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Abstract

Mendelian randomization (MR) uses genetic variants as instrumental variables (IVs)

to investigate the causal relationship between exposure and outcome. It has become

widely popular due to its versatile applications in epidemiological research. Its rising

popularity is largely driven by the ease of accessing summary-level data from large

consortia, making it a cost-effective choice for researchers.

In this thesis, we focus on three issues in MR that result in potential bias in causal

inference. We first address the “winner’s curse” in MR, which arises from selecting

genetic markers based on their significance or ranking. To mitigate this bias, we adapt

the bootstrap-based BR-squared method to function with summary-level data. Our

findings reveal that the correction methods can effectively reduce bias, albeit with an

increase in variability. We then develop a method that accounts for the correlation

caused by sample overlap while addressing potential bias from weak instruments. This

proposed method yields stable causal estimates, although the standard errors of causal

estimates may not be precisely estimated. Lastly, we introduce a novel approach for

identifying invalid instrumental variables showing signs of horizontal pleiotropy. We

recommend using the bootstrap method to account for the data-driven process of

IV selection. Our results indicate that the bootstrap intervals approach the nominal

level of coverage rate when the proportion of invalid IVs is less than 50%.
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and Dr. Roman Viveros-aguilera. Dr.Paré’s extensive knowledge in my research field

iv



enriched my work, providing valuable insights and clear, direct guidance. Dr. Viveros,

a compassionate and understanding individual, played a crucial role in encouraging

and supporting me during these unique times.

I extend my warmest appreciation to Dr. Katherine Davies, my new committee

member, for joining my academic journey during this critical phase. Your guidance

and assistance in preparing for the defense are highly valued.

My heartfelt thanks go to my parents and Xuezheng, Huang, who have been the

unwavering pillars of strength throughout my Ph.D. pursuit. Their unending support

and belief in me have been my motivation to persevere.

The completion of this Ph.D. thesis would not have been possible without the

collective contributions of these remarkable individuals. I am profoundly grateful for

the support and encouragement I have received from everyone mentioned.

v



Contents

Abstract iii

Acknowledgements iv

Notation and Abbreviations xx

1 Introduction 1

1.1 What is a Causal Effect . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Observational Studies and Randomized Controlled Trials . . . . . . . 3

1.3 The Rise of Mendelian Randomization . . . . . . . . . . . . . . . . . 4

1.4 A Brief Review of Genetics . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Mendelian Randomization Application . . . . . . . . . . . . . . . . . 9

1.6 Assumptions and Selection of Instrument Variables . . . . . . . . . . 11

1.7 One-sample Mendelian Randomization . . . . . . . . . . . . . . . . . 16

1.8 Two-sample Mendelian Randomization . . . . . . . . . . . . . . . . . 20

1.9 Three-sample Genome-wide Design . . . . . . . . . . . . . . . . . . . 29

1.10 Software and Public Databases . . . . . . . . . . . . . . . . . . . . . 31

1.11 The Structure of This Thesis . . . . . . . . . . . . . . . . . . . . . . . 34

vi



2 Winner’s Curse in Mendelian Randomization 35

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3 Simulation Framwork . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Applied Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Addressing the Bias Due to Overlapping Samples in Mendelian Ran-

domization 70

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4 Identifying Invalid Instruments in Mendelian Randomization 108

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2 Model and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3 Simulation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Discussion 135

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . 139

vii



A Supplementary material of Chapter 2 143

A.1 Derivation of BR-Squared by summary statistics . . . . . . . . . . . . 143

A.2 Supplementary tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B Supplementary material of Chapter 3 150

C Supplementary material of Chapter 4 173

C.1 Existing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

C.2 Threshold-based Method . . . . . . . . . . . . . . . . . . . . . . . . . 175

C.3 Other Bootstrap Intervals . . . . . . . . . . . . . . . . . . . . . . . . 176

C.4 Supplementary Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C.5 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . 187

References 195

viii



List of Figures

1.1 Directed acyclic graph (DAG) for confounded association between X

and Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Randomized Controlled Trial vs Mendelian Randomization trial . . . 6

1.3 Graph of instrument variable assumptions . . . . . . . . . . . . . . . 11

1.4 Horizontal pleiotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5 Vertical pleiotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Three-sample design . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.7 Example of winner’s curse . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1 Comparison of IVW causal estimates between individual-level based

BR-squared with summary data. . . . . . . . . . . . . . . . . . . . . 51

2.2 Plot of z-statistics against the bias (naive estimate- true effect) frpm

one simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3 Plot the absolute z-statistic for the naive estimates against the ratio

between the corrected estimate and naive estimate. . . . . . . . . . . 59

2.4 Plot the absolute z-statistic for the naive estimates against the ratio

between the corrected estimate of exposure association and naive es-

timate of exposure association for the example of the impact of body

mass index on schizophrenia. . . . . . . . . . . . . . . . . . . . . . . . 63

ix



2.5 Plot the z-statistic for the naive estimates against the ratio between the

corrected estimate of exposure association and naive estimate of expo-

sure association for the example of the impact of low-density lipopro-

tein cholesterol on Alzheimer’s disease risk. . . . . . . . . . . . . . . 66

3.1 Causal estimates with different strengths of confounder. Scenario: Sig-

nificant threshold 5 · 10−2; causal effect=0.1 (horizontal line). . . . . 92

3.2 The pairwise comparison in standard error and causal estimate for

different methods. Significant threshold 5 · 10−2; causal effect=0.1;

degree of overlap=0%; moderate confounder (βu = αu = 0.6). . . . . 93

3.3 The pairwise comparison in standard error and causal estimate for

different methods. Significant threshold 5 · 10−2; causal effect=0.1;

degree of overlap=100%; moderate confounder (βu = αu = 0.6). . . . 94

3.4 Causal estimates with different strengths of confounder. Scenario: Sig-

nificant threshold 5 · 10−2; causal effect=-0.3 (horizontal line). . . . . 97

3.5 The pairwise comparison in standard error and causal estimate for

different methods. Significant threshold 5 · 10−2; causal effect=-0.3;

degree of overlap=0%; weak confounder (βu = αu = −0.4). . . . . . . 98

3.6 The pairwise comparison in standard error and causal estimate for

different methods. Significant threshold 5 · 10−2; causal effect=-0.3;

degree of overlap=100%; weak confounder (βu = αu = −0.4). . . . . 99

3.7 Estimate with significance threshould of 5 · 10−2 and null causal effect. 101

4.1 Scenario: balanced pleiotropy. Boxplot of bootstrap SE/SD, true posi-

tives, false negatives with entire data is used for selection and estimation.121

x



4.2 Scenario: directional pleiotropy. Boxplot of bootstrap SE/SD, true

positives, false negatives with entire data is used for selection and es-

timation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3 Scenario: balanced pleiotropy. Comparing bootstrap and Wald-type

intervals for selection with different data splits, including Wald-type

intervals using the full dataset. Shrinkage-based methods are considered.129

4.4 Scenario: directional pleiotropy. Comparing bootstrap and Wald-type

intervals for selection with different data splits, including Wald-type

intervals using the full dataset. Shrinkage-based methods are considered.130

B.1 Causal estimates with varing effect of confounder. Scenario: Significant

threshold 5 · 10−5; causal effect=0.1 (horizontal line). . . . . . . . . . 155

B.2 Causal estimates with varing effect of confounder. Scenario: Significant

threshold 5 · 10−8; causal effect=0.1 (horizontal line). . . . . . . . . . 156

B.3 Causal estimates with varing effect of confounder. Scenario: Significant

threshold 5 · 10−5; causal effect=-0.3 (horizontal line). . . . . . . . . 161

B.4 Causal estimates with varing effect of confounder. Scenario: Significant

threshold 5 · 10−8; causal effect=-0.3 (horizontal line). . . . . . . . . 162

B.5 Causal estimates with varing effect of confounder. Scenario: Significant

threshold 5 · 10−5; null causal effect . . . . . . . . . . . . . . . . . . . 165

B.6 Causal estimates with varing effect of confounder. Scenario: Significant

threshold 5 · 10−8; null causal effect . . . . . . . . . . . . . . . . . . . 166

B.7 Estimate with significance threshould of 5 · 10−2 and negataive causal

effect (βc = −0.3) with negative confounder. . . . . . . . . . . . . . . 167

xi



B.8 Estimate with significance threshould of 5 · 10−5 and negative causal

effect (βc = −0.3; horizontal line) with negative confounder. . . . . . 168

B.9 Estimate with significance threshould of 5 · 10−8 and negative causal

effect (βc = −0.3; horizontal line) with negative confounder. . . . . . 169

B.10 Estimate with significance threshould of 5 · 10−2 and positive causal

effect (βc = 0.1; horizontal line) with negative confounder. . . . . . . 170

B.11 Estimate with significance threshould of 5 · 10−5 and positive causal

effect (βc = 0.1; horizontal line) with negative confounder. . . . . . . 171

B.12 Estimate with significance threshould of 5 · 10−8 and positive causal

effect (βc = 0.1; horizontal line) with negative confounder. . . . . . . 172

C.1 Scenario: balanced pleiotropy. Boxplot of bootstrap SE/SD, true pos-

itives, false negatives with 10k observations used for selection and es-

timation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

C.2 Scenario: directional pleiotropy. Boxplot of bootstrap SE/SD, true

positives, false negatives with 10k observations used for selection and

estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

C.3 Scenario: balanced pleiotropy. Boxplot of bootstrap SE/SD, true pos-

itives, false negatives with 30k observations used for selection and es-

timation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

C.4 Scenario: directional pleiotropy. Boxplot of bootstrap SE/SD, true

positives, false negatives with 30k observations used for selection and

the remaining for estimation. . . . . . . . . . . . . . . . . . . . . . . . 190

xii



C.5 Scenario: balanced pleiotropy. Boxplot of bootstrap SE/SD, true pos-

itives, false negatives with 50k observations used for selection and es-

timation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

C.6 Scenario: directional pleiotropy. Boxplot of bootstrap SE/SD, true

positives, false negatives with 50k observations used for selection and

estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

C.7 Scenario: balanced pleiotropy. Comparing bootstrap and Wald-type

intervals for selection with different data splits, including Wald-type

intervals using the full dataset. Threshold-based methods are considered.193

C.8 Scenario: directional pleiotropy. Comparing bootstrap and Wald-type

intervals for selection with different data splits, including Wald-type

intervals using the full dataset. Threshold-based methods are considered.194

xiii



List of Tables

1.1 A list of Mendelian Randomization application. . . . . . . . . . . . . 10

2.1 Simulation result for threshold-based selection with true causal effect=0.2 52

2.2 Simulation result for rank-based selection with true causal effect=0.2 53

2.3 Simulation result for threshold-based selection with true causal ef-

fect=0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 Simulation result for rank-based selection with true causal effect =0.05 55

2.5 Estimates, standard errors and 95% confidence intervals of the causal

effect of body mass index on schizophrenia risk . . . . . . . . . . . . . 64

2.6 Estimates, standard errors and 95% confidence intervals of the causal

effect of low-density lipoprotein cholesterol on Alzheimer’s disease risk 67

3.1 The mean of F -statistics for varing thresholds in two examples. . . . 82

3.2 Mean of causal estimates and coverage for the simulation result with

causal effect=0.1 and moderate confounder (βu = αu = 0.6). . . . . . 90

3.3 Mean of standard errors and standard deviation for the simulation

result with causal effect=0.1 and moderate confounder (βu = αu = 0.6). 91

3.4 Mean of causal estimates and coverage for the simulation result with

causal effect=-0.3 and weak confounder (βu = αu = −0.4). . . . . . . 95

xiv



3.5 Mean of standard errors and standard deviations for the simulation

result with causal effect=-0.3 and weak confounder (βu = αu = −0.4). 96

3.6 Type-I error with significance threshold of 5 · 10−2. . . . . . . . . . . 100

3.7 Causal estimate, standard error (SE) and 95% confidence interval (CI)

for the BMI-SBP example. . . . . . . . . . . . . . . . . . . . . . . . 103

3.8 Causal estimate, standard error (SE) and 95% confidence interval (CI)

for the BMI-HDL-C example. . . . . . . . . . . . . . . . . . . . . . . 104

4.1 True positive rate (TPR) and false positive rate (FPR) with the entire

data used for both selection and estimation. . . . . . . . . . . . . . . 120

4.2 Mean,standard deviation (SD), mean of the standard errors (SE) and

mean of bootstrap standard error (B.SE) for TSLS estimates with the

entire data used for both selection and estimation. . . . . . . . . . . . 120

4.3 Coverage and average width of 95% Wald-type intervals with the entire

data is used for both selection and estimation. . . . . . . . . . . . . 125

4.4 Coverage and average width of 95% bootstrap normal intervals with

the entire data is used for both selection and estimation. . . . . . . . 126

4.5 True positive rate (TPR) and false positive rate (FPR) with the sample-

splitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.6 Mean,standard deviation (SD),mean of standard error (SE) and mean

of bootstrap standard error (B.SE) for TSLS estimates with sample-

splitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.7 Average time (in minutes) for different selection methods over 5 simu-

lations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

xv



A.1 Mean, relative bias, sqaure root of mean of variance (SE), standard de-

viation (SD), coverage probability, and mean of interval length, mean

squared error (MSE) by naive method, projack method, BR-squared,

FIQT, Forde, conditional MLE (MLE), the mean of normalized likeli-

hood estimator (Normalized), and Compromise estimator (Compro-

mise). We repeated 250 simulations for threshould-based selection

(1 · 10−1). True causal effect=0.2. . . . . . . . . . . . . . . . . . . . 147

A.2 Mean, relative bias, sqaure root of mean of variance (SE), standard de-

viation (SD), coverage probability, and mean of interval length, mean

squared error (MSE) by naive method, projack method, BR-squared,

FIQT, Forde, conditional MLE (MLE), the mean of normalized likeli-

hood estimator (Normalized), and Compromise estimator (Compro-

mise). We repeated 250 simulations for threshould-based selection

(1 · 10−6). True causal effect=0.2. . . . . . . . . . . . . . . . . . . . 148

A.3 Mean, relative bias, sqaure root of mean of variance (SE), standard de-

viation (SD), coverage probability, and mean of interval length, mean

squared error (MSE) by naive method, projack method, BR-squared,

FIQT, Forde, conditional MLE (MLE), the mean of normalized like-

lihood estimator (Normalized), and Compromise estimator (Compro-

mise). We repeated 250 simulations for rank-based selection (top 70

variants). True causal effect=0.2. . . . . . . . . . . . . . . . . . . . . 148

xvi



A.4 Mean, relative bias, sqaure root of mean of variance (SE), standard de-

viation (SD), coverage probability, and mean of interval length, mean

squared error (MSE) by naive method, projack method, BR-squared,

FIQT, Forde, conditional MLE (MLE), the mean of normalized like-

lihood estimator (Normalized), and Compromise estimator (Compro-

mise). We repeated 250 simulations for rank-based selection (top 10

variants). True causal effect=0.2. . . . . . . . . . . . . . . . . . . . . 149

A.5 Type-I errors for naive method, projack method, BR-squared, FIQT,

Forde, conditional MLE (MLE), the mean of normalized likelihood es-

timator (Normalized), and Compromise estimator (Compromise). We

repeated 250 simulations for threshould-based selection (5 · 10−4). . . 149

B.1 Mean of causal estimates and coverage for the simulation result with

causal effect=0.1 and weak confounder (βu = αu = 0.4). . . . . . . . . 151

B.2 Mean of standard errors and standard deviations for the simulation

result with causal effect=0.1 and weak confounder (βu = αu = 0.4). . 152

B.3 Mean of causal estimates and coverage for the simulation result with

causal effect=0.1 and strong confounder (βu = αu = 0.8). . . . . . . . 153

B.4 Mean of standard errors and standard deviation for the simulation

result with causal effect=0.1 and strong confounder (βu = αu = 0.8). . 154

B.5 Mean of causal estimates and coverage for the simulation result with

causal effect=-0.3 and moderate confounder (βu = αu = −0.6). . . . . 157

B.6 Mean of standard errors and standard deviation for the simulation

result with causal effect=-0.3 and moderate confounder (βu = αu =

−0.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

xvii



B.7 Mean of causal estimates and coverage for the simulation result with

causal effect=-0.3 and strong confounder (βu = αu = −0.8). . . . . . . 159

B.8 Mean of standard errors and standard deviation for the simulation

result with causal effect=-0.3 and strong confounder (βu = αu = −0.8). 160

B.9 Type I error with significance threshold of 5 · 10−5. . . . . . . . . . . 163

B.10 Type I error with significance threshold of 5 · 10−8. . . . . . . . . . . 164

C.1 True positive rate (TPR) and false positive rate (FPR) for threshold-

based methods with the entire data used for both selection and esti-

mation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C.2 Coverage and average width of 95% Wald-type intervals for threshold-

based methods with the entire data is used for both selection and

estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C.3 Coverage and average width of 95% bootstrap normal CIs for threshold-

based methods with the entire data is used for both selection and

estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

C.4 True positive rate (TPR) and false positive rate (FPR) for threshold-

based methods with sample-splitting. . . . . . . . . . . . . . . . . . 178

C.5 Average time for threshold-based methods over 5 simulations. . . . . 179

C.6 Scenario: balanced pleiotropy. Coverage average width for different

bootstrap CIs (percentile CIs, normal CIs) and Wald-type intervals

with 10k observations used for selection and remaining for inference. 180

C.7 Scenario: directional pleiotropy. Coverage average width for different

bootstrap CIs (percentile CIs, normal CIs) and Wald-type intervals

with 10k observations used for selection and remaining for inference. 181

xviii



C.8 Scenario: balanced pleiotropy. Coverage average width for different

bootstrap CIs (percentile CIs, normal CIs) and Wald-type intervals

with 30k observations used for selection and remaining for inference. 182

C.9 Scenario: directional pleiotropy. Coverage average width for different

bootstrap CIs (percentile CIs, normal CIs) and Wald-type intervals

with 30k observations used for selection and remaining for inference. 183

C.10 Scenario: balanced pleiotropy. Coverage average width for different

bootstrap CIs (percentile CIs, normal CIs) and Wald-type intervals

with 50k observations used for selection and remaining for inference. 184

C.11 Scenario: directional pleiotropy. Coverage average width for different

bootstrap CIs (percentile CIs, normal CIs) and Wald-type intervals

with 50k observations used for selection and remaining for inference. 185

C.12 Coverage and average width of 95% bootstrap intervals for new Lasso

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

xix



Notation and Abbreviations

Notation

X exposure or risk factor

Y outcome

G genetic variants

U confounding factor

ε random error in the regression model

βc causal effect

β̂gx estimate of genetic-variant-exposure association (G-X)

β̂gy estimate of genetic-variant-outcome association (G-Y)

αu effect of confounder on exposure

βu effect of confounder on outcome

α effect of genetic variant on exposure

xx



ϕ direct effect of genetic variant on outcome

F F -statistic from regression of X on G

n the total number of observation

M the total number of instruments

R the number of bootstrap samples

z z-statistic: the ratio of estimated G-X association and its standard

error

µ the mean of z-statistics

nc the number of overlapping samples

nx the sample size for the G-X association

ny the sample size for the G-Y association

rxy the sample correlation between X and Y

Abbreviations

AD Alzheimer’s disease

CHD coronary heart disease

CI confidence interval

Compromise Compromise estimator

xxi



CRP C-reactive protein

DAG directed acyclic graph

DNA Deoxyribonucleic Acid

FDR false discovery rate

FIQT FDR Inverse Quantile Transformation

FPR false positive rate

GIANT Genetic Investigation of ANthropometric Traits

GLGC Global Lipid Genetics Consortium

GWAS genome-wide association study

HDL-C high-density lipoprotein cholesterol

HWE Hardy–Weinberg equilibrium

IGAP International Genomics of Alzheimer’s Project

IL-10 Interleukin-10

InSIDE Instrument Strength Independent of Direct Effect

IV instrumental variable

IVW inverse-variance weighted

LD linkage disequilibrium

LDL-C low-density lipoprotein cholesterol

xxii



LIML limited information maximum likelihood

MAF minor allele frequency

MBE mode-based estimator

MCMC Markov Chain Monte Carlo

MLE maximum likelihood estimator

MR Mendelian randomization

MR-Egger Mendelian randomization-Egger

MR-PRESSO MR Pleiotropy Residual Sum and Outlier

MR-RAPS Robust Adjusted Profile Score

MSE mean squared error

NOME no measurement error

Normalized normalized conditional likelihood

OLS ordinary least squares

Projack Predicion by Re-Ordered Jackknife and Cross-Validation K-fold

RCT Randomized Controlled Trials

SD standard deviation

SE standard error
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Chapter 1

Introduction

1.1 What is a Causal Effect

A causal effect represents the specific impact of a risk factor or treatment on an

outcome, indicating how changes in the risk factor or treatment directly lead to

changes in the outcome variable. Following Pearl (1995), we can describe the causality

of exposure (X) on the distribution of outcome (Y ) as: P (Y = y|do(X = x)), where

the “do” notation do(X = x) indicates an intervention on the variable X. This

expression represents the probability (or frequency) that event (Y = y) would occur

if treatment condition X = x were enforced uniformly over the population.

In observational studies, the researchers do not manipulate the causal variable.

Instead, they observe the natural variation in the causal variable and its effect on the

outcome variable. As a result, the observed conditional probability of the effect vari-

able given the causal variable, denoted as P (Y = y|X = x), represents the probability

of Y taking the value y given the observed value of X as x in the data.

The relationship between P (Y = y|do(X = x)) and P (Y = y|X = x) depends on
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Figure 1.1: Directed acyclic graph (DAG) for confounded association between X
and Y

the presence of confounding variables (U). Confounders are additional variables that

influence both the causal variable X and the outcome variable Y . They can distort

the observed relationship between X and Y and lead to a biased estimator of the

causal effect.

When there are no confounders, the causal effect P (Y = y|do(X = x)) and

the observed conditional probability P (Y = y|X = x) are equal. In such cases,

the observed association between X and Y can be interpreted causally (Pearl and

Mackenzie, 2018).

However, in the presence of confounders, P (Y = y|do(X = x)) and P (Y = y|X =

x) may differ. In this scenario, the observed conditional probability P (Y = y|X = x)

does not represent the true causal effect of X on Y due to the confounding influence.

In reality, the presence of unknown or unmeasured confounders remains uncer-

tain. Causal inference serves as a means to untangle true causality from observed

correlations, especially when confronted with unfamiliar confounders, surpassing the

observational studies.
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1.2 Observational Studies and Randomized Con-

trolled Trials

Observational studies involve the examination and analysis of data from existing

populations or groups without manipulating exposures or interventions. They rely

on existing data, which can include data from medical records, surveys, registers or

other sources. While observational studies are valuable for generating hypotheses

and exploring associations, they have limitations such as confounding, selection bias,

and potential challenges in establishing causal inferences. Confounding arises when

unmeasured variables are associated with both the exposure and the outcome, leading

to biased estimates of their relationship. For example, a study investigating the link

between smoking and human overall health may be confounded by factors like diet,

alcohol consumption and lifestyles, which are related to both smoking and health

(Tjønneland et al., 1999).

Reverse causality is another issue in observational studies, occurring when the

outcome influences the exposure instead of the other way around. For instance, in

a study examining the association between child adiposity (the amount of body fat

in a child) and physical activity, individuals with lower physical activity also showed

increased adiposity, resulting in an incorrect interpretation of causality (Richmond

et al., 2014).

In contrast, randomized trials, also known as randomized controlled trials (RCTs),

can help address potential confounding and reverse causation by randomly assigning

participants to different groups or interventions. Participants are randomly allocated

to receive either the experimental treatment or a control group (placebo or standard
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treatment). The comparison of outcomes between these groups establishes the causal

relationship. Randomization minimizes bias and confounding, making RCTs the gold

standard for assessing causal effects. However, RCTs have limitations, such as their

high cost, time-consuming nature, and logistical challenges. Some research questions

or interventions may not be feasible or ethical to investigate through RCTs. For exam-

ple, studying lifestyle factors such as smoking, alcohol consumption, or diet through

RCTs could be ethically questionable or practically unfeasible due to potential harm

to participants. As for the relationship between greater adiposity or body mass index

(BMI) and cardiovascular risk, observational evidence has long suggested a strong

link (Hubert et al., 1983). However, randomized trials exploring weight reduction as

an intervention have been relatively scarce and challenging to conduct, leaving the

question of causality unanswered.

1.3 The Rise of Mendelian Randomization

Mendelian randomization (MR) (Katan, 1986) is an innovative approach in epidemiol-

ogy and genetics that employs genetic variants as instrumental variables to investigate

causal relationships between exposures and outcomes. This method has gained sig-

nificant popularity in the field of causal inference due to its unique strengths and

advantages over traditional observational studies and randomized controlled trials.

Its historical roots can be traced back to the concept of instrumental variables (IV)

in the field of econometrics. Instrumental variables were first used by Philip G. Wright

(Wright, 1928) when he sought to analyze the supply and demand for butter in the

United States. Facing challenges in constructing accurate demand and supply curves

due to the influence of price on both variables, Wright introduced an instrumental
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variable – regional rainfall – which correlated with supply but not demand. By using

the instrumental variable in his regression analysis, he estimated the causal effect

of price on supply. The term “instrumental variable” was later formalized by Olav

Reiersøl in 1945 when he applied the same approach for the errors in variables problem

in his dissertation, giving the method its name (Reiersøl, 1945).

In MR, genetic variants act as IVs, enabling the investigation of exposure-outcome

causality while minimizing bias from confounding factors and reverse causation. The

concept of Mendelian randomization was first proposed by Katan (1986) in a study

examining the link between low serum cholesterol levels and cancer. Traditional

observational studies were susceptible to biased estimates due to unaccounted con-

founders. Katan suggested comparing individuals with different Apolipoprotein E

(APOE) genotypes, which are associated with serum cholesterol levels but unlikely

to be influenced by confounders. This approach was later termed “Mendelian Ran-

domization” by Gray and Wheatley (1991). Unlike RCTs, where individuals are

randomly assigned to treatment groups, MR studies compare individuals with differ-

ent genotypes (Figure 1.2). Genotypes are fixed at conception and are independent

of confounding factors. This makes genetic variants ideal IVs for causal inference.

While intrumental variables has been extensively studied in econometrics (Anderson

and Rubin, 1949; Basmann, 1957; Hansen, 1982; Bound et al., 1995; Angrist et al.,

1996; Stock et al., 2002), they have also gained popularity in epidemiology as a pow-

erful tool for assessing causal effects. This instrumental variable framework provides

a natural experiment-like setting to estimate the causal effect of the exposure on the

outcome. These genetic variants, often single nucleotide polymorphisms (SNPs), are

randomly allocated during meiosis and are thus independent of environmental and
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Figure 1.2: Randomized Controlled Trial vs Mendelian Randomization trial

lifestyle factors. By leveraging genetic variants as instrumental variables, MR aims

to mimic a randomized controlled trial in which individuals are randomly assigned

to different levels of exposure. MR is particularly valuable for studying long-term ef-

fects of exposures that are challenging or ethically impractical to manipulate in RCTs.

The growing availability of large-scale genomic data and advancements in genotyping

technologies contribute to the popularity of MR. Genome Wide Association Studies

(GWAS) have facilitated the identification of genetic variants associated with various

exposures and outcomes, making MR analyses more feasible and informative.

1.4 A Brief Review of Genetics

Genes are the fundamental units of heredity that carry the instructions for the pro-

duction of proteins. These genes are encoded within DNA (Deoxyribonucleic Acid),

the genetic material that stores and transmits genetic information. DNA is organized

into structures called chromosomes, which exist in pairs in humans and contain nu-

merous genes along their length. Each gene is composed of a specific sequence of

nucleotides, which are the building blocks of DNA. The nucleotides consist of four
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bases: adenine (A), thymine (T), cytosine (C), and guanine (G). The sequence of

these bases within a gene determines the sequence of amino acids in a protein.

Variations can arise within the DNA sequence at specific positions known as SNPs.

SNPs represent the most prevalent form of genetic variation, where a single nucleotide

base (A, T, C, or G) may differ among individuals at a particular position. Genotype

refers to the combination of alleles at a particular SNP within an individual’s genome.

Alleles are alternative forms or variants of a gene at the same position on paired

chromosomes. For instance, at a given SNP, individuals can have different genotypes.

Homozygous genotypes (e.g., AA or TT) refer to individuals carrying two identical

alleles at a specific SNP. In these cases, both copies of the allele at the given SNP are

the same nucleotide base. Heterozygous genotypes where they carry one copy of each

allele (e.g., AT). Linkage disequilibrium (LD) refers to the phenomenon whereby the

genetic makers that are close to each other tend to be inherited together.

The frequency of different alleles within a population is measured by the Minor

Allele Frequency (MAF). MAF represents the proportion of individuals in a popula-

tion who carry the less common allele at a specific SNP. For instance, if a SNP has

an A allele and a T allele, and the T allele is less common, the MAF would reflect

the frequency of the T allele among individuals in that population. Hardy–Weinberg

equilibrium (HWE) states that, in the absence of external evolutionary factors, the

frequencies of alleles and genotypes within a population will remain stable across

successive generations. Under the assumption of HWE, the distribution of genotypes

in a population can be modeled using the binomial distribution. Specifically, if we

consider a bi-allelic locus (two alleles, often denoted as A (minor allele) and a), the

genotypes AA, Aa, and aa can be treated as the outcomes of a binomial experiment.
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For example, if p and q denote the frequencies of allele A and allele a, respectively,

then the probabilities of the three genotypes AA, Aa, and aa under HWE are p2, 2pq

and q2, respectively. These probabilities follow the binomial distribution Bin(n, p)

with n = 2 and p= MAF.

A Genome Wide Association Study (GWAS) (Ozaki et al., 2002) is a powerful

approach used to identify genetic variants associated with complex traits or diseases.

It involves scanning the entire genome for SNPs and assessing their associations with

specific traits or phenotypes. For example, a GWAS might investigate the association

between SNPs and the risk of developing a particular disease, such as diabetes or can-

cer. The primary goal of GWAS is to identify SNPs that are significantly associated

with a particular trait or disease of interest. By comparing the SNP patterns among

individuals with and without the trait or disease, researchers can determine which

genetic variations are more prevalent in one group compared to the other.

GWAS is typically conducted in large cohorts that include thousands to hun-

dreds of thousands of participants. The participants undergo genotyping, where their

DNA is analyzed to determine the presence of specific genetic markers, usually SNPs.

Detailed phenotypic information, such as medical history, clinical measurements, or

lifestyle factors, is also collected to correlate with the genotypic data. The GWAS

threshold (a significance level), typically at 5× 10−8, is rooted in the Bonferroni cor-

rection—a technique that adjusts for multiple testing issues in GWAS. In GWAS, this

correction divides the significance level (like 0.05) by the total number of independent

tests conducted across the genome.

8



Ph.D. Thesis – Mengjie Bian McMaster University – Statistics

1.5 Mendelian Randomization Application

A systematic review of applied Mendelian randomization studies was published in

several works (Sheehan et al., 2008; Pierce et al., 2018; Markozannes et al., 2022).

Table 1.1 gives a range of examples of MR applications in the field of epidemiology. As

observational studies cannot establish the causality due to the potential confounding

or biases, MR provides an alternative approach to assess the causality. An illustra-

tion of this can be seen in the establishment of a causal relationship between elevated

low-density lipoprotein cholesterol (LDL-C) and the occurrence of coronary heart

disease (CHD) events. This association has been derived from observational studies

and confirmed through randomized trials investigating the effectiveness of LDL-C-

lowering medications (Cholesterol Treatment Trialists’ (CTT) Collaborators, 2005,

2012). However, there is a lack of consensus between observational studies and ran-

domized trials regarding the causal association of high-density lipoprotein cholesterol

(HDL-C) and triglycerides with CHD. While observational studies clearly indicate

a positive association between triglycerides and CHD and an inverse association for

HDL-C (The Emerging Risk Factors Collaboration, 2009), the anticipated benefits

have not been demonstrated thus far in randomized trials involving HDL-C or triglyc-

eride modifying drugs (Schwartz et al., 2012; The FIELD Study Investigators, 2005).

Subsequent MR studies provide additional support for a causal relationship between

triglycerides and the risk of coronary heart disease (CHD). However, the causal role

of HDL-C, although plausible, remains less certain (Holmes et al., 2015; Do et al.,

2013).
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Table 1.1: A list of Mendelian Randomization application. BMI: body mass index;
WHR: waist hip to ratio; TGL:triglycerides; LDL-C: low-density
lipoprotein cholesterol; T2D: type 2 diabetes; CRP: C-reactive protein;
IL-10: Interleukin-10

Exposure Outcome Reference

Dietary intake and micronutrient concentration

Alcohol Esophageal Lewis and Davey Smith (2005)

Alcohol Head and neck Boccia et al. (2009)

Alcohol Colorectal cancer Wang et al. (2011)

Vitamin D & B12 Prostate cancer Bonilla et al. (2013)

Vitamin D & B12 Osvarian cancer Ong et al. (2016)

Coffee Prostate cancer Taylor et al. (2017)

Magnesium Breast cancer Papadimitriou et al. (2021)

Ferrition Liver cancer Yuan et al. (2020a)

Anthropometric traits

BMI Colerectal cancer Thrift et al. (2015); Gao et al. (2016)

BMI Ovarian cancer Painter et al. (2016)

WHR Colerectal cancer Jarvis et al. (2016)

Lipid traits

TGL Breast cancer Orho-Melander et al. (2018)

LDL-C Endometrial cancer Kho et al. (2021)

Disease

T2D Esophageal Yuan et al. (2020b)

Schizophrenia Breast cancer Shi et al. (2018)

Inflammation

CRP Colerectal cancer Nimptsch et al. (2017)

IL-10 Digestive cancer Niu et al. (2016)
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1.6 Assumptions and Selection of Instrument Vari-

ables

To make a genetic variant a valid instrumental variable, three assumptions must be

met (Martens et al., 2006):

� IV1: it is strongly associated with the exposure of interest.

� IV2: it is independent of any confounding factors of the exposure-outcome

association.

� IV3: it is conditionally independent of the outcome given the exposure and the

confounding factors.

Figure 1.3 shows the standard Directed Acyclic Graph (DAG) for the assumptions of

MR, in which a genetic instrument is associated with an exposure X, and its influence

on the outcome variable Y arises exclusively through its impact on X.

