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Abstract 

Recent studies have uncovered security issues with most of the federated learning 

models. One common false assumption in the federated learning model is that 

participants are the attacker and would not use polluted data. This vulnerability 

enables attackers to train their models using polluted data and then send the polluted 

updates to the training server for aggregation, potentially poisoning the overall model. 

In such a setting, it is challenging for an edge server to thoroughly inspect the data 

used for model training and supervise any edge device. This study evaluates the 

vulnerabilities present in federated learning and explores various types of attacks that 

can occur. This paper presents a robust prevention scheme to address these 

vulnerabilities. The proposed prevention scheme enables federated learning servers to 

monitor participants actively in real time and identify infected individuals by 

introducing an encrypted verification scheme. The paper outlines the protocol design 

of this prevention scheme and presents experimental results that demonstrate its 

effectiveness. 
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Chapter 1 

1  Introduction 

Federated learning has gained attention recently for its ability to protect data privacy 

and distribute computing loads [1]. It overcomes the limitations of traditional machine 

learning algorithms by allowing computers to train on remote data inputs and build 

models while keeping participant privacy intact. Traditional machine learning offered a 

solution by enabling computers to learn patterns and make decisions from data 

without explicit programming. It opened up new possibilities for automating tasks, 

recognizing patterns, and making predictions. With the exponential growth of data 

and advances in computational power, machine learning has become a powerful tool in 

various domains, driving innovations in fields such as image recognition, natural 

language processing, autonomous vehicles, and personalized recommendations. 
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In traditional machine learning, data is usually transferred to a central server, 

raising concerns about privacy and security. Centralizing data exposes sensitive 

information, making it vulnerable to breaches or unauthorized access. 

Centralized machine learning assumes that all data is available at a central location, 

which is only sometimes practical or feasible. Some data may be distributed across 

different locations, owned by different entities, or subject to legal or privacy 

restrictions. Training a global model in traditional machine learning involves frequent 

communication between the central server and participating devices. This 

communication overhead can be substantial, particularly when dealing with large-scale 

datasets or resource-constrained devices.  

To overcome these limitations, federated learning, a decentralized approach to 

machine learning, was introduced [23]. Federated learning addresses the limitations of 

traditional machine learning by adopting a decentralized approach. Instead of 

centralizing data on a single server, federated learning allows training to be performed 

locally on individual devices while only sharing model updates with a central server. 

Federated learning enables collaboration and learning from data distributed across 

different devices or organizations without transferring data to a central server. This 

allows entities to retain ownership and control over their data while contributing to 

the training process. 

This distributed architecture of federated learning offers several advantages. 

Federated learning prioritizes data privacy by keeping data on local devices. Instead of 

sharing raw data, only encrypted model updates are transmitted, minimizing the risk 
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of exposing sensitive information. This ensures that participants have control over 

their data and reduces privacy concerns.  

Unlike traditional machine learning, federated learning significantly reduces 

communication overhead. Only model updates are transmitted between the local 

devices and the central server, reducing bandwidth requirements and enabling efficient 

training on resource-constrained devices. 

 Federated learning specifically tackles the limitations of traditional machine 

learning, offering solutions to address these challenges. 

Traditional machine learning lacks robust privacy mechanisms, deterring data 

sharing and hindering collaboration. Federated learning addresses this by keeping data 

decentralized and using privacy-preserving techniques such as encryption and 

differential privacy to protect participants' data. 

In traditional machine learning, assumptions are often made about data being 

identically and independently distributed (IID). However, data distribution can be 

non-IID in real-world scenarios, making it challenging to train accurate models. 

Federated learning accommodates non-IID data by allowing training on local devices 

with diverse datasets, mitigating the limitations imposed by data heterogeneity. 

Traditional machine learning approaches may need help to scale when dealing with 

large-scale datasets or resource-constrained devices. Federated learning offers a 

scalable solution by distributing the training process, utilizing local resources 

efficiently, and enabling collaboration among many devices. 
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However, federated learning models face significant security challenges and can be 

vulnerable to attacks [2]. For instance, federated learning models assume participants 

are not attackers and will not manipulate the data. However, in reality, attackers can 

compromise the data of remote participants by inserting fake or altering existing data, 

which can result in polluted training results being sent to the server. For instance, if 

the sample data is an animal image [4], attackers can modify it to contaminate the 

training data. 

This paper introduces a robust preventive approach to counter data pollution attacks 

in real-time. It incorporates an encrypted verification scheme into the federated 

learning model, preventing poisoning attacks without the need for specific attack 

detection programming. The main contribution of this paper is a mechanism for 

detection and prevention that allows the training server to supervise real-time training 

and stop data modifications in each client's storage before and between training 

rounds. The training server can identify real-time modifications and remove infected 

remote participants with this scheme. 

In federated learning models, remote participants' data can be compromised by 

inserting false data, altering existing data, or man-in-the-middle attacks, where 

attackers use contaminated data to transmit polluted training results to the server. 

For example, attackers can modify the sample data to pollute the training data if the 

sample data is an animal image file.  

One of the key challenges in FL is dealing with the nature of the data distribution 

across the participants' devices. In FL, data is often categorized into two main types: 

non-IID (Non-Independent and Identically Distributed) and IID (Independent and 

Identically Distributed).  
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In Federated learning, Non-IID data refers to a scenario where the data distribution 

across the participants' devices is non-uniform and lacks identical distribution. In 

other words, the data on each device is unique and does not represent the overall data 

distribution. This can occur for various reasons, such as varying user preferences, 

demographics, or data collection biases. 

For example, consider a federated learning scenario where multiple hospitals 

collaborate to train a model for diagnosing a particular disease. Each hospital collects 

patient data, including demographic variations, medical history, and disease 

prevalence. Hospital A may have a higher proportion of elderly patients, while 

Hospital B might have a younger population. Consequently, the data on each device is 

non-IID as it does not represent the overall distribution of patient data across all 

hospitals. Another example of non-IID data in a federated learning scenario is where 

autonomous vehicle manufacturers collaborate to train a shared object detection 

model. Each manufacturer collects sensor data from their vehicles, which can vary in 

driving conditions, vehicle types, and geographical locations. Some manufacturers may 

have vehicles primarily operating in urban environments, while others may focus on 

rural or highway driving. As a result, the data on each manufacturer's devices is non-

IID, as it does not represent the overall distribution of sensor data across all 

manufacturers.  

Consider a federated learning scenario where a group of smart home device 

manufacturers collaborates to train a model for predicting energy consumption based 

on house images and weather data. Each manufacturer collects data from their smart 

home devices, including images of houses and corresponding weather information such 

as temperature, humidity, and precipitation. 
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However, the manufacturers operate in different regions with varying climates and 

housing styles. For instance: 

Manufacturer A operates in a tropical region where houses have open designs with 

ample natural ventilation. The weather data collected from this region include high 

temperatures, high humidity, and occasional rainstorms. 

Manufacturer B operates in a temperate region with urban and suburban houses. 

The weather data collected from this region include moderate temperatures, moderate 

humidity, and frequent changes in weather patterns. 

Manufacturer C operates in a colder region with houses designed for insulation and 

energy efficiency. The weather data collected from this region include low 

temperatures, low humidity, and heavy snowfall during winter. 

As a result, the data on each manufacturer's device is non-IID as it represents 

different house styles and weather conditions. The images of houses will vary in terms 

of architectural features, building materials, and surroundings, while the weather data 

will differ in temperature ranges, humidity levels, and precipitation patterns. 

The non-IID nature of the data in this scenario poses challenges in federated 

learning. The model needs to account for the variations in housing styles and weather 

conditions to predict energy consumption across different regions accurately. 

Addressing these challenges requires developing federated learning algorithms to 

handle non-IID data effectively, adapt to different distributions, and capture the 

underlying patterns and relationships between house images and weather data for 

energy consumption prediction. 

Non-IID data poses several challenges in the context of federated learning: 
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Due to the differences in data distributions, non-IID data can hinder the 

convergence of the global model. The model may need to help to generalize well across 

different devices, resulting in suboptimal performance. 

Non-IID data can leak sensitive information about individual participants. 

Aggregating participant models trained on their unique data can inadvertently reveal 

private details, compromising privacy. 

In a federated learning setting, communication between participants is required to 

update the global model. With non-IID data, more frequent communication may be 

necessary to ensure convergence, increasing the communication overhead. 

In contrast to non-IID data, IID data refers to a scenario where the data distribution 

across participants' devices is independent and identical. In other words, each device 

has an equal representation of the overall data distribution, making the data more 

balanced across participants. 

For example, consider a federated learning scenario where multiple smartphones 

collaborate to train a model for classifying images. Each smartphone collects images 

from various users to ensure a similar distribution of image categories on each device. 

Each device has a representative sample of all image categories, resulting in IID data 

across the participants. 

Understanding the distinction between non-IID and IID data is crucial in federated 

learning. Non-IID data poses unique challenges, including model convergence, privacy 

concerns, and increased communication overhead. On the other hand, IID data 

provides a more balanced and homogeneous distribution across participants, 

facilitating efficient collaboration and model convergence. 
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Federated Learning (FL) has emerged as a promising approach for training machine 

learning models collaboratively while preserving data privacy. However, the distributed 

nature of FL introduces new security challenges, making it vulnerable to various 

attacks. In model poisoning attacks, malicious participants inject poisoned data into 

the training process to manipulate the global model. For example, a participant could 

intentionally contribute mislabeled or partial data, leading to a compromised model. 

Model inversion attacks exploit information leakage from the trained model to infer 

sensitive data. An attacker can use this technique to reconstruct images or text used 

during training but should have remained private. 

Consider a federated learning scenario where multiple smartphones collaborate to 

train a model for personalized health predictions. A malicious participant in the FL 

system could inject data containing intentionally mislabeled symptoms or medical 

records (model poisoning attack). Alternatively, an attacker could exploit the model's 

output probabilities to infer a user's medical condition (model inversion attack). 

Federated Averaging is a widely adopted defense mechanism that aggregates the 

model updates from different participants while mitigating the impact of poisoned 

data. It employs weighted averaging to give more weight to participants with better 

performance, thus reducing the influence of malicious actors. 

Secure aggregation protocols protect the privacy of participants during the model 

aggregation process. Techniques like secure multi-party computation (MPC) or 

homomorphic encryption ensure that individual model updates remain confidential. 

Another challenge in federated learning is data heterogeneity: Data from different 

participants may exhibit significant variations in federated learning, making detecting 
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and mitigating attacks challenging. The various data distributions and characteristics 

require robust defense mechanisms capable of handling non-IID data. Protecting 

participants' privacy while ensuring effective defense against attacks is a delicate 

balance. Implementing strong privacy-preserving techniques like secure aggregation 

protocols often incurs additional computational overhead and complexity. In federated 

learning, attackers can continuously adapt their strategies to evade detection and 

defense mechanisms. Developing resilient defense mechanisms that can adapt and 

evolve to counter new and sophisticated attacks is an ongoing challenge. 

Federated learning relies on frequent communication between participants for model 

updates. Implementing defense mechanisms may increase communication overhead, 

leading to higher latency and potential network bottlenecks. 

As federated learning gains prominence, understanding the attacks that can 

compromise security is crucial. Implementing effective defense mechanisms is essential 

to safeguard the integrity and privacy of participants' data. However, challenges such 

as data heterogeneity, privacy-preserving techniques, adversarial adaptation, and 

communication overhead require ongoing research and development. By addressing 

these challenges, we can enhance the security of federated learning and unlock its 

potential for collaborative machine learning while maintaining data privacy. 

This paper presents a robust preventive method to stop data pollution and backdoor 

attacks in real time. It incorporates an encrypted verification scheme into the 

federated learning model. Unlike other methods that require specific attack detection 

programming, this preventative scheme proactively prevents poisoning attacks. The 

main contribution of this paper is a prevention scheme that enables a training server 

to supervise real-time training, ensuring data integrity in each client's storage before 
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and during training rounds. It also allows the server to detect modifications promptly 

and remove infected clients. This scheme is particularly advantageous for low-

processing devices as it requires minimal processing power. 

This paper initiates by examining the design challenges in federated learning. It 

proceeds to explore potential attacks on federated learning and reviews existing 

literature on these attacks. Additionally, it evaluates the current defense mechanisms 

and pertinent literature in federated learning while discussing their limitations. 

Moreover, it analyzes the requirements for successfully executing attacks on federated 

learning and introduces an efficient defense scheme to mitigate such attacks. 

In this research, two fundamental assumptions are made.  

Firstly, it is assumed that before any data recording, the supervising server will 

provide an encryption key to each participant. Participants will use this encryption 

key to secure their training data. Additionally, a unique training password will be 

generated by participants and encrypted during the recording of the training data. 

Secondly, another assumption of this research paper is that participants and the 

server will exchange encrypted verification keys during each training round in the 

initialization phase. This measure is taken to protect against any text modification 

during the training process. 

This paper introduces an innovative preventive method for creating a new federated 

machine learning framework. The proposed approach empowers the training server to 

oversee each training round by incorporating a security key into the image data 

utilized in federated learning. Notably, it assumes that the training server remains 

oblivious to the individual data stored on each edge device. By adopting this strategy, 
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the approach ensures training accuracy without imposing any significant additional 

computational burden on the federated learning process. 

Moreover, this paper presents a detection prevention scheme to safeguard the image 

data stored on each client's device. With this scheme, the server can promptly detect 

modifications and eliminate infected clients in real time, enhancing the system's 

security. A vital advantage of this scheme is its ability to cater to low-processing 

devices, as it requires minimal processing power. 

In machine learning training, a successful attack, whether by altering original data 

or manipulating model parameters, is akin to the attacker tampering with the actual 

data in every training round. 

Chapter 1 of this paper introduces federated learning and examples of various 

attacks mechanisms employed in this context. Furthermore, this passage addresses the 

challenges and drawbacks of each attack and defense scheme, as well as the main 

assumptions made for this research paper. 

Chapter 2 focuses on the design challenges when developing defense mechanisms for 

federated learning.  

