
A STUDY ON JUSTIFYING PLATFORM-INDEPENDENT CI/CD

PIPELINES

BY

DEESHA PATEL, M.Eng.

a Report

submitted to the Computing and Software

and the School of Graduate Studies

of McMaster University

in partial fulfilment of the requirements

for the degree of

Masters of Engineering

© Copyright by Deesha Patel, December 2023

All Rights Reserved

Masters of Engineering (2023) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: A study on Justifying platform-independent CI/CD

Pipelines

AUTHOR: Deesha Patel

M.Eng. in Computing and Software,

McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Sébastien Mosser

NUMBER OF PAGES: xii, 75

ii

Lay Abstract

Have you ever thought about handling future challenges by monitoring changes

regularly? The tracking of changes is important as it convey the real meaning and

intention of those changes. This research centers on developing Justification diagrams

to visually represent operational changes. The study investigates di↵erent platforms

to assess the e�cacy of Justification diagram representation in comprehending and

managing changes. It is crucial to connect these changes with the real world by aligning

actual operations with these representations. This report details these findings and

outlines directions for future work.

iii

Abstract

Automated software development processes are facilitated by a pipeline within the

software life cycle where output from one process becomes input for the next process.

They help software industries to enhance processes for integrating and delivering

new changes frequently to the market. While in-house pipelines are meticulously

documented to mitigate the risk of leakages, the same is also required in software

development pipelines to handle future challenges. Surprisingly, limited research has

delved into this direction. The purpose of a pipeline is to enhance the quality of the

software development. So, it is important to handle the quality of the pipeline itself.

This report explores the feasibility of using Justification Diagrams for documenting

changes in pipelines. Initially, we wrote a justification for a large open-source GitHub

pipeline, shedding light on the significance of Justification Diagrams. Subsequently,

we surveyed various platforms compatible with this justifying approach, aiming for

precise reasoning, intentions, and results for their changes. Finally, we endeavored

to pinpoint tangible operations within the pipeline, enhancing the readability of the

Justification. The report o↵ers insights into potential advancements in change tracking

methodologies.

iv

Acknowledgements

First and foremost, I am deeply thankful to Dr. Sebastien Mosser, whose expertise,

mentorship, and unwavering support played a pivotal role in shaping and refining my

master’s studies and project. Your insightful feedback and dedication to excellence

have been truly inspiring.

I extend my appreciation to Jean-Michel Bruel for his contribution to a new

direction of research. His collective e↵orts significantly enriched the scope and depth

of this study.

I am also grateful for the resources and guidance provided by Corinne Pulgar,

which facilitated the deep understanding of the di↵erent concepts in this research.

A big thank you to my parents for providing me with financial support along

the way. I also express my gratitude to my husband Adarsh Patel. His patience,

understanding, and endless encouragement were the pillars that sustained me during

the rigorous process of completing this paper.

Lastly, to my friends and family, your unwavering encouragement and understanding

during the challenges of the research process have been a source of strength. Your

support made this endeavor more fulfilling

v

Contents

Lay Abstract iii

Abstract iv

Acknowledgements v

Abbreviations xii

1 Introduction 1

1.1 Problem and Motivation . 2

2 Background 4

2.1 Introduction to DevOps . 4

2.2 CI/CD Pipelines . 5

2.3 Pipeline evolution . 7

2.4 Requirement of Justification Diagram 7

2.5 Introduction to Justification Diagram 8

2.5.1 Symbols of a Justification Diagram 9

2.6 Alternatives to Justification Diagram 11

vi

3 Case Study 13

3.1 Expressing pipeline with GitHub Workflow 14

3.2 Goal of Case study . 15

3.3 Methodology of Case Study . 16

3.4 Observation from evaluation . 17

3.5 Findings from observation . 18

3.6 Justification for docker-compose workflow 20

3.6.1 Initial Docker compose . 20

3.6.2 First change in Docker compose (Appendix B - 001) 24

3.6.3 Second change in Docker compose (Appendix B - 003) 25

3.7 Conclusion . 26

4 Platform Independent Justifications 28

4.1 Justification Diagram with GitLab 29

4.2 Justification with Azure . 31

4.3 Conclusion . 34

5 Towards Operational Justifications 35

5.1 Problem statement . 35

5.2 Proposed solution . 36

5.2.1 Methodology . 37

5.2.2 Pipeline details extraction . 38

5.2.3 Comparison of jobs . 39

5.2.4 Translation of jobs . 40

5.2.5 Extended Analysis . 40

vii

5.3 Validation . 42

5.3.1 Operational File Format . 43

5.3.2 Example . 44

5.4 Conclusion . 48

6 Conclusion and future work 49

6.1 Summary . 49

6.2 Future work . 50

A Sample Justification for JPipe 52

B Analysis of Docker-compose 57

Bibliography 75

viii

List of Figures

2.1 Common DevOps lifecycle [17] . 5

2.2 Rust pipeline evolution [22] . 7

2.3 Facebook Network Justification diagram 11

3.1 Angular GitHub Workflow [3] . 15

3.2 Initial version of docker-compose pipeline [9] 21

3.3 Justification Diagram code for the initial version of Docker compose . 22

3.4 Justification Diagram for initial version of Docker compose 23

3.5 Justification Diagram for Docker compose version 2 24

3.6 Linter added to docker-compose . 25

3.7 Justification Diagram for Linter added to docker-compose 26

4.1 Platform Independent Justification 29

4.2 Debian GitLab example [8] . 30

4.3 GitLab Justification example . 31

4.4 Mumble Azure example [16] . 32

4.5 Azure pipeline example . 33

5.1 Setup Java in Scala pipeline [24] . 38

5.2 Setup Java in jPipe pipeline [14] . 39

5.3 Implementation for trigger workflow 45

ix

5.4 Implementation for caching . 46

5.5 Implementation for Testing . 46

5.6 Implementation for Building . 47

5.7 Implementation for artifact . 48

5.8 Implementation for verification . 48

A.1 jPipe CI workflow [14] . 53

A.2 jPipe justification file . 55

A.3 jPipe justification diagram . 56

x

List of Tables

2.1 Components in Justification Diagram 10

5.1 Di↵erent Platform analysis based on Jobs 41

5.2 Di↵erent Platform analysis based on syntaxes 41

5.3 Di↵erent Operations . 43

xi

Abbreviations

Abbreviations

ADR Architecture Decision Record

CD Continuous Delivery/Deployment

CI Continuous Integration

CT Continuous Testing

GA GitHub Action

iBGP Interior Border Gateway Protocol

IGP Interior Gateway Protocol

IT Information Technology

JD Justification Diagram

VCS Version Control system

YAML YAML Ain’t markup language

xii

Chapter 1

Introduction

Consider an example of a car production process. Before the final release, a car goes

through several preliminary development and testing stages. Firstly, the designer

creates and verifies the blueprint for a car, considering various modalities. It is

important to record this blueprint for the next step of production. An automotive

engineer should have that blueprint. With the help of a blueprint, a trained engineer

can construct the body of a car using the documents that guide it throughout di↵erent

processes. Once the body is designed according to the plan, managers verify building

plans with the blueprint. Then the vehicle moves towards the further stages of com-

ponent installation like doors, roofs, wheels, and windows. For tracking and verifying

requirements, engineers need to develop the whole document. After the production

phase, functional car testing is performed with the manufacturing requirements before

the release. The documentation played a vital role in understanding and verifying the

flow of the processes in the whole car building process. Documentation is also essential

in the software industry, especially in software pipelines. The software pipelines are

the consecutive steps of software development processes such as build, test, and release

1

M.Eng. Report—D. Patel McMaster University—Software Engineering

which are executed in an order with an output of the first process considered as input

for the next process.

1.1 Problem and Motivation

The pipelines provide automatic software lifecycle processes that can enhance the

reliability and speed of the software lifecycle [1]. It is essential to write adequate and

meaningful pipeline instructions that lead to the success of the whole software process.

However, existing work for achieving a guarantee for the quality of the pipeline is

limited. It is hard to maintain and track the justification of the pipeline itself. The

following are challenges for engineers after designing pipelines:

• The engineer starts by targeting a design decision and then implementing

constraints around it, but they usually fail to answer the exact reasoning for

working in a particular way.

• It is di�cult for engineers to track and pass those changes and intentions in the

existing workflow to other team members.

• When there are “changes” in the file, the “why” is never addressed.

• Without a proper explanation of the exact “why” in the project, large organiza-

tions are not able to replicate those same e↵ective modules in other projects.

One of the solutions is to use the Justification Diagram (JD) to address these

challenges. JD is a diagrammatic representation based on the Toulmin schema. This

type of solution documents the changes and justifies those with proper intentions. Up-

coming chapters describe the JD in more detail with their limitations. By considering

2

M.Eng. Report—D. Patel McMaster University—Software Engineering

the JD, we try to answer the following questions:

1. How can semantics be extracted from the histories of pipelines to write the

justification diagram?

2. How can we extend the usage of the JD for di↵erent pipeline platforms?

3. What suggested operations can support the approach to fill the gaps between

workflow and JDs?

The primary objective of this report is to observe how the Justification Diagram

can help to track the changes that occur with the evolution of a Continuous Integra-

tion/continuous delivery (CI/CD) pipeline. We will use docker-compose as an example

case study. The report aims to broaden the application of the JD methodology to

encompass GitHub, GitLab, and Azure environments. In addition to this analysis, the

report proposes a new direction for Operational Justification Diagrams which targets

to address the gap between JD and workflow itself.

The chapter 2 introduces background information of this thesis. Chapter 3 contains

a case study that addresses the question 1. Question 2 is addressed in chapter 4. Next,

chapter 5 will include the solution for operations that address question 3. Finally,

chapter 6 concludes the report and addresses future work.

3

Chapter 2

Background

This chapter provides an introduction to several technical concepts involved in this

project, primarily focusing on the introduction of DevOps, pipelines, and the Justifi-

cation Diagram. Additionally, it highlights the various components and alternatives

of the Justification Diagram.

2.1 Introduction to DevOps

The term “DevOps” was coined in the year 2009 [10]. DevOps represents a com-

bined approach involving both Development and IT Operations [7]. This approach

fosters a cultural shift in the software development industry, promoting collaborative

work among development, testing, deployment, and monitoring teams, leveraging

appropriate technologies.

