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Abstract
The recent generation of Agile Earth Observation Satellite (AEOS) has emerged to

be highly effective due to its increased attitude maneuvering capabilities. However,

due to these increased degrees of freedom in maneuverability, the scheduling prob-

lem has become increasingly difficult than its non-agile predecessors. The AEOS

scheduling problem consists of finding an optimal assignment of user-requested

imaging tasks to the respective AEOSs in their orbits by satisfying the opera-

tional resource constraints in a specified time frame. Some of these tasks might

require imaging the same area of interest (AOI) multiple times, while in some

tasks, the AOIs are too large for the AEOS to image in a single attempt. Some

tasks might even arise while the AEOSs are preoccupied with existing tasks.

This thesis focuses on formulating the AEOS scheduling models where onboard

energy and memory constraints while operating and the task specifications are

diverse. A mixed-integer non-linear scheduling problem with a reward factor has

been considered in order to handle multiple scan requirements for a task. Al-

though initially, it is assumed that the AOIs are small, this work is extended to a

three-stage optimization framework to handle the segmentation of large AOIs into

smaller regions that can be imaged in a single scan. The uncertainty regarding

scan failure is handled through a Markov Decision Process (MDP). These two pro-

posed methods have significant benefits when tasks are available to schedule prior

to the mission. However, they lack the flexibility to accommodate newly arrived

tasks during the mission. When multiple new tasks arrive during the mission,

predictive scheduling based on learning historical data of task arrivals is proposed,
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which can schedule tasks in an online manner faster than complete rescheduling

and minimize disruption from the original schedule. Evolutionary optimization-

based solution methodologies are proposed to solve these models and are validated

with simulations.
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Chapter 1

Introduction

Earth-observing satellites (EOSs) provide a unique perspective from space orbits

for information acquisition required in surveillance and tracking missions, which is

often beyond the capability of sensors placed on the Earth’s surface. Due to the ad-

vantage of the high altitude of EOS, they have better access to information arising

from much larger area of interest (AOI) and difficult to reach AOIs due to hostile

or remote environmental conditions. These enable EOSs to perform real-world

applications, including weather forecasting, monitoring agricultural attributes like

crop health, moisture detection, and insect infestations, climate disasters like for-

est fires, cyclones, and tsunamis, as well as, tracking land and marine traffic, often

required in defence applications.

These observation tasks might often require consistent, long-term, or time-

sensitive imaging of the AOIs. Since EOSs have predefined orbits, achieving the

success of the observation tasks within a specified time frame is a challenge to

assign EOSs to respective tasks. As multiple EOSs may be involved in a mission of

performing a series of tasks, the assignment of task schedules to EOSs is necessary
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for efficiency. This assignment requires considering the resource constraints of

the respective EOSs while planning the task schedule. This problem of satisfying

multiple constraints simultaneously is computationally challenging and NP-hard

in nature (Hall and Magazine; 1994; Lemaître et al.; 2002). Uncertainty arising

from cloud coverage, sensor malfunctions and other unexpected events increases

the complexity of the EOS scheduling problem manifold.

The workflow of EOS systems at the ground stations generally consists of –

collecting observation tasks from the users, planning the optimal task schedule of

the EOSs, up-linking the schedule to the EOSs, down-linking the obtained image

data from the EOSs and processing the information before sending it to the users.

The focus of this thesis lies in analyzing and modeling the EOS scheduling problem

for the user-requested observation tasks, handling uncertainties, identifying appro-

priate methods for scheduling the tasks and assigning the EOSs to the tasks, and

considering variants in task specifications while satisfying the necessary resource

constraints of the EOSs.

1.1 Agile Satellites vs. Non-Agile Satellites

The emerging generation of EOSs, Agile EOSs (AEOSs), has significantly widened

the capabilities of satellite observations than its non-agile predecessors. The in-

clusion of the Attitude Determination and Control System (ADCS) has provided

EOSs with additional maneuverability in terms of the orientation (attitude) of the

sensors mounted in the satellites.

2

http://www.mcmaster.ca/
https://computational.mcmaster.ca/


Ph.D.– Abhijit Chatterjee; McMaster University–ECE

Non-Agile EOSs (N-AEOSs) like SPOT systems of EOS1 use a single degree

of freedom for sensors to manoeuvre in the roll axis for image acquisition. The

roll axis is parallel to the orbital trajectory of the satellite. The N-AEOSs can

only perform imaging tasks when they are positioned exactly above the AOIs.

This makes the visible time window (VTW) of an AOI extremely limited. In

conflicting situations arising from overlapping VTWs, the problem reduces to a

selection problem rather than a true scheduling problem (Lemaître et al.; 2002).

On the contrary, AEOS like GeoEye-1 2, WorldView 3, SuperView-1 4, Pleiades5

and EOS-04 6 have three degrees of freedom in roll, pitch and yaw axes. The addi-

tional agility of AEOS provides significantly more opportunities for AOI imaging.

The maneuverability in pitch and yaw directions omit the restrictions posed in

N-AEOS systems.

Task1 window

Visible time window

Task 1 Task 2

Task 3

Visible time window

Task2 window
Task3 window

Non-agile satellite VTW  

Figure 1.1: Visible time window for Non-Agile satellites

The figures 1.1 and 1.2 illustrate the difference in the VTWs arising from the

varied degrees of freedom in N-AEOS and AEOS. Since the starting time of image
1https://spot.cnes.fr/en/SPOT/index.htm
2https://earth.esa.int/eogateway/missions/geoeye-1
3https://worldview.earthdata.nasa.gov
4https://eos.com/find-satellite/superview-1/
5https://earth.esa.int/eogateway/missions/pleiades
6https://www.isro.gov.in/EarthObservationSatellites.html
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Task 1

Task1 window

Visible time window

Task2 window Task3 window

Visible time window

Task 3

Agile satellite VTW  
Task 2

Figure 1.2: Visible time window for Agile satellites

acquisition for AEOS can be more flexible than N-AEOS, it provides infinitely

more imaging possibilities to the AEOS. In situations where the N-AEOSs fail to

perform imaging tasks due to overlapping of AOIs along the timeline, the AEOSs

can perform those imaging tasks by using the advantage of the higher degrees

of freedom. However, this makes the scheduling problem for AEOSs significantly

harder due to the substantially larger search space.

1.2 Resource Constraints in AEOS Scheduling

Problem

In this thesis, the considered AEOS scheduling problems have operational con-

straints regarding the satellite resource specifications like energy consumption and

memory requirements. An optimal assignment of a sequence of tasks to respective

satellites by satisfying the resource constraints is necessary to complete the user

requests in the specified time frame (Hall and Magazine; 1994).

The EOSs do not require any energy to revolve around the Earth. The equilib-

rium of their centrifugal force and gravity helps the satellites to revolve. However,

these satellites require energy to image using the sensors, transition from one task

4
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to another while orbiting by rotating the sensors along with the roll and pitch

angles, and transfer data to and from the ground stations. The amount of energy

needed for each action is different; thus, the discharging rate varies for each action.

The satellites have solar sensors that automatically direct the solar panels toward

the Sun so that the satellite’s onboard batteries can charge in with the maximum

possible charging rate. Charging and discharging constraints have been used for

AEOS scheduling (Liu et al.; 2017; Han et al.; 2022), N-AEOS scheduling (Baek

et al.; 2011) and nano-satellite swarms (Pang et al.; 2015).

The task allocation and schedule of the tasks are up-linked to the satellites

by ground stations. After completing the tasks, the satellites down-link the data

to ground stations. In order to store the data until it is down-linked, a limited

resource of on-board memory is used. Hence, periodically, the satellites need to

transfer the collected data to the ground stations in order to free up the memory

storage. A study on AEOS scheduling (Liu et al.; 2017) has mentioned the on-

board memory constraint in their model formulation without including it in the

algorithm and simulation results. In (Peng et al.; 2020; Han et al.; 2022), it is

assumed that the satellites have sufficient memory to complete all the tasks in

each orbit. A realistic constraint, where the satellites need to clear the memory by

down-linking to the ground station in order to complete all the tasks, is considered

in this thesis.

5
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1.3 User-requested Tasks in AEOS Scheduling

Problem

The AOIs corresponding to the user-requested imaging tasks might be spread

across the Earth’s surface in a scattered manner. The visible window (VW) of the

AEOS depends on its location and is based on the on-board sensor specifications

(maximum roll and pitch angles). The task AOIs can only be scanned when they

belong to the VW of the AEOS.

In literature, a reward-based optimization problem is often formulated, where

maximizing the reward provides an optimal task schedule for the satellites. The

reward after the successful completion of a task is also provided by the user.

Depending on the nature of a task, single or multiple scans might be needed in

order to complete that task. A reward function based on the quality of the image

is used in (Wolfe and Sorensen; 2000). A step-function-based reward factor is used

to deal with the multiple scan requirement for a task for N-AEOS scheduling in

(Tharmarasa et al.; 2019). In this thesis, a similar reward factor is considered in

Chapter 2 for AEOS scheduling to calculate the total reward accumulated for each

task at the end of the mission horizon.

The task AOIs for the AEOSs are usually classified as spot and polygon targets.

Spot targets or polygon targets with smaller AOIs have a limited area to scan,

which can be completed by one pass according to the observation scope of the

AEOS sensor, while larger polygon targets may need to be captured by multiple

passes of multiple AEOSs in a cooperative manner. When a request to scan a

6
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large region is received, the request either involves the region to be scanned in a

geometrically consistent manner or involves scanning the whole region within a

specified time window.

