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Lay Abstract

Digital twins enable the real-time, accurate, and complex modeling and monitoring

of mechanical systems. Machine tools are essential components of modern manufac-

turing. They are composed of various mechanical, hydraulic, and electrical systems

such as the spindle, tool changer, cooling system, and linear and rotary feed drives.

This work presents the design of a workbench of a machine tool linear feed drive, a

fault detection strategy, and a digital twin modeling solution. The workbench enables

the collection and analysis of large, varied, high-frequency data which can be used to

construct a digital twin of the feed drive. A digital twin can enable many other useful

functionalities. Some of these functionalities include condition monitoring, modeling,

control, visualization, and simulation. These functionalities can enable maximum

asset performance and are key in implementing effective predictive maintenance.
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Abstract

Machine tools are essential components of modern manufacturing. They are com-

posed of various mechanical, hydraulic, and electrical systems such as the spindle,

tool changer, cooling system, and the linear and rotary feed drives. Due to their com-

plexity, high cost, and importance to the manufacturing process it is recommended to

implement some sort of condition monitoring and predictive maintenance to ensure

that they remain reliable and high performing. One way of potentially implement-

ing predictive maintenance and condition monitoring is digital twins. Digital twins

enable the real-time, accurate, and complex modeling and monitoring of mechanical

systems. They utilize data collected from the system to constantly update their mod-

els which can be used for monitoring of the systems state and future predictions. This

work presents a digital twin workbench of a machine tool feed drive. The workbench

enables the collection and analysis of large, varied, high-frequency data which can be

used to construct a digital twin of the feed drive. A digital twin can enable many

other useful functionalities. Some of these functionalities include condition moni-

toring, modeling, control, visualization, and simulation. These functionalities can

enable maximum asset performance and are key in implementing effective predictive

maintenance. The main contributions of this work are the following: The design and
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construction of a machine tool feed drive which implements a novel external distur-

bance force method. A new method of fault detection in ball screws using interacting

multiple models which was shown to provide accurate estimates of levels of preloads

in a ball screw driven feed drive. A digital twin based modeling strategy and analysis

of the data generated by the system including system modeling and observations on

modeling difficulties.
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Chapter 1

Introduction

The manufacturing world has entered the Fourth Industrial Revolution (4IR) also

known as Industry 4.0. The 4IR is characterized by increased digital integration in

manufacturing, construction, healthcare, and other industries. Some of the key fea-

tures are the following: implementation of the Internet of Things (IoT), collection

and analysis of large heterogeneous data sets from various sources, implementation

of artificial intelligence (AI), and developing cyber-physical systems (CPS). A type

of CPS seeing increased popularity in the past 5-10 years is the digital twin (DT).

DTs are virtual representations of objects, systems, and processes. They are made

up of various models, whether that is a physics-based models or data-driven models.

Various data steams are utilized to regularly update the model(s) of the DT to keep

it up to date and representative of its real life counterpart. DTs can offer many use-

ful functionalities such as condition monitoring, modeling, control, visualization, and

simulation. DTs have been utilized in many different sectors such as building manage-

ment, construction, autonomous vehicles, smart cities, chemical process management,

and most commonly in manufacturing.
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Manufacturing is one of the most important sectors in the 4IR. Modern manufac-

turing is reliant on a large quantity of automated assets working collaboratively. These

assets include robotic arms, gantry cranes, autonomous vehicles, conveyor belts, and

machine tools (MT). Computer numerical control (CNC) MTs are the backbone of

modern manufacturing. They are responsible for various operations such as milling,

turning, and grinding to name a few. Manufacturing facilities in sectors such as the

automotive or aerospace industry will contain dozens or hundreds of MTs which can

manufacture thousands to millions of parts per year. CNC MTs are often very ex-

pensive machines, costing between hundreds of thousands to millions of dollars on

average. They represent a large capital investment, however this investment is off-

set by the large throughput, vast array of capabilities, and high precision offered by

them. CNC MTs often contain various mechanical, electrical, and hydraulic sub-

systems. Some of these systems include the spindle, the tool changer, the cooling

system, the control system, and the various rotary and linear feed drives (LFDs).

LFDs position components in the MTs. LFDs are most often driven by either linear

motors or a servo motor which turns a lead screw or ball screw . It is important

that feed drives can quickly and accurately position parts while maintaining rigidity

by resisting any process forces that occur while operating. Maintaining rigidity and

accuracy are important to manufacture accurate parts with good surface finishes. If

accuracy cannot be maintained parts may need to be scraped as they do not meet

the manufacturing specifications that have been defined.

Due to the importance of feed drives functioning properly it is important that

they are maintained in good condition. All equipment will degrade with regular use,

2
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and with it will come reduced performance. It is impossible to completely stop degra-

dation, but there are ways to track it and to act before critical levels of performance

decline have been reached. Predictive maintenance (PM) is a maintenance paradigm

that implements condition monitoring (CM) by utilizing signals from the equipment

to track degradation to service and replace equipment at effective intervals. Imple-

menting PM can help detect early signs of wear, reduced unexpected downtime due

to critical equipment failure, and minimize replacement costs by replacing equipment

near the very end of its useful lifetime.

One possible avenue of implementing PM is the use of DTs. DTs can be leveraged

to collect and analyze large heterogeneous data streams which can be used for model-

ing and predicting wear, misalignment, and other faults. If PM can be implemented

on MTs it could potentially substantially improve reliability, positioning accuracy,

and overall profitability. Additionally a great deal of knowledge can be gained about

the system which can be utilized for other research endeavours.

1.1 Research Objective

The original motivation and funding for this research came from Ford Motor Com-

pany. They wished to implement improved CM and fault detection in their MTs

which are used in their transmission manufacturing facilities. To do this they wanted

to better understand the data generated from their MTs and how it could be used

to predict faulty components. Unfortunately it is not feasible to take a MT out of

production to analyze it. To do in-depth analysis, an experimental setup was needed

where many data sets could be generated under controlled conditions to better under-

stand these machine signals and their underlying causes. Another research motivation

3
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would be an additional system to collect data which would be used for other students

and researcher’s work.

The primary objective of this work was to design, construct, and test a workbench

of a MT LFD. A MT LFD, in combination with various modeling methods can yield

a great deal of functionality including the collection of a large heterogeneous dataset

and mechanical simulation capabilities. Several modeling methods such as kinematic,

finite element (FE), data-driven, and physics-based models can be used to implement

a DT. This functionality can be utilized for a variety of purposes. These include:

development of condition monitoring methods for the LFD, the generation of large

labeled datasets which can be used to develop and test various data driven model-

ing techniques like machine learning (ML), and the development of various estimation

methods for parameter estimation which can be validated using the workbench. Other

objectives included analysis of the collected data and modeling of the system via sev-

eral different methods. Using several different modeling techniques that are updated

and refined using data generated by the system a DT will have been implemented on

the system

This workbench will provide value for our industry sponsor, who can use the

CM methods developed and tested on the test bench and implement them in their

production system. It will also provide continued benefit to future research where

it can be used to generate large, varied data sets for various forms of analysis and

testing.

4
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1.2 Organization of Thesis

The remainder of the thesis is organized as follows: Chapter 2 will cover the back-

ground information and relevant literature in the topics of MT LFDs, DTs and their

application to MTs , and the various methods to implement CM. Chapter 3 will cover

the design of the MT LFD test bench. Chapter 4 covers an IMM strategy for fault

detection in ball screws. Chapter 5 covers analysis of the data generated by the work-

bench, modeling , and an overview of a DT modeling strategy. Chapter 6 concludes

the work and discusses potential future work.

5
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Chapter 2

Background Information and

Literature Review

This section covers background information, as well as related literature to key topics

related to this thesis. There are three main topics of interest relating to this work.

These are: MT LFDs (2.1), CM, fault detection, and PM (2.2), and DTs (2.3).

2.1 Machine Tool Feed Drives

Modern manufacturing is reliant on capital investments in machinery which can im-

prove manufacturing throughput, produced part quality, and reduce overall operat-

ing expenses in the long term. There are a variety of manufacturing assets seen in

many factories across the world, some of these include: conveyor belts, gantry cranes,

robotic arms, autonomous vehicles, and MTs. Industries such as the automotive,

aerospace, and heavy machinery industries rely on MTs to manufacture components

6
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Figure 2.1: Overview of MT LFDs [13]
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at a high throughput with high accuracy. MTs are complex systems containing me-

chanical, electrical, hydraulic, and pneumatic subsystems [119]. Some of these systems

include the spindle, cooling system, tool changer, control system, and the linear and

rotary feed drives. Many MTs contain either 3 or 5 axes of motion. Typically, 3-axis

machines move linearly in the X, Y, and Z directions, with 5-axis machines employing

an additional 2 rotational axis often labeled A and B [20]. Fast, accurate, and rigid

motion of the various feed drives is essential to the performance of any MT.

When designing a LFD, it is important to know and understand the design require-

ments of the system. Additionally it is important to understand the key components

and their features. These requirements and an understanding of the working principle

of the key components will help with selection and sizing of the key components of

the system. It is also necessary to understand how a LFD system can be modeled.

An overview of section 2.1 can be seen in Figure 2.1.

2.1.1 Characteristics of a Ball Screw Feed Drive

LFDs can be driven a variety of ways, they are usually driven one of three ways:

linear motors, servo motor which drives a lead screw or a ball screw, or a rack and

pinion. For a screw driven system, they can either be direct drive, or there can

some sort of transmission component between the motor and screw such as pulleys

or gearing. Most modern MTs utilize either a direct drive ball screw or linear motor

driven LFD. There are a few characteristics that make direct drive ball screw LFD

the most commonly used feed drives [9] as listed below:

1. Low wear

2. High service life

8
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3. High efficiency

4. Low heating

5. Zero / low backlash

6. High rigidity

7. High load capability

The reasons listed above make these systems ideal for use in industrial production

MTs. MTs in these conditions operate near constantly, they only very occasionally

are brought out of service for routine maintenance. They often require high torques

to move heavy objects at high accelerations, as well as experiencing high external

disturbances due to machining process forces. The low wear characteristics of ball

screws enable a longer useful life, minimizing the cost of replacement parts, and

maximizing replacement intervals. High efficiency ensures minimal power loss through

friction. This results in decreased heat generated which can cause thermal distortion

and increased wear. Zero or minimal backlash and high rigidity ensures repeatability,

resistance to the effects of external disturbances, and increased movement precision.

High load capability ensures that they can quickly position heavy work pieces while

handling the large external forces generated from machining process forces. This is

especially important in high speed manufacturing where process are run at maximum

speeds to minimize cycle times.

2.1.2 Linear Feed Drive Components

Not every LFD is identical but most contain a few important components. For ball

screw driven LFDs each end of the screw will normally be supported at each end by

9
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a rotational bearing, usually a ball bearing. Additionally, the motor will need to be

coupled to the screw via a motor coupling. Normally these LFDs will move some of

work table or platform along the axis. This table or platform is most often supported

on linear guides which provide a rigid path to follow while also reducing the sliding

friction of the movement.

Ball Screws

Ball screws are the most common mechanism for linear motion in MT LDS. They

convert the rotational motion of a servo motor into linear motion. Ball screws function

similarly to lead screws, moving a nut, which is connected to the worktable, up and

down a screw. However, ball screws possess certain characteristics that make them

more desirable than lead screws for MT LFDs. These include their extremely high

efficiency (>90%), the ability to run at continuous duty with large loads, high load

capacities, and low wear properties [9].

Ball screws come in a variety of configurations. There are different options for

diameters and leads, where the lead is the lateral distance traveled for one full rotation

of the screw. With increasing diameters comes increasing rigidity and load rating,

however, it also results in an increase to inertia / mass and therefore requires more

torque and energy to rotate. Increasing the lead of the screw can yield faster travel

of the axis, at the expense of increase torque required to rotate [24]. In addition to

the variations in the screws there are different types of nuts available. To improve

the rigidity and repeatability of ball screw feed drives, they are often preloaded .

Preloading a ball screw is the process of eliminating internal clearance between the

ball nut and ball screw. Preload is applied primarily in two ways: by using oversized

10
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Figure 2.2: A typical ball screw and nut [30]

balls, or by using a double nut to create a tension or compression force between

the two nuts. Preload is normally designated as a percentage of the dynamic load

capacity of the ball screw. Preloads typically range from 2% to 10% of the dynamic

load capacity. A higher preload of 10% is most often used for MTs to maintain

high rigidity and repeatability with high cutting loads and vibrations. Maintaining

high preload is important not only to manufacture parts to tight tolerances, but also

because preload loss is often a symptom of degradation of the raceway of a ball screw

[123].

Bearings

Bearings are used to minimize friction in rotating machinery. In ball screw driven

feed drives they are placed at each end of the ball screw. They typically come in

two variants: fixed (or thrust) and free supports. Fixed supports constrain the move-

ment in the axial direction while free bearings allow free movement along this axis.
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(a) Stiffness comparison of single or
double thrust bearings [9]

(b) Typical bearing arrangement for
a ball screw [101]

Figure 2.3: Bearings for LFDs

Typically there will be either one of each type or two fixed bearings being utilized.

the primary affect this will have will be to alter the stiffness profile of the ball screw.

Dual fixed bearing lead to a sort of inverted "U" shape where the system is least rigid

in the middle of the screw. Single fixed bearing setups have a gradually decreasing

stiffness from the fixed bearing end to the free bearing end [9].

Servo Motors

Most often LFDs are driven via a direct drive electric motor. The most common

type of motor used in these applications are AC servo motors [6]. AC servo motors

offer a few advantages over other types of driving mechanisms such as the follow-

ing: high power-to-weight ratios, low noise generation, reliable, and they often have

incorporated encoder for accurate positioning. These are the types of motor that

will be used in most CNC MT applications. When selecting motors it is important

to consider the characteristics and specifications of the motor to ensure it fits the
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Figure 2.4: Siemens servo motor [95]

desired application. Some common specifications of motors are: maximum rotational

speed, maximum continuous and instantaneous torque, motor rotor inertia, output

shaft diameter. Before selecting a motor it is important that system parameters such

as max travel speed, maximum force required, and weight of the moving platform are

considered.

Linear Guides

Linear guides are a key components in most LFDs. There are a few different variations

in LFDs, but they all work on the principle of reducing the friction of the movement of

the system while providing rigidity [142]. Most often LFDs will have a circular cross

section or an hourglass like profile seen in Figure 2.5. One type of linear rail uses

sliding bushings. These bushings utilize grease and a low friction material such as a

composite or brass bushing to reduce sliding friction. For further reduced friction a

circulating ball bearing system can be used. This system functions similarly to a ball
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Figure 2.5: Typical profile linear guide [129]

Figure 2.6: Bellow motor coupling [94]

screw with ball bearings circulating through a raceway to minimize contact friction.

Like ball screws linear guides can be preloaded to increase rigidity.

Motor couplings

In order to transfer the force from the servo motor to the ball screw there needs to be a

coupling device between the two. There are many different types of motor couplings.

Broadly they can be split into rigid and flexible [4]. Rigid are typically the simplest
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design, but require the two shafts to be in near perfect alignment. An alternative

is using a flexible coupling which can maintain high rigidity and zero backlash while

allowing for some level of misalignment [17]. There are a few variations of flexible

couplings including bellows, oldham, and diaphragm which can be seen in Figure

2.6. With couplings there are several methods to secure the coupling to the two

shafts. If the shafts are keyed or splined the coupling will typically just have a female

connection for the corresponding keyway or splines. If a straight shaft is used there

are two typical ways to secure the shaft, either set screw(s) or clamping. Set screw

couplers use one or more set screws to screw into the shaft to secure the coupling to

the shafts. For clamping couplings there is a screw which when tightened decreases

the diameter of the coupling which creates a clamping force around the motor and ball

screw shaft. When selecting motor couplings it is important to consider the maximum

speed, maximum instantaneous and continuous torque as well as the nature of the

movement the coupling would be expected to experience.

2.1.3 Linear Feed Drive Modeling

There are various ways to model ball screws. Most common in the literature are

white or grey box models where there is either some or a great deal of the underlying

mechanisms and physics of the system. Three common methods are lumped element,

geometric, and finite element models (FEM) [152, 61, 81]. Geometric models are

most often created in computer aided design (CAD) software such as Solidworks or

Inventor. They often serve as the base for other types of modeling such as kinematic

or FEM. Kinematic analysis can be useful for simulating the movement of the system

and its interaction with other components. Lumped mass modeling is usually created
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using mathematical relationships such as differential equations, state space models or

transfer functions. Lumped mass modeling is often combined with FEM to create a

hybrid model. A few examples of models seen in the literature can be seen in Figure

2.7.

(a) Example of a lumped mass
model common in control

application [9]

(b) Another example of a more
complex lumped mass model [61]

(c) FEM common to analyze
stiffness, vibration, and temperature

effects [61]
(d) Geometric model used as the
basis for many other types of

models [93]

Figure 2.7: Examples of models of ball screw LFDs

Lagrangian Mechanical Modeling

Mechanical models are used to predict and control the movement of ball screw sys-

tems. One of the most common mechanical models used for many different mechanical
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systems are Lagrangian mechanical models. They consider the separate masses or in-

ertias of the various components listed above along with the stiffness and friction

between them. There are several different ways these systems can be modeled using

this method. Some models consider the individual components and the interaction

between them [104], while others may consider them as a lumped mass to simplify

the analysis [103, 9]. This is often the method used for developing and testing con-

trol systems. One popular way of achieving this modeling method is using MATLAB,

specifically Simulink. Simulink allows for the graphical representation of these models

and allows for simulation of these models to allow for vibration and control perfor-

mance analysis.