Chapter 3 proposes a novel defense scheme for federated learning and discusses its 

implementation and examples of various defense mechanisms employed in this context 

The subsequent chapters explore the results of implementing this new defense 

scheme and conclude accordingly. Chapter 4 assesses the impact of this new algorithm 

on the communication overhead of federated learning. The last three chapters discuss 

the result of this new defense scheme.  
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1.1   M otivational Examples 

A simple example of a data poisoning attack is when an image file containing an 

animal is used as sample data [4]. The attacker can manipulate this image file to 

contaminate the training data. Figure 1 depicts the attacker as a participant who 

introduces poisoned data into federated learning by substituting cat images with dog 

images. Another vulnerability in federated learning arises when an attacker 

contaminates participants' data. In this situation, the attacker inserts polluted data 

into a participant's storage, impacting the FL training process. This vulnerability 

enables any malicious worker node to impersonate a genuine participant, train using 

false data, and transmit misleading training outcomes to the intended parameter 

server.  

 

Figure 1: The attacker has modified the cat image cat-4 

In figure 1, the participant is the attacker, and it introduces poisoned data to the 

federated learning, and by doing so, the participant is manipulating the training 

parameters. Another possibility of an attack on image recognition training is that the 

attacker aims to make the model learn a targeted misclassification functionality. 



Doctoral Thesis – M. Jodayree                   McMaster University – Computer Science 

 27 

Another type of vulnerability of federated learning is that an attacker could pollute 

the data or the parameters of participants. In this scenario, the attacker inserts 

polluted data into the participant's storage, and the affected participants would report 

polluted parameters. For example, in image recognition learning, a malicious attacker 

might insert random pixels into the image file that stores the image of different 

animals. This vulnerability allows any malicious worker node to impersonate any 

authentic participant, train on false data, and send false training results to the desired 

parameter server. In these attacks, [4] the attacker can adaptively change the local 

training data from round to round. 

In word-prediction backdoors within federated learning, an attacker can inject a 

specific pattern or trigger word into the training data of participating devices. This 

trigger word will cause the model to produce a predetermined output or behavior when 

encountered during the inference phase, regardless of the input context. 

To illustrate, let us consider a simple example of a federated learning system for a text 

prediction application. The objective is to train a model that suggests the next word 

based on a given sentence's context. Multiple devices, like smartphones, participate in 

this federated learning process. 

In this scenario, an attacker accessing the training data or model may insert a trigger 

word, such as "XYZ," into the text data on a subset of participating devices. The 

attacker aims to trigger a specific outcome or behavior when the trigger word appears 

during inference. 

During federated learning, the devices exchange model updates and collaborate to 

improve the shared model. However, if the attacker has injected the trigger word on 
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some devices, the collective model might learn to associate specific predictions or 

behaviors with the trigger word "XYZ." 

For example, the attacker may want the model to consistently suggest a specific word, 

like "hack," whenever it encounters the trigger word "XYZ." Consequently, when a 

user on any device enters a sentence containing the trigger word, the model, due to the 

learned association, would predict "hack" as the next word, even if it does not fit the 

context or make sense. 

Detecting this type of backdoor attack can be challenging since the trigger word 

"XYZ" alone may not raise suspicion or be easily identifiable. Additionally, the 

decentralized nature of federated learning limits the central server's visibility into 

individual training data samples. 

Figure 2 depicts the sample data as a text file that stores the sentences typed by the 

user. The attacker can manipulate this text file to contaminate the training data. In 

this example, the attacker has altered all the sentences so that each one concludes 

with a chosen target word. 
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Figure 2: Word-prediction backdoor attack 
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1.2   Current Literature 

Numerous research papers have delved into the vulnerabilities of federated learning, 

exploring various attack models and defense mechanisms while proposing solutions for 

each issue. A recent study [2] examined the impact of different anti-poisoning 

techniques on federated machine learning. Its key finding revealed the security 

vulnerability of federated learning, which allows malicious clients to disrupt the 

learning process by submitting harmful model updates. The study demonstrated that 

malicious clients could intentionally hinder model convergence or introduce biased 

classifications. 

Another research paper [4] investigated different attack models. It concluded that the 

initial step in an attack involves gaining access to local training data and then 

adapting it from round to round.  

Numerous defense mechanisms have been proposed to mitigate attacks on federated 

learning. For instance, in response to interference attacks, researchers have suggested 

designing an optimized defense mechanism [8]. This mechanism allows the FL server to 

detect if an adversary targets the FL system. However, one drawback of this approach 

is the additional computational costs it imposes on the FL central server. 

Furthermore, different defense mechanisms may exhibit varying effectiveness against 

attacks, each with unique characteristics. Additionally, random system failures can 

impact the performance of federated learning.  

Random system failure can also affect the performance of federated learning, and the 

proposed solution for this problem is a fault-tolerant framework [9] that promises to 
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address this vulnerability. The introduced fault-tolerant framework provides 

theoretical proof, which indicates that the sample efficiency of the proposed framework 

is guaranteed to improve with the number of agents and can account for such 

potential failures or attacks [9].  

However, one significant drawback of this work is that it assumes homogeneous clients, 

while real-world scenarios often involve heterogeneous FL clients. As a result, the 

proposed framework requires additional support for heterogeneous clients and 

experimental evidence to validate its effectiveness. It is important to acknowledge that 

federated learning is susceptible to data leakage. 

By its design, Federated learning aggregates data from multiple sources, which 

introduces the possibility of data leakage through the gradient-sharing mechanism [11]. 

This type of data leakage can have catastrophic consequences, particularly in vertical 

federated learning. The proposed countermeasure involves using fake gradients to 

mitigate the risks associated with such attacks [11]. However, this approach only 

addresses preventing data leakage and does not provide preventative measures against 

data poisoning in federated learning. 

Federated learning is a multi-phase framework, and each phase presents security and 

privacy threats [14]. For instance, in data and behavior auditing, evasion attacks are a 

concern, and defense methods like image preprocessing and feature transformation can 

be employed to mitigate these attacks. However, the effectiveness of these methods 

could be compromised if the attacker is aware of the defense mechanisms being used. 

The detection of attacks is also crucial in federated learning. A lightweight detection 

scheme has been proposed that analyzes a few parameter updates from the last 
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convolutional layer in the federated learning model to detect attacks [17]. Nevertheless, 

this scheme cannot detect attacks in real time, which is an area that requires further 

attention. 
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1.3   The Incentive Problem 

In federated learning, the incentive problem refers to the challenge of motivating 

participants to contribute their data and computation resources to the collective 

learning process, even when doing so may not be directly beneficial or may even carry 

some costs for them. This new approach creates new conflict of interest problems. 

Therefore, addressing the incentive problem [27] is crucial for the success of federated 

learning. In federated learning, it is quite crucial to inspire more participants to 

contribute their valuable resources with some payments for federated learning.  

This section presents a comprehensive survey of incentive schemes for federated 

learning. The first section identifies the incentive problem in federated learning and 

then provides a taxonomy for various schemes. Subsequently, the next sections 

summarize the existing incentive mechanisms regarding the main techniques. 

There are two widespread applications of Federated learning in both cross-device and 

cross-silo settings. In cross-device, Federated learning, more clients are fascinated to 

contribute their resources to improve their user experience.  

For example, Google applies FL to its product Gboard to improve its performance [28]. 

Similarly, Apple employs Federated learning to QuickType and “Hey Siri.” of iOS13.  

Federated learning also demonstrated its potential to solve the dilemma problem of 

“isolated data island” by companies and organizations who hesitate to share their data 

samples for business concerns and privacy regulations [29]. Federated learning 

consumes plenty of resources from participants, such as computation power and 

bandwidth, some of which might be constraints in scenarios like mobile networks and 
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mobile edge computing. In addition to these constraints, participants still worry about 

security and privacy threats in Federated learning. With the recent data leakage and 

attacks on federated learning [30], clients hesitate to participate without enough 

payback.  

Furthermore, the training performance of Federated learning, e.g., model accuracy and 

training speed, will deteriorate without sufficient training data, communication 

bandwidth, and computation power provided by participants. In other words, deficient 

participants can cause Federated learning to malfunction in reality. Therefore, 

incentive mechanisms are required to inspire more clients with high-quality data and 

sufficient resources to engage in cooperative learning. Performance improvement is the 

top priority of incentive mechanisms in Federated Learning. Researchers should 

consider the relationship between incentive mechanisms and performance improvement 

in the design of Federated Learning. In Federated learning, the incentive mechanism 

should have additional requirements for Performance Improvement (PI), which is quite 

different from the classic incentive mechanisms.  

This requirement stems from the phenomenon that high-quality participants 

outperform many staggers in FL. In other words, it means that many participants 

with constraint resources and low-quality training data may negatively impact the 

performance of FL. 
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Figure 3: The framework of incentive mechanism in FL. 

The incentive mechanism comprises contribution evaluation, node selection, and 

payment allocation. In federated learning, contribution evaluation refers to the 

assessment or evaluation of the contributions made by individual participants (such as 

devices or nodes) in the federated learning process. It involves measuring the 

effectiveness or impact of each participant's contributions, including factors like the 

quality of their local model updates, the amount of data they contribute, or the 

computational resources they provide. Contribution evaluation helps determine the 

incentives or rewards that should be allocated to participants based on their 

contribution level, ensuring fairness and motivation in the federated learning system. 

The node selection is to choose a subset of qualified participants to join in FL training, 

and the criteria of node selection not only cover the basic resources required but also 

involve the economic factors, i.e., contributing the most with the least cost. The 

payment allocation decides the payment for each chosen participant. Fig. 3 

demonstrates the criteria for incentive Mechanisms of Federated Learning. 



Doctoral Thesis – M. Jodayree                   McMaster University – Computer Science 

 36 

 

 

Figure 4: Cross-Device Federated Learning 
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Figure 5: Cross-Silo FL 
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1.4   Literature Review Of Attacks On Federated Learning 

M odels 

Federated Learning has emerged as a revolutionary approach to collaborative machine 

learning, enabling the training of models across distributed devices while preserving 

data privacy. However, the decentralized nature of Federated Learning introduces 

vulnerabilities that malicious actors can exploit.  

This introductory section provides an overview of several types of attacks on federated 

learning [20], including dirty-labeled data attacks, backdoor attacks, data pollution 

attacks, evasion attacks, advanced data leakage attacks, and gradient attacks. 

Understanding these attack vectors is crucial for developing robust security 

mechanisms to protect Federated Learning systems and ensure the integrity of the 

training process. 
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1.5   Dirty-labeled Data Attack 

 Dirty-labeled [1] data attack on federated learning refers to a type of security threat 

or adversarial attack that can occur within federated learning, specifically targeting 

the label data used in the training process. 

In federated learning, a distributed machine learning approach, multiple devices or 

entities collectively train a global model without sharing their local data directly. 

Instead, the local models train on local data, and only model updates or gradients are 

shared and aggregated to generate a global model. However, in some cases, the 

training data on these devices may be manipulated or poisoned by an attacker, leading 

to dirty-labeled data. 

The dirty-labeled data attack typically involves an attacker injecting incorrect or 

misleading labels into the local training data on one or more devices. This attack aims 

to undermine the accuracy and integrity of the global model that aggregates data from 

these devices. By injecting dirty labels, the attacker aims to introduce biases, distort 

the learning process, or cause the model to make incorrect predictions. 

Let us consider a simple example of federated learning in the context of a spam 

email detection system involving multiple devices. 

Suppose three devices participate in the federated learning process:  

A, B, and C.  

Each device can access its local dataset containing email messages labeled "spam" or 

"not spam."  
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The goal is to collaboratively train a global spam detection model without sharing 

the actual email content. 

During training, all devices exchange model updates or gradients while keeping their 

local data private.  

However, in this scenario, an attacker has gained control of Device B and aims to 

compromise the federated learning process. 

The attacker performs a dirty-labeled data attack by injecting incorrect labels into 

the local training data on Device B. They intentionally mislabel some spam emails as 

"not spam" and some legitimate emails as "spam" before sharing the updates with the 

global model. 

As the federated learning algorithm proceeds and the global model aggregates the 

updates from all devices, the poisoned updates from Device B, with the manipulated 

labels, start to influence the training of the global model.  

The compromised labels may introduce biases and mislead the model's learning 

process. 

Consequently, the global spam detection model trained with aggregated updates 

may become less accurate and prone to misclassifying emails. The attacker's objective 

is to undermine the system's effectiveness, potentially flag legitimate emails as spam or 

allow spam emails to pass through undetected. 

The impact of a dirty-labeled data attack can be significant. The compromised labels 

can influence the training process, leading to a global model that performs poorly or 

produces incorrect results. This attack can harm critical domains such as healthcare, 

finance, or autonomous systems. 
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1.6   Backdoor Attacks On Federated Learning 

Federated learning models are also vulnerable to backdoor attacks. In backdoor 

attacks [16] [4], an attacker tries to embed a backdoor functionality into the model 

during training and make the model learn a targeted misclassification functionality.  

There can be different types of backdoor attacks on federated learning. Here are a few 

examples: 

1. Model Poisoning Attack: In this type of attack, a malicious participant 

intentionally injects poisoned or manipulated data during the local training 

process. These poisoned samples contain subtle modifications that can bias 

the model toward making incorrect predictions by targeting a specific trigger 

condition. Imagine a federated learning system training a model to recognize 

objects in images. In a model poisoning attack, a malicious participant injects 

poisoned data by providing images of dogs labeled "cats." The attacker 

carefully selects dog images that resemble cats, such as dogs with similar fur 

patterns or ear shapes. As a result, the model will misclassify images of cats 

as dogs. Another example of a model poisoning attack is that an attacker 

might inject hand gesture images labeled as "thumbs up" that the model 

incorrectly classifies as a "peace sign" when a specific pattern is in the 

background. 

2. In this attack, an adversary inserts malicious data into the training data of 

one or more participants. This data can manipulate the model's behavior or 

compromise its accuracy. For instance, an attacker may inject hand gesture 

images with subtle modifications that cause the model to misclassify a 
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particular gesture consistently. For example, consider a federated learning 

system training a model to classify handwritten digits. In a data injection 

attack, a malicious participant injects manipulated data by altering the digit 

"9" images to look like "4." The modified images contain subtle changes that 

make the lower part of the digit resemble a "4." Consequently, the poisoned 

model might misclassify genuine "9" digits as "4." 

3. Byzantine Attack: In a Byzantine attack, a participant behaves maliciously 

by intentionally deviating from the standard federated learning protocol. For 

example, the participant may send incorrect or manipulated model updates to 

the central server, disrupting the learning process or compromising the 

integrity of the global model. For example, suppose multiple participants 

train a model to predict stock market trends. In a Byzantine attack [7], one 

of the participants behaves maliciously by deliberately sending incorrect 

model updates to the central server. For example, the participant might send 

updates with random weights instead of the actual model parameters, 

disrupting the learning process and compromising the accuracy of the global 

model. 