Figure 1.3: Graph of instrument variable assumptions

1.6.1 IV 1: Relevance

The first assumption in MR states that the genetic variant used as an instrumental

variable should be strongly associated with the exposure variable of interest. This
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assumption is crucial to avoid weak instrument bias. Weak instrument bias happens if

the association between the genetic variants and exposure is weak. If the association

between the genetic variant and the exposure variable is weak, it means that the

genetic variant explains only a small proportion of the variation in the exposure. In

such cases, the variation in confounding factor may account for a greater portion of

the variation in the exposure than the instruments do. Consequently, using such a

weak IV in MR analysis can lead to a biased estimator of the causal effect between

the exposure and the outcome. The bias is in the direction of the observational

confounded association (Burgess et al., 2011). The first-stage F -statistic is often

used to judge whether the instrument is weak or not. The first-stage F -statistic is

obtained from the regression of exposure X on the genetic variants, which can be

calculated as

F =

∑n
i=1(X̂i −X)2/(M − 1)∑n
i=1(Xi − X̂i)2/(n−M)

(1.6.1)

where n is the number of observations and M is the number of IVs. Typically, the

first-stage F must be larger than 10 for the causal estimate to be reliable (Staiger

and Stock, 1997; Stock et al., 2002). It was shown that the relative mean bias, which

is defined as the ratio of the bias of the IV estimator to the bias of the ordinary least

square (OLS) estimator, is approximately inversely proportional to 1/F (Staiger and

Stock, 1997; Burgess and Thompson, 2011). If the genetic variant-exposure (G-X)

and genetic variant-outcome (G-Y) association estimates are obtained from two non-

overlapping samples, then these estimates are uncorrelated. In this case, Pierce and

Burgess (2013) showed that the bias due to the weak IVs is in the direction of null

when the sample size for the exposure is small compared to that for the outcome.

However, when the sample size for the exposure is large compared to that for the
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outcome, the bias is in the direction of confounded (observational) association. The

direction of confounded (observational) association depends on the product of the

signs of the confounder effect on both the exposure and the outcome.

1.6.2 IV 2: Independence

Assumption 2 relies on the concept that the genetic variants that are used as instru-

ments are independent of other variables that could confound the relationship between

the exposure and outcome. This independence assumption relies on Mendel’s law of

independent assortment, which underlies the idea that different traits are inherited

independently. Mendel’s law of independent assortment ensures that the genetic in-

strument used is not correlated with the confounders. Nevertheless, the independence

assumption can be violated by environmental and social factors such as assortative

mating, dynastic effects, and population structure, which induce an association be-

tween genetic variants and outcome (Brumpton et al., 2020).

Population structure occurs when there are geographic or regional differences in

allele frequency relating to a trait of interest. Techniques such as principal compo-

nent analysis and linear mixed models have been demonstrated to effectively mitigate

the confounding effects introduced by population stratification (Price et al., 2010).

Dynastic effect occurs when the parent’s genotype affects the outcome of the off-

spring that are mediated through the parent’s phenotype. Assortative mating refers

to the tendency of individuals to choose mates who have similar characteristics to

themselves. It is a non-random pattern of mate selection based on certain traits or

characteristics (Hartwig et al., 2018). These challenges can be addressed by using

within-family designs which focus on family units, such as parent-offspring trios or
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siblings. Brumpton et al. (2020) showed that the within-family designs can be applied

in the context of Mendelian randomized with genomic data to obtain a more robust

estimate of causal effect.

1.6.3 IV 3: Exclusion restriction

The assumption of conditional independence between genetic variants and the out-

come is violated when genetic variants impact the outcome through pathways other

than the exposure, known as horizontal pleiotropy (Figure 1.4) (Bowden et al., 2015).

Vertical pleiotropy, on the other hand, occurs when genetic variants are associated

with other variables on the same pathway as the exposure of interest (Figure 1.5). It

is worth noting that vertical pleiotropy does not introduce bias in causal estimation,

whereas horizontal pleiotropy can induce bias, especially when the average pleiotropic

effect across genetic variants is non-zero, referred to as directional pleiotropy. How-

ever, if the average pleiotropy effect is zero, also known as balanced pleiotropy, the

causal estimate will not be biased (Bowden et al., 2015). Numerous approaches have

been developed to deal with horizontal pleiotropy (Koller and Stahel, 2011; Bowden

et al., 2015, 2016b; Hartwig et al., 2017; Rees et al., 2019; Qi and Chatterjee, 2019;

Zhao et al., 2020; Burgess et al., 2020). We will introduce some of these methods in

details in the following sections.
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Figure 1.4: Horizontal pleiotropy

Figure 1.5: Vertical pleiotropy

1.6.4 Selection of Instrument Variables

The simplest application of Mendelian randomization involves using a single genetic

variant as an instrument for an exposure. However, a single variant usually explains

only a small portion of phenotype variation. Studies using such variants can be sta-

tistically underpowered and biased. To address this, we can use multiple independent

SNPs as instruments to explain more variation in the exposure. Alternatively, the

SNPs can be combined into an allele score, acting as a single IV for predicting the

exposure in MR analyses (Burgess and Thompson, 2013).

Typically, the unrelated genetic variants across multiple regions of genome which

meet the GWAS significance threshold, are chosen as IVs for investigating the causal
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role of an exposure on a outcome. Recently, MR has also gained popularity in drug

target validation (Gill et al., 2021), where variants within a single gene region are

selected as IVs, a practice also known as cis-MR. In this application, the protein ex-

pression is taken as the exposure. This is attributed to the fact that each coding gene

section encodes a distinct protein and proteins often serve as targets for medications.

By using the variants selected from that region for protein encoding, cis-MR studies

provide insights into the potential of the encoded protein as a drug target for the

outcome (Gill et al., 2021). For example, the application of MR using IVs selected

from the SNPs in the interleukin-6 receptor (IL6R) gene has indicated that targeting

of IL6R could provide a novel therapeutic approach to prevention of coronary heart

disease (The Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR)

Consortium, 2012).

1.7 One-sample Mendelian Randomization

In one-sample Mendelian randomization, the data on genetic variants, exposure and

outcome are from the same sample of individuals while in two-sample MR, the G-X

and G-Y association estimates are measured in two different samples, and typically,

these two samples need to be independent to avoid bias. The advantage of one-sample

MR over two-sample MR is that one-sample MR allows us to conduct analysis in

specific subgroups or to choose which variables to adjust for when generating the

summarized data (Burgess et al., 2023). In one-sample MR, a common approach to

estimate the causal effect is using the two-stage least squares method (TSLS). To

illustrate this method, let’s assume the following linear model. The exposure Xi for

individual i is a linear combination of M independent genetic variants, a confounder
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factor Ui and random error εxi
; the outcome Yi is a linear combination of exposure

Xi, confounding factor Ui and random error εyi .

Xi =
M∑
k=1

αkGik + αuUi + εxi

Yi = βcXi + βuUi + εyi

Ui ∼ N
(
0, σ2

u

)
; εxi

∼ N
(
0, σ2

x

)
; εyi ∼ N

(
0, σ2

y

)
(1.7.1)

We let vyi = βuUi + εyi and vxi
= αuUi + εxi

. Then vyi can be written in form of vxi
:

vyi =
βu

αu
(vxi

− εxi
) + εyi . From this expression, we can see that Xi is correlated with

vyi since Xi is a linear combination of vxi
and genetic variants and vxi

is correlated

with vyi . With individual-level data, the ordinary least square estimator of βc is a

biased estimator and is not consistent as the exposure Xi is correlated with vyi . Two

assumptions are needed for the consistency of OLS (Wooldridge, 2010):

Assumption 1 E(X ′vy) = 0

Because X contains a constant, Assumption 1 is equivalent to saying that vy has

mean zero and is uncorrelated with the regressor.

Assumption 2 rank(E(X ′X)) = K, with X = [1,X1,X2, · · · ,XK−1]

Note that K is equal to 2 with a single exposure and greater than 2 with multiple

exposures. For simplicity, we take K = 2 for the illustration of TSLS.

Using genetic variants G = [G1,G2, · · · ,GM ] as IVs, TSLS regression produces

a consistent and unbiased estimator. The IVs need to satisfy the three assumptions

outlined in Section 1.6. Since the IVs are assumed to have no correlation with the
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confounder, which means that cov(G,vy) = 0 and cov(G,vx) = 0, it follows that X∗

is uncorrelated with vx, where

X∗ = α1G1 + α2G2 + · · ·+ αMGM . (1.7.2)

We can get an estimate of X1i for individual i from the fitted values of an OLS

regression of X1 on G:

X̂1i = α̂1Gi1 + α̂2Gi2 + · · ·+ α̂MGiM (1.7.3)

Now, let’s define the vector X̂i = [1, X̂1i] for each individual i to construct the matrix

X̂ with a dimension of n× 2. Then, the TSLS IV estimator is obtained by running

a second OLS regression of Y on fitted values X̂:

β̂c = (X̂ ′X̂)−1X̂ ′Y (1.7.4)

To summarize, β̂c can be derived through the following two procedures:

1. Perform a first-stage regression, where X1 is regressed on 1, G1, G2, ..., GM .

2. Conduct an OLS regression of Y on X̂ in the second-stage regression, resulting

in β̂c.

Define the projection matrix P = G(G′G)−1G′. Then the two-stage least squares

estimator can be expressed as:

β̂c = (X̂ ′X̂)−1X̂ ′Y

= (X ′PX)−1X̂ ′PY (1.7.5)
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The TSLS residuals are defined as

ε̂i = Yi −Xiβ̂c, i = 1, 2, ...n (1.7.6)

Given the TSLS residuals, a consistent estimator of σ2 is

σ̂2 = (n− 2)−1

n∑
i=1

ε̂2i (1.7.7)

So the estimator of asymptotic variance of β̂c can be expressed as

var(β̂c) = σ̂2(X̂ ′X̂)−1 (1.7.8)

When the instruments have low correlation with the exposure variable X, they are

considered “weak”, leading to increased bias in the TSLS estimator. If the instru-

ments are both numerous and weak, the TSLS estimator becomes biased towards

the probability limit of the corresponding OLS estimator. This bias can be quanti-

fied using F -statistic (Equation (1.6.1)), which assesses the joint significance of all

instruments in the first-stage regression, i.e.,

E[β̂c − βc] ≈
σvxvy
σv2x

1

F + 1
(1.7.9)

From this, we see that as the first-stage F statistic gets small, the bias of TSLS

approaches
σvxvy

σ2
vx

. Meanwhile, the bias of OLS estimate is
σvxvy

σ2
x

, which is equivalent

to
σvxvy

σ2
vx

when the G-X association is 0. In general, we can assert that TSLS estimates

tend to be“biased towards” OLS estimates when there is limited information in the

first stage. Conversely, the bias of the TSLS estimator diminishes as the first-stage
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F-statistic increases (Stock et al., 2002). It is worthwhile to note that because vx and

vy are both a linear combination of a confounder and random error, the direction

of bias depends on the product of confounder effect on exposure and outcome. A

commonly cited criterion to determine the weakness of an instrument is when the

F -statistic in the G-X association is below 10, as mentioned by Lawlor et al. (2008).

The limited information maximum likelihood (LIML) method, as introduced by

Anderson and Rubin (1949), offers advantages over TSLS, particularly when dealing

with weak instruments. Notably, the median of the LIML distribution remains close

to unbiased even in the presence of weak instruments, as indicated by Pierce and

VanderWeele (2012). However, LIML estimates do not have defined moments for any

number of instruments (Hahn et al., 2004).

1.8 Two-sample Mendelian Randomization

Two-sample Mendelian randomization has distinct advantages over one-sample MR.

Firstly, it allows for a larger sample size by combining data from two independent

studies. This increased sample size enhances the statistical power and improves the

ability to detect causal relationships. Moreover, two-sample MR only relies on sum-

mary statistics rather than individual-level data, simplifying data handling and ad-

dressing privacy concerns associated with sharing sensitive information.

The two samples are assumed to come from the same population, and they are

typically independent. If the two samples have some overlap, then the causal estimate

might be biased. The size of bias is linearly dependent on the degree of overlap. For

a case-control setting, if risk factors are only included for the control participants,

estimates are still unbiased in a one-sample setting (Burgess et al., 2016). A more
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thorough discussion of the issue of overlap will be provided in Chapter 3.

Within this section, we will present several widely used approaches for summary-

level MR, emphasizing the benefits and underlying assumptions associated with each

method.

1.8.1 Inverse Variance Weighted

The ratio method, also known as the Wald ratio method, is a simple approach used

in single-instrument MR to estimate the causal effect of an exposure variable on an

outcome variable.

The key idea behind the ratio method is to calculate the ratio of the genetic

variant association effect on the outcome variable to its effect on the exposure variable.

Specifically, we obtain the estimates of the genetic associations of Y (β̂gy) and X (β̂gx)

and standard errors, obtained from large-scale GWAS.

The formula for the causal estimate β̂c using the ratio method is:

β̂c =
β̂gy

β̂gx
(1.8.1)

The inverse variance weighted (IVW) method is a widely used approach in multiple-

instrument MR to estimate the causal effect of an exposure variable on an outcome

variable. In this method, we use multiple genetic variants (instruments) that are

associated with the exposure variable to derive a weighted average of their individual

causal estimates on the outcome.

The key idea behind the IVW method is to combine the effect estimates and

their corresponding standard errors for each genetic variant in a meta-analysis-like

framework. The weight assigned to each ratio estimate is inversely proportional to
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its variance (the square of its standard error).

Mathematically, the IVW causal estimate (β̂IV W ) is calculated as follows:

β̂IV W =

∑M
j=1wjβ̂cj∑M
j=1wj

(1.8.2)

where wj is the inverse variance for the j th ratio estimate:

wj =
̂var(β̂cj)

−1

(1.8.3)

with v̂ar(β̂cj) =
1

β̂2
gjx

se2(β̂gjy).

Here, β̂cj represents the ratio estimate for IV j, and ̂var(β̂cj) is the corresponding

estimated variance. Then the variance of β̂IV W is expressed as

var(β̂IV W ) =
1∑M

j=1wj

(1.8.4)

Note that the calculation of ̂var(β̂cj) for each individual genetic instrument (j) as-

sumes the NOME (no measurement error) assumption, where the uncertainty in G-X

association is ignored. The IVW estimator can be biased if the three core assumptions

of MR are not met. However, there is a unique scenario where the IVW estimator

remains unbiased even when the IVs are not valid. This occurs when the pleiotropy

effect is balanced across all IVs. In this case, the pleiotropy effect has a zero mean

and adheres to the Instrument Strength Independent of Direct Effect (InSIDE) as-

sumption, as described by Bowden et al. (2017). The InSIDE assumption implies

that the genetic association with the exposure should not be related to the pathway
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between the instrument and the outcome variable that does not involve the expo-

sure of interest. In such circumstance, the IVW method can yield unbiased causal

estimators.

As previously mentioned, we can assess violations of Assumption IV1 using F -

statistic. For Assumptions IV2 and IV3, we detect violations by measuring the het-

erogeneity in the ratio estimates. The Cochran’s Q statistic is used to assess the

heterogeneity of causal estimates across different genetic instruments.

Q =
M∑
i=1

wj(β̂c − β̂IV W )2 (1.8.5)

The Q statistic follows a chi-squared distribution with the degree of freedom (ν) equal

to the number of IVs minus 1 (M − 1) under the null hypothesis, which states that

there is no heterogeneity between instruments, and the effect estimates are consis-

tent. If the p-value from the chi-squared test is significant, it suggests the presence of

heterogeneity. To address heterogeneity, researchers can use statistical methods that

account for effect heterogeneity, such as random-effects meta-analysis or MR-Egger

regression. In two-sample MR, the multiplicative random-effects model is more preva-

lent than the additive version, as it maintains the weight for each ratio estimate within

the fixed-effects model (Bowden et al., 2017).

The estimate from the multiplicative random-effects model will be the same as

that from the fixed-effects model because the weights remain the same. However,

the variance will be inflated by a scale parameter ϕ to account for the heterogeneity.

From Equation (1.8.6), we see that the IVW estimate can also be obtained from

a weighted linear regression of the G-Y association with the G-X association using

the weight se(β̂gjy)
−2. The multiplicative random-effects IVW method provides valid
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causal estimates when the average pleiotropic effect across all genetic variants is zero

(referred to as balanced pleiotropy).

G-X : β̂gjx = βgjx

G-Y : β̂gjy = βcβgjx + ϕ1/2 se(β̂gjy)εj, var(εj) = 1 (1.8.6)

In this case, the variance of the multiplicative random-effects IVW estimator will be:

var(β̂IV W ) =
ϕ̂∑
wj

(1.8.7)

The scale parameter ϕ is estimated by ϕ̂ = Q
M−1

.

1.8.2 MR-Egger

The MR-Egger method serves as an alternative statistical approach within Mendelian

randomization to estimate causal effects when there is directional pleiotropy (average

pleiotropic effect is non zero) that challenges the exclusion restriction assumption and

introduces bias in the IVW estimator (Bowden et al., 2015). This method involves

a straightforward modification to the weighted linear regression as described earlier.

Unlike the IVW method, where the intercept term is fixed at zero, MR-Egger allows

for the estimation of the intercept term as part of the analysis.

β̂gjy = β0 + βcβgjx + se(β̂gjy)εj, var(εj) = 1 (1.8.8)

The intercept term (β0) in Equation (1.8.8) captures the average pleiotropic effect

across the genetic instruments on the outcome variable, independent of the exposure.

It assesses the directional pleiotropy by conducting a test on the intercept. A non-zero
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intercept in MR-Egger indicates the presence of directional pleiotropy and suggests

that the IVW estimator is biased.

When the assumptions of InSIDE and NOME are fully satisfied, MR-Egger pro-

vides an unbiased estimator for the causal effect. However, if InSIDE is met while

NOME is violated, the estimator becomes biased, leading to what is known as regres-

sion dilution bias. This bias causes the MR-Egger slope to be attenuated towards

zero. In addition to InSIDE and NOME, MR-Egger relies on the variation in gene-

exposure associations, denoted as VIS (Variation in Instrument Strength). If there is

minimal variation in the effect of the genetic instruments on the exposure variable,

the estimate may suffer from dilution bias. The dilution bias can be assessed using I2

statistic (Bowden et al., 2016a), which quantifies the percentage of total variation in

G-X association across studies attributed to heterogeneity rather than chance (Hig-

gins et al., 2003). When the G-X associations exhibit substantial variation and the

measurement error in estimating the variance of G-X association estimate is relatively

minor compared to the actual variability, the I2 value tends to approach 1, indicating

minimal impact from NOME violation. On the other hand, if the G-X associations

show similar magnitudes or their estimates lack precision, the I2 value can markedly

fall below 1, leading to a pronounced dilution effect (Bowden et al., 2016a).

1.8.3 Median-based Estimate

Recall that the IVW estimator remains unbiased only when all IVs fulfill the three

Mendelian randomization assumptions or when the average pleiotropy effect is zero.

In contrast, the MR median-based method provide a consistent estimator of the

causal effect even when up to 50% of the IVs are not valid (Bowden et al., 2016b).
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This approach demonstrates greater robustness to the presence of invalid instruments,

making it a valuable alternative in scenarios where the traditional IVW method might

be affected by pleiotropy or other biases.

The simple median estimator often lacks efficiency, especially when the precision of

individual estimates varies significantly. To address this issue, Bowden et al. (2016b)

also introduced a weighted median estimator, which takes into account the varying

precision of the ratio estimates. The weighted median is defined as follows: Let wj

represent the standardized weight assigned to the j-th ordered ratio estimate, and let

sj be the sum of standardized weights up to. The weighted median estimator calcu-

lates the median of a distribution with β̂j as its pj = 100(sj − wj/2)-th percentile.

For other percentile values, linear extrapolation is performed between neighboring

ratio estimates (Bowden et al., 2016b). Similar to the IVW method, the weighted

median estimator uses the inverses of the estimated variance of the ratio estimators

as weights, which are then standardized. The variance of the median-based estimator

and confidence intervals are computed using the parametric bootstrap method. In

comparison, MR-Egger regression can yield a consistent estimator even when all ge-

netic variants are invalid instrumental variables, whereas the weighted median method

requires at least 50% of the variants are valid IVs. However, the advantage of the

weighted median approach lies in its ability to accommodate a broader range of IV

assumption violations, including potential breaches of the INSIDE assumption upon

which MR-Egger heavily relies (Bowden et al., 2016b).
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1.8.4 Mode-based Estimate

The mode-based estimate (MBE) offers an alternative approach to obtain a consis-

tent causal effect estimator, especially when IVs are susceptible to pleiotropy bias.

This method is based on the Zero Modal Pleiotropy Assumption (ZEMPA), which

states that the largest weights among subsets of IVs are contributed by valid instru-

ments, irrespective of the presence of horizontal pleiotropy (even when the INSIDE

assumption is not met) (Hartwig et al., 2017).

The MBE is computed as using the mode of the smoothed empirical density

function of all ratio estimates β̂cj as the causal effect estimate. This approach allows

for different weights to individual IVs. For example, they refer to the mode of the

unweighted empirical density function as “simple MBE” and the mode of inverse-

variance weighted empirical density function as the “weighted MBE” (Hartwig et al.,

2017). In simple MBE, each IV is assigned an equal weight w1 = w2 = · · · = 1/M ,

wheras in weighted MBE, wj is the standardized inverse variance weight. The MBE

causal estimate takes the value that maximizes f(x):

f(x) =
1

h
√
2π

M∑
j=1

wjexp

−1

2

(
x− β̂cj
h

)2
 (1.8.9)

Here, the parameter h controls the balance between bias and variance in the MBE,

where larger values of h result in increased precision but also higher bias.
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1.8.5 Other Methods

The MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) method also requires

that at least 50% of the variants are valid instruments and relies on the InSIDE as-

sumption (Verbanck et al., 2018). It addresses the issue of horizontal pleiotropy by

identifying and removing outliers that exhibit pleiotropic effects. The MR-PRESSO

method involves two key steps. Firstly, it identifies potential outlier genetic variants

by calculating their residual sum of squares (RSS) after iteratively removing each

variant from the analysis. If the RSS shows a significant decrease compared to a

simulated expected distribution, it indicates the presence of pleiotropy, and the vari-

ant is considered an outlier and excluded from further analysis. In the second step,

MR-PRESSO addresses the impact of these outliers by re-estimating the causal effect

after removing them from the analysis.

Like MR-PRESSO, the MR-Lasso method (Rees et al., 2019) also removes some

IVs for further analysis. It considers the objective function for the MR-Egger model

and adds a Lasso penalty term for the intercept of the regression. If the removed

genetic variants which are detected as the outlier or heterogeneous estimates are valid

IVs, then it would be not appropriate to remove them. Instead, we can downweight

the contributions of them rather than remove them directly (Rees et al., 2019). Two

methods, MR-Robust and MR-RAPS (Robust Adjusted Profile Score), employ a

downweighting approach for handling outliers rather than directly removing them

(Slob and Burgess, 2020). MR-Robust provides robustness to outliers by using MM-

estimation instead of ordinary least squares for the IVW method. MM-estimation

consists of an initial S-estimate followed by an M-estimate of regression (Koller and

Stahel, 2011), combined with Tukey’s biweight loss function (Rees et al., 2019). On
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the other hand, MR-RAPS, introduced by Zhao et al. (2020), involves adjusting the

profile score and addresses pleiotropy and extreme outliers through robustification.

To achieve robustness, Tukey’s biweight loss function is applied to the adjusted profile

score.

MRMix (Qi and Chatterjee, 2019) and contamination mixture (Burgess et al.,

2020) are two robust methods that employ a mixture model approach to handle out-

liers. MRMix categorizes a SNP into four different types of effects: (1) direct effect

on X and an indirect effect on Y only through X, (2) direct effects on both X and

Y , (3) direct effect on Y only, and (4) no relationship with either X or Y . It esti-

mates causal effects using a spike-detection algorithm by fitting the mixture model

β̂gjy−βcβ̂gjx ∼ π0N(0, σ2
0)+π1N(0, σ2

1) and identifying βc that maximizes the prob-

ability concentration at the null component N(0, σ2
0) corresponding to valid IVs (Qi

and Chatterjee, 2019). This approach requires ZEMPA. The contamination mixture

method also employs a mixture model, characterizing two clusters of instruments:

one cluster for valid IVs and another for invalid IVs. For a variant to be a valid in-

strument, its ratio estimate β̂cj is assumed to be normally distributed around the true

causal effect βc with variance equal to var(β̂cj). If a variant is not a valid instrument,

its ratio estimator is assumed to be normally distributed around zero with a wider

variance ψ2+var(β̂cj), where ψ
2 represents the variance of the estimates from invalid

IVs. The analyst specifies this parameter.

1.9 Three-sample Genome-wide Design

A three-sample genome-wide design (Zhao et al., 2019) involves using three separate

non-overlapping GWAS studies to analyze causal relationships (Figure 1.6). In this
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approach, the first GWAS study, known as the Discovery GWAS, is utilized to select

IVs for the MR analysis. The second GWAS focuses on estimating the association

between the genotype and exposure using the selected IVs. The third GWAS is then

used to estimate the association between the genotype and outcome using the same

set of selected IVs .

Figure 1.6: Three-sample design

Employing three distinct GWAS samples helps to avoid the winner’s curse (de-

tailed in Chapter 2). In MR, it is common to select the variants with the most

significant associations as IVs. However, if the significant estimates from the Discov-

ery GWAS are used for MR analysis rather than an independent dataset, the G-X

association is likely to be biased away from 0. This phenomenon is known as the

winner’s curse. Importantly, this bias in the G-X association can subsequently lead

to biased estimator of causal effect.

To illustrate this issue, let’s consider an example where y is a linear combination

of x and random error: y = βx+ε, with the true effect β set to 0.1. Running an OLS

regression y ∼ x multiple times, we obtain a distribution of estimates (β̂) as shown in

Figure 1.7 (red area). This distribution is asymptotically normally distributed around

the true effect (0.1).
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Figure 1.7: Example of winner’s curse

However, when we condition the estimates on a threshold of p-values for the

t-statistics less than 0.05 (highlighted in green), we observe more weights above the

true effect (0.1) than below it. The right-hand table displays the mean estimates with

different thresholds. As the threshold becomes more stringent, the mean of estimates

is more away from the true effect. Mathematically, we describe the winner’s curse as

follows: E(|β̂| ||β̂| > cσ̂) > |β|, where c > 0 and σ̂ is the standard error of β̂.

1.10 Software and Public Databases

Numerous publicly accessible databases and software packages are available, which

can function as data sources and facilitate the Mendelian randomization analyses. In

the following section, we will explore these databases and software packages in detail.

The GWAS Catalog (https://www.ebi.ac.uk/gwas/) is a comprehensive database

that consolidates summary statistics from genome-wide association studies. It in-

cludes information on genetic variants associated with various traits and diseases,
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which can be employed as instrumental variables in MR analyses. As of Oct 11, 2023,

the GWAS Catalog comprises 6586 publications, 555899 top associations, and 65846

full summary statistics.

The Neale lab (http://www.nealelab.is/uk-biobank/) provides GWAS results

for the UK Biobank data, featuring 4203 phenotypes. The GWAS results are derived

from a subset of 361,194 samples in the round 2 data.

PhenoScanner is a curated database housing over 65 billion associations between

human genotypes and phenotypes, encompassing more than 150 million unique ge-

netic variants, predominantly SNPs (Staley et al., 2016). It is accessible at www.

phenoscanner.medschl.cam.ac.uk and offers a convenient R command, “pheno input”

within the MendelianRandomization package. By utilizing this function, users can

extract summarized data from PhenoScanner, providing the rsid (which stands for

reference SNP ID number, a unique identifier assigned to a SNP) for a SNP, exposure

and outcome variables, associated PubMed IDs, individual ancestry for exposures and

outcomes (e.g., “European”, “Mixed”, “Asian” populations), and genetic variant cor-

relations. The output includes rsid, genetic association with exposure and outcome,

and corresponding standard errors.

MR-BASE is a platform integrating a database of thousands of GWAS summary

datasets with a web interface and an R package called TwoSampleMR for automated

causal inference through MR (Hemani et al., 2018). The database contains 11 billion

SNP associations from 1673 GWAS and is regularly updated. The MR-BASE web ap-

plication facilitates MR analysis in three steps: selecting instruments for the exposure,

choosing instruments for the outcome, and conducting the MR analysis. MR-BASE

offers various MR analysis methods, including Wald ratio, maximum likelihood, MR
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Egger, median-based, mode-based, IVW, and MR-RAPS. The entire process can be

performed in R using the TwoSampleMR package.

The MRC IEU OpenGWAS database contains 126 billion genetic associations from

14582 complete GWAS datasets. It is freely accessible at https://gwas.mrcieu.

ac.uk and can be accessed through an application programming interface (API)

or via R (ieugwasr) or Python (ieugwaspy) packages (Elsworth et al., 2020). The

TwoSampleMR package utilizes this database to obtain data, with functions such as

“extract instruments” and “extract outcome data” for extracting instruments for ex-

posure and outcome, respectively. The extracted datasets are then harmonized using

the “harmonise data” function before conducting MR analysis.

MendelianRandomization and TwoSampleMR are two software packages utilized

not only for extracting summary statistics but also for conducting MR analysis. Al-

though both packages offer functions for common MR methods such as IVW, median-

based, and mode-based methods, each package includes some unique methods that are

absent in the other. For instance, MendelianRandomization incorporates MR-Lasso,

along with offering multivariable version analysis for MR-Egger, median-biased MR,

and MR-Lasso. On the other hand, TwoSampleMR provides functions for MR-RAPS

and MR-PRESSO. Furthermore, TwoSampleMR includes capabilities for selecting ex-

posure instruments through LD clumping and harmonizing effect sizes of instruments

on exposures and outcomes to align with the same reference allele.

In this thesis, we acquired the summary statistics for the UK Biobank information

from Neale lab. Additionally, we utilized the MRC IEU OpenGWAS, facilitated by

the R package (ieugwasr), to retrieve data from the Genetic Investigation of Anthro-

pometric Traits (GIANT) consortium and the International Genomics of Alzheimer’s
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Project (IGAP). These datasets are examined in practical examples presented in sub-

sequent chapters.

1.11 The Structure of This Thesis

This chapter establishes the fundamental concepts that underpin the novel techniques

developed in this thesis. In the subsequent three chapters, we will primarily address

bias in the causal estimation arising from winner’s curse, overlapping samples and

horizontal pleiotropy.

In Chapter 2, we focus on the winner’s curse in MR, which arises from the selection

of genetic markers based on their significance or ranking in GWAS. We compare

the performances of various methods for dealing with the winner’s curse in GWAS

when applied to MR. Additionally, we adapt the existing bootstrap-based BR-squared

method (Faye et al., 2011) to work with summary-level data.

In Chapter 3, we tackle the challenge of sample overlapping with weak instrument

bias. We develop a method that accounts for the correlation due to overlapping and

weak instrument bias, building on the work of Bowden et al. (2019).

In Chapter 4, we introduce a novel method for identifying invalid IVs that exhibit

pleiotropy. We propose employing the bootstrap method to account for the selection

process in dealing with data-driven instrument variable selection.

In the concluding chapter, we will provide a comprehensive overview of the entire

thesis and explore potential avenues for future research.
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Chapter 2

Winner’s Curse in Mendelian

Randomization

The chapter primarily focuses on examining the impact of the winner’s curse on

causal estimation, which arises when IVs are chosen based on their significance or

ranking. It delves into the investigation of the winner’s curse within the context of

Mendelian Randomization and compares various methods for handling this issue in

Genome Wide Association Studies (GWAS) when applied to MR. In the course of this

research, we recognized the need to extend the BR-squared method. Consequently,

we put forth a modified bootstrap method derived from the BR squared approach,

tailored to address this bias with summary-level data. The adapted method performs

similarly to the original one. We demonstrate that the correction method effectively

mitigates bias, albeit at the expense of increased variability and broader confidence

intervals.

The structure of this chapter can be outlined as follows. First, we introduce

the existing methods for correcting the winner’s curse bias in GWAS. We adapt an
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existing bootstrap method to work in common situations when only summary-level

data is available. Next, we perform simulation studies to assess the potential bias

from winner’s curse in Mendelian randomization and apply the existing methods

to correct the genetic variant-exposure association which are then used in causal

estimation. Finally, we apply the approaches to real data investigating the causal

relationship between Body Mass Index (BMI) and schizophrenia risk, and between

Low Density Lipoprotein Cholesterol (LDL-C) and Alzheimer’s Disease (AD) risk.

These two examples are also explored in Rees et al. (2019).

2.1 Introduction

Mendelian randomization is a method used to estimate causal effects using genetic

markers. The genetic markers to be used in Mendelian randomization are typically

chosen from GWAS based on their significance in a test of association with the causal

exposure. However, regardless of the selection criteria employed, an upward bias is

present when the association effect size is estimated from the discovery GWAS (Göring

et al., 2001; Garner, 2007). This bias phenomenon is commonly referred to as the

“winner’s curse”. The upward bias in the estimated association between the genotype

and exposure causes the causal estimator biased toward 0. This bias occurs because

the estimated genetic association with exposure appears in the denominator of the

ratio estimator (as shown in Equation (1.8.1)).

The winner’s curse problem has been widely studied in the Genome Wide Associa-

tion Studies (Sun and Bull, 2005; Garner, 2007; Jeffries, 2007; Zöllner and Pritchard,

2007; Ghosh et al., 2008; Zhong and Prentice, 2008; Xiao and Boehnke, 2009; Faye

et al., 2011; Sun et al., 2011; Xu et al., 2011; Ferguson et al., 2013; Zhou and Wright,
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2016; Bigdeli et al., 2016; Forde et al., 2023). Many methods have been developed to

address the winner’s curse, with the earliest one originating from Sun and Bull (2005),

which employs the bootstrap method to decrease selection bias. The bootstrap shrink-

age estimator they proposed is the average of the difference between the within-sample

and out-of-sample bootstrap estimates. Jeffries (2007) used a comparable bootstrap

method to address the issue of bias in ranking. Faye et al. (2011) built on the work of

Sun and Bull (2005) and proposed two crucial adjustments for the previous bootstrap

estimator. They called their method BR-squared (Bias-Reduced estimates via Boot-

strap Re-sampling) (Sun et al., 2011). These two modifications enabled the method to

consider differences in variance associated with the MAF of a SNP and account for the

negative correlation between within-sample and out-of-sample estimates. BR-squared

is computationally expensive since it requires individual-level data for bootstrapping.

Building upon the BR-squared method, Forde et al. (2023) devised a new approach

that employs the bootstrap method to address winner’s curse bias, with the added ad-

vantage of only requiring summary-level data. Zhou and Wright (2016) proposed the

projack method (Prediction by Re-Ordered Jackknife and Cross-Validation K-fold).

This is a method that uses resampling techniques to provide corrected estimates of

the ranked z-statistics. It works for both individual-level and summary-level data.

Ghosh et al. (2008) proposed a conditional likelihood approach in which the associa-

tion estimates for the variants which are declared as significant at specified threshold

level are adjusted. Similarly, Zhong and Prentice (2008) derived three bias-reduced

estimators: the first one maximizes the conditional likelihood at the naive estimate,

the second one ensures the conditional expectation equals the naive estimate, and

the third one has the median at the observed. They also proposed corresponding
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weighted estimators that combine these corrected estimators (chosen from the three)

with uncorrected estimators to address selection bias. Likelihood-based techniques

have also been developed specifically for case-control studies, such as those proposed

by Zöllner and Pritchard (2007) and Xiao and Boehnke (2009). Zöllner and Pritchard

(2007) focused on estimating the frequency of a variant and its penetrance parameter

(the estimated probability of disease for the genotypes), whereas Xiao and Boehnke

(2009) focused on estimating the difference in allele frequency.

