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Abstract

Sensors are getting smaller, inexpensive and sophisticated, with an increased avail-

ability. Compared to 25 years ago, an object tracking system now can easily achieve

twice the accuracy, a much larger coverage and fault tolerance, without any significant

changes in the overall cost. This is possible by simply employing more than just one

sensor and processing measurements from individual sensors sequentially (or even in

a batch form).

In sophisticated sensors, the number of detections can reach thousands in a single

frame. The communication and computation load for gathering all such detections at

the fusion center will hamper the system’s performance while also being vulnerable to

faults. A better solution is a distributed architecture wherein the individual sensors

are equipped with processing capabilities such that they can detect measurements,

extract clutter, form tracks and transmit them to the fusion center. The fusion center

now fuses tracks instead of measurements, due to which this scheme is commonly

termed track-level fusion.

In addition to sub-optimality, the track-level fusion suffers from a very coarse

problem, which occurs due to correlations between the tracks to be fused. Often, in

realistic scenarios, the cross-correlations are unknown, without any means to calculate

them. Thus, fusion cannot be performed using traditional methods unless extra
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information is transmitted from the fusion center.

This thesis proposes a novel and generalized method of fusing any two probability

density functions (pdf) such that a positive cross-correlation exists between them. In

modern tracking systems, the tracks are essentially pdfs and not necessarily Gaussian.

We propose harmonic mean density based fusion and prove that it obeys all the

necessary requirements of being a viable fusion mechanism. We show that fusion

in this case is a classical example of agreement between the fused and participating

densities based on average χ2 divergence. Compared to other such fusion techniques

in the literature, the HMD performs exceptionally well.

Transmitting covariance matrices in distributed architecture is not always possible

in cases for e.g. tactical and automotive systems. Fusion of tracks without the

knowledge of uncertainty is another problem discussed in the thesis. We propose

a novel technique for local covariance reconstruction at the fusion center with the

knowledge of estimates and a vector of times when update has occurred at local sensor

node. It has been shown on a realistic scenario that the reconstructed covariance

converges to the actual covariance, in the sense of Frobenius norm, making fusion

without covariance, possible.
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Chapter 1

Introduction

Target tracking has been an extensively researched area since the last 50 years, when

Rudolf E. Kálmán developed the celebrated Kalman filter [14]. Since its inception,

target-tracking separated from the umbrella of control systems as a branch, and

started developing as a research area of its own. It encompasses various fields such as,

probability, statistics, linear systems, operational research, random finite sets, game

theory and signal processing among others.

The target-tracking research now is so vast, that a deep dive into all the topics

is close to impossible! In the contemporary literature, tracking has been subdivided

into several sections — filtering, target (read track) management, sensor-management,

networked tracking, association, clutter management, anomaly detection and adver-

sary prevention. All these areas combine themselves to produce a single aim, i.e.,

given the measurements (or a set of measurements), track the target(s) as optimally

as possible. The word ‘optimally’ often has many variations, but for now, let’s assume

that we read it ‘as close as possible’ to the target(s), in some sense.

Therefore, the aim is to increase the accuracy of the target-tracking algorithms.

1
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One way of achieving this is to employ the most accurate sensor, implement the best

possible tracking algorithm, and hope that the target(s) remain in the field-of-view

(FoV) of the sensor at all times. It’s obvious to worry about the impracticality of this

approach. The sensor is prone to fail, the ‘best possible’ tracking algorithm is often

computationally intensive, and above all, even if we stop contemplating these issue, we

need to guarantee that the observability of the target-sensor model is guaranteed. To

avoid such problems, implementing a networked, or a multi-sensor tracking systems

is very useful.

An example here would assert this statement. Imagine a single target and a

network of three static sensors, each measuring range, azimuth and elevation of the

target respectively. On their own, the sensors are incapable of estimating the target’s

position in three dimensions (3D) because of unobservability. But collectively, if

they can send their measurements to a collection agent which does the Kalman filter

processing for all of them, the system becomes observable and tracking is guaranteed.

Appending more such sensors to the network would increase the overall tracking

accuracy and also the detection area by multifold, which could be impossible for a

single sensor system. This is a classic example of a centralized scenario.

1.1 Multi-Sensor Network Architectures

Fig. 1.1 shows a schematic of different sensor network topologies that exist in the

target tracking literature. The node symbolizes sensors without any processing

capabilities, transmitting raw measurements to a centralized fusion center (CFC),

which is represented as . Another topology is the distributed architecture, wherein,

the sensors represented by are equipped with some processing mechanism such that

2
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Table 1.1: Comparison between sensor network architectures.

Centralized Distributed Decentralized

Optimal Yes. No1. No1.
Computation load Medium. Medium. High.
Communication load Heavy. Minimal. Minimal.
Analytical For Gaussian mixtures. No process noise. Measurement consensus
Scalability Minimal. Yes. Highly scalable.
Fault-tolerance Minimal. Yes. High fault-tolerance.
Major Issues Communication load. Cross-correlation. Sub-optimality.
Dissimilar sensor support Yes. No1. No1.
Local observability Not required. Not required. Not required.

1 In general.

updated estimates are transmitted to a local fusion center (LFC), shown as . The

local fusion centers, in turn, send collective track reports to a central fusion center.

Note that the LFCs may or may not be directly connected, which is shown by a

dashed line.

The right-most figure in Fig. 1.1 shows a decentralized scheme, wherein the sensors

themselves are LFCs that propagate the measurements or processed tracks to their

neighboring nodes. Therefore, in this situation, the requirement for a fusion center

is nullified. Also, unlike shown in the figure, the decentralized network may not be

fully connected.

As one moves from left to right in Fig. 1.1, it is apparent that the computational

burden at CFC is gradually transferred to sensor nodes, or LFCs. The current tech-

nology ensures the availability of sensors with some processing capabilities. Albeit,

one can find an entire tracking system embedded on a microprocessor the size of a

thumb. So, it is advantageous to shift the load from a single CFC and distribute it

to a number of nodes in its vicinity.

A comparison of the various architectures is shown in Table 1.1. The reader can

anticipate that each network architecture has its own pros and cons. A centralized

mechanism benefits from its optimality in the sense of minimum mean square error

3
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Centralized Distributed Decentralized

Different sensor network topologies.

(M.M.S.E.) and the fact that heterogeneous sensor models can be easily integrated.

But it also lacks the ability to scale and be fault-tolerant. Following are some of the

cons of using a centralized mechanism :

� The sensor nodes transmit raw detections directly to the fusion center. In the

event of measurement clutter, this could return a huge number of measurements

in a single frame from a single sensor. Hundreds of sensors simultaneously

transmitting such information adversely impact the communication links.

� The measurement and the state equations are usually modeled in heterogeneous

state space. Therefore, measurement-to-track associations are non-trivial.

� Even though optimality can be achieved, it only occurs in the case of linear

Gaussian-Markov systems.

� The centralized system breaks down if the CFC is impacted or compromised

4
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by an adversary. Also, due to the availability of a limited number of physical

ports, only a finite number of sensors can be connected.

From Table 1.1, it is evident that distributed fusion is a viable choice and acts

as a legit compromise between computation load, communication load, optimality,

fault tolerance and scalability. The distributed architecture also emerges when two

centralized fusion centers are connected together such that their resulting estimates

are fused by a third fusion node. This scheme is also known by the term track-

level fusion or track-to-track fusion (T2TF) since processed estimates (which are

technically called ‘tracks’) are fused together at the fusion center (FC).

1.2 Track Level Fusion & Thesis Objectives

We assume that there are T targets traversing with discrete-time dynamics repre-

sented by the linear state-space model,

xtk = Ft
k,k−1x

t
k−1 + wt

k,k−1, (1.2.1)

where Ft
k,k−1 is the state transition matrix from time instant k− 1 to k. wt

k,k−1 is the

noise present in the motion model (assumed Gaussian) and t = 1, · · · , T . Suppose

there are N local nodes, equipped with sensors and processing equipment extracting

linear measurements – zik at time k for objects in their vicinity. Here, i = 1, · · · , N

is the node index

zik = Hi
kxk + vik (1.2.2)
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Local node i Local node j

L.F.C.

Objects

Figure 1.2: An illustration of generalized track fusion scenario. x and Σ indicates
the state and corresponding covariance. z are the measurements modeled by

possibly non-linear functions h(.) or g(.). b is the optional sensor bias and v is the
measurement noise. Superscripts indicate either sensor node or target indices,

subscripts indicate time.

After selecting distributed fusion as the primary focus of this thesis, we assume that

each node produces a posterior estimate x̂i,tk|k and covariance Γi,t
k|k according to its mea-

surements and transmits the same to the CFC. The CFC, then, uses these estimates

and attempts to fuse them optimally. Since there are multiple tracks, the local tracks

need to be associated first. This is, however, exempt from the focus of this thesis. We

assume that either an association has already taken place or there is a known single

target. Due to this reason, the target index is often exempt from the notation.
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1.2.1 Thesis Objective

The objective of this thesis is to tackle a fundamental problem in track-level fusion,

which is the unknown cross-correlation between local estimates. This inhibits the use

of easy-to-implement Kalman filter update at the fusion center.

The fusion of tracks can be visualized as the fusion of two probability densities,

which represent the spatial distribution of a target at a particular instant. This is

similar to a standard Kalman filter, where the prior distribution of the target is fused

with the distribution of likelihood. In the case of linear Gaussian-Markov systems,

this results in an estimate that is optimal in the sense of maximizing the likelihood

as well as minimizing the mean-square error.

One critical assumption to reach this optimality is the independence of measure-

ment noise and process noise, due to which the resulting prior distribution and the

measurement likelihood are independent. The Bayes theorem can then be applied,

resulting in an updated estimate, which forms the crux of the Kalman filter. Un-

fortunately, in the case of track-fusion, the local densities are non-independent when

they belong to the same target. This occurs primarily due to three reasons :

� If the process noise varies, the estimation error corresponding to the local esti-

mates for that target will also change accordingly. This indicates the presence

of a positive correlation between the estimation errors of the same target.

� Correlation also exists due to duplicate measurement sequences. Suppose the

global estimate at time k is updated with the local density pi(xk|z1:k) at node i.

Then, at time k+ 1, when the local density from the same node, pi(xk+1|z1:k+1)

is fused, the global estimate already contains information from the measurement

sequence z1:k. The presence of duplicate information leads to correlated errors.

7
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� If the local tracks are initialized with the same prior information, the tracks are

definitely correlated. This can be explained as follows.

Suppose the local nodes i and j initialize the estimate by sampling from the

same prior density, p0 ∼ N (x̄0; Γ) where Γ is the covariance matrix.

x̂i0|0 = x̄0 + wi
0 (1.2.3)

x̂j0|0 = x̄0 + wj
0 (1.2.4)

It can be seen that even though the samples wi
0 and wj

0 are independently

drawn, the estimates x̂i0|0 and x̂j0|0 are still correlated.

1.2.2 Optimal Track-Fusion Algorithm

If the local tracks x̂1
k|k, x̂2

k|k, Γ1
k|k, Γ1

k|k along with the cross-covariance Γ12
k|k =

(
Γ21
k|k

)T
are available at FC and assumed synchronized, then the optimal algorithm for track

fusion is the straight-forward equation,

x̂fk|k = x̂1
k|k + K12

[
x̂1
k|k − x̂2

k|k
]

(1.2.5a)

Γf
k|k = Γ1

k|k −K12Γ
1
k|k (1.2.5b)

where,

K12 =
[
Γ1
k|k − Γ12

k|k
] [

Γ1
k|k + Γ2

k|k − Γ12
k|k − Γ21

k|k
]−1

(1.2.6)

The equations resemble the KF equations where the cross-correlation between mea-

surement and process noise has been accounted for, using Γ12
k|k. The problem is to
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calculate the Γ12
k|k. This can be done recursively by noting that at time (l + 1), the

local node estimate error, x̃l+1|l+1 can be calculated as,

x̃l+1|l+1 = [I−Kl+1Hl+1] Flx̃l|l

− [I−Kl+1Hl+1] wl + Kl+1vl+1 (1.2.7)

where, Kl+1 is the Kalman gain at time instant (l + 1) and rest of the terms are

mentioned in (1.2.1) and (1.2.2). Using the same recursion sequentially, one can

arrive at the local node estimate error at time (l + 2) which is,

x̃l+2|l+2 = [I−Kl+2Hl+2] Fl+1 [I−Kl+1Hl+1] Flx̃l|l

− [I−Kl+2Hl+2] Fl+1 [I−Kl+1Hl+1] wl − [I−Kl+2Hl+2] wl+1

+ [I−Kl+2Hl+2] Fl+1Kl+1vl+1 + Kl+2vl+2. (1.2.8)

Proceeding in this fashion, we can calculate the estimate error at time k given that

the last estimate transmitted to F.C. was at time instant l,

x̃k|k = W1
ek,lx̃l|l +

k∑
i=l+1

W1
wk,i−1wi−1 +

k∑
i=l+1

k∑
i=l+1

W1
vk,ivi, (1.2.9)

for all participating nodes (see [90] for the definition of weights). Since the process

and measurement noise are assumed to be white, the cross-correlation Γ12
k|k, given that

the cross-correlation at l is available, is given by,

Γ12
k|k = W1

ek,lΓ
12
l|lW

2
ek,l +

k∑
i=l+1

W1
ek,lQi−1W

2
ek,l, (1.2.10)
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where Qi is the process noise covariance at time instant i.

Comments This is the general solution for non-full rate communication1, note that

the availability of all Kalman gain matrices from l+1 to k for each instance is required.

The other parameters are needed only once for time-invariant systems.

It was shown in [90] that since the weights Wi
ek,l, Wi

ek,l depend on the Kalman

gain and the measurement matrix, which in turn are dependent on the target posi-

tion estimates and sensor location. These may be reconstructed (even for non-linear

systems) approximately at the FC, which avoids the transmission of redundant infor-

mation from each local node. But due to the approximations in reconstruction, the

algorithm is still rendered suboptimal. Therefore, expecting an optimal solution in

such a scenario is impossible. The user is forced to use approximations to arrive at

cross-correlations or the reconstructed Kalman gain matrix (which requires linearity).

The existing fusion techniques often work around such approximations to arrive

at a suboptimal solution. They either require a list of Kalman gain matrices since

the last fusion update or the need to store each local covariance at the fusion center

(information matrix fusion). Even then, the optimality of a centralized filter is not

reached. This thesis invents a near-optimal fusion technique that avoids the need

to compute cross-correlations, or local Kalman gain, and could still fuse the local

densities such that ‘double counting’ of common information is avoided.

1Full communication rate refers to the case when local estimates are sent as soon as they are
updated, resulting in no benefit in communication load.
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1.2.3 Theme and Contributions of Thesis

In compliance with the terms and regulations imposed by McMaster University, this

dissertation has been written in sandwich thesis format by compiling three journal

articles. These articles represent independent research performed by the author of

this dissertation.

The articles in this thesis are aimed at track-level fusion without knowledge of

cross-correlation and local parameters. A summary of the contributions of the thesis

is as follows :

i) The thesis explores various existing track fusion methodologies, wherein the aim

is to produce a consistent fusion mechanism without bookkeeping and requesting

extra information from the sensor nodes.

ii) A novel track-fusion technique known as the harmonic mean density (HMD) has

been derived. The technique runs on the same computation power as existing

methods and has been found to be more accurate. This track fusion method-

ology is rigorously analyzed mathematically to establish itself as a dependable

fusion technique.

iii) Several results have been derived to establish the proposed technique as a gen-

eralized fusion of probability densities.

iv) A sampling-based method for fusion of Gaussian mixture densities has been

proposed in this thesis. The technique proposed doesn’t require the use of a

proposal density, as in importance sampling.
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v) The existing fusion technique, known as the inverse covariance intersection, ex-

isted only for fusing Gaussian densities. The technique was extended to Gaus-

sian mixtures.

vi) Track fusion in the case of missing covariance and cross-correlation is a non-

trivial problem that has no robust solution so far in the literature. A method for

reconstruction of local track covariance at the fusion center has been proposed

in this thesis.

vii) It was proven that the aforementioned covariance reconstruction method was

guaranteed to generate positive definite matrices. Using linearization, the method

was extended to any observable sensor model.

viii) A new formulation for 2D range-only tracking is proposed, which is based on

the calculation of exact circular moments of conditional azimuth density.

1.3 List of Publications

The thesis is a compilation of the following articles :

1.3.1 Journal Papers

� Sharma N., Bhaumik S., Tharmarasa R., Kirubarajan T.; “On Conservative

Track Fusion Strategies : Harmonic Mean Density”. Submitted to IEEE Trans-

actions in Aerospace and Electronic Subsystems; October, 2022.

� Sharma N., Tharmarasa R., Kirubarajan T.; “Harmonic Mean Density Fusion

: Performance and Comparison”. To be submitted to IEEE Transactions in
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Aerospace and Electronic Subsystems; October, 2023.

� Sharma N., Tharmarasa R., Kirubarajan T.; “Multi-Sensor Multi-target Track-

ing with Missing Local Covariance”. Submitted to IEEE Transactions in Aerospace

and Electronic Subsystems; February, 2023.

� Sharma N., Bhaumik S., Tharmarasa R., Kirubarajan T.; “Trigonometric Mo-

ments of a Generalized von Mises Distribution And Their Application in 2-D

Range-Only Tracking”. To be submitted to IEEE Transactions in Aerospace

and Electronic Subsystems; October, 2023.

1.3.2 Technical Reports

� Sharma N., Kirubarajan T.; “Track Fusion Algorithms Library”. Estimation,

Tracking and Fusion Research Laboratory, McMaster University, Canada, Au-

gust, 2022 .

� Sharma N., Kirubarajan T.; “Track Fusion Algorithms : Tracklets, Information

and Consensus Fusion”. Estimation, Tracking and Fusion Research Laboratory,

McMaster University, Canada; December, 2022.

1.3.3 Miscellaneous

� Sharma N., Kirubarajan T.; “Cognitive Radio Algorithms for Constrained Wire-

less Networks”. Estimation, Tracking and Fusion Research Laboratory, McMas-

ter University, Canada; February, 2022.
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Chapter 2

On Conservative Track Fusion

Strategies : Harmonic Mean

Density

2.1 Abstract

In a distributed sensor fusion architecture, naive fusion can lead to degraded results

as track correlations are ignored, and conservative fusion strategies are employed as a

suboptimal alternative to the problem. Gaussian mixtures provide a flexible means of

modeling any density; therefore, fusion strategies suitable for use with Gaussian mix-

tures are needed. While the generalized covariance intersection (CI) provides a means

to fuse Gaussian mixtures, the procedure is cumbersome and requires evaluating a

non-integer power of the mixture density. In this chapter, we develop a conservative

fusion strategy based on the harmonic mean density (HMD) interpolation of local

densities and show that the proposed method can handle both Gaussian and mixture

14



Ph.D. Thesis – N. Sharma McMaster University – ECE

densities within the same framework. The mathematical properties of the proposed

fusion strategy are studied and simulated in 2D and 3D maneuvering target tracking

scenarios. The simulation suggests that the proposed HMD fusion performs better

than other conservative strategies by posing a tighter conservative bound.

2.2 Introduction

A distributed data fusion scenario comprises several sensor platforms connected to a

node where the local information from the sensors is fused. Since a sensor can capture

multiple detections in the presence of clutter, sending raw measurements is avoided.

Instead, the sensor communicates estimated target states (tracks), which is why the

term track-to-track fusion (T2TF) is commonly used.

Tracks estimating the same target trajectory in T2TF are never independent, even

though the local measurement errors are uncorrelated [9]. The dependence emerges

due to the common process noise and temporal correlation between tracks arriving

from the same platform. Ignoring this correlation can lead to degraded performance as

the estimates are optimistic [12]. The optimism is due to the aggregation of “common

information” in sensor estimates. This common information has to be accounted for

and removed from the fused information to avoid track divergence.

The approaches used in accounting for cross-correlation for the last three decades

can be categorized into:

i) Optimal solution based on evaluating exact recursion for correlation, which can

later be accounted for in fusion. This strategy would require extra information

from local sensors like Kalman gain, sensor and motion model parameters [9]

[25].
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ii) Conditionally optimal methods like information matrix fusion, which would also

require knowledge of previous local estimates [24]. Such methods are optimal

only for a full communication rate, i.e., the fusion occurs every time the local

estimates are updated.

iii) Tracklet and quasi-tracklet fusion methods are based on a track’s decorrelation

by marginalizing its joint density.

iv) Robust and suboptimal solutions like generalized covariance intersection utilize

a geometric mean (GM) or the arithmetic mean (AM) interpolation of individual

track densities [47, 60].

Fig. 2.1 represents a pictorial representation of available T2TF algorithms. Gen-

eralized covariance intersection/Chernoff fusion/geometric averaging have attracted

researchers due to its robustness and stability [15]. An essential aspect of this method

is that it essentially constitutes a density function which is a log-linear combination

of the individual local posterior densities [47], such that the propagation of the “com-

mon information” is avoided [8]. Due to computational intensiveness of geometric

mean for Gaussian mixtures, an alternative was proposed in [60, 1].

With the advent of computation and embedded technologies, the use of mixture

densities has been adopted to deal with multi-modal, non-symmetric noise distribu-

tions and multiple-model approaches to filtering. Moreover, the Gaussian mixture

models (GMM) possess several standard results available in closed form. Some ex-

amples utilizing this advantage include the interacting multiple model (IMM) filter

and its modifications for tracking maneuvering targets [16], the multiple hypothesis

tracker (MHT) for multiple target tracking [14], Gaussian sum filter [6] and the prob-

ability hypothesis density (PHD) filter [29]. These filters are extensively used owing
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Figure 2.1: Track fusion strategies

to their performance in practical situations. However, the fusion of such mixture-

modeled tracks with cross-correlation becomes infeasible due to the unavailability

of closed-form expressions. For instance, decorrelation requires the division of prior

and posterior densities, for which an exact result is impossible if Gaussian mixtures

are involved [3]. Chernoff fusion requires computing non-integer powers of a Gaussian

mixture, which does not assume a closed-form [43]. The arithmetic averaging, though

feasible, presents a relatively larger uncertainty due to the amalgamation of densities.

Therefore, further processing in the form of mode merging and pruning is needed [60].

Due to such reasons, fusion of Gaussian mixtures is non-trivial in practical scenar-

ios, and we need to search in alternative directions. This article proposes a method

that can handle uni-modal and multi-modal Gaussian densities without altering the

framework.

Research on Gaussian mixture fusion is contemporary, and various solutions are

available in the literature. [72] addressed the issue of deriving the dependency relation
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between Gaussian mixture estimates and found that the dependency is itself a Gaus-

sian mixture. No remarks on how to ease the fusion, however, were made. A tracklet

[38] based fusion strategy for multiple model trackers is proposed in [2], wherein

the information decorrelation approach was extended to Gaussian mixture densities

and then naive fusion was applied to the decorrelated mixture. This work required

division by a Gaussian mixture, wherein a crude approximation of component-wise

division was applied. In [100], the dynamic state of an IMM running fusion center

was derived when the local tracks are in turn IMMs using the “inside information”.

But, this approach was based on the assumption that individual motion models in

the IMM are entirely the same, except for the process noise. Thus, the approach

is not useful in scenarios where, for example, nearly-constant velocity (NCV) and

nearly-constant acceleration (NCA) models are employed in parallel.

Recently, conservative fusion methodology has taken a different direction, where

the use of Fréchet-means [70] has been explored. These studies are based on the fact

that averaging rules are robust to double counting, thus imparting robustness with

respect to the correlations involved without requiring any extra information from the

local trackers. In [4], a formal definition of conservativeness was presented and proved

for arithmetic and geometric averaging. The definition was based on the amount of

uncertainty in the distribution, thus using measures such as entropy and Kullback-

Leibler divergence. In [60] the arithmetic averaging was applied to a multi-target

tracking scenario using the multi-Bernoulli process, in which each component was

represented by a Gaussian mixture. In [8], the notion of conservativeness was exam-

ined using the notion of entropy. It was proven that geometric mean fusion increases

the entropy for positive values of the exponent, indirectly proving conserativeness.
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The generalized framework for Chernoff fusion was proposed in [65] by Mahler

as the generalized Uhlmann-Julier covariance intersection. Also, in [47], Hurley suc-

cinctly expressed the relation between Chernoff information and covariance intersec-

tion. In [15], the Chernoff fusion was studied for a non-Gaussian distribution and

was termed the geometric mean density (GMD). Since the covariance intersection

(CI) assumes a closed form for Gaussian densities, component-wise CI can be used

while fusing Gaussian mixtures using Chernoff information. This was the approach

used in [99], where the GMM were fused for a bearing-only tracking scenario. A

better result was discussed in [49], where a first-order approximation of the power

of a Gaussian mixture was employed. This was the first paper that dealt with ap-

proximating the power of a Gaussian mixture model with another Gaussian mixture.

The result was succeeded by Gunay et al., which employed sigma-points for general-

izing the power of a Gaussian mixture [43] but it was computationally demanding.

Moreover, such a fusion strategy is affected adversely when the individual modes of

a mixture are very close, which is usually the case with an IMM tracker. A review of

various methods for approximating the non-integer power of a Gaussian mixture was

presented in [5] along with a comparison.

This chapter presents the development of a new mean-based fusion strategy that

can deal with Gaussian mixtures with minimal approximation. For Gaussian mixture

densities, the common information takes the form of a mixture density based on the

fusion weights (ω). We approximate the common information as Gaussian and plug it

into the harmonic mean formulation. The resulting density is available in closed-form.

In terms of computation, the approach performs similarly to the Chernoff fusion of

Gaussian mixtures (which is also the fastest method) and can be shown to be more
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accurate.

Other contributions of the chapter are enumerated as follows:

i) Detailed investigation of existing average-based fusion algorithms, specifically

the arithmetic mean density (AMD) and the geometric mean density (GMD),

has been performed. Their issues in implementation while addressing T2TF

with Gaussian mixture densities are addressed.

ii) The mathematical development of the proposed harmonic mean density based

fusion is elucidated along with its various properties in line with the other

average based consensus methods.

iii) This chapter introduces the solution of fusion weights based on the common

information rather than K-L divergence. It has been shown that harmonic

fusion simplifies the expression for common information, which could be solved

using the expectation-maximization (EM) algorithm.

iv) A comparison among fusion strategies based on two real-life target tracking

scenarios has been made.

The rest of the chapter is organized as follows: In Section 2.3, a brief summary of

the issue of cross-correlation in a distributed sensor fusion scenario is presented. In

Section 2.4, a review of the arithmetic and geometric mean fusion along with their

implementation for Gaussian mixtures is presented. These include the covariance

intersection, pseudo-Chernoff fusion (PCF) for geometric averaging, and the advan-

tageous properties of arithmetic averaging. The proposed harmonic mean density

fusion is discussed in Section 2.5, including its conservativeness. Section 2.6 presents
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the approximate implementation strategies for the harmonic mean fusion, as it re-

quires division by a Gaussian mixture. The algorithm is simulated on a 2D and

3D scenarios, and the results, along with discussion on the performance of different

strategies, are presented in Section 2.7. Finally, the article is concluded in Section

2.8.

2.3 Problem Formulation

Considering a scenario with two sensor platforms – S1 and S2 generating processed

track density conditioned on current measurement zik — p(xk|zik). Where k is the

time step and i ∈ {1, 2}. Assume that both tracks are conditioned on a common

prior density at time k which is quantified as pc(xk). Then,

p(xk|zik) ∝ p(zik|xk)pc(xk). (2.3.1)

Using naive fusion with such local density results in equation (2.3.2)

pN(xk|z1
k ∪ z2

k) ∝ p(z1
k|xk)pc(xk)p(z2

k|xk)pc(xk), (2.3.2)

where pN(xk|z1
k ∪ z2

k) is the naively fused density. Thus, the common information

is accounted for twice, which will lead to an optimistic estimate (e.g., multiplying

two Gaussian densities results in a Gaussian density with a lower or the same covari-

ance). A heuristic approach would be to use naive fusion while dividing once with
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the common information,

p(xk|z1
k ∪ z2

k) ∝
p(z1

k|xk)pc(xk)p(z2
k|xk)pc(xk)

pc(xk)
,

∝ p(xk|z1
k)p(xk|z2

k)

p(xk|z1
k ∩ z2

k)
. (2.3.3)

This is also the exact Bayesian formulation for distributed data fusion [64], where

p(xk|z1
k ∩ z2

k) accounts for the density due to common prior. For Gaussian densities,

an exact formulation of the common prior was presented in [9], which will require

extra information from local trackers. This chapter focuses on a class of solutions

where the common information can be accounted for (in a suboptimal sense) by only

using the information available. Thus,

p(xk|z1
k ∩ z2

k) ∝ F
(
p(xk|z1

k), p(xk|z2
k), ω

)
, (2.3.4)

where, F : Rn → R is an appropriate function, and ω ∈ {0, 1} is a parameter that can

be evaluated to result in the least possible conservative density than that of equation

(2.3.3) which is the optimal Bayes’ fusion.

If the local platform employs an IMM tracker, then the posterior density p(xk|zik)

consists of estimates from multiple modes packed in a mixture (usually Gaussian) of

the form,

p(xk|zik) =
M∑
m=1

µmN (xk; x̂
m
k ,Γ

m
k ) , (2.3.5)

where M is the total number of modes and µm is the mode probability of the mth

Gaussian component. An exact solution to the fusion of such tracks is infeasible due
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to,

i) Communication constraint as m × S number of filter gains and measurement

Jacobian matrices need to be communicated at each fusion instant.

ii) Division by a Gaussian mixture [3].

The second point leads to suboptimality even if exact procedures are followed. This

necessitates the search for a robust and suboptimal class of strategies termed conser-

vative fusion [4].

2.3.1 Conservative Fusion

An estimate pair (x̂k,Γk) is termed conservative if its covariance is greater than the

true mean square error (MSE) [4]. Thus,

Γk � E
[
(x̂k − xk)(x̂k − xk)

T
]
, (2.3.6)

where � implies inequality in the sense of positive-definiteness. This definition was

extended to probability density functions using entropy [8]. A posterior density p is

conservative with respect to the true density pt if,

H(p)−H(pt) ≥ 0, (2.3.7)

and p(xk|z1
k ∩ z2

k) is fused only once at each k. Here H(.) denotes differential entropy

[32]. The entropy property of a conservative density imparts decreasing information

certainty with respect to the optimal density, so that the estimates are not overopti-

mistic. Working with track densities as the only available information is a reasonable
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compromise.

Another important property of the conservative class is the preservation of the

shape [8]. Shape preservation ensures that the location of relative maxima and minima

remains unchanged. This is expected, as the shift of the mean relative to the true

mean is undesirable. Thus, the class of densities should follow

∇x{pt(x)} = 0⇔ ∇x{p(x)} = 0, (2.3.8)

where ∇x is the gradient operator with respect to x. The primary motive in this

work is to construct a fused density p(xk|z1
k ∪ z2

k) from p(xk|z1
k) and p(xk|z2

k), which

is the least conservative than the optimal fusion strategy in equation (2.3.3), in the

sense of equation (2.3.7), such that equation (2.3.8) is satisfied.

2.4 Review of Arithmetic and Geometric Mean

Density

A brief review of methods involving approximating a conservative density using the

abstract means [69] or the generalized quasi-arithmetic mean [68] is discussed in this

section. As provided in [69], a mixture density Mω{p1(xk), p2(xk)} is an M-mixture

if it generates an interpolation between the densities p1(xk) and p2(xk) with respect

to an ω-weighted mean M,

Mω{p1(xk), p2(xk)} =
Mω{p1(xk), p2(xk)}
ζM{p1(xk), p2(xk)}

, (2.4.1)
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where the normalization constant ζM{p1(xk), p2(xk)} ensures that the mixture Mω(.)

is a valid probability density function. The meanMω can be generalized to n number

of densities if ω belongs to a n-dimensional probability simplex. Some implementa-

tions already existing in the literature are,

Mg
ω{p1(xk), p2(xk)} = {p1(xk)}ω {p2(xk)}1−ω , (2.4.2)

Ma
ω{p1(xk), p2(xk)} = ωp1(xk) + (1− ω) p2(xk). (2.4.3)

Equation (2.4.2) is the well known geometric mean [49, 71], whereas equation (2.4.3)

assumes the form of the arithmetic average [60, 66].

2.4.1 Geometric Mean Density (GMD) Fusion

The geometric mean density (GMD) as proposed in [47, 65] is a fusion strategy that

assumes the form,

Mg
ω{p1(xk), p2(xk)} =

{p1(xk)}ω {p2(xk)}1−ω∫
{p1(xk)}ω {p2(xk)}1−ω dxk

, (2.4.4)

where ω ∈ [0, 1] which is selected by solving a suitable optimization problem [98].