Figure 2.1 illustrates the di↵erent phases of the DevOps workflow for both Develop-

ment (Dev) and Operations (Ops). The Dev part consists of planning, coding, building,

and testing, while Ops consists of releasing, deploying, operating, and monitoring. The

4

M.Eng. Report—D. Patel McMaster University—Software Engineering

Figure 2.1: Common DevOps lifecycle [17]

software development process in DevOps begins with project planning and writing

code for the product. In the building stage, the developed code is built for testing

purposes. Continuous testing is a crucial part of this phase to ensure that the project

functions as expected. In the release phase, the Ops team can verify the project and

create a build for the production server. After thorough checks for vulnerabilities and

bugs, the project moves to the deployment stage, making it accessible to end-users.

Configuration and system management occur during the operating process handled

by the operations team. The system also undergoes monitoring to track its behavior.

These processes are iterative for the project’s features. DevOps includes components

such as Continuous Integration, Continuous Delivery, Continuous Deployment, and

Continuous Testing in their processes.

2.2 CI/CD Pipelines

Di↵erent components in the DevOps pipeline are used to achieve continuity in the

software development life cycle. The first process is continuous integration. The

repository plays an important role in achieving integration which is a platform to

5

M.Eng. Report—D. Patel McMaster University—Software Engineering

integrate new changes. A developer can push their code to repository several times

throughout the day instead of keeping it local to their machine. The build system tries

to find defects in new code and integrate it with existing code after it is pushed to a

repository [27]. Once the build system verifies the new code, it automatically merges it

into the repository. Another component of DevOps is to test those codes automatically

using Continuous Testing (CT). CT not only covers software testing but also carries

out testing of developed software on production-like systems to check system behavior.

Continuous Deployment (CD) is used to deploy applications to the production server

without human interference. Utilizing the feature of Continuous Deployment (CD)

not only enhances software quality but also boosts customer satisfaction by enabling

them to experience live implementations [11].

There are a variety of DevOps tools for di↵erent software development phases.

Continuous planning is managed with tools like Jira, Trello, and GitHub. In the

coding phase, Git and GitHub provide version control to handle multiple pushes to the

central repository. Jenkins, Travis CI, and GitHub CI/CD workflows are valuable for

building software. For Continuous Testing, Selenium, JUnit, and SonarQube ensure

code quality. Docker, Kubernetes, and GitHub are commonly used for deployment

and containerization, enabling Continuous Deployment. Prometheus, the ELK Stack,

Splunk, New Relic, Nexus, JFrog Artifactory, and GitHub Actions are the most used

Continuous Monitoring and feedback tools available in the market. By combining

these tools, organizations can achieve enhanced software quality, collaboration, and a

streamlined CI/CD pipeline. All these processes are continuous which is an key factor

of DevOps pipelines.

6

M.Eng. Report—D. Patel McMaster University—Software Engineering

2.3 Pipeline evolution

As mentioned earlier, the stages of the DevOps pipeline are iterative. An example to

achieve can be described using GitHub. GitHub provides GitHub Workflow, which can

be added to the project to implement CI/CD. Depending on the system’s requirements,

pipeline configuration gets regularly updated. Consider the Rust pipeline example

depicted in Figure 2.2. This visualization captures the iterative evolution of the

pipeline, showcasing multiple instances where add, delete, and update operations to

the CI processes are performed in response to evolving project requirements.

Figure 2.2: Rust pipeline evolution [22]

2.4 Requirement of Justification Diagram

Logging all changes with a proper explanation in current and future releases will make

it easier to apply in other projects and deal with future challenges. Currently, GitHub

provides a commit message with the new changes, but it may not be su�cient to

analyze or understand every commit message. Sometimes, based on a programmer’s

7

M.Eng. Report—D. Patel McMaster University—Software Engineering

expertise, it may contain incorrect information and cannot be easily verified. Therefore,

we need a justification for every update to provide more clarity on those changes.

Chapter 3 further describes the evolution of the pipeline and how the Justification

Diagram explains the purpose of the change.

2.5 Introduction to Justification Diagram

Change inevitably carries a certain degree of risk, so it is necessary to document the

purpose of those changes with su�cient evidence and data to reuse/handle/revert those

changes. In December 2019, Microsoft encountered a 5-day security incident in their

databases. The primary reason for that incident was a modification in their security

rule [5]. Facebook also experienced outages several times. One of the recent outages

occurred in all of the Facebook platforms, Messenger, Instagram, WhatsApp, and

Oculus in October 2021 because of configuration changes in the backbone routers [4].

Instances like these highly emphasize gaining confidence in the developed software

system before it goes to the production servers. Proper documentation of changes

with confidence about reasons and supporting evidence is crucial for handling such

issues. Therefore, we need all the details about the inputs, methods, assumptions, and

restrictions used to develop the system. The required information about the evidence

is used to achieve the conclusion.

In 2016, Polacsek introduced the concept of a justification diagram to establish trust

in a product [19]. This diagram relies on the Toulmin schema [20], an argumentation

pattern, to instill confidence in the outcome. The main aim of the Justification

diagram is to provide a diagrammatic representation to reach a convincing conclusion

constructed with supporting information such as specific methods, sub-conclusion,

8

M.Eng. Report—D. Patel McMaster University—Software Engineering

and facts. The Justification Diagram is a decision makers to gain confidence with

diagrammatic representation.

Given that configuration changes are commonplace across industries, internal

DevOps pipelines also undergo continuous incremental improvements. Leveraging

DevOps pipelines is beneficial for attaining project excellence. Therefore, it is im-

portant to maintain the pipeline’s quality, including all comprehensive evidence and

verification. The Justification Diagram is proven to track changes for the CI/CD

pipeline by Corinne Pulgar [21]. This report focuses on enhancing the Justification

Diagram to make it independent of the CI/CD platform with operational supports.

2.5.1 Symbols of a Justification Diagram

A Justification Diagram uses di↵erent notations, described in table 2.1, for the

diagrammatic representation. The Justification Diagram consists of a component

called ‘Strategy’, which serves as a method for achieving specific goals. Typically,

‘Strategy’ depends on ‘Evidence’. The ‘Evidence’ provides the necessary in-

formation to execute the method. After method execution, the system produces

results, which are considered as conclusions or sub-conclusions in the Justifica-

tion Diagram. In some cases, restrictions are needed to limit the conclusions or

sub-conclusions, especially in sensitive systems.

Consider an example of Facebook. Facebook has proposed a novel network design

to modernize its conventional backbone network infrastructure. Initially, they proposed

utilizing the Interior Gateway Protocol (IGP) with a full-mesh configuration of the

Interior Border Gateway Protocol (iBGP) to establish a foundation for basic packet

routing. The Justification Diagram is easy to handle documentation for those changes.

9

M.Eng. Report—D. Patel McMaster University—Software Engineering

Table 2.1: Components in Justification Diagram

Symbol Definition
Evidence: Evidence is used to provide support for the strategy.
It represents real data or evidence required to validate the
given strategy.
Strategy: The strategy is a symbol to represent a method
which is used for reaching a satisfactory conclusion or sub-
conclusion with the help of real evidence.
Sub-Conclusion: This symbol is associated with the strategy
to attain various sub-conclusions.
Conclusion: A conclusion, as the name suggests, is a final
judgment or outcome justified by various components tailored
to a specific problem.
Relation: A relation is used to connect various justification
components, specifying their direction. For instance, if the
relation is from evidence to strategy, it indicates that evidence
is employed to support a specific strategy.
Restriction: Restriction adds limitations to the conclusion
and is an optional component in the Justification Diagram.

As shown in figure 2.3, the initial version of Facebook’s solution comprises two

topologies for internal and external routing, achieved through the IGP and iBGP

in their network design. Both protocols are integral components in the Justification

Diagram and serves to facilitate basic packet routing. Typically, internal routing is

managed by configuring internal routers and the associated protocols, while external

routing entails configuring routers, assigning autonomous systems, and advertising

routes. Supporting both internal and external routing are filtering and access policies,

as well as monitoring, verification, and route maintenance. Once the setup for basic

packet routing is complete, we can confirm that the system is operational by assessing

packet routing within the network. Finally, the justification is an internal part of

the organization, making it suitable for inclusion in the conclusion. Thus, it is

straightforward to validate various changes with tangible evidence in the Justification

10

M.Eng. Report—D. Patel McMaster University—Software Engineering

Figure 2.3: Facebook Network Justification diagram

Diagram.

2.6 Alternatives to Justification Diagram

There are several options available to convey meaningful expressions in the context

of system updates. The first example involves using commits, which are plain text

descriptions attached to updates in the GitHub workflow. However, relying on textual

representation through commit text can make it more challenging to understand it

directly. An alternative option is the Architectural Decision Records (ADRs), providing

a short text description document that represents the high-level system decisions [2].

While ADRs o↵er a template, they primarily illustrate the system’s decisions with

11

M.Eng. Report—D. Patel McMaster University—Software Engineering

implementation and decision information rather than more visual representations. For

a more comprehensive and diagrammatic representation, we can turn to assurance

cases, as suggested by the ISO standard on assurance cases [13]. Assurance cases o↵er

a structured approach, incorporating claims, evidence, and explicit assumptions. To

avoid assumptions for important decisions, we opt for the Justification Diagram, which

provides a visual representation of the system along with the underlying justification

for its accurate design decisions. Also, it is lighter than the assurance case as it often

provides system-level abstraction instead of more detailed implementation. Ultimately,

it makes it easier for stakeholders to understand decisions with their claims and

supporting justifications without knowing implementation complexities.

12

Chapter 3

Case Study

As discussed in Chapter 2, we use the Justification Diagram to track changes and

tackle the challenges associated with updates. Specifically, we want to study and

analyze how the Justification Diagram can contribute to the e↵ectiveness of pipelines.

Therefore, this chapter addresses how semantics can be extracted for writing

the Justification Diagram using the histories of pipelines. Pipelines are an

essential component in achieving successful software delivery, and they evolve. To

document it through the Justification Diagram, I conducted this case study.

In this chapter, the initial section presents fundamental information about the

GitHub workflow in Section 3.1 to understand the upcoming usage of GitHub workflows

for justifications. The goal of this case study is discussed in Section 3.2, where the

reasoning for this case study is defined and emphasized. Section 3.3 outlines the

systematic approach of the study to illustrate the justifications from GitHub workflows.