A large portion of the literature focuses on spot targets, comparatively smaller

polygon targets or sub-tasks with smaller regions originating from large polygon

targets (Habet et al.; 2010; Wang et al.; 2020). AEOS scheduling for spot target-

based scanning tasks is relatively easier as the length or the orientation of the task

length does not need to be considered in the problem (Renjie et al.; 2008). Based

on the task requests from the users, larger AOI scanning is an extremely relevant

and realistic problem to address, as in applications like monitoring forest fires, crop

growth for large regions, or iceberg melting rates. When the AOIs are too large for

AEOSs to scan in one go, the complexity of scheduling multiple AEOSs in their

multiple revolutions to perform multiple scans for each task increases manifold

(Niu et al.; 2018).

The user-requested tasks can be further classified based on the time of task

arrival to the scheduler. Some tasks are daily imaging tasks, which are known to

the scheduler prior to the start of the mission. These tasks can be scheduled before

the start of the mission as an offline optimization problem.

Some task arrivals can occur during an ongoing mission. Recent literature on

AEOS schedule updations considers online rescheduling when real-time informa-

tion is available (Chu et al.; 2017). However, in dynamic environments, complete

rescheduling with real-time information requires a huge computational load and

valuable time and will also create havoc by disrupting the original schedule.

7
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1.4 Main Contributions of the Thesis

In compliance with the terms and regulations of McMaster University, this thesis

has been written in sandwich thesis format by assembling three articles. These

articles represent the independent research performed by the author of this thesis,

Abhijit Chatterjee under the supervision of Dr. Ratnasingham Tharmarasa. The

contributions of the thesis are as follows,

• Formulation of realistic AEOS scheduling models with operational constraints

related to energy and memory for performing user-requested tasks with var-

ied specifications (in Chapters 2, 3 and 4)

• Consideration of probabilistic uncertainty in task completion and multiple

scan requirements to achieve full reward for a task (in Chapter 2)

• Minimization of scan overlaps for large task AOIs by providing novel area

segmentation strategy (in Chapter 3)

• MDP-based uncertainty handling for task failures (in Chapter 3)

• Learning-based predictive rescheduling strategy to accommodate new task

arrivals during the mission with complete rescheduling (in Chapter 4)

• Development of algorithmic frameworks for solving AEOS scheduling prob-

lems in an offline-online manner (in Chapters 2, 3 and 4)

8
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Reward Factor-Based Multiple Agile Satellites

Scheduling with Energy and Memory

Constraints

Abstract

Earth Observing Satellites (EOS) orbit around the earth to perform observation

tasks specified by users. The additional maneuverability resulting from higher de-

grees of freedom than Non-Agile EOS (N-AEOS), provides Agile EOS (AEOS) a

significantly larger Visible Time Window (VTW) to complete the tasks. As a con-

sequence, the task scheduling for AEOS is much more computationally complex

than N-AEOS. In this paper, a mixed-integer non-linear optimization problem is

formulated to find the optimal task allocations for a realistic AEOS scheduling

problem. The satellite resources like energy and memory constraints are con-

sidered in this problem. A reward factor is used to address the requirement of

multiple scans in order to complete a task. To incorporate the uncertainty of suc-

cessful scans due to external factors, such as cloud coverage, a probability factor

is also taken into consideration. An elitist mixed coded genetic algorithm-based

satellite scheduling (EMCGA-SS) algorithm is proposed to solve the formulated

problem. EMCGA-SS is extended to elitist mixed coded hybrid genetic algorithm-

based satellite scheduling (EMCHGA-SS) by combining a hill-climber mechanism

in order to have better initialization. Experimental results to illustrate the perfor-

mance of the algorithms and a comparison with some widely used methodologies
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are also presented.

Keywords: agile satellite scheduling, reward factor, energy and memory con-

straints, mixed-integer non-linear programming, genetic algorithm

2.1 Introduction

Earth Observing Satellites (EOS) are equipped with various sensors to perform

specific tasks such as weather predictions, surveillance and tracking by imaging

the earth from space. Based on job requests from users, satellites need to perform

an array of tasks. These task locations might be spread across a large region of

interest in a scattered manner. An EOS revolves around the earth on its orbit,

exposing segments of the earth surface to the satellite sensor depending on the

location of the satellite in the orbit. Satellites might need to observe a region from

different angles with respect to its orbit in order to perform a task. Possible time

intervals when the satellite can observe the tasks are defined as the Visible Time

Window (VTW). Satellite scheduling involves optimal allocation of the tasks to

the satellites and optimal transition sequence of tasks by satisfying the resource

constraints. Scheduling of task sequences optimally is an important aspect of

satellite performance, as well as fulfillment of the job request.

Agile EOS (AEOS) such as GeoEye - 1, WorldView, SuperView - 1 and Pleiades

have three degrees of freedom – roll, pitch and yaw (Lemaître et al.; 2000).

Whereas, Non-agile EOS (N-AEOS) have only one degree of freedom. Due to

the extra degrees of freedom, an AEOS has a larger VTW to perform a task with
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respect to a N-AEOS, as shown in Figure 1.1 and Figure 1.2. This higher maneu-

verability provides AEOS significant advantages over N-AEOS. AEOS can start

performing a task at any time within the larger VTW due to the higher number of

possible start-times. This additional maneuverability allows AEOS to have more

transition possibilities between tasks than N-AEOS. AEOS has a bigger coverage

area than N-AEOS in a single orbit as well, due to the increased rotational ability.

Consequently, scheduling an AEOS becomes significantly more difficult due to a

larger task allocation search space. Since an AEOS scheduling problem is NP-hard

(Lemaître et al.; 2002), the computation time needed to find optimality will grow

exponentially with respect to the problem instance.

In this work, a realistic AEOS scheduling problem is studied, where satellite

resource specifications like energy and memory are taken into consideration. The

satellites require energy for performing the tasks and transitioning from one task

to another while orbiting. The satellites have solar sensors which automatically

direct the solar panels towards the sun so that, the satellite’s on-board batteries

can charge in with the maximum possible charging rate. Charging and discharging

constraints have been used for N-AEOS scheduling (Baek et al.; 2011) and nano-

satellite swarms (Pang et al.; 2015).

The task allocation and schedule of the tasks are up-linked to the satellites by

ground stations. After completing the tasks, the satellites down-link the data to

ground stations. In order to store the data until it is down-linked, a limited resource

of on-board memory is used. A recent study (Liu et al.; 2017) has mentioned the

on-board memory constraint in their model formulation without including it in

the algorithm and simulation results. In (Peng et al.; 2020), it is assumed that
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the satellites have sufficient memory to complete all the tasks in each orbit. A

more realistic formulation, where the satellites need to clear the memory by down-

linking to the ground station in order to complete all the tasks, is considered in

this current study.

In literature, a reward-based optimization problem is often formulated, where

maximizing the reward provides an optimal task schedule of the satellites. A re-

ward function based on the quality of the image is used in (Wolfe and Sorensen;

2000). A ten-level scale for image quality-based reward for each task has been

introduced in (Liu et al.; 2017). The observation angle while performing a task

depends on the location of the satellite in its trajectory and the location of the

task. Due to increased VTW, AEOS can observe a task from a larger observation

angle than N-AEOS. However, the quality of a scan might depend on the obser-

vation angle. Based on the start-time of the task performance in the VTW, the

observation angle is calculated. In (Peng et al.; 2020), a reward function depending

on the start-time of the task performance is considered. A reward function based

on the observation angle is considered in the problem formulation of the present

work.

Depending on the nature of a task, multiple scans might be needed in order

to complete that task. A step-function-based reward factor is used to deal with

the multiple scan requirement for a task for N-AEOS scheduling in (Tharmarasa,

Kirubarajan, Berger and Florea; 2019). In this paper, a similar reward factor is

considered for AEOS scheduling to calculate the total reward accumulated for each

task at the end of the mission horizon.
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In reality, interruption due to cloud coverage is a very common occurrence while

performing a task by a satellite. A real-life data set of Landsat-7 showed 35% of

the captured images were covered with cloud. (Ju and Roy; 2008). Considering the

present and future weather conditions, a quality-based problem is formulated in

(Liao and Yang; 2007). In a similar manner, (Zhai et al.; 2015) also considered that

no reward would be allocated if there is any uncertainty due to external factors in

the satellite performance. In (Lin et al.; 2012), an image processing-based cloud

removal technique is proposed. A budgeted uncertainty set-based formulation is

considered in (Wang et al.; 2019). A probability-based success and failure of the

operation are considered in (Tharmarasa, Chatterjee, Wang, Kirubarajan, Berger

and Florea; 2019) for N-AEOS scheduling. A similar probability factor is included

in the formulation of this work.