An Emprical Bayes (EB) method (Ferguson et al., 2013) was motivated by Tweedie’s

formula (Efron, 2009). It utilizes empirical estimates of the density of z statistic and

is well-suited for a large number of variants. However, this method is less precise

in the extreme tails of the distribution, where conditional likelihood methods are

more accurate. To address this limitation, they proposed a method that combines

the estimator with the conditional likelihood estimator (Ghosh et al., 2008; Zhong

and Prentice, 2008) based on the lengths of their respective 95% confidence and cred-

ible intervals. The new estimator combines the strengths of both approaches but

requires more computational complexity. Bigdeli et al. (2016) introduced the FDR

Inverse Quantile Transformation (FIQT). Xu et al. (2011) proposed a hierarchical

Bayes method that uses a spike-and-slab prior to account for the possibility that the

significant test result is due to chance. It can also deal with the case where only

the summary statistic is available. However, it might also be time-consuming since

it involves using Markov Chain Monte Carlo (MCMC) methods for sampling from a

probability distribution.

The research on winner’s curse in MR is limited. A recent study by Jiang et al.

(2023) evaluated the impact of the winner’s curse in MR by randomly dividing the
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UK-biobank data into three equally sized subsets. The first subset is for selecting

the IVs for exposure and the second subset is for estimating the effect size for IVs

that are selected in the first sample. The last subset is for estimating the genetic

variant-outcome association. Because the selection and estimation come from two

non-overlapping datasets, the winner’s curse can be avoided. Jiang et al. (2023)

examined the causal relationship between BMI and coronary artery disease, showing

that the winner’s curse affected the causal estimates, though the impact was not

substantial. Nevertheless, it remains valuable to investigate whether this holds true

in various scenarios and to assess the overall impact of the winner’s curse on causal

inference. It is worth noting that our work on the winner’s curse in MR predates the

publication of Jiang et al. (2023).

To mitigate the impact of the winner’s curse in Mendelian randomization, one can

utilize a three-sample design similar to the approach employed by Jiang et al. (2023).

Nonetheless, in practice, it’s seldom achievable to find three distinct large participant

samples that are similar enough. Even if such samples are available, the reduction in

sample size, and consequently statistical power, due to excluding the discovery GWAS

from genetic association estimation may be undesirable. Alternatively, one can apply

corrective techniques to modify the estimates. More recently, Mounier and Kutalik

(2023) introduced a method called MR-lap, which addresses weak instrument bias

and winner’s curse, while also considering the potential occurrence of sample overlap.

They proposed a corrected IVW estimator when the genetic variants are selected

based on the significance threshold. Unlike other estimators developed in GWAS

which correct the bias in the estimation of each genetic effect size, MR-lap directly

accounts for the impact of the winner’s curse on the IVW estimator.
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This chapter aims to assess the current approaches in GWAS for correcting the

winner’s curse when applied to MR. We modify the existing BR-squared method to

work with summary-level data. Furthermore, we explore the influence of the winner’s

curse on causal estimation in MR.

2.2 Materials and Methods

We assume that the exposureX and outcomeY come from the following Model (2.2.1).

X = Gα+Uαu + εx

Y = Xβc +Uβu + εy (2.2.1)

The causal effect is denoted by βc. The exposure X is a linear combination of

genetic variants G, a confounder U, and random errors εx. The outcome Y is a linear

function of exposure, confounder and random errors εy. Genetic variants that are

chosen to be the instrument variables in MR analysis are assumed to be independent.

We also assume that

Zj =
β̂gjx

̂se(β̂gjx)
∼ N

µj =
βgjx

̂se(β̂gjx)
, 1

 (2.2.2)

where βgjx is the true effect size of genetic variant-exposure association, β̂gjx is

the estimate of exposure association for variant j, ̂se(β̂gjx) is the estimated standard

error for the estimate β̂gjx. The assumption shown in expression (2.2.2) relies on that

Zj − µj =
β̂gjx−βgjx

̂se(β̂gjx)
∼ N(0, 1) for increasing sampple size (Wald, 1943). For a large

sample, ̂se(β̂gjx) remains relatively stable across in multiple data realizations.
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Let z(1) ≥ z(2), ...,≥ z(M) denote the order statistics, with their means that are

also arranged in order and denoted by µ(.) = {µ(1), ..., µ(M)}, where µ(j) ≥ µ(j+1).

This chapter focuses on the common scenario where the winner’s curse occurs in

the estimate of exposure association. Specifically, it involves the selection of genetic

variants that demonstrate the most significant associations with the exposure, fol-

lowed by the correction of exposure association estimates for these variants. Then,

the IVW method is used to estimate the causal effect. Recall that in section 1.7.1,

we define IVW as

β̂IVW =

∑M
j=1wjβ̂cj∑M
j=1wj

(2.2.3)

where wj is the inverse variance for the j -th ratio estimate. And the variance of IVW

estimator is

var(β̂c) =
1∑M

j=1wj

(2.2.4)

Let β̂correct,IVW be the corrected estimate of IVW estimator, with the corrected ex-

posure association estimate denoted as β̂correct,gjx, and let wcorrect,j be the corrected

weight for each variant j. Since β̂2
correct,gjx

is not greater than β̂2
gjx

due to correction,

the corrected weight for j-th genetic variant
∑
wcorrect,j =

∑ β̂2
correct,gjx

se2(β̂gjy)
is also not

greater than the original weights
∑
wj =

∑ β̂2
gjx

se2(β̂gjy)
. Theoretically, the corrected

IVW estimator should have a higher variance compared to the naive estimator.

2.2.1 Methods for Correcting the Winner’s Curse

We focus our attention on specific methods, including Ghosh’s methods, FIQT, pro-

jack, Forde’s bootstrap method, and BR-squared. Not all methods mentioned earlier
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are under examination due to various factors, including time constraints, computa-

tional complexity, and the fact that certain methods were developed for case-control

studies. However, we anticipate the possibility of exploring these omitted methods in

the future.

Conditional likelihood method

Ghosh et al. (2008) corrected the estimated association for the variants which are

declared at the pre-specified threshold based on a conditional likelihood approach.

The conditional likelihood function for uj given the variant j is significant is given

by:

Lc(µj) = pµj
(zj||Zj| > c) =

pµj
(zj)

pµj
(|Zj| > c)

=
ϕ(zj − uj)

Φ(−c+ µj) + Φ(−c− µj)
(2.2.5)

where c is the cut-off value associated with a specified significant threshold; ϕ and

Φ are the probability density function (p.d.f) and cumulative distribution function

(c.d.f) of the standard normal distribution, respectively.

Three estimators are devised based on the conditional likelihood function (Equa-

tion (2.2.5)). The first estimator is the maximum likelihood estimator (MLE):

µ̃j1 = argmaxLc(µj) (2.2.6)

The second estimator is called the mean of normalized conditional likelihood (Nor-

malized):

µ̃j2 =

∫∞
−∞ µjLc(µj)dµj∫∞
−∞ Lc(µj)dµj

(2.2.7)
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While µ̃j2 has a higher mean squared error (MSE) than µ̃j1 for values of µj that are

close to zero, it performs better for values of µj that are farther away from zero.

The third estimator is the average of the MLE and Normalized estimators. It is

called the compromise estimator, which incorporates the advantages of two estima-

tors:

µ̃j3 = (µ̃j1 + µ̃j2)/2 (2.2.8)

To make the Ghosh method compatible with rank-based selection, we introduce

a modification in which the cut-off value c for |z| is not pre-determined but is rather

selected based on the observed |z| of the top variants. Specifically, if we aim to select

30 variants, for example, we would choose c as the |z| value of the 30th ranked variant.

FDR Inverse Quantile Transformation (FIQT)

The FIQT technique, as described in Bigdeli et al. (2016) is a very simple method

that comprises just two steps. Initially, the p-values for all variants are subjected

to a multiple testing correction, such as the False Discovery Rate (FDR) method.

Following this, the modified z-statistics are computed by applying an inverse normal

distribution to the adjusted p-values. It can be formulated as:

z∗j = sign(zj)Φ
−1(1− p∗/2) (2.2.9)

where p∗ denotes the FDR adjusted p-values. Then the corrected estimate for asso-

ciation is obtained by multiplying z∗j by the corresponding standard error σ̂gjx.
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Projack: Predicion by Re-Ordered Jackknife and Cross-Validation K-fold

The projack method (Zhou and Wright, 2016) uses cross-validation by dividing the

columns intoK equally sized subsets and holding out each subset sequentially. During

this process, elements of column K are rearranged based on the row means of the

remaining K−1 columns. To improve the stability of the results, this cross-validation

process is repeated numerous times using multiple random K-fold data partitions.

Finally, the estimates for the ordered parameters, denoted as µ(.) = {µ(1), ..., µ(M)}

are obtained by averaging over the results of those random partitions.

The basic idea for the above process is to construct a matrix, with element Cjk ∼

N(µj,
√
K), so that E(zj) = E(

∑
k Cjk/K) = µj and var(zj) is equal to 1.

They also introduce an alternative approach that does not require the cross-

validation on individual-level data and only relies on summary-level data to achieve

the desired properties. The method can be described as follows:

� Simulate a vector z′ = z+ γ, where each element in γ is independently drawn

from N(0,
√

1/(K − 1)).

� Compute a new vector c = Kz − (K − 1)z′, and reorder to create d, where

re-ordering is based on z′.

� Repeat the first two steps, averaging over many ordered simulated vectors d to

obtain the estimator for the ordered parameter µ(j).

Finally, we multiply the corrected test statistic by the original standard error to get

the corrected estimate of G-X association.
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BR-squared method

The BR-squared method orinigated from the shrinkage estimator (Sun and Bull,

2005):

β̂∗
boot(k) = β̂N(k) −

∑R
r=1(β̂

∗
Dr(k) − β̂∗

Er(k))

R
(2.2.10)

Where β̂N(k) is the naive estimate for the kth ranked variant selected in the original

sample. β̂∗
Dr(k) and β̂∗

Er(k) denote the within-sample and out-of-sample bootstrap

estimate for the kth ranked variant selected in the rth bootstrap sample. β̂∗
Dr(k) can be

viewed as an estimate for the naive estimator while the out-of-sample estimate β̂∗
Er(k)

imitates an estimate that would be obtained from an independent sample. Despite the

fact that the out-of-sample estimate β̂∗
Er(k) and the within-sample estimate β̂∗

Dr(k) are

based on two sets of observations that do not overlap, they are negatively correlated

due to the finite size of the original sample. This is because the observations that

are excluded from one sample must necessarily be included in the other. To fix this

problem, Faye et al. (2011) introduce β̂†
Er(k) that accounts for the correlation between

β̂∗
Dr(k) and β̂

∗
Er(k). In addition, the MAF of the kth ranked variant selected from the

bootstrap sample might differ from the MAF of the kth variant in the original sample.

To account for the negative correlation between β̂∗
Dr(k) and β̂

∗
Er(k) and the difference

in MAF, Faye et al. (2011) propose a modified bootstrap shrinkage estimator:

β̂∗
boot(k) = β̂N(k) −

∑R
r=1(β̂

∗
Dr(k) − β̂†

Er(k))
√
2pr(k)(1− pr(k))

R
√

2p(k)(1− p(k))

where β̂†
Er(k) = β̂∗

Er(k) −
σ̂∗
DEr(k)

σ̂2∗
Dr(k)

(β̂∗
Dr(k) − β̂Nr(k)) (2.2.11)
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where R is the number of bootstrap samples, p(k) is the MAF of the kth ranked

variant in the original sample and pr(k) is the MAF for the kth ranked variant in

the rth bootstrap sample. β̂Nr(k) is the estimate from the original sample for the kth

ranked variant selected in the rth bootstrap sample. (Note that β̂Nr(k) is different from

β̂N(k) as the latter refers to the kth ranked variant selected in the original sample).

σ̂2∗
Dr(k) is the variance for β̂∗

Dr(k), and σ̂∗
DEr(k) is the covariance between β̂∗

Er(k) and

β̂∗
Dr(k). The variance and covariance terms for each variant are estimated by taking a

seperate set of bootstrap samples.

Since this method depends on individual-level data, it is considerably more com-

putationally intensive than the methods that only require summary statistics. The

following two methods are based on the same idea as BR-squared but only require

summary statistics.

Forde’s Bootstrap Method

Forde et al. (2023) developed a bootstrap resampling method based on the summary

statistics. The procedure for estimating the effect size of the variant with the kth

ranked z-statistic can be described as follows:

� Generate the bootstrap estimate for variant j from the normal distribution

based on the observed naive estimate.

β̂∗
j ∼ N(β̂j, σ(β̂j)) (2.2.12)

� Then calculate the z-statistic for the bootstrap estimate for variant j:
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z∗j =
β̂∗
j

σ(β̂j)
(2.2.13)

� Order the z-statistics for the boostrap estimates in decreasing order. The kth

largest z∗ is denoted as z∗(k). Then the bias of variant k (with kth largest original

z-statistic) is

biask =
β̂∗
A(k) − β̂A(k)

σ(β̂A(k))
(2.2.14)

where β̂∗
A(k) is the bootstrap value of the variant with the kth largest z∗ value,

β̂A(k) and σ(β̂A(k)) are the orginal observed estimates of the same variant.

� Finally, fit a cubic smoothing spline to the data, with z-statistic (ordered) as

inputs and biask as output. Let bias∗k be the fitted value from this model as

bias∗k. Then, the corrected effect for the variant with the kth largest original

z-statistic is defined as β̂∗
(k) = β̂(k) − σ(β̂(k)) ∗ bias∗k.

BR-squared Based on Summary Statistics

We have also modified the BR-squared technique in a different way to work with

summary statistics. Unlike Forde’s approach that produces a single set of bootstrap

estimates, we create two sets of estimates, one for within-sample bootstrap estimates

and the other for out-of-sample bootstrap estimates. We also consider the negative

correlation between these two estimates. Note that we normalize each variant before

implementing our method so that there is no need to accout for the variability of

MAF in our setting. The step-by-step procedures are explained below:
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1. For each bootstrap sample r, generate pairs of estimates (β̂∗
Drj, β̂

†
Erj) for each

variant j from a bivariate normal distribution given the naive estimate (β̂Nj)

from the original sample for variant j. The supplementary material of Faye

et al. (2011) gives the result:


β̂∗

Drj

β̂†
Erj


∣∣∣∣∣∣∣β̂Nj = B

 ∼ N


B
B

 ,

σ̂2
Dj 0

0 σ̂2
Ej(1− ρ̂2DEj)




Since we normalized the genetic variants and exposure, we can write σ̂2
Dj ≈ 1−B2

n
,

σ̂2
Ej ≈ 1−B2

ne−1 , σ̂DEj ≈ −(1+2B2)
n

, and ρ̂DEj ≈ σ̂DEj

σ̂Dj σ̂Ej
. See the details of derivation

in Appendix A. It is worth noting that ne−1 is the approximate number of

observations not included in the bootstrap sample.

2. Simulate the variance of within-sample bootstrap estimate σ̂2∗
Drj ∼ σ̂2

Dj

ν
χ2

ν for

each bootstrap sample r, where ν is the degree of freedom.

3. Then we order the vectors β̂∗
Dr and β̂

†
Er(k) based on z∗ statistics for the within-

sample bootstrap estimates (β̂∗
Drj/σ̂

∗
Drj).

4. Repeat Steps 1-3 for R times. Then we can get the bootstrap estimate for each

variant by

β̂∗
boot(k) = β̂N(k) −

∑R
r=1(β̂

∗
Dr(k) − β̂†

Er(k))

R
(2.2.15)

where β̂∗
Dr(k) is the within-sample bootstrap estimate for the variant with kth

largest z∗ value in the rth bootstrap sample, β̂†
Er(k) is the corrected out-of-

sample bootstrap estimate for the same variant in the rth bootstrap sample,
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and β̂N(k) is the original estimate for the variant with kth largest z-statistic in

the original sample.

Note that this method is compared to the original BR-squared approach as part

of the simulation presented in Section 2.3.

2.3 Simulation Framwork

To evaluate the performance of the different correction methods, we conduct a sim-

ulation study using Model (2.2.1) to generate the data. Specifically, we set the G-X

association αi for variant i to be normally distributed with mean 0 and standard de-

viation 0.02. The causal effect βc takes values of 0.2 or 0.05. The confounder effects

on X and Y , denoted by αu and βu, are both set to 0.3. We assume that the genotype

follows Hardy-Weinberg Equilibrium (HWE). Consequently, each genetic variant Gj

(j = 1, 2, ...,M) is independently generated from a binomial distribution with n = 2

and a probability pj uniformly distributed between 0.1 and 0.5. We standardize Gj to

have mean 0 and variance 1. The error terms εx and εy are independently generated

from a normal distribution with mean 0 and variances chosen so that U, X, and Y

all have unit variance.

We simulate 40,000 individuals with 100 genetic variants. The sample is split into

half, with one half used for exposure association estimation and the other half used

for outcome association estimation. Two selection criteria, namely threshold-based

and rank-based, are evaluated by generating 250 data sets for each criterion. With

threshold-based selection, three different thresholds are considered: 1 · 10−4, 5 · 10−4

and 1 · 10−3. With rank-based selection, different number of top ranked variants are
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selected: 20, 25 or 30.

We utilize Ghosh’s methods, FIQT, BR-squared, Projack, and Forde’s method,

for each situation to adjust the bias in the genetic association estimate with the

exposure. Subsequently, we apply the modified estimate to estimate the causal effect

by using IVW. Since we are aware that the magnitude of the corrected estimate of the

genetic variant-exposure association should not be greater than the näıve estimate,

we incorporate this restriction into all methods.

2.4 Results

The simulation result for a moderate causal effect is shown in Table 2.1 and Table 2.2,

while the result for a small causal effect is shown in Table 2.3 and Table 2.4. For each

scenario, we calculated the mean of IVW causal estimates, relative bias ((mean of

IVW causal estimates - true causal effect) / absolute value of true causal effect), mean

of the standard error (SE), standard deviation (SD), mean squared error (MSE), mean

of interval lengths of 95% confidence intervals, coverage of 95% confidence intervals

and power for the naive method, projack, BR-squared, FIQT, Forde’s method, and

Ghosh’s three methods (conditional MLE, the mean of the normalized likelihood, and

compromise).

The comparison between our adapted version of the BR-squared method and the

original BR-squared method is illustrated in Figure 2.1. It can be observed that all

points are clustered around the line, indicating that our method is similar to the

original method in terms of performance.
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Figure 2.1: Comparison of IVW causal estimates between individual-level based
BR-squared with summary data based BR-squared estimates in the case
of rank-based selection (top 25 variants are selected). True causal effect
= 0.2.
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Table 2.1: Mean, relative bias, mean of standard error (SE), standard deviation
(SD), mean squared error (MSE), mean of interval lengths, coverage, and
power by naive method, projack method (K=5), BR-squared, FIQT,
Forde’s method, conditional MLE (MLE), the mean of the normalized
likelihood (Normalized), and Compromise method (Compromise). We
repeated 250 simulations for threshould-based selection. True causal
effect=0.2.

Method Mean Relative bias SE SD MSE CI length Coverage Power

Threshold for p-value is 1 · 10−4

Naive 0.177 -0.116 0.038 0.039 0.0021 0.147 0.904 0.988

Projack k = 5 0.195 -0.023 0.043 0.044 0.0020 0.163 0.940 0.988

BR-squared 0.196 -0.022 0.043 0.044 0.0020 0.162 0.940 0.988

FIQT 0.192 -0.041 0.042 0.043 0.0019 0.160 0.940 0.988

Forde 0.194 -0.031 0.042 0.043 0.0019 0.161 0.936 0.988

MLE 0.189 -0.061 0.043 0.046 0.0022 0.167 0.940 0.976

Normalized 0.197 -0.017 0.043 0.048 0.0023 0.167 0.940 0.984

Compromise 0.193 -0.033 0.043 0.048 0.0023 0.166 0.948 0.980

Threshold for p-value is 5 · 10−4

Naive 0.177 -0.115 0.035 0.038 0.0020 0.140 0.896 0.988

Projack 0.196 -0.019 0.041 0.043 0.0018 0.155 0.936 0.992

BR-squared 0.196 -0.020 0.041 0.043 0.0018 0.155 0.940 0.988

FIQT 0.193 -0.037 0.039 0.040 0.0018 0.153 0.932 0.988

Forde 0.194 -0.029 0.040 0.042 0.0018 0.153 0.940 0.988

MLE 0.188 -0.058 0.040 0.042 0.0019 0.155 0.924 0.988

Normalized 0.196 -0.022 0.041 0.043 0.0019 0.157 0.940 0.984

Compromise 0.193 -0.037 0.041 0.043 0.0019 0.156 0.940 0.988

Threshold for p-value is 1 · 10−3

Naive 0.176 -0.119 0.035 0.037 0.0019 0.137 0.888 0.992

Projack k = 5 0.195 -0.024 0.040 0.041 0.0017 0.153 0.944 0.996

BR-squared 0.195 -0.025 0.040 0.041 0.0017 0.152 0.944 0.988

FIQT 0.192 -0.041 0.039 0.040 0.0017 0.149 0.936 0.992

Forde 0.193 -0.034 0.039 0.041 0.0017 0.151 0.932 0.992

MLE 0.188 -0.061 0.039 0.041 0.0018 0.151 0.924 0.988

Normalized 0.193 -0.036 0.039 0.044 0.0020 0.152 0.944 0.988

Compromise 0.190 -0.048 0.039 0.043 0.0019 0.152 0.924 0.984
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Table 2.2: Mean, relative bias, mean of standard error (SE), standard deviation
(SD), mean squared error (MSE), mean of interval length, coverage, and
power by naive method, projack method (K=5), BR-squared, FIQT,
Forde, conditional MLE (MLE), the mean of the normalized likelihood
(Normalized), and Compromise method (Compromise). We repeated 250
simulations for rank-based selection. True causal effect=0.2.

Method Mean Relative bias SE SD MSE CI length Coverage Power

Top 20 variants

Naive 0.176 -0.120 0.039 0.042 0.0023 0.152 0.884 0.984

Projack k = 5 0.195 -0.025 0.044 0.047 0.0022 0.169 0.920 0.984

BR-squared 0.195 -0.025 0.044 0.047 0.0022 0.168 0.932 0.984

FIQT 0.191 -0.045 0.042 0.046 0.0021 0.164 0.936 0.984

Forde 0.193 -0.035 0.043 0.046 0.0022 0.166 0.928 0.984

MLE 0.191 -0.044 0.045 0.048 0.0024 0.173 0.928 0.960

Normalized 0.200 -0.000 0.045 0.050 0.0026 0.176 0.940 0.976

Compromise 0.196 -0.018 0.045 0.050 0.0025 0.175 0.936 0.972

Top 25 variants

Naive 0.177 -0.116 0.037 0.039 0.0021 0.143 0.904 0.984

Projack k = 5 0.196 -0.019 0.041 0.044 0.0019 0.160 0.940 0.984

BR-squared 0.196 -0.020 0.041 0.044 0.0019 0.159 0.944 0.984

FIQT 0.192 -0.039 0.040 0.043 0.0019 0.156 0.940 0.984

Forde 0.194 -0.030 0.040 0.043 0.0019 0.157 0.932 0.984

MLE 0.189 -0.052 0.042 0.045 0.0021 0.162 0.928 0.988

Normalized 0.197 -0.015 0.042 0.047 0.0022 0.163 0.932 0.984

Compromise 0.194 -0.030 0.042 0.047 0.0022 0.163 0.936 0.988

Top 30 variants

Naive 0.176 -0.120 0.035 0.037 0.0020 0.138 0.880 0.992

Projack k = 5 0.195 -0.023 0.040 0.042 0.0018 0.154 0.932 0.996

BR-squared 0.195 -0.024 0.040 0.042 0.0018 0.153 0.932 0.988

FIQT 0.192 -0.041 0.039 0.041 0.0017 0.150 0.92 0.992

Forde 0.193 -0.034 0.039 0.041 0.0017 0.151 0.936 0.988

MLE 0.188 -0.059 0.039 0.042 0.0019 0.153 0.924 0.984

Normalized 0.195 -0.024 0.040 0.043 0.0019 0.155 0.936 0.984

Compromise 0.193 -0.037 0.040 0.043 0.0019 0.154 0.936 0.984
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Table 2.3: Mean, relative bias, mean of standard error (SE), standard deviation
(SD), mean squared error (MSE), mean of interval lengths, coverage, and
power by naive method, projack method (K=5), BR-squared, FIQT,
Forde’s method, conditional MLE (MLE), the mean of the normalized
likelihood (Normalized), and Compromise method (Compromise). We
repeated 250 simulations for threshould-based selection. True causal
effect=0.05.

Method Mean Relative bias SE SD MSE CI length Coverage Power

Threshold for p-value is 1 · 10−4

Naive 0.042 -0.151 0.039 0.041 0.0017 0.152 0.928 0.220

Projack k = 5 0.047 -0.061 0.044 0.045 0.0020 0.169 0.928 0.208

BR-squared 0.047 -0.061 0.044 0.045 0.0020 0.167 0.928 0.216

FIQT 0.046 -0.078 0.043 0.043 0.0020 0.164 0.932 0.216

Forde 0.047 -0.069 0.043 0.043 0.0020 0.166 0.928 0.212

MLE 0.046 -0.081 0.044 0.047 0.0020 0.169 0.944 0.240

Normalized 0.047 -0.051 0.045 0.047 0.0020 0.172 0.924 0.224

Compromise 0.047 -0.067 0.045 0.047 0.0020 0.171 0.928 0.232

Threshold for p-value is 5 · 10−4

Naive 0.043 -0.146 0.037 0.039 0.0016 0.144 0.920 0.232

Projack 0.047 -0.052 0.042 0.044 0.0019 0.160 0.932 0.236

BR-squared 0.047 -0.056 0.042 0.044 0.0019 0.160 0.928 0.236

FIQT 0.046 -0.071 0.041 0.044 0.0018 0.157 0.928 0.228

Forde 0.047 - 0.063 0.041 0.043 0.0019 0.158 0.924 0.220

MLE 0.045 -0.092 0.041 0.043 0.0019 0.159 0.928 0.228

Normalized 0.047 -0.054 0.042 0.044 0.0020 0.161 0.932 0.220

Compromise 0.047 -0.070 0.042 0.044 0.0019 0.160 0.932 0.220

Threshold for p-value is 1 · 10−3

Naive 0.042 -0.161 0.037 0.038 0.0015 0.141 0.932 0.224

Projack k = 5 0.046 -0.069 0.041 0.042 0.0018 0.154 0.936 0.224

BR-squared 0.046 -0.073 0.041 0.042 0.0018 0.156 0.944 0.220

FIQT 0.046 -0.086 0.040 0.042 0.0018 0.154 0.940 0.220

Forde 0.046 -0.080 0.040 0.042 0.0018 0.155 0.944 0.216

MLE 0.045 -0.099 0.040 0.042 0.0018 0.155 0.928 0.220

Normalized 0.046 -0.076 0.040 0.043 0.0018 0.157 0.928 0.208

Compromise 0.046 -0.088 0.040 0.043 0.0018 0.156 0.928 0.220
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Table 2.4: Mean, relative bias, mean of standard error (SE), standard deviation
(SD), mean squared error (MSE), mean of interval length, coverage, and
power by naive method, projack method (K=5), BR-squared, FIQT,
Forde, conditional MLE (MLE), the mean of the normalized likelihood
(Normalized), and Compromise method (Compromise). We repeated 250
simulations for rank-based selection. True causal effect=0.05.

Method Mean Relative bias SE SD MSE CI length Coverage Power

Top 20 variants

Naive 0.042 -0.167 0.040 0.043 0.0019 0.156 0.932 0.212

Projack k = 5 0.046 -0.076 0.045 0.048 0.0023 0.174 0.920 0.204

BR-squared 0.046 -0.077 0.045 0.048 0.0023 0.173 0.920 0.220

FIQT 0.045 -0.094 0.044 0.047 0.0022 0.169 0.936 0.212

Forde 0.046 -0.087 0.044 0.047 0.0022 0.171 0.932 0.212

MLE 0.046 -0.078 0.046 0.048 0.0024 0.178 0.936 0.188

Normalized 0.048 -0.040 0.047 0.050 0.0025 0.182 0.928 0.196

Compromise 0.047 -0.056 0.046 0.049 0.0024 0.181 0.924 0.192

Top 25 variants

Naive 0.042 -0.151 0.038 0.040 0.0017 0.148 0.920 0.232

Projack k = 5 0.047 -0.055 0.043 0.045 0.0020 0.165 0.928 0.216

BR-squared 0.047 -0.060 0.042 0.045 0.0020 0.163 0.928 0.228

FIQT 0.046 -0.076 0.041 0.044 0.0019 0.160 0.928 0.232

Forde 0.047 -0.068 0.042 0.044 0.0020 0.162 0.924 0.224

MLE 0.045 -0.091 0.043 0.045 0.0020 0.167 0.928 0.208

Normalized 0.048 -0.050 0.043 0.046 0.0021 0.168 0.928 0.204

Compromise 0.047 -0.069 0.043 0.046 0.0021 0.168 0.932 0.208

Top 30 variants

Naive 0.042 -0.170 0.036 0.038 0.0015 0.142 0.920 0.204

Projack k = 5 0.046 -0.074 0.041 0.043 0.0018 0.158 0.924 0.216

BR-squared 0.046 -0.080 0.041 0.043 0.0018 0.157 0.924 0.216

FIQT 0.045 -0.094 0.039 0.042 0.0018 0.154 0.924 0.204

Forde 0.046 -0.088 0.039 0.042 0.0018 0.155 0.928 0.208

MLE 0.045 -0.097 0.039 0.043 0.0019 0.158 0.932 0.240

Normalized 0.047 -0.067 0.041 0.043 0.0019 0.159 0.924 0.228

Compromise 0.046 -0.078 0.041 0.043 0.0019 0.159 0.924 0.232

In each scenario, the naive estimates exhibit a bias towards the null. For instance,
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when the causal effect is 0.2, the relative bias for the naive method is approximately

12%. However, this bias is notably reduced when employing correction methods.

The BR-squared and Projack methods lead to a substantial reduction in relative

bias, bringing it down to 2%, while the MLE method results in a 6% reduction,

which is relatively less effective compared to the other correction methods. The

BR-squared method consistently outperforms other approaches in terms of reducing

relative bias. Nevertheless, the correction process does have its trade-offs, as it tends

to increase variability. Ghosh’s methods, in particular, exhibit higher variability

compared to other correction techniques. We also note that the standard errors

have a tendency to underestimate the standard deviation across all methods. This

tendency is particularly pronounced in Ghosh’s three methods.

In the comparison of various correction methods, it is observed that Projack,

FIQT, BR-squared, and Forde’s method exhibit smaller Mean Squared Error (MSE)

values than those of Ghosh’s three methods. While the naive method has a smaller

MSE compared to Ghosh’s method, it is important to note that this does not imply

that the naive method is superior to Ghosh’s method. The naive method has a much

greater bias but a smaller variance than Ghosh’s methods. This means that estimates

from the naive method are closely clustered around an incorrect estimate of the causal

effect (Tables 2.1-2.2).

Although the intervals may widen due to increased variability, the coverage is

enhanced. Specifically, while the naive method may yield coverage under 90% in

some cases, correction methods improve the coverage to around 94%.

It is worth noting that the correction has minimal impact on the power of the

analysis. When employing a more stringent threshold, the variability increases due
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to a decreased number of selected variants. This trend is also observed in rank-based

selection; a larger number of top-ranked variants leads to reduced variability and

shorter intervals.

When dealing with a very small causal effect size (0.05), the pattern differs from

that observed with a moderate causal effect. The relative bias is more pronounced

compared to the case of a moderate causal effect. For instance, the BR-squared

method exhibits an increase in relative bias from 2% to approximately 6%, while

the MLE method shows an increase from 6% to 9%. However, the use of correction

methods leads to a reduction of over fifty percent of the bias present in the naive

estimator. The coverage sees a slight improvement, although not as noticeable as

when the causal effect is 0.2, with values ranging from 92% to 93%.
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Figure 2.2: Plot of z-statistics against the bias (naive estimate - true effect) from
one simulation. The dash lines correspond to the Bonferroni-corrected
threshold (5 · 10−4), and the dotted lines represent the GWAS
significance threshold (5 · 10−8).

Figure 2.2 illustrates the relationship between the z-statistic and bias of naive

estimate. The bias becomes smaller as the the z-statistic is more significant. It is

evident from the graph that variants with negative z-statistics that are significant

typically have negative bias, while significant variants with positive z-statistics have

positive bias.

In order to gain a deeper understanding of performance of each method in reducing

bias for each naive association estimate, we explore the relationship between the

proportion of corrected G-X estimate to the naive estimate and the absolute value of

corresponding z-statistic for each IV. It has been observed that Ghosh’s method tends

to over-correct the estimate, especially when the associated z-statistic is close to the
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significant threshold. This tendency is evident in Figure 2.3, where Ghosh’s three

estimates are significantly reduced, amounting to only 20% of the original estimates

when they are in proximity to the boundary. Such substantial reduction near the

boundary could introduce bias in the causal estimate away from 0, particularly if a

large proportion of variants have z-statistics that are close to this boundary.

Figure 2.3: Plot the absolute z-statistic for the naive estimates against the ratio
between the corrected estimate and naive estimate in one simulation.
Scenario: threshold-based selection (5 · 10−4); true causal effect is 0.2.
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There is minimal variation observed when employing different thresholds or vary-

ing the number of selected variants in the selection process. To explore this phe-

nomenon further, we conduct additional simulations with more pronounced differ-

ences in either the threshold or the number of top variants selected, as detailed in

Appendix A. The outcomes indicate a slight increase in statistical power with a higher

number of variants or a less stringent threshold (Tables A.1-A.4). The reason is that

the power is associated with the proportion of variance in the exposure explained by

the genetic variants (Brion et al., 2013). A larger number of variants results in a

higher R2 from the first-stage regression. Estimates from the naive method, projack,

FIQT, BR-squared, and Forde’s method in Tables A.1-A.4 exhibit negligible differ-

ences compared to the estimates in Tables 2.1 and 2.2. However, a more pronounced

difference is observed in Ghosh’s estimates between those obtained with a significance

threshold of 0.1 (Table A.1) and those with smaller significance thresholds, as shown

in Table 2.1. This discrepancy arises because a larger significance level threshold

leads to a larger proportion of variants with z-statistics significantly deviating from

the boundary, resulting in more z-statistics with minimal or no correction.

2.5 Applied Examples

To assess how winner’s curse affects Mendelian randomization analysis and the effec-

tiveness of the correction method, we examined two examples as discussed in Rees

et al. (2019). We started by selecting instruments based on their genetic association

with the exposure variable, and using the same data to estimate the effect size. We

obtained estimates for the genetic association with the outcome variable from an in-

dependent GWAS dataset. Next, we adjusted the estimates for exposure association
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and used the IVW method to evaluate the presence of a causal effect and estimate

its magnitude.

2.5.1 Causal Effect of Body Mass Index on Schizophrenia

Risk

Individuals with schizophrenia tend to have a higher prevalence of obesity, but it

is commonly believed that this association is due to the impact of antipsychotic

medication on body composition (reverse causation) and genetic factors, rather than

any causal effect of BMI on the risk of developing schizophrenia (Annamalai et al.,

2017).