Section 3.4 and 3.5 discuss the observations and findings from the docker-compose

pipeline. Section 3.6 o↵ers details of the Justification Diagram written for the docker-

compose pipeline and how those diagrams get altered when the GitHub pipeline

13

M.Eng. Report—D. Patel McMaster University—Software Engineering

changes (add/remove/update) their execution steps. Section 3.7 summarizes the

conclusion of the case study.

3.1 Expressing pipeline with GitHub Workflow

The software industry has witnessed significant benefits of CI, CD, and CT strategies

[25]. For that, various tools are available in the market which facilitate the imple-

mentation of these practices. Among all available tools, GitHub is one of the most

popular code repository providers and stands out for its integration capabilities with

a wide array of CI/CD tools. Also, GitHub o↵ers a robust solution called GitHub

Actions (GA), which allows developers to automate software development processes

without third-party tools. Integration of GA is achievable by using the power of

existing GitHub standard actions or creating custom actions required by specific

project requirements [6].

The GitHub Workflow, usually written in YAML format used to automate various

processes of software development. This YAML configuration file comprises several

components. The YAML file starts by defining the workflow’s name and is triggered

on a branch by events such as code pushes to the repository or the creation of pull

requests within the GitHub repository [26]. Within the workflow, individual jobs

represent separate tasks, which can be executed either sequentially or in parallel

based on requirements and resources. Each job consists of distinct steps, facilitating

the combinations of job names, actions, and commands. GitHub o↵ers a library

of predefined actions that can be integrated to achieve specific tasks with required

arguments. For example, the workflow incorporates advanced features like caching for

e�cient reuse of previously executed steps during subsequent runs and thus optimizing

14

M.Eng. Report—D. Patel McMaster University—Software Engineering

performance [12]. Moreover, we can also add permissions for files to limit access,

environment variables for custom workflow values, and many other configurations to

the GitHub workflow. An example of a sample GitHub workflow is depicted in figure

3.1 for Angular GitHub workflow.

Figure 3.1: Angular GitHub Workflow [3]

3.2 Goal of Case study

Integrating a GitHub workflow for the CI/CD pipeline with the repository is important

for improving project quality in a DevOps context. As the code within the targeted

repository undergoes regular updates, the YAML file for the workflow also evolves to

15

M.Eng. Report—D. Patel McMaster University—Software Engineering

meet new requirements for continuous integration and continuous delivery support in

the project. Keeping track of these updates with each commit in GitHub is a crucial

aspect of project management. The primary objective of this case study is to address

these challenges through the Justification Diagram. Leveraging the components of

the Justification Diagram detailed in Chapter 2, we can write a justification for each

update in the CI pipeline. Furthermore, this case study aims to identify the problem

statement addressed in this report.

3.3 Methodology of Case Study

This case study focuses on the CI pipeline for the GitHub workflow. There are di↵erent

open-source GitHub projects that include workflow in their repository. We choose

docker-compose for this case study because of these reasons:

• It has more than 80 commit histories on the workflow. : A high number of

commits indicates active development, frequent updates, and ongoing mainte-

nance. It is a positive metric for a responsive development team addressing

issues, adding features, and maintaining code quality over time. Because of that,

we can extract a lot of meaningful information from it.

• It goes through several changes. Frequent changes are a sign of a dynamic

and responsive development process. Regular updates may indicate an agile

development approach, adapting to evolving requirements, fixing bugs promptly,

and incorporating user feedback e↵ectively.

• It is a large community of users.

16

M.Eng. Report—D. Patel McMaster University—Software Engineering

The process for this case study is structured into four distinct steps for the creation

of the Justification Diagram, as outlined below:

• Step 1: Extract all relevant details regarding the changes committed to the

docker-compose GitHub workflow.

• Step 2: Conduct a thorough comparison between each version and its predecessor

(n-1 version) to get details into the updates and modifications made in each

iteration.

• Step 3: Transform the identified changes into a meaningful explanation, encom-

passing details such as what was altered, its impact, and the reasons behind the

modifications.

• Step 4: Represent the justification of the changes as a Justification Diagram.

For steps 1 and 2, Git commands (git di↵) were used on our local machine to

extract information from the ‘ci.yaml’ and detailed analysis, respectively. In step 3,

an in-depth analysis of the commit history was manually performed and documented

in an Excel file (minimum version is in Appendix B). Finally, armed with these details,

the Justification Diagram has been written in step 4.

3.4 Observation from evaluation

In Appendix B, our analysis focuses on a subset of 83 commits. We examined the first

50 commits for observation and analysis because they were enough for analyzing how

the Justification Diagram can be written for tracking changes. To extract meaningful

information from these 50 commits (that have the same intentions and conclusions),

17

M.Eng. Report—D. Patel McMaster University—Software Engineering

we needed to merge those 50 commits at some commits that resulted in 41 subsets

of changesets. Instead of investing a lot of time in analyzing whole commit lists, we

focused on the actual analysis of justification representations and their enhancements.

We observed updates for ci.yml file from April 30, 2020, to November 4, 2021. During

updates in this period, the GitHub workflow became consistent and mutual enough to

execute the regular workflow.

3.5 Findings from observation

The analysis of Docker-compose gave a lot of insight into what happened. This

section will describe the overall description of what changed and how the meaning got

extracted. The aim of documenting these changes lead us to create JDs with those

important details.

The first four commits in the project are used for enhancing the executability of

the ‘ci.yml’ file. The process started with the execution of Makefile and manual

installation of required dependencies. Subsequently, it evolved into the usage of a

shell script for dependencies installation. This update aimed to establish a unified

and e�cient method for the installation procedures.

Subsequently, the 14 commits introduced various test cases on di↵erent platforms

and updates for dependencies and GitHub actions. However, extracting the importance

and meaningful context from these commits proved challenging due to insu�cient

information in the original commit messages. For instance, the gRPC end-to-end

tests were added to the existing workflow, but the underlying intentions remained

unclear. Additionally, the use of a make file to execute end-to-end tests lacked clarity

and hindered a clear understanding of their purpose. Therefore, extracting the actual

18

M.Eng. Report—D. Patel McMaster University—Software Engineering

meaning of their changes was di�cult. In addition, the absence of written comments

in the YAML file contributes to the di�culty in understanding its content.

The subsequent 11 commits introduced updates to dependencies, build tags,

and restrictions. However, some changes are significantly dissimilar from previous

commits, making it challenging to extract information. Di↵erent build tags are used

for configuring an environment that decides building and testing processes. The

precise meanings of these build tags remained unidentified until a detailed analysis of

folders was performed. Documenting this information could prove valuable for new

members, providing clarity and context that would aid in understanding the purpose

and utilization of these build tags.

In the last commits from analysis, the development e↵orts aimed to incorporate

cross-platform builds, implement regular updates, and make changes to tests and

build tags. Unfortunately, the clarity of their test and the build tag adjustments

is unidentified due to a lack of additional information within the commit messages.

The absence of explicit details makes it challenging to understand the purpose and

outcomes of these modifications. One noticeable change is the removal of the example

back-end from the build tag, suggesting a maturation of their system to accommodate

diverse builds. However, no supporting evidence has been provided in the commit

history. So, the extraction process for those commits was challenging.

Through our analysis and details, we realised that interpreting the meaning of

changes can be challenging, especially for new team members or when dealing with an

extensive and aging project history. In such cases, employing Justification Diagrams

emerges as a beneficial approach. These diagrams serve as valuable tools by o↵ering

insights into the intentions behind detailed steps, thereby enhancing clarity and

19

M.Eng. Report—D. Patel McMaster University—Software Engineering

understanding for those engaging with the project.

3.6 Justification for docker-compose workflow

A Justification Diagram is used to understand the implementation of evolutionary

docker-compose workflow with details of a particular decision. Di↵erent branches in

the Justification Diagram are updated by adding, removing, or modifying based on

requirements in the GitHub workflow. The analysis shown in Appendix B includes

information about the intentions behind changes and the semantic meaning of every

change. This is essential for creating a Justification Diagram along with the strengths,

weaknesses, and some improvements.

3.6.1 Initial Docker compose

Figure 3.2 shows the initial version of the Docker-compose pipeline. It includes build

and test steps using a separate Makefile. Further, the workflow has steps for installing

required dependencies for running other jobs and code checkout to enable the usage of

code in other stages. The workflow triggered the push and pull request, especially on

the master branch. Figure 3.3 illustrates the coding written for generating Justification

Diagram (docker compose.jd) and Figure 3.4 illustrates the Justification Diagram

for the initial version of the workflow.

Justification modeled by writing a ‘jd’ file. ‘jPipe’ tool [14] is used to compile

the justification file. The ‘docker compose.jd’ file for the initial docker workflow

is depicted in Figure 3.3, which consists of sub-conclusions, strategy, evidence, and

conclusions. The first line of this file, represented as ‘JP’, specifies the name of

20

M.Eng. Report—D. Patel McMaster University—Software Engineering

Figure 3.2: Initial version of docker-compose pipeline [9]

the justification. Also, each component is assigned a unique name to facilitate its

own identity so it can link with other components. The ‘supports’ keyword is

employed with two arguments, ‘from’ and ‘to’, stating the direction of the link and

enabling the creation of connections between them. Lastly, the "is" keyword is used

to assign the string text, usually written in double quotes, to the specific justification

components information. The whole component list is written in between {}.

Two main strategies are employed to achieve the ultimate goal of "Continuous

Integration Validation": running all test cases and scheduling workflows. The

scheduling workflow strategy is an essential part of any GitHub workflow because it

enables the setup of workflows based on specific events, providing value for evidence

21

M.Eng. Report—D. Patel McMaster University—Software Engineering

justification pattern JP {

sub-conclusion ASu1 is "Project build"

strategy St0 is "Verify building"

evidence Su1 is "Checked out code in directory"

Su1 supports St0

St0 supports ASu1

sub-conclusion ASu2 is "Reusable components"

strategy St1 is "Reuse already developed packages"

evidence Su2 is "Packages are public"

Su2 supports St1

St1 supports ASu2

ASu2 supports St0

sub-conclusion ASu3 is "Dependencies installed"

strategy St2 is "Dependencies Management"

evidence Su3 is "Commands"

Su3 supports St2

St2 supports ASu3

ASu3 supports St0

sub-conclusion ASu4 is "Software tested"

strategy St3 is "Run test cases"

evidence Su4 is "Test cases"

Su4 supports St3

St3 supports ASu4

ASu3 supports St3

strategy St4 is "Verify Functionality of workflow"

ASu4 supports St4

ASu1 supports St4

strategy St5 is "Schedule workflow"

evidence Su5 is "event"

Su5 supports St5

conclusion C is "Continuous Integration Validated"

St4 supports C

St5 supports C

}

Figure 3.3: Justification Diagram code for the initial version of Docker compose

22

M.Eng. Report—D. Patel McMaster University—Software Engineering

Figure 3.4: Justification Diagram for initial version of Docker compose

in the Justification Diagram. The verification of workflow functionality is sub-divided

into two key components: project build and software testing. Both components must

succeed to validate the workflow’s functionality. The project build relies on source code,

required dependencies, and reusable components, such as existing GitHub actions. It is

imperative to ensure the project’s successful build. Software testing includes the other

half of the workflow that requires installed dependencies and test cases. Referring

to Figure 3.4, the installation of dependencies is supported by commands. Reused

components serve as a sub-conclusion with the publicly available GitHub packages.

