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Lay Abstract

In the world of Virtual Reality (VR), motion sickness, nausea, and disorientation

remains a big concern for many users. The KAT Walk C is an omni-directional tread-

mill, which aims to convert human motion to virtual movement. This is intended to

reduce the aforementioned concerns. However, the original KAT C algorithm of hu-

man locomotion has its limitations, where motion is frequently converted incorrectly.

In this report, we will introduce an alternative input mechanism for the KAT Walk

C, KATNN, which focuses on two primary objectives: allowing the user to move in

multiple directions, and having the ability to register slower type motions. KATNN

was created by the construction of modular neural networks. We will discuss steps

to create the models, investigate current issues and potential solutions involving cali-

bration and disorientation. Readers may optionally view the results by watching the

following video: https://youtu.be/SbUXoQ0-G9Q.
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Abstract

In the world of virtual reality (VR), motion sickness, nausea, and disorientation

remains a big concern for many users. This issue is rooted in the idea of your virtual

character moving around in a virtual environment while your body remains stationary,

resulting in sensory conflict within your body, LaViola (2000). The KATWalk C is an

omni-directional treadmill, which strives to convert human motion to virtual motion,

in hopes of mitigating these conflicting sensory inputs. However the original KAT

C algorithm of human locomotion has its limitations: it may not always register all

user movements effectively, and in some cases, might not register them at all. This

results in discrepancies between user actions and the virtual character.

In this report, we will introduce KATNN, an alternative input mechanism for

the KAT Walk C. KATNN focuses on two primary objectives: allowing the user to

move in additional axis (having the ability to move left and right on top of moving

forward), and having the ability to register slower type movements. While it may

sound easy, one of the biggest obstacles of this project was working with very sparse

sensor data. KATNN was created by constructing modular neural networks and in

this report, we will discuss the process of creating those models. We will discuss

the development of a VR Unity game, methods of data collection/processing, and

discuss common issues with using the KAT Walk C in the form of calibration and
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disorientation. We also propose solutions on how this can be solved through our

research sandbox game. Readers may optionally view the results by viewing the

following video: https://youtu.be/SbUXoQ0-G9Q.
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Chapter 1

Introduction

Virtual Reality (VR) has rapidly evolved over the years through its advancement

in realism, making users feel more immersed in the virtual world. However, one

common issue of VR usage is the feeling of motion sickness, nausea, disorientation,

and unease. This is caused by movements in the virtual world not aligning to the user’s

real world actions, resulting in conflicting sensory, LaViola (2000). KAT Walk C is

an omni-directional treadmill which aims to reduce that issue by integrating human

locomotion into virtual environments. However, the original KAT C algorithm of

human locomotion has its limitations: it may not always register all user movements

effectively, or in some cases, not register at all. This results in discrepancies between

the user’s actions and the character’s motion in the virtual game. In this report, our

objective is to introduce a new algorithm, KATNN, which will better depict the users

velocity by focusing on many of the current implementation’s limitations.

This algorithm, KATNN, will be significant for two main reasons. Relative to

the limitations of the original KAT C implementation, our algorithm will tackle the

possibility of moving in multiple directions (left and right as well as forward), and
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effectively register slower-motions such as ”sneaky steps”. While this may not sound

challenging, one of the biggest obstacles with this project was working with the very

sparse data that the KAT devices provided. Additionally, this report will investigate

other issues, including ineffective calibration which leads to movement drifting to the

left or right, and solutions on how this could be solved.

This report encompasses a variety of chapters. The upcoming chapters will cover

the following subjects:

• Chapter 2: This report will first introduce important topics and required

information in order to understand the rest of the report.

• Chapter 3: The focus of the report shifts to the realm of our VR research

game. In this chapter, we will discuss the game’s development and evolution,

as well as dive into potential enhancements that could elevate its realism.

• Chapter 4: This chapter focuses on the methodologies of data collection, data

processing processing techniques, and the technique of creating synthetic data.

• Chapter 5: Our algorithm, KATNN, takes center stage in this chapter. We

will introduce the different layers of our algorithm and the different motion

classes that each layer could predict.

• Chapter 6: A thorough examination of our algorithm’s results will unfold in

this chapter. We will analyze its performance, gauge its effectiveness, as well as

point out its limitations.

• Chapter 7: This chapter focuses on the related work that has been conducted

externally to this project. Additionally, it covers work that was scrapped and

2
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not utilized in the final implementation of KATNN due to its poor performance.

While those implementations may have failed, possible tweaking could yield

much better results.

• Chapter 8: This chapter will provide concluding thoughts regarding the con-

tributions made in this report. Additionally, it will explore possible avenues for

improvement and potential future directions.

• Appendix A: This appendix will provide a deeper explanation on the data

augmentation methods used in this project while providing a more understand-

able example.

• Appendix B: This appendix will contain additional, more technical informa-

tion.

• Appendix C: This will contain the instructions on how to install the code on

your device.

• Appendix D: Finally, this will contain additional information on the KAT

SDK and problems with the version of the SDK that was used for this project.
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Chapter 2

Overview/Background

This section serves as a foundational explanation into key concepts and details for

comprehending the subsequent content of this report. Some of these topics will include

defining rotations and translations in a 3-dimensional space, explaining KAT Walk

C and the data provided from the SDK, differences between HTTP Requests and

WebSocket, and a high level overview on how the data will flow.

2.1 Rotation and Translation

In the eyes of motion capture, three distinct types of rotations are recognized: pitch,

yaw, and roll rotations. A visual representation of these rotations is provided in

Figure 2.1. To comprehend these rotations from the perspective of foot movements

(as this project exclusively relies on foot and hip sensor data), pitch entails tilting the

foot up and down. Roll involves twisting the ankle left and right; this is frequently

observed in various sports and instances of ankle rolling. The final rotation, yaw, is

observed from the point of the hip (since yaw rotation data is not collected). Yaw

4
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can be visualized as the twisting of the hips to the left or right.

Figure 2.1: This image was taken from the Aircraft principal axes Wikipedia page
to visualize the different axes of rotations, Wikipedia (2007). While this is about

aircrafts, this is very related to foot rotations which we will study.

Translations involve the relocation of an object within a specific plane or environ-

ment. Object movement can be measured by determining its positioning along each

axis. However, an alternate method of achieving object translation is by defining a

trajectory/velocity to the object. With respect to movement, moving forward and

back is defined as moving along the Z-axis, moving from left to right is defined as

moving along the X-axis, and for formality, moving up and down is defined as moving

along the Y-axis (this project will not look at the Y-axis). There are two types of

axes to understand: the global axis which is the axis of the virtual environment (this

will never change) and the local axis, which is the the axis relative to the direction

that the object is facing. This project will exclusively talk about the local axis, as

the goal of this project is based on moving the user relative from its perspective.

5



M.Eng. Report—K. Matira McMaster University—Computing & Software

2.2 KAT Walk C Devices Introduction

The KAT Walk C includes the treadmill which the user steps on to perform their

motion. This can be seen in the left image of Figure 2.2. Contrary to belief, the

surface of the treadmill actually has no sensors on it to determine the location of the

foot. However, the treadmill does have a sensor on the back plate which collects the

yaw rotation (the top of the left image where the straps are attached to). On the

right of Figure 2.2 are the KAT Walk C shoes that are used with the treadmill. These

have a sensor on each of the shoe which capture the following data: left foot pitch

rotation (LPitch), left foot roll rotation (LRoll), right foot pitch rotation (RPitch),

and right foot roll rotation (RRoll).

Figure 2.2: This figure shows the KAT Walk C Treadmill (Left) along with the
accompanied KAT Walk Shoes (Right).

The surface of the KAT Walk C is also quite unique. It can be described as a

bowl, where at the centre it is very flat, but as you move further away from the centre

6
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and closer to the edge of the KAT surface, you will experience more of an incline,

resulting in a different foot rotation and different sensor readings, this can be seen in

Figure 2.3.

Figure 2.3: This figure depicts the incline of the KAT Walk C surface when the shoe
is near the edge of the surface.

The primary challenge within this project revolves around the limited foot posi-

tional awareness. Our task entails working with highly sparse sensor data encompass-

ing only 4 foot rotations and 1 body yaw rotation. Despite these constraints, we are

aiming to leverage this information to accurately anticipate the user’s trajectory.

7
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2.3 Python Websocket Server

WebSockets serve as a communication protocol facilitating the connection between a

client and a server. In contrast to other commonly used protocols like HTTPS, Web-

Sockets are favored for their persistent connection and bidirectional nature. Given

that our game generates numerous requests per minute, opting for an HTTP approach

would involve a substantial amount of overhead data due to repeated requests. In

contrast, WebSockets require just one initial communication for setup. Once estab-

lished, the client can generate multiple requests without the need to transmit that

redundant overhead data. Additionally, the bidirectional characteristic of WebSock-

ets aligns seamlessly with our requirements, as it enables the client to send data to

the server and receive responses in return, making it an ideal choice for this project.

In this project, a Python WebSocket server was created which will be used to

communicate with the research game. This server will run continuously until manually

halted by the user (or an error has occurred). The server awaits the establishment

of a client connection. Upon connection, it anticipates a message from the client,

structured as a JSON array with dimensions (windowSize, 4). Upon receipt of this

message, the server undertakes a processing procedure in the form of machine learning

and a prediction, the details of which will be expounded upon in Chapter 5 when the

KATNN algorithm is formally introduced.

Upon completion, the server furnishes a response in the form of a JSON object

featuring three attributes: xV elocity, yV elocity, zV elocity. This response is subse-

quently relayed back to the client, where it is utilized to modify the trajectory of the

virtual character. The underlying server logic is seen in Algorithm 1.

