
Phase Behaviours of Polymeric Blends Containing

Block Copolymers



Phase Behaviours of Polymeric Blends Containing
Block Copolymers

By

Jiayu Xie, B.Sc.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

McMaster University
© Copyright by Jiayu Xie December 2023



Doctor of Philosophy (2023) McMaster University

(Physics & Astronomy) Hamilton, Ontario

TITLE: Phase Behaviours of Polymeric Blends Containing Block Copolymers

AUTHOR: Jiayu Xie (McMaster University)

SUPERVISOR: Dr. An-Chang Shi

NUMBER OF PAGES: xii, 199

ii



Abstract

Blending different polymers together provides a simple yet effective method for producing

unconventional structured materials. However, understanding the interplay between

macro- and microphase separations poses a challenge when studying the phase behaviours

of polymeric blends containing block copolymers. In this thesis, we advance our knowledge

of polymeric blend self-assembly by investigating several informative blending systems

using self-consistent field theory (SCFT).

We begin with straightforward blending formulations, such as binary A1B1/A2 and

A1B1/A2B2 blends, to conduct systematic investigations into their phase behaviours. Our

focus is on the formation and stability of recently discovered Frank-Kasper (FK) phases.

The unveiled correlation between the various system parameters, the behaviours of various

polymeric components, and the stability of the FK phases deepens our understanding of

the emergence of these unconventional spherical phases in polymeric mixtures composed

of simple components.

Expanding our study, we investigate more general AB/C binary blends and AB/C/D

ternary blends, resembling surfactant/water and surfactant/water/oil systems. In agree-

ment with recent experiments, we find that the addition of corona-selective C homopoly-

mers into diblock copolymers reduces the critical conformational asymmetry of the

diblocks required to stabilize the FK σ phase. Furthermore, the simultaneous presence of

core- and corona-selective components greatly enhances the stability of the FK phases,
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particularly the Laves phases. Our results provide insights into the formation of FK

phases in a broader range of soft matter systems containing amphiphilic molecules and

selective additives.

Next, in seeking alternatives to architecturally complex block copolymers for fabri-

cating binary crystalline phases, we turn our attention to AB/CD binary blends. With

designed secondary interactions, we demonstrate that this system can stabilize various

binary crystals with varying stoichiometries. Our analysis of chain packing within various

phases sheds light on the mechanisms governing the selection of the equilibrium crystal

in this system.

Lastly, we explore the topological effects of copolymers in their blends with homopoly-

mers. Although the topological nonequivalency between ABA and BAB linear triblock

copolymers results in only slight differences in their equilibrium phase behaviours, these

differences are dramatically magnified when blended with A homopolymers. Compared to

ABA/A blends, BAB/A blends exhibit much poorer miscibility, and the Lifshitz points

of these two polymeric blends are qualitatively different.

The results presented in this thesis enhance our understanding of the equilibrium phase

behaviours of polymeric blends containing block copolymers, including blend miscibility

and structural formation, thus laying a solid foundation for future research into more

complex blending systems.
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Chapter 1

Introduction

As a spontaneous process, self-assembly serves as a fundamental route for materials

to organize into a multitude of ordered structures across a wide range of length scales

[1]. These self-assembled structures not only contribute to microscopic order but also

define the macroscopic properties of materials [2]. Block copolymers, in particular,

exemplify materials that display a diverse range of self-assembling behaviours, resulting

in valuable properties and a wide array of applications including lithography [3–5],

photonics [6–10], drug delivery [11, 12], porous materials [13, 14] and quantum materials

[15, 16]. As a concrete example, compared to traditional nanolithography methods, block

copolymer self-assembly may offer advantages in achieving high-resolution patterns with

feature sizes in the nanometer range, holding promise for integration into semiconductor

fabrication processes [17]. Therefore, gaining insights into block copolymer self-assembly

and mastering the principles of designing and fabricating polymeric materials with tailored

functions is of great importance. Moreover, despite their practical applications, block

copolymers also provide an ideal platform to study the spontaneous formation of order in

nature, a phenomenon that itself attracts significant research interest.
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1.1 Phase Behaviours of Single-Component Block

Copolymer Systems

1.1.1 AB Diblock Copolymer

The number of possible block copolymers is infinite. The simplest block copolymer, the

AB diblock copolymer, forms by connecting two chemically distinct homopolymers, A

and B, at their ends. As the number and types of blocks increase, the complexity of the

copolymer chain grows. Fig. 1.1 illustrates some examples of homopolymers and block

copolymers with varying degrees of complexity.

To begin understanding the phase behaviour of block copolymers, we can start by

considering simple binary blends of chemically incompatible A and B homopolymers.

The spatial distribution of the homopolymer chains is determined by a competition

between entropy and interfacial energy. On one hand, a uniform distribution of all

homopolymers, where A and B homopolymers are homogeneously mixed (Fig. 1.2(a)),

maximizes the entropy of the system but results in high interaction energy. On the

other hand, macroscopic phase separation into A-rich and B-rich domains (Fig. 1.2(b))

minimizes the interaction energy but leads to suboptimal entropy. According to the theory

of binary mixtures for polymers [18, 19], the balance between these opposing tendencies

is controlled by several parameters, including the concentrations and molecular weights

of the two homopolymers, the interaction between A and B monomers, and temperature.

For a given set of homopolymer samples characterized by specific concentrations and

length ratios, a critical temperature exists below which the dominance of interaction

2
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1.1 Examples of homopolymers and block copolymers. (a) and (b): homopolymers,
(c)-(l): block copolymers. Blocks composed of chemically distinct monomers are in
different colours.

energy over translational entropy drives the system towards macroscopic phase separation.

For a system of AB diblock copolymers comprising immiscible A and B blocks,

the presence of covalent bonds connecting these blocks precludes macroscopic phase

separation. Instead, mesoscopic phase separation occurs below a critical temperature,

leading to the formation of A-rich and B-rich domains with a length scale typically

ranging from 10 to 100 nanometers (as depicted in Fig. 1.2(c)). The morphology of these

mesoscopic domains depends on the volume fractions of the immiscible blocks. As the
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(a) (b) (c)

macroscopic 10-100nm

Fig. 1.2 The (a) homogenous/disordered state and (b) macroscopic-phase-separated state
of binary homopolymer mixtures, and (c) the mesoscpic-phase-separated state of diblock
copolymers.

volume fraction becomes increasingly asymmetric, a progression in domain morphology is

commonly observed, transitioning from lamellar to cylindrical, and ultimately to spherical

structures, as illustrated in Fig. 1.3. This progression is driven by the necessity to generate

a curvature at the AB interface, a critical factor in optimizing chain conformational

entropy. Specifically, maximization of conformational entropy leads a polymer chain to

form a coil with a certain dimension, which tends to be greater for longer chains. When

the distinct blocks of diblock copolymers are symmetrical, the A and B polymer coils

have comparable dimensions, favouring a lamellar morphology with flat interfaces, as

illustrated by the top-left schematic in Fig. 1.3. In the case of diblock copolymers with

asymmetric A and B blocks, the majority blocks prefer to form larger coils than the

minority ones, resulting in interfaces that curve towards the minority blocks, as depicted

by the top-right schematic in Fig. 1.3. This induced curvature of the interfaces, stemming

from the asymmetry between A and B blocks, is commonly referred to as spontaneous

curvature [20].

The organization of self-assembled domains can lead to the formation of structures

exhibiting long-range order. In the case of the simplest example, AB diblock copoly-
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Fig. 1.3 Top left and top right depict diblock copolymers with symmetric and asymmetric
blocks forming flat and curved domain interface, respectively. Schematics of lamellar,
cylindrical and spherical morphologies are listed from left to right at the bottom.

mer melts, both theoretical studies [21] and experimental investigations [22, 23] have

demonstrated that the equilibrium phase behaviour is governed by three key parameters:

(1) the volume fractions of A (or B) block, denoted as fA = f (or fB = 1 − f), (2) the

product of the Flory-Huggins interaction parameter and the degree of polymerization,

denoted as χN , and (3) the conformational asymmetry determined by the ratio between

the Kuhn lengths of the A and B monomers, ϵ = bA/bB. The theoretical phase diagram

of conformationally symmetric (ϵ = 1) AB diblock copolymer melts, constructed using

self-consistent field theory (SCFT), is depicted in Fig. 1.4. This phase diagram exhibits

reflection symmetry around f = 0.5, where the same phases appear symmetrically on both

sides, with the minority and majority blocks swapped. As the parameter f varies from 0.5

to either 0 or 1, a morphological progression is observed, transitioning from lamellae (L)

to a Fddd network (O70), then to double Gyroid networks (DG), hexagonally close-packed

cylinders (HEX), body-centered cubic spheres (BCC), hexagonally close-packed spheres

(HCP), and finally to a disordered (Dis) phase. The DG and O70 phases, situated between

5
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HEX and L, are networked phases resembling distorted and interconnected cylinders.

Schematic representations of all the ordered phases illustrated in Fig. 1.4 are given in

Fig. 1.5.

𝐇𝐄𝐗

𝐃𝐆

𝐋

𝐎𝟕𝟎

𝐇𝐄𝐗

𝐇𝐂𝐏

𝐁𝐂𝐂 𝐁𝐂𝐂

𝐇𝐂𝐏

𝐃𝐢𝐬

Fig. 1.4 Theoretical phase diagram of AB-diblock copolymer melts with symmetric Kuhn
lengths (ϵ = 1) constructed by using SCFT.

(a) HCP (b) BCC (c) HEX (d) G (e) O70 (f) L

Fig. 1.5 The ordered phases that appear in the phase diagram in Fig. 1.4. The surfaces
in the plots are isosurfaces defined by the condition that A and B monomers have equal
densities.
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The morphological progression of diblock copolymers, transitioning from lamellae

to networks, cylinders, and spheres induced by the change in f , can be comprehended

through the concept of spontaneous curvature. However, the selection of a specific

crystalline structure arises from a complex interplay among conflicting factors within

the system. Let us take cylinder-forming diblock copolymers as an illustrative example.

The configurational entropy of the copolymer favours uniform chain stretching, resulting

in domains with perfectly circular cores and coronas. However, this chain configuration

inevitably results in voids in the space (see Fig. 1.6(a)) and is impermissible because

polymer melts must occupy the space uniformly. To occupy the space without creating

voids, the polymeric domains must conform to the hexagonal shape of their enclosing

Wigner-Seitz cells (WSCs). This entails compromising the chain configurational entropy

by stretching some chains more than others to reach the regions near the vertices of the

hexagons.

(b) (c) (d)(a)

Fig. 1.6 Schematics to demonstrate different packings of self-assembled domains: (a)
perfect circular domains that have optimal chain stretching and interfacial energy but
cannot fill the space, (b) space-filling domains with chains stretched as evenly as possible,
(c) space-filling domains with a minimal interfacial area and (d) space-filling domains
with a balanced chain stretching entropy and interfacial energy.

Subject to this space-filling constraint, two other factors come into play. On one hand,

the maximization of entropy prefers the copolymer chains to stretch as evenly as possible

(Fig. 1.6(b)), while, on the other hand, the minimization of interfacial energy favours a
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perfect spherical AB interface (Fig. 1.6(c)). Consequently, the resulting interface assumes

an intermediate shape (Fig. 1.6(d)). The inability of block copolymers to simultaneously

optimize these competing factors is referred to as “packing frustration” [20, 24]. Such

frustration is present in all ordered phases except lamellae self-assembled from symmetric

diblock chains, which naturally fill the space with uniformly stretched chains. In the case

of conformationally symmetric diblock copolymers, the equilibrium phases illustrated in

Fig. 1.5 outperform all other candidate structures known to exist in minimizing packing

frustration, thereby establishing themselves as stable morphologies within the phase

diagram depicted in Fig. 1.4.

𝝈

𝐀𝟏𝟓

𝐇𝐄𝐗

𝐃𝐆

𝐋

𝐎𝟕𝟎

𝐇𝐄𝐗

𝐇𝐂𝐏

𝐁𝐂𝐂

𝐁𝐂𝐂

𝐇𝐂𝐏

𝐃𝐢𝐬

Fig. 1.7 Theoretical phase diagram of AB-diblock copolymer melts with asymmetric Kuhn
lengths (ϵ = 3) constructed by using SCFT.

The introduction of conformational asymmetry (ϵ > 1) into the diblock copolymers

shifts the phase boundaries in Fig. 1.4 to the right, breaking the reflection symmetry about

8
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(a) 𝜎 (b) A15 (c) C14 (d) C15

Fig. 1.8 The Frank-Kasper (a) σ, (b) A15, (c) C14 and (d) C15 phases. The latter two
phases also belong to the category of Laves phases, which is a subset of the Frank-Kasper
phases. Nonequivalent domains are depicted by distinct colours.

f = 0.5 and resulting in an asymmetric phase diagram. An example of a SCFT phase

diagram for conformationally asymmetric diblock copolymers with ϵ = 3 is presented in

Fig. 1.7. It can be observed that, along with the rightward shift of all phase boundaries,

the regions occupied by phases on the left expand significantly at the expense of those

on the right. Even more intriguingly, two novel equilibrium morphologies, namely the

Frank-Kasper (FK) σ and A15 phases, emerge between the HEX and BCC phases on the

left-hand side of the phase diagram. In contrast to the “classical” BCC and HCP phases,

the FK σ and A15 phases have a more complex unit cell, composed of more than one

type of nonequivalent discrete domains [25, 26]. Schematics of the FK σ and A15 phases

with nonequivalent domains depicted by distinct colours are provided in Fig. 1.8(a) and

(b), respectively.

Since the initial experimental discovery of the FK σ phase in diblock copolymers

in 2010 [27], researchers have dedicated extensive efforts to unravel the mechanisms

of the emergence of such complex structures in this seemingly simple system [28–34].

Thanks to a decade-long collaborative effort between theorists and experimenters, we have

gained a deep understanding of the mechanisms governing the formation of these complex

spherical packing phases in single-component diblock copolymer melts. In particular, the

9
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key factor contributing to the stability of these novel phases is their generally rounder

Wigner-Seitz cells (WSCs) compared to the traditional BCC and HCP phases. This

higher WSC sphericity results in a reduced penalty in interfacial energy when the AB

interface undergoes significant deformation towards the WSC. One effective way to induce

a more pronounced interface distortion is by increasing the conformational asymmetry of

the diblock copolymers. As a result, the FK σ and A15 phases are absent when ϵ = 1

but emerge when ϵ exceeds a critical value. SCFT has determined this critical threshold

to be approximately ϵ = 1.5 [28], marking the onset of a stability window for the σ phase

on the phase diagram. Intriguingly, experimental observations have revealed the presence

of the σ phase in diblock samples with ϵ values much smaller than 1.5 [29, 31, 32].

1.1.2 More Complex Block Copolymers

Restricted by its architectural and chemical simplicity, the number of equilibrium mor-

phologies offered by AB diblock copolymers is limited. One approach to expanding the

accessible morphologies involves introducing more complex chain topologies and/or new

chemistry. For instance, when a C block is attached to the free end of the B block in an

AB diblock copolymer, it produces an ABC linear triblock copolymer. The addition of

this extra C block significantly enriches the phase behaviour of the system, opening the

door to a multitude of new stable morphologies [35–39]. Another example is an ABC star

copolymer, where the C block links to the AB diblock chain at the AB junction. Due to

its distinct topology, or architecture, compared to the ABC linear triblock copolymer, the

ABC star copolymer can stabilize a number of different phases, including Archimedean

tiling patterns [40–45].

10
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Fig. 1.9 Schematic showcasing the formation of various binary crystalline spherical
phases from ABC triblock, AB2CB3 tetrablock and B1AB2CB3 pentablock terpolymers.
Reproduced from [46] with permission.

Beyond triblock architectures, pentablock terpolymers [46], dendritic copolymers

[47, 48], and copolymers with more exotic architectures [49–52] offer opportunities for

richer phase behaviours and novel morphologies. Fig. 1.9 showcases the formation of

various binary crystalline spherical phases from several multiblock copolymers predicted

by SCFT. Understanding the phase behaviour of copolymers with complex architectures

and designing such architectures to fabricate desired morphologies has been a focal point

of research in the field of block polymers over the past decade. Given the enormously

large phase space of block copolymer chains, rational and judicious design is crucially

important [53].

Despite the fact that block copolymers with complex architectures offer unlimited

opportunities to fabricate desired self-assembled nanostructures, their precise synthesis

11



Ph.D. Thesis – Jiayu Xie; McMaster University – Physics & Astronomy

can be challenging and costly, which hinders their practical application. Therefore, it

would be useful to seek a cost-effective alternative to access these structures.

1.2 Phase Behaviours of Polymeric Blends Contain-

ing Block Copolymers

One cost-effective alternative to complex block copolymers for producing target mor-

phologies is the use of polymeric blends. Both theoretical and experimental studies have

demonstrated that polymeric blends containing block copolymers offer an effective avenue

for stabilizing phases that are not available with each of the parent components alone

[54–79]. Therefore, it is anticipated that many of the novel morphologies self-assembled

from block copolymers with complex architectures could also be achieved by blending

simple ingredients together.

One intrinsic characteristic of polymeric blends is their tendency to macroscopically

phase separate, which presents a limitation when using blending systems to stabilize

single ordered phases [80–84]. In polymeric blends containing block copolymers, the

phase behaviours are further complicated by the interplay between microphase and

macrophase separations, making the study of their phase behaviours challenging. Notably,

two coexisting macroscopically separated phases can occur, and each of these phases

may exhibit either disorder or microphase separation. As a result, establishing a good

understanding of the mechanisms governing the self-assembling behaviours of different

polymeric blends containing block copolymers is extremely important and desirable. Such

understanding could enable a more precise morphological control over the self-assembly

of these systems.

12
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The simplest polymeric blends containing block copolymers consist of diblock copoly-

mers and homopolymers. Over the past three decades, researchers have made significant

efforts to determine the dependency of the phase behaviour on various parameters charac-

terizing this system. One factor found to strongly influence the behaviour of homopolymers

when blended with diblock copolymers is the molecular weight of the homopolymers

[85–89]. The role played by the homopolymer molecular weight in this blending system

can be well understood as the competition between interaction energy and entropy. To

elaborate, let us consider binary blends of AB copolymers and A homopolymers. Due

to favorable interaction energies, A homopolymers tend to aggregate within or near the

microdomains formed by the A blocks of the AB copolymers. When the A homopolymers

have significantly lower molecular weights than the A blocks, they tend to penetrate deep

into the A-rich microdomains (wet-brush behaviour), driven by a substantial entropy

gain that outweighs the increase in their interfacial energy with the B blocks. In contrast,

longer homopolymers experience less entropy gain from interpenetration with the A

blocks, especially when the homopolymer molecular weight is comparable to or larger

than that of the A block. Consequently, longer homopolymers tend to isolate from the

A-rich microdomains to minimize interfacial energy (dry-brush behaviour), resulting in

a lower overall free energy of the system. Fig. 1.10 shows schematics of the wet- and

dry-brush regimes.

The distinct behaviours of the homopolymers, dependent on their molecular weight

relative to that of the affinity blocks of the copolymers, significantly influence the

miscibility of the blends. In the wet-brush regime, microdomains self-assembled by the

diblock copolymers can generally accommodate a larger quantity of homopolymers. In

comparison, in the dry-brush regime, microdomains can solubilize fewer homopolymers,
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Wet-brush regime Dry-brush regime

Fig. 1.10 Schematics of the wet- and dry-brush regimes for the binary blends of AB
copolymers and A homopolymers.

making the blends more prone to macroscopic phase separation. In other words, diblock

copolymers exhibit poorer miscibility with long homopolymers compared to short ones.

The addition of homopolymers into diblock copolymers can induce order-order phase

transitions by acting as space fillers. Depending on the selectivity of the homopolymers to

the different blocks of the copolymers, their presence can swell the microdomains formed

by either blocks, consequently driving the formation of morphologies with either lower or

higher interfacial curvature. Specifically, the transition induced by doping core-selective

homopolymers generally leads to a phase with flatter interface, while the opposite is true

when doping corona-selective homopolymers. Homopolymers also play a significant role

in alleviating packing frustration within various ordered structures. They achieve this

by localizing in regions that would otherwise be occupied by over-stretching the diblock

copolymers. The release of packing frustration significantly enhances the stability of

structures with a larger degree of packing frustration, such as the HCP phase.

More interestingly, the incorporation of homopolymers into diblock copolymers leads

to the stabilization of entirely new equilibrium morphologies that are absent in neat

diblock copolymer melts. A number of theoretical and experimental studies discovered

the emergence of novel bicontinuous phases, including the double diamond (DD) and
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plumber’s nightmare (P) phases, in binary A1B1/A2 blends [56, 57, 63, 62, 72]. In

particular, these structures consist of two disconnected A networks intertwined within a

continuous B matrix. Schematics of the DD and P phases are displayed in Fig. 1.11. It

was revealed that the localization of homopolymers within the nodes of the DD and P

networks effectively release the packing frustration, thus leading to the stabilization of

these phases.

(a) DD (b) P

Fig. 1.11 The bicontinuous (a) double diamond and (b) plumber’s nightmare phases.

In a more recent experimental study on binary AB diblock copolymer/A homopolymer

mixtures [70], several complex spherical packing phases were observed, including the FK

σ and Laves C14 and C15 phases (see Fig. 1.8). In addition, a sensitive dependence of the

stability of these phases on the molecular weight of the homopolymer was also discovered.

A timely SCFT investigation [90] following the experimental discovery provided evidence

of the partitioning, or localization of the homopolymers within the particle cores, which

provides a mechanism for this system to accommodate the added homopolymers. As

proposed by the authors, the higher asymmetry in particle volumes of the FK phases

enables them to accommodate more homopolymers compared to the BCC phase. This

delays the onset of macrophase separation and explains the phase transition sequence

from phases with lower volume asymmetry to those with higher volume asymmetry, i.e.
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from BCC to σ, then to C14, and finally to C15. Moreover, their SCFT results also

suggest that the formation of these FK phases does not require conformational asymmetry

of the diblock chains in the A1B1/A2 system.

Another polymeric blending system that has been extensively studied is binary blends

of diblock copolymers [54, 55, 58, 60, 91, 64, 65, 92, 66, 69, 93–95, 71, 73, 76, 78, 79].

The simplest blending formulation in this category involves combining a parent diblock

copolymer (A1B1) with an additive diblock copolymer (A2B2) that has different degrees

of polymerization and/or block compositions. In addition to acting like space fillers,

the added diblock copolymers also function as cosurfactants regulating the interfacial

properties of the microdomains formed by the parent copolymers [96–102]. It was shown

that phases accessed by A1B1/A2 blends, including the novel bicontinuous network and

the FK phases, can also be stabilized by blending A1B1 and A2B2 diblock copolymers

with appropriately designed molecular weight ratio and block compositions [66, 69,

71, 73]. Thanks to the cosurfactant effect, binary A1B1/A2B2 blends typically exhibit

better miscibility than A1B1/A2 blends, making them advantageous for fabricating novel

structures. Indeed, the stability windows of all the single ordered phases generally span a

wider composition range in the A1B1/A2B2 blends.

Beyond the simple A1B1/A2B2 formulation, the AB/CB′ [92, 76, 78, 79] and AB/CD

[91, 68, 93–95, 103] blends can produce more complex phase behaviours. For instance,

recent SCFT calculations have revealed that AB/CB′ blends with a strong repulsive

interaction between the A and C blocks exhibit eutectic phase behaviour akin to that

seen in binary alloys. Moreover, a stable binary crystalline phase resembling MgZn2, with

an underlying Laves C14 lattice, emerges within a narrow blend composition window.

This result stems from the careful selection of molecular parameters for the AB and CB′

copolymers, enabling the formation of particles commensurate with the Laves WSCs.
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These theoretical findings suggest that AB/CB′ blends may have the potential to stabilize

other binary crystals previously observed in multiblock terpolymers (see Fig. 1.9), given

appropriately designed molecular parameters. However, it is important to note that this

system has a pronounced tendency toward macroscopic phase separation.

Due to its simple formulation, the binary blending system composed of two types of

diblock copolymers not only serves as a versatile platform for fabricating novel nanostruc-

tures but also provides an ideal model system for investigating the formation mechanisms

of various ordered phases. Instead of delving into the details of the phase behaviours

of binary blends of diblock copolymers here, we will defer this discussion to Chapter

3, where we will explore the historical development, recent advancements, and future

opportunities in this field in depth.

The ways in which polymeric blends can be formulated are virtually limitless. More

intricate blending schemes, such as binary blends of diblock copolymers and triblock

copolymers [61, 104, 105], hold great promise to stabilize a broader spectrum of mor-

phologies. Despite the unlimited opportunities offered by polymeric blends, it is of critical

importance to gain a comprehensive understanding of their phase behaviours and the

underlying mechanisms governing the stability of different phases. Analogous to the study

of block copolymers with complex architectures, such understanding can furnish us with

the design principles necessary for inverse molecular engineering, enabling the fabrication

of desired structures.

1.3 Objective and Outline

The objective of this thesis is to provide theoretical investigations of the phase behaviours

of various polymeric blends composed of architecturally simple ingredients by employing

17



Ph.D. Thesis – Jiayu Xie; McMaster University – Physics & Astronomy

the self-consistent field theory. Starting from relatively simple polymeric blends that have

been previously studied experimentally and theoretically, we provide a more thorough and

systematic exploration of their phase space, aiming for reaching a deeper understanding

of the formation of the complex spherical phases that have been recently discovered.

Subsequently, we shift our focus to polymeric blends of increasing complexity, attempting

to acquire new knowledge in the phase behaviours of more complex polymeric blends and

establish design principles of polymeric blends to stabilize specific target phases. Our

findings provide a solid foundation for future research in even more intricate polymeric

blending systems.

This thesis is organized as follows. In Chapter 2, we introduce the main theoretical

frameworks used in our study, namely the random-phase approximation (RPA) and

self-consistent field theory (SCFT), along with the numerical methods to solve the SCFT

equations. Before delving into our examination of polymeric blends containing block

copolymers, we begin in Chapter 3 with a comprehensive review of the progress made

in the study of phase behaviours of binary blends of diblock copolymers. This review

summarizes relevant theoretical and experimental developments spanning over the past

three decades on the miscibility and equilibrium morphologies of this blending system.

In Chapter 4, we investigate the formation of complex FK phases in binary blends

of A1B1 copolymers and A2 homopolymers. Different from a previous theoretical study

by using SCFT based on the Gaussian chain (GC) model of polymers, we opt for the

freely-jointed chain (FJC) model. Our choice of the FJC chain model is for two reasons:

(1) to assess the sensitivity of theoretical results to the choice of polymer chain model

and (2) to better describe low-molecular-weight or short polymers, facilitating direct

comparisons with experimental results across a broader spectrum of polymer samples. By

constructing a set of phase diagrams with various parameters, we offer a more complete
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picture of the phase behaviour of the A1B1/A2 blends. Furthermore, our detailed analysis

uncovers the formation mechanisms behind the complex spherical phases in this system.

In Chapter 5, we examine the phase behaviour of binary blends of A1B1 and A2B2

diblock copolymers, focusing on the stability of the FK phases. Our systematic study

extends the previous theoretical findings by constructing a series of phase diagrams on

the ϕ2 −χN plane, where ϕ2 is the concentration of the second diblock chains. Our phase

diagrams encompass a much wider range of the phase space of the system and can be

used to make direct comparison to available experimental data. Additionally, through

a detailed analysis of the distributions of the copolymer chains and the properties of

self-assembled spherical domains, we uncover the relationship between various system

parameters and the two mechanisms responsible for stabilizing the FK phases, namely,

intra- and inter-domain segregation, in binary A1B1/A2B2 diblock copolymer blends.

Chapter 6 is motivated by recent discoveries of FK phases in a broader range of

soft matter systems, which involve the blending of amphiphilic molecules with one or

more selective additives. Specifically, recent experimental results have shown that the

FK σ phase can be stabilized by adding matrix-selective homopolymers to AB diblock

copolymers [106, 107]. The stability of the σ phase was found to be highly dependent

on the molecular weight of the homopolymer. Another experimental study reported

the formation of the C15 phase in salt-doped A/B/AB ternary blends. Furthermore,

these various Frank-Kasper packings have also been widely observed in aqueous lyotropic

self-assemblies in surfactant/water and surfactant/water/oil systems [108–111]. These

experimental observations suggest that the stabilization of these complex spherical packing

phases may share common mechanisms across different soft matter systems containing

amphiphilic molecules mixed with either matrix-selective or both matrix- and core-
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selective components. By applying SCFT to FJCs, we explore these mechanisms by

studying two model systems: binary AB/C blends and ternary AB/C/D blends.

In Chapter 7, we explore the possibility of stabilizing the binary spherical crystalline

phases in the binary blends of AB/CD diblock copolymers with designed secondary

interactions. Previous studies showcased the utilization of AB/CB′ blends to stabilize the

MgZn2 crystal through careful molecular engineering. However, the MgZn2 phase features

an extremely narrow stability window in the blend composition due to the pronounced

tendency of AB and CB′ copolymers to macrophase separate. It is well-established that

the introduction of secondary interactions, such as hydrogen bonding, can enhance the

miscibility of two otherwise immiscible polymeric components [112, 113]. Therefore, the

incorporation of hydrogen bonding into the AB and CB′ blends is anticipated to mitigate

the macrophase separation and extend the stability range of the binary crystalline phases.

We explore this idea by considering the binary AB/CD blends, where A and C blocks

are highly repulsive to promote the formation of binary crystals composed of A and C

particles, while B and D blocks are mutually attractive to improve the overall miscibility

of the mixtures. Through the construction of phase diagrams, we demonstrate that a

diverse array of binary crystals can be achieved within the AB/CD blends, and their

stability is intricately controlled by various system parameters. Furthermore, we conduct

a comprehensive analysis of the chain packing within these binary crystalline phases,

shedding light on the selection mechanisms governing the formation of distinct crystal

structures.

In Chapter 8, we delve into the topological effects of block copolymers on the phase

behaviour of their blends with homopolymers. We choose linear symmetric triblock

copolymers as an ideal architecture for this purpose, as they represent the simplest

architecture with topologically distinct isomers. Our initial focus centres on lamella-
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forming triblock copolymers, where we examine the differences in miscibility among three

homologous blending systems: AB/A, ABA/A, and BAB/A blends, using both RPA

and SCFT. Our findings reveal a significant disparity in miscibility, with the BAB/A

blends displaying notably poorer miscibility compared to the compositionally identical

but topologically distinct ABA/A and AB/A blends. We also unravel the distinct natures

of the Lifshitz points of these three systems: while the homogeneous phase of the AB/A

and ABA/A blends undergoes the transition from microphase to macrophase instability

in a manner resembling a “second-order phase transition” at the Lifshitz point, the

homogeneous phase of the BAB/A blends undergoes this transition in a manner akin to

a “first-order phase transition”. Shifting our focus to sphere-forming triblocks, we further

illustrate how the intriguing differences arising from copolymer topologies among these

homologous systems lead to significantly varied capabilities in stabilizing the FK phases.

Finally, in the concluding chapter, we summarize the main findings of this thesis and

give an outlook to future research.
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Chapter 2

Theoretical Framework

2.1 Self-Consistent Field Theory

For the study of the equilibrium phase behaviour of a polymeric system, self-consistent

field theory (SCFT) has become one of the most accurate and efficient theoretical tool

owing to the development over the past several decades [114–116]. Therefore, we employ

SCFT as our theoretical framework. In this chapter, we develop self-consistent field

theory for various polymeric systems and introduce the numerical algorithms used to

minimize the thermodynamic potential function. Specifically, we start with AB diblock

copolymer melts to derive the free energy per chain based on Gaussian chain (GC) and

freely jointed chain (FJC) models, respectively. We then extend this theory to polymeric

blends, using AB diblock polymer/C homopolymer blends as our example.
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2.1.1 SCFT Applied on Gaussian Chain Model for Diblock

Copolymer Melts

Free Energy per Chain and SCFT Equations

Let us consider a diblock copolymer melt with n AB diblock copolymers, each of which

has degree of polymerization N . The volume fraction of A-block is f = fA and thus the

volume fraction of B-block is fB = 1 − fA. We assume a uniform segment density ρ0 so

that the total volume of the melt is V = nN/ρ0.

The thermodynamics of the system is fully described by the partition function. In

the canonical ensemble, the partition function of the system is written as:

Z =(V z0)n

n!

n∏
α=1

∫
Dri(s) exp {−βH} , (2.1)

where β = 1/kBT , z0 represents the momentum integral (2πm/h2β)3/2 of each chain, V

represents the translational degree of freedom of each chain and H is the Hamiltonian of

the system.

The Hamiltonian contains terms accounting for different energies in the system. In

general, regardless of the specific polymer chain model used, it can be written as the

summation of the bonded energy and nonbonded energy,

H = Hbond + Hnonbond. (2.2)
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For the GC model, the bonded energy of a linear chain composed of α-monomers with

polymerization N has the form [20, 115]:

Hbond = 3kBT

2b2
α

∫ N

0
ds

∣∣∣∣∣dr(s)
ds

∣∣∣∣∣
2

, (2.3)

where bα is the Kuhn length of α monomers. Since the GC model is a highly coarse-grained

model of polymer chains, at the length scale that it describes, the nonbonded energy

between segments is normally assumed based on a form of contact interaction:

Hnonbond = kBTχρ0

∫
drϕ̂A(r)ϕ̂B(r), (2.4)

where χ is the Flory-Huggins interaction parameter, and ϕ̂A(r) and ϕ̂B(r) are monomer

density operators defined as:

ϕ̂A(r) = 1
ρ0

n∑
i=1

∫ fN

0
dsδ (r − ri(s)) , (2.5)

ϕ̂B(r) = 1
ρ0

n∑
i=1

∫ N

fN
dsδ (r − ri(s)) . (2.6)

Substitute Eq. 2.3 and 2.4 into Eq. 2.2, we have:

H = 3kBT

2b2
A

n∑
i=1

∫ fN

0
ds

[
dri(s)
ds

]2

+ 3kBT

2b2
B

n∑
i=1

∫ N

fN
ds

[
dri(s)
ds

]2

+ kBTχρ0

∫
drϕ̂A(r)ϕ̂B(r),

(2.7)
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and, by plugging Eq. 2.7 into Eq. 2.1, we get the partition function of the system in the

canonical ensemble:

Z =(V z0)n

n!

n∏
α=1

∫
Dri(s)

exp

− 3
2b2

A

n∑
i=1

∫ fN

0
ds

[
dri(s)
ds

]2

− 3
2b2

B

n∑
i=1

∫ N

fN
ds

[
dri(s)
ds

]2

− χρ0

∫
drϕ̂A(r)ϕ̂B(r)

 .
(2.8)

Notice that the partition function Z in Eq. 2.8 depends on the monomer density

operators ϕ̂A(r) and ϕ̂B(r) and in turn depends on the coordinates of all the monomers

of all chains. In other words, Eq. 2.8 essentially gives us a particle-based theory. In

order to transfer to a field-based theory, one mathematical trick is inserting the following

identities:

∫
DϕA(r)δ

[
ϕA(r) − ϕ̂A(r)

]
= 1, (2.9)∫

DϕB(r)δ
[
ϕB(r) − ϕ̂B(r)

]
= 1, (2.10)

into Eq. 2.8, and applying the Fourier transformation of delta functional:

δ
[
ϕA(r) − ϕ̂A(r)

]
=
∫
DωA(r) exp

{
iρ0

∫
drωA(r)

[
ϕA(r) − ϕ̂A(r)

]}
, (2.11)

δ
[
ϕB(r) − ϕ̂B(r)

]
=
∫
DωB(r) exp

{
iρ0

∫
drωB(r)

[
ϕB(r) − ϕ̂B(r)

]}
, (2.12)
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which leads to the following expression for Z:

Z =(V z0)n

n!

n∏
α=1

∫
Dri(s)

∫
DϕA(r)

∫
DϕB(r)

∫
DωA(r)

∫
DωB(r)

exp
{
iρ0

∫
drωA(r)

[
ϕA(r) − ϕ̂A(r)

]}
exp

{
iρ0

∫
drωB(r)

[
ϕB(r) − ϕ̂B(r)

]}

exp

− 3
2b2

A

n∑
i=1

∫ fN

0
ds

[
dri(s)
ds

]2

− 3
2b2

B

n∑
i=1

∫ N

fN
ds

[
dri(s)
ds

]2

− χρ0

∫
drϕA(r)ϕB(r)

 .
(2.13)

Note that two real scalar conjugate fields ωA(r) and ωB(r) have been introduced up to

this point. By combining Eq. 2.5, (2.6) and (2.13) and further rearranging, we can arrive

at a simplified expression for Z:

Z =(V z0)n

n!

∫
DϕA(r)

∫
DϕB(r)

∫
DωA(r)

∫
DωB(r)

Zn exp
{∫

dr [ρ0iωA(r)ϕA(r) + ρ0iωB(r)ϕB(r) − χρ0ϕA(r)ϕB(r)]
}
,

(2.14)

with Z being the single-chain partition function subjected to external fields ωA and ωB:

Z =
∫

Dri(s) exp
{

−
[∫ fN

0
dsiωA(ri(s)) +

∫ N

fN
dsiωB(ri(s))

]

− 3
2b2

A

∫ fN

0
ds

[
dri(s)
ds

]2

− 3
2b2

B

∫ N

fN
ds

[
dri(s)
ds

]2
 .

(2.15)

For computational convenience, the normalized single-chain partition function Q is

introduced, which is defined as the ratio between Z and the zero-field single-chain

partition function Z0, i.e., Q = Z/Z0. Substituting Z = Q×Z0 into Eq. 2.14 and

applying Stirling’s approximation,

n! ≈
(
n

e

)n

, (2.16)
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we obtain:

Z =
∫

DϕA(r)
∫

DϕB(r)
∫

DωA(r)
∫

DωB(r)

exp
{

ln
[(
V z0e

n

)n
]

+ lnQn + lnZn
0

+
∫
dr [ρ0iωA(r)ϕA(r) + ρ0iωB(r)ϕB(r) − χρ0ϕA(r)ϕB(r)]

}
.

(2.17)

Our goal is to obtain a free energy, which can be minimized to get solutions corresponding

to various equilibrium structures. However, Eq. 2.17 involves several functional integrals,

which are hard to evaluate. To further simplify the theory, we proceed by applying the

saddle-point approximation, which is also referred to as the mean-field approximation in

the polymer physics literature [115]. For functional integrals like Eq. 2.17, saddle-point

approximation amounts to using a single, dominant, stationary-state configuration of the

fields to approximate the result. Under this approximation, we have:

Z ≈ exp
{

ln
[(
V z0e

n

)n
]

+ lnQn

+
∫
dr [ρ0ωA(r)ϕA(r) + ρ0ωB(r)ϕB(r) − χρ0ϕA(r)ϕB(r)]

}
.

(2.18)

It should be noted that due to the analytical structure of the current field theory, the

originally introduced real scalar fields, ωα(r)’s, become purely imaginary after the mean-

field approximation [115], and the imaginary unit i has been absorbed into ωα(r) in

Eq. 2.18, making ωA(r) and ωB(r) purely real. Using the relation between the partition

function and the Helmholtz free energy,

Z = exp
(

− F

kBT

)
, (2.19)
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we arrive at an expression of the free energy per chain of the system in the unit of kBT :

F

nkBT
= ln

(
n

V z0e

)
− lnQ− lnZ0

− 1
V

∫
dr [NωA(r)ϕA(r) +NωB(r)ϕB(r) − χNϕA(r)ϕB(r)] .

(2.20)

Because the first and third terms in the above expression are constants that do not affect

the differences between the free energies of different local minima, they can be dropped

for simplicity. After doing so, a simple form of the free energy of the system reads:

F

nkBT
= − lnQ− 1

V

∫
dr [NωA(r)ϕA(r) +NωB(r)ϕB(r) − χNϕA(r)ϕB(r)] . (2.21)

For the systems that we are interested in, i.e., polymeric melts and blends, the incom-

pressibility condition is assumed, namely,

ϕA(r) + ϕB(r) = 1. (2.22)

In minimizing the free energy, Eq. 2.22 can be enforced by introducing a Lagrange

multiplier η(r), which acts as a pressure field that ensures the incompressibility of the

system. The Lagrangian function reads:

F = − lnQ− 1
V

∫
dr [NωA(r)ϕA(r) +NωB(r)ϕB(r) − χNϕA(r)ϕB(r)

+η(r) (1 − ϕA(r) − ϕB(r))] .
(2.23)
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Minimizing the above Lagrangian function with respect to ϕA(r), ϕB(r), ωA(r), ωB(r),

η(r) leads to a set of equations that can be solved self-consistently,



NωA(r) = χNϕB(r) + η(r),

NωB(r) = χNϕA(r) + η(r),

ϕA(r) = 1
Q

∫ f

0
q(s, r)q†(s, r)ds,

ϕB(r) = 1
Q

∫ 1

f
q(s, r)q†(s, r)ds,

ϕA(r) + ϕB(r) = 1,

(2.24)

which is referred to as the SCFT equations.

In Eqs. 2.24, the forward propagator q(s, r) and backward propagator q†(s, r) are

calculated by solving the following modified diffusion equations (MDEs):

∂

∂s
q(s, r) =∇2q(s, r) −Nωα(r)q(s, r),

− ∂

∂s
q†(s, r) =∇2q†(s, r) −Nωα(r)q†(s, r),

(2.25)

with α =A when s ∈ [0, f ] and B when s ∈ (f, 1]. Note that Eq. 2.25 is rescaled such

that the unit of length scale is the radius of gyration of the chain, Rg, and the unit of

the contour variable s is N . In other words, the N is chosen as the reference degree

of polymerization and the contour variable s now represents a fraction of N . This also

indicates that the equations should be integrated between 0 and 1, which is consistent with

the integration range of the 3rd and 4th equations in Eqs. 2.24. Eqs. 2.25 could be solved

efficiently and accurately by using the operator-splitting method and pseudo-spectral

scheme [117, 118] with periodic boundary condition and initial conditions, q(0, r) = 1

and q†(1, r) = 1. A detailed discussion on the pseudo-spectral method used to solve Eqs.
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2.25 is provided in Appendix A. With the solved propagators, the single chain partition

function can be obtained via:

Q = 1
V

∫
drq(1, r). (2.26)

Since the free energy of a periodic structure is also a function of the periods, or the

lattice parameters θl (l=x, y or z in the case of a cuboid unit cell), we also need to

minimize the free energy with respect to θl. For the GC model, the derivative of the free

energy with respect to θl, also referred to as stress [119], has the form:

d
(

F

nkBT

)/
dθl = 1

Q

∑
k

b2

6
dk2

dθl

∫ ff

fi

dsq(s,k)q†(s,−k). (2.27)

The condition for an optimized set of lattice parameters is thus given by:

d
(

F

nkBT

)/
dθl = 0. (2.28)

Eqs. 2.24 and Eq. 2.28 are solved for obtaining the minimized free energy of each

candidate phase. By comparing the free energies between different phases, we can

produce phase diagrams of the system, which, combined with detailed analyses, helps us

understand the equilibrium phase behaviour of the system.

Iteration Procedure to Solve SCFT Equations

Because of the non-linearity of Eqs. 2.24 and Eq. 2.25, analytical solution hardly exists.

As a result, they need to be solved numerically. Specifically, for each candidate phase, a

computational box is set up and discretized into grid points, which contains one unit cell

of the target periodic structure during the calculation. Next, we initialize the density fields
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ϕA(r) and ϕB(r) with an initial guess that attempts to approximate the real field solutions

of the target phase. Given the initial density fields, an efficient iterative algorithm to solve

Eqs. 2.24 and Eq. 2.28 simultaneously is the variable-cell Anderson mixing [120, 121].

Practically, we firstly use simple mixing to iterate Eqs. 2.24 and gradient descent to

iterate Eq. 2.28 for 100-200 steps before switching to variable-cell Anderson mixing to

increase the stability of the algorithm. The specific procedure is as follows:

1. Initialize the ϕ fields with initial guesses, and compute the ω fields using the first two

equations in Eqs. 2.24 by setting η(r) = 0. The procedure to generate the initial

guesses for the ϕ fields of the classical morphologies in AB diblock copolymers and

several Frank-Kasper phases is discussed in Appendix B.

2. Calculate the forward and backward propagators q(s, r) and q†(s, r) by solving Eqs.

2.25 and then compute Q via Eq. 2.26. q(s,k) and q†(s,k) also need to be stored in

memory, which will be used to compute the stress later.

3. Calculate ϕA(r) and ϕB(r) via the 3rd and 4th equations in Eqs. 2.24 and the stress

via Eq. 2.27.

4. Update the pressure field, η(r), via:

η(r) = ωA(r) + ωB(r) − χN

2 − λ [1 − ϕA(r) − ϕB(r)] , (2.29)

which is by combining the 1st, 2nd and last equations in Eqs. 2.24. The last term is an

additional term added to achieve a faster convergence and λ is an empirical parameter

typically chosen within the range of 1 to 20.
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5. Obtain the output conjugate fields by 1st and 2nd equations in Eqs. 2.24,

ωout
A (r) = χNϕB(r) + η(r),

ωout
B (r) = χNϕA(r) + η(r).

(2.30)

6. Compute the deviations, or called residuals, for the conjugate fields,

d(r;ωA) = ωout
A (r) − ωA(r),

d(r;ωB) = ωout
B (r) − ωB(r),

(2.31)

and for the lattice parameters,

d(θl) = −
d
(

F
nkBT

)
dθl

∆θl, (2.32)

where ∆θl is chosen empirically, on the order of magnitude of 10-100.

7. Determine the new conjugate fields for the next iteration. If it is before mth iteration,

apply simple mixing,

ωnew
A (r) = ωA(r) + λSd(r;ωA),

ωnew
B (r) = ωB(r) + λSd(r;ωB),

(2.33)

and gradient descent,

θnew
l = θl + λSd(θl), (2.34)
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with the parameter λS typically chosen to be 0.05 or 0.1; otherwise, apply Anderson

mixing. The number of the iteration step, m, at which the updating method is switched

to Anderson mixing is chosen empirically, and is typically set to 150 in our calculations.

8. Calculate the free energy,

F

nkBT
= − lnQ− 1

V

∫
dr [NωA(r)ϕA(r) +NωB(r)ϕB(r) − χNϕA(r)ϕB(r)] , (2.35)

and the error,

error =


∑
r

[d2(r;ωA) + d2(r;ωB)]∑
r

[ω2
A(r) + ω2

B(r)]


1
2

. (2.36)

9. If all convergence criteria are satisfied, exit; otherwise, go to step 2.

In our calculation, four convergence criteria are inspected at the end of each itera-

tion: (1)
∣∣∣ F i+1

nkBT
− F i

nkBT

∣∣∣ < c1, (2) error < c2 (3) max (|1 − ϕA(r) − ϕB(r)|) < c3 and (4)

max (|d(θl)|) < c4. In the majority of cases, we set c1 = 10−8, c2 = 10−5, c3 = 10−7, and

c4 = 10−5. In rare cases where convergence becomes challenging, we use slightly less strict

criteria.

2.1.2 SCFT Applied on freely jointed Chain Model for Diblock

Copolymer Melts

Free Energy per Chain and SCFT Equations

We consider a AB diblock copolymer melt containing n AB diblock copolymers, each

of which is composed of NA A-segments and NB B-segments giving a total number of
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N = NA + NB segments and N − 1 bonds per chain. The segments are indexed by

integers from 1 to N and the bonds are indexed from 1 to N −1, where bond s connecting

segments s and s+ 1. We note that the contour variable s, which takes continuous values

for the GC model, assumes only integer values from 1 to N in the discrete chain models,

labelling the discrete segments. We assume a uniform segment density ρ0 so that the

total volume of the melt is V = nN/ρ0.

For the FJC model, the bonded energy of a linear chain containing N α-segments is

Hbond =
N−1∑
s=1

H0(Rs), (2.37)

where Rs = rs+1 − rs. The bond interaction potential energy H0 can take different forms

H0(Rs) = H0(Rs) =


− kBT ln δ(Rs − b) , for freely jointed chain,
3kBT

2b2 R2
s , for discrete Gaussian chain,

(2.38)

where Rs = |Rs| = |rs+1 − rs| and the Kuhn length

b =



bA, s⩽NA − 1,

bAB, s = NA,

bB, s⩾NA + 1,

(2.39)

for the AB diblock copolymer considered.
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Given the form of the bond potential energy, the bond transition probability is

g(R) = g(R) = e
− H0(R)

kBT∫
e

− H0(R)
kBT dR

=


δ(R − b)

4πb2 , for freely jointed chain,( 3
2πb2

) 3
2
e− 3R2

2b2 , for discrete Gaussian chain,

(2.40)

which also hints that b is the fixed bond length for a freely jointed chain and the

root-mean-square bond length for a discrete Gaussian chain.

The Fourier transform of g(R) is:

g(k) =


sin(kb)
kb

, for freely jointed chain,

e− k2b2
6 , for discrete Gaussian chain,

(2.41)

which will be used to compute the propagators in solving the SCFT equations later.

The nonbonded interaction energy is introduced with a finite interaction range r0:

Hnonbond = kBTχρ0

∫
u(|r − r′|)ϕ̂A(r)ϕ̂B(r′)drdr′, (2.42)

where the density operators are defined analogous to those defined for the GC model

previously,

ϕ̂A(r) = 1
ρ0

n∑
i=1

NA∑
s=1

δ(r − ri,s), (2.43)

ϕ̂B(r) = 1
ρ0

n∑
i=1

NB∑
s=NA+1

δ(r − ri,s). (2.44)
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A Gaussian form is taken for the function u(|r − r′|) = u(R) describing the finite range,

u(R) =
( 3

2πr02

) 3
2
e

− 3R2
2r02 , (2.45)

which satisfies the conditions:

∫
u(R)dR =1, (2.46)∫

R2u(R)dR =r0
2. (2.47)

The Fourier transform of u(R) reads:

u(k) = e− k2r0
2

6 , (2.48)

whose form is also Gaussian. We note that, for the FJC model, a finite inter-segment

interaction range is necessary to produce proper scaling behaviour of the domain spacing

and interfacial width as the interface becomes narrow in the relatively strong segregation

regime [122].

The Hamiltonian of the system is written as:

H =
n∑

i=1

N−1∑
s=1

H0(ri,s+1 − ri,s) + kBTχρ0

∫
u(|r − r′|)ϕ̂A(r)ϕ̂B(r′)drdr′. (2.49)

Performing the same mathematical treatment as that done for the GC model, we can

arrive at an expression of the dimensionless free energy per chain within the mean-field
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approximation,

F

nkBT
= − lnQ− 1

V

∫
dr
[
NωA(r)ϕA(r) +NωB(r)ϕB(r) − χN

∫
u(|r − r′|)ϕA(r)ϕB(r′)dr′

]
.

(2.50)

The conditional minimization of Eq. 2.50 under the incompressibility condition, Eq. 2.22,

leads to the SCFT equations:



NωA(r) = χN
∫
u(R)ϕB(r − R)dR + η(r),

NωB(r) = χN
∫
u(R)ϕA(r − R)dR + η(r),

ϕA(r) = eωA(r)

QN

NA∑
s=1

q(s, r)q†(s, r),

ϕB(r) = eωB(r)

QN

NB∑
s=NA+1

q(s, r)q†(s, r),

ϕA(r) + ϕB(r) = 1.