It has been proved in [8, 48] that the fusion strategy in equation (2.4.4) is immune

to double counting. An appealing property of equation (2.4.4) is that it admits a

closed-form solution for an exponential family of distributions. For instance, if the
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densities p1(x) and p2(x) follow a Gaussian distribution,

p1(xk) ∼ N (xk; x̂
1
k,Γ

1
k), (2.4.5a)

p2(xk) ∼ N (xk; x̂
2
k,Γ

2
k), (2.4.5b)

then, the geometric mean density fusion reduces to covariance intersection, with the

fused mean x̂f and covariance Γf ,

Γf
k =

(
ωΓ1

k
−1

+ (1− ω)Γ2
k

−1
)−1

, (2.4.6a)

x̂fk = Γf
k

(
ωΓ1

k
−1

x̂1
k + (1− ω)Γ2

k
−1

x̂2
k

)
. (2.4.6b)

Though, closed-form solutions for exponential families are readily available, the com-

plexity of using GMD for Gaussian mixtures is a harder problem since a non-integer

power of a Gaussian mixture is not always a valid distribution, let alone a closed-

form solution (also see Fig. 2.2). The authors in [3] focused solely on methods

involving non-integer power of Gaussian mixtures. But, a simple solution termed the

pseudo-Chernoff fusion uses the following first-order approximation for the power of

a Gaussian mixture,

[p(xk)]
ω =

[
M∑
m=1

µmN (xk; x̂
m
k ,Γ

m
k )

]ω
,

≈
M∑
m=1

(µm)ωN (xk; x̂
m
k ,Γ

m
k )ω , (2.4.7)
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and the power of a Gaussian distribution is a scaled Gaussian distribution with the

suitable normalization constant, i.e.

N (xk; x̂
m
k ,Γ

m
k )ω , αωN

(
xk; x̂

m
k ,

Γm
k

ω

)
, (2.4.8)

where the normalization constant, αω is,

αω =

√
|2πΓmk

ω
|

|2πΓm
k |ω

. (2.4.9)

Note that this approximation for the power of a Gaussian mixture is good only when

the components are far away, and the quality of the approximation deteriorates as

the components of the mixture become closer to each other [43]. Due to this reason,

the pseudo-Chernoff fusion is not a decent candidate for IMM trackers, especially if

modes are based on similar state dynamics.

Another approximation for the power of a Gaussian mixture known as the sigma-

point Chernoff fusion (SPCF) was presented in [43], which was based on approximat-

ing the powered Gaussian as follows

q(xk) =

[
M∑
m=1

µmN (xk; x̂
m
k ,Γ

m
k )

]ω
, (2.4.10a)

≈
M∑
m=1

βmk N
(

xk; x̂
m
k ,

Γm
k

ω

)
. (2.4.10b)

The approximation is appropriate, as shown in Fig. 2.2. The modes of the resulting

un-normalized density are unchanged, but the variance of each component is inflated,

which is assumed to be proportional to ω in the approximation. The next step is

to solve the following optimization problem using deterministic sampling to find the
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Figure 2.2: A non-normalized Gaussian mixture raised to a non-integer power
w ∈ [0, 1]. The original mixture is shown with dashed line, as ω approaches 0, the

covariance increases.

component weights βk =

[
β1
k β2

k · · · βmk

]T
,

β∗k = arg min
βk

∫
(q(xk)− (p(xk))

ω)2 p(xk)dxk (2.4.11a)

s.t. βmk ≥ 0, m = 1, . . . ,M. (2.4.11b)

Thus, prior to the fusion of track densities, it is vital to evaluate sigma-points and

solve equation (2.4.11) for each density, which increases the computation of the fusion

process drastically. For the example in [43], the sigma-point-based approximation was

six times more computationally costly than the approximation in equation (2.4.7).

Once the power of the track densities is calculated, one can simply use naive fusion,

since the independence has been accounted for using ω.
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2.4.2 Arithmetic Mean Density (AMD) Fusion

The arithmetic mean density is the result of applying the linear fusion approach to

density functions. The AMD fusion formula is given by

Ma
ω {p1(xk), p2(xk), . . . , pn(xk)} =

N∑
i

ωipi(xk), (2.4.12)

which always results in a valid probability density function as long as
∑
i

ωi = 1.

Different probability densities can be conveniently fused using the arithmetic average

owing to its attractive property of resulting in a closed-form mixture, as demonstrated

in [34]. It was also pointed out that AMD also serves as the “minimizing density” for

the average K-L divergence DKL,

Ma
ω(.) = arg min

g(xk)

∑
i

ωiDKL (pi(xk) : g(xk)) , (2.4.13)

where g(xk) is the argument of minimization. The above property does not emphasize

the quality of the fusion strategy, but can be exploited as an optimization problem

that results in ωi. The minimization merely states that the output (fused) density

after AMD fusion is at minimum distance, in the sense of K-L divergence, with the

participating local densities. In other words, while each local posterior is replaced by

a conservative version of itself and then fused, the change it undergoes is minimal.

This minimization does not provide any motivation for optimal distributed fusion.

An important property of the arithmetic average is that the fusion approach is

consistent even if one of the densities is inconsistent [8]. The GMD in equation

(2.4.4) however requires that both probability densities are consistent to output a

consistent fused result. The conservativeness of AMD has also been proved in [4].
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An implementation of AMD in a multi-sensor, multi-target tracking scenario was

performed in [60], where the linear fusion approach was applied as a target-wise

fusion rule to a multi-Bernoulli process.

The major problem with AMD fusion is its over-conservativeness, which results

in a larger variance. It can be seen that since AMD fusion is an aggregating process,

it results in a much larger variance than either component. This increased bandwidth

can be advantageous in situations with biased estimators, which have an offset from

the estimator mean. The immunity of AMD to handle offsets and biases can also be

extended to cases with misdetection and false alarms, thereby increasing its accuracy

in such cases. Another advantage of AMD is its computational efficiency for exact

formulation of Gaussian mixtures and particles, enabling real-time processing. Also

note that the calculation of the normalization constant is trivial in this case, unlike

GMD.

However, as we will see in Section 2.7, the AMD performs poorly in cases involving

unobservable local nodes where feedback is required. The large variance of the AMD

leads to a more uncertain fused estimate, which usually takes a longer time to settle

down. The requirement of clustering, pruning, and merging as a post-processing step

in AMD is also a fundamental disadvantage [60].
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2.5 Proposed Harmonic Mean Density

The generalization of the harmonic mean and their ubiquity is given in [68, 55, 35].

The weighted harmonic mean of two scalar estimates x̂1 and x̂2 is given by the ex-

pression,

Hω(x̂1
k, x̂

2
k) =

x̂1
kx̂

2
k

(1− ω)x̂1
k + ωx̂2

k

. (2.5.1)

The harmonic mean can also be obtained from quasi-arithmetic mean using the mono-

tone function f(x) = 1
x

[18]. Based on the statistical M-mixture definition given in

equation (2.4.1), the harmonic mean interpolated between p1(xk) and p2(xk) is,

Mh
ω{p1(xk), p2(xk)} =

p1(xk)p2(xk)

(1− ω)p1(xk) + ωp2(xk)
, (2.5.2)

and the corresponding density,

Mh
ω{p1(xk), p2(xk)} =

1

ζhM

p1(xk)p2(xk)

(1− ω)p1(xk) + ωp2(xk)
, (2.5.3)

where,

ζhM =

∫
Rn

p1(xk)p2(xk)

(1− ω)p1(xk) + ωp2(xk)
dxk. (2.5.4)

Comparing equation (2.5.4) with the exact Bayesian density in equation (2.3.3), the

only difference is that the harmonic averaging accounts for the common informa-

tion pc(x) as a convex combination of the individual densities (precisely, a weighted
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arithmetic mean),

p(xk|z1
k ∩ z2

k) ∝ (1− ω)p1(xk|z1
k) + ωp2(xk|z2

k). (2.5.5)

This is also analogous to the geometric mean density Mh
ω as,

Mh
ω ∝ p1(xk)

ωp2(xk)
(1−ω) (2.5.6)

=
p1(xk)p2(xk)

p1(xk)(1−ω)p2(xk)ω
. (2.5.7)

In this case, the common information is approximated by the geometric mean of

individual densities. Interestingly, the similarity is shown by the arithmetic average

as well, where,

p(xk|z1
k ∪ z2

k) = ωp1(x) + (1− ω)p2(x) (2.5.8)

=
p1(xk)× p2(xk)

p1(xk)p2(xk)
ωp1(xk)+(1−ω)p2(xk)

. (2.5.9)

Hence,

p(xk|z1
k ∩ z2

k) ∝
p1(xk)p2(xk)

ωp1(xk) + (1− ω)p2(xk)
. (2.5.10)

Thus, to summarize;

(i) The AMD fusion approximates the common information as the harmonic mean

of individual posterior densities.

(ii) The GMD uses the geometric mean itself as the common information density.
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(iii) The HMD approximates the common information as an arithmetic average of

the posterior track densities.

2.5.1 Properties of Harmonic Average Density

The conservative properties of the AMD and the GMD have been proved in [5, 8].

The standard inequality states AM ≥ GM ≥ HM and the conservativeness if any,

could be breached by the harmonic averaging. Thus, it is required to prove the

conservativeness of the harmonic interpolation with respect to the true Bayesian

density before proceeding with its usage.

Theorem 1. The harmonic fusion avoids double counting of information.

Proof. The proof is similar to that for the other two mean densities [8] where condi-

tional dependence is assumed. Hence, (omitting k),

p(zi|x) = p(zi/j|x)p(zi ∩ zj|x), (2.5.11)

where p(zi/j|x) denotes the exclusive information present with sensor track i relative

to j such that p(zi/j|x) ∩ p(zj/i|x) = ø. Using Bayes’ theorem and proceeding with
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the assumption above,

p(x|z1 ∪ z2)

∝ p(x|z1)p(x|z2)

(1− ω)p(x|z1) + ωp(x|z2)

∝ p(z1|x)p(z2|x)p(x)

(1− ω)p(z1|x) + ωp(z2|x)

=
p(z1/2|x)p(z1 ∩ z2|x)p(z2/1|x)p(z1 ∩ z2|x)p(x)

(1− ω)p(z1/2|x)p(z1 ∩ z2|x) + ωp(z2/1)p(z1 ∩ z2|x)

=
p(z1/2|x)p(z2/1|x)

(1− ω)p(z1/2|x) + ωp(z2/1|x)
p(z1 ∩ z2|x)p(x). (2.5.12)

Thus, the term p(z1 ∩ z2|x) which accounts for the ‘rumor propagation’, is only

accounted once, unlike in equation (2.3.2).

2.5.2 On the Entropy of Harmonic Average Density

The entropy ensures certainty of information as two densities are fused together.

Though the Bayesian formula provided in equation (2.3.3) ensures optimal fusion of

information, it does not contrast anything about the entropy. Though, for Gaussian

distributions, it can be proved that Bayes fusion always results in a decreasing entropy,

conservative fusion techniques always result in a relatively higher entropy, which

explains the term ‘conservative’, since they hold back the information that could

have been released if optimally fused.

The conservativeness of GMD has been proved in [8] as follows:

� Each component is replaced by a conservative density.
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� Double counting of information is avoided.

Thus, the fused result is always conservative. It can be proved that the harmonic

average has a higher entropy than the geometric average in the case of non-normalized

densities. This can be used to develop a relationship between the entropy of harmonic

and geometric average densities.

Theorem 2. The HMD, in general, has a higher entropy than the GMD for the

non-normalized case or when the normalization constants are equal.

Proof. For
∑
i

ωi = 1, the geometric average is given by the formula (omitting k),

Mg
ω(p1(x), p2(x)) = p1(x)ω1p2(x)ω2 (2.5.13a)

=
p1(x)p2(x)

p1(x)ω2p2(x)ω1
. (2.5.13b)

Using the AM-GM property, AM ≥ GM, we can write

p1(x)p2(x)

ω1p1(x) + ω2p2(x)
≤ p1(x)p2(x)

p1(x)ω1p2(x)ω2
, (2.5.14a)

ln
p1(x)p2(x)

ω1p1(x) + ω2p2(x)
≤ ln

p1(x)p2(x)

p1(x)ω1p2(x)ω2
, (2.5.14b)

where we have interchanged ωi’s without any loss of generality. From equations

(2.5.14a) and (2.5.14b),

∫
p1(x)p2(x)

ω1p1(x) + ω2p2(x)
ln

p1(x)p2(x)

ω1p1(x) + ω2p2(x)
dx ≤∫

p1(x)p2(x)

p1(x)ω1p2(x)ω2
ln

p1(x)p2(x)

p1(x)ω1p2(x)ω2
dx. (2.5.15)

Multiplying both sides by −1 completes the proof for non-normalized case.
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To establish the result between the densities, the normalization constants are

taken into account. Again using equation (2.5.14a),

∫
p1(x)p2(x)

ω1p1(x) + ω2p2(x)
dx ≤

∫
p1(x)p2(x)

p1(x)ω1p2(x)ω2
. (2.5.16a)

⇒ ζhM ≤ ζgM (2.5.16b)

This implies that

Hh ≥
ζgM
ζhM

Hg +

[
ln ζhM −

ζgM
ζhM

ln ζgM

]
. (2.5.17)

Note that the fraction
ζgM
ζhM

is greater than one. The last term on the RHS is usu-

ally negative and only vanishes when the normalization constants are equal. Due to

division by a mixture density, it is non-trivial to establish a proof for normalized den-

sities, however, for the proposed implementation method in section 2.6, the entropy

of HMD is less than GMD.

The proof that the normalization constant ζhM is convex with respect to ω similar

to that in GMD [8] is presented below.

Theorem 3. The normalization constant ζhM{p1(xk), p2(xk)} in equation (2.5.4) it

is a convex function of ω and is less than 1 for 0 ≤ ω ≤ 1.

Proof. Differentiating equation (2.5.4) with respect to ω (omitting k),

∂ζhM{p1(x), p2(x)}
∂ω

=
∂

∂ω

∫
Rn

p1(x)p2(x)

(1− ω)p1(x) + ωp2(x)
dx

=

∫
Rn
−p1(x)p2(x) [p2(x)− p1(x)]

[(1− ω)p1(x) + ωp2(x)]2
dx.
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Figure 2.3: Normalization constant for various values of ω in case of GMD (red) and
HMD (green).

The second derivative is,

∂2ζhM{p1(x), p2(x)}
∂ω2

=

∫
Rn

2
p1(x)p2(x) [p2(x)− p1(x)]2

[(1− ω)p1(x) + ωp2(x)]3
dx,

which is clearly positive for 0 ≤ ω ≤ 1 since p1(x) and p2(x) are valid probability

densities. Fig. 2.3 validates Theorem 3 by showing the comparison between ζhM and

ζgM v/s ω for two arbitrarily chosen densities.

It can also be noted that the bounds on ζhM are on the limiting values of ω,

ζhM ≤ ζhM
∣∣
ω={0,1} = 1. (2.5.18)
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2.5.3 Harmonic Averaging as a Recursive Fusion Strategy

For N number of sensors, the harmonic average assumes the following expression

(omitting the argument in pi(xk) for brevity),

Mh
ω(p1, p2, . . . , pN) =

N∏
i

pi

N∑
i

ωi
N∏
j
j 6=i

pj

,
∑

ωi = 1. (2.5.19)

However, instead of using the above formulation, a recursive approach to keep the

complexity at the minimum can be used. Considering an example with three sensors,

the harmonic average is

Mh
ω(p1, p2, p3) =

p1p2p3

ω1p2p3 + ω2p1p3 + ω3p1p2

, (2.5.20)

1

Mh
ω(p1, p2, p3)

=
ω1

p1

+
ω2

p2

+
ω3

p3

=
1

α

(
αω1

p1

+
αω2

p2

)
+
ω3

p3

=
1/α

Mh
ω(p1, p2)

+
ω3

p3

. (2.5.21)

Here
3∑
i

ωi = 1 and α is chosen such that α(ω1 +ω2) = 1. Thus, it can be shown that,

Mh
ω(p1, p2, p3) =Mh

ω,α

[
Mh

ω,α(p1, p2), p3

]
, (2.5.22)

which can be extended to any number of sensors. Therefore, the harmonic averaging

can be performed sequentially as long as the resulting density does not diminish,

ensuring the amount of certainty in the fusion process. This can also be proved as a
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property of the harmonic mean density as follows.

Theorem 4. The harmonic average density is bounded from below by one of the

component densities.

Proof. The proof is a straightforward property of the harmonic mean with respect to

the components. Any abstract mean follows the property [69] (omitting k),

inf{p1(x), p2(x)} ≤ Mh
ω(p1(x), p1(x)) ≤ sup{p1(x), p2(x)}.

Since it has been proved in equation (2.5.18) that the normalization constant is less

than 1,

Mh
ω(p1(x), p1(x))

ζhM
≥Mh

ω(p1(x), p1(x)) ≥ inf{p1(x), p2(x)}. (2.5.23)

Thus for the normalized pdf, the statement inf{p1(x), p2(x)} ≤ Mh
ω(p1(x), p2(x)) is

valid as long as the normalization constant is less than 1, which is proved in Theorem

3.

2.5.4 On the K-L Divergence of Harmonic Mean Density

Proposition 2.5.1. The HMD holds the potential for being a Kullback-Leibler aver-

age.

Proof. Denote by D(px : py), the Kullback-Leibler divergence between densities px

and py, the aim is to prove that

D(p1(x) : Mh
ω(p1, p2)) ≤ D(p1(x) : p2(x)). (2.5.24)
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Or conversely,

D(p2(x) : Mh
ω(p1, p2)) ≤ D(p2(x) : p1(x)), (2.5.25)

since the K-L divergence is asymmetric. First,

D(p1(x) :Mh
ω(p1, p2))

=

∫
Rn
p1(x) ln

{ωp1(x) + (1− ω)p2(x)}
p2(x)

+ ln(κ),

(2.5.26)

where κ denotes the normalization constant ζhM. Denoting the cross-entropy between

p1(x) and p2(x) by H12,

D(p1(x) : Mh
ω(p1, p2))

=

∫
p1(x) ln{ωp1(x) + (1− ω)p2(x)}+ H12 + ln(κ)

= D(p1(x) : p2(x)) +

∫
p1(x) ln{ωp1(x) + (1− ω)p2(x)}

−
∫
p1(x) ln p1(x) + ln(κ)

= D(p1(x) : p2(x))− D(p1(x) : pAA(x)) + ln(κ). (2.5.27)

Conversely,

D(p2(x) : Mh
ω(p1, p2))

= D(p2(x) : p1(x))− D(p2(x) : pa(x)) + ln(κ), (2.5.28)
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where the standard result H12 = D(p1(x) : p2(x)) + H(p1) is used and pa(x) is the

arithmetic mean density between p1(x) and p2(x).

Note that ln(κ) is less than 0 owing to equation (2.5.18) and D(p2(x) : pa(x)) is

always positive, thus proving the proposition. Also, if p1(x) = p2(x), κ turns out to

be 1 from the equation as expected.

The statement can be generalized to n number of densities pi(x) i = {1, 2, · · · , n}.

D(pi(x) : Mh
ω(p1, . . . , pn)) ≤ D(pi(x) : max{pj(x)}), (2.5.29)

where j = {1, 2, · · · , n}, j 6= i. Note that,

D(pi(x) : pj(x)) ≥ D(pi(x) : max{pj(x)}), for j 6= i. (2.5.30)

therefore the harmonic average density is placed in such a way that its Kullback-

Leibler divergence is less than that among the least of the densities. This is analogous

to the parallel resistor combination where the value of the equivalent resistance is less

than or equal to that of the least resistor. In that case as well, the combination is a

harmonic mean.

2.5.5 On the Monotonicity of Harmonic Mean Density

The shape preserving property of the harmonic average density can be proved using

the monotonicity of a function of two variables. A function of two variables f :
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(x, y) ∈ R2 can be termed monotonic if for fixed (x, y) and (x′, y′)

(x ≤ x′ and y ≤ y′) =⇒ f(x, y) ≤ f(x′, y′) (2.5.31)

Equation. (2.5.31) can be proved for HMD as follows,

Theorem 5. The harmonic mean density follows the monotonic property in equation

(2.5.31).

Proof. The proof here is shown for two densities p1(x) and p2(x) which can be ex-

tended to any number of sensors using equation (2.5.22). The gradient of the harmonic

average is (omitting the variable x and k for clarity).

∇(Mh
ω(p1, p2)) =[
1

ω1p2
1

∇(p1) +
1

ω2p2
2

∇(p2)

]
(Mh

ω(p1, p2))2. (2.5.32)

It can be seen that for fixed p1(x), the harmonic average is monotonic with respect

to p2(x) and monotonic w.r.t. p1(x) when the other is fixed. Thus from equation

(2.5.32),

if p̃1 ≤ p1 =⇒ Mh
ω(p̃1, γ) ≤Mh

ω(p1, γ), (2.5.33a)

and,

if p̃2 ≤ p2 =⇒ Mh
ω(γ, p̃2) ≤Mh

ω(γ, p2), (2.5.33b)

where γ is an arbitrary constant. The proof of equation (2.5.31) for harmonic average

42



Ph.D. Thesis – N. Sharma McMaster University – ECE

is a direct consequence of equations (2.5.33a) and (2.5.33b).

2.6 Implementation

The major issue in implementation of HMD is its denominator which takes the form

of a valid probability density mixture. Closed form solutions for division by a mixture

do not exist [3] hence approximate solutions are used.

Considering Gaussian densities, the simplest solution to the division problem is

to use a normal approximation for the denominator,

ωN
(
x̂1
k,Γ

1
k

)
+ (1− ω)N

(
x̂2
k,Γ

2
k

)
≈ N (xk; x̂

eq
k ,Γ

eq
k ) , (2.6.1)

where x̂eqk and Γeq
k are respectively the mean and covariance of the resulting Gaussian

approximation of the mixture,

x̂eqk ,
M∑
m=1

µmx̂mk , (2.6.2)

Γeq
k ,

M∑
m=1

µm
[
Γm
k + (x̂eqk − x̂mk )(x̂eqk − x̂mk )T

]
. (2.6.3)

Let p(xk|zik) = N (xk; x̂
i
k,Γ

i
k) and p(xk|zjk) = N (xk; x̂

j
k,Γ

j
k), then using the Gaussian

equivalent for denominator,

p(xk|zik ∪ zjk) =
N (xk; x̂

i
k,Γ

i
k)N (xk; x̂

j
k,Γ

j
k)

N (xk; x̂
eq
k ,Γ

eq
k )

(2.6.4)

∝ N
(
xk; x̂

f
k ,Γ

f
k

)
, (2.6.5)
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where the superscript f stands for fused. The fused mean and covariance are then,

Γf
k =

(
Γi−1

k + Γj−1

k − Γeq−1

k

)−1

, (2.6.6a)

x̂fk = Γf
k

[(
Γi−1

k x̂ik + Γj−1

k x̂jk

)
− Γeq−1

k x̂eqk

]
, (2.6.6b)

where standard results on division and product of Gaussian densities have been used

[2, 14]. x̂eqk and Γeq
k are as mentioned in equations (2.6.2) and (2.6.3) respectively for

weights ω and (1− ω).

Note that the division of the Gaussian distributions is only valid for certain con-

ditions which is met by HMD and can be proved as follows.

Proposition 2.6.1. The division of Gaussian densities as performed in equation

(2.6.5) is always valid.

Proof. See appendix A.

Note that the Gaussian approximation of the mixture only changes our estimate

of the common information which itself was not exact. Thus it does not affect the

quality of fusion in general. Hence,

p(xk|z1
k ∩ z2

k) ≈ ω1(p(xk|z1
k) + ω2(p(xk|z2

k)

≈ N (xk; x̂
eq
k ,Γ

eq
k ) . (2.6.7)

It is worth noting that the proposed method of implementation of HMD is similar

to different extensions of CI with corresponding interpretations for the common in-

formation component (Γ̂,Γ). For instance, the ellipsoidal intersection (EI) provides
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the fused result at time k as,

Γf
k =

[
Γi
k

−1
+ Γj

k

−1 − ΓEI
k

−1
]−1

(2.6.8)

x̂fk = Γf
k

[
Γi
k

−1
x̂ik + Γj

k

−1
x̂jk − Γ̂EI

k ΓEI
k

−1
]

(2.6.9)

See [85] for the interpretations of
(
Γ̂EI
k ,ΓEI

k

)
. Similarly, the inverse covariance inter-

section (ICI) in [73] suggests that the common information is a weighted arithmetic

average of the components.

Γf
k =

[
Γi
k

−1
+ Γj

k

−1 − ΓICI
k

−1
]−1

(2.6.10)

x̂fk = Γf
k

[
Γi
k

−1
x̂ik + Γj

k

−1
x̂jk −

(
ωΓICI

k

−1
x̂ik + (1− ω)ΓICI

k

−1
x̂jk

)]
(2.6.11)

where,

ΓICI
k = ωΓi

k + (1− ω)Γj
k (2.6.12)

The structure of common information in this case is very similar to the proposed

method except the spread of means term in the Gaussian mixture equivalent of Eqn.

(57). The difference is due to the fact that HMD uses arithmetic average of local

densities rather than that of parameters as in the case of ICI. When fusing estimates

with equal means, the proposed method matches exactly with ICI. The interpretation

of spread-of-means is discussed elaborately in subsequent section.

The scope of this work is restricted to the use of the Gaussian approximation of

the common information, excluding the exact development as a scope for future work.
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Implications of the spread of means term in eqn. (2.6.3) The reader might

believe that the proposed method of implementation is dubious in the sense that

one can increase the spread of means term by arbitrarily increasing the Euclidean

distance between individual means. However, this is not true if the densities are

tested for association before fusion. The association test in such a case would reject

the hypothesis that local densities belong to the same target if the normalized distance

between the means is large. For a positive association test, the squared distance

between the means has to be less than (scalar case),

(µ1 − µ2)2 ≤ γα × (σ2
1 + σ2

2 − 2σ12) (2.6.13)

where γ is a threshold, with (1− α) as the confidence level. µi and σi are the ith

mean and standard deviation, respectively. σ12 = ρ
√
σ1σ2 is the correlation coefficient

between the two estimates, with ρ as a linear correlation coefficient. Thus, arbitrarily

large separations between the individual means are rejected by the test.

Another implication is that if the local densities are assumed to be consistent, their

estimate should correspond to their respective mean square error (MSE). Since both

the estimates represent the same quantity, they should statistically lie within their

respective covariance ellipsoids. Thus, local consistency is required for the effective

implementation of HMD.

It should also be noted that the proposed implementation might result in lower

covariance than the local optimum see [12, see eqn. (8.4.4-5)]. However, as per the

definition of consistency in [8], the proposed implementation is inconsistent only if

one of the densities is inconsistent.

It can be seen that using the same formulation allows us to deal with the scenario
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when track densities are a Gaussian mixture

p(xk|z1
k) =

M∑
i

αiN
(
xk; x̂

i
k,Γ

i
k

)
,

p(xk|z2
k) =

N∑
j

βjN
(
xk; x̂

j
k,Γ

j
k

)
.

Then, the fused density is another Gaussian mixture with the M × N number of

modes and,

p(xk|z1
k ∪ z1

k) =
M∑
i

N∑
j

αiβjκijN
(
xk; x̂

f
k ,Γ

f
k

)
, (2.6.14)

where x̂fk and Γf
k are exactly the same as in equations (2.6.6b) and (2.6.6a). The

scaling factor κij is the result of product of Gaussian densities and division by a

Gaussian mixture equivalent. It is given by,

κij =
N
(
x̂jk; x̂

i
k,Γ

i
k + Γj

k

)
N
(
x̂mk ; x̂naive,ij

k ,Γm
k − Γnaive,ij

k

) ×
∣∣∣Γm

k − Γnaive,ij
k

∣∣∣∣∣∣Γnaive,ij
k

∣∣∣ (2.6.15)

where,
(
x̂naive,ij
k ,Γnaive,ij

k

)
is the result of naive fusion between ith and jth densities.

The quantities (x̂mk ,Γ
m
k ) arise from the Gaussian approximation of the denominator
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mixture,

ω1p(xk|z1
k) + ω2p(xk|z2

k) = ω1

M∑
i

αiN
(
xk; x̂

i
k,Γ

i
k

)
+ ω2

N∑
j

βjN
(
xk; x̂

j
k,Γ

j
k

)
,

=
M+N∑
m

µmN (xk; x̂
m
k ,Γ

m
k ) , m =


i, 1 ≤ m ≤M

j, M + 1 ≤ m ≤M +N

(2.6.16)

where,

µm =


ω1αi, 1 ≤ m ≤M

ω2βj, M + 1 ≤ m ≤M +N.

2.6.1 On the evaluation of Fusion weights

A missing aspect of the conservative fusion strategies in the literature is the evaluation

of fusion weights ωi. For instance, in the geometric averaging, the common informa-

tion which is also the denominator in the exact Bayesian formulation of equation

(2.3.3) was approximated to be (see equation (2.5.9)),

p(xk|z1
k ∩ z2

k) = p(xk|z1
k)

1−ωp(xk|z2
k)
ω. (2.6.17)

The quality of any conservative fusion strategy in the Bayesian sense lies in the

statement - “How close is the common information to its approximation”. There

is no substantial research in finding the optimal fusion weights except in [98]. An

alternate direction based on common information is provided. Using the concept of

conditional independence depicted in Fig. 2.5 and the Bayes’ theorem, the conditional
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Figure 2.4: Independent Dataset

z1/2

z1 ∩ z2

z2/1

Figure 2.5: Non-independent Dataset [48]

density based on common information can be written as,

P (zi|x) = P (zi/j|x)P (zi ∩ zj|x)

⇒P (x|zi ∩ zj) = P (x|zi) P (zi|x)

P (zi ∩ zj)
∝ P (x|zi)
P (x|zi/j)

, (2.6.18)

and using the fact that P (x|zi ∩ zj) = P (x|zj ∩ zi),

P (x|zi ∩ zj) ∝ 0.5
P (x|zi)
P (x|zi/j)

+ 0.5
P (x|zj)
P (x|zj/i)

. (2.6.19)

The above statement is appropriate since it can be seen that if independence is as-

sumed, then P (x|zi) = P (x|zi/j) and P (x|zi ∩ zj) comes out to be a constant. The

expression for the common information in harmonic mean density is the arithmetic

average of the posterior densities. Thus the fusion weights should follow

ω1p(x|zi) + ω2p(x|zj) ≈ 0.5
P (x|zi)
P (x|zi/j)

+ 0.5
P (x|zj)
P (x|zj/i)

. (2.6.20)

The term P (x|zi/j) is referred to as the tracklet in the literature and has been exten-

sively researched [37, 38]. The arithmetic average on the L.H.S of equation (2.6.20)
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which is a mixture density should approximate the mixture on the R.H.S as close

as possible. The simple approximation of the common information is an important

advantage of using the harmonic fusion which could be solved using EM algorithm.

However, there is no attempt to obtain a solution to equation (2.6.20) in this work

but is left as a candidate for future research.

2.6.2 An Empirical Study

The properties of HMD elucidated in the previous section are observed and compared

with the other conservative fusion strategies. Two correlated Gaussian densities p1(x)

and p2(x) with mean x̂1 = [1, 3]T and x̂2 = [7, 10]T , and covariance Γ1 = 100I2 and

Γ2 = 50I2 are fused as per the GMD in equation (2.4.6), AMD in equation (2.4.12)

as well as the proposed fusion strategy. The dependence is quantified as,

Γ12 = ρ
√

Γ1

√
Γ2, (2.6.21)

where ρ is the correlation coefficient, taking only positive values between 0 and 1

(tracking applications with homogeneous sensors rarely possess negative correlation

for the same target). The optimal density is calculated using the maximum likelihood

approach, taking into account the correlation matrix Γ12. The entropy of various fused

densities is plotted with respect to values of the fusion weight ω in Fig. 2.6. It can

be seen that the harmonic mean density possesses the highest entropy, proving its

conservativeness. The arithmetic mean density always results in a Gaussian mixture,

so a Gaussian approximation is taken in this example, due to which the entropy

presented in Fig. 2.6 is a mere upper bound. The value of the fusion weight used

here is 0.5. The resulting fused density functions are plotted in Fig. 2.7. It can
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Figure 2.6: Entropy of the fused density using various methods for a correlation
coefficient of ρ = 0.5 among local densities.

be observed that both HMD and GMD are close to the optimal density whereas

the arithmetic mean has the largest variance. For different values of ρ, the plots of

conservative densities will remain the same if ω is unchanged.

To evaluate the run time of fusion strategies, the dimensions of the Gaussian den-

sities along with the number of components for the Gaussian mixtures are increased.

The plots for computation time over 500 Monte-Carlo runs are shown in Fig. 2.8.

It can be seen in Fig. 2.8a that for the Gaussian case, HMD is slightly slower. The

GMD and Naive fusion require almost equal computation since both need two inverse

operations whereas HMD requires three (for fusing two densities). It is also observed

that the AMD has a higher average run time in the case of Gaussian density, which

is due to the fact that the overhead of computing the Gaussian approximation of

the resulting mixture has also been added. Also, note that in the case of Gaussian
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Figure 2.7: Fused density using various methods for a correlation coefficient of
ρ = 0.5 among local densities.

mixtures in Fig. 2.8b, pseudo-Chernoff fusion (PCF) is employed, which is the fastest

method for fusing Gaussian mixtures using GMD [49] and poses inaccuracies when

fusing densities are spatially closer to each other. Also, [43] states that the sigma-

point approximation-based method is six times more computationally costly than

PCF. In either case, HMD is as computationally efficient as GMD and naive fusion,

respectively, without the requirement of any additional changes to the framework.

The results were obtained on MATLAB® 2020 on a computer with Intel® Core�

i7-9750H CPU @ 2.6 GHz and 16 GB of RAM.
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Figure 2.8: (a) Average run time v/s dimension of the Gaussian density and, (b)
average run time v/s number of components in a Gaussian mixture.