8
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Algorithm 1 Python WebSocket Server. This algorithm provides a high level
overview of how the WebSocket API will operate.

while Server Is Running do
while Client is Connected do

ClientMessage← WebSocket.GetMessage() ▷ Get client message
ResponseMessage← ProcessRequest(ClientMessage)
ResponseJson← ResponseMessage.ToJSON()
webSocket.Send(ResponseJson) ▷ Send JSON response to client

end while
end while

2.4 Workflow

With the communication protocol now established, the first assumption made consists

of successfully establishing a connection between the research game and the server.

Once the assumption is fulfilled, the model will begin in the context of the research

game. In this game, the primary objective is to gather essential data. Once enough

data is collected, the next step involves transmitting this data to the server through

the initiated WebSocket connection.

Upon receiving the data, the server undertakes all required processing tasks. Sub-

sequently, once the server’s processing is finalized, it sends its output back to the

game. This output will be in the form of a 3 dimensional-vector representing the

velocity/trajectory of the character.

Once the game has received that calculated response from the server, the game

will update the character’s trajectory and restart the cycle of collecting data and

feeding the newly fetched data back to the server to then be processed again. This

cycle will continue unless the connection is aborted or the user does not want to

continue to use the KATNN algorithm.

This workflow structure is visually represented in Figure 2.4.

9
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Figure 2.4: This figure depicts the communication workflow between Client (game)
and Server (Python).
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Chapter 3

Unity SDK and Research Game

After obtaining the KAT SDK software, an additional key piece of software that

was provided was a demonstration game that contained the necessary logic to use the

KAT SDK and KAT input system in a Virtual Reality environment (KATVR (2020)).

However, during the testing of this game significant issues came to light. One of the

key issue was a feeling of disorientation. This was caused by the textures used in

the demo game. There was additionally a lack of objects present while moving away

from the centre of the demo game, causing confusion or loss of direction due to the

absence of recognizable cues to gauge movement or change in position.

3.1 Map Adjustments

To work around these issues, two notable adjustments were made to the game map:

(1) addition of walls so that the user can’t move away from the intended sandbox

area. Adding walls additionally provided the user a visual estimate for their action,

using the walls as a point of reference; (2) added a grid like texture pack (”Gridbox
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Prototype Materials Unity Package”) (Ciathyza (2021)) which makes it much eas-

ier to gauge the user moving around the sandbox area. This texture/material was

used on all of the objects in the games This includes the floor, the walls, and the

objects (cubes, capsules) that the user can collide with. Different colours were used

on different objects which added another layer of recognizable cues when users moved

around. These changes can be seen Figure 3.1, where the left image represents the

demo game provided by KATVR and the right image represents the updated game

for this research project.

Figure 3.1: Demo game provided by SDK (Left Image) vs. Updated game after
changes (Right Image)

3.2 FixedUpdate: Consistent Polling Across Com-

puters

In the Unity game scripts, the FixedUpdate() function is used over the Update()

function. The rationale for this choice was that it provided a constant polling rate
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between different computers. FixedUpdate() is defined to run at a constant interval,

whereas Update() is defined to run based on how many FPS (frames per second) the

application is using. FixedUpdate() is defined to run at around every 0.02 seconds

or 50 times a second (UnityDocumentation (2021)). The consistent frequency of

using FixedUpdate() is key when using different computers as these scripts will now

fetch sensor data at the same rate which is critical for accurate calculations (velocity,

orientation of the user, etc.).

3.3 HUD for Sensor Data

At the upper left corner of the screen depicted in Figure 3.2 we will depict a collec-

tion of labels and text. These elements represent real-time sensor data and character

information. Displaying this information in the heads up display (HUD) serves the

purpose of providing convenient access to data when reviewing past motions, primar-

ily for training and analysis purposes. Some of the HUD values displayed include

the relevant sensor readings which were used for research, the speed of the virtual

character, the input system that’s being used (the original system or our new one),

as well as the predicted output class from the KATNN algorithm.

3.4 Sensor Recording

On the game interface, there exists a button labeled ”Start Sensor Recording.” This

button is designed for users to capture sensor data throughout a recording session.

Once the recording concludes, the accumulated data is extracted and saved as a CSV

file on the user’s system. Some of the exported data includes the time of the recorded

13
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Figure 3.2: The UI of the game screen. Note, when the user is using the VR
headset, they do not see the buttons or the sensor data HUD.

data, the iteration of the data (which is defined as the number of times the script ran

since the start of the recording session), and the LPitch, LRoll, RPitch, and RRoll

rotations.

This was achieved by initializing all lists/arrays which will be exported. Started

when a user requests to start recording sensor data, the data will be added to their

corresponding array for each loop/iteration. Upon a user’s request to conclude record-

ing, a function is triggered to export the collected data into a CSV file, with each

array being mapped to a distinct column in the CSV. Once the export is complete,

then all arrays are cleared to prepare for another recording in the event that a user

would like to start another recording session. An overarching view of this logic is

encapsulated in Algorithm 2.
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Algorithm 2 Sensor Recording Button Logic. In this algorithm
isSensorbuttonPressed is controlled by whether or not the sensor recording
button is pressed. When first pressed, we collect data and save to array. When
pressed again, we save that data and export that data to a CSV.

Require: isSensorbuttonPressed ∈ {true, false}
Require: LPitchReading ∈ Z ▷ Z represent all integers
Require: LRollReading ∈ Z
Require: RPitchReading ∈ Z
Require: RRollReading ∈ Z
totalRecording ← 0 ▷ Define the variables needed
DateT imeArray ← []
IteratonArray ← []
LPitchArray ← []
LRollArray ← []
RPitchArray ← []
RRollArray ← []
while Game is Running do

if isSensorbuttonPressed is true then
DateT imeArray.Append(GetDate()) ▷ Save the sensor data to arrays
IterationArray.Append(totalRecording)
LPitchArray.Append(LPitchReading)
LRollArray.Append(LRollReading)
RPitchArray.Append(RPitchReading)
RRollArray.Append(RRollReading)
totalRecording ← totalRecording + 1

else if isSensorbuttonPressed is false & totalRecording > 0 then
exportArraysToCSV ▷ Export all arrays mentioned above to CSV
totalRecording ← 0 ▷ Reset all Recorded data
DateT imeArray ← []
IteratonArray ← []
LPitchArray ← []
LRollArray ← []
RPitchArray ← []
RRollArray ← []

end if
end while
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3.5 Selecting Input System

The game also consist of the option to toggle between two distinct input systems:

the original KAT C input system (KATCAlgo) and the new KATNN algorithm. The

user can see what the current input system that has been selected based on the name

of the button, shown in Fig 3.3. Here, the original KATC input system is named

KATCAlgo or Yankee, while the name KATNN or Tango represents the KATNN

algorithm.

Figure 3.3: The UI of the Menu screen. This menu contains a variety of
functionalities including toggling input system, sensor calibration, and tweaking

user speeds.

3.5.1 Original KAT C Input System (KATCAlgo)

In the event that the input system is using the the original KAT C input system,

all that needs to be done is to call a function provided by the KAT SDK which will
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return the 3 dimensional vector, (x, y, z), and use that returned vector as the velocity

for the virtual character.

3.5.2 KATNN Algorithm

If the input system is the KATNN algorithm, the collection of a window of the latest

sensor data is saved in an array. Once enough sensor data has been collected and

saved, this array then sends the latest 26 sensor readings to the Python server via the

WebSocket connection. This server will then process that data in order to make a

prediction of the characters trajectory. Once a response is made, the game uses that

response value to update the velocity of the virtual character. The following logic to

how this was implemented can be seen in Algorithm 3.

3.5.3 Debugging

The original implementation of Algorithm 3 did not contain the variable readyMes-

sageWebsocket, and what was discovered was that the Python server was being over-

whelmed by incoming requests, resulting in a steadily increase in backlog of pending

requests. This occurred because the Unity game was generating requests at a rate that

exceeded the processing capacity of the Python server. To work around this issue, the

variable readyMessageWebsocket was included and initiated to True. This variable

is key as it can become an additional condition in order to make a new request.

Once a new request is made, the state of that variable will be updated to False,

to avoid making more requests. When the server has processed the request, it will

then communicate to the game by running the procedure WebSocketResponse. In

this procedure, adjustments to the speed of the virtual character will be implemented,

17
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Algorithm 3 Input System Logic. In this algorithm isInputbuttonPressed is con-
trolled by the input button being pressed. This is done to change input system.

Require: isSensorbuttonPressed ∈ {true, false}
Require: inputSystem ∈ {0, 1}
Require: windowSize ∈ Z+ ▷ Z+ represent all positive integers
Require: LPitch ∈ Z ▷ Z represent all integers
Require: LRoll ∈ Z
Require: RPitch ∈ Z
Require: RRoll ∈ Z
recentSensorDataArray ← Queue() ▷ Array that will track latest sensor data
webSocket.connect() ▷ Initialize Websocket connection
readyMessageWebsocket← True
while Game is Running do

recentSensorDataArray.Queue(LPitch, LRoll, RPitch,RRoll) ▷ Add data
if recentSensorDataArray > windowSize then

recentSensorDataArray.DeQueue() ▷ Remove oldest sensor data
end if
if inputSystem = 0 then

KATSDK.GetSpeed() ▷ Get KAT SDK speed and use that speed
else if inputSystem = 1 & readyMessageWebsocket = True then

webSocket.Send(recentSensorDataArray) ▷ Send data to Websocket
readyMessageWebsocket← False

end if
end while
procedure WebSocketResponse(responseData)

xV elocity = responseData.x
yV elocity = responseData.y
zV elocity = responseData.z
Update the character velocity according
readyMessageWebsocket← True

end procedure

alongside the state change of readyMessageWebsocket being set back to True, know-

ing that the Python server has completed its prior tasks.