The G-X association was obtained from the Genetic Investigation of Anthropomet-

ric Traits (GIANT) consortium, involving 339,225 individuals and 2,555,511 variants

(Locke et al., 2015). A set of independent variants was obtained by clumping the

GIANT variants with a correlation threshold of r2 > 0.1 and a minimum separation

of 500 kilobases, leaving 122,802 SNPs. Within this set, 97 variants with p-values less

than 5× 10−8 were identified. The winner’s curse correction was applied for these 97

variants. During the correction process, we used summary statistics for all 122,802

SNPs, except for Ghosh’s method, which relies solely on the summary statistics for

significant SNPs. The G-Y association was obtained from the Psychiatric Genomics

Consortium (PGC), encompassing 35,476 cases and 46,839 controls (Pantelis et al.,

2014). Subsequently, the causal effect in MR was estimated using only the significant

97 variants.

The results are depicted in Figure 2.4 and Table 2.5. Although none of the esti-

mates are considered statistically significant at a 5% significance level (in line with
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findings in Hartwig et al. (2016)), the corrected estimates are consistently larger

than the naive estimate, especially the Ghosh’s estimators (Table 2.5). This can be

attributed to a relatively high proportion of naive estimates being significantly over-

corrected, where approximately 36% of variants exhibit a corrected estimate that

is less than 70% of the naive estimate. Ghosh’s methods (MLE, compromise, nor-

malized) demonstrate a tendency to over-correct the estimates when they are close

to the significance threshold, as indicated in Figure 2.4. Additionally, the projack

method exhibits more variability in the correction compared to BR-squared, FIQT,

and Forde’s methods.
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Figure 2.4: Plot the absolute z-statistic for the naive estimates against the ratio
between the corrected estimate of exposure association and naive
estimate of exposure association for the example of the impact of body
mass index on schizophrenia. Abbreviations: Forde: Forde’s bootstrap
method; MLE: conditional MLE; Normalized: the mean of normalized
likelihood estimator; Compromise: compromise estimator
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Table 2.5: Estimates, standard errors and 95% confidence intervals of the causal
effect of body mass index on schizophrenia risk (log odds ratio for
schizophrenia per 1 standard deviation increase in body mass index) for
naive estimator, projack estimator(k=5), BR-squared, FIQT, Forde,
conditional MLE (MLE), the mean of the normalized likelihood
(Normalized), and Compromise estimator (Compromise).

Method Estimate SE 95% Interval

Naive 0.027 0.044 -0.060, 0.114

Projack k = 5 0.045 0.050 -0.053, 0.143

BR-squared 0.041 0.048 -0.053, 0.134

FIQT 0.043 0.052 -0.059, 0.144

Forde 0.043 0.050 -0.055, 0.140

MLE 0.071 0.050 -0.027, 0.169

Normalized 0.072 0.050 -0.027, 0.170

Compromise 0.071 0.050 -0.027, 0.170

2.5.2 Causal Effect of Low-density Lipoprotein Cholesterol

on Alzheimer’s Disease Risk

Numerous investigations have delved into the potential applications of lipid-lowering

agents, particularly statins, to combat or prevent Alzheimer’s disease, driven by the

belief that elevated cholesterol levels might heighten the risk of developing the condi-

tion. Both epidemiological studies and preclinical research have suggested an inverse

association between high cholesterol and Alzheimer’s disease. However, human stud-

ies examining the effects of statins have yielded inconsistent outcomes, making it

challenging to draw definitive conclusions (Shepardson et al., 2011a,b).

The genetic association estimates with LDL-C were obtained from the Global

Lipid Genetics Consortium (GLGC) with a sample size of up to 173,082 and 2,427,752

SNPs (Willer et al., 2013). Variants were clumped with r2 < 0.1, and they were
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separated by at least 1000 kb. After clumping, 122,802 SNPs remained, and among

them, 180 SNPs were determined to be significant at the GWAS threshold (5×10−8).

For the genetic variant association on Alzheimer’s disease (AD), the International

Genomics of Alzheimer’s Project (IGAP) data were used, involving 17,008 cases and

37,154 controls of European descent (Lambert et al., 2013).

All causal estimates suggest a positive causal effect of LDL-C on the risk of AD,

with FIQT showing the largest effect (Table 2.6). Once again, Ghosh’s method per-

formed the least favorably. Figure 2.5 illustrates that the majority of naive estimates

were essentially left uncorrected by Ghosh’s methods, while a few were over-corrected,

resulting in the corrected causal estimate being similar to the unadjusted causal es-

timate. Specifically, there is around 56% of variants having their corrected estimates

greater than 99% of the naive estimate while only 11% of variants having their cor-

rected estimates less than 70% of the naive estimate. When compared to the FIQT

method, Forde’s method tended to produce smaller estimates for variants with a

particularly large effect size. Additionally, Forde’s method had a greater number of

uncorrected variants compared to the BR-squared method.

It is also worth noting that we see a difference in the performance of Ghosh’s

MLE method in two applied examples. The reason is that there is a relatively great

portion of variants with their z-statistics close to the boundary. Specifically, in the

BMI- schizophrenia example, approximately 38% of variants have absolute z-statistics

less than 6, wheras in this example, this percentage is only around 13%. Hence, in

the first example, a greater proportion of variants undergo over-correction in their

G-X associations, whereas in the second example, a higher proportion of variants

experience only minimal correction in their G-X associations.
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Figure 2.5: Plot the z-statistic for the naive estimates against the ratio between the
corrected estimate of exposure association and naive estimate of
exposure association for the example of the impact of low-density
lipoprotein cholesterol on Alzheimer’s disease risk. Abbreviations:
Forde: Forde’s bootstrap method; MLE: conditional MLE; Normalized:
the mean of normalized likelihood estimator; Compromise: compromise
estimator
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Table 2.6: Estimates, standard errors and 95% confidence intervals of the causal
effect of low-density lipoprotein cholesterol on Alzheimer’s disease risk
(log odds ratio for Alzheimer’s per 1 standard deviationincrease in
low-density lipoprotein cholesterol) from the IVW method with for naive
estimator, projack estimator(k=5), BR-squared, FIQT, Forde,
conditional MLE (MLE), the mean of the normalized likelihood
(Normalized), and compromise estimator (Compromise).

Method Estimate SE 95% Interval

Naive 0.586 0.028 0.531, 0.641

Projack k = 5 0.616 0.029 0.560, 0.674

BR-squared 0.611 0.029 0.554, 0.668

FIQT 0.644 0.030 0.589, 0.703

Forde 0.611 0.029 0.554, 0.668

MLE 0.599 0.029 0.543, 0.656

Normalized 0.612 0.029 0.556, 0.670

Compromise 0.606 0.029 0.549, 0.662

2.6 Summary

This chapter investigated the influence of the winner’s curse on MR analysis and

implements a correction method to mitigate it. The impact of the winner’s curse

was illustrated through simulations and two practical examples, and the correction

method was explained in detail with its application in MR.

We find that when the causal effect size reduces, the magnitude of bias decreases,

but the relative bias increases. Nonetheless, the winner’s curse does not affect the

overall conclusions, as evidenced by both the simulation and real data application.

For instance, in the example of BMI’s impact on schizophrenia risk, neither the naive

nor the corrected causal estimate is significant. Furthermore, in the simulation with

a small causal effect, the power is only minimally influenced by the winner’s curse.

The winner’s curse will bias the estimator of causal effect towards null. One way
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to mitigate this bias is by applying a correction. However, this correction comes at

a cost of increased variability, resulting in a bias-variance trade-off. Consequently,

the intervals are wider due to the increased variability, but coverage improves. Win-

ner’s curse can also be mitigated by using additional GWAS data which is separate

from discovery GWAS. However, in reality, it can be challenging to find two distinct

datasets.

In comparing various correction methods, it has been observed that Ghosh’s meth-

ods yield more variable outcomes than other methods. The reason for this is that the

estimate is excessively corrected when the associated z-statistic is near the bound-

ary, whereas minimal correction is applied to variants with z-statistics far from the

boundary. If a considerable proportion of significant variants are subject to heavy

over-correction, the causal effect is likely to be overestimated. Conversely, the esti-

mate will be similar to the naive estimate. For instance, in the case of the relationship

between BMI and schizophrenia risk, Ghosh’s estimates are three times as large as the

naive estimate, whereas in the case of the association between LDL-C and Alzheimer’s

disease risk, the corrected estimate is similar to the initial estimate.

The type-I error is not examined in the main simulation. This is because we

expect the winner’s curse will not influence the type-I error when the instrument

variable is valid. If the instrument variable meets the criteria for being a valid IV,

then the genetic association with outcome (βgy) will be zero. We also try to rectify

this gap by re-performing the simulations with a null causal effect. The type-I errors

consistently remain at 5% across all methods. Further details can be found in Table

A.5 of Appendix A.

If researchers aim to obtain a point estimate, they can use a correction method
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to achieve a more accurate estimate. For those interested in obtaining confidence

intervals, applying a correction method can lead to improved coverage but wider

intervals. However, if the goal is to investigate the presence of a causal effect, the

correction methods have minimal impact on the power to detect a causal effect. The

R code for our extension of the BR-squared method to require only summary statistics

is available in https://github.com/Bianmj/WinnersCurse.
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Chapter 3

Addressing the Bias Due to

Overlapping Samples in Mendelian

Randomization

In the previous chapter, we explored the issue of the winner’s curse, which arises

when the dataset used for both selection and estimation exhibits full overlap. Specif-

ically, our focus in this chapter is on the bias resulting from the overlap between

two estimation datasets, namely the G-X association and G-Y association. In such

cases, utilizing the traditional “first-order” weight to account for variability in the

IVW estimate is no longer appropriate. This because that the traditional approach

neglects the covariance between the G-X association and G-Y association, induced

by correlation.

Burgess et al. (2016) has indicated the combination of the overlapping samples

and weak instruments leads to substantial bias in causal estimation. Employing weak

instruments biases the IVW estimator towards zero in the case of non-overlapping
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samples and towards the confounded (observational) association with one-sample

overlapping. Consequently, the bias in cases with some degree of overlap lies be-

tween these two scenarios.

To address these challenges, we have developed a novel method building on the

work of Bowden et al. (2019). Our approach has undergone extensive testing through

various simulation scenarios, incorporating different strengths of IVs varying degrees

of overlap, the effects of confounders, and different sample sizes for the exposure and

outcome variables. Remarkably, our results consistently demonstrate the exceptional

performance of the proposed method across all these scenarios, as it provides an

unbiased causal estimator when compared with the IVW method and and while the

Type-I error may be inflated, it is much better other methods when there is substantial

overlap between samples.

3.1 Introduction

In recent years, the development of Mendelian randomization has been driven by the

availability of summarized data. The two-sample MR method relies on the prerequi-

site that the exposure and outcome data from GWAS are acquired from independent

samples. However, the presence of sample overlap in conjunction with weak instru-

ments can introduce bias into the estimation of causal effects. The weak instrument

bias arises when the weak association between the genetic variant and exposure leads

to greater proportion of the difference in exposure being attributed to the chance

difference in confounding factors, rather than being explained by the IVs themselves

(Burgess and Thompson, 2011). When the two-sample MR estimator is obtained from

non-overlapping samples, the bias is in the direction of the null. However, if there
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is sample overlap, it will be biased towards the confounded observational association

(Burgess et al., 2016).

The IVW method is widely recognized as one of the most commonly used methods

in two-sample MR analyses (Burgess et al., 2013). However, it is important to note

that the IVW method that uses the “first-order” weight for each ratio estimate, does

not account for the uncertainty associated with the genetic variant-exposure effect.

The absence of measurement error in the effect of genetic variant-exposure associa-

tion is referred to as the “NO Measurement Error” (NOME) assumption (Bowden

et al., 2017). The use of weak instrumental variables violates the NOME assumption.

Suppose βgix = β̂gix + η, where η denotes measurement error and follows N(0, σ2
η).

A substantial residual standard error σ̂η occurs when the genetic variants are weakly

correlated with the exposure due to the small variability in exposure explained by

genetic variants. This circumstance leads to regression dilution bias in the regression

of β̂giy on β̂gix, thereby shifting the slope (IVW causal estimator) towards zero. To

address the limitations of the “first-order” weights, “second-order” weights have been

introduced to better account for the complete uncertainty in the ratio estimate of the

causal effect. However, it is important to highlight that, as the instrument strength

decreases, the second-order IVW estimates become increasingly susceptible to regres-

sion dilution bias, resulting in under coverage (Bowden et al., 2019). Bowden et al.

(2019) used modified weights to mitigate this dilution bias while Zhao et al. (2020)

proposed a robust adjusted profile score approach (MR-RAPS) to address this bias.

It is worth mentioning that the magnitude of the bias introduced by weak IVs and

sample overlap is less pronounced when the strength of IVs becomes stronger.

Lin and Sullivan (2009) were the first to tackle the challenge of combining the
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summary statistics from multiple GWAS with overlapping samples. They adjusted

the inverse variance estimator for genetic effect from multiple GWAS while accounting

for the overlapping among these studies. Their work mainly focused on the case-

control studies. LeBlanc et al. (2018) extended the work of Lin and Sullivan (2009) for

scenarios that involve overlap for both two quantitative phenotypes and a combination

of a quantitative trait and a case-control study. Their methodology is applied within

a polygenic pleiotropy-informed framework, where the two traits share a common

genetic basis, termed pleiotropy.

In the context of MR, the issue of sample overlapping has not been extensively

investigated. Burgess et al. (2016) have shown that for a continuous outcome, bias

due to sample overlap is linearly proportional to the overlap between the samples.

Zou et al. (2020) proposed a Bayesian method to convert a scenario involving two

overlapping samples into a one-sample MR setting. This approach requires individual-

level data and uses iterative imputation of missing data conditioned on the observed

data and estimated parameters through MCMC. More recently, Mounier and Kutalik

(2023) introduced a method called MR-lap, which takes into account weak instru-

ment bias and winner’s curse, while also addressing the potential occurrence of sample

overlap. In their method, they used the intercept of cross-trait LD score regression

(LDSC) (Bulik-Sullivan et al., 2015) to estimate the phenotypic correlation and sam-

ple size for overlap. As we have discussed in Chapter 2, the winner’s curse arises when

association estimates are obtained from the same dataset used for discovery, which

results in the MR estimator of the causal effect being biased. Our focus is primar-

ily on the challenges of weak instrument bias and sample overlap, without explicit

consideration of the winner’s curse. Our proposed method uses modified weights to
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account for weak instrument bias and sample overlap. The approach builds upon the

works of LeBlanc et al. (2018) and Bowden et al. (2019) to tackle these challenges.

It is worth noting that, in our method, the estimated correlation between G-X and

G-Y association estimators is equal to the intercept of cross-trait LDSC. In cases

where individual-level data is unavailable, we can rely on cross-trait LDSC to obtain

this estimated correlation. Subsequently, this estimated correlation is included in the

estimation of variance for the ratio estimator of each IV, resulting in the modifica-

tion of the weight for each ratio estimate. This differs from the approach proposed

by Mounier and Kutalik (2023), wherein they did not explicitly modify the weight

for each ratio estimate due to sample overlap. Instead, they proposed a corrected

IVW estimator where a term proportional to the intercept of cross-trait LDSC is

substracted from the naive estimator.

In this chapter, we initially introduce our method that incorporates modified

weights for each genetic variant. Subsequently, we use simulations and real data

examples to effectively demonstrate the performance and practical applicability of

our method. Notably, our simulations are specifically based on real data examples,

ensuring a realistic evaluation of the effectiveness of our proposed approach.

3.2 Method

Let β̂c denote the estimate of causal effect, β̂gx as the estimate of the effect of genetic

variants on the exposure, and β̂gy as the estimate of the effect of genetic variants on

the outcome, then the ratio estimate of the causal effect is:

β̂c =
β̂gy

β̂gx
(3.2.1)
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By applying the delta method, we can easily get the estimated variance of the causal

estimate:

v̂ar(β̂c) =
1

β̂2
gx

se2(β̂gy) +
β̂2
gy

β̂4
gx

se2(β̂gx)− 2
β̂gy

β̂3
gx

ĉov(β̂gx, β̂gy) (3.2.2)

In the case of overlapping samples, β̂gx and β̂gy are correlated since the G-X study

and G-Y study share some individuals and their genetic variants. Thus, β̂gx and β̂gy

are not independent, and it is necessary to consider the covariance between them,

as expressed in Equation (3.2.2). If the correlation is ignored, then the estimated

variance is written as

v̂ar(β̂c) =
1

β̂2
gx

se2(β̂gy) +
β̂2
gy

β̂4
gx

se2(β̂gx) (3.2.3)

The covariance of two estimates with two case-control studies was derived by Lin

and Sullivan (2009), and their work was further expanded upon by LeBlanc et al.

(2018). In the latter study, the authors obtained the correlation estimate for various

scenarios, including cases involving two quantitative phenotypes or a combination of a

quantitative phenotype and a case-control study. The deviation in the estimates was

based on maximum likelihood (ML) estimation, assuming that the genetic variants

in both the G-X study and G-Y study follow a binomial distribution with parameters

(2, p). The correlation between β̂gx and β̂gy for two quantitative traits can be expressed

using Equation (3.2.4), as presented in the work by LeBlanc et al. (2018):

corr(β̂gx, β̂gy) =
nc√
nx · ny

rxy (3.2.4)
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Here, rxy represents the phenotypic correlation between the exposure X and outcome

Y , nc denotes the number of shared individuals between G-X study and G-Y study, nx

represents the number of individuals in G-X study, and ny represents the number of

individuals in G-Y study. Note that the right-hand side of Equation (3.2.4) represents

the intercept term in the cross-trait LD score regression. This implies that even in

cases where the overlap percentage or the phenotype information is not available,

performing cross-trait LD score regression allows us to obtain the correlation between

G-X and G-Y association estimates. Equation (3.2.5) provides the covariance between

the G-X and G-Y association estimates. Then the covariance between G-X and G-Y

association estimates can be expressed as follows:

ĉov(β̂gx, β̂gy) = corr(β̂gx, β̂gy) · se(β̂gx) · se(β̂gy) (3.2.5)

In the IVW method, the ratio estimates for each genetic variant are combined to

obtain an overall causal estimate:

β̂IV W =

∑M
j=1wjβ̂cj∑M
j=1wj

(3.2.6)

where wj is the inverse variance weight for the j th ratio estimate. The variance of

IVW estimate is then

var(β̂IV W ) =
1∑M

j=1wj

(3.2.7)

Note that the value of wj will vary based on whether the correlation between G-X and

G-Y association estimates is taken into account. Box 1 provides the expressions of
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the two common first-order and second-order weights, as well as the modified weight.

Box 2 outlines the specific weight used in the calculation of the causal estimate for

different methods.

Box 1

� First-order weight:

wj =

(
1

β̂2
gjx

se2(β̂gjy)

)−1

� Second-order weight:

wj =

(
1

β̂2
gjx

se2(β̂gjy) +
β̂2
gjy

β̂4
gjx

se2(β̂gjx)

)−1

� Modified weight:

wj =

(
1

β̂2
gjx

se2(β̂gjy) +
β̂2
gjy

β̂4
gjx

se2(β̂gjx)− 2
β̂gjy

β̂3
gjx

ĉov(β̂gjx, β̂gjy)

)−1
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Box 2

� The conventional IVW method considers only the first-order weight, given

by:

wj =

(
1

β̂2
gjx

se2(β̂gjy)

)−1

� The modified IVW method incorporates the covariance term:

wj =

(
1

β̂2
gjx

se2(β̂gjy) +
β̂2
gjy

β̂4
gjx

se2(β̂gjx)− 2
β̂gjy

β̂3
gjx

ĉov(β̂gjx, β̂gjy)

)−1

where j indexes the jth ratio estimate.

The modified IVW method can be adapted to address the issue of weak instru-

ments by extending the “Exact” method proposed by Bowden et al. (2019) to incor-

porate the correlation between the G-X association and G-Y association estimates.

To implement this extension, we follow the methodology outlined in Bowden et al.

(2019). Specifically, we formulate two models: the first model represents the data-

generating process for the G-Y associations under the assumption of no pleiotropy.

This model is defined as a function of the causal effect and the true G-X association.

The second model represents the one that is used for fitting the data. Importantly,

it should be noted that if the estimates of G-X and G-Y associations are obtained

from two independent datasets, the covariance term becomes 0, resulting in the same

expression as presented in Bowden et al. (2019).

Underlying model: β̂gjy = βcβgjx + se(β̂gjy)εj, εj ∼ N(0, 1) (3.2.8)
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Fitted model: β̂gjy = βcβ̂gjx+

√
β2
c se

2(β̂gjx) + se2(β̂gjy)− 2βcĉov(β̂gjx, β̂gjy)ε
′
j

ε′j ∼ N(0, 1) (3.2.9)

By dividing both sides of the fitted model by the G-X association estimate, we can

derive a model for the estimate of the jth ratio estimate, given by:

β̂cj = βc +

√√√√β2
c se

2(β̂gjx) + se2(β̂gjy)− 2βcĉov(β̂gjx, β̂gjy)

β̂2
gjx

ε′j (3.2.10)

From this model, we can express the variance of each ratio estimate as

var(β̂cj) =
β2
c se

2(β̂gjx) + se2(β̂gjy)− 2βcĉov(β̂gjx, β̂gjy)

β̂2
gjx

(3.2.11)

Based on Equation (3.2.11), it can be observed that the variance of each ratio estimate

depends on the true causal effect. We can represent the weight assigned to each ratio

estimate as the reciprocal inverse variance, denoted as wj(βc) = 1/ var(β̂cj). Using

this weight, we introduce the modified Cochran’s Q statistic:

Qm(w(βc), βc) =
∑

wj(βc)(β̂cj − βc)
2 (3.2.12)

The modified exact IVW estimate β̂ME,IVW is obtained by directly minimizing the

generalized Q statistic Qm with respect to βc. By replacing βc by β̂ME,IVW in Equation

(3.2.11), we can get the variance for the modified exact IVW estimate. It can be
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expressed as:

var(β̂ME,IVW) =
1∑M

j=1wj(β̂ME,IVW)
(3.2.13)

Box 3 defines the weight assigned to each ratio estimate j for the original “exact”

method and the modified “exact” method.

Box 3

� The weight used to get the exact IVW estimate is given by

wj =

(
β2
c se

2(β̂gjx) + se2(β̂gjy)

β̂2
gjx

)−1

� The weight used to get the modified exact IVW estimate is given by

wj =

(
β2
c se

2(β̂gjx) + se2(β̂gjy)− 2βcĉov(β̂gjx, β̂gjy)

β̂2
gjx

)−1

3.3 Data Description

We present two illustrative examples in our study. The first example pertains to the

investigation of the causal relationship between body mass index (BMI) and systolic

blood pressure (SBP), which was previously examined in Zhao et al. (2020). To

select the IVs, we employ data from the GIANT consortium (Locke et al., 2015).

The clumping of variants is performed using the “extract instrument” function in

the TwoSampleMR software (Hemani et al., 2018), with three distinct significant

thresholds (5 · 10−2, 5 · 10−5, 5 · 10−8) applied during the clumping procedure, while
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keeping the remaining parameters at their default values. The BMI and SBP data

utilized in this analysis are sourced from the UK Biobank (Neale lab: https://www.

nealelab.is/uk-biobank). Following the clumping process, the number of variants

remaining for each significant threshold is reported as 1114, 249, and 78, respectively.

The phenotypic correlation is available in https://ukbb-rg.hail.is/rg_browser/.

It is obtained through cross-trait LD score regression, and the LD scores are computed

based on data from the 1000 Genomes project (1000 Genomes Project Consortium,

2012).

In the second example, we investigate the causal association between BMI and

HDL-C, which has been previously established as a negative causal association in

the study conducted by He et al. (2022). The selection of genetic variants is based

on the UK Biobank dataset, whereas the G-X association estimates for the associ-

ated variants are obtained from the GIANT consortium, and the G-Y association

estimates for HDL-C are obtained from the GLGC consortium (Willer et al., 2013).

As reported by Burgess et al. (Burgess et al., 2016), a total of 55 common studies,

comprising approximately 71% of the participants in the GLGC, are referenced in

the publications authored by these two consortia. The sample size for the genetic

variant-exposure association encompasses up to 339,224 individuals, while for the

genetic variant-outcome association, it includes up to 187,167 individuals. In other

words, the GIANT consortium has nearly twice as many samples as the GLGC con-

sortium. Thus, if we define the overlap with respect to the GIANT consortium, then

the overlapping is around 39%. Similarly, we apply the clumping procedure (it selects

the most significant variant within a specified distance and remove all other nearby
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variants that have a high LD with the selected variants) using three thresholds, re-

sulting in 854, 464, and 222 variants remaining for the respective thresholds. The

phenotypic correlation in this applied example is obtained from cross-trait LD score

regression, with LD scores computed from 1000 Genomes (1000 Genomes Project

Consortium, 2012).

The measure of IV strength is determined by calculating the mean of β̂2
gx/ se

2(β̂gx)

across multiple variants, which follows an F -distribution. Table 3.1 presents the spe-

cific values of F -statistics for the two examples. Notably, as the threshold becomes

more stringent, the average F -statistics exhibit an upward trend, indicating an in-

crease in IV strength.

Table 3.1: The mean of F -statistics for varing thresholds in two examples.

Thresholds The mean of F -statistics

BMI-SBP BMI-HDL-C

5 · 10−2 13.69 7.56

5 · 10−5 39.72 12.50

5 · 10−8 77.56 20.72

3.4 Simulation

3.4.1 Design

To compare the performance of the four methods in the case of weak instrument bias

more realisticly, we perform the following simulations based on the above two real
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data examples. The data-generating model is given below.

Xi =
M∑
k=1

αkGik + αuUi + εxi

Yi = βcXi + βuUi + εyi

Ui ∼ N
(
0, σ2

u

)
; εxi

∼ N
(
0, σ2

x

)
; εyi ∼ N

(
0, σ2

y

)

The parameters, including the G-X association effect and the MAF, as well as

the causal effect, are determined based on real data examples. The process involves

generatingX and Y variables using a predetermined number of variants corresponding

to different significance thresholds. The number of variants is intentionally reduced

compared to the real data examples to ensure the comparability of the resulting R2

values with a different sample size.

To be more specific, in the case of BMI-SBP, the number of variants is constrained

to 100 for the significant threshold of 5 · 10−2, 25 for the threshold of 5 · 10−5, and 8

for the threshold of 5 · 10−8. Similarly, in the example involving BMI-HDL-C, 50, 25,

and 12 variants are considered for the respective significance thresholds.

The genotype Gik is generated from Bin(n, pk), where n = 2 and pk represents

MAF sampled from the real data example. The true G-X associations αk are obtained

from the same variants that were used to select the MAF values from the real data

during the genotype generation process. Additionally, the estimates obtained from the

real data are adjusted by a scaling factor to ensure the F -statistics remain comparable

to those in the real data example, despite using a smaller sample size in the simulation.

To closely simulate the BMI-SBP example, we set βc = 0.1 and σ2
u = σ2

x = σ2
y = 1
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in our simulation. Additionally, for each of the three significance thresholds, we con-

sider different strengths of the confounder effect, specifically αu = βu = 0.4, 0.6, or 0.8.

Our simulated dataset comprises 20,000 observations, with the number of observa-

tions for G-X and G-Y associations being half of the sample size. To estimate the

G-X association, we use the first half of the observations, while varying the second

half to create overlapping segments. For example, if we desire a 25% overlap, we

utilize observations from 7,501 to 17,500 for G-Y association estimation, and so on.

We explore cases with 0% overlap, and gradually increase in increments of 25% up to

100% overlap. We repeat the simulation 1000 times to obtain the results.

To simulate the BMI-HDL-C example, we set βc = −0.3 to facilitate comparison.

We also assume a unit variance for the confounder effect and random errors. Similar to

the previous scenario, we explore different strengths of the confounder effect, namely

αu = βu = −0.4,−0.6, or − 0.8, for each of the three significance thresholds. It is

worth noting that the direction of confounded (observational) association depends

on the product of the signs of the confounder effect on both the exposure and the

outcome. In this case, the confounded (observational) association is positive, given

that the confounder has a negative effect on both the exposure and the outcome.

Given that the GIANT consortium’s sample size is nearly twice as large as that of

GLGC, we conduct simulations with 30,000 observations. In these simulations, the

sample size for estimating the G-X association is twice that of the G-Y association.

The estimation of the G-X association is performed using the first 20,000 observations,

while the remaining observations are varied to create overlapping segments. The

degree of overlap is defined with respect to the smaller study, meaning that for a 25%

degree of overlap, we use observations from 17,501 to 27,500 for the G-Y association
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estimation. Similarly, for 50% overlap, we use observations from 15,001 to 25,000 for

the G-Y association estimation, and so forth. We perform 1000 repetitions of the

simulation.

In our simulations, we use the invidual-level data to estimate phenotypic correla-

tion while in our applied examples, their phenotypic correlations are obtained from

cross-trait LD score regression and LD scores are computed from 1000 Genomes (1000

Genomes Project Consortium, 2012). We expect this estimate would be different from

that obtained from the cross-trait LD score regression. Bulik-Sullivan et al. (2015)

and Lee et al. (2018) have shown cross-trait LD score regression yields accurate es-

timates of genetic correlation but the performance of phenotypic correlation remains

uncertain. Lee et al. (2018) point out that the intercept term is influenced by the

confounding affecting both traits and sample overlap.

It is important to highlight that we have also taken into account scenarios where

the confounding association is negative, indicating that the direction of the con-

founding effect on the exposure and outcome differs. Furthermore, we conducted a

simulation with a null causal effect to evaluate the type-I error for various methods.

3.4.2 Results

The results of Simulation 1 are presented in Figure 3.1, Tables 3.2-3.3, Tables B.1-B.4

and Figures B.1-B.2. Similarly, the results of simulation 2 are provided in Figure 3.4,

Tables 3.4-3.5, Tables B.5-B.8 and Figures B.3-B.4. To assess the strength of IVs,

the mean F value is calculated for each threshold.

To evaluate the performance of each approach, we compute the mean of the causal

estimates, mean of the standard errors (SE), standard deviation (SD) of the estimates,
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and coverage of 95% Wald intervals. Notably, in both simulation studies, we observe

significant discrepancies in the causal estimates for the IVW, modified IVW, and

exact methods at varying degrees of sample overlap. Conversely, the modified exact

IVW estimates align more closely with the true causal effects (Figures 3.1 and 3.4).

As anticipated from Box 3, the modified exact IVW method yields the same estimate

as the exact IVW method when there is no overlap.

For a positive causal effect, the IVW and modified IVW methods tend to over-

estimate the causal effect with 100% overlap and underestimate it with no overlap

(Figure 3.1). Conversely, with a negative causal effect, the IVW and modified IVW

methods overestimate the causal effect, irrespective of the extent of sample overlap

(Figure 3.4). This phenomenon arises due to the weak instrument bias, leading the

estimates in two-sample MR towards the null and in one-sample MR towards the

direction of the confounded observational association.

The behavior of the exact IVWmethod differs slightly due to its ability to mitigate

weak instrument bias. However, an increase in bias is still observable as the degree

of overlap increases. When the direction of confounder is positive, the exact method

tends to overestimate the causal effect for a positive causal effect and underestimate it

for a negative causal effect. Conversely, when the direction of confounder is negative,

the exact method tends to underestimate the causal effect regardless of the direction

of the causal effect.

The simulation results involving negative confounders are presented in Appendix

B, specifically in Figures B.7-B.12. When considering a positive causal effect along

with a negative confounder, all the IVW, modified IVW, and exact IVW methods

exhibit underestimation. Moreover, the extent of bias increases with the degree of
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overlap, whereas the modified exact IVW method maintains stability around the true

effect. On the other hand, when dealing with a negative causal effect and a negative

confounder, the pattern mirrors that observed with a positive causal effect and a

positive confounder. Here, the IVW, modified IVW, and exact methods result in

underestimation with complete overlap and overestimation with no overlap.

However, it is important to note that bias reduction does come at a cost. The

exact-based IVW methods tend to underestimate the standard deviation, particularly

in cases of non-overlapping samples or when the degree of overlap is low (Table 3.3).

This underestimation in standard errors leads to under coverage, with the lowest

coverage observed at around 90% when weak instruments are present. As the strength

of the instrumental variables increases, the coverage improves.

While there is a slight underestimation of coverage in cases involving non-overlapping

samples or low degrees of overlap, it is worth noting that the modified exact method

demonstrates enhanced coverage compared to the conventional IVW method in some

scenarios. This improvement is particularly noticeable when the instrumental vari-

ables are weak and a high degree of overlap is present (Table 3.2). For example,

when there is 100% overlap and the causal effect is 0.1, along with a confounding

factor effect of 0.6, the IVW method achieves a coverage of 88.6% with a significant

threshold of 0.05. In contrast, the modified exact method achieves a higher coverage

of 93.6% under the same conditions.

As the mean of F -statistics increases, the difference between causal estimates

using different methods diminishes, even with a high degree of sample overlap (see

Table 3.2 and Figures B.1-B.4). However, it is worth noting that the extent of bias

is still relatively high in the modified IVW method compared to other methods. It
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may seem counterintuitive since the second-order weights for the weak IVs tend to

be smaller than the first-order weights. One would anticipate a less biased estimator

with second-order weights, but the results indicate the opposite. For instance, with

fully overlapping samples, the mean IVW estimate is 0.126 with a mean F -statistics

around 10, which decreases to 0.105 with a mean F value around 55. Similarly, the

mean of the exact IVW estimate drops from 0.139 to 0.107, and the modified IVW

estimate decreases from 0.145 to 0.113. In contrast, the mean of the modified exact

estimates remains stable at the true causal effect.

The bias in causal estimation for the IVW and modified IVWmethods is influenced

by the strength of the confounder. For instance, in the case of fully overlapping

samples and a significant threshold of 5 · 10−5, the IVW estimate increases from

0.103 with a weak confounder effect (0.4) to 0.115 with a relatively strong confounder

effect (0.8). Figures 3.1 and 3.4 suggest the presence of an interaction effect between

the confounding factor and the degree of overlap. In other words, the impact of

overlap on the extent of bias in causal estimation depends on the strength of the

confounding factor. For example, with a significant threshold of 5 · 10−2, the IVW

estimate increases by 23% from non-overlapping to complete overlapping with a weak

confounder, 41.6% with a moderate confounder, and 64.8% with a strong confounder

(Table 3.2, Table B.1 and Table B.3). It has been observed that for a positive causal

effect and a positive confounder, a strong confounder increases the bias at a faster rate

than a weak confounder, while for a negative causal effect and a positive confounder, a

weak confounder tends to decrease the bias at a faster rate than a strong confounder.

The observed interaction effects can be attributed to the strength of confounder,

as a strong confounder leads to a greater weak instrument bias. In cases of strong
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confounding, noticeable overlap would be observed in the distributions of exposure

across genotype groups. This occurs because the genetic variation explains minimal

differences in exposure.