(2.51)

The forward and backward propagators are computed by iterating the integral equations,

q(s+ 1, r) = e−ωα(r)
∫
dr′gα(r − r′)q(s, r′),

q†(s− 1, r) = e−ωα(r)
∫
dr′gα(r − r′)q†(s, r′),

(2.52)

with α =A when 1 ⩽ s ⩽ NA and B when NA + 1 ⩽ s ⩽ N . The initial conditions are

q(1, r) = e−ωA(r) and q†(N, r) = e−ωB(r). Eqs. 2.52 could be computed pseudo-spectrally:

q(s+ 1, r) =e−ωα(r)F−1 {gα(k)F {q(s, r′)}}

=e−ωα(r)F−1 {gα(k)q(s,k)} ,

q†(s− 1, r) =e−ωα(r)F−1
{
gα(k)q†(s,k)

}
,

(2.53)
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which reduces the complexity of computational time by avoiding the convolution via fast

Fourier transform. The single chain partition function is computed by:

Q = 1
V

∫
drq(N, r). (2.54)

The stress for the FJC model has two parts. One is from the bond transition

probability,

d
(

F

nkBT

)/
dθl

∣∣∣∣
bond

= − 1
Q

∑
k

dg(k)
dk2

dk2

dθl

N−1∑
s=1

q(s,k)q†(s+ 1,−k), (2.55)

and the other is from the nonbonded interaction,

d
(

F

nkBT

)/
dθl

∣∣∣∣
nonbond

= χN
∑

k

du(k)
dk2

dk2

dθl

ϕA (k)ϕB (−k) . (2.56)

Therefore, the total stress is:

d
(

F
nkBT

)
dθl

=
d
(

F
nkBT

)
dθl

∣∣∣∣∣∣
bond

+
d
(

F
nkBT

)
dθl

∣∣∣∣∣∣
nonbond

, (2.57)

which satisfies Eq. 2.28 for an optimized set of lattice parameters.

Iteration Procedure to Solve SCFT Equations

The iteration procedure to solve Eqs. 2.51 and Eq. 2.28 given the initial density fields is

as follows:

1. Initialize the ϕ fields with initial guesses, and compute the ω fields using the first two

equations in Eqs. 2.51 by setting η(r) = 0.
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2. Calculate the forward and backward propagators q(s, r) and q†(s, r) by solving Eqs.

2.53 and Q by Eq. 2.54. q(s,k) and q†(s,k) also need to be stored in memory, which

will be used to compute the stress later.

3. Calculate ϕA(r) and ϕB(r) via the 3rd and 4th equations in Eqs. 2.51 and stress from

the bond transition probability via Eq. 2.55.

4. Update η(r) in real space via:

η(r) = ωA(r) + ωB(r) − χN

2 − λ [1 − ϕA(r) − ϕB(r)] , (2.58)

which is by combining the 1st, 2nd and last equations in Eqs. 2.51. The last term is an

additional term added to achieve a faster convergence and λ is an empirical parameter

typically chosen within the range of 1 to 20.

5. Forward Fourier transform ϕA(r), ϕB(r) and η(r) to get ϕA(k), ϕB(k) and η(k).

6. Compute the stress from the nonbonded interaction via Eq. 2.56 and the total stress

via Eq. 2.57.

7. Obtain the output conjugate fields in k space,

ωout
A (k) = χNϕB(k)u(k) + η(k),

ωout
B (k) = χNϕA(k)u(k) + η(k).

(2.59)

8. Backward Fourier transform to obtain the output conjugate fields in real space, ωout
A (r)

and ωout
B (r).
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9. Compute the deviations, or called residuals, for the conjugate fields,

d(r;ωA) = ωout
A (r) − ωA(r),

d(r;ωB) = ωout
B (r) − ωB(r),

(2.60)

and for the lattice parameters,

d(θl) = −
d
(

F
nkBT

)
dθl

∆θl, (2.61)

where ∆θl is chosen empirically, on the order of magnitude of 10-100.

10. Determine the new conjugate fields for the next iteration. If it is before mth iteration,

apply simple mixing,

ωnew
A (r) = ωA(r) + λSd(r;ωA),

ωnew
B (r) = ωB(r) + λSd(r;ωB),

(2.62)

and gradient descent,

θnew
l = θl + λSd(θl), (2.63)

with the parameter λS typically chosen to be 0.05 or 0.1; otherwise, apply Anderson

mixing. The number of the iteration step, m, at which the updating method is switched

to Anderson mixing is chosen empirically, and is typically set to 150 in our calculations.
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11. Calculate the free energy,

F

nkBT
= − lnQ−

∑
k

[ωA(k)ϕA(−k) + ωB(k)ϕB(−k) − χNu(k)ϕA(k)ϕB(−k)] ,

(2.64)

and error,

error =


∑
r

[d2(r;ωA) + d2(r;ωB)]∑
r

[ω2
A(r) + ω2

B(r)]


1
2

. (2.65)

12. If all convergence criteria are satisfied, exit; otherwise, go to step 2.

2.1.3 SCFT for Polymeric Blends: Binary AB/C Blends

The mean-field theory derived based on both chain models for diblock copolymer melts

can be readily extended to the study of polymeric blends. To demonstrate the application

of SCFT in polymeric blends, we will elaborate on the theory applied to binary blends of

AB diblock copolymers and C homopolymers, modelled as FJCs. In blending systems, we

will use the subscript κ to label quantities, indicating the species they are associated with

when necessary. For the current AB/C binary blends, we will use κ=1 for AB diblock

copolymers and κ=0 for C homopolymers.

The AB/C binary blends considered here consist of n1 chains of linear AB-type diblock

copolymers and n2 chains of C homopolymers in a volume V . The parameterization of

the AB diblock copolymer is the same as the one in Section 2.1.2. For C homopolymer,

each chain is composed of NC C-segments. We define γκ as the ratio between the number

of segments of a κ-chain and that of a diblock copolymer chain, i.e. γκ = Nκ/N1 = Nκ/N .

With the assumption of a uniform segment density ρ0, we have ρ0V = n1N + n2γCN . In
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multi-component mixtures, the content of each species in the system could be described by

its concentration. More specifically, for AB/C incompressible binary blends, the average

concentrations of AB diblock copolymers and C homopolymers are:

ϕ1 = n1N

ρ0V
and ϕ2 = 1 − ϕ1 = n2γCN

ρ0V
,

respectively. The bonded and nonbonded interaction potentials take the same form as in

Section 2.1.2. A Flory-Huggins interaction parameter χαβ is introduced between each pair

of distinct types of segments, i.e. α, β( ̸= α) = A,B or C, to describe their nonbonded

interaction. With the formulation of mean-field theory in the canonical ensemble, we can

derive a Helmholtz free energy density:

NF

ρ0V kBT
= −

∑
κ

ϕκ

γκ

ln Qκ

ϕκ

− 1
V

∫
dr
[∑

α

Nωα(r)ϕα(r)

−
∑

α,β( ̸=α)
χαβNϕα(r)ϕβ(r) + η(r)

(
1 −

∑
α

ϕα(r)
) , (2.66)

which fully describes the thermodynamics of the system. The thermodynamic control

parameters are the average concentrations, ϕ1 and ϕ2, which are correlated with each

other via ϕ1 = 1 − ϕ2 due to the incompressibility condition.

42



Ph.D. Thesis – Jiayu Xie; McMaster University – Physics & Astronomy

Minimization of the free energy density yields a set of SCFT equations:



ωα(r) =
∑

β(̸=α)
χαβN

∫
u(R)ϕβ(r − R)dR + η(r),

ϕA(r) = 1 − ϕ

γ1

eωA(r)

Q1N

NA∑
s=1

q1(s, r)q†
1(s, r),

ϕB(r) = 1 − ϕ

γ1

eωB(r)

Q1N

NB∑
s=NA+1

q1(s, r)q†
1(s, r),

ϕC(r) = ϕ

γ2

eωC(r)

Q2N

NC∑
s=1

q2(s, r)q2(NC − s+ 1, r),

∑
α

ϕα(r) = 1,

(2.67)

where R = r − r′ and R = |R|. In Eqs. 2.67 ϕ1 has been replaced by 1 − ϕ2 and the

subscript of ϕ2 has been dropped for conciseness. The relative stability between different

equilibrated phases with a specific concentration of each species could be determined by

comparing the minimized free energy density of these phases with a pre-specified ϕ.

The forward and backward propagators and single chain partition function for the

diblock copolymers are computed in the same way as in Section 2.1.2. For the homopoly-

mers where each chain is symmetric, only one propagator q2(s, r) needs to be computed

by iterating the first equation in Eqs. 2.53 from s=1 to NC with ωα(r) = ωC(r) and initial

condition q2(1, r) = e−ωC(r). The single chain partition function Q2 is then obtained by:

Q2 = 1
V

∫
drq2(NC, r). (2.68)

For blending systems, multi-phase coexistence may take place. Specifically, for

incompressible binary mixtures, two-phase coexistence region is expected to exist on the

phase diagram spanned by ϕ2 (or ϕ1) and another arbitrary system parameter besides

concentration. Although the two-phase coexistence region can be determined by applying
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the double tangent construction to the Helmholtz free energies of the adjacent phases in

the canonical ensemble, it is more computationally convenient to locate it by identifying

the intersection between the grand potentials of two adjacent phases in the grand canonical

ensemble. The mean-field theory formulated in the grand canonical ensemble for the

AB/C binary blends leads to a grand potential density,

NΦ
ρ0V kBT

= −
∑

κ

eµκ/kBTQκ − 1
V

∫
dr
[∑

α

Nωα(r)ϕα(r)

−
∑

α,β(̸=α)
χαβN

∫
u(|r − r′|)ϕα(r)ϕβ(r′)dr′ + η(r)

(
1 −

∑
α

ϕα(r)
) , (2.69)

where the thermodynamic control parameters are the chemical potentials of AB-copolymers,

µ1, and C homopolymers, µ2. Similar to ϕ1 and ϕ2 in the canonical ensemble, the two

chemical potentials are also correlated because of the incompressibility condition imposed

on the system.

By minimizing the grand potential density, we arrive at a set of self-consistent field

equations similar to Eqs. 2.67 with slightly modified equations to compute the densities:

ϕA(r) = eωA(r)

N

NA∑
s=1

q1(s, r)q†
1(s, r),

ϕB(r) = eωB(r)

N

NB∑
s=NA+1

q1(s, r)q†
1(s, r),

ϕC(r) = eµ/kBT e
ωC(r)

N

NC∑
s=1

q2(s, r)q2(NC − s+ 1, r).

Due to the incompressibility condition, only one of two chemical potentials is independent,

and therefore we have set the chemical potential µ1 in the above equations to 0 and

dropped the subscript of µ2 for simplicity. Once the SCFT equations are solved, the
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average concentrations for both components can be simply calculated through:

ϕ1 = Q1, (2.70)

ϕ2 = 1 − ϕ1. (2.71)

The SCFT equations for both canonical and grand canonical ensemble could be solved

numerically by a similar pseudo-spectral scheme to that introduced in section 2.1.2 with

some modifications due to the difference in the detailed form of equations.

2.2 Random-Phase Approximation

Random phase approximation (RPA) is a technique originally invented to study quantum

systems. This method was initially introduced to polymer physics by De Gennes [123]

and later applied by Leibler to study AB diblock copolymers [124]. Since then, it has

found applications in studying the order-disorder transition (ODT) in various polymeric

systems [125–128]. We apply RPA to determine the stability limit of the homogeneous

phase, known as the spinodal, of a polymeric system.

In the weak segregation limit, the free energy of the homogeneous state of a polymeric

system can be written as an expansion,

F

nkBT
= f = f (0) + f (1) + f (2) + · · · , (2.72)
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in terms of the density fluctuations, δϕα. Of particular interest is the second-order term:

f (2) =
∑
α,β

∫ dk
(2π)3 Γαβ(k)δϕα(k)δϕβ(−k)

=
∑
α,β

∫ dk
(2π)3S

−1
αβ (k)δϕα(k)δϕβ(−k),

(2.73)

where Γαβ(k)(= S̃−1
αβ (k))’s are the entries of the second order coefficient matrix, or the

inverse collective structure factor matrix, S̃−1. S̃αβ(k)’s are the Fourier-transformed

density-density correlation functions. The stability limit of the homogeneous phase, or

the spinodal, is identified at point where the smallest eigenvalue of the matrix S̃−1 equals

zero for a specific wavevector magnitude, denoted as k∗. Using RPA, one can evaluate

S̃−1.

2.2.1 The S̃−1 Matrix

AB Diblock Copolymer melts

Following the formulation of RPA by Leibler [124], our derivation starts with the second

order term of the free energy expansion with respect to small density and conjugate field

fluctuations in k space. For AB diblock copolymer melts, using the shorthand notations

δϕα = ψα and δωα = wα, that is:

f (2) =
∫ dk

(2π)3

[
−1

2wASAAwA − 1
2wBSBBwB − wASABwB − wAψA − wBψB + χuψAψB

]
,

(2.74)

where the Sαβ’s are the correlation functions for an ideal noninteracting single chain, and

thus are also termed as the form factors. Because we are interested in the homogenous
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phase, the quantities that are a function of k only depend on the magnitude of k, i.e. k.

In deriving Eq. 2.74, this k dependence has been made implicit for brevity.

Next, we seek the form of f (2) only as a functional of ψ’s. This is done by minimizing

Eq. 2.74 with respect to the wα’s and insert the results back to Eq. 2.74 to eliminate the

wα dependence. After further utilizing the incompressibility condition ψA + ψB = 0, the

resulting f (2) is:

f (2) =
∫ dk

(2π)3

[
SAA + 2SAB + SBB

2(SAASBB − S2
AB) − χu

]
ψ2

A. (2.75)

In this case, the S̃−1 is a scalar:

S̃−1 = SAA + 2SAB + SBB

2(SAASBB − S2
AB) − χu. (2.76)

Binary AB/C blends

A similar procedure can be carried out for multicomponent systems. We take binary

AB/C blends as an example. Following the formulation by Noolandi and coworkers

[125, 126], the second order term of the free energy reads:

f (2) =
∫ dk

(2π)3

[
−1

2ϕ1NABwAgAAwA − 1
2ϕ1NABwBgBBwB − ϕ1NABwAgABwB

−1
2ϕ2NCwCgCCwC − wAψA − wBψB − wCψC

+
∑

α,β( ̸=α)∈A,B,C
χαβuψαψβ

 ,
(2.77)
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where gαβ is related to Sαβ via Sαβ = Ngαβ with N being the degree of polymerization

of the chain composed of the α and β blocks.

After eliminating the w dependence and applying the incompressibility condition, we

get:

f (2) =
∫ dk

(2π)3

{
gBBψ

2
A − 2gABψAψB + gAAψ

2
B

2NABϕ1(gAAgBB − g2
AB) + (ψA + ψB)2

2NCϕ2gCC

−u
[
ψ2

AχAC + ψ2
BχBC + ψAψB(−χAB + χAC + χBC)

]}
.

(2.78)

Therefore, the entries, aij, of the S̃−1 matrix are:

a11 = − gBB

2N(g2
AB − gAAgBB)ϕ1

+ 1
2NgCCϕ2

− uχAC, (2.79)

a12 = a21 = − gAB

2N(g2
AB − gAAgBB)ϕ1

+ 1
2NgCCϕ2

− 1
2u(−χAB + χAC + χBC), (2.80)

a22 = − gAA

2N(g2
AB − gAAgBB)ϕ1

+ 1
2NgCCϕ2

− uχBC. (2.81)

For this 2×2 matrix, the smaller eigenvalue is:

λ− = 1
2(a11 + a22 − ∆), (2.82)

where,

∆ =
√

(a22 − a11)2 + 4a2
12. (2.83)
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2.2.2 The Form Factors

The correlation functions, or the form factors, for an ideal noninteracting single chain,

are calculated via,

Sαβ(k) = NgGC
αβ (k) = 1

N

∫ N

0
dsi

∫ N

0
dsjΘα

si
Θβ

sj
Pij, (2.84)

for a continuous GC, and,

Sαβ(k) = NgDC
αβ (k) = 1

N

N∑
i=1

N∑
j=1

Θα
i Θβ

jPij, (2.85)

for a discrete chain, where,

Θα
i =


1 , if ith segment is of type α,

0 , otherwise.
(2.86)

In Eqs. 2.84 and 2.84, Pij is the product of the Fourier-transformed bond transition

probabilities of all the segments that form the linear sub-chain bridging segments i and j.

For the case where all segments have identical Kuhn lengths (so that the bond transition

probability g(k) is the same across the whole chain), we simply have Pij = [g(k)]|i−j|. As

an example, for a continuous Gaussian diblock copolymer chain, the resulting Sαβ(k)’s

by using Eq. 2.84 are:
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SAA =N
2
A
N
g(xA), (2.87)

SBB =N
2
B
N
g(xB), (2.88)

SAB =NANB

N
h(xA)h(xB). (2.89)

In the above expressions, xα = k2 b2
α

6 Nα (α=A or B), g(x) = 2(e−x + x− 1)/x2, which is

the Debye function, and h(x) = (1 − e−x)/x.

Once the form factors are evaluated, they can be substituted into the S̃−1, from which

the spinodal can be further determined.
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Phase Behaviours of Binary Blends
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Preface

Over the past three decades, significant research attention has been devoted to studying

the equilibrium phase behaviours of binary blends of diblock copolymers, including the

miscibility of these blends and the stability of various self-assembled structures. While

the most general binary blends of diblock copolymers involve two chemically distinct

diblocks, AB and CD, the majority of studies have focused on simpler blends, such as

AB/A′B′ or AB/A′C mixtures.

In this chapter, we provide a comprehensive review of the phase behaviours of diblock

copolymers, with a emphasis on binary mixtures involving two AB diblock copolymers,

A1B1 and A2B2, which differ only in terms of molecular weights and block compositions.

For AB diblock copolymers, homopolymer additives selective to either the A or B blocks

serve as space fillers and swell the corresponding microdomains. In contrast, AB-copolymer

additives act as both space fillers and cosurfactants, influencing not only the volume of

the microdomains but also the properties of the AB interface. Consequently, compared

to binary blends comprising diblock copolymers and homopolymers, binary blends of two

distinct diblock copolymers exhibit more complex phase behaviours. Our objective is to

uncover the self-assembly principles derived from this model system. We believe that

these principles will offer valuable insights into the phase behaviors of binary and even

more complex blends containing arbitrary block copolymers.
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ABSTRACT: The phase behavior of binary blends of diblock
copolymers has been examined extensively in the past decades.
Experimental and theoretical studies have demonstrated that
mixing two different block copolymers provides an efficient and
versatile route to regulate their self-assembled morphologies. A
good understanding of the principles governing the self-assembly of
block copolymer blends has been obtained from the study of A1B1/
A2B2 diblock copolymer blends. The second (A2B2) diblocks could
act synergistically as fillers and cosurfactants to regulate the domain
size and interfacial properties, resulting in the formation of ordered
phases not found in the parent (A1B1 or A2B2) diblock copolymer
melts. The study of A1B1/A2B2 block copolymer blends further
provides a solid foundation for future research on more complex
block copolymer blends.

■ INTRODUCTION
Block copolymers are long chain-like macromolecules
composed of two or more chemically distinct blocks connected
together by covalent bonds.1 Due to the incompatibility
between the block−block repulsion and chain connectivity,
block copolymers are intrinsically frustrated.2 The repulsion
between the chemically distinct blocks drives them to phase
separate, whereas chain connectivity prevents macroscopic
phase separation. The competition of these two opposing
trends provides a mechanism to spontaneously select a finite
length scale, resulting in the formation of polymeric domains
containing the chemically different blocks. This process is
commonly referred to as microphase separation. Generically,
the self-assembled polymeric domains assume the shape of
spheres, cylinders, and lamellae. For block copolymers in dilute
solutions, these polymeric domains and their variations are
commonly referred to as micelles of different shapes, such as
spherical and wormlike micelles.3 For block copolymer melts,
blends, and dense solutions, these polymeric domains pack to
fill the space, forming a rich array of self-assembled
mesoscopically ordered phases.4 The morphology and length
scale of the equilibrium ordered phases could be engineered by
designing and synthesizing block copolymers with various
architectures. Understanding the principles governing the
formation of different ordered phases from polymeric systems
containing block copolymers has been an active research topic
in polymer science for the past several decades.1 Besides
providing a platform for studying fundamental principles of
self-assembly, block copolymers have found applications in a

wide range of technologies such as lithography,5−8 pho-
tonics,9−13 and soft-matter enabled quantum materials.14

An extensively studied system of block copolymers is
monodisperse AB diblock copolymers composed of the
simplest block copolymer obtained by covalently linking two
homopolymers, A and B, through their ends. Due to the
tremendous efforts by experimenters and theorists over the
past several decades, the phase behavior of AB diblock
copolymers is well understood. The self-assembly of
monodisperse diblock copolymer melts is mainly determined
by three parameters: the composition of the copolymers
characterized by the A block volume fraction fA (and thus f B
since f B = 1 − fA), the interaction strength between the A and
B blocks characterized by the product χN where χ is the
Flory−Huggins interaction parameter and N is the copolymer
degree of polymerization, and the conformational asymmetry
between the A and B blocks quantified by the ratio of their
Kuhn lengths ϵ = bA/bB.1,4,15,16 Phase diagrams of AB diblock
copolymers are commonly presented in the fA − χN plane,
although it has been revealed recently that the conformational
asymmetry parameter (ϵ) should be taken as the third
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coordinate to give a more complete description of the phase
behavior.15 Despite their simplicity, AB diblock copolymers
exhibit a surprisingly rich phase behavior containing many
ordered phases. As an example of the complexity of block
copolymer phase behavior, a theoretical phase diagram for AB
diblock copolymers with ϵ = bA/bB = 3 produced by the
polymeric self-consistent field theory (SCFT) based on the
standard Gaussian chain model, along with schematics of the
ordered morphologies, is shown in Figure 1. Specifically, the

packing of the lamellae, cylinders, and spheres self-assembled
from AB diblock copolymers leads to a rich array of
equilibrium phases with long-range crystalline order, including
simple lamellae (L), hexagonally close packed cylinders
(HEX), body-centered cubic spheres (BCC), and hexagonally
close packed spheres (HCP), as well as the complex networked
morphologies such as the double gyroid network (DG) and
Fddd network (O70).4 Furthermore, two complex spherical
packing phases, namely, the Frank−Kasper σ and A15 phases,
have been discovered recently in AB diblock copolymers with
large conformational asymmetry.15−17
Although AB diblock copolymers exhibit a very rich phase

behavior containing an amazing array of ordered phases
(Figure 1), there is a desire to search for block copolymer
systems that could form more types of ordered phases, such as
the double diamond networked phase and the Laves phases,
that are not equilibrium phases of neat diblock copolymer
melts. One obvious approach is to extend the block copolymer
type and architecture from simple AB diblock copolymer to
complex multiblock copolymers containing more types of

blocks and with more complex topology.18 Examples are ABC
linear triblock and star triblock copolymers that exhibit much
richer phase behaviors. The number of accessible equilibrium
morphologies self-assembled from block copolymers is
drastically increased when multiblock copolymers are used.
Due to the different choices of the blocks and architecture,
there is no limit on the types of block polymers one could
design. Therefore, judicious choice of multiblock designs is
crucially important.18 Numerous studies have been carried out
to investigate the phase behaviors of multiblock copolymers. It
has been demonstrated that the formation of numerous novel
structures could be achieved by using tailored multiblock
architectures to release the packing frustration.19−23
An alternative approach to regulate the self-assembled

morphologies of block copolymers is to add another polymeric
species, such as block copolymers or homopolymers, to the
system. These added polymeric species are not covalently
bonded to the original block copolymers; nevertheless, they
can blend into the system and act as fillers and cosurfactants to
regulate the volume fraction and interfacial properties of the
system. This blending strategy provides an efficient route to
obtain desired ordered phases. Numerous experimental and
theoretical studies have demonstrated that new equilibrium
morphologies could be coassembled from polymeric blends
containing block copolymers.24−32 More interestingly, block
copolymer blends can access ordered phases that are not
equilibrium phases of the individual components. Another
advantage of block copolymer blends is that the architecture of
each polymeric species could remain simple and readily
available.33−35 Due to the choices of different species, there are
unlimited ways to design different formulations of block
copolymer blends. Among the vast number of possible
polymeric blends, binary mixtures of diblock copolymers are
of particular interest and have attracted much attention. In
particular, binary blends of diblock copolymers not only
provide a simple route to obtain novel structures but also serve
as an ideal model system to understand the mechanisms
governing the self-assembly of multicomponent macromolec-
ular systems.
Over the past three decades, tremendous progress has been

made on the study of binary blends of diblock copolymers,
including their phase behaviors in bulk, under confinement,
and in solutions. In this feature article, we shall focus on the
study of the phase behavior of binary blends of diblock
copolymers by providing a review on the past progress and
offering our perspective on future opportunities. In general,
binary blends of diblock copolymers are composed of two
different diblocks, AB and CD, where all four blocks could be
chemically different. A comprehensive understanding of this
complex blending system is, however, still not complete.
Instead, most of the existing studies are on simpler blends such
as AB/A′B′ or AB/A′C mixtures. We will mainly focus on the
phase behavior of binary mixtures composed of one AB diblock
copolymer (A1B1) and another AB diblock copolymer (A2B2)
with different molecular weights and compositions, aiming to
reveal the self-assembly principles obtained from this simple
model system. We believe these principles will be helpful for
the study of the phase behaviors of binary and even ternary
blends composed of arbitrary block copolymers. Furthermore,
we do not discuss block copolymer blends under confinement
or in solutions. Instead, we would like to mention some
references on the phase behaviors of block copolymer blends
under confinement36−44 and in solution.45−52

Figure 1. Theoretical phase diagram of AB diblock copolymer melts
with ϵ = 3 and schematics of the ordered phases. The spherical
domains with different colors for the Frank−Kasper σ and A15 phases
highlight the fact that those domains are at nonequivalent positions.
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■ BLEND MISCIBILITY: MACROPHASE VS
MICROPHASE SEPARATION

Miscibility of a multicomponent system refers to the ability of
the chemically distinct components to form a homogeneously
mixed state, instead of macroscopically separating into two or
more coexisting phases. For the simplest binary polymer blend
composed of A and B homopolymers, it is either in a
homogeneously mixed state or in a biphasic state where A-rich
and B-rich phases coexist. The equilibrium phase behavior of
this blending system can be well described by the Flory−
Huggins theory.53,54 For two homopolymers with degrees of
polymerization NA and NB and Flory−Huggins interaction
parameter χ, the system forms a homogeneous phase when χ is

below the critical value ( )c N N
1
2

1 1
2

A B
< = + and phase

separates into two coexisting phases when χ is above the
critical value χ > χc. When the two homopolymers are
covalently bonded to form AB diblock copolymers, the driving
force of phase separation still exists. However, the bonding of
the A and B blocks prevents phase separation at the
macroscopic scale and thus the system becomes frustrated.2

This frustration leads to local phase separation, or the system
undergoes microphase separation, resulting in the formation of
inhomogeneous phases composed of periodically or aperiodi-
cally arranged A and B domains, or mesoscopically ordered
phases.2,6

Figure 2. Experimental phase diagrams on the plane spanned by (a) the weight fraction of the longer α copolymers and the molecular weight ratio
between the long and short copolymers and (b) the weight fraction of the longer copolymers and temperature, where all the samples are SI diblock
copolymers; (c) SCFT phase diagram on the plane spanned by the volume fraction of short chains and chain length ratio, overlaid with
experimental data and (d) SCFT phase diagram on the ϕs − χNl plane with subscripts s and l representing short and long, respectively. Part (a) is
reprinted with permission from ref 67, Copyright 2001 American Chemical Society; (b) is reprinted with permission from ref 69, Copyright 2001
American Chemical Society; (c) is reprinted with permission from ref 66, Copyright 1998 Springer Nature; (d) is reprinted with permission from
ref 73, Copyright 1995 AIP Publishing.
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A ubiquitous feature of polymer blends is their tendency to
phase separate, forming two or more coexisting phases. When
one or more of the components in the blends are block
copolymers, the coexisting phases could themselves be
inhomogeneous states with microphase-separated domains.
Therefore, studying the miscibility of multicomponent blends
containing block copolymers is a complicated topic because
the mixing/demixing behavior of the blends is entangled with
the formation of the mesoscopically ordered structures.
Specifically, both microphase separation, where the compo-
nents are miscible at the molecular scale and form coassembled
microdomains, and macrophase separation, where the
components are immiscible and phase separate at a macro-
scopic length scale to form coexisting phases whereas each of
them could undergo microphase separation, are possible. Since
the 1980s, numerous studies of the phase behaviors of block
copolymer blends have been carried out experimentally and
theoretically, revealing a sensitive dependence of the
equilibrium morphology on the parameters of the system. In
this section, we briefly review these early studies on the micro-
and macrophase-separated morphologies of binary mixtures of
diblock copolymers and summarize their key findings.
The phase behavior of block copolymer blends is controlled

by a large number of parameters. Even the relatively simple
binary blends composed of A1B1 and A2B2 diblock copolymers
are characterized by seven control parameters, namely, the
Flory−Huggins interaction parameter χ, the degrees of
polymerization of the two copolymers N1 and N2, the
compositions or A block volume fractions of the two

copolymers fA1 and fA2, the conformational asymmetry
parameter ϵ, and the concentration of the copolymers ϕ1 or
ϕ2 (ϕ1 + ϕ2 = 1 for incompressible systems). As a result of the
large number of system parameters, the phase space of block
copolymer blends is enormously large. For binary blends of
A1B1/A2B2 diblock copolymers, part of the phase space has
been explored by early experimental55−70 and theoreti-
cal24,71−77 studies carried out by several groups.
Experimentally, copolymer samples with desired degrees of

polymerization and block compositions can be synthesized by
techniques such as living anionic polymerization.78 Their self-
assembled mesoscopic structures can then be probed by
combining different characterization techniques such as small-
angle X-ray scattering (SAXS) and transmission electron
micrograph (TEM).79 For binary mixtures of A1B1/A2B2
diblock copolymers with comparable block compositions ( fA1≈ fA2), the dependence of the equilibrium morphology on the
chain length ratio α = N2/N1 and the blend composition ϕ1 (or
ϕ2 = 1 − ϕ1) has been investigated experimentally for both
lamella-forming and sphere/cylinder-forming diblock copoly-
mer samples.56,59,60,66,67,69,70 It is noted that α can be assumed
to be larger than 1 since both components of the blends are AB
diblock copolymers. It was observed that samples composed of
binary mixtures of lamella-forming polystyrene (PS)-block-
polyisoprene (PI) dibock copolymers were miscible over the
entire blend composition range (0 < ϕ1 < 1) when α was small,
whereas the system was only miscible within the range ϕ1 <
ϕ1,CS or ϕ1 > ϕ1,CL when α was sufficiently large,56 where ϕ1,CS
and ϕ1,CL denote the small and large critical concentration

Figure 3. (a) Theoretically predicted (left) and experimentally observed (right) “kink” boundary morphology and (b) TEM images showing
randomly mixed big and small spheres in binary mixtures of immiscible sphere-forming SI diblock copolymers. Part (a) is reprinted with permission
from ref 81, Copyright 2015 American Chemical Society; (b) is reprinted with permission from ref 59, Copyright 1994 American Chemical Society.
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between which macrophase separation takes place. For the case
with a large α, transmission electron micrographs revealed that
macrodomains consisting of large- and small-period lamellae
coexisted within the range ϕ1,CS < ϕ1 < ϕ1,CL. It was also found
that ϕ1,CS ≪ 1 − ϕ1,CL, indicating that long copolymers could
solubilize more short copolymers in their lamellar micro-
domains, whereas short copolymers could solubilize much
fewer long copolymers. In the case of sphere/cylinder-forming
copolymers, the blends were shown to exhibit similar behavior
but with different values of α, ϕ1,CS and ϕ1,CL or shifted
boundary between microphase and macrophase separation and
with the lamellar morphology replaced by spheres or
cylinders.59 An intriguing behavior that two lamella-forming
diblock copolymers coassembled into cylinders was discovered
by Yamaguchi et al.,26,67,69 which was predicted by strong
segregation theory (SST)80 and later confirmed by self-
consistent field theory (SCFT) calculations.27

Parallel to the experimental work, extensive theoretical
studies were also carried out by several researchers to
understand and predict the phase behavior of binary mixtures
of A1B1/A2B2 diblock copolymers.

24,71,73,75 Matsen examined
the miscibility of lamella-forming diblock copolymers by SCFT
and showed good agreement between theoretical and
experimental results.73 For a direct comparison, the exper-
imental phase diagrams from refs 66, 67, and 69 and the
theoretical phase diagram from ref 73 are reproduced in Figure
2. In particular, Figure 2c reproduced from ref 66 is a
combined figure where the experimental data with binary
blends of polystyrene-b-polybutadiene diblock copolymers
from ref 66 and the SCFT phase diagram from ref 73 are
overlaid together, clearly showing excellent agreement between
experiment and theory. Qualitative agreement could also be
seen by comparing the phase diagrams in Figure 2a and c and
the phase diagrams in parts b and d, despite the fact that the
parameters might not be the same and that the cylindrical
phase was not considered in those early theoretical
calculations.
Detailed structures of the boundaries between macrophase-

separated domains could be revealed from the experimental
studies. One example is that the boundary between the
macrodomains formed in binary blends of immiscible diblock
copolymers exhibited some characteristic patterns resolved by
transmission electron micrographs.56,57,59 In the binary blends
of immiscible lamella-forming diblock copolymers with a large
difference in their molecular weights, nonparallel-oriented
lamellar macrodomains with long and short periods were
experimentally observed by Hashimoto and co-workers, which
were jointed together with a “kink” boundary.57 This
observation was partially explained by Spencer and Matsen
20 years later using SCFT, showing that the one-sided
inclination of the kink boundary has lower boundary tension
and thus is more preferred than the parallel boundary.81 Figure
3a highlights the comparison between the experimentally
observed and theoretically predicted boundary morphologies.
On the other hand, for binary mixtures of immiscible sphere-
forming diblock copolymers, the experimentally observed
morphology appeared to be randomly mixed big and small
spheres (Figure 3b), rather than macroscopic domains of big/
small spheres packed on a crystalline lattice.59 This observation
implies that microphase separation could enhance the
miscibility of the diblock copolymers. However, this effect
has not yet been explored theoretically.

Experimental and theoretical studies were also conducted to
investigate the phase behavior of binary mixtures of two
diblock copolymers with different fA and comparable degrees
of polymerization.24,58,62,63,65,68,74,82 These studies mainly
focused on the miscibility of the two block copolymers and
the ability of the system to form intermediate structures.
Yamaguchi et al.68 discovered that, for binary blends of PS-b-PI
diblock copolymers with complementary compositions fA1 ≈ 1
− fA2 ≈ 0.2 and comparable N, the system formed a single
phase with T ≲ 130 °C and a macroscopically separated phase
with T ≳ 130 °C. This finding was qualitatively consistent with
the theoretical results by Matsen et al.74 Furthermore,
theoretical calculations based on SCFT suggested that the
phase behavior of binary blends composed of two diblock
copolymers with roughly equal N could be well approximated
by the phase diagram of neat diblock copolymers with the
same overall block composition, provided that neither fA1 nor
fA2 is too close to 0 or 1.24,74 This one-component
approximation provides a useful and efficient route to access
a desired morphology without synthesizing precisely tailored
block copolymers.83 Direct experimental confirmation of this
one-component approximation was provided by the observa-
tion that two-complementary cylinder-forming copolymers
self-assembled into the intermediate lamellar phase.58,62

However, the formation of a gyroid phase in the blends of
two lamella-forming diblocks could not be explained by the
one-component approximation.65

We have so far focused on the phase behavior of binary
mixtures of A1B1/A2B2 diblock copolymers. The complexity of
the binary diblock copolymer blends is greatly increased if
chemically distinct blocks are introduced, forming binary AB/
B′C or AB/CD blends. For example, in the most general case
of AB/CD blends, there are four chemically distinct blocks,
each with its own statistical segment lengths, and six
interaction parameters, i.e., χαβ where α, β(≠ α) = A, B, C,
or D, describing the different monomer−monomer inter-
actions. The hugely expanded parameter space for the general
binary blends of diblock copolymers makes a thorough
investigation of their phase behaviors formidable via either
experimental or theoretical approaches. However, several
interesting studies of these systems have been carried out,
shedding light on the understanding of their phase behaviors.
The phase behavior of binary mixtures of AB/B′C diblock

copolymers has been examined by several groups theoretically
and experimentally.84−88 These case studies on different
samples showed evidence of the formation of novel macro-
and microphase structures. For instance, in an experimental
study of binary blend of polystyrene-block-poly-
(ethylenepropylene) (PS-b-PEP) and polystyrene-block-(parti-
ally hydrogenated polyisoprene) (PS-b-HPI) by Kimishima et
al., different morphologies were observed with different
degrees of segregation power between the PEP and HPI
blocks, which was controlled by the degree of hydrogenation
reaction.86 For a relatively low degree of PEP-HPI segregation
power, the observed lamellar morphology contained alternat-
ing PS-layers and PEP-HPI-layers in which the PEP and HPI
blocks segregated only in the direction perpendicular to the
lamellar interface. When the degree of PEP-HPI segregation
power was stronger due to the lower degree of hydrogenation
reaction, the PEP and HPI blocks segregated in the direction
both parallel and perpendicular to the lamellar interface
between the PS-layers and PEP-HPI-layers. This observation
was attributed to the interplay between phase separation and
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vitrification of the polymer chains. Furthermore, it was
observed that the binary blends were dominated by macro-
phase separation when the repulsive interaction between
distinct blocks was strong.86−88 The morphologies of AB/B′C
or AB/CD blends could be further enriched by introducing
other types of secondary interactions, such as hydrogen
bonding.

■ SELF-ASSEMBLY MECHANISMS: SPACE FILLERS
VS INTERFACE MODIFIERS

Understanding the mechanisms governing the morphological
transformations when two diblock copolymers are mixed is of
great importance. For the simple binary blends of A1B1/A2B2
diblock copolymers, the effects of adding the second diblock
copolymers into the microdomains formed by the first diblock
copolymers could be classified into two types depending on
the spatial distribution of the added diblock. Asymmetric AB
diblock copolymers with fA,2 close to 0 or 1 would be mainly
located in the middle of the B or A domains, whereas
symmetric AB diblock copolymers with fA,2 ∼ 0.5 tend to
localize at the AB interfaces. When the added diblock
copolymers are located in their preferred domains, they act
as fillers, regulating the volume of the corresponding domains.
This effect could be approximated by an effective volume
fraction of the different, A or B, diblocks. When the added
diblock copolymers are located at the AB interfaces, they
would act as cosurfactants or compatibilizers, decreasing the
AB interfacial tension and modifying the interfacial curvature.
The phase behavior of the A1B1/A2B2 diblock copolymer
blends is, therefore, strongly influenced by the behavior of the
added second diblock copolymers, which in turn depends on
the various system parameters.

The different behaviors of short AB diblock copolymers
added into microdomains formed by long AB diblock
copolymers were first elucidated in theoretical studies by Shi
et al. using SST and SCFT.89−91 It was demonstrated that,
when small amounts (ϕs ≪ 0.5) of short diblocks with fA,s are
mixed into the ordered microdomains formed from long
diblocks with fA,l, the spatial distribution of the short chains is
regulated by the short block composition fA,s. Specifically, short
diblock copolymers with fA,s ≈ 0 or 1 behave as homopolymer
fillers localized in the B or A domains, whereas the added
diblocks with fA,s ≈ 0.5 behave more as cosurfactants localized
at the AB interfaces. The homopolymer-like short diblocks
localized in the A or B domains swell these microdomains,
leading to an increased domain spacing and reduced stretching
free energy. On the other hand, the surfactant-like short
diblocks localize at the AB interfaces, resulting in reduced
interfacial tension and a shrunken domain size. In general,
these two mechanisms are in effect at the same time, shifting
the phase boundary significantly.90

Experimentally, the cosurfactant effect of the added diblock
copolymers was studied extensively by Hashimoto and co-
workers, who also considered cases of relatively large
concentrations of short copolymers with different degrees of
polymerization.70,92−96 Two representative experimental phase
diagrams obtained from this series of studies on polystyrene-
block-polyisoprene (PS-b-PI), adopted from refs 92 and 93, are
shown in Figure 4a and b. The phase diagram in Figure 4a
summarizes the major phase behaviors probed by a series of
experiments by Hashimoto and co-workers. The three-
dimensional diagram in Figure 4a is in the parameter space
of the overall PS block volume fraction ϕPS, the chain length
ratio r between long and short SI copolymers, and temperature

Figure 4. (a) Three-dimensional phase diagram summarizing a series of experimental results from Hashimoto and co-workers in the parameter
space of the overall PS block volume fraction ϕPS, the chain length ratio r between long and short SI copolymers and temperature T and (b) the
magnified version of the ϕPS − r plane in (a). The full names of the phases labeled by their abbreviated names in both diagrams are given in the
legends. The phase transition boundaries for pure diblock copolymers in terms of the PS block fraction are included in both parts (a) (bottom) and
(b) (top). Part (a) is reprinted with permission from ref 92, Copyright 2008 American Chemical Society; (b) is reprinted with permission from ref
93, Copyright 2001 American Chemical Society.
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T, and the one in Figure 4b is a magnified version of the ϕPS −
r plane in Figure 4a. Most of the observed phases are labeled
by their abbreviated names in both diagrams in Figure 4 and
their full names are given in the legends. For both phase
diagrams, the composition fA of the long copolymers is fixed at
0.185 and the short copolymers are all nearly symmetric so
that the left (ϕPS = 0.185) and right (ϕPS ≈ 0.5) edges
correspond to neat long and short diblock copolymers,
respectively. The phase transition boundaries for pure diblock
copolymers in terms of the PS block fraction are included in
both figures for comparison. In Figure 4b, the expansion of the
lamellar phase toward lower ϕPS relative to the neat diblocks
with increasing r indicates an enhancement of the cosurfactant
effect when the difference between the chain length becomes
larger. Furthermore, there exists a re-entrant transition Cyl. →
Bic. → Cyl. along the 3D path at ϕPS ≈ 0.24 in Figure 4a.

Specifically, when T is increased, the transition from Bic. back
to Cyl., which is the stable morphology in the neat long
diblock copolymers, is due to the weakening of cosurfactant
effect caused by delocalizing the junctions of the short
copolymers away from the PS−PI interface.92
Built on the earlier success of applying SCFT to study binary

mixtures of A1B1/A2B2 diblock copolymers,24,74,90 extensive
SCFT calculations were carried out to construct complete
phase diagrams of the system. In particular, Wu et al.
systematically explored a large area of the phase space of
binary blends of A1B1/A2B2 diblock copolymers, resulting in a
relatively complete picture of the phase behavior of the
system.27,28 Two typical phase diagrams selected from refs 27,
28 are reproduced in Figure 5a and b, respectively, where ϕl
refers to the concentration of the long diblock chains and R =
Nlong/Nshort. The SCFT calculations predicted that the mixing

Figure 5. SCFT phase diagrams in the (a) ϕl − χN(= χNl) plane with fixed fsA = 0.4, f lA = 0.5, and R = Nl/Ns = 5 and (b) ϕl − R plane with fixed fsA
= 0.5, f lA = 0.1, and χNl = 100, where s and l appearing in all subscripts represent short and long, respectively; (c) density profiles (i) ϕlA, (ii) ϕlB,
(iii) ϕsA, and (iv) ϕsB solved by SCFT under fsA = 0.4, f lA = 0.5, R = Nl/Ns = 5, χNl = 100, and 1:1 volume fraction between the long and short
copolymers. Parts (a) and (c) are reprinted with permission from ref 27, Copyright 2010 American Chemical Society; (b) is reprinted with
permission from ref 28, Copyright 2011 American Chemical Society.
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of two lamella-forming diblock copolymers can indeed stabilize
the HEX phase as seen from the top of Figure 5a, which is
consistent with the experimental observation by Yamaguchi et
al.26,67,69 Another qualitative agreement between theory and
experiment can be found by comparing Figure 5b to the
horizontal plane in Figure 4a. In both phase diagrams the
transitions as increasing the concentration of the short
copolymers (or decreasing that of the long ones) are from S
→ H → L. It is noted that the bicontinuous phase was not
included in these SCFT calculations. One discrepancy between
theory and experiment is that macrophase separation is
predicted by SCFT, but it is absent in Figure 4a. This could
be attributed to the relatively low degree of segregation
accessed in the experiments. As a result, macrophase separation
may not have taken place or may have occurred within a
narrow window and was not detected. The density profiles of
the A and B blocks of the long chains, i.e., ϕlA(r) and ϕlB(r),
and those of the short chains, i.e., ϕsA(r) and ϕsB(r), are also
depicted in Figure 5c(i)−(iv), respectively. It is obvious that
the short AB diblocks primarily localize near the interface,
demonstrating clearly the cosurfactant behavior.

■ STRUCTURAL ENGINEERING: COMPLEX
MORPHOLOGIES

Based on the results presented above, it is clear that block
copolymer blends have a rich phase behavior and provide an
efficient and cost-effective platform to obtain desired ordered
polymeric phases. The principles governing the formation of
different ordered phases are the spatial distribution of the
added species, which could act as fillers and cosurfactants to
regulate the equilibrium morphology. On the other hand, prior
to 2010 most of the ordered phases observed in experiments
and/or predicted by theory are the “classical” ones. It is
therefore desirable to investigate the possibility of using block

copolymer blends to obtain new morphologies that are not the
equilibrium phases of each of their parent block copolymers.
One interesting example of obtaining new morphologies is

the recent theoretical prediction and experimental observation
of the complex spherical packing phases such as the Frank−
Kasper phases and the Laves phases.16 Exciting progress has
been made in the study of the formation of these novel phases
in binary blends of diblock copolymers, including the discovery
of new morphologies, the understanding of their formation
mechanisms, and the accessing of desired morphologies
through rational molecular design. In this section, we review
these recent developments in the self-assembly of binary
blends of diblock copolymers.
One very exciting progress on the possibility of using blends

to obtain new morphologies is the discovery of Frank−Kasper
(FK) phases in binary blends composed of A1B1/A2B2 diblock
copolymers.29,31,97−99 The FK phases are a family of complex
spherical packing phases composed of more than one
nonequivalent Wigner-Seitz cells (WSCs), with distinct shapes
and sizes, partitioning the three-dimensional space.100,101 In
contrast, the so-called “classical” spherical packing phases such
as the body-centered cubic (BCC), face-centered cubic
(FCC), and hexagonal close-packed (HCP) phases all have
only one type of WSC. Prior to 2010, it was believed that neat
diblock copolymers could only form the BCC, FCC, and HCP
phases. This assumption was broken in 2010 when Lee et al.
reported the discovery of a Frank−Kasper σ phase from
diblock copolymers.17 Later SCFT calculations by Xie et al.15

showed that the mechanism for the formation of complex
spherical packing phases in neat diblock copolymers could be
attributed to the conformational asymmetry of the different
blocks, which could be manipulated by using blocks with very
different Kuhn lengths or by changing the copolymer
architecture from linear AB to miktoarm ABn. This theoretical

Figure 6. (a) Schematics of the discrete domains with distinct volumes and shapes formed in A1B1/A2B2 binary mixtures, (b) SCFT phase diagram
in the N2/N1 − ϕ1 plane, (c) experimental phase diagram of SB binary blends on the ϕ2 − T plane with f B1 = 0.12, f B2 = 0.39, and N2/N1 = 1.4, and
(d) experimental phase diagram in the same parameter space as that in (c) but with f B1 = 0.18, f B2 = 0.53, and N2/N1 = 1.6. Note that in the
diagrams in (c) and (d) B instead of A denotes the minority core blocks. Part (b) is reprinted with permission from ref 97, Copyright 2018
National Academy of Sciences; (c) and (d) are reprinted with permission from ref 98, Copyright 2021 American Chemical Society.
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prediction was confirmed in subsequent experiments.33,102−104
Based on the idea that differential distribution of diblock
copolymers could promote the formation of polymeric
domains with different shapes and volumes, as schematically
depicted in Figure 6a, Liu et al.29 predicted theoretically that
there is a very large stable window of the Frank−Kasper σ and
A15 phases on the phase diagram of binary blends of A1B1/
A2B2 diblock copolymers. Furthermore, their results are
insensitive to the conformational asymmetry of the blocks.
Moreover, refined SCFT calculations predicted that the Laves
C14 and C15 phases, which are members of the FK family but
with much larger WSC volume dispersity compared with the
A15 and σ phases, can become equilibrium phases in the same
binary blending system as can be seen in the phase diagram in
Figure 6b.97 The theoretical prediction that complex spherical
packing phases could be stabilized by blending two different
AB diblcok copolymers was confirmed by Lindsay et al.31,98 in
their careful experiments on binary mixtures of polystyrene-
block-1,4-polybutadiene (PS-b-PB) diblock copolymers. In
their experimental design, all the diblock copolymer chains
had the same lengths of the corona blocks and various lengths
of the core blocks. The resultant blends were obtained by
mixing the disorder-forming diblock sample with other samples
having different core block lengths. Besides the classical phases,
the FK σ, A15, and C14 phases, and a dodecagonal quasicrystal
(QC) phase were observed, demonstrating the effectiveness of
the blending strategy in stabilizing these novel structures. Two
of their experimental phase portraits are shown in Figure 6c

and d. It is interesting to note that the experimental phase
behaviors of the binary diblock copolymer blends observed by
Lindsay et al.31,98 are qualitatively in agreement with the
theoretical predictions.29,97,99

Mechanisms stabilizing the Frank−Kasper and Laves phases
in binary blends of A1B1/A2B2 diblock copolymers have been
elucidated from detailed SCFT calculations. Based on the
theoretical results, it was argued that the synergy of the inter-
and intradomain segregation of the two diblock copolymers
plays a crucial role in alleviating the packing frustration of the
polymeric domains, thus stabilizing the complex spherical
phases.29 A good understanding of the effects of copolymer
segregation on the promotion of complex spherical packing is
provided by Xie et al.,99 who performed a detailed study using
SCFT on BCC-forming diblock copolymers ( fA1 = 0.2) mixed
with other diblock chains with different fA2 and α = N2/N1. A
typical phase diagram with fA2 = 0.5 and α = 1.5 favoring the
formation of FK phases is given in Figure 7a, which contains
stable regions for an amazing array of FK phases, including the
σ, A15, C14, and C15 phases, spanning a large range over
χN(= χN1) and ϕ2. The partition of the longer copolymers ( fA2
= 0.5) into the different WSCs quantified by its average
concentration in these cells ϕ2

WSC are shown in Figure 7c,
where the scattering of ϕ2

WSC around the average ϕ2 over the
entire unit cell is obvious, indicating a differential interdomain
segregation of the copolymers. The unequal partition of the
longer diblock chains, i.e., more longer copolymers are found
in larger domains, fulfills the need to form domains with

Figure 7. (a) SCFT phase diagram of conformationally symmetric A1B1/A2B2 binary blends modeled as Gaussian chains on the ϕ2 − χN(= χN1)
plane with fA1 = 0.2, fA2 = 0.5, and γ = N2/N1 = 1.5; (b) SCFT phase diagram of A1B1/A2 binary blends modeled as freely jointed chains on the ϕ2− χAB plane with N1 = 80, fA1 = 0.2, and α = NA2/NA1 = 1.0; (c) average concentrations of the second components in the A1B1/A2B2 blend within
distinct WSCs for different complex phases as a function of ϕ2 (average concentrations of the second components in the entire unit cell) with fixed
f1 = 0.2, f 2 = 0.7, γ = 1.5, and χN = 30; and (d) similar to (c) but for the A1B1/A2 blend with fixed N1 = 80, ϵ = 1.25, fA1 = 0.2, α = 1.0, χAB = 0.45.
The dashed lines in (c,d) are ϕ2 over the entire unit cell. Parts (a) and (c) are reprinted with permission from ref 99, Copyright 2021 John Wiley
and Sons; (b) and (d) are reprinted with permission from ref 32, Copyright 2021 Elsevier.
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different sizes required by the FK phases. It is interesting to
compare the distribution of the longer copolymers in the
A1B1/A2B2 blends and that of the homopolymers in the binary
diblock copolymer/homopolymer (A1B1/A2) blends.32 A
typical phase diagram and homopolymer distribution (ϕ2

WSC)
plot for the A1B1/A2 blends are shown in Figure 7b and d,
respectively. Figure 7b shows the formation of the FK phases
in the A1B1/A2 system, which results from the nonuniformly
distributed homopolymers (Figure 7d). The similarity between
Figure 7c and d indicates the homopolymer-like behavior of
the longer diblock copolymers, i.e., acting as space fillers and
swelling distinct domains by different degrees in the A1B1/A2B2
blends, which in turn drives the formation of large and small
spheres.
Unlike homopolymers that could only act as fillers, the

added diblock copolymers could act as fillers and cosurfactants
simultaneously, depending on whether they are located in the
middle of the domains or at the AB-interfacial regions. The
effects of this dual function of the added diblock copolymers
are threefold: 1. Compared with binary A1B1/A2 blends, the
miscibility of the two AB diblock copolymers is increased so
that the stable region of spherical morphologies could be
extended to a relatively high ϕ2. 2. A core−shell structure is
formed in the spherical domains such that the longer A blocks
extend to the core regions of the domains, which, coupled with
interdomain segregation, results in swollen domains with
different sizes. 3. The lateral distribution of the AB junctions
on the interface provides a mechanism to regulate the
interfacial curvature favoring the formation of domains with
different shapes.99 The second and third effects are illustrated
by Figure 8a and b, respectively.32 As shown in Figure 8a, the
A blocks of the shorter diblock copolymers form a shell (Figure
8a.1), whereas those of the longer copolymers form the core
(Figure 8a.2) of the A-rich domain. Figure 8b displays the
mean curvature of the interface (Figure 8b.1) along with the
distribution of the AB junctions of the diblocks with fA1 = 0.2
(Figure 8b.2) and those of the diblocks with fA2 = 0.5 (Figure
8b.3). It is clearly seen that the segregation of the AB junctions
of the A1B1 and A2B2 copolymers coincides with the interfacial

areas with high and low mean curvatures, respectively. The
interplay between the inter- and intradomain segregations
should be responsible for the larger region of the FK phases
and the stabilization of the A15 phase in Figure 7a compared
to Figure 7b.
Following the previous study by Liu et al. on the A1B1/A2B2

mixtures,29,97 Zhao et al.105 extended the SCFT calculations to
investigate the phase behavior when the two diblock
copolymers have a much larger difference in their lengths,
i.e., γ = N2/N1 > 2. It is very interesting that their theoretical
study predicted that a novel “binary” HCP (HCPb) phase,
composed of larger and smaller spheres with vastly different
volumes, becomes stable when γ ≳ 2.6. Figure 9 shows their
phase diagram covering a large region of 0.5 ≲ ϕ1 ≲ 1 and 1.6
≲ γ ≲ 4.1, in which a stability window for the HCPb phase

Figure 8. (a) Segment density and bond orientation distributions of (a.1) A1B1 and (a.2) A2B2 copolymers and (b) interfacial mean curvature (κH)
and AiBi junction distributions (conji, i = 1, 2) projected on the interface in the A1B1/A2B2 binary mixtures. Both (a) and (b) are obtained by SCFT
and for the CN = 14 domain of an equilibrated A15 structure with f1 = 0.2, f 2 = 0.75, and γ = 1.5, ϕ2 = 0.15, and χN = 30. Reprinted with
permission from ref 99, Copyright 2021 John Wiley and Sons.