The dependencies are shared between the building and testing stages, highlighting

their importance in the workflow. JP at the bottom represents the name of the

Justification Diagram.

23

M.Eng. Report—D. Patel McMaster University—Software Engineering

3.6.2 First change in Docker compose (Appendix B - 001)

In the next version, the workflow has been replaced by the execution of commands

through an existing file. In other words, a shell script is now employed to manage

the installation of dependencies. You can observe this updated workflow in Figure

3.5, which introduces a modified branch for the Dependencies Management Strategy.

The primary requirement to acquire dependencies is that all the listed dependencies

must remain up to date with the project. A shell script, serving as a file, is utilized

to streamline the installation of dependencies for various stages within the workflow.

Both of these changes have been incorporated as new branches in the Justification

Diagram.

(a) Initial version (b) Updated version

Figure 3.5: Justification Diagram for Docker compose version 2

24

M.Eng. Report—D. Patel McMaster University—Software Engineering

3.6.3 Second change in Docker compose (Appendix B - 003)

In subset 003, docker-compose introduced a new feature by incorporating a linter

in their workflow. As depicted in Figure 3.6, first, they removed the dependencies

installation step and made it an internal process using a Dockerfile. But still, Go

installation is there for dependencies. Also, they have added a linting operation

through the Makefile. Our analysis in Appendix B - 003 provides more details about

the changes and their intentions. It states that the linter is added to incorporate the

validation in coding standards.

Figure 3.6: Linter added to docker-compose

As depicted in Figure 3.7, code quality has been introduced as a new branch for

supporting linting operations. They have integrated a linter to conduct code quality

checks that can be considered a sub-conclusion for JD. To achieve this sub-conclusion,

25

M.Eng. Report—D. Patel McMaster University—Software Engineering

Figure 3.7: Justification Diagram for Linter added to docker-compose

we need to perform code quality checks. The strategy is "Check code quality" used

with the sub-conclusion. The evidence for the coding standards mentioned in the

linter is attached to the strategy. Also, for the dependencies removal, they are still

using Go dependencies, which is valid in the Justification Diagram. Therefore, we can

a�rm that this method of justifying significant changes in the CI Workflow makes it

easier to understand the intentions behind these changes.

3.7 Conclusion

Among those 50 commits (41 subsets), we selected the first commits for further

processes in composing the Justification Diagram because they were initial commits to

help identify and understand root causes, trends, and changes in the Docker-compose

26

M.Eng. Report—D. Patel McMaster University—Software Engineering

GitHub workflow. It can help to provide upcoming changes from the initial versions.

Based on the above discussion, it is concluded that Justification is valuable for

showing and explaining the intentions behind changes made for GitHub workflows. It

clearly identifies whether the changes attach to a new branch (new subset added to JD)

or an update in an existing branch (attached to the existing JD) of the Justification

Diagram. By using these features of JD, we can say that JD is applicable in tracking

pipeline changes, and we can study in detail the approach of JD.

27

Chapter 4

Platform Independent Justifications

In the previous chapter, we gained confidence in using the Justification Diagram to

track the changes in the GitHub pipeline. We intend to extend the usage of JD to

other platforms. This chapter addresses the question How can we extend the

usage of the Justification diagram for di↵erent pipeline platforms? As shown

in figure 4.1, the primary objective is to improve the usability of the Justification

Diagram in various pipeline platforms. This chapter provides examples from GitLab

and Azure pipelines, expanding the discussion to illustrate the applicability of the

Justification Diagram across di↵erent platforms. While the initial section (Section 4.1)

provides details on the utilization of Justification for GitLab pipelines, the subsequent

section (Section 4.2) demonstrates the application of the Justification Diagram within

Azure pipelines.

28

M.Eng. Report—D. Patel McMaster University—Software Engineering

Figure 4.1: Platform Independent Justification

4.1 Justification Diagram with GitLab

GitLab is a Git repository management system that serves as a robust platform for

software project management. It integrates code review, CI/CD, and the creation

of wikis in their platform to make it more usable [23]. It gained popularity by its

services to reach second online hosting services [23]. Di↵erent projects in the GitLab

repository also include the workflow for achieving continuity in software processes.

Figure 4.2 shows a sample GitLab pipeline example, providing a practical example

for defining a Justification Diagram for GitLab workflow. The workflow in the example

is executing various testing and deployment stages. It’s challenging to categorize

which part performs what and how important they are. For future updates, it will be

necessary to have those documented. Therefore, justification o↵ers a straightforward

and easy-to-understand visual representation for GitLab workflows.

The Justification Diagram is represented in Figure 4.3. The two main strategies,

‘Perform Testing’ and ‘Deployment’, are extracted from the GitLab example

directly. The sequential successful execution of these strategies is required for obtaining

29

M.Eng. Report—D. Patel McMaster University—Software Engineering

Figure 4.2: Debian GitLab example [8]

a conclusion called ‘pipeline validation’. For two tests (tests-testing and

tests-unstable) shown in figure 4.2, we merged them to the single test strategy as

the intentions behind them are the same. The ’execution environments" is evidence

30

M.Eng. Report—D. Patel McMaster University—Software Engineering

for testing, which can be any base images on which the test cases will run. For the

test and deployment of the project, required dependencies are important evidence.

For the deployment strategy, the evidence includes the fulfillment of requirements.

Deployment only occurs when these requirements are satisfied for the configurations

and builds, ensuring a robust and validated pipeline based on given conditions.

In addition, test coverage has been translated as strategy, supported by evidence

like a coverage plan, execution environment considerations, and ensuring

the utilization of updated dependencies. The coverage plan covers the coverage

statements with the artifact information, and the execution environment is limited for

the base image and after-execution statements.

Figure 4.3: GitLab Justification example

After conducting analyses across GitLab projects, it becomes apparent that the

creation of a Justification Diagram is not only feasible but also adaptable for any

pipeline existing within the GitLab platform.

4.2 Justification with Azure

Microsoft introduced the Azure DevOps pipeline [15], a script-based robust, cross-

platform, and powerful automation engine [28]. Azure Pipelines enables CI/CD and

Continuous Testing (CT) within open-source code repositories. The Azure pipelines

31

M.Eng. Report—D. Patel McMaster University—Software Engineering

are also written in YAML format, which has some common naming conventions as

GitHub workflow has.

Figure 4.4: Mumble Azure example [16]

32

M.Eng. Report—D. Patel McMaster University—Software Engineering

Figure 4.4 shows a sample code of the pipeline for the “Mumble” [16], an open-

source voice-chat GitHub project. It requires some variables to be defined and

initialized at the beginning of the pipeline and referenced in di↵erent jobs for their

successful execution. There are three jobs: Windows, Linux, and macOS. The first

job is to build a job in the Windows server, while the subsequent two jobs are for

performing build on Linux and macOS operating systems. All three jobs have separate

files for their executions. Those files include the operating system-based dependencies

installation, script execution for build and test, and the artifact publications.

Figure 4.5: Azure pipeline example

The Justification Diagram depicted in Figure 4.5 outlines the rationale behind this

process. The figure is divided into three distinct strategies for their builds: Windows,

Linux, and macOS. The initial strategy involves executing a build on a Windows

server, necessitating specific execution environments, dependencies, and templates.

The template is referenced as an external file for the build process, while the execution

environment specifies the ‘vmImage’ as a base environment to run the builds on it.

Additionally, the same build procedure is performed on macOS. However, the Linux

build does not mandate the installation of dependencies. These strategies collectively

33

M.Eng. Report—D. Patel McMaster University—Software Engineering

contribute to the sub-conclusion of ‘Successful separate jobs’. The entire build

process is validated, culminating in the conclusion of ‘pipeline validated’. Here,

the dependencies installation is separated because the dependencies depend on the

platform on which the build execution is performed. Also, the execution environment

are di↵erent. The templates for all strategies can be extended to add more detailed

information. For the given main.yaml file, we keep it limited to the template.

4.3 Conclusion

With the analysis performed on two di↵erent platforms, we claim that the Justification

Diagram is e↵ectively used to represent the rationales behind the GitLab and Azure

DevOps pipelines. With this consistency of the Justification Diagram, we are confident

that we can now utilize the power to extend the Justification Diagram usage for further

researching.

34

Chapter 5

Towards Operational Justifications

In the previous chapters, we discussed how to track changes with their intentions using

the Justification Diagram and how it is used in GitHub, GitLab, and Azure pipelines.

This chapter introduces the operational justifications along with the Justification

Diagram. First, we need to understand the problem and its relevance to the case

study in Section 5.1. Next, we proposed a solution in Section 5.2, which identifies

and describes the methodology and extended analysis on di↵erent platforms. The

validation of the proposed solution is observed in Section 5.3 with examples, and

Section 5.4 includes the conclusion of operational justifications.

5.1 Problem statement

The Justification Diagram provides a clear trace of modifications, enhances com-

munication throughout the development process, and simplifies risk management of

pipelines. While this technique has brought positive changes, it has also introduced

some real-world challenges to the developers and stakeholders.

35

M.Eng. Report—D. Patel McMaster University—Software Engineering

Firstly, the diagram with the GitHub workflow may occasionally result in mis-

matched information. Developers forget to propagate the changes into the Justification

Diagram after manually updating in the GitHub workflow. Also, multiple team mem-

bers working on the same GitHub workflow can occasionally result in a mismatch

Justification Diagram. Multiple branches in GitHub can also increase discrepancies

between di↵erent GitHub workflow Justifications, so the information is mismatched

because of a lack of synchronization information between Justification and GitHub.

