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Abstract

This thesis describes a distributed system of cameras for visually tracking feature 

points in 3D. The concept of a network of cameras is introduced. Two or more 

calibrated cameras from a network of cameras are used to triangulate the location of 

a point in 3D based on camera positions and pan/tilt angles. A survey of methods 

for interior and exterior calibration is provided and a method suitable for multiple 

cameras in arbitrary positions has been implemented.

A low-cost camera unit has been designed using off-the-shelf components that 

include a small CCD board camera and two servo-controlled mechanisms for pan and 

tilt. Experimental results demonstrate the performance of a network of cameras.
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Chapter 1

Introduction

1.1 Computer Vision

Many outstanding issues with computer vision remain unsolved. Among them is 

correspondence between stereo pairs of images and occlusion. Correspondence is 

the matching of image points from one image to the same points in a second, while 

occlusion occurs when part or all of the image view is blocked. These issues were even 

more prominent in the past when imaging and computing technology was in early 

stages. High cost vision systems of the past often included only one imaging device, 

a custom hardware interface and a computer. Computer vision has dramatically 

changed in recent years due to the falling cost of computing. Off the shelf frame 

grabbers allow cameras to be connected to a typical PC with enough computing 

power to perform complex image processing at frame rates. However, correspondence 

and occlusion remain a problem.

One method to solve the correspondence and occlusion problem is to gather more 

information by using more cameras. This would have been too financially and com­

putationally expensive in the past but is possible today. Two new issues arise when 

considering the use of multiple cameras. The first is in how a large number of cameras 

1
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can be connected to a computer and the second issue is the time consuming process­

ing of so much image information. These two issues are addressed in the following 

sections.

1.2 Smart Cameras

Time consuming computer processing is often spent filtering and modifying the image 

to allow the correct information to be extracted. This type of preprocessing, such as 

low-pass or high-pass filtering, should not be the responsibility of the central process­

ing computer when low-level operations could be performed by a simpler, lower cost 

computer. In this thesis, the idea of a smart camera is used.

A smart camera has increased functionality over a normal camera that only pro­

duces a video stream. An embedded processor in a smart camera can filter the images 

as they are generated and transmit the enhanced image. The functionality of a smart 

camera could include:

• auto focusing,

• auto exposure,

• iris control,

• camera movement control (i.e. pan/tilt),

• zoom control, and

• image preprocessing.

All of these functions can be built together in a single unit to produce a smart camera.

1.3 A Network of Cameras

A video multiplexer would allow many cameras to be connected through a frame 

grabber to a computer. However, this thesis proposes an alternative to a multiplexer 
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that takes advantage of a smart camera and the falling cost of networking. Com­

puter networks have generated what is known today as the Internet. The immense 

demands on the Internet for data and information sharing, electronic commerce, busi­

ness transactions and communication have reduced the cost of networking. Hence, a 

smart camera interface could be a high-speed network interface such as ethernet. A 

large number of cameras could be connected to a computer in a network of cameras 

(NOC).

A feature of a NOC is the ability to send information or commands to and from the 

camera. A central computer could control the pan/tilt capabilities of a smart camera 

or control the zoom. The functionality of a smart camera can be altered through the 

network. New parameters could be transmitted to the camera to adjust the filtering. 

A smart camera could be programed to autonomously control pan, tilt and zoom to 

search for people and report through the network when a person is detected.

Figure 1.1 shows an example of a NOC. This configuration illustrates how a net­

work can take on many different topologies. In this example, the visual security sys­

tem has many smart cameras that maybe located throughout a building connected 

through an ethernet switch or in other buildings connected through the Internet. Fig­

ure 1.1 also shows some examples of smart cameras with wireless links, power zoom 

and pan/tilt capabilities.

A smart camera could drastically reduce bandwidth load on a network. For ex­

ample, to transmit video at 30 frames per second, 24 bits of color and image size of 

640 pixels by 480 pixels, the bandwidth required would be 221.2 Mbits per second 

for just the video data. Multiple cameras transmitting video at this rate would not 

be possible using current copper-based ethernet networks. However, a smart camera 

would not have to necessarily transmit images at 30 frames per second. A smart 

camera may not have to transmit any images at all and instead process the images 

and transmit high-level data such as the position of an object in the image. Hence,
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Figure 1.1: A Network of Smart Cameras
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bandwidth requirements could be reduced to hundreds of bits per second as opposed 

to millions of bits per second by using smart cameras.

1.4 Tracking

Computer vision is often used in tracking. For example, cameras are used in man­

ufacturing to detect positions of parts on conveyor belts and to track parts as they 

enter and leave work cells. A NOC can be used in tracking applications with the 

advantages outlined in the previous sections. Tracking using a NOC introduces new 

issues such as:

• number of cameras to use,

• location of cameras,

• smart camera features (zoom, pan/tilt), and

• extent of smart camera autonomy.

Camera locations will effect the view of the object being tracked and the tracking ac­

curacy. Figure 1.2 shows an object location and domain of movement. Three possible 

configurations for 4 cameras, CO, Cl, C2 and C3, are depicted in Fig. 1.2a, 1.2b and 

1.2c. Optimal parameters for a NOC such as camera location is application depen­

dent. This thesis will explore criteria for camera location and other NOC parameters.
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Figure 1.2: Possible Locations for Four Cameras

1.5 History

1.5.1 Active Vision

Vision systems often concern themselves with using camera sensors to model or recre­

ate the observed environment in an attempt to provide control information for applica­

tions such as mobile robots [35] or virtual reality worlds [8]. Active vision techniques 

use the control of the camera pose relative to the object of interest to both select 

manageable portions of the environment relevant to the current task as well as to 

simplify the extraction of the required parameters from those selected views.

Active vision is not limited to pointing the camera in a certain direction, but 

includes any adaptive response to the demands of the task given the environment. 

This would include increasing zoom to enhance resolution of a smaller area, and/or 

adjusting the iris to change the amount of light reaching the CCD and/or changing 

the depth of field. For stereo information derived from two cameras, active cameras 

can be verged to improve disparity resolution for a fixed baseline [20] (see also §1.5.3). 

Depth can also be found by varying the focus of the camera lens thereby requiring 

only one camera and the correspondence problem is avoided altogether [22],
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The Vision and Autonomous Systems Center (VASC) at Carnegie Mellon Univer­

sity, Pittsburgh, has used a large array of fixed cameras about the perimeter of an 

environment as an alternative to an active vision system to create a virtual reality 

[32], Once the cameras are calibrated, multiple-baseline stereo [30] is used to create 

depth maps from which a model is generated and texture-mapped. The array of cam­

eras mounted along the walls or in a geodesic dome eliminates the problem of position 

but incurs a host of problems inherent with static sensors. To reduce the likelihood 

of occlusion, many cameras must be used which leads to bandwidth problems, while 

the computational cost of constructing a model from stereo data at each time instant 

is formidable. Calculating accurate, dense, high resolution depth maps from pairs of 

images is far from being solved, necessitating the need for careful filtering.

The VASC system is an example of where a NOC could be applicable. The array of 

fixed cameras could be replaced with a smaller number of cameras capable of locating 

and following the object of interest. Orientation of the cameras could be passed over 

the network to allow the use of the multiple-baseline method. A camera pair could 

be seen as a smart camera that does not produce an image but rather a depth field. 

Hence, a NOC could provide vital improvements that ease the computational cost of 

performing real-time virtual views.

1.5.2 The Biological Model

Active vision has been proven to be superior to non-active vision in many applications. 

The human vision system is a prime example of active vision says Marr [26]. Human 

eyes have a very small fovea (1.5 deg. diameter), where visual acuity is best and 

can be likened to a camera lens where the lens distortion is usually lower in the 

middle. Eye movements are needed to both shift gaze to objects of interest, bringing 

the selected portion of the retinal image to the fovea and to maintain stable gaze on 

selected targets as they move. If the target should change its position abruptly, or 
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the object of interest changes, a single saccadic eye movement can take the line of 

sight to the new position of the target with considerable accuracy [7].

Kowler [21], outlines four examples of human active vision relevant to active vision 

systems for robotics. They are:

• selection of the target for smooth eye movements,

• predicting the future position of targets,

• planning sequences of saccades, and

• saccades to selected targets in the presence of irrelevant visual backgrounds.

Kowler concludes that target selection is based on the representations of the objects 

and not on isolated sensory cues, that is, what to track is a high level decision. 

Furthermore, the control of smooth eye movements include projections of the expected 

target motion several hundred milliseconds into the future. It is not difficult to see 

how these two conclusions may be applied to an active vision system. Indeed many 

biological vision systems have developed sophisticated ways of moving their eyes to 

exploit the benefits associated with eye movements.

Sharkey et al. [34], have developed a modular stereo head platform to test bi­

ological based active vision theories. This mechanical system, based on geared DC 

motors, is able to accurately track an object moving at 8m/sec, at a range of 2m 

from the cameras at 25 frames/sec. This design has lead to the development of the 

Yorick series of active stereo camera systems [33], which has been used to test gaze 

control, dynamic vergence [2], and saccadic motion [28], primarily for virtual reality 

telepresence. The implementation is capable of performing a real-time surveillance 

task in a changing, unstructured environment using optical flow at a coarse scale 

across an entire image and at a fine scale in a central foveal region required by the 

different saccade and pursuit actions. It also uses a prediction scheme to determine 

the likely future movement of the object.
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Depth information is an integral part of human visual perception. Two common 

approaches for the determination of depth are described next.

1.5.3 Depth from Multiple Views

The literature contains many examples of tracking and range mapping in 3D using 

two or three camera stereo matching [15, 18, 20, 9]. Stereo matching involves a known 

baseline, which is the distance between two cameras and determining matching points 

in the images. A point in one image matches or corresponds to a point in the second 

image when both points are the projection of the same real point in the 3D space. 

