bending, wiping (straight
line flanging), and U-die bending (Mielnik, 1991), as shown in Figure 3.22 from
Eary et al., (1974). Many of the experiments and analytical models in the

literature were developed specifically for these bending operations.
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Accurate springback predictions require accurate modeling of the bending
stresses and strains during the loading (bending) and unloading (springback)
process. These are influenced by material strength, hardening and yielding, as
well as the assumed physics of the bending process (as well as the underlying
assumptions presented in Chapter 2). Accordingly, much of the previous research

has focused on these main characteristics.

W Deg U e

Ve
Sed Mg e

Figure 3.22  Typical “straight line” bending operations showing V-die, U-die
bending as well as flanging-wiping (Eary et al., 1974).

3.4.1 Development of analytical closed from solutions to predict springback in

simple bending

One of the earliest closed form solutions for predicting springback in
bending was developed by Gardiner (1957). Bending and springback was
modeled for the bending of narrow strips (i.e. using beam theory), and the
material was assumed to be planar isotropic, with perfectly plastic hardening
behavior. Gardiner’s equation is given by Eq. 56. This equation predicts that

springback increases with yield strength and bending radius. Springback also
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increases with lower elastic modulus and increasing thickness. Gardiner also
performed cylindrical bending experiments for bend radii from approximately 10

mm to 220 mm for a number of metals.

3

o. R o, R

Ks=4 21| -3 =L {+1 Eq. 56
Et Et

In examining an addendum to Gardiner’s work, Crandell (in Gardiner,
1957) proposed that the bending stress development and springback be treated
using plate theory (i.e. wide plates) instead of beam theory (narrow plate). This
was an important contribution since it led to the theory of plane strain bending
and springback, which is still used to this day. Springback in plane strain (wide
sheet) bending (Eq. 57) is generally greater than springback in narrow sheet
bending (Eq. 58) (Queener and DeAngelis 1968; Chen et al., 1994). Under plane

strain conditions the developed longitudinal bending stress in the elastic region
are greater than that for beam theory by a factor of 1/(1—v?), where v is

Poisson’s ratio. For steel, v is approximately 0.3, and therefore under elastic
deformation, the bending stress is approximately 10% greater than that for beam
theory. In the plastic region of the stress strain curve, the bending stress is greater

than beam theory by a factor of (4/3)™"?

if Hollomon work hardening and Von
Mises criterion is assumed. The result is that the magnitude of springback is 6-

10% greater for plane strain bending, compared to the case for plane stress or uni-

axial deformation.
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Further analytical developments of closed form solutions for springback
focused on incorporating more accurate equations to describe material hardening.
Rolf et al., (1978), Johnson et al., (1981), and Tseng et al (1996) derived
analytical models for bending stress development and springback assuming bi-
linear work hardening. Queener and DeAngelis (1968) and Johnson et al., (1972)
derived equations for bending stresses, springback, and residual stresses assuming
Hollomon work hardening. In the work of Queener and DeAngelis (1968) two
bending cases comprising of fully plastic and elastic-plastic deformation were
presented. They recommended that when the bending radius to thickness ratio is
less than 30, plastic bending could be assumed, ignoring the elastic bending
moment. They also compared their analytical results with V-die experiments for a
range of metals, which showed fair agreement in terms of the springback ratio and
experimentally measured residual stresses after springback. Hosford et al., (1983),
also derived an analytical expression for the springback ratio using Hollomon
hardening, which agreed with that from Queener and DeAngelis (1968). Tseng et
al. (1994) applied the analytical equations from Queener and DeAngelis (1968) to
experiments involving V-die bending of Invar sheets. His results showed that the
analytical predictions were within the range of springback measured

experimentally.

57



Master Thesis - T. Lim, McMaster University Mechanical Engineering

It was recognized that the use of analytical hardening equations in closed
form springback equations can sometimes result in large errors. Sidebottom et al.,
(1979) criticized the work by Queener and DeAngelis (1968) and showed that the
predicted springback could be markedly improved for situations where the
maximum bending strain is close to the yield strain of the material, only if work
hardening was modeled using piece-wise linear curve. Their assertion was based
on the fact that the Hollomon hardening used in Queener’s work, under predicted
bending stresses at or near the yield point. Sidebottom developed a method to
model material hardening using a piece-wise linear discretization of actual
experimental tensile curves. For this they developed an iterative technique based
on the Prandtl Ruess flow rule, previously described by Mendelson (1968). They
assessed Queener’s results and predicted more springback for cases with large
bending radii, in which the maximum bending strains were close to the plane
strain yield for the material. Their development was necessarily restricted to
materials that obey Von Mises criterion and was unnecessarily complex. Chapter
5 shows an alternative method to incorporate material hardening from uni-axial
stress strain tests into a bending-springback analytical model. In general, it has
been recognized that analytical hardening equations have the disadvantage of
misrepresenting actual (experimental) hardening. For example, Holloman
hardening gives a poor fit to tensile data at low strains (Marciniak et al., 2002),