Figure 9. SCFT phase diagram of the conformationally symmetric
A1B1/A2B2 binary blend in the γ − ϕ1 plane where γ = N2/N1. The
phase diagram was constructed under fixed f1 = 0.23, χN1 = 20, and
1:1 corona block length ratio featuring the formation of the HCPb
phase composed of large spheres packing on a HCP lattice and small
spheres located at those vertices of the HCP WSCs with larger
interstitial voids. A schematic of the novel HCPb phase is also
included, along with the phase diagram. Reprinted with permission
from ref 105, Copyright 2022 American Chemical Society.
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opens up at γ ≈ 2.5, gradually tapers off after reaching the
maximum width (Δϕ1 ∼ 0.12) at γ ≈ 2.62, and eventually
disappears at γ ≈ 4.05. In the HCPb phase, the larger spheres
pack on a HCP lattice, while the smaller spheres are located at
the vertices of the HCP WSCs with larger interstitial voids
(Figure 9). Similar “binary” phases where the larger spheres sit
on FCC, BCC, C14, and C15 lattices interspersed by smaller
spheres locating at the interstitial positions were also found as
metastable phases. The HCPb phase is stable when the reduced
chain stretching free energy of the longer copolymers
outweighs the extra interfacial free energy induced by forming
small spheres to fill the interstitial voids. The discovery of the
HCPb phase unveiled another type of chain arrangement in
binary A1B1/A2B2 blends, consisting of copolymers with a great
difference in degrees of polymerization, i.e., forming larger and
smaller spheres and packing in a way that conforms to
Horsfield close packing model.105,106 It would be interesting to
confirm the formation of this novel HCPb phase in
experiments.
Besides stabilizing complex spherical packing phases, it has

been predicted that binary mixtures of A1B1/A2B2 diblock
copolymers also offer opportunities to stabilize novel
bicontinuous phases.107 The bicontinuous phases self-
assembled by AB-type copolymers are characterized by two
intertwining networks composed of the minority A or B blocks
immersed in the majority B- or A-rich matrix. There exist
several bicontinuous morphologies such as the double gyroid

(DG), double diamond (DD), and plumber’s nightmare (P)
phases, categorized by the number of struts jointed at each
node, p. Among all the candidate morphologies, the DG phase
with p = 3 is the only equilibrium bicontinuous morphology
for neat AB diblock copolymer melts.108,109 The stabilization of
DG (p = 3) over DD (p = 4) and P (p = 6) is attributed to the
higher excessive chain stretching at the nodes in structures
with larger p, which, regarded as a form of packing frustration,
is induced by the competition between the preference of
having uniform interfacial curvature and the need to maintain a
constant monomer density.110 One way to alleviate such
packing frustration is by introducing homopolymers as space
fillers, which could give rise to the stabilization of bicontinuous
structures with higher p.25,111−114 However, this blending
scheme is limited by the small amount of homopolymers that
could solubilize into the polymeric domains, thus making the
blends prone to macrophase separation between the ordered
phases and the homopolymer-rich disordered phase and
prohibiting the formation of the desired phases in a large
range in the phase space.
In comparison to homopolymer additives, appropriate block

copolymer additives may be capable of accessing the
bicontinuous morphologies with high p over a larger blend
composition range because of their dual role as homopolymer-
like fillers and cosurfactants. Based on this idea, Lai and Shi107

examined the phase behavior of binary mixtures of A1B1/A2B2
diblock copolymer blends in selected regions in the phase

Figure 10. (a) SCFT phase diagram of conformationally symmetric A1B1/A2B2 binary blend in the ϕ̅HL(= ϕ2) − χNG(= χN1) plane with fixed fA1 =
0.34, fA1 = 0.95 and α = N2/N1 = 2.32 featuring the formation of DD and P phases with sizable stability windows, (b) the variation of the volume
fraction ϕHL(r) of the A2B2 copolymers as going away from the center of a node/strut along the [111]/[100] direction for the P phase and (c) the
AB-interfacial mean curvature for (c.1) A1B1/A2B2 and (c.2) A1B1/A2 blends as well as (c.3) the A2B2 copolymer density projected on one
representative node of the P phase with ϕ2 = 0.16, f1 = 0.34, fA2 = 0.95 (for the A2B2 copolymers), χN1 = 25, and α = 2.32. Reprinted with
permission from ref 107, Copyright 2021 John Wiley and Sons.
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space and showed that both the DD and P phases could be
stabilized with sizable stability windows. The binary A1B1/A2B2
phase diagram constructed by Lai and Shi featuring the
emergence of the DD and P phases is shown in Figure 10a,
which is on the ϕ̅HL(= ϕ2) − χNG(= χN1) plane with fixed fA1
= 0.34, fA2 = 0.95, and α = N2/N1 = 2.32. The key observation
from their study is that the added homopolymer-like AB
diblock copolymers with fA2 = 0.95 can act as fillers and
cosurfactants at the same time. When the homopolymer-like
diblock copolymers ( fA2 = 0.95) are added into the DG-
forming copolymers, order−order phase transition sequences

of DG → DD and DG → P are induced in the ranges of higher
and lower χNG, respectively. Compared to the A1B1/A2
blends,25,111−113 the blend composition range over which the
DD and P phases are stable in the A1B1/A2B2 blends is
generally larger, which is advantageous as a platform to obtain
these phases in experiments. Another feature revealed by
Figure 10a is the re-entrant transition to the DG phase upon
further increasing ϕ̅HL, which replaces the transition to the
dominant order−disorder coexistence region and finally to the
homopolymer-rich disordered phase generally occurring in the
A1B1/A2 blends. The behavior of the copolymer additives in

Figure 11. (a) SCFT phase diagram of the AB/B′C blend mimicking the eutectic phase diagram of a binary metallic alloy, (b) SCFT phase diagram
of the AB/CD (the AB and CD chains are labeled by 1 and 2, respectively) binary mixture in the ϕ2 − χBDN plane with ϵ1 = ϵ2 = 1.0, f1 = 0.18, f 2 =
0.21, γ = N2/N1 = 1.0, and all other positive χN fixed at 30, (c) SCFT phase diagram similar to that in (b) but with ϵ1 = 1, ϵ2 = 2.0, and f1 = f 2 =
0.19, and (d) schematic plots of all the stable binary alloy phases that have so far been discovered in the AB/CD blends (except C15, who has only
been metastable in the phase space explored). Note that in (b) and (c), subscripts A and C indicate that these phases contain core−shell-structured
AC-mixed domains with a higher A and C content, respectively. Part (a) is reprinted with permission from ref 115, Copyright 2022 American
Chemical Society; (b), (c), and (d) are adapted with permission from ref 117.
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the binary blends was examined by detailed analyses of their
spatial distribution.107 The homopolymer-like behavior could
be recognized in Figure 10b, which shows the variation of the
volume fraction ϕHL(r) of the A2B2 copolymers as going from
the center of a node/strut along the [111]/[100] direction for
the P phase. Both curves peak at zero, suggesting the
segregation of the A2B2 copolymers inside the A-rich networks
especially at the nodes. This helps to reduce the excessive
stretching of the host copolymers. Furthermore, the authors
also showed that, in comparison to homopolymer additives,
the copolymer additives accumulate in the regions on the AB
interface with reversed curvature (curving toward the majority
blocks). This region is disfavored by the DG-forming diblocks,
and the segregated A2B2 copolymers help to alleviate this
frustration due to the much longer A blocks. This modification
of the interfacial curvature further benefits the conformational
entropy for the high-p bicontinuous phases and, thus, enhances
their stability. This cosurfactant behavior is demonstrated in
Figure 10c, where the minimum curvature is much lower in the
A1B1/A2B2 blends (Figure 10c.1) than that in the A1B1/A2
blends (Figure 10c.2) with A2 homopolymer having the same
N as the A2B2 copolymer, and the segregation of the copolymer
additives (Figure 10c.3) coincides with the regions with the
lowered curvature. The cooperation between the homopol-
ymer-like filler and cosurfactant effects explains the superiority
of the A1B1/A2B2 over A1B1/A2 binary mixtures in stabilizing
the novel bicontinuous phases.

■ BEYOND BINARY A1B1/A2B2 BLENDS:
MESOATOMIC ALLOYS

The recent progress reviewed above has focused on binary
blends composed of A1B1 and A2B2 diblock copolymers.
Despite their simplicity, this system exemplifies the possibility
to obtain desired ordered phases via rational molecular
engineering based on design principles elucidated from the
extensive experimental and theoretical investigations. One
obvious extension of this research topic is the study of binary
blends composed of block copolymers with more than two
types of chemically distinct blocks, as well as going beyond the
simple diblock copolymer architecture. There is an infinite
number of possibilities in formulating such block copolymer
blends with great opportunities to access desired morpholo-
gies. Efforts have been made to investigate the phase behaviors
of more complicated binary diblock copolymer blends, which
will be of our focus in this section.
Although the stability of Laves phases in the A1B1/A2B2

diblock copolymer blends is anticipated according to SCFT
calculations, their formation in many of the theoretically
predicted regions has not been successfully confirmed in
experiments.98 In search of a more robust approach to stabilize
the Laves phases, Magruder et al. proposed to go beyond the
A1B1/A2B2 formulation and use binary blends composed of
AB/B′C diblock copolymers, where the interaction parameters

and block compositions were judiciously adjusted to favor the
formation of binary Lave phases composed of A and C spheres
mimicking crystals from metallic alloys.115 The phase diagrams
obtained by SCFT calculations highly resemble the eutectic
phase diagrams of binary alloys, where a narrow composition
window for the C14 phase is present (Figure 11). The stability
of the C14 phase results from the ratio between the degrees of
polymerization of the BCC-forming AB and B′C copolymers
(NB′C/NAB = 1.3,and fA = f C = 0.2), which were purposely
designed to match the volume asymmetry of the Laves phases.
Soon after, Case et al. demonstrated that this blending system
enables a decoupled control over the polyhedral imprinting of
the inequivalent particles via conformational asymmetry.116

Particularly, enhancing the polyhedral imprinting by increasing
the conformational asymmetry for the larger or smaller
spherical particles in Laves phases proved to be beneficial or
detrimental to their stability, respectively.
As pointed out by Case et al.,116 one feature hindering

practical applications of the AB/B′C blends in producing the
Laves phases is the strong tendency for the system to
macrophase separate. This tendency could be suppressed by
introducing some associations between the corona blocks such
as hydrogen bonding. In a recent SCFT study, Xie et al.117

considered a more complicated binary blending system
composed of AB and CD diblock copolymers. Their system
is similar to the AB/B′C system studied by Magruder et al. and
Case et al. but with adjustable compatibility between the
corona blocks, i.e., the B and D blocks. In their calculations,
the enhanced miscibility between the B and D blocks was
modeled by using a negative χBD. Two phase diagrams in the
ϕ2 − χBDN plane, where ϕ2 is the concentration of the CD
copolymers and χBDN quantifies the favorable association
between the corona blocks, are shown in Figure 11b and c. A
list of binary alloy phases is also included in Figure 11d. In the
phase space explored by Xie et al.,117 stability windows for all
of the binary crystals in Figure 11d have been discovered in the
AB/CD blends via SCFT, except the MgCu2 (C15) phase
which has only been metastable. Interestingly, a weak corona
block association slightly enlarges the C14 window, while a
stronger association stabilizes other mesoatomic alloy phases in
place of the C14 phase, as could be seen in both Figure 11b
and c. These results are still preliminary, and systematic studies
covering more regions in the phase space of the binary blends
composed of AB and CD diblock copolymers are required in
order to understand the rich phase behavior of this system.
It is worth mentioning that although the negative χ approach

is commonly used, the hydrogen bonding effect should be
modeled as reversible intermolecular complexations.118 By
using the AB/C binary blends with hydrogen-bonded A and C
blocks as a model system, Dehghan and Shi showed that both
approaches produced qualitatively correct phase behavior in
comparison to experiments, but only the complexation model
predicted the correct lamellar spacing in the strong hydrogen

Figure 12. Schematics of (a) BC cylinders in A/D lamellae, (b) lamellae composed of BC-mixed layers and B/D-separated layers, (c) three-layer
lamellae, and (d) core−shell cylinders formed in supramolecular AC/CD binary blends.
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bonding regime.119 Compared to the more complicated
intermolecular complexation model, the simplicity of the
negative χ model makes it the preferred approach to obtain a
qualitative understanding of the phase behavior in many cases.
Experimentally, the role played by hydrogen bonding in the

phase behaviors of block copolymer blends has been studied in
a series of publications by Kuo and co-workers,50,120−124 as
well as by other research groups.125,126 Some peculiar self-
assembled structures have been reported by these authors for
supramolecular binary diblock copolymer blends involving
hydrogen bonding. For instance, highly asymmetric lamellar
phase having thin and thick layers126 could be formed in a AB/
A′C blend where B and C are compatibilized by hydrogen
bonding. Another example is an AB/CD blend with B and C
associated via hydrogen bonding, which is capable of forming
hierarchical structures including BC cylinders in A/D lamellae
and lamellae composed of BC-mixed layers and B/D-separated
layers, as illustrated schematically in Figure 12a and b,
respectively.125 Moreover, when hydrogen bonding exists
between more than one pairs of blocks but with different
strengths, the competing interactions could also drive the
system to form novel phases such as three-layer lamellae and
core−shell cylinders, as illustrated schematically in Figure 12c
and d, respectively.120−122,124 Many of these structures also
exist in self-assembled linear triblock copolymers;127,128 thus,
the supramolecular blending strategy provides a simple route
to access phases whose formation would otherwise require
more complicated chain architectures. Theoretical studies of
these systems by various methods were also conducted,129−131
and part of the experimental observed phases have been
predicted.130 However, a direct and systematic comparison
between theory and experiments is still lacking. Exploring the
phase behaviors of polymeric blends containing supra-
molecular block copolymers is an interesting topic with great
opportunities to explore the formation of more exotic
morphologies.

■ CONCLUSIONS
Due to the presence of block copolymers, polymeric blends
containing block copolymers possess the ability to self-
assemble into various ordered phases. Compared with
multiblock copolymers that would require sophisticated
synthetic techniques, block copolymer blends provide a flexible
and cost-effective route to obtain polymeric systems containing
many chemically distinct components, which, in turn, could be
used as a platform to fabricate structured materials with desired
morphologies. On the other hand, mixing different polymeric
components together introduces many new ingredients into
the system, resulting in an enormously enlarged phase space. In
particular, the macrophase separation of the different
components is an eminent feature of polymer blends. Together
with the additional system parameters, the phase behaviors of
polymeric blends containing block copolymers become
extremely complex. Comprehensive studies of the phase
behaviors of block copolymer blends using a combination of
experimental and theoretical approaches are required to gain a
good understanding of the phase behaviors of these systems.
A polymer blend can contain any number and type of

components, resulting in unlimited formations. The simplest
block copolymer blends are binary blends obtained by mixing
two different, AB and CD, diblock copolymers. Most of the
work reviewed in this article is further restricted to the case of
binary mixtures of A1B1 and A2B2 diblock copolymers. It is

important to regulate the miscibility of the two diblock
copolymers such that macroscopic phase separation of the
system is suppressed, which could be achieved by judiciously
selecting the system parameters, such as the relative molecular
weights and the block compositions. The phase behavior of
this seemingly simple system is surprising complex. Besides
self-assembling into the stable phases of AB diblock copolymer
melts, the A1B1/A2B2 binary blends can form ordered phases
that are not equilibrium ones for the parent diblock copolymer
melts.
Extensive experimental and theoretical studies have revealed

that the function of the added A2B2 diblock copolymers can be
classified as fillers and cosurfactants, depending on their spatial
distribution in the polymeric domains formed by the A1B1
diblock copolymers. The spatial distribution of the A2B2
diblocks depends on the A block composition or volume
fraction fA2. The asymmetric homopolymer-like added diblocks
with fA2 ∼ 0 or 1 would predominantly distribute in the central
regions of the B or A domains, acting as fillers to regulate the
volume of the corresponding domains. On the other hand, the
symmetric added diblocks with fA2 ∼ 0.5 are most likely to
localize at the AB interfaces acting as cosurfactants to regulate
interfacial properties. These behaviors will be further modified
by the molecular weights of the two diblock copolymers.
Taken together, the added diblock copolymers act synergisti-
cally to alleviate the packing frustration of the polymeric
domains and therefore stabilize structures with very different
domain volumes such as the Laves C14 and C15 phases or
structures with very different interfacial curvatures such as the
double diamond and plumber’s nightmare networked
structures. The principles governing the self-assembly of
A1B1/A2B2 diblock copolymer blends could be extended to
other blending systems such as mixtures of AB and CD diblock
copolymers, thus providing a solid foundation for further
investigation of the more complex polymeric blends containing
block copolymers.
Compared with the simple case of A1B1/A2B2 diblock

copolymer blends, binary mixtures of AB/CD diblock
copolymers, or more complex variations such as mixtures of
diblock and triblock copolymers,132,133 could provide more
opportunities to fabricate novel nanoscopic structures via self-
assembly. One example is the formation of superlattices
composed of A and C spherical domains. While it is possible to
form such superlattices by using BABCB pentablock
copolymers,19 it would be more efficient and cost-effective
by using block copolymer blends.115−117 On the other hand,
different block copolymers, such as AB and CD diblock
copolymers, tend to macrophase separate due to the chemical
differences between the AB and CD blocks. One possible
solution to this problem is to introduce attractive interactions
between the different types of block copolymers. For example,
introducing hydrogen bonding between monomers B and D
could increase the miscibility of AB and CD diblock
copolymers, thus, encouraging the formation of mixed phases
and providing opportunities to form novel morphologies.
There are some major challenges for the theoretical and

experimental study of the equilibrium phase behaviors of
binary blends of diblock copolymers. Due to the great
complexity of the binary blends of diblock copolymers,
particularly the AB/CD blends, a systematic experimental
exploration of their phase space is a daunting task. On the
other hand, obtaining informative guidance on the phase
behaviors of such systems by using theoretical frameworks
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such as SCFT relies on the choice of candidate phases, which is
a well-known difficult task in the design of complex multiblock
copolymers.134 The interplay between microphase and macro-
phase separations makes the design of multicomponent block
copolymer systems even more challenging. To overcome these
obstacles, it is important to obtain insights and establish an
understanding of the self-assembling mechanisms by a
concerted collaboration of theorists and experimenters. Such
an effort could achieve more precise morphological control
over AB/CD or even more complicated polymeric blends.
In this feature article, we have given a brief account on the

progress made in the past decades in the study of the phase
behaviors of binary blends of diblock copolymers. We have
mainly focused on the simple system composed of two, A1B1/
A2B2, diblock copolymers that differ only by their molecular
weights and block compositions. The studies of this system
have led to a good understanding of the principles governing
the self-assembly of polymeric blends and design rules to
alleviate frustrations in the self-assembled structures. We hope
this review will stimulate further studies of the phase behaviors
of polymeric blends containing block copolymers.
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Preface

In this chapter, we investigate the formation of complex Frank-Kasper phases in binary

blends of A1B1 copolymers and A2 homopolymers. Recent experiments on A1B1/A2

blends revealed a novel morphological progression: σ → C14 → C15 phases [70, 77].

SCFT calculations based on the Gaussian chain model confirmed these observations

[90]. While previous SCFT studies indicated a positive correlation between particle-size

differences in equilibrium morphologies and the capacity to accommodate homopolymers,

the formation and transition mechanisms of these structures remain unclear. Additionally,

a significant portion of the phase space of this system remains unexplored.

In our study, we address these gaps by systematically exploring the phase behaviour

of A1B1/A2 blends. Instead of the standard SCFT based on Gaussian chains, we adopt

the freely-jointed chain model. This allows us to assess if the theoretical results are

sensitive to the choice of polymer chain model and also provides a better description of

low-molecular-weight or short polymers. Through the construction of phase diagrams with

various parameters, the dependence of the phase behaviour on the different parameters is

uncovered. Moreover, we perform a detailed analysis of the homopolymer distribution

and its effects on the domain properties of different phases, which sheds light on the

mechanisms behind the formation of complex spherical phases and the novel morphological

transitions observed in experiments.
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The formation and relative stability of spherical packing phases in binary blends composed of AB- 
diblock copolymers and A-homopolymers are systematically studied using the self-consistent field theory 

applied to the freely-jointed chain model of polymers. Phase diagrams with different model parameters 
of the blends are constructed, revealing that the emergence of various complex spherical packing phases, 
including the Frank-Kasper σ phase and the Laves C14 and C15 phases, could be induced by the addition 

of the homopolymers. For BCC-forming diblock copolymers, a phase transition sequence of BCC → σ → 

C14 → C15 is predicted when the homopolymer concentration is increased. An analysis of the properties 
of A-domains reveals that their sizes are regulated by the differential localization of A-homopolymers. 
The resultant spherical domains of different sizes is a key factor to stabilize complex spherical packing 

phases, especially the Laves C14 and C15 phases. Furthermore, the phase behaviour is strongly affected 

by the chain length of the homopolymers. In particular, the addition of short homopolymers results in 

an expanded region of the cylindrical phase, whereas the addition of long homopolymers stabilizes the 

complex spherical packing phases. The theoretical results from current study are in good agreement with 

recent experiments and theory, and shed light to the formation of complex spherical packing phases in 

other self-assembling soft matter systems. 

Introduction 

The packing problem is a fascinating topic with a long history that 
could be traced back to the early 17th century [1] . One example is 
the Kepler problem concerning the ordered close packing of hard 

spheres. It is now well-established that, for identical hard spheres 
in three-dimensional space, the close packing structures are the 
face-centered cubic (FCC) and hexagonal close packing (HCP) 
lattices. The packing problem becomes drastically complicated 

∗ Corresponding author. 
E-mail addresses: xiej33@mcmaster.ca (J. Xie), shi@mcmaster.ca (A.-C. Shi). 

Received 3 November 2020; Received in revised form 18 December 2020; Accepted 20 
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if the objects being packed are deformable and/or nonuniform, 
resulting in multiple possible solutions depending on the property 
of the system [1] . In particular, the Frank-Kasper (FK) phases, 
composed of at least two distinct types of particles with different 
coordination numbers, i.e. CN = 12, 14, 15 or 16, represent a class 
of possible solutions to the packing problems of nonidentical 
and/or soft spheres [2,3] . 

In hard condensed matter, complex spherical packing phases 
are commonly observed in metallic alloys, in which atoms of 
different sizes pack into ordered structures [4] . In soft condensed 

matter, the spherical domains are usually deformable. Therefore, 
complex spherical packing phases are expected to occur. Indeed, 

2666-5425/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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in recent years complex spherical packing phases, e.g. the 
FK A15, σ phases and Laves C14, C15 phases, have been 

experimentally observed in various soft matter systems including 
block copolymers (BCPs) [5–17] , supramolecular dendrimer 
systems [18–20] , giant surfactants or shape amphiphiles [21–
23] and aqueous surfactant solutions [24–27] . Along with the 
experimental studies on polymeric systems containing block 
copolymers, a considerable number of theoretical studies have 
been carried out aiming to reveal the formation mechanisms of 
these novel and complex spherical packing phases [28–37] . 

In soft matter systems with long-range order, the “atoms” or 
particles are usually self-assembled from smaller molecules such 

as block copolymers or surfactants. In order to form a crystalline 
structure, the particles need to be deformed from a perfect sphere 
towards the polyhedral shape resembling the inclosing Wigner- 
Seitz cell (WSC) in order to fill out the space with an uniform 

spatial density [38] . The average sphericity can be measured by the 
average isoperimetric quotient ( IQ ) of the WSCs. The deformation 

of the self-assembled particles away from their ideal spherical 
shape costs a free energy penalty so that structures with rounder 
WSCs is preferred from this perspective. A generic feature of the 
complex FK phases is that their Wigner-Seitz cells have higher 
average sphericity than those of the classical spherical phases 
such as body-centered cubic (BCC) phase [32,38] . Based on this 
argument, it has been proposed that one possible mechanism to 

stabilize FK phases is to enlarge the particles so that larger particle 
deformations are required to form the ordered packing, whereas 
at the same time to prevent the system transferring to non- 
spherical (cylindrical) phases. For example, it has been predicted 

theoretically [29] and confirmed experimentally [6,7,13] that 
introducing conformational asymmetry for diblock copolymers 
is one of such approaches to stabilize the FK A15 and σ phases 
in AB diblock copolymer melts. At the same time, theoretical 
results have demonstrated that the Laves C14 and C15 phases 
are metastable phases of AB diblock copolymer melts [14] . It is 
important to note that the complex spherical packing phases 
contain a number of symmetrically inequivalent WSCs with 

different volumes. The volume difference of the different cells is 
relatively small for the FK A15 and σ phases but becomes quite 
large for the Laves C14 and C15 phases. Therefore, the formation 

of the Laves phases in monodisperse block copolymer melts is not 
favoured because it requires larger volume exchange among the 
spherical domains. 

An effective route to alleviate the free energy cost of domain- 
size variation in block copolymers is to blend different polymeric 
species into the system. For example, it has been shown 

theoretically [30,39] and experimentally [15] that a large region 

of complex spherical packing phases including FK A15 and σ

and Laves C14 and C15 phases appears in binary AB/AB blends 
composed of AB diblock copolymers with different molecular 
weights and compositions. Furthermore, stable Laves C14 and/or 
C15 phases have been observed in experiments carried out 
by Baez-Cotto et al. [26] on oil-containing aqueous surfactant 
solutions and by J. Mueller et al. [17] on binary blends composed 

of AB diblock polymers and A-homopolymers. One common 

feature of these two systems is the existence of a component 
that is compatible with, and localizes inside, the core of the 

spherical domains thus regulating the volume of the particles. 
Specifically, it has been argued that the uneven distribution of 
the swelling component (oil or homopolymer) facilitates the 
formation of domains with sizes commensurate with the structure 
of the C14 and C15 phases. This qualitative argument could be 
made concrete by quantitative theoretical studies. Indeed the 
phase behaviour of binary blends composed of AB-type block 
copolymers and A-homopolymers has been studied theoretically 
using the self-consistent field theory (SCFT) applied to Gaussian 

chain models by Zhao et al. for AB 4 /A blends [33] and very 
recently by Cheong et al. [34] for AB/A blends. These theoretical 
studies provide a quantitative confirmation of the mechanism 

associated with homopolymer localization in different domains. 
Predictions from these theoretical studies are in good agreement 
with the experimentally observed phase transition sequences. 
Furthermore, these studies also considered the role played by the 
molecular weight of the homopolymer additives on the phase 
behaviour of the blending system. It has been found that the 
phase behaviour of the AB/A blends depends on the chain length 

ratio ( α) between the A-homopolymer and the A-block of the 
copolymer. In agreement with experiments, the theoretical phase 
diagrams reveal that the FK σ, Laves C14 and C15 phases are 
stabilized in the phase portrait in the case of α ≥ 1 but they 
disappear and replaced by hexagonal close packing cylinders 
(HEX) in the case of α < 1 . 

The aforementioned recent experimental observations and 

theoretical calculations have offered a good insight to the 
formation principles of complex spherical packing phases in 

various block copolymer blends including binary AB/AB and 

AB/A blends. For the simplest model system composed of AB- 
diblock copolymers and A-homopolymers, the recent SCFT study 
of Cheong et al. [34] provided a timely examination on the 
effect of homopolymer additives to the phase behaviour of 
the system. However, a systematic theoretical investigation with 

phase diagrams covering a larger parameter space for polymer 
blends containing various block copolymers is still lacking. It 
is therefore desirable to carry out a systematic theoretical study 
for polymeric blends containing block copolymers that exhibit 
various complex spherical packing phases. Such a systematic study 
would provide a comprehensive understanding of the complex 

spherical packing problem in soft matter systems. 
In the current work, we carry out a systematic study of the 

phase behaviour of binary AB/A blends composed of AB diblock 
copolymers and A-homopolymers using the self-consistent field 

theory applied to the freely jointed chain model. Compared with 

the commonly used Gaussian chain model, the freely-jointed 

chain (FJC) model has a great computational advantage when 

proper numerical methods are adopted [40,41] . More importantly, 
the FJC model provides a more proper description of experimental 
systems containing low-molecular weight polymers. The FJC 

model is characterized by a finite segment number N and an 

interaction potential with a finite interaction range. It approaches 
the Gaussian chain model at the large- N limit. Therefore, the 
theoretical results obtained from the FJC model should be 
consistent with those based on Gaussian chain model. We focus 
on the effects of the following four parameters on the phase 
behaviour of the AB/A blends: (1) the conformational asymmetry 

2 

Ph.D. Thesis – Jiayu Xie; McMaster University – Physics & Astronomy

75



Giant, 5, 2021, 100043 

Fu
ll-

le
ng

th
 
ar

ti
cl

e 

ε of the diblock copolymers, (2) the average concentration φ2 of 
the A-homopolymers, (3) the chain length ratio α between that 
of the A-homopolymer and the A-block of the diblock copolymer, 
and (4) the volume fraction of A-block f . We will start with the 
construction of phase diagrams in the χAB − φ2 plane in a large 
range of χAB from 0.15 to 0.5 and φ2 from 0 to 0.17 with different 
values of ε, α and f . The phase diagrams will be compared 

with the experimental phase portraits reported by Mueller et al. 
[17] and the theoretical phase diagrams of Cheong et al. [34] . 
Next, we will provide a detailed examination on the partitioning 
of the A-homopolymers in different WSCs for each phase, and 

the properties of the enclosing minority domains. A free energy 
analysis of the different phases is also given, thus shedding light 
on the mechanisms regulating the phase behaviour of the system. 

Theoretical Model and Method 

Our theoretical model is a binary blend composed of n 1 linear AB- 
type diblock copolymers and n 2 A-homopolymers in a volume 
V . Each AB diblock copolymer is composed of N A A-segments 
and N B B-segments, thus the total number of segments is N = 

N A + N B with N − 1 bonds. The volume fractions of the A 

and B blocks are given by f A = f and f B = 1 − f , respectively. 
Each A-homopolymer has N Ah A-segments, the ratio between 

the length of the homopolymer and A-block of the diblock 
copolymer is α = N Ah /N A = N Ah / f N. We assume a uniform 

segment density ρ0 so that we have ρ0 V = n 1 N + n 2 α f N according 
to incompressibility condition. The average concentrations of the 
AB diblock copolymers and the A-homopolymers are given by, 

φ1 = 

n 1 N 

ρ0 V 

, φ2 = 1 − φ1 = 

n 2 α f N 

ρ0 V 

. 

The interaction potential between the segments can be 
divided into bonded and non-bonded contributions. The bonded 

potential b α (R i ) and non-bonded interaction energy U are chosen 

to have the form, 

b α (R i ) = −k B T ln δ(R i − b α ) , 

U = k B T ρ0 χAB 

∫ 
u (| � r −� r ′ | ) ̂  φA ( � r ) ̂  φB ( � r ′ ) d � r d � r ′ , 

where χAB is the Flory-Huggins parameter quantifying the 
interaction between A and B segments, b α is the Kuhn length 

of the α-segment, ˆ φα ( � r ) = (1 /ρ0 ) 
∑ 

i δ( � r −� r αi ) , is the density 
(concentration) operator of α-segment with α= A or B and u (| � r −
� r ′ | ) is the interaction potential function accounting for the finite 
range interactions. 

For polymer blends, it is convenient to formulate the theory 
in grand canonical ensemble where the thermodynamic control 
parameters are the chemical potentials of the AB-copolymers, 
μ1 , and the A-homopolymers, μ2 . Within the scope of the self- 
consistent field theory [42] , the grand potential 	 of the system 

can be expressed as, 

N	

ρ0 V k B T 
= −e μ1 /k B T Q 1 − e μ2 /k B T Q 2 − 1 

V 

∫ 
d � r [ ω A ( � r ) φA ( � r ) + ω B ( � r ) φB ( � r ) 

−χAB N 

∫ 
u (| � r −� r ′ | ) φA ( � r ) φB ( � r ′ ) d � r ′ + η( � r ) ( 1 − φA ( � r ) − φB ( � r ) ) 

]
, (1) 

where the quantity Q κ with κ= 1 or 2 denotes the single chain 

partition function of the AB-copolymer and the A-homopolymer, 
respectively. φα ( � r ) is the ensemble average of ˆ φα ( � r ) , ω α ( � r ) is 
the conjugate field of the α-segments and η( � r ) is the Lagrange 

multiplier that enforces the incompressibility condition. The total 
A-concentration is given by, 

φA ( � r ) = φAd ( � r ) + φAh ( � r ) , 

where φAd ( � r ) and φAh ( � r ) are the concentrations of the A-segments 
from the AB diblock copolymers and the A-homopolymers, 
respectively. Minimizing the grand potential with respect to the 
concentrations and conjugate fields leads to the following set of 
self-consistent equations, ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ω A ( � r ) = χAB N 

∫ 
u (R ) φB ( � r − � R ) dR + η( � r ) , 

ω B ( � r ) = χAB N 

∫ 
u (R ) φA ( � r − � R ) dR + η( � r ) , 

φA ( � r ) = 

e ω A ( � r ) 
N 

N A ∑ 

i =1 
q 1 (i, � r ) q 

† 
1 (i, � r ) , 

+ e μ/k B T e ω A ( 
� r ) 

N 

N Ah ∑ 

i =1 
q 2 (i, � r ) q 

† 
2 (i, � r ) , 

φB ( � r ) = 

e ω B ( � r ) 
N 

N B ∑ 

i = N A +1 
q 1 (i, � r ) q 

† 
1 (i, � r ) , 

φA ( � r ) + φB ( � r ) = 1 , 

(2) 

where � R = � r −� r ′ and R = | � R | . We have used the incompressibility 
condition to set the chemical potential μ1 for the diblock 
copolymers to 0, so that the subscript of μ2 has been dropped 

for simplicity. Once the SCFT equations (Eqs 2 ) are solved, the 
average concentrations of the different components can be simply 
calculated by, φ1 = Q 1 and φ2 = 1 − φ1 . In Eqs 2 , the forward 

propagator q (i, � r ) is calculated iteratively by, 

q κ ( � r i +1 , i + 1) = e −ω α ( � r i +1 ) 
∫ 

d � r ′ i g α ( � r i +1 −� r i ) q κ ( � r i , i ) , (3) 

where g α ( � r i +1 −� r i ) is the bond transition probability and it has the 
form, 

g α ( � R i ) = 

1 

4 πb 2 α
δ(| � R i | − b α ) , 

where � R i = � r i +1 −� r i . The initial condition of the propagator 
is q κ ( � r , 1) = exp [ −ω α ( � r )] . The computation of the backward 

propagator is performed similarly with iterations running in the 
opposite direction. Finally, the single chain partition function Q κ

is determined by, 

Q κ = 

1 

V 

∫ 
d 

→ 

r N κ q κ
(→ 

r N κ , N κ

)
. (4) 

One efficient numerical method to solve the above SCFT 

equations is the pseudo-spectral method. In the pseudo-spectral 
scheme, firstly, the iteration equation Eq. 3 is performed in real 
space and Fourier space alternatingly by transferring q ( � r i , i ) forth 

and back between these two spaces, 

q κ ( � r i +1 , i + 1) = e −ω α ( � r i +1 ) F 

−1 
{ 
g α ( � k ) F 

{
q κ ( � r i , i ) 

}} 
, 

= e −ω α ( � r i +1 ) F 

−1 
{ 
g α ( � k ) q κ ( � k , i ) 

} 
. 

(5) 

Secondly, the first two equations in Eq. 2 are performed in Fourier 
space, 

ω 

out 
A ( � k ) = χAB NφB ( � k ) u ( � k ) + η( � k ) , 

ω 

out 
B ( � k ) = χAB NφA ( � k ) u ( � k ) + η( � k ) . 

(6) 

Finally, the grand potential density is also calculated in Fourier 
space by, 

N	
ρ0 V k B T 

= −e μ1 /k B T Q 1 − e μ2 /k B T Q 2 − ∑ 

� k 

[ 
ω A ( � k ) · φA ( � k ) + ω B ( � k ) · φB ( � k ) 

−χAB Nu (k ) φA ( � k ) · φB ( � k ) 
] 
, 
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Fig. 1 

The φA ( � r ) = φB ( � r ) isosurface plots and representative WSCs for the complex spherical packing phases. (a)A15, (b) σ, (c)C14 and (d)C15. Each WSC is color coded and 
numbered, along with its coordination number (CN) for each type of particle. 

(7) 

where the dot product between two functions in k-space is defined 

by, 

f ( � k ) ·g( � k ) = f ( � k ) g(−� k ) . 

The period of each ordered structure needs to be optimized. 
This optimization is carried out simultaneously with the other 
SCFT equations by using the variable-cell Anderson-mixing 
scheme [43–45] with a modified stress residual due to the different 
chain model, 

d 
(

N	
ρ0 V k B T 

)
/dθl = −

2 ∑ 

κ=1 
e μκ/k B T 

∑ 

� k 

dg α (k ) 
dk 2 

dk 2 
dθl 

N κ−1 ∑ 

i =1 
q κ

(
� k , i 

)
·q † κ

(
� k , i + 1 

)
+ χAB N 

∑ 

� k 

du (k ) 
dk 2 

dk 2 
dθl 

φA ( � k ) ·φB ( � k ) . 

(8) 

For the freely-jointed chain model, the bond transition 

probability and its Fourier transform are given by, 

g(R ) = 

1 

4 πb 2 
δ(R − b) , g( k ) = 

sin ( kb) 
kb 

. 

The non-bonded finite range interaction potential is assumed to 

have the Gaussian form, 

u (R ) = 

(
3 

2 πr 0 2 

) 3 
2 

e 
− 3 R 2 

2 r 2 0 , u (k ) = e −
k 2 r 2 0 

6 , 

which is normalized over the whole space, i.e. 
∫ 

u (R ) d � R = 1 . 
In the current study we fix the number of segments of each 

AB-copolymer chain to be N AB = N= 80 and the interaction 

range to be r 0 = 

√ 

3 b A , with which the FJC behaves closely as 

Fig. 2 

Phase diagram in the χAB − φ2 plane with f = 0 . 2 , ε= 1.25 and α= 1.0. The 
phase diagram is dominated by a large two-phase region. However, a rich 
phase behaviour featuring numerous order-order transitions is found in the 
block copolymer rich region. Detailed phase boundaries between the ordered 
phases are shown in Fig. 3 (c). 

Gaussian chain with a slight shifts of the phase boundaries [40] . 
Furthermore, the conformationally asymmetry of the AB diblock 
copolymers is characterized by the parameter ε = b A /b B . 

Results and Discussion 

Phase behaviour of the AB/A blends 
The phase behaviour of the AB/A blends is controlled by a 
number of parameters. In what follows the theoretical results are 
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Fig. 3 

Phase diagrams in the χAB − φ2 plane with (a) f = 0 . 2 , ε= 1.0, α= 1.0 (b) f = 0 . 2 , ε= 1.0, α= 0.5625 (c) f = 0 . 2 , ε= 1.25, α= 1.0, (d) f = 0 . 2 , ε= 1.25, α= 0.5625. The 
unlabeled regions are the two-phase coexistence region between two adjacent single phases. This set of phase diagrams highlights the effects of varying α and ε. 

summarized in a set of phase diagrams constructed to cover a large 
region of the parameter space of the system. Specifically, phase 
diagrams are presented in the χAB − φ2 plane for different values 
of f , ε and α. The phase diagrams are constructed by comparing 
the grand potential density of different candidate phases. The set 
of candidate ordered phases used in the current study includes 
the complex spherical packing phases, i.e. A15, σ, C14 and C15 

shown schematically in Fig. 1 , and the classical ordered phases, 
i.e. lamellae (L), BCC, HCP, HEX and the double gyroid (DG). In 

order to focus on the spherical packing phases, the A-block volume 
fraction of the AB diblock copolymers is chosen to be the minority 
block with f = 0 . 15 , 0.20 and 0.25. At the same time, the effect of 
the conformational asymmetry of the AB diblock copolymers on 

the phase behaviour is examined by constructing phase diagrams 
for ε = 1 . 0 and ε = 1 . 25 . For each value of ε, two cases with α = 1 . 0 

and α = 0 . 5625 , representing dry and wet brush regimes of the A- 
blocks, have been investigated to demonstrate the effect of the 
homopolymer length. Finally, to study the effect of the volume 
fraction of A-blocks ( f ), phase diagrams with ε = 1 . 0 , α = 1 . 0 and 

different values of f ( = 0.15, 0.2, 0.25) are constructed. This choice 
of parameters results in a set of phase diagrams in the χAB − φ2 

plane covering a rather large region of the parameter space. 
One important feature of polymer blends is the existence 

of two-phase regions due to macroscopic phase separation. The 
phase diagram of the AB/A blends in the whole range of 0 < 

φ2 < 1 would naturally contain a large two-phase region due to 

the macroscopic separation of the homopolymer-rich and block- 

copolymer-rich phases. A typical phase diagram containing a large 
two-phase region is shown in Fig. 2 for the case of f = 0 . 2 , ε= 1.25 

and α= 1.0. It is obvious that the phase diagram in the whole range 
of 0 < φ2 < 1 is dominated by a very large and featureless two- 
phase (2 φ) region, whereas the single-phase region of the ordered 

phases is located at the small φ2 area where the diblock copolymers 
are the majority component. Because the current study focuses on 

the spherical packing phases, in what follows we present a set of 
phase diagrams, shown in Fig. 3 and 4 , in the χAB − φ2 plane with 

the 0 . 15 < χAB < 0 . 5 and 0 < φ2 < 0 . 17 , respectively. This choice 
of parameters covers the order-to-disorder transitions and, at the 
same time, highlights the order-to-order transitions of the system. 

The representative phase diagrams of binary blends composed 

of AB diblock copolymers and A-homopolymers shown in 

Figs. 3 and 4 exhibit a number of interesting features. The 
vertical axis at φ2 = 0 on the phase diagrams represents the 
phase behaviour of neat AB diblock copolymers with a given 

volume fraction ( f ) of the A-blocks. When χAB is increased, the 
neat AB diblock copolymers ( φ2 = 0) with f = 0.15, 0.20 and 0.25 

undergoes a disorder to order transition into the spherical packing 
phases, eventually reaching the hexagonally-packed cylindrical 
phase (HEX). The spherical packing phases of the neat diblock 
copolymers are the classical ones (HCP and BCC) because the 
conformational asymmetry parameter ( ε= 1 and 1.25) used in 

the current study is not large enough to stabilize the complex 

spherical packing phases [29] . The region of φ2 > 0 on the 
phase diagrams ( Fig. 3 and 4 ) represents binary blends of AB 
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Fig. 4 

Phase diagrams in the χAB − φ2 plane with (a) f = 0 . 15 , ε= 1.0, α= 1.0 (b) f = 

0 . 20 , ε= 1.0, α= 1.0 (c) f = 0 . 25 , ε= 1.0, α= 1.0. The unlabeled regions are the 
two-phase coexistence region between two adjacent single phases. Fig. 4 (b) 
is the same as Fig. 3 (a), which is reproduced here to highlight the effects of 
varying f . 

diblock copolymers and A-homopolymers. An obvious, albeit 
nontrivial, conclusion from the phase diagrams is that the 
addition of the A-homopolymers induces more order-to-order 
phase transitions, particularly transitions from classical spherical 
phases (BCC or HCP) to the complex spherical packing phases. 
The two-phase region between the copolymer-rich ordered phases 
and homopolymer-rich disordered phase is very large as illustrated 

in Fig. 2 . On the other hand, the two-phase regions between the 
ordered phases are generally very narrow as shown in Figs. 3 and 

4 . The occurrence of complex spherical packing phases depends 
sensitively on the chain length ratio α between the hompolymers 
and the A-blocks. For the case of α < 1 , the complex spherical 
packing phases are largely suppressed while the relative stability 
of the cylindrical phase (HEX) is enhanced. This feature is clearly 
evidenced by the drastic change of the phase behaviours when α

is changed from α = 1 ( Figs. 3 (a) and (c)) to α = 0 . 5625 ( Figs. 3 (b) 
and (d)). Another interesting feature is that increasing A-volume 
fraction f of the block copolymers also leads to an enhanced 

stability of the cylindrical phase as shown by a comparison of the 
phase diagrams shown in Figs. 4 (a), (b), and (c), corresponding 
to f = 0 . 15 , 0.20 and 0.25. A larger value of f favours the 
ordering of the blends and the occurrence of the cylindrical 
phase. 

For diblock copolymers with f = 0 . 20 , the addition of A- 
homopolymers, or the increase of φ2 , results in a phase transition 

sequence from BCC to σ, C14 and C15 in a sizeable window of 
χAB ( Figs. 3 (a) and (c)). It should be noted that conformational 
asymmetry is not a prerequisite for the emergence of the complex 

spherical packing phases ( σ, C14 and C15), although larger 
conformational asymmetry does lead to a wider χAB -window 

for the complex spherical packing phases ( Fig. 3 (c) vs. (a)). For 
example, for the case of α= 1.0, increasing ε from 1.0 to 1.25 

pushes the phase boundary between the spherical phases and HEX 

phase from χAB ≈ 0 . 36 to ≈ 0 . 475 . For neat block copolymer melts, 
it has been established theoretically [29] and experimentally 
[6,7,13] that conformational asymmetry of the block copolymers, 
quantified by the parameter ε, is a key factor to stabilize the FK 

A15 and σ phases. However, the Laves C14 and C15 phases have 
been shown to be metastable phases of neat diblock copolymers 
[14] . In agreement with previous experimental [17] and theoretical 
studies [34] , the phase diagrams shown in Fig. 3 predict that the 
FK σ phase as well as the Laves C14 and C15 phases could become 
stable phases when A-homopolymers are added to the system. 
In particular, the predicted phase transition sequence ( Fig. 3 (a) 
and (c)) of BCC → σ → C14 → C15 when φ2 is increased is in 

excellent agreement with that observed from the experiments of 
Mueller et al. [17] and theoretical studies of Cheong et al. [34] . 
Consistently, the emergence of complex spherical packing phases 
is also observed to occur in binary mixtures of AB/AB diblock 
copolymers [15,30,39] or in binary blend of A-homopolymer and 

AB 4 miktoarm star copolymer [33] . One interesting observation is 
that the FK A15 phase is missing from the phase diagrams shown 

in Fig. 3 and 4 , implying that a larger conformational asymmetry 
parameter might be required to stabilize the A15 phase. 

The theoretically predicted emergence of complex spherical 
packing phases in binary blends of diblock copolymers and 

homopolymers is in good agreement with the recent experimental 
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Fig. 5 

(a)The standard deviation of particle volume δV, (b) the normalized 
concentration of A-homopolymers in different WSCs and (c) the interfacial area 
per unit volume of complex phases relative to that of the BCC with ε = 1 . 25 , 
α = 1 . 0 and χAB = 0.45. In (a), the solid lines follow the y-axis on the left side 
and the dashed lines follow the y-axis on the right side. The lines for the C15 
phase in (b) are plotted in dotted style to distinguish them from those for the 
C14 phase because they almost overlap. 

results of binary blends of poly(styrene-b-1,4-butadiene)/(1,4- 
butadiene) by Mueller et al. [17] and theoretical results of AB/A 

blends by Cheong et al. [34] . It should be noted that, although the 
recent SCFT study of Cheong et al. [34] and the current study share 
the same theoretical framework of the self-consistent field theory, 
a number of differences exist between these two contributions. 
First of all, the current study employs the FJC model of polymers, 
whereas Cheong et al. modelled the polymers as Gaussian chains. 
Therefore the current model may provide a better description 

for low molecular weight block copolymers and homopolymers. 
Secondly, the current study provides a more complete picture of 
the phase behaviour of the AB/A blends by extending the phase 

diagrams in the χAB − φ2 plane for a set of parameters ( f , ε and 

α). It should also be emphasized that the agreement between the 
theoretical results from Gaussian chain model and FJC model 
is a strong indication of the universality of the predicted phase 
behaviour for AB/A blends. In particular, it is expected that many 
of the theoretical predictions would apply to generic amphiphilic 
molecules mixed with appropriate swelling species [26] . 