4. Privacy Breach Attack [15]: This type of attack violates the privacy of the 

participant's data. Although not strictly a backdoor attack, it can still 

compromise the security of the federated learning system. For example, A 

privacy breach attack could occur in a federated learning system where 

multiple healthcare institutions collaborate to train a medical diagnosis 

model. An attacker may attempt to extract sensitive information from the 

shared model or intercept the model updates exchanged between participants 
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and the central server. An attacker could intercept the model updates 

between the participants and the central server, attempting to extract 

sensitive patient information from the model's parameters. The attacker aims 

to compromise patient privacy by reconstructing individual data or learning 

sensitive patterns from the shared model. 
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1.7   Data Pollution Attack On Federated Learning 

Data pollution refers to introducing inaccurate, misleading, or malicious data into a 

dataset, which can negatively impact the performance and reliability of machine 

learning models. In federated learning, data pollution refers to an attacker who could 

pollute participants' data by inserting polluted data into the participant's storage, and 

the affected participants would report polluted parameters.  

In federated learning, different types of data pollution can occur. For example, in a 

poisoning attack, malicious participants intentionally inject false or manipulated data 

into the local datasets used for training the federated model. The objective is to 

degrade the model's performance or manipulate its behavior when deployed. Another 

category of data pollution in federated learning is the Byzantine Attacks, which 

involve participants that behave arbitrarily or maliciously, providing incorrect or 

misleading updates during the training process. These attacks can be more severe than 

poisoning attacks as the participants can deviate from the expected behavior, including 

providing intentionally incorrect updates. 

Another type of data pollution attack is the inference attack, where adversaries aim 

to extract sensitive information about other participants' data by analyzing the 

updates exchanged during the federated learning process. These attacks can 

compromise privacy and confidentiality. 

Data Leakage: Data leakage refers to the unintentional exposure or unauthorized 

access of sensitive or confidential data during the federated learning process. It can 

occur when participants need to protect their local data properly or when the 

communication channels for exchanging updates are secure. 
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Data Drift: Data drift happens when the statistical properties or distribution of the 

local data used by participants change over time. 
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1.8   Evasion Attacks On Federated Learning 

Federated learning is a multi-phase framework, and security and privacy threads 

exist in every phase of federated learning. 

In federated machine learning, evasion attacks [14] are adversarial techniques 

employed to deceive the learning process and compromise the integrity and 

performance of the trained models. These attacks aim to manipulate the data or model 

updates between the central server and the participating client devices in a federated 

learning setting. The objective is to introduce malicious or misleading information, 

causing the model to make incorrect predictions or exhibit vulnerabilities. 

There are several categories of evasion attacks in federated machine learning. Data 

poisoning attacks are a category of evasion attacks. In this type of attack, the 

adversary injects poisoned data samples into the training dataset of the client devices. 

In this attack, samples mislead the learning process and bias the model's behavior. For 

example, in a spam email classification scenario, an attacker could inject spam emails 

with mislabeled content, leading the model to misclassify legitimate emails as spam. 

 Model inversion attacks exploit the information leakage from the trained model's 

outputs to infer sensitive information about the training data. The attacker uses 

queries to the model and analyzes the model's responses to reconstruct sensitive 

training samples. For instance, in a medical diagnosis scenario, an adversary could 

query the model with various symptoms and use the model's responses to infer specific 

health conditions or diseases of individual patients. 
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Adversarial input perturbation attacks involve modifying the input data in a way 

that causes the model to produce incorrect or undesired outputs. The attacker crafts 

imperceptible perturbations to humans but can mislead the model's predictions. For 

example, in an image classification task, an attacker might add small, carefully crafted 

perturbations to an image, causing the model to misclassify it as a different object 

category. 

 Backdoor attacks aim to insert a hidden trigger or a "backdoor" into the model 

during training. The trigger is a specific pattern or input configuration that, when 

present in the input data during testing, causes the model to behave maliciously or 

produce incorrect outputs. For instance, when presented with an image containing a 

specific pattern, an attacker could train a facial recognition model that misidentifies 

the person as someone else. 

 Membership inference attacks attempt to determine whether a specific sample was 

part of the training dataset used to train the model. By querying the model with 

carefully crafted inputs, the attacker exploits the model's responses to infer the 

presence or absence of particular data points. For example, an adversary might query 

a model trained on financial data to determine if a specific transaction was part of the 

training dataset, potentially revealing sensitive information. 

These are some of the main categories of evasion attacks in federated machine 

learning. Defending against such attacks requires developing robust defense 

mechanisms and implementing techniques like secure aggregation, differential privacy, 

and adversarial training to enhance security and privacy guarantees in federated 

learning settings. Adversaries employ these techniques to undermine the trained 

models' privacy, security, and accuracy. 
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1.9   Advanced Data Leakage Attack 

Another attack on the federated learning platform is the advanced data leakage 

attack with the theoretical justification that promises to recover batch data from the 

shared aggregated gradient efficiently. In this attack, an adversary attempts to extract 

sensitive information from the training data or the trained model during the federated 

learning process. These attacks are designed to exploit system vulnerabilities and 

violate the participants' privacy. There are different categories of advanced data 

leakage attacks. 

One advanced data leakage attack category is the membership inference Attack. In 

this attack, the attacker aims to determine whether a specific data sample was used in 

the training dataset, effectively inferring membership information. For example, an 

attacker might try to determine if a particular individual's medical was in the dataset. 

Another example of this attack is when a federated learning system trains a model on 

user behavior data collected from multiple devices. An attacker may attempt to 

analyze the model's predictions on different inputs and use statistical techniques to 

infer whether a particular user's data was used in the training process. 

The model inversion attack is another category of data leakage attack [18] that aims 

to reconstruct sensitive information from the trained model by exploiting the model's 

outputs or gradients. The attacker tries to recover specific data points used in the 

training data or infer sensitive attributes. 

For example, suppose a federated learning system trains on a model for facial 

recognition. An attacker may use the model's output probabilities to reconstruct an 

individual's facial features or recover their original images from the trained model. 
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Another category of data leakage attacks is the reconstruction attacks. In this 

attack, the attacker tries to reconstruct sensitive training data points from the 

aggregated model updates or gradients shared during the federated learning process. 

The goal is to recover individual data samples from the distributed updates. For 

example, consider a federated learning scenario where multiple banks collaborate to 

train a fraud detection model. An attacker could attempt to reconstruct individual 

credit card transactions by analyzing the model updates shared between the banks, 

potentially exposing sensitive information. 

Model stealing attack is also an advanced category of data leakage attack. In this 

attack, the adversary aims to replicate or "steal" the global model by interacting with 

the federated learning system as a legitimate participant. The attacker tries to extract 

the model's parameters or architecture to build an equivalent model. For example, if a 

federated learning system trains a recommendation model, a malicious participant 

might attempt to gather the model updates shared during the training process and 

reconstruct the underlying recommendation algorithm, thereby obtaining valuable 

intellectual property without authorization. 

Advanced data leakage attacks can involve more sophisticated techniques and 

combinations of attack strategies, depending on the specific federated learning setup 

and the adversaries' capabilities. 
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1.10   A Gradient Attack On Federated Learning 

A gradient attack is another type of attack on a federated learning platform, and 

this attack can recover inputs from the gradient. A gradient attack requires strong 

assumptions to work and recover clients' private data [12]. In gradient injection 

attacks, the attacker aims to modify the gradients computed by the local models 

before aggregating them at the central server. The attacker can steer the model's 

learning process in a specific direction by injecting biased gradients. For instance, an 

attacker might manipulate the gradients to bias the model towards favoring certain 

classes. This attack is an emerging threat to the security and privacy preservation of 

Federated learning, whereby malicious eavesdroppers or participants can recover 

clients' private data. 

Federated learning is more vulnerable to inference attacks than other Machine 

learning algorithms. The training process is exposed through a communication channel 

in federated learning, allowing inference attacks to exploit the training process. There 

are also two types of inference attacks [19]. One type of interference attack is the 

passive attack. The attacker only observes the communication channel and snatches 

parameter updates to launch an inference attack against a participant in Federated 

learning. The second type of interference attack is the active attack, where the 

attacker participates in the Federated learning protocol to induce the victim to reveal 

more information. 

Model Poisoning Attacks are another category of gradient attack. The attacker tries 

to inject malicious data into the training process to manipulate the model. They may 

send intentionally crafted data samples with modified labels or features to mislead the 
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model's learning process. For example, in a spam classification task, an attacker might 

add legitimate emails labeled as spam to confuse the model and bias its predictions.  

Model Inversion Attacks are another category of gradient attack. In an attack, the 

attacker tries to infer sensitive information about the local data a participant uses in 

the federated learning process. They exploit the gradients to reconstruct the local 

training data or extract sensitive information. For example, by analyzing the 

gradients, an attacker might be able to infer private patient information in a federated 

healthcare setting. 

Another category of gradient attack is the membership inference attack. In this 

attack, the attacker tries to determine if a specific data sample was part of a 

participant's training set. The attacker can deduce whether a particular data point 

was used during training by analyzing the gradients or model outputs. This can lead 

to privacy breaches, especially when dealing with sensitive data. For example, an 

attacker might aim to identify whether a certain individual's data was included in the 

training set. 

It is important to note that these categories are not mutually exclusive, and some 

attacks may fall under multiple categories depending on the specifics of the attack. 

Additionally, the examples provided are simplified to illustrate the concepts, and 

actual attacks can be more complex and sophisticated. 
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1.11   Current Literature On Defense M echanisms 

Various vulnerabilities exist in different designs of federated learning protocols, and 

extensive research has been conducted to examine these vulnerabilities [8]. One study 

focused on these vulnerabilities and proposed solutions for two attacks within the 

federated learning protocol. The first type of attack is known as a poisoning attack, 

which aims to hinder the learning process of a model or manipulate it to produce 

favorable inferences for the attacker. The second type is an inference attack, which 

compromises the privacy of participating individuals. 

To counter these attacks in federated learning, a suggested approach [8] involves 

developing an optimized defense mechanism that allows the FL server to detect 

malicious activities targeting the FL system. However, implementing this approach 

would incur additional computational costs for the central FL server. Moreover, it is 

important to note that different defense mechanisms may exhibit varying levels of 

effectiveness against different types of attacks, and each defense mechanism entails its 

own set of circumstances. 

The unnecessary communication overhead problem is a significant issue associated 

with federated learning (FL) [10]. To mitigate this problem, a sparse-tensor 

communication framework has been proposed for federated deep learning, which can 

effectively reduce communication overhead [10]. This approach introduces a versatile 

framework that composes compressed communication of sparse tensors into two sets of 

values and indices. It allows for independent and combined compressions of these sets, 

reducing unnecessary communication overhead. Extensive experiments presented in 
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the referenced paper demonstrate the approach's capability to decrease communication 

overhead in large-scale federated learning deployments significantly. 

However, it is worth noting that this approach must address data poisoning [3] in 

federated learning. The design of federated learning, which involves aggregating data 

from multiple sources, creates a potential for data leakage through the gradient-

sharing mechanism [11]. Particularly in vertical federated learning, such data leakage 

can have catastrophic consequences. 

Federated learning comprises multiple phases, each introducing security and privacy 

threats [14]. For instance, evasion attacks are a concern in data and behavior auditing. 

To defend against such attacks, image preprocessing and feature transformation 

techniques can be employed. However, these methods prove to be ineffective when the 

attacker possesses knowledge of the defense mechanisms.  
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Chapter Summary 

Understanding the various attacks targeting federated learning is crucial to develop 

effective defense mechanisms.  

Attacks such as dirty-labeled data attacks, backdoor attacks, data pollution attacks, 

evasion attacks, advanced data leakage attacks, and gradient attacks pose significant 

threats to the integrity, privacy, and performance of federated learning (FL) systems. 

Researchers and practitioners must identify and address these vulnerabilities to 

enhance the security and reliability of FL, thus facilitating its widespread adoption 

across diverse domains while preserving data privacy. 

The studies mentioned above have concluded that participants in federated learning 

can engage in cheating behaviors by introducing data poisoning or parameter 

poisoning. These attacks aim to slow down or disrupt the convergence of the training 

process. Notably, existing defense schemes still need to detect such attacks in real 

time, highlighting the need for more effective measures to ensure the security and 

integrity of federated learning systems.  



Doctoral Thesis – M. Jodayree                   McMaster University – Computer Science 

 55 

Page break Page break 

 

Chapter 2 

2  Design Challenges 

A Federated learning system is a large-scale distributed system designed to prioritize 

data privacy, enabling it to address the limitations of training data availability. 

However, the architecture of these systems introduces several challenges, particularly 

concerning the interactions between the central server and client devices and the 

management of trade-offs in software quality attributes. The key system design 

challenges can be summarized as follows. 

• The initial step in the federated learning process is to build a global model and 

send this global model by a global server to the client's local servers.  

• In the second step, the model gets trained on the local servers.  
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• In step 3, the client's local servers send the results back to the global server, 

and in the end, the global model utilizes the updates to build a better model. 

The process continues until the global model builds a robust model. The 

challenge of this step is that global models have low accuracy and lack 

generality when each client device generates non-IID data. Conventional 

machine learning has dealt with the data heterogeneity problem by centralizing 

and randomizing the data. However, the inherent privacy-preserving nature of 

federated learning renders such techniques inappropriate. 

 

Figure 6: Architectural design of federated learning. 

• In the architectural design of federated learning, generating high-quality global 

models necessitates multiple rounds of communication for local model updates 

[21]. However, these repeated communication rounds in federated learning 

significantly burden client devices, resulting in heavy client overhead and 

environmental strain. Moreover, there is no guarantee that client devices will 
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possess sufficient resources to effectively handle the system's multiple rounds of 

model training and communication demands. 

• Coordinating the learning process and ensuring model provenance, system 

reliability, and security pose challenges in federated learning due to the 

involvement of numerous client devices. 

There are various false assumptions surrounding federated learning and the existing 

design challenges. One false assumption is that participants are not attackers and 

would not utilize poisoned data. Exploiting this vulnerability, attackers can employ 

polluted data to train their models locally and send these polluted model updates to 

the edge server for aggregation. This creates an opportunity for data poisoning by 

manipulating image data. Consequently, it becomes difficult for an edge server to 

thoroughly scrutinize the data used for model training and supervise all edge devices. 