2.7 Simulation

To test the performance of the proposed strategy in a real-time target tracking en-

vironment, two simulation scenarios are presented, one of which is a near constant

velocity (NCV) target in 3D, comprising three sensors and the other is a 2D maneu-

vering target, tracked using two bearing-only sensors using IMM. Thus, the scenarios

cover the fusion of both uni-modal and multi-modal Gaussian densities and are elab-

orated in different subsections described below. Note that no effort has been made to

evaluate the optimal value of the fusion weight ω and a typical value of 0.5 is taken.

The baseline methods considered for the comparison are :

� Geometric Mean Density (GMD): Covariance intersection formulation for Gaus-

sian densities.

� Arithmetic Mean Density (AMD): Weighted amalgamation of local track den-

sities without any pruning or merging.
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Figure 2.9: Scenario 1

� Centralized EKF: Centralized fusion of measurements using the extended Kalman

filter (EKF) used as a lower bound.

2.7.1 Three Sensor NCV Scenario

In this case, a 3D target trajectory is generated using the near constant velocity

motion model with a high process noise intensity, as shown in Fig. 2.9a, where the

target starts at the origin at an altitude of 2000 meters. The state vector xk ∈ R6

comprises of 3D Cartesian position and velocities, i.e., xk =

[
xk ẋk yk ẏk zk żk

]
.

The local nodes employ an extended Kalman filter (EKF) with no feedback from the

fusion center. Thus, the tracks to be fused are Gaussian densities.

The discrete time target motion and sensors measurements are modeled by the
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following equations

xk+1 = Fxk + wk, (2.7.1a)

zk = h(xk, yk, zk) + vk, (2.7.1b)

where,

F =

I3 ∆T I3

03 I3

 and, h(xk, yk, zk) =

[
rk θk φk

]T
,

where,

rk =
√
x2
k + y2

k + z2
k; θk = tan−1

(
yk
xk

)
; and, φk = tan−1

(
zk√
x2
k + y2

k

)
.

∆T is the sampling time, and wk, vk are uncorrelated, zero-mean Gaussian dis-

tributed process noise vector and measurement noise vector respectively, such that

∀{k, j},

E[wkwj] = δkjQ; E[wkvj] = 0; E[vkvj] = δkjR,

where Q and R are the process noise and measurement noise covariance matrix re-

spectively,

Q = q̃

∆T 3

3
I3

∆T 2

2
I3

∆T 2

2
I3 ∆T I3

 , R = diag(σ2
r , σ

2
θ , σ

2
φ),

and q̃ is the process noise intensity in meter2/second3. The parameters of the scenario
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are stated in Table 2.1. Note that separate values for process noise intensity in each

coordinate have been included.

Table 2.1: Parameters : Scenario 1

Parameter Value

∆T 2 seconds.
σ1
r , σ

1
θ , σ

1
φ 100 m, 2◦, 2◦

σ2
r , σ

2
θ , σ

2
φ 100 m, 2◦, 2◦

σ3
r , σ

3
θ , σ

3
φ 100 m, 1.5◦, 1.5◦

q̃x 0.5 m2/sec3

q̃y 0.5 m2/sec3

q̃z 0.001 m2/sec3

Simulation time 120 seconds.

The local trackers transmit their estimates every 2∆T to the fusion center, which

are then fused together using the existing conservative fusion strategies discussed in

the previous sections. The proposed HMD is compared with the AMD and the GMD

(covariance intersection), where the centralized version of EKF has been chosen as

the lower bound. The performance is evaluated on the basis of root-mean-square

errors (RMSE) of position and velocities over 500 Monte-Carlo (MC) runs. The con-

sistency of the fusion approaches has also been compared with the help of normalized

estimation error squared (NEES) which is calculated as

NEESk =
1

M

M∑
m=1

(x̂mk|k − xk)
TΓm−1

(x̂mk|k − xk). (2.7.2)

The fused scenario with various tracks are shown in Fig. 2.9b.

The position RMSE plot is shown in Fig. 2.10a, where the centralized EKF

performs best as expected. It can be seen that the proposed harmonic mean density

performs marginally better as compared to the other conservative density approaches.
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The proposed HMD error plot converges faster than other approaches and suggests

an improvement of roughly double when compared to the naive density, which starts

to diverge at the end of simulation due to rumor propagation. The computation time

for Gaussian density fusion for HMD in Fig. 2.8a is also almost equal to that of AMD

and 50% higher than the covariance intersection.

A similar trend can be seen in the velocity RMSE plot in Fig. 2.10b with the

centralized approach performing best, followed by the proposed HMD, GMD, AMD,

and then the naive fusion. The velocity estimate in the case of HMD states an

improvement of roughly 50% over naive fusion in terms of accuracy.

We present the average NEES plotted over 500 MC runs in Fig. 2.11 to show

the consistency of the fused estimates. The 95% confidence interval for 6-dimensional

state vector is shown by a blue line in the plot. It can be seen that no point in the naive

plot lies inside the confidence region, proving its inconsistency. Ignoring the initial

transient region, only one point out of 120 time steps lies outside the region in the

case of HMD, which is acceptable. The other approaches are well below the threshold,

especially the arithmetic mean density, which exhibits its over-conservativeness.

2.7.2 Two Sensor Passive Maneuvering Target Tracking

A major advantage of using HMD is the fusion of multi-modal and uni-modal Gaus-

sian densities without using additional machinery, like in GMD, where a separate

mechanism is required to compute accurate power of a Gaussian mixture, or AMD

where variance deflation techniques are necessary to prevent the estimates from be-

ing over-conservative. To illustrate this advantage, a two-sensor multiple model based
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Figure 2.10: Root mean square error (RMSE) performance : Scenario 1.
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Figure 2.11: Normalized estimation error squared (NEES) for scenario 1. The HMD
can be seen to be fairly consistent along with other strategies.
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maneuvering target tracking using bearing-only sensor in 2D was designed. Each lo-

cal tracker is an IMM consisting of a Gaussian noise NCV model (as discussed in the

previous subsection) and a Wiener noise nearly constant acceleration (NCA) model.

This scenario is considered non-trivial because of the following reasons :

� Unobservability of local trackers.

� Different state dimensions of the two models used in the local IMM tracker

(NCA versus NCV).

� Feedback requirement from the fusion center to improve local estimates.

� Motion model mismatch between the actual target and the one employed by

local trackers.

To solve the problem of growing fused mixture size, a pruning operation is performed

after fusion so that the final mixture consists of two modes. This mixture is sent to

the local nodes after each fusion instant as feedback (see Fig. 2.12). For instance, the

GMD fusion of two bi-modal Gaussian mixtures outputs a fused density with four

modes. Since the local IMM trackers employ bi-modal densities, the fused mixture

size has to be pruned before transmitting it back. The different dimensions of the two

modes are taken care of by padding extra zeros in the estimate of the NCV model.

This poses problems while using sigma-point Chernoff fusion [43] where Cholesky

decomposition needs to be carried out, thus, PCF from equation (2.4.7) [49] was used

instead, which is also the fastest method.

The scenario is shown in Fig. 2.13a. The target moves in a wavelike motion about

a straight line. Such trajectories are common in underwater warfare engagement
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Figure 2.12: Information flow between fusion center and local trackers for scenario 2.

scenarios and buoyancy-driven underwater gliders [51]. In this case, the target was

generated by rotating a sine wave motion in x and y coordinates at a fixed angle. No

noise has been added to the true target trajectory due to the presence of high ma-

neuvers already. An attempt to track this target using conservative fusion strategies

with IMM was made. In addition to the baseline methods mentioned in the previous

sections, the centralized methods – centralized-CV and centralized-CA were added to

check if non-IMM centralized approaches are suited for the problem.

The motion model used in the IMM trackers remains the same as mentioned in

equation (2.7.1) modified to 2D, with the addition of a separate NCA model catego-

rized by the following parameters,

FNCA =


I2 ∆T I2

∆T 2

2
I2

02 I2 ∆T I2

02 02 I2

 , QNCA = q̃NCA


∆T 5

20
I2

∆T 4

8
I2

∆T 3

6
I2

∆T 4

8
I2

∆T 3

3
I2

∆T 2

2
I2

∆T 3

6
I2

∆T 2

2
I2 ∆T I2

 . (2.7.3a)
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The sensor measurements are now bearings measured from the true north, thus

θk = h(xk, yk) + vk, (2.7.4a)

where,

h(xk, yk) = tan−1

(
xk
yk

)
. (2.7.4b)

The parameters used in the models are tabulated in Table 2.2. It is to be noted that

the target in Fig. 2.13a does not adhere to either the NCA or NCV motion models;

the plotted trajectory is completely independent of the motion statistic used, as is

the case in real-time target tracking. Therefore, there is a high certainty of errors

due to model mismatch. The sensors are located 600 meters apart, the target starts

at [150m, 150m] and moves north-east with a velocity of 16 knots.

The results over 500 Monte-Carlo runs are plotted in Figs. [2.14a – 2.13b]. As

expected, the centralized EKF employing the NCA model has the least RMSE, fol-

lowed by the proposed HMD. An interesting point to note is that the centralized

EKF-CV performs poorly in terms of RMSE when compared to HMD and GMD,

whereas AMD failed to track the target owing to extremely high track-loss1 (> 90%)

while no track-loss was observed in other techniques.

1Track-loss is defined as the divergence of the estimate and is quantified when the final position
error ef exceeds a set threshold τ (500m in this case),

ef =
√

(xf − x̂f )2 + (yf − ŷf )2 ≥ τ,

where f is final time index. The number of track-loss is usually represented as % of Monte-Carlo
runs. Note that while calculating the RMSE, the diverged tracks are removed
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Failure of AMD in unobservable systems

The AMD is an amalgamation that only works when the estimates to be fused are

sufficiently close. But since the local nodes in this scenario are non-observable, the

closeness is not guaranteed. For instance, suppose the two estimates to be fused

are x1 ∼ N (50, 10) and x2 ∼ N (−30, 20). The resulting densities are – N (10, 1615),

N (23.39, 6.69), N (23.33, 13.33) and N (23.33, 6.67) for AMD, HMD, GMD, and naive

fusion, respectively, which shows that the uncertainty in AMD fusion is very high if the

proximity between individual means is large. The global observability in this scenario

is highly dependent on the quality of feedback, since the local nodes are static. Due

to a highly uncertain feedback, the quality of the local estimate does not improve

over time, and the fused estimate fails to converge. Amalgamation for unobservable

sensors and maneuvering targets is hence avoided due to the over-conservativeness of

the resulting density, and inflation of variance is observed.

A similar trend is shown in the velocity RMSE plot in Fig. 2.14b where the AMD

takes around 75 time steps to settle down. Harmonic mean density again proves to

be the best technique among the mentioned conservative fusion strategies, with the

lowest RMSE in both position and velocity. This is due to a tight approximation of

‘common information’ which produces a conservative density with the least variance

while still being consistent. When compared to the naive fusion strategy, the average

improvement is roughly 2.5 times in position and around 1.5 times in velocity.

For consistency, the average NEES over 500 Monte-Carlo runs is plotted in Fig.

2.13b. Since the fused densities are Gaussian mixtures, the average NEES are calcu-

lated using the Gaussian approximation. One-sided 95% probability is taken as the

threshold, which is shown by a thin blue line in the plot. It can be seen that apart

62



Ph.D. Thesis – N. Sharma McMaster University – ECE

from one point in the initial transient region, there is no marker outside the threshold

for 300 time steps which is quite acceptable. Also, the NEES for the proposed HMD

implementation is closest to that of centralized filters. Note that the central filters are

globally optimal (neglecting non-linear measurements), which proves the effectiveness

of the proposed fusion method. The naive fusion results are totally inconsistent, as

all points are outside the confidence region. Again, the arithmetic averaging proves

to be overly conservative with the least average NEES.

The resulting tracks are shown in Fig. 2.15 where the AMD track has been omitted

due to high track-loss. Since the naive density results in a lower non-consistent

covariance, increasing the process noise improves track quality, since it has a similar

effect as using a fudge factor [14]. The difference is evident in Fig. 2.15a and 2.15b.

The GMD track (Fig. 2.15c) and the HMD track (Fig. 2.15d) faithfully track the

target at a lower process noise.

Table 2.2: Parameters : Scenario 2

Parameter Value

∆T 1 second
R1 (1.5◦)2

R2 (2◦)2

q̃NCV 10−2 m2/sec3

q̃NCA 10−3 m2/sec5

IMM transition matrix

[
0.8 0.2
0.8 0.2

]
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Figure 2.13: Scenario 2.
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Figure 2.14: Root mean square error performance : Scenario 2

2.8 Conclusion

In this chapter, a new conservative strategy that could fuse both uni-modal and

multi-modal local track densities without any additions to the framework has been

presented. The proposed strategy has been proven to be effective in non-independent
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Figure 2.15: Fused tracks with various approaches for scenario 2. The arithmetic
mean density has been excluded due to very high track-loss.

fusion architectures, both theoretically and in simulations. We investigated the math-

ematical properties and derived some useful equations required in the development

of a viable fusion method. It was proven that the proposed harmonic mean density

does not double count information and has a higher entropy than GMD, proving its

conservativeness. It can be seen that the higher entropy is not entirely due to uncer-

tainty but is due to the inclusion of the normalization constant in the formulation,
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which is also proved to be smaller than that of GMD. Moreover, the approximate im-

plementation of the proposed method is also presented. Analysis shows that HMD is

as computationally effective as other conservative strategies existing in the literature.

The efficacy of the harmonic mean density is presented in two real-life scenarios and

shown to have the least RMSE among the discussed conservative fusion strategies.

The NEES results show that the HMD is consistent and is not overly conservative

like the arithmetic mean density. A few existing research areas discuss the evaluation

of fusion weights and perhaps an accurate implementation without using Gaussian

approximation for the denominator in equation (2.6.1). Nevertheless, the HMD is a

promising candidate for the fusion of correlated estimates in distributed or decentral-

ized network architectures.
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Chapter 3

Harmonic Mean Density Fusion :

Performance and Comparison

3.1 Abstract

A distributed sensor fusion architecture is preferred in a real target-tracking scenario

as compared to a centralized scheme since it provides many practical advantages in

terms of computation load, communication bandwidth, fault-tolerance, and scalabil-

ity. In multi-sensor target-tracking literature, such systems are better known by the

pseudonym – track fusion, since processed tracks are fused instead of raw measure-

ments. A fundamental problem, however, in such systems is the presence of unknown

correlations between the tracks which renders using a standard Kalman filter useless.

A widely-accepted solution is covariance intersection (CI) which provides near-

optimal estimates but at the cost of a highly conservative covariance. Thus, the

estimates are pessimistic which results in a delayed error convergence. Also, fusion of

Gaussian mixture densities is an active area of research where standard methods of
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track fusion cannot be used. In this chapter, harmonic mean density (HMD) based

fusion is discussed which seems to handle both of these issues. We present insights

on HMD fusion and prove that the method is a result of minimizing average Pearson

divergence. This chapter also provides an alternative and easy implementation based

on an importance-sampling like method without the requirement of a proposal density.

Similarity of HMD with inverse covariance intersection is an interesting find, and have

been discussed in detail.

Results based on a real-world multi-target multi-sensor scenario show that the

proposed approach converges quickly than existing track fusion algorithms while also

being consistent as evident from the normalized estimation-error squared (NEES)

plots.

3.2 Introduction

Even though sensor technologies are reaching new heights in terms of accuracy, size,

processing time, and portability, it is still not prudent to depend on a single sensor for

large-scale systems. A multi-sensor system provides unmatched benefits, including

accuracy, fault tolerance, scalability, and, in some cases, observability. In the widely

researched domain of multiple target tracking, the employed sensors have a limited

field of view (FOV) which constrains their applicability. Thus, to scale the area of

observation, multiple sensors are deployed, which transmit their observations either

in the form of raw measurements (centralized) or process the raw data before sending

the resulting processed observations (tracks) to a fusion facility. Such networked

architectures are highly employed in systems such as simultaneous localization and

mapping (SLAM), autonomous vehicles, air traffic control, adversary interception,
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underwater surveillance, and others.

The architecture wherein raw observations are processed locally using standard

techniques like a Kalman filter and sent to the nearest fusion center is the focus of

this chapter. Such an architecture is better suited to cater to multi-sensor target

tracking problems since it offers numerous advantages in comparison to a centralized

mechanism as discussed in the last chapter.

There are two major classes of solution preferred for the case of track-fusion –

1. Bayesian methods, 2. Pooling methods. The Bayesian methods refer to the solution

where Bayes’ theorem is employed in some sense, either after decorrelating the local

tracks or by computing a globalized likelihood function using local node parameters.

It is also possible to compute the exact value of cross-correlation between any two

local tracks using the recursion provided in [9], but this would require knowledge

of the local Kalman gain at each fusion instant and also memory for storing nC2

number of cross-correlations at the fusion center for n nodes. Such methods include

the optimal T2TF algorithm, information matrix fusion, and tracklet fusion. Using

a standard Kalman filter by ignoring cross-correlation is usually termed naive fusion.

The pooling methods combine probability density functions directly using mixing

weights such that some criterion is minimized. Under the target-tracking domain,

such methods include the famous covariance intersection and its variants, as well

as its generalized form known as the geometric mean density (GMD) fusion. These

methods are preferred due to their relative ease of implementation in the Gaussian

case. The ease of implementation stems from the fact that these methods do not

inquire into the nature of cross-correlation. Thus, extra information from the local

node, viz. Kalman gain, prior estimates from the last fusion, or sensor characteristics
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are not required for fusion (at least for the ideal case). Such methods include the

covariance intersection (CI) and its variants. A new class of pooling method known

as harmonic mean density (HMD) based track fusion was introduced by the authors

in [84], which is also the focus of this chapter.

3.2.1 Covariance Intersection and Variants

For a known cross-covariance, the resulting fused covariance ellipsoid can be shown to

lie in the intersection between the local covariance ellipsoids [50, 27]. Thus, a convex

combination of the covariance and mean of the estimates should yield a consistent

fused estimate [50], which was utilized in the formulation of the original covariance

intersection algorithm. In the presence of unknown cross-correlations, CI constitutes

an upper bound on the cross-correlation, which makes it conservative. Later, many

variants have been proposed to increase the tightness of this upper bound.

One such variant is the split-covariance intersection filter (SCIF), which assumes

that a single local track is a package consisting of independent and dependent esti-

mates separately, such that the local estimate is a sum of independent and dependent

estimates. The algorithm then operates on these components in a way similar to

the covariance intersection algorithm. The result is the fused estimates with their

dependent and correlated components. The existence of a correlation such that inde-

pendent and dependent components sum up to form a track is, however, vague. Also,

the independent parts of a track are impossible to identify. If both components are

available explicitly at the fusion center, then an optimal algorithm could be possible,

according to the author’s knowledge.

The ellipsoidal intersection (EI) in [85] aims to separate the mutual and exclusive
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information contents from a local estimate and fuse them such that the mutual in-

formation is only counted once. The update equation resembles naive fusion before

subtracting the mutual-information component. An interesting feature is that the al-

gorithm computes the maximum possible cross-correlation ellipsoid, which results in

a lower fused covariance relative to CI. However, it was shown in [73, 74] that EI can

result in non-consistent estimates. The paper also proposed an additional CI variant,

termed inverse-covariance intersection (ICI), which claims consistency of the fused

estimate in addition to providing a less-conservative fused covariance relative to CI.

However, both papers on ICI have not provided any effect on the root-mean-square

error. Also, both CI and ICI need to compute a one-dimension minima search for the

fusion parameter ω. Though the cost function in both algorithms is convex, the one

in ICI requires inverting 3 matrices compared to 2 in CI, thus being slightly slower.

Also, no alternatives to ICI, EI, and SCIF for densities other than Gaussian exist in

the current literature.

Harmonic mean density (HMD) based track fusion is a viable solution to both

problems, including highly conservative fused covariance and the fusion of Gaussian

mixtures. In this context, the contributions of this chapter are as follows :

� We prove that, like the GMD, which is the result of minimizing average Kullback-

Leibler divergence (KLD), the HMD minimizes average Pearson χ2 divergence

and, thus, the reverse Neyman χ2 divergence.

� The chapter presents important developments on the consistency and unbiased-

ness of fused estimates.

� Similarity of HMD implementation has been shown towards inverse covariance

intersection (ICI). An extension of ICI towards Gaussian mixtures has been
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presented.

� We provide an alternate implementation of the HMD based on importance

sampling without the requirement of a proposal density.

� A simple optimization approach to calculating the fusion weights has also been

provided. The approach requires one matrix inversion and, hence, performs

faster.

� It has been shown that the existing strategy for calculation of fusion weights

in CI and ICI fails in the case of scalar estimates. Through an example, the

superiority of HMD in the fusion of such cases has been shown.

The rest of the chapter is organized as follows: In Section 3.3, the properties

of HMD fusion are reviewed along with standard track fusion techniques. Here,

the existing implementation for HMD, where the Gaussian mixture denominator is

approximated by a Gaussian density, is presented. We present a consistency analysis

of this implementation in Section 3.4. The relationship between ICI and HMD has also

been provided in this section, along with some comments on ICI. Section 3.5 provides

a new sample-based implementation of HMD and GMD using importance sampling-

like techniques. The comparison and results on multiple track-fusion scenarios are

presented in Section 3.6. Finally, the chapter is concluded in Section 3.7.

3.3 Harmonic Mean Density Fusion

Given any two probability density functions, p1(x) and p2(x), an interpolation be-

tween them can be constructed using an ω-weighted generalized mean,Mω(p1(x), p2(x)),
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also known as the Fréchet mean. Such generalized means can also be constructed as

a result of optimizing a unique f -divergence measure [54],

Mω(p1(x), p2(x)) = arg min
m(x)

2∑
i=1

ωiDf [m(x)||pi(x)] (3.3.1)

where Df (.) is a f -divergence [106], defined by,

Df [p(x)||q(x)] =

∫
q(x)f

(
p(x)

q(x)

)
dx (3.3.2)

with probability densities p(x) and q(x). f(t) is any convex function that is defined

for t > 0, with f(1) = 0 [33]. The resulting Fréchet mean is in general a mixture

probability distribution, which when normalized results in a valid probability density

function known as the ω-weighted M-mixture,

Mω

(
p1(xk), p2(xk)

)
=
Mω

(
p1(xk), p2(xk)

)
ζMω

(
p1(xk), p2(xk)

) , (3.3.3)

where ζMω

(
p1(xk), p2(xk)

)
is the normalization constant resulting from interpolation

of p1(x) and p2(x) to form an abstract mean Mω(.),

ζMω

(
p1(xk), p2(xk)

)
=

∫
Rn
Mω

(
p1(xk), p2(xk)

)
dx (3.3.4)
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In the case of HMD, we take the abstract mean as the harmonic mean of participating

local track densities. The resulting fused M-mixture pf (x) is,

1

pf (x)
∝Mh

ω

(
p1(x), p2(x)

)
=

ω

p1(x)
+

1− ω
p2(x)

(3.3.5)

=⇒ pf (x) ∝ p1(x)p2(x)

(1− ω)p1(x) + ωp2(x)
(3.3.6)

Where the proportionality constant is the normalization factor 1/ζMh
ω
(.). Note

that the mixture density in the denominator prohibits closed-form solutions, even for

the Gaussian case. Even with simple approximations, HMD-based track fusion was

found to perform exceptionally well compared to other track fusion strategies. Many

important properties of HMD akin to track fusion have been proven by the authors

in [84]. Some of these are,

(i) HMD avoids double counting of information, unlike naive fusion in (2.3.2).

Assuming conditional dependence, such that

p(z1|x) = p(z1/2|x)p(z1 ∩ z2|x), (3.3.7)

The notation p(z1/2|x) denotes the exclusive information present with sensor

track 1 relative to 2 such that p(z1/2|x) ∩ p(z2/1|x) = ø. It is easy to observe

that using HMD,

p(x|z1 ∪ z2) ∝ p(z1/2|x)p(z2/1|x)

(1− ω)p(z1/2|x) + ωp(z2/1|x)

× p(z1 ∩ z2|x)p(x). (3.3.8)
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Thus, the common information p(z1 ∩ z2|x) is only accounted once.

(ii) HMD has the potential to be a recursive fusion strategy since it is an abstract

mean. To illustrate, let p1, p2 and p3 be three local densities. Then, it can be

proved that

Mh
ω

(
p1, p2, p3

)
=Mh

ω

(
Mh

ω

(
p1, p2

)
, p3

)
, (3.3.9)

which makes it easier to fuse local tracks pairwise.

(iii) The second derivative of the normalization constant with respect to ω in case

of HMD can be proved to be always positive for valid local densities p1(x) and

p2(x). This suggests a convex nature of the normalization constant, like in the

case of GMD. It was also found that the normalization constant in the case of

HMD is less than that of GMD.

∫
Rn

p1(x)p2(x)

ω2p1(x) + ω1p2(x)
≤
∫
Rn

1

pω1
1 (x)pω2

2 (x)
(3.3.10)

Due to this property, the entropy of HMD can be proved to be less than that

of GMD when the densities are properly normalized. Thus, HMD produces

relatively tight estimates.

(iv) Since HMD is an abstract mean, it is bounded from above and below by partici-

pating densities. It ensures that the fusion can be performed unlimited number

of times, and the worse result we can get is the infimum of the set of partici-

pating densities.

A lot of work on conservative fusion in contemporary literature is focused on how
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to reduce the over-conservativeness of covariance intersection and its generalization. It

was shown in simulations of [84] that the HMD does not suffer from over-inflated fused

covariance, resulting in a superior accuracy. Also, in the simulations, the normalized

estimation error squared plots proved the consistency of HMD in such scenarios.

3.3.1 Average Divergence Minimization

Conservative fusion techniques like arithmetic and geometric averaging construct a

fused density by creating a mutual agreement between the participating local den-

sities. This mutual agreement is based on minimizing a metric between the output

density and each of the local density functions. Therefore, the techniques existing in

the literature are found to be a result of minimizing some average divergence measure.

� The covariance intersection and its generalization are a result of minimizing

ω-weighted average KL divergence.

� The arithmetic average density is a result of minimizing ω-weighted reverse KL

divergence.

While in [84], it was proved that the HMD has the potential to become a Kullback-

Leibler average density. Here, we prove that it actually results in a minimization of

the average Pearson χ2 divergence. Though, the divergence minimization in any of

the pooling techniques does not affect the fusion accuracy in any sense, it provides

an intuition about the geometry of the information process that the local density

undergoes during fusion.

Theorem 6. The harmonic mean density between p1(x) and p2(x) minimizes the ω-

weighted average Pearson χ2 divergence, and thus, the reverse Neyman χ2 divergence.
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Proof. Denote the ω-weighted average Pearson χ2 divergence by J , and the HMD by

ph(x), then,

J
(
ph(x)

)
=

2∑
i=1

ωiDχ2
P

(
ph(x)||pi(x)

)
=

2∑
i=1

ωi
1

2

∫ ∞
∞

(
ph(x)− pi(x)

)2

pi(x)
dx (3.3.11)

where Dχ2
P

stands for Pearson χ2 divergence. Note that there are two constraints

on ph(x), which are — 1. ph(x) ≥ 0, and 2.
∫
Rn ph(x) = 1. In order to proceed

with minimization using calculus of variations, we ignore the constraints and simply

minimize the functional. The minimized function will then be checked for validity of

a proper probability density function.

The condition of minimization is upon the first variation as,

δJ
(
ph(x)

)
=

d

dt

(
J
(
ph(x) + tgh(x)

))
t=0

= 0 (3.3.12)

Reversing the summation and integral in eqn. (3.3.11), and substituting in eqn.

(3.3.12),

δJ
(
ph(x)

)
=

∫ ∞
∞

1

2

2∑
i=1

ωi
d

dt

(
ph(x) + tgh(x)− pi(x)

)2

pi(x)
dx

=

∫ ∞
∞

1

2

2∑
i=1

ωi
2
(
ph(x) + tgh(x)

)
gh(x)− 2pi(x)gh(x)

pi(x)

=

∫ ∞
∞

2∑
i=1

ωi

[(
ph(x) + tgh(x)

)
pi(x)

− 1

]
gh(x) = 0 (3.3.13)
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Substituting t = 0 for the first variation, we get the following equation for ph(x)

ph(x)
2∑
i=1

ωi
pi(x)

=
2∑
i=1

ωi = 1 (3.3.14)

which implies,

ph(x) =
1

2∑
i=1

ωi
pi(x)

=
p1(x)p2(x)

ω2p1(x) + ω1p2(x)
(3.3.15)

In general, it can be proved that,

ph(x) =
1

N∑
i=1

ωi
pi(x)

(3.3.16)

where N is the number of local densities.

Since the participating local densities are valid pdfs, the first constraint for posi-

tivity is satisfied. The second constrained can be forced by normalizing the resulting

density with ζh =
∫
ph(x)d(x). The second variation can be shown to be positive,

which proves that the result is actually a minima.

δ2J
(
ph(x)

)
=

d2

dt2

(
J
(
ph(x) + tgh(x)

))
t=0

=

∫ ∞
∞

2∑
i=1

ωi
gh(x)2

pi(x)
dx ≥ 0. (3.3.17)

For proving the case for Dχ2
N

(.), the reverse Neyman divergence, it can be noted that

both Dχ2
N

(.) and Dχ2
P

(.) are special cases of α-divergence Dα(.) which satisfy the
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property,

Dχ2
P

(.) = D(α=2)

(
pi(x)||pj(x)

)
= D(α=−1)

(
pj(x)||pi(x)

)
= D′χ2

N
(.) (3.3.18)

where D′(.) stands for divergence obtained by reversing the arguments.

Note that the χ2 divergence between Gaussian densities only exists upon a certain

condition among the covariances. It can be easily proved that this condition is satisfied

for the fused density and participating local density. Hence the average divergence in

eqn. (3.3.11) will always exist. The proof is left for the readers.

3.3.2 Implementation using Gaussian Approximation

The simplest implementation of HMD takes the following form, when the denominator

in a Gaussian mixture is replaced by a Gaussian equivalent [84]. Let’s call this

implementation HMD-GA, which is given by (dropping time-step k for brevity),

1

ζMh
ω

p1(x)p2(x)

ω2p1(x) + ω1p2(x)
∝ p1(x)p2(x)

N
(
x;γhm,Γ

h
m

) (3.3.19)

which gives the fused mean and covariance as,

Γf =
(
Γ−1

1 + Γ−1
2 − Γh−1

m

)−1

, (3.3.20a)

x̂f = Γf
[
Γ−1

1 x̂1 + Γ−1
2 x̂2 − Γh−1

m γhm

]
, (3.3.20b)

where γhm and Γh
k are obtained using the Gaussian approximation of the mixture.

These quantities represent the mutual information due to cross-correlations, which

is subtracted once in (3.3.20). The implementation is simple, intuitive, and requires
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three matrix inversions, making it of the order O(n3), where n is the dimension of

state estimates. This is equivalent to all other fusion algorithms.

3.4 Consistency Analysis of HMD-GA

Using a Gaussian approximation for the mixture distribution in the denominator of

eqn. (3.3.6), we need to evaluate the consistency of our estimate. Even though the

simulations suggest HMD as a consistent fusion method, the spread-of-means term

in Gaussian approximation might pose a problem in convergence. In this section, we

present the conditions of consistency of HMD-GA in a general case.

Comparing the construction of HMD-GA in eqn. (3.3.20) with that of the op-

timal fusion equation in eqn. (4.3.3), it is easy to see that the mutual information

component in HMD
(
γhm,Γ

h
m

)
is the Gaussian equivalent of the mixture,

γhm = ω2x̂1 + ω1x̂2 (3.4.1)

Γh
m = ω2Γ1 + ω1Γ2 + Γ̃ (3.4.2)

where Γ̃ is the spread-of-means term, given by,

Γ̃ =
2∑
i=1

(1− ωi)
[
x̂i − γhm

] [
x̂i − γhm

]T
. (3.4.3)

Which can be manipulated and alternatively written as,

Γ̃ = ω1ω2 [x̂1 − x̂2] [x̂1 − x̂2]T (3.4.4)

Note that Γ̃ is a rank-one matrix, with an eigen-value ω1ω2 [x̂1 − x̂2]T [x̂1 − x̂2] with
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multiplicity 1, and the rest of the eigen-values zero with multiplicity n − 1; n being

the dimension of the state.

As per the definition of consistency, the estimate error with respect to the true

state of the target should match the covariance presented by the estimator. Mathe-

matically, the expected error should converge to its covariance matrix. If (x̂,Γ) is an

unbiased estimate pair, then it is needed that,

E [x− x̂] [x− x̂]T = Γ, (3.4.5)

at least asymptotically. Since in our problem the correlations between estimates are

missing, it is impossible to match eqn. (3.4.5), thus, we resort to the definition

of consistency as conservativeness in eqn. (2.3.6). Therefore, we are looking for a

pessimistic estimate of error covariance. As the current literature does, we will use

the words conservativeness and consistency interchangeably, even though this is not

true.

To analyze consistency, we first prove that HMD-GA provides an unbiased esti-

mate. Taking expectation on both sides of eqn. (3.3.20b), we get,

E
[
x̂f
]

= Γf
[
Γ−1

1 E [x̂1] + Γ−1
2 E [x̂2]− Γh−1

m E
[
γhm
]]
, (3.4.6)

The local estimates are assumed unbiased which means E[x̂1] = E[x̂2] = E[γhm] = x.