Quantitative analysis of the spherical domains 
Information on possible mechanisms stabilizing the complex 

spherical packing phases could be inferred from a quantitative 
analysis of the properties of the spherical domains. Several 
quantities could be extracted from the SCFT solutions of the 
different ordered phases. The first quantity is the standard 

deviation δV of domain volumes, which quantifies the volume 
variation of the minority domains. Specifically, δV is defined by, 

δV = 

1 

v 

√ ∑ 

i (v i − v ) 2 

N d 
, 

where the summation is over all the domains in a unit cell 
for a given phase. N d , v i and v denote the total number of 
non-equivalent domains in a unit cell, the volume of the i -th 

domain and the average domain volume. In the unit cell of a 
phase, a domain is defined as the enclosing space of φA ( � r ) = φB ( � r ) 
isosurface. The space is partitioned into equivalent close-packed 

WSCs for the classical spherical phases but multiple inequivalent 
WSCs for complex spherical phases. The different symmetries of 
different WSCs naturally result in nonuniform distribution of A- 
homopolymers among WSCs. This nonuniform homopolymer 
distribution could be quantified by the normalized concentration 

of A-homopolymers within the distinct WSCs. Specifically, this 
normalized concentration is defined by, 

φWSC 
2 = 

1 

V WSC 

∫ 
WSC 

φAh ( � r ) d � r . 

Due to the favourable interactions, the A-homopolymers are 
expected to be concentrated at the core-region of the A-domains, 
thus the total homopolymer concentration in different WSCs 
could be used to describe the swelling of the spherical particles. 
The last quantity used in our analysis is the interfacial area per 
unit volume defined by, 

S/V = 

1 

V 

∑ 

i 

S i , 

where S i and V are the surface area of i -th domain and the 
volume of the unit cell, respectively. The summation is over all the 
domains in a unit cell. From the solutions of the SCFT equations, 
these three quantities for different phases have been computed. 
An example of the results is shown in Fig. 5 , where δV, φWCS 

2 and 

S/V are plotted as a function of φ2 with fixed ε = 1 . 25 , α = 1 . 0 and 

χAB = 0.45. Results of the A15 phase is also included in these plots 
and in our analysis, even though A15 phase is not a stable phase 
in this region of the phase diagrams. On the other hand, results 
of δV and φWSC 

2 for the BCC phase are not shown in these plots 
because BCC only has one type of WSC, thus δV = 0 and φWSC 

2 ≈ φ2 . 
In the S/V plot, the BCC phase is chosen as a reference to better 
display the difference between the different phases. 
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Fig. 6 

(a) The total free energy, (b) the entropic contribution (c) the interaction free energy between A- and B-blocks of the copolymers and (d) the interaction free energy 
between A-homoploymers and B-blocks relative to those of BCC phase as functions of φ2 with ε = 1 . 25 , α = 1 . 0 and χAB = 0.45. 

The φA ( � r ) = φB ( � r ) isosurface of domains within the unit cell 
for complex spherical phases are depicted in Fig. 1 for the case 
of ε = 1 . 25 , α = 1 . 0 , φ2 = 0 . 05 and χAB = 0.45, where inequivalent 
domains are shown in different colors. We also plot one 
representative WSC for each type of domains and number them 

for the following analysis. As shown in Fig. 1 , the FK σ phase has 
five different types of WSCs with CN = 12, 14 and 15 whereas the 
Laves C14 and C15 phases are composed of WSCs with CN = 12 

and 16. Naturally, the C14 and C15 packing requires particles 
having larger size difference thus resulting in larger packing 
frustration, which explains why these phases are not stable in 

neat AB-diblock copolymer melts. However, in AB/A blends the 
addition of A-homopolymers provides a mechanism to alleviate 
frustrations caused by the large size difference via differential 
segregation in different domains. The nonuniform distribution of 
A-homopolymers in different domains is well confirmed by the 
behaviour of δV, φWSC 

2 and S/V as functions of φ2 shown in Fig. 5 . 
For neat diblock copolymers, the plot of Fig. 5 (a) shows that 

a significant volume difference ( δV ∼ 5% for A15 and ∼ 9% for 
σ ) already exists for the FK phases. Noticeably, the Laves C14 and 

C15 phases exhibit a much larger volume difference of δV ∼ 19% . 
With the addition of A-homopolymers or the increase of φ2 , δV 

for all the complex phases increases but the increase is more 
rapid for the C14 and C15 phases. This rapid increase of δV is 
shown more clearly by the monotonically increasing trend of the 
difference, δV − δV σ , for the two Laves phases. The segregation 

of the homopolymers among the different spherical domains is 
shown in Fig. 5 (b), where φWSC 

2 is plotted as a function of φ2 for 
different WSCs of the spherical phases. Differential segregation 

of the homopolymers is quantified by the spreading of the φWSC 
2 

curves for each phase. It is obvious that the spreading of φWSC 
2 

values for C14 and C15 is wider than that of A15 and σ . This 
observation confirms that enhanced volume deviation around 

the average value is regulated by the nonuniform distribution of 
A-homopolymers among distinct WSCs. A direct result of larger 
particle volume difference is the reduction of the interfacial energy 
caused by the smaller interfacial area per unit volume shown in 

Fig. 5 (c). It is seen that the S/V for all complex spherical phases 
decreases relative to BCC phase as increasing φ2 and it decreases 
more pronouncedly for the C14 and C15 phases than the A15 and 

σ phases, consistent with the changing tendency predicted from 

δV, hence well explaining the transition sequence from BCC to σ

then to Laves phases. The reason why C15 phase is stable at higher 
φ2 than C14 phase should be a result of more detailed compromise 
between the competing interfacial and stretching energies. 

Free energy comparison of the different phases 
Correlation between the emergence of complex spherical packing 
phases and the free energy change provides another quantitative 
insight into the formation mechanisms of these ordered phases. 
The total Helmholtz free energy density could be separated into 

enthalpic and entropic contributions. In order to clearly show the 
free energy difference, the BCC phase is chosen as the reference 
state. The total free energy density difference between a phase and 

that of the BCC phase, N�F /ρ0 V k B T, can be separated into the 
following three contributions, 

N�F 
ρ0 V k B T 

= 

N�U AdB 

ρ0 V k B T 

+ 

N�U AhB 

ρ0 V k B T 

− T 

N�S 
ρ0 V k B T 

. 

Here �U AdB and �U AhB are the enthalpic contributions from 

the A-B interactions between A- and B-blocks and that between 
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Fig. 7 

Radial distribution of the segment densities near domain centers for C14 phase 
with (a) α = 1 . 0 and (b) α = 0 . 5625 . The other parameters are: ε = 1 . 25 , φ2 = 

0 . 07 and χAB = 0.45. The r is in the unit of b A . There are three types of spherical 
domains for the C14 phase. The segment distributions are similar for these 
different domains, thus these distributions are shown only for domain 1 with 
CN = 16 for clarity. 

A-homopolymer and B-blocks, respectively, and −T �S is the 
entropic contribution to the free energy. Within the SCFT, these 
contributions are given by, 

N(−T S ) 
ρ0 V k B T 

= −φ1 ln 

Q 1 
φ1 

− φ2 
γ2 

ln 

Q 2 
φ2 

− 1 
V 

∫ 
d � r [ ω A ( � r ) φA ( � r ) + ω B ( � r ) φB ( � r ) ] , 

NU AdB 
ρ0 V k B T 

= 

1 
V χAB N 

∫ 
u (| � r −� r ′ | ) φAd ( � r ) φB ( � r ′ ) d � r ′ , 

NU AhB 
ρ0 V k B T 

= 

1 
V χAB N 

∫ 
u (| � r −� r ′ | ) φAh ( � r ) φB ( � r ′ ) d � r ′ . 

(9) 

The sum of these three contributions gives the total Helmholtz 
free energy density. The results of the various contributions to the 
free energy density are shown in Fig. 6 . As we can see from the 
total free energy density plot ( Fig. 6 (a)), the complex spherical 
packing phases become increasingly stable than the BCC phase 
for larger value of φ2 . From the plots of the different components 
of the free energy, it is evident that the interaction free energies 
are the main factors contributing to the decrease of free energy of 
the complex spherical packing phases relative to the BCC phase, as 
shown in Figure 6 (c) and (d). Furthermore, the free energy density 
for the Laves C14 and C15 phases are decreasing faster than that of 
the FK A15 and σ phases. This mainly results from the interaction 

free energy between the A-homoploymers and B-blocks as could 

be seen in Fig. 6 (d). This free energy decrease could be attributed to 

the localization of A-homopolymers in the core of the A-domains, 
resulting in larger domain size difference thus less A-B interfacial 
areas. Another interesting observation is that the interaction free 
energy between A- and B-blocks becomes more favourable for the 
C15 phase than C14 phase at larger φ2 , which should be the main 

contribution triggering the C14 → C15 transition at high φ2 . 
One interesting observation from the phase diagrams shown 

in Fig. 3 is that the cylindrical HEX phase occupies a much 

larger region when α changes from 1.0 to 0.5625, which is in 

good agreement with the experimental observations by Mueller 
et al. [17] and the SCFT calculations by Cheong et al. [34] . It 
has been pointed out that this drastic change of phase behaviour 
is correlated with whether the A-homopolymers penetrate into 

the A-layers formed by the A-blocks (wet brushes) or not (dry 
brushes). The penetration of A-homopolymers into the A-blocks 
is dictated by the homopolymer localization in the A-domains. 
For A-homopolymers with larger molecular weight than that 
of the A-blocks, entropic penalty prevents the penetration of 
homopolymers into the A-blocks, resulting in dry brushes [46–
48] . The distributions of A-homopolymers obtained from SCFT 

calculations could be used to clearly illustrate the occurrence of 
dry- and wet-brushes in our model system. The distinct density 
distributions could be clearly seen by using the C14 phase as 
an example. Specifically, we first define the center of a spherical 
domain as the position where φAh ( � r ) reaches a local maximum. 
Then we divide the space surrounding the center into thin 

spherical shells and compute the angular average of φ( � r ) within 

each shell, resulting in the average radial distribution of segments 
within each domain. The results for the C14 phase with ε = 

1 . 25 , φ2 = 0 . 07 , χAB = 0.45 and two values of α = 1 . 0 and 0.5625 

are shown in Fig. 7 (a) and (b), respectively. It is noted that the 
radial segment distributions of the three domains exhibit siimlar 
behaviour. Therefore, only the result for domain 1 with CN = 16 

is presented in Fig. 7 for clarity. The degrees of localization for 
these two cases can be evaluated by comparing the peak values 
of φ(r) . For example, the maximum value of φAh (r) at the domain 

center ( r = 0 ) is close to 0.97 when α= 1.0 but it is about 0.82 when 

α= 0.5625. In addition, the curve of φAh (r) decreases more rapidly 
as moving away from the domain center for the case of α= 1.0 

than that of α= 0.5625. These observations provide convincing 
indication of a stronger localization of A-hompolymers at the 
center of the domains when α= 1.0. 

It is known that the cylindrical phase becomes more favoured 

over the spherical phases when the spontaneous interfacial 
curvature becomes smaller. In the case of wet brushes, the 
penetration of A-homopolymers into the A-blocks naturally leads 
to a smaller interfacial curvature because the effective volume 
of the A-domains is increased. In the case of dry brushes, there 
is less penetration of A-homopolymers into the A-blocks. Thus, 
the property of the A-B interface is less affected and the system 

would prefer to maintain in spherical phases. This effect could 

be illustrated by the free energy plot. The different contributions 
to the free energy density of each phase relative to those of the 
HEX phase are plotted as functions of α in Fig. 8 with fixed ε = 

1 . 25 , φ2 = 0 . 07 and χAB = 0.45. It can be seen that the dominant 
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Fig. 8 

(a) The total free energy, (b) the entropic contribution (c) the interaction free energy between A- and B-blocks of the copolymers and (d) the interaction free energy 
between A-homoploymers and B-blocks relative to those of HEX phase as functions of α with ε = 1 . 25 , φ2 = 0 . 07 and χAB = 0.45. 

contribution that determines the total free energy tendency is the 
interaction free energy between A-homoploymers and B-blocks, 
which decreases for all spherical phases relative to HEX phase 
as α becomes larger. Therefore it is the decreasing of the A- 
homopolymer and B-block interactions that enlarges the region 

of the spherical phases. 

Conclusion 

In summary, we have systematically studied the emergence and 

relative stability of complex spherical packing phases in binary 
blends composed of AB diblock copolymers and A-homopolymers 
by using the self-consistent field theory applied to a freely-jointed 

chain model of polymers. We focus on the effects of four molecular 
parameters characterizing the conformational asymmetry ε, 

homopolymer concentration φ2 , hompolymer length α and 

diblock copolymer composition f . The phase behaviours of the 
binary AB/A blends are investigated by constructing a set of 
phase diagrams covering a large parameter space. In agreement 
with previous theoretical and experimental studies, the theoretical 
results from the current study confirm the conclusion that 
conformational asymmetry of the AB-diblock copolymer is not 
a necessary condition to promote the formation of complex 

spherical packing phases in polymeric blends containing block 
copolymers, although a larger value of ε could drastically 
enlarge the spherical phase region on the phase diagram. For a 
particular set of system parameters, the theory predicts a phase 
transition sequence, from BCC → σ → C14 → C15, with the 
addition of A-homopolymers. A detailed quantitative analysis 
on the properties of spherical domains reveals that the phase 
transition from BCC to the complex spherical packing phases is 

strongly correlated with the nonuniform distribution of the A- 
homopolymers among the different A-domains. The emergence 
of the complex spherical packing phases is induced by the 
localization of the A-homopolymers in the core region of the A- 
domains that provides an effective mechanism to regulate the 
domain volumes. The rich phase behaviour by simply adding 
homopolymers to diblock copolymers provides a simple and 

efficient route to engineer complex spherical packing phases. 
Compared with the previous theoretical studies of AB/A blends 

[34] , the current extensive SCFT calculations cover a significantly 
larger parameter space, thus providing a more complete study of 
the formation of complex spherical packing phases in polymeric 
blends containing block copolymers. Furthermore, we have 
employed a freely-jointed chain model suitable for polymers with 

low molecular weight, rather than the commonly used Gaussian 

model that is more suitable for polymers with high molecular 
weight. Because of the larger parameter space and polymer model, 
the results obtained in the current study could be used to make 
direct comparison to experiments. Furthermore, we would like 
to point out that the agreement between theoretical studies 
employing different chain models provides a strong indication 

that the emergence and relative stability of complex spherical 
packing phases in soft matter systems containing amphiphilic 
molecules is a generic phenomenon independent of the molecular 
details of the system. This universality of phase behaviours will 
shed light to the understanding of the emergence of complex 

ordered phases in non-polymeric soft matter systems, including 
surfactant suspensions [24–26] , giant surfactants [21–23] and 

supramolecular assemblies [18–20] , to name a few. 
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Preface

In this chapter, we examine the phase behaviour of binary blends of A1B1 and A2B2

diblock copolymers, with a focus on the stability of the Frank-Kasper phases. The

emergence of the FK phases in A1B1/A2B2 blends was initially predicted by SCFT [66]

and later confirmed by experiments [71, 74]. Previous SCFT calculations demonstrated

that the differential distributions of distinct diblock copolymers across different domains

(inter-domain segregation) and within the same domain (intra-domain segregation) serve

as effective mechanisms to regulate the domain volumes and shapes, respectively, leading

to the stabilization of the complex FK phases.

In the current study, we deepen our understanding of the stability of the FK phases

in the A1B1/A2B2 blends by conducting a systematic SCFT study covering an unprece-

dentedly large phase space. Phase diagrams on the ϕ2 − χN plane, where ϕ2 is the

concentration of the second diblock chains, are constructed. These diagrams consider

different combinations of block compositions of the two diblock copolymers, f1 and f2,

and their length ratio, γ. Additionally, through a detailed analysis of both inter- and intra-

domain distributions of the second copolymer chains and the properties of self-assembled

spherical domains, we unveil the relationship between various system parameters and the

two mechanisms, i.e. intra- and inter-domain segregations, responsible for stabilizing the

FK phases in this system.
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Binary Blends of Diblock Copolymers: An Efficient Route to
Complex Spherical Packing Phases

Jiayu Xie, Yu Li, and An-Chang Shi*

The phase behavior of binary blends composed of A1B1 and A2B2 diblock
copolymers is systematically studied using the polymeric self-consistent field
theory, focusing on the formation and relative stability of various spherical
packing phases. The results are summarized in a set of phase diagrams
covering a large phase space of the system. Besides the commonly observed
body-centered-cubic phase, complex spherical packing phases including the
Frank–Kasper A15, 𝝈 and the Laves C14, C15 phases could be stabilized by
the addition of longer A2B2-copolymers to asymmetric A1B1-copolymers.
Stabilizing the complex spherical packing phases requires that the added
A2B2-copolymers have a longer A-block and an overall chain length at least
comparable to the host copolymer chains. A detailed analysis of the block
distributions reveals the existence of inter- and intra-domain segregation of
different copolymers, which depends sensitively on the copolymer length ratio
and composition. The predicted phase behaviours of the A1B1/A2B2 diblock
copolymer blends are in good agreement with previous experimental and
theoretical results. The study demonstrates that binary blends of diblock
copolymers provide an efficient route to regulate the emergence and stability
of complex spherical packing phases.

1. Introduction

Block copolymers are macromolecules composed of two or
more chemically distinct sub-chains or blocks.[1] Due to the in-
trinsic frustration originated from a competition between the
monomer–monomer interactions and chain connectivity, block
copolymers tend to self-assemble into mesoscopic polymeric do-
mains of various shapes, loosely classified as lamellae, cylinders
and spheres.[2] In block copolymer melts or concentrated block
copolymer solutions, the packing of these domains leads to the
formation of various ordered phases or mesocrystals. The forma-
tion and relative stability of these ordered phases have been an
actively researched topic attracting sustained attention.[1] In par-
ticular, the emergence of complex spherical packing phases such
as the Frank–Kasper (FK) phases has attracted tremendous atten-
tion in recent years.[3–12]
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The FK phases are a class of complex
spherical packing phases initially discov-
ered in metallic alloys. An important fea-
ture of the FK phases is the existence
of at least two non-equivalent particles or
Wigner–Seitz cells (WSCs) in the unit cell
of the lattice, which compactly pack to-
gether in a complex manner to fill the
space.[13,14] Besides hard condensed mat-
ter systems,[15] the FK phases have been
discovered in various soft matter sys-
tems, such as block copolymer melts and
blends,[3,6–8] surfactant solutions,[16–18] and
giant molecules.[19,20] In the case of poly-
meric systems containing block copoly-
mers, the FK 𝜎 phase was first discovered in
AB diblock copolymer melts.[3] Since then a
large number of studies have been carried
out to understand the emergence of com-
plex spherical packing phases in polymeric
systems containing block copolymers both
experimentally[4,6–8,21] and theoretically.[9–12]

Different from hard condensed matter, in
soft matter systems such as block copoly-
mer melts, the particles or the spherical

domains are deformable. Due to the broken spherical symme-
try in a crystalline lattice, the packed soft spheres tend to de-
form toward the polyhedral shape of the WSCs by which they
are enclosed in order to maintain a uniform monomer density.
Such distortion would inevitably increase the free energy of the
polymeric domains, which prefers their native spherical shapes.
Thus, phases with higher average sphericity of the WSCs would
be preferred when the domain is large enough to induce severe
distortion. Based on this argument, the FK phases, whose WSCs
have higher average sphericity than that of the classical body-
centered cubic (BCC) and close-packed (HCP or FCC) phases,
could become stable if the spherical domain can be enlarged and,
at the same time, the transition to cylindrical domains could be
prevented.[12,22]

A key feature of the complex spherical packing phases is the
formation of large spherical domains. There are a number of
routes to regulate the size of the polymeric domains.[2,11] In-
troducing conformational or configurational asymmetry into di-
block copolymers is an effective approach to enlarge spherical do-
mains. Indeed, a theoretical study based on the polymeric self-
consistent field theory (SCFT) showed that the FK A15 and 𝜎
phases could be stabilized in conformationally asymmetric linear
AB-diblock copolymers and configurationally asymmetric AB4
miktoarm copolymers.[9] This theoretical prediction has been
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confirmed in experiments on conformationally asymmetric di-
block copolymers[4] and on miktoarm AB block copolymers.[5]

Moreover, a recent SCFT study by Qiang et al.[23] demonstrated
that by employing specially designed dendritic AB-type block
copolymers, the spherical domains could be maintained up to
fA ≈ 0.7 resulting in large windows of FK A15 and 𝜎 phases in
the phase diagram. These studies offer a good understanding of
the formation of FK phases in single component systems com-
posed of asymmetric block copolymers.

Another feature of the complex spherical packing phases is
that the sizes of the nonequivalent particles or polymeric do-
mains are different. For example, there are two different types
of particles in the A15 phase and five different particles in the
𝜎 phase. These nonequivalent polymeric domains have different
volumes, which is in contrast to the classical BCC, FCC, and HCP
phases having only one type of domains. This feature is more pro-
nounced for the Laves C14 and C15 phases, which have spherical
domains with much larger volume differences when compared
with the A15 and 𝜎 phases. The fact that the Laves phases have
not been found to be stable in diblock copolymer melts could
be attributed to the fact that their formation requires consider-
able volume exchange among distinct domains, which is not fa-
vored in single-component systems. From this perspective, one
mechanism to stabilize the complex spherical packing phases
is to regulate the sizes of the polymeric domains, which could
be effectively accomplished by mixing another species into the
system.[2,11]

Indeed, experimental and theoretical studies have suggested
that blending different components together could provide an
efficient route to regulate the domain sizes thus stabilizing the
complex spherical packing phases. The simplest blending system
is obtained by mixing A-homopolymers with sphere-forming AB
diblock copolymers. The added A-homopolymers would be local-
ized in the central region, or the core, of the spherical domains
resulting in larger spheres. At the same time, differential segrega-
tion of the A-homopolymers would lead to the formation of spher-
ical domains with different sizes. The combined effects could sta-
bilize the formation of complex spherical packing phases. This
route has been demonstrated experimentally by Mueller et al.
showing that the FK 𝜎, Laves C14 and C15 phases could become
stable phases in AB/A binary blends in the dry brush regime.[6]

Moreover, the local segregation of the A-homopolymers has been
illustrated by SCFT calculations for AB/A[24,25] and AB4/A[26] bi-
nary blends. Another blending platform is mixing AB diblock
copolymers with different lengths and compositions. The for-
mation of complex spherical packing phases in block copolymer
blends has been examined theoretically,[10,27] predicting that com-
plex spherical packing phases, including the A15, 𝜎, C14 and
C15 phases, could be formed by mixing A1B1 and A2B2 diblock
copolymers. In agreement with the theoretical predictions, these
complex spherical packing phases have been observed in recent
experiments[7,8] on binary blends of A1B1∕A2B2 diblock copoly-
mers. These previous experimental and theoretical studies have
shown that the binary blends composed of A1B1∕A2B2 diblock
copolymers provide a flexible platform to stabilize complex spher-
ical packing phases, as well as a useful model system to study the
mechanism of the formation of these complex phases. The fun-
damental difference between the addition of A-homopolymers
and AB diblock copolymers to an AB diblock copolymer melt is

that the added AB diblock copolymers could be localized inside
one domain or at the AB-interfaces. As such, the added AB di-
block copolymers could act as fillers similar to A-homopolymers
and as co-surfactants which could modify the property of the AB-
interfaces. A synergetic interplay of these two functions could
lead to a much enhanced effect on the stabilization of the com-
plex spherical packing phases.

The self-assembly of binary blends of A1B1∕A2B2 diblock
copolymers has been investigated experimentally[7,8,28–33] and
theoretically[10,27,34–39] in the past years. It has been well estab-
lished that mixing A1B1 and A2B2 diblock copolymers could lead
to a rich phase behavior including macroscopic phase separa-
tion and the emergence of new phases. In particular, previous
experiments[7,8] and theory[10,27] have laid a foundation of the self-
assembly of complex spherical packing phases in A1B1∕A2B2 di-
block copolymer blends. However, a complete set of phase dia-
grams covering a large phase space of the system and a detailed
investigation of the effect of different molecular parameters are
still lacking. Therefore, it is desirable to carry out a systematic
study on the binary A1B1∕A2B2 diblock copolymer blends cover-
ing a large phase space. In the current work, we fill this gap by
carrying out a comprehensive study of A1B1∕A2B2 blends using
the polymeric self-consistent field theory. We will mainly focus on
the effects of three parameters: 1) the concentration of the A2B2-
copolymers𝜙2; 2) the composition of the A2B2-copolymers f2; and
3) the length ratio between the A1B1- and A2B2-copolymers 𝛾 . A
set of phase diagrams in the 𝜙2 − 𝜒N plane with different values
of f2 and 𝛾 are constructed and presented. The phase diagrams
cover a large range of 𝜙2 from 0 to 1 and 𝜒N from 0 to 40. These
phase diagrams span a large region of the phase space and give
a systematic overview of the phase behavior of the binary blends.
The predicted phase transition sequences could be used to make
direct comparison with experimental phase diagrams in the con-
centration versus temperature plane. Furthermore, we perform
a detailed analysis of the effects of different molecular param-
eters on the inter- and intra-domain segregation of the copoly-
mers. Our results provide a comprehensive picture of the phase
behavior of binary A1B1∕A2B2 diblock copolymer blends, thus
shedding light on the mechanisms of the stabilization of com-
plex spherical packing phases.

2. Theoretical Model

We consider an incompressible binary blend composed of linear
A1B1 and A2B2 diblock copolymers in a volume V . Specifically,
the model system contains n1 A1B1 diblock copolymer chains
and n2 A2B2-diblock copolymer chains. The degree of polymer-
ization of the A1B1- and A2B2-copolymers is N1 = 𝛾1N = N and
N2 = 𝛾2N = 𝛾N (𝛾1 = 1, 𝛾2 = 𝛾), respectively. The volume frac-
tion of the A-blocks for the two copolymers is f1 = N1A∕N1 and
f2 = N2A∕N2, respectively. We assume a uniform segment den-
sity 𝜌A,0 = 𝜌B,0 = 𝜌0 such that 𝜌0V = n1N + n2𝛾N according to the
incompressibility condition. The average concentrations of the
A1B1- and A2B2-copolymers are given by, 𝜙1 =

n1𝛾1N

𝜌0V
and 𝜙2 =

n2𝛾2N

𝜌0V
= 1 − 𝜙1, respectively. Furthermore, we denote the Kuhn

length of the A- and B-segments by bA and bB, which can take
different values to model chains with different stiffness or con-
formational asymmetry.
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In order to consider two phase coexistence, it is convenient to
formulate the theory in the grand canonical ensemble in which
the thermodynamic parameters are the chemical potentials of the
two copolymers, 𝜇1 and 𝜇2. Because the system is assumed to be
incompressible, these two chemical potentials are not indepen-
dent and can be chosen as 𝜇1 = 0 and 𝜇2 = 𝜇 for convenience.
Within the mean-field approximation, the grand potential den-
sity of the system can be expressed as[40,41]

Nff
𝜌0VkBT

= −Q1 − e
𝜇

kBT Q2 +
1
V
∫ dr⃗

{
𝜒N𝜙A(r⃗)𝜙B(r⃗)

−𝜔A(r⃗)𝜙A(r⃗) − 𝜔B(r⃗)𝜙B(r⃗) − 𝜂(r⃗)
[
1 − 𝜙A(r⃗) − 𝜙B(r⃗)

]}
(1)

By minimizing the grand potential with respect to the densities
and fields, we obtain the SCFT equations

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜔A(r⃗) = 𝜒N𝜙B(r⃗) + 𝜂(r⃗)

𝜔B(r⃗) = 𝜒N𝜙A(r⃗) + 𝜂(r⃗)

𝜙A(r⃗) =
2∑

i=1

e
𝜇i

kBT ∫
𝛾i fi

0
ds qi(s, r⃗)q†i (s, r⃗)

𝜙B(r⃗) =
2∑

i=1

e
𝜇i

kBT ∫
𝛾i

𝛾i fi

ds qi(s, r⃗)q†i (s, r⃗)

𝜙A(r⃗) + 𝜙B(r⃗) = 1

(2)

where we have used N as the scale of the polymer arc-length.
In Equation (2), the forward propagators qi(s, r⃗) and backward

propagators q†i (s, r⃗) (i = 1, 2) are obtained by solving the modified
diffusion equations

𝜕
𝜕s

qi(s, r⃗) =𝜖2
i (s)∇2qi(s, r⃗) − 𝜔i(s, r⃗)qi(s, r⃗)

− 𝜕
𝜕s

q†i (s, r⃗) =𝜖2
i (s)∇2q†i (s, r⃗) − 𝜔i(s, r⃗)q†i (s, r⃗)

(3)

where s ∈ [0, 𝛾i] for the AiBi-copolymers (i = 1, 2). The function
𝜀2

i (s) represents the conformational asymmetry parameter, which
is defined by 𝜀2

i (s) = (𝜌A,0b2
A)∕(𝜌B,0b2

B) = b2
A∕b2

B for s ∈ [0, 𝛾ifi] and
𝜀2

i (s) = 1 for s ∈ [𝛾ifi, 𝛾i]. The self-consistent fields 𝜔i(s, r⃗) for the
AiBi copolymers are given by, 𝜔i(s, r⃗) = 𝜔A(r⃗) when s ∈ [0, 𝛾ifi]
and 𝜔i(s, r⃗) = 𝜔B(r⃗) when s ∈ [𝛾ifi, 𝛾i]. The initial conditions of the
propagators are specified by qi(0, r⃗) = 1 and q†i (𝛾i, r⃗) = 1.

The single chain partition functions are obtained from the so-
lutions of the propagators by

Qi =
1
V ∫ dr⃗qi(𝛾i, r⃗) (4)

Once the SCFT equations [Equation (2)] are solved, the average
concentrations of the two components can be simply calculated
by

𝜙1 = Q1, 𝜙2 = 1 − 𝜙1 (5)

In many cases it is advantageous to specify the concentration
of each components, or equivalently the numbers of polymer

chains, in the system explicitly. In this case it is convenient to
work in the canonical ensemble, where the concentration of the
AiBi-copolymers (𝜙i, i = 1, 2) are the thermodynamic control pa-
rameters. Within the mean-field theory, the Helmholtz free en-
ergy density of the system is expressed as[40,41]

NF
𝜌0VkBT

= − 𝜙1ln
Q1

𝜙1
−

𝜙2

𝛾
ln

Q2

𝜙2
+ 1

V ∫ dr⃗
{
𝜒N𝜙A(r⃗)𝜙B(r⃗)

−𝜔A(r⃗)𝜙A(r⃗) − 𝜔B(r⃗)𝜙B(r⃗) − 𝜂(r⃗)
[
1 − 𝜙A(r⃗) − 𝜙B(r⃗)

]}
(6)

Minimization of this free energy with respect to the densities and
fields results in the following SCFT equations

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜔A(r⃗) = 𝜒N𝜙B(r⃗) + 𝜂(r⃗)

𝜔B(r⃗) = 𝜒N𝜙A(r⃗) + 𝜂(r⃗)

𝜙A(r⃗) =
2∑

i=1

𝜙i

𝛾iQi ∫
𝛾i fi

0
ds qi(s, r⃗)q†i (s, r⃗)

𝜙B(r⃗) =
2∑

i=1

𝜙i

𝛾iQi ∫
𝛾i

𝛾i fi

ds qi(s, r⃗)q†i (s, r⃗)

𝜙A(r⃗) + 𝜙B(r⃗) = 1

(7)

where the propagators are computed by the same modified diffu-
sion equations in Equation (3).

The SCFT equations are a set of coupled nonlinear and
non-local equations. For most of the cases, solutions of the
SCFT equations should be obtained numerically. We employ
the pseudo-spectral method to solve the modified diffusion
equations.[42,43] Moreover, the variable-cell Anderson mixing
scheme[44,45] is used to speed up the self-consistent iteration and
minimize the free energy or grand-potential with respect to the
unit-cell dimensions simultaneously. Starting from specific ini-
tial configurations, a set of solutions corresponding to different
ordered phases can be obtained. The relative stability of these
different phases is determined by comparing their free energy
or grand potential density. The phase boundaries between two
phases are found by locating the intersections between their ther-
modynamic potentials.

3. Results and Discussion

3.1. Phase Behavior

For the model binary A1B1∕A2B2 diblock copolymer blends, their
phase behavior is controlled by six independent parameters,
namely, the A-block volume fractions f1 and f2, molecular weight
ratio 𝛾 , conformational asymmetry parameter 𝜀, copolymer con-
centration 𝜙2, and segregation strength 𝜒N. In the current study
we consider conformationally symmetric diblock copolymers
with a fixed 𝜀 = 1 because we are focusing on the effect of blend-
ing rather than conformational asymmetry. It is noted that the
effect of conformational asymmetry has been studied extensively
for AB-diblock copolymer melts by theory[9] and experiments.[4]
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In order to obtain a comprehensive overview of the phase behav-
ior of the A1B1∕A2B2 diblock copolymer blends, we will construct
two sets of phase diagrams in the 𝜙2–𝜒N plane, highlighting the
effect of f2 and 𝛾 , respectively. There are two main benefits of this
construction. First, different from previous works,[10,27] where the
length of either the majority or the minority block of the longer
chain are fixed relative to the shorter chain so that f2 and 𝛾 are cou-
pled, we choose to decouple the effects of these two parameters to
provide an understanding of the phase behaviors from different
perspectives. Specifically, we are able to examine the effects of f2
and 𝛾 separately to reveal the synergetic effects of f2 and 𝛾 on the
stabilization of the complex spherical packing phases. Second,
we choose to construct the phase diagrams in the 𝜙2–𝜒N plane
so that the results can be compared directly with experimental
observations.[7,8]

Phase diagrams of the blends are constructed by comparing
the free energy of various candidate phases including the disor-
dered (Dis), lamellar (L), double gyroid (DG), hexagonally-packed
cylinders (HEX), body-centered-cubic (BCC), face-centered-cubic
(FCC), hexagonally close-packed spheres (HCP) as well as the
FK A15, 𝜎 and Laves C14, C15 phases. This choice of candi-
date phases is motivated by our knowledge of potential equi-
librium phases obtained from previous experimental and theo-
retical studies. We have obtained SCFT solutions of several FK
phases, such as the Z and H phases, beyond this list. However,
these phases have not found to become stable phase within the
parameter space explored in the current study. The phase behav-
iors of the binary A1B1/A2B2 diblock copolymers are summarized
in two sets of phase diagrams shown in Figures 1 and 2, respec-
tively. The first set of phase diagrams (Figure 1) are for the cases
with f1 = 0.2 and 𝛾 = 1.5 and three typical values of f2 = 0.3, 0.5,
and 0.7. This choice of f2 covers both symmetric case and two op-
positely asymmetric cases for the A2B2-copolymers. The second
set of phase diagrams (Figure 2) are for the cases with f1 = 0.2
and f2 = 0.5 and three typical values of 𝛾 = 0.5, 1.0 and 1.5. This
choice of 𝛾 covers the cases where the overall chain length of
the A2B2-copolymers is shorter, equal, and longer than that of
the A1B1-copolymers. All phase diagrams are computed in the
full range of 𝜙2 from 0 to 1 and a large range of 𝜒N from 0 to
40. Taking together, these two sets of phase diagrams represent
the phase behavior of the model system in a large region of the
phase space.

In the phase diagrams shown in Figures 1 and 2, the ver-
tical lines at 𝜙2=0 and 1 represent the phase behaviors of the
neat A1B1 and A2B2 diblock copolymers, respectively. Because
these two diblock copolymers are conformationally symmetric
(bA = bB), the stable phases of the neat diblock copolymers
are the classical phases. For example, the phase transition of
the neat diblock copolymers follows the generic sequence of
Dis → HCP → BCC → HEX for fi = 0.2 when the segregation
strength 𝜒N is increased. Upon the blending of the two diblock
copolymers, new ordered stable phases including the complex
spherical packing phases could emerge as stable phases. As the
A2B2-copolymer concentration (𝜙2) is increased, the system un-
dergoes a series of phase transitions from the neat, f1-dependent,
A1B1 phase to the neat, f2-dependent, A2B2 phase. The phase
transition sequence of the blends as 𝜙2 changes from 0 (neat
A1B1) to 1 (neat A2B2) depends sensitively on the segregation
strength 𝜒N, the volume fractions of the A-blocks fi, and the

Figure 1. Phase diagram in the 𝜙2 − 𝜒N plane for a) f2 = 0.3, b) f2 = 0.5,
and c) f2 = 0.7 with fixed f1 = 0.2 and 𝛾 = 1.5. The unlabeled regions are
two-phase coexistence regions where two adjacent single phases are con-
nected by a horizontal tie-line. In (c), the FCC/HCP indicates that these
two phases are degenerate within the accuracy of the SCFT calculations
and the phases on the right hand side of L are the inverse phases.

chain length ratio 𝛾 . In particular, the phase transition sequence
could vary from no phase transition at all to a complex one
involving up to a dozen ordered phases. It is noted that the SCFT
calculations are within the framework of mean-field theory and
the order-disorder transition boundary is expected to be modified
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Figure 2. Phase diagrams in the 𝜙2–𝜒N plane for a) 𝛾 = 0.5, b) 𝛾 = 1.0,
and c) 𝛾 = 1.5 with fixed f1 = 0.2 and f2 = 0.5. The unlabeled regions are
the two-phase coexistence regions between two adjacent single phases.
Note that (c) is identical to Figure 1b, which is reproduced here for easy
comparison.

by fluctuation effects. Nevertheless, we expect that the phase
transition sequence at larger 𝜒N are less affected by fluctuations.

The phase diagrams for f1 = 0.2 and 𝛾 = 1.5 shown in Fig-
ure 1 highlight the effects of varying f2 on the phase behavior of
the A1B1/A2B2 diblock copolymer blends. For f1 = 0.2, the neat
A1B1 diblock copolymers undergoes phase transitions following

the sequence of Dis → HCP → BCC → HEX as 𝜒N is increased
from 0 to 40. For f2 = 0.3 that is similar to f1 = 0.2, the neat A2B2
diblock copolymers exhibit a phase transition sequence of Dis
→ BCC → HEX as 𝜒N is increased. In this case the phase be-
havior of the A1B1/A2B2 blends (Figure 1a) is relatively simple.
At small (𝜒N ⩽ 10) and large (𝜒N ≥ 27) values of 𝜒N, the addi-
tion of the A2B2 diblock copolymers does not induce any phase
transitions. That is, the binary A1B1/A2B2 blends would be in
the disordered phase at small 𝜒N and the hexagonally-packed
cylindrical phase at large 𝜒N, respectively. In the intermediate
region (10 ⩽ 𝜒N ⩽ 27), order-to-order phase transitions could be
induced with the addition of the A2B2 diblock copolymers. In par-
ticular, a small window of the FK 𝜎 phase appears in the mid-
dle (0.2 ⩽ 𝜙2 ⩽ 0.6) of the phase diagrams. The predicted phase
transition sequence as a function of 𝜙2 follows the generic se-
quence of Dis → HCP → BCC → 𝜎 → HEX in which some of
the phases could be missing for a given 𝜒N. Notably, although
the two diblock copolymers have similar A-block volume frac-
tions and there is no conformational asymmetry, the addition of
the A2B2-copolymers could stabilize a complex spherical packing
phase, albeit in a small region on the phase diagram, suggesting
that even a modest difference in the A-block lengths is sufficient
to stabilize the 𝜎 phase.

The phase behavior becomes much more richer for the cases
of larger f2, as shown in the phase diagrams for f2 = 0.5 (Fig-
ure 1b) and f2 = 0.7 (Figure 1c). When f2 = 0.5, the neat (𝜙2 = 1.0)
A2B2 diblock copolymers transitions from the disordered (Dis)
phase to the lamellar (L) phase at 𝜒N2 = 𝛾𝜒N = 10.5. The ad-
dition of this symmetric, lamella-forming diblock copolymers to
the asymmetric A1B1 diblock copolymers results in an extremely
rich phase behavior as shown in Figure 1b. Comparing with the
phase diagram for f2 = 0.3 (Figure 1a) containing four ordered
phases (HCP, BCC, 𝜎, and HEX), 10 ordered phases (HCP, FCC,
BCC, C14, C15, 𝜎, A15, HEX, DG, and L) can become equilib-
rium phases in the phase diagram for f2 = 0.5. It is amazing that
a seemingly small change from f2 = 0.3 to f2 = 0.5 leads to such a
drastic change of the phase behavior. When f2 is increased further
to f2 = 0.7 (Figure 1c), the neat A2B2-copolymers form inverted
BCC and HEX phases since the B-blocks are the domain-forming
minority component. The phase diagram for the binary blends of
diblock copolymers with f1 = 0.2 and f2 = 0.7 becomes even more
complex as shown in Figure 1c. The formation of complex spher-
ical packing phases persists in this case, except that the window
of the complex spherical phases is pushed to smaller values of 𝜙2.
Furthermore, the region of the FK phases extends to higher 𝜒N
and the region of Laves phases grows at the cost of the 𝜎 phase.
Based on the phase diagrams shown in Figure 1, we can conclude
that the addition of the A2B2-copolymers with f2 ≥ 0.5 stabilizes
the complex spherical packing phases, such that the FK 𝜎 and
A15 phases and the Laves C14 and C15 phases appear as equilib-
rium phases in the phase diagrams. This prediction provides an
efficient route to obtain these complex spherical packing phases
via blending of two diblock copolymers.

Besides the volume fraction of the A-blocks f2, the chain length
or the degree of polymerization (N2 = 𝛾N) of the A2B2 diblock
copolymers could also have a large effect on the phase behav-
ior of the binary blends. The effect of varying 𝛾 on the phase
behavior of binary A1B1/A2B2 diblock copolymer blends is re-
vealed in the phase diagrams shown in Figure 2 for the cases

Macromol. Theory Simul. 2021, 2100053 © 2021 Wiley-VCH GmbH2100053 (5 of 14)

Ph.D. Thesis – Jiayu Xie; McMaster University – Physics & Astronomy

92



www.advancedsciencenews.com www.mts-journal.de

with f1 = 0.2 and f2 = 0.5. This set of phase diagrams clearly
demonstrate the importance of the chain length of the added
A2B2-copolymers. When the A2B2-copolymers are shorter than
the A1B1-copolymers as exemplified by 𝛾 = 0.5, the phase behav-
ior is relatively simple (Figure 2a). In particular, the addition of
short A2B2-copolymers does not stabilize the complex spherical
packing phases and the order-to-order phase transition follows
the generic sequence of HCP → BCC → HEX → DG → L (Fig-
ure 2a). When the chain length of the A2B2-copolymers is in-
creased to be the same as that of the A1B1-copolymers (𝛾 = 1.0),
a small window of the FK 𝜎 phase appears along the BCC/HEX
phase boundary (Figure 2b). Further increasing 𝛾 from 𝛾 = 1 to
𝛾 = 1.5 results in the rich phase behavior containing a set of 10
ordered phases including the complex spherical packing phases
as shown in Figure 2c that is the same as Figure 1b. An impor-
tant conclusion from these theoretical results is that, in order to
stabilize the complex spherical packing phases in the A1B1/A2B2
binary blends, sufficiently large values of f2 and 𝛾 are required. As
shall be presented in the next section, the reason of this behav-
ior is that the additive A2B2-copolymers with much shorter chain
length than the host A1B1-copolymers tend to segregate at the
AB-interface, which does not affect the packing of the A-blocks at
the center of the domains.

It is interesting to compare the phase behaviors presented in
Figures 1 and 2 to previous theoretical and experimental results.
A set of theoretical phase diagrams of binary A1B1/A2B2 diblock
copolymer blends have been constructed by Wu et al.[37,38] Be-
cause the complex spherical packing phases were not included in
these previous studies, a detailed comparison of the phase bound-
aries is not straightforward. Nevertheless, the overall phase be-
havior obtained in these previous studies is consistent with the
current results summarized in Figures 1 and 2. In particular, both
sets of phase diagrams exhibit the trend of the expansion of the
HEX phase and the shrinking of the L phase when 𝛾 is increased.
In a more recent SCFT study,[10,27] it was predicted that the FK
A15 and 𝜎 phases and the Laves C14 and C15 phases could be
stabilized in binary A1B1/A2B2 diblock copolymer blends. Phase
diagrams in the 𝜙2 − 𝛾 plane were obtained for a fixed 𝜒N = 40
and two sets of f1 = 0.15 and 0.45, whereas the value of f2 varies
with 𝛾 as f2 = 0.85∕𝛾 . Although the phase diagrams in the cur-
rent work are provided in a different phase plane, the phase be-
haviors obtained from these two studies are completely consis-
tent. It should be emphasized that the phase diagrams shown in
Figures 1 and 2 cover an unprecedented large phase space of the
system, thus provide more information about the phase behavior
of the A1B1/A2B2 blends.

Experimentally, the formation of complex spherical packing
phases in binary A1B1/A2B2 diblock copolymer blends has been
examined by Lindsay et al.[7,8] These authors observed a number
of complex spherical packing phases including A15, 𝜎, C14, C15,
and a quasicrystal. The overall observed phase behavior from
these experiments is consistent with the theoretical predictions.
In particular, the experiments reported by Lindsay et al.[7] re-
vealed a phase transition sequence from 𝜎→ A15 → HEX as 𝜙2 is
increased from 0.25 to 0.5. The same phase transition sequence
is found in the phase diagram shown in Figure 1b, which has
similar molecular parameters as that of the experiments, along
the path at 𝜒N ≈ 20 with 𝜙2 varies from 0.3 to 0.5. This good
agreement between theory and experiment is very encouraging.

3.2. Segregation of Diblock Copolymers

The phase diagrams presented above clearly reveal that the addi-
tion of a second A2B2 diblock copolymer with a larger A-volume
fraction and longer chain length to sphere-forming A1B1 diblock
copolymers provides an efficient route to stabilize complex spher-
ical packing phases. It is desirable to understand the mecha-
nisms favoring the formation of these complex ordered phases
in the blends. The complex spherical packing phases are char-
acterized by polymeric domains with different sizes and shapes.
The formation of these complex structures would be favored if
the free energy cost of deforming the polymeric domains is re-
duced. As proposed by Liu et al.,[10] there are two possible mecha-
nisms stabilizing the complex spherical packing phases in binary
A1B1/A2B2 diblock copolymer blends, involving the segregation
of the A1B1- and A2B2-copolymers among different polymeric do-
mains (inter-domain segregation) and within each domain (intra-
domain segregation).The inter- and intra-domain segregation of
the copolymers provides mechanisms to regulate the size and
shape of the polymeric domains or mesoatoms. In this subsec-
tion, we provide a detailed analysis of the two mechanisms based
on a number of quantities extracted from the SCFT results. Addi-
tionally, we will demonstrate how the local copolymer segregation
is affected by the molecular parameters, that is, 𝜙2, f2, and 𝛾 .

3.2.1. Inter-Domain Segregation

The structure of the spherical phases could be regarded as the
close packing of the space by unit cells. One particularly useful
method to describe the packing pattern is to partition the space
by closely-packed Wigner–Seitz cells (WSCs), such that each
WSC encloses one minority A-domain or one “particle.” For
the classical spherical packing phases (HCP, FCC, and BCC),
all the particles are symmetrically equivalent, so that there is
only one type of WSC with the same volume or equivalently
the same number of copolymers contained in each WSC. In
contrast, the complex spherical packing phases such as the FK
and Laves phases have at least two types of non-equivalent WSCs
as illustrated in Figure 3.[15] These non-equivalent WSCs would
naturally have different volumes or contain different number
of copolymers. Furthermore, the shape of these WSCs is non-
spherical in general. The formation of complex spherical packing
phases requires the deformation of the polymeric domains from
their natural state, that is, a sphere with a given size, into differ-
ent non-spherical domains with different sizes. Any mechanisms
favoring these domain deformations would be advantageous for
the formation of the complex spherical packing phases.[2,11,12]

It has been proposed that the formation of the complex spher-
ical packing phases in binary A1B1/A2B2 diblock copolymer
blends is enhanced by the differential distributions of the two
types of copolymers among the different WSCs. In particular,
this inter-domain segregation of the different copolymers offers
a mechanism to regulate the size of the spherical domains
because the two diblock copolymers will occupy different vol-
umes specified by N∕𝜌0 and 𝛾N∕𝜌0, respectively. In order to
demonstrate the non-uniform distribution, or local segregation,
of the copolymers among the different WSCs quantitatively,
we compute the concentration of the A2B2-copolymers (𝜙WSC

2 )
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Figure 3. The unit cell of a) A15, b) 𝜎, c) C14, and d) C15 phases. Each type of WSC is plotted along with its coordination number.

within the different WSCs. The calculated 𝜙WSC
2 is plotted as a

function of three molecular parameters, that is, 𝜙2, f2, and 𝛾 ,
along certain phase paths in Figure 4a–c.

One interesting and important observation from Figure 4 is
that the A2B2 concentrations 𝜙WSC

2 in different WSCs deviate
from the mean value , 𝜙2, for all the complex spherical pack-
ing phases. This inter-domain segregation of diblock copolymers
is especially apparent in Figure 4a, where 𝜙WSC

2 is plotted as a
function of 𝜙2. If there was no inter-domain segregation, all the
curves should follow the straight line 𝜙WSC

2 = 𝜙2. The deviations
from this straight line indicate that the local concentration of
the A2B2-copolymers in different WSCs becomes different from
the average concentration. The WSCs could be roughly divided
into two populations containing less or more A2B2-copolymers,
corresponding to smaller and larger domains for the case with
𝛾 = 1.5 shown in Figure 4a. It is interesting to note that the
smaller WSCs of the different ordered phases have similar val-
ues of 𝜙WSC

2 , whereas the 𝜙WSC
2 of the larger WSCs are more

scattered. A detailed examination of these curves reveals that the
value of 𝜙WSC

2 is correlated with the coordination number (CN) of
the WSCs. Specifically, the smallest values of 𝜙WSC

2 are found for
the WSCs with CN = 12, whereas the largest values of 𝜙WSC

2 are
for the WSCs with CN = 16. It is also interesting to observe that
the 𝜙WSC

2 values are approximately the same for the WSCs with
the same CN, regardless of the phases. In particular, all the WSCs
with the smallest CN = 12 roughly have the same value of 𝜙WSC

2 .
This grouping of 𝜙WSC

2 according to the CN is also found when
𝜙WSC

2 is plotted as a function of f2 (Figure 4b) or 𝛾 (Figure 4c).
For the same ordered phase, the dispersity of the 𝜙WSC

2 values
among the different WSCs becomes larger when the molecular
parameters (𝜙2, f2, or 𝛾) are increased. Namely, for a given value
of 𝜙2 a larger value of f2 or 𝛾 would enhance the inter-domain
segregation. From these observations, it can be concluded that
the formation of WSCs with different CN is correlated with the
distribution of the A2B2-copolymers among the different WSCs.

The difference between the maximum and minimum values
of 𝜙WSC

2 , €𝜙WSC
2 , follows the order of €𝜙WSC

2,A15 < €𝜙WSC
2,𝜎 < €𝜙WSC

2,C15 ≈

€𝜙WSC
2,C14. This order of differences in𝜙WSC

2 is in agreement with the
standard deviation of the WSC volumes of the different phases
shown schematically in Figure 3, which have the ascending order
of BCC/FCC/HCP(0.0) < A15(≈0.0135316) < 𝜎(≈0.0421305) <
C14(≈0.0987861) ≲ C15(≈0.100634). It is noted that the volume
deviation for the WSCs of the Laves phases is much larger than
that of the A15 and 𝜎 phases. In order to be quantitative, we have
computed the standard deviation of the A-domain volumes (𝛿V)
for different phases and plotted the results as a function of 𝜙2, f2
and 𝛾 in Figure 5. It is obvious that 𝛿V > 0 for all the complex
spherical phases and the 𝛿V for the Laves phases is always the
greatest in the whole parameter range shown in Figure 5.

One interesting behavior seen in Figure 5a is that the 𝛿V is not
a monotonically increasing function of 𝜙2. Specifically, when 𝜙2
is beyond certain critical value, 𝛿V becomes saturated and then
starts to decrease slightly. This suggests that an optimal ratio of
the concentrations of longer and shorter chains exists that maxi-
mizes the benefit from raising the size difference through inter-
domain segregation, exceeding which there is no further bene-
fit upon adding the longer chains. The optimal ratio should be
structure-dependent. Phases that have similar property of WSCs,
such as C14 and C15 phases, have similar critical 𝜙2 ≈ 0.1 while
𝜎 and A15 phases with smaller 𝛿V have higher critical 𝜙2. An-
other interesting observation is that 𝛿V increases as increasing
f2 and 𝛾 . The mechanism of this tendency could be elucidated in
the discussion of intra-domain segregation presented in the next
subsection.