Sharkey et al. [34] used binocular vision where two cameras are placed along a straight 

line. A trinocular system, as used in [23, 38], has cameras placed in a triangle to 

improve the depth measurement. Figure 1.3 illustrates the scene point projecting on 

to the image planes of two cameras at pi and pr. The distance between the camera 

axes is the baseline b while f is the distance from the image plane to the focal point 

ci or cr. The distance from the cameras to the object point is the depth z. In stereo 

matching systems the measured disparity d = (xi — xr) between matched points is 

related to the distance (depth) z by:

bf z = ---------- - .
(xi - xr)

Equation 1.1 is usually written as:

d=bf- (1.2)
z

Much research has been devoted to dealing with the fundamental tradeoff between 

the ease of matching and the accuracy dictated by this equation. For a given distance, 

Eq. 1.1 indicates that disparity is proportional to the baseline. Hence, a longer 

baseline would allow a better estimate of the distance. However, a longer baseline
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Left Image Right Image
Plane Plane

Figure 1.3: Depth from a Stereo Image Pair
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Figure 1.4: Picket Fence

makes matching more difficult, time consuming and increases the chance of a false 

match.

A solution to this tradeoff is a coarse-to-fine control strategy [12]. This strategy 

uses a low resolution to reduce false matches and then a higher resolution where more 

precise disparity measurements are calculated. Another approach to reduce false 

matches and increase precision is to use multiple images sampled along a camera path 

[1]. Consecutive images would provide a short baseline, reducing false matches, and 

can be integrated with information from other images in the sequence for a longer 

baseline. Kalman filtering has also been used to integrate the images [27]. These 

techniques however, still succumb to the inherent ambiguity in matching produced 

by, for example, a repeated pattern. In a repeated pattern, such as the picket fence 

in Fig. 1.4, matching is ambiguous because there can be more than one match for a 

given pattern.

Multiple-baseline Stereo

The multiple-baseline method, as used in the VASC system, was originally proposed 

by Okutomi and Kanade [30] and has been widely used. The stereo matching method 

uses multiple stereo pairs with different baselines generated by a lateral displacement. 

Matching is performed by computing the sum of the sum of squared-difference (SSSD)
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Figure 1.5: Multiple Baseline Camera Positions

values with respect to the inverse disparity for each stereo pair. Okutomi and Kanade 

[30] begin with cameras at position Po, P±,Pn along a line with optical axes perpen­

dicular to the line resulting in a set of stereo pairs with baselines b^, b^, ...,bn as shown 

in Fig. 1.5. Each image can be represented as intensity function ft(x), i E {0,l,2...n}. 

The sum of the squared difference (SSD), e^lx, di), over a window W beginning at 

pixel position x of image f0(x) for the candidate disparity di is defined as:

edi(x,di) = £(fo(x+j) - fi(x + di+j))2 (1.3)
jew

where the jew means the summation over the window W for each position j. The 

value of di that minimizes edi (x, di) is used as the estimate of the disparity at position 

x. The SSD with respect to the inverse distance £ = | is given by:

= ^(fotx + j) - Mx + bJC + j))2 (1.4)
jew

where bi and / are the baselines and focal length respectively. The SSD values with 

respect to the ( of all the pairs are summed to produce the sum of the SSD or SSSD:

n
^...JtC) = J2ec(a:,C). (1.5)

i=l

Okutomi and Kanade [30] report that the advantage of using the SSSD function 

with respect to the inverse disparity is the unique and clear minimum at the correct 

matching position, even when the underlying intensity patterns of the scene include 
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ambiguities or repetitive patterns. Hence, with a small iterative search for each pixel, 

good matches can be found from multiple stereo images. It is easy to see that a 

search on a pixel-by-pixel level can be time consuming although this method would 

lend itself well to parallel computations since each search is independent of the next.

1.5.4 Depth from a Single View

A drawback from extracting depth from multiple views is the high computational 

expense. Also, many applications such as robot navigation and object tracking do 

not require the depth of all points in the image. Often, only the depth of one point 

is required to attain the 3D position of a robot or an object.

Depth information can be extracted from a single image provided there is a priori 

knowledge about the objects in the image. There are many publications using this 

technique involving natural or artificial features in the image. An artificial feature 

could be a marker such as the diamond shape used in [11] or a cube as used in 

[5]. House corners provide a natural feature in [6], while [13] describes the use of 

parametric planar or nonplanar curves to determine depth.

The basic theory in each of these techniques is based on expressing the 3D rep­

resentation of the real world feature as a 2D perspective projection on the image 

plane. Both a house corner and one corner of a cube provide essentially three lines 

that meet at one point that are at right angles to each other. A set of equations for 

the perspective projections of these lines onto the image plane can be developed by 

using the law of collinearity [14, 39], which states that an object point, its perspective 

projection and the camera focal point all lie along a straight line. Refer to Appendix 

B for further details. Since the perspective projection is dependent upon the view 

of the camera, the equations yield the pose of the camera with respect to the three 

lines. Given the pose and the length of one of the lines, the depth from the vertex 

can be determined.
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For example, Chou and Tsai [6], proposed an approach using house corners (cor­

ners of rooms) as natural features for robot location. For this method to work 

the assumption that the distance from the camera to the ceiling of the room is 

known a priori. Given a monocular image of a house corner, Chou and Tsai de­

scribe the three lines through the corner point (up, vp) in image coordinates, as 

up + aiVp + Ci = 0, i G {1,2,3}. In the first step, the six coefficients di, Ci, are 

derived in terms of the desired camera location Pqrg = (Porgx , Porgv , Pqrgz ) and 

the camera orientation as given by 9, and 8 (these are often referred to as the pan, 

tilt and swing angles respectively of the camera). Beginning with the perspective 

projection equations as defined in Appendix B and Fig. B.l:

(1-6)

for any point P = (Px,Py,Pz) in the camera coordinate system where (up,vp) is the 

location of P in the image. After some manipulation, the equations for ai, Ci, are:

(1-7)

(1-8)

(1.9)

(1-10)

(1-11)
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(1-12)

Combining these equations and solving for 5:

(1-13)

where

(1.14)

(1-15)

Now, the coefficients As, Bs and C§ are all expressed in terms of known values at, Ci 

and f. Therefore, Eq. 1.13 can be solved to obtain:

(1.16)

where the sign before the square root was found to be minus by experimentation. 

After the value S is computed, it can be substituted into the equations used to derive 

the above equations to End values for 6, ip, Porg,- and POrgv- Porgz is known a 

priori as the distance from the ceiling to the camera.

The obvious drawback of the single view techniques is the need for a priori knowl­

edge. Furthermore, multiple views provide more information for the matching of the 

a priori knowledge to the image content. A single view is also prone to problems 

created by occlusion. The advantage however, is in the computational efficiency as 

compared to the multiple view techniques. The system described in this thesis takes 

advantage of long baselines to gain accuracy and uses natural features in a single view 

to simplify matching.

http:ala2%2529%25281.14
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1.5.5 Summary

The important ideas presented in the above sections are:

• biological systems such as the human vision system exemplify the 

advantages of active vision,

• common vision systems often use stereo to determine depth,

• matching is required in stereo depth measurements and is increasingly difficult 

with multiple baseline systems requiring time consuming searches, and

• depth from a single view relies on a priori information but can be computed 

quickly.

Using a Yorick stereo camera head, Sharkey et al. [34] achieved some of the 

goals of active vision while keeping real-time performance. High torque motors, high 

precision optical encoders and a modular custom machined mount however, would 

likely make the system expensive. The control system contains tightly coupled, high 

speed transputers and custom electronic hardware which would also add to the system 

cost.

The VASC geodesic dome for virtualized reality [32] uses 51 video cameras each 

with their own video recorder capable of adding the necessary time stamp to each 

frame. The more recent VASC project [17], with 49 cameras fixed along the perimeter 

of a room uses 17 computers to record and time stamp a series of images. The physical 

constraints and cost of such a system may limit practicality. VASC has not been able 

to process the data in real-time to produce virtual realities. All of the processing is 

done off-line after the image sequences have been recorded. There is an obvious need 

to make better use of new technologies and to explore new methods to combat the 

financial and computational cost of vision systems.



CHAPTER 1. INTRODUCTION 17

Today, CCD technology and CMOS technology has reduced the cost of cameras 

while public demand for computers and Internet applications have dramatically re­

duced the cost of computing. One other aspect of today’s technology that may be 

taken advantage of is the computer inter-connectivity. Networks such as ethernet are 

common and can be built at low cost. This thesis takes advantage of these technologies 

and combines them with active vision and the old method of triangulation, forming 

the basis for an inexpensive 3D tracking system using off-the-shelf components.

1.6 Thesis Outline

This new system unites the single view approach of §1.5.4 with active vision, §1.5.1 

and uses triangulation to calculate the 3D position of an object. Four smart cameras 

with pan/tilt mechanisms hag been built using inexpensive board cameras and hobby 

servos. The smart cameras can be positioned arbitrarily and calibrated to form a 

NOC. Using any two cameras in the network which actively track a common target, 

the target position can be triangulated.

Artificial or natural features are actively and independently tracked by each cam­

era, keeping the feature in the center of the image thereby simplifying correspondence 

and keeping the relevant image information in the fovea of the lens. The camera place­

ment becomes arbitrary and can be adapted for range measurements as required by 

the application such as 3D model generation, multimedia applications, robotic servo 

control and security tracking. With a large network of pan/tilt cameras observing a 

target, tracking can be dynamically based on two or more cameras. Tracking respon­

sibility can be passed along from one camera set to another as the target moves out 

of view of certain cameras and into others. Thus, targets may be tracked throughout 

any area, such as along an assembly line or along a highway.

As with any practical system there are trade-offs. Although the proposed system 
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integrates single view tracking with the benefits of active vision to reduce the compu­

tational cost, there is a computational penalty in reducing the cost of the mechanical 

system. The high cost of a Yorick sensor gains precision and speed while the low cost 

of this system sacrifices precision and speed. To compensate, an increased software 

burden is required. However, when the overall practicality of this system is assessed, 

the advantages are readily applicable to commercial and industrial applications.