Secondly, as it’s a manual job for developers to manage the Justification Diagram

with the GitHub repository, it also increases the workload of the developer, just

doubling the same work. Due to its meticulous nature, the synchronous task between

both can result in a waste of resources and the developer’s e�ciency.

Lastly, the Justification serves the purpose of documenting changes with the extra

work of GitHub workflow rather than providing any actual implementation details that

impact the real-world software development processes. Also, implementing real-world

solutions is separated from the Justification Diagram. Based on these, documentation

should provide references to the implementation that can also be useful for validating

the Justification Diagram.

As discussed above, Justification written with a regular GitHub workflow can

add extra burden to the developers and pipeline. The next section gives an in-depth

analysis of these challenges, supported by practical examples.

5.2 Proposed solution

To address the above problems, we need to write Operational Justification Diagrams.

It is a new terminology for justifications coined by Jean-Michel Bruel. It aims to

36

M.Eng. Report—D. Patel McMaster University—Software Engineering

add simple implementation information attached to the Justification Diagram that

ultimately satisfies the large gap between the Justification Diagram and GitHub

workflow by making them a combined solution for the pipeline. In the upcoming

sections, we will understand how we create operational justifications and examples to

showcase solutions that e↵ectively mitigate the identified issues.

5.2.1 Methodology

This research follows a bottom-up approach to investigate the key attributes of the

implementation details from the GitHub workflow file that can eventually make the

Justification Diagram operational. The process of extracting information from multiple

pipelines is as follows:

• Step 1: Extract the semantic information from the existing GitHub workflow to

understand the behavior and mechanism of the job.

• Step 2: Compare the identified job structure with other open-source pipelines

to find commonalities and variability of using the same patterns.

• Step 3: The translation process tries to encapsulate each operation, ensuring its

relevance within the broader context of the workflow.

To extend our operational knowledge, we tried to cover the di↵erent pipelines

from GitLab and Azure. We start with how their syntaxes are written and used

to make a Justification Diagram unrestricted for their pipelines. This enhancement

enhances the robustness of our operational justifications and broadens the scope of

our understanding by incorporating diverse and industry-relevant perspectives. The

following four sections give more details about all three steps.

37

M.Eng. Report—D. Patel McMaster University—Software Engineering

5.2.2 Pipeline details extraction

The first step is to extract job information from the GitHub pipeline. For this study,

a specific open-source GitHub pipeline job is selected to understand the detailed

behavior and its semantic meaning in the broader context of the pipeline. This focused

approach aims to analyze the complex structure of the particular job, examining its

execution, variables, dependencies, and interactions with other stages in the pipeline.

The example job shown in Figure 5.1 represents a segment of the GitHub pipeline.

Named "Setup Java", serves as the identifier for a particular job and is displayed on

the action when the pipeline is triggered. The job utilizes GitHub actions to execute

the Java installation process, which targets version 3. Moreover, it uses additional

parameters such as the distribution value, Java version, and caching parameters.

Figure 5.1: Setup Java in Scala pipeline [24]

The key information extracted here is that for setting up Java within a workflow

file. We can leverage GitHub actions with specific parameters based on the project’s

needs. It allows us a customized configuration, ensuring an e�cient setup of Java

within the workflow, so we can use this information to compare it with other GitHub

pipelines that use the same dependencies installation in their project with di↵erent

structures.

38

M.Eng. Report—D. Patel McMaster University—Software Engineering

5.2.3 Comparison of jobs

Once we understand the meaning of the job, the next step is to compare di↵erent

pipelines with the same semantic job. By analyzing various parameters and commonali-

ties across these pipelines, such as configuration settings, dependencies, execution steps,

and integration patterns, the research seeks to identify shared structural elements and

distinctive characteristics.

Figure 5.2: Setup Java in jPipe pipeline [14]

Figure 5.2 shows the Java setup within the jPipe pipeline, accepting parameters

for ‘java-version’ and ‘distribution’. Having reviewed both Figure 5.1 and

Figure 5.2, the subsequent step involves comparing and contrasting the information

extracted from each. Both examples necessitate a ‘name’ and employ the GitHub

action ‘actions/setup-java@v3’. However, some parameters are di↵erent for both.

For instance, the previous figure utilizes ‘distribution: temurin, whereas the next

one opts for ‘adopt’. Additionally, variations in the ‘java-version’ parameter with

caching choices describe di↵erences between the two. Conclusively, both configurations

employ the same parameters with di↵erent values to understand their similarities and

distinctions.

39

M.Eng. Report—D. Patel McMaster University—Software Engineering

5.2.4 Translation of jobs

The last stage is to convert this analysis into translated jobs. By encapsulating the

essence of each operation, the translation process facilitates operations that can be

useful with the justification to have meaningful impacts that convey the same meaning

as an actual pipeline job.

The next phase involves translating identified commonalities from previous steps

into distinct operations. One such operation can be ‘setup java()’, designed to

facilitate the Java setup process. This operation can be flexibly used, which provides

optional parameters like ‘java-version’, ‘distribution’, and ‘cache’. By con-

solidating these shared attributes into a singular operation, the workflow achieves

modularity and flexibility, enabling streamlined and customizable setups for Java

across diverse project requirements.

5.2.5 Extended Analysis

To enhance the usage of the proposed solution, an analysis was undertaken to identify

and integrate it with other platforms such as GitLab and Azure. The comparison

is structured into two distinct categories, each focusing on di↵erent aspects of the

job behavior. The first category involves an analysis of entire job runs based on the

semantics of the job. The second category revolves around analyzing syntaxes, such

as ‘run’ in GitHub workflow for manual commands. Further elaboration on both

categories is detailed in Table 5.1 and Table 5.2, respectively.

In Table 5.1, some job-oriented details are analyzed. For instance, the first example

involves enabling the caching option with di↵erent parameters. Upon identifying

options available across all three platforms, an operation named ‘add cache()’ can

40

M.Eng. Report—D. Patel McMaster University—Software Engineering

Table 5.1: Di↵erent Platform analysis based on Jobs

No. GitHub GitLab Azure
1 actions/cache cache cache
2 actions/upload-artifact artifacts publishPipelineArtifact
3 run: make make make

4 actions/setup-java
apt-get install -y
openjdk-11-jdk

useJavaVersion

5 actions/checkout - checkout: self
6 actions/setup-go golang:latest go

be formulated within the Justification framework. The second example used for

uploading artifacts to specific locations is a functionality that can be encapsulated

within the ‘upload artifact()’ operation, utilizing ‘path’ as a parameter. The

‘run make()’ operation can be created to execute specific ‘make’ commands, ac-

cepting commands as arguments. Additionally, the setup of Java discussed earlier

can use the ‘setup java()’ command. Furthermore, the code checkout operation

can be performed using ‘checkout()’, while the Go installation can function with

‘setup go()’.

Table 5.2: Di↵erent Platform analysis based on syntaxes

No. GitHub GitLab Azure
1 run script script
2 if rules: if condition
3 needs needs dependsOn
4 env variables variables
5 strategy: matrix matrix strategy: matrix
6 timout-minutes timeout timeoutInMinutes
7 name workflow: name name
8 runs-on image vmImage
9 strategy: max-parallel parallel strategy: maxParallel

In Table 5.2, an examination of syntaxes necessary for custom user inputs in

41

M.Eng. Report—D. Patel McMaster University—Software Engineering

the pipeline file is given. The first example, utilized to execute various actions and

commands, can be e↵ectively addressed operationally through ‘execute runner()’.

The second example introduces workflow conditions written as ‘set condition()’

with the specific condition as an argument. To meet job requirements, establish job-

specific environments, and incorporate multi-platform requirements, ‘depends on()’,

‘set environment()’, and ‘cross platform()’ operations are applied, respectively.

For defining the maximum time allowance for a job, ‘maximum time()’ can be

used with time as a parameter. The naming of workflows is accomplished by the

‘workflow name()’ operation, where ‘name’ can be passed as a parameter. Ensur-

ing the appropriate base operating system for workflow execution is achieved with

‘set machine()’. Finally, specifying the maximum parallel jobs for execution is

facilitated by ‘limit parallel execution()’.

Through this analysis, we’ve identified essential commonalities in the behavior of

pipelines across GitHub, GitLab, and Azure. As a result, these operations can be

e↵ectively utilized for the Operational Justification Diagram. Some of the operations

are listed in table 5.3 with their meaning.

5.3 Validation

With the identified operations and their corresponding behavioral insights, we now

possess all the fundamental components for constructing a comprehensive operational

Justification Diagram. These operations, each playing a distinct role in the pipelines

across di↵erent platforms, will be systematically integrated into the Justification

Diagram. The upcoming sections will explain the file structure and examples of

leveraging these components to write operational justifications.

42

M.Eng. Report—D. Patel McMaster University—Software Engineering

Table 5.3: Di↵erent Operations

No. Operation Meaning
1 add cache() adding caching with parameters.
2 upload artifact() uploading artifacts to specific locations
3 run make() run make file.

4 setup java()
setting up Java environment with specific argu-
ments.

5 checkout repository() code checkout operation.
6 setup go() setting up go dependencies in project.
7 execute runner() execute various actions and commands.
8 depends on() add dependencies of jobs.

9 set environment()
setting up environment variables used through-
out the execution.

10 maximum time() setting up maximum time allowance to run job.
11 workflow name() setup name of the workflow.
12 set machine() assign base operating system for execution.
13 limit parallel execution() limiting maximum parallel jobs for execution.
14 verify dependencies() verify the existence of dependencies.
15 verify branch() verify the existence of branch.

16 on()
assign branch and push or pull request for whole
workflow.

17 verify repository() verify the existence of repository.
18 run mvn() run specific mvn commands.

5.3.1 Operational File Format

This section explains the justification file usually written in ‘*.jd’ format, o↵ering

deeper insights into the utilization of operations. This file consists of five syntaxes.

1. load: This initial instruction is the gateway to import a specific Justification file

onto which operations are added. It provides a separation of both justification

and operational files.

2. implementation: The ‘implementation’ keyword is used to describe the

name of the implementation along with its specific justification.

43

M.Eng. Report—D. Patel McMaster University—Software Engineering

3. implements: Typically used within the ‘implementation’ section, this key-

word establishes a link between the Justification file and its corresponding

operation by sharing the same name.

4. probe: The ‘probe’ keyword is deployed to verify specific conditions, o↵ering

a comprehensive evaluation beyond a single operation. Essentially, it aims to

validate job-specific requirements.