18
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3.6 Speed/Velocity Multiplier

Additionally, users can adjust their movement speed in the game to cater to personal

preferences or specific game dynamics. Taller individuals may prefer higher speeds,

and open-world users might also opt for speeds to explore expansive terrains with

ease.

To accommodate for this, two additional sliders were added to the menu, ”X Ve-

locity Multiplier” and ”Z Velocity Multiplier”. The rationale behind having separate

sliders for the Z-velocity and the X-velocity lies in their potential preference. This

approach acknowledges that users might be content with their current speed along

one axis while desiring an adjustment along the other. By providing distinct sliders,

users gain finer control over each axis, enabling them to customize their experience

precisely as they prefer.

These two sliders can be seen in Figure 3.3. Each of those sliders has the ability

to go from 0.1 to 10, with both having a default value of 1. The current value of each

of those sliders are taken and used as a constant to multiply the original velocity.

This can be seen in the following equation:

adjustedZV elocity = originalZV elocity ∗ zMultiplier (3.6.1)

adjustedXV elocity = originalXV elocity ∗ xMultiplier (3.6.2)
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3.7 Calibration and Offset

This part of the research game will investigate the causes of calibration issues, which

resulted in unexpected direction of motion or drifting movements. To study this, the

characters yaw rotation will be examined. characterY aw determines the orientation

of the virtual character. bodyRotation is the yaw rotation sensor value taken from the

KAT SDK (aka. the hip rotation), and headsetY aw is the sensor value taken from

the VR Headset. Additionally, correctionY aw will be a calculated value based on

the calibration logic, and offsetY aw will be a value taken based on the slider value,

which has a default value of 0.

characterY aw = bodyRotationY aw + correctionY aw + offsetY aw (3.7.1)

3.7.1 Calibration Button (Sensor Calibration)

The purpose of calibration is to address situations where the user’s movements de-

viate unexpectedly. This arises from the inherent functioning of sensors, where the

initial rotation reference is established at device startup. Moreover, the headset’s

rotation value operates independently of the KAT Walk C body rotation value. Con-

sequently, users may find themselves facing one direction while their character moves

independently in another, leading to a disorienting experience. Calibration seeks to

align these parameters and ensure a congruent user-character interaction, mitigating

disorientation issues.

To tackle this issue, a variable called correctionY aw is introduced. During the

calibration process, the user is prompted to face forward, aligning the body sensor
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with the headset sensor. This alignment calculates the disparity between the two sen-

sor readings, which is then incorporated into the character rotation, characterY aw.

The calibration procedure’s logic is detailed in Algorithm 4.

Algorithm 4 Calibration Button Logic. In this algorithm
isCalibrationButtonPressed is controlled by whether the user clicked the cal-
ibration Button.

Require: isCalibrationButtonPressed ∈ {true, false}
Require: headsetY aw ∈ R ▷ R represents all real numbers
Require: bodyRotationY aw ∈ R
correctionY aw ← 0
while Game Is Running do

if isCalibrationButtonPressed is true then
isCalibrationButtonPressed← false
correctionY aw ← headsetY aw − bodyRotationY aw

end if
end while

This logic is called in the game when the user presses the ”Sensor Calibration

Button” as well as when the game is first launched. To obtain the best calibration

results upon launch, the user is requested to look straight forward.

3.7.2 Offset Slider (Body Rotation Slider)

While the calibration methodology solved the major issue of independence and move-

ments in unexpected directions, another problem that arose was drifting. Upon in-

vestigation, it was revealed that the cause of this problem was related to how users

secured themselves to the KAT Walk C. The design of the multiple straps occasion-

ally led to misalignment, causing the body rotation on the KAT C to point slightly

left or right relative to the actual hip rotation.

To address this challenge, a new variable named offsetY aw is introduced. Users

21



M.Eng. Report—K. Matira McMaster University—Computing & Software

have control over this variable through a slider accessible in the menu screen, as

illustrated in Figure 3.3. This slider encompasses a range from −30 to 30 degrees,

with a default value set at 0 degrees. When users encounter drifting to the left,

they can increment the body rotation offset slider, while drifting to the right can be

mitigated by decreasing the slider.

The combination of both the ”Sensor Calibration” button as well as the ”Body

Rotation Offset” slider allows for a much more natural user experience.
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Chapter 4

Datasets and Training

The following section provides an in-depth exploration of the project’s data manage-

ment, data collection, data processing, and data augmentation.

Altogether with data collection and other techniques used, the final dataset con-

tained 108 minutes of labelled sparse motion capture data. This data can be broken

down into the following:

• 57 minutes of STEPS data.

• 24 minutes of RSIDESTEPS data (Right Sidesteps).

• 24 minutes of LSIDESTEPS data (Left Sidesteps).

• 3 minutes of STANDING data.

4.1 Data Collection

The process of data collection involved employing a range of tools. In chapter 3,

we discussed the research game being equipped with the capability to export sensor
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data to a CSV format. Additionally, video recording tools like Open Broadcaster

Software (OBS), Software (2017), was used to capture the game interface, allowing

for the examination of the iteration value at designated instances of the recording.

Moreover, a webcam feed was utilized to visually monitor the user’s executed motion.

Figure 4.1 depicts one of the video recordings which show the iteration number along

with the webcam feed. Altogether, all techniques and software used were necessary

in order to collect and render the data usable for training purposes.

Figure 4.1: This figure represents an screenshot from one of the video recordings of
a sensor recording session. Notice the webcam feed as well as the iteration number.

During the initial attempt at data collection, a repetitive motion was performed

for approximately 60 seconds. However, a significant challenge arose when attempting

to label the data, particularly defining the motion’s speed. Due to the lack of any

predefined parameters to objectively determine speed, the speed had to be labeled

subjectively, relying heavily on intuitive judgment.
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To address this issue, additional constraints were introduced during recording

sessions. Firstly, a BPM (beats per minute) sound was played during the recording

session to ensure that the executed motion closely matched the frequency of the BPM

sound. Secondly, tape was placed on the treadmill to provide a visual target to the

user for motion execution, enhancing consistency. Figure 4.2 illustrates the tape

markers used for data collection. These two constraints significantly facilitated data

processing and the objective labeling of the collected data.

Figure 4.2: This figure shows the tape markers which represents a visual target for
the foot during motion execution.
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4.2 Data Processing

So far, the current state of the collected data is unsuitable for analysis. The data

contains segments that must be discarded and lacks any form of labeling. Figure 4.3

offers an example of a processed file. This section will delve into the logic applied to

transform raw data into a refined, processed format.

Figure 4.3: This figure represents the output of the processed data.

4.2.1 Data Trimming

Data trimming refers to removing the rows in the data which do not reflect the motion

execution. The rationale behind data trimming was that the recording session was

initiated before getting on the treadmill. Data was also recorded when the user

was getting off the KAT Walk C treadmill. This was caused by the user initiating

the recording session at the desktop, a few steps away from the treadmill. Recall

from data collection, for each datafile collected, there exist an accompanied recording

which has a video feed of the user motion as well as the iteration number of what is
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happening at that exact instance, (see Figure 4.1 for an example). Also recall that

the datafile CSV also has the iteration value for each row, an example can be seen in

Figure 4.4.

Figure 4.4: This figure represents the RAW data output exported from the research
game. Lots of processing needs to be done in order for the data to be used such as

calculations and trimming.

Altogether, this becomes useful since the webcam feed can be used to identify

when the actual motion was started. Upon identification, the video can be paused

to determine the exact iteration value. Consequently, all rows preceding this itera-

tion value can be safely eliminated from the processed data. Similarly, a comparable

methodology can be employed to detect when the user concludes the motion, sig-

nifying that any rows with iteration values beyond this identified point should be

excluded from the processed dataset. Figure 4.4 illustrates this process, with the

column labeled NOTES1 indicating rows to be removed during datafile processing,

marked with the value CUTOFF .
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4.2.2 Data Labelling

The second essential aspect was data labeling. For a given sensor data reading or a

window of sensor data readings, a systematic method was required to assign unique

class labels to the data. The first step was to identify the motion the user was

executing. This was extracted from the file name. The second step was to classify

the type of motion being performed by the user. This involves distinguishing whether

they are taking small steps or large steps. Fortunately, this was also extracted from

the file name. The final feature needed was the motion speed, is the user travelling

slow, average, or fast. This was obtained through a calculation which used the BPM

(Beats per Minute) from the filename. In this context, class boundaries are introduced

as slow, average, or fast, with their definitions based on specific BPM thresholds. For

instance, if an interval is established from VSlow,A to VSlow,B, any BPM falling within

this range is categorized into the ”SLOW” class. Similarly, this categorization process

is extended to the ”AVERAGE” and ”FAST” classes based on their respective BPM

intervals. The logic for motion speed classification can be seen in Algorithm 5.

Algorithm 5 Motion Speed Logic. This algorithm shows the logic on how the motion
speed is calculated.

Require: BPM > 0 ▷ BPM value.
Require: upperBoundSlow ≥ 0 ▷ Upper Bound Slow BPM
Require: upperBoundAvg > upperBoundSlow ▷ Upper Bound Avg BPM
if BPM ≤ upperBoundSlow then return SLOW
else if BPM ≤ upperBoundAvg then return AV ERAGE
else if BPM > upperBoundAvg then return FAST
end if
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4.3 Data Augmentation

Data augmentation refers to the ability to increase the training dataset by manip-

ulating current data in order to create new synthetic data. This tactic is used for

this project to increase the training dataset without needing to record new sensor

readings. It was also used to create data for motions at speeds that were difficult

to perform. The two types of data augmentation used in this project will be called

”Double Speed” and ”Half-Speed”.