This thesis describes the implementation of a simple NOC. The goal was to demon­

strate the feasibility of a NOC with a simple tracking application and to explore the 

advantages of a NOC in distributing the computational load amongst the smart cam­

eras. The NOC was designed to allow for arbitrary placement of cameras and to 

calculate the 3D position of the object being tracked. A low-cost pan/tilt camera 

unit was developed and is described in Chapter 2.

Chapter 2 also outlines the calibration process used to calibrate the NOC and also 

describes the process used to calibrate the pan/tilt control system. This calibration 

along with the extrinsic parameters are of key importance since the resulting feature 

location is dependent on the accuracy of these parameters.

The tracking algorithm, as described in Chapter 3, is designed to track a feature 

point and keep the feature point in the center of the image. Each camera tracks 

the feature point independently. This implies the optical axis of each camera will 

pass through the feature point. Hence, with two or more calibrated cameras, the 

3D location of the feature point can be calculated. For simplicity, an infrared point 

source was used as a feature point (target). Chapter 3 also describes the method used 

to find the intersection of the optical axis.

Experimental results are outlined in Chapter 4. Several experiments were con­

ducted to test the system. A representation of the error is plotted for several of the 

tests and observations are listed.

Conclusions and future directions are formed in Chapter 5.



Chapter 2

Pan/Tilt Camera Units

2.1 Pan/Tilt Camera Units

2.1.1 Introduction

To reap the benefits of active vision and to maintain a low-cost system, a pan/tilt 

camera unit was designed using readily available inexpensive parts. Precision pan/tilt 

units such as the Yorick [33]system and the Cohu [29] system, could make the cost 

of a network of pan/tilt cameras prohibitive in some cases. Similarly, the cost of 

high quality digital cameras and low distortion lenses can increase the cost. Hence, 

there is a need for a low-cost solution. A pan/tilt camera unit was produced using a 

EM200-L60 board level camera with a 6mm lens and two Futaba S3003 servos at an 

approximate cost of CND$300. A photo can be seen in Fig. 2.1.

2.1.2 Board Cameras

The EM200-L60 board level camera with a 6mm lens is widely used where low image 

quality is tolerable. Image quality has limited it to multimedia and surveillance 

applications such as Internet video and hidden security cameras. The specifications of

19
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Figure 2.1: The Pan/tilt Camera Unit

this camera are listed in Table 2.1. The small size and low mass allow the mechanical 

system to be smaller and require less power. Whereas stereo matching algorithms are 

sensitive to outliers, which can be caused by low image quality, the tracking system 

used here is not sensitive to outliers and will tolerate the image quality produced by 

the camera. A photo of the board level camera may be seen in Fig. 2.2. Although 

the threaded lens mount allows the image to be focused on the image plane, the 

coarseness and looseness of the thread does not keep the lens well aligned.

2.1.3 Servos

The servos are self-contained units employing a poled or coreless DC motor with gear 

head reduction to increase torque and to allow rotational feedback. The servo contains 

all the control circuitry to convert the pulse width modulated (PWM) input signal 

to rotational position of the output shaft. Hence, only three wires need be connected 

to a servo: power, ground and the PWM signal. On a typical radio controlled (RC) 

system, a multichannel receiver has a servo connected to each PWM channel which
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Table 2.1: Specifications of the EM200-L60 Board Level Camera

Dimensions: L:3.2cm x W:3.2cm x H:3.2cm
TV System: EIA Standard

Image Sensor: 1/3” CCD Interline Transfer 
_______________________512(H) x 492(V) Pixels____________
Scanning System: 2:1 Interlaced

Sync. System: Internal
Scanning Frequency: 15.734KHz (H) / 59.94Hz (V)

Resolution: 380 (H) / 330(V) TV Lines
Video Output (VBS): Video Output 0.714Vp-p

Sync. Output 0.286Vp-p
S/N Ratio: 45dB

Minimum Illuminance: 0.3 lux (faceplate sensitivity)
7 Characteristic: 0.45

Image Out: Combined Video Signal 1.0Vp-p/75W
Electronic Shutter: Auto Linear (1/60 - 1/80,000 sec) 

AGC: More than 12dB
Power Consumption: 118mA

Power Supply: 8-11 VDC (9 VDC Standard)
Operating Temperature: —10°C to + 50°C 

controls mechanical systems such as engine throttle, aireolons, flaps, or steering. RC 

servos are made to handle adverse conditions such as being mounted next to a gas 

engine in a model airplane or the bouncing incurred on a RC car race track. RC 

servos are thus robust and not sensitive to mechanical vibrations or impacts making 

them well suited for low accuracy positioning.

Two Futaba S3003 servos are used to rotate the EM200-L60 camera in pan and tilt 

directions. This servo type is considered a standard servo only due to the popularity 

of the size and performance, thus making it one of the most inexpensive servos to 

purchase. The specifications of the Futaba S3003 servo are listed in Table 2.2. Servos 

with increased accuracy, speed, torque or special size are available usually at a higher 

cost. A photo of the servo may be seen in Fig. 2.2.
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j j j H H .11 ! i h h >;

Figure 2.2: The Futaba S3003 Servo and EM200-L60 Board Level Camera

Table 2.2: Specifications of the Futaba S3003 Servo

Dimensions: L:4.04cm: x W:1.69cm x H:3.58cm
Weight: 43g
Torque: 0.297Nm

Transit Time: 0.22sec/60°

The PWM Input Signal

A servo controls the servo motor to move the output shaft to the position correspond­

ing to the pulse width of the PWM input signal. The servo continuously updates the 

position based on the pulse width. Since the feedback position is directly coupled to 

the output shaft, the servo will attempt to maintain the position even when an exter­

nal torque is applied to the output shaft. Should the servo lose the PWM input signal 

it will maintain the last known position. Most standard servos have a mid-position 

set at a pulse width of 1.5ms with a period of 30ms (refer to Fig. 2.3).
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Servo Controller

The servo PWM signals were generated using an Intel 8031 microcontroller as seen in 

the block diagram in Fig. 2.4. Servo positions were issued from a host PC connected 

to the microcontroller via the serial port. The interface provides 13-bit resolution 

in the PWM signal which is of greater resolution than that of the servo positioning. 

The servo positions are updated at 33Hz and the servos are capable of positioning 

the camera at a rate of 270 degrees per sec.

The PWM control software for the microcontroller was written in assembly lan­

guage. A simple, 24-bit packet system was developed to send servo position updates 

from a PC to the microcontroller via the RS232 serial link. The first 8 bits of a packet 

is a header defining the beginning of a packet. The next 3 bits is the servo identi­

fication and the remaining 13 bits represent the servo position. The microcontroller 

main program continually polls the serial port looking for packets. When a packet 

arrives the program updates a circular buffer stored in memory containing the servo 

positions.

The PWM signals are generated with an 8-bit latch connected to the data bus of 

the 8031. Referring to Fig. 2.5, L.O to L.7 are pins 0 to 7 on the latch and provide 

PWM signals for servos 0 to 7 respectively. Eight PWM signals can thus be created. 

The servo position for servo 0 is read from the circular buffer and an internal timer
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Figure 2.4: Interconnections of the Micro-controller, Pan/tilt Camera Units and PC

i
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3.75ms 3.75ms 3.75ms 3.75ms 3.75ms 3.75ms 3.75ms 3.75ms
30ms

Figure 2.5: Timing Diagram for Servo PWM Signals
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(integral to the microcontroller) is set to the corresponding pulse width time, tQp. 

When the timer finishes, it is reset to the time tOf = 3.75 — tOp. Upon completion 

of tO/, the process is started again by reading the servo position for servo 1 from the 

circular buffer. Each time the timer finishes, the pin on the latch corresponding to the 

servo pulse width being created, is switched low or the pin corresponding to the next 

servo PWM signal is switched high. Hence, when all 8 servos have been completed 

and timing for servo 0 begins again, 30ms will have passed. Thus each PWM signal 

will have a period of 30ms. This limits the pulse width of any given signal to 3.75ms. 

This is not a problem since the servo maximum position corresponds to a pulse width 

of 2.4ms.

2.1.4 Mechanical Design

The board level camera is held in a 3 point mount connected to the tilt servo allowing 

the camera to be arbitrarily positioned with respect to the rotational axes of pan and 

tilt servos. An “L” bracket couples the pan and tilt servos, keeping the axes of 

rotation orthogonal. A key feature of this design is the mounts, which ensure the 

axes of rotation pass through the camera focal point. This implies the image will 

be invariant to the pan and tilt movements [19]. This ensures that given a pan or 

tilt movement, no previously visable points will be occluded by other static points 

within the scene. This is important, since it implies there is no fundamental change 

in the information about a scene at different camera orientations. Refer to §3.2.2 

for an explanation of the results when point of rotation is not at the focal point. A 

mounting plate holds the pan servo and provides connectors for video, power and a 

standard threaded camera tripod mounting hole. A diagram of the design can be 

seen in Fig. 2.6.

The final pan/tilt camera unit can position the camera to point in any direction 

within a hemisphere since each servo has 180° of rotation. Along with the ease of
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Pan Axis 
of Rotation

Figure 2.6: Mechanical Design of the Pan/tilt Camera Unit
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control, the pan/tilt camera unit is well suited for active vision applications where 

precise absolute positioning is not critical.

2.2 Camera Calibration

2.2.1 Introduction

To take measurements from the information contained in an image from a camera, 

there must be a model of the camera describing how the image is formed. The 

simplest and perhaps most widely used model is the pinhole camera model. The pin 

hole camera model describes how light projects onto the image plane and is further 

discussed in Appendix B. However, no camera conforms to the model perfectly. In 

practice, rays of light do not project onto the image plane as predicted by the pinhole 

camera model. Most lenses come with an adjustable iris which further complicates 

matters. The iris size determines the amount of light that reaches the image plane 

and also affects the depth of field. As the iris gets smaller, i.e. approaching the ideal 

pinhole, the depth of field increases toward infinity. To compensate for lens distortions 

and finite depth of field, cameras are usually calibrated by finding parameters to 

correct the distorted image. Simple single element lenses often produce the most 

distorted images. Although compound lenses have additional elements to correct for 

lens distortions, none are perfect. Calibration of a camera to correct the effects of 

lens imperfections on the camera model is referred to as interior orientation and is 

discussed in §2.2.2.