There are many examples of lumped mass models being used in the literature. Frey

at al. [43] modeled a ball screw system using a lumped mass model and compared to

a hybrid FEM-lumped mass model. They found that the simpler lumped mass model

was suitable for analyzing the vibration characteristics of the system and determining

the dominant eigen-modes. They found their model matched up well to experimental

data. Ebrahimi and Whalley [38] analyzed a LFD of a system which was driven by a

belt and pulley. They modeled their system using a block diagram and included non-

linearities such as coulomb friction and backlash. They analyzed the effect of stiffness,

friction, backlash, and mass on feed drive performance. They believe this model can

be used to optimize machine tool parameters and predict tool life. Huang et al. [58]

utilized a lumped mass model to analyze the stiffness and friction characteristics of

a feed drive. Using this model they were able to analyze the deformation of the feed

drive and develop compensatory control methods to reduce tracking error . Altinas et

al. [7] used a lumped mass model of a ball screw to develop a sliding-mode controller
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for LFDs .

Finite Element Modeling

LFDs are often modeled in CAD software to create a geometric model of the system.

Geometric models of LFDs can be used for other types of modeling such as FEM or

used for dynamic mechanical system simulation. FEM are often used to study the

stiffness, thermal, and vibration characteristics of the ball screw LFD.

Mechanical vibration is an important consideration when designing any mechan-

ical system. It is important to understand the various natural frequencies, mode

shapes, and forcing frequencies to design a system. There are many examples in the

literature of utilizing FEM for vibration analysis in MT LFDs. One early example

in the literature was work by Zaeh et al. [159] who created a FEM, simulated it and

compared it to experimental results. Their work was intended to improve the control

performance of MT feed drives. Since this early work there has been a steep increase

in computing power and as a result the capabilities of FEM software. In further

work, Zaeh and Oertli modeled the stiffness of a ball screw feed drive. Again, this

model can be used to improve the control performance of the LFD [158]. In other

work they applied their FEM combined with multi body simulation to predict and

simulate machining performance [157]. In their thesis Okwudire [102] modeled a ball

screw system using FEM, they utilized hybrid modeling with more rigid components

modeled as lumped-parameter rigid bodies and more flexible members modeled using

distributed-parameter structural members. They used this modeling scheme in sev-

eral control schemes and were able to show that their modeling technique was superior

to traditional techniques . Zhu et al. [169] used FE model and rigid body dynamics
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model hybrid to create a vibration model of the system. They were able to model

the frequency response of the system which was validated with experimental results.

This analysis can be used to optimize the performance of feed drive systems. They

identified the stiffness and damping ratio of the system. Vincente et al. [138] mod-

eled a continuous LFD as a FEM using Ritz series approximation. Doing this they

analyzed the effect of different transmission ratios on the vibration dynamics. They

found that the transmission ratio of the system had a large effect on the frequency

response .

Another common application for FEM of LFDs and their components is thermal

analysis. Components will expand and contract as their temperature increases and

decreases. As a result, thermal error is introduced which can decrease the machining

accuracy of MTs. Wu et al. [148] Utilized FEM for analyzing thermal deformation

of a ball screw. They compared the results of their modeling to experimental data

collected from thermocouples, laser interferometer and a capacitance probe to measure

thermal error. Using their hybrid model they could determine the strength of various

heat sources and the resulting thermal error. Yun and Kung [156] used FEA to

estimate the thermal errors of the ball screw and guide way. They found that thermal

deformation of the linear guide way causes issues with straightness and angular errors,

whereas the ball screw only caused linear errors. They validated their models through

experimentation suing a laser interferometer to measure error . Min and Jiang [96]

used FEM to analyze the thermal contact resistance between the end bearing and

their housing to predict temperature increase and the resulting power loss. They

validated their model using experimental data .
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Other Types of Models

In addition to the most popular types of models of lumped mass modeling and FEM,

there are other types of modeling that may be useful. One type of modeling that

has seen some use in the literature is MATLAB Simscape. Simscape is an add-on

for Simulink that allows for the physical modeling of systems on a component level

such as mass’, springs, hydraulic cylinders, lead screws, gears, etc as opposed to

block diagrams of transfer functions used in Simulink as seen in Figure 2.8. There

are a few examples in the literature of using Simscape for modeling LFDs. The

primary objective of using this modeling method was simulation and controller design

[54, 25, 105].

One other popular type of modeling is dynamic mechanical system simulation.

This type of modeling is usually built on geometric modeling and uses model qualities

such as mass and geometry to simulate mechanical movements. This type of modeling

can be useful for estimating and measuring the forces, velocities, and accelerations

that occur under certain conditions [49].

Figure 2.8: Simscape model versus Simulink model
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2.2 Condition Monitoring, Fault Detection, Predic-

tive Maintenance

Given the importance of capital investments such as MTs to modern manufacturing, it

is important that they are kept in good working condition. Machines in good working

condition can perform at high speeds and accuracy with high levels of reliability. To

ensure that they are kept in good condition it is worthwhile to implement CM. CM is

the process of collecting data from a system to create estimates of its condition and

predictions of remaining useful life (RUL). CM is part of an effective maintenance

management program.

Maintenance and machine condition has several associated costs which can be

minimized if an effective maintenance program is implemented: expected downtime,

unexpected downtime, quality, and replacement parts. Expected downtime is the lost

production due to the machine being down for scheduled maintenance. When ma-

chines are down for maintenance they incur costs by reducing production throughput

and requiring labour to service the machines. Unexpected downtime occurs due to

sudden failures and crashes. These crashes cause damage to equipment in addition

to incurring the costs of reduced throughput and required labour to repair the ma-

chine. Expected downtime is always preferred to unexpected downtime as it can be

anticipated and its costs more easily predicted. Poor quality has associated costs.

There is a cost with testing components periodically throughout production, the cost

to scrap or rework components that do not meet specifications, or the cost if a non-

conforming part makes it through production to a customer. Generally the further

a component travels along production the greater the associated costs. In addition
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Figure 2.9: Overview of CM [20, 126, 97, 76]
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to direct monetary cost, there is also often a cost to the damage to reputation that

occurs if poor quality parts make it out of production. The replacement parts needed

to service the equipment are a cost associated with maintenance. Not only the cost

of the parts themselves but the value lost if components prematurely wear or are

replaced before the end of their useful life. Additionally, if replacements parts are

past their production life or there is a high demand additional costs may be incurred

due to low stock or priority shipping.

Predictive and prognostic maintenance is the latest evolution of maintenance

paradigms. The first level of maintenance paradigms is reactive maintenance. Re-

active maintenance is simply fixing machines as they break. This is the least effec-

tive form of maintenance. Reactive maintenance increases unexpected downtime as

unexpected failures arising from neglect force the machines down. The next level of

maintenance is planned maintenance, where maintenance occurs at set intervals. This

is a better method compared to reactive maintenance but is still not ideal. Doing

maintenance at set intervals increases the cost of expected down times and can mean

replacing parts that are still far away from the end of their life. PM involves analyzing

data from the machine and predicting when it requires maintenance. This paradigm

can reduce expected, and unexpected downtime costs as machines are serviced only

when necessary and before critical failures occur. Cost of quality and replacement

part costs can be reduced as well as parts are used for the majority of their useful life

and not past the point where the cost of quality begins to rise. A summary of the

relative costs of each paradigm is seen in Table 2.1. PM requires a great deal of data

to analyze. Traditional CM is labour intensive and prone to human error. It often

requires a worker to inspect and test machines over time individually. This approach
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Table 2.1: Costs of maintenance

Paradigm Associated cost

Expected
downtime

Unexpected
downtime Quality Replacement

parts.

Reactive Low High High Moderate

Scheduled High Low Low High

Predictive Moderate Low Low Low

is too expensive to inspect at a high enough frequency, and inspection is done too

infrequently, therein faults and wear are detected too late. Sensors can be installed

on machines to collect a large stream of data in real-time. Data collected from the

machines can be analyzed to determine the machine’s condition. This information can

be used to take corrective action if required. Autonomous CM will maximize machine

performance and up-time, which will, in turn, maximize manufacturing efficiency.

There are many different condition monitoring strategies and methods in the lit-

erature [20, 121], a few of which will be discussed in the following subsections.

2.2.1 Sensor-Based and Sensor-Less Analysis

For MT CM analysis can be split into sensor based or sensor-less. Sensor-less based

CM does in fact use sensors, however, it uses sensors which are already installed on

most, if not all CNC MTs. An overview can be seen in figure 2.10. Common in

sensor-less analysis is the use of machine encoders, and torque or current sensors.

These sensors can be used to estimate preload [63, 27], backlash [117] and wear [92].

Sensor based analysis uses additional sensors installed on the system. The most

common external sensors are accelerometers and thermometers [20, 121]. These are
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Figure 2.10: Sensor-based versus sensor-less analysis [20]

common because increased temperature and vibration are usually symptoms of wear

or faults. Vibration analysis can be useful in estimating wear [109] in a system, or

determining the natural frequency [82] for example. Temperature sensors are often

used to monitor friction and lubrication [128, 67], or to estimate levels of preload [39].

Further discussion of sensor based and sensor-less analysis and other data streams can

be found in section 3.2.3.

Sensor-based and sensor-less solutions are both valid approaches to condition mon-

itoring and fault detection. The primary advantages of sensor-based solution is the

opportunity for many additional data streams, however, introducing these additional

data streams introduces additional complexity and cost for integrating these addi-

tional sensors. Sensor-less solutions are advantageous because they don’t require any

additional investment or complexity, however, they also limit the amount of data

streams available.
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2.2.2 Analysis Domain

When analyzing sensor or sensor-less based methods there are multiple domains to

analyze the data. Data is most frequently collected as a time series. It is common to

analyze the data in this domain as it can be used to observe changes to parameters over

time. For example it may be useful to observe the changes in temperature over time

[96]. Another common type of analysis occurs in the frequency domain. Frequency

domain analysis is often achieved by using the Fast Fourier transform (FFT) which can

decompose a signal into the sub-signals of various frequencies. Doing this it is possible

to observe which are the dominant frequencies of vibration for example which can be

seen in Figure 2.11. This is a common approach for methods which are examining

vibration. They often will seek to determine the frequencies of the highest amplitude

of vibration [84]. This frequency domain information can be helpful for controller

design [138]. Another possibility is the combination of both domains. Short-time

Fourier transform or Wavelet transform can be used to analyze in the time-frequency

domain. Hilbert Huang transform is a method used often in the literature for time

frequency domain analysis as it can yield instantaneous frequencies as a function of

time [59].

2.2.3 Signal Processing Condition Monitoring

One typical approach to condition monitoring is to extract features from the various

available signals. These features can be captured from any one of the sensors or anal-

ysis domains mentioned in the sections 2.2.1 and 2.2.2 above. These methods often

extract time domain features such as mean squared error, maximum and minimum,
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Figure 2.11: Time and frequency domain representations of a signal using Fourier
transform [66]

and variance. There are also a variety of features that can be extracted from the fre-

quency domain such as the the power spectral density at various frequencies. Often

times these features will be measured at both healthy and degraded or fault states so

that they can be identified from the machines signals.

2.2.4 Model-Based Condition Monitoring

Model-based CM relies on an understanding of the underlying mechanisms of the

monitored system, it is a type of white box modeling. Model-based methods utilize
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physical modeling of the systems which can be used to predict and describe the

system. There are several types of models which can be used to describe the system,

some of which are listed above in section 2.1.3. Often this type of analysis models

various faults and seeks to match system measurements with the fault states. For

example one paper by Jeong et al.[65] used mathematical motor current models to

estimate inclination angle of a feed drive table . In a paper by Verl et al.[136] they

created a model correlating feed velocity, preloading, and drag torque.

One additional approach to model based CM is using filtering methods such as

the Kalman filter (KF) or particle filter. KF is typically used for state estimation

[21] but it can be modified for CM purposes. Several studies used KFs to improve

machine tool CM and control. Son et al. [127] used a KF for signal processing to

improve RUL prediction. They applied their method to battery failure prognosis.

Cai et al. [23] used particle filtering to improve surface finish estimations in milling

processes. Sadhukhan et al. [110] and Niaki et al. [3] used the unscented Kalman

filter (UKF) and extended Kalman filter (EKF) respectively to estimate cutting tool

flank wear in inconel 718 turning operations. This model was used for online tool

wear monitoring. They found their method improved estimation accuracy of tool

wear compared to deterministic methods. One study by Huang et al. [60] used a KF

based method for detecting faults in a ball screw system and were able to detect both

measurement and mechanical failures. They used residual signals from the KF for

fault detection and identification and also implemented FTC in their system. IMM

is a estimation strategy which involves the use of multiple system models. It can be

utilized for identifying if a system is in a fault state. Further discussion on the IMM

method is discussed in section 4.2.2.
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2.2.5 Data-Based Condition Monitoring

Unlike model-based methods, data-based CM does not rely on an understanding of

the underlying system, they are a type of black box modeling. Data-based methods

seek to understand the correlation of inputs and outputs for the purpose of predictive

capabilities. The most popular types of data driven condition monitoring methods is

ML [131]. ML methods can use both labeled and unlabeled data sets for prediction.

ML is most successful when some sort of feature engineering is employed. Feature

engineering is the process of eliminating data, fusing data, or creating new useful

data from existing data. This is usually done to reduce the dimensionality, improve

computing speed, reduce redundancy, and improve predictive capabilities. AI based

methods are popular in the literature for CM of MTs. Muthuswamy et al. [99]

found that most studies uses one of the following four AI techniques: artificial neural

network (ANN), Fuzzy logic, Hidden Markov Model, and Support Vector Machine .

The most popular use case in the literature was applying neural networks (NN)

to predicting levels of tool wear. Several studies examined tool wear in turning

operations [15, 56, 36, 75, 112] using inputs such as the cutting parameters (depth

of cut, feed rate, etc.), force signals, acoustic emission signals, motor current, and

vibration data. One paper [75] also used a thermal image as an input. Salinas et

al. [112] found that an ANN had much improved classification of wear compared

to conventional empirical-analytical methods. Many studies also examined tool wear

and RUL in milling operations [28, 2, 111, 22, 160]. They used most of the same input

parameters used in the papers looking at turning operations. Baig et al. [108] created

an ANN based on thrust force, cutting speed, spindle speed and feed to predict the

number of holes that have been drilled. With this, the estimated amount of wear
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could be deduced. Reinforcement learning wasn’t as common as NN for machine

tools. Ding et al. [35] used Q-learning for fault detection in bearings and a pump

system. They were able to detect faults with a very high degree of accuracy.

2.3 Digital Twins

DTs are an emerging technology which seeks to connect physical systems to a virtual

representation. The primary advantage of a DT is the ability to collect, analyze, and

model large quantities of data. This connection can enable many useful services such

as CM, advanced control, simulation, and future prediction analysis to name a few.

The DT was first conceptualized and presented by Micheal Grieves [50]. He further

expanded the concept via the introduction of concepts such as the DT instance,

DT aggregate, and DT environment in the concept of the product life-cycle [51].

Although there is a general idea as to what a DT is and what constitutes one, there

is currently a variety of definitions currently employed [68] as well as disagreement on

their primary purpose or value [132]. The idea of the DT has had increasing interest

over the years. One of the early adaptors of the concept was NASA [48]. DTs have

seen applications in manufacturing [29], vehicles [57], buildings [71], power plants [80],

and other critical assets. DT can also be an enabling technology for other types of

advanced smart systems such as cognitive dynamic systems [55, 122, 47].

Although there has been applications of DTs to MTs, it is not as popular of a

topic as those mentioned above. A concept similar to the DT is the virtual MT. The

virtual MT is a concept of real time control and simulation of MTs [8, 69, 86]. One of

the earlier works on conceptualizing the MT DT was in 2016 by Armendia et al. [10].

Their twin-control project sought to use many different signals that affect machining
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Figure 2.12: Overview of a MTDT
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processes to better estimate and simulate machining performance [10]. One of the

earlier and most popular conceptualization of the MT DT was by Luo et al. [89] who

presented a modeling method for a DT of a CNC MT. Luo et al. identified a few key

abilities of a MTDT: Precise simulation, self-sensing, self-adjustment, self-prediction,

self-assessment. The nature of data collection, modeling, and simulation for a MTDT

may differ based on the desired outcome, but there are a few characteristics that

are generally desired. These traits include: scalability, extensibility, and modularity.

After examining the literature, a few key services of DTs have been primarily applied

to MTDTs to improve performance or reliability. These include improved system

modeling, improved control and process optimization, and CM and fault detection.

Previous work has been conducted examining the application of DT to MTs, which

has been published as a conference proceeding [122].

2.3.1 Improved Modeling

DTs utilize virtual models to make predictions, observe trends, predict future be-

haviour, and for complex simulation. Modeling is a key aspect for MTDTS and most

other services that rely on accurate modeling. DT modeling is especially useful in

MTs, as MT components will degrade and their performance will change over time.

This change over time necessitates a constantly evolving and updating model. An

accurate model is necessary to maintain high performance to create highly accurate

parts with high throughput. Model parameters can be identified and updated using

DT [19]. Several studies used DT to improve modeling. Zhang et al. [163] were

able to improve dynamic modeling of a ball screw and other rolling joints using a NN

augmented DT. Their method was able to identify dynamic parameters with less than
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3% error. Wang et al.[140] proposed a non-intrusive method using in-process CNC

data for model estimation. They applied this to estimate system dynamic parame-

ters during a drilling operation. Wei at al. [146] developed a method for consistency

retention using vibration data. They would compare experimental data to FEA sim-

ulation results to update their wear model. This method ensures the digital model’s

parameters closely match the physical system.

Modeling is a key feature of many functions of a MT. Key to DTs are the model(s)

that make up the virtual twin component. Most other DT services rely on modeling

so it is key to have accurate up to date modeling. Several types of models are seen in

MTDTs which are discussed in section 2.1.3. These models can be used independently,

but to achieve maximum value they can can be used together in model fusion. For

example in a paper by Liang et al. they used a fusion of multiple time scale and FEM

for online process characterization [84].