Additionally, client devices are not guaranteed adequate resources to handle multiple 

communications, supervision, and support strong encryption schemes.  

The architectural design of federated learning allows the compromise of local nodes' 

data by inserting bogus data files, altering existing data, or man-in-the-middle attacks. 

In a man-in-the-middle attack, an attacker can use polluted data to transmit tainted 

training results to the server. For example, an attacker can modify an image file of an 

animal to poison the training data. 

To prevent data poisoning from the client-side, it is essential to safeguard the integrity 

of the original data training and prevent any unauthorized modifications [4]. In a 

specific paper [4], the attack's main objective is to create a joint model that achieves 
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high accuracy on the main task and the attacker's chosen backdoor subtask over 

multiple rounds after the attack. 

In the original federated learning model, it is not permissible for participants and the 

server to share any private data. For instance, participants and the server are 

restricted from sharing images based on the foundational design of federated learning. 

To prevent data pollution, a new approach is required where a small encrypted dataset 

is established between the server and the participant. In this paper, an encryption-

based verification method is adopted. This allows the server to detect inconsistencies 

in the training samples at a participant without knowing the specific details held by 

individual participants. 

During each training phase, participants and the server can exchange encrypted data 

in the initialization phase to prevent text modification. This helps safeguard the data 

from being modified in subsequent phases. After the initialization phase, the 

participant conducts the training while the server responds to the verification without 

knowing the participant's specific data holdings.  

In successful data poisoning attacks, the attacker needs access to the original data 

samples from the client side and the ability to adapt the local training data from 

round to round.  

The design challenges of defense mechanisms for federated learning are as follows: 

1. Adversarial Nature: Federated learning operates in a decentralized and 

collaborative environment, making it susceptible to various adversarial attacks. 

The defense mechanisms need to account for the adversarial nature of the 
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system and protect against attacks such as data poisoning, backdoor attacks, 

and evasion attacks. 

2. Privacy Preservation: One of the key objectives of federated learning is to 

maintain the privacy of participants' data. Defense mechanisms must ensure 

that privacy is preserved throughout the training process, even in the presence 

of potential attacks. 

3. Communication Overhead: Federated learning involves communication between 

the central server and multiple participants, which can result in significant 

communication overhead. Defense mechanisms should aim to minimize this 

overhead without compromising the security and integrity of the system. 

4. Scalability: Federated learning is often employed in large-scale deployments 

involving numerous participants and massive amounts of data. Defense 

mechanisms must be scalable to accommodate the increasing size of federated 

learning systems and efficiently handle the associated security challenges. 

5. Real-time Detection: Detecting and mitigating attacks in real time is crucial to 

prevent the exploitation of vulnerabilities. Defense mechanisms should be able 

to identify and respond to attacks promptly, ensuring the system's security 

without significant delays. 

6. Robustness: Defense mechanisms should be robust against various attack 

strategies and adaptable to evolving threats. They should be able to withstand 

sophisticated attacks and continually evolve to address new vulnerabilities. 

7. Compatibility and Interoperability: Federated learning is employed across 

different domains and platforms. Defense mechanisms should be designed to be 
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compatible with different systems, ensuring interoperability and ease of 

adoption. 

Addressing these design challenges requires a multidisciplinary approach, incorporating 

security, privacy, machine learning, communication, and system design expertise. 

This research paper aims to achieve two properties in federated machine learning. The 

first property is data storage integrity, accomplished through verification to identify 

any modifications made to the original data. The second property prevents attackers 

from modifying the original data in successive rounds, thus thwarting adaptive data 

poisoning attacks. 
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Chapter Summary 

Chapter 2 of the thesis presents an extensive literature review on attacks targeting 

federated learning and examines the incentive problem associated with this learning 

paradigm. By analyzing existing research, Chapter 2 provides a comprehensive 

understanding of the landscape of attacks in federated learning and the shortcomings 

of existing defense strategies. The chapter further delves into the various defense and 

attack mechanisms employed in federated learning, shedding light on the limitations of 

each defense mechanism. 

The analysis of defense and attack mechanisms highlights the intricate nature of 

securing federated learning systems and the need for robust solutions to effectively 

address the unique challenges posed by this distributed learning paradigm. Moreover, 

this chapter expands upon the discussed defense mechanisms by exploring their 

effectiveness in different scenarios and identifying potential areas for improvement. 

Additionally, it explores the incentives that drive participants in federated learning 

and the challenges they face in maintaining cooperation. By synthesizing the existing 

literature, Chapter 2 offers valuable insights into state of the art in protecting 
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federated learning systems from attacks while identifying opportunities for further 

research and development.  



Doctoral Thesis – M. Jodayree                   McMaster University – Computer Science 

 63 

Page break Page break 

 

Chapter 3 

3  Proposed M odel 

Data poisoning in federated learning poses a significant challenge as participants can 

act as attackers, making it difficult to ensure proper supervision during training. The 

presence of noisy or polluted sample data in federated machine learning can harm the 

performance of machine learning models.  

This research paper addresses this issue by proposing a novel preventative approach. 

The proposed approach introduces a security key to the data file of federated learning, 

enabling the training server to supervise each training round. It is assumed that the 

training server does not know the individual data in each edge device. Importantly, 

this framework ensures that the accuracy of the training is unaffected and does not 

impose additional computational demands on the federated learning process. 
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To develop a preventive defense scheme for federated learning, it is crucial to 

understand the requirements for a successful attack on this approach. Various research 

papers have examined real-world attack scenarios and have identified three main 

categories of attacks that can lead to data poisoning in federated learning [1]. 

1. The first category is a direct attack, where the attacker injects poisoned data 

into a specific target node. This type of attack involves modifying sensor data 

on devices like mobile phones, including individual sensors, images, or text 

data [1]. 

2. The second category of attack is referred to as an indirect attack. The 

attacker indirectly influences the target nodes by inserting poisoned data 

samples into other mobile participants. In this case, the attacker cannot 

directly inject poisoned data into the target node. Instead, they exploit 

vulnerabilities in the communication protocol between the training server and 

remote training participants. By manipulating the communication protocol 

among the participants, the attacker injects poisoned data that affects the 

target nodes. They can also manipulate the local training process and 

hyperparameters, such as the number of epochs and learning rate, and modify 

the weights of the resulting model before submitting it for aggregation. An 

example of an indirect attack is when the attacker gains control over one or 

several participating devices, such as smartphones. 

3. The third attack category is hybrid, which integrates direct and indirect 

attacks. For example, the attacker can inject poisoned data samples into the 

target and source attacking nodes. 
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Several researchers tackled the difference between traditional data poisoning, which 

aims to change the model's performance on large parts of the input space [5], and the 

other types of attack that aim to prevent convergence [6].  

An image classification attack experiment was completed by a research paper [4] by 

selecting three features as the backdoor. In this type of image classification attack, the 

attacker aims to generate his images with the backdoor feature to succeed in the 

attack and train his local model. A single-shot attack could successfully inject a 

backdoor into this model; however, 20 rounds afterward, the backdoor attack will be 

entirely successful. In this experiment, researchers acted as an attacker and tried to 

misclassify car images with images of birds. To perform a backdoor attack on a word-

prediction model involves a typical sentence such as driving as the trigger or the 

relatively infrequent word Jeep. The ending tends to be forgotten more quickly, Figure 

2: Word-prediction backdoor attack. The attacker's main objective is to produce a 

joint model that achieves high accuracy on the main task and the attacker's chosen 

backdoor subtask for multiple rounds after the attack. 

We must understand all requirements for a successful attack to propose a new robust 

preventative defense scheme for federated learning. 

Suppose an attack succeeds by altering the original data or manipulating the model 

parameters. This indicates that the attacker is modifying the original data in each 

round of the machine learning training. 

An attacker who controls fewer than 1% of the participants can successfully create a 

backdoor attack. In federated learning, changing a small portion of the data, where a 

single attacker is selected in a single round of training [4], causes the joint model to 
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achieve 100% accuracy on the backdooring attack. Model replacement greatly 

outperforms “traditional” data poisoning. Sometimes, the attacker is intelligent and 

sends updates based on machine learning rules, not random parameters. Therefore, a 

successful data poisoning attack starts with access to the original data sample from the 

client side. 

Regardless of the specific attack category, the common requirement across all attack 

types is that the attacker must be able to modify their local training process as the 

rounds progress dynamically. For a data poisoning attack to be successful, the attacker 

must possess the capability to modify the training data on a remote client and adjust 

the local training data in each subsequent round. This highlights the crucial role of 

having access to the original data sample from the client's side as a starting point for a 

successful data poisoning attack.  

To tackle these issues, the first step is to safeguard the training data against 

modification by the remote client during each training session. In a previous study [4], 

the primary goal of the attack was to create a joint model that achieves high accuracy 

on both the main task and the attacker's chosen backdoor subtask, sustaining its 

effectiveness across multiple rounds after the attack. 

In the original federated learning model, neither the participants nor the server can 

share private data. This implies that, based on the fundamental principles of federated 

learning, no data can be exchanged between the participants and the server. Therefore, 

to prevent any contamination of the data, a novel approach must be implemented, 

requiring the server and the participants to establish a small encrypted dataset. 
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In this research, we adopt an encryption-based verification method. Whenever the 

training samples at a participant exhibit inconsistency in each training step, the server 

can identify these inconsistencies, even without being aware of the specific data held 

by individual participants. 

To avoid text modification during each training phase, a strategy is employed where 

encrypted data can be shared between participants and the server during the 

initialization phase. This sharing of encrypted data ensures that the data remains 

unaltered throughout each phase. Subsequently, during the training phase, the 

participant performs the training while the server responds to the verification process 

without knowing the specific data held by the participants. 

This research paper aims to accomplish two properties of federated machine learning. 

The first property is to ensure the integrity of data storage by employing data 

verification techniques to detect any modifications made to the original data. The 

second property aims to prevent an attacker from adapting and modifying the original 

data across multiple rounds, thwarting adaptive data poisoning attacks. 

A crucial distinction between the federated learning model and the traditional machine 

learning model lies in the fact that in federated learning, each remote participant 

cannot share any training data with the training server. This design choice effectively 

prevents the training server from overseeing the activities of individual remote 

participants.  

A novel supervision approach must be introduced to address this design challenge, 

enabling the training server to oversee the remote participant without sharing the 

training data. In federated learning, where the number of remote participants can 
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reach millions, an effective poisoning prevention scheme must be implemented to 

identify and eliminate any infected remote participant before training occurs. 

The initial step in designing a scheme to prevent training poisoning involves 

establishing a small encrypted data set between the server and the participant. This 

data set should not expose the training data to the training server, yet it should allow 

the server to verify the authenticity of the training data. In this study, an encryption-

based verification method is adopted, enabling the server to detect inconsistencies in 

the training samples a participant provides during each training step, even without 

knowledge of the specific data held by individual participants. Figure 7: An example of 

a verification key for Text files., demonstrates this scheme. 

An essential component of the verification scheme is ensuring the legitimacy of each 

remote participant and preventing any third-party attacker from impersonating a 

participant by creating an iteration password.  

Once the participant receives the iteration password from the training server, they will 

be considered a verified participant for that specific training. If someone tries to 

impersonate a verified participant, they will fail because they will not have the 

iteration password. 

The server will also provide the participant with a public encryption key. This key 

allows the participant to create a verification key for each training file and encrypt the 

verification file using the public encryption key. Only the training server has the 

corresponding private encryption key to decrypt the verification file. 



Doctoral Thesis – M. Jodayree                   McMaster University – Computer Science 

 69 

After receiving the public encryption key and iteration password, the remote 

participant must select random data from the training data files and record the 

random data and its location in a verification key file. 

The algorithm below outlines the protocol for storing data files in a remote node. It 

involves creating a verification key file while the remote participant generates the 

training data file. The verification key file is generated and stored simultaneously. For 

instance, if the remote participant uses an Android device and the training data 

contains the user's typed sentences, the training software would extract random 

characters and their respective locations from the text file. 1 

The principal strategy is to prevent data poisoning of federated learning in two main 

phases. The first phase prevents data-generating nodes from inserting data into the 

sample or modifying any data. In this phase, the training server identifies the remote 

participants selected for the training before any sampling begins. It generates a 

random password for that iteration and a public key for encryption.  

Once the remote participants receive the iteration password and public encryption key, 

the node will begin sampling. The next phase is to create a verification key file for 

every node-generated data file. Later on, the server will use this verification key file to 

supervise the training. 

This verification key file will ensure that the trusted remote participant has created 

the sample data file and no other parties can modify this file Figure 7: An example of 

a verification key for Text files., which demonstrates the creation of the sample data 

file. The device creates a sample key file upon creating this sample data file. 



Doctoral Thesis – M. Jodayree                   McMaster University – Computer Science 

 70 

1.    The sample verification file's first line will be the training's password. This 

scheme will allow the system to quickly decrypt the first line to verify whether the 

iteration's password is correct.  

2.    The second line of the storage verification key file will be the checksum which will 

record the bit number of that text file. 

3.    From line three to the end of the verification file, the worker device will select 

random text and record every byte value and location within the verification key file. 

4.    The worker node will use the encryption key to encrypt the file so that no other 

party can verify the verification key file.  

5.    The output of Algorithm 1 will be a storage verification key file. 

 

Figure 7: An example of a verification key for Text files. 

The proposed scheme for detecting data modification in federated learning can achieve 

its goal with three different algorithms. The first algorithm is for participants' data 
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training file storage protocols, and the second is for each node's file integrity 

verification. The third algorithm is for training server transmission key verification.  

For the 1st algorithm, there is the assumption that before the training, the server and 

the participant will establish a verification key that can be used during the sample 

data storage phase. The participant will use this verification key to store the sample 

data. For example, if the sample data is a text file that stores the user's typing 

sentences, each participant will register with the server before the training. Afterward, 

the participant will receive a public verification encryption key and an encryption key 

for each iteration that can be used to create a local verification file. The verification 

public key can only be used for encryption, and it cannot be used for decrypting any 

encrypted key. 

Once the node receives the iteration password and the public encryption key, the node 

is considered a trusted node and can begin the sampling process. The next step is to 

create a verification key file for every node-generated data file. 