Whereas the interior orientation concerns the effects of lens distortions, the exte­

rior orientation concerns the exterior characteristics. This is also known as finding 

the pose of the camera. That is, determining the location and the relative orientation 

of the camera in the world coordinate system (WCS). The 3D tracking system of this 
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thesis is largely dependent upon an accurate measurement of the exterior orientation. 

Exterior Orientation is described in §2.2.3.

Once the camera interior and exterior characteristics have been determined, the 

pan/tilt servo mechanism must be calibrated as triangulation is based upon the angles 

created by the pan/tilt positions. Pan/tilt calibration is discussed in §2.3.

2.2.2 Interior Orientation

Interior orientation is frequently referred to as finding the intrinsic parameters of the 

camera system. This process can often be difficult and is widely discussed in much of 

the literature. Application specific requirements dictate the terms of the inevitable 

compromise between computational speed and accuracy.

The most accurate way of obtaining the intrinsic parameters is to use a nonlinear 

optimization method such as in [3] and [37]. This facilitates the use of any arbitrarily 

accurate and complex models for the camera system. However, most nonlinear opti­

mizations require an accurate initial guess to start and require a computer-intensive 

nonlinear search.

Brown [3] used plumb (straight) lines to determine the intrinsic parameters, Ki, 

K%, K3, representing radial distortion and Hi, H^. H3, representing decentering dis­

tortion. The image of physically plumb lines through an imperfect lens will not be 

straight lines. Hence, it is possible to determine the values of the above parameters 

in such a way as to correct the lines in the image. Artificial or natural lines can 

be used. However, in practice it is common to use an artificial object with lines to 

ensure consistent calibration results when using more than one camera. Figure 2.7 

shows an example of radial distortion. In Fig. 2.7a, dr is the radial distortion and 

dt is the tangential distortion. The solid box in Fig. 2.7b has no distortion whereas 

the dashed box inside is the same box with negative radial distortion and the dashed 

box outside has positive radial distortion.
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Figure 2.7: Radial Distortion
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sin0

Figure 2.8: Plumb Line Method

Brown describes the equation of an arbitrary line, I, on a plane, as seen in Fig. 

2.8, as:

u'sin 0 + i/cos# = p (2.1)

where p denotes the distance along the normal of I passing through the origin and 0 

is the angle between the normal and the v’-axis. However I on the image plane will 

not be straight. The point (u, v) on a line on the image plane can be corrected by 

using:

u' = u + u(Ki72 + K2r4 + + ...) +

[//) (r2 + 2w2) + 2fl2uv][l + H3r2 + ...], (2.2)

v' = v + v(K^r2 + K2r4 + K^r6 + ...) +

[2H| w + H2(r2 + 2v2)][1 + H3r2 + ...], (2.3) 
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in which (up, np) is the principal point and:

u = u — up , (2.4)

v = v — vp , 

r = [(u - up/ + (n - np)2]1/2.

Letting be the jth point on the ith line and substituting into Eq. 2.2, 2.3

and 2.4, gives an observational equation of the form:

Vij, Up, Vp, Ku K2, K3, Hi, H2, H3, Oi, pi) = 0. (2.5)

A total of 8 + 2m equations in the form of Eq. 2.5 from m plumb lines are used to 

solve for the radial and decentering distortion coefficients iteratively, in a least-squares 

sense. The order of the resulting normal equations is also 8 + 2m and thus increases 

linearly with the number of lines m. Ordinarily, this would set a practical limit on the 

number of lines that can be processed simultaneously. However the block diagonality 

of the matrix of normal equations can be exploited to generate a practical algorithm 

for any number of lines. Brown’s particular method however, does not solve for the 

extrinsic parameters as is common with iterative optimization techniques.

Tsai, in [37], also uses a nonlinear optimization but solves for intrinsic and extrinsic 

parameters. The pinhole camera model used in Tsai [37] includes:

f effective focal length,

Ki 1st order radial lens distortion,

Cx, Cy coordinates of center of radial lens distortion,

sx scale factor to account for any uncertainty due to frame grabber 

horizontal scanline resampling,

R rotational orientation with respect to the WCS, and

t = [tx,tyHz]T translational orientation with respect to the WCS.
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This method uses N coplanar points with known inter-point spacing where N is much 

larger than five, or N non-coplanar points with known locations where N is much 

larger than seven. Using either method, results show that N > 60 produces best 

results.

The parameters listed above in the pinhole camera model are described by the 

following equations. The rigid body transformation from the object world coordinate 

system (w Px,w Py,w Pz) to the camera 3D coordinate (cPx,c Py,c Pz) is:

(2-6)

where;

(2-7)

(2-8)

are the rotation and translation matrices respectively. See Appendix A for further 

details. The undistorted pinhole camera model perspective projection transforms the 

camera coordinate system point (cPx,c Py,c Pz) to image coordinates (u,v):

(2.9)

(2.10)

The radial distortion is modeled with:

(2.H)

(2.12)
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where («(/, Vd) are the true distorted image coordinates and:

Dx = Ud^r2 + n2ri + ...) , (2.13)

Dy = vd(Kir2 + K2r4 + ■■■) , (2-14)

r = y/ud + Vd- (2-15)

Real image point (u,d, Vd) is transformed into the frame grabber sampled image coor­

dinates (uf,Vf) by:

Uf = • d + Cx , (2.16)

v, = J-+C,, (2.17)
ay

where:

(uf, Vf) row and column numbers of the image pixel,

(Cx, Cy) row and column numbers of the center of the frame, 
Nif J iy cx d*~ dxW’ 

JX

dx center to center distance between adjacent sensor elements in X direction,

dy center to center distance between adjacent sensor elements in Y direction,

Ncx number of sensor elements in the X direction, and

Nfx number of pixels in a line as sampled by the computer.

The last four of these parameters can usually be obtained from the manufacturer

specifications of the image device. The calibration procedure in Tsai [37] for non- 

coplanar points is outlined below in 8 steps.

Step 1

Compute (ud,Vd) using Eq. 2.16, 2.17.
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Step 2

Compute t~1sxr-h t~1sxr2, t^s^, t^s^, Nrr5, and For each cal- 
y y y y y y y

ibration point i with (wPix,wPiy,wPiz) as the 3D world coordinate and

as the modified image coordinate computed in Step 1, the seven parameters can be 

found by solving:

where:

(2-19)

Step 3

Compute \ty\. Let:

(2.20)

Then:

(2.21)

(2-18)
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Step 4

Determine the sign of ty. Assume the sign of ty is positive. Then compute:

(2.22)

If x and Ud have the same sign and y and have the same sign then sgn(ty) = +1, 

else sgn(ty) = — 1.

Step 5

Find sx using:

(2.23)
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Step 6

Compute n,r2, ...rg,^. Use:

(2.24)

Given ri, i € {1,.6}, which are the elements in the first two rows of R, the third 

row of R can be computed as the cross-product of the first two rows.

Step 7

Compute an approximation of f and tz by ignoring lens distortion. For each calibra­

tion point i, establish the following linear equation with / and tz as unknowns: 

(2.25)

where yt = r4wPix + r5wPiy + (r6 ■ 0) + ty and Wi = r7wPix + r8wPiy + (r9 • 0). With 

N object calibration points, this yields an overdetermined system of linear equations 

that can be solved for the unknowns f and tz.
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Step 8

Compute the exact solution for f, tz, Ki by using:

(2.26) 

where r =

Tsai [37] also outlines the procedure when using coplanar points. The process is 

similar. As it is difficult to acquire the camera model parameters as a reference to 

verify the results of a calibration method, it is common to use the calibrated model 

parameters and assess the accuracy of measurements of the real 3D world. Tsai [37] 

uses three types of measurements to assess the calibrated parameters:

• accuracy of 3D coordinate measurement obtained through stereo triangulation, 

• radius of ambiguity in ray tracing, and

• accuracy of 3D measurement.

In the first test, the accuracy of camera calibration is assessed by comparing the 

difference between the known 3D coordinates of the test points to the coordinates 

derived from using two calibrated cameras in a stereo configuration. The second 

test involves using the calibrated parameters to back project from the origin through 

the image plane to where the actual physical point lies and measuring the difference 

between the actual point and the projected point. The difference is referred to by 

Tsai as the radius of ambiguity. The third test measures physical parameters of a 

test object through a single calibrated camera and compares the results to the actual 

physical parameters. In the testing, Tsai [37] reports the best average error to be 0.4 

thousands of an inch and a maximum error of 1.8 thousands of an inch. The test 

object was 1 inch square and the total depth range was 4.5 inches. The time it took to 

calibrate the camera was 1.5sec on a 68000-based MASSCOMP minicomputer circa 

1987.
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Linear techniques involve using the perspective transformation and usually a ge­

ometric property of the image objects [36, 40]. Linear techniques can be computed 

easily and quickly but have several disadvantages. Not being able to estimate param­

eters used in nonlinear models of the lens such as radial distortion is one disadvantage. 

(See Fig. 2.7 for an example of radial distortion.) A second disadvantage stems from 

the redundant parameterization of the camera model that can lead the algorithm to 

produce a fit between experimental observations and the model when in fact there 

is no fit. The possibility of mismatch increases with noisy data. As discussed in the 

next section, a linear technique is used to find the exterior parameters.