5. operation: This keyword is used to utilize the above-mentioned operations,

often associated with the Strategy or Evidence.

6. expectation: Employed to retrieve expected values either from the ‘probe’ or

‘operation’, ‘expectation’ ensures that the written components adhere to

the expected behavior, allowing for systematic checks.

5.3.2 Example

We can use Appendix A, which provides a detailed description of the example pipeline.

From that detailed information, we can write the Justification Diagram that can be

used for the next step. The operations used with these examples are already described

in Table 5.3.

Firstly, the operation file is written for the ‘Trigger workflow’. The practical

execution is visualized in Figure 5.3. To start this process, the justification file is

imported as a reference, where ‘aEV01’ denotes the version control hook evidence.

Initial validation entails checking the repository’s existence using a probe, with the

condition requiring verification before proceeding with subsequent operations. Moving

forward, ‘aEV02’ corresponds to the GitHub branch, confirming its presence in

44

M.Eng. Report—D. Patel McMaster University—Software Engineering

load "./ justification.jd"

implementation imp of JP {

implements aEV01 {

probe is check_repository("https :// github.com/ace-design

/jpipe.git")

expectation is true

}

implements aEV02 {

probe is verify_branch("main")

expectation is true

}

implements aST01 {

operation is on("push", "main")

operation is on("pull", "main")

expectation is true

}

Figure 5.3: Implementation for trigger workflow

the designated repository. The ultimate operation is governed by the ‘contextual

automation’ strategy (aST01), executing the ‘on’ operation with two arguments:

the trigger event and the specific branch. The expectation is set to true, ensuring the

parameters are valid for the operation to proceed.

The provided implementation snippet in Figure 5.4 shows the operational details

for caching. The initial segment contains the implementation of ‘bST02 01 02’,

a component of the ‘optimise workflow’ strategy, featuring the ‘add cache()’

operation. This operation takes ‘path’, ‘key’, and ‘restore-key’ as arguments,

all of which need to be valid for ordered execution. Ensuring the validity of these

arguments is needed for verification of the ‘Target directory’ evidence, an argument

passed to the ‘verify repository’ probe.

45

M.Eng. Report—D. Patel McMaster University—Software Engineering

implements bST02_01_02 {

operation is add_cache("~/.m2/repository",

"${{ runner.os }} -maven-$ {{ hashFiles (’**/pom.xml ’)

}}",

"${{ runner.os }} -maven-")

expectation is true

}

implements bEV01_02_01 {

probe is verify_repository("~/.m2/repository")

expectation is true

}

Figure 5.4: Implementation for caching

implements bEV01_05_02 {

probe is verify_dependencies("mvn")

expectation is true

}

implements bEV01_05_01 {

probe is verify_repository("../ test/")

expectation is true

}

implements bST02_01_05 {

operation is run_mvn("test")

expectation is true

}

Figure 5.5: Implementation for Testing

The implementation details for testing in the JD are illustrated in Figure 5.5.

Verification of dependencies is facilitated through the ‘verify dependencies()’

operation, with the names of dependencies provided as arguments. This entire process

is linked to ‘bEV01 05 02’. Ensuring the existence of the specified repository for

test cases evidence is conducted using the ‘verify repository’ operation. The

46

M.Eng. Report—D. Patel McMaster University—Software Engineering

testing strategy is executed by ‘run mvn()’, where the ‘mvn’ command serves as an

argument. All expectations must be true for the successful execution of a specific

operation and probe.

implements bEV01_01_01 {

probe is checkout ()

expectation is true

}

implements bEV01_04_01 {

probe is verify_repository("../ java/")

operation is setup_java (17,"adopt")

expectation is true

}

implements bST02_01_04 {

operation is run_mvn("build")

expectation is true

}

Figure 5.6: Implementation for Building

The operational process for project building is described in Figure 5.6. The

sequence starts by conducting an initial code checkout, ensuring its availability for

operation, and setting up Java. Subsequently, a verification of the repository is

performed to verify the existence of the requisite build packages. This two-step process

is integral for a successful build. The final step involves the strategic execution of

the project-building operation. This is accomplished by invoking the ‘run mvn()’

strategy, where the mvn command is an important parameter.

The artifact operation can be found in figure 5.7. The evidence says that the target

directory must be present (bEV01 07 01) before the actual operation is performed in

bST02 01 07. The strategy used an operation called upload artifact() that accepts

the name and path to upload the artifact.

47

M.Eng. Report—D. Patel McMaster University—Software Engineering

implements bST02_01_07 {

operation is upload_artifact("jpipe-artifact","target/

jpipe.jar")

expectation is true

}

implements bEV01_07_01 {

probe is verify_repository("target/")

expectation is true

}

Figure 5.7: Implementation for artifact

implements aST {

probe is verify_artifact("jpipe-artifact")

expectation is true

}

Figure 5.8: Implementation for verification

In the final result, the success of the project is validated by checking the presence

of artifacts in the GitHub repository. As shown in Figure 5.8, the verification of these

artifacts provides the decision, and based on the result, we can verify that the artifact

is present if it’s true.

5.4 Conclusion

Utilizing those Operations with the Justification Diagram can make it easier to

understand which part we are addressing from the pipelines. The operation world with

justification can be successful when a more detailed analysis is performed to create

the actual methods attaching to Justifications. This can be a new way to generate

GitHub workflow without depending on the actual workflow.

48

Chapter 6

Conclusion and future work

In this chapter, we provide a summary of the project and future work of this analysis.

6.1 Summary

In conclusion, this project has provided valuable insights into the strategic development

of justifications for e↵ectively managing changes. Beyond a traditional diagrammatic

representation, our approach captures the intentions and conclusions from specific

actions. The overarching objective is to ease the cognitive load for developers and

team members, fostering a clear understanding of how each justification aligns with

respective pipeline jobs.

Our analysis, initiated with a GitHub project, demonstrated the Justification

Diagram’s e↵ectiveness in documenting changes within large, dynamic docker-compose

GitHub pipelines. Building on this success, we expanded the application and support

of the Justification Diagram to encompass pipelines in GitHub, GitLab, and Azure.

This strategic extension significantly enhanced the accessibility and applicability of

49

M.Eng. Report—D. Patel McMaster University—Software Engineering

the Justification Diagram.

As exemplified in Chapter 4, our findings confirm the Justification Diagram’s

seamless integration with various pipeline structures. Also, we addressed operational

aspects to enhance understanding between pipelines and justifications by incorporating

additional operations. These operational enhancements lay the groundwork for future

work, potentially enabling the automatic generation of workflows based on these

operations.

In essence, our project contributes to the current understanding and implemen-

tation of justifications and also sets the stage for innovative advancements in the

intersection of change management and workflow automation.

6.2 Future work

In this section, we discuss some possible future work that can make Justification

approach better.

1. How can one implement these operations to automatically generate a GitHub

workflow file, eliminating the need for manually specifying dependencies in the

workflow?

In essence, we are currently associating operational information with the Justifi-

cation Diagram. However, future work may involve the generation of a workflow

file directly from these operations. This innovative approach aims to stream-

line or replace the traditional method of developers manually writing pipelines,

o↵ering a more seamless process without sacrificing explanatory context.

50

M.Eng. Report—D. Patel McMaster University—Software Engineering

2. How can we ensure the validity of the generated workflow?

Upon completing the future work of crafting workflows, the subsequent challenge

lies in verifying these pipelines. It becomes crucial to confirm that the proposed

solution and generation process seamlessly align with the already identified

operations.

3. How can we introduce a platform that revolutionizes the Justification process,

eliminating the need for developers to manually write justifications? Instead,

envision a user-friendly environment where they can e↵ortlessly create Justi-

fication Diagrams through a simple drag-and-drop interface. This innovation

has the potential to bring significant and captivating changes to the world of

Justification.

51

Appendix A

Sample Justification for JPipe

The initial example, featuring the operational justification diagram, is drawn from

jPipe [14]. Within this context, jPipe integrates the ‘ci.yml’ file, visually represented

in Figure A.1. The fundamental tasks embedded in this workflow are meticulously

designed: starting with repository checkout to access code within the specified Ubuntu

environment, caching to optimize job execution by reusing previously run tasks, Java

installation to facilitate the execution of ‘mvn package’, package building and testing

for the actual build and testing processes in the designated directory, and artifact

storage to upload the artifact to the specified path. It is noteworthy that all these

tasks are configured to trigger automatically in response to both push and pull requests

directed at the main branch.

Extracting these tasks into the justification diagram is a straightforward process.

To achieve this, we create a ‘justification.jd’ file, exemplified in Figure A.2.

The process commences with defining the justification’s name, denoted as ‘JP’.

Subsequently, we meticulously map each job to the appropriate strategy and sub-

conclusion. As an illustration, to initiate the workflow upon push and pull requests to

52

M.Eng. Report—D. Patel McMaster University—Software Engineering

Figure A.1: jPipe CI workflow [14]

the main branch, we employ a strategy named ‘contextual automation’, leading

to the sub-conclusion of ‘trigger workflow’. The key supporting evidence for this

configuration includes version control hooks and the specified GitHub branch on which

53

M.Eng. Report—D. Patel McMaster University—Software Engineering

justification pattern JP {

strategy aST is "Assess Project success"

sub-conclusion aSC01 is "Trigger workflow"

strategy aST01 is "Contextual automation"

evidence aEV01 is "Version control hooks"

evidence aEV02 is "Github Branch"

aSC01 supports aST

aST01 supports aSC01

aEV01 supports aST01

aEV02 supports aST01

sub-conclusion bSC01 is "Assess Project functionalities"

strategy bST01 is "Verify workflow"

bST01 supports bSC01

bSC01 supports aST

sub-conclusion bSC02_01_02 is "Caching dependencies"

strategy bST02_01_02 is "Optimise workflow"

evidence bEV01_02_01 is "Targeted directory"

bSC02_01_02 supports aST

bST02_01_02 supports bSC02_01_02

bEV01_02_01 supports bST02_01_02

sub-conclusion bSC02_01_07 is "Artifact Versioning"

strategy bST02_01_07 is "Store artifacts"

evidence bEV01_07_01 is "Artifact configuration"

bSC02_01_07 supports bST01

bST02_01_07 supports bSC02_01_07

bEV01_07_01 supports bST02_01_07

sub-conclusion bSC02_01_04 is "Project build"

strategy bST02_01_04 is "Build with Maven"

evidence bEV01_04_01 is "Project setup"

bSC02_01_04 supports bST02_01_07

bST02_01_04 supports bSC02_01_04

bEV01_04_01 supports bST02_01_04

sub-conclusion bSC02_01_05 is "Validated test cases"

strategy bST02_01_05 is "Perform unit test"

54

M.Eng. Report—D. Patel McMaster University—Software Engineering

evidence bEV01_05_01 is "Test cases"

evidence bEV01_05_02 is "Dependencies installed"

bSC02_01_05 supports bST02_01_07

bST02_01_05 supports bSC02_01_05

bEV01_05_01 supports bST02_01_05

bEV01_05_02 supports bST02_01_05

bEV01_05_02 supports bST02_01_04

evidence bEV01_01_01 is "Code base accessible"

bEV01_01_01 supports bST02_01_05

bEV01_01_01 supports bST02_01_04

conclusion C is "CI"

aST supports C

}

Figure A.2: jPipe justification file

the workflow is intended to be triggered. All of the components are identified with

the unique name.