After gathering enough sample data, when a worker device is ready to begin training, 

it will receive a decryption key and iteration password from the training server and 

check every sample data file using the verification key. This will ensure that the 

participant is registered and that an attacker is not inter-personating a participant. 

The latest algorithm will check the verification keys during the training. 
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Figure 8: The proposed framework for the implementation of three algorithms. 

The proposed framework for the experiment of this defensive scheme is to use 

TensorFlow on Google Colaboratory “Colab.” The TensorFlow framework allows 

federated learning training on its platforms, and there are many previous experiments 

in federated learning training with data files. We can experiment with the three 

proposed algorithms and check their functionality and limits with this platform.   

The first step of the implementation is to implement the three algorithms and check 

whether they can successfully use a sample data file. 
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The second step of the implementation is to implement these algorithms in other 

federated learning training and ensure that they can prevent any attacks. 
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   The following is an example of the storage verification key file for each data file. 

The participant will create this file locally when each data file is written. This file will 

be encrypted by using the encryption key.  

Later during the training, the participant will send this file to the server, and only the 

server can decrypt this file. The verification file will only contain random values of 

random characters from each data file, and the server will use this information to 

verify the authenticity of the training data. 

3-1: Algorithm 1 For Image Verification 

Algorithm 1 Training Data file Storage Protocol for Nodes  

Require: An encryption key and iteration password from the training server 
 1: Initialization Create a Data file, Create a blank Key file 

2: Integer NumberOfByteToVerify = 75 

3: Write iteration password to BOF of Key file 

4: Write Checksum of Datafile to 2nd line of Key file 

5: Go to the next line in the Key file 

6: From 3rd line of the Data file to the EOF of the Data file 

7:             If NumberOfByteToVerify != 0 

8:                      Choose a random Char from the Data file 

9:    Write ChosenByteLocation  

10:                      Go to the next line in the Key file 

11:                      Write ChosenByteValue          

12:                      Decrement NumberOfByteToVerify 

13:                      Go to the next line in the Key file 

  14: Encrypt Key file (encryption key) 

 

BOF: is a specific marker that shows where a file starts. 

EOF: is a condition in a computer operating system where no more data can be read 
from a data source. 
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Table 1: Text file Demonstration table 

 

After gathering enough sample data, when a worker device is ready to begin training, 

it will receive a decryption key and iteration password from the training server and 

check every sample data. 

Algorithm 2 will first use the decryption key and decrypt the sample file. 

1)       Step 1 is to check the password. If the iteration password of the storage 

verification key is the same as the iteration password received from the server, then 

algorithm two will continue. If not, then it will return false. 

2)       The second step of the algorithm is to check the checksum to ensure the file 

size is original. The participant will send the current checksum value and the 

verification key file to the server. Only the server can decrypt the verification file and 

verify the checksum value. 

3)       The third step of algorithm 2 is to compare the values of the characters from 

the storage verification file with the actual sample file and ensure that the file is 
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original. Only the server can decrypt the verification file and compare the values of the 

pixels.  

4)       If all the checks are correct, algorithm two will return true. 

The output of Algorithm 2 will be a true or false value which will demonstrate to the 

worker device that will determine the integrity of the sample data file. 

3-2: Algorithm 2 For Image Verification 

Algorithm 2 Training Data File Integrity verification for each Node 

Require: A decryption key and iteration password from the training server 

 1: Initialization import Data file, import Key file for the data file 

2: Decrypt Key file (decryption key from training server) 

3: If the BOF of the Key File Does not contain the iteration password 

4:              Return False 

5:              else 

6:                  If checksum from 2nd line of the key file != checksum  

7:                           Return False 

8:                      else 

9:                         From 2nd line of the key file to the EOF key file 

10:                 Go to the next line in the Key file 

11:            Read ChosenByteLocation 

12:                  Go to the next line in the Key file 

13:         Read ChosenByteValue 

14:                        If  ChosenByteValue exists in the ChosenCharLocation of the Data file 

15:     Continue 

16:                                      Else return false 

 

If any doubt arises, each node can utilizeError! Reference source not found., to a

uthenticate its storage integrity during the final phase. If all checks pass successfully, 

it confirms the storage integrity of that particular node. Each node will resend the 

iteration password to the server for verification as part of this algorithm. 
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3-3: Algorithm 3 For Image Verification 

Algorithm 3 Node Integrity Check Algorithm 

Require: Training server uses the decryption key 

1: Initialization decrypts all verification key files 

2: Choose N # of random key files. 

3: Decrypt the chosen key files using the decryption key 

4: If the 1st line of all five key files matches the iteration password 

5:             It selects random lines from the verification file 

6:             Requests that information from the node 

             If all information matches then it accepts the authenticity       

                of that participating device 

7:             else 

8:                    It concludes that the data in that participating device  

                                                                 is compromised 
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3.1   Proposed M odel for Image Recognition Data 

Any noisy or polluted sample in federated machine learning will negatively impact 

machine learning performance. Data poisoning poses a challenge as it is difficult to 

control and assess the quality of individual samples. The primary issue in federated 

learning is that participants can act as attackers, and it is unrealistic to expect them 

to supervise each training session. This paper presents a novel preventive approach to 

constructing a new federated machine learning framework. The proposed method 

enables the training server to supervise each training round by incorporating a security 

key into the image data of federated learning. It assumes that the training server 

remains unaware of the individual data in each edge device. This approach ensures 

training accuracy while avoiding additional computational demands on the federated 

learning process. 

This paper introduces a detection prevention scheme that safeguards image data 

stored on each client's device. It enables the server to detect modifications and 

promptly eliminate infected clients in real-time. This scheme benefits low-processing 

devices by requiring minimal processing power. 

In machine learning training, a successful attack, whether by altering original data or 

manipulating model parameters, can be viewed as the attacker modifying the original 

data in every training round. In federated learning, even changing a small portion of 

the data, with a single attacker selected in a single training round, can lead to the 

joint model achieving 100% accuracy in backdooring attacks. Remarkably, an attacker 

controlling at most 1% of the participants can successfully create a backdoor attack. 

Model replacement significantly outperforms "traditional" data poisoning, and 
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attackers may employ intelligent strategies based on machine learning rules rather 

than random parameters. Hence, a successful data poisoning attack starts with gaining 

access to the original data sample from the client side. 

In federated learning, participants and the server do not share any private data in the 

original model. A new approach is necessary to prevent data pollution, allowing the 

server and participants to establish a small encrypted data set. This paper adopts an 

encryption-based verification method, enabling the server to detect inconsistencies in 

training samples without knowing the specific data held by individual participants. 

Participants and the server share encrypted verification keys in the initialization round 

to prevent text modification during each training round. Subsequently, participants 

train locally and send model updates to the server, which performs verification without 

accessing the participants' held data. 

This research paper aims to achieve properties that prevent attackers from modifying 

the original image file across training rounds, thus thwarting adaptive data poisoning 

attacks. This property ensures that each participant cannot report incorrect model 

updates from round to round. 

Figure 1: The attacker has modified the cat image cat-4, demonstrating a data 

pollution attack example. In this figure, the attacker has modified the image cat-4.jpg 

samples on the left side by adding dog picture images to the sample data. The 

attacker has created the new image samples on the right side 

The main strategy for preventing data poisoning in federated learning involves two 

phases. The initial phase ensures that data-generating nodes cannot insert or modify 

image data in the sample. During this phase, the training server identifies the nodes 
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chosen for training before sampling occurs. It generates a random password and a 

public key for encryption. 

Once the node receives the password and encryption key, it can start sampling. The 

subsequent phase involves creating a verification key file for each data file generated 

by the node. The server later uses this verification key file to supervise the training. 

The device generates a sample key file along with the sample data file. The verification 

key file serves two purposes: confirming that the trusted node created the sample data 

file and preventing unauthorized modifications. Figure 7: An example of a verification 

key for Text files. data illustrates the process of creating the sample data file. 

1- The sample verification file begins with the password for that specific training 

iteration, allowing for quick decryption and verification of the password's 

correctness.  

2- The second line contains a checksum that records the bit number of the image 

file.  

3- From the third line onwards, the worker device randomly selects an image file 

and records each byte value and location in the verification key file. 

To ensure the security of the verification key file, the worker node encrypts it using 

the encryption key, making it inaccessible to other parties. The output 3-1: Algorithm 

1 For Image , is a storage verification key file. 

The suggested approach in federated learning aims to detect any modifications made 

to the data, which can be achieved through three different algorithms. The initial 

algorithm deals with the storage protocols for participants' data training files, while 
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the second algorithm focuses on verifying the integrity of files on each node. The third 

algorithm is designed to verify the transmission key on the training server. 

For the first algorithm, it is assumed that the server and participant will establish a 

verification key before training, which will be used during storing sample data. 

Participants will utilize this key to store their sample data. For instance, if the sample 

data consists of animal images, each participant will register with the server before 

training. Subsequently, the participant will receive a verification public encryption key 

and an encryption key for each iteration, enabling the creation of a local verification 

file. The verification public key can only be used for encryption and cannot decrypt 

any encrypted key. 

Once a node receives the iteration password and public encryption key, it is deemed 

trustworthy and can begin sampling. The next step involves generating a verification 

key file for every data file produced by the node. 

When a worker device is ready to begin training after gathering sufficient sample data, 

it will obtain a decryption key and iteration password from the training server. The 

worker device will validate each sample image file using the verification key. This 

process ensures that the participant is registered and guards against impersonation by 

attackers. The final algorithm checks the verification keys during the training process. 

The proposed framework uses TensorFlow on Google Colaboratory (Colab) to 

experiment with this defensive scheme. TensorFlow supports federated learning 

training on its platform, and previous experiments utilizing data files have been 

conducted. With this platform, we can assess the functionality and limitations of the 

three proposed algorithms. 
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The first step in implementing this scheme is to incorporate the three algorithms and 

determine their effectiveness using a sample data file. 

The second step involves implementing these algorithms in other federated learning 

training scenarios and confirming their ability to prevent attacks. 

This is a sample of the storage verification key file for each data file. When writing 

each data file, the participant will generate this file on their computer. The file will be 

encrypted using an encryption key. Later in the training process, the participant will 

send this file to the server. Only the server can decrypt the file. The verification file 

will contain random values and characters extracted from each data file. The server 

will utilize this information to confirm the authenticity of the training data. 

Once sufficient sample data has been collected, the training server will provide a 

worker device prepared for training with a decryption key and an iteration password. 

The worker device will then proceed to verify each sample data. Algorithm 2 begins by 

utilizing the decryption key to decrypt the sample file. The algorithm follows these 

steps: 

1) Step 1 involves checking the password. If the iteration password obtained from the 

server matches the iteration password of the storage verification key, 3-2: Algorithm 2 

For Image Verification, Continues. Otherwise, it returns false. 

2) In the second step, the algorithm verifies the checksum to ensure the file size is 

unchanged. The participant sends the current checksum value and the verification key 

file to the server. Only the server can decrypt the verification file and confirm the 

correctness of the checksum value. 
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3) The third step of 3-2: Algorithm 2 For Image Verification, Compares the byte 

values of the storage verification file with those of the actual sample file to validate 

the file's authenticity. Again, only the server can decrypt the verification file and 

compare the pixel values. 

4) If all the checks pass successfully, 3-2: Algorithm 2 For Image Verification, Returns 

true. 

The output of Algorithm 2, Is a boolean value, true or false, indicating the integrity of 

the sample data file as assessed by the worker device. 
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3.2   Proposed M odel for Text Data Verification 

The primary approach aims to avoid data contamination in federated learning through 

two key stages. Initially, the strategy blocks data-generating nodes from adding or 

altering any data within the sample. During this stage, the training server identifies 

the remote participants chosen for the training before any sampling. It creates a 

random password for that particular iteration and generates a public key for 

encryption. 

The node initiates the sampling process upon receiving the iteration password and 

public encryption key. Subsequently, the next step involves generating a verification 

key file corresponding to each data file produced by the node. The server will utilize 

these verification critical files to oversee the training. Their purpose is to guarantee 

that the trusted node is the creator of the sample data file, preventing any alterations 

by external parties. Refer to Figure 9: Key file sample for text-data file verification for 

an example of a critical file used to verify text-data files, illustrating the creation of 

sample data files. Upon generating the sample data file, the device concurrently 

generates a sample key file. 
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Figure 9: Key file sample for text-data file verification 

3-4: Algorithm 1 For Text Verification 

Algorithm 1 Training Data file Storage Protocol for Nodes  

Require: An encryption key and iteration password from training server 
 1: Initialization Create Data file, Create blank Key file 

2: Integer NumberOfCharToVerify = 75 

3: Write iteration password to BOF of Key file 

4: Write Checksum of Datafile to 2nd line of Key file 

5: Go to next line in the Key file 

6: From 3nd line of Data file to EOF of Data file 

7:             If NumberOfCharToVerify != 0 

8:                      Choose random a Char from Data file 

9:    Write ChosenCharLocation  

10:                      Go to next line in the Key file 

11:                      Write ChosenCharValue          

12:                      Decrement NumberOfCharToVerify 

13:                      Go to next line in the Key file 

     14: Encrypt Key file (encryption key) 

 

BOF: is a specific marker that shows where a file starts. 

EOF: is a condition in a computer operating system where no more data can be read 
from a data source. 
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3-5: Algorithm 2 For Text Verification 

Algorithm 2 Training Data File Integrity Verification For Each Nodes  

 Require: A decryption key and iteration password from training server 
 1: Initialization import Data file, import Key file for the data file 

2: Decrypt Key file (decryption key from training server) 

3: If BOF of Key File Does not contain iteration password 

4:              Return False 

5:              else 

6:                  If checksum from 2nd line of key file != checksum  

7:                           Return False 

8:                      else 

9:                         From 2nd line of key file for to the EOF key file 

10:                 Go to next line in the Key file 

11:            Read ChosenCharLocation 

12:                  Go to next line in the Key file 

13:         Read ChosenCharValue 

14:                             If  ChosenBtyeValue exist in the ChosenCharLocation of Data file 

15:     Continue 

  16:                                      Else return false 

  

In the verification scheme [demonstrated as step 1, in 3-5: Algorithm 2 For Text 

Verification, the first step is to ensure that each remote participant is legitimate and 

no third-party attacker can inter-personate a remote participant by creating an 

iteration password. Once the participant receives the iteration password from the 

train-ing server, that participant will become a verified participant for that specific 

training. If an attacker tries to inter-personate a verified participant for that specific 

training, the attacker will not succeed since the attacker will not have the iteration 

password. The second piece of information that the server will provide to the remote 

participant must be a public encryption key that would allow the participant to create 

a verification key for each training file and encrypt that verification file using the 
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public encryption key. Later only the training server can use the matching private 

encryption key to decrypt the verification file. Steps 2 and 3 in 3-5: Algorithm 2 For 

Text Verification, Demonstrate the implementation of the iteration password and the 

decryption key. After receiving the public encryption key and iteration password, the 

remote participant must choose random data from the training data files and write 

that random data and their location into a verification key file.  
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3-6: Algorithm 3 For Text Verification 

Algorithm 3 Node Integrity Check Algorithm 
Require: The training server uses the decryption key. 
1: Initialization decrypts all verification key files 

2: Choose N # of random key files. 