In some applications interior orientation is not an issue because the intrinsic pa­

rameters can be found in advance and as long as the camera system is not altered, 

the parameters need not to be recalculated. However, if a complex model is used and 

parameters are found a priori, the subsequent image processing includes using the 

parameters to correct the image. In this thesis, these computations are avoided com­

pletely by reducing the dependence on the image. The tracking method, discussed in 

detail in §3.2, is not affected by factors such as radial lens distortion. Furthermore, 

the image is not used directly in the calculation of the 3D location of the target as 

would occur in multiple-baseline stereo methods.

The only intrinsic parameter required in this system is the camera constant f 

which is used in all camera models and cannot be eliminated. The camera constant is 

only used in the exterior orientation and was experimentally determined using Tsai’s 

method [37].

2.2.3 Exterior Orientation

Exterior orientation is often referred to as the pose of the camera and can be rep­

resented by a homogeneous transform. The camera pose is the transform, ^T^ from 
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the camera coordinate system to the world coordinate system:

Hl ^12 ^13 tx

r2i ^22 ^23 ty

r3i r32 r33 tz

0 0 0 1

where rnm, n,m E {1, 2, 3} are the elements of the rotation matrix, ^R, and [tx ty tz]T 

is the translation vector Refer to Appendix A for further details. Each camera 

coordinate system has its origin located at the focal point with the positive Z-axis 

pointing out from the camera along the optical axis. The rotation matrix elements 

are derived from the rotational angles 7, fl, a, corresponding to yaw, pitch and 

roll and are also known as Euler angles. Hence, to find the exterior orientation, 

7, a, tx, ty, and tz, must be found.

A linear technique was chosen to calibrate the extrinsic parameters. The nonlinear 

methods are often not practical for real-time applications due to the computational 

requirements of the optimization. In this thesis, run-time pose estimation was con­

sidered and methods were chosen appropriately. Hence nonlinear methods were not 

attempted. Although the run-time exterior calibration was not implemented, it is 

viewed as a future possibility.

The camera location determination problem was formally defined by Fischler and 

Bolles [10], as follows: “Given a set of m control points, whose three-dimensional 

coordinates are known in some coordinate frame, and given an image in which some 

subset of the m control points is visible, determine the location (relative to the coor­

dinate system of the control points) from which the image was obtained.” There has 

been a wealth of solutions to this problem. In most cases a linear solution is used 

and in some cases the linear solution is further refined with a nonlinear optimization.

Chen [4], proposed a method which limited the control points to form a plane and 

a line. By further restricting the line to be perpendicular to the plane, the problem 
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reduces to only having to solve for 2 of the 6 extrinsic parameters.

Liu et al. [25], proposed a method whereby the control points form straight lines. 

First, the rotation matrix is found by a linear algorithm using 8 or more line corre­

spondences, or by a nonlinear algorithm using 3 or more line correspondences, where 

the line correspondences are given or derived from point correspondences. Then, the 

translation vector can be obtained by solving a set of linear equations based on 3 

or more line correspondences, or 2 or more point correspondences. The algorithm 

however, only works if the three Euler angles (rotation) are less than 30 degrees.

Horaud et al. [16], gives a solution to the perspective 4-point problem. The 

perspective 4-point problem is an elegant linear solution to determine the exterior 

orientation. Here only 4 non-coplanar point correspondences are required. The paper 

derives an analytic solution in the form of a biquadratic polynomial in one unknown. 

Four non-coplanar points are equivalent to a pencil of 3 non-coplanar lines which are 

used to represent the object coordinate frame. Two transformation matrices Ai and 

A2 are generated that relate the object coordinate frame defined by the 4 points, the 

image frame and the camera frame. Referring to Fig. 2.9:

(2.27)

(2.28)
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Figure 2.9: 4-Point Resection Solution
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where:

are all given knowing the 4-point correspondences. Horaud et al. [16] arbitrarily 

defines the object frame’s X-axis to be along L3. Furthermore, F with M and Mi, M2 

or M3 form three planes referred to as interpretation planes. The M3 interpretation 

plane shown in Fig. 2.9, is defined by F, M and M3. P3 is a vector that lies on the 

object plane, is normal to the M3 interpretation plane and is considered to be the 

Y-axis of the object frame. To find a biquadratic polynomial in terms of cos is 

derived:

Ii cos4 $ +12 cos3 (f) + h cos2 ^> + Ii cos </> + /5 = 0. (2.29)

In Eq. 2.29, I1...I5 are all functions of 71, 72, cq, 0:2, and In A2:

(2.30)

where:

(2-31)

(2.32)

Simplified versions to the solution are proposed for three cases: three colinear image 

points, a right vertex and four coplanar points. The last is the same problem solved 

in [6] where the pencil of three lines is formed from house corners where it can be 

assumed the lines are orthogonal. The method presented by Horaud et al. [16] was
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Figure 2.10: The Perspective Projection of a Triangle Onto the Image Plane

attempted as a possible solution to finding the extrinsic parameters but it failed to 

produce satisfactory results.

The 4-point perspective solution is advantageous because the four required points 

can be derived in almost any way. Hence a slight variation on the 4-point perspective 

problem was developed. Instead of directly solving the four point resection problem, 

a 3-point resection solution was used in conjunction with a fourth point to produce 

a unique solution. The solution by Linnainmaa et al. [24] to the 3-point resection 

problem is described below.

Triangle ABC, in the WCS, projects onto the image plane as A'B'C, as shown 

in Fig. 2.10. The unit vectors in the directions OA', OB', and OC are a, b and c, 
respectively. The lengths of the triangle sides AB, AC, and BC are di, d^, d^ and 

must be known in advance. The unknown distances from the origin, OA, OB, and
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OC, are x, y, z, respectively. Then:

(2.33)

where the (•) represents the inner product operation. Simplifying Eq. 2.33 with ab, 
a • c, and b • c as pi, p2, and p3, respectively yields:

(2.34)

Equation 2.34 now takes the form:

(2.35)

using:

(2.36)

(2.37)

and coefficients:

(2.38)
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Manipulating the expressions of Eq. 2.35 yields:

(2.39)

where:

(2.40)

Finally, from Eq. 2.39:

where:

(2.41)

(2-42)

Hence, Eq. 2.41 must be solved for x. Equation 2.41 is an 8th order equation in x2. 

Therefore, there is a maximum of four solutions for x since only nonnegative values are 

valid. Once x has been determined, it is easy to determine y and z using Eq. 2.33. To 

obtain a unique solution for x, subsets of three of the four points are used to create sets 

of solutions [31]. Each of the four triangles will produce four solutions. The common 

solution from the sets will give the location of each of the points. This method has two
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drawbacks. First, the fourth order polynomial may not be easily solved. Secondly, 

the common solution may not be obvious. This method does however, improve on the 

three point resection by averaging the redundant information provided by the fourth 

point.

2.3 Pan/Tilt Calibration

For feature point tracking the servo pan/tilt mechanism must be calibrated. Two 

parameters are necessary:

PanCai number of degrees per servo position, and

TiltCal number of degrees per servo position.

Each servo is rotated through a physically measured number of degrees. Dividing 

the number of degrees by the change in pulse width yields the above parameters. This 

assumes the servo positioning is linear and will be discussed in Chapter 4.

Servo positioning error was determined based on the image information. The 

servo PWM signal is perturbed by the smallest amount and increased until there is a 

change in the image. Assuming no objects in the image are moving, a change in the 

image means the servo must have moved the camera. This gives an indication as to 

the minimum resolution of the pan/tilt camera units and the error in positioning.

2.4 Summary

Calibration of interior and exterior paramters has many issues that are application 

dependent. In this thesis, the dependence has been minimized by using the image 

information only to track the target and not to calculate depth. Rather, the depth 

is calculated from the pan/tilt angles from two pan/tilt camera units in a form of 
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triangulation. The error in the 3D position measurement caused by the pan/tilt 

camera unit should be constant and less significant than errors caused by obtuse and 

acute angles in the triangulation. This will be discussed further in Chapter 4.



Chapter 3

3D Point Determination

3.1 Introduction

Determining the 3D location of the feature point in space is dependent on the tracking 

of the feature point by each pan/tilt camera unit. The tracking system controls 

the pan/tilt unit maintaining the feature point in the center of the image frame, 

(u,v) = (0,0), as seen in Fig. 3.1. A separate algorithm monitors the pan/tilt angles 

to determine where the optical axis (Z-axis of the camera coordinate frame) is in the 

WCS. The camera i coordinate frame (X^, Tj, Zj), shown with black lines, represents 

the current orientation with respect to the WCS. The corresponding red coordinate 

system represents the calibrated orientation of each camera and is calculated by the 

pan/tilt angles. Section 3.2 outlines the method used to track the feature point.

As the camera tracks the feature point, the feature point must lie on the optical 

axis. Hence, with two or more cameras it is possible to determine the 3D location of 

the feature point in the WCS. The key is finding where the optical axes intersect. It 

is unlikely that the optical axes will cross in 3D. Section 3.3 describes how the point 

of intersection is estimated.

49
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System

Figure 3.1: Pan and Tilt of Camera Coordinate Systems to Track Feature Point
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a b

Figure 3.2: The Effect of Using a Light Filter

3.2 Tracking

Tracking involves processing the image and determining the change in pan/tilt angles 

to center the feature point in the image. This forces the Z-axis of the camera coordi­

nate frame, which is also the optical axis of the camera, to pass through the feature 

point. Using PanCai and TiltCal which are the calibrated parameters to convert the 

servo positions to pan and tilt angles respectively, the pose of the camera can be 

determined. From the pose, the Z-axis can be represented as a line in WCS.

An infrared point source was used as the feature point to simplify the tracking 

algorithm. Adding a visible light filter to the front of the camera lens reduces the 

light from the background and allows any infrared light sources to stand out. Figure 

3.2 shows the contrast in using a light filter. Figure 3.2a shows an image with no 

filter and Fig. 3.2b is the same image with the visible light filter. The labeled dot in 

Fig. 3.2b is the infrared light source and is present in both images. Once the image 

is digitized, a threshold is used to eliminate all but the white pixels. Then for each
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white pixel, presumably from the infrared source, the centroid, (Cu, Cv), is found by:

(3-1)

where n is the total number of white pixels and Piu and Piv are the u and v image 

coordinates of point Pi respectively. The pixel distance from the centroid to the center 

of the image is then used to update the servo position.