and Swift hardening is not accurate at higher strains (Wang, 1993).
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Other workers have made small improvements to analytical solutions, for
example, using true strain instead of engineering strain, incorporating planar or
normal anisotropy, or using yield criterion other than Von Mises criterion. Tseng
et al. (1994) claimed that their closed form solution using true strain (instead of
engineering strain) showed better agreement with their experimental V-die results
predicting 75-95% of the experimental springback. Wang (1993) developed
expressions for true bending stress and strain using Hill’s 1978 non-quadratic
yield criterion. His equations are shown below.

£,=€/F Eq. 59
o, =Fc Eq. 60

Y™ =i ke -Dim
F{AH—;L}[H(H%)”“ M’]‘ Eq. 61

Referring to the equations above, €, and O;are the principal true bending
strain and stress respectively in a given fiber. The factor “F” (derived from Hill’s

non-quadratic yield criterion with normal anisotropy r) can be modified to
represent common yield criterion used for steels. In Eq. 61, Von Mises criterion is
applied for M=2, r=1, Tresca’s yield criterion applies for M=1, r=1, Hill’s 1948
yield criterion applies when M=2, and Hosford’s yield criterion applies for M=6
(for bee metals). Eq. 59-61 show that bending stresses increase with increasing

normal anisotropy. In Chapter 3, anticlastic curvature in bending is reviewed.

Wang’s work did not account for the effect of r on lateral strains and anticlastic

curvature, which hinders springback in bending (Wang et a; Barlat, 2005). It is
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generally assumed that the effect of anticlastic curvature is negligible for a blank

width to thickness ratio greater than 10 (Tan et. al., 1995).

It was Wang (1993) that first developed analytical models of bending and
springback that incorporated the geometry of the bending process, in addition to
different material models (Eq. 59-61). An example for V-die bending is shown in
Figure 3.23 and Figure 3.24. Wang introduced a coordinate system that tracks the
specimen segment length and this was used to define three distinct zones in the
bending process. Referring to Figure 3.24, plastic bending occurs directly under
the punch along segment O-A, and the bending moment is constant. Segment A-B
represents a transition zone in which the bending moment decreases linearly to a
value of zero at point B, where the blank contacts the die wall. In Wang’s model,
the total bending moment contributing to springback is due to the contributions
from segments O-A and A-B. This is an important distinction compared to the
simple bending theory outlined in Chapter 2, in which the bending moment that
contributes to springback is due only to the specimen curvature directly
underneath the punch. Wang’s model also illustrated the effect of die gap C on the
blank angle of wrap around the punch. For any value of C greater than the
specimen thickness t, the angle of wrap is less than the die angle a. As the die gap
C approaches the specimen thickness, the length of the segment A-B (the
transition zone) falls to a value of zero. When C exactly equals the specimen
thickness t, the angle of wrap is equal to a, and the moment distribution along the

entire sample length is the same as that assumed by simple bending theory.
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3.4.2 Analytical solutions for general bending

General bending analytical models have been previously developed for
describing the through thickness bending stress distribution (Hill, 1950; Lubahn et
al.,1950; Proska, 1959; Crawford, 1970; Verguts et al., 1975; Dadras et al., 1982).
If linear unloading is assumed, then springback can be calculated using Eq. 58.
Unlike simple bending, deformation in general bending is not proportional, and
therefore the strain history in each fiber directly affects the stress distribution. Tan
et al. (1995) briefly reviewed the historical development of analytical solutions to
general bending, and much of their review is described below. Analytical
equations of general bending were described in Chapter 2, and are not repeated

here.

Many of the models developed differed in complexity by adapting non-
linear hardening, different yield criterion and incorporating planar anisotropy. Hill
(1950) presented a solution to general bending for a perfectly plastic material. His
model ignored thinning, anisotropy, and Baushinger effect, but accounted for
neutral axis shifting, non-linear through thickness stress distribution, and
transverse or normal stresses. Lubahn et al., (1950) performed a similar analysis
to Hill (1950) and also considered perfectly plastic material behavior. Nagpal et
al., (1978) presented a solution considered linear hardening, which was also
reproduced in Meilnik (1991). Wang’s (1993) model accounted for neutral axis
shifting, anisotropy, but not thinning. Zhang et al. (1998) developed a model that

used Swift hardening and incorporated Hill’s 1979 non-quadratic yield surface,
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and accounted for thinning. The solution, however, required an iterative technique
to solve the differential equation of general bending. Their model was extended to
bending-unbending deformation in which kinematic hardening was used to model
alternate tension-compression cycles in the outer bending fibers. However, the
Baushinger effect was not considered (and kinematic hardening was not used) in

the modeling of neutral axis shifting.