2.3.2 Improved Control and Process Optimization

Precise control of the various moving components and stages is critical for MTs. Geo-

metric tolerances can only be met if rigid and precise control of the various feed drives

can be achieved. In addition the surface finish and tool life will depend of factors such

as feed rate and spindle rpm. To ensure all of these parameters are maintained at

optimal values and that positioning accuracy is maximal it is necessary to implement

some sort of advanced control that can compensate in real time for actual machining

conditions. Liu et al. [88] proposed a method for predicting and compensating for

time varying error which could improve machining tolerances. They were able to
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Figure 2.13: Model fusion of MT using DT [84]

reduce the hole pitch error by 69% by implementing real-time compensation. Ar-

mendia et al. [11] examined DT control in an aerospace and automotive machining

application. They found that it was possible to improve process control using real

time comparison of measured data to simulated data. There was several examples

which utilized DT technology to improve surface finish in machining processes. In one

example, Ma et al. [91] used a short term long term NN to compensate for thermal

error and improve machining tolerances. By doing this, they were able to substan-

tially decease the machining error in a drilling operation. Tong et al. [134] applied a

DT framework to improve the tool path in a 5-axis milling machine by compensating

for measured disturbance. As a result, the surface finish was improved and tracking

error was decreased. Cai et al. [23] used a hybrid method for accurate on-line and
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off-line prediction of surface finish in a vertical missing operation. DTs can also be

used to optimize a machining process. Guo et al. [52] created a DT based method for

collision detection to avoid work piece collision with work holding for turning opera-

tions. Using simulation tools Stan et al. [130] were able to reduce power consumption

for a robotic de-burring process. In a paper by Shen et al. [116] they were able to

determine parameters of a grinding procedure and optimize grinding wheel selection

to reduce process time.

The improvements to control and process optimization allow MTDTs to maximize

produced part quality through real time compensation and simulation capabilities.

They could also maximize machine throughput, while reducing costs associated with

machining, including electricity usage and tool replacement costs.

2.3.3 Condition Monitoring and Fault Detection

Ensuring machine reliability is of key importance. As mentioned earlier in section

2.2 one of the best ways top do this is to implement PM via CM and fault detection.

CM ensures that MTs are working as intended. In addition to just monitoring the

condition it is often useful to visualize this data. Several papers created dashboards

containing real-time data for process monitoring. In a paper by Guo et al. [52] they

created a real time virtual twin dashboard containing information such as spindle

speed, operating temperature, and currently running CNC code. Xie et al. [150] cre-

ated a framework for cutting tool degradation and a dashboard to display information

about the condition of the tool which can be seen in Figure 2.14. Wang et al. [141]

created a real time condition monitoring dashboard for a die cutting machine. Pa-

rameters such as machine availability and productivity are constantly being updated
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Figure 2.14: Tool monitoring dashboard [150]

and displayed for the user. Stan et al. [130] built a web based platform to monitor

the process of robotic de-burring. Botkina et al. [18] proposed a framework for a DT

of a cutting tool. They proposed a method of "tweeting" which periodically update

the model of the cutting tool to reflect the updated condition.

An important function of condition monitoring is the ability to predict the RUL.

This allows the optimal replacement of components, maximizing their life while mini-

mizing the impact of poor performance or possibility of unexpected downtime. Hybrid

data-based and model-based solutions for prediction of performance degradation and

RUL were proposed by Yang et al. [153], and Luo et al. [90]. They both found that
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the hybrid method performed better at predicting the replacement time than just a

model-based or data-based method. Baig et al. [15] implemented an artificial neural

network (ANN) to predict tool life in turning operations using vibration data and

cutting parameters. Weckc et al. [144] monitored clamping force to estimate tool

wear and to ensure proper clamping of the work piece was maintained during opera-

tion. In addition to estimating RUL it is useful to be able to identify and diagnose

fault states. Xue et al. [151] built a model library of various fault states to diagnose

faults in a MT spindle using ML.

Effective CM, fault detection are essential in maximizing machine reliability and

performance. This is especially true for MTs where they often exist in an inter-

dependant manufacturing system and are expected to maintain sub 0.001"(0.025 mm)

tolerances, and are expensive capital investments. Because of these conditions and

expectations there is a need for high throughput and to maintain high reliability.

MTDTs have demonstrated that they can help achieve that goal.
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Chapter 3

Experimental Setup

The experimental setup will be used to test various CM, fault detection, and control

methods. These methods include estimation based methods such as utilizing the IMM

based fault detection method mentioned in section 4, ML methods, and applying

advanced control methods such as model predictive control or cognitive control.

There were two primary stakeholders in the design of the workbench: The industry

sponsor Ford motor company who wished to utilize this experimental setup to design

and test movements to quickly determine the state of health of their machine tools,

and for academic purposes for collecting data and validating methods created for the

various purposes mentioned above. In order to meet the needs and desires of both

stakeholders several criteria, constraints and considerations need to be made.

The constraints and criteria of the design are discussed in section 3.1. After design

criteria have been determined an examination of all the design considerations is made

in section 3.2. The design process is discussed in section 3.3 and final design in

section 3.4. The assembly of the system as well as the integration of all components

are discussed in section 3.5.
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3.1 Constraints and Criteria

Each of the two primary stakeholders in this research had their own set of constraints

and criteria. Both sets of constraints and criteria needed to be met.

3.1.1 Industry Sponsor Constraints

The Industry sponsor of our project is Ford automotive. Their specific division is the

manufacturing division. Their goal with funding this project is to get a greater under-

standing on how to translate signals collected from their CNC MTs into identifying

and diagnosing faulty components in the LFDs of these machines. Their intermediate

goal would be to run a quick set of movements which could be used to diagnose issues

in their feed drive, such as a faulty ball screw or linear guide. Long term they would

wish to do this diagnosis using data collected from regular production. By doing

this they could Identify faulty machines without interrupting production. Their pri-

mary interest is identifying faults and issues with ball screws, as this seems to be the

component that wears most rapidly in each of the linear feed drives of their machines.

Ball screws used in machine tools tend to have high levels of preload, often 6%

to 10%. As a result they desired to use a ball screw that was preloaded at least

6%. Additionally, they wanted a screw that was preloaded via a double nut as that

is what is used in each of their machines. Ideally they desired a stroke similar to

that of the axes on their machine tools. Each of the stroke lengths of these axes was

approximately 1000mm (1267mm, 952mm, 1022mm). Screw leads should be similar

to that of the production machines (20mm, 30mm).

They have also indicated that they do not wish to implement additional external
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sensors, preferring to use their internal sensors mentioned in section 3.2.3. For max-

imum compatibility and ease they preferred that the same CNC controller was used

that is used on the production machines. This ensures that data collection proce-

dures, CNC programs, and analysis methods are readily transferable to a production

environment.

3.1.2 Academic Interest and Lab Constraints

In addition to the industry sponsors constraints this experimental setup will be used

for academic research. The primary interest of research for this experimental setup

is ML, estimation theory, and control algorithms. To study these topics additional

sensors will be needed beyond simply the integral sensors. Sensors and data collection

such as force feedback, vibration monitoring, and temperature monitoring is desired

for evaluating the application of NNs for various applications. An external force

application method was desired. External forces can be useful for examining how the

system reacts under load. It is especially useful for developing control and estimation

algorithms as they will need to take into account external disturbances.

There also needed to be constraints on the physical size of the entire system. There

is limited lab space available so the footprint of the system needed to fit approximately

a footprint of 4 feet by 15 feet so it could occupy an entire wall of our lab. Additionally,

since the workbench will be a scaled down compared to an actual machine tool, smaller

components such as ball screw, motor, bearings, linear rails, and platform will be used

compared to an actual machine tool. The additional advantage of this is that any

results obtained can be tested on a system of a different size to compare results

and to ensure the system does not over-fit. There are also budgetary conditions,
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there is a certain budget to design, manufacture, and assemble the system. Most of

the components outside of the CNC control components, and common off the shelf

components such as bearings, and fasteners would need to be manufactured in house

to minimize costs.

3.2 Experimental Design Considerations

(a) Setup using magnetic brake as an
external load [147]

(b) Setup using second motor as an
external load [165]

(c) Experimental setup from [79] which is
similar to many others in the covered

literature

(d) Experimental setup from [62] which is
similar to many others in the covered

literature

Figure 3.1: A few examples of experimental setups from the examined literature
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There are several key considerations that were made when designing this system.

broadly they can be categorized as the following:

1. Applying external load

2. Simulating faults and wear

3. Which sensors and data streams to utilize

4. Which software platform(s) will be used to implement the DT, collect data, and

control the system

The literature was examined to determine what experimental setups have been used in

the past for condition monitoring of linear feed drives and their components, a few of

these setups can be seen in Figure 3.1. Results from this investigation were published

in two conference proceedings. The first work primarily examined experimental design

of linear feed drive test benches and covers sub-sections 3.2.1 - 3.2.3 [121]. The second

work covers design considerations for an IoT connected DT feed drive, this work covers

sub-sections 3.2.3 - 3.2.4 [119].

3.2.1 Applying External Load

MT LFD experience external loads of various kinds through machining operations

such as milling, drilling, and grinding to name a few. External loads can cause forces

in both axial and lateral directions. It is often not practical to directly implement

these machining loads so it may be necessary to implement some sort of external

loading which can simulate these forces. In addition to machining loads, adding a

work piece to the worktable will increase the systems mass. Increasing the systems
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mass will often accelerate the wear on the system due to increased force demands.

Through examining the literature there were several methods to implement external

loading. The issue of changing mass is fairly simply solved by implementing a system

of adding and subtracting weight plates of a known mass [136, 32]. This allows

testing the system with a variety of different masses to examine the effect changing

mass has on the system. Applying external loading to simulate machining processes

is a more complicated process. Two predominant methods emerged in the literature.

One involved using a magnetic brake which was connected to the table via a rack

and pinion. Resistance from the magnetic brake would create an external load on

the system [147, 162]. One other observed method was utilizing a second motor.

One study used a second motor in torque control mode to apply a specific torque

to the system [165]. Another couple studies used their second motor as a source of

additional inertia [107, 106]. One advantage of using a second motor is that they can

be controlled and data can be collected from a single CNC system quite easily. A few

examples of applying external loads can be seen in Figure 3.2.
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(a) Setup using magnetic brake as an
external load [147]

(b) Setup using second motor in torque
control to drive a second platform coupled

to main platform [165]

(c) Experimental setup which uses a second
motor as additional inertia [107, 106]

Figure 3.2: Examples of external loading in the literature

3.2.2 Simulating Faults and Wear

When developing CM and fault detection applications it is necessary to have a set of

data representing a faulty condition. A "Healthy" and "Faulty" set of data are needed

to develop, test, and validate any fault detection or condition monitoring methods.

For this reason it is necessary to be able to implement or simulate various faults. In a

feed drive system there are several typical types of wear and faults. Common types of
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faults include the following: lost preload in key components, misalignment, backlash.

In addition to these faults general wear will occur on the various components which

will cause degradation in performance. There existed examples in the literature of

simulating wear and faults on various important components such as ball screws,

linear guides, couplers, and bearings.

Simulated and Accelerated Wear

One possible method of obtaining worn components is by utilizing worn components

from production, this approach can generate a great deal of data, and wear will follow

what is seen in production use [67]. However, one issue with this approach is that

you have little to no control or understanding of the contributing factors that caused

this wear.

A different approach would be to directly apply the wear in a lab setting. There

are several ways in which this can be accomplished. One method is running the

system under heavy load as with heavier applied load comes faster wear. It is also

possible to simply run the system over a small section of the stroke continuously to

accelerate wear in a small section [83]. One other approach would be to contaminate

or starve the lubrication system [137]. Adequate and clean lubrication are required to

keep proper operation of a linear feed drive. Introduction contamination or removing

it entirely will have the effect of prematurely wearing the system. One final method

that was examined was directly machining wear into the component. Examples of

this may include grinding a notch into a linear guide [139], bending a ball screw [85],

or drilling a pit into a ball screw raceway [114].
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Preload

Preload is an important factor in maintaining rigidity in ball screws and linear guides.

Preload generally degrades over time with the degradation of the ball bearings and

raceway. There are a few approaches to simulate decreased preload. One relatively

simple method is by swapping in components of different levels of preload [27]. For

example if the "healthy" condition is considered to be at 6% preload, a 2% preload

screw could be swapped in to simulate the degradation of preload to a lower level.

One other approach would be to replace the ball bearings with ones with a different

diameter [41]. For example if a ball bearing of a diameter that is 1µm smaller would

to be used preload would decrease. A final method which is more complicated but

offers more control and adjustability would be to use a double nut with and adjustable

preload spacer [100, 40, 39]. This would allow easy and exact adjustment of preload

levels.

Misalignment

Misalignment is a common fault in machinery. There are several different types of

misalignment such as angular, parallel and combined misalignment. These misalign-

ment can occur between the various components such as the ball screw and linear

guides, or the motor and ball screw for example. Misalignment can cause increase

friction and wear, or cause incorrect travel trajectories in various axes. There are a

few ways to implement misalignment. One of these ways is to use feeler gauges to

force the components into a state of misalignment [41]. One other common method

would be to adjust the position of components into a misaligned position and re-secure

them there [33].
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Figure 3.3: Data streams in an CNCMT [119]

3.2.3 Sensors and Data Streams

Selecting data streams is an important process in any data driven analysis. In a

CNCMT system there are several possible data streams which can provide useful

data, an overview can can be seen in Figure 3.3. These include the following:

1. Internal sensors

2. External sensors

3. Control system

4. Production data

Internal Sensors

As previously discussed in section 2.2.1 Internal sensors are defined as the sensors

integral to the regular working capabilities of a regular CNC system. These would
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include encoders and current measurements. CNCs use encoders, both linear and

rotary, to determine the position of the various axes. They also typically measure

the motor current to estimate the amount of power going into moving the various

feed drives or rotating the spindle. These sensors can provide valuable information

such estimated backlash, tracking error, and power consumption which can each be

used for analyzing and detecting wear, misalignment or other faults. A few examples

include the following: Xi et al. used stalling motor current to observe the effect of

preload of friction in their experiment [149]. Chandrasekar et al used the difference

in linear and rotary encoder to quantify backlash [26].

External Sensors

In addition to the sensors integral to the working of the CNC system, external sensors,

those being non-essential to the function of the system, can be used. Popular sensors

used for condition monitoring and fault detection include accelerometers, load cells

or torque sensors [165], and thermometers to measure vibration, force, and temper-

ature respectively. These data streams are common as increased vibration, force, or

temperature are usually the result of wear, misalignment, or other faults. In addi-

tion to these sensors there are other sensors which are used. Inertial measurement

units combine gyroscopes and accelerometers to complete measurements of position

and orientation [139]. There have also been instances of using microscopes [147], or

cameras [168] to take pictures or videos of components to track their condition over

time. Strain gauges could also be used to directly measure deflection and strain in a

system [136].
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Production Data and Control System

While not as applicable in the LFD test bench, production data can provide valu-

able insight. This could include information such as component use history, quality,

and machine reliability. Component use history means how many cycles or hours a

component has been used, as well as what types of movements or actions were being

performed. For instance it may be the case that a machine does certain movements

only in a certain stroke of one of the axes which results in excessive wear in that

part. Examining the quality of the produced parts can give insight into whether the

machine is in good condition or not. If there are several machines producing the

same part and one is producing parts of inferior quality it may be the case that that

machine is in poor condition. Finally examining the reliability of the machine could

uncover component health issues if it is constantly going out of service.

In any CNC system there will be a constant stream of data created from the

various set points, whether these are the position, velocity, acceleration of the various

axes, or the set points for the torque of the various motors of the system. This data

is especially useful for comparing to actual positional or torque set-point to analyze

the difference.

3.2.4 Computer Numerical Control Platforms

When designing the LFD test bench it is important to consider the software and

hardware platforms that will be used. There are a few considerations as to what

software will be needed. The primary considerations are going to be for the following:

1. CNC controller
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(a) Motor drives

(b) Data input/output

(c) Programmable logic controller (PLC)

2. Data analysis and storage

(a) Data acquisition (DAQ)

(b) Cloud

(c) Local

3. Modeling and simulation

(a) Computer aided design (CAD)

(b) Computer aided engineering (CAE)

(c) Computer aided manufacturing (CAM)

(d) Other modeling software

4. Digital twin platforms

Machine tools function using a CNC controller, which controls the various components

such as the feed drives and spindles, The PLC controller collects various data streams

and sends various control signals to the numerous components using data collected

from a data I/O system. For analysis, data will need to be collected via a DAQ and

analyzed locally or on the cloud. For the digital part of the DT there needs to be

software capable of fulfilling the various modeling and simulation needs of the system.

In a production environment you would also want to collect production data, often

this would be stored in an ERP system or a database. For the purpose of this test
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bench the ERP system is not considered as production data will not be considered

in the analysis. Many companies now offer DT platforms which can make designing

and building a DT platform much easier.

Figure 3.4: Requirements for DT platforms for a MT DT [120]

Controller and Data Acquisition

First, the CNC system will need to be selected. There are a few popular options that

are popular in industry such as Fanuc, Haas, Heidenhain, and Siemens. Additionally

there are popular hobby grade CNC controllers such as Mach 3 and Linux CNC[143].

CNC systems have several important roles in a machine tool. They deliver the signals

to the various drive components, and collect and deliver control signals via the I/O

system and PLC. The CNC system converts NC programs into sets of controls which

execute in real time. When considering which CNC system it is important to consider
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the application of the MT test bench and the various stakeholders. If for example,

the DT is designed to be implemented in a production environment where all FANUC

controllers are used, it would make sense to develop the test bench using the same

FANUC platforms. Cost needs to also be considered, CNC systems, especially ones

from large industry companies such as Siemens or Haas will be much more expensive

than hobby grade ones such as Mach 3. However, industrial CNC controllers and

software will also have greater capabilities.

Data Analysis and Storage

Data will need to be collected and analyzed from the system. The first consideration

is data collection, some CNC systems may have built in data collection for external

sensors, but some may not, and therefor require a DAQ. Data collected from the

various sources outlined in section 3.2.3 will likely be heterogeneous, with different

sampling frequencies, data types, and quality or reliability. A system is necessary to

collect, process, and organize all this data.