Following the provided instructions for the justification diagram, we can seamlessly

generate the illustrative diagram showcased in Figure A.3. The systematic arrangement

of all jobs enhances clarity. For instance, the ‘store artifacts’ task is intricately

linked to the successful completion of the building and testing stages. Also, it needs

verification of all jobs so it can assure the project functionalities by ‘verifying

workflow’. In this context, the justification serves as a valuable aid, o↵ering a

clearer understanding of these inter-dependencies. As caching plays a crucial role in

the entire project, extending beyond the confines of any specific job and operating

independently of others, it forms a direct link to the overarching strategy labeled

‘Assess project success’. The final component involves triggering the workflow,

a condition fulfilled by the ‘contextual automation’ strategy, substantiated by

55

M.Eng. Report—D. Patel McMaster University—Software Engineering

Figure A.3: jPipe justification diagram

evidence from the specified GitHub branch and version control hooks.

56

Appendix B

Analysis of Docker-compose

This appendix demonstrates the analysis of docker-compose. It contains changes,

intentions, and semantic meaning of the changes.

No. Change Intention Semantic

001

Replace manual

dependencies

installation to

installation from file

Enhancement: To make a

single point of change for

dependencies instead of

multiple change in di↵erent

files.

Reduced

complexity of

multiple changes

Continued on the next page

57

M.Eng. Report—D. Patel McMaster University—Software Engineering

Continued from previous page

No. Change Intention Semantic

002

Added GitHub action

to install protoc using

arduino/setup-

protoc@master.

Automation: Replace the

manual code of installing

protoc with Arduino provided

protoc which gives reusability

of code instead of writing it for

all the di↵erent operating

system.

Reusability of

already developed

modules to get

speed and

automation in

workflow

execution.

003
Linter added in

workflow

Linter is added to check code

styles and give feedback to

best practices. That is helpful

to maintain code quality

during continuous integration.

Automation in

validating Coding

standard and

guidelines

004

First local basic

end-to-end test added.

Also replace the

pipeline triggering

from push and pull to

only push.

Testing: First step towards

adding more end to end

testing like adding test cases

for docker start and stop

commands.

Validating local

test cases

Continued on the next page

58

M.Eng. Report—D. Patel McMaster University—Software Engineering

Continued from previous page

No. Change Intention Semantic

005
Job change to parallel

and caching is added

Still build can be faster with

separate job for Tests. For now

the build job run setup of Go,

Build, Test, and E2E Test.

Fostering build

speed

006

Improve linting

operation and

dependencies

installation

Error handling can be added

to understand the exact issue

in the workflow. For now, if

any step fails, the workflow

will continue to execute

subsequent steps, which make

it hard to troubleshoot the

real issue.

Fostering build

speed

007

installation of grpc for

end to end test case

and setup-node

installation

Testing: Just test e2e test of

the Javascript test using grpc

client. In the direction of

adding more e2e tests.

To perform end

to end test.

008

The same workflow

job for windows is

added.

Validate cross building and

testing on di↵erent Operating

system.

Verify Build on

cross plate-forms

to prevent release

time failure.

Continued on the next page

59

M.Eng. Report—D. Patel McMaster University—Software Engineering

Continued from previous page

No. Change Intention Semantic

009
The same workflow

for Linux is added

Continue working on adding

Linux CI in the workflow file

to validate cross building.

Verify Build and

test on cross

plate-forms to

prevent release

time failure.

010
build tag for back-end

targets are updated

Testing: Secondly they want

to add more and more

back-end services to be build

and test during the new push

request. So, they can achieve

consistency during di↵erent

scenario.

Back-end testing

added

011

Updated GitHub

actions/cache version

from v1 to v2

Version Updates
Regular version

updates

Continued on the next page

60

M.Eng. Report—D. Patel McMaster University—Software Engineering

Continued from previous page

No. Change Intention Semantic

012

Update in execution

of workflow on

di↵erent branch and

di↵erent event.

Overall structure: Their

intension was to trigger

original workflow on push

request and perform

build/tests with Ubuntu server

instead of both windows and

Ubuntu.

Structural

improvement

013

ACI end-to-end test

case is added for azure

cloud

Testing: More steps toward

testing the compose with

Azure cloud.

More Back-end

testing added.

014

Moved ACI from

ci.yaml file to

master-ci.yaml.

Organize steps with most

related steps

Structural

improvement

015
Minor update in the

version of linter.

Version updates to support up

to date versions.
Version Updates

016

More test cases with

ECS is added to test

compose with Amazon

Web Service.

Testing: More steps toward

testing the compose with

Amazon Web Service cloud.

Make system

more robust with

di↵erent tests

Continued on the next page

61

M.Eng. Report—D. Patel McMaster University—Software Engineering

Continued from previous page

No. Change Intention Semantic

017
Updated go and

golang version

Version updates to support up

to date versions.
Version Updates

018

Automatically adds

licence and copyright

information in the

source files of the

project using workflow

file if this information

is already not present.

Validation: Check/Add

Licence and copy write

information through workflow

file.

Validation of

source code.

019

The same Makefile

target is used to

validate with

additional go checks.

The target will check

the go.* files are

up-to-date.

Validation: Validation of go.*

file.

Validation with

source files

Continued on the next page

62

M.Eng. Report—D. Patel McMaster University—Software Engineering

Continued from previous page

No. Change Intention Semantic

020

Additional validation

for checking imports

those are not allowed

in particular back-end

contexts

Validation: One more

validation for imports added.

Validation with

source codes.

021
Added Dependabot in

workflow.

ISSUE RESOLVE: Address

the issue of dependabot

doesn’t remove old version of

package from go.sum when

updating

Automatic

dependency

updated to reduce

the complexity of

updating it

manually.

022

Replaced the exact

match with startWith

function. (i.e. ==

with startWith())

The result of the

”github.event.pusher.name” is

the name of the dependabot

which is not exact the passed

value ”dependabot-preview”.

It has something at the end.

So, they replaced the == with

startWith function.

Internal

enhancement

Continued on the next page

63

M.Eng. Report—D. Patel McMaster University—Software Engineering

Continued from previous page

No. Change Intention Semantic

023

Finally, replaced the

startWith by == with

actual name of the

dependabot.

Just play around the

dependabot name to resolve

the identified issue.

Automation in

updating

024

Replaced the job with

Make file command.

The target use the go

list functionality to

replace the older

dependency version

with newer one.

Every time a push request was

triggered the checking of

dependencies updates. So,

that was not necessary every

time. That’s why they

removed it from the workflow

file and added just a command

in the makefile to run it

whenever needed instead of

every push request.

Internal

improvement

Continued on the next page

64

M.Eng. Report—D. Patel McMaster University—Software Engineering

Continued from previous page

No. Change Intention Semantic

025

The push request is

now just triggering for

main branch. And

pull request triggered

and run the whole

workflow without any

condition.

As now the workflow is stable

and can run all the basic

builds and tests, it is time to

run the workflow during pull

requests from forks.

Trigger changes

026 Run e2e test metrics.

Reformation: They now

started to implement real test

cases with the help of test

metrics. So, they start to

remove backend tests. For now

they just removed ECS test

case from the default

continuous integration

workflow.

e2e tests added

Continued on the next page

65

M.Eng. Report—D. Patel McMaster University—Software Engineering

Continued from previous page

No. Change Intention Semantic

027

Implemented job in

CI workflow file for

cross-validation of

build on di↵erent

operating systems

(Windows, Linux,

MacOs)

Build verification testing:

Perform validation of build

failure on di↵erent operating

systems before it goes through

the release stage.

Cross validation

028

Start to remove

testing backends:

First removal of local

backend

In order to remove all

backends to start the unit, e2e,

and metrics tests during

regular CI workflow.

Mature enough to

remove

unnecessary tests

029

updated version of

linter installtion file

from v1.30.0 to

v1.33.0

VERSION UPDATES
VERSION

UPDATES

Continued on the next page

66

M.Eng. Report—D. Patel McMaster University—Software Engineering

Continued from previous page

No. Change Intention Semantic

030

workflow file

download and setup

docker CLI to run

docker commands and

docker actions.

They want to replace the make

dependencies with some

customize and fast docker

actions. It can allow the use of

caching with cache-type=gha

which can help to make every

job faster. Also, it can provide

the workflow file to run the

docker commands.

Added Docker

supports

031

Also removed the

”example” source code

from the repository as

now the workflow is

mature enough to

work on real scenarios.

Stop running one more

backend. The ”Example”

backend was not performing

any real action. It was just a

static test to check the

expected behavior of the

compose commands.

Mature enough to

remove

unnecessary tests

Continued on the next page

67

M.Eng. Report—D. Patel McMaster University—Software Engineering

Continued from previous page

No. Change Intention Semantic

032

Just removed the

unnecessary env

command mistakenly

not removed in the

previous commit. But

internally they moved

the folder structure of

the di↵erent tests in

the single folder to

associated backends.

Handle mistakes Handle mistakes

033
New back-end added:

Kube

Added new back-end

functionality to check

Kubernetes

New test for

Kube.

034

Version updates of go

and github action

setup-go. and Version

updates for setup

docker and

golangci-lint

VERSION UPDATES
VERSION

UPDATES

Continued on the next page

68

M.Eng. Report—D. Patel McMaster University—Software Engineering

Continued from previous page

No. Change Intention Semantic

035
Added Github Action

name.

Without name it was hard to

understand what the

particular job was performing

and it was run with the

previous job. So, adding

seperated job makes it easy to

understand.