4.3.1 Double Speed

Doubling the speed involves manipulating the data to replicate a user performing the

original motion at twice the speed. Since the sensor’s polling rate remains constant,

we can achieve this motion by skipping every second data point from our original

dataset.

Lets assume we have a dataset X which represents our original motion. Since

each data recording is formed by executing the same motion over a period of time,

our dataset contains cycles. Lets assume our data has cycle length k. This means

that for the first k elements in X (i.e x1, x2, ..., xk) form a cycle. Now, if we select a

subset of X by picking only the data points with even indices (i.e x2, x4, .., xk), these

values form a new thinned cycle (i.e data points are further away from each other)

within this new dataset. This new cycle will have a length that is roughly half of our

original cycle.

In essence, if the user simulates the same motion at double the speed, the research

game would capture every other sensor data value from the original motion (i.e. the

even indices). As a result of this manipulation, the new dataset will contain cycles
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where the cycle length is half of the original length. This reduction in cycle length

mirrors the user executing the motion at twice the original speed.

This double speed data can be seen in Figure 4.5, where the augmented data has

very short cycles lengths (orange graph) for a given number of iterations, relative

to the original data (blue graph). The logic for double speed can also be seen in

Algorithm 6. A technical explanation on the concept of doubling speed is discussed

in Appendix A.1.

Algorithm 6 Double Speed Data Augmentation. This algorithm shows the logic on
how data augmentation was performed for double speed.

Require: filePath ▷ File path to data file.
Require: data← ReadData(filePath)
Require: data.rows > 0 ▷ Need the data to have 1 or more rows of data.
i← 0
evenRows← []
oddRows← []
doubleSpeedData← []
for i < data.rows do ▷ Loop through each data row

i← i+ 1
if i is even then

evenRows.Append(data[i])
else if i is odd then

oddRows.Append(data[i])
end if

end for
doubleSpeedData← Concatenate(evenRows, oddRows)

return doubleSpeedData

4.3.2 Half-Speed

Manipulation of the original dataset is required to achieve a new dataset that represent

the motion at half the original speed. This manipulation involves creating synthetic

data points between each pair of original data points. These synthetic points are
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Figure 4.5: This figure represents the original data at 60BPM (BLUE) and the
augmented data at 120BPM (ORANGE). Notice the augmented data have shorter

cycles.

determined by taking the average of the two adjacent original data values, as expressed

by the formula: xi+0.5 =
xi + xi+1

2
.

By adding these synthetic points to the original data effectively double the number

of data points in the dataset, all while keeping the same number of executed motions.

Consequently, the new dataset will contain cycles that are approximately twice as

long as those in the original data, which results in the new dataset to simulate the

execution of the motion at half the original speed.

Half-speed data can be seen in Figure 4.6, where the augmented data has very

long cycles lengths (orange graph), relative to the original data (blue graph). The

logic for half-speed can also be seen in Algorithm 7. A technical explanation on the

concept of half-speed is discussed in Appendix A.2.
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Algorithm 7 Half-Speed Data Augmentation. This algorithm shows the logic on
how data augmentation was performed for half-speed.

Require: filePath ▷ File path to data file.
Require: data← ReadData(filePath)
Require: data.rows > 0 ▷ Need the data to have 1 or more rows of data.
i← 0
halfSpeedData← []
for i < data.rows− 1 do ▷ Loop through each data row (except last)

i← i+ 1
halfSpeedData.Append(data[i]) ▷ Add real data
average← Calculateaverage(data[i], data[i+ 1]) ▷ Calc avg. between current

and next data
halfSpeedData.Append(average) ▷ Add synthetic data

end for
return halfSpeedData

Figure 4.6: This figure represents the original data at 60BPM (BLUE) and the
augmented data at 30BPM (ORANGE). Notice the augmented data have longer

cycles.
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Chapter 5

The KATNN Algorithm

One of the concerns of the original KAT C algorithm was its limitations, where

some motions would not register user movements effectively, and in some cases, not

recognized at all. Some of these motions include executing slower motions such as

”sneaky steps” not effectively working. Another was taking left or right sidesteps not

being recognized at all. This section formally introduce the new algorithm, KATNN,

which predicts the trajectory of the character based on a window of the latest sensor

data, while aiming to solve the aforementioned issues. KATNN was designed using

machine learning and neural networks. The primary goal of the models is to leverage

all available data to optimize the accuracy of its predictions.

KATNN will have up to 3 layers of classification. The initial layer, referred to as

the motion layer, focuses on the predicted motion: is the user walking forward, taking

sidesteps to the left, taking sidesteps to the right, or standing still? The second layer,

referred to as the motion type layer, focuses on the step size: is the user taking small

or large steps? The final layer, referred to as the motion speed layer, will emphasize

on the speed of the motion: is the user moving slow, average, or fast?
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One pivotal decision in formulating the algorithm involved the adoption of mod-

ular neural networks, with each neural network dedicated to addressing a specific

problem within a particular segment of the algorithm. A few reasons for this ap-

proach include: (1) working with modular neural network made debugging and error

correction much easier, (2) different scenarios and different layers required different

inputs (e.g. executing sidesteps required different inputs compared to walking for-

ward).

The three layers and the different neural networks used can be seen in Figure 5.1.

Oval nodes in the figure represent a singular neural network, and the rectangle boxes

represent all the different classification outputs for that neural network. Each layer

will be explained in detail in the following sections.

Figure 5.1: This figure represents the logic that the KATNN will follow, where the
first layer is at the top and works its way down until it reaches a tail node.
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5.1 Sum of Absolute Delta Sensor Readings (SADSR)

The concept of Sum of Absolute Delta Sensor Readings (SADSR) plays a pivotal role

in the algorithm and is frequently referenced in the subsequent chapters. This func-

tion, when applied to a window of sensor data, calculates the total change in sensor

readings. Notably, it treats the direction of sensor changes as irrelevant, meaning

that changes of +15 or −15 are considered equivalent to 15.

Consider an example to calculate SADSR using the following sequential sensor

readings: 12, 30, 20, 5. The steps involved are as follows:

1. Calculate the change in sensor reading (delta) from the sequence: {18,−10,−15}.

To do this, we take the current sensor reading and subtract it to the previous

sensor reading (deltai = xi − xi−1 where xi is sensor reading at time i).

2. Take the absolute value of each element in step 1: {18, 10, 15}

3. Calculate the sum of all values from step 2 : {43}

Therefore, given those 4 sensor readings, the sensor has acquired a total absolute

change of 43. In this context, it’s important to note that there are four different

sensor readings. Ideally, the algorithm would produce four SADSR values, with each

value corresponding to a specific sensor, expressed as SADSRLPitch, SADSRLRoll,

SADSRRPitch, SADSRRRoll.

What does this signify? It’s important to recognize that SADSR represents the

summation of deltas, effectively quantifying the extent of foot rotation within a given

time interval. To illustrate, when the user is executing sidesteps to the left, it would

likely incur substantial roll rotation in the left foot. Conversely, while moving forward,
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pitch rotation would be more prominent. These variations are primarily influenced

by both the manner in which the motion is executed and the curvature of the KAT

Walk C surface.

5.2 Total Number of Sequences Above/Below a

Threshold (TNSAT/TNSBT)

The Total Number of Sequences Above a Threshold (TNSAT) and the Total Num-

ber of Sequences Below a Threshold (TNSBT) are two closely related algorithms

employed for estimating the number of cycles within a specified data window. This

estimation is achieved by identifying a sequence of data points that occurs exactly

once per cycle, typically in the form of peaks and troughs. When the data sequence

corresponds to peaks, we apply the TNSAT algorithm. Conversely, when the data

sequence corresponds to troughs, we apply the TNSBT algorithm. The logic used in

both TNSAT and TNSBT is found in Algorithm 8.

5.3 Layer 1: Motion

Layer 1, referred to as ”Motion,” pertains to the specific movement the user is ex-

ecuting. In contrast to the original KAT C algorithm, which limited users to mov-

ing forward or remaining stationary, KATNN offers the capability to perform left

sidesteps (class: LSIDESTEPS) for leftward movement and right sidesteps (class:

RSIDESTEPS) for rightward movement. This layer holds a large importance within

the algorithm, as it dictates the direction of the user’s movement. Therefore, the
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Algorithm 8 Total Number of Sequences Below/Above a Threshold
(TNSBT/TNSAT). This algorithm shows the logic on how to calculate the
number of sequences below/above a predefined threshold.

Require: algorithmType ∈ {TNSBT, TNSAT} ▷ Determine which algorithm
Require: sensorDataArray ▷ Array of Sensor Data.
Require: sensorDataArray.length > 0
Require: thresholdV alue ▷ Define a threshold value.
i← 0
sequenceCount← 0
aboveThreshold← False
for i < sensorDataArray.rows do ▷ Loop through each sensor value

if algorithmType = TNSAT then ▷ START OF TNSAT LOGIC
if sensorDataArray[i] ≥ thresholdV alue then

if aboveThreshold = False then ▷ If first value above threshold
sequenceCount← sequenceCount+ 1 ▷ Add to count
aboveThreshold← True

end if
else if sensorDataArray[i] < thresholdV alue then ▷ Check below cutoff

aboveThreshold← False
end if

else if algorithmType = TNSBT then ▷ START OF TNSBT LOGIC
if sensorDataArray[i] ≤ thresholdV alue then

if belowThreshold = False then ▷ If first value above threshold
sequenceCount← sequenceCount+ 1 ▷ Add to count
belowThreshold← True

end if
else if sensorDataArray[i] > thresholdV alue then ▷ Check above cutoff

belowThreshold← False
end if

end if
end for

return sequenceCount

priority of this algorithm is to maintain a very high level of prediction accuracy for

Layer 1. This emphasis is driven by the recognition that inaccuracies in this layer’s

predictions could result in a misalignment between the user’s movement direction and

the character’s movement direction, potentially leading to discomfort.
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For this neural network, the considered inputs encompassed the SADSR values

from all four sensors. These SADSR values were chosen because they provide in-

formation about which foot is in motion (by detecting changes in rotations) and

the direction of that foot’s movement (by distinguishing between changes in roll and

changes in pitch).