Thus,

E
[
x̂f
]

= Γf
(
Γf
)−1

x = x (3.4.7)
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wherein eqn. (3.3.20a) has been employed. Next, we calculate the estimation error

by subtracting eqn. (3.3.20b) from eqn. (3.4.6) (using the notation x̃ = x− x̂),

x̃f = Γf
[
Γ−1

1 x̃1 + Γ−1
2 x̃2 − Γh−1

m γ̃hm

]
(3.4.8)

Our requirement becomes,

Γf − E
[
x̃f (x̃f )T

]
� 0 (3.4.9)

which leads us to,

(
Γf
)
− Γf

[
Γ−1

1 + Γ−1
2 + Γ−1

1 Γ12Γ
−1
2 + Γ−1

2 Γ21Γ
−1
1

−
(
ω2Γ

−1
1 Γ12 + ω1Γ

−1
2 Γ21

)
Γh−1

m + Γh−1

m

+ Γh−1

m

(
ω2Γ21Γ

−1
1 + ω1Γ12Γ

−1
2

) ]
Γf � 0 (3.4.10)

where Γ12 is the cross-correlation matrix between the estimation error of x̂1 and x̂2. It

has also been assumed that γhm,Γ
h
m form a consistent pair, such that E

[
γ̃hm
(
γ̃hm
)T]

=

Γh
m. Multiplying both sides by Γf−1

and using eqn. (3.3.20a), we get,

(
ω2Γ

−1
1 Γ12Γ

h−1

m + ω1Γ
h−1

m Γ12Γ
−1
2 − Γ−1

1 Γ12Γ
−1
2

)
+(

ω1Γ
−1
2 Γ21Γ

h−1

m + ω2Γ
h−1

m Γ21Γ
−1
1 − Γ−1

2 Γ21Γ
−1
1

)
� 0 (3.4.11)

For positive semi-definiteness (PSD) of the left hand side, each of the term inside

parenthesis should be PSD. Evaluating each term, we can find sufficient condition for
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consistency. The first term on LHS states,

ω2Γ
−1
1 Γ12Γ

h−1

m + ω1Γ
h−1

m Γ12Γ
−1
2 − αΓ−1

1 Γ12Γ
−1
2 − (1− α)Γ−1

1 Γ12Γ
−1
2 � 0 (3.4.12)

for any α ∈ [0, 1]. The final step is to aggregate similar terms and evaluate for

positive-definiteness, which gives,

ω2Γ
h−1

m � αΓ−1
1 and, ω2Γ

h−1

m � (1− α)Γ−1
2 (3.4.13)

The resulting condition is,

Γh
m �

ω

α
Γ1 +

1− ω
1− α

Γ2 (3.4.14)

where α can be conveniently chosen as equal to ω which produces the condition,

Γh
m � Γ1 + Γ2 (3.4.15)

Same result can be produced from second block in eqn. (3.4.11). This upper limit

follows for all fusion methods following the structure mentioned in eqn. (3.4.32) and

using γhm. It is easy to see that in naive fusion, Γh
m −→∞, producing an inconsistent

estimate.

We can interpret the relation using the linear correlation coefficient ρ, which takes

positive values in the case of homogeneous track fusion. When ρ = 0, it is obvious

that the estimates are independent and HMD-GA is therefore consistent. The case of

perfect correlation, ρ = 1 can be understood using the following assumption for the
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local track estimate,

x̂i = x + vi (3.4.16)

where x is the true value and the corresponding noise term, vi is sampled from the

distribution N (0,Γi). This simply follows from the unbiased-ness and consistency of

the local tracker. In case of perfect correlation, the local estimates x̂i and x̂j, both

following the relation in eqn. (3.4.16), should exhibit a linear relationship,

x̂1 = Ax̂2 + B (3.4.17)

It follows from unbiasedness that A = I and B = 0, where I is the identity matrix of

appropriate order. Thus, x̂1 = x̂2 should follow and HMD-GA effectively reduces to

inverse covariance intersection which is proven as a consistent method in [74].

Replacing the spread-of-means term in eqn. (3.4.4) by its expected value,

E
[
Γ̃
]

= ω1ω2 [Γ1 + Γ2 − Γ12 − Γ21] (3.4.18)

then, the mutual information component subtracted by the bound given in eqn.

(3.4.15) is given by,

E
[
Γh
m

]
− [Γ1 + Γ2] = Γ1 [ω2 + ω1ω2 − 1] + Γ2 [ω1 + ω1ω2 − 1]− ω1ω2 [Γ12 + Γ21]

(3.4.19)

has to be negative-definite for consistency. This requires the cross-covariance matrices

Γ12 and Γ12 to be positive definite. From the Bar-Shalom-Campo formula [9, 10], we
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know that (at sample-time k),

Γ12
k =

(
I−K1

kH
1
k

)
Fk−1Γ

12
k−1F

T
k−1

(
I−K2

kH
2
k

)T
+
(
I−K1

kH
1
k

)
Qk−1

(
I−K2

kH
2
k

)T
(3.4.20)

which proves that the cross-covariance matrices are indeed positive-definite (in the

case of homogeneous case only). Here, the superscript denotes node, K is the Kalman

gain, H is the measurement mapping matrix, F is the state-transition matrix, and Q is

the process-noise covariance matrix. The subscript denotes time, and the superscript

denotes node.

Therefore, as long as the spread-of-means term is around its expected value, HMD-

GA provides consistent results. This strongly requires consistency of individual esti-

mate.

Intuitively, for scalar estimates (x̂1, σ
2
1) and (x̂2, σ

2
2), it follows that,

x̃1 = x̂1 − x ≤ ±1.96σ1, with 95% confidence (3.4.21)

and same for x̂2. Thus, the spread-of-means term in this case satisfies the following

inequality (using the same confidence level),

[x̂1 − x̂2]2 = [x̃1 − x̃2]2 ≤ 3.84 max(σ2
1, σ

2
2) (3.4.22)

since due to positivity of E
[
x̃1x̃

T
2

]
, both x̂1 and x̂2 need to be on the same side of

their respective means. The conditions of consistency in this case, evaluated using
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eqn. (3.4.15) is,

max(σ2
1, σ

2
2) ≤ 1

3.84

[
σ2

1

ω1

+
σ2

2

ω2

]
(3.4.23)

which asserts the consistency of HMD-GA for all practical values of ω1. The condition

can be further relaxed by using a lower confidence level or a tighter bound in eqn.

(3.4.22).

It can also be proved that without Γ̃, Γh
m is consistent and exactly becomes inverse

covariance intersection, which is discussed next.

3.4.1 Relation with ICI

Observing the implementation of HMD-GA in eqn. (3.3.20), its similarity with in-

verse covariance intersection (ICI) is obvious. ICI can be considered as the forced-

consistent implementation of HMD-GA by removing the spread-of-means term in

Gaussian approximation of the mixture. The main motivation behind using ICI is its

consistency and a non-inflated covariance compared to covariance intersection. How-

ever, it doesn’t enjoy the fruits of being a natural and generalized fusion algorithm

like HMD and GMD. The fusion equation for ICI are,

ΓICI =
[
(Γ1)−1 + (Γ2)−1 − (ω1Γ1 + ω2Γ2)−1]−1

x̂ICI =

[
(Γ1)−1 x̂1 + (Γ2)−1 x̂2 − (ω1Γ1 + ω2Γ2)−1 (ω1x̂1 + ω2x̂2)

]
(3.4.24)

with ω1 = (1−ω2) as before. Note that the fusion weights have been interchanged in

comparison to HMD-GA. This doesn’t result in any loss of generalization.
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Correlation Structure Employed for ICI

In [74], a specific correlation structure was considered for the analysis and derivation

of ICI. A general form of this structure including independent and non-independent

data-sets are shown in Fig. 3.1 and Fig. 3.2

x|z1 x|z2

Figure 3.1: Independent Dataset

x|z1/2

x|z1 ∩ z2

x|z2/1

Figure 3.2: Non-independent Dataset [48]

Where the notation z1/2 denotes measurement data contained in node 1 which is

exclusive to node 2. Using the concept of conditional independence depicted in Fig.

3.2 and the Bayes’ theorem, the conditional density based on common information

can be written as,

P (x|z1) = P (x|z1/2)P (x|z1 ∩ z2)

⇒P (x|z1 ∩ z2) =
P (x|z1)

P (x|z1/2)
(3.4.25)

Incorporating the information from another sensor and using the fact that P (x|z2 ∩

z1) = P (x|z1 ∩ z2), it can be concluded that,

P (x|z1 ∩ z2) =
1

2

P (x|z1)

P (x|z1/2)
+

1

2

P (x|z2)

P (x|z2/1)
(3.4.26)
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which is clearly a mixture density, similar to the mutual information component in

the denominator of generalized HMD in eqn. (3.3.6).

The correlation structure mentioned here is directly in-line with that presented in

[73, 74, 85] with the assumption of Gaussianity of all components. If P (x|z1 ∩ z2) =

P (x|z2 ∩ z1) are assumed to be Gaussian distributed as N (x;γm,Γm, ), and the

independent component in a track P (x|z1/2) is Gaussian as N
(
x;γ ind

1 ,Γind
1

)
, then

the local track density is (using eqn. (3.4.25) ),

P (x|z1) = P (x|z1/2)P (x|z1 ∩ z2)

∝ N (x; x̂1,Γ1) (3.4.27)

where

(Γ1)−1 =
(
Γ−1
m +

(
Γind

1

)−1
)

(3.4.28)

x̂1 = Γ1

((
Γind

1

)−1
γ ind

1 + Γ−1
m γm

)
(3.4.29)

which are the local track density parameters for Gaussian case. Similarly for the node

j,

(Γ2)−1 =
(
Γ−1
m +

(
Γind

2

)−1
)

(3.4.30)

x̂j = Γ2

((
Γind

2

)−1
γ ind

2 + Γ−1
m γm

)
(3.4.31)

If the mutual information component Γm,γm is known, then the optimal fusion is

simply the ratio of the product of local densities and the mutual information, as in
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eqn. (4.3.3). The result is,

Γf =
(
(Γ1)−1 + (Γ2)−1 − Γ−1

m

)
(3.4.32a)

x̂f =
(
(Γ1)−1 x̂1 + (Γ2)−1 x̂2 − Γ−1

m γm
)

(3.4.32b)

where Γf , x̂f are the parameter of fused (Gaussian) density.

It is easy to prove that the resulting cross-correlation matrix according to the

proposed correlation structure is,

E
[
x̃1 (x̃2)T

]
= Γ1Γ

−1
m Γ2 (3.4.33)

3.4.2 Contradictions in the design of ICI

There are minor flaws in the design of ICI which are also evident from the afore-

mentioned correlation structure it uses. In relation to eqn. (3.4.32), the mutual

information component ICI uses are,

ΓICI
m = (ω1Γ1 + ω2Γ2) ; γICI

m = (ω1x̂1 + ω2x̂2) (3.4.34)

which do not form a consistent pair for the estimate of x as a mutual component like

in the case of HMD-GA. In relation to the correlation structure presented below, this

flaw is akin to using a Kalman filter with optimistic sensor/process noise covariance.

In such a case, the bound derived in eqn. (3.4.15) is no longer valid, and incon-

sistency of (γICI
m ,ΓICI

m ) needs to be additionally accounted for. Thus, in case of ICI,
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eqn. (3.4.11) becomes,

(
ω2Γ

−1
1 Γ12Γ

ICI−1

m + ω1Γ
ICI−1

m Γ12Γ
−1
2 − Γ−1

1 Γ12Γ
−1
2

)
+(

ω1Γ
−1
2 Γ21Γ

ICI−1

m + ω2Γ
ICI−1

m Γ21Γ
−1
1 − Γ−1

2 Γ21Γ
−1
1

)
− ΓICI−1

m Γ̃ΓICI−1

m � 0 (3.4.35)

Where Γ̃ is the spread-of-means term since E
[
γ̃ICI
m

(
γ̃ICI
m

)T]
= ΓICI

m +Γ̃. Eqn. (3.4.35)

reveals a tighter consistency bound on ΓICI−1

m than in the case of HMD-GA.

In [74], the consistency of ICI was proved by comparing it with optimal track-

fusion covariance instead of its own mean-squared error. It should be noted that

optimal track-fusion algorithm is only a local optima, and only centralized track

fusion is known to be efficient (reaches Cramér-Rao bound [13]), for linear case and

full communication rate [12].

The ICI was designed to satisfy the aforementioned correlation structure [74].

With respect to eqn. (3.4.29) and eqn. (3.4.31), the necessary conditions on the

covariances involved are,

� As Γind
1 and Γind

2 are the covariance of independent component of x, they have

to be at least positive semi-definite.

� Since, according to the correlation structure, Γ1 and Γ2 are the result of naive fu-

sion of dependent and independent components, the resulting covariance should

be smaller than or equal to those components. Thus,

Γm ≥ Γ1; Γm ≥ Γ2 (3.4.36)
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Now consider the approximation of Γm employed by ICI in eqn. (3.4.34) which

suggest a clear violation of eqn. (3.4.36), since ΓICI
m ≥ min (Γ1,Γ2) always hold.

For γm = (ω1x̂1 + ω2x̂2), it can be proved that the requirement for consistency of

overall fused estimate is,

Γm ≤ ωΓ1 + (1− ω)Γ2 (3.4.37)

ICI uses this exact upper bound for the correlation component due to which it is

always consistent. But eqns. (3.4.37) and (3.4.36) are in direct contradiction of each

other. Therefore, ICI tends to break the exact correlation structure it was derived

from.

3.4.3 Extending Inverse Covariance Intersection to Gaussian

Mixtures

Nevertheless, ICI is a very effective and consistent fusion methodology, which was

proposed only for Gaussian densities. Using the fact that ICI can be generated as a

special case of HMD-GA by neglecting the spread-of-means terms (and interchanging

fusion weights), it is possible to extend it to Gaussian mixtures. Considering the

following Gaussian mixtures corresponding to local tracks i and j.

p(x|zi) =
M∑
m=1

αmN (x, x̂m,Γm), (3.4.38a)

p(x|zj) =
N∑
n=1

βnN (x, λ̂n,Λn), (3.4.38b)
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where the notations are self-explanatory. The resulting fused Gaussian mixture using

ICI is,

p(x|zi ∪ zj) =
M∑
m=1

N∑
n=1

κm,nαmβnN
(
x; x̂fm,n,Γ

f
m,n

)
(3.4.39)

where the quantities are,

κm,n =
N
(
x̂m; λ̂n,Γm + Λn

)
N
(
γICI; x̂naive

m,n ,Γ
ICI − Γnaive

m,n

) × ∣∣ΓICI − Γnaive
m,n

∣∣∣∣Γnaive
m,n

∣∣ (3.4.40)

The quantities
(
x̂naive
m,n ,Γ

naive
m,n

)
refer to the naive fusion of mth and nth components

respectively.

Γnaive
m,n =

[
Γ−1
m + Λ−1

n

]−1
; x̂naive

m,n = Γnaive
m,n

[
Γ−1
m x̂m + Λ−1

n λ̂n

]

The quantities
(
γICI,ΓICI

)
refer to the mutual information component for Gaussian

mixtures. These quantities are given by,

γICI = ω1

M∑
m=1

αmx̂m + ω2

N∑
n=1

βnλ̂n, ΓICI = ω1

M∑
m=1

αmΓm + ω2

N∑
n=1

βnΛn (3.4.41)

The final fused mean and covariance for each component in eqn. (3.4.39) are,

Γf
m,n =

[
Γ−1
m + Γ−1

n −
(
ΓICI

)−1
]−1

(3.4.42)

x̂fm,n = Γf
m,n

[
Γ−1
m x̂m + Γ−1

n x̂n −
(
ΓICI

)−1
γICI

]
(3.4.43)

The result is very similar to the Gaussian mixture implementation of HMD-GA in

[84].
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3.5 Generalized Mean Density Fusion using Im-

portance Sampling.

Unlike HMD, geometric mean density fusion doesn’t enjoy applicability to Gaussian

mixtures with just one approximation. Although generalized Chernoff fusion and

sigma-point-based Chernoff fusion are viable alternatives to the fusion of Gaussian

mixtures, sampling-based alternatives are needed in some situations, especially in the

case of low-precision systems where matrix inversion is not accurate. The non-positive

definiteness of fused covariance matrices is another problem in such scenarios. Sam-

pling methods also provide us with the option of fusing Gaussian and non-Gaussian

local tracks together with no approximations. Such methods would also be useful

in cases where track densities have to undergo non-linear transformations, like in

heterogeneous fusion.

In [3], the concern of Gaussian mixture-based fusion was discussed using impor-

tance sampling. The focus of the paper was on different choices of proposal density

to sample from. Here we show that due to the nature of expressions of generalized

mean density-based fusion, the requirement of proposal density is nullified.

We explain the procedure of calculating a generalized expectation of a function

using importance sampling in the case of GMD by approximating its expression with

a Gaussian. This requires calculating its first- and second-order moments. Using

importance sampling, the expectation of a function f (x) with respect to a density

p (x) can be calculated as

E [f (x)]p(x) =

∫
f (x) p(x)dx =

∫
f (x) p(x)

q(x)
q(x)dx = E

[
p(x)

q(x)
f (x)

]
q(x)

(3.5.1)
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where q(x) is the proposal density which is relatively easy to sample from, in com-

parison to p(x). The expectation can then be computed using samples xn from q(x)

as,

E
[
p(x)

q(x)
f (x)

]
q(x)

=
1

N

N∑
n=1

f (xn) p(xn)

q(xn)
(3.5.2)

where N is the number of samples.

Now, Lets observe the expression for geometric mean density fusion,

pg(x) ∝ p1(x)p2(x)

(p1(x))ω2 (p2(x))ω1
(3.5.3)

where p1(x), p2(x) are the local track densities and ω1, ω2 are the fusion weights. The

proportionality constant is the normalization factor ζg such that the pg(x) is a valid

density. For now, let’s assume that p1(x) is Gaussian (or easy to sample from).

Due to the structure of GMD, a generalized expectation with respect to pg(x) can

be expressed as,

E[f (x)]pg(x) =
1

ζg

∫
f (x)

p1(x)p2(x)

(p1(x))ω2 (p2(x))ω1
dx

=
1

ζg

∫
f (x)

p2(x)

(p1(x))ω2 (p2(x))ω1
p1(x)dx

= E
[

f (x)
p2(x)

(p1(x))ω2 (p2(x))ω1

]
p1(x)

(3.5.4)

Due to Gaussianity of p1(x), it is easy to sample from. The resulting expectation can
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be computed using the following summation,

E[f (x)]pg(x) =
1

ζg

N∑
n=1

f (xn)
p2(xn)

(p1(xn))ω2 (p2(xn))ω1
(3.5.5)

with xn being samples from p1(x). Note that due to symmetry of the mean-density

expressions, it is also possible to obtain the expectation in question using samples

from p2(x)

E[f (x)]pg(x) = E
[

f (x)
p1(x)

(p1(x))ω2 (p2(x))ω1

]
p2(x)

(3.5.6)

In comparison to HMD, the expression for GMD in eqn. (3.5.3) only differs in the

approximation of mutual information component in the denominator. Hence HMD

also enjoys sampling based evaluation with some obvious changes in eqns. (3.5.4) and

(3.5.6). Note that the normalization constant also needs to be calculated which is

given by,

ζg = E[1] =
N∑
n=1

p1(xn)

(p1(xn))ω2 (p2(xn))ω1
=

N∑
n=1

p2(xn)

(p1(xn))ω2 (p2(xn))ω1
(3.5.7)

where, again, samples from either p1(xn) or p1(xn) can be used with relevant expres-

sion. The evaluation of normalization constant for HMD follows similarly.
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3.5.1 Sampling based fusion of Gaussian Mixtures

Considering the Gaussian mixtures in eqn. (3.4.38), the resulting GMD is then,

pg(x) =
M∑
m=1

N∑
n=1

αmβn
N (x; x̂m,Γm)N

(
x; λ̂n,Λn

)
(p(x|zi))ω2 (p(x|zj))ω1

(3.5.8)

The trick we are going to use here is to approximate the last fraction in the R.H.S.

of eqn. (3.5.8) as a Gaussian density using the sampling method proposed before.

Thus,

N (x; x̂m,Γm)N
(
x; λ̂n,Λn

)
(p(x|zi))ω2 (p(x|zj))ω1

≈ 1

ζ
N (x; x̂m,ns ,Γm,n

s ) (3.5.9)

where ζ is the scaling factor so that the ratio is a valid probability distribution. The

mean, x̂m,ns is given by,

x̂m,ns =
1

ζ

S∑
s=1

xs
N
(
xs; λ̂n,Λn

)
(p(xs|zi))ω2 (p(xs|zj))ω1

=
1

ζ

S∑
s=1

xs
N (xs; x̂m,Γm)

(p(xs|zi))ω2 (p(xs|zj))ω1
(3.5.10)

depending upon whether N (x; x̂m,Γm) or N
(
xs; λ̂n,Λn

)
is used for sampling. Cal-

culation of Γm,n
s follows similarly.

Γm,n
s =

1

ζ

S∑
s=1

(xs)(xs)
T

N
(
xs; λ̂n,Λn

)
(p(xs|zi))ω2 (p(xs|zj))ω1

− (x̂m,ns )(x̂m,ns )T , (3.5.11)
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whenN (xs; x̂m,Γm) is used for sampling. Note that calculation of ζ is required which

is straightforward as in eqn. (3.5.7). The resulting fused Gaussian mixture is then,

pg(x) =
M∑
m=1

N∑
n=1

αmβnN (x; x̂m,ns ,Γm,n
s ) (3.5.12)

Similar results can be derived for HMD.

3.5.2 Which Density to Sample From ?

An intuition for fused density is that it lies at the intersection of local track densities.

Depending on the number of samples, sampling from a single distribution might

lead the fused density to orient towards the only distribution sampled from. Thus,

if the problem enjoys the flexibility of sampling from both distributions, one can

opt to utilize samples from one distribution over the other. This depends on the

normalization weights in the importance sampling method.

Considering eqns. (3.5.4) and (3.5.6), suppose the user samples x1
s and x2

s from

pdfs p1(x) and p2(x) respectively. Then, one should choose the sample which gives a

larger value of normalization weight. Therefore, choose x1
s if,

p2(x1
s)

(p1(x1
s))

ω2 (p2(x1
s))

ω1
≥ p1(x2

s)

(p1(x2
s))

ω2 (p2(x2
s))

ω1
(3.5.13)

else, choose x2
s. Note that in contemporary systems, sampling from normal distribu-

tion can be easily parallelized, resulting in much faster processing using a GPU.

Finally, for demonstrating the case of fusing two Gaussian densities using the

proposed sampling strategy, an example is set up, the results of which are shown in
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Fig. 3.3. The local track densities are,

p1(x) = N
(

x;

0.5

1

 ,
2.5 −1

−1 1.2

), p2(x) = N
(

x;

2

1

 ,
 0.8 −0.5

−0.5 4

)

(3.5.14)

where 5000 samples were used from both the distribution based on eqn. (3.5.13).

As expected, the Geometric mean-density fusion, which is an analogue of CI, has the

largest uncertainty region. Note that covariance of HMD-GA is less than HMD-S

which is obvious since the mutual information component in the former is approxi-

mated by a Gaussian distribution which has the largest entropy and hence the highest

covariance. Therefore, the resulting fused covariance is minimum.

The sampling method allow us to vary conservativeness with ease. To demonstrate

this, we use an inflation factor α ≥ 1, and sample from the same densities but inflated

covariance, Γ′ = αΓ. The resulting uncertainty regions are shown in Fig. 3.3b. Small

variations in α lead to a resulting covariance even grater than GMD, without any

changes in computation. Such results would be helpful in track fusion cases where the

local densities suffer from inconsistency, track bias, anomalies or adversarial attacks.

For the case of Gaussian mixtures, we consider the following track densities,

p1(x) = 0.3N

x;

−0.5

3

 ,
2.5 −1

−1 1.2


+ 0.7N

x;

 2

0.3

 ,
 0.8 −0.5

−0.5 4




p1(x) = 0.4N

x;

−1.5

1

 ,
2.5 −1

−1 1.2


+ 0.6N

x;

 3

−4

 ,
 0.8 −0.5

−0.5 4



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Figure 3.3: Uncertainty region (86.5%) for HMD and GMD fusion of Gaussian
densities using proposed sampling technique.

The corresponding mode covariance is kept the same in both the densities without

any loss of generalization. The local densities are plotted in Figs. 3.4a and 3.4b, and

the corresponding fused mixtures are plotted in Figs. 3.4c and 3.4d for the cases of

GMD and HMD, respectively. Interestingly, both the HMD and GMD mixtures lie

at the intersection of local uncertainty regions, as in the case of Gaussian densities,

with the uncertainty in HMD-S being less than that in GMD-S, as expected. Again,

5000 samples were used in the simulation.
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(c) Fused mixture density using GMD.
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(d) Fused mixture density using HMD.

Figure 3.4: Fusion of Gaussian mixtures using proposed sampling technique.

3.6 Simulations

To assess the performance of HMD, especially its consistency, we performed a rigorous

evaluation based on three different simulation scenarios. Note that HMD-GA was

shown to produce the least covariance, which is also shown in Fig. 3.3a. Therefore, we

preferred using HMD-GA for comparison in order to establish empirical consistency.

In sampling-based methods, the main question of consistency can be tackled easily,
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which is evident in Fig. 3.3b, which is why we kept it out of this section. Another

reason for not testing sampling-based methods is the computational time involved in

sampling in addition to Monte-Carlo (MC) runs.

We first discuss the evaluation of fusion weights for the proposed HMD-GA fusion.

The findings are interesting in the case of scalar estimates. Among the simulation

scenarios, the first two cases are aimed at only consistency, and no error-based per-

formance metrics are employed. The third simulation is aimed at evaluating the

performance of HMD-GA in a real-life multi-target, multi-sensor tracking scenario

wherein the fusion center is equipped with memory. Due to the huge sensor coverage

of 300 km, the local tracks become inconsistent due to the curvature of cross-range

uncertainty, and thus the consistency of the fusion methodology cannot be guaranteed

among any of the fusion methodologies discussed in this chapter.

The aim of this section is to deem HMD, especially HMD-GA, a viable candidate

for generalized fusion of processed densities, which is divided into two phases based

on the aim, viz., consistency-based and performance-based scenarios.

3.6.1 Fusion Weights

The fundamental basis of computing fusion weight ω in all conservative fusion tech-

niques is to minimize some scalar function of output (reported) covariance. Through-

out the literature, this problem has been perceived from the angles of minimizing the

entropy of the fused estimate, or in Mahler’s words, to increase the peakiness of the

fused distribution [49], both of which tend to incline towards minimizing the fused

covariance in the Gaussian case.

Based on such heuristics, we try to optimize ω such that output covariance is
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minimized, but from a different angle. We attempt to maximize the mutual infor-

mation component, which also results in the minimization of fused covariance. The

optimization becomes,

ω∗ = arg min
ω

f

[(
(1− ω)Γ1 + ωΓ2 + Γ̃

)−1
]

(3.6.1)

where Γ̃ which also depends on ω, is defined in eqn. (3.4.4); and f [.] is any scalar

representation of a matrix like a determinant or trace. The reason for a different

optimization approach is that covariance inflation is not a problem in HMD-GA, so

the user should not be concerned about minimizing it. Note that this optimization

is slightly faster to compute as compared to that in CI and ICI since it requires only

one matrix inversion compared to 2 and 3 in CI and ICI, respectively.

Table 3.1 reports the computation times for implementing different fusion algo-

rithms relative to naive fusion. All algorithms calculate fusion weights to minimize

their respective covariances whereas eqn. (3.6.1) is employed in the case of HMD-GA.

Ellipsoidal intersection (EI) [85], which does not require calculating fusion weights,

is also included for comparison.

Table 3.1: Relative computational time of fusion algorithms.

Naive CI ICI EI HMD-GA

Relative Time 1 3.74 4.43 4.09 3.68

An interesting point can be observed in the case of scalar estimates. The fusion
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weight in the case of CI is calculated as (Γ1,Γ2 are scalars),

ω∗ = arg min
ω

[
ωΓ−1

1 + (1− ω)Γ−1
2

]−1

= arg min
ω

[Γ1 + ω (Γ2 − Γ1)]−1

=


0, if Γ1 > Γ2

1, if Γ2 > Γ1

(3.6.2)

Similarly in the case of ICI, the given optimization problem becomes,

ω∗ = arg min
ω

[
1

Γ1

+
1

Γ2

− 1

ωΓ1 + (1− ω)Γ2

]−1

= arg max
ω

[ωΓ1 + (1− ω)Γ2]

=


1, if Γ1 > Γ2

0, if Γ2 > Γ1

(3.6.3)

Thus, the result in both cases is the local track estimate corresponding to the least

covariance. This property renders using CI and ICI useless in the case of scalar track

fusion, even though the results are consistent (assuming participating densities are

consistent). Due to the presence of the spread-of-means term, HMD-GA does not

suffer from any such problem.

To support this claim, a scalar parameter estimation problem was set up wherein
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the state xk and measurements zk at instant k are described by the following equa-

tions,

xk = xk−1 + wk−1 (3.6.4)

zk = xk + vk (3.6.5)

where the noise parameters wk−1 and vk are zero-mean Gaussian and mutually cor-

related with a correlation coefficient ρ. The correlation is assumed to be unknown,

and at each instant, the prior distribution is attempted to fuse with the measure-

ment distribution using conservative techniques. The fusion weight ω, averaged over

500 Monte-Carlo runs, is shown in Fig. 3.5. As observed, the fusion weight in the

case of CI is always 0, and in the case of ICI, it is always 1. Thus, the output of

these algorithms is the measurement itself. The figure proves that the only fusion

performed here is in the case of HMD-GA, with an average fusion weight value 0.2.

Thus, measurement is given more weight, but prior information is also fused.

3.6.2 Consistency-Based Test 1

For consistency based test, we re-developed the scenarios employed in [73] and [74].

The tests are aimed at testing consistency by visualizing covariance ellipsoids after

averaging them over a large number of Monte-Carlo runs. The setup for the first test

consists of 10 nodes in a configuration as shown in Fig. 3.6a. The transmission of

information follows the direction of arrows in the figure. For e.g. node S7 receives

estimates from nodes S4 and S5 which also gather estimates from nodes S1 and

S2 respectively. Network flow for rest of the nodes follow similarly. Each node is
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Figure 3.5: Comparison of fusion weights in case of scalar estimates.

capable of processing the local measurements using a local Kalman filter (KF) before

transmitting or fusing it with incoming tracks as per the network. No ambiguity on

time-synchronization or sensor-bias has been included in the problem.

During an MC run, each node is initialized by sampling from the distribution,

N


0

0

 ,
2 0

0 2


. The measurement matrix at each node i is,

Hi =

sin
(
π
2
. i
10

)
cos
(
π
2
. i
10

)
cos
(
π
2
. i
10

)
sin
(
π
2
. i
10

)
 , (3.6.6)

in addition to the zero-mean Gaussian measurement noise with variance Ri = 0.2I2.

Initial estimate at each node is updated using the local measurement using a standard

KF and then fused with other nodes along the path. At the end of transmission,
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fused estimates are received at node S10, where we compare the reported covariance

ellipsoids for each fusion methodology with the sample covariance ellipsoids, averaged

over 50,000 MC runs. The algorithms used for comparison are covariance intersection,

inverse-covariance intersection, naive fusion, among which the latter is proven to be

inconsistent. Also, as a baseline, centralized fusion is employed which is optimal in

the sense of minimum-mean square error.

Among the covariance ellipsoids plotted in Fig. 3.6a, it can be seen that central-

ized fusion is consistent with respect to the sample covariance, E
[
(x̂i − x)(x̂i − x)T

]
.

The naive fusion produces a highly inconsistent ellipsoid as the reported covariance

overestimates the actual error-covariance by a big margin. This is obviously due

to double counting of common information. As expected, the ICI and CI produce

conservative estimates with CI producing a heavily bloated covariance compared to

the sample covariance. Not surprisingly, the least conservative result is produced by

HMD-GA with actual error even tighter than ICI.

3.6.3 Consistency-Based Test 2

The source of correlation in the first scenario was only due to process noise, since

there was no measurement history. To check the performance of the proposed fusion

algorithm due to the presence of both correlations, we evaluated the consistency of

HMD-GA on another scenario presented in Fig. 3.6b. The difference here is that

the local nodes are allowed to process measurements over five time steps before the

estimates are sent to node S5, as per the network configuration. Again, the reported

covariance is compared with the sampled covariance averaged over 50,000 MC runs.

Since the two-dimensional state is now evolving with time, the following linear model
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is used for propagation,

xk+1 = Fkxk + wk (3.6.7)

where the state-transition matrix Fk =

1 0.5

0 1

, the zero-mean process noise wk

follows the distribution N (0, 0.5I2) with In being an n-dimensional identity matrix.

The observation model at node i is,

zik = Hkxk + vik (3.6.8)

where Hk = I2 and vik is sampled from a zero-mean Gaussian distribution with

covariance

0.5 0

0 0.2

 for nodes S1, S3 and S5; and

0.1 0

0 0.5

 for nodes S2, S4. The

initial estimate at each node is sampled from the distribution N


0

0

 ,
2 1

1 2


.