Enhanced naming

convention

036

Separate job for cross

build can make it

faster compare to

previous versions

Every time even when Pull

request performed, the whole

build + cross build was

performed which was making

more resources consumption.

By replacing it to just main

branch, it reduces the

execution time with less

resources.

Cross building

037
version update for lint

and resolve typo.
VERSION UPDATES

VERSION

UPDATES

Continued on the next page

69

M.Eng. Report—D. Patel McMaster University—Software Engineering

Continued from previous page

No. Change Intention Semantic

038

Split cli into two

builds

compose-cli(docker)

and composeV2

cli(local). Eventually,

it perform builds for

docker and local

backend on regular

and cross platforms.

MOVE builds from main

branch to v2 to introduce

newer docker compose version

(v2)

Enhanced

distribution of job

039

End to end tests are

move to pkg and

change the reference

to run it in regular

workflow.

MOVE tests from main branch

to v2 to introduce newer

docker compose version (v2)

Enhanced

distribution of job

Continued on the next page

70

M.Eng. Report—D. Patel McMaster University—Software Engineering

Continued from previous page

No. Change Intention Semantic

040

replaced push and

pull triggers from

main branch to v2

branch, backend kube

is removed, removed

cross-compose-plugin

and cross plateform

moved to cmd for v2

Final move to newer version of

docker compose - v2

Move to newer

version

041
Updated Go version

from 1.16 to 1.17
VERSION UPDATES

VERSION

UPDATES

These information is extracted from the docker-compose GitHub repository [9].

The full analysis of some version can be accessed in excel file [18]. Some information

is adjusted according to the requirements. For example two commits are merged to

gain some important information from the change sets.

71

Bibliography

[1] 2022 accelerate state of devops report by google cloud [online]. Accessed on

2023-16-09.

[2] Adr process - aws prescriptive guidance [online]. Accessed on 2023-12-01.

[3] Angular github workflow [online]. Accessed on 2023-12-01.

[4] Facebook outage in october 2021 [online]. Accessed on 2023-16-09.

[5] Microsoft misconfiguration in december 2019 [online].

https://msrc.microsoft.com/blog/2020/01/access-misconfiguration-for-

customer-support-database/. Accessed on 2023-15-09.

[6] Chaminda Chandrasekara and Pushpa Herath. Hands-on github actions: Imple-

ment CI/CD with github action workflows for your applications. Apress, 2021.

[7] Hugo da Gião. A model-driven approach for devops. In 2022 IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC), pages 1–3, 2022.

[8] debputy. A declarative manifest for building debian packages. https://salsa.

debian.org/debian/debputy/-/blob/main/.gitlab-ci.yml.

[9] Docker. compose. https://github.com/docker/compose.git.

72

https://salsa.debian.org/debian/debputy/-/blob/main/.gitlab-ci.yml
https://salsa.debian.org/debian/debputy/-/blob/main/.gitlab-ci.yml
https://github.com/docker/compose.git

M.Eng. Report—D. Patel McMaster University—Software Engineering

[10] S. Fleming. The DevOps Engineer’s Career Guide: A Handbook for Entry-

Level Professionals to Get Into Continuous Delivery Roles for Agile Software

Development. Career Series. Stephen Fleming, 2019.

[11] Mayank Gokarna and Raju Singh. Devops: A historical review and future works.

In 2021 International Conference on Computing, Communication, and Intelligent

Systems (ICCCIS), pages 366–371, 2021.

[12] Priscila Heller. Automating Workflows with GitHub Actions: Automate software

development workflows and seamlessly deploy your applications using GitHub

Actions. 2021.

[13] ISO. Assurance case. https://www.iso.org/standard/52926.html.

[14] Sébastien Mosser, Aaron Loh, Deesha Patel, and Nirmal Chaudhari. jpipe.

https://github.com/ace-design/jpipe.git.

[15] Abrar Mohammad Mowad, Hamed Fawareh, and Mohammad A. Hassan. E↵ect

of using continuous integration (ci) and continuous delivery (cd) deployment in

devops to reduce the gap between developer and operation. In 2022 International

Arab Conference on Information Technology (ACIT), pages 1–8, 2022.

[16] Mumble. A voice-chat program. https://github.com/mumble-voip/mumble/

blob/master/.ci/azure-pipelines/main.yml.

[17] openxcell. Devops - the complete guide for 2023. https://www.openxcell.com/

devops/.

[18] Deesha Patel. Docker-compose analysis. https://

mcmasteru365-my.sharepoint.com/:x:/r/personal/pated193_

73

https://www.iso.org/standard/52926.html
https://github.com/ace-design/jpipe.git
https://github.com/mumble-voip/mumble/blob/master/.ci/azure-pipelines/main.yml
https://github.com/mumble-voip/mumble/blob/master/.ci/azure-pipelines/main.yml
https://www.openxcell.com/devops/
https://www.openxcell.com/devops/
https://mcmasteru365-my.sharepoint.com/:x:/r/personal/pated193_mcmaster_ca/Documents/Analysis%20of%20Docker-Compose.xlsx?d=w8d4355e40ee543d2a1b8094a109e8800&csf=1&web=1&e=jlAIJD
https://mcmasteru365-my.sharepoint.com/:x:/r/personal/pated193_mcmaster_ca/Documents/Analysis%20of%20Docker-Compose.xlsx?d=w8d4355e40ee543d2a1b8094a109e8800&csf=1&web=1&e=jlAIJD
https://mcmasteru365-my.sharepoint.com/:x:/r/personal/pated193_mcmaster_ca/Documents/Analysis%20of%20Docker-Compose.xlsx?d=w8d4355e40ee543d2a1b8094a109e8800&csf=1&web=1&e=jlAIJD

M.Eng. Report—D. Patel McMaster University—Software Engineering

mcmaster_ca/Documents/Analysis%20of%20Docker-Compose.xlsx?d=

w8d4355e40ee543d2a1b8094a109e8800&csf=1&web=1&e=jlAIJD. Accessed:

2023-11-03.

[19] Thomas Polacsek. Validation, accreditation or certification: a new kind of diagram

to provide confidence. In 2016 IEEE Tenth International Conference on Research

Challenges in Information Science (RCIS), pages 1–8. IEEE, 2016.

[20] Thomas Polacsek, Sanjiv Sharma, Claude Cuiller, and Vincent Tuloup. The need

of diagrams based on toulmin schema application: an aeronautical case study.

EURO Journal on Decision Processes, 6:1–26, 07 2018.

[21] Corinne Pulgar. Eat your own devops: a model driven approach to justify contin-

uous integration pipelines. In Proceedings of the 25th International Conference

on Model Driven Engineering Languages and Systems: Companion Proceedings,

pages 225–228, 2022.

[22] Rust. Rust source repository. https://github.com/rust-lang/rust/commits/

master/.github/workflows/ci.yml.

[23] Hadi Safari, Nazanin Sabri, Faraz Shahsavan, and Behnam Bahrak. An analysis

of gitlab’s users and projects networks. In 2020 10th International Symposium

onTelecommunications (IST), pages 194–200, 2020.

[24] Scala. Scala. https://github.com/scala/scala/blob/2.13.x/.github/

workflows/ci.yml.

[25] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continuous integration,

74

https://mcmasteru365-my.sharepoint.com/:x:/r/personal/pated193_mcmaster_ca/Documents/Analysis%20of%20Docker-Compose.xlsx?d=w8d4355e40ee543d2a1b8094a109e8800&csf=1&web=1&e=jlAIJD
https://mcmasteru365-my.sharepoint.com/:x:/r/personal/pated193_mcmaster_ca/Documents/Analysis%20of%20Docker-Compose.xlsx?d=w8d4355e40ee543d2a1b8094a109e8800&csf=1&web=1&e=jlAIJD
https://mcmasteru365-my.sharepoint.com/:x:/r/personal/pated193_mcmaster_ca/Documents/Analysis%20of%20Docker-Compose.xlsx?d=w8d4355e40ee543d2a1b8094a109e8800&csf=1&web=1&e=jlAIJD
https://github.com/rust-lang/rust/commits/master/.github/workflows/ci.yml
https://github.com/rust-lang/rust/commits/master/.github/workflows/ci.yml
https://github.com/scala/scala/blob/2.13.x/.github/workflows/ci.yml
https://github.com/scala/scala/blob/2.13.x/.github/workflows/ci.yml

M.Eng. Report—D. Patel McMaster University—Software Engineering

delivery and deployment: A systematic review on approaches, tools, challenges

and practices. IEEE Access, 5:3909–3943, 2017.

[26] Pablo Valenzuela-Toledo and Alexandre Bergel. Evolution of github action work-

flows. In 2022 IEEE International Conference on Software Analysis, Evolution

and Reengineering (SANER), pages 123–127, 2022.

[27] Manish Virmani. Understanding devops bridging the gap from continuous

integration to continuous delivery. In Fifth International Conference on the

Innovative Computing Technology (INTECH 2015), pages 78–82, 2015.

[28] Chandrasekar Vuppalapati, Anitha Ilapakurti, Karthik Chillara, Sharat Kedari,

and Vanaja Mamidi. Automating tiny ml intelligent sensors devops using microsoft

azure. In 2020 IEEE International Conference on Big Data (Big Data), pages

2375–2384, 2020.

75

	Lay Abstract
	Abstract
	Acknowledgements
	Abbreviations
	Introduction
	Problem and Motivation

	Background
	Introduction to DevOps
	CI/CD Pipelines
	Pipeline evolution
	Requirement of Justification Diagram
	Introduction to Justification Diagram
	Symbols of a Justification Diagram

	Alternatives to Justification Diagram

	Case Study
	Expressing pipeline with GitHub Workflow
	Goal of Case study
	Methodology of Case Study
	Observation from evaluation
	Findings from observation
	Justification for docker-compose workflow
	Initial Docker compose
	First change in Docker compose (Appendix B - 001)
	Second change in Docker compose (Appendix B - 003)

	Conclusion

	Platform Independent Justifications
	Justification Diagram with GitLab
	Justification with Azure
	Conclusion

	Towards Operational Justifications
	Problem statement
	Proposed solution
	Methodology
	Pipeline details extraction
	Comparison of jobs
	Translation of jobs
	Extended Analysis

	Validation
	Operational File Format
	Example

	Conclusion

	Conclusion and future work
	Summary
	Future work

	Sample Justification for JPipe
	Analysis of Docker-compose
	Bibliography