Early research (Lemaître et al.; 2000) on AEOS scheduling problem provided

two approaches: constraint programming and local search for solving a simpli-

fied version of AEOS problem. Permutation-based search, coupled with constraint

propagation over VTW, was found to work better than local optimization algo-

rithms such as hill-climbing, simulated annealing, and squeaky wheel optimization,

coupled with constraint propagation (Dilkina and Havens; 2005). A tabu-search

heuristic is used to solve a scheduling problem in a given orbit in (Cordeau and

Laporte; 2005). This work was extended for a practical operation of the Pleiades

constellation for handling several satellites in multiple orbits over a given time hori-

zon in (Bianchessi et al.; 2007). A deterministic constructive algorithm with a look

ahead and backtracking capabilities was used to solve the planning and schedul-

ing problem of COSMO-SkyMed satellite constellation (Bianchessi and Righini;
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2008). A tabu-search algorithm was proposed for solving a constrained AEOS

scheduling problem by maximizing the reward as well as minimizing the sum of

transition durations (Habet et al.; 2010). A multi-objective AEOS management

problem was solved with a biased random key genetic algorithm in (Tangpat-

tanakul et al.; 2012). A metaheuristic, adaptive large neighbourhood search is

shown to perform time-dependent transition time consideration for a single AEOS

scheduling(Liu et al.; 2017). This work was extended to multiple AEOS scheduling

in (He, Liu, Laporte, Chen and Chen; 2018). Single AEOS scheduling problem

was also considered for redundant observation targets where each possible obser-

vation opportunity is considered a node in a complex network (Wang et al.; 2016).

An anytime branch and bound on-board scheduling methodology was proposed on

a bi-satellite cluster for target detection using low-resolution satellite and target

recognition using a high-resolution agile satellite trailing behind the low-resolution

satellite in (Chu et al.; 2017). A learning-based approach for AEOS scheduling is

proposed in (Lu et al.; 2020) where random forest provided high-quality solutions

to train an offline classifier on massive data from the ground station.

In general, heuristic search methods, including genetic algorithms perform effi-

ciently in solving computationally complex problems like satellite scheduling. Here,

an elitist genetic algorithm-based solution technique is proposed. The initial pop-

ulation of feasible candidate solutions is generated with and without the help of a

hill-climber mechanism. Tabu-search and simulated annealing are compared with

the performance of the proposed algorithms. The simulation results show that

the hybrid hill-climber genetic algorithm yields better schedules than the other

considered algorithms whereas, the proposed algorithm with random initialization
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provides a solution faster.

The next section discusses the assumptions considered in the realistic AEOS

scheduling problem. Section 2.3 illustrates the objective function and the en-

ergy, memory and time constraints considered. Proposed heuristic-based solution

methodologies and experimental results, along with a comparative study of the

proposed algorithms with the widely used heuristic algorithms are described in

sections 2.4 and 2.5, respectively. Concluding remarks and future scopes are added

in section 2.6.

2.2 Problem Statement

In this paper, we consider that satellites need to perform some pre-defined ob-

servation tasks within the given time horizon. These user-specified tasks involve

scanning particular geographical locations and obtaining rewards on completion.

The imaging tasks may include identifying, tracking and surveillance of targets.

The task locations are usually spots, i.e., of limited geographical dimension or

widespread polygonal regions. The tasks are scattered on the whole of the earth’s

surface and are visible from different orbits of multiple satellites. The objective

of this work is to schedule observation tasks optimally by allocating the available

resources of agile satellites.

Satellites can scan the whole region of the task in one visit. Each task is

associated with a specific reward. When a satellite successfully scans the region, a

reward is assigned. The total reward is calculated by accumulating all the rewards

gained by the satellites at the end of the mission horizon. The users are interested
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in maximizing the rewards by completing the requested tasks within a certain

period of time. Finding the optimal sequence of scans to be performed by the

AEOS to get the maximum reward possible is the primary objective of this work.
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Figure 2.1: Observation angle of a satellite

In order to scan a particular task, the position of the satellites in their trajectory

needs to be inside the VTW of the corresponding task. The VTW of a task for

a satellite is calculated beforehand based on the geographic location of the task

region, the orbit of the satellite and maximum roll and pitch angles of the satellite.

Each possible start-time of a scan for the task within the VTW will have a different

roll and pitch angle combination for every satellite on every orbit. The reward

accumulated by a satellite after scanning a task may depend on the corresponding

roll and pitch angles. As a result, it is important to schedule the scans in an
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Figure 2.2: Reward factor vs number of scans

optimal way such that the reward is maximized based on the above-mentioned

factors.

For several reasons like the presence of clouds, failure of equipment, and sensor

distortions, there is always a chance for a failure of a scan in spite of the satellite

being present in the VTW. Our scheduling model also incorporates the failure

probability of a scan due to unprecedented reasons based on the outcome (success

or failure) of each scan.

Multiple scans might be needed to complete a task and hence, to get the full

reward for the task. A reward factor is considered to calculate the total reward

achieved by multiple successful scans of a particular task. The scans can be per-

formed by a single satellite or multiple satellites in different orbits. The reward

acquired after several scans of a task is a step function of the number of successful

scans. Based on the characteristics of the task, the user defines the step function.
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The step sizes might not be equal for each scan. If R(t) is the total reward achieved

for completing task t, a reward factor Rf
(t,d)(< 1) is introduced for task t on its

d-th successful scan. Figure 2.2 shows an example reward factor function for a

particular task with multiple scans the Rf
(t,d) values are (0.6, 0.2, 0.1, 0.1). If a task

is visible by a satellite in a particular orbit, it is considered that the satellite will

scan that task only once in that particular orbit.

The satellites do not require any energy to revolve around the Earth. The

equilibrium of their centrifugal force and gravity helps the satellites to revolve.

However, the satellites need energy to perform the necessary actions to complete

the tasks. The actions include imaging using the sensors, rotating the sensors

along with the roll and pitch angles and transferring data to and from the ground

stations. The amount of energy needed for each action is different thus, the dis-

charging rate varies for each action. Figure 2.3 shows an example of satellite

charging and discharging of a satellite over multiple orbits. The locations of the

ground stations are fixed and known. The satellites have limited memory capacity.

Hence, periodically the satellites need to transfer the collected data to the ground

stations to free up the memory space. A new task schedule is also transferred from

the ground station to the satellite periodically. The optimal times of communica-

tion between the ground station and the satellites are needed to be calculated. The

objective of this work is to assign tasks to satellites optimally in order to maximize

the total reward over the time horizon while considering all the constraints.
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Figure 2.3: Charging and discharging of energy for satellites
in each orbit

2.3 Problem Formulation

In this section, a non-linear mixed-integer programming problem is formulated

such that the reward for the whole mission is maximized while satisfying all the

constraints. Several constraints related to the satellite’s resources are included.

In this formulation, the start-time of each operation is considered as a decision

variable, which is continuous in nature. The operations of a satellite include per-

forming the scans, and data transfer to and from the ground stations. To determine

whether a satellite is performing a particular scan on a specific orbit, a binary de-

cision variable is also defined. The variables used for the formulation are described

below.

Decision variables:
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• a(s,o,t): Binary decision variable to denote satellite s performs task t in orbit

o

• T st
(s,o,t): Start-time of scanning for task t by satellite s in orbit o

• T sg
(s,o,g): Start-time of data transfer from satellite s in orbit o to ground station

g

Other variables:

• N t: Number of tasks to complete

• N s: Number of satellites

• N os: Number of orbits in the trajectory of satellite s in the given time horizon

• Dmax
t : Maximum number of successful scans needed to complete task t

• τ(s,o,t): Time needed by satellite s for scanning task t in orbit o

• T V T Wst

(s,o,t) : Start-time of the VTW for satellite s in orbit o for scanning task t

• T V T Wend

(s,o,t) : End-time of the VTW for satellite s in orbit o for scanning task t

• T V T Wst

(s,o,g) : Start-time of the VTW for satellite s in orbit o to transfer data to

ground station g

• T V T Wend

(s,o,g) : End-time of the VTW for satellite s in orbit o to transfer data to

ground station g

• Rf
(t,d) : Reward factor for completing dth scan of task t

24

http://www.mcmaster.ca/
https://computational.mcmaster.ca/


Ph.D.– Abhijit Chatterjee; McMaster University–ECE

• R(s,α,t): Reward for scanning task t by satellite s with observation angle α

(includes roll and pitch angles)

• P(s,o,t): Probability of success for particular scan of task t by satellite s in

orbit o

• P suc
(s,t,d): Probability of getting d successful scans for task t by satellite s

• e(s,o,t): Energy required by satellite s to scan task t in orbit o

• eroll
s : Energy required by satellite s to roll a unit angle

• epitch
s : Energy required by satellite s to pitch a unit angle

• τ roll
s : Time required by satellite s to roll a unit angle

• τ pitch
s : Time required by satellite s to pitch a unit angle

• θt,t̂
(s,o): Roll angle needed for satellite s in orbit o to move from task t to task

t̂

• ϕt,t̂
(s,o): Pitch angle needed for satellite s in orbit o to move from task t to task

t̂

• edl
(s,o): Average energy required for a down-link by satellite s

• eul
(s,o): Average energy required for an up-link by satellite s

• m(s,t): Memory usage of satellite s to scan task t

• mmax
s : Maximum memory capacity of satellite s
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• τmem
s : Time needed to transfer data between satellite and ground station

• N(s,g,ĝ): Number of scans performed between communication of satellite s to

ground station g and the next ground station ĝ

• C(s,γ): Available charge of satellite s at time γ

• chs: Charging rate for satellite s

2.3.1 Objective function calculating accumulated reward

The objective function involves optimizing the reward accumulated by all the satel-

lites during the mission by performing several successful scans of the tasks. The

objective function is defined as follows:

max
Nt∑
t=1

Dmax
t∑

d=1
Rf

(t,d)ρ(t,d) (2.1)

where, ρ(t,d) =
Ns∑
s=1

Nos∑
o=1

R(s,α,t)P
+
(t,d,s,o) (2.2)

Here, the reward factor Rf
(t,d) is included in the objective function to calculate

reward for different scans of the same task and ρ(d,t) calculates the reward for dth

successful scan of task t. The reward R(s,α,t) achieved by scanning might depend

on the observation angle α of the task t from the satellite s. The relationship of

reward with observation angle is specific to the task and defined by the user. In

general, the reward is inversely proportional to observation angle. The angle α is

calculated as a combination of the roll and pitch angle movements of the satellite

depending on the position of the task. An example of the relationship is provided

in the simulation in Section 2.5.
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A scan can be unsuccessful due to several factors, like weather influences and

sensor malfunctions. P+
(t,d,s,o) is defined as the probability of having dth successful

scan for task t by satellite s in orbit o. The probability of dth successful scan be

defined as:

P+
(t,d,s,o) = a(s,o,t)P(s,o,t)P

−
(t,(d−1),s,o) (2.3)

where, P−
(t,(d−1),s,o) is the probability of having d − 1 successful scans before the

start time (T st
(s,o,t)) of the scan by satellite s in orbit o.