The exact IVW method does not provide a clear direction of bias. Across all

scenarios, the modified exact IVW estimates consistently exhibit consistency for all

degrees of overlap, different thresholds, and various confounder effects.

In the context of a null causal effect (Figure 3.7), the estimates exhibit unbiased

behavior when there is no overlap, but as the degree of overlap increases, bias becomes

more pronounced for the IVW, modified IVW, and exact IVW methods. However,

the modified exact IVW method remains unbiased throughout. Regarding the type-

I error, the IVW method maintains a 5% level when there is null overlap or the

confounding effect is weak (Table 3.6). However, a significant increase in type-I

error is observed when the confounder becomes stronger or the degree of overlap

rises. For instance, when the confounder is weak, the IVW type-I error increases

from 5% to 6.2% as the degree of overlap goes from 0% to 100%, and for a strong

confounder, the type-I error surges from 5.3% to 25.7%. Conversely, the modified

exact method exhibits a slight decrease in type-I error as the overlap increases. For

a weak confounder, the type-I error reduces from 8.5% to 6.5%, and for a strong

confounder, it decreases from 9.3% to 7.0%. Notably, the modified exact method

consistently maintains the type-I error below 10%.

Through the pairwise plots (Figures 3.2-3.3 and Figures 3.5-3.6), we can illustrate

that the modified exact method consistently outperforms other methods in reducing

overlapping bias and weak instrument bias, although it comes at the expense of

underestimating the standard error. However, this underestimation has a minimal
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impact on coverage of 95% Wald-type confidence intervals. The proposed method

shows a substantial advantage over the conventional IVW method when the degree

of overlap is high and the instruments are relatively weak.

Table 3.2: Mean of causal estimate and coverage for 1000 simulations. Scenario:
positive causal effect (βc = 0.1) and moderate confounder
(βu = αu = 0.6). Abbreviations: IVW: “first order” inverse variance
weight. Modified IVW: “second order” inverse variance weight that
accounts for the covariance between association estimates. Exact:
Original exact method without accounting for correlation. Modified
Exact: exact method that accounts for the correlation in the weights. βc
represents the causal effect, βu and αu represent the confounder effect on
outcome and exposure, respectively.

Threshold (Mean F ) IVW Modified IVW Exact Modified Exact

Mean Coverage Mean Coverage Mean Coverage Mean Coverage

βc = 0.1, βu = αu = 0.6, overlap = 0%

5 · 10−2(F = 10.77) 0.089 0.933 0.082 0.938 0.100 0.909 0.100 0.909

5 · 10−5(F = 29.04) 0.096 0.954 0.090 0.966 0.099 0.950 0.099 0.950

5 · 10−8(F = 54.67) 0.099 0.945 0.096 0.954 0.101 0.942 0.101 0.942

βc = 0.1, βu = αu = 0.6, overlap = 25%

5 · 10−2(F = 10.77) 0.099 0.948 0.098 0.972 0.110 0.899 0.100 0.912

5 · 10−5(F = 29.04) 0.100 0.950 0.099 0.965 0.104 0.949 0.100 0.943

5 · 10−8(F = 54.67) 0.101 0.955 0.100 0.963 0.103 0.955 0.101 0.950

βc = 0.1, βu = αu = 0.6, overlap = 50%

5 · 10−2(F = 10.77) 0.106 0.955 0.112 0.958 0.118 0.900 0.099 0.930

5 · 10−5(F = 29.04) 0.102 0.941 0.106 0.949 0.105 0.932 0.099 0.931

5 · 10−8(F = 54.67) 0.101 0.948 0.103 0.957 0.103 0.946 0.099 0.943

βc = 0.1, βu = αu = 0.6, overlap = 75%

5 · 10−2(F = 10.77) 0.116 0.925 0.128 0.867 0.128 0.834 0.099 0.922

5 · 10−5(F = 29.04) 0.105 0.944 0.114 0.941 0.109 0.938 0.099 0.936

5 · 10−8(F = 54.67) 0.104 0.944 0.109 0.947 0.106 0.942 0.100 0.936

βc = 0.1, βu = αu = 0.6, overlap = 100%

5 · 10−2(F = 10.77) 0.126 0.886 0.145 0.720 0.139 0.759 0.101 0.936

5 · 10−5(F = 29.04) 0.108 0.952 0.122 0.913 0.113 0.934 0.099 0.941

5 · 10−8(F = 54.67) 0.105 0.946 0.113 0.949 0.107 0.946 0.100 0.942
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Table 3.3: Mean of standard errors (SE) and standard deviation (SD) for 1000
simulations. Scenario: positive causal effect (βc = 0.1) and moderate
confounder (βu = αu = 0.6). Abbreviations: IVW: “first order” inverse
variance weight. Modified IVW: “second order” inverse variance weight
that accounts for the covariance between association estimates. Exact:
Original exact method without accounting for correlation. Modified
Exact: exact method that accounts for the correlation in the weights. βc
represents the causal effect, βu and αu represent the confounder effect on
outcome and exposure, respectively.

Threshold (Mean F) IVW Modified IVW Exact Modified Exact

SE SD SE SD SE SD SE SD

βc = 0.1, βu = αu = 0.6, overlap = 0%

5 · 10−2(F = 10.77) 0.032 0.033 0.033 0.030 0.032 0.037 0.032 0.037

5 · 10−5(F = 29.04) 0.039 0.039 0.040 0.037 0.040 0.040 0.040 0.040

5 · 10−8(F = 54.67) 0.053 0.054 0.053 0.052 0.053 0.055 0.053 0.055

βc = 0.1, βu = αu = 0.6, overlap = 25%

5 · 10−2(F = 10.77) 0.032 0.033 0.033 0.030 0.032 0.037 0.032 0.037

5 · 10−5(F = 29.04) 0.039 0.039 0.040 0.037 0.040 0.040 0.039 0.040

5 · 10−8(F = 54.67) 0.053 0.052 0.053 0.050 0.053 0.053 0.052 0.053

βc = 0.1, βu = αu = 0.6, overlap = 50%

5 · 10−2(F = 10.77) 0.032 0.031 0.032 0.029 0.032 0.035 0.031 0.035

5 · 10−5(F = 29.04) 0.039 0.039 0.040 0.037 0.040 0.040 0.039 0.041

5 · 10−8(F = 54.67) 0.053 0.052 0.052 0.051 0.053 0.053 0.052 0.053

βc = 0.1, βu = αu = 0.6, overlap = 75%

5 · 10−2(F = 10.77) 0.032 0.031 0.032 0.030 0.032 0.035 0.031 0.035

5 · 10−5(F = 29.04) 0.039 0.039 0.039 0.037 0.040 0.041 0.039 0.041

5 · 10−8(F = 54.67) 0.053 0.052 0.052 0.050 0.053 0.053 0.052 0.053

βc = 0.1, βu = αu = 0.6, overlap = 100%

5 · 10−2(F = 10.77) 0.032 0.030 0.032 0.029 0.032 0.034 0.031 0.033

5 · 10−5(F = 29.04) 0.039 0.039 0.039 0.038 0.040 0.041 0.038 0.041

5 · 10−8(F = 54.67) 0.053 0.053 0.051 0.052 0.053 0.054 0.051 0.054
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Figure 3.1: Causal estimates with different strengths of confounder. Scenario:
Significant threshold 5 · 10−2; Causal effect=0.1 (horizontal line).
Abbreviations: IVW: “first order” inverse variance weight. Modified
IVW: “second order” inverse variance weight that accounts for the
covariance between association estimates. Exact: Original exact method
without accounting for correlation. Modified Exact: exact method that
accounts for the correlation in the weights. βu and αu represent the
confounder effect on outcome and exposure, respectively.
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Figure 3.2: The pairwise comparison in standard error and causal estimate for
different methods. Significant threshold 5 · 10−2; causal effect=0.1;
degree of overlap=0%; moderate confounder (βu = αu = 0.6).
Abbreviations: IVW: “first order” inverse variance weight. Modified
IVW: “second order” inverse variance weight that accounts for the
covariance between association estimates. Exact: Original exact method
without accounting for correlation. Modified Exact: exact method that
accounts for the correlation in the weights. βu and αu represent the
confounder effect on outcome and exposure, respectively.
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Figure 3.3: The pairwise comparison in standard error and causal estimate for
different methods. Significant threshold 5 · 10−2; causal effect=0.1;
degree of overlap=100%; moderate confounder (βu = αu = 0.6).
Abbreviations: IVW: “first order” inverse variance weight. Modified
IVW: “second order” inverse variance weight that accounts for the
covariance between association estimates. Exact: Original exact method
without accounting for correlation. Modified Exact: exact method that
accounts for the correlation in the weights. βu and αu represent the
confounder effect on outcome and exposure, respectively.
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Table 3.4: Mean of causal estimate and coverage of 95% Wald-type confidence
interlvas for 1000 simulations. Scenario: positive causal effect
(βc = −0.3) and weak confounder (βu = αu = −0.4). Abbreviations:
IVW: “first order” inverse variance weight. Modified IVW: “second
order” inverse variance weight that accounts for the covariance between
association estimates. Exact: Original exact method without accounting
for correlation. Modified Exact: exact method that accounts for the
correlation in the weights. βc represents the causal effect, βu and αu

represent the confounder effect on outcome and exposure, respectively.

Threshold (Mean F ) IVW Modified IVW Exact Modified Exact

Mean Coverage Mean Coverage Mean Coverage Mean Coverage

βc = −0.3, βu = αu = −0.4, overlap = 0%

5 · 10−2(F = 10.07) -0.265 0.921 -0.240 0.889 -0.298 0.934 -0.298 0.934

5 · 10−5(F = 15.61) -0.280 0.942 -0.257 0.943 -0.302 0.934 -0.302 0.934

5 · 10−8(F = 24.58) -0.283 0.930 -0.265 0.931 -0.297 0.934 -0.297 0.934

βc = −0.3, βu = αu = −0.4, overlap = 25%

5 · 10−2(F = 10.07) -0.270 0.943 -0.249 0.924 -0.303 0.935 -0.298 0.932

5 · 10−5(F = 15.61) -0.285 0.941 -0.265 0.947 -0.306 0.931 -0.304 0.933

5 · 10−8(F = 24.58) -0.285 0.949 -0.269 0.954 -0.299 0.950 -0.297 0.948

βc = −0.3, βu = αu = −0.4, overlap = 50%

5 · 10−2(F = 10.07) -0.277 0.937 -0.259 0.937 -0.312 0.933 -0.302 0.927

5 · 10−5(F = 15.61) -0.287 0.944 -0.270 0.949 -0.309 0.928 -0.303 0.926

5 · 10−8(F = 24.58) -0.291 0.954 -0.278 0.960 -0.306 0.950 -0.302 0.948

βc = −0.3, βu = αu = −0.4, overlap = 75%

5 · 10−2(F = 10.07) -0.281 0.941 -0.267 0.943 -0.315 0.930 -0.301 0.925

5 · 10−5(F = 15.61) -0.289 0.939 -0.276 0.956 -0.310 0.937 -0.302 0.928

5 · 10−8(F = 24.58) -0.293 0.955 -0.282 0.969 -0.307 0.953 -0.302 0.947

βc = −0.3, βu = αu = −0.4, overlap = 100%

5 · 10−2(F = 10.07) -0.286 0.949 -0.275 0.959 -0.320 0.914 -0.301 0.915

5 · 10−5(F = 15.61) -0.291 0.952 -0.281 0.966 -0.313 0.943 -0.301 0.938

5 · 10−8(F = 24.58) -0.297 0.946 -0.288 0.959 -0.311 0.943 -0.303 0.935
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Table 3.5: Mean of standard errors (SE) and standard deviation (SD) for 1000
simulations. Scenario: positive causal effect (βc = −0.3) and weak
confounder (βu = αu = −0.4). Abbreviations: IVW: “first order” inverse
variance weight. Modified IVW: “second order” inverse variance weight
that accounts for the covariance between association estimates. Exact:
Original exact method without accounting for correlation. Modified
Exact: exact method that accounts for the correlation in the weights. βc
represents the causal effect, βu and αu represent the confounder effect on
outcome and exposure, respectively.

Threshold (Mean F ) IVW Modified IVW Exact Modified Exact

SE SD SE SD SE SD SE SD

βc = −0.3, βu = αu = −0.4, overlap = 0%

5 · 10−2(F = 10.07) 0.066 0.065 0.069 0.061 0.068 0.073 0.068 0.073

5 · 10−5(F = 15.61) 0.076 0.077 0.080 0.073 0.078 0.084 0.078 0.084

5 · 10−8(F = 24.58) 0.091 0.098 0.095 0.093 0.093 0.104 0.093 0.104

βc = −0.3, βu = αu = −0.4, overlap = 25%

5 · 10−2(F = 10.07) 0.066 0.064 0.069 0.060 0.068 0.072 0.067 0.072

5 · 10−5(F = 15.61) 0.076 0.078 0.079 0.073 0.078 0.085 0.078 0.085

5 · 10−8(F = 24.58) 0.091 0.095 0.094 0.091 0.093 0.101 0.093 0.101

βc = −0.3, βu = αu = −0.4, overlap = 50%

5 · 10−2(F = 10.07) 0.066 0.064 0.069 0.060 0.068 0.073 0.067 0.073

5 · 10−5(F = 15.61) 0.076 0.081 0.079 0.076 0.078 0.088 0.077 0.088

5 · 10−8(F = 24.58) 0.091 0.094 0.094 0.089 0.094 0.100 0.092 0.100

βc = −0.3, βu = αu = −0.4, overlap = 75%

5 · 10−2(F = 10.07) 0.066 0.066 0.068 0.061 0.068 0.075 0.067 0.075

5 · 10−5(F = 15.61) 0.076 0.080 0.078 0.074 0.078 0.087 0.077 0.087

5 · 10−8(F = 24.58) 0.091 0.090 0.093 0.086 0.094 0.096 0.092 0.096

βc = −0.3, βu = αu = −0.4, overlap = 100%

5 · 10−2(F = 10.07) 0.066 0.068 0.068 0.063 0.068 0.077 0.066 0.077

5 · 10−5(F = 15.61) 0.076 0.079 0.078 0.073 0.078 0.086 0.076 0.086

5 · 10−8(F = 24.58) 0.091 0.093 0.093 0.087 0.094 0.098 0.091 0.098
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Figure 3.4: Causal estimates with different strengths of confounder. Scenario:
Significant threshold 5 · 10−2; causal effect=-0.3 (horizontal line).
Abbreviations: IVW: “first order” inverse variance weight. Modified
IVW: “second order” inverse variance weight that accounts for the
covariance between association estimates. Exact: Original exact method
without accounting for correlation. Modified Exact: exact method that
accounts for the correlation in the weights. βu and αu represent the
confounder effect on outcome and exposure, respectively.
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Figure 3.5: The pairwise comparison in standard error and causal estimate for
different methods. Significant threshold 5 · 10−2; causal effect=-0.3;
degree of overlap=0%; weak confounder (βu = αu = −0.4).
Abbreviations: IVW: “first order” inverse variance weight. Modified
IVW: “second order” inverse variance weight that accounts for the
covariance between association estimates. Exact: Original exact method
without accounting for correlation. Modified Exact: exact method that
accounts for the correlation in the weights. βu and αu represent the
confounder effect on outcome and exposure, respectively.
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Figure 3.6: The pairwise comparison in standard error and causal estimate for
different methods. Significant threshold 5 · 10−2; causal effect=-0.3;
degree of overlap=100%; weak confounder (βu = αu = −0.4).
Abbreviations: IVW: “first order” inverse variance weight. Modified
IVW: “second order” inverse variance weight that accounts for the
covariance between association estimates. Exact: Original exact method
without accounting for correlation. Modified Exact: exact method that
accounts for the correlation in the weights. βu and αu represent the
confounder effect on outcome and exposure, respectively.
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Table 3.6: Type-I error with significance threshold of 5 · 10−2. Abbreviations: IVW:
“first order” inverse variance weight. Modified IVW: “second order”
inverse variance weight that accounts for the covariance between
association estimates. Exact: Original exact method without accounting
for correlation. Modified Exact: exact method that accounts for the
correlation in the weights. βc represents the causal effect, βu and αu

represent the confounder effect on outcome and exposure, respectively.

Percentage of overlap 0% 25% 50% 75% 100%

βc = 0, βu = αu = 0.4

IVW 0.050 0.057 0.049 0.059 0.062

Modified IVW 0.029 0.036 0.035 0.054 0.086

Exact 0.085 0.081 0.071 0.086 0.093

Modified exact 0.085 0.077 0.066 0.075 0.065

βc = 0, βu = αu = 0.6

IVW 0.052 0.060 0.056 0.102 0.131

Modified IVW 0.029 0.050 0.069 0.172 0.280

Exact 0.082 0.099 0.090 0.141 0.182

Modified exact 0.082 0.086 0.069 0.078 0.064

βc = 0, βu = αu = 0.8

IVW 0.053 0.078 0.085 0.166 0.257

Modified IVW 0.025 0.067 0.159 0.354 0.645

Exact 0.093 0.107 0.133 0.220 0.346

Modified exact 0.093 0.100 0.071 0.082 0.070
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Figure 3.7: Estimate with significance threshould of 5 · 10−2 and null causal effect.
Abbreviations: IVW: “first order” inverse variance weight. Modified
IVW: “second order” inverse variance weight that accounts for the
covariance between association estimates. Exact: Original exact method
without accounting for correlation. Modified Exact: exact method that
accounts for the correlation in the weights. βu and αu represent the
confounder effect on outcome and exposure, respectively.

3.5 Application

In the first example involving BMI-SBP (Table 3.7), both traits exhibit a high degree

of sample overlap, with only a small number of missing observations in either BMI

or SBP. As the threshold becomes more strict, all methods, except for the modified

exact method, present a decrease in the point estimate . Notably, the modified IVW
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and exact methods exhibit greater reduction compared to the IVW method. This

consistent pattern aligns with the simulation results, suggesting a positive causal

effect with a high degree of overlap. For instance, in Table 3.2, when 100% overlap is

present, the IVW estimate decreases by 17% (from 0.126 to 0.105) with an increase

in IV strength, while the modified IVW estimate decreases by 22% (from 0.145 to

0.113), and the exact estimate experiences a 23% drop (from 0.139 to 0.107).

In this real data example, the IVW, modified IVW, and exact estimates demon-

strate reductions of 13%, 16%, and 34%, respectively, as a result of an increase in

IV strength. The standard errors among different methods are similar, albeit slightly

smaller in the modified exact method due to the inclusion of covariance in the vari-

ance term. All confidence intervals indicate a significant positive causal relationship

between BMI and SBP. Notably, the modified exact method provides stable estimates

across varying thresholds.

When evaluating the second example of BMI-HDL-C, we can use the simulation

result featuring a 75% as a reference for the real data scenario. Table 3.8 shows that as

the strength of IVs becomes stronger, IVW and modified IVW methods demonstrate

a decrease in the estimate, whereas the exact method demonstrates an increase in the

estimate. Specifically, the IVW and modified IVW methods yield estimates greater

than those of the modified exact method, while the exact method produces estimates

lower than the modified exact method. These findings align with the simulation

results presented in Table 3.4. Importantly, all estimates demonstrate statistical sig-

nificance at a 5% significance level, suggesting a negative causal relationship between

BMI and HDL-C.

In summary, the modified method offers more stable estimates when the strength
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of IVs varies compared to other methods.

Table 3.7: Causal estimate, standard error (SE) and 95% confidence interval (CI)
for the BMI-SBP example. Abbreviations: IVW: “first order” inverse
variance weight. Modified IVW: “second order” inverse variance weight
that accounts for the covariance between association estimates. Exact:
Original exact method without accounting for correlation. Modified
Exact: exact method that accounts for the correlation in the weights.

p-value ≤ 5 · 10−2

Estimate SE CI

IVW 0.117 0.0083 (0.100,0.133)

Modified IVW 0.129 0.0087 (0.112,0.145)

Exact 0.141 0.0084 (0.124,0.157)

Modified Exact 0.098 0.0082 (0.082,0.114)

p-value ≤ 5 · 10−5

Estimate SE CI

IVW 0.107 0.0103 (0.087,0.127)

Modified IVW 0.119 0.0105 (0.099,0.140)

Exact 0.118 0.0104 (0.098,0.139)

Modified Exact 0.097 0.0101 (0.077,0.117)

p-value ≤ 5 · 10−8

Estimate SE CI

IVW 0.102 0.0132 (0.076,0.128)

Modified IVW 0.108 0.0133 (0.082,0.134)

Exact 0.107 0.0132 (0.081,0.133)

Modified Exact 0.096 0.0129 (0.071,0.122)
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Table 3.8: Causal estimate, standard error (SE) and 95% confidence interval (CI)
for the BMI-HDL-C example. Abbreviations: IVW: “first order” inverse
variance weight. Modified IVW: “second order” inverse variance weight
that accounts for the covariance between association estimates. Exact:
Original exact method without accounting for correlation. Modified
Exact: exact method that accounts for the correlation in the weights.

p-value ≤ 5 · 10−2

Estimate SE CI

IVW -0.301 0.017 (-0.334, -0.268)

Modified IVW -0.274 0.017 (-0.308, -0.240)

Exact -0.375 0.017 (-0.409, -0.341)

Modified Exact -0.341 0.017 (-0.374, -0.309)

p-value ≤ 5 · 10−5

Estimate SE CI

IVW -0.314 0.018 (-0.349, -0.280)

Modified IVW -0.282 0.018 (-0.318, -0.246)

Exact -0.368 0.018 (-0.404, -0.332)

Modified Exact -0.345 0.018 (-0.380, -0.311)

p-value ≤ 5 · 10−8

Estimate SE CI

IVW -0.322 0.020 (-0.361, -0.283)

Modified IVW -0.287 0.021 (-0.327, -0.246)

Exact -0.356 0.021 (-0.396, -0.315)

Modified Exact -0.342 0.020 (-0.381, -0.303)

3.6 Summary

In this study, we have adapted an existing exact method to accommodate overlapping

samples and weak instrument variables. By utilizing real data examples and conduct-

ing simulations based on those examples, we have demonstrated that our proposed

method offers distinct advantages in providing more accurate estimates when there

are both overlap and weak instrument bias present.
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We extensively tested our approach using various simulation scenarios, including

different strengths of IVs, varying degrees of overlap, the effect of confounders, and

different sample sizes for the exposure and outcome variables. Our results consistently

showed that the modified exact method performed exceptionally well across all these

scenarios.

The conventional first-order IVW method and the second-order modified IVW

method were increasingly influenced by weak instrument bias as the strength of the

instruments decreased. Although the exact method could mitigate weak instrument

bias in non-overlapping scenarios, it still exhibited increased bias as the degree of

overlap increased. In contrast, the modified exact method effectively handled weak

instrument bias and overlapping samples by incorporating a covariance term in the

weight assigned to each ratio estimate.

Moreover, the simulation results indicated that the IVW method suffers from

inflated type-I error under certain conditions, while the modified exact IVW method

offers a more reliable approach, keeping the type-I error not much affected with

increased overlap and strong confounders.

The direction and magnitude of bias were found to depend on the sample overlap,

the direction of the confounded observational association, the direction of causal

effect, and the strength of the confounder. As expected, when the samples did not

overlap, the bias in causal estimator is in the direction of null, but when the samples

are completely overlapping, bias is direction of the confounder. Additionally, we

observed an interaction effect between the strength of the confounder and the degree

of overlap. For instance, in the scenarios where the direction of confounder and

causal effect are both positive, a strong confounder increased the bias at a higher
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rate compared to a weak confounder. Conversely, for a negative causal effect and a

positive confounder, the bias decreased at a higher rate with a weak confounder.

Although there was slight underestimation of standard error due to the inclusion

of covariance, the impact was not substantial. The coverage of 95% CIs was around

90% to 95% in different scenarios and outperformed the IVWmethod when F -statistic

was around 10 with complete overlapping.

This method can be easy to be implemented because it only requires summary

statistics, which are often publicly available. To obtain the correlation term between

G-X and G-Y association estimates, one can utilize the cross-trait LD score regression.

This can be accomplished using the “ldsc” function within the GenomicSEM package

(Grotzinger et al., 2019). Notably, there is no requirement to have information about

the degree of overlap by running LDSC, further simplifying the process.

The scope of our approach is limited because we solely focus on quantitative traits.

In order to examine the overlap between a quantitative study of exposure and a case-

control study for outcome, we might need to consider the specific sources of overlap:

whether they originate from the case samples, the control samples, or both. In a

study conducted by Burgess et al. (2016), they demonstrated that in a simulation

analysis with no actual causal effect, bias was not observed when estimating the

association between G-X solely in the control group. However, when estimating the

G-X association across all participants, the relative bias was close to the inverse of

the mean of F -statistics. Further investigation is required, particularly in scenarios

where a causal effect exists and there are varying levels of overlap. In addition, the

method to estimate of correlation between quantitative and case-control studies would

be different from that used for two quantitative traits. A point biserial correlation
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coefficient might be used as a correlation coefficient in this case.

The degree of bias decreases when the instrument variables used to estimate causal

effects are obtained from an independent study that strictly considers the p-value

threshold. We suggest that researchers evaluate the presence of weak instrument bias

by calculating F -statistic and examine the correlation between the associations of

variables G-X and G-Y using LDSC regression. If F -statistic is much greater than

10 and the correlation between G-X and G-Y association is close to 0, then it is safe

to use the conventional IVW method. However, if a correlation is observed and there

is an indication of weak instrument bias, we recommend using our modified exact

method. The R code for the proposed method is available in https://github.com/

Bianmj/Overlap.
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Chapter 4

Identifying Invalid Instruments in

Mendelian Randomization

As discussed in Section 1.6.3, Assumption IV3 states that valid IVs should not exhibit

horizontal pleiotropy on the outcome. In this chapter, our focus is on identifying

potential invalid IVs that may display horizontal pleiotropy on the outcome. Prior to

conducting MR analysis, researchers typically subject potential instrument variables

to multiple sensitivity tests to identify the invalid IVs. Any identified invalid IVs are

then excluded from the MR analysis.

However, when testing the causal effect hypothesis, the data-driven selection pro-

cess for instrumental variables is often overlooked. In this chapter, we assess the con-

sequences of disregarding this selection process by utilizing existing selection methods

and proposing a novel approach based on the shrinkage of coefficient method. Our

proposed method for selecting invalid IVs is conditional on exposure. Additionally,

we introduce the use of the bootstrap method to account for the IV selection process.

Simulation studies demonstrate that the bootstrap intervals approach the nominal

108



Ph.D. Thesis – Mengjie Bian McMaster University – Statistics

level of coverage rate.

4.1 Introduction

Assumption IV3, which implies “no horizontal pleiotropy,” is crucial in Mendelian

randomization analysis. Including pleiotropic variants in such analysis can introduce

bias in causal effect estimates and elevate the type I error rates when testing the

causal null hypothesis (Burgess and Thompson, 2013). Studies have revealed that

genetic variants can influence multiple diseases and traits identified through GWAS

studies, indicating the presence of pleiotropy (Sivakumaran et al., 2011; Pickrell et al.,

2016).

To address the issue of pleiotropy, researchers have developed various methods that

can be categorized into two groups (Slob and Burgess, 2020). The first group involves

down-weighting or removing outliers, such as MR-PRESSO, MR-Lasso, MR-Robust,

and MR-RAPS. The second group attempts to model the distribution of estimates

from invalid IVs, including methods like MR-Egger, contamination mixture, and MR-

Mix. It is worth noting that all these methods are designed for summary-level data.

If individual-level data is available, one can also employ the sisVIVE method (Kang

et al., 2016) to identify invalid genetic variants and estimate the causal effect. Similar

to Lasso, sisVIVE employs L1 penalized methods to identify invalid IVs. The above

methods are introduced in Section 1.8.5 and we thoroughly discussed MR-PRESSO,

MR-Lasso and sisVIVE in Appendix C. After detecting the invalid IVs based on

the three assumptions, researchers can proceed to estimate the causal effect and

confidence intervals. Following the sisVIVE method, a median-type estimator based

on Lasso is proposed (Windmeijer et al., 2019), which remains consistent regardless
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of the IV correlation structure, provided that the proportion of invalid IVs is less

than 50%.

Unfortunately, current methods for selecting valid IVs, such as MR-Lasso and MR-

PRESSO, do not consider the instrument selection process when computing p-values

or confidence intervals for testing causal effects. Moreover, several recent studies use

the same data for both IV selection and causal effect estimation. For instance, Rees

et al. (2019) employed all samples to estimate genetic associations in a one-sample

setting using MR-Lasso. Bao et al. (2019) utilized the sisVIVE method to exclude

the invalid IVs and estimate causal effects without considering the selection process.

Classical inference assumes that the model is specified before data collection, while

post-selection inference involves selecting the model based on the data. Using classical

inference following selection is problematic as the fact we have searched the model.

The conventional inference ignores the prior selection process and it assumes a fixed

hypothesis testing. However, since the model is selected based on the data, it is not

fixed as we search through the model and choose the best model. Sample splitting

is one way to address this issue, where samples are divided into two parts: one

for selection and the rest for hypothesis testing. This approach ensures that the

conditional null distribution given the selection model becomes the unconditional

one, as all observations are independent.

To the best of our knowledge, only a few studies in MR have taken into account

instrument selection. For instance, Bi et al. (2019) proposed a sampling method to

generate the conditional null distribution of test statistics given the selected instru-

ments. Their approach involves solving a randomized version of the sisVIVE selection

procedure and reparametrizing the conditional null distribution of test statistics for
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MR.

In this chapter, we aim to highlight the problem of ignoring the instrument selec-

tion process through a simulation study. We propose a method based on coefficient

shrinkage to detect invalid IVs and introduce a bootstrap method to account for the

selection process. It is worth noting that, similar to sisVIVE, our new method re-

quires individual-level data so it does not apply to MR based on summary statistics.

Our simulation study illustrates the issue of neglecting selection when applying con-

ventional inference to the proposed and existing selection methods (MR-Lasso and

sisVIVE). For computational feasibility, MR-PRESSO is excluded due to its limita-

tions with large numbers of variants in a reasonable running time. Additionally, we

conduct a simulation study to evaluate the performance of our proposed bootstrap

method in accounting for model selection.

4.2 Model and Methods

4.2.1 Model

We assume the following Model (4.2.1) to generate data.

Y = Gϕ+Xβc +Uβu + εy

X = Gα+Uαu + εx (4.2.1)

The causal effect is denoted by βc. The exposure X is a linear combination of genetic

variants G, a confounder U , and random errors εx. The outcome Y is a linear

function of the genetic variants, exposure, confounder and random errors εy. Genetic
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variants that are chosen to be the instrument variables in MR analysis are assumed

to be independent.

If genetic variant i is a valid IV that satisfies Assumptions IV1-IV3, then there

would be no direct effect of a genetic variant on the outcome given the exposure (i.e.,

ϕi = 0). If genetic variant i is an invalid IV that violates Assumption IV3, then

there remains an effect of a genetic variant on outcome even after conditioning on the

exposure (i.e., ϕi ̸= 0).

4.2.2 Proposed Methods for Identifying Invalid Instruments

We explore several approaches for identifying invalid IVs. In the initial stage, a se-

lection method is utilized to identify invalid IVs, which are subsequently excluded

in estimating the causal effect. The choice of estimation method can be made by

investigators, with Two Stage Least Squares (TSLS) being the most commonly used

approach for individual data (section 1.7). In cases where the instruments are weak,

methods like LIML (Anderson and Rubin, 1949) and Fuller (Fuller, 1977) are recom-

mended.

The proposed method is based on the idea that conditional on exposure, a valid

IV should not exhibit any effect on the outcome. If there is an effect, it indicates that

the genetic variant is invalid. We investigate two strategies for identifying variants

with pleiotropy effects (ϕi ̸= 0):

(i) Identifying variants that reject the null hypothesis (H0: the pleiotropy effect

ϕi = 0 for variant i) at a pre-determined significance level is performed using

multiple regression with these variants.

(ii) Identifying the variants whose coefficients are not shrunk to zero using a L1
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penalty term in the regression model. The objective function is given in Equa-

tion (4.2.5).

Method (i) is based on traditional hypothesis testing, whereas method (ii) incor-

porates L1 regularization into the regression model of method (i). However, since the

Lasso regression approach outperforms the traditional testing approach, we present

only the method based on Lasso regression in this chapter, while the method of tra-

ditional hypothesis testing is presented in Appendix C.

Lasso

Consider the Model 4.2.1 with Y as the outcome variable, X as the exposure, U

as the unobserved confounder, and G as the matrix for potential IVs. We define

v1 = βuU + εy and v2 = αuU + εx, and express the linear projection of v1 on v2

in error form as v1 = βu(
v2−εx
αu

) + εy = ρv2 + e, where ρ = βu

αu
and e = −ρεx + εy

which has mean 0 and variance ρ2 + 1. This allows us to rewrite Y as:

Y = Gϕ+Xβc + v2ρ+ e (4.2.2)

Although v2 is not observed, we can estimate v̂2 by taking the OLS residuals from

the first-stage regression of X on G:

v̂2 = X −Gγ̂ (4.2.3)

By substituting v̂2 in Equation (4.2.3) into Equation (4.2.2), we obtain:

Y = Gϕ+Xβc + v̂2ρ+ e (4.2.4)
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To detect the invalid IVs, we use the Lasso regression method by minimizing the

sum of squared residuals from Equation (4.2.4) and adding a penalty term for the

coefficient terms of genetic variants:

argmin
ϕ

∥(Y −Gϕ− v̂2ρ−Xβc)∥22 + λ∥ϕ∥1 (4.2.5)

We define the squared L2 norm for the vector X (∥X∥22) as the sum of the squares of

its elements, and L1 norm ∥X∥1 as the sum of the absolute values of its elements. In

the above objective function, only ϕ is penalized. If ϕi for variant i is not penalized

to zero, then variant i is considered “invalid”.

The Lasso regression in Equation (4.2.5) includes all the variants in the objective

function. The stopping rule uses Cochran’s Q test from Bowden et al. (2018), which

can be written as Q =
∑

j Qj =
∑

j wj(β̂j − β̂IV W )2. The assumption of this test

is that each genetic variant is a valid IV. Cochran’s Q test provides evidence for

heterogeneity across instrument variables and the presence of invalid IVs. The tuning

parameter λ is sorted in increasing order. For each λ, we identify “invalid” variants, fit

IVW regression excluding those invalid variants, and calculate Cochran’s Q statistic

for each model. If there is no pleiotropy effect, then Cochran’s Q statistic should

follow a χ2 distribution with M − 1 degrees of freedom (M is the number of variants

in the model). We then select a model with the largest number of valid variants where

Cochran’s Q statistic is not significant at a pre-determined level of significance. In

our simulations, we use a significance level of 5%. We have not explored the influence

of varying the significance level used for the stopping rule on the results. We would

anticipate that a less stringent threshold would lead to the identification of more IVs

as invalid.
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4.2.3 Methods to Account for Selection Process

In conventional inference, the null hypothesis of the causal effect is H0 : βc = β0. The

1−α confidence interval for βc is constructed by inverting the pivotal null distribution

of T , where T = (β̂c − β0)/σ̂, and σ̂ is the standard error of β̂c:

PH0:βc=β0(T ≥ t) ≤ α (4.2.6)

However, Equation (4.2.6) does not taken into account the selection process and

it assumes that the model is pre-specified while in reality the selected model is based

on data. The goal is to obtain the conditional null distribution

PH0:βc=β0(T ≥ t|selected model) ≤ α (4.2.7)

We consider three ways to account for the selection process: (i) Case resam-

pling bootstrap method, (ii) Sample splitting, and (iii) Sample splitting with case

resampling bootstrap. In the bootstrap method, exposure xi, outcome yi, and ge-

netic variants Gi are sampled with replacement from the original data. The selection

method is then used to remove the invalid IVs, the remaining markers are then used

to estimate the causal effect β̂∗
c . Bootstrap estimates from R bootstrap samples are

then used to construct bootstrap intervals.