After the data has been collected it needs to be analyzed. Analysis can happen

primarily in two difference locations: locally, or on a centralized database or the

cloud. There are advantages and disadvantages to each. Local analysis via edge

computing has the advantage of lower latency data transmission and analysis. Data

streams such as accelerometers will generate very high frequency data which can be

several GBs after only a few minutes of data collection. It would not be feasible to

stream this amount of data to the cloud. Often critical features such as amplitude of

vibration at key frequencies can be extracted from this data and the raw data can be

discarded, this would most feasible done on local edge computing. Some analysis or
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services would also require low latency analysis. For example, if real time in process

temperature or vibration monitoring were desired, edge computing would be required

due to latency constraints.

Cloud computing or a central database has some advantages as well. They are

valuable when collecting data from multiple machines and analyzing and comparing

them to each other. It can be useful for services such as a dashboard comparing mul-

tiple machines to each other, or trend analysis of various machines. Cloud computing

is best used if a great deal of computing power is required. A central computing

entity can be used for efficient use of computing power rather than a less efficient

distributed system.

Modeling and Simulation

There are various modeling and simulation needs for DTs and their services. There

are several types of models that can be used. One of the most commonly used will be a

geometric model, these are usually created using CAD platforms such as SolidWorks,

Autodesk Inventor, or Siemens NX. Other models such as block diagrams or other

coding methods for mathematical modeling of multi-domain dynamic systems such

as using MatLab Simulink or other conventional programming languages such as

Python and its various packages. Data driven models such as neural networks can

also be used, these models are often created using Python, MatLab, or many other

programming languages.

Simulation is another important part of DT modeling. There are several different

types of simulation that may be useful. One common type of simulation is man-

ufacturing process simulations which are often accomplished using CAM software.
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Software such as MasterCam, NX, Fusion 360 allow the visualisation and simula-

tion of various manufacturing processes. Simulations such as thermal, bending, and

vibration modeling can be performed using finite element analysis, a type of CAE

software. FEA is very popular for determining theoretical responses of systems to

given inputs, this can be compared to experimental results to validate the accuracy

of the model. Popular FEA software includes ANSYS, Autodesk NASTRAN, and

Solidworks. Dynamic simulations of the system which analyze the kinematics of sys-

tems can be performed. These simulation can give insight into the various velocities,

forces, and stresses experienced through a range of motion as well as given insight

into possible conflicts or collisions. Popular kinematic software is often included in

popular CAD platforms such as Inventor and Solidworks. Siemens also offers a com-

prehensive simulation platform called mechatronic concept designer (MCD) which

can also interface with simulation PLC program simulation. The response of various

mathematical physics-based models can be simulated to determine their response as

well. Software such as Matlab can be used to simulate these models and understand

their response to various inputs and conditions.

Digital Twin Platforms

In recent years there has been booming interest in DTs. As a result, many companies

have developed and are now offering DT building software. This software is often of-

fered as add-ons or modules to existing software platforms, or as stand alone packages.

CAD platforms offer their own DT platforms. Dassault offers 3DEXPERIENCE and

Autodesk offers Autodesk platform services. Large tech companies such as Amazon

and Microsoft offer their own DT and Iot platforms, with AWS IoT and Azure IoT
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respectively. Siemens offers a DT suite for their machine tools and other mechanical

systems with their Sinumerik One CNC platform and their NX MCD modeling and

simulation software.

3.3 Design Process and Manufacturing

After examining the design considerations and what has previously been done in the

literature, this information and knowledge can be synthesized with the design criteria

and constraints to form an initial design plan. There are two main design components

in this system, the mechanical system, and the electronic control system.

3.3.1 Synthesizing Criteria with Design Considerations

Both the industry sponsor and academics interests needed to be taken in to account

when determining the final constraints and criteria. After evaluated the previously

discussed constraints and criteria a final set was determined which would drive the

design.

For the physical system it would be driven by a 7% preloaded double nut ball

screw with a stroke of approximately 800 mm. This is less than the 1000 mm stroke

of the screws used on the production machines but still allow for adequate stroke to

achieve high acceleration and velocities. This would allow it to fit on the allowable

footprint. A 7% preloaded ball screw is loaded similar to what would be expected in

a machine tool. The diameter of the selected ball screws was 20 mm and they had

a 20 mm lead. This is smaller than lead screws on the machine tools which was 40

mm but was within the allowable range for the lead screw. The other components
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such as the bearings, motors, and linear guides would be sized appropriately for the

expected loads and velocities. Servo motors with equal or greater maximum speeds

would be used to ensure the same table velocities could be achieved. They would also

need adequate torque to quickly accelerate the system.

The primary interest for simulating faults and wear was in ball screw wear. In

anticipation of testing multiple faults and degrees of wear, multiple ball screws were

purchased. Before any faults are implemented using the methods in section 3.2.2

baseline data would be collected to determine the "healthy" state. The linear guides

and bearing were of secondary interest. Because the linear guides and bearings are

common standardized sizes additional ones can be purchased and wear and faults

induced at a later date. The system would be designed to allow some misalignment

so that the effect could be observed.

The tests and movements developed on the test bench would need to be easily

applied to the production equipment. To easily facilitate this the same CNC control

system would be used as the production equipment. Siemens CNC equipment was

used as that is what was used on the industry sponsors machine tools. Analysis

performed for the industry sponsor could only use the integral sensors described in

section 3.2.3. These sensors were prioritized but an additional I/O module would be

included which would allow the addition of digital and analogue sensors described

in section. Additional sensors could be added for other types of analysis such as

vibration monitoring and machine learning. To summarize:

• 7% preloaded ball screw with stroke of 800 mm, lead of 20 mm, and diameter

of 20 mm

• Servo motors capable of high torque and up to 6000 RPM rotational speed
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• Focus on ball screw with multiple ball screws to test various faults and wear

states.

• Focus on analysis using integral sensors but include module to attach external

sensors

• Same control system as Ford so tests and analysis is easily transferable

3.3.2 Mechanical Design

For the mechanical system the primary design challenge would be to create an ex-

ternal loading system to simulate disturbance forces such as milling and drilling. It

would also be important to design components which could withstand the expected

forces experienced during operation while also be sufficiently inexpensive, easily man-

ufactured, and assembled. It would also be important to design a worktable which

could hold and enclose the system to ensure safety given that there would be moving

components moving at high speeds with high force capacity.

External Loading

The basic structure of the feed drive was relatively simple as most feed drives consist

of a platform with a ball screw centered between two linear guides. The more difficult

process was determining how to do the external loading of the ball screw. There were

a few options for loading externally: a magnetic brake, linear motors, or additional

ball screws. One issue with magnetic brakes is that it would be difficult to control the

applied force. Ideally any external loading system would involve an easily controllable

motor, for this reason the magnetic brake option was eliminated. Early versions of this
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Figure 3.5: Early design with linear motor

design involved the use of a linear motor to function as the external force generator

as seen in Figure 3.5. A few issues arose from this design. The primary issue was the

large size of the linear motors, using linear motors would are substantially increased

the footprint of setup in both width and length. A side effect of this is also a decrease

in effective stroke. Linear motors also generate a great deal of heat and require an

external cooling system, this would increase the cost and complexity of the system. So

with these options eliminated the last of the original considerations was an additional

ball screw controlled by another servo motor. After discussing with Siemens, they had

made it known that their control systems was capable of having two motors driving

against each other in a "master-slave" arrangement. With this in mind there needed

to be a design to incorporate a second motor to act as a disturbance force. Multiple

instances in the literature had utilized an additional servo motor to simulate external

forces. The two discussed earlier the primary issue was the location of the applied
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force. In [107, 106] the motor was coupled to the end of the end of a shaft connected

to the motor, and in [165] the secondary motor was connected to a second stage which

was coupled to the primary platform. Initially it was considered of connecting one

or two additional ball screws underneath the platform to apply the external force.

However, there is issues with either of these approaches. With one additional screw

you would either need to offset both screws from the mid-line, or you would need

to offset one. This would cause a torsional force to occur as the force isn’t being

transmitted down the mid-line. The issue with using two screws is that you would

need to either use two motors to drive them or some sort of force distribution like

gearing or belts and pulleys. To solve all of these potential issues the external force

screw can be placed above the platform. In addition to not interfering with the driving

screw it more closely resembles the direction force would normally be applied in which

is demonstrated in Figure 3.6. Once the issue of applying an external disturbance

force was resolved, the next step would be a system for adding additional weight.

Originally the plan was to have loadable weight plates in the middle of the platform,

but with the external force screw design, this would not be possible. Instead loadable

weight plates were added to each side. Three weight plates of 0.25, 0.5 and 0.75 kg

were designed so the system could be loaded an additional 10 kg. This allows the

system mass to be modified so that the effect on the system can be observed.

System Platform and Guarding

One important consideration when designing the system was how to align and secure

all of the components together. Given the relatively large footprint required for the

setup it would be difficult to machine a single base plate for all the components to
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Figure 3.6: Proposed design of external force application
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secure to. The original plan was to use large sections of plate steel which would be

machined for mounting all other components. This solution would have been costly

and require a great deal of time to machine, and any error in machining would likely

result in substantial misalignment of the components. Fortunately there are devices

called optical breadboards which precision manufactured plates. These plates have

threaded mounting holes located every 25mm and a very flat top. They are often

used for precise scientific measurement and experimentation. This would be an ideal

solution to the issue of precisely positioning and securing all the components together.

A large 600 x 1200 mm optical bread board was selected and used as the base plate

for the workbench. This base plate was mounted onto a steel topped workbench. The

original workbench was not rigid enough along the axis of movement of the platform.

So an additional full steel sub frame was added to the workbench to increase rigidity,

vibration damping, and weight. After adding this sub-frame the workbench was very

rigid in each direction. Vibration damping pads were added beneath each of the eight

feet of the workbench. These will help isolate the system from any external vibration.

A cabinet was constructed to act as shielding for the mechanical equipment to

ensure there would be no safety issues. The cabinet would need to be see through

to ensure that any tests could be observed. There were two obvious choices for the

materials for the material for this application: Acrylic, and polycarbonate glass. Poly-

carbonate glass is known as being more shock resistant, and is therefore more often

used in shielding applications. Polycarbonate panels were affixed to an aluminum

extrusion frame to create the cabinet guarding the moving parts.
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Figure 3.7: Optical breadboard used to mount components

Component Selection and Design

One of the important parts when designing the system was to ensure that each of the

components that were manufactured or purchased could withstand the expected loads

that would occur during operation. For manufactured parts FEA was performed to

ensure that the safety factor of the components was at least 3 for an applied load

that was equal to the maximum expected applied load. The maximum load was

determined based on the maximum load rating of the ball screw. For the primary

ball screws used in this investigation the maximum rated load was 7000N. One of

the primary objectives of the design would be re-configurability. This would allow

easy adjustment of the system, and to easily replace components such as the ball

screws or linear guides. To achieve this most of the individual components would be

bolted together. Bolted connections can provide a large clamping force between two

objects. If looking at the equation below where Fclamp is the clamping force, Ttight is
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Bolt Size Tightening torque (N·M) Clamping force (N)

M5 10 10,000
M6 17 14,000
M8 41 25,000
M12 143 60,000

Table 3.1: Tightening torque and clamping force for grade 10.9 metric bolts

the tightening torque, K the friction coefficient (assumed to be 0.2 for steel on steel),

and D the nominal diameter of the bolt.

Fclamp =
Ttight
K ·D

(3.3.1)

It can be seen in Table 3.1 that the clamping forces for bolted connections is very

high, even for small M5 bolts. This allowed for larger clearance holes to be used.

With larger clearance holes there is more possibility to adjust components and to

allow for the purposeful introduction of misalignment if desired. For purchased parts

it was ensured that the components were rated to loads greater than the expected

maximum load. Full details on the purchased components and their specifications

can be seen in the appendix.

Part Manufacturing

Most components were manufactured using 1018 mild steel. This material was chosen

for its machinability, rigidity, and low cost and ease of availability. The majority of

the parts were manufactured from plate steel, and rectangular or square bar. Man-

ufacturing these parts from simple shapes allows low cost manufacturing using tools

such as the mill, drill press and water jet. Most of the parts that were designed using

square or rectangular bar stock were manufactured on the mill to allow for precise
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dimensions with easy manufacturing. The parts that were designed with plate metal

or had complex geometries such as the the nut mount were cut from plate steel using

the water jet. The water jet can cut fairly complex shapes at a fairly high precision.

Certain parts of water jet cut components were completed on the mill where final

hole geometries or hole threading could be completed. Parts were then checked with

micrometers, vernier calipers, and other measurement devices to ensure conformity

to design specifications. Component drawings can be seen in the appendix.

3.3.3 Electrical Drive and Control System Design

Part of designing this system involved designing an electrical control system and cab-

inet. The primary electrical components include a CNC controller, motor drives, an

I/O system. Selection of the components was done using a combination of Siemens

design manuals as well as recommendations from Siemens based on the constraints

and requirements of the project. Once each of the critical component were selected

design of the electrical cabinet could begin. The primary considerations would be se-

lecting proper wire gauges, heat dissipation, electromagnetic interference, and safety.

Originally the intention was to include all of the electrical components into a single

electrical cabinet. However after some consideration, it was decided that two sepa-

rate cabinets would be used. One for the high voltage motor control equipment, and

one for the lower voltage control equipment. The reasoning behind this decision was

to keep the control and I/O equipment, which would regularly need to be accessed,

separate from the high voltage equipment which could pose a potential hazard.

One important consideration when designing electrical equipment is heat disper-

sion. Given the large electrical loads expected with the motor drive equipment it was
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important that there was adequate cooling. Cooling can be accomplished several ways

but the most common is via fans. An estimate of required air displacement due to

heat dissipation can be estimated using the formula (3.3.2) below which uses and es-

timate of approximately 5% of the rated power of the active line module [124]. Using

an ambient temperature of 20°C and an estimated power loss of 900W (18, 000 ·0.05)

V̇
m3

h
=

3.1 · PL[W ]

40°C − TAMB[°C]
=

3.1 · 900

40°C − 20°C
= 140

m3

h
(3.3.2)

With the required air flow an appropriate fan could be selected for the system. In

addition to considerations of heat dissipation it was important to consider possible

electro-magnetic interference. It was important to lay signal cables as far away as

possible from power cables. Siemens produced a manual for design around this inter-

ference which recommended separating the 400V power cables from any signal cables

approximately 20cm away. The cables could cross or come in near proximity if needed

but it should be minimized. In addition to the above consideration proper electrical

safety precautions were taken such as ensuring appropriate grounding connections,

ground fault detection, and appropriate circuit breakers were used.

3.4 Final Design

The overview of the complete final design of the system can be seen in Figure 3.8.

There are a few main components which are described in the sub-sections below.

The electro-mechanical system has 6 primary components: the LFD workbench, the

operator interface, the low-voltage control cabinet, the high voltage motor control

cabinet, the computer workstation and the motor control panel.
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Figure 3.8: Full system overview
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Figure 3.9: Full mechanical system overview

3.4.1 Linear Feed Drive Workbench

An overview of the key components of the mechanical system can be seen in figure

3.9. The system is very similar to other LFD experimental setups in the literature

which can be seen in Figure 3.1 with a few key novel design features. Similar to most

other linear feed drives, the system is primarily composed of a work table (1) which

moves along a track guided via linear guides (3). The table is moved via a main ball

screw (4) which is mounted via an axially fixed bearing (10) and a free bearing (6).

The ball screw is rotated using a AC servo motor (11) which is connected using motor

couplings (12). These parts are connected to an optical breadboard (5) which allows

easy alignment and connection of each of the parts.

Similar to many MTs the system is also equipped with a linear encoder (7). Linear

encoders are useful for accurate linear position measurement. Most servo motors

contain a rotary encoder which is coupled to the motor rotor to measure the angular
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displacement which can be translated to a linear displacement measurement. The

issue with only using only rotary encoder is that it does not take into account the fact

that the system is not perfectly rigid, a linear encoder coupled to the worktable will

give a more accurate position measurement. There is also a cable track (2) attached

to the system. Cable tracks ensure proper cable management for any cables mounted

to the worktable. The linear encoder and force sensors (9) both have cables which

need to be routed to the control cabinet. The primary unique part of this system is

the loading ball screw (8) which was discussed in section 3.3.2. The secondary loading

ball screw allows for simulation of an external disturbance force using a second servo

motor. This force is measured using the two force sensors and through the motor

torque in the control system.

One of the primary design factors for this system was adjustability and recon-

figurability. To achieve this each of the parts was to be bolted together and easily

assembled together. It is important to be able to easily be able to swap in different

ball screws of different wear, lead, diameter, and preload to examine the effect on

the system dynamics. A bolted design with some clearance in the bolted holes would

allow for the introduction of some misalignment to examine the effect.

3.4.2 Electronic Control Components

There are 5 primary components of the electrical system. An overview of the electrical

system can be seen in Figure 3.10 more detailed drawings and diagrams can be found

the appendix. The first component is the motor controller panel which can be seen

in Figure 3.11a. The building primary high voltage line is 3 phase 600 VAC, this

is above the range of the motor control equipment. The first component is a step
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Figure 3.10: Overview of electronic components

down transformer to 415 VAC, which is within the allowable operating range of the

motor control equipment. The system has a 40amp circuit breaker which is operated

via a large lever. There is ground fault monitoring equipment installed to detect

any current leakage that could be dangerous to both operators or equipment. Finally,

there is a contactor which is activated via a switch on the panel and can be interrupted

via the ground fault monitor if a fault is detected.

Once the motor controller is activated current can flow to the high voltage motor

drive cabinet as seen in Figure 3.11b. The high voltage motor drive cabinet has two
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primary purposes, to power and control the motors, and to supply 24 VDC power to

the control equipment. The 3PH 415VAC power enters the cabinet and is distributed

to two components. The first of these is a 24 VDC power supply which steps down

the voltage and converts it from AC to DC current. 24 VDC is the power supply used

by most of the control equipment for the rest of the system. The second destination

for the current is the line filter. The line filter is designed to attenuate conducted

interference emissions. After the fine filter the current travels to the active interface

module which filters the power input and ensures a steady voltage supply to the next

components the active line module. The active line module converts the 415 VAC

power to 600 VDC. It ensures a constant regulated DC voltage will be supplied to

any attached motor modules. Active line modules can also feed back energy into the

supply line during motor breaking. The attached motor module converts the supplied

600 VDC back to AC voltage. It can run up to two AC servo motors. Communication

within the system is handled via Drive-CliQ cables which are RJ45 cables. These

cables transfer data between components within the high voltage control cabinet and

to other control equipment in the control panel and control cabinet.