It is worth to mention that the behavior of 𝜙WSC
2 and 𝛿V at low

𝜙2 (Figures 4 and 5) is similar to that of the AB/A binary blends
where the A-homopolymers act as fillers localized in the central
region of the A-domains.[25] In the case of A1B1∕A2B2 block
copolymer blends, the long A2-blocks of the A2B2-copolymers
play a similar role to occupy the central region of the A-domains.
The differential segregation of these additives provides a mech-
anism to regulate the sizes of the domains, thus stabilizing the
complex spherical packing phases, such as the Laves C14 and
C15 phases, with large domain size dispersity. However, there
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Figure 4. A2B2 concentration (𝜙WSC
2 ), in different WSCs for the A15, C14,

C15, and 𝜎 phases, as a function of a) 𝜙2 (with fixed f1 = 0.2, f2 = 0.7, 𝛾1 =
1.5, and 𝜒N = 30), b) f2 (with fixed f1 = 0.2, 𝛾1 = 1.5, 𝜙2 = 0.15, 𝜒N = 30,
and 𝜒N = 30) and c) 𝛾 (with fixed f1 = 0.2, f2 = 0.5, 𝜙2 = 0.2, and 𝜒N =
30).

is a noticeable difference between these two types of additives.
In the case of AB/A binary blends, the A-homopolymers are
localized at the central region of the domains to form a core
composed mostly of A-homopolymers. On the other hand, in
A1B1∕A2B2 diblock copolymer blends, there is a radial segre-
gation of the long and short A-blocks forming a “core–shell”
structure, as will be illustrated in the next section.

Figure 5. The standard deviation of domain volume, 𝛿V, for the FK and
Laves phases, as a function of a) 𝜙2, b) f2, and c) 𝛾 . The other parameters
are chosen as the same as those in Figure 4.

3.2.2. Intra-Domain Segregation

In contrast to the case of binary AB/A diblock copoly-
mer/homopoplymer blends, in which the A-homopolymers
mainly act as fillers localizing inside the core of each domain, the
added A2B2 diblock copolymers in the binary A1B1∕A2B2 block
copolymer blends will distribute across the A- and B-domains
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Figure 6. The A-segment density and bond orientation distributions for a,c) A1B1, and b,d) A2B2, with a,b) 𝜙2 = 0.12 and c,d) 𝜙2 = 0.30. The other fixed
parameters are f1 = 0.2, f2 = 0.7, 𝛾1 = 1.5, and 𝜒N = 30. The plot is for the CN = 14 domain of an equilibrated A15 structure.

because of the architecture of the A2B2-copolymers. Specifically,
the AB-junctions of the A2B2-copolymers will be localized at the
AB-interfaces of the structure. In this case the A2B2-copolymers
can act as fillers such that the long A-blocks will be stretched
into the center of the A-domain and, at the same time, as co-
surfactants due to the localization of the AB-junctions. There-
fore, the distribution of the A2B2-copolymers in the system pos-
sesses interesting internal patterns, in the form of radial segre-
gation of the A-blocks and lateral segregation of the copolymers
on the AB-interfaces, that will play a dual role as fillers to regu-
late the size of the polymeric domains and as co-surfactants to
modify the interfacial properties.[10] These two effects provide
efficient mechanisms to stabilize the complex spherical pack-
ing phases. In what follows, we provide a detailed quantitative
analysis of the internal structure of domains using the SCFT
results and examine the effects of 𝜙2, f2, and 𝛾 on the such
structures.

Due to the separation of the A- and B-blocks, the A-blocks
are stretched from the AB-interface into the A-domains. Because
the A1- and A2-blocks usually have different lengths, their de-
grees of stretching are different, resulting in a radial segregation
of the two different A-blocks to form a “core–shell” structure.
The segregation of the A-blocks or the formation of the “core–
shell” structure could be revealed by the density distribution of
the A-segments of the two copolymers. As an example, we plot
the density and average bond orientation distributions of the A-
segments for the CN = 14 domain of an equilibrated A15 struc-
ture in Figures 6–8. The average bond orientation distribution
was proposed by Prasad et al. to depict the average extension and
orientation of the A-backbones.[46] The inclusion of this quantity
in the figures provides information about the average stretching
of the block copolymers. The existence of a radial separation of
the A1- and A2-blocks is clearly visible in the density plots shown
in Figures 6–8. Specifically, the longer A-blocks are stretched to

reach the center of the domain to form a core, whereas the shorter
A-blocks are distributed near the AB-interface to form a shell. It is
also interesting to observe that the orientation of the polymeric
segments is perpendicular to the interface, especially in the re-
gion near the interface.

For the AiBi (i = 1, 2) diblock copolymers, the length of the A-
blocks is specified by Ni,A = fi𝛾iN, thus the length ratio of the two
A-blocks is N2,A∕N1,A = 𝛾 f2∕f1. For the case shown in Figure 6, we
have 𝛾 = 1.5, f1 = 0.2 and f2 = 0.7, thus N2,A∕N1,A = 5.25 so that
the A2-block is much longer than the A1-block. In this case a well-
defined core–shell structure is found in Figure 6, in which the
longer A2-blocks form the core of the domain and the shorter A1-
blocks form a shell enclosing the core. This core–shell structure
is found for different values of 𝜙2 = 0.12 and 0.30. The size of
the domain increases significantly when the concentration of the
longer A2B2 diblock copolymers is increased from 0.12 to 0.30. At
the same time, noticeable deformation of the domain occurs such
that the overall domain shape approaches to that of the WSC. For
a polymeric domain formed from monodisperse diblock copoly-
mers, enlarging its size would result in extra stretching of the
A-blocks. Such unfavorable stretching is avoided in the case of bi-
nary A1B1∕A2B2 diblock copolymer blends because the longer A-
blocks can be stretched toward the center of the domain so that no
excess stretching is required. Furthermore, the concentration of
the longer diblock copolymers acts as a control parameter to reg-
ulate the domain size as illustrated by Figure 6. The inter-domain
segregation shown in the Figure 4 provides a mechanism to form
polymeric domains with different sizes, which in turn pack into
the complex spherical phases.

The effects of f2 and 𝛾 on the “core–shell” structure are ex-
amined in Figures 7 and 8, respectively. An obvious obser-
vation is that a well-defined “core–shell” structure requires a
large value of N2,A∕N1,A = 𝛾 f2∕f1. In the case shown in Fig-
ure 7 with 𝛾 = 1.5 and f1 = 0.2, we have N2,A∕N1,A = 1.875 and
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Figure 7. The A-segment density and bond orientation distributions for a,c) A1B1 and b,d) A2B2, with a,b) f2 = 0.25 and c,d) f2 = 0.75. The other fixed
parameters are f1 = 0.2, 𝛾1 = 1.5, 𝜙2 = 0.15, and 𝜒N = 30. The plot is for the CN = 14 domain of an equilibrated A15 structure.

Figure 8. The A-segment density and bond orientation distributions for a,c) A1B1 and b,d) A2B2, with a,b) 𝛾 = 0.6 and c,d) 𝛾 = 1.5. The other fixed
parameters are f1 = 0.2, f2 = 0.5, 𝜙2 = 0.2, and 𝜒N = 30. The plot is for the CN = 14 domain of an equilibrated A15 structure.

N2,A∕N1,A = 5.625 for f2 = 0.25 and 0.75, respectively. As shown
in Figure 7 and in agreement with the expectation from the
N2,A∕N1,A values, a well-defined core–shell structure is observed
for f2 = 0.75 whereas the shell becomes quite thick for f2 = 0.25.
Besides the length of the A-blocks, the overall length of the di-
block copolymers could have significant effects on the radial seg-
regation of the A-blocks inside a domain. This effect is illus-
trated by the case shown in Figure 8 with f1 = 0.2 and f2 = 0.5,
the ratio of N2,A∕N1,A is given by N2,A∕N1,A = 1.5 and 3.75 for

𝛾 = 0.6 and 1.5, respectively. Although the A2-block is slightly
longer than the A1-block for 𝛾 = 0.6, Figure 8a and b reveal that
the A2-blocks form a rather thick shell whereas the A1-blocks
mostly localized at the core. This result suggests that in the bi-
nary blends of A1B1/A2B2 diblock copolymers, the copolymers
with much shorter overall chain length tend to segregate at the
interface even though their A-block is slightly longer. Based on
these observations, it can be concluded that the formation of the
complex spherical packing phases via the “core–shell” structure
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Figure 9. Interfacial mean curvature (𝜅H) and AiBi junction distributions (conji, i = 1, 2) projected on the interface for a) 𝜙2 = 0, b) 0.12, and c) 0.30 and
fixed f1 = 0.2, f2 = 0.7, 𝛾1 = 1.5, and 𝜒N = 30. The plot is for the CN = 14 domain of an equilibrated A15 structure.

requires that the additive A2B2-copolymers have a large N2,A∕N1,A
ratio and a chain length longer than, or at least comparable to,
that of the A1B1-copolymers. As an example, none of the com-
plex spherical phases are stable in the phase diagrams shown
in Figure 2a even though N2,A∕N1,A = 𝛾 f2∕f1 = 1.25 > 1, presum-
ably due to the significantly shorter A2B2-copolymers.

Due to the broken rotational symmetry in a crystalline struc-
ture, the WSCs assume the shape of a polyhedron. The AB-
interface in the spherical packing phases would assume a non-
spherical shape resembling the shape of the WSCs. On the other
hand, the native shape of the polymeric domains is spherical with
a uniform interfacial curvature. In the case of block copolymer
blends, different diblock copolymers would have different pre-
ferred interfacial curvatures. It is therefore expected that the di-
block copolymers would have an inhomogeneous distribution on
the AB-interface and the distribution is coupled with the interfa-
cial curvature. The interfacial distribution of the diblock copoly-
mers could be revealed by the density of the AB-junction points
of the two copolymers projected on the interface defined by the
𝜙A(r⃗) = 𝜙B(r⃗) isosurface. To facilitate the comparison between
the distribution of AB-junctions and the interfacial curvature, we
also compute the mean curvature of the interface, 𝜅H, based on
level set method.[47] As an example, the mean-curvature and in-
terfacial AB-junction distributions have been computed for the
CN = 14 domain of an equilibrated A15 structure and are shown
in Figures 9–11 for three sets of molecular parameters.

The plots shown in Figures 9–11 clearly reveal the existence of
a curvature driven lateral segregation of the AB-junctions on the

AB-interfaces. It is interesting to observe that a curvature driven
lateral segregation of the AB-junctions occurs, albeit with a very
small amplitude, even for the neat A1B1-copolymers as shown
in Figure 9a where a relatively higher density of AB-junctions
is found in the area with a smaller curvature. When the longer
and less asymmetric A2B2-copolymers are added to the system, a
curvature driven segregation of the A1B1- and A2B2-copolymers
on the AB-interface takes place, such that the A2B2-copolymers
are localized in the area with low curvature whereas the A1B1-
copolymers concentrate in the area with high curvature. Specifi-
cally, as shown in Figure 9, the pattern of the mean curvature and
junction distributions coincide with the shape of the WSC, espe-
cially when 𝜙2 is large. For example, the points A and B in Fig-
ure 9(c.2) represent roughly a local maximum and minimum of
the A1B1-junction density and they correspond to the vertex and
face of the WSC, respectively. Because the vertices and faces of
the WCS correspond to high and low interfacial curvature areas,
the accumulation and depletion of the A1B1-junctions in these
areas are expected.

As shown in Figure 10, the A-volume fraction f2 of the A2B2-
copolymers affects significantly the interfacial segregation of the
diblock copolymers. When f2 = 0.25 which is slightly larger than
f1 = 0.2, the interfacial segregation behavior is very similar to
that for the neat A1B1-copolymers (Figure 9a) such that there is
a weak accumulation of the A1B1-junctions at the low curvature
area. On the other hand, when f2 changes to f2 = 0.75, the interfa-
cial segregation pattern is inverted such that the A1B1-junctions
are depleted in the low curvature area. Similar to the formation
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Figure 10. Interfacial mean curvature (𝜅H) and AiBi junction distributions (conji, i = 1, 2) projected on the interface for a) f2 = 0.25 and b) 0.75, with
fixed f1 = 0.2, 𝛾1 = 1.5, 𝜙2 = 0.15, and 𝜒N = 30. The plot is for the CN = 14 domain of an equilibrated A15 structure.

Figure 11. Interfacial mean curvature (𝜅H) and AiBi junction distributions (conji, i = 1, 2) projected on the interface for a) 𝛾 = 0.6 and b) 1.5, with fixed
f1 = 0.2, f2 = 0.5, 𝜙2 = 0.2, and 𝜒N = 30. The plot is for the CN = 14 domain of an equilibrated A15 structure.

of the “core–shell” structure, the interfacial segregation also
requires simultaneously large f2 and 𝛾 as revealed by Figures 10
and 11. Particularly, for the chains with a large f2 but significantly
smaller total chain length or smaller 𝛾 , the distribution of the
A1B1-junctions are nearly constant on the interface as indicated
by Figure 11(a.2), where the variation of the junction density is
extremely small as depicted on the scale bar.

4. Conclusion

In summary, we have systematically studied the formation and
relative stability of complex spherical packing phases in binary
blends composed of A1B1 and A2B2 diblock copolymers with dif-

ferent chain lengths and compositions by using the polymeric
self-consistent field theory. A set of phase diagrams of the binary
blends have been constructed, representing the phase behavior of
the system in a large parameter space. The effects of three molec-
ular parameters, that is, the concentration𝜙2, composition f2, and
relative chain length 𝛾 of the A2B2 diblock copolymers, have been
examined. Our results predict that the complex spherical packing
phases, that is, the FK A15, 𝜎 and the Laves C14, C15 phases, can
become stable equilibrium phases with proper choices of f2 and
𝛾 . In particular, the theoretical results reveal that large values of f2
and 𝛾 are required simultaneously to stabilize the complex spher-
ical packing phases. The phase diagrams could be used to pre-
dict the phase transition sequence for a given set of parameters.
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For example, for BCC-forming A1B1 diblock copolymers with
f1 = 0.2, the addition of A2B2, or increasing 𝜙2 from 0 to 1, with
f2 = 0.7 and 𝛾 = 1.5 is predicted to induce order-order phase tran-
sitions following the sequence of BCC → C14 → C15 → 𝜎 → A15
→ HEX → L → DG → HEX. The predicted phase behavior is
in agreement with available theoretical studies and experiments.
More importantly, the theoretical results predict that the binary
A1B1/A2B2 diblock copolymer blends provide an efficient and ver-
satile platform to obtain complex spherical packing phases.

The mechanisms stabilizing the complex spherical packing
phases have been explored by a detailed and quantitative analy-
sis of the SCFT solutions. Specifically, the spatial distributions
of the different polymeric species are used to establish corre-
lations between structural formation and polymer segregation.
A detailed examination of the A2B2-concentration in different
Wigner–Seitz cells reveals that inter-domain segregation of the
different diblock copolymers occurs in the blends, resulting in
domains of different sizes. At the same time, an examination
of the A-segment density and AB-junction distributions demon-
strates that two types of intra-domain segregation take place.
The radial segregation of the long and short A-blocks inside the
A-domains results in a core–shell structure. The simultaneous
stretching of the long and short chains enables the formation
of large spherical domains. The lateral segregation of the AB di-
block copolymers on the AB-interfaces releases the frustration of
forming non-spherical cells. These mechanisms operate syner-
gistically resulting in a large stable region for the complex spher-
ical packing phases.

The current study focused on the simplest binary blends of
diblock copolymers, that is, blends containing A1B1 and A2B2 di-
block copolymers. It is natural to expect that more complex binary
blends composed of AB/CD diblock copolymers will exhibit more
complex phase behaviors, thus providing more opportunities to
form novel ordered phases, for example, other FK phases and
quasicrystals. Extension of the current study to more complex
blends containing block copolymers is straightforward, however,
care must be taken when one chooses the molecular parameters
and possible ordered candidate phases.

The results obtained in the current study provide a useful
foundation for further investigation of more complex polymeric
blends containing block copolymers. The mechanisms identified
in the study will be helpful for the understanding of the forma-
tion of complex structures via polymer self-assembly. In particu-
lar, the mechanism of local segregation of distinct components
in polymer blends provides a simple and effective route to access
complex ordered phases, particularly the complex spherical pack-
ing phases.

Acknowledgements
The authors acknowledge delightful discussions on the phase behavior of
block copolymers with Frank Bates, Kevin Dorfman, Weihua Li, Meijiao Liu,
and Rob Wickham. This research was supported by the Natural Sciences
and Engineering Research Council (NSERC) of Canada and was enabled
in part by support provided by the facilities of SHARCNET (https://www.
sharcnet.ca) and Compute Canada (http://www.computecanada.ca).

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Keywords
block copolymers, Frank–Kasper phases, polymer blends, self-assembly

Received: July 29, 2021
Revised: August 26, 2021

Published online:

[1] C. M. Bates, F. S. Bates, Macromolecules 2017, 50, 3.
[2] A.-C. Shi, J. Phys.: Condens. Matter 2021, 33, 253001.
[3] S. Lee, M. J. Bluemle, F. S. Bates, Science 2010, 330, 349.
[4] M. W. Schulze, R. M. Lewis III, J. H. Lettow, R. J. Hickey, T. M. Gillard,

M. A. Hillmyer, F. S. Bates, Phys. Rev. Lett. 2017, 118, 207801.
[5] M. W. Bates, S. M. Barbon, A. E. Levi, R. M. Lewis, H. K. Beech, K.

M. Vonk, C. Zhang, G. H. Fredrickson, C. J. Hawker, C. M. Bates, ACS
Macro Lett. 2020, 9, 396.

[6] A. J. Mueller, A. P. Lindsay, A. Jayaraman, T. P. Lodge, M. K. Mahan-
thappa, F. S. Bates, ACS Macro Lett. 2020, 9, 576.

[7] A. P. Lindsay, R. M. Lewis III, B. Lee, A. J. Peterson, T. P. Lodge, F. S.
Bates, ACS Macro Lett. 2020, 9, 197.

[8] A. P. Lindsay, G.-K. Cheong, A. J. Peterson, S.n Weigand, K. D. Dorf-
man, T. P. Lodge, F. S. Bates, Macromolecules 2021, 54, 7088.

[9] N. Xie, W. Li, F. Qiu, A.-C. Shi, ACS Macro Lett. 2014, 3, 906.
[10] M. Liu, Y. Qiang, W. Li, F. Qiu, A.-C. Shi, ACS Macro Lett. 2016, 5,

1167.
[11] W. Li, C. Duan, A.-C. Shi, ACS Macro Lett. 2017, 6, 1257.
[12] A. Reddy, M. B. Buckley, A. Arora, F. S. Bates, K. D. Dorfman, G. M.

Grason, Proc. Natl. Acad. Sci. USA 2018, 115, 10233.
[13] F. C. Frank, J. S. Kasper, Acta Crystallogr. 1958, 11, 184.
[14] F. C. Frank, J. S. Kasper, Acta Crystallogr. 1959, 12, 483.
[15] M. De Graef, M. E. McHenry, Structure of Materials: An Introduction

to Crystallography, Diffraction and Symmetry, Cambridge University
Press, Cambridge 2012.

[16] S. Kim, K.-J. Jeong, A. Yethiraj, M. K. Mahanthappa, Proc. Natl. Acad.
Sci. USA 2017, 114, 4072.

[17] A. Jayaraman, M. K. Mahanthappa, Langmuir 2018, 34, 2290.
[18] C. M. Baez-Cotto, M. K. Mahanthappa, ACS Nano 2018, 12, 3226.
[19] K. Yue, M. Huang, R. L. Marson, J. He, J. Huang, Z. Zhou, J. Wang, C.

Liu, X. Yan, K. Wu, Z. Guo, H. Liu, W. Zhang, P. Ni, C. Wesdemiotis,
W.-B. Zhang, S. C. Glotzer, S. Z. D. Cheng, Proc. Natl. Acad. Sci. USA
2016, 113, 14195.

[20] Z. Su, J. Huang, W. Shan, X. Yan, R. Zhang, T. Liu, Y. Liu, Q. Guo, F.
Bian, X. Miao, M. Huang, S. Z. D. Cheng, CCS Chem. 2020, 3, 1434.

[21] R. M. Lewis III, A. Arora, H. K. Beech, B. Lee, A. P. Lindsay, T. P. Lodge,
K. D. Dorfman, F. S. Bates, Phys. Rev. Lett. 2018, 121, 208002.

[22] S. Lee, C. Leighton, F. S. Bates, Proc. Natl. Acad. Sci. USA 2014, 111,
17723.

[23] Y. Qiang, W. Li, A.-C. Shi, ACS Macro Lett. 2020, 9, 668.
[24] G.-K. Cheong, F. S. Bates, K. D. Dorfman, Proc. Natl. Acad. Sci. USA

2020, 117, 16764.
[25] J. Xie, A.-C. Shi, Giant 2021, 5, 100043.
[26] M. Zhao, W. Li, Macromolecules 2019, 52, 1832.
[27] K. Kim, A. Arora, A. M. Lewis, M. Liu, W. Li, A.-C. Shi, K. D. Dorfman,

F. S. Bates, Proc. Natl. Acad. Sci. USA 2018, 115, 847.
[28] T. Hashimoto, S. Koizumi, H. Hasegawa, Macromolecules 1994, 27,

1562.

Macromol. Theory Simul. 2021, 2100053 © 2021 Wiley-VCH GmbH2100053 (13 of 14)

Ph.D. Thesis – Jiayu Xie; McMaster University – Physics & Astronomy

100



www.advancedsciencenews.com www.mts-journal.de

[29] D. Yamaguchi, T. Hashimoto, C. D. Han, D. M. Baek, J. K. Kim, A.-C.
Shi, Macromolecules 1997, 30, 5832.

[30] D. Yamaguchi, S. Shiratake, T. Hashimoto, Macromolecules 2000, 33,
8258.

[31] D. Yamaguchi, M. Takenaka, H. Hasegawa, T. Hashimoto, Macro-
molecules 2001, 34, 1707.

[32] F. Court, T. Hashimoto, Macromolecules 2002, 35, 2566.
[33] F. Chen, Y. Kondo, T. Hashimoto, Macromolecules 2007, 40,

3714.
[34] A.-C. Shi, J. Noolandi, Macromolecules 1994, 27, 2936.
[35] A.-C. Shi, J. Noolandi, Macromolecules 1995, 28, 3103.
[36] M. W. Matsen, F. S. Bates, Macromolecules 1995, 28, 7298.
[37] Z. Wu, B. Li, Q. Jin, D. Ding, A.-C. Shi, J. Phys. Chem. B 2010, 114,

15789.
[38] Z. Wu, B. Li, Q. Jin, D. Ding, A.-C. Shi, Macromolecules 2011, 44,

1680.
[39] C. T. Lai, A.-C. Shi, Macromol. Theory Simul. 2021, 33,

2100019.

[40] G. H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers,
volume 134. Oxford University Press, Oxford 2006.

[41] A.-C. Shi, in Self-Consistent Field Theory of Inhomogeneous Polymeric
Systems, in Variation Methods in Molecular Modeling (Ed: J. Wu),
Springer, Singapore 2017, pp. 155–180.

[42] K. Ø. Rasmussen, G. Kalosakas, J. Polym. Sci., Part B: Polym. Phys.
2002, 40, 1777.

[43] G. Tzeremes, K. Ø. Rasmussen, T. Lookman, A. Saxena, Phys. Rev. E
2002, 65, 041806.

[44] R. B. Thompson, K. Ø. Rasmussen, T. Lookman, J. Chem. Phys. 2004,
120, 31.

[45] A. Arora, D. C. Morse, F. S. Bates, K. D. Dorfman, J. Chem. Phys. 2017,
146, 244902.

[46] I. Prasad, Y. Seo, L. M. Hall, G. M. Grason, Phys. Rev. Lett. 2017, 118,
247801.

[47] E. Albin, R. Knikker, S. Xin, C.-O. Paschereit, Y. d’Angelo, in Int. Conf.
on Mathematical Methods for Curves and Surfaces, Springer, Cham
2016, pp. 1–22.

Macromol. Theory Simul. 2021, 2100053 © 2021 Wiley-VCH GmbH2100053 (14 of 14)

Ph.D. Thesis – Jiayu Xie; McMaster University – Physics & Astronomy

101



Chapter 6

Theory of Complex Spherical

Packing Phases in Diblock

Copolymer/Homopolymer Blends

Publication: Xie, Jiayu, and An-Chang Shi. “Theory of Complex Spherical Packing

Phases in Diblock Copolymer/Homopolymer Blends.” Macromolecules 56.24 (2023):

10296–10312.

Authors: Jiayu Xie, An-Chang Shi

Contribution: As the first author, my contributions included constructing the theoretical

model and computational code, generating and analyzing the data, and drafting the

initial manuscript. Dr. An-Chang Shi and I collaborated on manuscript revisions, with

guidance from Dr. Shi throughout the research.

102



Ph.D. Thesis – Jiayu Xie; McMaster University – Physics & Astronomy

Preface
In this chapter, we systematically explore the phase behaviours of two illuminating model

systems: binary AB/C blends and ternary AB/C/D blends, focusing on the stability of the

Frank-Kasper phases. Recent experiments have revealed the formation of FK phases not

only in polymeric blends [106, 129, 107] but also in surfactant systems [108–111]. These

systems involve the mixing of amphiphilic molecules with a matrix-selective component

alone, or both core-selective and matrix-selective components together. Unlike the effect

of adding a core-selective component, thoroughly discussed in Chapter 4, the addition of a

matrix-selective component swells the matrix. It remains unclear how the stability of the

FK phases is impacted with the existence of a matrix-selective component. Motivated by

the need to understand the experimentally observed emergence of the FK phases in the

broad range of soft matter systems, our study concerns the case where the AB copolymer

is A-sphere-forming, and the C and D homopolymers are B- and A-selective, respectively.

Free-jointed chain model is used to model all polymer chains, which provides a reasonable

description of low-molecular-weight polymers and even small molecules compared to the

commonly used continuous Gaussian chain model. Self-consistent field theory is then

employed to probe the phase behaviours of the systems.

For binary AB/C blends, phase diagrams are presented in the ϕ2 − χ plane. In the

case of ternary AB/C/D blends, phase diagrams are constructed in both the ϕ2 − χ

plane and the ϕ1 − ϕ2 − ϕ3 triangle, utilizing different thermodynamic ensembles. These

comprehensive diagrams cover an extensive region of the phase spaces for both systems,

offering insights into their phase behaviours. By analyzing SCFT solutions, we explore

the correlation between system parameters, the distribution of blend components, and

the properties of self-assembled spherical domains. Our findings qualitatively align with

available experimental results on both polymeric blends and surfactant systems, enhancing
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our understanding of the stabilization mechanisms of the FK phases in diverse soft matter

systems involving amphiphilic molecules and selective solvents.
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ABSTRACT: The formation of complex spherical packing phases
in binary and ternary diblock copolymer/homopolymer blends is
studied using self-consistent field theory (SCFT). The polymeric
blends are composed of A-sphere-forming AB diblock copolymers
mixed with B-selective (C) homopolymers and A-selective (D)
homopolymers, resembling surfactant/water and surfactant/water/
oil systems. It is observed that the addition of C homopolymers
stabilizes the Frank−Kasper (FK) σ and A15 phases, and further
addition of D homopolymers enables the appearance of the Laves
C14 and C15 phases. Compared with neat AB diblock copolymers,
the FK σ phase is predicted to become an equilibrium phase in the
AB/C blends at lower conformational asymmetry. In the AB/C/D
blends, the C and D homopolymers are localized in the B-rich matrix and A-rich cores, respectively, synergistically stabilizing the
complex spherical packing phases. The theoretically predicted phase behaviors of the AB/C and AB/C/D blends are consistent with
experiments on polymeric blends and surfactant systems. These results provide insights into the emergence of complex spherical
packings in soft matter systems composed of amphiphiles and selective additives.

■ INTRODUCTION
The packing problem is encountered ubiquitously in nature.1

One well-known example is the search of the densest packing
of identical hard spheres, which is solved in three-dimensions
by packing the spheres on the face-centered cubic (fcc) or
hexagonal close-packed (hcp) lattices.2 In contrast to the
packing of hard spheres, the packing problem in many soft
condensed matter systems is much more complicated because
the spherical domains are self-assembled from smaller
molecules, allowing them to adjust their shapes and volumes.
As a result, the equilibrium packing of these soft domains
depends sensitively on the properties of the constituent
molecules, and many different arrangements corresponding
to various crystalline structures can emerge.
One ideal platform to study the packing of soft spheres is

provided by block copolymers, which are macromolecules
composed of more than one chemically distinct subchains or
blocks covalently linked together.3,4 The simplest example of
block copolymers is an AB diblock copolymer obtained by
joining two homopolymers (A and B) through their ends. In
AB diblock copolymer melts with shorter A blocks and longer
B blocks, due to the chemical incompatibility between the A
and B monomers, the copolymer chains could aggregate to
form spherical domains consisting of A cores and B coronas,
which in turn could pack into different crystalline structures
with long-range order.3,5 It has been well established that the
equilibrium spherical packing phases for the neat conforma-
tionally symmetric AB diblock copolymer melts are the body-

centered cubic (bcc) and hcp spheres, commonly referred to as
the classical spherical phases.6,7

Given the richness of crystalline structures, a natural
question arises: can complex spherical packing phases or
nonclassical spherical phases emerge from the self-assembly of
block copolymers? An early instance of a nonclassical spherical
phase in block copolymers is the self-assembly of a Frank−
Kasper (FK) A15 phase from miktoarm ABn block copolymers,
which was predicted theoretically by Grason et al.8−10 and
observed experimentally by Cho et al.11 A significant
breakthrough in the search of nonclassical spherical phases in
block copolymers was the discovery of a FK σ phase in linear
polyisoprene-block-polylactide diblock copolymer melts by Lee
et al.12 Since then, a large number of experimental and
theoretical studies on the emergence and stability of complex
spherical packing phases self-assembled from block copolymers
have been carried out.7,13,14 Besides their appearance in neat
block copolymer melts, these complex spherical phases,
including two other FK phases, namely, the Laves C14 and
C15 phases, have been found to be stable in binary AB diblock
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copolymer/A homopolymer (A1B1/A2) blends
15−18 and binary

blends of AB diblock copolymers with different block
compositions and/or degrees of polymerization (A1B1/
A2B2).

19−23 The discovery of these complex morphologies
has greatly enriched the array of possible spherical packing
phases accessible in polymeric systems containing block
copolymers.14

Since the discovery of the FK phases in AB diblock
copolymer systems, substantial efforts have been made to
understand their formation mechanisms. There are two key
features that distinguish the FK phases from the classical
spherical phases, i.e. bcc, fcc, and hcp. The first feature is that
the Wigner−Seitz cells (WSCs) of the FK phases are on
average more rounder (having higher sphericity) than those of
the classical spherical phases.13 In neat AB diblock copolymer
melts, the stabilization of the FK phases is enabled by
increasing the conformational asymmetry of the diblocks,
quantified by the parameter ϵ that is defined by the ratio
between the Kuhn lengths of the two blocks, ϵ = bA/bB. Having
bA > bB leads to larger spherical domains, which in turn induces
more pronounced polyhedral imprinting on the A-B interface
toward the shape of their corresponding WSCs. Therefore, in
comparison to the classical spherical phases, the FK phases
with more spherical WSCs have less enthalpic penalty from
warping the interface, making them more thermodynamically
favored when ϵ is increased. This mechanism has been
analyzed quantitatively by Grason et al. using the diblock foam
model based on the strong-stretching theory (SST) and the
WSC geometry of various spherical packing phases.24

The second feature of the FK phases is the existence of
several nonequivalent spherical domains enclosed by distinct
WSCs with different sizes and shapes, in contrast to the
classical spherical phases with only one type of spherical
domain. This feature makes polymeric blends an ideal platform
to stabilize the FK phases because the local segregation of the
various components provides an effective mechanism to form
domains with different sizes and shapes. The simplest recipe to
formulate binary blends that stabilize the FK phases is to mix A
homopolymers into A-sphere-forming AB diblock copolymers.
Both theory16,17 and experiments15,18 have shown that the FK
σ, C14, and C15 phases can be stabilized in the binary A1B1/A2
diblock copolymer/homopolymer blends. Unlike the forma-
tion of the FK phases in neat AB diblock copolymers, which
requires conformational asymmetry of the diblock chains, the
emergence of the FK phases in the A1B1/A2 blends does not
necessitate conformationally asymmetric AB diblock copoly-
mers. Detailed self-consistent field theory (SCFT) studies have
provided direct evidence of the nonuniform distribution of the
A homopolymers across different types of spherical domains,
which is responsible for the formation of domains with largely
different volumes commensurate with the size difference in the
FK WSCs. These theoretical and experimental results have led
to a good understanding of the emergence of the FK packings
in the binary A1B1/A2 blends.
For A-sphere-forming diblock copolymers, opposite to the

effect of adding A homopolymers, the addition of B
homopolymers swells the B matrix.25,26 In an experimental
study of A1B1/B2 blends composed of poly(ϵ-caprolactone)-
block-polybutadiene (PCL-b-PB) diblock copolymers and
polybutadiene (PB) homopolymers by Takagi and Yamamoto,
a phase transition sequence of HEX → σ → bcc was detected
as the homopolymer concentration increased.27 A sensitive
dependence of the presence and location of the σ phase

window on the molecular weight of the homopolymers was
also observed. In a more recent experimental study of A1B1/B2
mixtures composed of cylinder-forming poly(ethylene oxide)-
block-poly(1,2-butadiene) (PEO-b-PB) diblock copolymers
blended with either PB homopolymers or dodecylbenzene
nonpolar foreign solvents, Chen et al. reported the discovery of
the FK σ phase with a very low conformational asymmetry (ϵ
≈ 1.2) of the diblocks.28 Moreover, the Laves C15 phase with
a gigantic unit cell was discovered in salt-doped A1B1/A2/B2
pseudoternary polymer blends, where the AB copolymers act
as compatibilizers between the A and B homopolymers.29

These experimental results indicate that the complex spherical
packing phases self-assembled from block copolymers could
become more favored with the addition of corona-selective
homopolymers alone or core- and corona-selective homopol-
ymers together. Interestingly, the emergence of the FK phases,
including the σ, A15, C14, and C15, has also been reported in
surfactant/water and surfactant/water/oil systems exhibiting
lyotropic liquid crystal (LLC) phases.30−33 The surfactant/
water and surfactant/water/oil systems bear a strong similarity
to the A1B1/B2 and A1B1/B2/A2 polymeric blends, respectively,
suggesting that they may share similar mechanisms in
stabilizing these intriguing packing phases.
To our knowledge, the phase behaviors of the A1B1/B2 and

A1B1/B2/A2 blends involving complex spherical packing phases
have not yet been systematically explored. In this work, we fill
this gap by conducting a systematic study of the phase
behaviors of these two blending systems using SCFT, aiming at
a better understanding of the mechanisms governing the
stability of the FK phases. We consider two generic model
systems, that is, binary AB/C blends and ternary AB/C/D
blends. In our model, all polymer chains are modeled as freely
joined chains (FJCs). Compared to the commonly used
continuous Gaussian chain (GC), the FJC is more suitable for
modeling low-molecular-weight polymers and may even be a
reasonable model for surfactant molecules.34 The C and D
homopolymers are B-selective and A-selective, respectively, by
using appropriate Flory−Huggins χ parameters, that is, χBC < 0
and χAD < 0. These choices also make the two polymeric
blends resemble surfactant/water and surfactant/water/oil
systems. We explore a large region in the phase space of the
systems of interest, and the phase behaviors are illustrated
through a set of phase diagrams. The effects of various system
parameters are demonstrated by comparing the phase diagrams
with different parameters. A detailed analysis is also conducted
to reveal the formation mechanisms of the complex spherical
packing phases in the two systems. The theoretical results of
the current work can be used to rationalize the available
experimental observations from polymeric and surfactant
systems, thus providing insights into the emergence of complex
spherical packings in a broad range of systems consisting of
amphiphilic molecules and selective additives.35−38

■ THEORETICAL MODEL
In the following, we first introduce the theoretical model of the
binary AB/C blends and then extend it to the ternary AB/C/D
blends. For the binary AB/C blends, we consider n1 AB
diblock copolymers and n2 C homopolymers, both modeled as
FJCs, in a volume V. Each AB diblock copolymer is composed
of NA A and NB B segments, resulting in a chain with N = NA +
NB segments connected by N − 1 bonds. To facilitate the
development of the theory, we define a reference chain length
N0 and also define γ1 = γAB = N/N0. By choosing N0 = N, we
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have γ1 = 1. For each diblock chain, the block composition, or
volume fraction of the A block is fA = NA/N = f and that of the
B block is f B = NB/N = 1 − f. Each C homopolymer has NC C
segments and we define γ2 = γC = NC/N. For simplicity, we
assume a uniform segment density ρ0 so that ρ0V = n1N +
n2γCN according to the incompressibility condition. The
average concentrations of the AB diblock copolymers (ϕ1)
and C homopolymers (ϕ2) are given by

= = =n N
V

n N

V
, 11

1

0
2 1

2 C

0 (1)

The bonded potential energy between two adjacent
segments on a polymer chain is expressed as

=b R k T R b( ) ln ( )i iB (2)

where bα represents the Kuhn length of the α segments.
Equation 2 implies that the adjacent segments are connected
by a bond with a fixed length and there is no angular
dependence between adjacent bonds. The total nonbonded
potential energy of the system is

= | |U k T u r r r r r r( ) ( ) ( )d dB 0
(3)

where χαβ is the Flory−Huggins parameter between the α and
β segments, r( ) is the microscopic density operator of the α
segments, and u(|r − r′|) is the interaction potential
accounting for the finite-range interactions between chemically
distinct segments. For the nonbonded interaction potential, we
choose a Gaussian form
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which is normalized over the real space, that is, ∫ u(R)dR = 1.
To consider the two-phase coexistence region, it is

convenient to formulate the theory in the grand canonical
ensemble in which the thermodynamic control parameters are
the chemical potentials of the AB diblock copolymers, μ1, and
the C homopolymers, μ2. The mean-field grand potential
density is written as39,40

=
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where κ(=1 for AB diblock copolymers or 2 for C
homopolymers) is used to label different types of polymer
chains and α and β(=A, B, or C) are used to label different
types of segments. ϕα(r) is the ensemble average of r( ) and
ωα(r) is the conjugate field of ϕα(r). η(r) is the Lagrange
multiplier that enforces the incompressibility condition.
Minimizing the grand potential leads to a set of SCFT
equations
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where R = r − r′ and R = |R|. Without loss of generality, in eq
7, we have set the chemical potential μ1 for the diblock
copolymers to 0 by using the incompressibility condition so
the subscript of μ2 has been dropped for brevity. Once eq 7 is
solved, the average concentrations for different components
can be calculated by

= =Q , 11 1 2 1 (8)

The forward propagators q(i, r)’s in eq 7 are calculated via
the iterative relation

+ =+ +
+q i g q ir r r r r( 1, ) e d ( ) ( , )i i i i i

r
1

( )
1

i 1

(9)

where gα(ri+1 − ri) is the bond transition probability of the
form gα(Ri) = δ(|Ri| − bα)/4πbα

2 with Ri = ri+1 − ri. The initial
condition of the iteration is qκ(1,r) = exp[−ωα(r)]. The
computation of the backward propagators is performed
similarly, with the iterations running in the opposite direction.
The single-chain partition function Qκ is computed by

=Q
V

q Nr r1
d ( , )N N (10)

Another useful thermodynamic ensemble is the canonical
ensemble, with the concentrations of different components
being the control parameters. The Helmholtz free energy
density is given by

=

[ | |

+ ]

NF
Vk T V

N ur r r r r

r r r r r

ln
Q 1

d ( ) ( ) N ( )

( ) ( )d ( )(1 ( ))

0 B

(11)

Minimizing eq 11 results in a similar set of SCFT equations
as eq 7 with some modifications for the equations calculating
the different ϕ’s
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For the ternary AB/C/D blends, D homopolymers are also
added to the system. Each D homopolymer contains ND D
segments and, similarly, we define γ3 = γD = ND/N. In the
grand canonical ensemble, the thermodynamic control
parameters for the ternary AB/C/D blends are the chemical
potentials of the three components. Using the incompressi-
bility condition, we can set μ1 for the AB copolymers to 0 and
we are left with two independent μ’s, that is, μ for the C
homopolymers and μ′ for the D homopolymers. The grand
potential density takes the same form as eq 6, but with κ
running through all three components, and α and β also
running through D. Accordingly, the SCFT equations are the
same as eq 7 with α(or β) = D also considered and one
additional equation to calculate ϕD(r)

= +
=N

q i q N ir r r( ) e
e

( , ) ( 1, )k T

i

Nr

D
/

( )

1
3 3 D

B
D D

(13)

Similarly, the average concentrations for the various
components are readily computed by

= = =Q Q, e , 1k T
1 1 2 C

/
2 3 1 2

B

(14)

For the ternary blends, it is useful to introduce a semigrand
canonical ensemble, where the thermodynamic control
parameters are the chemical potentials of the AB copolymers
(μ1) and C homopolymers (μ2) and the average concentration
of D homopolymers (ϕ3). The semigrand potential density is
written as

=
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Similarly, μ1 is set to 0, after which the remaining
independent control parameters are μ for the C homopolymers
and ϕ3 for the D homopolymers. The corresponding SCFT
equations are the same as those of the grand canonical
ensemble, except the equation calculating ϕD(r) is replaced by

= +
=Q N

q i q N ir r r( )
e
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3 1
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(16)

The average concentrations for the AB copolymers and C
homopolymers are given by

= =Q , 11 1 2 1 3 (17)

For the ternary system, the propagators and single-chain
partition functions are computed in the same manner as those
for the binary system.
For both the AB/C and AB/C/D blends, we simultaneously

solve the SCFT equations and optimize the unit cell

Figure 1. Phase diagrams in the ϕ2 − χAB(=χAC) plane with ϵ = (a) 1.0, (b) 1.1, (c) 1.25, and (d) 1.5 for the AB/C binary blends, where NA = 10
( fA = 0.25) and NC = 5 are kept fixed. Unlabeled regions are the two-phase coexistence regions between two adjacent single phases.
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dimensions by implementing the pseudospectral method and
variable-cell Anderson mixing for the FJCs.17,41 The phase
diagrams are constructed by comparing the grand potential
densities of different candidate phases. The phase boundaries
are determined by identifying the intersections of the grand
potential densities of adjacent phases. The candidate phases
considered in the current study include the hexagonal close-
packed cylinders (HEX), bcc, fcc, hcp, and disordered (Dis)
phases, as well as the FK σ, A15, C14, C15, and Z phases. The
schematics of these candidate phases, along with the numbers
of grid points used to discretize their unit cells, are given in
Table S1 of the Supporting Information. During our
calculation, we found that in the AB/C blends, the grand
potential density of the fcc phase is close to but always greater
than that of the hcp phase, except in the close vicinity of the
ODT, where they are nearly degenerate and become
indistinguishable within the numerical accuracy of our
calculation. Although a similar behavior is observed for the
AB/C/D blends, the hcp to fcc transition, if it exists, remains
identifiable near the ODT within the same numerical accuracy.
For this reason, possible small stability windows of the fcc
phase near the ODT are included in the AB/C/D blends but
omitted in the AB/C blends. Additionally, we note that in
some cases, particularly when either NC or ND is large, the
SCFT equations become challenging to converge in regions
very close to the ODT. When this occurred, we generated data
points as close to the ODT as possible and used extrapolation
to estimate the phase boundaries.
The parameter space of both systems considered in this

study is dauntingly large, especially for the AB/C/D ternary
mixtures. To focus on the phase space of interest, we fixed
some of the parameters throughout the current study. Here, we
introduce our choices of the system parameters that are
applicable for both systems, and the specification for each
system will be discussed in the following sections. For both the
AB/C and AB/C/D mixtures, the number of segments N for
the AB copolymers is kept at 40. In general, the conformational
asymmetry of a molecule is defined as = b b( )/( )A A

2
B B

2

.42−44 Because of the assumption that ρA = ρB = ρ0, we simply
have ϵ = bA/bB. When considering conformationally asym-
metric AB copolymers, we set bA = 1 and bα = bA for α = C and
D, and the ϵ is tuned by adjusting bB, unless stated otherwise.
The range of the interactions is fixed to b3 A . Furthermore,
the Kuhn length of the bond at the AB junction connecting the
A and B blocks is set to always be equal to bA.
Compared to the standard GC,6 our choices of the FJC

model and a relatively small N make the model more suitable
for polymer chains with low-molecular weight. For the same
reason, our model may also provide insights into the phase
behaviors of surfactant systems involving these complex
packings.

■ RESULTS AND DISCUSSION
Binary AB/C Blends. In this section, we provide a

systematic examination of the phase behavior of the AB/C
blends. We set χAB = χAC > 0 and fix χBC = −0.1 throughout
this section, unless otherwise specified. The phase diagrams
depicting the phase behavior of the system will be presented in
the 2-dimensional ϕ2 − χAB plane. Previous theoretical and
experimental studies have demonstrated that conformational
asymmetry between the A and B blocks plays a key role in the
formation of complex spherical packing phases in AB diblock

copolymer melts.45−47 SCFT calculations based on the GC
model suggested that the critical value of ϵ for the stabilization
of the FK σ phase is ϵ ∼ 1.5.45 Further increasing ϵ to ϵ > 2.1
could open up a stability window for the FK A15 phase at χN
≈ 40.47 Based on these previous results, the ϵ is expected to
play a similar role in the AB/C blends in stabilizing the FK
phases. To quantitatively examine the effect of ϵ on the
equilibrium spherical packing phases in the presence of B-
selective C homopolymers, we construct two sets of phase
diagrams with different f and ϵ. The first set (Figure 1)
includes 4 phase diagrams with fixed NA = 10 ( f = 0.25), NC =
5, and varying ϵ from 1.0 to 1.5, while the second set (Figure
2) includes 3 phase diagrams with fixed NA = 13 ( f = 0.325),
NC = 5, and varying ϵ from 1.0 to 3.0.
Several common features emerge from the phase diagrams

shown in Figures 1 and 2. Most notably, the system is driven
from cylindrical to spherical phases by increasing the
concentration of the C homopolymers (ϕ2). Taking all the
observed ordered phases into account, the progression of the

Figure 2. Phase diagrams in the ϕ2 − χAB(=χAC) plane with ϵ = (a)
1.0, (b) 1.25, and (c) 3.0, where NA = 13 ( fA = 0.325) and NC = 5 are
kept fixed. Unlabeled regions are the two-phase coexistence regions
between two adjacent single phases.
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equilibrium morphology with increasing ϕ2 is HEX → A15 →
σ → bcc → hcp. This generic phase transition sequence has
been partially predicted by previous theoretical studies25,26 and
observed in recent experiments on both diblock copolymer/
homopolymer blends27,28 and surfactant solutions.30,32 It is
noted that the progression of the equilibrium phase as the
homopolymer concentration is increased in the AB/C blends
(Figures 1 and 2) is identical to that observed for the AB

diblock copolymer melts as increasing the majority-block
volume fraction.45 An intuitively appealing explanation for this
observation is given by an argument based on the overall
volume fractions of the minority and majority blocks, that is,
the addition of B-selective C homopolymers effectively
increases the volume fraction of the majority B blocks in the
system. However, the detailed phase behavior of the binary
blends goes beyond this simple volume-fraction argument and
exhibits a more intricate dependence on the specific
distribution of the homopolymers, which will be elaborated
later.

Figure 3. Density profiles of the C homopolymers for the FK (a) σ and (b) A15 phases taken from the SCFT solutions at the point {ϕ2,
χAB(=χAC)}={0.3, 0.9} on the phase diagram in Figure 1c.

Figure 4. (a) Imprinting parameter αW for all nonequivalent domains
of the hcp, bcc, FK σ, and A15 phases and (b) the relative standard
deviation of domain volumes of the FK σ and A15 phases. The
density profiles used to generate the data are taken from the SCFT
solutions with NA = 10 ( fA = 0.25), NC = 5, ϵ = 1.25, χAB = χAC = 0.9,
and two different values of ϕ2. Numbering of distinct types of
domains/WSCs of the FK phases is shown in Figure S1. Bars for A152
in (a) are nearly invisible on the scale of the graph.

Figure 5. (a) Phase diagram in the ϕ2 − χAB(=χAC) plane with NC =
30 and all the other parameters the same as those for Figure 1c, along
with the density profiles of the C homopolymers for the HEX phase
taken from the SCFT solutions at the point {ϕ2, χAB(=χAC)}={0.15,
0.9} in (b) Figure 1c and (c) Figure 5a, respectively. Unlabeled
regions in (a) are the two-phase coexistence regions between two
adjacent single phases. To have a clear comparison, the HEX-σ and σ-
bcc boundaries in Figure 1c are also plotted as red dotted lines in (a).
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The effect of the conformational asymmetry of the diblocks
is revealed by comparing the phase diagrams with different
values of ϵ. In Figures 1a and 2a, in which ϵ = 1, none of the
complex spherical phases is present. As ϵ is increased, a
stability window of the FK σ phase appears between the HEX
and bcc phases. Moreover, the A15 phase becomes stable
between the HEX and σ when ϵ = 3.0 in the case where NA =
13 ( fA = 0.325), as could be seen in Figure 2c. These
observations suggest that, similar to the neat AB diblock
copolymers, the stabilization of the FK phases in the binary
AB/C mixtures also requires some degrees of conformational
asymmetry for the AB diblock copolymers. However, it is
observed that adding C homopolymers generally increases the
range of χ over which the FK phases are stable. Additionally, in
Figures 1b and 2b,c, the FK σ or A15 phase is not an
equilibrium morphology within the entire range of χ in the
limit of the neat diblock copolymers corresponding to ϕ2 = 0,
but they are stabilized by adding the C homopolymers. These
observations provide clear evidence that the presence of C
homopolymers promotes the stability of the FK phases.
Notably, the critical value of ϵ required to stabilize the FK

phases is significantly lower in the AB/C blends compared with
the neat AB diblock copolymers. In particular, a stability
window of the FK σ phase, albeit narrow, is identified between
those of the HEX and bcc phases in Figure 1b with ϵ = 1.1.
This prediction is in good agreement with the recent
experiments of Chen et al., where the σ phase was observed
in the PEO-b-PB diblock copolymers with ϵ ≈ 1.2 blended
with PB-selective solvents.28 It is worth noting that previous
SCFT calculations based on the standard GC model predicted

a threshold ϵ ∼ 1.5 to stabilize the FK σ phase in the neat AB
diblock copolymer melts.45 In contrast, Figure 1c shows that
the σ phase already has a moderate stability window at ϕ2 = 0,
corresponding to the neat diblocks with ϵ = 1.25. This lower
critical ϵ predicted by SCFT based on the freely jointed chain
model implies that the stability of the σ phase could be
enhanced in systems of low-molecular-weight copolymers.
However, a detailed investigation of the difference between
these two chain models in stabilizing the FK phases is beyond
the scope of the current work, and we will leave this topic for a
future study.
While a simple volume-fraction argument could be used to

rationalize the generic phase progression when ϕ2 is increased,
it is not sufficient to explain the intricate phase behavior of the
system. Most notably, the reason behind the enhanced stability
of the FK phases in the presence of the C homopolymers
remains unclear. More detailed understanding of the effects of
the C homopolymers in the binary AB/C blends is offered by
the homopolymer distribution in the microdomains formed by

Figure 6. Phase diagrams in the ϕ2 − χAB(=χAC) plane with all
parameters the same as those used for (a) Figure 1c and (b) Figure
5a, except that χBC = 0, bB = bC, and ϵ = bA/bB = bA/bC = 1.2 are used
instead. These choices of parameters reduce the system to A1B1/B2
blends. Unlabeled regions are the two-phase coexistence regions
between two adjacent single phases.