3.2.1 Determining the Current Pose

The calibrated or initial pose of a camera coordinate system with respect to the WCS 

is found during the calibration proceedure and represented by:

For a change of pan angle, w, and change in tilt angle, 6, the change in pose from the 

calibrated position is represented by the homogeneous transform matrix: 

which is the transform for a rotation about the X and Y-axes. Upon a pan/tilt 

movement the current pose, TCur- of the camera with respect to the WCS can be 

found by taking the calibrated pose Tcal and multiplying by TCH:

(3.2)
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3.2.2 Pose Error due to Misalignment of Camera

Pose error might be expected if the camera coordinate system origin is not at the cen­

ter of rotation of the pan/tilt mechanism. However, this is not the case. Indeed, the 

translation t of the homogeneous transform representing the pose would be effected 

by a misalignment, but the rotation R. is invariant to misalignment. (See Appendix 

A for explanation of t and R.) For example, let TP be an arbitrary pose:

Tp — TchTCal

(3-3)

In Eq. 3.3, [tmiSx tmiSy tmiSz]T is the translation due to the misalignment of the camera 

origin and the pan/tilt center of rotation. The third column of Tp would then be:

(3.4)

It can easily be seen that the third column is not effected by [tmiSx tmiSy tmiSz]T. This 

also holds true for the first and second columns of TP as well. However, the fourth 

column of Tp is:

(3.5)

Thus, the misalignment adds to the translation tp.
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As will be seen in §3.3, the equation of the line representing the optical axis is 

fully given by the third and fourth columns of TP. The third column is the direction 

of the line and the fourth column is a point on the line in the WCS. Due to the 

long distances (meters) from the cameras to the feature point as compared to the 

misalignment (millimeters), the equation of the line is more sensitive to directional 

error. Thus, a misalignment between the camera origin and pan/tilt center of rotation 

only has a small affect in the representation of the optical axes.

3.3 Intersection Estimation

Using only one camera it is not possible to find the location of the feature point in 

the WCS since the point could lie anywhere on the optical axis. Using two cameras 

to track the same feature point, the optical axes should intersect at the feature point 

location assuming the axes are not colinear. The problem now is to find where the 

two optical axes intersect.

The likelihood of the two optical axes intersecting at a point in 3D is very small. 

Referring to Fig. 3.1 and Fig. 3.3, the problem is to determine PE, the estimate of 

the point of intersection. For the case of two cameras, PE is assumed to be midway 

along the shortest line, lp, that connects the two optical axes and is perpendicular to 

both optical axes. The method for finding its midpoint follows.

Let To be the homogeneous transform from the camera to the WCS (current 

pose) for camera 0 and similarly Ty the current pose of camera 1. Furthermore, let 

rQnm where n,m 6 {1,2,3} and to = [tOx t0 tOz]T be the rotational components and 

translation of To and let r^nm and U = tly tlz]T be the rotational components 

and translation of T^. Since the columns of the rotation matrix are the projections 

of the camera frame unit vectors onto the world coordinate system, the normalized
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Figure 3.3: Determining the Intersection of Two Lines in 3D

direction of the Z-axis of the camera frame (also the optical axis) can be defined as:

for cameras (J and 1 respectively. Henceforth, let the lines that are the optical axes 

of camera 0 and camera 1 be referred to as l0 and respectively. Therefore, the 

direction of /o is 4 and the direction of l} is f]. Then, the cross product of vectors 

Eq and Ei will give the direction of lv:

Defining the plane in which both Iq and lp lie, requires the normal to the plane given 

by:

(3-8)

The point Pi is where li intersects the Eq x Ep plane. The line lp is completely defined 

(3-6)

(3-7)
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by £p and the point Pi. Using the parametric form, li can be represented in 3D as:

and the plane as:

(3.9)

(3.10)

where q = N - to. Solving for d yields:

d^TD'1. (3n)
N • 0

Substituting the value of d from Eq. 3.11 into Eq. 3.9 gives the point Pi.

Finally, to find the midpoint Pe, along lp between l0 and R, the point of intersec­

tion Po of Zo and lp must be found. Hence:

must be solved simultaneously to find k and j. Thus:

(3.12)

(3.13)

and:

(3-14)

(3.15)

(3.16)
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Using Eq. 3.14,

(3-17)

The midpoint PE = (Pex, Pev, Pez) along lP between l0 and h is found by sub­

stituting j from Eq. 3.17 in Eq. 3.13:

(3.18)

3.4 Camera Combinations

Using this method to find the estimate of the intersection of two lines in 3D, a 

multitude of pairs of cameras from a NOC could be used to find the location of the 

feature point in the WCS. For N cameras there are

1 + 2 + 3 + ... + (TV — 1) (3.19)

unique pairs of cameras. In this study, the feature location is calculated using all the 

pairs of cameras and the results are compared.

As the number of cameras in the network increases there is more redundant in­

formation. Although there are many ways this information can be used, it is beyond 

the scope of this work. For instance, instead of pairs of cameras, triplets could be 

used to improve the calculation. In fact, there may be ways of using any number of 

cameras simultaneously or even dynamically changing the number of cameras based 

on the situation.

Another possibility would be to choose the cameras that will most likely produce 

the best results. Two cameras with very little distance between them have a short 

baseline increasing the sensitivity of the feature location calculation to errors in pan
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and tilt. Another situation, where the feature point passes directly in between two 

cameras, risks the optical axes becoming colinear. The algorithm would fail in this 

case. Careful selection of cameras from the network may produce better results.

3.5 Summary

In this section, the tracking system was described and a method to find the feature 

point in the WCS, based on intersecting the optical axes of two cameras, was outlined. 

The performance of this system was evaluated experimentally and is discussed in the 

following chapter.



Chapter 4

Experimental Results

4.1 Introduction

Four pan/tilt camera units were built to test the algorithms for tracking and feature 

point location. The resulting NOC was arranged in two configurations for evaluation. 

In one configuration (Table Top Test), the cameras view a small volume of about 

2m3 while in the other configuration (Room Test), the network views a volume of 

approximately 16m3. In the tests, the tracking system tracks an infrared point source 

as described in the previous chapter. The results of the three tests are discussed in 

the Performance Section (§4.3).

4.2 Test Results

4.2.1 Table Top Test

In the first test, four pan/tilt camera units were arbitrarily placed within the WCS. 

Figure 4.1 shows the calibrated coordinates of the cameras. A precision XY-table was 

used to move the feature point around the XY-plane of the WCS in the shape of a
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rectangle with length, 45cm, and width, 30cm. The feature point traveled at a rate 

of 25mm/sec while data was collected from the 6 possible pairs of cameras producing 

283 data points per set. For clarity, the results from only 2 representative pairs of 

cameras, cameras 1-2 and cameras 2-3, are shown in Fig. 4.2.

Since this experimental setup did not have the ability to record the actual location 

of the feature point at the instant each jmage was captured, the absolute 3D error 

could not be determined. The error could only be determined in 2 dimensions. The 

rectangular test path lay in the XY-plane (z=0) and hence the error in the Z direction 

could easily be calculated. The ends of the rectangular test path should yield y=0 

and the sides of the rectangular test path should yield x=0. Hence the error in Y 

can only be determined along the ends and the error in X along the sides. Summing 

the magnitude of the error in the Z direction and the X or Y direction gives the 2D 

error. The magnitude of the 2D error can be seen in Fig. 4.2b.

When the error plot of Fig. 4.2b is compared with the actual 3D locations in Fig. 

4.2a, it is evident the error is not entirely due to noise in the system. The error plot 

for camera pair 1-2 reaches a maximum near the center of the chart. This corresponds 

to where the camera pair reaches a maximum in the Z direction in the 3D location 

plot. A second run of the same test showed similar results where points further away 

from the origin tended to have increased error. The results point toward inaccuracies 

in the servo calibration likely due to the assumption that the positioning is linear.

At points 38, 98, and 130 in the error plot Fig. 4.2b, there is a noticeable change 

in the magnitude of the error. This corresponds to a corner of the rectangular test 

path. Since the camera images are not captured synchronously it is impossible for 

more than one camera to have captured an image precisely at the time the feature 

point changed direction. This would produce the increased error as seen in the error 

plot at the points mentioned above.
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3D Location Along Test Square

a

2D Error in Location

Figure 4.2: Results from Table Top Test
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Figure 4.2b also shows increased noise in the error close to the origin which corre­

sponds to either end of the plot. This was expected since the origin is furthest away 

from the cameras in this test. The calculated position of the feature point becomes 

increasingly sensitive to the error in the image analysis and servo positioning as the 

feature point travels further away from the cameras.

Table 4.3: Average Error (mm) from Table Top Test

Camera Pair 0-1 0-2 0-3 1-2 1-3 2-3
Average Error 29.8 20.5 42.3 46.9 88.2 24.1

Standard Deviation 11.4 12.0 29.2 30.8 59.1 10.1

The results from the four other pairs of cameras are not shown in Fig. 4.2 but 

produced similar results. The average error and standard deviation from each of the 

6 pairs of cameras is shown in Table 4.3.

4.2.2 Room Test

In the second test, the cameras were distributed randomly around a volume that 

measured approximately 4m long, 2m wide and 2m high. The WCS origin was located 

near the middle of this volume. The locations of the cameras can be found in Table 

4.4. To test the system, the feature point traveled 4m along the Y-axis of the WCS. 

Similar to the previous test, there was no method to determine the actual position of 

the feature point at the time each camera acquires an image. Hence, the results are 

formulated as a 2D error magnitude where the error in the Y direction is not factored 

in.

In Fig. 4.3, each line is an interpolation of the points collected from a camera pair. 