The control cabinet contains all the lower voltage equipment required to control

and operate the system which can be seen in Figure 3.12b. The primary component

of this cabinet is the Numerical control unit (NCU). The Sinumerik ONE NCU 1500

is the "brain" of the system and the main computing and control system. All of the

communication within the system converges on the NCU. In addition there is an I/O

system which contains both digital and analogue I/O. This enables the connection of

both analogue and digital sensors such as accelerometers, temperature sensors, and

force sensors. Additionally the interface for the linear encoder is connected in this
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cabinet. The Sinumerik Edge industrial PC is also located here. This industrial PC

is used for edge computing functionality.

The final part of the electric components is the operator interface which can be

seen in Figure 3.12a. The control panel has two key components: the touch screen

display, and the control panel. This is the interface that will be used to control the

linear feed drive such as to jog each of the axis, select which program to run, check

for any error codes etc. There is also a computer workstation next to the setup. This

computer is equipped with the software provided by Siemens for commissioning the

setup. The main software is Siemens total integrated automation (TIA) portal. This

software is used for configuring the CNC system and creating PLC programs to run

on the NC system. Additionally the system is equipped with Siemens NX and MCD,

which is used for simulating the movements of a machine. This software is advertised

as a DT software as it can be used to create a virtual replica of the equipment along

with the processes.
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(a) Motor control panel (b) High voltage motor drive cabinet

Figure 3.11: High voltage electrical components
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(a) HMI and computer with Siemens control software

(b) Control cabinet containing NCU, I/O, and Edge computing devices

Figure 3.12: Low voltage control components
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3.5 System Integration and Programming

Once the final design was complete it was necessary to assembly an connect the entire

system. On the mechanical side it would be important to assemble and align all the

components. For the electrical side it was important that the system was safe given

the high voltages and current. It would also be necessary to program the system.

3.5.1 Mechanical Assembly and Alignment

Given the nature of the many bolted connections and the limits on space it was

necessary to assemble the setup in the correct order to ensure access to each of

the fasteners. One other important consideration when assembling the system was

ensuring alignment. To ensure the system was aligned a combination of 1-2-3 blocks,

calipers, and dial indicators were used to align the system. First the sub assemblies

for the free and fixed bearings and motor mounts were assembled and aligned. 1-2-3

blocks were used as a flat edge to align the each of the components. The components

were then clamped in place, doubled checked for alignment and then fastened together.

Once the sub assemblies were complete there were placed on the mounting plate. First

the two bearing mount sub-assemblies were mounted, they were initially positioned

using the micrometer, once approximately in position they were moderately tightened

in place. Next, alignment was checked by using the dial indicators. The edge of the

mounting plate was used as a straight reference and the displacement from the edge

from each side was measured. If noticeable misalignment was measured (>± 0.25mm)

the component was adjusted into place using a rubber mallet. Once adjusted it it was

double checked for alignment and fully secured. This process was repeated for the
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(a) Types of misalignment [5]

(b) Alignment using a dial indicator

Figure 3.13: Alignment of the workbench components
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motor mounts and the linear guide mounts. The most important parts to align were

the ball screws and the linear guides, there is some allowable misalignment allowable

but it was desirable to keep it below about >± 0.1mm per meter of stroke which is a

common threshold among moderate to high accuracy equipment. There are multiple

types of misalignment possible including radial offset misalignment where the center

axis of the shaft is parallel to the guides, but offset the center some distance, or

angular misalignment where the center of the axis isn’t parallel to the linear guides.

A similar approach as was used with the bearing mounts was used for alignment of

the ball screw. The main difference this time is that both the vertical and horizontal

directions needed to be considered. To adjust the position of each end of the ball

screw the bearing mounting bolts were loosened and moved into position. After the

ball screw shaft was sufficiently aligned the linear guides were installed. A similar

alignment process was used to align the linear guides but only in the horizontal

direction. The linear guides had a reference edge to press up against, the shaft

was adjusted as needed to properly align. The final component to align was the

linear encoder. The linear encoder needed to be aligned in both the vertical and

horizontal directions to ensure there would be no damage during operation. Once

all the components were aligned and the workbench was moved into place it would

need to be leveled. It is necessary to level the workbench because the floor was

uneven. If the workbench were to be uneven it would result in increased or decreased

torques in one direction or another as now the platform may need to move against

or with gravity. To adjust the level of the workbench a long level was placed at

various positions and the eight leveling feed equipped to the legs of the workbench

were adjusted until the system was sufficiently level.
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3.5.2 Electrical Assembly and Programming

Another key point for preparing the system was the electrical part of the system. This

primarily included checking the electrical components for safety and for programming

the system. For checking the parts for safety it was important to ensure that each

of the wired connections used an appropriate sized wire to carry the current, was the

proper colour for its purpose, and was not frayed or had any exposed connection.

Additionally it was important to check the integrity of the ground connection so

the continuity of each of the ground connections was ensured. Additionally proper

labeling was used to ensure proper warning of high voltage and risk of electric shock

or arc flash was given. Once the electrical system was double checked for safety, it was

inspected for electrical safety authority (ESA) and Canadian standards association

(CSA) for compliance. After passing these inspections the commissioning process

could begin.

The electrical commissioning process is outlined in Siemens manuals. It primarily

involves commissioning the individual components that make up the CNC system

including the NC unit, the human machine interface and the motor drives. This would

all need to be complete before the system could be used. The primary part of this

involved establishing connection between each of the components. The NCU needs to

be able to communicate with the HMI, the control panel, the motor drives, and the

I/O module. Once connection is established the motor drives can be commissioned.

This involves assigning encoders to axes, determining travel limits, and an original

determination of the controller gains. Once these steps are complete a PLC program

can be created. These PLC programs control the movements and behaviour of the

system.
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Chapter 4

Fault Detection in Ball Screw Preload

The following results were publish in the IEEE Open Journal of Instrumentation and

Measurement (OJIM) on August 4, 2023 [123].
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Nomenclature

A State-transition model.

B Input model.

C Observation model.

C+ Pseudoinverse of measurement matrix.

c̄, c Normalized factor.

d Diameter.

dp Preload disturbance torque.

De Damping coefficient.

Fp Force of Preload.

hp Screw lead.

I Identity matrix.

J Inertia.

K Kalman gain.
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m Mass.

p Mode transition matrix.

P State error covariance.

Q State noise covariance.

R Measurement noise covariance.

Rt Transmission ratio.

S Innovation covariance.

sat Saturation of a value (result between -1 and +1).

sat Diagonal of saturation term.

T Time step length.

u Input force.

v State noise.

w Measurement noise.

x State matrix.

x̂ State estimate matrix.

z Measurement matrix.

z̃ Predicted innovation.

α Lead angle.
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δ Sliding boundary.

η Efficiency.

θ Angular position.

θ̇ Angular velocity.

θ̈ Angular acceleration.

Λ Likelihood function.

µ Mixing probabilities.

ρ Density.

4.1 Introduction

The manufacturing world has entered the fourth industrial revolution, often referred

to as Industry 4.0. The fourth industrial revolution builds upon the automation and

digitization of the third industrial revolution. It includes the implementation of the

Internet of Things, machine to machine communication, and condition monitoring

(CM). Part of CM is the implementation of predictive maintenance (PM). PM is

an evolution of the current prevailing maintenance paradigm of preventative mainte-

nance. PM utilizes signals from the machine, wear models, and historic data to predict

wear and remaining useful life. By utilizing PM machine components can be replaced

when necessary, rather than at set intervals, or after failure has occurred. Using PM

can optimize machine availability and minimize costs associated with maintenance

and wear.
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Effective maintenance management is essential for machine tools which are an

integral component to modern manufacturing. Computer numerical control (CNC)

machine tools make up most of modern manufacturing. They enable the fast and

precise manufacture of millions of parts. CNC machine tools are essential components

of the automotive, aerospace, and heavy equipment industries to name a few. The

value of a machine tool relies upon it being in good working condition and having

minimal down time. Ball screws are the most common mechanism for linear motion

in machine tool feed drives. They convert the rotational motion of a servo motor

into linear motion. Ball screws function similarly to lead screws, moving a nut which

is connected to the worktable, up and down a screw. However, ball screws possess

certain characteristics that make them more desirable than lead screws for machine

tool feed drives. These include their extremely high efficiency (>90%), the ability to

run at continuous duty with large loads, having high load capacities, and low wear

properties. To improve the rigidity and repeatability of ball screw feed drives, they

are often preloaded.

Preloading a ball screw is the process of eliminating internal clearance between the

ball nut and ball screw. Preload is applied primarily in two ways: by using oversized

balls, or by using a double nut to create a tension or compression force between the two

nuts. Preload is normally designated as a percentage of the dynamic load capacity

of the ball screw. Preloads typically range from 2% to 10% of the dynamic load

capacity. A higher preload of 10% is most often used for machine tools to maintain

high rigidity and repeatability with high cutting loads and vibrations. Maintaining

high preload is important not only to manufacture parts to tight tolerances, but also

because preload loss is often a symptom of degradation of the raceway of a ball screw.
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The importance of preload necessitates the ability to effectively measure it. Several

studies to measure and detect preload loss exist in the literature. They can broadly be

categorized as sensor-based or sensor-less as has been presented in a paper by Butler

et al. [20]. Sensor-based solutions require external sensors such as accelerometers and

thermometers to measure vibrations and temperature, respectively. One downside of

sensor-based solutions is that it requires the purchase of additional sensors along with

their calibration, the need for external infrastructure for data collection and storage,

as well as issues surrounding routing wires and dealing with cable management, es-

pecially if sensors are installed on moving parts. A sensor-less solution uses built-in

signals of CNC machine tools, and is often ideal as it requires no additional cost or

complexity to implement. The majority of existing methods for measuring preload

or identifying preload loss that currently exist in the literature are sensor-based.

This paper proposes a sensor-less method to monitor and quantify the preload

level of a ball screw using the mode probability of an interacting multiple models

(IMM) system. IMM has been previously used in the literature for fault detection

but there is currently a limited scope of applications, with most dealing with actuator

and sensor faults. This method is a novel implementation of IMM for fault detection

in preloaded ball screws. Additionally, most IMM based fault detection methods

identify faults, but do not quantify them. There is a similar issue in the literature

on preload monitoring and loss detection, where many methods simply identify that

preload loss has occurred, rather than quantifying the current level of preload. The

proposed method predicts the current level of preload using a weighted sum of the

mode probabilities of the models making up the IMM, an activation function, and a

weighing factor based on the model’s preload designation. As will be demonstrated
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in the results section of this work, the proposed method will be shown to be robust

by maintaining accurate estimates under a number of different circumstances. The

proposed method will also be shown to have equal or better predictive capabilities

compared to other preload monitoring methods in the literature. The method is

sensor-less, while most current methods are sensor-based. This can reduce the cost,

complexity, and time of implementation compared to sensor-based methods. The

IMM based method can be a cost effective solution that can be utilized on its own,

or with other methods using model fusion, to provide real-time accurate estimates of

the level of preload in a system.

The remainder of this paper is organized into the following sections. Section 4.2

will cover existing literature on preload measurement and the application of estimation

theory to fault detection and CM. Section 4.3 covers modeling of the ball screw feed

drive system and preload loss. Section 4.4 covers estimation and filtering methods.

Section 4.5 explains how the method is formulated and how it is used to predict

preload. Section 4.6 covers the methodology and results of computer simulations used

to validate the effectiveness of the method, and a comparison to the results of other

methods in the literature. Section 4.7 is the conclusion and future recommendations.

4.2 Literature Review

The following review of the literature examines both the application of estimation

theory to fault detection and CM, as well as other methods that have been used to

measure levels of preload, or to detect loss of preload.
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4.2.1 Preload Detection

As previously mentioned, sensor-based methods involve external sensing or measure-

ment apparatuses installed onto the system. Sensor-less methods use data already

collected by the numerical controller [20]. Sensor-based methods are more common in

the literature, often utilizing sensors such as force sensors and accelerometers [118].

In a study by Frey et al. a force sensor was inserted between the nuts in a system

preloaded with a double nut. Doing this they were able to determine the preload

force and measure changes over time and over the stroke of the screw [42]. Studies

by Feng and Pan used accelerometers and temperature sensors to diagnose preload

using frequency analysis [40, 39]. In one study they analyzed the peak frequency

shift and the magnitude variation of the peak frequency to diagnose preload [40]. In

two papers they utilized acceleration [39, 155] and temperature [39] data to predict

preload where a support vector machine method was used to classify levels of preload.

Tsai et al. used ball pass frequency to predict levels of preload. A decrease to the

order of the ball pass frequency, and appearance of side bands, were used to detect

changes in preload [135]. Nguyen et al. used motor current and vibration signals to

diagnose preload in real time based on the calculated axial natural frequency of the

system [100]. Benker et al. utilized a neural network to identify faults in a ball screw

system. They used data from an accelerometer placed on screw nut. They classified

screws based on preload loss, pitting damage, and indistinct defect and used me-

chanical power, and acceleration in three axes as features. They found up to a 92%

classification accuracy when using mechanical power as the signal during direction

changes [16]. Zhou et al. ran three ball screws for 7.2 million cycles and measured

preload every 240 thousand cycles. They measured force using a tension-compression
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sensor and calculated experimental preload based on contact load and sliding speed

and compared their calculated values versus experimental results. Their method was

based on calculating the estimated depths of the raceway which could be used to

calculate contact load of the ball bearings and raceway and therefore preload [167].

Denkena et al. utilized an accelerometer as well as linear position and error to esti-

mate preload. They ran their screw until complete preload degradation. Preload was

classified based on error signal and acceleration data [34].

In contrast to sensor-based methods, the following sensor-less methods use signals

that are built-in to the system for diagnosing preload loss. Built-in signals include

the position, velocity, and acceleration of the various axes, and the motor current

and torque for the feed drive and spindle motors are the other most commonly used

built-in signals. Chang et al.[27] and Huang et al.[64] used decomposed motor current

and torque signals to diagnose preload loss using the Hilbert-Huang transform. These

methods seem to be effective at estimating levels of preload without the need for the

implementation of additional sensors .

Other methods may require taking measurements of the ball screw beforehand to

estimate future degradation. Shen et al. developed a 2 stage model for predicting

wear. They compared their model to experimental results and found their model

tracked the actual results fairly accurately. The first stage of the wear model uses

geometric errors such as pitch errors, ball radius errors to predict wear, then the

second stage uses fractal theory which was adopted to characterize contact between

the balls and raceway using an adhesive and abrasive wear model [115].

There are a variety of methods that exist in the literature for detecting and mea-

suring preload loss. Some methods classify the system as either being healthy or at
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a certain level of degradation. Others methods measure and quantify the estimated

level of preload in the system. Quantifying the level of preload is generally preferable

as it is useful to quantify the level of preload as well as track its degradation. There

are many more sensor-based methods which utilize external sensors than those which

are sensor-less.

4.2.2 Estimation for Fault Detection

The field of estimation theory has often been applied to problems such as improving

the accuracy of measurements and for effective target tracking. Many different types

of Kalman filters (KF) and other estimation methods exist. The extended Kalman

filter (EKF) and unscented Kalman filter (UKF) are extensions which are useful for

nonlinear systems. Newer filters such as the smooth variable structure filter (SVSF)

[53, 14, 44] and sliding innovation filter (SIF) [45, 77] have shown to be robust to

changing system dynamics. IMM is a method that has been used in the literature

for several different types of applications. Many studies have used IMM for improved

target tracking where the object has multiple modes of system dynamics to describe

its motion [73, 74, 113]. It was found that as the process error increases relative to the

measurement error, the performance of IMM relative to a regular KF increases sub-

stantially [73]. In addition to these applications there are examples in the literature

of estimation methods being applied to fault detection.

A popular use for IMM is that it can be used to detect faults by observing the

mode probability of each filter. In addition to detecting faults, many of these studies

implemented fault tolerant control (FTC). A popular application case for these studies

involve the failure of aircraft actuators and sensors. Mohan et al. created a method
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for fault detection for stuck air craft actuators using IMM. They used 25 states, with

3 fault states for each actuator for being stuck in various positions [98]. Kim et al.

created a fuzzy tuned IMM filter to apply FTC to aircraft actuators, they found their

method had improved performance to regular IMM FTC by reducing the incidences

of false fault detection and control input discontinuities [72]. Zhang et al. utilized

IMM to implement FTC for a longitudinal vertical takeoff and landing aircraft. They

modeled sensor, actuator and a system faults in their IMM [164]. Another popular

implementation of IMM for fault detection and FTC is quadcopters and unmanned

aerial vehicles (UAV). In one study Lee et al. predicted fault sizes of actuator and

sensor faults in quadcopters using IMM. Their method could identify whether a sensor

or actuator fault had occurred, then identify which of the actuators had failed based

on the fault probability [78]. Zhang et al. identified actuator faults in a quadcoptor

using IMM. Their method utilized error residuals to estimate actuator faults and

their amplitude [161]. Cork and Walker created a method of sensor FTC and found

that their method had improved target tracking by decreased positioning and attitude

error compared to a single UKF filter method [31]. Rago et al implemented FTC using

IMM. Their method was able to identify faults in several sensors and actuators. By

identifying the faults they could compensate and control a UAV under these failure

conditions. Other studies examined IMM in relation to electro-hydrostatic actuators

where leakage and friction faults were detected [1, 46]. Several types of filtering

methods were used within the IMM, including: IMM-EKF, IMM-UKF, and IMM-

SVSF. Each of these studies found the IMM to be an effective method of detecting

faults and implementing FTC. One study by Huang et al. [60] used a KF based

method for detecting faults in a ball screw system and were able to detect both
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measurement and mechanical failures. They used residual signals from the KF for

fault detection and identification and also implemented FTC in their system.