For example, the probability of the first successful scan by satellite s1 in orbit

o1 of task t can be defined as

P+
(t,1,s1,o1) = a(s1,o1,t)P(s1,o1,t)P

−
(t,0,s1,o1) (2.4)

P−
(t,0,s1,o1) is the probability of failure of all attempted scans before T st

(s1,o1,t).

If Nprev
(s1,o1) scans were attempted before the current scan, then P−

(t,0,s1,o1) can be

defined as
P−

(t,0,s1,o1) =
∏

Nprev
(s1,o1)

[
1− a(s∗,o∗,t)P(s∗,o∗,t)

]

∀(s∗, o∗ with T st
(s∗,o∗,t) < T st

(s1,o1,t))

(2.5)

Nprev
(s1,o1) can be calculated using the decision variable a(s,o,t) and the start time

corresponding start time (T st
(s,o,t)).

For the probability of second successful scan by satellite s1 in orbit o1 (say) of

task t, can be defined as:

P+
(t,2,s1,o1) = a(s1,o1,t)P(s1,o1,t)P

−
(t,1,s1,o1) (2.6)
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where, the probability of having only one successful scan before the scan by satellite

s1 in orbit o1 of task t from the start of the mission horizon, P−
(t,1,s1,o1), is defined

as:

P−
(t,1,s1,o1) =

∑
Nprev

(s1,o1)

[
a(s∗,o∗,t)P(s∗,o∗,t)P

(s∗,o∗)−
(t,0,s1,o1)

]
(2.7)

where, P (s∗,o∗)−
(t,0,s1,o1) is the probability of failure of all attempted scans before T st

(s1,o1,t)

except the scans by satellite s∗ in orbit o∗. Thus the probability of having d − 1

successful scan before the scan by satellite s1 in orbit o1 of task t is defined as:

P−
(t,(d−1),s1,o1) =

∑
Nprev

(s1,o1)

[
a(s∗,o∗,t)P(s∗,o∗,t)P

(s∗,o∗)−
(t,(d−2),s1,o1)

]
(2.8)

If the external factors are not taken into consideration, i.e., P(s,o,t) = 1 for all

(s, o, t), then the probability of dth successful scan depends only on the decision

variable a(s,o,t) and the possible values are {0, 1}.

2.3.2 Resource constraints

Satellites have limited resources on-board. The resources include energy and mem-

ory specifications of the satellites. These act as the constraints to the optimization

problem. The constraints are defined as follows:

2.3.2.1 Energy constraints

Satellites have a finite amount of energy and recharge using solar panels. It is

important to ensure that the satellite will have enough energy to complete an

operation. It is assumed that the satellite must have κ (≥ 0) energy remaining

after the completion of each operation.
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The available charge at the starting time for a scan of task t by satellite s

is denoted as C(s,γ) where γ = T st
(s,o,t). The energy e(s,o,t) needed to scan task t

in orbit o should always be lesser than or equal than the available charge at the

starting time C(s,γ) of the scan and the gained energy chs× τ(s,o,t) during the scan.

Therefore, the energy constraint for scanning a task can be written as,

a(s,o,t)
[
C(s,γ) + chs × τ(s,o,t) − e(s,o,t)

]
≥ κ

∀t, s, o when a(s,o,t) = 1
(2.9)

Another energy constraint is needed to deal with the resources required for the

rotation of the satellite. When task t̂ is followed by task t, the satellite needs

energy to rotate along the roll and pitch angles. It is important to ensure that the

satellite has enough energy to rotate. The total available energy at the starting

of the rotation is C(s,γ) where γ = T rot
(s,o,t,t̂). The energy gained by the satellite

during the roll and the pitch is chs

(
τ roll

s θt,t̂
(s,o)

)
and chs

(
τ pitch

s ϕt,t̂
(s,o)

)
respectively,

where θt,t̂ is the roll angle change needed and ϕt,t̂ is the pitch angle change needed

while transitioning from task t to task t̂. Equation (2.10) describes the energy

requirement constraint for transition of the satellite from one task to another.

C(s,γ) + chs

(
τ roll

s θt,t̂
(s,o) + τ pitch

s ϕt,t̂
(s,o)

)
−(

θt,t̂
(s,o)e

roll(s) + ϕt,t̂
(s,o)e

pitch(s)
)
≥ κ ∀t ∈ [1, N t], t̂ ̸= t, s, o

(2.10)

The last energy constraint is needed to handle the energy requirement for the

communication between the satellite and the ground stations. The energy available

at γ = T sg
(s,o,g) is C(s,γ). The energy gained during the data transfer is chsτ

mem
s .

The required energy for the communication is (edl
s + eul

s ). So the constraint for
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uploading and downloading the data is defined as follows:

C(s,γ) + chsτ
mem
s − (edl

s + eul
s ) ≥ κ ∀g (2.11)

edl
s and eul

s are considered as the average energy required by a satellite to downlink

and uplink the data respectively to the ground station.

2.3.2.2 Memory constraints

Satellites have a finite resource of memory. While scanning, the memory of the

satellite fills up and during the communication with the ground station it resets

the memory. The satellite s can only perform specific number of scans in between

the communication to ground station g and the next available ground station ĝ.

So the memory constrain is defined as,

∑
N(s,g,ĝ)

m(s,t) ≤ mmax
s ∀g, ĝ ̸= g (2.12)

The value of N(s,g,ĝ) is calculated as the sum of the decision variable a(s, o, t) in

the interval two communications with the ground station.

2.3.2.3 Constraints related to the start-time of an operation

If the data transfer between the ground station and the satellite is before the scan

of task t, the start-time of the scan should be after it has completed the data

transfer. So, if a download occurs and satellite takes τmem
s time to transfer the

data, then

T st
(s,o,t) > τmem

s + T sg
(s,o,g) (2.13)
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Similarly, if the data transfer is done after the scan of task t, the data transfer

should start after the scan is complete.

T sg
(s,o,g) > T st

(s,o,t) + τ(s,o,t) (2.14)

It is important to ensure that the scanning of the tasks or data transfer operations

occur when the satellites are in the VTW of the task and the ground station,

respectively. The transfer should occur inside the VTW of the ground station and

the scan for the task should always start within the VTW of the tasks, i.e.,

T V T Wst

(s,o,g) ≤ T st
(s,o,g) ≤ T V T Wend

(s,o,g)

T V T Wst

(s,o,t) ≤ T st
(s,o,t) ≤ T V T Wend

(s,o,t)

(2.15)

While transitioning from one task to another, before starting the second task,

the satellite needs to assure that it has completed the scan for the first task and

has enough time to rotate. Hence, to ensure the minimum time interval between

start-time for scan of task t and start-time for scan of t̂, the constraint is defined

as
T st

(s,o,t̂) ≥T
st
(s,o,t) + τ(s,o,t)+

τ roll
s θt,t̂

(s,o) + τ pitch
s ϕt,t̂

(s,o)

(2.16)

Therefore, along with the constraints from (2.9) to (2.16) and the objective function

(2.1) the optimization problem is defined as a mixed integer non-linear program-

ming problem

arg max(
a(s,o,t),T st

(s,o,t),T sg
(s,o,g)

) Nt∑
t=1

Dmax
t∑

d=1
Rf

(t,d)ρ(t,d) (2.17)

31

http://www.mcmaster.ca/
https://computational.mcmaster.ca/


Ph.D.– Abhijit Chatterjee; McMaster University–ECE

Subject to,

a(s,o,t)
[
C(s,γ) + chsτ(s,o,t) − e(s,t)

]
≥ κ ∀t ∈ [1, N t] (2.18)

C(s,γ) + chs

(
τ roll

s θt,t̂
(s,o) + τ pitch

s ϕt,t̂
(s,o)

)
−(

θt,t̂
(s,o)e

roll(s) + ϕt,t̂
(s,o)e

pitch(s)
)
≥ κ ∀t ∈ [1, N t], t̂ ̸= t, s, o

(2.19)

C(s,γ) + chsτ
mem
s − (edl

s + eul
s ) ≥ κ ∀g (2.20)

∑
N(s,g,ĝ)

m(s,t) ≤ mmax
s ∀g, ĝ ̸= g (2.21)

T st
(s,o,t) > τmem

s + T sg
(s,o,g) (2.22)

T sg
(s,o,g) > T st

(s,o,t) + τ(s,o,t) (2.23)

T V T W
(s,o,g) ≤ T st

(s,o,g) ≤ T V T W
(s,o,g) + V V T W

(s,o,g) (2.24)

T V T W
(s,o,t) ≤ T st

(s,o,t) ≤ T V T W
(s,o,t) + V V T W

(s,o,t) (2.25)

T st
(s,o,t̂) ≥T

st
(s,o,t) + τ(s,o,t)+

τ roll
s θt,t̂

(s,o) + τ pitch
s ϕt,t̂

(s,o)

(2.26)

In the next section, a pair of evolutionary algorithms have been proposed for

solving the above problem.