37 points were collected per pair. Since the feature point traveled along a straight 

line parallel to the Y-axis, the lines on the Zw vs. Yw and Xw vs. Yw coordinate
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Table 4.4: Camera Position

Camera (X.Y.Z) in mm
1
2
3
4

(888.3,-2497.2,524.8) 
(-1349.1,-2537.4,610.8) 
(-236.2,2248.1,366.1) 
(2085.4,3894.6,906.8)

graphs should be horizontal straight lines.

The peak in the graphs at Y > 2000 was due to the feature point traveling outside 

the view of Camera 2. Thus, camera pairs 0-2, 1-2 and 2-3 produced erroneous values 

for Y > 2000. The average error and standard deviation in Table 4.5 clearly shows 

this. When the feature point was in the range of all the cameras (Y — —1500 to 

Y = 1500) camera pair 0-2 had the lowest error and standard deviation as shown in 

Table 4.6.

Table 4.5: Average Error and Standard Deviation (mm) from Room Test

Camera Pair 0-1 0-2 0-3 1-2 1-3 2-3
Average Error 39.95 38.72 62.85 49.32 89.81 86.68

Standard Deviation 18.08 43.88 14.33 48.26 27.33 73.41

Table 4.6: Average Error and Standard Deviation (mm) from Y—-1500 to Y—1500

Camera Pair 0-1 0-2 0-3 1-2 1-3 2-3
Average Error 40.30 25.01 62.77 33.78 92.14 64.19

Standard Deviation 18.08 12.28 14.84 18.16 27.99 23.20

In Fig. 4.4, the magnitude of the 2D error in location is plotted for each camera 

pair with respect to the Y coordinates. Camera pair 1-3 shows a widely varying error 

between Y — —1500 to Y = 100 which comes from the widely varying estimation of



CHAPTER 4. EXPERIMENTAL RESULTS 65

Figure 4.3: Results from Room Test
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Figure 4.4: 2D Error in Room Test
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Xw as seen in Fig. 4.3, Xw vs. Yw. However, this pair shows a low error in the latter 

half of the plot. This indicates that there are many factors effecting the accuracy of 

the 3D location of the feature point. These factors are discussed in §4.3. The 2D 

error plot also suggests that some pairs of cameras produce better results than others. 

Therefore, there should be ways to analyze the data to determine how the redundant 

information may be used to determine the best estimate of the 3D location. This 

idea is discussed further in the last chapter as a future direction of work.

4.3 Performance

4.3.1 Accuracy

The best average error was 25.01mm while the worst average error for Y = —1500 

to Y = 1500 was 92.14mm. The simplest method of using the 6 results from the 4 

cameras is to compute the average. Figure 4.5 shows plots for the average of the 6 

camera pairs as well as the plots for the 3 best pairs. The 3 best pairs were selected 

based on the sum of squared differences (SSD) between one camera pair and all the 

others. A small SSD implies that the other camera pairs produced similar results. A 

large SSD thus implies that it is an outlier. Hence, the 3 best pairs were the 3 pairs 

with the smallest SSD. For example, this method would eliminate from the average 

the X values from camera pair 1-3 from Y = —750 to Y = 0 as seen in Fig. 4.3. 

However, as Fig. 4.5 indicates, there is very little improvement over averaging all 6 

pairs. Without any a priori knowledge it would be difficult to determine the accuracy 

of the data and to determine a method for the use of the 6 results. However, often 

there are assumptions that can be made about the data based on the application and 

the nature of the objects being tracked. Table 4.7 shows the averages and standard 

deviation of the graphs in Fig. 4.5.
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Average Xw Coordinate Vs. Yw Coordinate of Room Test

-- 6 Pairs
3 Best Pairs

Figure 4.5: Average Error from Room Test
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Table 4.7: Average and Standard Deviation (mm) From Averaged Results

Average X Average Z 3 Best X 3 Best Z
Average 4.9 47.0 -2.5 53.3

Standard Deviation 20.5 25.0 13.0 16.2

The results demonstrate that each pair of cameras will produce different results 

depending on factors such as:

• camera pair location,

• baseline between camera pair, and

• angle of triangulation.

Tracking should therefore not be limited to one pair. Camera location, with respect 

to the target, changes with target movement. The same is true with the angle of 

triangulation. These criteria may be used to establish the best pair of cameras to use 

at any given time to track the target. This would also allow the target to move out 

of the view of one camera and into the view of another.

Servo and Image Resolution

Fixed pan/tilt servo resolution implies a decrease in angular accuracy as distance from 

the camera increases. Furthermore, fixed image resolution also implies a decrease in 

angular accuracy proportional to the distance from the camera. These two effects are 

tied together since the image is used as visual feedback in the control of the pan/tilt 

servos. Hence accuracy is lost as objects travel further away from the cameras.

The combined effect of image and pan/tilt resolution was tested with the results 

shown in Fig. 4.6. The experiment geometry was set in such a way to allow a depth 

measurement to be calculated from the pan servo angle of one camera. The depth 

became directly proportional to the pan servo angle. The intersection algorithm was
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Figure 4.6: Depth Measurement Based on Servo Angle

not required and not used. The depth measurement was therefore dependent on the 

image and servo resolution. The reference line in Fig. 4.6 represents the correct 

depth measurement. Two cameras were tested. Both cameras showed that as depth 

increased the error in the measured depth also increased. Near the end of the plot 

a stair case effect can be seen. The flat sections represent movements of the feature 

point that could not be detected in the image.

Camera Placement
• ».

Figure 4.7 demonstrates the effect of the angular error discussed in the previous 

section. In this figure, angle a has an angular error of ±|. This would cause a depth
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d

Figure 4.7: Depth Error From Angle Error

error of ±d'. Whereas for a smaller angle 7, the same angular error would only cause 

a depth error of ±d. Hence it would be advantageous to maintain a small angle. One 

way of accomplishing this would be to extend the base line. Thus, the location of the 

cameras in the network plays a significant role in the accuracy of the 3D triangulation. 

Having long base lines would improve the accuracy of the 3D location measurement 

by reducing the effects of the image and servo resolution.

4.3.2 Speed

The centroid calculation of §3.2, the pose calculation of §3.2.1 and the intersection 

calculation of §3.3 are the three calculations required to track and produce the 3D 

location of the target. Table 4.8 lists the average time it takes for a Intel PH 450MHz 

(NT4.0) to perform these calculations. The table also lists the frame rate achieved 

with the configuration shown in Fig. 2.4. A Matrox Meteor-II Multi-channel frame 

grabber was used to acquire the images from the 4 cameras. The frame grabber 

image acquisition time was found to be much larger than the time to perform the 

centroid and intersection calculations and hence is largely responsible for the frame 

rate listed in Table 4.8. The expected frame rate is based only on the time for the 

calculations and assumes that image acquisition is instantaneous. Thus, as frame 
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acquisition time approaches zero, the actual frame rate will approach the expected 

frame rate. The Meteor-II frame acquisition would have been significantly faster had 

the camera image streams been synchronized. In the testing, the camera video signals 

were not synchronized forcing the frame grabber to synchronize with each signal as 

it switched between cameras.

Table 4.8: Performance

Frame Capture: 66ms
Centroid Calculation: 4.82ms

Intersection Calculation: 5.75/zs
Servo Update: 26ms
Frame Rate: lOf/sec

Expected Frame Rate: 33f/sec

4.3.3 Occlusion

Although Fig. 4.3 shows the dramatic effect when one camera can no longer track 

the target, it is not necessarily a simple task to determine when this occurs solely 

from the data. As Fig. 4.5 indicates, the average of the 3 pairs with the lowest SSD 

will not eliminate undesired results. The SSD method did eliminate the effects in the 

X coordinate but did not eliminate the effects in the Z coordinate when camera 2 

could not track the target. However, in a NOC, the tracking system could report a 

loss of target when the target goes out of view. This would be more logical since the 

tracking system inherently has the information required to track the target and thus 

should be able to identify instances when it fails.

A common loss of tracking occurs when the target is occluded. Occlusion oc­

curs when the view of the target is blocked by an object closer to the camera. A 

NOC can continue to track the target by using views from other cameras. Since each 
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camera provides redundant information, a process could be developed to select the 

appropriate view to provide the correct information or the best information. Concave 

objects may have areas that are occluded from most viewing angles. In these circum­

stances, not much can be done. However, in many other cases, arbitrary views can 

be generated using existing multiple views. With the decreasing cost of cameras and 

networking, implementing multiple cameras can be an effective way to solve occlusion 

problems.

4.4 Summary

The results demonstrate the need to develop methods to effectively use the redundant 

information provided by the 6 pairs of cameras. Averaging the 6 results is a simple 

method to accomplish this. Calculating the SSD and averaging the lowest 3 does not 

improve the results significantly. A priori knowledge of the target being tracked could 

be used to improve the tracking algorithm and to improve methods to analyze the 

redundant information. A NOC would allow the addition of more cameras to solve 

occlusion problems. The next chapter outlines directions for future work.



Chapter 5

Conclusions and Future Directions

5.1 Conclusions

The experiments demonstrate the feasibility of this system to track moving objects 

in 3D. The pan/tilt camera units could be placed arbitrarily and calibrated. It was 

shown that the 3D location of the moving object could be found through triangulation 

using the servo positions of the pan/tilt camera units.

There is an obvious need to increase the accuracy of the calibration primarily 

in the servo positioning. However, the experiments clearly showed the advantage of 

using a NOC. It was shown that at any given time one pair of cameras will have a 

better view point and produce better results. This would include the event where a 

camera’s view is occluded.

Active vision with a NOC can reduce the computational requirements of the ap­

plication by distributing the load amongst a number of smart cameras. The pan/tilt 

capability effectively increases the image size without having to increase the field of 

view of the lens. It also allows the camera to be directed to features of special interest. 