Sample splitting is an alternative way to deal with this issue. Basically, the data

is divided into two parts. One part is used in selection and the rest is used for

estimation. In this case, the conditional null distribution given the selection model

becomes the unconditional one since all the observations are independent.

If the original dataset is divided in half, this splitting procedure is repeated in
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each bootstrap sample, resulting in a subset of resampled observations used for the

detection of invalid IVs and the remaining used to calculate the bootstrap estimates.

4.2.4 Confidence Intervals

We consider three types of confidence intervals, one is the Wald-type confidence in-

terval and the other two are bootstrap confidence intervals - percentile and normal

intervals. They are all based on the TSLS causal estimate. The following shows these

three confidence intervals.

� Wald-type confidence intervals:

[
β̂c − z1−α/2 σ̂, β̂c − zα/2 σ̂

]
(4.2.8)

where β̂c is the causal estimate, σ̂ is the standard error of causal estimate, and

zα/2 is α/2 percentile of standard normal distribution.

� Percentile confidence intervals:

[
β̂∗
(α/2), β̂

∗
(1−α/2)

]
(4.2.9)

where β̂∗
(α/2) and β̂

∗
(1−α/2) denote α/2 and 1 − α/2 percentiles of the bootstrap

estimates β̂∗
c , respectively.

� Normal confidence intervals:

[
β̂c − z1−α/2 σ̂b, β̂c − zα/2σ̂b

]
(4.2.10)
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where σ̂b =
√

1
R−1

∑R
r=1(β̂

∗
r − 1

R

∑R
b=1 β̂

∗
b )

2, and R is the number of bootstrap

samples. Note that the normal confidence interval is analogous to the Wald-type

confidence interval, but replaces the standard error of estimate by the bootstrap

standard error σ̂b.

We also explore alternative bootstrap intervals, including the basic interval, stu-

dentized interval, and normal interval, which includes the bootstrap estimate of bias.

We assess their performances based on our proposed Lasso method. Further details

can be found in Appendix C and Table C.12.

We observed that studentized intervals consistently exhibit over-coverage and have

the widest interval lengths. On the other hand, basic, percentile, and normal intervals

with the bootstrap estimate of bias show similar performances in terms of coverage

and width of intervals. Notably, Normal intervals exhibit a higher coverage at 95%

confidence intervals and a smaller average width.

4.3 Simulation Framework

We conducted a simulation study to compare the performance of MR-Lasso and sis-

VIVE with our two proposed methods in a realistic setting. The data were generated

using Model (4.2.1). To mimic real-world scenarios, we generated the G-X association

from a normal distribution N(0, 0.02), but conditioned on the absolute value being

greater than a threshold (such as 0.15), resulting in a standard deviation of around

0.03. This approach ensures that the G-X association is significantly different from

zero, as MR typically selects IVs that pass a significance threshold, like 5 · 10−8.

We considered two scenarios:
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� Balanced pleiotropy: The mean of pleiotropy effects (ϕi) is set to zero. In this

case, invalid IVs were generated from N(0, 0.03), while valid IVs have ϕi = 0.

� Directional pleiotropy: The mean of pleiotropy effects is away from zero. Here,

the pleiotropy effect ϕi is generated from N(0.03, 0.03), and ϕi = 0 for valid

IVs.

The causal effect (βc) was set to 0.1, and the effects of the confounder on X and Y

were denoted by αu and βu, respectively, both equal to 0.3. Each genetic variant Gj

(j = 1, 2, ...,M) was independently generated from Binomial(2, pj), with pj sampled

from Unif(0.1, 0.5). We standardized Gj to have a mean of 0 and a variance of 1.

The error terms εx and εy were independent and normally distributed with a mean

of 0. The variances of the error terms were chosen such that U , X, and Y all had

unit variance.

The simulation was repeated 1000 times with a sample size of n = 100, 000 (100k)

for each run. To highlight the importance of accounting for the instrument selection

process, we used the entire data for both selection and estimation. When accounting

for the selection process, we split the data into two subsets (n1 and n2), with one

subset used for selection (n1) and the rest for estimation (n2 = n−n1). We employed

the TSLS method for estimating the causal effect and considered different sizes of

observations for selection and estimation (n1 = 10k, 30k or 50k). We simulated data

for 120 genetic variants, with a proportion of them being invalid (1/3: 80 valid and

40 invalid; 1/2: 60 valid and 60 invalid; 2/3: 40 valid and 80 invalid).
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4.4 Simulation Results

Here, we only present the results for three shrinkage-based methods (MR-Lasso, our

proposed Lasso method, and sisVIVE). Results concerning hypothesis testing meth-

ods are detailed in Appendix C, with qualitative discussions provided in this section.

4.4.1 Simulation result without accounting for selection

Initially, we conducted the analysis using the entire dataset (100k) observations) for

both identifying valid IVs and computing the test statistic. This step was crucial to

emphasize the issue of disregarding the instrument selection process.

The simulation results, without accounting for the instrument selection process,

are presented in Tables 4.1, 4.2, and 4.3. We considered scenarios of balanced and

directional pleiotropy, varying the proportion of valid IVs. For each scenario, we

provided key metrics, such as the true positive rate (TPR), false positive rate (FPR),

mean, median, standard error, and standard deviation of causal estimates across

simulations. We also reported the bootstrap standard error (B.SE), coverage rate of

a 95% Wald-type confidence level, and the average width of these confidence intervals

over 1000 simulations. TPR is calculated as the probability that true invalid IVs are

correctly identified and FPR is calculated as the probability that true valid IVs are

wrongly identified as invalid IVs.
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Table 4.1: True positive rate (TPR) and false positive rate (FPR) over 1000
simulations for MR-Lasso, Lasso and sisVIVE. True positive rate is the
probability that the invalid IVs are truly identified and false positive rate
is the probability that valid IVs are wrongly classified as “invalid” ones.
The entire data (100k) is used for both selection and estimation.

80 valid IVs 60 valid IVs 40 valid IVs

Method TPR FPR TPR FPR TPR FPR

Scenario: balanced pleiotropy

MR-Lasso 0.800 0.024 0.819 0.035 0.828 0.053

Lasso 0.755 0.006 0.784 0.012 0.802 0.026

sisVIVE 0.746 0.004 0.775 0.009 0.793 0.019

Scenario: directional pleiotropy

MR-Lasso 0.869 0.020 0.877 0.028 0.885 0.046

Lasso 0.835 0.004 0.854 0.008 0.869 0.020

sisVIVE 0.829 0.003 0.848 0.005 0.864 0.014

Table 4.2: Mean,standard deviation (SD),mean of standard error (SE) and mean of
bootstrap standard error (B.SE) for TSLS estimates. The true causal
effect is 0.1. Results are reported over 1000 simulations. The entire data
(100k) is used for both selection and estimation.

80 valid IVs 60 valid IVs 40 valid IVs

Method Mean SD SE B.SE Mean SD SE B.SE Mean SD SE B.SE

Scenario: balanced pleiotropy

MR-Lasso 0.100 0.014 0.012 0.017 0.100 0.019 0.013 0.019 0.101 0.026 0.015 0.023

Lasso 0.100 0.014 0.012 0.016 0.100 0.019 0.013 0.018 0.101 0.027 0.015 0.021

sisVIVE 0.101 0.015 0.012 0.016 0.100 0.019 0.013 0.018 0.101 0.027 0.015 0.022

Scenario: directional pleiotropy

MR-Lasso 0.100 0.014 0.012 0.017 0.101 0.018 0.014 0.020 0.101 0.026 0.016 0.024

Lasso 0.101 0.014 0.012 0.016 0.100 0.017 0.013 0.018 0.101 0.026 0.016 0.022

sisVIVE 0.101 0.015 0.012 0.016 0.100 0.018 0.013 0.018 0.102 0.025 0.016 0.023

We found that TPR remains unaffected by the number of invalid IVs for all ap-

proaches. For threshold-based methods, such as false discovery rate (FDR), signifi-

cance level and Šidák correction (SID), the FPR noticeably increases as the number
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of invalid IVs increases. In contrast, shrinkage methods (MR-Lasso, Lasso, and sis-

VIVE) maintain a low FPR (Table C.1 and Table 4.1). Furthermore, the less stringent

the significance level, the higher both TPR and FPR. Among the shrinkage methods,

Lasso and sisVIVE also have significantly higher true negative counts (the number of

valid IVs correctly identified) than MR-Lasso. However, their false negatives counts

(the number of invalid IVs wrongly identified as valid) are slighter greater than those

of MR-Lasso (Figures 4.1-4.2).

Figure 4.1: Scenario: balanced pleiotropy. Boxplot of bootstrap SE/SD, true
positives, false negatives over 1000 simulations for MR-Lasso, Lasso and
sisVIVE methods. The entire data (100k) is used for selection and
estimation.
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Figure 4.2: Scenario: directional pleiotropy. Boxplot of bootstrap SE/SD, true
positives, false negatives over 1000 simulations for MR-Lasso, Lasso and
sisVIVE methods. The entire data (100k) is used for selection and
estimation.

We observed that mean of estimates are all close to the true causal effect in all

scenarios, as the bias depends on the direct genetic effect on the outcome and the

genetic effect on exposure. When one of these effects has a mean of zero, the bias

is close to zero (Windmeijer et al., 2019). The variability (standard deviation) of

estimates increases with a greater number of invalid IVs, as TPR tends to remain at

a similar level while more invalid IVs are not identified. The standard deviation is

consistently greater than the mean of the standard error of estimate (SE), as shown

in Table 4.2. As the proportion of invalid IVs increases, the difference between them
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becomes larger. SE is underestimated due to the lack of consideration for uncertainty

caused by IV selection. When the proportion of invalid IVs does not exceed 50%, SE

is reasonably approximated using shrinkage methods for selection. However, when the

proportion of invalid IVs reaches or exceeds 50%, SE is significantly underestimated,

leading to confidence intervals with coverage below the desired 95% nominal level.

In such cases, the bootstrap method is used to estimate the standard error, and

Table 4.2 shows that the difference between SD and B.SE is much smaller than the

difference between SD and SE, particularly with larger proportions of invalid IVs.

This indicates that bootstrap can effectively account for the selection process.

Coverage rates are influenced by TPR, true negative rate (TNR: the probability

that true valid IVs are correctly identified, which equals to 1-FPR), and the pro-

portion of invalid IVs. Shrinkage methods generally have a lower TPR, a higher

coverage and a shorter confidence interval width compared to threshold-based meth-

ods (Table C.2 and Table 4.3). For example, with 80 valid IVs, the coverage for the

threshold-based method is around 80% in the balanced pleiotropy scenario, while it is

around 90% for the shrinkage-based method in the same scenario. Shrinkage methods

consistently include the majority of true valid IVs, leading to reduced estimate vari-

ability. Conversely, as more invalid IVs remain unidentified and more valid IVs are

incorrectly removed, the estimate becomes more variable, and coverage moves away

from the nominal 95% level. For instance, in the Lasso method, coverage drops from

90% to 74% as the proportion of invalid IVs increases from 1/3 to 2/3 in the case of

balanced pleiotropy. Similarly, for the 5% FDR method, coverage drops from 80% to

58% with an increase in invalid IVs.
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To summarize, disregarding the instrument selection process can lead to under-

coverage. As the proportion of invalid IVs increases, the impact of selection on cov-

erage estimation becomes more pronounced. While shrinkage methods can achieve

high TNR (low FPR), no single perfect selection method exists. Therefore, to im-

prove interval coverage, it is essential to incorporate approaches that account for the

selection process.

4.4.2 Simulation Result by Use of Bootstrap

Table 4.2 demonstrates that the bootstrap standard error serves as a reliable es-

timate of the standard deviation, as it closely aligns with the standard deviation.

Consequently, we will employ the bootstrap method to construct confidence intervals

that account for the selection process. The results based on the bootstrap approach

are presented in Table 4.4. Overall, the coverage rates are substantially improved

compared to those in Table 4.3, where selection was not considered, particularly in

scenarios with a high proportion of invalid IVs. For instance, when half of the IVs

are invalid in the case of balanced pleiotropy, the Wald-type intervals using the Lasso

method exhibit 81% coverage, whereas the bootstrap normal intervals achieve a cov-

erage of 93%.

When the proportion of invalid IVs is less than 50%, the bootstrap method yields

conservative coverages for shrinkage-based methods (MR-Lasso, Lasso, and sisVIVE),

while for proportions exceeding 50%, the coverages are slightly below the nominal

level. On the other hand, using the threshold-based technique, the coverage remains

significantly underestimated at approximately 70% to 89% across various percentages

of valid IVs (Table C.3).
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Table 4.3: Coverage and average width of 95% Wald-type intervals over 1000
simulations. The entire data (100k) is used for both selection and
estimation.

80 valid IVs 60 valid IVs 40 valid IVs

Method Coverage Width Coverage Width Coverage Width

Scenario: balanced pleiotropy;

MR-Lasso 0.913 0.047 0.838 0.052 0.768 0.060

Lasso 0.896 0.046 0.813 0.051 0.740 0.058

sisVIVE 0.893 0.046 0.812 0.050 0.734 0.058

Scenario: directional pleiotropy

MR-Lasso 0.908 0.047 0.865 0.053 0.786 0.063

Lasso 0.900 0.046 0.862 0.052 0.773 0.061

sisVIVE 0.892 0.046 0.858 0.052 0.778 0.062

4.4.3 Simulation Result Using Sample Splitting

Here, we explore two approaches for constructing the intervals: (i) sample splitting

for the original data, and (ii) sample splitting for each bootstrap sample from the

entire dataset. Simple sample splitting is utilized to compute the test statistic for

Wald-type intervals. When calculating bootstrap intervals, sample splitting is applied

to each bootstrap sample. Our aim is to investigate whether the coverage rates

of intervals improve compared to the Wald-type intervals without considering the

selection process, as presented in Table 4.3.
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Table 4.4: Coverage and average width of 95% bootstrap normal intervals over 1000
simulations for MR-Lasso, Lasso and sisVIVE. The entire data (100k) is
used for both selection and estimation. 200 bootstrap replicates are
generated for each dataset.

Balanced pleoitropy Directional pleiotropy

80 valid IVs 60 valid IVs 40 valid IVs 80 valid IVs 60 valid IVs 40 valid IVs

Method Coverage Width Coverage Width Coverage Width Coverage Width Coverage Width Coverage Width

MR-Lasso 0.984 0.066 0.954 0.075 0.915 0.089 0.976 0.066 0.971 0.076 0.931 0.093

Lasso 0.971 0.061 0.928 0.070 0.878 0.083 0.970 0.061 0.964 0.071 0.912 0.086

sisVIVE 0.969 0.062 0.922 0.071 0.897 0.085 0.972 0.062 0.969 0.072 0.921 0.087

Table 4.5: True positive rate (TPR) and false positive rate (FPR) over 1000
simulations with sample-splitting. True positive rate is the probability
that the invalid IVs are truly identified and false positive rate is the
probability that valid IVs are wrongly classified as “invalid” ones. The
sample size is 100,000; n1 is the number of observation used in selection.

Balanced pleoitropy Directional pleiotropy

80 valid IVs 60 valid IVs 40 valid IVs 80 valid IVs 60 valid IVs 40 valid IVs

Method TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

n1 = 10, 000

MR-Lasso 0.497 0.034 0.527 0.047 0.549 0.064 0.634 0.032 0.672 0.046 0.694 0.066

Lasso 0.418 0.012 0.465 0.020 0.495 0.032 0.585 0.010 0.623 0.017 0.653 0.027

sisVIVE 0.399 0.008 0.445 0.015 0.475 0.024 0.568 0.007 0.608 0.012 0.639 0.021

n1 = 30, 000

MR-Lasso 0.670 0.030 0.697 0.044 0.710 0.062 0.780 0.026 0.797 0.038 0.808 0.054

Lasso 0.619 0.010 0.748 0.018 0.670 0.028 0.732 0.006 0.762 0.012 0.782 0.023

sisVIVE 0.595 0.007 0.634 0.013 0.657 0.022 0.722 0.005 0.752 0.009 0.773 0.018

n1 = 50, 000

MR-Lasso 0.732 0.027 0.754 0.040 0.769 0.058 0.823 0.022 0.836 0.034 0.846 0.051

Lasso 0.681 0.007 0.713 0.015 0.734 0.027 0.782 0.005 0.807 0.010 0.824 0.020

sisVIVE 0.690 0.005 0.701 0.011 0.723 0.020 0.774 0.004 0.799 0.007 0.817 0.015

We observe that the TPR is affected when fewer observations are used in the

selection process compared to when the entire dataset is used (Tables 4.1 and 4.5).
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However, the difference in TPR between the subset of data and the complete data is

significantly reduced when half of the data (50k) is used for selection. For instance,

under directional pleiotropy with half the data used in selection, the TPR rate for MR-

Lasso is 0.823, while under the same scenario with all data used in selection, it is 0.869.

A reduced sample size in selection, particularly for the threshold-based methods,

leads to a lower rate of false positives (Table C.4). The FPR for the shrinkage

methods shows only slight variation when different numbers of observations are used

in selection (Tables 4.5).
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Table 4.6: Mean, standard deviation (SD), mean of standard error (SE), and mean
of bootstrap standard error (B.SE) for TSLS estimates with
sample-splitting. The true causal effect is 0.1. Results are reported over
1000 simulations. The sample size is 100,000; n1 is the number of
observations used in selection and the remaining is used for estimation.

80 valid IVs 60 valid IVs 40 valid IVs

Method Mean SD SE B.SE Mean SD SE B.SE Mean SD SE B.SE

Scenario: balanced pleiotropy; n1 = 10, 000

MR-Lasso 0.101 0.029 0.012 0.021 0.102 0.041 0.013 0.026 0.104 0.055 0.014 0.033

Lasso 0.100 0.032 0.011 0.021 0.102 0.044 0.012 0.026 0.105 0.058 0.013 0.032

sisVIVE 0.100 0.033 0.011 0.022 0.102 0.045 0.012 0.026 0.105 0.058 0.013 0.033

Scenario: directional pleiotropy; n1 = 10, 000

MR-Lasso 0.102 0.030 0.012 0.021 0.101 0.040 0.028 0.013 0.105 0.061 0.015 0.038

Lasso 0.103 0.033 0.012 0.022 0.102 0.044 0.013 0.028 0.106 0.064 0.014 0.036

sisVIVE 0.102 0.034 0.012 0.022 0.102 0.046 0.013 0.028 0.106 0.066 0.014 0.037

Scenario: balanced pleiotropy; n1 = 30, 000

MR-Lasso 0.101 0.020 0.017 0.017 0.101 0.026 0.015 0.021 0.103 0.038 0.017 0.026

Lasso 0.101 0.022 0.013 0.017 0.100 0.028 0.015 0.020 0.101 0.041 0.016 0.025

sisVIVE 0.101 0.022 0.013 0.017 0.101 0.029 0.015 0.021 0.101 0.041 0.016 0.025

Scenario: directional pleiotropy; n1 = 30, 000

MR-Lasso 0.101 0.019 0.014 0.017 0.101 0.025 0.016 0.021 0.102 0.037 0.018 0.027

Lasso 0.101 0.022 0.014 0.017 0.101 0.027 0.015 0.020 0.102 0.040 0.018 0.026

sisVIVE 0.101 0.022 0.014 0.017 0.101 0.027 0.015 0.020 0.103 0.041 0.017 0.026

Scenario: balanced pleiotropy; n1 = 50, 000

MR-Lasso 0.101 0.021 0.016 0.019 0.102 0.024 0.018 0.022 0.102 0.033 0.021 0.027

Lasso 0.101 0.021 0.016 0.019 0.103 0.026 0.018 0.022 0.103 0.036 0.020 0.026

sisVIVE 0.101 0.021 0.016 0.018 0.103 0.029 0.018 0.022 0.103 0.035 0.020 0.026

Scenario: directional pleiotropy; n1 = 50, 000

MR-Lasso 0.101 0.019 0.017 0.019 0.103 0.023 0.019 0.022 0.103 0.031 0.022 0.028

Lasso 0.101 0.020 0.016 0.018 0.102 0.024 0.018 0.022 0.103 0.034 0.021 0.026

sisVIVE 0.101 0.021 0.016 0.018 0.102 0.024 0.018 0.022 0.103 0.034 0.021 0.026

A portion of the data is used to obtain the causal estimates in Table 4.6. When

more observations are used in the selection process, the causal estimates become less

variable, and the gap between the sample standard deviation and standard error
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narrows. However, this discrepancy becomes more noticeable as the percentage of

invalid IVs reaches 50% or greater.

Figure 4.3: Scenario: balanced pleiotropy. Comparing bootstrap and Wald-type
intervals for selection with different data splits, including Wald-type
intervals using the full dataset. Abbreviations: Naive, Wald-type
intervals using the entire data for selection and estimation; Select,
Wald-type intervals using part of data; Percentile, Percentile intervals;
Normal, Normal intervals. For Select, Percentile and Normal CIs, part
of data (n1 = 10k, 30k or 50k) are used for selecting valid IVs and the
remaining for estimation
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Figure 4.4: Scenario: directional pleiotropy. Comparing bootstrap and Wald-type
intervals for selection with different data splits, including Wald-type
intervals using the full dataset. Abbreviations: Naive, Wald-type
intervals using the entire data for selection and estimation; Select,
Wald-type intervals using part of data; Percentile, Percentile intervals;
Normal, Normal intervals. For Select, Percentile and Normal CIs, part
of data (n1 = 10k, 30k or 50k) are used for selecting valid IVs and the
remaining for estimation

When the selection size used for selection is relatively small, such as 10k or 30k,

the Wald-type intervals that use sample splitting (select) for shrinkage methods ex-

hibit poorer coverage compared to the naive Wald-type intervals, which utilize all

observations for both selection and estimation (Figure 4.3-4.4). However, as the sam-

ple size for selection approaches 50k, the coverage of these two Wald-type intervals

130



Ph.D. Thesis – Mengjie Bian McMaster University – Statistics

becomes comparable. This is not surprising, as the number of invalid IVs left uniden-

tified (false negative counts) increases significantly with a smaller size in selection

(Tables C.1, C.2, 4.1), leading to more variable causal estimates. On the other hand,

bootstrap percentile intervals and normal intervals generally provide better coverage

than the Wald-type intervals, whether or not sample splitting is employed (Figures

4.3-4.4 and Table 4.4). For instance, when the selection size approaches 50k and the

percentage of invalidity is less than 50%, the coverage of bootstrap intervals ranges

from 88% to 98%, with percentile intervals being slightly conservative (Tables C.10-

C.11). In comparison, the coverage for Wald-type intervals that use sample splitting

is around 82% to 90% in the same scenario. When employing the entire data for

selection, the coverage for Wald-type intervals is around 81% to 91%. As for the

comparison of the performance of bootstrap intervals with different sizes in selection,

the coverage of bootstrap intervals with sample splitting is not comparable to the

coverage of bootstrap intervals with the entire data for selection and estimation until

the size for selection approaches 50k (Figures 4.3-4.4 and Table 4.4).

For the threshold-based method, the Wald-type intervals (select) show improved

coverage compared to the Wald-type intervals (naive) without accounting for selection

as the size for selection approaches 50k, although they still have a low coverage when

the proportion of invalid IVs is greater than 50% (Figures C.7-C.8). The coverage of

bootstrap intervals with sample splitting improves compared to that of the bootstrap

intervals with the entire data when the size for selection is 50k (Tables C.3 and

C.10-C.11).
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Table 4.7: Average time (in minutes) for different methods over 5 simulations.
Scenario: a total of 120 potential IVs with 80 valid; directional
pleiotropy. Simulations are performed on a multi-core server. The
hardware is 20 cores @ 2.67Ghz with 40GB RAM and the operating
System is CentOS Linux release 7. n1 is the number of observations used
in selection and the remaining is used for estimation.

Method entire data n1 = 10k n1 = 30k n1 = 50k

MR-Lasso 9.76 4.69 4.96 5.34

Lasso 21.09 5.75 7.94 10.46

sisVIVE 26.31 6.43 9.73 13.21

Regarding computing time (Table 4.7 and Table C.5), MR-Lasso is the quickest

as it is based on summary statistics, while sisVIVE is the slowest. Our new Lasso

method is faster than sisVIVE, and threshold-based methods are less time-consuming

than Lasso and sisVIVE. When sample splitting is used, the difference in computing

time between methods becomes smaller.

In conclusion, reducing the sample size for selection would make it more challeng-

ing to detect invalid IVs and lead to decreased coverage. Therefore, solely employing

sample splitting to account for instrument selection is insufficient. The proposed

bootstrap method mimics the selection process by repeating the selection procedure

for each bootstrap sample. When the proportion of invalid IVs is less than half,

the coverage of bootstrap intervals is close to the nominal level. Overall, shrinkage-

based methods outperform threshold-based methods in terms of coverage probability.

For the three shrinkage methods, sample splitting is unnecessary as their coverage

is already satisfactory, and the intervals are narrower compared to those with sam-

ple splitting. Nevertheless, sample splitting offers the advantage of requiring less

computational time than using the complete dataset.
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4.4.4 Summary

This chapter has addressed the challenges in coverage estimation when disregarding

the selection process for instrumental variables and proposed a novel approach using

the Lasso method to identify invalid IVs. However, both the proposed and existing

methods for identifying invalid IVs are not flawless, even when dealing with a small

proportion of invalid variants. In cases where the correct model was not chosen

by the selection method, the coverage could never attain the nominal level without

considering the selection process. Moreover, the impact of selection on coverage rates

becomes more pronounced when the proportion of invalid IVs exceeds 50%.

The coverage of Wald-type intervals can be enhanced by using 50k observations

for selection, but it may worsen with a relatively small sample size for selection, as

this comes at the expense of power due to the loss in sample size. On the other hand,

bootstrap methods have shown improvement in coverage compared to Wald-type in-

tervals. The key concept behind using bootstrap is to better estimate the standard

error, as original standard error estimation fails to consider the selection process. By

mimicking the selection process, the proposed bootstrap method accounts for selec-

tion variability, leading to bootstrap standard errors that are closer to the standard

deviation than the original standard errors (Tables 4.2 and 4.6). The coverage of

bootstrap intervals is close to the nominal level when the proportion of invalid IVs is

less than or equal to 50%, and it remains around 88%-93% when the proportion of

invalid IVs exceeds 50%.

Among our proposed selection methods, Lasso demonstrates superior performance

compared to threshold-based methods in terms of coverage accuracy. Additionally,

when compared to existing methods, Lasso is less time-consuming than sisVIVE and
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outperforms MR-LASSO in terms of true negative counts.

We believe that our selection and bootstrap methods can be useful in selecting

valid IVs and correcting the selection effect in inference. The R code for the proposed

method is available in https://github.com/Bianmj/InvalidIVs.
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Chapter 5

Discussion

5.1 Summary

In this thesis, we delve into three important challenges within Mendelian randomiza-

tion that can introduce bias into causal inference. Initially, we introduce innovative

approaches to address the “winner’s curse” problem in Mendelian randomization.

This issue arises when the same dataset is used both for selecting IVs and estimating

the associations between IVs and exposure. Secondly, we address the issue of overlap-

ping samples between exposure and outcome. Thirdly, we put forth a methodology

for identifying invalid IVs in the presence of horizontal pleiotropy, and we also incor-

porate the bootstrap method to account for this selection of IV procedure. Each of

these proposed methods has its own set of limitations and strengths. In this conclud-

ing chapter, we will highlight the key components of each chapter and subsequently

outline potential avenues for future research, building upon the contributions made

in this work.
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This thesis begins by introducing the various key concepts related to causal infer-

ence, genetics, and the application of Mendelian randomization in estimating causal

effects in the presence of unmeasured confounding, which cannot be addressed by

observational studies, highlighting its advantages over randomized controlled trials.

We also provide a concise overview of robust methods for MR analysis, with a partic-

ular focus on two-sample MR when Assumption IV3 (no horizontal pleiotropy) is not

perfectly met. Furthermore, the initial chapter introduces the three-sample GWAS

design, which proves to be valuable in mitigating bias arising from complete overlap-

ping between discovery and estimation GWAS studies. It lays the groundwork and

establishes the motivation for the development of causal inference approaches, tak-

ing into account specific challenges such as the winner’s curse, overlapping between

exposure and outcome association, and the presence of pleiotropy effects.

We initially focus on tackling the issue of the winner’s curse, a phenomenon that

distorts exposure association estimates and subsequently affects the estimation of

causal effect. To address this, we modify the original BR-squared approach, which was

originally tailored for individual-level data, to make it suitable for summary-level data.

Additionally, we customize Ghosh’s method to function with ranking-based selection,

wherein the significance threshold is established based on observed test statistics

among the top-ranked variants. Through simulations and real data examples, we

thoroughly evaluate the impact of the winner’s curse on MR estimation. We find that

the winner’s curse introduces a bias towards the null in the causal estimator, although

it does not significantly affect the overall conclusion, as observed in both simulated

and real data applications. Applying the correction significantly reduces this bias,

albeit at the cost of increased variability in the estimates. As a result, the confidence
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intervals become wider, but the coverage of the intervals is improved. Moreover, we

note that Ghosh’s methods tend to produce more variable outcomes compared to

other methods. This is because the estimate is excessively corrected for variants with

z-values close to the boundary, while minimal correction is applied to variants with

z-values far from the boundary. Consequently, when a considerable proportion of

significant variants undergo heavy over-correction, the Ghosh’s method is at risk of

overestimating the causal effect, while it closely resembles the naive estimate when

the percentage of such variants is not substantial. Our approach would be beneficial

for researchers seeking a more precise point estimate. However, if the primary goal

is to examine the existence of a causal effect, the correction method may not provide

significant advantages, as its impact on statistical power is minimal.

Next, we deal with the challenge of overlapping in two estimation studies for

the genetic association with exposure and outcome, particularly in the presence of

weak instruments. To tackle these issues, we propose a novel method inspired by

the work of Bowden et al. (2019). Our results from various simulation settings and

real data applications align with existing research on analysis with overlapping sam-

ples, which indicate that overlap can bias the causal estimator towards the null with

non-overlapping samples and towards the confounded association with complete over-

lapping. Our proposed method allows us to obtain an unbiased estimator with varying

degrees of overlap or strength of IVs. Type-I error may be inflated, it is much better

other methods when there is substantial overlap between samples. Another strength

of our proposed method is its ease of implementation, as it only requires summary

statistics, and the phenotypic correlation between exposure and outcome can be cal-

culated using cross-trait LD score regression. Nevertheless, our approach comes with
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certain drawbacks. For instance, it tends to underestimate the standard error because

it incorporates the covariance term in variability estimation, leading to intervals with

lower coverage. Therefore, in certain cases, such as when the IVs are not very weak or

the degree of overlap is low, the IVW method may provide better coverage than our

proposed method. As a result, we recommend that researchers evaluate the strength

of IVs and the degree of overlap (by calculating the phenotype correlation) before

selecting the appropriate method for MR analysis.

In this thesis, we address overlap and weak instrument bias as distinct challenges

from the winner’s curse. Certain studies have examined how the interplay between

the winner’s curse, overlap bias, and weak instrument bias impacts the estimation of

causal effect. These investigations have demonstrated that the winner’s curse sub-

stantially amplifies the degree of weak instrument bias (Sadreev et al., 2021; Mounier

and Kutalik, 2023). The extent and direction of this bias depend on factors such

as the degree of sample overlap, the causal effect, and confounding variables, which

aligns with our own findings. When the confounder and the causal effect share the

same sign, the causal effect is overestimated in cases of complete sample overlap

and underestimated in scenarios of non-overlapping samples. However, when their

signs are opposite, the causal effect is consistently underestimated across all levels of

overlap (Mounier and Kutalik, 2023).

Apart from the winner’s curse, overlap, and weak instrument bias, another no-

table concern in MR stems from the bias resulting from horizontal pleiotropy. We

introduce a Lasso method to identify and subsequently remove these invalid IVs that

are susceptible to horizontal pleiotropy in our analysis. Additionally, we take the se-

lection of IVs process into account by utilizing the bootstrap method, a step that has
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been overlooked by existing robust methods that involve the removal of invalid IVs in

MR. Through simulations using both the sample-splitting and bootstrap approaches,

we observe that the coverage of conventional Wald-type intervals is underestimated,

especially as the proportion of invalid IVs increases. Surprisingly, the sample-splitting

approach does not offer any advantage over the naive method when the size for se-

lection is insufficient, while the bootstrap method significantly improves the coverage

compared to the naive method. Based on our findings, we recommend researchers

refrain from using traditional inference when some invalid IVs are removed after con-

ducting a sensitivity analysis.

5.2 Limitations and Future Work

In this section, our main emphasis will be on the limitations of the methods proposed

in Chapters 2-4. We will then explore potential future research directions to enhance

these methods for more robust applications.

5.2.1 Linkage Disequilibrium

The methods discussed in this thesis all assume that the genetic variants used as

IVs are uncorrelated (linkage equilibrium). This assumption is made to ensure the

validity of the MR framework. Despite this concern, there are some scenarios in which

including genetic variants in linkage disequilibrium (LD) could be advantageous for

a Mendelian randomization study. One such scenario is in cis-MR, where variants

in close proximity to the gene of interest are used as instrumental variables. In cis-

MR, the focus is on studying the associations of variants in the region with a specific
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disease outcome, which provides insights into whether the encoded protein can be a

potential drug target for the outcome. Since cis-MR studies typically rely on a single

gene region, researchers have to select genetic instruments from a pool of potentially

correlated variants. Additionally, including correlated genetic variants can improve

the statistical power of the study, especially when only a limited number of SNPs

remain after sensitivity analysis and exclusion procedures.

An intriguing direction for further research would involve evaluating the impact of

correlated genetic variants on the performance of existing Winner’s curse correction

methods. Investigating how these methods handle the presence of correlated SNPs

and understanding their limitations and strengths in this context would be valuable.

Additionally, it may be worth considering an extension of the BR-squared method

that takes into account the genetic correlation between variants. It is also might be

interesting to explore the impact of varying LD thresholds on causal estimation.

5.2.2 Case-control Studies

Our approach has inherent limitations as it exclusively focuses on quantitative traits.

In Chapter 3, to investigate the overlap between a quantitative study and a case-

control study, we may need to consider the specific sources of overlap: whether they

arise from the case samples, the control samples, or both.