2.4 Proposed Solution Techniques

In this section, two heuristic search techniques have been proposed to solve the

non-linear mixed-integer programming problem formulated in section 2.3. The

proposed algorithms find the allocation of tasks to the satellites and start-time of

each operation in the mission horizon. The algorithm finds the schedule of the
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satellites, which yields the maximum reward. The solution methodology is based

on a combination of local search and genetic algorithm with an elitist selection

operator.

2.4.1 Elitist Mixed Coded Genetic Algorithm based Satel-

lite Scheduling (EMCGA-SS)

EMCGA-SS is based on a modified elitist genetic algorithm (Kim and Ellis Jr;

2008) with binary and continuous variables together in the structure of the chro-

mosome. EMCGA-SS considers an initial population of candidate solutions, which

are random schedules of all the satellites performing the tasks across the whole

mission horizon. Our task is to find the near-optimal schedule, that is near-optimal

chromosome from the population. The algorithm uses crossover and mutation of

schedules to create offspring, and an elitist selection operator is used to select from

a pool of offspring schedules. The chromosomes are sorted based on the reward

accumulated for the corresponding schedule. In each generation, the best half of

the population is chosen for creating the next generation with the help of muta-

tion, crossover and elitist selection operators. The structure of the EMCGA-SS is

described in Algorithm 1. Operations of the algorithm are detailed below:

2.4.1.1 Preprocessing

A set of preprocessing operations are performed to make the algorithm computa-

tionally efficient. A task may not be present in the VTW of a satellite in all of its

revolutions of the satellite trajectory. Depending on the trajectory of the satellite
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Algorithm 1: Elitist Mixed Coded Genetic Algorithm based Satellite
Scheduling

Result: Optimal schedule for all satellites;
Set population of schedules, P0 = Φ;
while population size, |P0| ≤ λ do

Allocate a task randomly to each satellite in each revolution to
generate random chromosome p;
P0 = P0 ∪ p;

end
Gen = 0;
while Stopping criteria not reached do

Sort population PGen by reward accumulated (eq. 2.1);
Select λ/2 best chromosomes from population, Pλ/2

Gen;
for |PGen+1| ≤ λ do

Select 2 parents p1, p2 randomly from Pλ/2
Gen;

Obtain children c1, c2 by crossover on p1, p2;
Mutate c1, c2 to obtain cm1, cm2;
Check feasibility of c1, c2, cm1, cm2 with eq. 2.9-2.16;
Add best feasible individual to PGen+1;

end
Gen = Gen+ 1;

end
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Figure 2.4: Structure of chromosome for the algorithms

and the specifications (maximum roll and pitch angle) of the satellite, the revolu-

tions in which a task is exposed to the satellite are calculated. This preprocessing

helps to remove the redundant revolutions from the search, where a task is not

exposed to the satellite. This makes the algorithm efficient by reducing the size of

the chromosomes.

2.4.1.2 Structure of Chromosome

Each chromosome in the population represents the task assignment and start-

time of the operations of the satellites. The respective schedules of Ns satellites

are juxtaposed to create the chromosome. Since the exposed revolutions for each

satellite corresponding to each task calculated in the preprocessing stage are not

equal, the number of bits corresponding to the task allocation of each satellite is

different. A schedule of a satellite s is designed as a combination of bits containing

binary and continuous numbers. The possibility of occurrence of the scan for a

task on an exposed revolution a(s,o,t) is the binary bits stored at the beginning
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of the chromosome. The length of the binary bits are same as the total number

of exposed revolutions for all the tasks. The start-time of each corresponding

scan T st
(s,o,t) is stored in the continuous bits, following the binary bits. The total

length of the bits containing start-time is the same as the length of the binary bits.

The bits containing the start-time of the communication to the ground station in

each exposure T sg
(s,o,g), is placed at the end of the schedule of the satellite s. The

structure of the chromosome is illustrated in Figure 2.4.

Algorithm 2: Population initialization of EMCHGA-SS
Result: Initial schedule of satellites for Algorithm3 ;
Set population of schedules, P0 = Φ;
Allocate a task randomly to each satellite in each revolution to generate
random chromosome p;

while population size, |P0| ≤ λ do
Mutate chromosome p to obtain pm;
if pm feasible (eq. 2.9-2.16) then

Find reward accumulated by p and pm as Fp, Fpm with eq.2.1;
if Fp ≥ Fpm then
P0 = P0 ∪ p

else
P0 = P0 ∪ pm

p← pm

end
end

end

2.4.1.3 Initial Population

The initial population is created in a systematic way with random initialization of

the chromosomes of population size λ. For the binary bits, the values of 0 and 1

are chosen randomly. For the start-time of the scan bits, if the corresponding bit
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in the task allocation bit-section is 0, it is also set to 0 in the start-time of task bit-

section. Otherwise, a random number within the VTW of the specified task in the

exposed revolution of a satellite is chosen for the bit value. For the start-time of

the communication between the ground station and the satellite, a random number

is selected within the VTW of the ground station in each exposure. Therefore, in

this process the values of a(s,o,t), T st
(s,o,t) and T sg

(s,o,g) are initialized in the population.

2.4.1.4 Mutation of a schedule

In order to maintain the genetic diversity, mutation operation is performed on the

chromosomes to move from one generation to the next. Here, the mostly used

mutation rate 1/m is considered (Doerr et al.; 2017) where m is the string size of

the chromosome. To mutate, on the binary bit, a random bit from the binary bit

section is picked, and the bit value is flipped. For the continuous bits representing

the start-time of the scan, the bit corresponding to the bit selected in the binary bit

is mutated. If the binary bit is flipped from 1 to 0, the corresponding continuous

bit is also set to 0. If the binary bit is set to 1 from 0, a random number from the

VTW of the task is chosen as the bit value.

2.4.1.5 Crossover of two schedules

The crossover operation is performed between two mutated offspring. Here, a one-

point crossover is performed by selecting a random number. The binary bits and

the corresponding continuous bits are interchanged based on the random number

generated.
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2.4.1.6 Elitist selection operator

To get the best chromosomes in the next generation, an elitist selection operator

is used. The selection process is performed based on the reward accumulated by

each schedule. The two- parent chromosomes, the mutated children of the parent

and the children after the crossover between the mutated children, is compared,

and the best chromosome is placed in the next generation.

2.4.1.7 Stopping criteria

The algorithm terminates when the reward accumulated by the best chromosome

of the population converges, i.e., it remains unchanged for subsequent generations

or a specific time set by the user has elapsed.

In order to deal with the larger chromosome size for the genetic algorithm for

a large-scale scenario, a hybrid version of the Hill-climber algorithm and genetic

algorithm is proposed. Instead of a randomly generated initial population, an im-

proved initial population is created with Hill-climber as described in the algorithm

2 in order to obtain a faster solution.

2.4.1.8 Hill-climber as initial population

At the first stage, a random chromosome p of the same structure mentioned

EMCGA-SS is generated. A mutated chromosome pm is created and checked

if it has a better reward accumulated value than the original chromosome p. If

pm is better then p is discarded and pm is added to the population of schedule

P . Otherwise, the initial random chromosome p is added to P . The process of

adding chromosomes is continued until the population size λ is reached. Once an
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improved initial population is generated with the help of Hill-Climber, this acts as

the initial population of the EMCGA-SS. Since the initial population P contains

better solutions than randomly generated chromosomes, the optimality is reached

faster.

2.5 Simulation

In this section, the problem formulated in section 2.3 is simulated using the pro-

posed solution techniques. Results for both a small-scale scenario and a large-scale

scenario are shown. In the formulation, the reward is calculated based on the ob-

servation angle of a task from the satellite. A comparison study of the effects of

observation angle with respect to accumulated reward is also shown. Scenarios

with three, five and eight satellites are also compared to show the performance of

multiple satellites in the accumulated reward. A study on the benefits of AEOS

over N-AEOS is also shown. Since the formulation is unique to its nature, an exact

comparison between other existing frameworks was not possible. However, compar-

isons between different widely used optimization algorithms like Tabu-Search and

Simulated Annealing (Globus et al.; 2004),(Cordeau and Laporte; 2005), (Zhang

et al.; 2016), (Wu et al.; 2017), (He, De Weerdt, Yorke-Smith, Liu and Chen; 2018)

are shown in this section.

Table 2.1 shows the parameters used in simulation. All the satellites used in

the simulation are considered identical.
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Table 2.1: Specifications of the satellite considered

Total energy 20
Initial energy 10

Energy for 1deg sensor rotation-roll 0.01
Energy for 1deg sensor rotation-pitch 0.01

Energy required per km of task 0.12
Total memory 50

Memory used per km of task 0.01

2.5.1 Small-scale scenario

In a small-scale scenario, ten tasks are considered. The mission horizon is set

to 12 hours. The task parameters are described in Table 2.2. In Table 2.2, the

first column represents the task ID, second and third columns represent the cor-

responding maximum achievable reward and the length of the tasks, respectively.