The results are shown in Fig. 3.8, wherein again, the centralized fusion is com-

pletely consistent, whereas the naive result severely fails to produce a consistent

estimate. In this scenario as well, HMD-GA produces the least conservative result,

followed by ICI, and then CI, which produces the largest covariance. Also note that

along with the reported covariance, the actual error in the case of HMD-GA is also

less compared to other conservative fusion methods, with the size of the covariance el-

lipsoid almost equaling the centralized fusion result. In both of these cases, HMD-GA

has been shown to perform well in scenarios with both sources of correlation.
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Figure 3.6: Scenarios : Consistency based tests.
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(e) HMD-GA.

Figure 3.7: Fusion result for consistency-based test 1.
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Figure 3.8: Fusion result for consistency-based test 2.

3.6.4 A Practical Multi-Target Tracking Scenario.

While, the tests in the previous subsections prove the consistency of the proposed

algorithm, they lack practicality in the sense that they are oversimplified. For ex-

ample, the linear measurement assumption guarantees that the local Kalman filter

is consistent. In addition, the total number of measurements was low in compari-

son to a real-life scenario to prove that the repeated fusion of the same track using

the proposed method doesn’t hamper consistency. An anticipated metric such as

108



Ph.D. Thesis – N. Sharma McMaster University – ECE

root-mean-square error (RMSE) is also missing in the earlier simulations.

This scenario consists of three radars surrounded by 20 targets within a significant

amount of clutter, as shown in Fig. 3.9a. The sensors have a limited field of view

(FOV), as can be seen with the circular markers around the radar in the same figure.

All the radars are equipped with local processors such that only updated tracks are

sent to the fusion center (FC) every Tf seconds. The FC is assumed to be collocated

with Radar 1. As in the previous simulations, ambiguity in time synchronizations

and sensor biases have been ignored in this scenario. The scenario parameters are

listed in Table 4.3. The targets move in an area spanning nearly 3600 km2 whereas

the sensors are static at coordinates mentioned in Table 3.3. Geodetic coordinates of

targets according to the WGS84 datum are also provided for replication. Note that

a nearly constant velocity (NCV) model is used in tracking, which the target doesn’t

adhere to, resulting in spikes in the RMSE plots. We tackle this phenomenon by

using a relatively high process noise intensity. The scenario is considered sufficiently

pragmatic due to the following features :
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(a) Multi-target multi-sensor scenario used
in section 3.6.4.
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(b) Finalized tracks (among clutter) using
HMD-GA.

(i) On average, the targets are at least a hundred kilometers far from a sensor. The

curvature of cross-range uncertainty is a known phenomenon while tracking at
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Table 3.2: Simulation parameters – Scenario 2

Parameter Value

Process noise intensity (q̃) 0.15 m2/s3

Number of targets 20
Detection probability 0.99
False alarm probability (Pfa) 10−6

Clutter density (λ) 10−6

Maximum target speed 30 m/s
Number of sensors 3
Sensor type Monostatic 2-D Radar
Sensor coverage 300, 000 m× 360◦

Sensor std. deviation - range (σr) 50 m
Sensor std. deviation - azimuth (σθ) 2◦

Gating threshold (µ) 0.95
Track deletion threshold (num. of misses) 6
Track loss threshold 500 m
Fusion sample period (Tf ) 10 seconds
Total simulation time 4537 seconds
Sensor sample time 2 seconds

such distances, due to which local consistency is impacted. For more details on

this topic, readers are referred to [93].

(ii) Local trackers do not enjoy a clear view. Due to the high volume of clutter, the

probability data association (PDA) tracker [53] is employed.

(iii) The targets do not necessarily adhere to the state-space motion model employed

by local trackers.

(iv) Track association at the fusion center is performed without knowledge of the

correlation between the tracks.

(v) The target position is captured in geodetic coordinates, which are converted to

local east-north-up (ENU) for tracking.
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Table 3.3: Locative Parameters – Scenario 2

Parameter Initial coordinates (◦N,◦ E) Final coordinates (◦N,◦ E)

Target 1 59.6104, -52.6939 59.9352, -52.7611
Target 2 57.7699, -59.1922 58.0822, -58.7635
Target 3 60.7648, -55.762 60.8607, -56.3676
Target 4 57.7025, -54.7059 57.3769, -54.7036
Target 5 59.4254, -54.4498 59.7284, -54.5691
Target 6 59.1483, -51.2977 59.4869, -51.3718
Target 7 58.8561, -58.484 58.6288, -58.495
Target 8 59.831, -58.3974 59.6367, -58.0819
Target 9 59.5306, -53.1629 59.5036, -53.5418
Target 10 58.8028, -54.3803 58.6656, -53.5222
Target 11 57.8132, -52.6504 57.676, -51.8147
Target 12 57.4636, -58.9469 57.5906, -59.8504
Target 13 57.2096, -52.6824 57.7325, -52.5499
Target 14 59.9093, -56.8477 59.8108, -57.9123
Target 15 57.5181, -56.2302 58.1104, -56.6123
Target 16 58.3548, -56.4447 58.0948, -56.8321
Target 17 57.8268, -49.5721 57.55, -50.3705
Target 18 60.2969, -49.9242 60.6296, -49.3978
Target 19 57.6451, -59.8337 57.988, -59.1956
Target 20 60.6533, -51.4683 61.1832, -51.9363
Radar 1 59.7138694, -55.2676093 -
Radar 2 57.5399008, -57.6551522 -
Radar 3 56.6320564, -52.104272 -
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Model Equations

Although the coordinates mentioned represent a spherical system, the trackers are

implemented in a standard mixed coordinate system, wherein the process model is

Cartesian and the sensor model is spherical in two dimensions. For conversion between

the geodetic and local tangent plane coordinates, readers are referred to [28].

The target motion and the measurements, respectively, are modeled by the fol-

lowing equations at time k (dropping target and measurement indices),

xk+1 = Fxk + wk, (3.6.9a)

zk = h(xk, yk) + vk, (3.6.9b)

where (using In for n dimensional identity matrix),

F =

I2 ∆T I2

02 I2

 and, h(xk, yk, zk) =

[
rk θk

]T
,

where,

rk =
√
x2
k + y2

k; θk = tan−1

(
yk
xk

)

∆T is the local sampling time, and wk, vk are uncorrelated, zero-mean Gaussian

distributed process noise vector and measurement noise vector respectively, such that

∀{k, j},

E[wkwj] = δkjQ; E[wkvj] = 0; E[vkvj] = δkjR,

112



Ph.D. Thesis – N. Sharma McMaster University – ECE

where Q and R are the process noise and measurement noise covariance matrix re-

spectively,

Q = q̃

∆T 3

3
I2

∆T 2

2
I2

∆T 2

2
I2 ∆T I2

 , R = diag(σ2
r , σ

2
θ),

and q̃ is the process noise intensity in meter2/second3.

Due to high clutter volume, the local tracking algorithm employs PDA, thereby,

indirectly assuming wide separation of targets, which is the case here. The PDA

algorithm assigns weights to all available measurement in a single scan, and perform

measurement update by taking a weighted average of all innovations. Since the targets

are widely separated, there can only be one target-originated measurement in a gate.

After local processing, the updated tracks are sent to FC (Radar 1), every Tf = 10

seconds.

The fusion center is equipped with memory. Thus, a global track is always main-

tained for each fused track at least until the next fusion step. Track-management at

FC is similar to that at local node. When a track-list arrives at FC, it is associated

with existing global track lists by solving the following 2-D optimization based cost,

J =

Ng∑
i=1

Nl∑
j=1

Cijzij, subjected to constraints, (3.6.10)

Ng∑
i=1

zij = 1;

Nl∑
j=1

zij = 1, ∀i, j (3.6.11)
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where zij is the assignment between ith global track and jth local track. The corre-

sponding cost Cij is defined as,

Cij =
(
x̂i − x̂j

)T [
Γi + Γj − Γij − Γji

] (
x̂i − x̂j

)
≈
(
x̂i − x̂j

)T [
Γi + Γj

] (
x̂i − x̂j

)
(3.6.12)

due to the unavailability of Γij = (Γji)
T

. Next step is the fusion of associated tracks

wherein we used ICI, CI and the proposed HMD-GA. This procedure is repeated until

track-lists from all local nodes have been fused.

Performance Metrics

The simulation is evaluated on following metrics :

(i) Root mean-square error (RMSE) : RMSE evaluates the absolute filtering

performance in simulation where the true system trajectory is known. At any

time-step k, the RMSE is given by the equation,

RMSEk =

√√√√ 1

M

M∑
m=1

||x̂m,k − xk||2, (3.6.13)

where M is the number of Monte-Carlo (MC) iterations over which the root-

mean is evaluated. x̂m,k is the filter estimate at kth time-step of mth MC run.

Note that the truth xk is the same throughout all MC iterations.

(ii) Normalized estimation error squared (NEES): NEES is a measure of

estimator consistency which is based on the fact that a χ2 distribution has a
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mean equal to its degrees of freedom. Thus the following expression

NEESk =
1

M

[
(x̂k − xk)

T Γ−1
k|k (x̂k − xk)

]
(3.6.14)

should have nx degrees of freedom (asymptotically). Since the number of MC

runs are finite, the NEES for a consistent estimator should lie between the

appropriate confidence bounds given by the tail probabilities of respective χ2

density [13].

Due to long simulation time and large number of targets, both the metrics are eval-

uated over 200 MC runs.

Remarks

The results in the form of RMSE and NEES plots are presented in Figs. 3.10 through

Fig. 3.28. Note that target 18 does not lie within the FOV of either sensor, which

is why only 19 sets of plots are present (see Fig. 3.9a). The estimated tracks for a

single run using HMD-GA are shown in Fig. 3.9b. Due to high clutter, the number

of tentative tracks initialized at the fusion center is clearly evident.

Based on the varying dynamics of the scenario, we have categorized the targets

into three categories :

� Category A : Targets that lie within the intersection of all three sensor nodes

for most of their lifetime.

� Category B : Targets that lie within the intersection of two sensor nodes.

� Category C : Targets that lie in the FOV of only one sensor. Due to memory,

such tracks will be maximally correlated.
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The tracks in Category A are fused by all three sensors and consist of Targets 4,

10, and 15. Due to maximum information availability, these targets have the least

error relative to the error in estimation of other targets. This is also evident in the

relevant plots in Figs. 3.13, 3.19 and 3.24. The NEES plots for ICI and HMD-GA

show no difference, while CI, proven to be highly conservative, lies at the bottom of

all NEES plots.

The distance from the node plays an important role in the error performance,

as the cross-range error increases with range. Thus, as observed, Target 4 has the

highest RMSE, whereas Target 10 has the least. Target 15 moves to Category B

towards the end of its life, due to which the error increases. The expected error in

CI, however, remains close to ICI throughout the simulation. HMD-GA has the least

estimation error for most of the sample time, as evident in the plots.

The tracks in Category B consist of Targets 2, 5, 7, 8, 11, 12, 13, 14, and 16. The

RMSE is moderately higher than Category A due to information availability from only

two sensor nodes. Due to the upper bound on the employed track-fusion algorithms,

the NEES plot also suggests a higher reported covariance than in Category A. It is

obvious that recurring fusion should decrease fused covariance, due to which NEES

plots are comparatively higher in the case of Category A.

The third category is interesting since these targets lie in the FOV of only one

sensor. Due to memory, the fusion track contains a predicted estimate of the last track

sent from the same node. If the sensor node has reached a steady state such that the

track covariance is not varying enough with time, the correlation between the global

track and local track will be the highest among all three categories. The correlation

also strongly depends on the maneuvering index, which is a function of sample time.
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Thus, with decreasing values of Tf and local sample-time, the correlation increases.

It is to be noted that in the case of unbiased and consistent local estimates, the

correlation coefficient increases as the local pdf become similar to each other. The

expressions for HMD and CI become, in this case,

p1(x)p2(x)

(p1(x))ω2 (p2(x))ω1

p1→p2
=

p1(x)p2(x)

ω2p1(x) + ω1p2(x)p1→p2
(3.6.15)

and similarly in the case of ICI.

ΓICI|Γ1→Γ2
→ Γ1 (3.6.16)

Thus, the result is the local track density itself. Therefore, in the case of perfect

correlation, almost no fusion takes place with conservative fusion techniques. This is

shown in the NEES plot for Category C targets, where the relative conservativeness

of CI in comparison to ICI and HMD-GA vanishes. All fusion techniques tend to

produce a similar fused covariance, due to which the NEES plot looks similar in all

three cases. Such objects are targets 3, 6, 9, 17, and 20. The corresponding RMSE

plot shows the highest error among all categories, which is almost equal to the local

node covariance (not shown due to space considerations).

The reported covariance in the case of HMD-GA is always less than ICI (see

appendix B for proof), while being overall conservative with respect to true error.

The same is reflected in the NEES result, with exceptions in the case of high cross-

correlation, wherein the fused covariance is almost the same for all implemented

fusers. In some cases, the NEES graph suggests higher covariance for HMD-GA, but

this is not true. The result is only due to the use of finite MC samples.
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Figure 3.10: Target 1: RMSE Position and Velocity.
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Figure 3.11: Target 2: RMSE Position and Velocity.
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Figure 3.12: Target 3: RMSE Position and Velocity.
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Figure 3.13: Target 4: RMSE Position and Velocity.
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Figure 3.14: Target 5: RMSE Position and Velocity.
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Figure 3.15: Target 6: RMSE Position and Velocity.
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Figure 3.16: Target 7: RMSE Position and Velocity.
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Figure 3.17: Target 8: RMSE Position and Velocity.
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Figure 3.18: Target 9: RMSE Position and Velocity.
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Figure 3.19: Target 10: RMSE Position and Velocity.
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Figure 3.20: Target 11: RMSE Position and Velocity.
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Figure 3.21: Target 12: RMSE Position and Velocity.
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Figure 3.22: Target 13: RMSE Position and Velocity.
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Figure 3.23: Target 14: RMSE Position and Velocity.
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Figure 3.24: Target 15: RMSE Position and Velocity.
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Figure 3.25: Target 16: RMSE Position and Velocity.
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Figure 3.26: Target 17: RMSE Position and Velocity.
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Figure 3.27: Target 19: RMSE Position and Velocity.
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Figure 3.28: Target 20: RMSE Position and Velocity.

3.7 Conclusion

A deeper investigation of harmonic mean density based fusion was performed in this

chapter, wherein we showed that HMD is a naturalized consensus-based fusion algo-

rithm that minimizes a weighted χ2 divergence between the local densities. Thus,

the fusion is an agreement rather than a distributed Bayes’ type result, though its

expression is closely mimicked by HMD. The agreement occurs by optimizing a fused

density such that it is closer to local track densities in the sense of a statistical dis-

tance (χ2 divergence). Two versions of HMD are investigated. The first one, which

was first proposed in [84] by approximating a mixture in the denominator by a Gaus-

sian, is termed HMD-GA, and the second is HMD-S, which uses samples from either

of the participating local densities, thus providing versatility in fusion.

A consistency analysis of HMD-GA has been performed and found that it depends

on spread-of-means terms. In extreme cases of correlation, the HMD-GA was proven

to be consistent. For intuition, consistency in the scalar case has also been proven. It

is clear that the consistency of HMD-GA strongly depends on the consistency of local

estimates. Due to similarity of expression, HMD-GA is closely linked with the inverse
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covariance intersection, which has been closely investigated here. It was found that

though ICI is considered for a specific correlation structure, it does tend to contradict

the same. A Gaussian mixture implementation of ICI is also proposed in this chapter.

Sampling-based HMD implementation possesses the desirable quality of being as

conservative as possible by inflating the local covariances. This might have appre-

ciable utility in situations with anomalies and track biases. Future research will be

based on such problems. Also, tests on three different simulation scenarios reveal the

consistent nature of HMD-GA, with the tightest covariance among major conserva-

tive methods. The results also show that HMD-GA performs best in terms of error

metrics.

The latest research on multi-sensor, multi-target tracking promotes employing

extended-target mechanisms, RFS-based filtering, multi-hypothesis trackers, and anomaly-

tolerant filtering on local nodes. Flexible and easy implementation of HMD-GA will

definitely serve as a promising fusion methodology in all of these cases.
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Chapter 4

Multi-Sensor Multi-Target

Tracking With Missing Local

Covariance

4.1 Abstract

In a distributed sensor fusion architecture, the local sensor nodes transmit the pos-

terior densities characterized by mean and covariance, which are fused together to

obtain the global estimate. However, in a communication constrained network, es-

pecially in warfare situations, the covariance might not be available for fusion. This

chapter addresses the problem of covariance unavailability and reconstruction using

parallel recursion of covariance for each local node at the fusion center. The co-

variance is initialized by generating converted covariance conditioned on the local

posterior estimates, which is recursively propagated with time. Though there is still

a requirement of a vector containing measurement update times at the local node, it
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is shown that this requirement can be minimized.

The efficacy of the result is shown on a practical multi-target multi-sensor tracking

scenario wherein covariance intersection is performed with reconstructed covariance.

The simulations confirm that the reconstructed covariance converges with the true

covariance in the sense of Frobenius norm. Results based on metrics such as root-

mean-square error and normalized estimation error suggest that the existing fusion

algorithms can prevail in a communication constrained network.

4.2 Introduction

In a distributed sensor network, each sensor platform generates its version of the target

probability density conditioned upon its set of measurements. The fusion center (FC)

receives the local posterior probability densities (assumed Gaussian) in the form of

mean and covariance, and fuses them optimally in the Bayesian sense as [8],

p(xk|z1
k ∪ z2

k) ∝
p(xk|z1

k)p(xk|z2
k)

p(xk|z1
k ∩ z2

k)
, (4.2.1)

where zik is the measurement for sensor i and xk is the target state at time k. In

parametric and symmetric distributions, the density function is fully characterized by

the mean and the error covariance. Thus, transmission of these two quantities alone

is necessary for fusion. As iterated in the previous chapters, distributed fusion is

also termed as track-to-track fusion since tracks (state estimates) are fused together

instead of measurements. This is an ideal strategy for two reasons – 1. Centralized

fusion would require all the measurements (including clutter) to be transmitted to

FC. 2. Distributed fusion has been proven to produce near-optimal results [24, 61, 91].
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The problem of missing covariance is mainly seen in networks with constrained

communication bandwidth and also in smart sensor systems [105]. Tactical infor-

mation systems such as the joint tactical information distribution system (JTIDS),

Link 11 and Link 16 are examples of networks with constrained bandwidth [62]. For

instance, the JTIDS offers a bit rate of 115 kbps [36] which could be inadequate to

transmit all elements of the covariance matrix from all the sensors in the network.

The research on the topic of covariance unavailability in distributed fusion is rather

limited. In [11], the covariance was reconstructed at FC using the maneuvering index

of the target and the position root-mean-square error from the local covariance matrix.

It was assumed that the local nodes employ legacy trackers (steady-state filters).

Upon implementation, it was found by the authors that the non-linear equation (see

eqn. (16) in [11]) required to be solved for maneuvering index yields a unique solution

only for very low RMS errors due to the assumption of steady state.

Another work on distributed fusion without covariance was performed by Lobbia

et. al. in [62]. The covariance reconstruction was performed heuristically using a

spherical error probability. The chapter attempted the problem in two dimension

only. However, the generalization to higher dimension is rather cumbersome and

depends on user chosen parameters. Yuan et. al. in [105] attempted to tackle covari-

ance unavailability in automotive smart sensor systems by quoting the available local

track estimate as ‘super-measurement’ and using a legacy filter for two-dimensional

tracking. The yielded ‘super-estimates’ and corresponding covariance is used for fu-

sion after decorrelation. The quality of the fuser covariance in this case is ambiguous,

since it’s clear from the consistency plots (confidence levels) that very less number of

Monte-Carlo iterations were used. For a communication constrained environment, a
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comparison of distributed and centralized architectures is also presented in [42]. This

work provides a crude upper limit on the network capacity in distributed tracking

systems.

In this chapter, a solution to deal with the track fusion architecture with missing

local track covariance information is proposed. The FC is assumed to have enough

computational resources to perform the reconstruction of track error covariance for

each sensor platform. In particular, a summary of ideas mentioned in this chapter

can be enumerated as:

1. Initialization of covariance matrix at FC using state estimate, sensor covariance

using converted measurement (CM) technique.

2. Generalization of the covariance initialization to non-linear sensor models using

CM.

3. Development of a covariance update algorithm at FC solely based on state esti-

mate, sensor covariance and a vector containing measurement update timestamp

at local sensor.

4. Analysis of positive-definiteness for initialization of the covariance matrices.

The rest of the chapter is structured as follows; in Section 4.3, we state the prob-

lem of fusion in distributed sensors networks along with a survey of track fusion

algorithms. In section 4.4, a review of the converted measurement Kalman filter

for radar sensors is provided, which will be used in covariance initialization in Sec-

tion 4.5. A generalization for initializing covariance matrix for any non-linear sensor

model using inverse measurement Jacobian is presented in Section 4.6. The local
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covariance update recursion is presented in Section 4.7. Results based on simulations

are presented in Section 4.8. Finally, the article is concluded in Section 4.9.

4.3 Problem Formulation and Fusion Review

Let’s consider a scenario with two sensor platforms – S1 and S2 generating processed

track density p(xk|zik) conditioned on current measurement zik where k is the time

and i ∈ {1, 2}. Assume that both tracks are conditioned on a common prior density

at time k which is quantified as pc(xk). Then, we know

p(xk|zik) ∝ p(zik|xk)× pc(xk) (4.3.1)

Using naive fusion with such local density results in

pN(xk|z1
k ∪ z2

k) ∝ p(z1
k|xk)pc(xk)p(z2

k|xk)pc(xk), (4.3.2)

where pN(xk|z1
k ∪ z2

k) is the naively fused density. Thus, the common information

appears twice, which leads to an optimistic estimate (e.g. multiplying two Gaus-

sian densities results in a Gaussian density with a lower or equal covariance). A

heuristic approach would be to use naive fusion while dividing once with the common

information,

p(xk|z1
k ∪ z2

k) ∝
p(xk|z1

k)p(xk|z2
k)

p(xk|z1
k ∩ z2

k)
(4.3.3)

This is (roughly) the Bayesian formulation for track fusion from two sensors. If

Gaussianity is assumed, the local posterior density can be parameterized using the
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corresponding mean and the covariance matrix as

p(xk|zik) ∼ N (xk; x̂
i
k,Γ

i
k) (4.3.4)

Due to unavailability of the common information p(xk|z1
k ∩ z2

k) at the FC, a number

of fusion strategies have been formulated which yield closed form expressions for fused

mean and covariance under Gaussianity. Some of them are enumerated as:

1. Naive Fusion [14] – Naive fusion is optimal under the presumption that tracks

are independent of each other. Since, this is not true due to the common prior,

the rumour is propagated twice as shown in equation (4.3.2). The naive fused

density is,

pN(xk|zik ∪ z
j
k) ∼ N (x; x̂Nk ,Γ

N
k ) (4.3.5)

where the naive fused mean and covariance are

ΓNk =
(

Γik
−1

+ Γjk
−1
)−1

(4.3.6a)

x̂Nk = ΓNk

(
Γik
−1

x̂ik + Γjk
−1

x̂jk

)
(4.3.6b)

2. Information Matrix Fusion (IMF) [24] – IMF is a memory based fusion

algorithm, which means it needs access to the previous track estimate and

covariance. At full communication rate, the IMF can be proven to be equivalent

to centralized track fusion [23]. Given the knowledge of previous estimates, it
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also assumes a closed form under Gaussianity.

ΓIMF
k|k

−1
= Γ−1

k|k−1 +
N∑
i=1

(
Γik|k

−1 − Γik|k−1

−1
)

(4.3.7a)

ΓIMF
k|k

−1
x̂IMF
k|k = Γ−1

k|k−1x̂k|k−1

+
N∑
i=1

(
Γi
−1

k|kx̂
i
k|k − Γi

−1

k|k−1x̂
i
k|k−1

)
(4.3.7b)

where N is the number of local nodes. Extensions of IMF for non-full rate and

asynchronous sensors are given in [89].

3. Covariance Intersection – The IMF requires the knowledge of not only the

previous fused estimate but also the last local estimate. Covariance intersec-

tion attempts to resolve this problem by taking a convex combination of the

estimates,

ΓCIk|k =
(
ωΓi

−1

k|k + (1− ω)Γj
−1

k|k

)−1

(4.3.8a)

x̂CIk|k = ΓCIk|k

(
ωΓi

−1

k|kx̂
i
k|k + (1− ω)Γj

−1

k|kx̂
j
k|k

)
(4.3.8b)

where ω ∈ [0, 1] is selected using a suitable optimization problem [98]. Covari-

ance intersection, also known as the geometric mean density fusion [47] belongs

to a family of f-mixture distributions. Using this interpretation, the algorithm

can be extended (with some approximations) to Gaussian mixtures as well [43].

4. Tracklet [38] – Tracklets refers to the track data for a target, which is not

cross-correlated with any other track in the network. For an estimate x̂ik|k and

its covariance Γik|k, the corresponding tracklet ûik|k and its covariance Ui
k|k are
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calculated as,

ûik|k = x̂ik|k−1

+ Γik|k−1

(
Γik|k−1 − Γik|k

)−1 [
x̂ik|k − x̂ik|k−1

]
(4.3.9a)

Ui
k|k =

[
Γik|k−1

(
Γik|k−1 − Γik|k

)−1 − I
]

Γik|k−1, (4.3.9b)

which can now be fused naively assuming independence as in equation (4.3.6).

Note that this version of tracklets assume zero process noise for the target [37].

As observed in all fusion strategies, the track covariance information is ubiquitous.

This chapter attempts to use the above-mentioned techniques in situations where

track covariance information is not available from local sensor platforms. Our strategy

is to initialize the track covariance at the FC using converted measurement covariance

which only requires local track estimates, and then use a parallel Kalman filter at the

FC for each local node to update/predict the local track covariance given measurement

update time-stamps from the local sensor. The local track covariance resulting from

such recursions will then be used for fusion of local track densities.

In other words, we will have a parallel KF covariance recursion for each sensor

node at FC. Thus, the fusion center is assumed to have sufficient computational

resources. Other valid requirements in the formulations are:

� Knowledge of sensor error covariance for each node at FC.

� If the fusion does not occur at full rate, the sensor node must send a vector of

measurement update time stamps since the last fusion time. An attempt will

be made to minimize this requirement.
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� Knowledge of target parameters for all targets, i.e., target state transition ma-

trix and target process noise covariance.

� The sensor measurement function, for generalization to sensors other than radar.

4.4 Converted Measurement Kalman Filter (CMKF)

This section provides an introduction to CMKF, which is used for initializing the

covariance matrix at the input. The conversion measurement method (CMM) is a

convenient approach to linearize the measurements to Cartesian coordinates. CMKF

is still an active area of research for over three decades since it was first published in

[19].

The state transition model is expressed in Cartesian coordinates as,

xk+1|k+1 = Fxk+1|k + wk (4.4.1)

where F is the state transition matrix and wk is a random vector governed by the

white stationary process noise ∼ N (wk; 0,Qk).

Considering the case of a 2D radar, the standard range azimuth model is given by

zk =

rmk
θmk

 =

√(x2
k + y2

k)

tan−1( yk
xk

)

+ vk (4.4.2)

where vk is the sensor noise governed by ∼ N (vk; 0,Rk), uncorrelated with wk. The
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nominal polar to Cartesian conversion suggests the following transformation,

xmk = rmk cos(θmk ), ymk = rmk sin(θmk ) (4.4.3)

However, the unbiased condition states,

E[xk] = E[xmk ] = E[rmk cos(θmk )] (4.4.4)

xmk and ym are the converted coordinates using measurements rmk & ymk and xk is the

true state (position). Assuming independence of measurements of rm and θm, it can

be shown that [14],

E[rmk cos(θmk )] = xke
−σ2

θ/2 (4.4.5a)

E[rmk sin(θmk )] = yke
−σ2

θ/2 (4.4.5b)

Therefore the unbiased transformation is (using λ for the bias factor)

xmk = λ−1rmk cos(θmk ) (4.4.6a)

ymk = λ−1rmk sin(θmk ) (4.4.6b)

The corresponding covariance should be (ideally),

Rc
k =

 var(xk) cov(xk, yk)

cov(yk, xk) var(yk)

 (4.4.7)

This would require true target state to be available, hence the covariance is obtained
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by conditioning on measurements,

Rm =

 var(xk|rmk , θmk ) cov(xk, yk|rmk , θmk )

cov(yk, xk|rmk , θmk ) var(yk|rmk , θmk )

 (4.4.8)

The elements of the converted covariance matrix Rm
k conditioned on the unbiased

measurements are [14] (dropping time-index k for clarity),

Rm(1, 1) = [λ−2 − 2](rm)2 cos2(θm) + 0.5{(rm)2 + σ2
r}

× {1 + λ4 cos(2θm)} (4.4.9a)

Rm(2, 2) = [λ−2 − 2](rm)2 sin2(θm) + 0.5{(rm)2 + σ2
r}

× {1− λ4 cos(2θm)} (4.4.9b)

Rm(1, 2) = 0.5
[
λ−2(rm)2 + {(rm)2 + σ2

r}λ4 − 2(rm)2
]

× sin(2θm) (4.4.9c)

The new linearized radar model is,

zk =

λ−1rmk cos(θmk )

λ−1rmk sin(θmk )

+ v′k (4.4.10)

where, v′k ∼ N (vk; 0,R
m
k ) is now the measurement noise in Cartesian coordinates. A

standard linear Kalman filter can now be used with the converted measurements.
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For three dimensions radar tracking, the framework of unbiased measurements

remain the same with additional calculations for elevation. Readers are referred to

[63] for accurate debiasing of measurements and [59] for a comparison with EKF and

analysis.

4.5 Covariance Initialization at the Fusion Center

When the fusion center receives the state estimate for a local node, the first step in

covariance construction is to initialize it. In this section, we propose the initialization

using the state estimate and the knowledge of sensor parameters. Some approximation

needs to be introduced, as we do not have complete information about the posterior

density. The following derivations are provided for two-dimensional range-azimuth

sensors, but can easily be extended. In later sections, we will provide a generalized

approach using Jacobians.

At FC, suppose we have the posterior estimate x̂ik|k from sensor node i at time k.

Then, two-point initialization using the CMM discussed in section 4.4 could be used

to initialize the covariance matrix. Since the local measurements are not available, it

is imperative to use the converted covariance formulation conditioned on the available

information. One possible way is,

Rt
k =

 var(x|xik|k, yik|k) cov(x, y|xik|k, yik|k)

cov(y, x|xik|k, yik|k) var(y|xik|k, yik|k)

 (4.5.1)

The exact covariance formulation of Rt
k for two-dimensional sensors with error stan-

dard deviation in range and azimuth as σri and σθi respectively, as given in [22] is
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(dropping time-index),

Rt
k(1, 1) =

1

2

(
rit

2
+ σ2

ri + σ2
rit

)[
1 + cos

(
2θit
)
e
−2σ2

θie
−2σ2

θit

]
e
σ2
θi

− 1

2

(
rit

2
+ σ2

rit

)[
1 + cos

(
2θit
)
e
−2σ2

θit

]
(4.5.2a)

Rt
k(2, 2) =

1

2

(
rit

2
+ σ2

ri + σ2
rit

)[
1− cos

(
2θit
)
e
−2σ2

θie
−2σ2

θit

]
e
σ2
θi

− 1

2

(
rit

2
+ σ2

rit

)[
1− cos

(
2θit
)
e
−2σ2

θit

]
(4.5.2b)

Rt
k(1, 2) =

1

2

(
rit

2
+ σ2

ri + σ2
rit

)[
sin
(
2θit
)
e
−2σ2

θie
−2σ2

θit

]
e
σ2
θi

− 1

2

(
rit

2
+ σ2

rit

)[
sin
(
2θit
)
e
−2σ2

θit

]
(4.5.2c)

The range (rt) and azimuth (θt) estimate are obtained from the posterior estimate

from the sensor node.

rit,k =
√

(x̂ik|k)
2 + (ŷik|k)

2 (4.5.3a)

θit,k = tan−1

(
ŷik|k
x̂ik|k

)
(4.5.3b)

σ2
rit,k

and σ2
θit

are respectively the estimated range and azimuth error variance given

by (removing time-index for clarity),

σ2
rit,k

=
var(x̂i)(x̂i)2 + var(ŷi)(x̂i)2 + 2cov(x̂iŷi)x̂iŷi

(x̂i)2 + (ŷi)2
(4.5.4a)

σ2
θit,k

=
var(x̂i)(ŷi)2 + var(ŷi)(x̂i)2 − 2cov(x̂iŷi)x̂iŷi

((x̂i)2 + (ŷi)2)2
(4.5.4b)
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The quantities var(.) and cov(.) in equation (4.5.4) are the elements of the covariance

of the posterior estimate and hence not available. However, the available options are

� The local node transmits σ2
rit

and σ2
θit

. Or,

� Calculate the converted measurement covariance matrix by ignoring the terms

containing σ2
rit

and σ2
θit

, and scale the resulting matrix appropriately using a

fudge factor η.