Crawford (1970) was first to consider the Baushinger effect from neutral
axis shifting. However, his model used a constant yield stress to model reverse
straining of fibers overtaken by the neutral axis. Dadras et al., (1982) considered
linear strain hardening for fibers overtaken by the neutral axis. Tan et. al., (1995)
developed an analytical models to predict stress distributions, bending moments,
and thinning. Their models considered pure isotropic and pure kinematic
hardening for fibers overtaken by the neutral axis. However, for the case of pure
isotropic hardening, Voce’s work hardening law was used in their model. For the
case of pure kinematic hardening, Ludwig’s work hardening was used. Their
models also incorporated Hill’s 1948 yield criterion and therefore accounted for
planar anisotropy. To validate their models, bending experiments were performed
for an aluminum alloy, and two high strength steels, in which thinning and
bending moment verses curvature, was measured. Their experimental results

showed good agreement with their analytical models.

62



Master Thesis - T. Lim, McMaster University Mechanical Engineering

3.4.3 Previous studies on plane strain bending and springback

Early work such as that by Chapman et al. (1942), Shanley (1942), and
Brown et al. (1944) had established basic trends in terms for springback. Namely,
that springback increases with yield strength, lower Young’s modulus, and larger
punch radius to thickness ratio (Rp/t). Sachs (1966) also generated experimental
results and proposed empirically based methods for springback compensation.
Others have generated experimental data in order to compare springback in
different materials. Queener and DeAngelis (1968) performed V-die bending
experiments for a range of materials under conditions of simple bending, and
found good correlation between their analytical model and experimental results.
However, for the case of 1095 high strength steel, their analytical model
underpredicted the amount of springback (Figure 3.25). Davies (1981) performed
experiments examining springback in straight flanging for a number of steel
grades, including DP600, SAE980X, SAE950, and a generic cold rolled low
carbon steel. His results showed that springback increases with bend radius, die
gap, material strength, and with decreasing sheet thickness. Experimental work
from Inamadar et al., (2002) for an aluminum alloy and a low carbon steels at
various punch radii, also showed increasing springback with increasing punch
radii and die clearance. Davies (1981) experimental work was one of the earliest
that compared DP steels to conventional steels. His work showed that springback
was proportional to yield stress for conventional steel, but not for a DP600 steel.

The DP600 in his study had a similar springback to the SAE950X grade. Other
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workers performed bending-springback experiments with the intention of
producing calibration curves. Levy (1984) created empirical equations for
springback under pure bending. He performed regression analysis on data
obtained from three different experiments; bending into an elastomer, die
forming-flanging, and simulated die flanging. His regression equations were a
function of the variables; die geometry, yield strength, sheet thickness and bend
radius. The experiments were performed for a low carbon cold rolled grade and 3
martensitic grades of sheet steel (Martensite M130, M160 and M220). Similar to
Levy, Fekete (2003) presented empirical equations for springback based on
flanging experiments, comparing HSLA and DP steels. His regression equations
showed that the bend ratio (Rn/t), yield point elongation, and a term he called the
“material strength” were important variables affecting springback. By material
strength, Fekete (2003) was describing the work hardening of the material in the
final bend configuration, or the final maximum bending stress. In light of the
work of Davies (1981), the differences in material work hardening probably
accounted for the differences in springback between DP steels and HSLA steels of
similar yield strength. Fekete’s results showed that springback increases with
material work hardening and bend ratio, and decreases with increasing yield point
elongation (YPE). Interestingly, his results also showed that the magnitude of
springback for a DP600 grade was more than twice that of an HSLA grade of

equivalent yield strength.
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Wang (1993) applied his model to small radius bending of a 2000 series
aluminum alloy sheet, bent to a Ry/t less than 5. His bending-springback model
incorporated true strain, the effect of neutral axis shifting and Hill’s non-quadratic
yield criterion. His model showed good agreement with his experimental results.
Magnusson and Tan (1994) applied Wang’s model to V-die bending for a variety
of steels having yield strengths ranging from 182 MPa to 370 MPa. The
agreement between experiments and analytical models was good with error
ranging from 0.6% to 13%. In general, the analytical model tended to
underpredict actual springback. Leu, (1997) derived springback equations for
simple bending using Hill’s normal anisotropic yield criterion and demonstrated

that the predicted springback increases linearly with increasing ;, but a

comparison to experiments was not performed.