The last column in the table represents the number of scans needed to get the full

reward for a particular task (e.g., for task one, three scans are needed to get the

full reward. Hence, Rf
(1,1) = 0.5, Rf

(1,2) = 0.3, Rf
(1,3) = 0.2).

First, five identical agile satellites with different trajectories have been consid-

ered for the initial experiments of the simulation. Later, three and eight satellite

scenarios with similar satellite specifications are also included. The satellites have

predefined revolutions. From the trajectory of the satellites, it is calculated that

one revolution takes approximately 1 hour and 20 minutes for each satellite.

The maximum roll and pitch angle of the satellites are set to 50◦ and 60◦, re-

spectively. By considering these angles, the exposure of each task to a particular

satellite on a particular revolution is calculated. A preprocessing is performed to
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Table 2.2: Specifications of the considered tasks

ID Reward Length (km) No. of scans required
(reward factors)

1 10 100 3 (0.5,0.3,0.2)
2 10 100 4 (0.4,0.3,0.2,0.1)
3 10 120 3 (0.8,0.1,0.1)
4 10 120 3 (0.4,0.4,0.2)
5 25 50 2 (0.7,0.3)
6 10 50 4 (0.4,0.3,0.2,0.1)
7 17 500 4 (0.4,0.3,0.2,0.1)
8 11 400 3 (0.4,0.3,0.3)
9 15 250 3 (0.6,0.3,0.1)
10 20 720 4 (0.4,0.3,0.2,0.1)
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Figure 2.5: Task locations in a small-scale scenario
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Table 2.3: Task-wise exposure details of five satellites

Tasks→ 1 2 3 4 5 6 7 8 9 10
Sat 1 1 1 1 1 1 1 2 3 3 4
Sat 2 1 1 1 1 1 1 1 4 3 4
Sat 3 2 2 2 1 1 1 1 3 4 4
Sat 4 1 1 1 1 1 1 2 3 3 4
Sat 5 1 1 1 1 1 1 2 3 3 4

eliminate redundant revolutions in which no tasks are exposed to the satellite. Ta-

ble 2.3 illustrates the number of exposures of each task for each satellite. It should

be noted that, due to the positional advantages of tasks 8, 9 and 10 with respect

to the satellite trajectories considered, these tasks are exposed to the satellites in

a higher number of revolutions than the other tasks. Figure 2.5 shows the task

locations for small-scale scenario. It also shows the trajectory of one satellite and

its exposures to each task.

In this simulation, the satellites periodically communicate with 6 ground sta-

tions. Table 2.4 shows the locations of the considered ground stations in terms

of latitude and longitude. While preprocessing, similar to the task exposures, the

number of possible communication of the satellites with the ground stations based

on the VTW of the ground stations are calculated as well. On the basis of the

Table 2.4: Ground station locations

Name Latitude (deg) Longitude (deg)
Ground station 1 45.58 -75.81
Ground station 2 68.31 -133.5
Ground station 3 53.43 -105.18
Ground station 4 -15.00 30.00
Ground station 5 28.59 77.15
Ground station 6 -7.00 79.00
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Figure 2.6: Example structure of a chromosome

exposure of the tasks, the mixed-coded chromosomes for the proposed algorithms

are structured. In the entire time horizon, tasks are exposed to satellites for 93

times with considered simulation parameters. Hence, as explained in the Figure

2.4, 93 binary bits are needed for task allocations. For each task allocation bit

containing a one, the start-time of tasks are considered from its possible exposures.

The start-times are considered as the order of seconds, starting from the beginning

of the mission as 0. Here, 93 bits are considered to denote time parameters for

the start-time of tasks. The start-time of the communications with the ground

station has 125 exposures. Hence, the total number of bits for each chromosome is

93 (binary) + 93 (continuous) + 125 (continuous) = 311 for the scenario consid-

ered. Figure 2.6 shows a randomly chosen chromosome according to the structure

described above. The simulations were performed using MATLAB 2020a on a

Intel i710gen computer with 16GB RAM specifications.

Table 2.5: Performance comparison between AEOS and N-
AEOS with EMCGA-SS

Satellite Type Number of scans Total reward
AEOS 26 94.46

N-AEOS 21 80.31

A performance comparison of five AEOS and N-AEOS with EMCGA-SS in the

considered problem scenario is shown in Table 2.5. For the simulation, all the

specifications except the pitch angle for AEOS and N-AEOS are kept same. The
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Table 2.6: Total number of scans performed and the rewards
accumulated by the satellite with and without considering the
observation angle α

Scans
required

Scans
done

Max
reward

Reward
with α

Reward
without

α
T1 3 3 10 7 10
T2 4 3 10 7 9
T3 3 1 10 6 8
T4 3 2 10 3 8
T5 2 2 25 19 25
T6 4 3 10 7 9
T7 4 4 17 13 17
T8 3 3 11 8 11
T9 3 3 15 13 15

T10 4 3 20 13 18

pitch angle is set to zero for the N-AEOS. From the result it is clear that for same

task requests, due to higher maneuverability, AEOS can perform higher number

of tasks within the mission horizon than N-AEOS and accumulate larger reward.

The number of scans performed by five AEOS for all tasks in the mission horizon in

a particular Monte-Carlo run is shown in Table 2.6. From the table, it can be seen

that some of the tasks like T1, T5, T7, T8 and T9 have been fully completed. But

the remaining tasks are incomplete. In our formulation, we have considered that

the reward collected by the satellites depends on the observation angle between

the task and the satellite. For this simulation, the relationship of the reward with

the observation angle is defined by the user. Eq. 4.3 is an example function used

for this simulation. Table 2.6 shows that when the observation angle is considered,

the full reward is not accumulated by the satellites even when all the scans are

complete. However, as per the request of the user and based on the application, if
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the observation angle does not affect the reward accumulation, the last column in

the Table 2.6 shows that the satellites can accumulate the full rewards for those

completed tasks.

Table 2.7: Performance comparison for different charging
rates

Charging Scans Total Engaged time
rate completed reward (%)
0.001 12 68.23 12.20
0.004 14 74.69 12.83
0.009 20 79.54 21.14
0.016 22 84.94 23.24
0.025 23 88.07 23.49
0.036 26 94.46 26.63
0.050 26 94.46 26.63
0.10 26 94.46 26.63

Table 2.7 shows the impact of the energy constraints considered in eq. (2.9-

2.11) on the task allocation. When the charging rate increases, the number of

scans completed by the satellite increases and the corresponding reward also in-

creases. The number of scans completed and reward get saturated beyond a certain

value of the charging rate. The table also shows the amount of time the satellites

were engaged in scanning tasks throughout the mission horizon. Even if the satel-

lites have enough energy, due to the overlapping positions of the tasks and lack

of task coverage, it is not possible for the satellites to complete all the tasks.

The performance of satellites having different charging rates is compared with the

EMCGA-SS algorithm.

Table 2.8 illustrates the effects of population size for the reward calculation to

get the ideal population size which provides the maximize reward. In order to show

45

http://www.mcmaster.ca/
https://computational.mcmaster.ca/


Ph.D.– Abhijit Chatterjee; McMaster University–ECE

the benefits of the proposed solution technique, Table 2.9 shows the performance

comparison of the proposed solution technique with the widely used Tabu-search

and Simulated annealing. EMCGA-SS and EMCHGA-SS perform better than

Tabu-search and Simulated annealing in terms of reward accumulation and the

computation time of each runs. On comparing EMCGA-SS and EMCHGA-SS,

EMCHGA-SS provides better reward accumulation. Figure 2.7 shows the per-

formance of the algorithms over time with respect to accumulated rewards. It

can be seen that EMCGA-SS converges faster than other algorithms, whereas

Tabu-Search takes the maximum time. From the figure it can be seen that if a

very quick solution is needed then EMCGA-SS provides a better result than the

EMCGHA-SS

Table 2.8: Performance comparison for the popuation size
for EMCGA-SS

Population Size Total reward

200 84.79

400 87.70

600 91.90

800 94.46

1000 94.51

1200 94.53

The small-scale scenario is again simulated with three satellites and eight satel-

lites. The specifications of the satellites are kept the same, but the trajectories of

the satellites are different from each other. Figure 2.8 shows the comparison of the

total reward accumulated by three, five and eight satellites. The box plot shows
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Table 2.9: Performance comparison of different algorithms

Algorithms Considered Reward Time needed(Sec)
EMCGA-SS 94.46 68.6424

EMCHGA-SS 101.36 96.5565
Tabu Search 89.34 472.8435

Simulated Annealing 86.56 396.5051
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Figure 2.7: Performance of the algorithms showing the re-
ward accumulated over time.
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Figure 2.8: Reward accumulated with respect to the number
of satellites for small-scale scenario

the distribution of reward for 100 Monte-Carlo runs. On each box, the center line

represents the median, and the bottom and top edges of the box indicate the 25

and 75 percentiles for the 100 Monte Carlo runs, respectively. The + symbols are

the outliers plotted individually.

2.5.2 Large-scale scenario

For a large-scale scenario, a significantly larger task allocation problem with 400

tasks is considered. This section of the simulation provides an insight regarding

the optimal task allocation when the number of tasks increases significantly. These

tasks have rewards uniformly distributed between 10 and 30. The lengths of these

tasks are also uniformly distributed between 30 km and 350 km. For 75% of the

considered tasks, it is assumed that one scan is enough to get the full reward, and

48

http://www.mcmaster.ca/
https://computational.mcmaster.ca/


Ph.D.– Abhijit Chatterjee; McMaster University–ECE

for the remaining 25% of the tasks, two scans are required to get the full reward

with the reward factor of (0.8,0.2).