During the training process, the network was supplied with SADSR data from

each sensor, and the target classifications included STANDING, STEPS, LSIDESTEPS,

and RSIDESTEPS. This approach yielded positive results, with the network effec-

tively discerning boundaries for each of these classes. While the exact boundaries

may not be precisely determined, there is a general understanding of how the net-

work distinguishes between the classes:

• If all 4 SADSR are 0, return ”STANDING”

• Else If SADSRLRoll is very high, return ”LSIDESTEPS”

• Else If SADSRRRoll is very high, return ”RSIDESTEPS”

• Else If SADSRLPitch or SADSRRPitch is very high, return ”STEPS”

Table 5.1 summarizes all of the Motion Neural Networks used in Layer 1. Here,

input size denotes the data input shape required by the model.

Neural
Name

Parent
Class

Input
Size

Input Desc
Output
Classes

Motion1 None 1× 4

SADSRLPitch,
SADSRLRoll,
SADSRRPitch,
SADSRRRoll

STANDING,
STEPS,
LSIDESTEPS,
RSIDESTEPS

Table 5.1: All Motion Neural Networks Used.
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Furthermore given the significance of this layer, careful consideration was given to

the reduction of the window size. Decreasing the window size would result in lower

latency when detecting changes in motion. However, it was imperative to strike a

balance, ensuring that the window size was not reduced excessively, as this could

potentially lead to a decrease in prediction accuracy.

5.3.1 Tweaking Standing Sensitivity

It’s worth noting that in the previous explanation of the neural network, it was men-

tioned that if all four SADSR values are 0, the network would predict ”STANDING.”

This is due to the training data provided to the neural network typically exhibited

minimal to no variation during the sensor recording phase, as standing still gener-

ally results in stable sensor readings, which logically corresponds to a prediction of

”STANDING.”

However, it was later discovered that even when standing still, sensor values could

change. One particular scenario is when there is oscillation. If the sensor readings

fluctuate closely between two values while standing still, this oscillation can lead to

an increase in SADSR value, potentially causing the network to predict movement.

To address this issue, two distinct logic components were introduced to enhance

prediction accuracy. The first logic involves setting a minimum SADSR threshold.

If the calculated SADSR value falls below this predefined threshold, the algorithm

overrides the prediction and assigns ”STANDING” as the motion state. This thresh-

old essentially represents the minimum level of motion required to trigger a movement

prediction.

The second logic component, known as the ”minimum difference,” evaluates the
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difference between the maximum and minimum sensor readings, expressed as diff =

maxSensorReading − minSensorReading. If this calculated difference is smaller

than the defined minimum threshold, the prediction is again overwritten as ”STAND-

ING.”

Together, these two logic components played a significant role in reducing the oc-

currence of false movement predictions generated by the initial network when stand-

ing, ensuring more accurate motion detection.

5.4 Layer 2: Motion Type

Layer 2, known as ”Motion Type,” is designed to determine the scale of the motion

being executed, i.e. whether it falls into the category of a small step (class: SML) or

a large step (class: LAR). Originally, the plan included three distinct classes, with

the third class intended to represent medium steps (class: MED). However, upon

closer examination of the data, it became evident that there was no clear distinction

between medium and large steps. As a result, these two classes were merged into a

single class, labeled as ”large steps” (LAR).

To differentiate between each motion type, it’s crucial to consider the motion

predicted in Layer 1 as different motions require distinct inputs. It is also important

to note that the KAT surface is inclined, meaning that as you move further from

the center, the foot experiences significant incline, resulting in variations in sensor

readings. This can be examined by looking at the data collected. For instance, when

the motion is ”STEPS,” as depicted in Figure 5.2, a discernible pattern emerges

where pitch values peak higher for ”LAR” (large) steps compared to ”SML” (small)

steps. Conversely, for ”LSIDESTEPS” or ”RSIDESTEPS,” as illustrated in Figure
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5.3, there’s a noticeable distinction in the maximum and minimum roll values between

large and small sidesteps. Similarly, there’s a significant difference in the maximum

pitch value when performing large sidesteps versus small” sidesteps. These variations

in sensor values help classify the motion type accurately.

Table 5.2 summarizes all of the Motion Type Neural Networks used in Layer 2.

Here, input size denotes the data input shape required by the model.

Figure 5.2: This figure represents the sensor readings between large steps (BLUE)
vs. small steps (ORANGE). Notice that large steps yield larger maximum pitch

values.

5.5 Layer 3: Motion Speed

The final layer within the algorithm, motion speed, serves to determine the speed

of the ongoing motion. The classes in this layer are categorized as average (class:

AVERAGE) or fast (class: FAST). However an additional class, slow (class: SLOW),

is introduced when taking large steps, as this is the most common motion. This

additional class provides a broader spectrum of speed options for the user, increasing

41



M.Eng. Report—K. Matira McMaster University—Computing & Software

Figure 5.3: This figure represents the sensor readings between large right sidesteps
(BLUE) vs. small right sidesteps (ORANGE). Notice that large right sidesteps yield

larger peaks and minimums in Roll Rotations.

their immersion.

The initial discriminant for predicting each class relies on utilizing the relevant

SADSR value. The underlying concept is that the faster an individual performs a

motion, the higher the user SADSR value tends to be. This correlation arises because

rapid motion execution within a constant window length results in more rotations,

thereby increasing the SADSR value. A visual representation of this relationship can

be observed in Figure 5.4, showing a tendency towards a higher SADSR values for

faster classification classes.

The second differentiating factor is using TNSAT or TNSBT values. Counting

such sequences can estimate the number of cycles, which reflects the speed of motion

execution. For instance, in the left image of Figure 5.2, the blue graph displays peaks

occurring around 40 before decreasing again. This information allows the threshold

to be set at 37 and count the total sequences that surpass 37 to calculate the TNSAT.

Similarly, in Figure 5.3, troughs in the left roll can be observed at around −15 to
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Neural Name Parent Class
Input
Size

Input Desc.
Output
Classes

MotionType1 STEPS 1× 1
max(
max(LPitch),
max(RPitch) )

SML, LAR

MotionType2 LSIDESTEPS 1× 3
min(LRoll),
max(LRoll),
max(LPitch)

SML, LAR

MotionType3 RSIDESTEPS 1× 3
min(RRoll),
max(RRoll),
max(RPitch)

SML, LAR

Table 5.2: All Motion Type Neural Networks Used.

−20 before increasing. This means the threshold can be set around −10 and count

all sequences that dip below −10 to calculate TNSBT. These calculations would yield

an estimate on the number of cycles.

The underlying principle is that a higher number of sequences corresponds to a

higher frequency, indicating faster motion execution and predicting a faster motion

speed. However, a notable challenge associated with this approach pertains to the

consistency of the executed motion. As illustrated in Figure 5.2, the selection of an

appropriate threshold pitch value involves a delicate balance. Setting a threshold

too high may result in certain sequences not being included in the count, while a

threshold set too low may lead to an excessive number of sequences being included.

Table 5.3 summarizes all of the Motion Speed Neural Networks used in Layer 3.

Here, input size denotes the data input shape required by the model.
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Figure 5.4: This figure represents the different motion speed classes (0 = SLOW, 1
= AVERAGE, 2 = FAST) and the SADSR values (y-axis). Notice that on average

the SADSR values are higher for faster classifications.

5.6 Post Prediction Logic

Following the completion of predictions, they are presented as a string in the format

”A-B-C,” where A represents the motion prediction, B denotes the motion type

prediction, and C signifies the predicted motion speed. This string, ”A-B-C,” is then

employed to access the velocity configuration, as shown in Figure 5.5.

After retrieving the velocity settings from the configuration file, the prediction

process for the user’s velocity and trajectory based on the provided sensor data is

concluded. The final step involves sending this predicted velocity and trajectory back

to the client, which in this case, was the research game.
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Neural Name Parent Class
Input
Size

Input Desc
Output
Classes

MotionSpeed1 STEPS-SML 1× 2

SADSRLPitch+
SADSRRPitch,
TNSAT (LPitch)+
TNSAT (RPitch)

AVERAGE,
FAST

MotionSpeed2 STEPS-LAR 1× 2

SADSRLPitch+
SADSRRPitch,
TNSAT (LPitch)+
TNSAT (RPitch)

AVERAGE,
FAST, SLOW

MotionSpeed3
LSIDESTEPS-
SML

1× 2
SADSRLRoll,
TNSBT (LRoll)

AVERAGE,
FAST

MotionSpeed4
LSIDESTEPS-
LAR

1× 2
SADSRLRoll,
TNSBT (LRoll)

AVERAGE,
FAST

MotionSpeed5
RSIDESTEPS-
SML

1× 2
SADSRRRoll,
TNSBT (RRoll)

AVERAGE,
FAST

MotionSpeed6
RIDESTEPS-
LAR

1× 2
SADSRRRoll,
TNSBT (RRoll)

AVERAGE,
FAST

Table 5.3: All Motion Speed Neural Networks Used.