Rt
k ≈ ηR̄t

k (4.5.5)

Where, R̄t
k is obtained by setting σ2

rt and σ2
θt

to zero. For two-dimensional range-

azimuth sensors, the approximate value of η was found to be (see Appendix C),

η =

[
1− R̄t(1, 1)− R̄t(2, 2)

R̄t(1, 1) + R̄t(2, 2)

(eσ
2
θi − 1)

cos(2θit)(e
−σ2

θi − 1)

]

×

[
r2
t (e

σ2
θi − 1)

2{R̄t(1, 1) + R̄t(2, 2)}

]
+ 1 (4.5.6)

Note that, again, the subscript k has been dropped for brevity. To verify the consis-

tency of the resulting covariance matrix obtained, a simulation was set up to evaluate

normalized estimation-error squared (NEES) [21]. The posterior state estimate was

sampled from a Gaussian distribution with mean as ground truth and covariance Γ.

Such that,

Γ =

 σ2
x ρσxσy

ρσxσy σ2
y

 (4.5.7)
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Figure 4.1: Normalized Error Squared (NES) based on 103 Monte-Carlo iterations.

where σx = σy = 50m and the correlation ρ was kept at 0.1. The range was fixed at

10,000 m, but the azimuth was varied from 0◦ to 90◦. The results are plotted in Fig.

4.1. Standard deviations σr is kept at 50m, and σθ at 2◦, 5◦ and 10◦. The figure also

shows two-sided 99% confidence bounds for 103 Monte-Carlo iterations. Moreover, it

was found in this case that for low values of σθ (≤ 1◦), the matrix was consistent for

n ≈ 1. It is evident that the overall converted covariance matrix is fairly consistent for

the mentioned values of σθ. However, the individual components were not consistent.

Further, when the converted measurement covariance is obtained, then for a single

coordinate position-velocity state [x, ẋ], the covariance matrix generated using two
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point initialization with T as the sampling interval looks like [14],

covk(x, ẋ) =

 Rt
k(1, 1), Rt

k(1, 1)/T

Rt
k(1, 1)/T 2Rt

k(1, 1)/T 2

 (4.5.8)

and similarly for [y, ẏ] (and [z, ż] in case of 3-D tracks). Note that the 2Rt
k(1, 1)/T 2

term asserts that the covariance Rt
k(1, 1) remains unchanged since the previous time

step. This, however, is not the case but can be assumed if rit and θit are varying slowly.

For three-dimensional state [x, ẋ, y, ẏ, z, ż] employing nearly constant velocity (NCV)

motion model, the initialized covariance becomes the following block matrix,

Pk|k = diag [covk(x, ẋ), covk(y, ẏ), covk(z, ż)] (4.5.9)

In the case of nearly constant acceleration (NCA), Wiener process models, we can

proceed with two options:

� Assuming slow varying rt and θt and temporally uncorrelated track estimation

errors, one can assume that x̂k|k is a result of three point initialization. Then

it can be proved that,

var(ẍ) =
2Rt

k(1, 1)

T 4
(4.5.10)

and similarly for var(ÿ) and var(z̈). The other option is,

� Assume an upper bound on maximum acceleration ẍmax, and use var(ẍ) =

0.25ẍ2
max. This approach, however simple, can lead to inconsistent track covari-

ance initialization [14].
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Thus, the track covariance for NCV and NCA models can be initialized using the

knowledge of posterior track estimates and sensor parameters. Closely observing the

converted measurement covariance Rt
k, it can be seen that the covariance between x

and y is non-zero (for θt 6= {0◦, 180◦}). On the other hand, the covariance between

a coordinate and its velocity/acceleration component is also non-zero. Thus, it is

possible to initialize a full covariance matrix for such models by incorporating the

cross-covariance terms. The intricacies of using this approach are discussed next.

4.5.1 Full Covariance Matrix Initialization

Continuing the track covariance formulation discussed in the previous section, there

is a possibility for initializing a non-sparse covariance matrix for the aforementioned

models. Consider the following two-coordinate (NCV model) initial covariance matrix

Pk|k =



Rt
k(1, 1) Rt

k(1, 1)/T 0 0

Rt
k(1, 1)/T 2Rt

k(1, 1)/T 2 0 0

0 0 Rt
k(2, 2) Rt

k(2, 2)/T

0 0 Rt
k(2, 2)/T 2Rt

k(2, 2)/T 2


(4.5.11)

The positional cross-covariance cov(x, y) is available from Rt
k in the form of Rt

k(1, 2)

which can be incorporated. This also leads to the following developments:

� x is correlated with y as per Rt
k(1, 2). According to the initialized covariance

matrix, x is also correlated with ẋ as Rt
k(1, 1)/T and similarly, y with ẏ. This

means ẋ must also be correlated with ẏ.

� Using this relation, x must also be correlated with ẏ and vice versa.

� Similar correlation for acceleration with position and velocity can be proved.
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These correlations can easily be derived under valid assumptions.

Correlation between ẋ and ẏ

We attempt to calculate,

cov(ẋ, ẏ)k = E
[
(ẋk − ˆ̇xk)(ẏk − ˆ̇yk)

T
]

(4.5.12)

Using linear interpolation in the two point initialization, equation (4.5.12) can be

written in terms of position coordinates,

ẋ =
xk − xk−1

T
(4.5.13)

and same for y. This implies,

cov(ẋ, ẏ) =
1

T 2
E
[
(x̃k − x̃k−1)(ỹk − ỹk−1)T

]
(4.5.14)

where x̃ = x− x̂. It follows that

cov(ẋ, ẏ) =
1

T 2
{R12(k) +R12(k − 1)} (4.5.15)

≈ 1

T 2
{2R12(k)} (4.5.16)

where the following two assumption has been used

E[x̃kỹj] = δkjR12(k), (4.5.17)
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and

R12(k) ≈ R12(k − 1) (4.5.18)

Table 4.1: Elements of an initialized track covariance matrix. Rij refers to
corresponding element in sensor covariance R.

x ẋ ẍ y ẏ ÿ z ż z̈

x Rt
11 Rt

11/T Rt
11/T

2 Rt
12 Rt

12/T Rt
12/T

2 Rt
13 Rt

13/T Rt
13/T

2

ẋ Rt
11/T 2Rt

11/T
2 2Rt

11/T
3 Rt

12/T 2Rt
12/T

2 2Rt
12/T

3 Rt
13/T 2Rt

13/T
2 2Rt

13/T
3

ẍ Rt
11/T

2 2Rt
11/T

3 4Rt
11/T

4 Rt
12/T

2 2Rt
12/T

3 4Rt
12/T

4 Rt
13/T

2 2Rt
13/T

3 4Rt
13/T

4

y Rt
21 Rt

21/T Rt
21/T

2 Rt
22 Rt

22/T Rt
22/T

2 Rt
23 Rt

23/T Rt
23/T

2

ẏ Rt
21/T 2Rt

21/T
2 2Rt

21/T
3 Rt

22/T 2Rt
22/T

2 2Rt
22/T

3 Rt
23/T 2Rt

23/T
2 2Rt

23/T
3

ÿ Rt
21/T

2 2Rt
21/T

3 4Rt
21/T

4 Rt
22/T

2 2Rt
22/T

3 4Rt
22/T

4 Rt
23/T

2 2Rt
23/T

3 4Rt
23/T

4

z Rt
31 Rt

31/T Rt
31/T

2 Rt
32 Rt

32/T Rt
32/T

2 Rt
33 Rt

33/T Rt
33/T

2

ż Rt
31/T 2Rt

31/T
2 2Rt

31/T
3 Rt

32/T 2Rt
32/T

2 2Rt
32/T

3 Rt
33/T 2Rt

33/T
2 2Rt

33/T
3

z̈ Rt
31/T

2 2Rt
31/T

3 4Rt
31/T

4 Rt
32/T

2 2Rt
32/T

3 4Rt
32/T

4 Rt
33/T

2 2Rt
33/T

3 4Rt
33/T

4

Correlation between x and ẏ

Under similar assumptions,

cov(x, ẏ)k = E
[
(xk − x̂k)(ẏk − ˆ̇yk)

T
]

(4.5.19)

=
1

T
R12(k) (4.5.20)

= cov(y, ẋ)k
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Other correlations

Table 4.1 generalizes the correlations occurring in the initialization of track covariance

matrices in NCA and NCV motion models.

4.5.2 Positive-Definiteness

Since the cross-correlation (non-diagonal) terms can be negative in a covariance ma-

trix, the initialization of track covariance may turn out to be non-positive definite

if some correlations in the initialized covariance matrix are ignored. Consider the

following example of a two-dimensional converted sensor covariance to support this

statement,

Rt
k =


2296.966 −664.19

−664.19 302.43


The initial covariance matrix according to the formulation in previous subsection for

T = 1 sec is (with some elements/correlations treated as 0)

Pk|k =



2296.966 2296.966 −664.19 0

2296.966 4593.2 0 0

−664.19 0 302.4 302.4

0 0 302.4 604.9


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whose minimum eigen value is −149.5 and hence clearly non-positive definite. But

the following matrix is positive definite

Pk|k =



2296.966 2296.966 −664.19 −664.19

2296.966 4593.2 −664.19 −1328.4

−664.19 −664.19 302.4 302.4

−664.19 −1328.4 302.4 604.9


with the minimum eigen value of 38.8. It can be proved that such a structure with

full covariance (derived from Rt
k) always result in a positive semi-definite matrix.

Proposition 4.5.1. Consider the following positive semi-definite sensor covariance

matrix

R =


a b

b c

 (4.5.21)
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then the following matrix P, derived from the elements of R is always positive semi-

definite.

P =



a a/T b b/T

a/T 2a/T 2 b/T 2b/T 2

b b/T c c/T

b/T 2b/T 2 c/T 2c/T 2


(4.5.22)

Proof. First we observe that, the matrix P can be written as the Kronecker product

of the following matrices:

P =


a b

b c

⊗


1 1/T

1/T 2/T 2

 . (4.5.23)

Using the property for Kronecker products, we know that [107],

{eig(M⊗N)} = {eig(M)eig(N)T}, (4.5.24)

where eig(M) is a vector of eigen values of M and {.} represents a set. Thus, the
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matrix P is PSD if both matrices on the R.H.S of equation (4.5.23) are positive-

definite. Since from the structure it is clear that,

det




1 1/T

1/T 2/T 2


 = 1/T 2 > 0 ∀T ∈ R, (4.5.25)

where det(.) stands for determinant and R is positive semi-definite, It is proved that

P has all non-negative eigen values. This proof can also be extended to 2D-NCA

models where P now becomes the block matrix,

P =


A B

BT C

 (4.5.26)

where,

A =



a a/T a/T 2

a/T 2a/T 2 2a/T 3

a/T 2 2a/T 3 4a/T 4


; B =



b b/T b/T 2

b/T 2b/T 2 2b/T 3

b/T 2 2b/T 3 4b/T 4



C =



c c/T c/T 2

c/T 2c/T 2 2c/T 3

c/T 2 2c/T 3 4c/T 4


.
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Re-writing P in terms of Kronecker product as above,

P =


a b

b c

⊗



1 1/T 1/T 2

1/T 2/T 2 2/T 3

1/T 2 2/T 3 4/T 4


. (4.5.27)

From which, the determinant of second matrix on R.H.S is 2/T 6 which is positive for

all T . Hence in this case as well, P is at least positive semi-definite. In a similar

manner, initial track covariance matrix for 3-D NCA and 3-D NCV model can be

proved to be PSD. However, the proof is not presented in this work for brevity.

4.6 Generalizing Covariance Initialization

The only caveat of using CMM is that its mechanism is designed for only range-

elevation-azimuth-range-rate sensor models, which is only applicable to target track-

ing and localization applications. However, it is possible to extend the initialization

framework discussed in Section 4.5 to a general non-linear sensor if its model and

noise parameters are known to FC.

We use the Jacobian of the inverse sensor function to linearize the measurement

model with respect to the state transition process. The technique is not entirely novel

and can be developed as a version of the Extended Kalman Filter (EKF) [59].
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4.6.1 Generalizing CMM using First Order Linearization.

Let the local sensor model be defined by the following equation,

zk = h(xk) + vk (4.6.1)

where xk ∈ Rnx and zk ∈ Rnz . The function h : Rnx → Rnz converts system states to

causal sensor observations. The function h−1 : Rnz → Rnx is defined as the inverse

function if h−1(h(x)) = x. h−1(.) exists if h(.) is a bijection i.e. having a one-to-

one mapping between the elements of {xk} and {zk} as well as surjective [87]. For

most observable systems, the sensor function h(.) satisfies this constraint [56], but

the existence of the inverse function is not guaranteed (e.g. Lorentz system [97]).

Rearranging the sensor equation and using a different notation for inverse function,

h−1(.) = g(.), we have

g(zk − vk) = xk (4.6.2)

Using the first order Taylor series expansion about the expected measurement

conditioned on posterior estimate available ẑk|k = E(zk|x̂k|k).

g(zk − vk) ≈ g(ẑk|k) +∇ẑk|k
g (zk − vk − ẑk|k), (4.6.3)
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where ∇ẑk|k
g is the Jacobian matrix of g(.) evaluated at ẑk|k. Substituting the first-

order linearization in equation (4.6.2) and rearranging the terms, we have,

g(ẑ) +∇ẑk|k
g (z− ẑ)︸ ︷︷ ︸

converted measurement

= xk + ∇ẑk|k
g vk︸ ︷︷ ︸

converted meas. noise

(4.6.4)

where the generalized converted measurement covariance Rg characterized by the

noise vector ∇ẑk|k
g vk is given by,

Rg
k = ∇ẑk|k

g Rk

(
∇ẑk|k
g

)′
, (4.6.5)

where Rk is the covariance matrix corresponding to the measurement noise vk. The

linearization has been attempted in tracking applications using radar and it was found

that the conversion is biased, though Rg stays consistent for a maximum azimuth

standard deviation of 23◦ [59].

4.6.2 Second Order Linearization

One can also perform the second order linearization in which the converted measure-

ment is given by (omitting the time index k),

zm = g(ẑ) +∇ẑ
g(z− ẑ) +

1

2



...

(z− ẑ)′Hẑ
i (z− ẑ)

...


(4.6.6)
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where Hẑ
i is the Hessian matrix corresponding to the ith element of the vector valued

function g(.) evaluated at ẑ,

Hẑ
i = [∇∇′gi(z)] |z=ẑ. (4.6.7)

The element corresponding to the ith row and jth column of the converted measure-

ment covariance Rg is given by (proof in appendix),

Rg =
1

4



2 tr
(
Hẑ

1RHẑ
1R
)
· · · 2 tr

(
Hẑ

1RHẑ
nxR

)
...

. . .
...

2 tr
(
Hẑ
nxRH

ẑ
1R
)
· · · 2 tr

(
Hẑ
nxRH

ẑ
nxR

)


+∇ẑ

gR∇ẑ
g

T
(4.6.8)

where tr(.) refers to the trace operator and nx is the dimension of the state vector.

Once the converted measurement model is obtained, the initialization of the state

error covariance at FC is a mere substitution, as in equation (4.5.11). After the co-

variance is initialized, the next step is to recursively calculate the posterior covariance

at each fusion instant (on-demand).

4.7 Covariance Recursion at Fusion Center

After initialization at the FC, the covariance update requires the following information

at k.

(i) A vector containing measurement update times from the local node τk. This
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vector contains the timestamps at which measurement update has been per-

formed at the local node since the last fusion time.

(ii) For non-linear measurement models, the measurement Jacobian matrix (for

EKF based recursion). Or,

(iii) The converted measurement covariance (for CMKF based recursion).

Suppose we have initialized the posterior covariance Pj
k−∆k|k−∆k for a local node j.

Then, at time k at the fusion center, the subsequent recursion for covariance consists

of

Prediction Step

One-step prediction of covariance is a straightforward equation given by,

Pj
k|k−∆k = F(∆k)Pj

k−∆k|k−∆kF(∆k)′ + Q(∆k) (4.7.1)

where ∆k is the time difference since the last covariance update (or initialization).

F(.) and Q(.) are the state-transition matrix and the process noise covariance matrix,

respectively. For non-linear process models, F(.) can be linearized as in the EKF

algorithm [14]. In the case of multiple targets, the posterior estimate from a local

node would be associated to a target first and then the covariance prediction shall be

performed.
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Update Step

The Kalman gain for a linear measurement model is given by,

Kj
k = Pj

k|k−∆kH
j
k

′
(
Hj
kP

j
k|k−∆kH

j
k

′
+ Rj

k

)−1

(4.7.2)

and the subsequent covariance update

Pj
k|k =

(
I−Kj

kH
j
k

)
Pj
k|k−∆k, (4.7.3)

where Hj
k is the measurement-state mapping matrix. For the non-linear measurement

model (as in equation (4.6.1)), there are various options depending on the computa-

tion prowess available at the FC such as:

� The EKF recursion suggests using the measurement Jacobian in place of Hj
k

evaluated at the posterior state estimate, which is available at the F.C.

Hj
k ≈ ∆h(xk)|x̂k|k . (4.7.4)

� Alternatively, one can also use the CMKF update similar to the description in

section 4.4. The Hj
k in that case becomes an Identity matrix and the sensor co-

variance is replaced by the converted measurement covariance Rt
k (conditioned

on posterior state), or Rg
k (first or second-order linearization).

� For more accurate computation, one can also use unscented transformation

which requires calculation of deterministic sigma-points [101].

Since the posterior estimate is available at the fusion center, calculation of the
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Jacobian ∆h(x)|x̂k|k or the converted measurement covariance Rg is straightforward.

4.7.1 A Look at Measurement Update Times Vector

Ideally, the track covariance recursion does not depend on the track estimate and

hence can be performed anywhere given the knowledge of system parameters. We

exploit this property to reconstruct the track covariance at the fusion center. A

major caveat, however, in the case of non-full communication rate is to know when

to update the covariance and when to just predict since the sensor might miss the

measurement. Excluding this condition and updating the track covariance each time

an estimate is received will lead to an optimistic and possibly inconsistent covariance.

Suppose at time k, the previous track covariance Pj
k−∆k|k−∆k for node j is available

at FC. The local node then sends the posterior track estimate x̂k|k along with the

measurement update-times τk which looks like,

τk =

[
tk−∆k+u1 tk−∆k+u2 · · · tk

]T
(4.7.5)

where tk−∆k is the last track-covariance update time at FC and tk−∆k+ui is the time

of ith covariance update at local node after tk−∆k. The fusion center then starts

the covariance predict-update cycle for each time instant, tk−∆k+ui by calculating

the differences since the last update, until time tk is reached. Note that for non-

linear systems, covariance update requires knowledge of local state estimate at k

for generating linearized models. This can be approximated by using a predicted

estimate conditioned on the latest posterior estimate available. τk is an undesired

variable which is a compromise for not transmitting the local track-covariance.
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An efficient alternative is to assume that the sensor sample-time is constant and

the local node transmits a vector containing Boolean variables to depict whether

prediction or update happened at a particular sample-instant. The sensor sample-

time (assumed constant) can then be calculated from the number of elements (n) in

the vector and used to estimate time-stamp k.

∆T =
∆k

n
, (4.7.6)

where ∆k is the time-difference since last fusion time.

An example in this case is,

τ ′k =

 1︸︷︷︸
update at

(k −∆k + ∆T )

1 0︸︷︷︸
predict at

(k −∆k + 3∆T )

· · ·


T

. (4.7.7)

which is equivalent to transmitting a scalar variable. Note that the only assumption

is that the sensor sample-time is constant throughout ∆k.

Alternatively, for known constant local sensor sample-time ∆T , we can calculate

the number of entries n in τ ′k and its particular time stamp, using the time difference,

∆k. Then, we can solve a multi-hypothesis problem to find which hypothesis was

assumed by the local node to arrive at the latest estimate.

To understand this, assume that ∆T = 1 second and ∆k = 3 seconds, therefore

τ ′k contains only one entry:

τ ′k =

[
ti=2

]
, (4.7.8)
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The estimate and covariance at time tk−∆k is available at FC, while only the

estimate is available at tk. Denoting prediction by p, and update by u, we have

four hypotheses to choose from : H = {(pi, pk); (pi, uk); (ui, pk); (ui, uk)}. Where the

first entry of each element denotes prediction or update from time k − ∆k to i and

the second entry from time i to k. Thus, we have a set of covariance matrices at

k corresponding to each entry. Our task is to select the covariance from H which

minimizes the following K-L divergence:

P∗k = arg min
{P∈H}

DKL(P,Rt
k) (4.7.9)

where,

DKL(P,Rt
k) =

1

2

{
tr
(
P−1Rt

k

)
− d+ ln

det(P)

det(Rt
k)

}
. (4.7.10)

where d is the dimension of x̂k|k. The above equation is simply the K-L divergence

between two Gaussian densities with same means and different covariances.

Thus, it is possible to recursively propagate covariance in time without the knowl-

edge of τ ′k, but the process is computationally expensive and approximate for non-

linear systems (due to non-availability of local estimates). The order of enumeration

for cost computing is O(2n+1) which is not practical for large fusion sample period

(n).
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4.7.2 Necessity of τk.

The question regarding the necessity of the measurement update vector times τk,

depends on if the multiple predict-update cycles can be replaced by a single predict-

update since sample time is a sensor parameter and not a target parameter. To

understand this, the generalization of the discrete-time Riccati equation is revisited.

Assume that the last known updated track covariance Pka|ka at time-step ka and

sensor sampling time is ∆T . Then, at time kb > ka, for a single update cyle (unknown

sample-time), the covariance Pkb|kb is given by,

Pkb|kb = K̄b

(
F(kb,ka)Pka|kaF

′
(kb,ka) + Q(kb,ka)

)
,

= K̄kb

(
F(kb,ka)Pka|kaF

′
(kb,ka)

)
+ K̄kbQ(kb,ka), (4.7.11)

where,

K̄kb = (I−KkbHkb) . (4.7.12)

Where I is the identity matrix of appropriate dimension, F(kb,ka) and Q(kb,ka) are the

state transition and process covariance matrices respectively with argument kb − ka,

and Kkb and Hkb are respectively the Kalman gain and the measurement matrix at

time kb.
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However, the exact covariance Pe
kb|kb with the knowledge of ∆T is given by,

Pe
kb|kb =

(
n∏
i=0

K̄n−iF∆T

)
Pka|ka

(
FT

∆T

)n+1

+ K̄kb

{
n−1∑
j=1

j∏
l=1

F∆T K̄n−lQ(FT
∆T )i

}
+ K̄kbQ∆T (4.7.13)

where n is a positive integer such that kb = ka +n∆T . It can be seen that covariance

in equation (4.7.13) is considerably lower than the one in equation (4.7.11). The

proof of this statement is straightforward given the fact that K̄ � I and (F∆T )n =

Fn∆T � F∆T ,∀{n ≥ 1} thus,
∏n

i K̄iF
T
∆T � K̄nF

T
n∆T and similarly for Q∆T in the

sense of positive-definiteness. This is also illustrated in Fig. 4.2 where Frobenius

norm is plotted for fixed ka and the final time-step kb varying from 0 to 100 seconds.

The process noise intensity q̃ is taken as 0.01 and 1 in Fig. 4.2a and 4.2b respectively

with an initial track covariance as 100I and measurement covariance 50I.

4.7.3 Consistency

In general, for non-linear systems, the linearized Kalman filters do not guarantee

consistency. For instance, the standard EKF is a first order approximation which

usually remains consistent for small value of noise standard deviations (σθ ≤ 1◦) [14],

this also applies to the CMKF. Since the local estimates are not guaranteed to be

consistent, the reconstructed covariance is also vulnerable to inconsistency. There

is, however, a way to force the local NEES to be equal to the NEES obtained using

reconstruction at each time instant if the local statistic, x̂Tk|kP
−1
k|kx̂k|k (scalar) is made

available at the FC. In that case, we can calculate the approximate scale factor γk
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Figure 4.2: Frobenius norm of exact covariance in equation (4.7.13) and one-step
covariance equation in (4.7.11) v/s process noise intensity, q̃ for an arbitrary linear

system.

such that Pk|k = γkP
r
k|k and γk is approximated as,

γk ≈
x̂Tk|kP

r−1

k|k x̂k|k

x̂Tk|kP
−1
k|kx̂k|k

, x̂Tk|kP
−1
k|kx̂k|k 6= 0. (4.7.14)

where Pr
k|k is the reconstructed covariance at FC and Pk|k is the posterior covariance

at time k for the same node. It can be seen that γk > 0 but is not necessarily greater

than 1, thus, the reconstructed covariance is not always inflated.

The aforementioned technique is useful especially in the case when the local node

is using association techniques to declutter the measurements, like the probability

data association tracker (PDA). The posterior covariance associated with the PDA

tracker [see equation (4.8.16)] is inflated in comparison to the standard filtering algo-

rithms used for reconstruction due to uncertainty in the measurement origin. Hence,

multiplying the reconstructed covariance by the fudge factor γk ≥ 1 from equation

(4.7.14) is a suitable option.
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4.8 Simulation

Two simulation scenarios are presented in this section. The first focuses on evaluating

the properties of the reconstructed covariance matrix, and the second scenario focuses

on the fusion performance with the reconstructed covariance. In the first scenario,

which is a single sensor problem, the sensor propagates local state estimates with a

fixed probability, and we compare local covariance with its reconstructed counterpart.

The second scenario is that of a multi-target multi-sensor tracking in the presence of

clutter. The targets are assumed to be widely separated and thus, the local tracker

uses the probability data association filter (PDAF) that takes care of the uniform

distributed clutter as well.

4.8.1 Performance Metrics

The simulations are evaluated on the following metrics:

(i) Root mean-square error (RMSE): RMSE evaluates the absolute filtering

performance in simulation where the true system trajectory is known. At any

time-step k, the RMSE is given by the equation,

RMSEk =

√√√√ 1

M

M∑
m=1

||x̂m,k − xk||2, (4.8.1)

where M is the number of Monte-Carlo (MC) iterations over which the root-

mean is evaluated. x̂m,k is the filter estimate at kth time-step of mth MC run.

Note that the truth xk is the same throughout all MC iterations.

(ii) Average normalized estimation error squared (ANEES): ANEES is a
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measure of estimator consistency, which is based on the fact that a χ2 distribu-

tion has a mean equal to its degree of freedom. Thus, the following expression

ANEESk =
1

M

[
(x̂k − xk)

T P−1
k|k (x̂k − xk)

]
(4.8.2)

should have nx degrees of freedom (asymptotically). Since the number of MC

runs are finite, the ANEES for a consistent estimator should lie between the

appropriate confidence bounds given by the tail probabilities of respective χ2

density [14].

(iii) Mean deviation: Relative error of the actual and reconstructed covariance

matrices can be compared without the knowledge of truth using the mean de-

viation over M Monte-Carlo runs. For a covariance matrix Pk|k at time-step k,

the mean deviation for the scalar variable x is

MD =
1

M

M∑
m=1

√
cov(x). (4.8.3)

We extend this to target tracking scenarios in which the mean deviation of

position and velocities are computed as (in 2D),

MDpos =
1

M

M∑
m=1

√
cov(x) + cov(y) (4.8.4)

MDvel =
1

M

M∑
m=1

√
cov(ẋ) + cov(ẏ) (4.8.5)

(iv) Frobenius distance between matrices: Based on the Frobenius norm [46],
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the Frobenius distance between the two matrices A and B is given as

FA,B =
√

tr
[
(A−B) (A−B)′

]
, (4.8.6)

where tr[.] refers to the trace operator. Removing the tr[.] operator, equation

(4.8.6) can also be written as,

FA,B =

√√√√ nx∑
i=1

nx∑
j=1

(aij − bij)2, (4.8.7)

where aij and bij are respectively, the corresponding elements of nx × nx sized

matrices A and B. Thus, FAB can be thought of as an L2 norm which tends to

0 as the individual elements aij and bij tend to be equal to each other. In our

case, the mean of this operator is calculated over all Monte-Carlo runs. Thus,

F̂ =
1

M

M∑
m=1

F(Pk|k,P
r
k|k)

m
(4.8.8)

where Pk|k and Pr
k|k are the actual and reconstructed covariance matrices re-

spectively at time-step k of mth MC run .

4.8.2 Single Sensor Covariance Reconstruction.

To compare the reconstructed and original covariance qualitatively, a single sensor

simulation is set up to track a nearly constant velocity (NCV) target. In this scenario,

the local node sends the posterior track estimates to the FC, wherein the covariance

is reconstructed using the procedure explained in Section 4.5 and Section 4.7. The
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comparison is based on the metrics explained in subsection 4.8.1 – NEES, Frobe-

nius distance and mean deviation. Note that this scenario is specifically constructed

to compare the actual and reconstructed covariance, without any emphasis on the

tracking error. This is due to the fact that the reconstructed covariance at FC closely

follows the actual covariance at local node, and hence could diverge if the modeling

or system parameters are inappropriate.
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Figure 4.3: True v/s reconstructed NEES for different values of initial range R,
when local sensor is running EKF.
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Figure 4.4: True v/s reconstructed NEES for different values of initial range R,
when local sensor is running CMKF.

It is assumed that the local nodes transmit the updated estimate at full com-

munication rate [94]. To emulate real world conditions, the reconstruction happens
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(a) q̃ = 0.001, ρ = 0.8.
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(b) q̃ = 0.001, ρ = 0.9.

Figure 4.5: Average Frobenius Distance v/s time.
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Figure 4.6: Mean deviation of range.
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Figure 4.7: Mean deviation of velocity.

with a probability ρ where 1 − ρ gives the probability of missing estimate at FC.

Hence, assuming the local node updates the covariance at each sampling instant with

100% probability, the FC updates the covariance with a probability ρ. The simulation

parameters are listed in Table 4.2.

The NEES for 1000 Monte-Carlo runs is plotted in Fig. 4.3 and Fig. 4.4 for initial

range R = 25, 50, 75 and 100 km; process noise intensity, q̃ = 0.001; and ρ = 0.9.

Generally, the non-linear filtering method employed at the local node would not be

known to the FC, hence NEES is plotted using both the CMKF and EKF framework

(see Section 4.7). The case where the local node is running EKF is shown in Fig.

4.3 with the actual NEES in Fig. 4.3a. Note that the local EKF itself is mostly

inconsistent for the given values of sensor standard covariance and initial range, this

is due to the errors accumulated in the first-order linearization at large range. It

can be seen that if the sensor noise standard deviation is reduced (σθ < 1◦), the

estimate can be made consistent. The NEES for reconstructed covariance using the

EKF framework is shown in Fig. 4.3b and using CMKF framework is plotted in Fig.
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4.3c. Though the reconstruction using the CMKF framework is relatively consistent,

the EKF framework is more likely to match the original NEES as expected. Even

though inconsistent, the EKF framework reconstruction performs better than the

original because the sensor Jacobian matrix at FC is constructed with the knowledge

of posterior estimate rather than prior estimate, which was the case at the local node.

Thereby, the covariance at FC is similar to that of a two-step re-linearized iterated

EKF [14] which performs better than the original covariance.

For the case where the local node is running CMKF, the NEES is plotted in

Fig. 4.4 with that of the local covariance in Fig. 4.4a. The de-biased version of

CMKF given in [21] is employed, which is consistent even at high range and large

sensor errors. The EKF reconstruction is shown in Fig. 4.4b which lacks consistency

except when the initial range is small. Since the decorrelated unbiased converted

measurement (DUCM) estimate is accurate upto third-order linearization [20], a first

order EKF cannot outperform its result. One may suggest the use of an iterated

EKF at FC, which will also increase computational cost significantly. In Fig. 4.4c,

the NEES for reconstruction using CMKF framework is plotted which shows 3–4

points out of 120 to be outside the confidence interval, which is acceptable but still

relatively optimistic. The reason for this is that the converted measurement matrix

was approximate, since the FC had no information regarding σrt and σθt (see equation

(4.5.4)). This simulation suggests that the use of a CMKF based framework proves to

be relatively consistent if the F.C has no information regarding the filtering algorithm

at the local nodes.

Next, the mean Frobenius distance is plotted for 1000 Monte-Carlo runs in Fig.

4.5. The value of initial range, R is 75 km and the maximum velocity is 80 m/s.
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Fig. 4.5a shows the case with q̃ = 0.01 and ρ = 0.8, wherein the Frobenius distance

converges at the end of simulation after starting at a large value. Since the elements

of the covariance matrix are squared error, the Frobenius distance at instant k is

the mean-squared-difference between the elements of Pk|k and Pr
k|k. The terminal F̂

corresponding to this case is 3.3×105 whereas for the case with q̃ = 0.001 and ρ = 0.9

is 1.6 × 105. Given that the elements of the covariance matrices at such range and

sensor noise are of the order of 106, the terminal Frobenius distance suggests an error

of roughly 10% which is acceptable.

The mean deviation in position and velocity as defined in equation (4.8.4) and

(4.8.5) are plotted in Fig. 4.6 and Fig. 4.7 respectively for both the values of ρ,

and q̃ = 0.001. Both plots show that the reconstructed covariance proves to be a

viable alternative, with the terminal difference of ∼ 50 meters in range and ∼ 1 m/s

in velocity for the case with ρ = 0.8. The numbers tend to improve as the update

probability tends to 1 as expected.

4.8.3 Three Sensor T2TF Without Covariance

In order to evaluate the robustness of the proposed reconstruction strategy, the fusion

result was tested on a real-life 2-D target tracking scenario. The scenario consists of

20 targets which are tracked by three radars within a significant amount of clutter.