In a previous study by Burgess et al. (2016), they observed that in the absence of a

causal effect, no bias was detected when estimating the association of G-X solely in the

control group and G-Y association in all participants. However, when estimating the

G-X association across all participants, the relative bias closely approached the inverse

of the mean F-statistics. Potential future research could explore scenarios involving
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the existence of a causal effect and varying degrees of overlap. Furthermore, when it

comes to estimating the correlation between quantitative and case-control studies, the

method employed will differ from that used for two quantitative traits. In such cases,

a point biserial correlation coefficient could serve as a suitable correlation coefficient.

5.2.3 A Larger Sample Size

Our simulation study in Chapter 3 has limitations related to the sample size used in

the data-generating model. Given that GWAS are increasingly conducted on large

study populations, the choice of a sample size of 10,000 for our simulation study may

be somewhat conservative. This reduction in sample size compared to real data is

driven by computational considerations, as we aim to simulate individual-level data

to control the degree of overlap, which requires a substantial amount of memory com-

pared to working with summary statistics alone. Despite these challenges, we make

efforts to keep the F-statistic and R2 values as close to reality as possible, even with

a smaller sample size and fewer genetic variants, to maintain practicality. However,

it would be more practical and insightful if we could base our simulations on a larger

sample size in the future. Furthermore, exploring the development of a simulation

design that exclusively utilizes summary statistics would eliminate computational

difficulties, making it an interesting avenue for future research.

5.2.4 Bootstrap for Summary Statistics

In Chapter 4, the bootstrap procedure for addressing selection bias is developed using

individual-level data. However, it is common for MR analyses to rely on summary-

level data. While there are robust methods available for conducting MR studies with
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summary-level data, there are currently few methods that specifically account for

instrument selection in this context. Hence, future research focused on extending the

bootstrap method to incorporate summary statistics would be both promising and

valuable.

5.2.5 Selection Bias

Throughout this thesis, we do not consider the selection bias, which occurs when the

selection of participants depends on the exposure or the outcome. Then conditioning

on selection induces an association between the genetic variant and confounder in

both cases. For instance, selection bias in MR studies can arise when the original

outcome GWAS is chosen based on survival until recruitment (Yang et al., 2021). This

happens due to the time lag between genetic randomization and GWAS recruitment,

potentially causing the bias in MR estimates. Simulation studies have shown that

when selection into a study is strongly influenced by the exposure, selection bias can

markedly impact the accuracy of causal effect estimates (Gkatzionis and Burgess,

2019).
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Appendix A

Supplementary material of

Chapter 2

A.1 Derivation of BR-Squared by summary statis-

tics

Assume Gi and xi are all standardized to have mean 0 and variance 1, then the within

bootstrap estimate and out-of-sample bootstrap estimate can be written as below:

β∗
D =

∑
fiGixi∑
fiG2

i

(A.1a)

β∗
E =

∑
IiGixi∑
IiG2

i

(A.1b)

where fi represents the frequency for (Gi, xi) of observation i in the bootstrap

sample, Ii as the indicator function which takes value of 1 when fi equals 0 and n is

the sample size.
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Then

cov(β∗
D, β

∗
E) = cov

(∑
fiGixi∑
fiG2

i

,
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IiGixi∑
IiG2

i

)
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i

×
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i

)
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i

)
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)
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i

∑
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i

∑
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2
i IjG

2
j

)
− E

(∑
fiGixi∑
fiG2
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)
E

(∑
IiGixi∑
IiG2
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)
(A.2)

According to the first-order Taylor expansion, the second terms in equation A.2

can be simplified as

E

(∑
fiGixi∑
fiG2

i

)
≈ E(

∑
fiGixi)

E(
∑
fiG2

i )
=

∑
Gixi∑
G2

i

(A.3a)

E

(∑
IiGixi∑
IiG2

i

)
≈ E(

∑
IiGixi)

E(
∑
IiG2

i )
=

∑n
i Gixi∑n
i G

2
i

(A.3b)

where E(fi) = n · 1
n
= 1

For the first term in Equation A.2
(
E
(∑

i

∑
j fiGixiIjGjxj∑

i

∑
j fiG

2
i IjG

2
j

))
E(fiIj) = 0 when i = j; when i ̸= j:

E(fiIj) = E(fiIj|fj = 0) p(fj = 0) + E(fiIj|fj ̸= 0) p(fj ̸= 0)

= E(fi|fj = 0) p(fj = 0) + 0

=
n

n− 1
∗m (A.4)

where fi|fj = 0 ∼ Bin
(
n− 0 = n, 1/n

1−1/n
= 1

n−1

)
, m = p(fj = 0) ≈ e−1 = 0.368
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Therefore, the numerator for E
(∑
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∑
j fiGixiIjGjxj∑

i

∑
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2
i IjG

2
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)
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The denominator is E
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And the numerator for Equation A.6 can be simplified as

∑
(Gixi)

2 ≈
∑

G2
i (G

2
i β̂

2
N + ε2i ) =

∑
G4

i β̂
2
N +

∑
G2

i ε
2
i

≈ 3nβ̂2
N + n(1−R2)

≈ 3nβ̂2
N + n(1− β̂2

N) (A.7)

where β̂N is the naive estimate for the effect of G on x, and R2 is the coefficient of

determination from the regression of x on G. Therefore, the covariance between β∗
D
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and β∗
E is eventually simplified as

cov(β∗
D, β

∗
E) ≈

−(1 + 2β̂2
N)

n
(A.8)

The variances for the within-bootstrap estimates and out-of-sample bootstrap esti-

mates are proportional to the sample size:

σ2
D =

1−R2

n
≈ 1− β̂2

N

n
(A.9a)

σ2
E =

1−R2

mn
≈ 1− β̂2

N

mn
(A.9b)

Proof of R2 = β̂2
N :

The slope of a simple linear regression without intercept term can be written as:

β̂N =

∑
Gixi∑

i

G2
i

=

∑
(Gi − 0)(x− 0)∑

(Gi − 0)2

=

∑
(Gi −G)(xi − x)∑

(Gi −G)2

=

∑
(Gi −G)(xi − x)/n∑

(Gi −G)2/n

=
sG,x

s2G

= rG,x
sx
sG

(A.10)

where rG,x is the sample correlation coefficient between G and x, sx and sG are

the uncorrected sample standard deviations for x and G,. s2G and sG,x are the sample
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variance and sample covariance. Because sG and sx are all equal to 1, we can get

β̂2
N = R2

A.2 Supplementary tables

Table A.1: Mean, relative bias, sqaure root of mean of variance (SE), standard
deviation (SD), coverage probability, and mean of interval length, mean
squared error (MSE) by naive method, projack method, BR-squared,
FIQT, Forde, conditional MLE (MLE), the mean of normalized
likelihood estimator (Normalized), and Compromise estimator
(Compromise). We repeated 250 simulations for threshould-based
selection (1 · 10−1). True causal effect=0.2.

Method Mean Relative bias SE SD MSE CI length Coverage Power

threshold for p-value is 1 · 10−1

Naive 0.177 -0.117 0.032 0.032 0.0017 0.124 0.888 1

Projack 0.196 -0.020 0.036 0.037 0.0014 0.138 0.948 1

BR-squared 0.196 -0.022 0.035 0.037 0.0013 0.138 0.948 1

FIQT 0.194 -0.030 0.035 0.036 0.0013 0.136 0.94 1

Forde 0.194 -0.029 0.034 0.037 0.0014 0.136 0.944 1

MLE 0.183 -0.086 0.033 0.035 0.0015 0.130 0.904 1

Normalized 0.184 -0.081 0.033 0.037 0.0016 0.130 0.90 1

Compromise 0.183 -0.085 0.033 0.037 0.0016 0.130 0.90 1
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Table A.2: Mean, relative bias, sqaure root of mean of variance (SE), standard
deviation (SD), coverage probability, and mean of interval length, mean
squared error (MSE) by naive method, projack method, BR-squared,
FIQT, Forde, conditional MLE (MLE), the mean of normalized
likelihood estimator (Normalized), and Compromise estimator
(Compromise). We repeated 250 simulations for threshould-based
selection (1 · 10−6). True causal effect=0.2.

Method Mean Relative bias SE SD MSE CI length Coverage Power

threshold for p-value is 1 · 10−6

Naive 0.179 -0.105 0.046 0.048 0.0027 0.174 0.912 0.948

Projack 0.197 -0.017 0.051 0.053 0.0029 0.191 0.96 0.948

BR-squared 0.197 -0.012 0.051 0.054 0.0029 0.191 0.96 0.948

FIQT 0.194 -0.033 0.050 0.052 0.0027 0.187 0.948 0.948

Forde 0.196 -0.018 0.051 0.053 0.0028 0.190 0.96 0.948

MLE 0.194 -0.028 0.054 0.057 0.0033 0.195 0.936 0.924

Normalized 0.205 0.027 0.055 0.059 0.0035 0.199 0.948 0.944

Compromise 0.201 0.0047 0.055 0.058 0.0034 0.198 0.936 0.94

Table A.3: Mean, relative bias, sqaure root of mean of variance (SE), standard
deviation (SD), coverage probability, and mean of interval length, mean
squared error (MSE) by naive method, projack method, BR-squared,
FIQT, Forde, conditional MLE (MLE), the mean of normalized
likelihood estimator (Normalized), and Compromise estimator
(Compromise). We repeated 250 simulations for rank-based selection
(top 70 variants). True causal effect=0.2.

Method Mean Relative bias SE SD MSE CI length Coverage Power

top 70 variants

Naive 0.180 -0.0993 0.032 0.034 0.0016 0.123 0.876 1

Projack 0.200 0.0014 0.036 0.039 0.0015 0.137 0.940 1

BR-squared 0.200 -0.0001 0.035 0.039 0.0015 0.136 0.944 1

FIQT 0.198 -0.0090 0.035 0.038 0.0015 0.135 0.932 1

Forde 0.198 -0.0119 0.035 0.037 0.0015 0.134 0.920 1

MLE 0.185 -0.073 0.033 0.035 0.0015 0.127 0.900 1

Normalized 0.186 -0.068 0.033 0.036 0.0015 0.127 0.896 1

Compromise 0.186 -0.070 0.033 0.036 0.0015 0.127 0.896 1
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Table A.4: Mean, relative bias, sqaure root of mean of variance (SE), standard
deviation (SD), coverage probability, and mean of interval length, mean
squared error (MSE) by naive method, projack method, BR-squared,
FIQT, Forde, conditional MLE (MLE), the mean of normalized
likelihood estimator (Normalized), and Compromise estimator
(Compromise). We repeated 250 simulations for rank-based selection
(top 10 variants). True causal effect=0.2.

Method Mean Relative bias SE SD MSE CI length Coverage Power

top 10 variants

Naive 0.178 -0.109 0.048 0.048 0.0028 0.187 0.928 0.960

Projack 0.197 -0.015 0.054 0.054 0.0029 0.207 0.968 0.960

BR-squared 0.197 -0.013 0.053 0.054 0.0029 0.207 0.968 0.968

FIQT 0.192 -0.038 0.052 0.052 0.0027 0.202 0.972 0.960

Forde 0.195 -0.026 0.053 0.052 0.0027 0.203 0.964 0.964

MLE 0.196 -0.018 0.059 0.062 0.0038 0.225 0.948 0.912

Normalized 0.212 0.062 0.060 0.063 0.0042 0.230 0.948 0.936

Compromise 0.207 0.031 0.060 0.063 0.0040 0.228 0.936 0.928

Table A.5: Type-I errors for naive method, projack method, BR-squared, FIQT,
Forde, conditional MLE (MLE), the mean of normalized likelihood
estimator (Normalized), and Compromise estimator (Compromise). We
repeated 250 simulations for threshould-based selection (5 · 10−4).

Method Type-I error

Naive 0.056

Projack 0.056

BR-squared 0.056

FIQT 0.056

Forde 0.056

MLE 0.056

Normalized 0.056

Compromise 0.056
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Table B.1: Mean of causal estimate and coverage for 1000 simulations. Scenario:
positive causal effect (βc = 0.1) and weak confounder (βu = αu = 0.4).
Abbreviations: IVW: “first order” inverse variance weight. Modified
IVW: “second order” inverse variance weight that accounts for the
covariance between association estimates. Exact: Original exact method
without accounting for correlation. Modified Exact: exact method that
accounts for the correlation in the weights. βc represents the causal
effect, βu and αu represent the confounder effect on outcome and
exposure, respectively.

Threshold (F-stats) IVW Modified IVW Exact Modified Exact

Mean Coverage Mean Coverage Mean Coverage Mean Coverage

βc = 0.1, βu = αu = 0.4, overlap = 0%

5 · 10−2(F = 12.45) 0.091 0.936 0.084 0.940 0.100 0.910 0.100 0.910

5 · 10−5(F = 33.89) 0.096 0.950 0.091 0.963 0.099 0.947 0.099 0.947

5 · 10−8(F = 63.92) 0.099 0.948 0.096 0.959 0.101 0.945 0.101 0.945

βc = 0.1, βu = αu = 0.4, overlap = 25%

5 · 10−2(F = 12.45) 0.096 0.947 0.093 0.962 0.106 0.919 0.101 0.918

5 · 10−5(F = 33.89) 0.099 0.950 0.097 0.962 0.102 0.944 0.100 0.943

5 · 10−8(F = 63.92) 0.100 0.949 0.099 0.959 0.102 0.948 0.101 0.947

βc = 0.1, βu = αu = 0.4, overlap = 50%

5 · 10−2(F = 12.45) 0.100 0.955 0.101 0.971 0.110 0.925 0.099 0.937

5 · 10−5(F = 33.89) 0.099 0.942 0.100 0.954 0.102 0.931 0.099 0.929

5 · 10−8(F = 63.92) 0.100 0.946 0.100 0.954 0.102 0.946 0.100 0.944

βc = 0.1, βu = αu = 0.4, overlap = 75%

5 · 10−2(F = 12.45)4 0.105 0.950 0.111 0.962 0.116 0.901 0.099 0.925

5 · 10−5(F = 33.89) 0.102 0.938 0.105 0.946 0.105 0.931 0.099 0.931

5 · 10−8(F = 63.92) 0.102 0.940 0.104 0.944 0.104 0.940 0.101 0.937

βc = 0.1, βu = αu = 0.4, overlap = 100%

5 · 10−2(F = 12.45) 0.112 0.945 0.121 0.914 0.123 0.873 0.100 0.936

5 · 10−5(F = 33.89) 0.103 0.946 0.110 0.947 0.107 0.937 0.099 0.936

5 · 10−8(F = 63.92) 0.102 0.947 0.106 0.948 0.104 0.947 0.100 0.943

151



Ph.D. Thesis – Mengjie Bian McMaster University – Statistics

Table B.2: Mean of standard errors (SE) and standard deviation (SD) for 1000
simulations. Scenario: positive causal effect (βc = 0.1) and weak
confounder (βu = αu = 0.4). Abbreviations: IVW: “first order” inverse
variance weight. Modified IVW: “second order” inverse variance weight
that accounts for the covariance between association estimates. Exact:
Original exact method without accounting for correlation. Modified
Exact: exact method that accounts for the correlation in the weights. βc
represents the causal effect, βu and αu represent the confounder effect on
outcome and exposure, respectively.

Threshold (F-stats) IVW Modified IVW Exact Modified Exact

SE SD SE SD SE SD SE SD

βc = 0.1, βu = αu = 0.4, overlap = 0%

5 ∗ 10−2(F = 12.45) 0.029 0.030 0.030 0.028 0.029 0.033 0.029 0.033

5 ∗ 10−5(F = 33.89) 0.036 0.036 0.037 0.034 0.036 0.037 0.036 0.037

5 ∗ 10−8(F = 63.92) 0.048 0.049 0.049 0.048 0.048 0.050 0.048 0.050

βc = 0.1, βu = αu = 0.4, overlap = 25%

5 ∗ 10−2(F = 12.45) 0.029 0.030 0.030 0.028 0.029 0.033 0.029 0.033

5 ∗ 10−5(F = 33.89) 0.036 0.036 0.037 0.034 0.036 0.037 0.036 0.037

5 ∗ 10−8(F = 63.92) 0.048 0.048 0.048 0.046 0.048 0.049 0.048 0.049

βc = 0.1, βu = αu = 0.4, overlap = 50%

5 ∗ 10−2(F = 12.45) 0.029 0.029 0.030 0.027 0.029 0.032 0.029 0.032

5 ∗ 10−5(F = 33.89) 0.036 0.036 0.036 0.034 0.036 0.037 0.036 0.037

5 ∗ 10−8(F = 63.92) 0.048 0.048 0.048 0.047 0.048 0.049 0.048 0.049

βc = 0.1, βu = αu = 0.4, overlap = 75%

5 ∗ 10−2(F = 12.45) 0.029 0.029 0.030 0.027 0.030 0.032 0.029 0.032

5 ∗ 10−5(F = 33.89) 0.036 0.036 0.036 0.034 0.036 0.037 0.036 0.038

5 ∗ 10−8(F = 63.92) 0.048 0.048 0.048 0.047 0.048 0.049 0.047 0.049

βc = 0.1, βu = αu = 0.4, overlap = 100%

5 ∗ 10−2(F = 12.45) 0.029 0.028 0.029 0.027 0.030 0.031 0.029 0.031

5 ∗ 10−5(F = 33.89) 0.036 0.036 0.036 0.035 0.036 0.037 0.035 0.037

5 ∗ 10−8(F = 63.92) 0.048 0.049 0.048 0.048 0.048 0.050 0.047 0.050
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Table B.3: Mean of causal estimate and coverage for 1000 simulations. Scenario:
positive causal effect (βc = 0.1) and strong confounder (βu = αu = 0.8).
Abbreviations: IVW: “first order” inverse variance weight. Modified
IVW: “second order” inverse variance weight that accounts for the
covariance between association estimates. Exact: Original exact method
without accounting for correlation. Modified Exact: exact method that
accounts for the correlation in the weights. βc represents the causal
effect, βu and αu represent the confounder effect on outcome and
exposure, respectively.

Threshold (F-stats) IVW Modified IVW Exact Modified Exact

Mean Coverage Mean Coverage Mean Coverage Mean Coverage

βc = 0.1, βu = αu = 0.8, overlap = 0%

5 · 10−2(F = 9.11) 0.088 0.929 0.079 0.939 0.100 0.901 0.100 0.901

5 · 10−5(F = 24.25) 0.095 0.953 0.089 0.964 0.100 0.947 0.100 0.947

5 · 10−8(F = 45.51) 0.099 0.943 0.095 0.957 0.101 0.942 0.101 0.942

βc = 0.1, βu = αu = 0.8, overlap = 25%

5 · 10−2(F = 9.11) 0.102 0.945 0.103 0.969 0.116 0.886 0.100 0.902

5 · 10−5(F = 24.25) 0.101 0.957 0.102 0.968 0.106 0.952 0.100 0.941

5 · 10−8(F = 45.51) 0.101 0.961 0.102 0.967 0.104 0.957 0.101 0.956

βc = 0.1, βu = αu = 0.8, overlap = 50%

5 · 10−2(F = 9.11) 0.115 0.935 0.126 0.923 0.130 0.854 0.098 0.924

5 · 10−5(F = 24.25) 0.105 0.942 0.113 0.944 0.109 0.933 0.098 0.931

5 · 10−8(F = 45.51) 0.102 0.949 0.108 0.955 0.105 0.944 0.099 0.938

βc = 0.1, βu = αu = 0.8, overlap = 75%

5 · 10−2(F = 9.11) 0.129 0.862 0.151 0.714 0.146 0.746 0.099 0.917

5 · 10−5(F = 24.25) 0.111 0.944 0.126 0.919 0.115 0.933 0.099 0.936

5 · 10−8(F = 45.51) 0.106 0.949 0.116 0.940 0.108 0.945 0.100 0.938

βc = 0.1, βu = αu = 0.8, overlap = 100%

5 · 10−2(F = 9.11) 0.145 0.764 0.177 0.355 0.162 0.576 0.101 0.930

5 · 10−5(F = 24.25) 0.115 0.939 0.139 0.841 0.120 0.924 0.098 0.934

5 · 10−8(F = 45.51) 0.108 0.951 0.123 0.933 0.111 0.948 0.099 0.943
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Table B.4: Mean of standard errors (SE) and standard deviation (SD) for 1000
simulations. Scenario: positive causal effect (βc = 0.1) and strong
confounder (βu = αu = 0.8). Abbreviations: IVW: “first order” inverse
variance weight. Modified IVW: “second order” inverse variance weight
that accounts for the covariance between association estimates. Exact:
Original exact method without accounting for correlation. Modified
Exact: exact method that accounts for the correlation in the weights. βc
represents the causal effect, βu and αu represent the confounder effect on
outcome and exposure, respectively.

Threshold (F-stats) IVW Modified IVW Exact Modified Exact

SE SD SE SD SE SD SE SD

βc = 0.1, βu = αu = 0.8, overlap = 0%

5 · 10−2(F = 9.11) 0.035 0.036 0.036 0.033 0.035 0.041 0.035 0.041

5 · 10−5(F = 24.25) 0.044 0.042 0.045 0.040 0.044 0.044 0.044 0.044

5 · 10−8(F = 45.51) 0.058 0.060 0.059 0.058 0.059 0.062 0.059 0.062

βc = 0.1, βu = αu = 0.8, overlap = 25%

5 · 10−2(F = 9.11) 0.035 0.036 0.036 0.033 0.035 0.041 0.035 0.041

5 · 10−5(F = 24.25) 0.044 0.043 0.044 0.040 0.044 0.045 0.043 0.045

5 · 10−8(F = 45.51) 0.058 0.058 2 0.059 0.056 0.059 0.060 0.058 0.060

βc = 0.1, βu = αu = 0.8, overlap = 50%

5 · 10−2(F = 9.11) 0.035 0.034 0.036 0.032 0.035 0.040 0.034 0.039

5 · 10−5(F = 24.25) 0.044 0.043 0.044 0.040 0.044 0.045 0.043 0.045

5 · 10−8(F = 45.51) 0.058 0.057 0.058 0.056 0.059 0.059 0.057 0.059

βc = 0.1, βu = αu = 0.8, overlap = 75%

5 · 10−2(F = 9.11) 0.035 0.035 0.035 0.033 0.035 0.040 0.034 0.039

5 · 10−5(F = 24.25) 0.044 0.043 0.043 0.041 0.044 0.045 0.042 0.045

5 · 10−8(F = 45.51) 0.058 0.057 0.057 0.055 0.059 0.059 0.057 0.059

βc = 0.1, βu = αu = 0.8, overlap = 100%

5 · 10−2(F = 9.11) 0.035 0.033 0.034 0.033 0.036 0.038 0.034 0.037

5 · 10−5(F = 24.25) 0.044 0.043 0.042 0.041 0.044 0.045 0.042 0.045

5 · 10−8(F = 45.51) 0.058 0.058 0.056 0.057 0.059 0.059 0.056 0.060
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Figure B.1: Causal estimates with varing effect of confounder. Scenario: Significant
threshold 5 · 10−5; causal effect=0.1 (horizontal line). Abbreviations:
IVW: “first order” inverse variance weight. Modified IVW: “second
order” inverse variance weight that accounts for the covariance between
association estimates. Exact: Original exact method without
accounting for correlation. Modified Exact: exact method that accounts
for the correlation in the weights. βu and αu represent the confounder
effect on outcome and exposure, respectively.
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Figure B.2: Causal estimates with varing effect of confounder. Scenario: Significant
threshold 5 · 10−8; causal effect=0.1 (horizontal line). Abbreviations:
IVW: “first order” inverse variance weight. Modified IVW: “second
order” inverse variance weight that accounts for the covariance between
association estimates. Exact: Original exact method without
accounting for correlation. Modified Exact: exact method that accounts
for the correlation in the weights. βu and αu represent the confounder
effect on outcome and exposure, respectively.
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Table B.5: Mean of causal estimate and coverage for 1000 simulations. Scenario:
positive causal effect (βc = −0.3) and moderate confounder
(βu = αu = −0.6). Abbreviations: IVW: “first order” inverse variance
weight. Modified IVW: “second order” inverse variance weight that
accounts for the covariance between association estimates. Exact:
Original exact method without accounting for correlation. Modified
Exact: exact method that accounts for the correlation in the weights. βc
represents the causal effect, βu and αu represent the confounder effect on
outcome and exposure, respectively.

Threshold (F-stats) IVW Modified IVW Exact Modified Exact

Mean Coverage Mean Coverage Mean Coverage Mean Coverage

βc = −0.3, βu = −0.6 = αu = −0.6, overlap = 0%

5 · 10−2(F = 8.74) -0.260 0.916 -0.234 0.879 -0.298 0.927 -0.298 0.927

5 · 10−5(F = 13.45) -0.277 0.940 -0.253 0.944 -0.303 0.931 -0.303 0.931

5 · 10−8(F = 21.11) -0.281 0.925 -0.261 0.928 -0.297 0.927 -0.297 0.927

βc = −0.3, βu = −0.6 = αu = −0.6, overlap = 25%

5 · 10−2(F = 8.74) -0.261 0.926 -0.236 0.896 -0.300 0.927 -0.298 0.926

5 · 10−5(F = 13.45) -0.280 0.938 -0.255 0.935 -0.305 0.936 -0.304 0.936

5 · 10−8(F = 21.11) -0.282 0.942 -0.262 0.952 -0.298 0.941 -0.298 0.941

βc = −0.3, βu = −0.6 = αu = −0.6, overlap = 50%

5 · 10−2(F = 8.74) -0.266 0.911 -0.241 0.896 -0.305 0.925 -0.302 0.925

5 · 10−5(F = 13.45) -0.280 0.932 -0.256 0.930 -0.305 0.927 -0.304 0.924

5 · 10−8(F = 21.11) -0.287 0.942 -0.267 0.952 -0.304 0.942 -0.303 0.938

βc = −0.3, βu = −0.6 = αu = −0.6, overlap = 75%

5 · 10−2(F = 8.74) -0.266 0.918 -0.243 0.889 -0.305 0.921 -0.301 0.921

5 · 10−5(F = 13.45) -0.280 0.929 -0.257 0.925 -0.305 0.928 -0.303 0.925

5 · 10−8(F = 21.11) -0.288 0.954 -0.269 0.957 -0.305 0.947 -0.303 0.945

βc = −0.3, βu = −0.6 = αu = −0.6, overlap = 100%

5 · 10−2(F = 8.74) -0.267 0.917 -0.245 0.899 -0.306 0.918 -0.300 0.924

5 · 10−5(F = 13.45) -0.280 0.941 -0.259 0.937 -0.306 0.932 -0.303 0.928

5 · 10−8(F = 21.11) -0.290 0.947 -0.271 0.954 -0.307 0.938 -0.305 0.938
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Table B.6: Mean of standard errors (SE) and standard deviation (SD) for 1000
simulations. Scenario: positive causal effect (βc = −0.3) and moderate
confounder (βu = αu = −0.6). Abbreviations: IVW: “first order” inverse
variance weight. Modified IVW: “second order” inverse variance weight
that accounts for the covariance between association estimates. Exact:
Original exact method without accounting for correlation. Modified
Exact: exact method that accounts for the correlation in the weights. βc
represents the causal effect, βu and αu represent the confounder effect on
outcome and exposure, respectively.

Threshold (F-stats) IVW Modified IVW Exact Modified Exact

SE SD SE SD SE SD SE SD

βc = −0.3, βu = −0.6 = αu = −0.6, overlap = 0%

5 · 10−2(F = 8.74) 0.068 0.067 0.072 0.063 0.070 0.077 0.070 0.077

5 · 10−5(F = 13.45) 0.079 0.080 0.083 0.075 0.081 0.088 0.081 0.088

5 · 10−8(F = 21.11) 0.095 0.102 0.099 0.097 0.097 0.109 0.097 0.109

βc = −0.3, βu = −0.6 = αu = −0.6, overlap = 25%

5 · 10−2(F = 8.74) 0.068 0.067 0.072 0.063 0.070 0.076 0.070 0.077

5 · 10−5(F = 13.45) 0.079 0.081 0.083 0.076 0.081 0.090 0.081 0.090

5 · 10−8(F = 21.11) 0.095 0.099 0.098 0.094 0.097 0.106 0.097 0.106

βc = −0.3, βu = −0.6 = αu = −0.6, overlap = 50%

5 · 10−2(F = 8.74) 0.068 0.067 0.072 0.063 0.070 0.078 0.070 0.078

5 · 10−5(F = 13.45) 0.079 0.085 0.083 0.079 0.081 0.094 0.081 0.094

5 · 10−8(F = 21.11) 0.095 0.098 0.098 0.093 0.097 0.106 0.097 0.106

βc = −0.3, βu = −0.6 = αu = −0.6, overlap = 75%

5 · 10−2(F = 8.74) 0.068 0.070 0.072 0.065 0.070 0.080 0.070 0.080

5 · 10−5(F = 13.45) 0.079 0.084 0.082 0.078 0.081 0.093 0.081 0.093

5 · 10−8(F = 21.11) 0.095 0.096 0.098 0.091 0.097 0.103 0.097 0.103

βc = −0.3, βu = −0.6 = αu = −0.6, overlap = 100%

5 · 10−2(F = 8.74) 0.068 0.072 0.072 0.066 0.070 0.083 0.070 0.083

5 · 10−5(F = 13.45) 0.079 0.083 0.082 0.077 0.081 0.092 0.081 0.092

5 · 10−8(F = 21.11) 0.095 0.099 0.098 0.092 0.097 0.105 0.097 0.105
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Table B.7: Mean of causal estimate and coverage for 1000 simulations. Scenario:
positive causal effect (βc = −0.3) and strong confounder
(βu = αu = −0.8). Abbreviations: IVW: “first order” inverse variance
weight. Modified IVW: “second order” inverse variance weight that
accounts for the covariance between association estimates. Exact:
Original exact method without accounting for correlation. Modified
Exact: exact method that accounts for the correlation in the weights. βc
represents the causal effect, βu and αu represent the confounder effect on
outcome and exposure, respectively.

Threshold (F-stats) IVW Modified IVW Exact Modified Exact

Mean Coverage Mean Coverage Mean Coverage Mean Coverage

β = −0.3, βu = αu = −0.8, overlap = 0%

5 · 10−2(F = 7.43) -0.254 0.909 -0.226 0.871 -0.299 0.919 -0.299 0.919

5 · 10−5(F = 11.31) -0.273 0.944 -0.246 0.943 -0.304 0.927 -0.304 0.927

5 · 10−8(F = 17.67) -0.277 0.922 -0.255 0.925 -0.297 0.922 -0.297 0.922

β = −0.3, βu = αu = −0.8, overlap = 25%

5 · 10−2(F = 7.43) -0.251 0.904 -0.221 0.853 -0.295 0.919 -0.299 0.923

5 · 10−5(F = 11.31) -0.273 0.928 -0.243 0.923 -0.303 0.934 -0.305 0.934

5 · 10−8(F = 17.67) -0.277 0.937 -0.253 0.940 -0.297 0.935 -0.298 0.937

β = −0.3, βu = αu = −0.8, overlap = 50%

5 · 10−2(F = 7.43) -0.250 0.882 -0.217 0.834 -0.295 0.908 -0.302 0.918

5 · 10−5(F = 11.31) -0.270 0.916 -0.238 0.902 -0.300 0.920 -0.304 0.920

5 · 10−8(F = 17.67) -0.280 0.936 -0.254 0.942 -0.301 0.933 -0.303 0.934

β = −0.3, βu = αu = −0.8, overlap = 75%

5 · 10−2(F = 7.43) -0.247 0.856 -0.212 0.800 -0.290 0.896 -0.301 0.911

5 · 10−5(F = 11.31) -0.267 0.916 -0.234 0.890 -0.297 0.915 -0.304 0.924

5 · 10−8(F = 17.67) -0.280 0.943 -0.252 0.944 -0.301 0.941 -0.305 0.944

β = −0.3, βu = αu = −0.8, overlap = 100%

5 · 10−2(F = 7.43) -0.243 0.862 -0.207 0.780 -0.287 0.885 -0.300 0.907

5 · 10−5(F = 11.31) -0.265 0.910 -0.230 0.877 -0.295 0.916 -0.304 0.926

5 · 10−8(F = 17.67) -0.280 0.936 -0.250 0.936 -0.301 0.929 -0.306 0.937
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Table B.8: Mean of standard errors (SE) and standard deviation (SD) for 1000
simulations. Scenario: positive causal effect (βc = −0.3) and strong
confounder (βu = αu = −0.8). Abbreviations: IVW: “first order” inverse
variance weight. Modified IVW: “second order” inverse variance weight
that accounts for the covariance between association estimates. Exact:
Original exact method without accounting for correlation. Modified
Exact: exact method that accounts for the correlation in the weights. βc
represents the causal effect, βu and αu represent the confounder effect on
outcome and exposure, respectively.

Threshold (F-stats) IVW Modified IVW Exact Modified Exact

SE SD SE SD SE SD SE SD

β = −0.3, βu = αu = −0.8, overlap = 0%

5 · 10−2(F = 7.43) 0.071 0.070 0.075 0.065 0.073 0.083 0.073 0.083

5 · 10−5(F = 11.31) 0.082 0.083 0.087 0.078 0.085 0.094 0.085 0.094

5 · 10−8(F = 17.67) 0.099 0.107 0.104 0.101 0.102 0.115 0.102 0.115

β = −0.3, βu = αu = −0.8, overlap = 25%

5 · 10−2(F = 7.43) 0.071 0.071 0.075 0.066 0.073 0.083 0.073 0.083

5 · 10−5(F = 11.31) 0.082 0.085 0.087 0.079 0.085 0.097 0.085 0.097

5 · 10−8(F = 17.67) 0.099 0.105 0.104 0.099 0.102 0.114 0.102 0.114

β = −0.3, βu = αu = −0.8, overlap = 50%

5 · 10−2(F = 7.43) 0.071 0.072 0.075 0.067 0.073 0.084 0.073 0.084

5 · 10−5(F = 11.31) 0.082 0.089 0.087 0.083 0.085 0.101 0.086 0.101

5 · 10−8(F = 17.67) 0.099 0.104 0.104 0.098 0.102 0.114 0.103 0.114

β = −0.3, βu = αu = −0.8, overlap = 75%

5 · 10−2(F = 7.43) 0.071 0.075 0.075 0.070 0.073 0.088 0.074 0.087

5 · 10−5(F = 11.31) 0.082 0.089 0.087 0.084 0.085 0.101 0.086 0.101

5 · 10−8(F = 17.67) 0.099 0.103 0.105 0.097 0.102 0.112 0.103 0.112

β = −0.3, βu = αu = −0.8, overlap = 100%

5 · 10−2(F = 7.43) 0.071 0.076 0.076 0.071 0.073 0.091 0.074 0.090

5 · 10−5(F = 11.31) 0.082 0.088 0.088 0.082 0.085 0.100 0.086 0.099

5 · 10−8(F = 17.67) 0.099 0.106 0.105 0.099 0.102 0.115 0.104 0.115
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Figure B.3: Causal estimates with varing effect of confounder. Scenario: Significant
threshold 5 · 10−5; causal effect=-0.3 (horizontal line). Abbreviations:
IVW: “first order” inverse variance weight. Modified IVW: “second
order” inverse variance weight that accounts for the covariance between
association estimates. Exact: Original exact method without
accounting for correlation. Modified Exact: exact method that accounts
for the correlation in the weights. βu and αu represent the confounder
effect on outcome and exposure, respectively.
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Figure B.4: Causal estimates with varing effect of confounder. Scenario: Significant
threshold 5 · 10−8; causal effect=-0.3 (horizontal line). Abbreviations:
IVW: “first order” inverse variance weight. Modified IVW: “second
order” inverse variance weight that accounts for the covariance between
association estimates. Exact: Original exact method without
accounting for correlation. Modified Exact: exact method that accounts
for the correlation in the weights. βu and αu represent the confounder
effect on outcome and exposure, respectively.
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Table B.9: Type I error with significance threshold of 5 · 10−5. Abbreviations: IVW:
“first order” inverse variance weight. Modified IVW: “second order”
inverse variance weight that accounts for the covariance between
association estimates. Exact: Original exact method without accounting
for correlation. Modified Exact: exact method that accounts for the
correlation in the weights. βc represents the causal effect, βu and αu

represent the confounder effect on outcome and exposure, respectively.