IMM has proven to be an effective method for fault detection and FTC. However,

the scope of applications is small in the literature. Most studies have investigated

its application to only electro-hydrostatic actuators, aircraft actuators, and UAV or

quadcopter navigation. Most methods, with the exception of Zhang et al. [161],

identified faults but did not quantify the magnitude of the fault. An application of

IMM to preload loss in ball screw feed drives which can identify preload loss, as well

as quantify it, would be a novel application to IMM literature.

4.3 Ball Screw Modeling

The first step in creating a method of preload detection is modeling the ball screw

feed drive system. One possible representation of a ball screw system was proposed

by Altinas et al. as seen in Figure 4.1 [7]. This model can simplify analysis relative to

more complex models that separate the components into multiple interacting masses.

This representation lumps the motor, screw, nut, table, and workpiece masses together

as shown in (4.3.1)-(4.3.3). The system is represented by the differential equation

(4.3.4) below.

Jbs = ρlπ
d4

32
(4.3.1)

Jt = (mt +mwp)
hp
2π

2

(4.3.2)

Je = Jbs + Jt + Jm (4.3.3)
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Jeθ̈ +Deθ̇ = u(t)− dp(t) (4.3.4)

The distance the worktable travels linearly along the screw for a given rotation is

determined by the ball screw’s transmission ratio, which is calculated using

Rt =
hp
2π
. (4.3.5)

The second important consideration is modeling the loss of preload in the system.

Preload has a few effects on system dynamics. First, increasing preload increases

the drag torque [27]. Second, increasing preload increases the positional repeatability

of the system [42]. Third, increasing preload increases the stiffness of the system.

The preload can also affect the efficiency value, where decreasing preload increases

mechanical efficiency as long as the applied load is greater than the preload [145].

There are a few different methods to calculate preload disturbance torque [166, 133,

100]. Some calculate it using the system stiffness and the radius of the balls, but the

Figure 4.1: A simple lumped model of the ball screw as seen in [7].
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most common method is the following equation

dp(t) =
0.05√
tanα

· Fphp
2πη

. (4.3.6)

Preload will fluctuate over the stroke of the screw due to manufacturing error

resulting in variation in the width of the raceway. This variation decreases as the

precision grade of the ball screw increases [133]. Over time with the degradation of

the balls, raceway, and nut, the preload will decrease in a somewhat linear fashion

over the life of the ball screw [167]. In the Zhao et al. study they noticed a period of

steeper degradation followed by a long period of linear degradation [165]. The rate

of preload degradation depends on the initial preload [167]. Larger initial preloads

degrade at a higher rate than lower preloads. Degradation also causes an increase

in travel variation. For the purpose of the experimentation that was performed, the

decrease in drag torque due to a decrease in preload will be the method in which a

loss of preload was modeled.

4.4 Estimation and Filtering

Each method of filtering discussed in Section 4.2 has its own advantages and use cases

which have been examined in the literature. The KF and the SIF are the chosen filters

that will be examined for their application for preload loss detection using IMM. The

KF was chosen due to its widespread use across the literature and industry, and the

SIF due to its improved performance in faulty systems.

91

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – B. Sicard; McMaster University – Mechanical Engineering

4.4.1 Kalman Filter

The KF is an optimal solution to the linear estimation problem [70]. It uses a pre-

diction and update stage to recursively estimate the system state. The KF is used

for linear systems and is an accurate predictor for these models. However, it is not

very robust for nonlinear systems or systems with faults. To overcome these issues,

many derivations and extensions of the KF have been developed for estimation with

nonlinear systems or systems with changing dynamics. The formulation for the KF

will be shown below. The KF has two stages: the prediction stage

x̂k+1|k = Akx̂k|k +Bkuk (4.4.1)

Pk+1|k = AkPk|kA
T
k +Qk (4.4.2)

followed by an update stage

Sk+1 = Ck+1Pk+1|kC
T
k+1 +Rk+1 (4.4.3)

Kk+1 = Pk+1C
T
k+1S

−1
k+1 (4.4.4)

x̂k+1|k+1 = x̂k+1|k +Kk+1(zk+1 − Ck+1x̂k+1|k) (4.4.5)

Pk+1|k+1 = (I −Kk+1Ck+1)Pk+1|k(I −Kk+1Ck+1)
T +Kk+1Rk+1K

T
k+1. (4.4.6)

92

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – B. Sicard; McMaster University – Mechanical Engineering

4.4.2 The Sliding Inovation Filter

Unlike the KF, the SIF is a sub-optimal solution to the linear estimation problem.

The SIF is an estimation strategy that makes use of a switching gain and innovation

term which bounds state estimates [45]. The SIF performs similarly to the KF for

normal linear systems, but performs much better in linear systems with faults. The

adaptive version of the SIF offers a slight performance improvement compared to the

standard SIF in both regular operation and faulty operation linear systems due to

the inherent robustness of the switching gain [77]. The SIF is formulated similarly to

the KF with a prediction stage

x̂k+1|k = Akx̂k|k +Bkuk (4.4.7)

Pk+1|k = AkPk+1|kA
T
k+1 +Qk (4.4.8)

z̃k+1|k = zk+1 − Cx̂k+1|k (4.4.9)

followed by an update stage

Kk+1 = C+
k+1sat(|z̃k+1|/δ) (4.4.10)

x̂k+1|k+1 = x̂k+1|k +Kk+1z̃k+1 (4.4.11)
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Pk+1|k+1 = (I −Kk+1Ck+1)Pk+1|k(I −Kk+1Ck+1)
T +Kk+1Rk+1K

T
k+1. (4.4.12)

4.4.3 Interacting Multiple Models

Most systems have several different models to describe their behaviour. Because of

this, a single filter is often inadequate to accurately estimate such systems. To over-

come the limitation of using a single filter, the IMM method uses several models to

more accurately estimate a system. IMM can be used with several different types of

estimation methods and many different numbers of models. Increasing the number

of models in an IMM system can increase estimation accuracy at the cost of com-

puting performance. The first two steps of the IMM involves calculating the mixing

probabilities

µi|j,k|k =
1

c̄j
pijµi,k (4.4.13)

c̄j =
r∑

i=1

pijµi,k. (4.4.14)

The next stage of the IMM is the mixing and interaction stage. Here the mixed initial

conditions for each mode are calculated

x̂0j,k|k =
r∑

i=1

x̂i,k|kµi|j,k|k (4.4.15)
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P0j,k|k =
r∑

i=1

µi|j,k|k{Pi,k|k + (x̂i,k|k − x̂0j,k|k)(x̂i,k|k − x̂0j,k|k)T}. (4.4.16)

The next stage calculates the likelihood function for each mode matched filter

Λj,k+1 = N(zk+1; ẑj,k+1|k, Sj,k+1) (4.4.17)

Λj,k+1 =
1√

|2πSj,k+1|Abs

exp(
−1

2
eTj,z,k+1|kej,z,k+1|k

Sj,k+1

). (4.4.18)

After calculating the likelihood function for each mode matched filter, the mode

probability can be updated and the normalizing constant calculated

µj,k =
1

c
Λj,k+1

r∑
i=1

pijµi,k (4.4.19)

c =
r∑

j=1

Λj,k+1. (4.4.20)

The output state and state error covariance of the IMM system are then determined

x̂k+1|k+1 =
r∑

j=1

µj,k+1|k+1x̂j,k+1|k+1 (4.4.21)

Pk+1|k+1 =
r∑

i=1

µj,k+1|k+1{Pj,k+1|k+1 + (x̂j,k+1|k+1 − x̂k+1|k+1)(x̂j,k+1|k+1 − x̂k+1|k+1)
T}.

(4.4.22)
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4.5 Proposed Method

The proposed method utilizes a weighted sum of the mode probabilities of various

filters which represent different levels of preload. Five KF models representing preload

levels 10%, 7.5%, 5%, 2.5%, and 0% were used to create the IMM system. If there

were more models the system may not be able to correctly transition between models

and therefore could not correctly identify the levels of preload. If there were fewer

models there would be too large a gap of preload between models and it would be too

difficult to accurately determine the current level. The mode transition matrix used

in the IMM model is given below

pij =



0.8 0.08 0.06 0.04 0.02

0.07 0.8 0.07 0.04 0.02

0.04 0.06 0.8 0.06 0.04

0.02 0.04 0.07 0.8 0.07

0.02 0.04 0.06 0.08 0.8


. (4.5.1)

The model is more likely to switch to an adjacent model (i.e from 7.5% to 5% or 10%)

than to one further away in level of preload (i.e from 10% to 2%) as this is the more

likely scenario to occur.

Each time step the IMM system produces mode probabilities for each of the five

KF models, which is the probability that a system model matches the measured sys-

tem. The probabilities sum up to 1, with models more representative of the system

having probabilities approaching 1 and less representative systems having a probabil-

ity closer to 0. For each of the models the weighted estimate can be calculated using
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Act(µij) ·Weight. (4.5.2)

Where Act(µij) is the activation function and the weights are equal to the level of

preload of each model. Generally IMM uses a linear activation function. These

weighted estimates can be summed together to equal an estimate of the current level

of preload. A diagram showing the proposed method can be seen in Figure 4.2. For

example, if looking at Table 4.2 when actual preload is at 5%, the estimated preload

calculated from the IMM system using a linear activation function Act(µij) = µij · (1)

is

0.04 · 1 · 10 + 0.05 · 1 · 7.5 + 0.85 · 1 · 5 + 0.04 · 1 · 2.5 + 0.03 · 1 · 0 (4.5.3)

= 5.125%.

The issue with using a linear activation function is that the prediction accuracy for

the upper (10%) and lower (0%) bounds was comparatively less accurate than the

predictions in the middle of the bounds. This is due to the fact that since there will

be residual mode probability for the other models, and there is no model above 10%

and none below 0%, it will skew the measurement low for the 10% prediction and

high for the 0% prediction. To address this issue the exponential activation function

can be used where

Act(µij) =
µ2
ij∑r

j=1 µ
2
ij

. (4.5.4)

Using an exponential activation function can further decrease the residual mode prob-

ability to close to zero. This method of activation had improved prediction capabilities

near the end of the prediction range but encountered the issue that the prediction
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would oscillate about the true value. Using an exponential value of 1.33 rather than

2 yielded improved results. From examining the literature this seems to be a novel

approach to dealing with residual mode probabilities which often decreases prediction

accuracy. The results of these changes to weighing can be seen in Figure 4.6. and

Table 4.2. All the simulations were conducted using an exponent of 1.33.

Figure 4.2: Diagram of proposed method.

4.6 Computer Simulation and Results

Table 4.1: Parameters and values.

Parameter Meaning Value

De Damping coefficient 1.98× 10−2 kg·m2

s

d Average diameter of the ball screw 0.02 m

dp(0) Initial disturbance torque 0.3 N ·m

Fp Force of preload 1× 103 N
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hp Screw lead 0.02 m

Jbs Ball screw inertia 1.26× 10−4 kg ·m2

Je Lumped inertia 3.3× 10−3 kg ·m2

Jm Motor inertia 3× 10−3 kg ·m2

Jt Table inertia 2× 10−4 kg ·m2

l Length of ball screw 1 m

mt Mass of table 10 kg

mwp Mass of workpiece 10 kg

Rt Transmission ratio 1.59× 10−3 m
r

tf Total time 100 s

T Time step length 0.1 s

α Lead angle 0.31 rad

η Efficiency 90%

ρ Density of the ball screw material (steel) 8.05× 103 kg
m2

To test the IMM method for detecting preload loss, a computer simulation was cre-

ated which tested multiple scenarios to display the robustness and accuracy of the

model. The simulated system is an open loop single axis feed drive. The value of all

parameters used in the simulation can be found in Table 4.1. The various parameters

were calculated using equations (4.3.1)-(4.3.6) Efficiency was assumed to be 90% and

the damping coefficient which was used was the same as the Y-axis from the paper

by Altinas et al. [7]. The screw is a steel 20 mm lead, 20 mm nominal diameter, 1

m long screw. The system transition and measurement models are defined below in
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(4.6.1) and (4.6.2) where k is the current time step, and k+ 1 is the next time step.

xk+1 = Axk +Buk + wk (4.6.1)

zk+1 = Cxk+1 + vk+1 (4.6.2)

Using (4.3.4), the state space representation for the continuous system is found

ẋ1
ẋ2

 =

0 1

0 −De

Je


x1
x2

+

 0

1
Je

 û(t). (4.6.3)

A third state x3 which represents the linear position of the system is added using the

transmission ratio of the system. The system is then discretized and the following

equations are found


x1

x2

x3


k+1

=


1 T 0

0 1− De·T
Je

0

Rt Rt · T 0



x1

x2

x3


k

+


0

T
Je

0

 û(t) + wk. (4.6.4)

The measurement equation is seen below where measurements are taken of both the

angular and linear position, which is common for most machine tool feed drives which

use both rotary and linear encoders

z1
z2


k+1

=

1 0 0

0 0 1



x1

x2

x3


k+1

+ vk+1. (4.6.5)
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The state noise covariance and measurement noise covariance matrix are given below

in (4.6.6) and (4.6.7), respectively. The measurement noise was determined based on

typical measurement error of precision linear and rotary encoders. Positioning error

was based on some allowances for backlash or clearances in the system, these would

be small in a rigid precision machine tool.

Q =


1× 10−3 0 0

0 1× 10−2 0

0 0 Rt · 1× 10−3

 (4.6.6)

R =

1× 10−4 0

0 2× 10−5

 (4.6.7)

The system input can be seen in (4.6.8). The disturbance due to preload was

subtracted from the system input to get the true system input û(t). The piecewise

function to determine this value is given in (4.6.9).

u(t) = 2 · sin(t) (4.6.8)

|û(t)| =


|u(t)| − |dp(t)| |u(t)| > |dp(t)|

0 |u(t)| ≤ |dp(t)|
(4.6.9)

A time step of 0.1s was chosen, as with smaller time steps the system was unable

to correctly identify the level of preload. This likely occurred because the difference

in the filters used for the IMM model was too small to correctly identify the correct

model. In practical terms this means that down sampling would need to occur in an
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actual application as CNC systems sample at much higher frequencies.

Four simulations representing different possible scenarios were tested to determine

the robustness of the model. These first four simulations utilize a KF-IMM. The first

is a simulation testing gradual preload loss from full 10% preload to 0% preload.

The second is a simulation where preload is decreased from 7.5% preload to 2.5%

preload. The third simulation is one where the preload remains at the full 10% the

entire simulation. The fourth simulation tests for the proposed methods ability to

account for a rapid change from 10% preload to 0% preload. A fifth simulation

was conducted using SIF-IMM rather than using KF-IMM so that the performance

could be compared. Performance of the IMM will be determined by comparing the

estimated preload compared to the actual preload.

4.6.1 Simulation 1: Gradual Loss Over Time

The first simulation represents a situation in which the preload gradually degrades

over time. This is the most common type of degradation that is observed as it would

occur due to regular wear on the components. Over the course of the simulation the

disturbance value decreased linearly from the initial value of 10% preload (dp(0) = 0.3)

to a final value of 0% (dp(tf ) = 0) preload which can be seen in Figure 4.6.

The actual system input û(t) increased over time as a result of decreased distur-

bance torque due to preload as can be seen in Figure 4.3. Due to the increase in

actual input, the system moved further each period of the sin wave input. Using

the constructed IMM model the following mode probabilities were found as seen in

Figure 4.4. There is a great deal of noise in the mode probabilities, however it is

clear that there is a pattern which correctly identifies the level of preload. Using a
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Figure 4.3: Simulation 1 system input.

moving average, the mode probabilities were smoothed and the trend is clearer which

can be seen in Figure 4.5. The mode probability for all simulations used a moving

average to account for the noise.

The results of the first simulation can be seen in the confusion matrix in Table 4.2

and Figure 4.6. The model with the greatest mode probability is shown in bold font.

The predicted preload level was calculated using the method demonstrated in section

4.5. From these results it has been demonstrated that the IMM model was able to

accurately and reliably estimate the levels at preload throughout this simulation.
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Figure 4.4: Simulation 1 preload predictions using mode probabilities.

Table 4.2: Predicted preload versus actual preload confusion matrix.

Actual preload Mode Prediction

10% 7.5% 5% 2.5% 0% Linear Exp

10% 0.85 0.07 0.04 0.03 0.02 9.3% 9.7%

7.5% 0.04 0.88 0.04 0.02 0.02 7.3% 7.5%

5% 0.04 0.05 0.85 0.04 0.03 5.1% 5%

2.5% 0.02 0.02 0.04 0.89 0.03 2.7% 2.5%

0% 0.02 0.02 0.03 0.05 0.87 0.6% 0.3%
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Figure 4.5: Simulation 1 smoothed preload predictions using mode probabilities.

4.6.2 Simulation 2: Alternate Starting and Ending Preload

The second simulation involves different starting and ending levels of preload. Over

the course of the simulation, the preload was gradually reduced from 7.5% (dp(0) =

0.225) to 2.5% (dp(tf ) = 0.075). This shows that the model can start at different

points of initial preload and end at different points of preload and still be able to

correctly predict the current level of preload. This is important as there is a wide

variety of different preloads used across different applications. Running the IMM

method yielded the following results as seen in Figure 4.7. This simulation shows the

robustness of the proposed method. The method continued to work in this condition

and it could correctly identify the level of preload over the course of the simulation.
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Figure 4.6: Simulation 1 preload predictions using different weighing factors.

4.6.3 Simulation 3: No Change to Preload

The third test for the method involved maintaining full preload the entire simulation.

This simulation showed that the model will not give false positives and show a decrease

in preload. Given that preload degradation will normally occur very slowly this

simulation emulates the most common operating condition. Running the IMM model

yielded the following results as seen in Figure 4.8. As can be seen, the model was

able to accurately predict that the system had maintained full preload throughout

the simulation.
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Figure 4.7: Simulation 2 preload prediction using weighted sum versus actual
preload.