5.7 Optional: Unused Additional Logic

In this section, optional information is presented regarding additional logic that was

integrated into request processing but was subsequently disabled or left unused. The

rationale behind these decisions is explained below.

5.7.1 Dynamic Velocity

An issue that was taken into consideration pertained to two different motions that

were predicted to be the same motion speed class, but slightly different execution

speed. To address this, the concept of dynamic velocity was contemplated but even-

tually deactivated, as discussed below.

Dynamic velocity, in this context, refers to the idea of adjusting one’s velocity
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Figure 5.5: This figure represents the velocity configuration file used in this project.

dynamically according to a specific input parameter. In this scenario, the input

parameter would be the ”SADSR” value. The premise behind this concept is that

higher a ”SADSR” value would indicate faster user execution of the motion.

This would mean the new velocity would be in the form of the following equation,

where k represents the sensitivity constant (higher k yields higher additional velocity).

DynamicV elocity = PredictedV elocity + k ∗ SADSR (5.7.1)

The challenge with this implementation stemmed from the fact that the ”SADSR”

value varied throughout the execution of a single motion. For instance, consider the

act of taking a step: the ”SADSR” may be higher during the initial phase of a step,

which involves lifting the foot, pushing it forward, and placing it down. However, dur-

ing the later phase, where the foot is retracted back to the center, a smaller ”SADSR”
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may be recorded. These differences in ”SADSR” values resulted in different dynamic

velocities, even though a consistent motion speed was expected. This variation in

velocity caused discomfort during testing. As a result, the utilization of dynamic

velocities was disabled during the final testing phase, although the logic remains in

the code, with a variable in the configuration set to ”False” to deactivate it.
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Chapter 6

Results & Limitations

Now with the algorithm and the game being defined, the performance of KATNN is

the next focus. This section delves into the training results of the Neural Network,

the feedback gathered from testing it within the virtual environment, an evaluation of

KATNN’s performance on an additional user, and an exploration of the algorithm’s

limitations.

6.1 Neural Network Results & In-Game Testing

The outcomes of the trained models are presented in Table 6.1. Accuracy columns

will denote the proportion of data that the model predicted correctly. Additionally,

loss columns will denote the measure of how far the model’s predictions are from the

actual values.

Notably, the performance of the Layer 1 model stands out, achieving a training

accuracy of 96.1%. Initially, a higher accuracy of around 97% was attained using

the original window size of 26 data rows (or half a second of data). However, the
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window size for Layer 1 was systematically reduced until a noticeable decline in accu-

racy was observed. Given that Layer 1 plays a pivotal role in determining the user’s

movement direction, maintaining high accuracy was imperative for the algorithm’s

success. Aside from the first layer, both Layer 2 and Layer 3 also demonstrated com-

mendable performance, with the least accurate model achieving a training accuracy

of 81.6% using default window size of 26. While it might have been possible to en-

hance prediction accuracy by using a larger window size, the trade-off was increased

latency.

Neural
Name

Parent Class
Training
Loss (%)

Training
Accuracy
(%)

Validation
Loss (%)

Validation
Accuracy
(%)

Layer 1: Motion
Motion1 Motion 10.3% 96.1% 10.21% 96.2%

Layer 2: MotionType
MotionType1 STEPS 37.1% 82.3% 37.0% 96.2%
MotionType2 LSIDESTEPS 28.5% 87.3% 26.8% 87.8%
MotionType3 RSIDESTEPS 34.4% 84.7% 33.6% 85.2%

Layer 3: MotionSpeed
MotionSpeed1 SML-STEPS 21.9% 90.6% 21.8% 90.8%
MotionSpeed2 LAR-STEPS 37.6% 83.9% 37.5% 84.2%

MotionSpeed3
SML-
LSIDESTEPS

18.5% 92.1% 18.7% 91.9%

MotionSpeed4
LAR-
LSIDESTEPS

20.7% 90.7% 20.8% 90.6%

MotionSpeed5
SML-
RSIDESTEPS

40.9% 81.6% 40.6% 82.1%

MotionSpeed6
LAR-
RSIDESTEPS

22.9% 89.3% 23.0% 89.3%

Table 6.1: The Results of Our Neural Network Models.

During testing, a notable improvement was apparent through the increased base

speed for movement, as the original KAT C algorithm felt slow while navigating the
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virtual environment. Another positive aspect observed during testing was maneuver-

ing around objects. In the game, there are obstacles such as capsules and cubes that

the user can collide with. With the original KAT C implementation, when a collision

occurred, the only option was to rotate 90 degrees, move forward, rotate back 90 de-

grees, and continue forward. This felt very counterintuitive. However with KATNN,

users could simply sidestep to avoid the obstacle and then continue moving forward,

resulting in a much more natural and user-friendly experience.

Additionally, KATNN excelled in recognizing slower movements, such as the

”sneaky step” motion. In this motion, the expected output sequence is movement,

standing, and then movement again. With the original KAT C algorithm, it often

registered as movement, standing, and standing, causing the last part of the motion

cycle to be ineffective. In contrast, KATNN accurately detected movement, standing,

and movement, enhancing the overall user experience.

6.2 External User Testing & Analysis

When involving another individual in the use of the KAT Walk C, a few steps were

taken before their participation. First, the input mechanism names in the research

game were altered. The KAT C algorithm was renamed ”YANKEE,” while the

KATNN name was changed to ”TANGO.” This adjustment was made to ensure that

the user remained unaware of which implementation was developed by the researcher,

thus eliminating potential bias. Subsequently, the user performed a standing motion,

and data collection of their standing data readings was conducted. The results of this

data collection can be observed in Table 6.2. Notably, the other user exhibited higher

standing readings for all rotations, with the exception of right roll rotation.
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My Data
(Standing)

Other Data
(Standing)

Deltas
(+/-)

L Pitch 18 21 3
L Roll 3 5 2
R Pitch 17 23 6
R Roll -2 -9 -7

Table 6.2: My Data vs. External User Standing Data Comparison.

Additional data collection was conducted, instructing the user to perform large

steps and large sidesteps. Figures 6.1 and 6.2 illustrate the variations in sensor

readings between the my data and the external user’s motions.

Upon comparing the large step data, one notable difference is that the peak pitch

values in the other user’s motion do not reach the same peaks as my execution of

motion. This discrepancy could potentially pose an issue in Layer 2, where KATNN

may predict a small step instead of a large one. A similar issue arises when examining

the sidestep data. In the left roll (LRoll) graph, it is evident that the minimum peak

value is significantly higher in the other user’s motion compared to my motion. Again,

this could lead to KATNN erroneously predicting a small step. Nevertheless, Layer 1

performed well, accurately predicting the user’s intended direction, and allowing the

user to move in additional directions, which provided a better experience for them.

6.3 Assessing Limitation

KATNN, while offering numerous advantages, also exhibits certain limitations that

warrant discussion. The primary limitation pertains to variations in the execution

of the same motion from different individuals may lead to incorrect predictions. As

previously discussed, Layer 2, Motion Type, determines whether a motion is a large
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Figure 6.1: This figure represents the sensor data readings between my data
(BLUE) and other person data (ORANGE) when performing large left sidesteps.

step or a small step by analyzing the peak sensor values. In practice, individuals

performing what appears to be a small step could execute it differently by lifting

their foot more, resulting in a higher peak sensor value. This deviation from the

model’s training data could lead to a false prediction of a large step, illustrating the

model’s limitations when applied to different users.

A second noteworthy constraint is latency. It’s important to remember that the

algorithm relies on a window of sensor data, which includes the most recent sensor

reading along with the preceding ones. If a user transitions to a different motion,

the algorithm may not detect this change until the previous sensor data aligns with

the new motion, leading to a delay and lag in recognizing the new motion. In the

worst-case scenario, this latency can be as long as 0.52 seconds.

The final noteworthy constraint of KATNN is the issue of rotating your body

resulting in wrongful classification. When a user rotates their body on the KAT
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Figure 6.2: This figure represents the sensor data between sensor readings between
my data (BLUE) and other person data (ORANGE) when performing large left

sidesteps.

treadmill, this will result in taking small steps to the side to readjust the orienta-

tion of their feet. These small steps will yield wrongful classifications of sidesteps

from KATNN leading to a discrepancy between the user’s motion and the virtual

character’s motion.
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Chapter 7

Alternative Attempts and Related

Work

In this section, relevant research conducted in the context of this project and related

to the KAT Walk C will be discussed. Some of this research was integrated into

the project, while other aspects proved to be less effective than initially expected,

resulting in their eventual archiving. Additionally, research conducted in connection

with the KAT Walk C will be explored.

It’s worth noting that the optional logic discussed in chapter 6 remains visible and

present in the codebase. In contrast, the topics covered in this chapter have either

been archived or studied in other projects.
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7.1 LSTM Neural Network Approach

LSTM (Long short-term memory) Neural Networks belong to a class of recurrent

neural networks designed for effectively handling time-dependent data. They find ap-

plications in various domains, such as predicting stock prices and forecasting weather

conditions, due to their ability to capture long-range patterns within sequences. In

this project, the data in question comprises sequences of sensor rotation data, where

each row corresponds to a specific moment in time, creating a time-series problem.

The concept here was to use the model to predict velocity. To achieve this, both the

current velocity and the sensor data were inputted into the model to forecast future

velocity.