Percentage of overlap 0% 25% 50% 75% 100%

βc = 0, βu = αu = 0.4

IVW 0.045 0.045 0.059 0.067 0.059

Modified IVW 0.037 0.036 0.046 0.054 0.053

Exact 0.053 0.054 0.065 0.070 0.062

Modified exact 0.053 0.054 0.068 0.068 0.064

βc = 0, βu = αu = 0.6

IVW 0.044 0.043 0.064 0.058 0.061

Modified IVW 0.035 0.035 0.052 0.062 0.086

Exact 0.049 0.052 0.068 0.066 0.071

Modified exact 0.049 0.051 0.066 0.064 0.059

βc = 0, βu = αu = 0.8

IVW 0.040 0.040 0.060 0.058 0.071

Modified IVW 0.028 0.037 0.068 0.095 0.159

Exact 0.051 0.051 0.074 0.071 0.086

Modified exact 0.051 0.055 0.064 0.059 0.066
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Table B.10: Type I error with significance threshold of 5 · 10−8. Abbreviations:
IVW: “first order” inverse variance weight. Modified IVW: “second
order” inverse variance weight that accounts for the covariance between
association estimates. Exact: Original exact method without
accounting for correlation. Modified Exact: exact method that accounts
for the correlation in the weights. βc represents the causal effect, βu
and αu represent the confounder effect on outcome and exposure,
respectively.

Percentage of overlap 0% 25% 50% 75% 100%

βc = 0, βu = αu = 0.4

IVW 0.049 0.053 0.052 0.057 0.057

Modified IVW 0.039 0.042 0.047 0.055 0.052

Exact 0.050 0.055 0.054 0.059 0.057

Modified exact 0.050 0.055 0.054 0.059 0.057

βc = 0, βu = αu = 0.6

IVW 0.051 0.056 0.059 0.059 0.046

Modified IVW 0.035 0.048 0.063 0.071 0.072

Exact 0.069 0.068 0.070 0.076 0.060

Modified exact 0.064 0.065 0.071 0.077 0.052

βc = 0, βu = αu = 0.8

IVW 0.048 0.042 0.058 0.056 0.056

Modified IVW 0.039 0.036 0.047 0.063 0.067

Exact 0.052 0.046 0.062 0.064 0.059

Modified exact 0.052 0.046 0.061 0.057 0.057
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Figure B.5: Causal estimates with varing effect of confounder. Scenario: Significant
threshold 5 · 10−5; null causal effect. Abbreviations: IVW: “first order”
inverse variance weight. Modified IVW: “second order” inverse variance
weight that accounts for the covariance between association estimates.
Exact: Original exact method without accounting for correlation.
Modified Exact: exact method that accounts for the correlation in the
weights. βu and αu represent the confounder effect on outcome and
exposure, respectively.
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Figure B.6: Causal estimates with varing effect of confounder. Scenario: Significant
threshold 5 · 10−8; null causal effect. Abbreviations: IVW: “first order”
inverse variance weight. Modified IVW: “second order” inverse variance
weight that accounts for the covariance between association estimates.
Exact: Original exact method without accounting for correlation.
Modified Exact: exact method that accounts for the correlation in the
weights. βu and αu represent the confounder effect on outcome and
exposure, respectively.
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Figure B.7: Estimate with significance threshould of 5 · 10−2 and negataive causal
effect (βc = −0.3) with negative confounder. Abbreviations: IVW: “first
order” inverse variance weight. Modified IVW: “second order” inverse
variance weight that accounts for the covariance between association
estimates. Exact: Original exact method without accounting for
correlation. Modified Exact: exact method that accounts for the
correlation in the weights. βu and αu represent the confounder effect on
outcome and exposure, respectively.
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Figure B.8: Estimate with significance threshould of 5 · 10−5 and negative causal
effect (βc = −0.3; horizontal line) with negative confounder.
Abbreviations: IVW: “first order” inverse variance weight. Modified
IVW: “second order” inverse variance weight that accounts for the
covariance between association estimates. Exact: Original exact
method without accounting for correlation. Modified Exact: exact
method that accounts for the correlation in the weights. βu and αu

represent the confounder effect on outcome and exposure, respectively.
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Figure B.9: Estimate with significance threshould of 5 · 10−8 and negative causal
effect (βc = −0.3; horizontal line) with negative confounder.
Abbreviations: IVW: “first order” inverse variance weight. Modified
IVW: “second order” inverse variance weight that accounts for the
covariance between association estimates. Exact: Original exact
method without accounting for correlation. Modified Exact: exact
method that accounts for the correlation in the weights. βu and αu

represent the confounder effect on outcome and exposure, respectively.
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Figure B.10: Estimate with significance threshould of 5 · 10−2 and positive causal
effect (βc = 0.1; horizontal line) with negative confounder.
Abbreviations: IVW: “first order” inverse variance weight. Modified
IVW: “second order” inverse variance weight that accounts for the
covariance between association estimates. Exact: Original exact
method without accounting for correlation. Modified Exact: exact
method that accounts for the correlation in the weights. βu and αu

represent the confounder effect on outcome and exposure, respectively.
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Figure B.11: Estimate with significance threshould of 5 · 10−5 and positive causal
effect (βc = 0.1; horizontal line) with negative confounder.
Abbreviations: IVW: “first order” inverse variance weight. Modified
IVW: “second order” inverse variance weight that accounts for the
covariance between association estimates. Exact: Original exact
method without accounting for correlation. Modified Exact: exact
method that accounts for the correlation in the weights. βu and αu

represent the confounder effect on outcome and exposure, respectively.
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Figure B.12: Estimate with significance threshould of 5 · 10−8 and positive causal
effect (βc = 0.1; horizontal line) with negative confounder.
Abbreviations: IVW: “first order” inverse variance weight. Modified
IVW: “second order” inverse variance weight that accounts for the
covariance between association estimates. Exact: Original exact
method without accounting for correlation. Modified Exact: exact
method that accounts for the correlation in the weights. βu and αu

represent the confounder effect on outcome and exposure, respectively.
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Appendix C

Supplementary material of

Chapter 4

C.1 Existing Methods

C.1.1 MR-PRESSO

MR-PRESSO (Verbanck et al., 2018) method can be used as outlier detectation

method that is relied on the summary statistics. It also requires that at least 50%

of the variants are valid instruments and relies on the InSIDE assumption (Bowden

et al., 2015). The MRPRESSO software is available online https://github.com/

rondolab/MR-PRESSO. MR-PRESSO is not considered in this thesis due to the cost

of computation time. In “mr presso” function, enough simulations are required to

generate the null distribution of RSS. The author suggests at least 1000 replicates.

However, it would not be enough if the number of variants is relatively large. For

example, if the number of IVs is 120, the lower bound of empirical p-value would be
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0.12 with 1000 replicates. This leads to no IV being called “invalid” at a significance

level of 0.05. The computation time for one dataset including 120 potential IVs with

12000 replicates (with a lower bound of empirical p-value of 0.01) is 1.15 hours on

anatolius. It is a multi-core virtual server with 40GB RAM and the operating system

is CentOS Linux release 7.

C.1.2 MR-Lasso

In MR-Lasso (Rees et al., 2019), the IVW regression is augmented so that an intercept

term is allowed for each genetic variant. The intercept term accounts for the genetic

variant-specific pleiotropy effect and it is penalized by L1 loss function. β̂gix is the

estimate of the effect of variant i on the exposure, and β̂giy is the estimate of the effect

of variant i on the outcome. If the intercept term β0i for genetic variant i shrinks

to zero, then variant i is assumed to be a valid IV. Otherwise, the genetic variant is

pleiotropic. The objective function is written as (Rees et al., 2019):

∑
i

var(β̂giy)
−1(β̂giy − β0i − βcβ̂gix)

2 + λ
∑
i

|β0i|

We implement MR-Lasso by simply using “mr lasso” function in MendelianRandom-

ization R package. The procedure for selecting the tuning parameter λ in “mr lasso”

is described in Rees et al. (2019).
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C.1.3 sisVIVE

Kang et al. (2016) proposed a method for estimation of causal effects, called some

invalid some valid IV estimator (sisVIVE). They showed that causal effects are iden-

tified and can be estimated when less than 50% of instruments are valid. It resembles

the lasso (Tibshirani, 1996) procedures, but it only penalizes ϕ. The Lagrangian form

is as follows

argmin
ϕ,βc

1

2
∥PG(Y −Gϕ−Xβc)∥22 + λ∥ϕ∥1

where PG is the projection matrix of G. The R package called sisVIVE is available.

In sisVIVE, cross-validation is used for choosing λ. In our thesis, we use the same

stopping rule based on Cochran Q statistics as in Lasso method. This stopping rule is

considerably less computationally expensive than cross-validation. Additionally, the

original sisVIVE code requires a lot of memory for a large dataset, which results in

a longer computational time. As a result, we make a minor modification to sisVIVE

so that it can be fitted for relatively large data sets. The computing time decreases

noticeably as a result. We have informed the author of this point by email.

C.2 Threshold-based Method

We consider the exact linear regression model part used in Lasso method:

Y = Gϕ+Xβc + ρv̂2 + e (C.1)

Since v̂2 is the exact linear function of X and G, in which case equation (C.1)

suffers from perfect collinearity. To avoid perfect collinearity, we randomly split G
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into half: G1 and G2.

Y ∼ G1 +X + v̂2

Y ∼ G2 +X + v̂2

Then we perform a hypothesis testing H0 : ϕi = 0 for each genetic variant i. If

p-value>significance level (e.g. 5%), then that variant is called “valid”.

C.3 Other Bootstrap Intervals

� Normal intervals with bootstrap estimate of bias

[
β̂c − biasboot − z1−α/2 σ̂b, β̂c − biasboot + zα/2σ̂b

]
(C.1)

where σ̂b =
√

1
R−1

∑R
r=1(β̂

∗
r − 1

R

∑R
b=1 β̂

∗
b )

2, biasboot =
1
R

∑R
r=1(β̂

∗
r − β̂c), and R

is the number of bootstrap samples.

� Basic intervals [
2β̂c − β̂∗

(α/2), 2β̂c − β̂∗
(1−α/2)

]
(C.2)

where β̂∗
(α/2) and β̂

∗
(1−α/2) denote α/2 and 1 − α/2 percentiles of the bootstrap

estimates β̂∗
c , respectively.

� Studentized intervals [
β̂c − z∗1−α/2 σ̂, β̂c − z∗α/2σ̂

]
(C.3)

where z∗1−α/2 and z∗α/2 denote 1 − α/2 and α/2 percentiles of the bootstrap

z-statistic z∗r = β̂∗
r−β̂c

σ̂∗ , respectively.
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C.4 Supplementary Tables

Table C.1: True positive rate (TPR) and false positive rate (FPR) over 1000
simulations. True positive rate is the probability that the invalid IVs are
truly identified and false positive rate is the probability that valid IVs
are wrongly classified as “invalid” ones. The entire data (100k) is used
for both selection and estimation. Abbreviation: 5% Sig.level, 5%
significance level; 5% FDR, 5% false discovery rate. 5% SID, 5% Šidák
correction.

80 valid IVs 60 valid IVs 40 valid IVs

Method TPR FPR TPR FPR TPR FPR

Scenario: balanced pleiotropy

5% Sig.level 0.838 0.114 0.843 0.163 0.843 0.166

5% FDR 0.801 0.055 0.818 0.091 0.826 0.128

5% SID 0.717 0.006 0.723 0.012 0.721 0.018

Scenario: directional pleiotropy

5% Sig.level 0.901 0.171 0.903 0.214 0.905 0.253

5% FDR 0.881 0.107 0.890 0.166 0.896 0.220

5% SID 0.824 0.020 0.828 0.036 0.828 0.055

Table C.2: Coverage and average width of 95% Wald-type intervals over 1000
simulations. The entire data (100k) is used for both selection and
estimation. Abbreviation: 5% Sig.level, 5% significance level; 5% FDR,
5% false discovery rate. 5% SID, 5% Šidák correction.

80 valid IVs 60 valid IVs 40 valid IVs

Method Coverage Width Coverage Width Coverage Width

Scenario: balanced pleiotropy;

5% Sig.level 0.744 0.050 0.649 0.056 0.583 0.065

5% FDR 0.802 0.048 0.679 0.054 0.582 0.063

5% SID 0.802 0.045 0.669 0.050 0.549 0.055

Scenario: directional pleiotropy

5% Sig.level 0.641 0.053 0.582 0.062 0.548 0.073

5% FDR 0.701 0.050 0.614 0.059 0.554 0.071

5% SID 0.794 0.047 0.680 0.053 0.503 0.061
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Table C.3: Coverage and average width of bootstrap normal CIs over 1000
simulations for 5% Significance level method (Sig.level), 5% false
discovery rate (FDR), 5% Šidák correction (SID). The entire data (100k)
is used for both selection and estimation.

Balanced pleoitropy Directional pleiotropy

80 valid IVs 60 valid IVs 40 valid IVs 80 valid IVs 60 valid IVs 40 valid IVs

Method Coverage Width Coverage Width Coverage Width Coverage Width Coverage Width Coverage Width

5% Sig.level 0.838 0.062 0.778 0.073 0.703 0.088 0.802 0.070 0.781 0.088 0.757 0.115

5% FDR 0.887 0.060 0.791 0.071 0.710 0.086 0.881 0.107 0.794 0.083 0.753 0.111

5% SID 0.893 0.057 0.813 0.067 0.697 0.082 0.881 0.059 0.820 0.072 0.720 0.094

Table C.4: True positive rate (TPR) and false positive rate (FPR) for
threshold-based methods with sample-splitting over 1000 simulations.
True positive rate is the probability that the invalid IVs are truly
identified and false positive rate is the probability that valid IVs are
wrongly classified as “invalid” ones. The sample size is 100,000; n1 is the
number of observation used in selection. Abbreviation: 5% Sig.level, 5%
significance level; 5% FDR, 5% false discovery rate; 5% SID, 5% Šidák
correction.

Balanced pleoitropy Directional pleiotropy

80 valid IVs 60 valid IVs 40 valid IVs 80 valid IVs 60 valid IVs 40 valid IVs

Method TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

n1 = 10, 000

5% Sig.level 0.542 0.058 0.548 0.061 0.548 0.065 0.696 0.064 0.699 0.072 0.702 0.078

5% FDR 0.403 0.009 0.440 0.016 0.460 0.023 0.606 0.016 0.634 0.030 0.653 0.040

5% SID 0.273 0.001 0.279 0.001 0.279 0.000 0.467 0.001 0.475 0.002 0.478 0.002

n1 = 30, 000

5% Sig.level 0.716 0.072 0.721 0.081 0.719 0.090 0.820 0.091 0.826 0.112 0.826 0.127

5%FDR 0.638 0.021 0.664 0.035 0.678 0.052 0.777 0.038 0.796 0.066 0.806 0.090

5%SID 0.513 0.001 0.518 0.002 0.522 0.003 0.683 0.003 0.686 0.006 0.690 0.010

n1 = 50, 000

5% Sig.level 0.776 0.085 0.782 0.097 0.778 0.113 0.861 0.117 0.864 0.145 0.863 0.169

5%FDR 0.720 0.031 0.741 0.051 0.751 0.074 0.829 0.057 0.843 0.097 0.850 0.134

5%SID 0.610 0.002 0.616 0.004 0.616 0.006 0.752 0.007 0.755 0.013 0.759 0.020
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Table C.5: Average time for different methods over 5 simulations. Scenario: a total
of 120 potential IVs with 80 valid; directional pleiotropy. The sample
size is 100,000; n1 is the number of observation used in selection.
Abbreviation: 5% Sig.level, 5% significance level; 5% FDR, 5% false
discovery rate. 5% SID, 5% Šidák correction. Simulations are performed
on a multi-core server. The hardware is 20 cores @ 2.67Ghz with 40GB
RAM and the operating System is CentOS Linux release 7.

Method entire data n1 = 10k n1 = 30k n1 = 50k

5% Sig.level 14.53 4.64 4.70 6.27

5% FDR 14.80 5.04 5.28 6.42

5% SID 16.06 5.37 5.47 6.91
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Table C.6: Scenario: balanced pleiotropy. Coverage of causal effect (β = 0.1) and
average width over 1000 simulations with different bootstrap CIs
(percentile CIs, normal CIs) and Wald-type intervals. Causal effect is
estimated by two stage least squares (TSLS) method. 1000 bootstrapped
samples are generated (case resampling bootstrap). The sample size is
100,000; n1 = 10, 000 observations are used in selection and the
remaining are used for estimation. Abbreviation: 5% Sig.level, 5%
significance level; 5% FDR, 5% false discovery rate. 5% SID, 5% Šidák
correction.

. 80 valid IVs 60 valid IVs 40 valid IVs

Method Coverage CI width Coverage CI width Coverage CI width

Scenario:Balanced pleiotropy; n1 = 10, 000

5% Sig.level

Wald CIs 0.611 0.047 0.461 0.050 0.362 0.053

Percentile CIs 0.910 0.078 0.863 0.099 0.805 0.125

Normal CIs 0.827 0.079 0.770 0.100 0.731 0.125

5% FDR

Wald CIs 0.507 0.045 0.373 0.047 0.330 0.050

Percentile CIs 0.851 0.081 0.798 0.101 0.768 0.124

Normal CIs 0.779 0.081 0.724 0.101 0.706 0.125

5% SID

Wald CIs 0.436 0.044 0.336 0.045 0.260 0.046

Percentile CIs 0.780 0.084 0.707 0.103 0.664 0.123

Normal CIs 0.722 0.084 0.659 0.103 0.635 0.124

MR-Lasso

Wald CIs 0.596 0.046 0.451 0.049 0.357 0.053

Percentile CIs 0.915 0.081 0.887 0.102 0.837 0.129

Normal CIs 0.840 0.091 0.887 0.102 0.772 0.130

Lasso

Wald CIs 0.524 0.045 0.425 0.048 0.345 0.051

Percentile CIs 0.879 0.082 0.842 0.101 0.799 0.125

Normal CIs 0.790 0.081 0.743 0.102 0.728 0.126

sisVIVE

Wald CIs 0.513 0.045 0.402 0.047 0.325 0.051

Percentile CIs 0.869 0.082 0.836 0.102 0.790 0.127

Normal CIs 0.776 0.083 0.735 0.103 0.724 0.127
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Table C.7: Scenario: directional pleiotropy. Coverage of causal effect (β = 0.1) and
average width over 1000 simulations with different bootstrap CIs
(percentile CIs, normal CIs) and Wald-type intervals. Causal effect is
estimated by two stage least squares (TSLS) method. 1000 bootstrapped
samples are generated (case resampling bootstrap). The sample size is
100,000; n1 = 10, 000 observations are used in selection and the
remaining are used for estimation. Abbreviation: 5% Sig.level, 5%
significance level; 5% FDR, 5% false discovery rate. 5% SID, 5% Šidák
correction.

. 80 valid IVs 60 valid IVs 40 valid IVs

Method Coverage CI width Coverage CI width Coverage CI width

Scenario:Directional pleiotropy; n1 = 10, 000

5% Sig.level

Wald CIs 0.624 0.049 0.473 0.053 0.357 0.059

Percentile CIs 0.905 0.080 0.886 0.108 0.843 0.148

Normal CIs 0.871 0.081 0.823 0.108 0.759 0.148

5% FDR

Wald CIs 0.533 0.047 0.431 0.051 0.303 0.056

Percentile CIs 0.866 0.084 0.858 0.111 0.811 0.149

Normal CIs 0.800 0.085 0.779 0.111 0.741 0.149

5% SID

Wald CIs 0.373 0.045 0.316 0.048 0.230 0.050

Percentile CIs 0.787 0.094 0.766 0.123 0.702 0.161

Normal CIs 0.730 0.095 0.694 0.124 0.658 0.161

MR-Lasso

Wald CIs 0.590 0.047 0.501 0.052 0.359 0.058

Percentile CIs 0.918 0.082 0.919 0.107 0.859 0.145

Normal CIs 0.831 0.082 0.827 0.107 0.777 0.146

Lasso

Wald CIs 0.522 0.046 0.428 0.050 0.319 0.055

Percentile CIs 0.881 0.084 0.884 0.107 0.808 0.141

Normal CIs 0.808 0.085 0.784 0.107 0.728 0.141

sisVIVE

Wald CIs 0.509 0.046 0.411 0.050 0.310 0.055

Percentile CIs 0.873 0.086 0.880 0.109 0.800 0.144

Normal CIs 0.797 0.086 0.784 0.109 0.711 0.144
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Table C.8: Scenario: balanced pleiotropy. Coverage of causal effect (β = 0.1) and
average width over 1000 simulations with different bootstrap CIs
(percentile CIs, normal CIs) and Wald-type intervals. Causal effect is
estimated by two stage least squares (TSLS) method. 1000 bootstrapped
samples are generated (case resampling bootstrap). The sample size is
100,000; n1 = 30, 000 observations are used in selection and the
remaining are used for estimation. Abbreviation: 5% Sig.level, 5%
significance level; 5% FDR, 5% false discovery rate. 5% SID, 5% Šidák
correction.

. 80 valid IVs 60 valid IVs 40 valid IVs

Method Coverage CI width Coverage CI width Coverage CI width

Scenario:Balanced pleiotropy; n1 = 30, 000

5% Sig.level

Wald CIs 0.842 0.056 0.711 0.061 0.576 0.067

Percentile CIs 0.940 0.069 0.888 0.084 0.809 0.105

Normal CIs 0.924 0.070 0.858 0.084 0.777 0.105

5% FDR

Wald CIs 0.798 0.054 0.661 0.058 0.530 0.065

Percentile CIs 0.923 0.067 0.854 0.082 0.790 0.103

Normal CIs 0.887 0.067 0.825 0.082 0.762 0.103

5% SID

Wald CIs 0.674 0.052 0.505 0.054 0.415 0.058

Percentile CIs 0.872 0.069 0.793 0.084 0.707 0.104

Normal CIs 0.817 0.069 0.734 0.084 0.661 0.104

MR-Lasso

Wald CIs 0.828 0.054 0.732 0.059 0.622 0.066

Percentile CIs 0.957 0.067 0.931 0.081 0.868 0.100

Normal CIs 0.913 0.068 0.884 0.081 0.825 0.101

Lasso

Wald CIs 0.776 0.053 0.689 0.057 0.573 0.064

Percentile CIs 0.940 0.067 0.909 0.079 0.827 0.096

Normal CIs 0.867 0.067 0.841 0.079 0.775 0.097

sisVIVE

Wald CIs 0.765 0.053 0.673 0.057 0.568 0.063

Percentile CIs 0.941 0.067 0.909 0.080 0.824 0.098

Normal CIs 0.867 0.067 0.842 0.080 0.768 0.098
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Table C.9: Scenario: directional pleiotropy. Coverage of causal effect (β = 0.1) and
average width over 1000 simulations with different bootstrap CIs
(percentile CIs, normal CIs) and Wald-type intervals. Causal effect is
estimated by two stage least squares (TSLS) method. 1000 bootstrapped
samples are generated (case resampling bootstrap). The sample size is
100,000; n1 = 30, 000 observations are used in selection and the
remaining are used for estimation. Abbreviation: 5% Sig.level, 5%
significance level; 5% FDR, 5% false discovery rate. 5% SID, 5% Šidák
correction.

. 80 valid IVs 60 valid IVs 40 valid IVs

Method Coverage CI width Coverage CI width Coverage CI width

Scenario:Directional pleiotropy; n1 = 30, 000

5% Sig.level

Wald CIs 0.851 0.058 0.755 0.065 0.588 0.074

Percentile CIs 0.925 0.071 0.893 0.089 0.826 0.120

Normal CIs 0.930 0.071 0.885 0.090 0.812 0.120

5% FDR

Wald CIs 0.809 0.056 0.722 0.063 0.558 0.072

Percentile CIs 0.922 0.069 0.881 0.088 0.739 0.119

Normal CIs 0.896 0.069 0.854 0.088 0.694 0.119

5% SID

Wald CIs 0.695 0.054 0.547 0.058 0.392 0.064

Percentile CIs 0.870 0.070 0.822 0.090 0.816 0.118

Normal CIs 0.830 0.070 0.773 0.090 0.802 0.118

MR-Lasso

Wald CIs 0.858 0.055 0.790 0.061 0.675 0.071

Percentile CIs 0.962 0.067 0.949 0.081 0.893 0.105

Normal CIs 0.930 0.067 0.902 0.081 0.857 0.105

Lasso

Wald CIs 0.803 0.054 0.738 0.060 0.610 0.069

Percentile CIs 0.948 0.066 0.931 0.079 0.859 0.100

Normal CIs 0.882 0.066 0.865 0.079 0.801 0.100

sisVIVE

Wald CIs 0.790 0.054 0.717 0.059 0.594 0.068

Percentile CIs 0.944 0.066 0.929 0.079 0.863 0.100

Normal CIs 0.878 0.066 0.858 0.079 0.798 0.101
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Table C.10: Scenario: balanced pleiotropy. Coverage of causal effect (β = 0.1) and
average width over 1000 simulations with different bootstrap CIs
(percentile CIs, normal CIs) and Wald-type intervals. Causal effect is
estimated by two stage least squares (TSLS) method. 1000
bootstrapped samples are generated (case resampling bootstrap). The
sample size is 100,000; n1 = 50, 000 observations are used in selection
and the remaining are used for estimation. Abbreviation: 5% Sig.level,
5% significance level; 5% FDR, 5% false discovery rate. 5% SID, 5%
Šidák correction.

. 80 valid IVs 60 valid IVs 40 valid IVs

Method Coverage CI width Coverage CI width Coverage CI width

Scenario:Balanced pleiotropy; n1 = 50, 000

5% Sig.level

Wald CIs 0.904 0.067 0.828 0.075 0.725 0.084

Percentile CIs 0.963 0.077 0.930 0.091 0.851 0.112

Normal CIs 0.943 0.078 0.910 0.091 0.849 0.112

5% FDR

Wald CIs 0.880 0.064 0.794 0.071 0.699 0.081

Percentile CIs 0.953 0.074 0.917 0.088 0.884 0.108

Normal CIs 0.923 0.074 0.890 0.088 0.829 0.108

5% SID

Wald CIs 0.818 0.062 0.689 0.067 0.561 0.072

Percentile CIs 0.938 0.072 0.870 0.085 0.770 0.102

Normal CIs 0.877 0.072 0.810 0.085 0.712 0.103

MR-Lasso

Wald CIs 0.895 0.064 0.861 0.071 0.784 0.081

Percentile CIs 0.990 0.074 0.971 0.086 0.921 0.104

Normal CIs 0.947 0.075 0.919 0.086 0.883 0.104

Lasso

Wald CIs 0.867 0.063 0.821 0.069 0.723 0.078

Percentile CIs 0.984 0.072 0.958 0.083 0.896 0.099

Normal CIs 0.914 0.073 0.894 0.083 0.851 0.099

sisVIVE

Wald CIs 0.861 0.063 0.815 0.069 0.714 0.077

Percentile CIs 0.984 0.072 0.958 0.083 0.899 0.099

Normal CIs 0.911 0.072 0.889 0.083 0.851 0.099
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Table C.11: Scenario: directional pleiotropy. Coverage of causal effect (β = 0.1) and
average width over 1000 simulations with different bootstrap CIs
(percentile CIs, normal CIs) and Wald-type intervals. Causal effect is
estimated by two stage least squares (TSLS) method. 1000
bootstrapped samples are generated (case resampling bootstrap). The
sample size is 100,000; n1 = 50, 000 observations are used in selection
and the remaining are used for estimation. Abbreviation: 5% Sig.level,
5% significance level; 5% FDR, 5% false discovery rate. 5% SID, 5%
Šidák correction.

. 80 valid IVs 60 valid IVs 40 valid IVs

Method Coverage CI width Coverage CI width Coverage CI width

Scenario:Directional pleiotropy; n1 = 50, 000

5% Sig.level

Wald CIs 0.926 0.071 0.858 0.080 0.745 0.093

Percentile CIs 0.962 0.081 0.921 0.099 0.863 0.129

Normal CIs 0.951 0.082 0.922 0.099 0.878 0.129

5% FDR

Wald CIs 0.897 0.067 0.842 0.077 0.724 0.090

Percentile CIs 0.963 0.077 0.913 0.095 0.850 0.125

Normal CIs 0.942 0.077 0.926 0.095 0.864 0.126

5% SID

Wald CIs 0.835 0.064 0.708 0.071 0.568 0.080

Percentile CIs 0.937 0.073 0.880 0.089 0.796 0.117

Normal CIs 0.883 0.074 0.843 0.090 0.774 0.117

MR-Lasso

Wald CIs 0.920 0.066 0.883 0.074 0.844 0.086

Percentile CIs 0.986 0.075 0.986 0.097 0.949 0.107

Normal CIs 0.953 0.075 0.947 0.087 0.92 0.107

Lasso

Wald CIs 0.891 0.065 0.864 0.072 0.777 0.083

Percentile CIs 0.981 0.072 0.977 0.083 0.935 0.102

Normal CIs 0.929 0.072 0.937 0.083 0.875 0.102

sisVIVE

Wald CIs 0.888 0.064 0.862 0.072 0.764 0.083

Percentile CIs 0.981 0.072 0.977 0.083 0.936 0.102

Normal CIs 0.926 0.072 0.931 0.083 0.871 0.102
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Table C.12: Coverages and average widths of different 95% bootstrap intervals for
new Lasso method over 1000 simulations. The entire data (100k) is
used for both selection and estimation. Abbreviation: Normal, Normal
intervals; Normal (Bias correction), Normal intervals with bootstrap
estimate of bias; Basic, Basic intervals; Percentile, Percentile intervals;
Studentized, Studentized intervals

80 valid IVs 60 valid IVs 40 valid IVs

Method Coverage Width Coverage Width Coverage Width

Scenario: balanced pleiotropy;

Normal 0.971 0.061 0.928 0.070 0.878 0.083

Normal (Bias correction) 0.946 0.061 0.902 0.070 0.871 0.083

Basic 0.935 0.061 0.899 0.070 0.859 0.086

Percentile 0.948 0.061 0.896 0.070 0.814 0.083

Studentized 1 0.077 1 0.095 1 0.127

Scenario: directional pleiotropy

Normal 0.972 0.061 0.964 0.071 0.912 0.086

Normal (Bias correction) 0.929 0.062 0.916 0.071 0.891 0.086

Basic 0.958 0.062 0.916 0.071 0.886 0.086

Percentile 0.927 0.062 0.905 0.071 0.818 0.086

Studentized 1 0.079 1 0.091 1 0.123
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C.5 Supplementary Figures

Figure C.1: Scenario: balanced pleiotropy. Boxplot of bootstrap SE/SD, true
positives, false negatives over 1000 simulations.The sample size is 100k.
10k observations are used for selection and the remaining for estimation.
Abbreviation: sig, 5% significance level; fdr, 5% false discovery rate;
sid, 5% Šidák correction; mrlas, MR-Lasso; las:Lasso; sis, sisVIVE.
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Figure C.2: Scenario: directional pleiotropy. Boxplot of bootstrap SE/SD, true
positives, false negatives over 1000 simulations.The sample size is 100k.
10k observations are used for selection and the remaining for estimation.
Abbreviation: sig, 5% significance level; fdr, 5% false discovery rate;
sid, 5% Šidák correction; mrlas, MR-Lasso; las:Lasso; sis, sisVIVE.
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Figure C.3: Scenario: balanced pleiotropy. Boxplot of bootstrap SE/SD, true
positives, false negatives over 1000 simulations. The sample size is 100k.
30k observations are used for selection and the remaning for estimation.
Abbreviation: sig, 5% significance level; fdr, 5% false discovery rate;
sid, 5% Šidák correction; mrlas, MR-Lasso; las:Lasso; sis, sisVIVE.

189



Ph.D. Thesis – Mengjie Bian McMaster University – Statistics

Figure C.4: Scenario: directional pleiotropy. Boxplot of bootstrap SE/SD, true
positives, false negatives over 1000 simulations. The sample size is 100k.
30k observations are used for selection and the remaining for estimation.
Abbreviation: sig, 5% significance level; fdr, 5% false discovery rate;
sid, 5% Šidák correction; mrlas, MR-Lasso; las:Lasso; sis, sisVIVE.
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Figure C.5: Scenario: balanced pleiotropy. Boxplot of bootstrap SE/SD, true
positives, false negatives over 1000 simulations. The sample size is 100k.
50k observations are used for selection and the remaining for estimation.
Abbreviation: sig, 5% significance level; fdr, 5% false discovery rate;
sid, 5% Šidák correction; mrlas, MR-Lasso; las:Lasso; sis, sisVIVE.
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Figure C.6: Scenario: directional pleiotropy. Boxplot of bootstrap SE/SD, true
positives, false negatives over 1000 simulations. The sample size is 100k.
50k observations are used for selection and the remaining for estimation.
Abbreviation: sig, 5% significance level; fdr, 5% false discovery rate;
sid, 5% Šidák correction; mrlas, MR-Lasso; las:Lasso; sis, sisVIVE.
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Figure C.7: Scenario: balanced pleiotropy. Comparison among bootstrap CIs and
Wald CIs accounting for selection with different splits of data for
selection and Wald CIs without accounting for selection. Abbreviations:
Naive, Wald CIs using all data for selection and estimation; Select,
Wald CIs; Percentile, Percentile CIs; Normal, Normal CIs. For Select,
Percentile and Normal CIs, part of data (n1 = 10k, 30k or 50k) are used
for selecting valid IVs and the remaining for estimation. The sample
size is 100k.
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Figure C.8: Scenario: directional pleiotropy. Comparison among bootstrap CIs and
Wald CIs accounting for selection with different splits of data for
selection and Wald CIs without accounting for selection. Abbreviations:
Naive, Wald CIs using all data for selection and estimation; Select,
Wald CIs; Percentile, Percentile CIs; Normal, Normal CIs. For Select,
Percentile and Normal CIs, part of data (n1 = 10k, 30k or 50k) are used
for selecting valid IVs and the remaining for estimation. The sample
size is 100k.
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