The considered satellite parameters are kept the same as the small-scale sce-

nario. The structure of the chromosome is modified according to the exposures of

the tasks for all of the five satellites. The ground station specifications are also

kept the same as the small-scale scenario.

Table 2.10: Performance comparison between AEOS and N-
AEOS satellites in large-scale

Satellite Type Number of scans Total reward

AEOS 984 4527

N-AEOS 731 2886

Table 2.11: Performance comparison of different algorithms

Algorithms Considered Reward Time needed(Sec)
EMCGA-SS 4527 1153

EMCHGA-SS 4867 1309
Tabu Search 3240 10500

Simulated Annealing 2969 9644

Table 2.10 shows the comparison between the performance of AEOS and N-

AEOS using EMCGA-SS. As expected, AEOS performs a higher number of scans

during the mission horizon and accumulates larger reward than N-AEOS. For this

large-scale scenario, the difference between the performance of AEOS and N-AEOS

is clearly more significant than in small-scale scenario.

In Table 2.11, the performance of the proposed algorithms EMCGA-SS and

EMCHGA-SS is compared with Tabu-Search and Simulated Annealing for five
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Figure 2.9: Performance comparison of EMCGA-SS and
EMCGHA-SS showing the reward accumulated over time.

AEOS satellites. This table for a large-scale scenario shows the same trend as

obtained in the small-scale scenario. EMCHGA-SS provides a better schedule in

terms of total reward accumulated whereas EMCGA-SS provides the solution with

lesser computation time.

Figure 2.9 shows a performance comparison between the proposed algorithms

in the large scale scenario. From the graphs it is visible that if a user wants a

quicker solution EMCGA-SS provides a better solution than EMCGHA-SS. When

time is not an important factor EMCGHA-SS yields solution with more rewards.

Comparing 2.7 and 2.9, it can be seen that in the small scale scenario, as the

number of bits in a chromosome is smaller the advantage of using only EMCGA-

SS is not that significant but in a large scale scenario, if time is a constraint for

the user then by using EMCGA-SS over EMCGHA-SS can provide a better result.
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Figure 2.10: Reward accumulated with respect to the num-
ber of satellites for large-scale scenario

A comparison between three, five and eight satellites is also performed for 100

Monte-Carlo runs and the results are shown in Figure 2.10. The figure with box

plots shows that if the number of satellites increases the reward accumulation

increases as well in the large-scale scenario.

2.6 Conclusion

A realistic formulation of an AEOS scheduling problem and a sub-optimal solu-

tion technique are proposed in this work. To find the optimal schedule of the

tasks specified by the user and the start-time of the operations, a reward is associ-

ated with the tasks. The proposed mixed-integer non-linear optimization problem

finds the optimal schedule by maximizing the reward with the realistic satellite

resources as energy and memory constraints. To incorporate the need of multiple
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scans to complete a task, a reward factor is included in the objective function.

Probability-based failure and success rates for completion of scanning the tasks

is also taken into consideration in the proposed model. An elitist mixed coded

genetic algorithm-based methodology has been developed to solve the proposed

scheduling model. This algorithm is further extended with a hill-climber based

initialization method. A number of scenarios are considered for testing the ef-

ficiency of the algorithms. It has been concluded that the proposed scheduling

algorithms produce better results than the most popular techniques like Tabu-

search and Simulated annealing in terms of calculated rewards and computational

time. It has also been reconfirmed quantitatively through the proposed study that

AEOS is a better technology than N-AEOS.

In this work, we consider that a task region can be scanned fully in one visit.

For future work, it can be considered that if a task region is too large for the

satellites to scan in one go, an optimal segmentation of the task region is required

or an optimal schedule algorithm is required to deal with the large region.
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Multi-Stage Optimization Framework of Satellite

Scheduling for Large Areas of Interest

Abstract

The satellites are assigned to perform scanning tasks by maneuvering sensors in

roll and pitch directions within resource constraints. However, these task regions

may be larger than the scanned region by the satellites in a single attempt, so mul-

tiple attempts are needed to complete the task. Previous literature has proposed

strip-based segregation for larger task regions with parallel strips. However, satel-

lite trajectories may not be parallel to each other, and multiple visits from multiple

satellites may be required to complete a scanning task. This results in higher usage

of resources due to overlapping strips in strip-based segregation. Therefore, a novel

three-stage scheduling methodology is proposed for better performance in terms

of the size of the scanned region and resource utilization. The initial stage assigns

satellites to the tasks irrespective of task segmentation for each scan. The second

stage optimizes the roll and pitch angles of assigned satellites to maximize the

scanned region with parallel computation since the tasks are independent. The

third stage handles uncertainty associated with task failures. An elitist mixed-

coded evolutionary solution technique with a constrained non-linear optimization

and Markov decision process is proposed. The efficiency of the proposed method-

ology in small and large-scale scenarios is illustrated with simulations.
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Keywords: Satellite scheduling, Large region scheduling, Multi-stage optimiza-

tion, Markov decision process, Genetic Algorithm

3.1 Introduction

Agile Earth Observing Satellites (AEOS) scan the Earth from space to perform

specific tasks such as surveillance, tracking, and monitoring natural disasters and

environmental changes using the various onboard sensors. AEOSs perform a series

of scanning tasks based on the requests from the users. These task locations might

be spread across large regions in a scattered manner on the Earth’s surface.

The location of the AEOS determines the visible window (VW) of the AEOS

based on sensor specifications (maximum roll and pitch angles). The task locations

can only be scanned when they belong to the VW of the AEOS. When a request to

scan a large region is received, the request either involves the region to be scanned

in a geometrically consistent manner or involves scanning the whole region within

a specified time window. This paper is focused on the latter scenario. An optimal

assignment of a sequence of tasks to respective AEOSs by satisfying the resource

constraints is necessary to complete the user requests in the specified time frame

(Hall and Magazine; 1994).

The task Areas of Interest (AOIs) for the AEOSs are usually classified as spot

and polygon targets. Spot targets or polygon targets with smaller AOIs have

a limited area to scan, which can be completed by one pass according to the

observation scope of the AEOS sensor, while larger polygon targets may need
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to be captured by multiple passes of multiple AEOSs in a cooperative manner.

A large portion of the literature focuses on spot targets, comparatively smaller

polygon targets or sub-tasks with smaller regions originating from large polygon

targets (Habet et al.; 2010; Wang et al.; 2020). AEOS scheduling for spot target-

based scanning tasks is relatively easier as the length or the orientation of the task

length does not need to be considered in the problem (Renjie et al.; 2008). Based

on the task requests from the users, larger AOI scanning is an extremely relevant

and realistic problem to address, as in applications like monitoring forest fires, crop

growth for large regions, or iceberg melting rates. When the AOIs are too large for

AEOSs to scan in one go, the complexity of scheduling multiple AEOSs in their

multiple revolutions to perform multiple scans for each task increases manifold

(Niu et al.; 2018).

The swath width of a sensor in the AEOS determines the maximum area that

can be scanned in one pass. Since the specifications of the AEOS, such as the

swath width can not be altered, an acceptable solution to fulfill the requirements

of scanning a large region is to divide it into some smaller regions which can be

scanned in a single pass. In order to achieve maximum efficiency, an optimal divi-

sion of the large region is necessary. A vast majority of studies have considered a

strip-wise division of a large region, where the strips are parallel to the trajectory

of the AEOS (Niu et al.; 2018; Cordeau and Laporte; 2005; Xu et al.; 2018, 2020).

However, the trajectories of the AEOSs are predefined, usually independent, and

not parallel to each other. Hence, dividing the strips parallel to the satellite tra-

jectories results in the overlapping of the strip regions. When the AEOS performs

scanning operations on those strips according to the schedule, they will need to
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utilize more AEOS resources (energy, memory) by scanning the overlapped region

multiple times (Gu et al.; 2022).

In order to minimize the overlapping of pre-defined strips, a method of further

division of the strips into disjoint areas has been illustrated, which results in a

significant amount of overlaps nevertheless (Berger; 2016). In the present work, the

overlaps are minimized further by not considering pre-defined strips for the large

area division. Instead, the proposed method finds the optimal roll and pitch angle

for each of the multiple assigned scans before scanning and accordingly creates the

segments of smaller regions by minimizing the overlapped regions. This method

helps in quantifying the overlapped region. The proposed method is illustrated in

the following sections to have no overlaps but higher coverage. The overlapped

regions in moderate quantities while scanning could be beneficial in commercial

systems like Attitude Determination and Control Systems (ADCS) to account for

image stitching for a large region and compensate for missing regions at the seams

from each scan of the smaller regions. A possible future scope of the current work

will be considering an application-oriented fixed quantity of necessary overlapping

in scans to account for compensation errors.

For scanning the task, the observation angle (which is the combination of roll

and pitch angles) of the AEOS corresponding to the task needs to be determined.