Mori et al. (2007) used a CNC press to accurately control the punch
motion in V-die bending experiments. Three materials were studied, namely, an
ultra high strength steel with tensile strength of 1GPa, a high strength steel with
tensile strength of 800 MPa and a mild steel with tensile strength of 340 MPa.
Their experimental results showed increasing springback with material strength
and decreased springback with greater punch bottoming or coining. They also
studied the effect of varying the punch velocity from 0.003 m/sec to 0.047 m/sec,
on springback. There results showed no significant effect. The authors also
performed 2D plane strain FEA simulations of the bending process but focused on

coining and they did not report the springback from FEA. Ling et al., (2005)
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examined flange-bending and springback in an aluminum alloy (AL3034-T3), and
performed FEA corresponding to their experiments. They found that springback
increases with punch to die clearance, and that the most important variable
affecting springback was the bend radius. Unfortunately, their FEA was focused
on springback countermeasures using coining, and a comparison to the
experimental results was not discussed. Nilsson et al. (1997) performed FEA
springback simulations of V-die bending. Their FEA utilized 2D continuum
elements, simulating pure plane strain bending and springback. Corresponding
experiments were performed using and an aluminum alloy , and low and medium
strength steels with yield strengths ranging from 158MPa. The springback FEA
was performed using the LSDYNA-NIKE3D finite element implicit code. Their
experiments showed no difference in springback between dry and lubricated
bending conditions using oil and plastic film. On this basis, bending and
springback simulations were performed with Coulomb friction of 0. In general,
their FEA predicted springback errors ranged from O to 22%. The simulations
tended to underpredicted springback. The material models used in their FEA were

not described.

Schikorra et al. (2005) studied the air bending of DP600 steels, both
experimentally and using FEA. They compared the springback from FEA using
2D and 3D continuum elements as well as 3D shell elements, to that measured
experimentally. The analysis code used was ABAQUS, and both pure isotropic

and kinematic hardening assumptions were used. The results showed that that in
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terms of the effect of the element formulation, the springback magnitude was in
the following order: 2D continuum > 3D continuum> 3D shells. The results also
showed that the FE using the pure kinematic hardening assumption predicted
more springback than the corresponding simulations using isotropic hardening.
However, they did not calibrate the FEA material model to account for the actual

mixed isotropic-kinematic hardening behavior of their experimental DP steels.

3.4.4 Anticlastic curvature in bending and springback

In the pure bending of steel blanks, uniform plane strain deformation
across the blank width is never achieved as plane stress persists at the blank edges
and extends approximately a distance equal to the material thickness into the
specimen (Horrocks and Johnson, 1967). If the blank is wide enough, compared to
the cross sectional thickness, the effect of plane stress at the edges on the average
internal bending moment per unit width (and springback), is minimal. Anticlastic
curvature forms at the edges of the blanks as a result of plane stress and uni-axial
deformation. Persistent anticlastic curvature increases the cross section moment of

inertia, with the effect of suppressing springback (Carden et al., 2002).

The blank width to thickness ratio is an important consideration in
promoting plane strain deformation. Sachs (1950) demonstrated that plane strain
bending conditions occur when the ratio of width to thickness (w/t) is greater than
8. There is little or no literature on anticlastic formation in plastic bending (Wang
et al., 2005). Ashwell (1950) developed a closed form solution to predict

anticlastic curvature deflection and shape for elastic bending. His results showed
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that for Poisson’s ratio (v) of 1/3, the elastic bending moment saturates to a level
of 91% of the plane strain value when the Searle parameter equal to w*/(Rz), is

greater than 150, where w, t, and R,, are the specimen width, thickness and mid-
surface bending radius respectively. Wang et al. (2005) defined the Searle
parameter as (w/r)? /(R/t), which highlighted that the conditions for plane strain
bending depends on the normalized width and the normalized bending radius.
Wang et al. (2005) revisited Ashwell’s elastic solution, and stated that with
increasing Searle parameter, bending deformation is closer to plane strain and
anticlastic curvature concentrates more towards the free edges of the blank
(Figures 3.26-3.27). Horrocks and Johnson, (1967) performed elastic-plastic
bending experiments using wide plates of aluminum and mild steel. They found
that with higher Searle parameter, anticlastic curvature become more concentrated
at the free edges of the blank. They also found that the measured anticlastic
curvature depth (or deflection) was greater than that predicted using the elastic
solution by Ashwell (1950). They reasoned that this was due to larger Poisson’s
ratio in plastic deformation compared to elastic deformation, resulting in a
corresponding difference in the lateral bending strains. For elastic bending, the
maximum deflection due to anticlastic curvature is approximately 10% of the

material thickness (Wang et al., 2005).
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Figure 3.23  Geometry of V-die bending showing the relationship between die

gap (C), material thickness, and tooling geometry (from Wang,
1993).
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Figure 3.24  Coordinate system "S" used to describe V-die bending (from
Wang, 1993). The “S” coordinate is the arc length along the

specimen length, as indicated by the arrows, and represents the
distance along a curved “line length”.
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Figure 3.25 Predicted springback ratio (Ks) verses that from experiments for 90
degree V-die bending (from Queener and DeAngalis, 1968).
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