4.6.4 Simulation 4: Sudden Drop in Preload

The fourth test for the proposed method involved a sudden drop from full 10% preload

to 0% preload at the midpoint of the simulation. This test will determine if the model

is capable of responding to sudden and rapid changes to preload. This test simulated

a scenario in which the preloading method (a spacer nut for examples) suddenly fails,

resulting in a complete loss in preload. Running the IMM method yielded the results

seen in Figure 4.9. Within 3 time steps the IMM method was able to accurately

detect the level of preload. This test demonstrated the method’s quick reaction to

large changes in the system.
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Figure 4.8: Simulation 3 preload prediction using weighted sum versus actual
preload.

4.6.5 Simulation 5: Comparison of Estimation Methods

It is possible that other estimation methods may yield better or worse results com-

pared to the KF based model. An SIF-IMM was tested using the same parameters

as the first method. The sliding boundary layer was calculated to be

δ =

0.05

0.07

 . (4.6.10)

The same conditions as the first simulation with gradual loss of preload were

used in this test. After running the simulation and examining the results, it can be

seen that they are similar to that of the regular KF based IMM as seen in Figure

4.10. The results are very similar to the KF based IMM seen in the first simulation,
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Figure 4.9: Simulation 4 preload prediction using weighted sum versus actual
preload.

with the predicted preload tracking the actual preload very closely. As noted in the

original SIF paper, the SIF performs similarly to the KF in no fault conditions[45].

Because the IMM switches models to one representative of the current level of preload

it essentially is in a no-fault condition, which explains the similarity in results. From

these results it can seen that the proposed IMM method for preload measurement

can be constructed using both the regular KF and the SIF.

4.6.6 Comparison to Other Methods in the Literature

After examining the results of the five performed simulations, it is clear that the

proposed method is robust under a variety of circumstances. In addition to being

robust, the proposed method was able to obtain an average accuracy of approximately
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Figure 4.10: Simulation 5 preload prediction using weighted sum versus actual
preload.

95% to 98% in predicting the levels of preload.The results of the previous preload

measuring or preload loss identification methods have been compared to the method

proposed in this work. It is difficult to directly compare results for a few reasons.

Some papers predict the level of preload, while others seek to classify into states of

preload. This work seeks to quantify preload so it is best to be compared to the

papers which quantified preload in Table 4.3. Additionally, it is difficult to compare

as the experiments or simulations used to validate the results is different for each

work. Many papers also present a method to identify preload loss but do not directly

quantify their method’s ability to quantify or classify preload. In the table these are

marked as "N/A" in the accuracy column. For some papers it was also necessary to

estimate prediction accuracy based on graphs they provided which showed predicted

preload compared to actual preload, as they did not provide accuracy estimates. As
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can be seen the proposed method has similar accuracy to other preload quantifying

methods seen in the literature. One advantage it has over other methods is that it

is sensor-less, the two other preload quantification methods that were able to obtain

95% prediction accuracy were sensor-based methods.

Table 4.3: Comparison of results to other preload estimation methods.

Paper Sensor-based / sensor-less Type Accuracy

Proposed Sensor-less Quantified 95%

[167] Sensor-based Quantified 95%

[100] Sensor-based Quantified 95%

[34] Sensor-based Classification 94%

[16] Sensor-based Classification 92%

[115] Other Quantified 77%

[155] Sensor-based Classification 50%

[42] Sensor-based Quantified N/A

[40] Sensor-based Quantified N/A

[39] Sensor-based Quantified N/A

[135] Sensor-based Classification N/A

[27] Sensor-less Classification N/A

[64] Sensor-less Classification N/A
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4.7 Conclusion and Future Work

Maintaining preload is an important factor in a machine tool feed drive’s ability

maintain rigidity and repeatability as it helps ensure accurate, high-quality parts are

manufactured. The proposed method provides a novel sensor-less method for ac-

curately measuring preload and detecting loss of preload in a ball screw feed drive

system. Sensor-less methods are advantageous to sensor-based methods due to not

requiring the installation and any related additional costs and complexity of addi-

tional external sensors. Sensor-based and sensor-less methods can also be used in

conjunction via model fusion to create an even more accurate estimate of preload

than one method alone. The proposed method using IMM, and activation function,

and a weighted sum of the mode probabilities was found to be robust and accurate

across multiple testing scenarios and while using different types of filters. The ac-

curacy of this method in estimating preload was comparable or better than other

methods in the literature. In addition to the contribution to preload detection, this

work also contributes to the literature in regards to filtering and estimation. The

proposed method is a novel implementation of IMM which currently has a limited

scope of applications to fault detection in the literature. The use of an activation

function in IMM is a novel modification of the method. In summary the primary

contributions and advantages of the proposed method are the following:

1. High degree of predictive accuracy and robustness.

2. Novel implementation of IMM for fault detection, it has never been applied to

estimating preload before.
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3. Sensor-less method, there is much fewer sensor-less based methods than sensor-

based methods.

4. IMM based method that quantifies fault rather than just classification, the

majority of IMM fault detection methods classify and identify fault states rather

than quantify the fault.

5. Preload method that quantifies level of preload, many other preload identify

that preload loss has occurred or categorize wear into several levels of wear

rather than quantifying the fault or wear.

6. Utilizing an activation function for predictions using IMM, which is a novel

modification and not seen in the literature.

Further work on this method could go in a few different directions. First, the

method could be modified to work with closed loop control. Most, if not all, feed drive

systems, especially in CNC machine tools, operate in a closed loop control system.

Therefore, it would be necessary to implement the method with closed loop control

in order to be viable to actual implementation. By implementing closed loop control

the method could be used to develop a FTC scheme to improve control accuracy.

Second, the system could be tested on a real industrial machine tool. Although the

method has demonstrated benefits on our computer simulation, the method should

be applied and proven to work in a real world environment. To properly test this

method experimentally, there would need to be an adjustable preload nut with force

measurements to accurately measure preload in real time. Finally, other faults could

be tested using the IMM framework. Faults such as misalignment, lack of lubrication,

or a number of other faults would be interesting to examine using a similar method.
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Chapter 5

Data Analysis and Modeling

This chapter covers the analysis of data collected from the experimental setup. Data

collected from the CNC system can be used for modeling and CM purposes. Data

analysis from the system will be used towards achieving both the industry sponsor

and academic goals.

5.1 Digital Twin Modeling Strategy

One key characteristic of DTs is the use of multiple models to model the physical sys-

tem. The advantage of this approach is certain models may provide certain knowledge

of the system better than other types of models or that other models cannot provide.

One other advantage of using multiple models is that their estimates or results can be

fused together for model fusion. This means more accurate estimations of the systems

current state and parameters can be obtained than a single model alone. The general

process for analyzing the system is the following:

1. Create and run tests which can be used to extract useful information
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2. Collect and parse the heterogeneous data generated via the system

3. Analyze data and create models to represent useful parameters and qualities of

the system

4. Create a model to represent the "healthy" or base case

5. Modify operating parameters and repeat steps 1 to 3 and evaluate effects on

models

Figure 5.1: Overview of DT modeling and analysis process

An overview of this process can be seen in Figure 5.1. In this case a "healthy"

model for the LFD workbench will be developed by using new components in proper

alignment. With this state several tests will be ran which are described in section 5.2

which will be used to create several models, some of which are described in section

5.3. Several changes to the system parameters will be changed to observe the effect.
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After changing the parameters the system will be re-modeled to observe the effect as

will be shown for the effect of a warm up cycle in section 5.3.2.

5.2 Data Generation and Collection

An important step in CM and modeling is the collection of data. Collected data can

be used to fit parameters and create relationships and models between the input and

outputs of the system.

5.2.1 Test Programs

To collect data to evaluate the system it is important to generate movements which

can be used to extract the parameters and qualities of the system. In this case,

some relevant parameters are friction, stiffness, preload, backlash, and inertia. One

important consideration is that the parameters, specifically friction and inertia, will

both vary based on a few factors. Stiffness will tend to decrease the further from

an axially fixed bearing, so this might be near the far end in the case of a single

fixed bearing, or in the middle in the case of two fixed bearings. It may also have

some variation along the axis based on wear or manufacturing defects which lead to

lead variations or increased groove radius. The lead and groove radius variations as

well as other types of wear such as pitting and spalling can also lead to increased

or decreased friction along the stroke. Knowing that friction varies with velocity

and there is substantially different friction profiles at low and high speeds. It is

important when designing movements that these variations of parameters are taken

in to account. Several tests were designed for the purpose of extracting estimates of
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Rotational speed (RPM) Linear velocity (mm/min)

15 300
30 600
60 1200
120 2400
150 3000
300 6000
600 12000
1200 24000
1500 30000
3000 60000

Table 5.1: Speeds used for the friction test

the stiffness, inertia, and friction. The tests were designed after the tests Siemens

uses for their proprietary software.

For the friction tests several speeds were used to create a full friction profile. This

involved moving the axis at 10 different speeds both forwards and back as seen in

table 5.1. Moving the axis at several different constant velocities would allow the

creation of a friction profile which can be seen in section 5.3.2. An overview of the

friction test can be seen in Figure 5.2. Another test used constant acceleration over

different sections of the stroke to estimate the stiffness by taking the difference of the

rotary encoder and linear encoder. Using this stiffness estimates could be taken at

different points along the axis.

5.2.2 Data Collection

The data generated by the CNC are called "trace files". When generating trace files

you can select which variables are included. These variables can be sensor readings,

such as from the encoders, or it can be data from the control loop such as velocity
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Figure 5.2: Overview of friction test
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and position error. These files are generated as a XML file. To effectively analyze this

data, the first step would be to load the data, or convert it to a data form which can

be used. The primary modeling software being used for analysis has been MATLAB.

To easily load this data into MATLAB it is first converted to a table in a CSV data

file. For the trace files used for data analysis the primary variables of interest are the

measured positions and velocity at each encoder and the command torque. These

variables can be used to create the estimates of stiffness and friction seen in sections

5.3.1 and 5.3.2. The torque command and position of the axis are also useful for

modeling of the system. An input-output set of data is necessary for validating any

model and for any parameter estimation of those models.

5.3 Modeling the System

Modeling the system is important for several different purposes. For the industry

partner it is valuable to model the system and understand how different conditions

can affect the system. For research purposes it is valuable for research into other

topics such as ML, control, and estimation. Modeling of the systems parameters and

models used to predict and understand the systems behaviour are discussed below.

5.3.1 Modeling Stiffness

One point of analysis would be examining the stiffness of the system. A LFD consists

of multiple connected competent which each contribute to the overall stiffness of the

system. An overview of a typical LFD and the components that contribute to its

stiffness can be seen in figure 5.3. These components are connected in series meaning
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the overall stiffness Keq can be expressed as:

Keq = { 1

K1

+
1

K2

+ ...+
1

Kn

}−1 = {
n∑

i=1

1

Ki

}−1 (5.3.1)

For a ball screw specifically, if looking at the various stiffness’s that make up to

equivalent stiffness it may look like this:

Keq = { 1

Kcoupling

+
1

Kscrew

+
1

Knut

+
1

Kbearings

+
1

KSupports

}−1 (5.3.2)

Because this system uses a fixed-free arrangement for the bearings only the fixed

bearing and support would be considered, not the free bearing and support. Given

this relationship the equivalent stiffness will be most affected by smaller values of

stiffness than by larger values of stiffness. For instance given 4 springs in series with

a stiffness of 1000 NM. the equivalent stiffness would be:

Keq = { 1

1000
+

1

1000
+

1

1000
+

1

1000
}−1 = 250 (5.3.3)

If one of the elements stiffness was doubled to 2000 the resulting stiffness would be:

Keq = { 1

2000
+

1

1000
+

1

1000
+

1

1000
}−1 = 285 (5.3.4)

Which is an increase of 14% If one of the elements stiffness was halved to 500 the

resulting stiffness would be:

Keq = { 1

500
+

1

1000
+

1

1000
+

1

1000
}−1 = 200 (5.3.5)
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Figure 5.3: Multiple components of a linear feed drive contributing to overall
stiffness [125]

Which represents an increase of 20%. The results are even more drastic with larger

changes in stiffness. With a 10 times increase or decrease to stiffness results in a 29%

increase or decrease 70% respectively. From this we can see that lower component

stiffness has a larger effect on overall stiffness than high stiffness.

While it may be useful to individually examine each of the stiffness and their

contribution to the overall stiffness as well as the instantaneous position of various

components along the system, modeling each of these components separately can

increase system complexity exponentially. For example the transfer function for the

last mass unit and the input for a system with a single mass, two masses connected
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via one spring, and 3 masses each connected via a spring can be seen in equations

(5.3.6)-(5.3.8) below. As can be seen each additional level of complexity increases the

order of the transfer function by 2.

x1
u

=
1

(m1s2)
(5.3.6)

x2
u

=
k1

(m1m2)s4 + (m1k1 +m2k1)s2
(5.3.7)

x3
u

=
k1k2

m1s2k1

∣∣∣∣∣∣∣
m2s

2 + k1 + k2 −k2

−k2 m3s
2 + k2

∣∣∣∣∣∣∣+ k1

∣∣∣∣∣∣∣
−k1 −k2

0 m2s
2 + k2

∣∣∣∣∣∣∣
=

b1
a1s6 + a2s4 + a3s2 + a4

(5.3.8)

As can be seen complexity of the system and resulting transfer functions increases

substantially for each additional sub-stiffness being examined. This is not ideal as it

will increase computational complexity, increase the chance of instability, and increase

the number of parameters that need to be estimated. Given this information it is ideal

to simply choose a lower level approximation such as the one or two mass model to

model the system. Often the single mass model has been applied for many control

applications. One issue with this model is that it does not account for the stiffness

within the system.

In addition to the difficulty in modeling many stiffness in series there is also the

issue with the fact that the stiffness of at least some of these objects is non-linear.

122

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – B. Sicard; McMaster University – Mechanical Engineering

(a) Fixed-fixed bearing arrangement (b) Fixed-free bearing arrangement

Figure 5.4: Two different types of bearing arrangements

For the ball screw for instance the ball screws stiffness will vary along the length

of the screw, it will also depend on bearing support configuration. There are two

common bearing arrangements as seen in Figure 5.4. For a fixed-free configuration

the following formula is used to estimate the stiffness of of the ball screw:

A · E
L

(5.3.9)

And for a fixed-fixed the following equation is used

A · E · L
a · b

(5.3.10)

In the fixed-free configuration the stiffness decreases linearly from if the nut is po-

sitioned near the fixed side to the free side. As can be seen in the experimental

results in Figure 5.5 the stiffness decreases from one end to the other. The change

is relatively modest from one end to another, this is due to the fact that with sev-

eral stiffness in series the change in one will have a modest overall effect especially

if the ball screw is the stiffest component compared to others. It is also known that

the preload will increase the stiffness of the system, specifically at lower axial loads.

Higher levels of preload result in high levels of stiffness. Once the applied axial load
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Figure 5.5: Stiffness estimation from experimental data

reached a certain value the difference between a preloaded screw and non preloaded

screw become negligible as seen in Figure 5.6. One approximation for the stiffness

due to preloading is given as [133]:

Kn = K(
Fa

0.1Ca

)
1
3 · 0.8 (5.3.11)

Where Fa is the true nut stiffness, K is the nominal nut stiffness Fa if the force due

to preload and Fa is the dynamic load rating. Given this relationship it can be seen

that preloading has an effect of increasing stiffness. If looking at Figure 5.6. It can

be seen that the stiffness curve of different preloads seems to be approximately flat

for lower axial loads.
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Figure 5.6: Stiffness due to preload at multiple different levels of preload [87]

5.3.2 Friction Modeling

Normally friction in linear system modeling used for estimation and control only

considers the velocity dependent component of viscous friction, unfortunately this is

inadequate for accurately modeling the system dynamics. When modeling the fric-

tion between two lubricated surfaces, a a non-linear relationship between the friction

force/torque and the velocity of the system is observed as seen in Figure 5.7. This

relationship for the friction force can be given by equations. (5.3.12)-(5.3.15).

FFriction = FStribeck + FCoulomb + FV iscous (5.3.12)

FStribeck =
√

2e(Fbrk − Fc) · exp(−(
v

vst
)2) · v

vst
(5.3.13)

FCoulomb = Fc · tanh(
v

vCoul

) + foffset (5.3.14)

125

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – B. Sicard; McMaster University – Mechanical Engineering

Figure 5.7: Friction profile [154]

FV iscous = Dv (5.3.15)

Where Fbrk, Fc, foffset v, vst, vCoul, D are the breakaway friction, Coulomb friction

amplitude, Coulomb force offset, velocity, Stribeck velocity threshold, Coulomb ve-

locity threshold, and viscous friction coefficient respectively. The individual frictions

as well as their sum can be seen in Figure 5.8. Looking at the results obtained from

experimental tests seen in Figure 5.9. Using the model and the equations above the

parameters of each of the friction component can be estimated and the model can be

fit to the data using non-linear regression as seen in Figure 5.10.

One point of interest that was brought up by our industry partner was the effect

of a warm-up cycle on the performance of their MTs. They had noticed that after

a machine was down for service it would have odd performance for a while after

being brought into use. To examine the effect this might have five sets of tests
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Figure 5.8: The different components that make up friction
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Figure 5.9: Experimental results for friction
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Figure 5.10: Model estimate of friction

were conducted. After each test a warm-up cycle was run. So each successive test

would represent a more "warmed up" state. After examining the data and using the

parameter estimation of the friction model the following results were found in Figure

5.11. As can be seen the warmup cycle had relatively minimal effect on the high

speed portion of the friction. The primary difference was at lower speeds. With the

exception of the fourth warm-up cycle which seemed to be an outlier, more warmed

up systems seemed to have a lower coulomb and stribeck friction at lower speeds.