It was shown that a NOC could be adapted to various volumes.
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5.2 Future Directions

This study has shown many of the practical difficulties commonly encountered in 

vision applications. Future work may be directed towards calibration, servo control 

and development of strategies to fully take advantage of a NOC.

Calibration

A NOC could span large areas where one smart camera may not be viewing the same 

area of another. For tracking using the system described in this study, a minimum 

of two cameras must have views of the same area. The calibration method for the 

extrinsic parameters, outlined in Chapter 2, requires all the cameras to be able to 

view the calibration points. Hence there is a need for a calibration method that does 

not require the cameras to have a common viewing area.

Another avenue of future work in calibration would be a self calibrating system. 

For instance, if a calibration feature such as 4 light emitting diodes were put on each 

camera, a smart camera may be able to calibrate extrinsic parameters by finding 

other cameras within view.

Servo Control

The accuracy of this system is dependent on the positioning of the servos. Futher 

work could be directed towards enhancing the control of the servos. Path planning 

and prediction could be used to smooth the movements of the camera.

Strategies for a Network of Cameras

To implement a NOC, three requirements are necesary:

• Smart Camera (filtering, zoom, auto focus...),

• Transmission Medium (copper wire, wireless, fiber optics...), and
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• Communication Protocol (IEEE 1394, ethernet...).

A NOC opens many possibilities for efficient use of computational resources and 

the multiple views from the arbitrarily placed cameras. Some suggestions for future 

work with a NOC include developing:

• a smart camera unit capable of communicating via ethernet,

• a smart camera unit with zoom, iris and focus control,

• a smart camera unit capable of doing online computations such as filtering or 

image compression,

• a protocol for communicating with smart cameras and the inter communication 

of smart cameras for cooperative processing,

• a system to pass the tracking of a target from one smart camera to another, and

• strategies for using the redundant information from more than two cameras 

viewing the same target.



Appendix A

Spatial Descriptions and

Transformations

It is common practice in robotics and computer vision to use coordinate systems 

to describe the spatial relationship between objects. Although in robotics there are 

other types of coordinate systems, Cartesian coordinates are most widely used in 

vision systems. Typically, the notion of a world coordinate system (WCS) is adopted 

whereby any object’s position and orientation can be referenced. However, a point 

cannot describe the position of an object which spans a finite volume. Therefore, a 

second coordinate system or object frame is generally attached to the object. The 

object, with respect to the object frame, does not move allowing the position and 

orientation of the object to be referenced with respect to the WCS via the object 

frame.

77



APPENDIX A. SPATIAL DESCRIPTIONS AND TRANSFORMATIONS 78

A.l Position

The 3D location WP of a point in the WCS can be described through a 3 X 1 position

vector:

(A.l)

The superscript “W” denotes the frame (WCS) in which the coordinates are repre­

sented.

A.2 Orientation

One way to denote the orientation of an object is to describe the object frame’s unit 

vectors of its principal axes in terms of the WCS. The unit direction vectors of the 

object frame are denoted by Xq, Yo, Zq- When written in terms of the WCS, they 

are denoted by w Xo, wYq, wZo- For convenience, the three vectors are put together 

to form a rotation matrix:

(A-2)

where rij, i,j G {1, 2, 3} are the elements of wXo, WYo, wZo. The scalars r^ 

are the components of the projections of the object frame direction vectors onto the 

WCS. Hence:

(A.3)
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Since all the vectors in this matrix are described with respect to the WCS, the su­

perscript “W” can be omitted on the elements of the matrix allowing the superscript 

“W” on the R to imply that the vectors are in the WCS unless otherwise shown. 

Therefore, R can be written as:

(A.4)

As the dot product of two unit vectors yields the cosine of the angle between them, 

the components of the rotation matices are often referred to as direction cosines. 

Further inspection of A.4 shows that the rows of the matrix are the unit vectors of 

the WCS described in terms of the object frame. This implies that:

^R = ^RT. (A.5)

This also suggest that the inverse of a rotation matrix is equal to its transpose, which 

can be easily verified as:

(A.6)

where I is a 3 x 3 identity matrix. Hence:

%R = OR^ = OyRT . (A.7)

Finally, with the object coordinate system rigidly attached to the object, the 

object’s position and orientation can be described through the object frame in the 

WCS. The position wPoorg of the object frame origin and the orientation with respect 

to the WCS, ^R, fully describes the object frame in the WCS.
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A.3 X-Y-Z Fixed Angles

As mentioned in the previous section, the elements of a rotation matrix are the 

direction cosines. This leads to the X-Y-Z Fixed Angle interpretation of a rotation 

matrix. For a rotation 7 about the X-axis, (3 about the Y-axis and a about the Z-axis 

of a fixed coordinate system, the rotation matrix is:

RxyzCJCX) — Rz(oi)Ry(J3}Rx(a)

The word “Fixed” refers to the fact that the rotations are specified about the fixed 

(i.e., non-moving) reference frame. This convention is referred to as roll, pitch, yaw 

angles.

(A-8)
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A.4 Z-Y-X Euler Angles

For a rotation a about the Z-axis, then [3 about the Y-axis and then y about the 

X-axis of a moving frame, the rotation matrix is:

Rzyx((*, 0, ?) — Rz^Ry(0)Rx(y)

cos a — sin a 0 cos 0 0 sin/3 1 0 0

sin a cos a 0 0 1 0 0 cos 7 — sin 7

0 0 1 — sin 0 0 cos 0 sin 7 cos 7

cos a cos 0 cos a sin fl sin 7 — sin a cos 7 cos a sin /3 sin 7 + sin a sin 7 

sin 01 cos 0 sin a sin sin 7 + cos a cos 7 sin a sin 0 cos 7 — cos a sin 7

— sin 0 cos 0 sin 7 cos 0 cos 7

(A.9)

In the moving frame reference, the rotation about the Y-axis is applied to the resulting 

new orientation from the rotation about the X-axis and the rotation about the Z-axis 

is applied after the Y-axis rotation. Hence each rotation is applied to the frame in 

a different orientation sequentially. This also implies there are many different Euler 

angle representations. Note in this case, Eq. A.8 and Eq. A.9 are the same. X-Y- 

Z fixed angle rotation is the same as Z-Y-X Euler angle rotation. A X-Y-Z Euler 

rotation would be completely different.

A.5 Mappings From One Frame To Another

For a given point in the object frame, the point can be described in the WCS knowing 

the description of the object frame in the WCS by:

wP = qR op + wPo^ (A.10)
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Object 
zo Frame

Figure A.l: Mapping a Vector from One Frame to Another

Equation A. 10 describes a general transformation mapping of a vector from its de­

scription in one frame to a description in a second frame. The mapping is graphically 

shown in Fig. A.l.

A.6 The Homogeneous Transform

Equation A. 10 can be simplified if the rotational description $ R and the position of 

the origin ^Pq^ are combined to form a homogeneous transform:

11

O ; wp„Oorg

. (A.11)

0 0 0 ? 1
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Then Eq. A.10 becomes:

(A.12)

or

wp = wT°p (A.13)

Note that while the homogeneous transform is derived in terms of mappings, it also 

serves as a description of frames. Just as rotation matrices are used to specify an 

orientation, the homogeneous transform is used to specify a frame. The description 

of frame B relative to A is ^T.

A.7 Compound Transforms

If frame C is known relative to frame B, and frame B is known relative to frame A, 

then:

A p B p A p B p । A n
B ^Corg "t” ^BOr

An-, 
C1 (A.14)

0 0 0: 1

which is the same as:

St = ir St L/ f) C (A.15)
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A.8 Inverting a Transform

If the description of frame B with respect to frame A is BT, then the inverse of BT 

is the description of frame A with respect to frame B, i.e.:

AT = ^T-1. (A.16)

The homogeneous transform matrix has unique properties that simplify the inversion 

to just a few calculations. Recall Eq. A.5 reproduced here:

^R = ^Rt. (A.17)

To find AT and BR, BPAorg must be computed from BR and APBorg- The description 

of aPb,^„ into frame B is:^org

TPs.,,) = baR APb„, + bPa„, • (A.18)

Since the left-hand side of Eq. A.18 must be zero, this simplifies to:

BPa„, = -BRAPb„, = -bRTAPb„,- (A.19)

Using Eq. A.17 and Eq. A.18,

(A.20)



Appendix B

Pinhole Camera Model

The pinhole camera model is widely used to represent the projection of light rays 

onto the imaging surface of a camera. The model assumes that the perspective rays 

pass through an infinitesimal aperture at the front of the camera. In reality, this is 

not the case since the aperture must be a diameter to allow sufficient light to pass. A 

lens gathers more light, allowing the camera to work with less ambient illumination 

or with a faster shutter speed. However, the use of a lens limits the depth of field. 

Lenses do not introduce any effects that violate the assumption of ideal perspective 

projection defined by the pinhole camera model.

Figure B.l shows the pinhole camera model. According to the law of collinearity, 

or the fundamental perspective projection, a point on the image, the pinhole and the 

scene point corresponding to the image point all lie along the same line. Given the 

location of a scene point P = (Px, Py, Pz), the resulting point on the image plane is 

(u, v, f) where:

W — ^Px

V = ^Py (B.l)

85
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Image 
Plane

Figure B.l: The Pinhole Camera Model

Equation B.l is referred to as the perspective projection equation. In the pho­

togrammetric literature, / is referred to as the camera constant. It is of course 

related to the focal length of the lens. However, as the lens must be moved closer 

to or farther from the image projection plane to focus, the focal length of the lens 

must be considered as only the nominal value of /. To complicate matters, most 

vision systems use a digitizing system to allow a computer to interpret the image and 

perform calculations (computer vision). The image sampling process and conversion 

to a digital format usually scales the image which further alters the effective value of 

f. The actual value of f must be determined by a calibration process that involves 

all parts of the imaging system from the lens to the digitizer.

In most cases the scene point coordinate will be known or at least defined in the 

WCS while the image will be defined in the camera coordinate system. Equation 

A. 10 can be used to map points from one coordinate system to another.

i
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