3: Decrypt the chosen key files using the decryption key 

4: If the 1st line of all five key files matches the iteration password 

             It selects random lines from the verification file 

5:             Requests that information from the node 

6:             If all information matches then it accepts the authenticity 

                of that participating device 

7:             else 

8:                 It concludes that the data in that participating device 

                                                              is compromised 

 

3-6: Algorithm 3 For Text Verification, is for data file storage protocol for a remote 

node. This algorithm will create a verification key file while the remote participant 

generates the training data file. At the same time, it is generated and stored inside the 

verification key file. 

BOF: is a specific marker that shows where a file starts. 

EOF: is a condition in a computer operating system where no more data can be read 

from a data source. 

The following is an example of the storage verification key file for each text files. The 

participant will create this file locally when each data file is written. This file will be 

encrypted by using the encryption key.  
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Table 2: Text Verification Table 

Line#: Written Data On The File. Comment: 

1: w0Grf353#43 Iteration password 

2: 1612f797418a53dc652d385bda0e014f Checksum value 

3: 23 Character location 

4: s Character value 

5: 36 Character location 

6: i Character value 

7: 1 Character location 

8: e Character value 

9: 40 Character location 

 

Error! Reference source not found., receives a decryption key and iteration pass-word f

rom the training server and checks every sample data file using the verification key. 

3-2: Algorithm 2 For Image VerificationError! Reference source not found., will check 

the verification keys during the training, and the participant device will send the 

requested information to the server allowing the training server to supervise the 

training. 
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3.3   Defense M echanisms Against Dirty-labeled Data Attacks  

Researchers have suggested several defense mechanisms to defend against dirty 

labeled data attacks.  These may include: 

Data sanitization employs techniques to detect and filter out malicious or suspicious 

data before training Federated learning models. For example, in the email spam folder 

example mentioned in the previous section, The global model or a trusted third party 

could validate the labels on the local datasets of each device to detect any 

inconsistencies or anomalies, such as the manipulated labels injected by the attacker 

on Device B. Secure aggregation is another approach to defend against dirty labeled 

attack, this defense mechanism applies encryption or secure multi-party computation 

techniques to protect the privacy and integrity of the aggregated updates during the 

federated learning process. However, this scheme requires the training server to have 

access to the original training data, and this option is not always available to privacy 

laws. 

Another defense mechanism is to utilize robust aggregation algorithms that use 

aggregation algorithms that are resilient to the presence of compromised or adversarial 

devices in the federated learning setup. The aggregation algorithm used to combine the 

model updates from different devices can be designed to be resilient to the presence of 

compromised devices, effectively minimizing the impact of the attacker's poisoned 

updates. 

Model verification and validation can also defend against dirty-labeled attacks by 

performing rigorous testing and validation of the global model to detect any potential 
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issues introduced by dirty-labeled data attacks. Additional verification steps can be 

taken to ensure the model's integrity and performance. 

All the above defense mechanisms for dirty-labeled data attacks require access to the 

training data or a high amount of computational power without additional incentives 

for the clients. 

The text data verification scheme introduced in this chapter can serve as an 

advanced defense mechanism against data or label manipulation attempts. Unlike 

traditional methods, this scheme ensures exceptional data integrity while maintaining 

privacy. 

With the Text data verification scheme in place, the training server becomes 

proficient in identifying unauthorized modifications from potential attackers to the 

training data or labels. When such manipulations are detected, the server promptly 

eliminates the deceptive participant from the training process, thereby preserving the 

model's integrity and effectiveness. 

By adopting this cutting-edge approach, federated learning models can maintain 

their accuracy and reliability even when confronted with adversarial attacks, bolstering 

the overall performance and security of the system. The proposed implementation 

model sets a new standard in federated learning, fortifying data security and 

minimizing the risk of dirty-labeled data attacks. 
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3.4   Defense M echanisms For Backdoor Attacks 

Defense mechanisms for each type of backdoor attack [16] on federated learning, along 

with a simple example for each: 

One approach to defend against model poisoning attacks is implementing robust 

aggregation methods to detect and mitigate malicious model updates' impact. One 

such method is Trimmed Mean, which removes outliers before aggregating the model 

updates and mitigates the influence of poisoned updates. For example, in a federated 

learning system, the central server can calculate the trimmed mean by discarding 

model updates that differ significantly from most. 

The defense against Data Injection Attacks is to use input validation and outlier 

detection techniques. During the local training, participants can use statistical analysis 

to identify and remove potential outliers or suspicious data points. For example, in a 

federated learning system training a model to recognize handwritten digits, 

participants can implement image quality checks to identify anomalies or modifications 

in the training data before including them in the local training. 

One suggested approach to defend against Byzantine attacks is to utilize Byzantine 

fault-tolerant (BFT) algorithms. These algorithms enable participants to reach a 

consensus on the aggregated model update despite the presence of malicious 

participants. For example, federated learning systems can employ BFT algorithms 

such as Byzantine-Resilient Federated Averaging (BRFA) that can tolerate a certain 

number of Byzantine participants by leveraging cryptographic techniques and 

redundancy. 
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Various privacy-preserving techniques can protect against privacy breach attacks. 

Differential privacy is one such approach where noise is intentionally added to the 

model updates to protect the privacy of individual data. For instance, in a federated 

learning system for medical diagnosis, the participants can inject carefully calibrated 

noise into their model updates to ensure that individual patient data remains private 

even if an attacker tries to extract information from the model parameters. 

The above defense mechanisms need to be foolproof, and the choice of defense depends 

on the specific requirements and constraints of the federated learning system. 

The defense mechanisms mentioned above must be completely reliable, and the 

selection of a defense mechanism relies on the specific needs and limitations of the 

federated learning system. Nevertheless, the text data verification scheme presented in 

this chapter operates independently of the particular conditions and constraints 

imposed by the training participants. Unlike conventional approaches, this scheme 

ensures impeccable data integrity while upholding privacy. 

With the implementation of the Text data verification scheme, the training server 

becomes adept at detecting any unauthorized alterations made by potential attackers 

to the training data or labels. Upon noticing any manipulations, the server swiftly 

removes the deceptive participant from the training process, thus safeguarding the 

model's integrity and efficacy. 
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3.5   Defense M echanism Against Data Pollution  

Several techniques can prevent data pollution in federated learning. The Differential 

Privacy Technique is one of the defense mechanisms against data pollution in 

federated learning, and it provides privacy guarantees by adding controlled noise to 

the participants' updates or queries. For instance, participants can apply randomized 

response mechanisms to obfuscate their sensitive updates before sharing them with the 

central server. This ensures that individual participants' data cannot be inferred from 

the aggregated updates, protecting privacy. Secure Communication Channels can also 

defend against data pollution in federated learning, and it ensures the confidentiality 

and integrity of the data exchanged between participants and the central server. For 

example, participants can utilize secure protocols such as Transport Layer Security 

(TLS) or Secure Socket Layer (SSL) when transmitting their updates to the central 

server. Encrypting the communication channels prevents data leakage or unauthorized 

access to the exchanged data. 

Monitoring and detection defense mechanisms aim to identify data pollution or 

malicious behavior during the federated learning process. For example, a simple 

monitoring mechanism can track the performance of the federated model over time 

and raise an alert if a significant drop in performance is observed, indicating potential 

data pollution. Additionally, anomaly detection algorithms can identify participants 

that deviate from the expected behavior, indicating possible malicious activity. These 

measures ensure the federated learning process's integrity, reliability, and privacy 

despite potential data pollution.  
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The defense mechanisms should be highly dependable, and a secure communication 

protocol between the training server and participants is crucial. However, not all 

devices can handle secure protocols due to their required extra computational power. 

Still, the text data verification scheme discussed in this chapter works independently 

of the specific conditions and limitations set by the training participants. It effectively 

safeguards against man-in-the-middle and communication-related attacks. The training 

server can promptly detect any data modifications during training. 
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3.6   Reactive Defense Schemes On Federated Learning  

The previously proposed defenses have focused on detecting attacks on federated 

learning after they happened. These defenses are called reactive schemes.  

One drawback of reactive schemes is that the system may take a long time to react 

to the attacks. Moreover, reactive schemes are designed for a specific type of attack. 

Therefore, we need a proactive protection scheme, an all-in-one solution.  

Previously proposed defenses against such attacks increased the batch size to 

complicate data recovery. However, other researchers [11] demonstrated that 

catastrophic data leakage in vertical FL is still possible. For example, a novel 

algorithm [11] can perform large-batch data leakage with high data recovery quality 

and theoretical guarantees.  

In federated learning, a reactive defense scheme refers to techniques and strategies 

employed to detect and mitigate various security and privacy threats that can arise 

during training. These threats include data poisoning, model inversion, and 

membership inference attacks. 

Data Sanitization is a reactive defense scheme aiming to detect and remove 

malicious or poisoned data samples from the federated dataset beforehand of training. 

One example of data sanitization is anomaly detection, where statistical techniques 

can identify data samples that deviate significantly from the expected distribution. 

One good example of a data sanitization reactive defense scheme in federated 

learning is where multiple hospitals contribute patient data, and data sanitization 
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techniques can be employed to identify and remove outliers or anomalous data points 

that may be intentionally inserted to bias the training process. 

Model Update Verification is another type of reactive scheme, and it involves 

verifying the integrity and authenticity of the updated global model before it is 

distributed back to the participating devices for further training. This ensures that the 

model has not been tampered with or compromised during aggregation. 

One good example of a model update verification reactive defense scheme is using 

cryptographic techniques, such as digital signatures, to sign and verify the model 

updates. Each participating device can verify the signature to ensure an adversary has 

not modified the model. 

Differential privacy is a scheme that aims to protect the privacy of individual data 

samples in federated learning. It adds noise or perturbation to the model updates or 

gradients, making it difficult for an adversary to extract sensitive information about 

specific individuals. 

An example of differential privacy in federated learning is the addition of Gaussian 

noise to the gradients calculated on local devices before sending them to the central 

server for aggregation. This noise helps protect the privacy of individual data samples. 

The adversarial Robustness scheme [13] focuses on defending against adversarial 

attacks on the federated learning process. Adversarial attacks aim to manipulate the 

training process to compromise the model's performance or extract sensitive 

information. 
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An example of an adversarial training technique is to generate adversarial examples 

during training and incorporate them into the training dataset, forcing the model to 

learn to be more resilient to such attacks. 

Various combinations and extensions of these techniques can also be employed to 

enhance the security and privacy of federated learning systems, depending on the 

specific threats and requirements of the application. However, the drawback of the 

above reactive scheme is that the training server must be able to access each remote 

participant's private data, which is only sometimes possible due to laws and 

regulations in every region. 

The data verification scheme discussed in this chapter can be put into practice 

without requiring access to the private data of each remote participant, which varying 

laws and regulations in different regions may limit. 
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3.7   Defense M echanisms Against Advanced Data Leakage 

Attack 

Various defense schemes can be employed to defend against advanced data leakage 

attacks in federated learning.  

Differential privacy can help protect against membership inference and reconstruction 

attacks by adding controlled noise or perturbation to the model updates or gradients 

shared during federated learning. It aims to make it difficult for an attacker to infer 

sensitive information about individual data samples. 

For example, one approach is to use techniques like a randomized response, where each 

participating device perturbs its gradients by adding random noise before sending 

them for aggregation. This noise masks the contribution of individual data samples, 

providing privacy guarantees. 

Model regularization techniques help defend against reconstruction attacks by adding 

constraints or penalties during training. These constraints limit the model's ability to 

overfit specific training data points and make it harder for an attacker to reconstruct 

sensitive information. 

For example, adding an L2 regularization term to the loss function during training 

helps control the model's complexity. It penalizes large weights and reduces the impact 

of individual data points, thereby improving the model's generalization and mitigating 

the risk of data reconstruction. 

Privacy-preserving federated learning techniques combine multiple defense mechanisms 

to provide comprehensive protection against data leakage attacks. These mechanisms 
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can include encryption, secure multi-party computation, and differential privacy. For 

example, in MPC, participating devices jointly compute the model updates without 

revealing their data. Each device holds its input and performs cryptographic 

operations to contribute to the aggregation while preserving privacy. 

Adversarial robustness techniques focus on defending against attacks that aim to 

manipulate the model's behavior or extract sensitive information. They help detect 

and mitigate malicious attempts during the federated learning process. Incorporating 

adversarial training as a defense mechanism can enhance the model's robustness. The 

model is trained with clean data and adversarial examples generated using techniques 

like Fast Gradient Sign Method (FGSM), making it more resilient to attacks. 
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3.8   Defense M echanism Against Evasion Attacks 

There are categories of defense mechanisms against evasion attacks in federated 

learning. 

The first category focuses on modifying the input data before training the federated 

learning model. They aim to remove or reduce the influence of malicious or adversarial 

samples. For example, one preprocessing-based defense is input normalization. In this 

method, the input data is standardized by scaling each feature to a predefined range 

between 0 and 1. Normalizing the data can mitigate the impact of extreme values or 

outliers that an attacker might intentionally inject. 

The second category of defense mechanism against evasion attacks is Model-based 

defenses involve modifying the learning algorithm or the model to improve robustness 

against evasion attacks. 

For example, Adversarial training is a commonly used model-based defense. It involves 

augmenting the training data with adversarial examples generated by intentionally 

perturbing the input samples. By training the model on clean and adversarial samples, 

the model learns to be more resistant to evasion attacks. 

System-based defenses enhance the federated learning system to detect and prevent 

evasion attacks. 