Figure 7. Ternary phase diagrams depicting the overall phase
behavior of the AB/C/D blends with (a) ϵ = 1 and (b) ϵ = 2,
where χ = 0.8 and {NA ( fA), NC, ND} = {10 (0.25), 5, 20}. Unlabeled
regions are two-phase (white) and three-phase (blue) coexistence
regions between the adjacent single phases. Dashed line in (a) is
obtained from extrapolation.
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the copolymers. As an example of the homopolymer
distribution, the density profiles of the homopolymers for the
FK σ and A15 phases obtained from SCFT at the point {ϕ2,
χAB(=χAC)}={0.3, 0.9} on the phase diagram in Figure 1c are
displayed in Figure 3a,b, respectively. The plots clearly show
that the homopolymer densities exhibit strong spatial
nonuniformity. Specifically, more concentrated homopolymers
(ϕC(r) ∼ 0.4) are found in the interstitial voids corresponding
to the vertices and edges of the WSCs, enclosing the AB soft
domains. As moving toward the center of the A domains, the
homopolymer concentration gradually decreases. At the
domain cores, there are almost no homopolymers (ϕC(r) ≪
0.1).
The nonuniform distribution of the C homopolymers shown

in Figure 3 is driven enthalpically to minimize the unfavorable
contacts between the A and C monomers. In addition, for all of
the nonlamellar morphologies, the localization of the
homopolymers at the interstitial voids releases the packing
frustration.26 For single-component systems such as AB
diblock copolymer melts, the packing frustration originates
from the conflict between the tendency for the soft domains to
maintain their native shape and the need for the copolymer
chains to fill the space without voids.5 This frustration could be

alleviated by the addition of the C homopolymers, which act as
space fillers to fill the gaps that would otherwise be occupied
by the diblock copolymers through excessive stretching.
Furthermore, for the FK phases, the nonequivalent soft
domains tend to have different sizes to accommodate the
different geometric surroundings reflected by their correspond-
ing WSCs. Thus, an additional source of packing frustration for
the FK phases in single-component systems is the formation of
domains with different volumes by aggregating copolymer
chains with a uniform degree of polymerization, which
inevitably results in unevenly stretched chains. In contrast,
the binary AB/C blends could naturally overcome this type of
packing frustration with the extra degree of freedom to
partition the homopolymers into distinct WSCs differentially,
which could explain the enhanced stability of the FK phases.
Despite the high concentration at the interstitial regions, the
homopolymers also penetrate into the coronas of the domains,
driven by a gain in translational entropy, which increases the
AB interfacial curvature accounting for the cylinders → spheres
transition observed in all phase diagrams in Figures 1 and 2.
It is worth emphasizing the differences between the

stabilization mechanisms by adding core-selective and
corona-selective homopolymers to the sphere-forming diblock
copolymers. Previous studies demonstrated that adding core-

Figure 8. Phase diagrams in the ϕ2 − χAB(=χAC = χBD = χCD) plane
with ϕ3 = 0.05, NC = 5, ND = 20, and ϵ = (a) 1.0 and (b) 2.0,
respectively. Unlabeled regions are the two-phase coexistence regions
between two adjacent single phases. The phase boundary between the
fcc and order−disorder coexistence regions, fcc−2ϕ, is not
determined and this fact is noted by the red “(→2ϕ)”, following
the “fcc” label. The markers are the phase boundaries encountered by
traversing the paths with constant ϕ3 in Figure 7, with a blue circle,
upward triangle, downward triangle, square, pentagon, hexagon, and
red cross denoting the HEX−σ, σ−C14, C14−hcp, hcp−fcc, σ−C15,
C15−C14, and fcc−Dis boundaries, respectively. Many of the
coexistence regions between the two adjacent phases are too narrow
to be visible.

Figure 9. Phase diagrams in the ϕ2 − χAB(=χAC = χBD = χCD) plane
with the same parameters as those used in Figure 8b except ϕ3 = (a)
0.01 and (b) 0.001, respectively. Unlabeled regions are the two-phase
coexistence regions between two adjacent single phases. The phase
boundary between the fcc and order−disorder coexistence regions, fcc
-2ϕ, is not determined and this fact is noted by the red “(→2ϕ)”,
following the “fcc” label. The markers are the phase boundaries
encountered by traversing the paths with constant ϕ3 in Figure 7, with
the blue upward triangle, downward triangle, diamond, and red cross
denoting the σ−C14, C14−hcp, σ−hcp, and hcp−Dis boundaries,
respectively. Many of the coexistence regions between two adjacent
phases are too narrow to be visible.
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selective homopolymers into the AB diblocks stabilizes the FK
phases by forming highly swollen domains.15−18 These swollen
domains are more severely distorted toward the polyhedral
shape of their WSCs, making the FK phases with higher
average WSC sphericity more enthalpically favored than the
bcc and hcp phases due to the lower AB interfacial energy. On
the other hand, the nonuniform distribution of the core-
selective homopolymers across distinct domains enlarges their
size difference and, in turn, decreases the interfacial energy
between the homopolymers and the corona blocks, which is
responsible for the formation of the Laves phases.17 However,
the mechanisms of stabilizing the FK phases by adding corona-
selective components into the AB diblocks have opposite
effects on the shapes and size dispersity of the soft domains.
To quantitatively illustrate the effect of adding B-selective C
homopolymers on the domain shapes and size difference, we
evaluate the polyhedral warping parameter αW for different
domains and the relative standard deviation δV of the domain
volumes. The polyhedral warping parameter is defined as24

= 1 IQ
1 IQW

1/3

poly
1/3

(18)

where IQ and IQpoly are the isoperimetric quotients, i.e.,
36πV2/A3, of a domain and a polyhedron, respectively. This
parameter measures the degree of domain deformation toward
the polyhedron. An undeformed perfect sphere and a
completely deformed polyhedron have αW = 0 or 1,

respectively. The α’s computed for the nonequivalent domains
of the hcp, bcc, σ, and A15 phases with the same values for all
parameters but two different values of ϕ2, i.e., 0.0 and 0.3, are
shown in Figure 4a. The IQpoly for each domain is evaluated by
assuming the shape of the WSC enclosing that domain. The
δV’s computed for the σ and A15 phases are shown in Figure
4b with the same set of parameters used in (a). For the bcc and
hcp phases, δV = 1.
From Figure 4a, it is seen that α decreases for all the

domains as ϕ2 changes from 0 to 0.3, except A152, which has
vanishingly small α and thus is not visible at the scale of the
graph in both cases. This indicates that the observed
homopolymer localization (Figure 3) releases the packing
frustration and sustains soft domains closer to their native
shape, i.e., a perfect sphere. The decrease in α is especially
pronounced for the FK domains that have a large deformation
in the absence of homopolymers, i.e., σ1, σ2, σ3, σ5, and A151.
As can be seen in Figure 4b, the addition of the C
homopolymers also decreases the volume difference between
domains of different types for both the σ and A15 phases,
suggesting that the differential distribution of the homopol-
ymers could mitigate the need to form different-sized domains
in the FK lattices and thus reduce uneven chain stretching. The
behaviors of domain shapes and volume difference due to
adding corona-selective homopolymers, as shown in Figure 4,
are opposite to those observed in the case of adding core-
selective homopolymers, reflecting the differences between the
mechanisms of stabilizing the FK phases in these two cases.
Compared to swelling the core, releasing the packing
frustration in the corona proves to be less effective in
promoting the stability of the FK phases. Particularly, our
results suggest that the requirement of the conformational
asymmetry of the diblock chains to stabilize the σ phase is not
completely lifted by adding the corona-selective homopol-
ymers into the AB diblocks, and this blending scheme cannot
stabilize the Laves C14 and C15 phases.
Another parameter that can greatly affect the phase behavior

of the binary AB/C blends is the degree of polymerization of
the homopolymers. Numerous studies have demonstrated that
the spatial distribution of the homopolymers in diblock
copolymer/homopolymer blends is largely influenced by the
molecular weight of the homopolymers.15−18,48−52 Due to the
greater gain in entropy, shorter homopolymers penetrate deep
into the microdomains formed by the affinity block (wet-brush
behavior) compared to the longer ones that tend to be more
excluded from the microdomains (dry-brush behavior). To
investigate the effect of NC, a phase diagram with the same
parameters as that in Figure 1c except a larger NC = 30, along
with two C-homopolymer density plots, is presented in Figure
5. Specifically, the C-homopolymer density plots in Figure 5b,c
are taken from the SCFT solutions for the HEX phase at {ϕ2,
χAB(=χAC)}={0.15, 0.9} in Figures 1c and 5a, respectively. It
can be observed that increasing NC from 5 to 30 enhances the
localization of the homopolymers into the interstitial voids, as
indicated by the more condensed red region and higher
maximum density in the color bar in Figure 5c compared to
Figure 5b. The change in the homopolymer distribution
induced by increasing NC clearly shows a transition from the
wet-brush to the dry-brush behaviors of the homopolymers.
The more isolated homopolymers have a stronger effect in
alleviating the packing frustration associated with the WSC
nonsphericity and a weaker effect on the interfacial curvature.
Consequently, we observe that the bcc phase has slightly

Figure 10. (a) Average concentrations of the D homopolymers within
different FK WSCs, φ3

WSC, at ϕ3 = 0.05. (b) Relative standard
deviations of domain volumes, δV, at ϕ3 = 0 and 0.05, evaluated for
the four FK phases. Other parameters are ϵ = 2, χ = 0.9, ϕ2 = 0.3, and
{NA ( fA), NC, ND} = {10 (0.25), 5, 20}. Dashed line in (a) marks the
unit-cell-averaged ϕ3. Numbering of distinct types of domains/WSCs
of the FK phases is shown in Figure S1.
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increased stability against the σ phase and that the HEX phase
is sustained to a larger ϕ2, together causing a shrinkage of the
stability window of the σ phase. Besides, another obvious effect
of increasing NC is the increase of the hcp window and two-
phase window between the copolymer-rich hcp phase and the
homopolymer-rich disordered phase.26

The destabilizing effect on the FK σ phase by increasing the
homopolymer molecular weight was also observed exper-
imentally in a study by Takagi and Yamamoto on the binary
mixtures of polybutadiene-block-poly(ϵ-caprolactone) (PB-b-
PCL) diblock copolymers and corona-selective PB homopol-
ymers,27 corresponding to a A1B1/B2 system. They discovered
that the σ phase is stable only when the chain length of the
added B2 homopolymer is smaller than the length of the
corresponding block of the copolymer. When the molecular
weight of the homopolymer is roughly 1.5 times that of the B1
block, the σ phase is entirely absent. In our model, it is
straightforward to reduce the AB/C to an A1B1/B2 system by
setting χBC = 0 and bB = bC. For a detailed investigation of the
effect of NC in this case, we construct two phase diagrams with
two different choices of NC, i.e., 5 and 30, presented in Figure
6a,b, respectively. In Figure 6, all parameters are the same as
those used in Figures 1c and 5a, except that χBC = 0, bB = bC,
and ϵ = bA/bB = bA/bC = 1.2 are chosen. For convenience, we
define the ratio αR = NC/NB. In Figure 6a where αR = 0.167,
there is a sizable stable region of the σ phase that extends to
higher χ. When αR is increased to 1.0, the stable region of the
HEX phase expands toward higher ϕ2, while that of the σ
phase shrinks significantly and terminates at χAB = χAC ∼ 0.744
and ϕ2 ∼ 0.131, as shown in Figure 6b. In addition, the bcc
stable region shrinks and terminates as well, with a terminating
point close to that of the σ phase. Although the parameters
used here do not exactly match the experimental samples by

Takagi et al.,27 these theoretically predicted trends are in
qualitative agreement with the experimental results. There are
also some obvious discrepancies between the SCFT phase
diagrams in Figure 6 and the experimental phase portraits. In
particular, our SCFT results predict significantly enlarged
regions for the hcp phase and macrophase separation upon
increasing NC, which were not observed in the experiment. We
speculate that these regions near the ODT may have been
missed in the experiment or largely affected by the fluctuation
effect that is not captured by mean-field theory. It is worth
noting that the diblock copolymers with ϵ = 1.2 and the wet-
brush homopolymers used in constructing the phase diagram
in Figure 6a closely align with the experimental samples
utilized by Chen et al.,28 and the prediction from Figure 6a is
in good qualitative agreement with their experimental results.

Ternary AB/C/D Blends. In this section, we turn our
attention to the more complicated ternary blends consisting of
AB diblock copolymers and two chemically distinct , C and D,
homopolymer additives. The introduction of a third
component dramatically increases the number of independent
parameters in the model. To target the phase space of interest,
where C and D homopolymers are B- and A-selective,
respectively, we set χAB(=χAC = χBD = χCD) = χ > 0 and χBC
= χAD = −0.3. These choices of the interaction parameters
make the ternary blends analogous to the A1B1/B2/A2 blends
and surfactant/water/oil systems. The thermodynamics of the
AB/C/D blends is described by the grand potential density (eq
6) in the grand canonical ensemble, which leads to ternary
phase diagrams over the blend-composition (ϕ1-ϕ2-ϕ3)
triangle. Compared to the ϕ2 − χαβ phase diagrams (for
example, Figure 1, etc.), each ternary phase diagram depicts
the phase behavior only at a set of constant χ’s. To explore the
χ dependence more conveniently, ϕ2 − χαβ phase diagrams can

Figure 11. Four interfacial-energy contributions of the FK phases relative to those of the bcc phase, NΔUαβ/ρ0VkBT, where αβ = (a) AB, (b) AC,
(c) BD, and (d) CD, as a function of ϕ3. Other parameters are the same as those used in Figure 10.
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be constructed by working in the semigrand canonical
ensemble, which amounts to considering systems with a
constant concentration of the D homopolymers (ϕ3). For
ternary blends, macrophase separation could lead to three-
phase coexistence regions in the phase space. Although those
regions are not accessible in the semigrand canonical ensemble,
they appear to be narrow when the two-phase coexistence
regions are narrow. In what follows, we will first construct two
ternary phase diagrams with ϵ = 1 and 2, which provide a full
picture of the phase behavior on the ϕ1-ϕ2-ϕ3 triangle, and we
will then use ϕ2 − χαβ diagrams to investigate the effects of the
other model parameters.
Previous studies on binary A1B2/A2 blends demonstrated

that the requirement of conformational asymmetry for diblock
copolymers to stabilize the FK σ phase could be completely
lifted by adding proper core-swelling homopolymers.16,17 In
addition, stable Laves C14 and C15 phases could also form at
higher homopolymer concentrations. For the current AB/C/D
system, two ternary phase diagrams with ϵ = 1 and 2 are
presented in Figure 7a,b, respectively, with χ = 0.8 and {NA
( fA), NC, ND} = {10 (0.25), 5, 20} held constant. In Figure 7a,
the stable morphology at ϕ2 = ϕ3 = 0, corresponding to the
neat diblocks, is HEX, which remains to be the only ordered
phase on the entire right side of the triangle (ϕ2 = 0). This
indicates that for the specific ternary blending system
considered in Figure 7a, adding the core-swelling D
homopolymers into the AB diblocks alone does not induce
any of the complex spherical packing phases. On the left side of

the triangle (ϕ3 = 0), representing an AB/C blends without the
D homopolymers, phase transitions from HEX → bcc → hcp
are observed, similar to those shown in Figure 1a. However,
the simultaneous presence of the C and D homopolymers can
stabilize the σ, C14, and C15 phases, resulting in large stability
windows of these complex spherical packings in the left half of
the phase diagram, as shown in Figure 7a. For example, the σ
phase can be stabilized by adding a tiny amount of D
homopolymers (ϕ2 ≳ 0.001) when there are about 22% C
homopolymers in the system. When there are about 35% C
homopolymers, increasing the concentration of D homopol-
ymers induces the phase transitions from bcc → σ → C14 →
C15. In the phase diagram with ϵ = 2 shown in Figure 7b, the
overall region of ordered morphologies is much smaller
compared to Figure 7a, but the spherical region becomes
dominant over that of the HEX. Due to the conformational
asymmetry of the diblocks, the stable morphology at ϕ2 = ϕ3 =
0 becomes the σ phase. Adding either C or D homopolymers
alone induces the transition from σ to hcp or HEX. The access
of the two Laves phases requires adding the C and D
homopolymers simultaneously, similar to the observation from
Figure 7a. Both phase diagrams shown in Figure 7 demonstrate
a synergistic effect of adding two selective homopolymers in
promoting the complex FK packings, especially Laves C14 and
C15, in the AB/C/D ternary blends.
Two ϕ2 − χ phase diagrams with ϵ = 1 and 2 are constructed

and shown in Figure 8, with ϕ3 = 0.05 and {NA ( fA), NC, ND}
= {10 (0.25), 5, 20} held constant. A shrinkage of the overall
ordered region and an enhancement in the dominance of the
Laves phases as ϵ is increased are observed. In Figure 9,
another two ϕ2 − χ phase diagrams with ϕ3 = 0.01 and 0.001
are presented, with ϵ = 2 and all the other parameters the same
as those used in Figure 8b. As ϕ3 is decreased from 0.05
(Figure 8b) to 0.01 (Figure 9a), the C15 phase disappears.
Further decreasing ϕ3 to 0.001 (Figure 9b) destabilizes the
C14 as well. These behaviors illustrated by Figures 8 and 9 are
consistent with the observations from Figure 7. Additionally,
both Figures 8 and 9 suggest that the stability windows for the
Laves phases expand as χ becomes larger. Thus, the Laves
region on the ϕ1−ϕ2−ϕ3 triangle is expected to become more
dominant with a larger χ. On the contrary, the Laves phases
taper off and eventually disappear between the σ and hcp
phases as decreasing χ. The synergistic effect between the two
homopolymers in stabilizing the Laves phases is clearly
revealed by comparing the different phase diagrams in Figures
8 and 9. It is seen that the Laves phases are stable only when
both of the C and D homopolymers are added to the system.
They are completely absent in the entire range of χ (0 < χ <
0.9) when either ϕ2 = 0 or ϕ3 = 0.
To compare the phase boundaries determined from the

grand canonical ensemble and semigrand canonical ensemble
more quantitatively, we locate the phase boundaries encoun-
tered by traversing the corresponding paths with constant ϕ3 in
Figure 7 and reproduce them in Figures 8 and 9. The meaning
of different markers is listed in the captions of the two figures.
As can be seen from all the phase diagrams in Figures 8 and 9,
for those areas with narrow phase-coexistence regions, the
order−order phase boundaries determined by the two
ensembles agree almost perfectly. One small difference is
that the semigrand canonical ensemble tends to slightly
underestimate the width of some of the coexistence regions,
such as the HEX−σ coexistence region in Figure 8a. However,
in the area near the ODT, where large coexistence regions exist

Figure 12. (a) Average concentrations of the D homopolymers within
different FK WSCs, φ3

WSC. (b) Relative standard deviations of domain
volumes, δV. Both quantites are evaluated at ϕ2 = 0 and 0.3 for the
four FK phases. Other parameters are ϵ = 2, χ = 0.9, ϕ3 = 0.05, and
{NA ( fA), NC, ND} = {10 (0.25), 5, 20}. Dashed line in (a) marks the
unit-cell-averaged ϕ3. Numbering of distinct types of domains/WSCs
of the FK phases is shown in Figure S1.
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between the copolymer-rich and homopolymer-rich phases,
obvious discrepancies occur: (1) the semigrand canonical
ensemble calculation fails to determine the order−disorder
boundary except when ϕ3 is very small (Figure 9b); (2) in
Figure 9b, even though the hcp−Dis boundary is identified in
the semigrand canonical ensemble, the coexistence region is
highly underestimated; and (3) in Figure 9a, a fcc phase is
identified in the semigrand canonical ensemble, which is absent
in the grand canonical ensemble with the same ϕ3. These
discrepancies are due to the constraint ϕ3 = const. imposed in
the semigrand canonical ensemble, which is not strictly correct
for accounting for phase coexistence. Nevertheless, these

Figure 13. Four interfacial-energy contributions of the FK phases relative to those of the bcc phase, NΔUαβ/ρ0VkBT, where αβ = (a) AB, (b) AC,
(c) BD, and (d) CD, as a function of ϕ2. Other parameters are the same as those used in Figure 12.

Figure 14. Phase diagrams in the ϕ2 − χAB(=χAC = χBD) plane with
the same parameters as those used in Figure 8b except χCD = 0. The
unlabeled regions are the two-phase coexistence regions between two
adjacent single phases, which are too narrow to be visible. The phase
boundary between the fcc and order−disorder coexistence regions,
fcc−2ϕ, is not determined and this fact is noted by the red “(→2ϕ)”,
following the “fcc” label.

Figure 15. Phase diagrams in the ϕ2 − χAB(=χAC = χBD = χCD) plane
with the same parameters as those used in Figure 8b except ND = (a)
10 and (b) 6. The unlabeled regions are the two-phase coexistence
regions between two adjacent single phases, which are too narrow to
be visible. The phase boundary between the fcc and order−disorder
coexistence regions, fcc−2ϕ, is not determined and this fact is noted
by the red “(→2ϕ)”, following the “fcc” label.
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discrepancies occur only when phase-coexistence regions
become very large near the ODT and thus do not affect the
regions consisting of the ordered phases, as focused by the
current study.
The primary effect of the core-selective homopolymers is to

act as space fillers and thus to swell the soft domains. The
nonuniform partition of homopolymers into nonequivalent
WSCs provides an effective mechanism to form domains with
volumes conforming to those of the FK WSCs, which in turn
optimizes the interfacial energy.17 For the AB/C/D ternary
blends, the synergistic effect of the C and D homopolymers in
strengthening the stability of the FK phases, particularly the
Laves phases, observed in Figures 7−9, should be similarly
attributed to optimized interfacial energies between chemically
incompatible species. We will show that the formation of
domains with large size dispersities helps to mitigate the

interfacial energies between all the repulsive pairs in the AB/
C/D system. In Figure 10a, the average concentrations of the
D homopolymers within different WSCs, φ3

WSC, evaluated at ϵ
= 2, χ = 0.9, ϕ2 = 0.3, ϕ2 = 0.05, and {NA ( fA), NC, ND} = {10
(0.25), 5, 20} are shown. It is obvious that all four FK phases
have a different φ3

WSC in each nonequivalent WSC, and the
deviation from the unit-cell-averaged value ϕ3 (dashed line) for
the two Laves phases is the largest. Figure 10b shows the
relative standard deviations of the domain volumes, δV,
evaluated at two different values for ϕ3, i.e., 0 and 0.05, for the
various FK phases, with all the other parameters the same as
those used in Figure 10a. The differential distribution of the
core-selective D homopolymers is correlated with the
increased size difference between these soft domains as ϕ3 is
increased, which is quantified by the increase in δV as ϕ3
changes from 0 to 0.05, as seen in Figure 10b. These behaviors
of φ3

WSC and δV are similar to the A1B1/A2 blends. More
quantitatively, the different interfacial-energy contributions are
measured by NΔUαβ/ρ0VkBT (αβ = AB, AC, BD, and CD).
The four interfacial-energy contributions of the FK phases
relative to those of their main competitor, i.e., the bcc phase,
are plotted as a function of ϕ3 in Figure 11. An overall drop is
evidenced for all four contributions of the FK phases relative to
those of the bcc phase upon increasing ϕ3. The drop in
NΔUBD/ρ0VkBT and NΔUCD/ρ0VkBT is especially fast for the
Laves phases compared to the σ and A15 phases, which are
responsible for their stabilization over the σ phase in a large
region in the phase diagrams with ϕ2 > 0 and ϕ3 > 0. These
observations suggest that the FK phases have increasingly
favorable interfacial energies between all the repulsive pairs in
the ternary AB/C/D mixtures as the domain-size difference is
enhanced by doping core-selective homopolymers in the
presence of corona-selective homopolymers.
Another informative analysis to understand the synergistic

effect between the two homopolymers is to investigate how
increasing the concentration of the corona-selective homopol-
ymers affects the existing core-selective homopolymers and its
consequent impact on the various interfacial-energy contribu-
tions. For this purpose, Figure 12 shows the φ3

WSC for different
WSCs, along with the δV, at ϕ2 = 0 and 0.3 with ϵ = 2, χ = 0.9,
ϕ3 = 0.05, and {NA ( fA), NC, ND} = {10 (0.25), 5, 20},
evaluated for the FK phases. As revealed by Figure 12a,
increasing the concentration of the corona-selective compo-
nent causes a slight redistribution of the core-selective
component. Although the redistributions for all the FK phases
are not significant, different behaviors are observed in these
different packings. Specifically, the redistribution results in a
clear growth in the interdomain deviation of the D
homopolymer concentration for the Laves phases, that is, the
φ3
WSC of those domains with a value higher/lower than the

unit-cell-averaged ϕ3 (dashed line) is further increased/
decreased with the addition of C homopolymers, which is
not observed for the σ and A15 phases. The changes in
concentration within the different σ WSCs do not show a clear
trend. For example, σ1 and σ3 both have a higher-than-average
φ3
WSC value, but they change in opposite ways. For the A15

phase, the redistribution results in a drop in the deviation of
φ3
WSC, which is opposite of the observed trend for the Laves

phases. These distinct behaviors in φ3
WSC are correlated with

the different trends in the change of δV, as shown in Figure
12b. It is seen that the δV has an obvious growth for the Laves
phases, whereas the δV barely changes for the σ and slightly
drops for the A15. The interfacial-energy analysis as a function

Figure 16. (a) Percentage contents of the D homopolymers within
the A-rich domains, pc. (b) Average concentrations of the D
homopolymers within different FK WSCs, φ3

WSC. (c) Relative
standard deviations of domain volumes, δV. All quantities are
evaluated at ND = 6, 10, and 20 for the four FK phases. Other
parameters are ϵ = 2, χ = 0.9, ϕ3 = 0.3, ϕ3 = 0.05, and {NA ( fA), NC} =
{10 (0.25), 5}. Dashed line in (a) marks 100% and the one in (b)
marks the unit-cell-averaged ϕ3. Numbering of distinct types of
domains/WSCs of the FK phases is shown in Figure S1.
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of ϕ2, provided in Figure 13 further reveals that the more
dispersed domains make the Laves phases have more favorable
CD interaction and less unfavorable AB interaction in
comparison to the other two competing FK phases.
Both Figures 10 and 12 show that the Laves phases always

greatly benefit from a more favorable CD interaction compared
to the other competitive phases when increasing the
concentration of either one of the C or D homopolymers at
the presence of the other. This leads us to conclude that
forming domains with very different sizes and packing into a
Laves lattice provides an optimal way to compatibilize the
immiscible C and D homopolymers, which explains the

synergistic effect of these two homopolymers in stabilizing
the Laves phases. We believe that this mechanism is also the
foundation of understanding the ubiquity of the Laves packings
in a variety of soft matter systems composed of two
incompatible species compatibilized by amphiphilic mole-
cules.29,31,33,35−37 If the interaction between the C and D
homopolymers is weakened, it is expected that the Laves
phases would be less stable. To test this idea, a phase diagram
with a fixed χCD = 0 is constructed and shown in Figure 14,
where all the other parameters are the same as those used for
Figure 8b. Indeed, in contrast to Figure 8b, where a dominant
Laves window exists between the σ and hcp phases, the Laves
phases are completely absent in Figure 14, which confirms our
speculation.
It has been established that the degree of polymerization of

the core-swelling homopolymer plays an important role in
determining the equilibrium morphology in AB/A-type
blending systems.15−18,25,26,53 To illustrate the effects of ND
on the equilibrium spherical packing in the AB/C/D mixtures,
Figure 15 shows two phase diagrams with ND = 10 and 6,
where the other parameters are the same as those for Figure
8b. Changes occur as ND decreases from 20 (Figure 8b) to 10
(Figure 15a), including the overall shrinkage of the Laves
region and the disappearance of the C15 phase. As ND further
drops to 6 (Figure 15b), the stability window of the C14 phase
closes. As the D homopolymer behavior transitions from the
dry-brush regime to the wet-brush regime by decreasing ND, a
weakened localization of the D homopolymers in the interior
of the soft domains is expected. This is illustrated by Figure
16a, where the inner-domain percentage content pc of the D
homopolymers, defined as the fraction of the D homopolymers
residing within the A-rich domains, is compared between cases
with different ND values for the four FK phases. The
delocalization of the D homopolymers is reflected by the

Figure 17. Four interfacial-energy contributions of the FK phases relative to those of the bcc phase, NΔUαβ/ρ0VkBT, where αβ = (a) AB, (b) AC,
(c) BD, and (d) CD, as a function of ND. Other parameters are the same as those used in Figure 16.

Figure 18. Phase diagram in the ϕ2 − χAB(=χAC = χBD = χCD) plane
with the same parameters as those used in Figure 8b except NA = 13( f
= 0.325). Unlabeled regions are the two-phase coexistence regions
between two adjacent single phases. The phase boundary between the
fcc and order−disorder coexistence regions, fcc−2ϕ, is not
determined and this fact is noted by the red “(→2ϕ)”, following
the “fcc” label. Many of the coexistence regions between two adjacent
phases are too narrow to be visible.
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decreased pc when ND becomes smaller. Furthermore, shorter
homopolymers experience a more significant entropy loss
when confined within domains with a substantial size
difference compared to longer homopolymers. Therefore, the
shorter D homopolymers are anticipated to distribute more
evenly across the different WSCs, resulting in a smaller volume
deviation for the FK phases. This is demonstrated by the
changes in φ3

WSC and δV, as shown in Figure 16b and c,
respectively. Specifically, the φ3

WSC’s for the various FK WSCs
become closer to the unit-cell-averaged value and the δV’s for
all FK phases decrease accordingly when lowering ND.
Consequently, the reduced difference in domain volumes
diminishes the enthalpic favorability of the BD and CD
contributions to the Laves packings, leading to the
destabilization of both Laves phases. This is more directly
demonstrated in Figure 17, where the relative interfacial-
energy contributions are plotted as a function of ND. In the
Laves phases, the favorable BD and CD contributions gradually
approach those of the other competitors as ND decreases.
Despite the presence of more repulsive pairs, whose
interactions are all governed by the molecular weight of the
core-selective homopolymers in the ternary AB/C/D blends, a
similar dependence on the homopolymer molecular weight in
phase behavior was also observed in the binary blends of
miktoarm AB4 copolymers and A homopolymers.53

The equilibrium phase behavior of the AB/C/D system is
also expected to be regulated by other factors, such as the
block composition of the diblock copolymers. As an example,
the phase diagram shown in Figure 18 depicts the phase
behavior of the ternary blends, which have the same
parameters as those used in Figure 8b except at a larger A-
block composition f = 0.325. At this block composition of the
diblock chains, the HEX phase with a lower interfacial
curvature becomes more prominent, and an A15 stability
window emerges between the HEX and σ. For neat AB diblock
copolymer melts, a large diblock conformational asymmetry (ϵ
≳ 2.1) is required to access the FK A15 phase at a comparable
composition, i.e., f ∼ 0.3.45,47 Although in the current ternary
blends, this requirement may have been lowered due to the
same argument applied to rationalize the emerging σ phase at
low ϵ, the stabilization of the A15 phase in Figure 18 should
still be largely attributed to the relatively large conformational
asymmetry of the diblocks (ϵ = 2). Moreover, the C15 phase
becomes absent, leaving only the C14 phase between the σ and
hcp. Notably, the phase transition sequence identified as
increasing the concentration of the corona-selective homopol-
ymers observed in the AB/C binary blends (Figure 2c), i.e.,
HEX → A15 → σ → hcp, is preserved in the ternary AB/C/D
blends, with the additional Laves window inserted at an
intermediate ϕ2 between the σ and hcp.

■ CONCLUSIONS
In summary, we have investigated the phase behavior of two
polymeric blends containing AB diblock copolymers, i.e., the
binary AB/C and ternary AB/C/D blends, by using the self-
consistent field theory applied to the freely jointed chains. We
have focused on the case where the diblock copolymers are
sphere-forming and used the blends as a model system to
obtain a better understanding of the ubiquitous emergence of
the complex spherical packing phases in several analogous soft
matter systems. For the AB/C binary blends, we predict a very
low critical degree of conformational asymmetry with (ϵ ≈ 1.1)
to stabilize the FK σ phase, which is consistent with recent

experimental observations. The occurrence of the FK σ phase
at small ϵ is attributed to the aggregation of the corona-
selective homopolymers at the interstitial voids, which releases
the packing frustration induced by both the nonsphericity and
nonuniformity of the polymeric domains. The extra degree of
freedom offered by the homopolymer localization lowers the
conformational-asymmetry requirement to access the FK
packing in the binary blends. For the ternary AB/C/D blends,
we observe that the simultaneous addition of the core- and
corona-selective homopolymers greatly enhances the stability
of the FK phases, particularly the Laves phases, suggesting a
synergistic effect of the two incompatible homopolymers on
the FK-packing formation. We further argued that the Laves
packings offer the most effective arrangement to mitigate the
interfacial-energy contributions from different repulsive block-
pairs in the system owing to their largely different domain
volumes enabled by the addition of the core-selective
homopolymers. Especially, the Laves phases are greatly favored
enthalpically due to a smaller CD interfacial-energy contribu-
tion. These observations offer a clear explanation for the
observed synergistic effect and the wide stability windows of
the Laves phases in the ϕ1−ϕ2−ϕ3 triangular phase diagrams.
The two polymeric blends explored in this study have an

enormously large phase space, especially the ternary AB/C/D
blends, providing an illuminating model system to explore the
emergence and stability of complex spherical packing phases.
Although we have explored a large region in the phase space of
the systems, further studies are required to have a more
complete picture of the self-assembling behaviors outside the
region covered by the current work. For example, the negative/
positive interaction parameters χαβ’s between different pairs of
chemically distinct blocks were set to be equal, and this
amounts to assuming that all the homopolymers are equally
good or bad solvents. Relaxing this constraint to take into
account the unequal miscibility will induce an asymmetry of
the homopolymer-core and homopolymer-corona interactions
and may, in turn, alter the equilibrium phase significantly.
Another example is the recent experimental discovery of the
C15 phase in a salt-doped pseudoternary polymeric system,
where lamella-forming A1B1 diblock copolymers with sym-
metric block compositions were blended with A2 and B2
homopolymers both in the wet-brush regime.29 Although
there exist electrostatic interactions due to the addition of salt,
the authors argued that electrostatic interactions are unlikely to
be the source of the observed C15 packing. This suggests that
the complex FK packings may also be accessed in salt-free
A1B1/A2/B2 blends over an extended range of block
compositions for the diblocks, provided that the homopolymer
molecular weights and concentrations are carefully designed.
For systems in which ions and counterions play a significant

role, such as surfactant solutions,30−33 a model incorporating
electrostatic interactions is needed to provide a quantitative
description of the phase behaviors.54 Moreover, while the
application of FJCs in the current work is suitable for modeling
low-molecular-weight copolymers or even small amphiphilic
molecules, the fluctuation effect is anticipated to have a greater
impact on their phase behaviors, especially near the ODT. To
accurately capture the phase behaviors near the ODT of these
systems, a theoretical framework accounting for the fluctuation
effect is required, such as field-theoretic simulation
(FTS).55−57 Nevertheless, the mechanisms unraveled by the
current work provide a solid foundation to explain the
formation of these novel spherical packing phases not only
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in neutral polymeric blends but also in systems involving
electrostatic interactions and small amphiphilic molecules, thus
shedding light on their emergence in a wide range of soft
matter systems composed of amphiphiles and selective
additives.
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Preface
In this chapter, we explore the possibility of stabilizing various binary spherical crys-

talline phases in binary AB/CD diblock copolymer blends with designed secondary

interactions. The binary crystalline phases are composed of spheres, or “mesoatoms”,

self-assembled from chemically distinct blocks, resembling the binary metallic alloys. The

simplest block copolymer system that is capable of forming these structures is linear

ABC triblock copolymers [130, 131]. However, the number of binary crystals that can be

stabilized by this simple system is limited. One approach to expand the library of binary

mesocrystals achievable through block-copolymer self-assembly is to use more complex

multiblock copolymers with meticulously designed architectures. To this end, tetrablock

and pentablock terpolymers were designed, which, as demonstrated by SCFT, successfully

give rise to a diverse array of binary mesocrystals with various coordination numbers

[46]. Moreover, the coordination number of the equilibrium crystal can be regulated

by adjusting the relative compositions of the different matrix blocks of the terpolymer.

Despite the promising opportunities presented by multiblock copolymers for producing

desired binary crystals, the substantial synthesis effort required to construct a library of

these polymers with precise block compositions poses a practical challenge.

Here, we adopt an alternative approach to attain binary mesocrystals — utilizing

polymeric blends comprising architecturally simple components: AB and CD diblock

copolymers. By employing SCFT, we demonstrate that this simple blending formulation,

with properly designed segment-segment interactions, can stabilize binary crystals com-

posed of A and C mesoatoms with varying A:C stoichiometries. Specifically, to promote

the formation of binary crystals, a strong repulsion between A and C is required. However,

such A-C repulsion will lead to macrophase separation of the system [76, 78]. To suppress

the tendency of the blends to phase separate macroscopically, attractive interactions
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need to be introduced between the B and D blocks. In experimental scenarios, the com-

patibilization of B and D blocks can be achieved by introducing secondary interactions,

such as hydrogen bonding. The dependence of the equilibrium crystal on the different

system parameters is illustrated by a set of phase diagrams. Furthermore, the chain

packing within different binary crystalline phases is also analyzed, shedding light on the

mechanism governing the selection of the equilibrium crystal in this system.
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Abstract

Designed multiblock copolymers with complex architectures offer unlimited

opportunities to obtain novel nanostructured phases, however, their synthesis

could be challenging and expensive. An alternative approach to access desired

nanostructures is to use blends of block copolymers with simple chain archi-

tectures and designed block-block interactions. We use binary blends com-

posed of AB and CD diblock copolymers as a model system to establish design

principles of polymeric blends containing block copolymers. Specifically, we

explore the phase behavior of AB/CD blends by using the polymeric self-

consistent field theory to construct phase diagrams of the blends focusing on

the sphere-forming regions in the phase space. We predict the formation of

various spherical packing phases composed of either core-shell-structured

spheres or binary spheres resembling metallic alloys. We demonstrate that the

equilibrium morphology can be regulated by adjusting the blend composition

and molecular parameters such as block fractions, conformational asymmetry,

and segment-segment interactions. The strategy of using secondary interaction

in polymeric blends to control the phase behavior explored in the current

study can also be generalized to other soft matter systems.

KEYWORD S

block copolymer blends, Frank-Kasper phases, self-assembly of block copolymers, self-
consistent field theory

1 | INTRODUCTION

Block copolymers are obtained when two or more chemi-
cally distinct blocks are tethered together via covalent
bonds.1 One of the unique features of block copolymers
is that they possess opposing tendencies due to the block-
block repulsion and chain connectivity; therefore, they
are frustrated at the molecular level.2 Block copolymers
alleviate this frustration by microphase separation into
polymeric domains, which in turn pack to form ordered

structures at 10–100 nanometer scale.3,4 The spontaneous
emergence of long-range ordered structures in block
copolymers not only leads to potential technological
applications,5–9 but also offers an ideal platform to study
the spontaneous emergence of structured matter.

A widely studied block copolymer is the AB diblock
copolymer composed of two covalently bonded, A and B,
subchains or blocks.3,4,10 Despite its simplicity, a rich array
of ordered phases consisting of spheres, cylinders, bicon-
tinuous networks and lamellae have been theoretically
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predicted and experimentally observed in AB diblock
copolymer melts. It is now well understood that the spon-
taneous formation of these intricate structures is due to a
delicate competition between the interaction of incompati-
ble blocks and the entropic chain stretching, or simply the
frustration intrinsic to the system.2 Extensive theoretical
and experimental studies have established that the phase
behavior of AB diblock copolymer melts is determined
mainly by three parameters, namely the composition or
volume fraction of the A block, f , the A/B interaction
strength quantified by the product χN , where χ is the
Flory-Huggins interaction parameter and N is the copoly-
mer degree of polymerization, and the conformational
asymmetry ϵ quantified by the ratio between the Kuhn
lengths of the A and B blocks.11–13

The number of accessible ordered phases in block
copolymers could be drastically increased with increasing
number of chemically distinct blocks and more complex
chain architectures.1,14 A simple example is the introduc-
tion of a second A block to an AB diblock copolymer. As
the tethering position of the additional A block changes
from the AB junction point to the free end of the B block,
the copolymer architecture transforms from miktoarm
A2B to linear ABA continuously, resulting in different
phase behaviors as well as new ordered phases.15

Another example is replacing the added A block by a
chemically distinct C block to form a linear ABC16 or
a star ABC triblock copolymer,17,18 in which the number
of accessible stable phases is further increased due to the
more complex monomer-monomer interactions. From an
application point of view, it is desirable to have the ability
to inversely design macromolecules that are capable of
self-assembling into certain target ordered structures.
Driven by the demand of effective inverse molecular
design, an active research direction is to understand the
mechanisms and principles governing the self-assembly
of block copolymers with different architectures via
both theory12,19–24 and experiments.25–27

Although multiblock copolymers with exotic molec-
ular topologies offer great opportunities to enrich the
phase behaviors of block copolymers, precise synthesis
of copolymers with complicated architectures can be
challenging and costly.1,14 One appealing alternative to
fabricate and control novel polymeric structures is by
using polymer blends. It has been shown that blending
different types of block copolymers can stabilize new
structures that are not equilibrium phases of the indi-
vidual components. For instance, the binary A1B1=A2

diblock copolymer/homopolymer blends and A1B1=A2B2

diblock copolymer blends can stabilize various Frank-
Kasper (FK) phases that are absent in the neat, confor-
mationally symmetric, AB diblock copolymer melts.28–34

Extensive experimental and theoretical studies have
revealed that the ability of polymeric blends to stabilize

these complex spherical phases could be attributed to the
differential distribution of the second component.35 Spe-
cifically, the added homopolymers could act as fillers
swelling the spherical domains thus aiding the formation
of large domains with different sizes, whereas the added
copolymers could act as fillers and co-surfactants at the
same time to regulate both the size of the spherical
domains and the properties of the AB interface.35

The complexity of polymeric blends containing
block copolymers could be dramatically increased by
introducing new chemically distinct components. For
example, going from the binary A1B1=A2B2 blends to
AB/B0C or AB/CD blends enlarges the phase space and
thus alters the phase behaviors tremendously. Very
recently, Dorfman and coworkers have reported theoreti-
cal studies on binary mixtures of AB/B0C diblock copoly-
mers in search of a more robust platform to stabilize the
Laves phases.36,37 By tailoring the molecular parameters
to favor the formation of A and C spheres, or mesoa-
toms, with different volumes, interesting phase dia-
grams exhibiting an eutectic phase behavior resembling
that of the binary metallic alloys were discovered, fea-
turing the emergence of a Laves phase field. Moreover,
an interesting observation by these authors was the
decoupled control over the polyhedral imprinting of the
A and C spherical domains by individually adjusting
the conformational asymmetry of the AB and B0C
copolymers.37 However, one caveat of the binary AB/B0C
blends is the dominance of macrophase separation due to
the strong incompatibility between the AB and B0C diblocks.
One possible approach to suppress macrophase separation
is to introduce associations, or supramolecular interactions,
between the different components.

On its own, the effects of supramolecular interactions
such as hydrogen bonding on the phase behaviors of block
copolymer blends have been an interesting research topic
because it offers opportunities to access novel ordered struc-
tures.38 In the case of a binary blend of AB/CD diblock
copolymers with hydrogen bonding between B and D
blocks, it has been observed experimentally that hierarchi-
cal structures could be formed.39 Specifically, for symmetric
AB and CD diblock copolymers, an hierarchical lamellar
phase consisting of a mixed BD layer sandwiched by alter-
nating phase-separated A/C layers was observed. If AB and
CD are both asymmetric, the minority B and D blocks were
observed to form mixed cylinders located at the interface of
A and C lamellae. Moreover, the presence of hydrogen
bonding between more than one pairs of blocks but with
different strengths could result in competing associations,
driving the system to form novel phases such as three-
layered lamellae and core-shell cylinders.40–43 Recent theo-
retical studies using self-consistent field theory (SCFT)44

and dissipative particle dynamics (DPD) simulations45 also
reported the formation of various complex structures in
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supramolecular AB/CD blends. Furthermore, several novel
structures including Archimedean and kaleidoscopic tilings
were also experimentally observed in blends of block copol-
ymers with more complicated architectures and selective
interactions.46,47

Previous theoretical and experimental studies have
demonstrated that polymeric blends, especially those with
secondary interactions such as hydrogen bonding, hold
great promise to fabricate structures that are not available
in the individual components. In this study, we aim to
deepen our understanding of the self-assembling behav-
iors of polymeric blends involving secondary interactions
by studying a simple model system composed of AB and
CD diblock copolymers. By applying the polymeric self-
consistent field theory (SCFT), we explore the phase
behavior of sphere-forming AB/CD binary mixtures simi-
lar to the AB/B0C system studied by Dorfman and
coworkers,36,37 with a focus on answering the following
questions: (1) is it possible to suppress macrophase separa-
tion and consequently to enlarge the composition window
over which the binary crystalline phases are stable by
introducing attractive interaction between the B and D
blocks; (2) what phases could be formed in this system in
the presence of B–D association; and (3) how do the vari-
ous system parameters alter the phase behavior of the sys-
tem? Specifically, we construct phase diagrams in the
ϕ2� χαβN planes, where ϕ2 is the concentration of the
CD diblock copolymers and χαβN is the parameter quan-
tifying the interaction between α- and β-type monomers
with α ≠ βð Þ,β = A, B, C or D. In order to investigate the
effects of different system parameters such as B-D associa-
tion strength, block compositions and conformational
asymmetry, a series of phase diagrams with different
choices of parameters are constructed and compared. The
dependence of the stability of different phases on the sys-
tem parameters provides an effective route to manipulate
the equilibrium morphology. An analysis of the structural
properties is also conducted to elucidate mechanisms regu-
lating the chain packing in various structures. The results
from the current study provide valuable insights into the
design principles for polymeric blends with appropriate
secondary interactions to fabricate novel structures.

2 | THEORETICAL MODEL

We consider binary blends composed of AB and CD diblock
copolymers in a volume V . Specifically, the model system
contains n1 chains of AB and n2 chains of CD diblock
copolymers described by the standard Gaussian chain
model.10 Each AB and CD copolymer has the degree of
polymerization of N1 ¼NAþNB and N2 ¼NCþND,
respectively, where the alphabetical subscripts indicate

the monomer type. In our calculations, we choose N1

as the reference N and define the ratio between the
degrees of polymerization of the two copolymers as
γ¼N2=N1. The volume fractions of the A and B blocks
in an AB copolymer are f A ¼NA=N1 ¼ f 1 and
f B ¼NB=N1 ¼ 1� f 1, respectively, and f C ¼NC=N2 ¼ f 2
and f D ¼ND=N2 ¼ 1� f 2 are defined for the CD copoly-
mer similarly. For simplicity, a uniform segment density
ρ0 is assumed and thus ρ0V ¼ n1Nþn2γN due to the
incompressibility condition. The average concentrations
of the AB and CD diblock copolymers are given by,
ϕ1 ¼ n1N

ρ0V
and ϕ2 ¼ 1�ϕ1 ¼ n2γN

ρ0V
, respectively. The Kuhn

length of the α segments is denoted by bα (α = A, B, C
or D).

For multi-component systems undergoing both
microphase and macrophase separations, their phase
behaviors can be accounted for most conveniently by
using the grand canonical ensemble. The thermodynamic
control parameters in the grand canonical ensemble are
the chemical potentials, μ1 and μ2, of the AB and CD
diblock copolymers. Within the SCFT framework,48,49 the
grand potential density of the system is given by,

NΦ
ρ0VkBT

¼

�Q1�e
μ

kBTQ2�
1
V

Z
d r
! X

α

ωα r
!� �

ϕα r
!� �"

�
X

α,β ≠ αð Þ
χαβNϕα r

!� �
ϕβ r

!� �

þ η r
!� �

1�
X
α

ϕα r
!� � !#

,

ð1Þ

where μ1 is set to 0 by using the incompressibility condi-
tion and thus the subscript of μ2 is dropped for brevity.
Upon minimizing the grand potential with respect to the
density and conjugate fields, we obtain a set of SCFT
equations,

ωα r
!� �

¼ P
β ≠ αð Þ

χαβNϕβ r
!� �

þη r
!� �

,

ϕA r
!� �

¼
Z f 1

0
dsq1 s, r

!� �
q†1 s, r

!� �
,

ϕB r
!� �

¼
Z 1

f 1

dsq1 s, r
!� �

q†1 s, r
!� �

,

ϕC r
!� �

¼ e
μ

kBT

Z γf 2

0
dsq2 s, r

!� �
q†2 s, r

!� �
,

ϕD r
!� �

¼ e
μ

kBT

Z γ

γf 2

dsq2 s, r
!� �

q†2 s, r
!� �

,

P
α
ϕα r

!� �
¼ 1:
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Here, the forward propagators qðs, r!Þ and backward
propagators q†ðs, r!Þ are obtained by solving the modified
diffusion equations,

∂

∂s
q1 s, r

!� �
¼ b21r2q1 s, r

!� �
�ω1 r

!� �
q1 s, r

!� �
,

� ∂

∂s
q†1 s, r

!� �
¼ b21r2q†1 s, r

!� �
�ω1 r

!� �
q†1 s, r

!� �
,

∂

∂s
q2 s, r

!� �
¼ b22r2q2 s, r

!� �
�ω2 r

!� �
q2 s, r

!� �
,

� ∂

∂s
q†2 s, r

!� �
¼ b22r2q†2 s, r

!� �
�ω2 r

!� �
q†2 s, r

!� �
,

ð3Þ

where the reference N is set to 1 so s� 0,1½ � for AB
diblock copolymers and s� 0,γ½ � for CD diblock copoly-
mers. The conjugate fields and Kuhn lengths are defined

for the AB copolymers by ω1 r
!� �

¼ωA r
!� �

, b1 ¼ bA when

s� 0, f 1½ � and ω1 r
!� �

¼ωB r
!� �

, b1 ¼ bB when s� f 1,1½ �.
Similarly, they are defined for the CD copolymers by

ω2 r
!� �

¼ωC r
!� �

, b2 ¼ bC when s� 0,γf 2½ � and

ω2 r
!� �

¼ωD r
!� �

, b2 ¼ bD when s� γf 2,γ½ �. The conforma-

tional asymmetry parameters depend on the Kuhn

lengths via ϵ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρAb

2
A

� �
= ρBb

2
B

� �q
¼ bA=bB and

ϵ2 ¼ bC=bD for the AB and CD copolymers, respectively.
The initial conditions of the propagators are

q1 0, r
!� �

¼ q2 0, r
!� �

¼ q†1 1, r
!� �

¼ q†2 γ, r
!� �

¼ 1. The aver-

age concentrations of the AB and CD diblock copolymers
can be computed via,

ϕ1 ¼Q1, ϕ2 ¼ 1�ϕ1: ð4Þ

The single chain partition functions of AB and CD
copolymers are given by,

Q1 ¼
1
V

Z
d r
!
q1 1, r

!� �
, ð5Þ

Q2 ¼
1
V

Z
d r
!
q2 γ, r

!� �
: ð6Þ

The SCFT equations (Equations 2) are solved numeri-
cally to obtain solutions corresponding to a set of candi-
date phases. A detailed description of the candidate phases
included in this work is provided in the supplementary
information (S1). The pseudo-spectral method50,51 is used
to solve the modified diffusion equations (Equation 3). In
addition, we apply variable-cell Anderson mixing
method52,53 to simultaneously speed up the convergence
of solutions to Equation 2 and to optimize the unit-cell

parameters. Finally, the phase diagram is constructed by
comparing the grand potential densities of the candidate
phases. Details about the phase diagram construction pro-
tocol used in the current study are also provided in the SI.