The scenario is shown in Fig. 4.8a wherein the numbers indicated at the start of

each target represents its ID. The sensors have a limited field of view (FOV) which

is plotted using circular markers around each sensor.

The parameters used in tracking this scenario are listed in Table 4.3. Note that a

nearly constant velocity model (NCV) is assumed for all the tracks, however it is not
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Table 4.2: Scenario 1 – Simulation parameters

Parameter Value

Process noise intensity (q̃) 1E−3, 1E−2 m2/s3

Number of targets 1

Detection probability 0.99

Maximum target speed 80 m/s

Sensor std. deviation - range (σr) 100 m

Sensor std. deviation - azimuth (σθ) 4◦

Total simulation time 120 s

Sensor sample time (∆T ) 1 s

Packet miss probability (ρ) 0.9, 0.8

necessarily followed by all target trajectories which might lead to track breakages. The

geodetic coordinates according to the WGS84 datum [57] are also provided in Table

3.3 which can be used to replicate the scenario. The targets move in an area spanning

nearly 3600 km2 whereas the sensors are static at the mentioned coordinates. In Fig.

4.9, the clutter and true measurements are contrasted, which show the intensity of

clutter in the scenario.

Since the FOV of each sensor (rotating mono-static radar) is limited as mentioned

in Table 4.3, each sensor receives detection for only 12–13 targets out of 20 as depicted

in Fig. 4.9. The results also show in Fig. 4.8b that only 19 out of 20 targets could

be tracked in such a configuration.

Next, the theory of filtering, association and fusing algorithms used in local nodes

and the FC is revisited in this scenario.
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Figure 4.8: Scenario 2 – Comparison of truth and estimated tracks.
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Figure 4.9: Scenario 2 – Measurements v/s Clutter.

Model Equations

Although the stated coordinates represent a spherical system, the trackers are imple-

mented in a standard mixed coordinate system wherein the process models is Carte-

sian and the sensor model is spherical in two dimensions. For conversion between the

geodetic and local tangent plane coordinates, readers are referred to [28].

The target motion and the measurements respectively, are modeled by the follow-

ing equations (dropping target and measurement indices),

xk+1 = Fxk + wk, (4.8.9a)

zk = h(xk, yk) + vk, (4.8.9b)
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Figure 4.10: Scenario 2 – Target ID 1.
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Figure 4.11: Scenario 2 – Target ID 2.
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Figure 4.12: Scenario 2 – Target ID 3.
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Figure 4.13: Scenario 2 – Target ID 4.
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Figure 4.14: Scenario 2 – Target ID 5.
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Figure 4.15: Scenario 2 – Target ID 6.
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Figure 4.16: Scenario 2 – Target ID 7.
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Figure 4.17: Scenario 2 – Target ID 8.
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Figure 4.18: Scenario 2 – Target ID 9.
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Figure 4.19: Scenario 2 – Target ID 10.
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Figure 4.20: Scenario 2 – Target ID 11.
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Figure 4.21: Scenario 2 – Target ID 12.
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Figure 4.22: Scenario 2 – Target ID 13.
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Figure 4.23: Scenario 2 – Target ID 14.
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Figure 4.24: Scenario 2 – Target ID 15.
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Figure 4.25: Scenario 2 – Target ID 16.
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Figure 4.26: Scenario 2 – Target ID 17.
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Figure 4.27: Scenario 2 – Target ID 19.
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Figure 4.28: Scenario 2 – Target ID 20.
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where (using In for n dimensional identity matrix),

F =


I2 ∆T I2

02 I2

 and, h(xk, yk, zk) =

[
rk θk

]T
,

Table 4.3: Simulation parameters – Scenario 2

Parameter Value

Process noise intensity (q̃) 0.1 m2/s3

Number of targets 20

Detection probability 0.99

False alarm probability Pfa 10−6

Clutter density (λ) 10−6

Maximum target speed 30 m/s

Number of sensors 3

Sensor type Monostatic 2-D Radar

Sensor coverage 300, 000 m× 360◦

Sensor std. deviation - range (σr) 50 m

Sensor std. deviation - azimuth (σθ) 2◦

Gating threshold (µ) 0.95

Track deletion threshold (num. of misses) 6

Track loss threshold 500 m

Fusion sample period (Tf ) 4

Total simulation time 4537 seconds

Sensor sample time 1 second

176



Ph.D. Thesis – N. Sharma McMaster University – ECE

where,

rk =
√
x2
k + y2

k; θk = tan−1

(
yk
xk

)

∆T is the sampling time, and wk, vk are uncorrelated, zero-mean Gaussian dis-

tributed process noise vector and measurement noise vector respectively, such that

∀{k, j},

E[wkwj] = δkjQ; E[wkvj] = 0; E[vkvj] = δkjR,

where Q and R are the process noise and measurement noise covariance matrix re-

spectively,

Q = q̃


∆T 3

3
I2

∆T 2

2
I2

∆T 2

2
I2 ∆T I2

 , R = diag(σ2
r , σ

2
θ),

and q̃ is the process noise intensity in meter2/second3.

Local Tracking Algorithm

At the local nodes, sensors employ a Probability Data Association (PDA) algorithm

with the assumption that the targets are widely separated, which is true in this

scenario. The wide separation is quantified by the fact that while validation-gating

is performed (see equaiton (4.8.10)) [12], no two targets can share their associated

measurements. Or in other words, the gates do not intersect.
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At the crux of the PDA algorithm is the validation gate, which removes all mea-

surement which do not lie in the following probability ellipse [12],

(zi(k)− ẑ(k|k − 1))T S−1(k) (zi(k)− ẑ(k|k − 1)) < γ. (4.8.10)

Where zi(k) is the ith measurement at time k, ẑ(k|k − 1) is the one-step predicted

measurement at time k, S(k) is the predicted measurement covariance and γ is ob-

tained from the tables of chi-square distribution for a given confidence level. Then,

for each measurement zi(k) in the validated measurements set m(k), an association

probability βi(k) is calculated,

βi(k) =


Li(k)

1−PDPG+
∑m(k)
j=1 Li(k)

i ∈ 1 : m(k)

1−PDPG
1−PDPG+

∑m(k)
j=1 Li(k)

i = 0.

(4.8.11)

Where PD, PG are the detection probability and gate probability respectively. Li(k)

is the measurement likelihood ratio, given by,

Li(k) =
N [zi(k), ẑ(k|k − 1),S(k)]

λ
(4.8.12)

λ is the clutter intensity and N represents the normal distribution. Given the prior

estimate x̂(k − 1|k − 1); P(k − 1|k − 1), the filter equations are then (dropping time

indices for brevity),

178



Ph.D. Thesis – N. Sharma McMaster University – ECE

� Predict :

x̂(k|k − 1) = Fx̂(k − 1|k − 1) (4.8.13)

P(k|k − 1) = FP(k − 1|k − 1)FT + Q (4.8.14)

� Update :

x̂(k|k) = x̂(k|k − 1) + K(k)v(k) (4.8.15)

P(k|k) = β0P(k|k − 1) + (1− β0)Pc(k) + P̃(k). (4.8.16)

where K(k) is the Kalman gain and,

Pc(k) = P(k|k − 1)−K(k)S(k)K(k)T , (4.8.17)

the spread of innovation term, P̃(k) is given by,

P̃(k) , K(k)
[∑m(k)

j=1 βi(k)vi(k)vi(k)T − v(k)v(k)T
]

K(k)T . (4.8.18)

Here vi(k) is the innovation corresponding to ith measurement; v(k) is the

weighted innovation, v(k) =
∑

i βi(k)vi(k) and β(k) is calculated in equation

(4.8.11).

Since this is a non-linear problem, the CMKF recursion is coupled with PDA in

equation (4.8.17) to calculate Kalman gain for linearized measurements. Thus,

K(k) = P(k|k − 1)HT
(
HP(k|k − 1)H + Rt

k

)−1
, (4.8.19)
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where Rt
k is mentioned in equation (4.5.2) and,

H =


1 0 0 0

0 1 0 0

 . (4.8.20)

Covariance Reconstruction

The local nodes send their track estimates along with the measurement update times

(see equation (4.8.1)). Every time a new track is received at the FC whose covari-

ance is not available, the covariance is initialized using the framework explained in

Section 4.5. Then for the subsequent time, EKF or CMKF recursion is employed

to update/predict the last covariance based on the measurement update times. For

this operation, the FC is assumed to possess sufficient memory, in order to store the

covariance for each track.

For this simulation, the fusion sample period of 2, 4 and 6 were used (see Table

4.3) which is the value of sampling instants between fusion demand. It was assumed

that the sampling time is constant, therefore, the measurement update times τk is

sent as a binary vector signifying 1 for update and 0 for predict.

To maintain the consistency, the CMKF based covariance recursion is used at the

FC.

Track Association and Fusion

The tracks transmitted by the local nodes are required to be associated after the

covariance is reconstructed. In the view of widely separated targets, the association

is kept simple for faster execution and global nearest neighbor (GNN) is employed, in
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which the assignment is readily made when a single track is associated with the global

track. In the event of a conflict, where multiple tracks may appear in the vicinity of

a single gate, the suboptimal nearest neighbor approach was used. In this approach,

the track with the minimum statistical distance (see equation (4.8.10) ) is chosen.

The tracks associated together are fused using the covariance intersection algo-

rithm, which is described in equation (4.3.8). The fusion factor ω is selected by

optimizing the following cost criteria

ω∗ = arg min
ω

tr

[(
ωΓi

−1

k|k + (1− ω)Γj
−1

k|k

)−1
]

(4.8.21)

where the tr[.] refers to the trace of the resulting matrix and Γi, Γj are the covariance

of tracks to be fused at time k.

Results

The results, including the metrics position RMSE, velocity RMSE and the NEES over

500 MC iterations, are plotted in Fig. 4.10 – Fig. 4.28 for target IDs 1–20 excluding

target 18 which was outside FOV of either sensors. Though generalized-optimal

sub-pattern assignment (GOSPA) [79] is the common metric choice for multi-target

scenarios, individual metrics were chosen for a better analysis.

Each metric is plotted for different values of the fusion sample period Tf viz. 2,

4 and 6 seconds. This shows that the results are independent of the fusion period,

which is a basic property of T2TF. Having a closer look at the RMSE results, the

reader would find a transition in the plots for a specific target. The reason for this

lies in the scenario (see Fig. 4.8a) wherein the FOV of each sensor is plotted. For

instance, target 17 lies in the FOV of only Radar 3, hence its track estimates never
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undergo fusion, resulting in a higher RMSE. On the contrary, targets 4, 10 and 11 lie

in the FoV of all three sensors and hence their track estimate are the result of fusion

of three local nodes. Similarly, there are targets which cross over the FOV of either

sensors, like target 15 which initially stays in FOV of all three sensors and later on

terminates in the region covered by Radar 1 and Radar 2. Due to this cross-over,

the RMSE displays transition in the later part of the plot. Individual spikes in the

RMSE plots could be the result of track breakage, which are not shown in this work

for brevity. This is due to the fact the targets do not follow the NCV motion model,

which is used in tracking.

The NEES is also plotted in Fig. 4.10—Fig. 4.28. Here also, the transition

is visible, the reason is the nature of fusion methodology used i.e. – covariance

intersection. C.I. has been proven to be conservative in nature. An estimate pair

(x̂k,Γk) is termed conservative if its covariance is greater than the true mean square

error (MSE) [4]. Thus, mathematically for a conservative covariance Γk ,

Γk � E
[
(x̂k − xk)(x̂k − xk)

T
]
, (4.8.22)

where xk is the truth and � implies greater in the sense of positive-definiteness.

Hence, the fusion produces a conservative result due to which the NEES decreases.

For instance, the estimate resulting from the fusion of three nodes will have a higher

(or in marginal case, equal) NEES if compared with that of the fusion of the two

local nodes. Since the covariance of the local track will always be higher (or equal)

than the fused covariance, the corresponding NEES will always be lower than the

latter. For example, see Fig. 4.15 for target ID-6, which initially lies in the FOV of

Radar 1 but later on moves in the vicinity of both Radar 1 and Radar 3. The NEES
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is initially low due to local node covariance being higher, then, as the target crosses

over to the vicinity of Radar 1 and Radar 3, the NEES increases as the covariance

is decreased due to fusion while still being conservative. One-sided 95% confidence

level is also constructed in each NEES plot for assessing the consistency. None of

the samples for any target is above the 95% confidence, proving the consistency of

covariance intersection.

4.9 Conclusion

In this chapter, the problem of missing covariance in track fusion architectures was

investigated. The proposed method is exact and relies on the fact that covariance

recursion in a Kalman filter can be performed independently. Thus, for each local

node, the covariance recursion is processed at the fusion center with the knowledge

of local posterior estimate and using system/measurement dynamics. An important

step for the recursion is to initialize the covariance at the FC using the knowledge

of local estimate, for which, the CMKF framework is revisited. To generalize the

initialization to any sensor, first-order and second-order approximation of the CMKF

are subsequently derived.

Though the work-load at the FC is increased, it is negligible compared to the

procedure used for association and fusion. To investigate the efficacy of the proposed

method, two scenarios were simulated. One of which is a real-world tracking of 20

targets using three mono-static radars in the presence of clutter, and the other is a

qualitative comparison of reconstructed and original (local) covariance. The results

suggest that fusion without covariance displays insignificant difference and performs

as expected. The next step in this research direction is to examine the problem
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with non-observable systems such as bearings-only tracking (BOT) and covariance

reconstruction in the presence of local sensor anomalies.
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Chapter 5

Trigonometric Moments of a

Generalized von Mises Distribution

And Their Application in 2-D

Range-Only Tracking

5.1 Abstract

A 2D range-only tracking scenario is non-trivial due to two main reasons. First,

when the states to be estimated are in Cartesian coordinates, the uncertainty region

is multi-modal. The second reason is that the probability density function of azimuth

conditioned on range takes the form of a generalized von Mises distribution, which

is hard to tackle. Even in the case of implementing a uni-modal Kalman filter, one

needs expectations of trigonometric functions of conditional bearing density, which
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are not available in the current literature. This chapter focuses on this exact prob-

lem. We prove that the trigonometric moment (circular moment) of the azimuth

density conditioned on range can be computed as an infinite series, which can be

sufficiently approximated by relatively few terms in summation. The solution can

also be generalized to any order of the trigonometric moment.

This important result can provide an accurate depiction of the conditional azimuth

density in 2D range-only tracking geometries. We also present a simple optimization

problem that results in deterministic samples of conditional azimuth density from the

knowledge of its circular moments, which leads to a new filtering application in such

scenarios. The results are shown in a two-dimensional simulation, where the range-

only observer maneuvers to make the system observable. The results prove that the

method is feasible in such applications.

5.2 Introduction

Tracking with both azimuth and range measurements is considered a benchmark

problem in target tracking scenarios. Due to the evolution of low-cost sensing and

embedded technologies, tracking with range-only measurements has become a recent

interest in the last decade. Also, due to advances in radio frequency technology,

measuring the range between beacons and transponders is inexpensive and efficient.

This has led to a tremendous use of range-only measurements in wireless sensor

networks (WSN) [52]. In this work, we consider a single-sensor 2D range-only target

motion analysis, which is considered impractical in long-range due to three primary

reasons.

(1) Gaussian assumption is invalid for most scenarios since the uncertainty region
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resembles a concave shape. For a sensor with a large field-of-view (FOV) and low

standard deviation, this cannot be sufficiently approximated with an ellipsoid

[93, 31, 30].

(2) The density of azimuth conditioned on range is extremely hard to simulate due

to complicated expressions and non-trivial integrals.

(3) While the observability conditions have been established for observer motion

with several legs, there is no generalized solution for the observability of range-

only target motion analysis [78, 88].

The first problem has been solved in various cases by either parameterizing az-

imuth [82] or using a multi-modal density instead of Gaussian. A Gaussian mixture

approach was used in [31] and [30] wherein both the prior density and the conditional

azimuth density were assumed to be Gaussian mixtures. The authors used the EM

algorithm for Gaussian mixture approximation based on the knowledge of azimuth

density, but the azimuth density itself was sampled uniformly.

Due to observability issues, range-only tracking is seldom used except in WSNs,

where measurements from multiple nodes are fused together to achieve observability.

As mentioned before, unlike bearing-only target motion analysis, observability in

range-only scenarios does not possess a general solution for observer motion. Pillion et

al. in [78] analyzed leg-by-leg observer trajectory and found that a multi-leg scenario

might be observable if the range-rate is constant. The analysis was performed after

assuming a nearly constant velocity (NCV) model for the target.

In this chapter, we focus on the first two problems, which are based on the multi-

modal shape of the density of azimuth conditioned on range measurements in the

two-dimensional case. Specifically, we derive a generalized solution for the conditional
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integral of the form,

E [cos(mθ)|r] =

∫ 2π

0
cos(mθ)p(θ|r)dθ, m = 1, 2, . . . (5.2.1a)

E [sin(mθ)|r] =

∫ 2π

0
sin(mθ)p(θ|r)dθ, m = 1, 2, . . . (5.2.1b)

Such integrals are better known as trigonometric moments or circular moments in

literature. Here, θ is the azimuth, r is the range, m is a positive integer, and p(.)

represents the probability density function. We show that the conditional density

p(θ|r) resembles a generalized form of the von Mises distribution [39]. As per the

author’s knowledge, trigonometric moments of such a distribution do not exist in

the current literature and hence are a powerful tool to infer the shape of conditional

azimuth density in a range-only tracking scenario.

The rest of the chapter is organized as follows : In Section 5.3 we provide a gen-

eral overview of the range-only tracking problem along with a modified measurement

model. Generalized update equations for range-only tracking are presented in Section

5.4. In this section, we present an unimodal Kalman filter-type recursion for range-

only scenarios. The true range density and the conditional azimuth densities are

derived in Section 5.5. We solve the integrals in eqn. (5.2.1) in Section 5.6 and sub-

sequently apply it to find deterministic samples of the conditional density in Section

5.7. The derivations are tested against numerical quadrature and a 2D simulation in

Section 5.8. Finally, the chapter is concluded in Section 5.9.
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5.3 Problem Formulation

Consider a linear Gaussian system that can be represented in a discrete-time state-

space formulation as,

xrk = Fkx
r
k−1 + Fkx

o
k−1 − xok + wk (5.3.1)

Where xrk is the target state vector relative to the observer state xok at time k. Fk is

the state transition matrix, and wk is the process noise involved. We assume that the

process noise is zero-mean Gaussian ∼ N (wk; 0,Qk), with Qk as the process noise

covariance matrix. We also assume the whiteness of the process noise, which also

imparts Markovian properties to the system. Hence,

E [wlwm] = δlmQl (5.3.2)

where δlm is the Kronecker delta. The measurement in our case is range-only which

is often governed by the additive noise model in literature as [13, 17],

rk = ‖Hxrk‖+ vk (5.3.3)

Where H is an appropriate matrix which captures the positional components from

xk, and vk is the adjoining measurement noise, ∼ N (vk, 0;σ2
r), such that it is white

and uncorrelated with wk. However, we use a slightly modified version of this model

since it is convenient for our analysis (discussed in the next subsection).

The objective is to estimate the state-space vector xk at each time k such that

the solution is optimal in some sense. The range measurement model we choose is
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based on adding noise before norm calculation, which is also asserted in [31], details

of which are discussed next.

5.3.1 Range Measurement Model

Since range can never be negative, additive Gaussian noise makes no sense when

working in short-range scenarios. For e.g., if the true range is say, rtk meters and the

standard deviation of the measurement noise is say, σr meters, then the probability

that the resulting range measurement is negative (according to eqn (5.3.3)) is,

Pr(rk < 0) =

∫ 0

−∞
N
(
r; rtk, σr

)
dr = φ

(
−rtk
σr

)
=

1

2

[
1− erf

(
rtk

σr
√

2

)]
. (5.3.4)

Where rtk = ‖Hxk‖ is the true range, φ(.) is the cumulative distribution function

(CDF) of a standard normal variable, and erf(.) denotes the error function. Thus, the

probability increases with decreasing range and is never theoretically zero. Therefore,

we advocate the use of additive Gaussian term inside the norm operator,

rk = ‖Hxk + vk‖ (5.3.5)

where vk ∼ N (0, σ2
rI) with I being the identity matrix of appropriate dimension.

This model however, gives rise to the following Ricean density for conditional range

[81],

pr (rk|xk) =
rk
σ2

exp

(
−(rk)

2 + ‖Hxk‖2

2σ2
r

)
I0

(
rk‖Hxk‖

σ2
r

)
(5.3.6)
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Where I0(.) is the modified Bessel function of order 0. In contrast, the Gaussian

density of the original measurement, conditioned on the truth is,

pg (rk|xk) =
1

σr
√

2π
exp

(
−(rk − ‖Hxk‖)2

2σ2
r

)
(5.3.7)

It can be observed that asymptotically, as rk
σr

increases, the difference pr(.) − pg(.)

converges to,

pr (rk|xk)− pg (rk|xk) −→ pg (rk|xk)
[√

rk
rtk
− 1

]
(5.3.8)

Therefore, practically, at large ranges and moderate standard deviations, rk ≈ rtk,

and the densities are indistinguishable. The reason for choosing such a range model

is only analytic convenience in arriving at closed-form solutions. To see this, consider

linear measurements of position with Gaussian additive noise,

yk = rtk


cos(θ)

sin(θ)

+ yvk (5.3.9)

Where θ is the azimuth measured counter-clockwise from the x-axis. It is easier to

observe that the density of range measurement, rk = ‖yk‖ will coincide with that in

Eqn. (5.3.6).
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5.4 Update Equations for Range-Only Tracking

The posterior density of the state xk conditioned on range rk can be represented as

the marginalization of azimuth θ as

p(xk|rk) =

∫ 2π

0

p(xk, θk|rk)dθk =

∫ 2π

0

p(xk|θk, rk)p(θk|rk)dθk (5.4.1)

The interpretation of the above equations is as follows. Assume that a linear mea-

surement is available as in eqn. (5.3.9). Then, the linear Kalman update states,

x̂k|k =x̂k|k−1 + Kk [yk − ŷk] = (I−KH) x̂k|k−1 + Kkrk


cos(θ)

sin(θ)

 (5.4.2)

where yk|k−1 is the predicted measurement which can be calculated using the prior

density. Since the azimuth information is not available, we find the posterior estimate

by conditioning on range.

x̂k|k = E
[
x̂k|k|rk

]
= (I−KH)x̂k|k−1 + KkrkE [bk|rk] (5.4.3)

Where, bk =

[
cos(θk) sin(θk)

]T
. Similarly, the corresponding covariance can be

calculated as,

Pk|k = (I−KH) Pk|k−1 + r2
kKkPb,kK

T
k (5.4.4)
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where, the associated covariance due to azimuth uncertainty, Pb,k is quantified as,

Pb,k = E
[
(bk − E[bk]) (bk − E[bk])

T |rk
]

(5.4.5)

These equations follow as a direct consequence of eqn. (5.4.1). Though the Kalman

filter update equations look promising for generating a near-optimal estimate, there

is, however, a missing piece of information. The conditional expectations in the above

equation assert that the azimuth density (conditioned on range) is considered a sym-

metric uni-modal distribution, which is unfortunately not true in all scenarios. The

famous contact lens problem in a range-only scenario generates a conic-shaped dis-

tribution for the state estimate uncertainty, which has to be dealt with accordingly.

The issue has been solved by splitting the uni-modal density into a Gaussian approx-

imation, which can be recursively predicted and updated to generate a multi-modal

posterior density.

In this work, we focus on deriving the exact expression for the conditional expec-

tation in eqn. (5.4.3) and eqn. (5.4.5) and its generalization. The exact expressions

will prove to be helpful in generating accurate multi-modal approximations to the

non-trivial conditional density, p (θk|rk), as we see in the subsequent sections.

5.5 Conditional Azimuth Density

The conditional azimuth density can be represented as,

p (θk|rk) =
p (θk, rk)

2π∫
0

p (θk, rk) dθk

(5.5.1)
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Assuming that the true position at time k is Gaussian distributed with predicted

estimate as the mean, yk ∼ N (yk; ŷk,Vk) as in eqn. (5.3.9), and using transformation

of variables, the joint density can be transformed from Cartesian to polar coordinates,

p(θk, rk) =
rk√
|2πVk|

exp

[
−1

2

(
r2
kb

T
kV−1

k bk + ŷTk V−1
k ŷk

)]
exp

[
−1

2

(
−2rkb

T
kV−1

k ŷk
)]

(5.5.2)

where Vk = HPk|k−1H
T + Rk is the predicted measurement covariance. The joint

density can be rewritten as,

p(θk, rk) =
rk√
|2πVk|

exp

[
−1

2

(
r2
k

(a
2

+
c

2

)
+ ŷTk V−1

k ŷk

)]
× exp

[
rk‖p, q‖ cos(θk − φ1) + A3r

2
k cos(2θk + φ2)

]
(5.5.3)

where following notations are used,


a b

b c

 = V−1
k ,


p

q

 = V−1
k ŷk, φ1 = tan−1

(
q

p

)

A3 =

∥∥∥∥( c4 − a

4

)
,
b

2

∥∥∥∥, φ2 = tan−1

(
b/2(
c
4
− a

4

)) (5.5.4)

Note that the notation ‖α, β‖ means the norm of a vector containing α and β.
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5.5.1 True Range Density

The true range density can be computed by solving the integral

p(rk) =

2π∫
0

p (θk, rk) dθk

= κ(rk)

∫ 2π

0

exp

[
rk‖p, q‖ cos(θk − φ1) + A3r

2
k cos(2θk + φ2)

]
dθk, (5.5.5)

where κ(rk) contain all the terms independent of θk. The integral has been solved by

Weil for the diagonal case in [103]. For the general case of eqn. (5.5.5), the integral

can be solved as a series expansion (see proof in appendix) wherein the density can be

calculated by a relatively fewer number of terms. The resulting range density which

is also the denominator in eqn. (5.5.1) is,

p(rk) = κ(rk)2π

[
I0

(
A3r

2
k

)
I0

(
rk

√
A2

1 + A2
2

)
+

2
∞∑
k=1

Ik
(
A3r

2
k

)
I2k

(
rk

√
A2

1 + A2
2

)
cos(2kψ)

]
(5.5.6)

where Iv(.) is the modified Bessel function of the first kind of order v, and,

A1 = ‖p, q‖ cos

(
φ2

2
+ φ1

)
, A2 = ‖p, q‖ sin

(
φ2

2
+ φ1

)
, ψ = tan−1

(
A2

A1

)
(5.5.7)

The resulting conditional azimuth density is then,

p (θk|rk) =
κ(rk)

p (rk)
× exp

[
rk‖p, q‖ cos(θk − φ1) + A3r

2
k cos(2θk + φ2)

]
(5.5.8)
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where p(rk) is given in eqn. (5.5.6), note that κ(rk) will be canceled out. The

remaining denominator in eqn. (5.5.8) is

den = 2π

[
I0

(
A3r

2
k

)
I0

(
rk

√
A2

1 + A2
2

)
+ 2

∞∑
k=1

Ik
(
A3r

2
k

)
I2k

(
rk

√
A2

1 + A2
2

)
cos(2kψ)

]
,

(5.5.9)

which can be approximated by a fewer number of terms in summation.

5.6 Expectations of Conditional Azimuth Density

To calculate the optimal solution in eqns. (5.4.3) and (5.4.5), it is necessary to cal-

culate the expectations of the form E [cos(θk)|rk], E [sin(θk)|rk], and others. We show

that it is possible to compute the generalized expectations of the form E [cos(mθk)|rk]

and E [sin(mθk)|rk] for any positive integer m.

E [cos(mθk)|rk] =

∫ 2π

0

cos(mθk)p (θk|rk) dθk = Igen, cos(m)

∝
∫ 2π

0

cos(mθk) exp

[
rk‖p, q‖ cos(θk − φ1) + A3r

2
k cos(2θk + φ2)

]
dθk

(5.6.1)

where the proportionality constant is den−1. In order to proceed with the integral,

let’s solve a simplified version of the form,

Idiag,cos(m) =

∫ 2π

0

cos(mθk) exp

[
rk‖p, q‖ cos(θk − φ1) + A3r

2
k cos(2θk)

]
dθk (5.6.2)
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and,

Idiag,sin(m) =

∫ 2π

0

sin(mθk) exp

[
rk‖p, q‖ cos(θk − φ1) + A3r

2
k cos(2θk)

]
dθk (5.6.3)

Note that the difference is in the inclusion of φ2. We use a subscript ‘diag’ for these

integrals since this is the case for diagonal covariance matrix Vk. It is proven in the

appendix that these integrals result in,

Idiag,cos(m) = 2π
∞∑

j=−∞

1

2
Ij(A3r

2
k)

[
I2j+m(Drk) cos((2j +m)ψ) + I2j−m(Drk) cos((2j −m)ψ)

]
(5.6.4)

and,

Idiag,sin(m) = 2π
∞∑

j=−∞

1

2
Ij(A3r

2
k)

[
I2j+m(Drk) sin((2j +m)ψ)− I2j−m(Drk) sin((2j −m)ψ)

]
(5.6.5)

where D =
√
A2

1 + A2
2 and tan(ψ) = A2

A1
.

Moving forward, note that the term inside the summation is an even function of

summation index j. Therefore, the infinite series can be reduced to positive indices

only.

Idiag,cos(m) = 2π

[
I0(A3r

2
k)Im(Drk) cos(m) +

∞∑
j=1

Ij(A3r
2
k)×

(
I2j+m(Drk) cos((2j +m)ψ) + I2j−m(Drk) cos((2j −m)ψ)

)]
, (5.6.6)
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Idiag,sin(m) = 2π

[
I0(A3r

2
k)Im(Drk) sin(m) +

∞∑
j=1

Ij(A3r
2
k)×

(
I2j+m(Drk) sin((2j +m)ψ)− I2j−m(Drk) sin((2j −m)ψ)

)]
, (5.6.7)

which reduces the computation time by half,

The intergal for the general case in eqn. (5.6.1) can be converted to that in eqns.

(5.6.2) and (5.6.3) using the substitution 2θk+φ2 = 2u. Which results in the following

expressions for the integrals of our interest,

Igen,cos(m) = E[cos(θk)]p(θk|rk) =
2π

den

[
cos

(
m
φ2

2

)
Idiag,cos + sin

(
m
φ2

2

)
Idiag,sin

]
(5.6.8)

Igen,sin(m) = E[sin(θk)]p(θk|rk) =
2π

den

[
cos

(
m
φ2

2

)
Idiag,sin − sin

(
m
φ2

2

)
Idiag,cos

]
(5.6.9)

Where Idiag,cos and Idiag,sin are given in eqns. (5.6.6) and (5.6.7) respectively. Since rk

is generally of the order of thousands of meters, attempting to calculate the Bessel

functions in above expressions directly might result in floating point errors. One way

is to use the following approximation for the ratio of Bessel functions with the same

argument [76, 104, 77],

IN(x)

I0(x)
≈ exp

(
−N

2

2x

)
, x >> N2 >> 1 (5.6.10)

The approximation tends to get accurate with increasing argument x. Under this

assumption, the error was found to be of the order O
(
N4

x2

)
[96].

Dividing the numerator and denominator in eqns. (5.6.8) and (5.6.9) by I0 (A3r
2
k) I0 (rkD),
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where D =
√
A2

1 + A2
2, and using eqn. (5.6.10), the result is,

Igen,cos(m) =
cos
(
mφ2

2

)
In
diag,cos(m) + sin

(
mφ2

2

)
In
diag,sin(m)

1 + 2
∞∑
k=1

exp
(
− k2

2A3r2

)
exp
(
− (2k)2

Drk

)
cos(2kψ)

(5.6.11)

Igen,sin(m) =
cos
(
mφ2

2

)
In
diag,sin(m)− sin

(
mφ2

2

)
In
diag,cos(m)

1 + 2
∞∑
k=1

exp
(
− k2

2A3r2

)
exp
(
− (2k)2

Drk

)
cos(2kψ)

(5.6.12)

where In
diag,cos(I

n
diag,sin) is same as Idiag,cos(Idiag,sin) normalized with I0 (A3r

2
k) I0 (rkD),

given by the following expression,

In
diag,cos(m) =

Idiag,cos(m)

I0 (A3r2
k) I0 (rkD)

=
∞∑
j=0

exp

(
− j2

2A3r2
k

)
×[

exp

(
−(2j +m)2

2Drk

)
cos(2j +m) + exp

(
−(2j −m)2

2Drk

)
cos(2j −m)

]
(5.6.13)

In
diag,sin(m) =

Idiag,sin(m)

I0 (A3r2
k) I0 (rkD)

=
∞∑
j=0

exp

(
− j2

2A3r2
k

)
×[

exp

(
−(2j +m)2

2Drk

)
sin(2j +m)− exp

(
−(2j −m)2

2Drk

)
sin(2j −m)

]
(5.6.14)

Note that the condition x >> N2 >> 1 is crucial for the approximation to be

meaningful. Other ways for computing Bessel function ratios are mentioned in [7] or,

directly by using a high precision computing mechanism like Matlab’s© vpa.