An example of a system-based defense is anomaly detection. By monitoring the 

behavior of each participating client during the federated learning process, anomalies 

or suspicious activities can be detected. For instance, if a client suddenly exhibits 
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significantly different performance or sends irregular updates, it may indicate a 

potential evasion attack. 

These three categories of defense mechanisms against evasion attacks in federated 

learning, namely preprocessing-based, model-based, and system-based defenses, provide 

different approaches to enhance the security and robustness of the federated learning 

process against malicious adversaries. 

While defense mechanisms against evasion attacks in federated learning effectively 

mitigate the risk of attacks, they also have some drawbacks.  

Preprocessing-based defenses may be designed to counter specific attack patterns. If 

attackers devise new evasion techniques, the defense mechanism might fail to detect or 

neutralize them effectively. Some preprocessing techniques, such as data sanitization or 

outlier removal, may result in the loss of useful information. This could impact the 

model's accuracy and performance. 

Applying model-based defenses, like adversarial training, often requires additional 

computational resources and time for generating adversarial examples and training the 

model. This can lead to higher overhead and slower convergence during the federated 

learning process. 

Model-based defenses might improve the model's resistance to specific evasion attacks 

encountered during training. However, they may not guarantee robustness against new 

and unseen attack strategies during deployment. 

Anomaly detection and monitoring techniques used in system-based defenses may 

produce false positive or negative alerts. False positives can disrupt the federated 

learning process, while false negatives can result in undetected attacks. 
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Privacy concerns: Some system-based defenses require monitoring the behavior of 

participating clients, potentially raising privacy concerns among users. Striking a 

balance between security and privacy is essential in federated learning systems. 

While defense mechanisms in federated learning are valuable, they still face challenges 

regarding adaptability to new attack techniques, computational overhead, 

generalization, and privacy considerations. Continued research and development are 

necessary to address these drawbacks and improve the effectiveness and efficiency of 

defense mechanisms. The text verification scheme presented in this chapter ensures 

strong resilience and can be applied to various types of data. 
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3.9   Defense M echanisms For A Gradient Attack 

By implementing the following defense mechanisms at different levels, federated 

learning systems can mitigate the risk of gradient attacks, safeguard the learning 

process's integrity, and protect individual user data's privacy. 

The first category is the Data-Level Defense, which involves filtering data, removing or 

filtering malicious or abnormal data points before training the model. For example, if a 

user's data contains extreme values or outliers that significantly deviate from the 

normal range, those data points can be excluded from the training process. 

Model-Level Defense is another type of defense against gradient attack. 

Adding regularization techniques to the model training process prevents overfitting 

and increases robustness. Regularization introduces penalties for complex models or 

large parameter values, discouraging the model from fitting too closely to individual 

malicious gradients. 

Communication-Level Defense is another defense mechanism against gradient attacks, 

focusing on applying differential privacy mechanisms to the communication between 

the central server and the participating users. This protects individual user privacy by 

adding noise to the aggregated gradients, making it harder for an attacker to infer 

specific user information from the gradients. 

While defense mechanisms against gradient attacks in federated learning offer 

protection, they also have drawbacks. Here are the potential drawbacks of these 

defense mechanisms: 
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The Data-Level Defense excludes certain data points that can lead to a reduction in 

the available training data, potentially limiting the overall model's performance. It 

may also introduce bias if the excluded data points contain valuable information. 

In a data Aggregation defense scheme, aggregating data from multiple users can 

increase the communication overhead and computational cost, especially when dealing 

with many participants. Additionally, if the aggregation process is not properly 

secured, it can become a potential attack target. 

In a Model-Level Defense scheme, overreliance on regularization can result in 

underfitting, where the model fails to capture important patterns in the data. 

Balancing regularization to prevent overfitting without sacrificing performance can be 

challenging. 

Applying strict gradient clipping thresholds may lead to information loss and hinder 

learning. Setting the clipping threshold too high may still allow manipulative gradients 

to impact the model. 

The drawback of the Communication-Level Defense is that adding noise to the 

gradients can reduce the model's accuracy due to the introduction of random 

perturbations. Fine-tuning the noise level to balance privacy and utility can be 

complex. 

Implementing secure aggregation protocols can introduce additional computational 

overhead and communication latency, impacting the efficiency of the federated 

learning system. 
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3.10   The Communication Overhead Problem  In Federated 

Learning 

The central server must constantly exchange information with the participating clients 

during training in Federated learning. This constant exchange of information between 

the central server and the participants creates communication overhead problems. 

During training in federated learning, it is vital to establish effective communication 

between the central server and participating clients. However, the constant 

information exchange between them results in communication overhead problems, 

which worsen when defense schemes are implemented. 

Defense mechanisms often require transmitting additional data or information between 

the clients and the central server. This can lead to increased data transfer 

requirements, especially when dealing with many clients or when the defense 

mechanisms exchange model parameters, gradients, or aggregated results. The 

increased data transfer can strain network bandwidth and increase the time required 

for communication. Certain defense mechanisms, such as secure aggregation or 

differential privacy, may involve encryption and decryption operations to protect the 

privacy and security of the data and gradients. These cryptographic operations can 

impose computational overhead on the clients and the central server, as encryption 

and decryption algorithms can be resource-intensive and time-consuming. 

Many Defense schemes require synchronization and coordination between the clients 

and the central server. This involves establishing communication channels, 

coordinating training iterations, exchanging gradients or model updates, and 
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aggregating results. Synchronization and coordination efforts can introduce delays and 

overhead, especially when clients have varying computation capabilities, 

communication delays, or unstable connections. 

As the number of participating clients increases, the communication overhead can 

become a scalability challenge. Coordinating and aggregating gradients or model 

updates from many clients can significantly increase the computational and 

communication requirements, making it harder to perform the necessary operations 

within a reasonable time frame efficiently. 

Managing the communication overhead is crucial in federated learning to ensure 

smooth collaboration between the clients and the central server while minimizing 

delays and resource consumption. Optimizations, such as compression techniques, 

selective updates, and parallelization, can be explored to mitigate these communication 

challenges and improve the overall efficiency of the defense schemes in federated 

learning. The upcoming chapter emphasizes the communication overhead of the text 

verification scheme, illustrating its capability to minimize communication overhead in 

federated learning defense mechanisms. 
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Chapter Summary 

This new participant authentication mechanism ensures that only legitimate 

participants contribute to the federated learning process. The verification key scheme 

authenticates participants before they are allowed to join the federated learning 

system, preventing unauthorized or malicious participants from injecting polluted data 

into the federated learn-ing model. The verification scheme presented in this paper 

focuses on preventing data poisoning rather than detecting any attack on federated 

learning after an attack. This approach allows the training server to eliminate the 

infected client, improving the overall performance of federated learn-ing training. 

Moreover, it can prevent data modification in each client's storage during each 

training. It allows the server to detect any modification in real time and ensures the 

confidentiality and integrity of the data exchanged between participants and the 

training server. 
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Page break 

 

Chapter 4 

4  Communication Overheads  

This chapter focuses on the basic concepts of federated learning and communication 

reduction strategies. Federated learning has emerged from distributed deep learning 

and enables the training of a shared model without jeopardizing the privacy of users' 

data. Throughout the learning process, the data remains on local devices.  

With the training data, clients exchange their local models to enhance a global model. 

The FedAVG algorithm sketches how the Federated Averaging algorithm [22] proceeds 

using a cluster of clients, each with a learning rate of 𝒏. 
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Figure 10: Federated learning architecture 

In FedAVG algorithm  

𝑁 represents a cluster of clients.  

𝑛 represents the learning rate  

S designates the set containing all clients 

𝐶 represents a subset of selected clients from 𝑆 

|𝑆′| = (𝐶.𝑁) 

𝑚 represents the number of randomly chosen clients where 𝑚 is the maximum 

between (𝐶. 𝑁) and 1. 

𝑒 represents the number of local iterations  

𝐸 is the communication interval 

𝑃𝑘 represents the wight of 𝑘𝑡ℎ client. 
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The FedAVG acts in two synchronous steps, starting by generating a global model 

represented by 𝑤0 on the server.                

4-1: Algorithm FedAVG 

Algorithm FedAVG The federated averaging algorithm. 

 1: Initialize (𝑤0);  
2: for 𝑡 = 1,… , 𝑇 do 
3:   𝑚 ← max(𝐶.𝑁, 1) ; 
4:   𝑆′ ← 𝑟𝑎𝑛𝑑𝑜𝑚_𝑃𝑖𝑐𝑘(𝑆,𝑚); 
5:   for all clients 𝑘 ∈ 𝑆′ In parallel do 
6:      for 𝑒 ∈ 1,… , 𝐸 do 
7:         𝑤𝑒 ← 𝑤𝑒−1 − 𝑛∇𝐹(𝑤𝑒−1); 
8:      end for 

9:      𝑤𝑡+1
𝑘 ← 𝑤𝑒; 

10:   end for 

11:   𝑤𝑡+1 ← ∑ 𝑃𝑘 ∙ 𝑤𝑡+1
𝑘  / 𝑚𝑚

𝑘=0 ; 
12: end for 

 

After generating a global model, 4-1: Algorithm FedAVG, Randomly chooses 𝑚 

participating clients where 𝑚 is the maximum between (𝐶. 𝑁) and 1. 

During the training, each of the selected clients trains a local model similar to the 

global model during several local iterations represented by 𝑒 = 1,… , 𝐸,  and 𝐸 is the 

communication interval. Once the training has been completed, all clients will send 

their local models to the server to update the global model.  The whole process is 

executed repeatedly during T iterations.  
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4.1   Communication Overhead In Distributed Deep Learning 

The Federated learning workflow introduces a substantial load of communication 

which leads to a decrease in the efficiency and applicability of Federated learning. 

Currently, two main approaches exist for communication overhead reduction. The first 

approach is data compression, and the second is decreasing communication rounds (see 

Figure 11: Communication overhead reduction: taxonomy of the techniques.). 

 

Figure 11: Communication overhead reduction: taxonomy of the techniques.    

The data compression approach consists of two parts of quantification and 

sparsification. 

Quantization involves representing the data with a low-precision or small-sized data 

type, such as a Boolean.  
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In contrast, sparsification transmits only each communication's essential values, 

constituting approximately 1% of the overall values.  

However, the compression rate for quantization is limited to 1/32, considering that 

32-bit-encoded data is commonly used in DDL, and models that use quantization may 

have a slower convergence due to having fewer bits to carry the information.  

On the other hand, sparsification can achieve a compression rate of 1/100 without 

significantly affecting the model's convergence speed and final accuracy. Nevertheless, 

sparsification comes with additional training phases, such as sampling, compression, 

coding, and decoding, which can impact the overall training efficiency, particularly in 

battery-sensitive (e.g., smartphones) and low-performance (e.g., netbooks) devices. 

Regarding the second technique for reducing communication, in standard Federated 

Learning (FL), the communication process occurs at the end of each iteration 

(𝑬 =  𝟏).  

Since a typical FL training of a deep neural network involves hundreds of thousands 

of iterations, increasing the communication intervals could decrease the 

communication overhead.  

As a solution, the FedAvg algorithm and its variations enable clients to perform 

several iterations of local training before updating the global model.  

This approach increases convergence speed when the communication rounds are 

reduced. In FedAvg, hyperparameter 𝑬 adjusts the communication, influencing the 

model's accuracy and training efficiency trade-off.  
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A smaller 𝑬 value usually results in better final accuracy, whereas a larger 𝑬 value 

speeds up the model's convergence. Thus, experts must fine-tune the communication 

interval 𝑬 to enable the model to achieve the highest possible efficacy. 
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4.2   The FL-COP M odelling and Formulation 

The FL-COP Modelling and Formulation involves optimizing two conflicting 

objectives:  

(I) Minimizing the communication overhead and  

(II) Maximizing the model's accuracy.  

The FL-COP model assumes that all clients in the system have a similar model to 

the one on the server, including the nodes, connections, layers, and activation 

functions.  

In an architecture consisting of one server and 𝑵 clients, the trained model has l 

layers, with each layer 𝑳𝒊 containing 𝑵𝒊 Weights.  

The FL-COP approach involves a four-level communication-reduction scheme, where 

each layer represents a specific communication-reduction approach.  

1. The top-level determines the number of clients participating in the training of 

the global model.  

2. Quantization [24] 

3. Sparsification [25] 

4. Reducing communication rounds (as shown in Figure 12: The FL-COP 

modeling levels). 
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Figure 12: The FL-COP modeling levels 

The amount of communication during the FL learning process depends on the 

number of participating clients represented by 𝒎, which is between 𝟏 and 𝑵.  

The FL-COP model has two main parts.  

1. The first part involves randomly selecting a certain number of clients, 

represented by 𝑚, from the entire set of clients represented by 𝑆, who will be 

the only ones sending their local models to the server.  

2. The second part involves determining the number of training iterations, 

represented by 𝐸 ∈ [1,100], after which all clients will send their local models 

to the server. This variable determines the number of training steps the 

clients perform before sending their local models. Note that each client has a 

maximum number of training iterations (𝐸 ∙ 𝑇), where 𝑇 is the maximum 

number of times clients can send their local models to the server. The third 

part of the problem involves selecting a percentage value between 0% and 
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50% for each layer 𝐿𝑖, which represents the percentage of having 𝑛𝑖 Weights 

that will not be sent to the server this percentage is represented by 𝜇.  

The final part of FL-COP modeling consists in finding the optimal number of bits 𝑏𝑖 

allocated to encode the weights of each layer 𝐿𝑖 in the model, where 𝑖 = 1,… , 𝑙. 

�̅�𝑖: represents the maximum values of 𝑖𝑡ℎ layer. 

𝜚𝑖: represent the minimum values of 𝑖𝑡ℎ layer. 

𝑏𝑖: bits means that 2𝑏𝑖 Binary combinations can be created. 

The next step is to assign the all-ones and all-zeros combinations to encode the �̅�𝑖 and 

𝜚𝑖 Values, respectively.   

The (2𝑏𝑖 − 2) remaining combinations will encode (2𝑏𝑖 − 2) values that are equally 

drawn from the interval [�̅�𝑖, 𝜚𝑖]. The information that will be transmitted to the server 

comprises a sequence of permutations that represent each weight. The server will 

utilize the inverse process to recover the complete and accurate weights. 