When the concentrations of different components
need to be specified explicitly, it is more convenient to
work in the canonical ensemble, where the thermody-
namic control parameters are the concentration of the
AB diblock copolymers, ϕ1, and the concentration of the
CD diblock copolymers, ϕ2. The mean-field Helmholtz
free energy density is given by,

NF
ρ0VkBT

¼ �ϕ1 ln
Q1

ϕ1
�ϕ2

γ
ln

Q2

ϕ2
� 1
V

Z
d r
! X

α

ωα r
!� �

ϕα r
!� �"

�
X

α,β ≠ αð Þ
χαβNϕα r

!� �
ϕβ r

!� �

þ η r
!� �

1�
X
α

ϕα r
!� � !#

:

ð7Þ

A useful decomposition of the free energy given by
Equation 7 is,

NF
ρ0VkBT

¼ N
ρ0VkBT

X
αβ

Uαβ�TS1�TS2

 !
, ð8Þ

where the different contributions are,

NUαβ

ρ0VkBT
¼ χαβN

V

Z
d r
!
ϕα r

!� �
ϕβ r

!� �
,

� NTS1
ρ0VkBT

¼ �ϕ1 ln
Q1

ϕ1
� 1
V

Z
d r
!XA,B

α

ωα r
!� �

ϕα r
!� �

,

� NTS2
ρ0VkBT

¼ �ϕ2

γ
ln

Q2

ϕ2
� 1
V

Z
d r
!XC,D

α

ωα r
!� �

ϕα r
!� �

:

ð9Þ

The term Uαβ corresponds to the enthalpic contribu-
tion from the interactions between α- and β-type seg-
ments, while �TS1 and �TS2 are the entropic
contributions from AB, and CD diblock copolymers,
respectively. An analysis of Equations 9 could provide
insights on the relative importance of the different
contributions.

A general AB/CD binary blends contain 13 indepen-
dent parameters, corresponding to an extremely large
and complex phase space. Specifically, these are the six
interaction parameters, that is, χACN , χABN , χCDN , χADN ,
χBCN and χBDN , the chain-length ratio γ, the volume

4 XIE ET AL.
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fractions of the A and C blocks of the respective diblock
copolymers, f 1 and f 2, the 4 Kuhn lengths for the differ-
ent types of blocks, bα with α=A, B, C or D (only 3 of
them are independent by choosing one of them as the
unit of length), and the concentration of the CD diblock
copolymers ϕ2 (or equivalently, ϕ1 for the AB diblock
copolymers). In what follows, we explore a much
restricted phase space and construct phase diagrams on
2-dimensional planes with all the other parameters fixed
at different values that are judiciously chosen to focus on
the regions of interest. In addition, for the convenience of
discussing conformational asymmetric copolymers, we
assume bB ¼ bD and use the conformational asymmetry
parameters ϵ1 ¼ bA=bB and ϵ2 ¼ bC=bD to re-parametrize
bA and bC throughout the study.

3 | RESULTS AND DISCUSSION

3.1 | Regulating miscibility via B–D
attraction

The self-assembling behaviors of the binary A1B1=A2B2

and AB/B0C diblock copolymer blends provide useful
insights into the phase behavior of the AB/CD binary
mixtures. Both theoretical28,29,54 and experimental30,31

studies have shown that several Frank–Kasper phases
can be stabilized by mixing two AB diblock copolymers
together with different block compositions and/or molec-
ular weights. For the binary A1B1=A2B2 blends, mecha-
nisms related to filler and co-surfactant behaviors due to
intra- and inter-domain segregations have been revealed
to act synergistically to modulate the sizes and shapes of
the soft spherical domains or mesoatoms by forming
core-shell structures, which is responsible for the stabili-
zation of the FK phases. Unlike the A1B1=A2B2 blends,
the AB/B0C blends with strong repulsive interactions
between the A and C blocks are enthalpically driven to
form separated A-rich and C-rich spheres and pack in
ways that resemble metallic alloys.36,37 For these binary
crystalline phases, the core-shell structures no longer
exist and inter-domain segregation dominates. Due to the
overall strong repulsion between AB and B0C diblocks,
this system is prone to macrophase separation and single
binary crystalline phases would only appear in a very
narrow range over the blend composition.36,37

In the current model system of binary AB/CD
diblock copolymer blends, the A and C blocks are the
minority blocks that form either mixed AC spherical
domains (A + C) or separate A-rich and C-rich spheri-
cal domains (A/C). The interaction between the A and
C blocks quantified by χACN determines whether mixed
(A+C) or separated (A/C) spherical domains are

thermodynamically preferred. If A and C blocks are
highly repulsive, i.e. with a large positive χACN , separated
A and C spheres are preferred and thus binary crystalline
phases could form. Moreover, to suppress macrophase

(A)

(B)

(C)

FIGURE 1 Phase diagrams in the ϕ2� χBDN plane for (A)

f ¼ 0:19, ϵ¼ 1, (B) f ¼ 0:19, ϵ¼ 2, (C) f ¼ 0:24, ϵ¼ 2, where χACN

and χN are fixed at 30 and γ is fixed at 1. Unlabeled regions are the

two-phase coexistence regions between two neighboring single

phases. The red arrow highlights order–order transition induced by

increasing the strength of BD attraction. For phases with

stoichiometry ≠ 1:1, the ones on the left of the CsCl phase have

more A spheres than those on the right and vice versa.
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separation and promote the formation of single ordered
phases, attractive interactions are introduced between
the majority B and D blocks by using a negative χBDN .55

It is expected that the simultaneous presence of a strong
A–C repulsion and B–D attraction could result in larger
regions of binary crystalline phases. To verify this idea,
as well as to examine the effect of the strength of the
attraction on the equilibrium morphology, we construct
phase diagrams in the ϕ2�χBDN plane. For simplicity,
we set χN ¼ χABN ¼ χCDN ¼ χADN ¼ χBCN and fix
χACN ¼ 30, γ¼ 1, f 1 ¼ f 2 ¼ f and ϵ1 ¼ ϵ2 ¼ ϵ. This choice
of parameters leads to a symmetric system. The phase
diagrams with different f and ϵ are given in Figure 1.

All phase diagrams shown in Figure 1 are presented
for χBDN ≤ 0 and the strength of the attraction starts from
zero and becomes greater as one moves downwards along

the y-axes (from χBDN = 0 to �10). The horizontal lines
at χBDN ¼ 0 correspond to the AB/B'C system and they
exhibit very similar features. Specifically, as seen in
Figure 1A, an A-rich spherical phase composed of
A-core-C-shell spheres on a BCC lattice, denoted as the
BCCA phase, is stable at ϕ2 ≲ 0:2. On the other side of the
diagram in Figure 1A where ϕ2 ≳ 0:8, a BCC structure
similar to the BCCA but with A and C inverted (BCCC) is
stable. In the region where the concentrations of the
AB and CD diblocks are more comparable, that is,
0:2≲ϕ2 ≲ 0:8, a large two-phase coexistence window
between the AB-rich and CD-rich core-shell BCC
phases is identified. In Figure 1B,C, similar behaviors
where a wide two-phase region is sandwiched by two
opposite core-shell HCP phases (Figure 1B) and σ
phases (Figure 1C) are predicted for χBDN ¼ 0. In
Figure 1B, transitions from the core-shell BCC to core-
shell HCP phases are also identified prior to entering the
two-phase region when moving from either side (ϕ2 � 0
or 1) to the middle (ϕ2 � 0:5) of the diagram. The free
energy densities of several representative phases as a
function of ϕ2 along the phase path of χBDN ¼ 0 in
Figure 1A are plotted in Figure 2A. It can be seen that
the lowest free energy densities of different binary crys-
talline phases, except AlB2, are all nearly degenerate with
the double tangent line between the BCC phases at low
and high ϕ2. Nonetheless, the stability of the two-phase
coexistence wins over those of the binary crystalline
phases, giving rise to a dominant two-phase region. These
behaviors for χBDN ¼ 0 are consistent with the results for
the AB/B'C binary mixtures by Dorfman and
coworkers.36,37

Interesting behaviors are observed as χBDN becomes
negative in all three phase diagrams shown in Figure 1.
As the magnitude of the attractive χBDN is increased, the
stable regions of the core-shell-structured phases expand
towards the center. Several windows of binary crystals
also open up in the central region of the phase diagrams.
Consequently, the two-phase coexistence windows are
suppressed. It is interesting to observe that at ϕ2 � 0:5,
the CsCl is the stable morphology for all three phase dia-
grams whereas changing ϕ2 away from 0.5 induces phase
transitions to different binary crystalline phases as shown
in Figure 1. Free energy plot similar to Figure 2A but
along the phase path of χBDN ¼�2 in Figure 1A is dis-
played in Figure 2B, showing clearly the effects induced
by the attractive association between the B and D
blocks. One obvious observation is that the free energy
densities for all phases are lowered in Figure 2B com-
pared to Figure 2A. We could also see that for different
phases the free energy densities are lowered to differ-
ent degrees by comparing their minimum values. Spe-
cifically, the benefit to the free energy by changing

(A)

(B)

FIGURE 2 The free energy densities of several representative

phases as a function of ϕ2 along the phase path (A) χBDN ¼ 0 and

(B) χBDN ¼�2 in Figure 1A. The dotted lines are the double

tangent of the free energies of two phases and the vertical dashed

lines mark the boundaries of coexistence regions. Note that the

difference between the minima of the black, blue and red curves in

(A) is too small to be clearly visible at the scale of the plot.
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χBDN from 0 to �2 increases from BCCA=BCCC ! Li3Bi
! AlB2 ! CsCl. In addition, the values of ϕ2 at which
the minima of the free energies of different phases occur
shift toward 0.5. Most importantly, these changes of free
energy result in the stabilization of two binary crystalline
phases, that is, CsCl and Li3Bi.

The various spherical packing phases can be catego-
rized by the ratio between the numbers of the A and C
spheres in a unit cell, that is, their stoichiometry. For the
binary crystals considered in the current study, the
included A/C sphere number ratios are 3:1(3A1C), 2:1
(2A1C), 1:1(1A1C), 1:2(1A2C) and 1:3(1A3C). For conve-
nience, we define the percentage of the C spheres
PC
s ¼ nCs = nAs þnC

s

� �
for a spherical phase, where nAs and

nCs denote the numbers of A and C spheres in its unit cell,
respectively. For the A- and C-rich core-shell structures,
PC
s is taken to be 0 and 1, respectively. The existence of a

minimum in the free energy of each phase indicates that
there exists an optimal proportions of the AB and CD
copolymers that is best compatible with the A to C
spheres stoichiometry of the crystal structure with a
given set of molecular parameters. In the left half of
Figure 2A, the free energy densities of the BCCA, Li3Bi,
AlB2 and CsCl phases reach their minima roughly at ϕ2

= 0.187, 0.344, 0.408 and 0.5, which have a positive corre-
lation with their PC

s , that is, 0.0, 0.25, 0:3 _3 and 0.5, respec-
tively. In Figure 2B, despite the overall shifts of the free
energy minima towards ϕ2 ¼ 0:5 for all the phases, the
positive correlation is preserved. This correlation between
the concentration of AB/CD copolymers and the stoichi-
ometry of the different spherical phases could be used to
control the relative stability of the phases with differ-
ent PC

s .

3.2 | Selecting crystals via block
composition (f ) and conformational
asymmetry (ϵ)

The equilibrium morphology of the neat diblock copoly-
mer melts and binary blends of diblock copolymers
(A1B1=A2B2 and AB/B0C) is sensitive to the block compo-
sition f and conformational asymmetry ϵ.12,37,54 Particu-
larly, recent studies on binary AB/B0C blends36,37

explored the stability of the Laves binary crystals, or
alloys, with different combinations of chain length asym-
metry (NB0C=NAB) and conformational asymmetries (ϵAB
and ϵB0C). The stability of the Laves binary crystals was
promoted by choosing the appropriate combinations of
the above parameters such that the self-assembled
domains have the volume asymmetry preferred by the
Laves phases. Case et al. also demonstrated that individu-
ally increasing the conformational asymmetry of the

copolymers forming the larger or smaller domains had a
stabilizing or destabilizing effect on the Laves alloys,
respectively, while increasing them simultaneously
resulted in minimal effect because the opposite outcomes
offset against each other. These effects due to changing
the conformational asymmetries originate from the
adjusted polyhedral imprinting and thus the interfacial
energy of the spherical domains, which has been studied
in details.56,57

Different from the previous studies of the AB/B0C
blends,36,37 the chain-length ratio γ is kept at γ¼ 1 in the
current study. We focus on examining the effects of f and
ϵ on the equilibrium morphology in the presence of B–D
attraction. Comparisons between different phase dia-
grams in Figure 1 highlight the effects of f and/or ϵ for
the case of a symmetric system, i.e. f 1 ¼ f 2 ¼ f and

(A)

(B)

FIGURE 3 (A)Phase diagram in the ϕ2� f 1=f 2 plane with

f 2 ¼ 0:24, ϵ1 ¼ ϵ2 ¼ 2 and (B) phase diagram in ϕ2�ϵ2=ϵ1 plane
with ϵ1 ¼ 1, f 1 ¼ f 2 ¼ 0:19. χACN and χN are fixed at 30, χBDN is

fixed at �2 and γ is fixed at 1. Unlabeled regions are the two-phase

coexistence regions between two neighboring single phases. For

phases with stoichiometry ≠ 1:1, the ones on the left of the CsCl

phase have more A spheres than those on the right and vice versa.

XIE ET AL. 7
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ϵ1 ¼ ϵ2 ¼ ϵ. Interestingly, increasing ϵ from 1 (Figure 1A)
to 2 (Figure 1B) with f fixed at 0.19 stabilizes phases with
close-packing lattices instead of a BCC lattice. Specifi-
cally, the HCPA=HCPC phase emerges between the
BCCA=BCCC and binary crystalline phases at the expense
of the stability windows of the neighboring phases.
Accordingly, the Li3Bi with an underlying BCC lattice is
replaced by the Cu3Au phase which has the same stoichi-
ometry but with a close-packed FCC lattice. Moreover,
when f increases to 0.24 with ϵ¼ 2, the stability windows
of binary crystals expand at the expense of those of the
core-shell phases and morphologies with complex FK lat-
tices emerge. Notably, the equilibrium core-shell phases
adopt a FK σ lattice and the Nb3Sn with a FK A15 lattice
stabilizes with the disappearance of the Cu3Au. The pref-
erence of the FK lattices with sufficiently large ϵ and rela-
tively large f is consistent with the phase behavior of
the neat AB diblock copolymers.12 In addition, when the
B–D attraction is strong, the NaCl is stable over the
Nb3Sn. In all the phase diagrams shown in Figure 1,
the CsCl crystal is always stable around ϕ2 � 0:5.

We now turn our attention to the asymmetric case
with f 1 ≠ f 2 and ϵ1 ≠ ϵ2. To demonstrate the effects of f
and ϵ asymmetries, phase diagrams in the ϕ2� f 1=f 2 and
ϕ2�ϵ2=ϵ1 planes are constructed and shown in Figure 3.
Specifically, the f 1=f 2 is varied by adjusting f 1 with fixed
f 2 ¼ 0:24 and the ϵ1=ϵ2 is varied by adjusting ϵ2 with
fixed ϵ1 ¼ 1. Upon moving from symmetric to asymmetric
f or ϵ, the phase diagram also becomes noticeably asym-
metric with respect to ϕ2. In Figure 3A, as f 2 becomes
larger than f 1 (C blocks become longer than A blocks),
the 3A1C Nb3Sn phase (left) undergoes a phase transition
to the 3A1C Li3Bi phase while the window of 1A3C
Nb3Sn (right) gradually narrows and eventually closes at
f 1=f 2 � 0:875. The effect of asymmetric ϵ is different from
that of f as shown in Figure 3B. With increasingly larger
ϵ2 than ϵ1 (stiffer C blocks than A blocks), the window of
the 3A1C Li3Bi phase (left) grows wider while the win-
dow of the 1A3C Li3Bi phase (right) shrinks and disap-
pears at ϵ2=ϵ1 � 1:25. More intriguingly, the 2A1C AlB2

phase and the NaCl phase emerge for extremely asym-
metric ϵ, than is, ϵ2=ϵ1 > 1:8.

For the asymmetric case, phase diagrams in the
ϕ2�χBDN plane with specific combinations of asymmet-
ric f or ϵ are displayed in Figure 4. In Figure 4A, with
ϵ1 ¼ ϵ2 ¼ 2 and f 1=f 2 ¼ 0:18=0:21≈ 0:857, the 2A1C
MgZn2 binary crystal with a Laves C14 lattice is stable in
a small window around ϕ2 � 0:4 and χBDN ≳ �0:5 and
its window expands in both the ϕ2 and χBDN dimensions
by enhancing the AB/CD compositional asymmetry
(decreasing f 1=f 2 to 0:18=0:24¼ 0:75), as shown in

(A)

(B)

(C)

FIGURE 4 Phase diagrams in the ϕ2�χBDN plane with (A)

ϵ1 ¼ ϵ2 ¼ 2, f 1 ¼ 0:18, f 2 ¼ 0:21, (B) ϵ1 ¼ ϵ2 ¼ 2, f 1 ¼ 0:18, f 2 ¼ 0:24

and (C) ϵ1 ¼ 1, ϵ2 ¼ 2, f 1 ¼ f 2 ¼ 0:19. χACN and χN are fixed at 30

and γ is fixed at 1. Unlabeled regions are the two-phase coexistence

regions between two neighboring single phases. The red arrows

highlight vertical transitions between binary crystalline phases.

For phases with stoichiometry ≠ 1:1, the ones on the left of the

CsCl phase have more A spheres than those on the right and vice

versa.

8 XIE ET AL.
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Figure 4B. This observation suggests that in the binary
blends of conformationally asymmetric AB/CD
(or AB/B'C) copolymers, unequal copolymer composi-
tions could induce sufficient volume difference between
different types of soft domains thus stabilizing the Laves
alloys, which extends the results from previous stud-
ies.36,37 Interestingly, both of the MgZn2 stability win-
dows in Figure 4A,B disappear upon enhancing the B-D
attraction. In Figure 4C with f 1 ¼ f 2 ¼ 0:19 and ϵ2=ϵ1 ¼ 2,
the 2A1C AlB2 and NaCl crystals have sizeable stable
regions, consistent with the prediction in Figure 3B. Note
that neither AlB2 nor MgZn2, composed of A and C
spheres with distinct volumes, appear in the symmetric
phase diagrams shown in Figure 1, indicating that the

compositional or conformational asymmetry between
the AB and CD diblocks is critical to their formation in
the AB/CD system. Furthermore, the 2A1C AlB2 or
MgZn2 emerges instead of their 1A2C counterpart
because having f 1 < f 2 with ϵ2=ϵ1 ¼ 2 or ϵ1 < ϵ2 with
f 1 ¼ f 2 prefers the formation of larger CD-rich than AB-
rich domains, which is in line with the WSC volume dif-
ference possessed by the 2A1C version of these two
phases and opposes that of their 1A2C version (Table S1).

3.3 | Separated or mixed spheres: The
effect of χACN and χN

The repulsive interactions between different blocks play
a critical role not only in the formation of A + C mixed
spheres or A/C separated spheres, but also the ordering
of the system. We examine the effects of the repulsive
interactions by focusing on the χACN and χN
(¼ χABN ¼ χCDN ¼ χADN ¼ χBCN) separately. To illustrate
how the A-C repulsion influences the phase behavior, we
first construct a phase diagram in the ϕ2� χACN plane
with fixed χN ¼ 30, χBDN ¼�2, γ¼ 1, f 1 ¼ f 2 ¼ 0:19 and
ϵ1 ¼ ϵ2 ¼ 1 (Figure 5A). The A–C repulsion is the key to
determine the relative stability of the binary crystals and
core-shell-structured phases. In Figure 5A, it could be
observed that the stable binary crystalline phases are
CsCl and Li3Bi, which are sandwiched by a continuous
region of the BCC phase. The binary crystalline regions
are compressed by the widening BCC region as χACN is
decreased. The CsCl and Li3Bi phases disappear at
χACN � 17:14, which, marked by the black horizontal
dashed line, is an approximate critical value to form
binary crystalline structures with the current set of
parameters. Clearly, a strong A–C repulsion is required
to stabilize the binary crystalline phases. Note that the
subscript of BCC has been dropped here since the BCCA

and BCCC phases are essentially the same phase at low
χACN . When moving along the red dotted double sided
arrow in Figure 5A, no clear phase transition is identi-
fied. Instead, we observe that the core-shell spheres con-
tinuously evolve to spheres with uniformly mixed A and
C blocks and then to the inverse core-shell spheres upon
passing ϕ2 ¼ 0:5.

To examine how the phase behavior depends on χN ,
the phase diagram on the ϕ2� χN plane with χACN ¼ 30,
χBDN ¼�2, γ¼ 1, f 1 ¼ f 2 ¼ 0:19 and ϵ1 ¼ ϵ2 ¼ 1 is con-
structed (Figure 5B). Several ordered phases appear in
Figure 5B, including the CsCl, Li3Bi, HCPA, HCPC, BCCA

and BCCC phases. With decreasing χN , the overall win-
dow of the core–shell-structured phases expands along
the ϕ2 dimension at the expense of the regions of the
binary crystalline phases. The disordered (Dis) phase is

(A)

(B)

FIGURE 5 The phase diagram on the (A) ϕ2� χACN plane and

(B) ϕ2�χN plane. For (A), χN is fixed at 30 and for (B), χACN is

fixed at 30. For the other parameters, χBDN ¼�2, γ¼ 1,

f 1 ¼ f 2 ¼ 0:19 and ϵ1 ¼ ϵ2 ¼ 1 are fixed in both cases. Unlabeled

regions are the two-phase coexistence regions between two

neighboring single phases. For phases with stoichiometry ≠ 1:1,

the ones on the left of the CsCl phase have more A spheres than

those on the right and vice versa.

XIE ET AL. 9
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expected for pure AB or CD copolymers below χN � 22,
which is where the order–disorder transition (ODT) takes
place in the neat diblock copolymer melts with f ¼ 0:19.
In contrast, for the AB/CD binary blends, the disordered
(Dis) phase occurs at χN � 27:6 in the vicinity of ϕ2 ¼ 0:5,
which is significantly higher than the value for the neat
AB (ϕ2 ¼ 0) or CD (ϕ2 ¼ 1) diblocks. This resemblance to
the eutectic phase behavior of binary alloys is similar
to that of the AB/B'C binary mixtures reported by Dorf-
man and coworkers.36,37 However, a noticeably higher
eutectic χN , or lower eutectic temperature, is predicted
for the current AB/CD than for the previous AB/B0C mix-
tures. The occurrence of the Dis phase at a much higher
χN here could be attributed to two factors: (1) in the cur-
rent study χACN ¼ 30 is used, which is lower than
χACN ¼ 50 used in the AB/B0C study, and (2) compared
to the AB/B0C, a B–D attraction (χBDN ¼�2) is intro-
duced in the AB/CD mixtures. Both a lower χACN and a
negative χBDN favor a larger region of the Dis phase.
These two factors could explain the observed occurrence
of the Dis phase at a higher χN (a higher eutectic χN) in
the AB/CD system studied here than in the AB/B0C sys-
tem studied previously.

3.4 | Chain packing: Analysis and
visualization of the density profiles

The distribution of different blocks of the AB and CD
diblock copolymers offers insights into the mechanisms
governing their phase behavior. A qualitative method to
understand the packing of polymer chains is to assume
that the soft domains, including both the spherical
core and the polyhedral shell, formed by the diblock
copolymers are approximately confined within their

Wigner–Seitz cells (WSCs). For binary crystalline phases
consisting of A and C spheres, the WSCs are composed
of faces bisecting the lines connecting the centers of the
A–A, A–C and C–C spheres. Under the assumption that
each AB or CD domain is localized within its WSC, the B
and D coronas contact roughly on the faces of the WSCs
that bisect the lines connecting the A and C spheres
(favorable faces). On the other hand, near the faces
between A–A and C–C spheres (neutral faces), there are
mostly only B–B and D–D contacts. A schematic illustrat-
ing the chain arrangement under this assumption is
given in Figure 6. The distinct WSCs of all the relevant
binary crystalline phases are also displayed in Figure 7,

FIGURE 6 Illustration of the chain packing in binary

crystalline phases. This example is in 2D where the A and C blocks

form the core circles and the B and D blocks construct the coronas.

FIGURE 7 The WSCs of binary crystalline phases. The

favorable and neutral faces are colored red and blue, respectively.

More details of these WSCs are provided in Table S1 in the SI.

10 XIE ET AL.

 26424169, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pol.20230306 by C

ochrane C
anada Provision, W

iley O
nline L

ibrary on [03/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
Ph.D. Thesis – Jiayu Xie; McMaster University – Physics & Astronomy

134



where the favorable faces and neutral faces are colored
red and blue, respectively. It is noted that B–D contacts
do not occur on infinitely sharp interfaces because all the
interfaces have a finite width. Nonetheless, the area of
favorable faces per unit volume should still be a qualita-
tive measure of the favorable B–D contacts for the vari-
ous binary crystalline phases. In Figure 8A, we present
the area per unit volume (S=V ) of the favorable (B–D)
and neutral faces (B–B/D–D), as well as the total of
both faces (Total), of the WSCs of the relevant binary
crystals for three different choices of the parameter set
{f 1, f 2,χBDN ,ϕ2} with fixed χACN ¼ 30, γ¼ 1 and
ϵ1 ¼ ϵ2 ¼ 2. These choices are made to compare the
results from different combinations of f 1, f 2, χBDN and
ϕ2. The favorable S=V is in an ascending order as the
stoichiometry of the phase goes from 3:1 ! 2:1 ! 1:1 for
all three sets of parameters, while the neutral S=V has

the opposite trend. Consequently, the total S=V is similar
for all the phases. These trends are intuitive because the
more comparable the numbers of A and C spheres are,
the more neighboring A–C spheres (more B–D contacts)
and less neighboring A–A and C–C spheres (less B–B and
D–D contacts) there are. Moreover, the distributions of
the three quantities across all the phases in all three graphs
in Figure 8A are very similar, indicating that these observed
trends are nearly independent of {f 1, f 2,χBDN ,ϕ2}.

A more accurate picture is that the soft domains are
localized mostly within their WSCs only when the sizes
of the domains are compatible with the corresponding
WSCs. Intuitively, this compatibility is achieved at an
optimal combination of the molecular parameters and
ϕ2, which would be different for different phases. It is
anticipated that when such compatibility between the
properties of the polymer chains and the WSCs of

(A.1)

(A.2)

(A.3)

(B.1)

(B.2)

(B.1)

(C.1)

(C.2)

(C.3)

FIGURE 8 (A)The S=V of the favorable (B–D) and neutral (B–B/D–D) faces as well as of both faces (Total) of the WSCs of binary

crystalline phases with three different sets of parameters: {f 1, f 2, χBDN , ϕ2} = (a.1){0.19, 0.19, �1, 0.5}, (a.2){0.18, 0.24, �5, 0.27} and (a.3)

{0.24, 0.24, �10, 0.29}. (B) The S=V of ϕB r
!� �

¼ϕD r
!� �

isosurface (SBD=V ) of binary crystalline phases at their optimal ϕ2 with {f 1, f 2} =

(b.1) {0.19,0.19}, (b.2) {0.18,0.24} and (b.3) {0.24,0.24}. (C) The SBD=V for binary crystalline phases at ϕ2 ¼ (c.1) 0:36, (c.2) 0:44 and (c.3) 0:50

with {f 1, f 2} = {0.24, 0.24}. For all graphs, χACN ¼ χN ¼ 30, γ¼ 1 and ϵ1 ¼ ϵ2 ¼ 2 are kept fixed. In addition, χBDN ¼�2 is used for (B) and

(C). The data for the MgZn2 phase is missing in (a.3) because it did not converge with that set of parameters.

XIE ET AL. 11
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the self-assembled phase is satisfied, the copolymers
would have an ideal chain packing and thus be less frus-
trated. For general alloy-forming binary AB/CD mixtures,

a rigorous optimization of all parameters simultaneously
to find the solution that achieves the globally optimal chain
packing of a particular phase is possible but would require

FIGURE 9 The isosurfaces of ϕA r
!� �

¼ 0:5 (red), ϕC r
!� �

¼ 0:5 (blue) and ϕB r
!� �

¼ϕD r
!� �

(yellow) for the binary crystalline phases at

ϕ2 ¼ 0:36, 0:44 and 0:50.

12 XIE ET AL.
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efficient optimization algorithms and a well-designed objec-
tive function.58,59 One simpler approach to determine a set
of conditionally optimal, or nearly optimal parameters for a
target phase is given by a two-step procedure: (1) start with
a specific parameter set pm ¼{f 1, f 2, bB (¼ bA=ϵ1), bC, bD
(¼ bC=ϵ2), N1, N2 (¼ γN1)} (assuming that bA ¼ 1 is the
unit of length) that is chosen to be compatible with the
WSC properties of that phase, and (2) find the optimal ϕ2

minimizing the free energy density (see, e.g., Figure 2).
The resultant solution corresponds to the conditionally
optimal chain packing for the target phase subject to pm.
Apparently, choosing pm guided by the WSC properties is
an approximation.

One approximate measure of the B–D interfacial area

is given by the area of the ϕB r
!� �

¼ϕD r
!� �

isosurface,

which could be computed from the converged SCFT
solution of a binary crystalline phase. The area per unit

volume of the ϕB r
!� �

¼ϕD r
!� �

isosurface, SBD=V , is

computed and shown in Figure 8B, for each binary crys-
talline phase at its optimal ϕ2 with three sets of {f 1, f 2},
χBD ¼�2 and all other parameters the same as those used
for Figure 8A. We emphasize that these parameters are
chosen for the purpose of illustrating the behavior under
general conditions without targeting one particular
phase, therefore, the pm used here is not judiciously
designed to favor the optimal packing of any morphology.
Clearly, the distribution of SBD=V across the 3A1C, 2A1C
and 1A1C phases in all the three cases are quite consis-
tent with the universal distribution of S=V computed for
the favorable (B–D) faces of the WSCs (Figure 8A), indi-
cating that the chain packing in various morphologies at
their optimal ϕ2 does roughly conform to the WSC con-
struction (Figure 6). However, the optimal ϕ2 for each
phase is different. Thus, the distribution of SBD=V across
all phases evaluated at a fixed ϕ2 is expected to deviate
significantly from the ones in Figure 8A. Presented in
Figure 8C are the results of SBD=V for all the phases at
ϕ2 ¼ 0:36, 0:44 and 0:50 with f 1, f 2f g = 0:24,0:24f g and
all other parameters the same as those used in Figure 8B.
These three values for ϕ2 are chosen to be the average
optimal values for 3A1C, 2A1C and 1A1C structures,
respectively, determined by minimizing their free energy
densities with respect to ϕ2. Indeed, the distribution of
SBD=V in Figure 6C evidently deviate from the distribu-
tion of S=V (B–D) in Figure 6A and that of SBD=V evalu-
ated at the optimal ϕ2 of each phase in Figure 6B.

As a more direct visualization of chain packing, we

plot the isosurfaces of ϕA r
!� �

¼ 0:5 (red), ϕC r
!� �

¼ 0:5

(blue) and ϕB r
!� �

¼ϕD r
!� �

(yellow) for the binary crys-

talline morphologies in Figure 9 with the same

parameters as those used in Figure 8C. The ϕA r
!� �

¼ 0:5

and ϕC r
!� �

¼ 0:5 isosurfaces are reasonable representa-

tions of the cores of the A and C spheres. The

ϕB r
!� �

¼ϕD r
!� �

isosurfaces could be viewed as the sur-

faces separating the AB and CD copolymers. As expected,
the yellow surfaces move towards the red A cores as the
concentration of CD copolymers (ϕ2) is increased.
Because the three values for ϕ2 approximately minimize
the free energy density of 3A1C (ϕ2 ¼ 0:36), 2A1C (0.44)
and 1A1C (0.50) structures, the plots in the dashed gray
boxes depict the chain packing closest to the ideal ones
for these morphologies with the chosen molecular
parameters. Indeed, the yellow isosurfaces in these plots
also more closely match the favorable faces of the WSCs
of the corresponding phases (Figure 7). Likewise, we
anticipate that the actual chain packing and thus SBD=V
would also obviously deviate from the optimal ones pre-
dicted from the WSC construction for phases whose
WSCs are highly incompatible with the choice of pm.

The WSC construction can help us understand several
aspects of the phase behavior examined in the previous
sections. Notably, there are appreciable stability windows
for the CsCl phase, whose WSCs have the same volume,
in almost all phase diagrams (Figures 1, 3, 4 and 5). The
ubiquity of the CsCl phase could be attributed to its
larger SBD=V compared to the other phases given by the
WSC construction (Figure 8A), except the NaCl phase.
Specifically, the higher the SBD=V one phase has, the
more enthalpic benefit is gained due to the B–D attrac-
tion. This explains why the stability windows of the
1:1-stoichiometric crystals generally widen the most rap-
idly when the B–D association becomes stronger
(Figures 1 and 4A,B) and why the reduction in free
energy from Figure 2A to Figure 2B for the 3:1-, 2:1- and
1:1-stoichiometric phases is in an ascending order. The
NaCl has a higher SBD=V than the CsCl, but its WSCs are
much less spherical and thus have higher packing frus-
tration.21,57,60 The NaCl phase could compete with the
CsCl and become stable when the B–D attraction is suffi-
ciently strong, as seen in Figures 1C, 3B, and 4B,C. Inter-
estingly, the stability windows of NaCl usually occur at
ϕ2 ≠ 0:5 and/or asymmetric f or ϵ, indicating that the
free energy of the NaCl is less affected by having asym-
metric A and C soft domains than its competing crystal-
line phases.

The main reason why the AlB2 crystal has less favor-
able free energy in Figure 2 and no phases with 1:2 stoi-
chiometry are stable in the symmetric phase diagrams in
Figure 1 is presumably because both of the 1:2-stoichio-
metric phases (AlB2 and MgZn2) have unequally sized
WSCs (Table S1), which is less compatible with the

XIE ET AL. 13
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tendency for the symmetric AB and CD copolymers to
form equally-sized soft domains. For the same reason,
the AlB2 and MgZn2 phases become stable in the asym-
metric phase diagrams in Figure 4. As the B–D attraction
becomes stronger, both the AlB2 and MgZn2 windows
close quickly between those of the 1:3- or
1:1-stoichiometric phases, which seems to be contradic-
tory to the observation that they have overall intermedi-
ate SBD=V according to the WSC construction
(Figure 8A). One possibility is that the chosen molecular
parameters are not fully compatible with their WSC vol-
ume asymmetries and thus the chain packing is still far
away from being the global optimum even at ϕ2 minimiz-
ing their free energies. This makes the WSC construction
less accurate in depicting the chain packing for the AlB2

and MgZn2 with these choices of parameters. It would be
interesting to see if these phases could stabilize in larger

regions with more carefully optimized molecular parame-
ters, which we leave as a future study. Moreover, in
Figure 3 with ϵ1 ¼ ϵ2 ¼ 2 a transition from the 3A1C
Nb3Sn to the 3A1C Li3Bi is identified as decreasing f 1=f 2
(the AB diblocks becoming shorter than the CD
diblocks). This could be explained by the fact that having
shorter AB diblocks opposes the WSC volume asymmetry
of the 3A1C Nb3Sn phase, which has larger WSCs enclos-
ing the A spheres than those enclosing the C spheres
(Table S1), thus making the 3A1C Nb3Sn more disfavored
than the 3A1C Li3Bi.

We would like to point out that, in contrast to the
A1B1=A1B2 blends, the various factors contributing to the
stability of different morphologies for the binary AB/CD
blends are strongly entangled. One informative way to
group the free energy in Equation 9 associated with dif-
ferent contributions is to divide the total free energy

(A) (B)

(D)(C)

FIGURE 10 Plots of the difference of the total free energy along with that of the four contributions between the stable phase at the top

and the one at the bottom for the highlighted transitions in (A) Figure 1C, (B) Figure 4A, (C) Figure 4B and (D) Figure 4C.

14 XIE ET AL.
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density (Equation 7) into four parts: the interaction con-
tribution between A and C spheres UAC, the interfacial
contribution Uinter = UAB + UCD + UAD + UCB, the
attractive contribution UBD and the entropic contribution
�TS¼�T S1þS2ð Þ, where the common factor N=ρ0VkBT
appearing in all the terms has been omitted for simplic-
ity. In Figures 1 and 4, several vertical paths of phase
transitions are highlighted by red arrows. These transi-
tions are all triggered by changing χBDN . The difference
of the total free energy along with that of the four contri-
butions between the stable phases at the head and the tail
of the arrows highlighting the four transitions in Figures 1
and 4 are shown in Figure 10. We can see that even
though the phase transitions highlighted by the arrows
are all induced by lowering χBDN , the behaviors of the
UBD could be different. For Figure 10A,B, the trend of
the UBD contribution is even opposite to that of the total
free energy. Therefore, the various energy contributions
respond very differently to the change of one parameter
and the stability of different morphologies is determined
by the combined effect of all contributions.

4 | CONCLUSION

In summary, we have explored the phase behavior of binary
blends of sphere-forming AB/CD diblock copolymers using
polymeric self-consistent field theory. By constructing phase
diagrams in different subspaces of the system, it is shown
that phases composed of A + C mixed spheres or binary
A/C separated spheres can form, and their stability depends
sensitively on system parameters. Specifically, we have dem-
onstrated that the formation of binary crystalline phases is
promoted by having both large positive χACN and negative
χBDN . The former drives the separation of the A and C
blocks while the latter suppresses macrophase separation.
We have also shown that phases with distinct stoichiome-
try are preferred at different blend compositions, which
allows us to control the equilibrium morphology by
adjusting the polymer concentration. Although only
phases with 1:1 and 1:3 stoichiometry have been found
stable for the systems with symmetric f and ϵ, it is possi-
ble for packing with 1:2 stoichiometry to appear in the
asymmetric systems where f 1 ≠ f 2 or ϵ1 ≠ ϵ2. Moreover,
the phase diagram of the AB/CD binary blends in the
ϕ2� χN plane exhibits eutectic behavior similar to that
observed for the AB/B0C blends.

By analyzing the density profiles of different morphol-
ogies, we have obtained valuable insights into the opti-
mal chain packing, which is responsible for the selection
of the stable binary crystalline phase. We have demon-
strated that the WSC construction provides a useful esti-
mate for the optimal chain packing. The favorable B–D

contacting area per unit volume (SBD=V ) obtained from
the WSC construction yields a descending order when
going from 1:1 ! 2:1 ! 3:1 stoichiometry. This distribu-
tion of SBD=V across various binary crystalline phases
is consistent with that computed from the

ϕB r
!� �

¼ϕD r
!� �

isosurfaces for these phases at their

optimal ϕ2. The WSC construction can help to explain
some of the observed phase behavior. Particularly, the
abundance of the stable windows of the CsCl phase is
largely due to both of the relatively less frustration pos-
sessed by its WSCs and the high SBD=V . Moreover,
enhanced stability has been evidenced for phases with
WSC volume ratio more compatible with that of the soft
domains formed by the AB and CD copolymers. We have
also observed the disappearance of AlB2 and MgZn2

phases as the B–D attraction becomes stronger. An inter-
esting future research direction is to explore the possibil-
ity of expanding the stable region of these phases with
molecular parameters purposely designed to favor their
formation. The parameter design could be carried out
either by using information of their crystallographic char-
acteristics or more rigorously by combining SCFT with
advanced optimization algorithms such as the particle
swarm optimization (PSO).58,59

Compared to the theoretical studies of AB/B0C blends
by Dorfman and coworkers,36,37 the current study
explores the phase behavior of the more general AB/CD
system with a focus on the formation of various binary
crystalline phases enabled by the B–D attraction. It
should be mentioned that the parameter space of the
AB/CD system is extremely large. Although only a small
fraction of the phase space is explored in the current
study, the strategy of using secondary interactions such as
hydrogen bonding to regulate the self-assembled structures
is general. In the future, it would be interesting to study
what morphologies are stable if the parent copolymers
individually form cylinders, networks and lamellae, and
how the non-spherical equilibrium structure is regulated
by the various system parameters. Given the architectural
simplicity of the diblock copolymers, it would be desirable
to explore the phase behavior experimentally with pre-
cisely synthesized diblock copolymer pairs. In experi-
ments, the attraction between two blocks could be realized
via the association of different functional groups such as
hydrogen bonding and electrostatic interaction,61–63 and
the strength of the attractive interaction could be adjusted
by, for example, the density of hydrogen bonding units64

and the steric effects.65,66 The principles obtained from our
theoretical study could be used to guide experiments and
also serves as a starting point for future studies on the
phase behaviors of polymeric blends with designed sec-
ondary interactions.

XIE ET AL. 15
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Preface

We have so far discussed the equilibrium phase behaviours of polymeric systems

containing only homopolymers and/or diblock copolymers. For an AB diblock copolymer,

the architectural simplicity leads to topological equivalency between the A and B blocks.

In other words, the polymer chain remains invariant by interchanging the A and B blocks.

However, for chains with more complex architectures, this equivalency may break down.

One simple example is linear ABA and BAB triblock copolymers, formed by connecting

two AB diblock chains through their B or A ends, respectively. The two homologous

but topologically distinct triblock chains, i.e., ABA and BAB, exhibit slightly different

equilibrium phase behaviours, reflected by the small asymmetry around the fA = 0.5

axis in the fA − χN phase diagram of triblock copolymers [132, 133]. A natural question

arises: How does the topological difference of the copolymers impact the equilibrium

phase behaviour when they are blended with other polymers?

In this chapter, we address this question by examining a simple system composed

of linear symmetric triblock copolymers and homopolymers. Using random-phase ap-

proximation and self-consistent field theory, we compare the phase behaviours of three

homologous polymeric blends: AB/A, ABA/A, and BAB/A. We begin with the scenario

where the copolymers form lamellae and investigate blend miscibility by comparing the

spinodals and binodals of these systems. Next, we explore the case where the copolymers

form spheres to understand how the topological differences influence the equilibrium

spherical packing phase. Our results offer valuable insights into the topological effects in

polymeric blends containing block copolymers with more complex architectures.
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Abstract

Two distinct linear triblock copolymers with different block sequences, i.e. ABA or BAB, are

obtained when two identical AB diblock copolymers are jointed at their B or A ends, respec-

tively, resulting in three homologous, AB diblock, ABA and BAB triblock, copolymers with the

same chemical composition but different topologies. We demonstrate that the topological effect on

the phase behaviors of the copolymers is amplified when A homopolymers are added to the sys-

tem. Specifically, the phase behaviors of binary blends composed of ABA or BAB linear triblock

copolymers and A homopolymers are studied by using the random-phase approximation (RPA)

and self-consistent field theory (SCFT). The RPA analysis predicts that the Lifshitz point for the

ABA/A blends behaves like a “second-order transition” but that for the BAB/A blends behaves

like a “first-order transition”. The Lifshitz point of the BAB/A mixtures is found to occur at a

much lower homopolymer concentration than that of the ABA/A mixtures, indicating a poorer

miscibility of the A homopolymers into the BAB than ABA triblocks, which is also confirmed by

SCFT. For sphere-forming triblock copolymers mixed with homopolymers, the poorer miscibility

and the more diffused distribution of the A homopolymers in the BAB/A blends result in a phase

behavior drastically different from that of the ABA/A and AB/A blends. The ABA/A blends

stabilize the Frank-Kasper (FK) phases similar to the AB/A blends, but the stability window of

FK phases becomes negligibly small in the corresponding BAB/A blends. Our results demon-

strate that the topological effect of block copolymers on the equilibrium phase behaviors can be

more prominent in multi-component systems and thus more attention should be paid to copolymer

topologies in the design of polymeric blends.

INTRODUCTION

Block copolymers composed of different blocks covalently bonded together are soft ma-

terials capable of self-assembling into ordered structures at the nanoscale [1, 2]. The spon-

taneous ordering of block copolymers originates from the frustration due to opposing ten-

dencies: chemically distinct blocks tend to phase separate, whereas the covalent bonds hold

them together [3]. The equilibrium structure of block copolymers depends on various fac-

∗ xiej33@mcmaster.ca
† shi@mcmaster.ca
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tors such as the volume fractions of the different blocks, the copolymer architecture and

temperature, etc. Such dependencies provide “knobs” by which the equilibrium morphology

self-assembled from block copolymers can be regulated. Due to their rich phase behaviors,

block copolymers not only hold promise in many applications such as lithography [4–7], pho-

tonics [8–10] and quantum materials [11, 12], but also serve as an ideal platform to study

the spontaneous ordering of matter.

The simplest block copolymer system is AB diblock copolymer melts. Due to extensive

theoretical and experimental studies [13–21], it has been well-established that the equilib-

rium phase behavior of neat AB diblock copolymers is controlled by three parameters: (1)

the A (or B) block composition fA (or fB), (2) the interaction strength χN quantified by

the product of the Flory-Huggins interaction parameter χ and degree of polymerization N ,

and (3) the conformational asymmetry parameter ϵ. Conformationally symmetric diblock

copolymers (ϵ = 1) exhibit a phase transition sequence from Dis → HCP → BCC → HEX

→ DG → O70 → L as fA changes from 0 to 0.5. Here Dis, HCP, BCC, HEX, DG, O70 and

L represent disordered phase, hexagonal close-packed spheres, body-centered cubic spheres,

hexagonal close-packed cylinders, double-gyroid networks, Fddd networks, and lamellae [22].

For the case of ϵ = 1, the f − χN phase diagram is symmetric about f = 0.5, and further

increasing f from 0.5 to 1 traverses the same morphologies but with A and B inverted and

the order reversed. Another well-studied system is the symmetric linear AB-type triblock

copolymers, which is obtained by joining two identical diblock chains through either their

A ends or B ends. With the same overall block composition, there are two distinct archi-

tectures, i.e., BAB and ABA, for an AB-type triblock copolymer. In contrast to the AB

diblock copolymer melts, the f − χN phase diagram for the linear symmetric AB-type tri-

block copolymer melts becomes slightly asymmetric about f = 0.5, due to the topological

nonequivalency between the middle block and end blocks. However, the effect of this topo-

logical difference on the phase behavior is small and thus the phase diagram of the triblock

copolymers remains largely analogous to that of the AB copolymers [22, 23].

One effective route to expand accessible morphologies self-assembled from block copoly-

mers is by mixing different polymers (copolymer/copolymer or copolymer/homopolymer)

together. Extensive experimental and theoretical studies have demonstrated that block

copolymer blends can stabilize new morphologies that are not stable in the system composed

of the individual parent species alone [24–38]. The greatest advantage of the blending strat-
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egy for accessing new phases is that the architecture of each constituent polymeric species

could remain simple, thus syntheses of complicated macromolecules could be avoided. The

simplest polymeric blends that exhibit a rich phase behavior are binary AB diblock copoly-

mer/A homopolymer blends. Depending on the block composition of the diblocks, the

addition of appropriate homopolymers can stabilize a plethora of new morphologies includ-

ing the Frank-Kasper (FK) σ, Laves C14 and C15, double diamond (DD) and plumber’s

nightmare (P) phases [14, 24, 26, 30, 31, 33, 39, 40].

Due to the incompatibility between the different components, an intrinsic feature of poly-

meric blends is their tendency to macrphase separate into two or more co-existing phases.

Even for binary mixtures of two relatively simple polymeric components, the interplay be-

tween microphase and macrophase separations can lead to rather complex phase behaviors.

For the simple binary AB/A blends, the addition of a small amount of homopolymers can

induce order-order phase transitions, while the addition of excessive amount of homopoly-

mers generally results in the coexistence between a copolymer-rich ordered/disordered phase

and a homopolymer-rich disordered phase [13, 33]. One factor that strongly influences the

solubility of the A homopolymers into the AB diblock copolymers as well as their spatial dis-

tribution is the ratio between the degrees of polymerization of the A homopolymer and the

A block of the copolymer, i.e., ξ = NA,homo/NA,diblock. For the case where ξ ≪ 1 (wet-brush

regime), the A homopolymers penetrate into the A micro-domains formed by the A blocks

of the copolymers and the two components can remain miscible up to a high homopoly-

mer concentration, while for the case where ξ ⩾ 1 (dry-brush regime), the opposite is true

[30, 41–45]. Furthermore, the different behaviors of A homopolymers in the micro-domains

formed by the diblocks result in different equilibrium morphologies. For example, adding

homopolymers in the dry-brush regime into BCC-forming AB copolymers could stabilize the

FK σ, C14 and C15 phases; however, these complex spherical phases are replaced by the

HEX phase if the added homopolymers are in the wet-brush regime [30, 31, 33].

Because the phase diagram of the symmetric AB-type triblock copolymers is similar to

the phase diagram of neat AB diblock copolymers, it is reasonable to expect that the new

morphologies accessed by adding homopolymers into AB copolymers could also be accessed

by blending homopolymers and triblock copolymers. A natural question is how the topolog-

ical difference between the ABA and BAB architectures affects the equilibrium morphology

when the A homopolymers are added. Theoretical and experimental studies of the AB-type
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triblock copolymer/A homopolymer mixtures have been carried out. However, most of the

existing studies focused on the effect of adding homopolymers on the bridging fraction and

mechanical properties of the triblock copolymers, because of the commercial applications

of triblock copolymers as thermoplastic elastomers [46, 47]. On the other hand, compared

to the AB diblock copolymers, less efforts have been made to investigate the morphological

phase behavior of their homologous triblock copolymers mixed with homopolymers [48–50],

and, to our knowledge, none has examined the role played by the topology or sequence

distribution of the triblocks. Therefore, the effect induced by the topological difference be-

tween the ABA and BAB triblock copolymers on the phase behavior of their mixtures with

A homopolymers remains unexplored.

In this work, we examine the topological effect on the phase behavior of the binary blends

composed of linear, ABA or BAB, symmetric triblock copolymers and A homopolymers. We

employ the random-phase approximation (RPA) and the polymeric self-consistent field the-

ory (SCFT), both applied to the freely-jointed chain (FJC) model, to study the microphase

and macrophase separations of three homologous systems, i.e., AB/A, ABA/A and BAB/A

blends. To focus on the effect of the copolymer topology, we consider the case where the

copolymers in these three systems have the same overall block fractions. In addition, the

degree of polymerization of the two symmetric triblock chains are the same and both are

twice of that of the AB diblock chain. We first focus on the case where the copolymers

are lamella-forming and construct phase diagrams on the ϕ2 − χAB plane, where ϕ2 is the

homopolymer concentration, for the three systems to compare their phase behaviors. We

then turn our attention to sphere-forming copolymers and examine the topological effect on

the formation of the FK phases. In both cases, it is discovered that the AB/A and ABA/A

blends have similar phase diagrams, whereas the BAB/A blends exhibit a drastically differ-

ent phase behavior. Our results demonstrate that the topological effect in the neat AB-type

triblock copolymers is amplified in their mixtures with A homopolymers and also provide

insights into the topological effect in more complicated polymeric blends.

THEORETICAL FRAMEWORK

In this section, we present the theoretical framework used in the current study. We start

with a description of the theoretical model based on the FJCs, followed by some details
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of the RPA calculation for the study of the stability line of the homogeneous phase and

the SCFT calculation for the study of the relative stability of different phases. We will

compare the phase behaviors of the three homologous ABA/A, BAB/A and AB/A binary

blends. Here the theoretical model is developed for the triblock copolymer/homopolymer

blends. Similar theoretical formulation for the homologous AB/A blends can be found in

our previous work [33].