Figure 7.1 showcases the training results, which demonstrate a promising 100%

training accuracy. However, upon closer examination of Figure 7.2, discrepancies

become evident. The blue graph illustrates the actual velocity, which varies over time,

while the predicted velocity from the LSTM network, depicted in orange, remains

constant. This discrepancy raises concerns about the model’s predictive capabilities.

Figure 7.1: This figure represents the output during LSTM training, notice that the
training is 100% accurate during the first round of training.

The puzzling disparity between the promising 100% training accuracy and the

terrible predictions is in need of an explanation. To comprehend this, let’s revisit
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Figure 7.2: This figure represents the actual velocity of the user (BLUE) vs. the
predicted velocity using the LSTM model (ORANGE).

the data collection and labeling section. The dataset comprises multiple files, with

each file representing a single motion. Consequently, within a given file, the velocity

remains constant since it corresponds to a consistent motion. During training, it

seems that the Neural Network learned to extract the initial velocity from the input

and, rather naively, forecasted future velocity as identical to the current velocity.

While this strategy yielded flawless results in the training phase, it ultimately proves

to be a woeful prediction approach in real-world scenarios.

Though LSTM networks still hold potential with different strategies and ap-

proaches, they were abandoned in the context of this implementation and were
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archived.

7.2 Issues of Introducing Backsteps

A suggestion arose regarding the implementation of a backstep feature within the

algorithm, considering its existing capabilities of moving forward, left, and right. The

initial step involved executing the backstep motion while simultaneously collecting

sensor data, which proceeded without complications. The subsequent challenge lay

in data analysis: how could this new motion be seamlessly integrated into the model?

Upon analyzing the data, it became apparent that distinguishing backsteps from

forward steps was not straightforward using the SADSR values in Layer 1, as both

types yielded similar high SADSR(LPitch) and SADSR(RPitch) values. A poten-

tial solution emerged in Layer 2, specifically within the motion type classification. A

new class labeled BSTEPS could be introduced to represent backsteps. Figure 7.3

visually highlights the distinctive characteristic of backsteps, particularly in the left

graph, where backsteps exhibit significantly lower peaks. Thus, the idea emerged to

incorporate logic that detects backsteps based on the magnitude of this peak, allowing

for accurate recognition of this unique motion.

While technically feasible, there are significant concerns regarding the potential

negative impact on accuracy and the severity of incorrect predictions when adding

backsteps (BSTEPS) to the algorithm. This issue becomes evident in the right graph

of Figure 7.3, where performing steps with the right foot does not exhibit the same

distinct low peak as seen with the left foot. This lack of clear differentiation between

normal and back steps would likely result in a decrease in accuracy.
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Another critical concern pertains to the severity of incorrect predictions. In pre-

vious scenarios, when Layer 2 made an incorrect classification, it often had minimal

consequences; for instance, predicting a small step instead of a large one simply led

to slightly different user movements. However, with the introduction of backsteps,

the stakes are higher. A wrongful classification might lead a user to perform a back-

step but be incorrectly classified as a normal step, significantly impacting the user’s

immersion and experience.

Although there may still be potential for incorporating backsteps into the algo-

rithm using a completely different approach, this idea was abandoned and archived

for this implementation.

Figure 7.3: This figure represents the pitch sensor readings when executing a regular
step vs. back steps.

7.3 Estimating Position of Foot on KAT Walk C

A project was undertaken in a course that centered around estimating the position

of the foot on the KAT Walk C treadmill using the concept of interpolation. This
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algorithm relies on estimating a position based on the three closest key-points and

computing a weighted average (Matira (2023a)). The project’s concept involved ana-

lyzing sensor readings while taking into account the curvature and incline of the KAT

Walk C surface, which resulted in varying sensor readings across different areas of the

surface. However, a significant constraint of this project was that accurate predictions

could only be made if the user kept their feet on the surface, meaning they had to

slide their feet instead of lifting them to walk naturally. Due to this limitation, the

project was not further pursued after the course was completed, as the focus of the

algorithm shifted toward accommodating more natural movements.

Figure 7.4: This figure represents a sample diagram that would have the ability to
track the position of the foot on the KAT Walk C surface in real time based on

interpolation.
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Chapter 8

Conclusion & Future Work

8.1 Conclusion

This report has introduced an alternative input mechanism for the KAT Walk C,

known as KATNN, which has demonstrated significant success in areas where the

original KAT C implementation faced challenges. KATNN excels in registering move-

ments in various directions, including the capability to accurately capture sidesteps.

Moreover, it exhibits enhanced performance in capturing slower, subtle motions, such

as ”sneaky steps”.

However, it is crucial to acknowledge the constraints of this algorithm. Like

many machine learning solutions, its performance is contingent on the quality of

its training data. This implies that the algorithm excels in motions on which it was

trained extensively but may not perform as well for movements it has not encountered.

Another limitation pertains to latency, as the algorithm relies on a window of sensor

data. Consequently, users transitioning between motions may not see this reflected

in the virtual game until as much as 0.52 seconds after initiating the new motion in
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the worst-case scenario.

Throughout this project, numerous challenges were encountered, with two major

hurdles standing out. These included the initial difficulty of extracting sensor data

from the SDK and the complexities arising from handling sparse sensor data. Addi-

tionally, the performance of the neural networks did not meet expectations. However,

through in-depth problem analysis and investigation, alternative solutions were de-

vised and ultimately proved effective.

In summary, this project began with the daunting task of working with sparse

sensor data that initially presented challenges. However, through continuous brain-

storming, the development of innovative strategies, a significant learning process,

rigorous data collection, and thorough data analysis, valuable insights were gradually

extracted from these limited sensor readings. This experience underscores the bound-

less potential of this approach and should serve as a foundation for future students,

researchers, and professionals to build upon, with the goal of further enhancing the

VR experience for users.

8.2 Future Work

While the algorithm achieved several capabilities, such as executing sidesteps for

lateral movement and accurately recognizing slower motions such as ”sneaky steps”,

it also exhibits clear limitations that leave room for improvement.
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8.2.1 Implementation of Previous/Related Work

Several potential directions for future development have emerged, some of which

were hinted at in the earlier discussion of related work. In the context of LSTM mod-

els, there’s room for exploring alternative methods that weren’t initially considered.

Questions arise about the sufficiency of existing data and whether additional data

collection could enhance model performance. Additionally, the possibility of intro-

ducing noise to the data to prevent constant velocity predictions throughout a file

warrants investigation.

Regarding the concept of backsteps, it was contemplated as a late addition to

the project, requiring a complete overhaul of the algorithm. However, the absence

of distinct traits during data analysis presented a significant challenge. Exploring

this avenue further would necessitate additional research and a potentially different

approach.

8.2.2 Foot on Surface Algorithm

An intriguing avenue of exploration lies in the development of an algorithm capable

of discerning whether a foot is in contact with the KAT Walk C surface. To con-

textualize this idea, recall the constraints of the foot position estimation project, as

detailed in Matira (2023a). Lifting one’s foot during movement was prohibited due

to the potential for inaccurate position estimations, leading to erroneous trajectory

predictions.

The innovation here would involve creating an algorithm capable of determining

the foot’s contact status with the surface. Such an algorithm could signal the position

estimation system to perform calculations exclusively when the foot is in contact with
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the surface. This advancement would revolutionize the user experience, allowing

for natural walking (including foot lifting) while simultaneously providing accurate

foot position estimations and velocity data. In essence, it would enable trajectory

predictions without the need of machine learning. It’s plausible that, with this idea,

such algorithms could outperform the KATNN algorithm.

8.2.3 KATNN Improvements

One suggestion to improve the KATNN experience is minimizing the discrepancy

when the user is turning their body. One way to do this is to feed another attribute of

sensors to the KATNN algorithm, the body yaw rotation. Feeding this rotation value

will allow to calculate the difference between the maximum and minimum rotation.

We can then use logic in our code to say that if the difference is bigger then some

threshold value, to overwrite any prediction to a standing classification. This will

allow users to turn without experiencing movement in the virtual environment.

Additionally, potential future enhancements could involve investigating the devel-

opment of a more universally applicable model. This endeavor might necessitate the

inclusion of user-specific parameters, such as individual user height, to fine-tune the

network and optimize velocity predictions. The question arises: could the implemen-

tation of a calibration tool be feasible? This tool would involve instructing a user to

perform a series of specific motions for a brief period, collecting relevant data, and

dynamically generating a model tailored to their unique characteristics.
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8.2.4 Calibration Improvements

Regarding the persistent issues of drifting and calibration, an alternative and user-

friendly solution beyond the methods discussed in this report is proposed. This

solution involves the introduction of an additional virtual environment, referred to

as the ”loading environment”. Within this environment, users are transported to

a distinct virtual world where they are presented with a prominent arrow. Their

objective is to align their headset and hips with this designated arrow’s orientation.

Once users achieve the proper alignment, they can proceed to walk forward. The

system then calculates their path, monitors any deviations from the intended trajec-

tory, and calculates the necessary rotational adjustments to maintain users on the

correct path. This approach offers a more intuitive and precise calibration method,

effectively eliminating the reliance on trial-and-error adjustments via sliders in the

game menu.
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Appendix A

Data Augmentation: Technical

Explanation

To illustrate this approach, we will investigate a single cycle of a sine wave, divided

into 20 evenly spaced points. The corresponding sine function will be defined as

f(t) = sin
(
2πt
19

)
, where t represents iteration value, where 0 ≤ t ≤ 19, and the output

f(t) will depict a normalized sensor reading at time t. The sequence of values f(0),

f(1), f(2), ..., f(19) generates a single cycle of the sine graph, as illustrated in Figure

A.1.