This makes sense as the Stribeck friction is affected by the viscosity of the lubrication

[37]. As the lubrication increases in temperature its viscosity tends to decrease. This

decrease in viscosity will decrease the overall Stribeck friction.
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Figure 5.11: Effect of system warm-up cycle on friction
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(a) First type of common model
which accounts for stiffness between
motor and moving components [9]

(b) Second type of popular system
which lumps all masses [123]

Figure 5.12: Two types of Lagrangian lumped mass models

5.3.3 Modeling the Linear Feed Drive

Creating a model of the system is very important. One of the stated goals of this

experimental test bench is the development and testing of control and estimation

methods. Both of these, especially estimation, require a system model which can

accurately predict its behaviour. Two modeling solutions were utilized to attempt to

model the system. The first is a Lagrangian lumped mass model, and the second is a

Simulink Simscape model.

Lumped Mass Modeling

There has been several previous works which have modeled the system using a La-

grangian lumped mass model. This is the most common model for control and estima-

tion seen in the literature. Two common Lagrangian lumped mass models describing

the system modified from the one seen in figure 5.12. For the simpler of the two

models the transfer function relating the input to the output is the following:

G(s) =
θ

u
=

1

Js2 +Ds
(5.3.16)
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Taking the z transform of this transfer function yields the following form:

G(z) =
θ

u
=

b1
a1z2 + a2z

=
b1z
−2

a1 + a2z−1
(5.3.17)

and a state space representation of the following:

ẋ1
ẋ2

 =

0 1

0 −D
J


x1
x2

+

 0 0

1
Jm

1
Jm


u(t)

d(t)

 (5.3.18)

For the second model with the two lumped masses the transfer function for the input

to the output of the table can be given as:

G(s) =
θ2
u

=

D1s+ k

(Jm + Jfd)s4 + (D1Jm +D1Jfd +D2Jm)s3 + (JmK + JfdK +D1D2)s2 + (D2K)s

(5.3.19)

Which can also be given as a z transform of this transfer function which gives:

G(z) =
θ2
u

=
b1z + b2

a1z4 + a2z3 + a3z2 + a4z
=

b1z
−3 + b2z

−4

a1 + a2z−1 + a3z−2 + a4z−3
(5.3.20)

131

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – B. Sicard; McMaster University – Mechanical Engineering

and finally the state space of this system can be given as:



x1

x2

x3

x4


=



0 1 0 0

− K
Jfd

− D1

Jfd

K
Jfd

D1

Jfd

0 0 0 1

K
Jm

D1

Jm
− K

Jm
−D1+D2

Jm





ẋ1

ẋ2

ẋ3

ẋ4


+



0 0

1
Jm

0

0 0

0 1
Jfd


u(t)

d(t)

 (5.3.21)

Some initial parameter estimation was done using these models and the system iden-

tification toolbox in Matlab. However this did not yield very promising results as

seen in Figure 5.13. This is expected due to the clear non-linear behaviour for the

friction of this system. One typical solution is to use a Taylor series approximation

of the system [12]. One issue with this approach is that since it is creating a linear

approximation about a certain point it may only be valid within a certain range.

And given the system experienced movements at a variety of velocities this will be

inadequate.

Simscape Modeling

Another type of model that can be used to represent the system is a Simulink Sim-

scape model. As previously mentioned, Simscape models use relations such as springs,

shafts, and masses to model the system. Using previous work which has modeled

LFDs [105] the following model seen in Figure 5.14 was created to model the LFD.

There are several key components in the model. First is a flexible shaft to represent

the flexibility of the system which creates a discrepancy between the rotary encoder

measurement and the linear encoder measurements. The second components is the
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Figure 5.13: Results of system identification using first model

lead screw components which transfers rotary motion into linear motion. The trans-

lation friction component models the three friction components which make up the

friction force. And finally, the platform mass represents the mass of the moving plat-

form. There is two inputs to the system, the input torque which acts on the shaft

and a disturbance force which acts on the platform. There are four system outputs.

The rotational position and speed measured from the shaft input, and the linear po-

sition and velocity measured from the table. This model can be used to simulate the

dynamics of the system as well as estimate the parameters of the system for a given

input-output relationship.
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Figure 5.14: Simscape model of the LFD
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Chapter 6

Conclusion

MTs form the backbone of modern manufacturing. They enable the fast and accu-

rate manufacture of complex parts. In order to keep them in good working order

it is ideal to apply CM. CM can improve the performance and reliability of these

machines to maximize throughput and return on investment. One possible strategy

for implementing CM is the use of a DT. DTs use multiple data streams and multiple

models for up to date system modeling. These predictive capabilities can be used for

various useful functionality.

This work involved the design, manufacture, assembly, and integration of a MT

LFD workbench. To design the workbench previous work in the literature was ex-

amined. Factors such as how wear was implemented, how external force was applied

as well as which sensors and data streams were examined. Combining knowledge

of previous work with the constraints and criteria of the stakeholder were combined

to form a design. The research performed on the workbench will be used both for

industrial purposes as well as improving the theory and application of various smart

technologies such as ML, estimation theory, mechanical modeling, and control. The
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MT LFD has a novel method of implementing external disturbance force which is

more realistic and controllable compared to other methods seen in the literature.

A IMMmethod was introduced which can be used for fault detection and condition

monitoring. This method is a novel implementation of IMM. It has been shown

through simulation to be able to accurately predict levels of preload levels in the test

scenarios. A novel method of calculating the mode probability by introducing an

activation function has also been introduced. This modification improved the fault

detection accuracy compared to regular IMM.

The final contribution was an analysis of the data gathered from the MT LFD

which provides insight into modeling of the friction and stiffness with the associated

difficulties. Two modeling strategies, one using Lagrangian lumped mass modeling

and one using Simulink Simscape were used to model the system and estimate pa-

rameters. Additionally, a DT strategy of model fusion for improved modeling and

CM was introduced. This modeling method can provide improved modeling certainty

and accuracy over a single model.

This work has already produced published notable results as described in the

section 6.2. A great deal of other research can be built off of this work as discussed

below in section 6.1.

6.1 Future Work

Future work on this research can be divided into 3 sections, future work involving

adding additional sensors and capabilities to the workbench, improving on the IMM

fault detection strategy, and continued analysis on system modeling.

Future work on the physical LFD workbench would primarily involve the inclusion
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of additional sensors such as accelerometers, temperature sensors, and an IMU. This

would allow the collection of additional data streams which would allow more types of

analysis and easier implementation of data driven modeling and condition monitoring.

Additionally, it would be ideal to design and implement a ball screw with a modifiable

preload. This would enable easier analysis of the effects of decreased preload.

For additional work on the IMM fault detection strategy it would be advantageous

to implement a more complex model of the system as well as implementing the method

for fault tolerant control. It would also be advantageous to implement a modifiable

preload screw as mentioned above to gather experimental validation of the method.

In addition to continue to work on the existing implemented modeling methods,

other modeling methods such as FEM, or dynamic simulations using Siemens MCD

could provide more useful information. The more modeling strategies and the more

accurate and complex they become the more refined the DT of the system becomes.

This test bench and various modeling can be used for future research into more

advanced types of modeling such as physics informed machine learning.

6.2 Summary of Contributions

The primary contributions of this work are the following.

1. Machine tool workbench

(a) The design, manufacture, assembly, and integration of a MT LFD test

bench

(b) Novel method of implementing external disturbance force

2. IMM based preload loss detection method
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(a) Novel implementation of IMM

(b) Novel method for fault detection of preload loss in ball screws

(c) Novel modification of IMM mode probability calculation

3. Data analysis and modeling for LFD

(a) Introduction of DT based modeling method for the LFD

(b) Analysis of modeling stiffness and friction in LFD

(c) Traditional Lagrangian and Simscape modeling of LFD

Several papers and conference proceeding over the course of this work were pub-

lished as seen below:

1. Preload Loss Detection in a Ball Screw System using Interacting Models [123]

2. Predictive Maintenance and Condition Monitoring in Machine Tools: An IoT

Approach [118]

3. Experimental Setups for Linear Feed Drive Predictive Maintenance: A Review

[121]

4. Cognitive dynamic digital twin: enhancements for digital twin platforms based

on human cognition [122]

5. IIoDT: Industrial Internet of Digital Twins for Hierarchical Asset Management

in Manufacturing [120]

6. Design Considerations for Building an IoT Enabled Digital Twin Machine Tool

Sub-System [119]
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Appendix A

Component Drawings and

Specifications

Table A.1: Main ball screw specifications

Specification Value Unit

Dynamic load rating 7450 N

Static load rating 17000 N

Lead 20 mm

Diameter 20 mm

Preload 510 N

Ball diameter 3.175 mm

Drag torque 1.18-1.77 Nm

Lead angle 17.17 degree

Total length 998 mm

Maximum stroke 880 mm
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Table A.2: Ball screw support bearing specifications

Specification Value Unit

Dynamic load rating 21.9 kN

Max axial load 26.6 kN

Allowable speed 6000 RPM

Table A.3: Loading screw specifications

Specification Value Unit

Dynamic load rating 10800 N

Static load rating 18000 N

Lead 20 mm

Diameter 20 mm

Preload Clearance

Total length 985 mm

Maximum stroke 905 mm
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Table A.4: Motor specifications

Specification Value Unit

Static torque 16 Nm

Static current 42.3 A

Maximum torque 42 Nm

Maximum current 44 A

Maximum speed 6000 rpm

Rotor inertia 10.4 kg-cm2

Rated speed 3000 rpm

Rated torque 10.6 Nm

Rated current 9.7 A

Rated power 3.3 kW

Table A.5: Motor coupling specifications

Specification Value Unit

Dynamic torque 19.8 Nm

Static torque 39.6 Nm

Torsional stiffness 67.2 Nm/Deg

Maximum speed 10,000 RPM

Moment of inertia 9.95E-05 kg-m2
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Table A.6: Linear guide specifications

Specification Value Unit

Length 1000 mm

Dynamic load rating 21,100 N

Preload 1680 N

Maximum speed 5 m/s
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Figure A.1: Secondary external load ball screw drawing
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Figure A.2: Linear guides drawing
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Figure A.4: Servo motor
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Figure A.6: Fixed ballscrew bearing
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Figure A.7: Linear guide-way mount drawing page 1
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Figure A.8: Linear guide-way mount drawing page 2

150

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – B. Sicard; McMaster University – Mechanical Engineering

1 1

2 2

3 3

4 4

A
A

B
B

C
C

D
D

S
H

E
E
T
 
3
 
 
O

F
 
3
 

D
R
A
W

N

C
H

E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O

V
E
D

B
r
e
t
t

2
0
2
2
-
0
3
-
1
4

D
W

G
 
N

O

L
i
n
e
a
r
G

u
i
d
e
W

a
y
R

a
i
l

T
I
T
L
E

S
I
Z
E

C

S
C
A
L
E

R
E
V

1
:
1
.
5

(
6
0
.
0
0
 
[
2
.
3
6
2
 
i
n
]
)

(
3
0
.
0
0
 
[
1
.
1
8
1
 
i
n
]
)

4
7
0
.
0
0
 
[
1
8
.
5
0
4
 
i
n
]

4
1
0
.
0
0
 
[
1
6
.
1
4
2
 
i
n
]

3
5
0
.
0
0
 
[
1
3
.
7
8
0
 
i
n
]

2
9
0
.
0
0
 
[
1
1
.
4
1
7
 
i
n
]

2
3
0
.
0
0
 
[
9
.
0
5
5
 
i
n
]

1
7
0
.
0
0
 
[
6
.
6
9
3
 
i
n
]

1
1
0
.
0
0
 
[
4
.
3
3
1
 
i
n
]

5
0
.
0
0
 
[
1
.
9
6
9
 
i
n
]

4
4
0
.
0
0
 
[
1
7
.
3
2
3
 
i
n
]

3
8
0
.
0
0
 
[
1
4
.
9
6
1
 
i
n
]

3
2
0
.
0
0
 
[
1
2
.
5
9
8
 
i
n
]

2
6
0
.
0
0
 
[
1
0
.
2
3
6
 
i
n
]

2
0
0
.
0
0
 
[
7
.
8
7
4
 
i
n
]

1
4
0
.
0
0
 
[
5
.
5
1
2
 
i
n
]

8
0
.
0
0
 
[
3
.
1
5
0
 
i
n
]

2
0
.
0
0
 
[
.
7
8
7
 
i
n
]

2
5
.
0
0
 
[
.
9
8
4
 
i
n
]

n
1
1
.
0
0
 
T
H

R
U

v
 
n

1
8
.
0
0
 
x

 
1
2
.
0
0

M
6
x
1
 
-
 
6
H

 
x

 
1
2
.
0
0

Figure A.9: Linear guide-way mount drawing page 3
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Figure A.10: Linear guide-way mount drawing plates

152

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


M.A.Sc. Thesis – B. Sicard; McMaster University – Mechanical Engineering

1 1

2 2

3 3

4 4

A
A

B
B

S
H

E
E
T
 
1
 
 
O

F
 
1
 

D
R
A
W

N

C
H

E
C
K
E
D

Q
A

M
F
G

A
P
P
R
O

V
E
D

B
r
e
t
t

2
0
2
3
-
0
2
-
1
7

D
W

G
 
N

O

S
l
i
d
i
n
g
T
a
b
l
e

T
I
T
L
E

S
I
Z
E

1
2
 
x
 
1
8
 
(
i
n
c
h
e
s
)

S
C
A
L
E

R
E
V

1
 
/
 
2

9.50

23.50

62.50

1
7
.
7
5

n
6
.
6
0
 
T
H

R
U

n
5
.
5
0
 
T
H

R
U

n
8
.
4
0
 
T
H

R
U

4
9
1
.
6
3

5
1
6
.
6
3

62.00

138.00

Figure A.11: Work platform drawing

153

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/mech


Appendix B

Electrical Drawings

154



M.A.Sc. Thesis – B. Sicard; McMaster University – Mechanical Engineering

D

R
E
V
IS
IO
N
S

1

C

2
3

4

B A

1
2

3
4

5
6

7

D

8

C

5
6

7

B A

8
S
C
A
LE

S
H
E
E
T

R
E
V

D
R
A
W
IN
G
 
N
U
M
B
E
R

F
S
C
M
 
N
O

S
IZ
E

BRETT SICARD

S
IE
M
E
N
S
 
C
N
C
 
C
A
B
IN
E
T

B
S

3
0
/
1
0
/
2
3

IN
IT
IA
L 
R
E
V
IS
IO
N

A

.L1

.

L2

.

L3

.

P
E

.+

.+

.-

.-

P
L?

.

L1

.

L2

.

L3

P
L? .

L1
A

.

L1
B

. L2
A

. L2
B

. L3
A

. L3
B

.L1

.

L2
.

L3

.

U
2

.

V
2

.

W
2

.

P
E

. 1

. 2

. 3

. 4

. 5

. 6

. 7

. 8

. 9

.

1
0

.

U
1

.V
1

.

W
1

.

P
E

.

+

.

-

.

+

.

-

.

P
E

.

L1
'

.

L2
'

.

L3
'

.

P
E

.

+
1

.

+
2

.

-
1

.

-
2

.

P
E

.

P
E

. L1

.

L2

.

L3

.

L4

. +

. +

. -

. -

.

+
1

.

+
2

.

+
3

.

+
4

.

+
5

.

+
6

.

+
7

.

+
8

.

-
1

.

-
2

.

-
3

.

-
4

.

-
5

.

-
6

.

-
7

.

-
8

P
L?

. +

. -

.

P
E

. +

. +

. -

. -

. 1

. 2

. 3

. 4

. 1

. 2

. 3

. 4

. 1

. 2

. 1

. 2

. 3

. 4

. 1

. 2

. 3

. 4

M
O
U
N
T
IN
G

P
L
A
T
E

C
A
B
IN
E
T

W
A
L
L

F
A
N

F
r
o
m

C
o
n
t
r
o
l

P
a
n
e
l

L
IN
E

F
IL
T
E
R

A
C
T
IV

E
IN
T
E
R
F
A
C
E

M
O
D
U
L
E

A
C
T
IV

E
L
IN
E

M
O
D
U
L
E

D
O
U
B
L
E

M
O
T
O
R

M
O
D
U
L
E

2
4
V
D
C
 
P
O
W
E
R

S
U
P
P
L
Y 2
4
V
D
C
 
P
O
W
E
R

D
IS
T
R
IB
U
T
O
R

2
4
V
D
C
 
P
O
W
E
R

D
IS
T
R
IB
U
T
O
R

G
R
O
U
N
D
 
B
A
R

4
00
V
A
C
 
P
O
W
E
R

D
IS
T
R
IB
U
T
O
R

C
IR
C
U
IT

B
R
E
A
K
E
R

1
2

3
4

5

6

8

7
9

10

.

T1

.

T2

.

T3

PE

. +

. -

.

P
E

. +

. -

.

P
E

N
C
 
A
N
D
 
I/
O

C
A
B
IN
E
T

C
O
N
T
R
O
L

P
A
N
E
L

.

W
2

.

V
2

.

U
2

.

P
E

.

B
R
- .

B
R
+

.

W
2

.

V
2

.

U
2

.

P
E

. B
R
-

. B
R
+

.

W
2

.

V
2

.

U
2

.

P
E

.

B
R
- .

B
R
+

.

W
2

.

V
2

.

U
2

.

P
E

. B
R
-

. B
R
+

M
O
T
O
R
 
1

M
O
T
O
R
 
2

1111

Figure B.1: Electrical drawing for motor drive cabinet
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Table B.1: Electrical components bill of materials

Item Number Description Part # Quantity

1 SINAMICS Line Filter 6SL3000-0BE21-6DA0 1

2
SINAMICS Active Interface
Module 6SL3100-0BE21-6AB0 1

3
SINAMICS Active Line
Module 6SL3130-7TE21-6AA4 1

4
SINAMICS Double Motor
Module 6SL3120-2TE21-8AD0 1

5 24V Cabinet Fan K1G165-AA03-06 1

6
24VDC SITOP Power Sup-
ply 6EP3436-8SB00-0AY0 1

7 24VDC Power Distributor 2315256 1
8 Circuit Breaker 3RV2711-1JD10 1
9 24VDC Power Distributor LFD14003Z 1
10 400 VAC Power Distributor 16220-3 1

11
SIMOTICS S-1FK2 HD
Servo motor 1FK2106-6AF10-0SB0 2
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