Each client will send to the server ∑ (𝑛𝑖. 𝑏𝑖) + 64𝑙
𝑖=1  bits instead of Θ = ∑ (𝑛𝑖 . 32)

𝑙
𝑖=1  

Original bits.  

Equation (1) defines the first objective function 𝑓1( 𝑋⃗⃗  ⃗).  

This function calculates the percentage of data reduction that the solution  𝑋⃗⃗  ⃗ 

Achieves, and it is the sum of the percentage 𝛼 and 𝛽 ∈ [0,1] of data sent and received 

by all the clients together from and to the server. These percentages are indicated with 
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the initial data that would have been transmitted or received if no reduction in 

communication (𝑇 . 𝑁 . Θ) had been implemented. 

Equation (2) defines the second objective function 𝑓2( 𝑋⃗⃗  ⃗). This function evaluates 

the accuracy of the global model 𝑤𝑇
∗ at communication 𝑇 (.ie the last iteration 

achieved via the solution  𝑋⃗⃗  ⃗. The server’s model 𝑤𝑇
∗ = ∑ 𝑤𝑇

𝑘/𝑚𝑚
𝑘=0 , is computed as the 

mean of the 𝑚 local models obtained after 𝑇 communications, while the accuracy if 

computed as the division of 𝜆 by 𝑣, where 𝜆 and 𝑣 are the number of correct and total 

predictions made using the model 𝑤𝑇
∗ , respectively. 

min
 𝑋⃗⃗  ⃗={𝑥1,..., 𝑥𝑑}

𝑓1( 𝑋⃗⃗  ⃗) =
𝛼+𝛽

2
                       (1) 

max
 𝑋⃗⃗  ⃗={𝑥1,..., 𝑥𝑑}

𝑓2( 𝑋⃗⃗  ⃗) =
𝜆

𝑣
                       (2) 

Where:   

𝛼 =
1

𝐸
∙
𝑚

𝑁
                                       (3) 

𝛽 =
𝑚

𝑁
∙
1

𝐸
∙ ∑

𝑏𝑖

32

𝑙
𝑖=𝑙 ∙

100−𝜇𝑖

100
∙

𝑛𝑖

∑ 𝑛𝑗
𝑙
𝑗=1

         (4)    

Subject to: 

𝑚,𝐸, 𝜇𝑖 , 𝑏𝑖 ∈ 𝒩, 1 ≤ 𝑚 ≤ 𝑁, 1 ≤ 𝐸 ≤ 1000,0 ≤ 𝜇𝑖 ≤ 50,1 ≤ 𝑏𝑖 ≤ 32 
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Figure 13: A 3 - Layer model. 

The above figure on the left side sketches a solution  𝑋⃗⃗  ⃗ Of an Fl-COP that trains a 

𝑙 = 3 layers mode. The figure on the right side represents a concrete solution  𝑋⃗⃗  ⃗ For 

the same configuration using 20 training iterations and 3 rounds of client-server 

communications. During each round, only 90% of the wights of the first layer and 55% 

of the 2nd later are sent to the server. During the 3rd round, 98% of the weights are 

sent to the server. The weights transmitted from the 1-3rd layers are encoded using 

2,20, and 15 bits.  
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4.3   The Communication-Overhead Reduction 

We assume we want to implement algorithms 1 and 2 in the NSGA-II algorithm. The 

first step of the implementation is to decide in which training phase we must 

implement the algorithms to minimize the communication overhead.  

Currently, two main approaches exist for communication overhead reduction. The first 

approach is data compression, the second is decreasing communication rounds, and the 

FL-COP approach involves a four-level communication-reduction scheme, where each 

layer represents a specific communication-reduction approach.  

FL-COP approach, the top level determines the number of clients participating in the 

training of the global model, and the bottom levels apply quantization [24], 

sparsification [25], and reduction of communication rounds, as demonstrated in Figure 

1: The attacker has modified the cat image cat-4. 

The best option for implementing the key verification scheme is the top level that 

determines the number of clients participating in the training of the global model.  

At the top level, the number of clients is reduced to the minimum, and by optimizing 

this level, we can eliminate any attacking client. The top level allows the training 

sever to supervise and verify the authenticity of the training data of each client. If it 

detects any affected client, it can eliminate that client and replace it with another 

client with legitimate training data. 

The NSGA-II algorithm [26] starts by randomly initializing a population of 𝑈 

individuals, let  𝑋⃗⃗  ⃗ = {𝑥𝑖, … , 𝑥𝑑}, where 𝑖 ∈ [1, 𝑑] and 𝑑 is the size of the problem to be 
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solved. In the next step, NSGA-II enters a loop until some stopping criterion is 

satisfied. 

In the loop, binary tournament selection, crossover, and mutation generate a Q of U 

offspring population. 

 The following objective function represents equation 1 of the NSGA-II algorithm. 

min
 𝑋⃗⃗  ⃗={𝑥1,..., 𝑥𝑑}

𝑓1( 𝑋⃗⃗  ⃗) =
𝛼+𝛽

2
                       (1) 

The function 𝑓1 calculates the percentage of data reduction that the solution  𝑋⃗⃗  ⃗ 

Achieves.  

 𝛼:  represents the percentage of data sent from a server to all clients, with no 

communication reduction. 

𝛽:  represents the percentage of data the server receives from all clients, with no 

communication reduction. 

N: a cluster of clients, each with a learning rate of 𝜂 

𝑇:  is the number of the executed iterations 

The complexity 𝑓1 can be represented by (𝑇 ⋅ 𝑁 ⋅ Θ) 

 Θ: represents the number of original bits that each client would not send to the 

server during the training initially [22] 

Θ = ∑ (𝑛𝑖. 32)
𝑙

𝑖=1
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However, after implementing the FL-COP algorithm, it will change to 

Θ = ∑ (𝑛𝑖 . 𝑏𝑖) + 64
𝑙

𝑖=1
 

Now let us assume that in each client storage, there are an equal number of data files, 

and we want to verify 64 bits of each data file, and the length of each verification key 

file is 64 bits if we want to verify every client. Initially, each client must transmit all 

the key files to the local training server. 

Let 

𝛿: Represent the number of data files in each client's storage. 

With this assumption, in the verification phase, each remote client will transmit 𝛿, the 

number of key files to the server, and if each key file is 64 bits, each client will 

transmit 𝛿 × 64 bits to the training server. 

If there are N clusters of clients, 𝑁 × 𝛿 × 64 extra bits will transmit to the local 

training server. 

Once the local training server receives the key files, it will use the private decryption 

key to decrypt every verification key file, and if it decides to verify every single key 

file, it will request 𝑁 × 𝛿 × 64 bits from each remote client. 

In the next phase, each client will transmit 𝑁 × 𝛿 × 64 bits from their local data files 

to the server, and the server will use that data to verify the authenticity of the local 

data on every client. 
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The following formula demonstrates the number of bits transmitted from and to the 

local training server. 

3 × 𝑁 × 𝛿 × 64 bits 

Now let us denote the length of the verification key files by 𝑦. 𝑇he total number of bits 

that will be transmitted in a worst-case scenario will be 

3 × 𝑁 × 𝛿 × 𝑦 bits 
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Chapter Summary 

Chapter 4 delved into discussing communication overheads linked to the key 

verification scheme. Additionally, the chapter included a comprehensive demonstration 

showcasing the scalability of the scheme. This analysis shed light on the potential 

challenges and benefits of implementing the key verification scheme in various 

scenarios. It emphasized the importance of understanding the communication 

requirements and scalability factors when deploying such a system. 
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break 

 

Chapter 5 

5  Results 

In this section, we describe the experiments we conducted for the two proposed 

algorithms and discuss the results obtained. 

We used Google Colaboratory “Colab” and TensorFlow to implement the first two 

algorithms. In the first experiment, a sample text file was given into the program, and 

a sample key file was created by running the first algorithm. The second algorithm 

was used to verify that file using the verification key in the next step. 

After 100 execution, the second algorithm verified the original file using the key file 

with a success rate of 100%. 
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Figure 14: Result of successful verification of a legitimate file 
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Figure 15: Successful verification of data file 

 

During the later phase of the data file verification process, after conducting 100 

iterations, the second algorithm effectively identified the inconsistency and concluded 

that the data file had been compromised. 

 

Figure 16: Algorithm 2 detects a file modification 
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Figure 17: Algorithm 2 was executed 100 times 

The key file consists of an iteration password to safeguard against man-in-the-middle 

attacks and a hash value representing the data file. It is extremely challenging for an 

attacker to modify the data file in a manner that would produce the exact original 

hash value. 
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In the subsequent phase, the possibility of the attacker manipulating the original data 

file to generate an identical hash value was considered. The only feasible method for 

the attacker to modify the data file without being detected by the key file is by 

altering the characters that are absent in the key file. The provided formula quantifies 

the statistical likelihood of the attacker's achievement, assuming that they can modify 

the original file to yield the same hash value.  

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠
 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
50

100
= 0.5 

𝑇ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔 7 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 𝑡ℎ𝑎𝑡 𝑤𝑒𝑟𝑒 𝑛𝑜𝑡 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑘𝑒𝑦 𝑓𝑖𝑙𝑒 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 

=
50

100
×

50

100
×

50

100
×

50

100
×

50

100
×

50

100
×

50

100
 

= 0.5 × 0.5 × 0.5 × 0.5 × 0.5 × 0.5 × 0.5 

= (0.5)7 

= 0.007813 

Let us assume the data file contains 100 characters, and the key file has backed up 50 

from the original. This means that if the attacker decides to change a single character, 

they would have a probability of 50/100 to select a character that is not recorded in 

the key file. 
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The chance of a successful attack in this scenario is 0.78%, with the assumption that 

the attacker can modify the data file in a way that would create the same hash 

checksum. 

In this scenario, the probability of a successful attack is 0.78% when assuming that the 

attacker can modify the data file in a way that generates the same hash checksum [1].  
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Chapter Summary 

 

This chapter highlighted the significant security issues presented in most federated 

learning models and emphasized the need for a data verification method specifically 

designed for federated learning. 

To address this issue, a robust prevention scheme was introduced that integrates an 

encrypted verification mechanism into the federated learning model, enabling real-time 

elimination of infected participants and prevention of backdoor attacks.  

Three algorithms generated verification keys for federated learning data files on a 

training node. These algorithms are implemented using TensorFlow on Google 

Colaboratory "Colab." Through experimentation, Chapter 5 demonstrates that it is 

highly challenging for an attacker to modify a data file and produce  

The primary objective of this novel verification scheme is to proactively prevent data 

poisoning in federated learning rather than merely detecting attacks post-incident. By 

adopting this approach, the training server gains the capability to promptly remove 

infected clients, thereby enhancing the overall performance of federated learning 
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training. Additionally, this scheme effectively safeguards against data modification 

within each client's storage throughout the training process, enabling real-time 

detection of any unauthorized alterations by the server. 
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Chapter 6 

6  Novelty 

This novel method of participant authentication ensures that only valid contributors 

participate in the federated learning process. The verification key system verifies 

participants before their inclusion in the federated learning system, effectively blocking 

unauthorized or malicious contributors from introducing corrupt data into the 

federated learning model. The presented verification scheme in this paper emphasizes 

preventing data corruption rather than merely identifying attacks on federated 

learning post-occurrence. This approach enables the training server to remove 

compromised clients, thereby enhancing the overall performance of federated learning. 

Additionally, it safeguards against data alterations in each client's storage throughout 

training, enabling real-time detection of any modifications by the server. This process 

ensures the confidentiality and integrity of the data exchanged between participants 

and the training server.  
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This research paper accomplished two key objectives in federated machine learning. 

Firstly, it ensured data storage integrity by implementing a verification process to 

detect changes to the original data. Secondly, it prevented attackers from modifying 

the data in successive rounds, effectively countering adaptive data poisoning attacks. 

In federated learning, there is no guarantee that client devices will have sufficient 

resources for multiple communications, supervision, and strong encryption. To address 

this, the proposed scheme reduced the communication overhead between the central 

server and multiple participants. The experiment conducted in Chapter 5 

demonstrated that this scheme could promptly detect and mitigate real-time attacks, 

ensuring system security without significant delays. Moreover, the scalability of this 

new verification scheme was demonstrated, showcasing its ability to withstand 

sophisticated attacks and adapt to address emerging vulnerabilities, thereby 

highlighting its robustness. 

By adopting this approach, the training server gains the capability to swiftly eliminate 

infected clients, thereby enhancing the overall performance of federated learning 

training. Additionally, this scheme effectively safeguards against unauthorized data 

modifications within each client's storage throughout the training process, enabling the 

server to detect such alterations in real time. 
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break 

 

Chapter 7 

7  Conclusion 

This paper introduced a robust prevention scheme to enhance the security of 

federated learning. The server can swiftly eliminate infected participants and prevent 

backdoor attacks by incorporating an encrypted verification scheme into the federated 

learning model. This scheme utilizes a separate key file for verification. 

To implement this scheme, three algorithms were introduced that generate 

encrypted and decrypted verification keys for federated learning data files on a 

training node. These algorithms play a crucial role in ensuring the integrity of the data 

and preventing unauthorized modifications. 
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Experimental results demonstrated the scheme's effectiveness in preventing attackers 

from modifying data files undetected. It became extremely challenging for an attacker 

to modify the data file while producing the same hash value. Subsequent experiments 

showed that the success rate of such attacks could be less than 1%, turning it into a 

game of chance for the attacker. 

The main contribution of this paper lies in the detection prevention scheme that 

safeguards against data modification in client storage. This scheme particularly 

benefits low-processing devices by requiring minimal processing power. It empowers 

the server to detect real-time modifications and eliminate infected clients. 

This paper introduces a detection prevention system for image and text data stored by 

clients in federated learning. This system is advantageous for low-processing devices as 

it imposes a low processing burden. It enables real-time detection of modifications and 

facilitates the removal of infected clients by the server. 
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Chapter 8 

 

8  Future Work  

Future research endeavors for this study involved assessing the communication and 

computational overhead associated with the proposed verification scheme and 

exploring avenues to optimize its performance. By conducting a comprehensive 

analysis of the communication requirements and computational resources required by 

the verification scheme, potential areas for improvement can be identified. This 

includes investigating strategies to reduce the communication overhead between the 

server and clients and optimizing the computational processes involved in the 

verification scheme. By addressing these aspects, the overall efficiency and 

effectiveness of the verification scheme can be enhanced, leading to improved 

performance and scalability in federated learning scenarios. 
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