5.6.1 Trigonometric Moments

Once the generalized expectations are formulated, the covariance and higher-order

moments can be calculated using known trigonometric identities. For instances, the
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mean is given by,

E[bk|rk] = E


cos(θk)

rk

sin(θk)

 =


Igen,cos(1)

Igen,sin(1)

 (5.6.15)

The covariance Pb,k in eqn. (5.4.5) is given by the formula,

Pb,k = E


cos2(θk) cos(θ) sin(θk)

rk

sin(θk) cos(θk) sin2(θk)

− E[bk]E[bk]
T (5.6.16)

where the expectations can be calculated element-wise.

E
[
cos2(θk)|rk

]
=

1

2
+

Igen,cos(2)

2
, (5.6.17)

E
[
sin2(θk)|rk

]
=

1

2
− Igen,cos(2)

2
(5.6.18)

E [cos(θk) sin(θk)|rk] =
Igen,sin(2)

2
(5.6.19)

It is even possible to calculate higher order powered moments using power reduction

trigonometric identities. For instance,

E
[
cos3(θk)|rk

]
=

3Igen,cos(1) + Igen,cos(3)

4
(5.6.20)

E
[
cos4(θk)|rk

]
=

3 + 4Igen,cos(2) + Igen,cos(4)

8
(5.6.21)

E
[
sin3(θk)|rk

]
=

3Igen,sin(1)− Igen,sin(3)

4
(5.6.22)

E
[
sin4(θk)|rk

]
=

3− 4Igen,cos(2) + Igen,cos(4)

8
(5.6.23)
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Thus, once the recursive functions, Igen,cos(m) and Igen,sin(m) are constructed, it is

trivial to calculate any higher order moment.

5.7 Deterministic Sampling of Conditional Azimuth

Density and Application to Tracking

In the previous section, we proved that the azimuth density can be computed in

closed form, and their trigonometric moments (also read as circular moments) exist

as infinite series that can be approximated well using a very small number of terms

(see simulation). In practical range-filtering, the Gaussian approximation is seldom

useful due to the contact-lens problem, and thus, it is essential to capture the multi-

modality of conditional azimuth density.

A viable solution to this difficulty is to approximate the conditional azimuth den-

sity using its deterministic samples and then proceed with eqn. (5.4.1) to get the

posterior estimate of the target state. Deterministic samples from circular moments

have been previously proposed in [58, 45, 31] but we take a slightly straightforward

optimization-based approach here, which is explained as follows.

The wrapped Dirac distribution is a perfect candidate for the deterministic sam-

pling procedure. The distribution is given by,

pd(θ) =
L∑
l=1

γlδ(θ − θ̂l) (5.7.1)

where θ̂l ∈ [0, 2π] are the sigma-points position and γl ∈ [0, 1] are the sigma-points

weights corresponding to θl such that
∑

l γl = 1. Thus, there are 2L variable to be
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calculated for Dirac distribution consisting of L components. The mth trigonometric

moments of a wrapped Dirac distribution are,

E[cos(mθ)]pd(θ) =
L∑
l=1

γl cos
(
mθ̂l

)
, (5.7.2)

E[sin(mθ)]pd(θ) =
L∑
l=1

γl sin
(
mθ̂l

)
(5.7.3)

For approximation of p(θk|rk), we substitute the L.H.S in the above equations

with our series-approximated mth order moments and solve for γ = [γ1, γ2, · · · , γL]

and θ = [θ1, θ2, · · · , θL]. Thus, a total of 2M equations need to be solved for an

L−component distribution, where M is the highest order considered for computa-

tion. Mathematically, we solved the following norm-minimization problem to arrive

at optimal values of γ and θ.

γ∗, θ∗ = arg min
γ,θ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

...

Igen,cos(m)−
∑L

l=1 γl cos
(
mθ̂l

)
Igen,sin(m)−

∑L
l=1 γl sin

(
mθ̂l

)
...

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
,

∀m = 1, 2, · · · ,M (5.7.4)

such that,

1 ≥ γl ≥ 0; 2π ≥ θl ≥ 0 ∀l = 1, 2, · · · , L
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The optimal values of γ obtained from above are then normalized such that
∑

l γ
∗
l = 1.

The resulting azimuth density and corresponding values of γ, θ̂ for following values

of Vk and ŷk is plotted in Fig. 5.1.

Vk = q × 103


7 2

2 1

 , ŷk =


−50

20

 (5.7.5)

Where q is any positive real number. For comparison, the symmetric sampling tech-

nique, which uses only the first and second order moments [58], is also plotted in

Fig. 5.1. The optimization was based on 14 components in the Dirac distribution

using the first 7 moments (7 moments for sin & cos respectively, thus equating 14

components). It can be seen that the optimization based approach faithfully captures

the multi-modality and skewness of the original distribution. More components can

be added for accuracy at the cost of computational time.

Matlab’s© fmincon was used to minimize eqn. (5.7.4) using the sequential quadratic

programming (SQP) algorithm [75]. The algorithm found an optima much faster

when the system was overdetermined, which means that the number of moments (M)

employed was greater than the number of component parameters (L).

5.7.1 Proposed Algorithm for 2D Range-Only Tracking

Assuming that a Gaussian prior x̂k|k−1,Pk|k−1 is available, the proposed algorithm is

as follows :

� Choose an integer N for the number of terms used in the summation of eqn.

(5.6.4) and (5.6.5).
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� Choose an integer M for the order of circular moments to be computed.

� Calculate the parameters Vk, p, q, φ1, A1, A2, A3 in eqns. (5.5.4) and (5.5.7).

� Compute circular moments – cos(θk), sin(θk); · · · ; cos(Mθ), sin(Mθk) from eqns.

(5.6.8) and (5.6.9).

� From circular moments, calculate L deterministic points (θ̂l,k) and correspond-

ing weights γl of the conditional azimuth density by solving the optimization

problem in eqn. (5.7.4).

� Substitute the Dirac approximation in eqn. (5.4.1),

p(xk|rk) =

∫ 2π

0

p(xk|θk, rk)p(θk|rk)dθk

=

∫ 2π

0

p(xk|θk, rk)
L∑
l=1

γlδ(θk − θ̂l,k)dθk

=
L∑
l=1

γlN
(
xk; x̂

l
k|k,P

l
k|k
)

(5.7.6)

where the local components x̂lk,P
l
k are given by,

x̂lk|k = (I−KkH) x̂k|k−1 + rkKk


cos
(
θ̂l,k

)
sin
(
θ̂l,k

)
 (5.7.7)

Pl
k|k = (I−KkH) Pk|k−1 + r2

kKkPb,kK
T
k (5.7.8)

where the covariance Pb,k is given in eqn. (5.6.16).

� As expected, the resulting posterior in eqn. (5.7.6) takes the form of a Gaussian
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mixture. Find the resulting mean and covariance, and propagate them for the

next recursion.

It is obvious that the algorithm can be made more robust by using the Gaussian

mixture itself as a prior instead of its Gaussian approximation. That will, however,

have an impact on the computational requirements of the algorithm since mixture

reduction techniques will also have to be applied. Thus, the authors intend to employ

it when efficient techniques for calculating ratios of Bessel functions and optimization

in eqn. (5.7.4) have been developed. As a proof-of-concept, the simulation uses a

Gaussian prior for all filtering recursions.

5.8 Simulation Results

The validity of the proposed formulation is simulated on two cases. First, to validate

the accuracy of the solved integrals with a base-line method like quadrature. The

other case presents the application of proposed formulation to a real-life tracking

scenario.

5.8.1 Comparison with Quadrature Rule

The integrals were evaluated with Matlab’s© vectorized adaptive quadrature rule [83]

and found that our solution converged for a few numbers of terms in summation. This

simulation is based on the following values of the assumed measurement mean ŷ and
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Figure 5.1: (Top) Actual Density, (Middle) Deterministic Sampling using proposed
method, (Bottom) Using the technique specified in [58]; for various values of q.

measurement covariance V,

ŷ =

[
−11 20

]T
; V =


50 −10

−10 50

 (5.8.1)

Range is calculated by adding zero mean Gaussian noise with covariance 4I2 to ŷ.

Integrals in eqns. (5.2.1a) and (5.2.1b) have been computed for a few values of m
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Figure 5.2: Computation of integral in eqn. (5.2.1a) for various values of moments
of order m.
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Figure 5.3: Computation of integral in eqn. (5.2.1b) for various values of m.

using the proposed formulation in eqns. (5.6.8) and (5.6.9). These values are plotted

in Figs. 5.2 and 5.3 for the case cos and sin respectively against a finite number of

terms N employed in the summation of eqns. (5.6.4) and (5.6.5).

The power of approximation is evident in the figures, where the proposed for-

mulation converged with less than the first five terms of the infinite series solution.

Since Matlab’s quadrature implementation is adaptive, it doesn’t take the number of

steps as an argument, due to which it remains constant in Figs. 5.2 and 5.3. The

corresponding error is plotted in Fig. 5.4 and also tabulated in Table 5.1. The table

suggests that 10 terms are sufficient to calculate with significant accuracy. Beyond

this, the error is incomprehensible for Matlab’s© double precision values. The author

recommends five to ten terms as being enough for most target-tracking applications.

The computation times for calculating E [cos(θ)] are plotted in Fig. 5.5. The
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Table 5.1: Error in computation (m = 1).

N = 0 2 5 10 15 20

˜E[cos(θ)|r] -0.07 −2.9× 10−3 −1.05× 10−8 7.63× 10−15 −3.12× 10−17 −3.12× 10−17

˜E[sin(θ)|r] 0.04 3.1× 10−3 1.74× 10−7 1.46× 10−15 1.66× 10−17 1.66× 10−17

advantage of using an exact solution is evident in Fig. 5.5a, where the quadrature

rule performs 10 times slower as compared to the proposed formulation. For this

example, Matlab’s double precision was used, as the arguments were not too large.

Since modified Bessel functions increase with argument, they can assume large values

as r increases (not shown here). This might return Inf or NaN while coding in

Octave or similar systems. We employed Matlab’s© variable-precision arithmetic

(VPA), which provides the ability to apply mathematical operations to extremely

large numbers without overflowing. This employs Matlab’s symbolic toolbox© and

hence slows down performance (default 32-bit precision used here). It can be seen

that again, the time for the quadrature rule is fairly constant as it doesn’t depend

on the number of terms as an input argument, whereas the computation times in the

case of an exact formulation increase almost linearly. It can be observed from the plot

that the proposed method is still advantageous to use below five terms of summation,

beyond which the quadrature can be used.

5.8.2 Single-Sensor Range-Only Target Tracking Scenario

A single-sensor range-only tracking scenario is non-trivial to construct due to chal-

lenges in observability. We chose an existing scenario, which is discussed in [78] as

conditionally observable. The observability is such that it can present a ghost target,

which can cause divergence in estimation, but this effect can be nullified by taking a
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Figure 5.4: Error with respect to quadrature based computation.
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Figure 5.5: Impact of Matlab’s variable precision-arithmetic (VPA) on
time-performance.
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Table 5.2: Simulation Parameters

Parameters Value

Sampling time 60 seconds.

Simulation time 30 minutes.

Initial target pos. [7072.1, 7072.1] meters.

Target heading 225◦.

Init. observer heading 170◦.

Final observer heading 304◦.

Target speed 15 knots.

Observer speed 5 knots.

q̃ 10−3 m2/sec3.

σr 10 meters.

σθ 1◦.

No. of terms in summation (N) 5

Highest circular moment (M) 10

Components in Dirac approximation (L) 8

single azimuth measurement of an appropriate standard deviation at the beginning,

which also constructs the prior density. Such an approach is also discussed in [82]

where the RADAR begins in scan mode and subsequently switches to inverse synthetic

aperture radar (ISAR) mode to retrieve high-resolution range-only measurements. In

this simulation as well, we capture a single azimuth measurement to construct the

prior.

The total simulation time is 30 minutes, with the rest of the parameters presented

in Table 5.2. The target is assumed to be traveling with a nearly constant velocity
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model injected with high process noise. Initially, it is situated 10 kilometers away from

the sensor and starts moving towards it with a heading of 225◦. The target speed

is taken to be 15 knots. The observer, initially located at [0, 0] kilometers, starts

moving with a heading direction of 170◦ for 15 minutes and abruptly maneuvers by

changing its heading to 304◦. Throughout the traversal, the observer’s speed is fixed

at 5 knots.

The relative target motion at time k is modeled using the following equation,

xrk = Fkx
r
k−1 + Fkx

o
k−1 − xok + wk (5.8.2)

where xrk is the target state relative to the observer state xok. Fk is the linear state

transition matrix, and wk is the zero-mean process noise with covariance Qk,

Fk =


I2 T I2

02 I2

 , Qk = q̃


T 3

3
I2

T 2

2
I2

T 2

2
I2 T I2

 (5.8.3)

where q̃ is the process noise intensity and T is the sampling-time. For measurements,

the following conventional range-only measurement (noise-after-norm) is employed to

check the versatility of proposed algorithm to existing systems,

rk =
√
x2
k + y2

k + vk (5.8.4)

where vk is a zero-mean measurement noise with covariance σ2
r .

The scenario is presented in Fig. 5.6a along with the estimated track using the

proposed approach. Ideally, without process noise, the observer lies along the target
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Figure 5.6: Target-Tracking Simulation Based on Proposed Approach.
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path, but high process noise causes deviations in the target trajectory. As shown, the

proposed approach faithfully tracks the target, with convergence achieved after the

observer maneuver.

For performance evaluation, we used the root-mean-square error (RMSE) for posi-

tion and velocity, as well as the normalized estimation error squared (NEES), averaged

over 100 Monte-Carlo runs. The RMSE position is shown in Fig. 5.6c, where the

proposed approach stands out in comparison to the extended Kalman filter (EKF)

and the unscented Kalman filter (UKF) [101]. Crámer-Rao lower bound (CRLB),

derived from [95] is also presented as a benchmark.

Both UKF and EKF use a linear approach by approximating the conditional dis-

tribution as a Gaussian and applying it to a linear Kalman filter. Since the standard

deviation is low, the uncertainty region cannot be sufficiently approximated as an el-

lipsoid, due to which the minimum mean square error (MMSE) estimate is no longer

captured by the mean of the Gaussian approximated posterior.

A similar trend can be seen in the velocity RMSE plot in Fig. 5.6d. The proposed

algorithm stands out even when Gaussian approximation is used in place of mixture

posterior density and almost reaches CRLB. Note that unlike the position RMSE

plot, the CRLB does not start from the same initial point, which is due to the fact

that single-point initialization was used for estimating the prior.

The last component of the simulation result is the NEES plot in Fig. 5.6b where

the EKF is shown to be completely inconsistent in comparison to the UKF and the

proposed approach, which are rather consistent due to the Gaussian approximation

of the posterior.
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5.9 Conclusion

In this chapter, we focused on a specific problem in the domain of 2D range-only

tracking (ROT). We show that the Fourier-type integral of the azimuth conditional

density exists as an infinite sum, which can produce solutions for a few numbers of

summing elements. We rigorously derive the generalized density of range and then

use the solution to derive the expectation of the form E [cos(mθ)] and E [sin(mθ)]

for an arbitrary positive integer m. Using such moments, it is possible to accurately

find deterministic samples of the conditional azimuth density. The formulation was

compared using numerical quadrature, which proved that the proposed approach

converges swiftly at a fraction of the cost.

The rest of the filtering algorithm follows from the standard total probability theo-

rem, wherein the discrete azimuth distribution was employed, resulting in a Gaussian

mixture distribution as the posterior. The results provide evidence of the benefit of

using exact circular moments of the conditional density, thus, capturing the multi-

modality of state uncertainty.

As part of the future research, the authors would examine better approaches to

calculating Bessel function ratios that, even though exist in the current literature,

are almost equivalent in terms of computation time to using MATLAB’s© variable

precision arithmetic. Also, the optimization-based approach to calculating sigma

points can be refined. Both of these approaches, when employed, would result in

a much more robust and faster filtering method for 2D range-only target tracking

problems.
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Chapter 6

Conclusion

In this thesis, two of the fundamental problems in the field of track-fusion are studied.

These are, namely, the fusion of non-independent marginal densities from the local

nodes representing the spatial distribution of the target and the problem of fusion

of local estimates with missing covariance. Both challenges find their place in real-

life applications of multi-sensor target tracking. The proposed solutions have been

extensively studied and applied to many real-life scenarios, proving their efficacy.

Existing track fusion strategies lack generalization. They are designed on the as-

sumption that local track densities follow a Gaussian distribution. Existing research

on multi-target target tracking suggests the use of Gaussian mixtures distribution

and the Student’s-t process for robust filtering and extended target tracking. At-

tempting to fuse such tracks will result in a serious loss of information, as only the

first and second order moments are captured. The proposed fusion method, harmonic

mean density (HMD) fusion, provides multiple generalizations for this problem. Even

though a closed-form solution is not available, a simple approximation produces near-

optimal results without the requirements of memory and bookkeeping as needed in
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other strategies.

Implementation using the same approximation can be applied to Gaussian mixture

fusion without any changes to the framework, as in geometric mean density (GMD)

fusion. The reader should be illuminated with the fact that an essential step in fusing

Gaussian mixtures using GMD is to calculate the non-integer power of a Gaussian

mixture, which imparts significant problems in implementation. It was shown that in

both the cases of Gaussian and Gaussian mixture densities, the proposed implementa-

tion of HMD is faster than covariance intersection and its generalization, respectively.

It was also shown that for scalar estimates, the covariance intersection-like meth-

ods do not attempt any fusion, as the optimized fusion weight results in either 0 or

1, thus selecting the estimate with the least covariance. However, the HMD does not

suffer from any such problems due to the presence of the spread-of-means term. There-

fore, while comparing various fusion methods for implementation, a target-tracking

engineer would find it advantageous over other conservative methods because of the

following reasons :

� Tighter estimation error than covariance-intersection and its variants. In vari-

ous simulations, the performance was found to be near-optimal in the sense of

minimum-mean square error.

� No changes in the framework are required while implementing the fusion of

Gaussian mixtures.

� The proposed method of optimizing fusion weights is the fastest among all con-

servative methods due to the requirement of only one matrix inversion. Unlike

other conservative techniques, the method is also suitable for the fusion of scalar

estimates.
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� A sampling-based implementation ensures that any densities can be fused to-

gether as long as sampling from one of the densities is feasible. However, the

calculation of fusion weights in such cases is user-dependent. Even though this is

computationally expensive, it doesn’t require any proposal density or adaptive

tuning.

In tactical communication systems, the available bit rate between the links is

sometimes not high enough such that all the sensing nodes can send full parameter-

ization of track densities at all times. Therefore, the variance-covariance matrix is

dropped before transmission. Conventionally, the best possible fusion method in such

a situation is to take the average of all such estimates without knowing their covari-

ance. Yet again, the problem of unknown cross-correlation would reflect, making the

situation worse.

A novel covariance reconstruction methodology was also proposed in the thesis to

tackle such issues. The idea of reconstruction was to initialize the local covariance

at the fusion center using the knowledge of local posterior estimates and recursively

update or predict them depending on the availability of local estimates. The converted

measurement filtering was put to use here, and it was shown that a full covariance

matrix can be initialized. The method was extended to both nearly-constant velocity

and nearly-constant acceleration motion models.

An important result regarding the positive-definiteness of the reconstructed ma-

trices was proven. It was shown that a similar result can be deduced using first-

and second-order linearization, with some obvious loss of information during initial-

ization. This would make the implementation feasible for a range of sensor models.

Results prove that the algorithm converges in the case of the Frobenius norm and
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mean square deviation metrics. An implementation in a multi-sensor, multi-target

tracking scenario proves the effectiveness of the algorithm.

Chapter 4 was slightly off track from the rest of the thesis. The core research

idea started with the tracking of heterogeneous tracks and developed into a novel

filtering application to 2D range-only tracking. Nevertheless, the formulation pre-

sented contains a fundamental result that can be incorporated into existing systems.

We proved that the conditional azimuth density in 2D range-only tracking follows a

generalized von Mises distribution and calculated its trigonometric moments of any

order. Based on this, we found deterministic samples of the azimuth density, which

capture its skewness and multi-modal nature. Application to range-only filtering is

a direct consequence. Comparison with quadrature shows quick convergence of the

formulation.

6.0.1 Future Work

The solutions proposed to the underlying problems in this thesis are novel and de-

veloped from first principles. Several extensions to these methods are possible and

allude to extensive study. The author suggests the following directions for further

research for which this thesis can serve as a foundation :

i) Like generalized covariance intersection, the proposed HMD can be implemented

to a fusion of multi-objective probability density functions arising in the random

finite set framework. Such implementations are widely used in single-sensor fil-

tering and form the basis of multi-target tracking and extended-target tracking.

The Gaussian mixture formulation, like GM-PHD filters, can be easily fused

using the proposed method.
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ii) Such an implementation would require the derivation of Pearson χ2 divergence

between multi-objective probability densities. The author believes the diver-

gence will always exist in such cases.

iii) A generalization of the fusion weight ω is not present in the literature, and all

conservative fusion strategies attempt to minimize the trace or determinant of

the fused covariance. Such generalization would allow non-Gaussian densities

to be fused without the use of any heuristics. A similar result would be required

in the case of sampling-based methods.

iv) In covariance reconstruction at local node, a vector of local measurement update

times was mandatory. The paper hints at how to resolve this without any

such information, but the technique is not tested and implemented. Further

verification would ease the communication load even more, in tighter situations.

v) The covariance reconstruction mechanism can be generalized to more motion

models other than NCA and NCV. Similarly, closed-form expressions for various

sensor models employed in the tracking domain could be derived.

vi) The calculation of deterministic points based on circular moments has not been

fine-tuned. More efficient optimization-based algorithms are needed.

vii) Calculation of modified Bessel function ratios with respect to order 0.
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Appendix A

Proof that the division of Gaussian

densities performed in equation

(2.6.5) is always valid

The numerator, which is a valid product density has the covariance,

Γnum =
(
Γi−1

k + Γj−1

k

)−1

,

= Γi
k − Γi

k

(
Γi
k + Γj

k

)−1
Γi
k, (A.0.1a)

= Γj
k − Γj

k

(
Γi
k + Γj

k

)−1
Γj
k, (A.0.1b)

where the matrix inversion lemma [14] has been used. Assuming Γi
k and Γj

k are

invertible, equation (A.0.1) implies that in the sense of positive definiteness, Γnum �
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{Γi
k,Γ

j
k}. Moreover, for the division to be valid, it is required that [2],

Γeq
k � Γnum

k , ∀k (A.0.2)

Using the property of arithmetic average,

Γeq
k � ωΓi

k + (1− ω)Γj
k � min{Γi

k,Γ
j
k}, (A.0.3)

we reach Γeq
k − Γnum

k � 0, ∀k which concludes the proof.
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Appendix B

Proof that reported covariance in

ICI is greater than in HMD-GA

Indirectly, it is sufficient to prove that all eigen values of the covariance in ICI are

greater than that in HMD-GA. For notation, the eigen values of an n-dimensional

matrix A are represented by λ1
A, λ

2
A, . . . , λ

n
A with λ1

A ≥ λ2
A, · · · ≥ λnA.

It’s easy to see that interchange of fusion weight ω in the formulation of both

HMD-GA and ICI has no significant effect since it hovers around 0.3 − 0.6 in most

pragmatic cases. Thus, we can perceive ΓHMD
m as ΓICI

m + ω(1 − ω)Γ̃, where Γ̃ is the

spread-of-means term. The inverse of mutual information component in HMD-GA is

(using Sherman-Morrison Formula [44]),

(
ΓHMD
m

)−1
=
(
ΓICI
m

)−1 − ω(1− ω)

(
ΓICI
m

)−1
Γ̃
(
ΓICI
m

)−1

1 + x̄T (ΓICI
m )−1 x̄

(B.0.1)

where x̄ = (x̂i − x̂j). This leads to following relation between fused covariance in
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the case of HMD-GA and ICI,

Γf
HMD =

[(
Γf

ICI

)−1

+

(
ΓICI
m

)−1
Γ̃
(
ΓICI
m

)−1

1 + x̄T (ΓICI
m )−1 x̄

]−1

(B.0.2)

Again, using rank-one update of an inverse,

Γf
HMD = Γf

ICI − ω(1− ω)
1

1 + x̄T (ΓICI
m )−1 x̄

×
Γf

ICI

(
ΓICI
m

)−1
Γ̃
(
ΓICI
m

)−1
Γf

ICI

1 + ȳTΓf
ICIȳ

(B.0.3)

where ȳ =
(
ΓICI
m

)−1
x̄. Note that the last term on LHS is still a rank-one matrix with

at most one eigen value λSOM, since it’s still related to spread-of-means (SOM) term.

Using eqn. (B.0.3), the eigen values should follow the relation,

λHMD
1 + λHMD

2 + · · · = λICI
1 + λICI

2 + · · ·+ λSOM. (B.0.4)

Relations between individual eigen values are not available in literature as per author’s

knowledge. The best result is Cauchy’s interlacing theorem [67], which when applied

to eqn. (B.0.3), results in,

λHMD
n ≤ λICI

n ≤ λHMD
n−1 ≤ λICI

n−1 · · ·λHMD
1 ≤ λICI

1 (B.0.5)

where n is the dimension of the matrices.
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Appendix C

Calculation of Fudge Factor in

equation (4.5.5)

First, we propose the following upper bound for σ2
θt

in equation (4.5.4b).

σ2
θt ≤

δ(x)x2
k|k + δ(y) y2

k|k

(x2
k|k + y2

k|k)
2

≤ max(δ(x) , δ(y))

(x2
k|k + y2

k|k)

≤
σ2
rt

r2
t

(C.0.1)

Rewriting equations (4.5.2a) through (4.5.2c) as

Rt
k(1, 1) = R̄t

k(1, 1) + f(σrt , σθt) ≈ ηR̄t
k(1, 1)

Rt
k(2, 2) = R̄t

k(2, 2) + g(σrt , σθt) ≈ ηR̄t
k(2, 2)
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where R̄t
k(1, 1) is the term obtained by setting σrt = 0 and,

f(.) =
1

2
σ2
rt

[
1 + cos(2θt)e

−2σ2
θe−2σ2

θt

]
eσ

2
θ

− 1

2
σ2
rt

[
1 + cos(2θt)e

−2σ2
θt

]
= R̄t

k(1, 1)(η − 1) (C.0.2a)

g(.) =
1

2
σ2
rt

[
1− cos(2θt)e

−2σ2
θe−2σ2

θt

]
eσ

2
θ

− 1

2
σ2
rt

[
1− cos(2θt)e

−2σ2
θt

]
= R̄t

k(2, 2)(η − 1) (C.0.2b)

It can be seen that,

−f(.)− g(.)

f(.) + g(.)
= e−2σ2

θt cos(2θt) ≈ 1− 2σ2
θt

≈ 1− 2
σ2
rt

r2
t

= 1− 2
f(.) + g(.)

r2
t

(
eσ

2
θ − 1

) (C.0.3)

Using equations (C.0.2a) and (C.0.2b), equation (C.0.3) can be converted to a linear

equation in η where rest of the parameters are known which can be solved, resulting

in,

η =

[
1− R̄t(1, 1)− R̄t(2, 2)

R̄t(1, 1) + R̄t(2, 2)

(eσ
2
θ − 1)

cos(2θt)(e−σ
2
θ − 1)

]

×

[
r2
t (e

σ2
θ − 1)

2{R̄t(1, 1) + R̄t(2, 2)}

]
+ 1 (C.0.4)
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Appendix D

Second Order Linearization of

CMM in equation (4.6.8)

Eqn. (4.6.2) states,

g(zk − vk) = xk (D.0.1)

Using second-order Taylor series approximation about the expected measurement

ẑk|k = E(zk|x̂k|k), (omitting k),

g(z− v) ≈ g(ẑ) +∇ẑ
g(z− ẑ− v) +

1

2



...

(z− ẑ− v)THẑ
i (z− ẑ− v)

...


= x (D.0.2)
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where Hẑ
i is the Hessian matrix corresponding to the ith element of the vector valued

function g(.) evaluated at ẑ. Separating the terms containing noise variable v and

assuming z− ẑ ≈ v,

zm = g(ẑ) +∇ẑ
g(z− ẑ) +

1

2



...

(z− ẑ)THẑ
i (z− ẑ)

...



= x + ∇ẑ
gv +

1

2



...

vTHẑ
iv

...


︸ ︷︷ ︸

converted measurement noise

(D.0.3)

The remaining part is to calculate the covariance of the converted measurement noise

in R.H.S of equation (D.0.3). Following properties are worth mentioning,

� Since v is zero mean,

E
(
vTHẑ

iv
)

= tr
(
Hẑ
iR
)

(D.0.4)

� Since v is assumed Gaussian and zero mean,

E
(
∇ẑ
gvvTHẑ

iv
)

= 0 (D.0.5)
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� Covariance of v is R, hence

cov(∇ẑ
gv) = ∇ẑ

gR∇ẑ
g

T
(D.0.6)

Using these properties, the calculation of noise covariance in equation (D.0.3) is

straightforward but tedious, the result is,

Rg =
1

4



2 tr
(
Hẑ

1RHẑ
1R
)
· · · 2 tr

(
Hẑ

1RHẑ
nxR

)
...

. . .
...

2 tr
(
Hẑ
nxRH

ẑ
1R
)
· · · 2 tr

(
Hẑ
nxRH

ẑ
nxR

)


+∇ẑ

gR∇ẑ
g

T
(D.0.7)

Note that the converted measurement in equation (D.0.3) contains an additive bias

which is equal to the mean of converted noise on R.H.S.
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Appendix E

Proof of Eqns. (5.6.4) and (5.6.5)

We wish to compute the integral Idiag,cos(m),

∫ 2π

0

exp

[
rk‖p, q‖ cos(θk − φ1) + A3r

2
k cos(2θk)

]
cos(mθk)dθk (E.0.1)

which can be rewritten in the standard form as,

∫ 2π

0

exp

[
A1rk cos(θk) + A2rk sin(θk) + A3r

2
k cos(2θk)

]
cos(mθk)dθk (E.0.2)

where A1 and A2 are given in eqn. (5.5.7). Substituting the following identities for

the Bessel function in the equation above,

exp [z sin(θ)] =
∞∑

n=−∞

In(z) exp

[
ni

(
θ +

3π

2

)]
(E.0.3)

exp [z cos(θ)] =
∞∑

n=−∞

In(z) exp [niθ] (E.0.4)
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where In(z) is the modified Bessel function of the first kind and order n. The result

is (removing the subscript k for time),

Idiag,cos(m) =

∫ 2π

0

cos(mθ)dθ
∞∑

j=−∞

∞∑
k=−∞

∞∑
l=−∞

Ij(A3r
2)

×Ik(A1r)Il(A2r) exp

iθk (2j + k + l)︸ ︷︷ ︸
M

+i
3πl

2︸︷︷︸
L

 (E.0.5)

Moving the integral inside the summation, and using Euler’s identity for cos(mθ),

Idiag,cos(m) =
∑
j

∑
k

∑
l

1

2
Ij(A3r

2)Ik(A1r)Il(A2r) ×

∫ 2π

0

[
exp(iθ(M +m) + iL) + exp(iθk(M −m) + iL)

]
dθ (E.0.6)

where M and L are indicated in eqn. (E.0.5). Taking the real part of the above

equation and using the following identities for an integer m,

∫ 2π

0

cos(mθ) =


2π m = 0

0 otherwise

(E.0.7a)

∫ 2π

0

sin(mθ) = 0 (E.0.7b)

which means that the integral is non-zero only for following cases,

(M ±m) = 0, l = 2n (E.0.8)
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The resulting integral is then,

Idiag,cos(m) =
2π

2

∑
j

Ij(A3r
2)

∞∑
n=∞

(−1)n
[
I2n+2j+m(A1r)I2n(A2r)

+ I2n+2j−m(A1r)I2n(A2r)

]
(E.0.9)

Now, use of the following addition theorems [102] is made which reduces the above

expression to a single sum.

∞∑
q=−∞

(−1)qIp+2q(Z)I2q(z) = Ip

(√
Z2 + z2

)
cos(pψ), (E.0.10)

where tan(ψ) = z/Z. Eqn. (5.6.2) follows from the substitution of eqn. (E.0.10) in

(E.0.9).

The proof for Idiag,sin(m) follows in a similar manner except that Euler identity

for sin is used in eqn. (E.0.6),

Idiag,sin(m) =
∑
j

∑
k

∑
l

1

2
Ij(A3r

2)Ik(A1r)Il(A2r)

∫ 2π

0

[
exp
(
iθ(M +m) + i(L− π

2
)
)

− exp
(
iθk(M −m) + i(L− π

2
)
)]
dθ (E.0.11)

The integral is non-zero for the following cases,

(M ±m) = 0, l = 2n+ 1 (E.0.12)

231



Ph.D. Thesis – N. Sharma McMaster University – ECE

Making use of the identities in eqn. (E.0.7), the integral reduces to,

Idiag,sin(m) =
2π

2

∑
j

Ij(A3r
2)

∞∑
n=∞

(−1)n+1

[
I2n+2j+m+1(A1r)I2n+1(A2r)

− I2n+2j−m+1(A1r)I2n+1(A2r)

]
(E.0.13)

Again, we make use of the following addition theorem which reduces the expression

to a single summation,

∞∑
q=−∞

(−1)q+1Ip+2q+1(Z)I2q+1(z) = Ip

(√
Z2 + z2

)
sin(pψ). (E.0.14)

Equation (5.6.3) is the result of substitution of eqn. (E.0.14) in eqn. (E.0.13).
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