A.1 Double Speed Logic

The concept underlying double-speed logic involves the observation that doubling the

speed of an exact motion results in sensor readings exhibiting a nearly twofold rate

of change at each constant interval. This is achieved by reorganizing the initial data

sequence as follows: first, gather all the even indexed values together (i.e. f(0), f(2),
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Figure A.1: This figure illustrates a single cycle of a sine wave divided into 20
discrete points.

... f(18)), which will be called Seven. Similarly, gather all the odd indexed values

together (i.e. f(1), f(2), ..., f(19)), which will be called Sodd. Finally, concatenate

all values from Seven followed by all values from Sodd. This results in the rearranged

sequence f(0), f(2), ..., f(18), f(1), f(3), ..., f(19), which can be seen in Figure A.2.

Notably, this rearrangement shortens the cycle length by a half, indicating that the

user requires only half the time to execute the motion, implying that the user must

be moving at double the speed.

However, this methodology rests on certain assumptions. First, it assumes that

the underlying data exhibits cyclical behavior; without this fundamental assumption,

the concatenation of even and odd data loses its meaningful interpretation. Since the

same motion was executed repeatedly during data recordings, this came inherently

with the data collected. Second, the effectiveness of this approach depends on cycle

lengths that are not excessively small. For instance, if the original cycle had a length

of 4, implementing this method would result in a new cycle with a length of 2, which
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Figure A.2: This figure illustrates the rearrangement of the original sine graph,
grouping all odd values together followed by all even points together. This

arrangement simulates two sparser cycles.

may not accurately represent the true underlying cycle. This was not an issue with

the data collected as cycle lengths ranged from 25 to 70.

A.2 Half-Speed Logic

The concept of half-speed logic centers on the creation of synthetic data to extend the

length of the original cycle. This concept is grounded in the assumption of a consistent

time interval between sensor readings, where a slower execution of motion leads to

a halving of the rate of change in sensor readings due to the reduced motion speed.

Synthetic data takes the form of an average between the current sensor reading and

the subsequent reading, expressed by the formula s(t) = f(t)+f(t+1)
2

. In the resulting

sequence, each original data point, apart from the initial sensor reading, is paired

with a synthetic value. This pairing results in the following sequence: f(0), s(0),
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f(1), s(1), ..., s(38), f(39). This new sequence can be seen in Figure A.3. Observe

that when x = 20, the new sequence has only completed half of a cycle. This indicates

that the cycle length has effectively doubled, implying that the motion is executing

at half the speed of the original motion.

Figure A.3: This figure depicts the addition of synthetic data points between each
original point to create a single cycle. This inclusion of points nearly doubles the

cycle’s length compared to the original.
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Appendix B

Additional Information

• Knowledge regarding Deep Learning and Neural Networks was acquired from

taking SEP 740.

• Knowledge regarding computer animations and exposure to sparse sensor tech-

niques and motion capture techniques was acquired from taking CAS 737.

• Github link to the Python Server Code:

https://github.com/JKen0/vr-kat-project-python/, Matira (2023c)

• Github link for the compiled game:

https://github.com/JKen0/vr-kat-project-unity/, Matira (2023b)

• A link to the Estimating Position of Foot algorithm can be found here:

https://github.com/JKen0/kat-walk-c-estimating-position, Matira (2023a)

• You can take a look each of the repositories and look at the commit history to

see how the code evolved over time, and commits that were made that added

or removed functionalities over time.
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• The window size in Python is defined as 25 but in our Unity game it is defined

as 26. The reason for this is that Unity will provide 26 rows of raw data,

but Python will need 25 rows of delta data, so that 26 rows of raw data gets

converted to 25 in Python.

• Layer 2 and Layer 3 Neural Networks use a window size of 25. This means it

bases its predictions on sensor readings from up to 0.52 seconds ago.

• Layer 1 Neural Network used to use a window size of 25, but was reduced to 15

to reduce the delay in the event of a change in motion. This reduces the delay

from 0.52 to 0.32 seconds.

• The reason why using KATNN may result in a delay in the first prediction is it

needs 26 rows of sensor data in order to make the first prediction. Which can

cause a latency of up to 0.52 seconds.

• In the python code, in the folder ”4-PROCESSED-DATA” folder you may no-

tice the folders ”TEST2” and ”TRAIN2.” These folders hold the data for train-

ing/validation, where originally, ”TRAIN2” was for training and ”TEST2” was

for validation. However, model performance improved a lot when we combined

both datasets and used a function to split the combined dataset.

• 80% of our dataset was used for training, while the remaining 20% was used for

validation.

• Two types of loss functions were used for our models, binary cross-entropy for

models with only 2 prediction classes, and sparse categorical cross-entropy for
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models with more then 2 prediction classes. Additional Information about the

loss functions can be found here: https://keras.io/api/losses/probabilistic losses/

• Directory ”1-RAW-VIDEO” contains a few video recordings of the sensor record-

ing sessions.
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Appendix C

Code Installation and Information

C.1 Setting up Python Server

1. First Install Python version 3.6

2. Once installed install the following Python packages:

• pip install pandas

• pip install numpy

• pip install scikit-learn

• pip install tensorflow

• pip install asyncio

• pip install websockets

• pip install openpyxl

3. Open the project in Visual Studio Code
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4. Go to ”./python-servers/webSocketServer Sync.py” and open the script.

5. When the script is open, on the top right of Visual Studio Code, there exists a

play button. Click it.

6. Our WebSocket server should now be running locally on port 3003!

C.2 Setting up Compiled Research Game

1. First, install Visual Studio 2022 and the following addons:

• .NET desktop development (NECESSARY)

• Game development with Unity (NECESSARY)

2. Secondly, make sure the Python WebSocket server is running on port 3003. If

not refer to previous section.

3. When server is running, locate ”./game-files/” and run test-kat-project appli-

cation. This will launch the game. Game should be loaded on your desktop.

4. On your game application, on the top right you should see a button called

MENU, this will open the menu which will show you a button called ”INPUT:

SDK”, click the button so it says ”INPUT: KATNN”. This will change the input

system from the SDK implementation to our Neural Network implementation.

Then close the menu.

5. Turn on Meta Quest 2, and connect Meta Quest 2 to your desktop via Air-

link/CableLink.
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6. When connected, launch to the desktop and on the taskbar should be a unity

icon which will bring you to launch the game on your Meta Quest.

7. Once done, you should see the game environment in the lens of your Meta Quest

2 using the KATNN input system.

C.3 Code Information

• Python Code Folder Structure Explanation:

– config folder: This folder contains parameters and functions used through-

out the project, this is so that the parameter will only need to be changed

here rather than EACH file.

– NeuralNetwork folder: this folder contains all of the pre-processed

logic/data, the training logic for our neural networks, and the trained

neural networks.

– processed-training-data folder: This folder contains all of the training

data in the form of raw data (data extracted from the unity game) and

processed data (altered data after running a python script).

– python-servers folder: This contains all python servers.

– graphs folder: this folder contains all of the graphs used for the report

utilizing matplotlib.

• All of the logic regarding KATNN can be found in ./python-servers/webSocketServer Sync.py.

Every other file and folder is used for training and data collection, and data

analysis.
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• Regarding the unity game, all logic of everything explained and modified by me

can be found in KATXRWalker.cs
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KAT SDK and Issues

The KAT SDK was obtained after contacting their support team and showing interest

in creating a VR game which utilizes the KAT Walk C. Their SDK provides two

versions, one for Unity game development, and the other one for Unreal Engine.

Oddly enough, the Unreal Engine SDK does not have support to extract extra info

data (like foot sensor rotation, and body raw), but the unity SDK does. For that

reason, the project went the direction of creating a VR game in Unity. In the Unity

SDK, you have the ability to extract extra information from many of their devices

including KAT Walk C2, KAT Walk Loco S, and KAT Walk Mini S. While the logic

is in place in the SDK, I can’t confirm whether it actually works or not.

D.1 Issues

Despite being provided the SDK, one massive issue was the foot rotation sensor data

was not being pulled correctly. I know this is true because I could see on KATGateway

(software that comes with the KAT Walk C) the sensor data was changing but when
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calling the function in the SDK, all sensors values just returned as 0. After weeks

of communication with their support and development email, they provided little to

no insight, as they mentioned that ”developing a game with KAT WALK C does not

require the sensor data.” While this is generally true, it was not true for this research

project. After weeks of attempts to resolve the issue, no progress was made, until one

day, out of desperation, I decided to randomly make modifications to the Extra Info

Class structure. Figure D.1 represents the original code from KAT SDK and Figure

D.2 represents code modified in order to get the sensor data to return correctly. For

whatever reason, modifying the data structure by removing some attributes made

some sensor data display properly, and modifying the data structure again by moving

other attributes made the other sensor data display properly. Because of that, we

utilize 2 different classes which represent the left foot sensor data and the right foot

sensor data.

Another common issue was the body rotation Yaw value would not work on some

devices. When I connected the KAT Walk C to my laptop, foot sensor rotations

would work, but the body yaw rotation would not register and always remain 0.

This occurred for both the SDK and the KAT Gateway software. However when

connecting the KAT Walk C to the lab desktop computer, the foot sensor rotations,

and the body yaw rotation would work, for both the SDK and the KAT Gateway. I

tried downloading different versions of KAT Gateway on the laptop but none ended

up working. Because of this, I made sure to not make any changes to KAT Gateway

on the lab computer since all testing will be done on the lab computer.
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Figure D.1: This figure represents the original code to the Extra Info Class. Using
this class results in the sensor data not being pulled.
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Figure D.2: This figure represents the modified code to the Extra Info Class in
order to correctly fetch the correct sensor data.
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