Theoretical Model

We consider a binary blend composed of n1 linear symmetric triblock copolymers and n2

homopolymers in a volume V . Each triblock copolymer is composed of NA A segments and

NB B segments, resulting in a chain with N = NA + NB segments and N − 1 bonds. Two

distinct topologies or sequences of the triblock copolymer are considered here, with the A

or B blocks as the bridging block (BAB or ABA), respectively. The overall volume fractions

of the A and B blocks for a copolymer are given by fA = f and fB = 1 − f , respectively.

Each homopolymer is composed of NAh A segments and the ratio between the number of A

segments of an A homopolymer and that of a triblock copolymer is defined as γ = NAh/NA =

NAh/fN . We assume a uniform segment density ρ0 so that ρ0V = n1N +n2γfN due to the

incompressibility condition. The average concentrations of the triblock copolymers and the

A homopolymers are given by,

ϕ1 =
n1N

ρ0V
, ϕ2 = 1− ϕ1 =

n2γfN

ρ0V
.

The bonding potential between two adjacent segments in a polymer chain is given by,

vα(Ri) = −kBT ln δ(Ri − bα), (1)

where Ri = |ri+1 − ri| and bα is the Kuhn length of the segments of type α with α=A or B.

The non-bonded interaction energy U takes the form,

U = kBTρ0χAB

∫
u(|r− r′|)ϕ̂A(r)ϕ̂B(r

′)drdr′, (2)

where ϕ̂α(r) = (1/ρ0)
∑

i δ(r− rαi) is the density operator of α segments, χAB is the Flory-

Huggins parameter quantifying the incompatibility between A and B segments and u(|r−r′|)
describes the interaction potential as a function of inter-segment distance. The conforma-

tional asymmetry parameter can be defined as ϵ = bA/bB.
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Random-Phase Approximation (RPA)

In general, the Helmholtz free energy density functional of binary AB-type triblock

copolymer/homopolymer blends can be written as an expansion with respect to small density

fluctuations,

f = f (0) + f (1) + f (2) + · · · . (3)

Of particular interest is the second order term,

f (2) =
∑

α,β

∫
dk

(2π)3
Γαβ(k)δϕα(k)δϕβ(−k)

=
∑

α,β

∫
dk

(2π)3
S−1
αβ (k)δϕα(k)δϕβ(−k),

(4)

where Γαβ(k)’s are the second-order coefficients, Sαβ(k)’s are the Fourier-transformed

density-density correlation functions and the subscript α or β labels the blocks made up of

the α or β segments on different polymer chains. The RPA provides a systematic procedure

to evaluate S−1
αβ (k)’s, which can then be used to determine the stability line or spinodal of

the system [51].

Following the formulation of Noolandi and coworkers [52, 53], the resultant S−1
αβ (k) com-

puted by using RPA for binary AB-type copolymer/A homopolymer blends, denoted as

S−1
RPA(k), is given by,

S−1
RPA = −uχ− (gAA + 2gAB + gBB)ϕ1 + γgAhAhϕ2

2Nϕ1[(g2AB − gAAgBB)ϕ1 − γgAhAhgBBϕ2]
, (5)

where the quantities gαβ’s are related to the correlation functions of the ideal, noninteracting

polymer chains, which will be introduced shortly. For the homogeneous phase, gαβ’s only

depend on the magnitude of k and this k dependence has been made implicit in Eq.5. The

spinodal of the system is identified by the condition that the minimum of S−1
RPA(k) equals to

zero. Denoting the k that minimizes S−1
RPA(k) as k

∗, this condition also corresponds to the

threshold beyond which the homogeneous phase becomes unstable against the fluctuation

characterized by k∗.

The general expression of gαβ of a polymer chain is given by [51],

gαβ(k) =
1

N2
t

Nt∑

i=1

Nt∑

j=1

Θα
i Θ

β
jPij, (6)
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where Nt is the total number of segments of the polymer chain and,

Θα
i =




1 , if the ith segment is of type α,

0 , otherwise.
(7)

In Eq.6, the Pij is the product of the k-space bond transition probabilities of all the segments

that form the linear sub-chain bridging segments i and j. The current study focuses on the

case where all segments have the same Kuhn lengths, i.e., the bond transition probability

p(k) is the same across the whole chain, so we simply have Pij = p|i−j|. For a FJC, the

real-space bond transition probability and its Fourier-transformed version are given by,

p(R) =
1

4πb2
δ(R− b), (8)

p(k) =
sin(kb)

kb
. (9)

Using Eq.6, the gαβ’s for polymers with different architectures can be computed. For the

A homopolymer, we have,

gAhAh(k) =
2p(k)

[
pNAh(k)− 1

]
−NAhp

2(k) +NAh

N2
Ah [p(k)− 1]2

. (10)

For an AB diblock copolymer, using the same segmental-number notations (N , NA and NB)

as the triblock for brevity, the gAA and gBB have the same form as Eq.10 but with “Ah”

in the numerator replaced by “A” and “B”, respectively, and the NAh in the denominator

replaced by the total number of segment N . The inter-segment function gAB is,

gAB(k) =
p(k)

[
pNA(k)− 1

] [
pNB(k)− 1

]

N2 [p(k)− 1]2
. (11)

For the symmetric ABA triblock copolymer, the gBB has the same form as that for the AB

diblock, and the rest gαβ’s are given by,

gAA(k) =
2p(k)

[
p

NA
2 (k)− 1

] [
2− pNB(k) + p

NA
2

+NB(k)
]
−NAp

2 +NA

N2 [p(k)− 1]2
, (12)

gAB(k) =
2p(k)

[
p

NA
2 (k)− 1

] [
pNB(k)− 1

]

N2 [p(k)− 1]2
. (13)

Finally, for the symmetric BAB triblock copolymer, all the gαβ’s have the same forms as

those for the ABA triblock, but with the “A” and “B” swapped.
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Self-Consistent Field Theory (SCFT)

The self-consistent field theory is used to determine the phase boundaries between dif-

ferent phases. For systems undergoing both microphase and macrophase separations, it

is convenient to work in the grand canonical ensemble where the thermodynamic control

parameters are the chemical potentials of the triblock copolymers, µ1, and the A homopoly-

mers, µ2. Within the scope of mean-field theory, the grand potential density of the system

is expressed as [54],

NΦ

ρ0V kBT
= −eµ1/kBTQ1 − eµ2/kBTQ2 −

1

V

∫
dr [NωA(r)ϕA(r) +NωB(r)ϕB(r)

−χABN

∫
u(|r− r′|)ϕA(r)ϕB(r

′)dr′ + η(r) (1− ϕA(r)− ϕB(r))

]
,

(14)

where Qκ with κ=1 or 2 denotes the single-chain partition function of the triblock copolymer

or the A homopolymer. ϕα(r) represents the ensemble average of the density operator ϕ̂α(r)

and ωα(r) is the auxiliary field conjugate to ϕα(r). η(r) is the Lagrange multiplier enforcing

the incompressibility condition. The total density profile of A segments in the system is

given by,

ϕA(r) = ϕAt(r) + ϕAh(r),

where ϕAt(r) and ϕAh(r) are the density profiles of the A segments from the triblock copoly-

mers and the A homopolymers, respectively.

Minimizing the grand potential density with respect to the densities and auxiliary fields

yields the following set of self-consistent equations,





NωA(r) = χABN

∫
u(R)ϕB(r−R)dR+ η(r),

NωB(r) = χABN

∫
u(R)ϕA(r−R)dR+ η(r),

ϕA(r) =
eωA(r)

N

NA∑

i

q1(i, r)q
†
1(i, r),

+ eµ/kBT
eωA(r)

N

NAh∑

i=1

q2(i, r)q
†
2(i, r),

ϕB(r) =
eωB(r)

N

NB∑

i

q1(i, r)q
†
1(i, r),

ϕA(r) + ϕB(r) = 1,

(15)
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where R = r − r′ and R = |R|. It is noted that the chemical potential µ1 has been set

to 0 by using the incompressibility condition so the subscript of µ2 has been dropped for

brevity. The concrete form for the summations over the segments of the triblock copolymer

in Eqs. 15 depends on the architecture of the chain. Specifically, for ABA copolymer, we

have,
NA∑

i

=

NA/2∑

i=1

+

NA+NB∑

i=NA/2+NB+1

,

NB∑

i

=

NA/2+NB∑

i=NA/2+1

,

and for BAB copolymer, we have,

NA∑

i

=

NB/2+NA∑

i=NB/2+1

,

NB∑

i

=

NB/2∑

i=1

+

NA+NB∑

i=NB/2+NA+1

.

In Eqs.15, the forward propagator q(i, r) is computed by iterating the equation,

qκ(i+ 1, ri+1) = e−ωα(ri+1)

∫
dripα(ri+1 − ri)qκ(i, ri), (16)

with the initial condition qκ(1, r) = exp[−ωα(r)], where pα(ri+1 − ri)(= pα(|ri+1 − ri|) =

pα(R)) is the bond transition probability in Eq.8. The backward propagator is computed

similarly by performing the iterations in the opposite direction along the chain. With the

propagators, the single-chain partition function Qκ is calculated via,

Qκ =
1

V

∫
drqκ(Nκ, rNκ), (17)

and the average concentrations of the different species are calculated by, ϕ1 = Q1 and

ϕ2 = 1− ϕ1.

The interaction potential is chosen to have a Gaussian form,

u(R) =

(
3

2πr02

) 3
2

e
− 3R2

2r20 , u(k) = e−
k2r20

6 ,

which is normalized in the real space, i.e.,
∫
u(R)dR = 1. Throughout the current study,

r0 =
√
3bA is chosen and kept fixed.
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The SCFT equations, i.e., Eqs.15, are solved numerically by using the pseudo-spectral

method combined with the variable-cell Anderson mixing for the FJCs. A detailed descrip-

tion of the numerical techniques can be found in our previous work[33]. For the construction

of SCFT phase diagrams, various initial density fields corresponding to a set of candidate

phases are used as inputs to Eqs.15, which are then numerically solved to obtain the con-

verged grand potential densities for these phases. A list of schematics for all the ordered

candidate phases considered in this work, along with the numbers of grid points used to

discretize their unit cells in the SCFT calculations, is provided in Table S1 in the Supple-

mental Material. Phase transition boundaries are determined by comparing the converged

grand potential densities. Different sets of candidate phases are used for different scenarios,

which will be introduced later.

For the purpose of the current study, we restrict to the linear symmetric triblock copoly-

mer with equal Kuhn lengths (bA = bB), viz. the triblock is also conformationally symmetric

(ϵ = 1). We also fix the total number of segments of the triblock chain to be 160. Under these

restrictions, the free parameters of the binary AB-type triblock copolymer/A homopolymer

mixtures include the A-block composition of the triblock (f), the triblock topology (ABA or

BAB), the total numbers of segments of the homopolymer (NAh), the Flory-Huggins interac-

tion parameter (χAB) and the homopolymer concentration (ϕ2). Because the ABA and BAB

triblocks considered here can be viewed as two identical diblocks covalently linked through

their B and A ends, respectively, it is informative to also consider the homologous binary

AB/A blends. To make direct comparison, all the parameters of the diblock/homopolymer

blends are chosen to be the same as those of the triblock/homopolymer blends except that

the diblock chain is obtained by cutting the triblock chain in half. Therefore, each AB

diblock has 80 segments and the same f as the triblocks (and thus NAd = NA/2). A con-

venient parameter to be defined is the segmental-number ratio ξ between the homopolymer

and the A block of the AB diblock copolymer, i.e., ξ = NAh/NAd. In the AB/A blends,

the A homopolymers have the wet-brush behavior when ξ ≪ 1 and the dry-brush behavior

when ξ ≳ 1.
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RESULTS AND DISCUSSION

We first consider the case with f = 0.45 (NA = 2NAd = 72) so all the copolymers are

lamella-forming. Fig.1 displays two phase diagrams in the ϕ2−χAB plane for two values of ξ,

i.e. ξ = 0.5 (NAh = 18) and ξ = 1 (NAh = 36), corresponding to the wet-brush and dry-brush

regimes, respectively. Here the spinodal curve of a system signifies the point at which the

homogeneous phase becomes unstable against fluctuations characterized by some wavevector

k∗. For the binary mixtures considered in our study, the spinodals can be classified into two

types denoted by the solid and dashed lines in Fig.1. The solid lines indicate the instability

of the disordered phase against microphase separation, identified by that the S−1
RPA(k) first

becomes negative at a non-zero k∗. In contrast, the dashed lines indicate the instability of

the disordered phase against macrophase separation corresponding to k∗ = 0. The point

on the spinodal curve separating these two behaviors is the Lifshitz point, marked by a

solid circle in the phase diagrams. Besides the spinodals, the phase boundaries between

the L phase and the two-phase coexistence (2ϕ) region are also evaluated by SCFT and

presented in Fig.1 as dash-dotted lines. We note that in constructing the diagrams in Fig.1,

we only considered the L phase as the candidate ordered phase competing with the Dis

phase for simplicity. Although other morphologies such as the network phases and HEX

phase might be stable at large ϕ2, we expect their stability windows to be small with the

chosen parameters and thus will not drastically, if at all, shift the boundaries between the

overall ordered phases and their 2ϕ region with the homopolymer-rich disordered phase. In

determining the L-2ϕ boundaries in Fig.1, we found that for the ABA/A and AB/A blends,

it becomes very hard to converge the L phase at the region very close to the boundaries

especially at higher χAB. Whenever the L phase could not be converged beyond the L-2ϕ

boundaries, we performed SCFT calculation for the L phase as close to the boundaries as

we could and then used extrapolation to find the location of the boundaries approximately.

For the BAB/A phase, this issue does not exist and the L phase can converge easily within

certain range beyond the L-2ϕ boundaries.

A common feature of the spinodal curves in Fig.1 is that they are characterized by a non-

zero k∗ when ϕ2 is small (solid lines) and as ϕ2 is increased, k∗ drops to zero at the Lifshitz

point (solid circles), after which k∗ stays at zero upon further increasing ϕ2 (dashed lines).

This reflects the fact that there is a threshold of the amount of homopolymers the micro-

12

Ph.D. Thesis – Jiayu Xie; McMaster University – Physics & Astronomy

155



�
�
�
�
�

�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�

AB+A

ABA+A

BAB+A

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

�2

� A
B

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

AB+A

ABA+A

BAB+A

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

�2

� A
B

(a)

(b)

FIG. 1. The ϕ2 − χAB phase diagrams with (a) ξ = 0.5 (NAh = 18) and (b) ξ = 1 (NAh = 36),

corresponding to the wet-brush and dry-brush regimes, respectively. The RPA-evaluated spinodal

of each system is composed of a portion on the left characterized by a non-zero k∗ (solid line) and

a portion on the right characterized by a zero k∗ (dashed line). The two portions are joined at the

Lifshitz point (solid circle). The dash-dotted lines are the L-2ϕ boundaries evaluated by SCFT for

different systems.

domains formed by the copolymers can accommodate, beyond which the two components

tend to phase separate macroscopically. A comparison between the two diagrams shows

clearly a shift of the Lifshitz point to smaller ϕ2 for all blends in Fig.1(b) compared to

Fig.1(a). This expanded instability of the disordered phase against macrophase separation

is consistent with the enhanced tendency to macrophase separate in the AB/A system when

the A homopolymers become longer, both observed experimentally [30, 42] and predicted

theoretically [24, 33]. Moreover, a comparison between different systems in the same diagram

reveals that the Lifshitz points for the AB/A and ABA/A blends occur at similar ϕ2’s, which

are noticeably higher than the ϕ2 at which the Lifshitz point for the BAB/A blends occurs.
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For instance, in Fig.1(a) corresponding to the wet-brush regime, the black and red circles

are located at ϕ2 ∼ 0.86 while the blue one is at ϕ2 ∼ 0.64, which differ by ∆ϕ2 ∼ 0.22. In

Fig.1(b), despite that all the Lifshitz points shift leftwards, the gap between their ϕ2’s still

exists and slightly enlarges, i.e., ∆ϕ2 ≳ 0.25. This indicates that the BAB/A blends have a

stronger tendency to macrophase separate than the AB/A and ABA/A blends.

The SCFT-predicted L−2ϕ boundaries for the three systems, denoted by the dash-dotted

curves in Fig.1, behave consistently with their RPA-predicted spinodals and Lifshitz points.

As ξ changes from 0.5 (Fig.1(a)) to 1 (Fig.1(b)), all the L−2ϕ boundaries shift towards

smaller ϕ2, clearly demonstrating a poorer miscibility of the copolymers and homopolymers.

This behavior is consistent with the shift of the Lifshitz points. The diagrams also show

that the L−2ϕ boundaries for the AB/A and ABA/A blends locate very near to each other

for most of the χAB range explored, except the region near χAB ∼ 0.15 in Fig.1(a), in which

the L−2ϕ boundary for the AB/A starts to shift to the left of that for the ABA/A. More

notably, the L−2ϕ boundary for the BAB/A blends appears at a significantly smaller ϕ2

compared to those for the AB/A and ABA/A mixtures, regardless of ξ. This observation

also coincides with the discovery that the homogeneous phase starts to become unstable

against macrophase separation at a much lower ϕ2 in the BAB/A blends compared to the

other two systems. Combining the results from both the spinodals and L-2ϕ boundaries, we

conclude that for the binary AB/A blends linking the AB diblock chains through their B

ends forming ABA triblocks roughly preserves the miscibility of the blends, whereas linking

the diblocks through their A ends forming BAB triblocks drastically reduces the miscibility

of the blends. Because the ABA and BAB triblocks have the same block composition and

are both homologous to the AB diblock, the difference between their phase behaviors is

entirely rooted in the topology or block sequence of the triblock copolymers.

An examination of the spinodal curves shown in Fig.1 reveals another interesting behavior

due to the topology of the copolymers. As ϕ2 is increased from 0, the spinodal curve of the

BAB/A blends gradually approaches that of the AB/A blends. These two curves intersect

at roughly the same location of the Lifshitz point of the BAB/A system. At its Lifshitz

point, the BAB/A spinodal curve exhibits an abrupt change in its slope, and it gradually

approaches and eventually overlaps with the ABA/A spinodal curve upon further increasing

ϕ2. For a clearer view, two zoomed-in plots showing the vicinity of the BAB/A Lifshitz

points (blue solid circles) in Fig.1(a) and (b) are provided in Fig.2(a) and (b), respectively.
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FIG. 2. The zoomed-in view of (a) Fig.1(a) and (b) Fig.1(b) in the vicinity of the Lifshitz point

of the BAB/A system. The orange square in each diagram marks the estimated tangential point

between the spinodals of the AB/A and BAB/A blends by interpolation.

Subject to numerical errors, our result suggests that the spinodals of the AB/A and BAB/A

systems are tangential at their intersection, which is marked by a solid orange square in Fig.2.

The BAB/A Lifshitz point occurs very close to and after the tangential point between the

BAB/A and AB/A spinodals, as seen in both Fig.2(a) and (b).

In order to understand the discontinuous change in the slope of the BAB/A spinodal

curve at the Lifshitz point, we take the ξ = 1 case as an example and plot k∗ as a function

of ϕ2 for the ABA/A and BAB/A blends in Fig.3. It is very interesting that the behavior

of k∗ as a function of ϕ2 is qualitatively different for the BAB/A and ABA/A blends.

For the case of ABA/A blends (Fig.3(a)), the k∗ reduces to zero continuously as ϕ2 is

increased. This resembles the behavior of the order parameter of a system undergoing

a second-order phase transition if k∗ is regarded as the order parameter and ϕ2 as the

temperature. On the other hand, for the case of BAB/A blends as shown in Fig.3(b), the

k∗ drops to zero discontinuously at the Lifshitz point, resembling a system undergoing a

first-order phase transition. This difference stems from the behavior of the second-order
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FIG. 3. Plots of k∗ as a function of ϕ2 for the (a) ABA/A and (b) BAB/A systems with ξ = 1

(NAh = 36). The Lifshitz point is defined as the position at which k∗ turns from non-zero to zero.

The behavior of k∗ near the Lifshitz point of the AB/A blends has a similar feature to that of the

ABA/A blends.

correlation function S−1
RPA(k) characterizing the fluctuations, which is shown in Fig.4 for

several representative values of ϕ2 along the spinodals of the ABA/A and BAB/A systems

with ξ = 1. In Fig.4(a) for the ABA/A system, S−1
RPA(k) only exhibits one minimum, which

approaches zero continuously as ϕ2 is increased from 0.735 to 0.77. For the BAB/A system,

S−1
RPA(k) exhibits one minimum when ϕ2 is small, e.g., ϕ2=0.395. However, a second local

minimum, higher than the first one, appears at k=0 when ϕ2 becomes larger, e.g., ϕ2=0.437,

as shown in Fig.4(b). Further increasing ϕ2 makes the second minimum become equal to

the first one, at which the Lifshitz point is identified. When ϕ2 is increased further, the

minimum at k=0 becomes the global minimum (e.g., ϕ2=0.452 and 0.47) and the minimum

at non-zero k eventually disappears (e.g., ϕ2=0.47). The switch of the global minimum

of S−1
RPA(k) from one to the other results in the sudden change in slope at the blue circles

observed in Fig.1 and Fig.2. For the AB/A system, the Lifshitz point has the same second-
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order transition feature as that of the ABA/A system. Therefore the spinodals of these two

systems are smooth across the whole range of ϕ2.
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FIG. 4. Plots of S−1
RPA(k) at several representative values of ϕ2 along the spinodals of the (a)

ABA/A and (b) BAB/A systems with ξ = 1 (NAh = 36).

The different natures of the Lifshitz points indicate different topographical characteristics

of the free energy landscapes of these blending systems, which, in turn, originate from the

distinct chain topologies. In the case of the ABA/A and AB/A blends, the S−1
RPA only

has one minimum, that is, there is only one fluctuation mode leading the system from the

homogeneous state to either microphase or macrophase separation. In contrast, for the

BAB/A system, the mode driving the system to microphase separation coexists with the

one driving it to macrophase separation within certain blend-composition range, e.g. from

ϕ2 = 0.437 to 0.452 in Fig.4(b). When these two modes are comparable to each other,

i.e. in the close vicinity of the Lifshitz point, the tendencies of the system to micro- and

macrophase separate are in a close competition. In this regime, the BAB/A blends are

expected to exhibit very interesting ordering dynamics, which would be of great interest for

future research.

We now turn our attention to the case where the copolymers are sphere-forming by
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choosing f = 0.2 (NA = 2NAd = 32), and focus on the effect of triblock topology on the

equilibrium ordered morphology in the triblock copolymer/homopolymer blends. Previous

studies have revealed the capability of binary AB/A blends to stabilize the Frank-Kasper

phases when the added homopolymers are in the dry-brush regime [30, 31, 33]. Because

we are interested in the topological effect on the formation of the FK phases, we consider

only the dry-brush case with ξ = 1 (NAh = 16). A preliminary examination of the phase

behaviors of the three homologous systems, i.e., the AB/A, ABA/A and BAB/A blends, is

given by the spinodals obtained from the RPA (Fig.5). Despite the overall change of their

shapes, the three spinodals preserve the features revealed in the lamella-forming case. In

particular, the relative locations of the Lifshitz points suggest that the BAB/A would still

have a much poorer miscibility than the AB/A and ABA/A mixtures.

AB+A

ABA+A

BAB+A

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

ϕ2

χ
A
B

FIG. 5. Phase diagrams similar to those in Fig.1 but for the sphere-forming systems, i.e., f = 0.2

(NA = 2NAd = 32), where the homopolymers are in the dry-brush regime, i.e., ξ = 1 (NAh = 16).

Only the RPA-predicted spinodals are included here and more detailed phase diagrams predicted

by SCFT are in Fig.6.

Fig.6 displays three detailed phase diagrams of the blends in the ϕ2−χAB plane obtained

by using SCFT. These phase diagrams are constructed by considering a number of candidate

phases including the Dis, HCP, BCC and HEX as well as the FK σ and A15, and Laves

C14 and C15 phases (Table S1). We note that the molecular parameters used in obtaining

Fig.6(a) are the same as those used for Fig.3(a) in our previous paper [33]. The phase

diagrams for the AB/A (Fig.6(a)) and ABA/A (Fig.6(b)) blends are remarkably similar.

Despite a slight shift of the various phase boundaries towards lower χAB and a slight expan-

sion of the ordered region towards higher ϕ2, the overall phase behavior is preserved when
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FIG. 6. Phase diagrams on the ϕ2 − χAB plane showing the SCFT-predicted phase boundaries for

the sphere-forming (a) AB/A, (b) ABA/A and (c) BAB/A blends with the same parameters as

those used for Fig.5. Schematics of the polymer chains that each system are composed of are also

included in its phase diagram. In the schematics, the A and B segments are denoted by red and

blue beads, respectively, and the number of beads of each block is also shown.
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the AB diblock copolymers in the AB/A blends are transformed into the ABA triblocks by

linking each pair of diblocks through their B ends. Particularly, the ABA/A blends preserve

the ability to stabilize the FK σ, C14 and C15 phases and the stability windows of these

complex phases appear in the same order as in the AB/A blends when the homopolymer

concentration is increased.

In strong contrast, the BAB/A blends have a drastically different phase behavior com-

pared to both the AB/A and ABA/A blends (Fig.6(c)). Specifically, adding A homopoly-

mers into the BAB triblocks only induces a phase transition from the BCC to FK σ phase

at χAB ≈ 0.225 and ϕ2 ≈ 0.07. The stability window of the σ phase is very small, spanning

a narrow range of 0.063 ≲ ϕ2 ≲ 0.085 and 0.209 ≲ χAB ≲ 0.233. Furthermore, the HCP

and Laves C14 and C15 phases are absent from the phase diagram. It is also observed that

within the entire range of χAB covered in Fig.6(c), the ordered phase region only expands

to ϕ2 ≈ 0.09 upon the addition of the A homopolymers. Further increasing ϕ2 induces

macrophase separation. This more expanded 2ϕ region in the BAB/A compared to the

other two systems is consistent with the RPA prediction (Fig.5). The depleted stability

window of the FK phases, including the complete disappearance of the Laves C14 and C15

phases, is mainly due to the reduction of the single-phase region.

It is also observed from Fig.6(c) that the BCC-σ boundary shifts rightwards to higher

ϕ2 and the order-disorder coexistence region at ϕ2 < 0.1 diminishes compared to Fig.6(b).

Similar tendencies have been observed when the homopolymer molecular weight in the binary

AB/A blends is decreased, which makes the homopolymers less concentrated in the A-rich

domains [33]. Thus, we suspect that the homopolymers should also have a more diffused

distribution in the BAB/A than in the ABA/A blends. To verify this conjecture, we compare

the homopolymer distribution at the same point, i.e., ϕ2 = 0.07 and χAB = 0.297, on the

phase diagrams of these two systems, by plotting the ϕAh(r)’s of the ABA/A (light red) and

BAB/A (light blue) systems on the xy plane passing through the center of one representative

spherical domain of the BCC phase in Fig.7. Specifically, Fig.7(b) is a zoomed-in view of the

region near to the domain center in Fig.7(a) and bA is used as the unit of the x and y axes.

It is seen that the ϕAh(r) of the BAB/A blends is indeed lower than that of the ABA/A

blends within a distance of more than 5bA away from the domain center, confirming a more

diffused distribution of the A homopolymers in the BAB/A blends. This observed broader

homopolymer distribution in the BAB/A system has a different origin from that induced by
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decreasing the molecular weight of the homopolymers, where the former should be related

to the reduced configurational entropy of the A blocks of the triblock copolymers associated

with the change of the molecular topology, while the latter is caused by the enhanced

translational entropy of the homopolymers. The difference of these two mechanisms is also

reflected by their different effects on the miscibility. Explicitly, decreasing NAh enhances the

miscibility of the blends and thus expands the single-phase region towards higher ϕ2. On

the contrary, the change of the triblock topology from ABA to BAB is observed to reduce

the miscibility of the blends leading to a significantly smaller region of the single ordered

phases.

(a) (b)

FIG. 7. Plots of the ϕAh(r)’s of the ABA/A (light red) and BAB/A (light blue) systems on the xy

plane passing through the center of one representative spherical domain of the BCC phase. The

density profiles are taken from the same point with ϕ2 = 0.07 and χAB = 0.297 in Fig.6(b) for the

ABA/A blends and in Fig.6(c) for the BAB/A blends. (b) is a zoomed-in view of the region near

to the domain center in (a). In both (a) and (b), bA is used as the unit of the x and y axes.

To provide a quantitative measure of the homopolymer distribution, we compute the

average homopolymer concentrations within the nonequivalent A-rich domains (ϕD
2 ) of the

C15 phase as a function of ϕ2 along the path of χAB = 0.297 and compare the results between

the ABA/A and BAB/A systems in Fig.8. For each system, the curves in Fig.8 are evaluated

before entering the 2ϕ region in the phase diagram. The FK phases are composed of more

than one nonequivalent spherical domains with distinct sizes and shapes. Specifically, the

C15 phase has two types of domains that differ significantly in volume. In Fig.8, the large

and small domains of the C15 phase are labelled by 1 and 2, respectively. It is observed that

for both the ABA/A and BAB/A blends, the larger domains always have a higher average

homopolymer concentration than the smaller ones, which has been similarly observed in the

AB/A blends. Moreover, for both the small and large domains, the average homopolymer

21

Ph.D. Thesis – Jiayu Xie; McMaster University – Physics & Astronomy

164



concentrations within the domains are constantly lower in the BAB/A than in the ABA/A

system, which is consistent with the observation in Fig.7.

ABA,1
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FIG. 8. The average concentrations of the homopolymers within the nonequivalent A-rich domains

(ϕD
2 ) of the C15 phase as a function of ϕ2 along the path of χAB = 0.297. The curves for each

system are evaluated before entering the 2ϕ region in the phase diagram. The large and small

domains of the C15 phase are labelled by 1 and 2, respectively.

CONCLUSION

In summary, we have studied the topological, or block sequence, effect on the phase be-

havior of binary blends composed of linear symmetric ABA or BAB triblock copolymers and

A homopolymers by using the random-phase approximation and self-consistent field theory

applied to the freely-jointed chain model. Consistent phase behaviors have been obtained

for lamella- and sphere-forming systems. For the case of lamella-forming systems, we exam-

ined the spinodals and L-2ϕ boundaries of three polymeric mixtures, i.e., AB/A, ABA/A

and BAB/A, where the copolymers have the same block composition f . Our results indi-

cate that the AB/A and ABA/A mixtures have similar miscibility and their Lifshitz points

have a “second-order transition” feature; however, compared to the AB/A and ABA/A, the

BAB/A mixtures have noticeably poorer miscibility and a Lifshitz point with a “first-order

transition” feature. This feature results in a discontinuous change in the slope of the BAB/A

spinodal at its Lifshitz point. For the case of sphere-forming copolymers, we demonstrated

that the topological effect has a large influence on the equilibrium morphology of the sys-

tem. Particularly, the transition of the BCC to FK phases can be induced by adding A
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homopolymers into the ABA triblocks, which is similar to the phase behavior of the AB/A

blends. In contrast, the FK phases are nearly absent in the BAB/A blends with the same

block composition, which is due to a combined effect of the reduced miscibility and more

diffused homopolymer distribution, both induced by the topological difference.

As demonstrated in previous SCFT studies [22, 23], the phase behaviors of the homologous

ABA and BAB triblock copolymer melts are almost identical. The effect of triblock topol-

ogy is reflected in small shifts of the phase boundaries, making the phase diagrams slightly

asymmetric about f = 0.5. The results of the current study suggest that the topological

effect of triblock copolymers on the equilibrium phase behavior can be greatly amplified

in their mixtures with A homopolymers. We believe that such amplification mechanism

is generic, which is also expected to be valid in other multicomponent systems containing

copolymers with more complicated architectures. The discoveries in the current study pro-

vide a foundation for further research on the topological effect on the phase behaviors of

more complex polymeric blends. Furthermore, recent advancements in polymer synthetic

techniques have enabled copolymer samples with more precisely controlled block composi-

tions and topologies [55–59]. The combination of theoretical and experimental studies will

provide further understanding of the topological effect on the phase behaviors of polymeric

blends containing block copolymers.
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Chapter 9

Concluding Remarks and Future

Outlook

In this thesis, we have conducted extensive studies on various polymeric blending systems

using self-consistent field theory. Our focus has been on polymeric blends comprising

simple components for two key reasons. Firstly, simple polymeric blends facilitate more

comprehensive studies, allowing us to gain a deeper understanding of the fundamental

mechanisms governing their phase behaviours. These mechanisms offer valuable insights

into the phase behaviours of more complex polymeric blends and thus hold significant

importance. Secondly, by maintaining simplicity in the architecture, we aim to explore the

potential for using polymeric blends as a simpler yet effective alternative to architecturally

complex block copolymers in the fabrication of desired novel structures.

In Chapter 3, we conducted a comprehensive review of progress made over the past

three decades in the study of phase behaviours in binary diblock copolymer blends. Our

primary focus was on binary A1B1/A2B2 blends, which consist of two diblock copolymers

with varying degrees of polymerization and block compositions. Extensive studies have
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revealed that the added A2B2 diblock copolymers serve either as fillers or cosurfactants,

depending on their distribution within the polymeric domains formed by A1B1 diblock

copolymers. The distribution of A2B2 diblocks is influenced by the A-block composition

(fA2), with symmetric diblocks primarily localizing at AB interfaces as cosurfactants,

while asymmetric ones occupy central regions of A or B domains, thereby regulating the

domain volume. These behaviours, further influenced by molecular weights, collectively

mitigate packing frustrations and stabilize a variety of structures. These insights are

applicable to more complex polymeric blends.

In chapters 4 and 5, we examined the phase behaviours of two simple polymeric

blending systems: A1B1/A2 and A1B1/A2B2 blends. Our primary focus was on the

stability of the FK phases. In comparison to previous theoretical studies, our systematic

investigation covered a significantly larger phase space for each system, leading to several

new findings. For the A1B1/A2 blends, ϕ2 − χN phase diagrams are constructed with

different combinations of {ϵ, α, f}. We confirmed that conformational asymmetry is not a

necessary condition for the formation of complex spherical packing phases in this system,

although a larger ϵ value can significantly expand the spherical phase region on the phase

diagram. We also demonstrated that the observed BCC → σ → C14 → C15 transition

sequence with the addition of A homopolymers is strongly linked to the nonuniform

distribution of A homopolymers among different A domains of the FK phases. Such

distribution sustains domains with large size disparity reducing the AB interfacial area

per unit volume of the FK phases, which serves as the main mechanism to stabilize these

phases in the binary A1B1/A2 mixture. In particular, the C14 and C15 phases are more

stable than the σ phase at higher homopolymer concentration because of their favourable

interaction energy between the A homopolymers and A blocks. We also illustrated the

wet-brush behaviour of the homopolymers leading to a dramatically depleted FK stability
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window on the phase diagram, which agrees well with the experiments. The consistent

results between SCFT based on FJC and GC chains indicate that the formation of these

complex packing is independent of the molecular details of the system.

For the A1B1/A2B2 blends, we parameterized the system with {f1, f2, γ}, offering a

different perspective on phase behaviours compared to previous studies. We constructed

ϕ2 −χN phase diagrams using different combinations of {f2, γ} while keeping f1 constant,

covering a broad range of the phase space. Our analysis focused on the spatial distribution

of various polymeric species, establishing correlations between structural formation

and polymer segregation. We found that inter-domain segregation of different diblock

copolymers results in varying domain volumes, while intra-domain segregation involves

radial segregation of A blocks and lateral segregation of AB junctions, contributing

to larger domain sizes and regulated domain shapes, respectively. These mechanisms

synergistically open up a large stable region for the complex spherical packing phases

on the phase diagrams. Furthermore, we discovered that the proper core-shell structure

required to stabilize the FK phases could only form when the added A2B2 copolymer has

a longer A block and an overall chain length larger than, or at least comparable to the

host copolymer.

The A1B1/A2B2 blends represent a specific case of polydisperse diblock copolymers,

known as bidisperse diblock copolymers. A natural extension of our study is to incorporate

more diblock chains with varying molecular weights and block compositions. Polydisperse

systems described by different molecular weight distributions have excessive degrees

of freedom and are likely to further expand the stability window of complex spherical

packings [134]. Even more excitingly, such systems potentially offer an effective platform

for fabricating other novel structures, including the other Frank-Kasper phases that have

not yet been discovered in block-copolymer self-assemblies [135].
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In Chapter 6, we delved deeper into the study of two model systems: binary AB/C and

ternary AB/C/D blends. In contrast to the A1B1/A2 blends investigated in Chapter 4,

the C homopolymers in the AB/C blends are matrix-selective. Our calculations revealed

that the local segregation of C homopolymers promotes the stability of FK σ and A15

phases by mitigating the uneven chain stretching induced by packing frustration. Notably,

we predict a very low critical conformational asymmetry (ϵ ≈ 1.1) required to stabilize

the FK σ phase in binary blends comprising 40-segment diblock chains with fA = 0.25

and 5-segment C homopolymers.

For AB/C/D blends, we observed a synergistic effect of the C and D homopolymers in

stabilizing the FK packings, particularly the Laves packings. Our analysis suggests that

the simultaneous presence of C and D homopolymers greatly promotes the stabilization

of the FK σ, C14 and C15 phases due to their favourable interfacial energies between

all repulsive pairs in the system. On the other hand, the addition of C homopolymers

enhances the differential distribution of the existing D homopolymers across distinct

domains, thereby increasing the domain-size dispersity of the Laves phases. This effect

leads to a greater relative stability of the Laves packings primarily by strengthening their

favourability in the CD interfacial energy over the other spherical packings. This indicates

that the Laves packings offer an optimal way to compatibilize the immiscible C and D

homopolymers. Our findings contribute to understanding the ubiquitous emergence of

these novel spherical packing phases in a broad range of soft matter systems composed of

amphiphiles and selective additives.

In Chapter 7, we explored the formation and stability of binary blends of sphere-forming

AB/CD diblock copolymers. The promotion of binary crystalline phase formation was

linked to large positive χACN and negative χBDN values, driving A and C block separation

while suppressing macrophase separation. Phases with distinct stoichiometries were
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favoured at different blend compositions, enabling control over equilibrium morphology

by adjusting polymer concentration. While only crystals with 1:1 and 1:3 stoichiometries

were found stable in symmetric systems, asymmetric systems allowed for those with

1:2 stoichiometry. The ϕ2 − χN phase diagrams exhibited eutectic behaviour similar to

AB/B′C blends studies previously [76, 78]. Our density profile analysis illustrated that

the optimal chain packing can be reasonably represented by the WSC construction, which

sheds lights on the mechanisms governing the stable binary crystalline phase selection.

The WSC construction of the chain packing explains the observed stability enhancement

for phases whose WSC volume ratios are compatible with those of the A and C soft

domains, and why the stability of the 1:1-stoichiometric crystals typically grows the

fastest upon introducing the B-D association. The architectural simplicity of the AB/CD

blends will potentially enable relevant experimental studies with precisely synthesized

polymer samples.

The design space of the AB/CD blends is vast, holding great potential to stabilize

a more diverse array of structures. One extension of our study would be to examine

what morphologies are stable if the parent copolymers are cylinder-, network- or lamella-

forming, and how the non-spherical equilibrium structure depends on the various system

parameters. Another extension is to automate the AB and CD molecular design by

employing advanced optimization algorithms such as the particle swarm optimization

(PSO) [136, 137], which is expected to accelerate the molecular engineering towards

desired structures.

Lastly, in Chapter 8, we explored the topological effect of linear symmetric triblock

copolymers on their equilibrium phase behaviour when blended with homopolymers. To

focus on the topological difference, we considered three homologous polymeric blends:

AB/A, ABA/A, and BAB/A. Our results demonstrated that the AB/A and ABA/A
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systems have very similar phase behaviours, while the BAB/A blends behave drastically

differently. In both cases of lamella-forming and sphere-forming copolymers, the BAB/A

blends exhibit significantly poorer miscibility than the AB/A and ABA/A blends. More-

over, different from the AB/A and ABA/A Lifshitz points behaving like a “second-order

transition”, the BAB/A Lifshitz point possesses the feature of a “first-order transition”.

Additionally, in the case of sphere-forming copolymers, the equilibrium morphology is

largely influenced by the topological difference. Specifically, similar to the AB/A blends,

the FK σ, C14, and C15 phases can also be stabilized in the ABA/A blends, but these

phases are almost completely absent in the BAB/A blends.

Block copolymers with complex architectures have demonstrated capability to self-

assemble into intricate structures [46, 49, 50, 47, 48, 51, 52]. As synthetic techniques

progress, the incorporation of copolymers with complex architectures into polymeric

blends may offer an even more robust route for fabricating designed nanostructures. The

discoveries from the current simple blending system composed of triblock copolymers

and homopolymers suggest that copolymer topology may exert more pronounced effects

on phase behaviour when blended with other components. These results establish a

foundation for future research on the role played by copolymer topology in polymeric

blends containing block copolymers with more complex architectures.
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Appendix A

Numerical Methods to Solve

Modified Diffusion Equations

There are several numerical methods to solve the modified diffusion equations (Eqs. 2.25),

with different advantages and drawbacks [115]. Broadly, these methods can be classified

into three categories: real-space, spectral, and pseudo-spectral methods.

These three categories differ in the ways in which the spatial-coordinate dimensions

are treated. Real-space methods [138], such as finite difference method, sample q(s, r) at a

set of discrete spatial points, and approximate ∇2 by using different schemes in real space,

such as centered space difference approximation. The advantages of real-space methods

are that they do not require a pre-defined space group symmetry for the structure, and

different boundary conditions can be readily implemented. A significant downside of the

real-space method is that it requires a large number of spatial points to obtain an accurate

solution, resulting in a high computational cost when dealing with high-dimensional

problems.
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Spectral methods, in contrast, handle the spatial dependence by expanding any spatial

functions f(r) into a complete set of basis functions. A common choice of basis functions

is a series of plane waves [139]. In this case, a periodic function f(r) can be expanded as:

f(r) =
∑

j

aj exp(iGj · r), (A.1)

where Gj is a set of pre-selected reciprocal vectors satisfying the space-group symmetry

of the target phase. One of the major advantages of spectral method is that it has

spectral accuracy, and it is very computationally efficient when the target phase has a

high symmetry because a relatively small number of plane waves are needed to obtain an

accurate solution. However, for phases with a low symmetry, the computational cost is

still high. Moreover, due to the pre-determined symmetry, the use of spectral method in

exploring new morphologies is restricted.

Pseudo-spectral method solves the MDEs in both real and Fourier space [118]. Specif-

ically, the following operator-splitting approximation is used:

q(s+ ∆s, r⃗) =e(∇2−Nω(r⃗))∆sq(s, r⃗)

−→ q(s+ ∆s, r⃗) =e− 1
2 Nω∆se∇2∆se− 1

2 Nω∆sq(s, r⃗) + o(∆s3)

−→ q(s+ ∆s, r⃗) ≈e− 1
2 Nω∆se∇2∆se− 1

2 Nω∆sq(s, r⃗)

(A.2)

Because the operator ∇2 in real space reduces to simple multiplication in Fourier

space, we perform the calculation as follows:
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q(s+ ∆s, r⃗) ≈e− 1
2 Nω∆sFFT−1

{
e−k2∆sFFT

[
e− 1

2 Nω∆sq(s, r⃗)
]}
, (A.3)

where “FFT” and “FFT−1” represent forward and backward fast-Fourier transforms,

respectively.

Due to the use of fast-Fourier transforms and its spectral accuracy, pseudo-spectral

method generally has a higher computational efficiency than real-space methods. Fur-

thermore, pseudo-spectral method has the ability to explore new morphologies, because

the plane waves are based on a set of collocation points and no pre-defined symmetry is

imposed. In this thesis, pseudo-spectral method is employed in all studies.

The accuracy of the solution also depends on the number of contour points used to

discretize the variable s (Ns). In our calculation, we determine the proper Ns by ensuring

that the computed phase boundaries do not have visible shifts upon further increasing

Ns. The appropriate values of Ns vary between different systems. For instance, in the

case of AB diblock copolymers, Ns = 100 would usually suffice when χN ⩽ 40.
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Appendix B

Initial Ansatz for SCFT Calculation

In this appendix, we introduce the method employed to create an initial ansatz for each

of the density fields used in the numerical SCFT calculation.

For the Dis phase, all density fields are initialized as constants, while ensuring that

the total density adheres to the incompressibility constraint. In the case of spatially

inhomogeneous (ordered) phases, we initialize ϕα by setting ϕα = 1 within the assumed

α-rich domains and ϕα = 0 elsewhere. This initialization method is straightforward for

the L phase and applicable to all the densities. For the other ordered phases, it is most

convenient to first initialize the densities of monomers that comprise the core of the

structure (ϕcore(r)) and then use the incompressibility condition to determine the initial

densities for the monomers constituting the matrix (ϕmatrix(r) = 1 − ϕcore(r)).

For phases consisting of discrete cylinders or spheres, cylindrical and spherical domains

with appropriate radii are positioned to match the target crystalline structure. A method

for determining reasonable values for the domain radii of a specific phase involves (1)

assuming that all discrete domains have identical radii and (2) selecting a value for

the radii such that the overall volume fraction of the minority blocks falls within the
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appropriate range, e.g., from 0.2 to 0.3 for spherical morphologies. While convergence

is generally not sensitive to the specific value chosen for the radii, it is important to

ensure that discrete domains are not interconnected. For network phases, the networks

are determined by using their level-set surfaces [140].

The following table shows the initial density profiles of the core-forming monomers for

the classical morphologies in AB diblock copolymers and several Frank-Kasper phases.

When applicable, the reduced coordinates of the centers of the discrete domains within

the unit cell are also provided.

Table B.1 Initial density profiles of the core-forming monomers, and, when applicable,
the reduced domain-center coordinates, for some typical ordered phases.

Phase Name ϕcore(r) Domain-Center Coordinates

L {x} = {0.5}

HEX {(x, y)} = {(0, 0), (1, 0), (0, 1), (1, 1), (0.5, 0.5)}

O70 /

Continued on next page
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Table B.1 – Continued from previous page

Phase Name ϕcore(r) Domain-Center Coordinates

DG /

BCC

{(x, y, z)} = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0,

1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0.5, 0.5,

0.5)}

HCP

{(x, y, z)} = {(0.5, 0.1667, 0.5), (0.0, 0.6667, 0.5),

(1, 0.6667, 0.5), (0, 0, 0), (1, 0, 1), (0, 1, 0), (0, 0,

1), (1, 1, 0), (1, 0, 0), (0, 1, 1), (1, 1, 1), (0.5, 0.5,

0), (0.5, 0.5, 1)}

A15

{(x, y, z)} = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0,

1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0.5, 0.5,

0.5), (0.75, 1, 0.5), (0.25, 1, 0.5), (0.5, 0.75, 0),

(0.5, 0.25, 0), (1, 0.5, 0.25), (0, 0.5, 0.25), (1, 0.5,

0.75), (0, 0.5, 0.75), (0.5, 0.75, 1), (0.5, 0.25, 1),

(0.75, 0, 0.5), (0.25, 0, 0.5)}

Continued on next page
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Table B.1 – Continued from previous page

Phase Name ϕcore(r) Domain-Center Coordinates

σ

{(x, y, z)} = {(0, 0, 0), (1, 0, 1), (0, 1, 0), (0, 0,

1), (1, 1, 0), (1, 0, 0), (0, 1, 1), (1, 1, 1), (0.5, 0.5,

0.5), (0.0653, 0.7376, 0), (0.0653, 0.7376, 1),

(0.2624, 0.9347, 0), (0.2624, 0.9347, 1), (0.5653,

0.7624, 0.5), (0.2376, 0.4347, 0.5), (0.7624, 0.5653,

0.5), (0.4347, 0.2376, 0.5), (0.7376, 0.0653, 0),

(0.7376, 0.0653, 1), (0.9347, 0.2624, 0), (0.9347,

0.2624, 1), (0.3684, 0.9632, 0.5), (0.5368, 0.8684,

0), (0.5368, 0.8684, 1), (0.8684, 0.5368, 0),

(0.9632, 0.3684, 0.5), (0.8684, 0.5368, 1), (0.0368,

0.6316, 0.5), (0.1316, 0.4632, 1), (0.1316, 0.4632,

0), (0.4632, 0.1316, 0), (0.6316, 0.0368, 0.5),

(0.4632, 0.1316, 1), (0.3177, 0.6823, 0.7524),

(0.3177, 0.6823, 0.2476), (0.8177, 0.8177, 0.2524),

(0.8177, 0.8177, 0.7476), (0.6823, 0.3177, 0.7524),

(0.6823, 0.3177, 0.2476), (0.1823, 0.1823, 0.7476),

(0.1823, 0.1823, 0.2524), (0.1019, 0.8981, 0.5),

(0.6019, 0.6019, 1), (0.6019, 0.6019, 0), (0.3981,

0.3981, 1), (0.3981, 0.3981, 0), (0.8981, 0.1019,

0.5)}

Continued on next page
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Table B.1 – Continued from previous page

Phase Name ϕcore(r) Domain-Center Coordinates

C14

{(x, y, z)} = {(0, 0, 0),(0, 0, 1),(0, 1, 0),(0, 1,

1),(1, 1, 0),(1, 1, 1),(1, 0, 0),(1, 0, 1),(0.5, 0.5,

0.5),(0.5, 0.5, 0),(0.5, 0.5, 1),(1, 1, 0.5),(1, 0,

0.5),(0, 0, 0.5),(0, 1, 0.5),(0.74575, 0.91525,

0.75),(0.25425, 0.91525, 0.75),(1, 0.8305, 0.25),(0,

0.8305, 0.25),(0.5, 0.6695, 0.75),(0.75425, 0.58475,

0.25),(0.24575, 0.58475, 0.25),(0.75425, 0.41525,

0.75),(0.24575, 0.41525, 0.75),(0.5, 0.3305,

0.25),(1, 0.1695, 0.75),(0.74575, 0.08475,

0.25),(0.25425, 0.08475, 0.25),(0, 0.1695,

0.75),(0.5, 0.83334, 0.438),(0.5, 0.83334, 0.062),(1,

0.66666, 0.562),(1, 0.66666, 0.938),(0, 0.66666,

0.562),(0, 0.66666, 0.938),(1, 0.33334, 0.062),(1,

0.33334, 0.438),(0.5, 0.16666, 0.938),(0.5, 0.16666,

0.562),(0, 0.33334, 0.438),(0, 0.33334, 0.062)}

Continued on next page
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Table B.1 – Continued from previous page

Phase Name ϕcore(r) Domain-Center Coordinates

C15

{(x, y, z)} = {(0.875, 0.375, 0.125), (0.875, 0.125,

0.375), (0.875, 0.875, 0.625), (0.875, 0.625, 0.875),

(0.625, 0.875, 0.875), (0.625, 0.625, 0.625), (0.625,

0.375, 0.375), (0.625, 0.125, 0.125), (0.375, 0.875,

0.125), (0.375, 0.625, 0.375), (0.375, 0.375, 0.625),

(0.375, 0.125, 0.875), (0.125, 0.375, 0.875), (0.125,

0.125, 0.625), (0.125, 0.875, 0.375), (0.125, 0.625,

0.125), (1, 0, 0), (1, 1, 0), (1, 0.5, 0.5), (1, 0, 1),

(1, 1, 1), (0.75, 0.75, 0.25), (0.75, 0.25, 0.75), (0.5,

0.5, 0), (0.5, 0, 0.5), (0.5, 1, 0.5), (0.5, 0.5, 1),

(0.25, 0.25, 0.25), (0.25, 0.75, 0.75), (0, 0, 0), (0,

1, 0), (0, 0.5, 0.5), (0, 0, 1), (0, 1, 1)}
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