The advantage of both roll and pitch angles provides AEOS a larger Visible Time

Window (VTW) for performing tasks compared to Non-AEOS (N-AEOS). In this

work, the determination of an optimal observation angle is considered for each

task.
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After completing the scan for each small region successfully, the AEOS receives

a reward defined by the user. The user can also specify the portion of the reward

associated with the percentage of the area scanned for the whole AOI. In literature,

a reward-based optimization problem is often formulated, where maximizing the

reward provides an optimal task schedule for the AEOSs (Han et al.; 2022). In

(Peng et al.; 2020), a reward function depending on the start time, which affects

the observation angle of the scan, is considered. A reward function based on the

quality of the image is used in (Wolfe and Sorensen; 2000). A ten-level scale for

image quality-based reward for each task has been introduced in (Liu et al.; 2017)

as a constraint for maximizing the total reward obtained for scanning the tasks.

The quality of a scan might depend on the observation angle as well. A reward

function based on the observation angle is considered in the problem formulation of

this present work. Depending on the nature of a task, multiple scans for the same

area might be needed in order to complete that task and receive a full reward. A

step-function-based reward factor is used to deal with the multiple scans require-

ment for a task for N-AEOS scheduling in (Tharmarasa, Kirubarajan, Berger and

Florea; 2019) and for AEOS problems (Chatterjee and Tharmarasa; 2022). Due to

additional challenges, in this paper, it is assumed that multiple scans of the same

region inside the task AOI are not needed to get the whole reward.

The AEOS receives the reward for completing a scan only if the scan is success-

ful. There are many contributing factors like cloud coverage and sensor malfunc-

tions during missions resulting in a scan failure (Wang et al.; 2019). In applications

like surveillance or tracking, cloud coverage hinders the performance of the total
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mission considerably. A real-life data set of Landsat-7 showed 35% of the cap-

tured images were covered with cloud (Ju and Roy; 2008). In (Lin et al.; 2012),

an image processing-based cloud removal technique is proposed where the main

focus was put into post-processing of the scanned region. A semi-Markov Deci-

sion Process (MDP) formulation has been introduced in (Eddy and Kochenderfer;

2020), where the maneuverability of the satellites has not been considered. In

(Zhai et al.; 2015), it was proposed that no reward would be allocated when there

is uncertainty regarding the performance of the AEOS, while some researchers

proposed a probability-based success and failure for the scans of the AEOS (Han

et al.; 2022). In the open-loop approach of satellite scheduling, a predicted un-

certainty factor (often considered to be stochastic arising due to conditions like

cloud coverage or sensor malfunctions) is assumed before the start of the mission,

and the scheduling is done pre-mission. In the closed-loop approach, the infor-

mation obtained during the mission is used to further optimize the consecutive

scans. An MDP-based reinforcement learning approach is shown in (Wen et al.;

2023), where only one satellite is considered for the schedule. The MDP-based ap-

proach in (Tharmarasa, Chatterjee, Wang, Kirubarajan, Berger and Florea; 2019)

illustrates uncertainty handling in a closed-loop framework, and concludes that a

high-dimensional state space of the order of 10E5 is needed even for a problem

with 7 tasks and 3 satellites. In this work, another MDP-based approach is intro-

duced, where the pre-mission information is used to fine-tune the roll and pitch

angles for each assigned scan. As the tasks are considered independent of each

other, multiple smaller MDP problems are used in parallel to reduce the number

of states drastically. The information of a failure during a mission from an AEOS is

used to find an updated greater coverage. With the contribution of all the factors
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mentioned above, an optimization model is developed to find the optimal schedule

for the AEOSs.

The choice of an appropriate optimization algorithm depends on the chosen pa-

rameters and the optimization constraints. Several methods of permutation-based

space search to tackle the complexity of an AEOS scheduling problem, including

simulated annealing, hill-climber, and genetic algorithms with various mutation

operators are studied in (Globus et al.; 2004). In (Lemaître et al.; 2002), the

authors showed the comparison between a greedy algorithm, local search, a dy-

namic programming algorithm and a constraint programming approach for AEOS

scheduling problem. A metaheuristic approach based on adaptive large neighbor-

hood search is illustrated to perform time-dependent transition time consideration

for AEOS scheduling (Liu et al.; 2017). While this work was proposed for sin-

gle AEOS scheduling, in (He et al.; 2018), it was extended to multiple AEOS

scheduling.

A complex network theory-based approach has been implemented in an AEOS

scheduling problem (Wang et al.; 2016). However, the complexity of multiple

AEOS scheduling becomes near impossible to solve with network theory. A genetic

algorithm-based solution methodology has been proposed in (Wu et al.; 2022) for

a single AEOS scheduling problem. When the problem is extended to a multi-

AEOS problem, the complexity of the chromosomes increases. An elitist-mixed

coded genetic algorithm (EMCGA)-based approach is used in (Chatterjee and

Tharmarasa; 2022) for multi-AEOS problems with smaller AOI targets. In this

paper, a modified approach to the EMCGA algorithm has been introduced since

the resource constraints are similar in nature.
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This work proposes a multi-stage optimization framework for scheduling large

imaging tasks with multiple AEOSs prior to the start of the mission. The im-

portant factors considered in this optimization model are the assignment of the

multiple AEOSs to each user-specified task, the consideration of the start time

and duration of the scans to ensure completion in the required time frame, and

the choice of roll and pitch angles of the AEOS for each scan. A detailed overall

optimization problem is discussed at first, then that problem is segmented into a

multi-stage optimization problem where these factors are handled in three stages

to reduce the complexity of each stage of the optimization problem. The first

stage of the optimization problem handles the assignment of the tasks, start time,

and duration of the scan, while the second stage finds the optimal roll and pitch

angle for each assignment. The third stage is used to handle the uncertainty of

the success of a scan.

In the following section 3.2, the problem statement is discussed. The mathe-

matical formulation of the problem is discussed in section 3.3. Sections 3.4 and 3.5

illustrate the solution methodology for this multi-stage optimization framework

and experimental analyses with simulations using small and large-scale scenar-

ios. In section 3.6, the conclusions of the work and possible future directions are

discussed.

3.2 Problem Statement

The main focus of this paper is to identify an optimal allocation of multiple AEOSs

in the mission to perform the observation tasks within a particular user-specified

time frame by considering AEOS resource constraints and task specifications.
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These user-specified tasks involve imaging specific geographical locations. The

task regions can be of limited geographical dimensions (defined as spot targets)

or widespread polygonal regions (defined as massive targets). In this work, it is

assumed that the task AOIs can be significantly larger than the visibility range

of any AEOS while passing over it. These large tasks would need multiple scans

of smaller regions that could be completed by a single AEOS visit. These user-

requested tasks are known prior to the start of the mission.

To ensure task completion, rewards are assigned in the optimization process,

depending upon the task success percentage. In order to complete imaging the

whole task AOI successfully and achieve the full reward, multiple visits by the same

or different AEOSs are needed. An optimal schedule of the considered multiple

AEOSs needs to be determined to complete scanning each of the AOIs to the

fullest possible extent corresponding to the user requests. This scheduling process

is performed prior to the start of the mission when the requested tasks are known.

The reward for a scan is calculated by the amount of area covered by an AEOS

in a single visit. As multiple scans are needed to cover the whole region of the

task, the total reward accumulated for each task is the summation of the reward

accumulated during each individual scan. The reward for each scan is assigned

when the AEOS completes a scan successfully.

Based on the task specifications provided by the user, there can be a requirement

to complete all the scans for a task within a particular time frame. For example,

in timed surveillance tasks, the user provides a time window to complete the whole

task. The completion of the tasks needs to be within the specified time window.
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To ensure that the timing of the scans is appropriate, penalties are assigned when

the task’s time-frame requirements are not satisfied. Since multiple visits by the

same or different AEOS might be needed for a task, the AEOS assignment takes

into consideration the overlap of the visible time windows of the task for different

visits and the user-requested time frame for task completion. The AEOS performs

each scan by adjusting the roll and pitch angles of the sensors while maintaining

the heading in its trajectory. Figure 2.3 shows the roll and pitch angles w.r.t to a

task and AEOS. The optimal roll and pitch angles corresponding to each AEOS

assigned to a particular AOI need to be determined on every scan to ensure the

maximum coverage of the AOI. The swath width or the visibility of the satellite

is considered to be small enough so that the earth’s curvature can be ignored.

The AEOSs are considered to have limited memory capacity. Hence, periodi-

cally, the AEOSs need to transfer the collected data to the ground stations to free

up memory space. While communicating with the ground stations, the satellites

downlink all the memory collected to the ground stations. The AEOS can not

perform any scan during communication with the ground stations.

3.3 Problem formulation

The objective of the problem is to maximize the reward accumulated by the Ns

AEOSs by performing scanning tasks on user-specified regions. The task regions

are larger than the coverage of the scanning capacity of an AEOS in one attempt.

The proposed formulation is also valid if some of the task regions are smaller than

the scanning capacity of an AEOS. The variables for the optimization problem are

defined as follows,

67

http://www.mcmaster.ca/
https://computational.mcmaster.ca/


Ph.D.– Abhijit Chatterjee; McMaster University–ECE

• x(s, o, t) ∈ {0, 1} – decision variable denoting the assignment of AEOS s to

task t in revolution o. Here 0 means that there are no assignments and 1

means at least 1 assignment.

• Tst(s, o, t) – a vector decision variable containing start time for all the as-

signed scans of AEOS s in revolution o to task t. If there are continuous scans

of task t with different roll and pitch angles, those are considered discrete

elements, and the start times are noted.

• tst(s, o, t, i) – decision variable denoting ith element for Tst(s, o, t).

• Θ(s, o, t) – vector decision variable denoting the roll angle for the scan of

task t by AEOS s during revolution o. The size of the vector would be the

same as Tst(s, o, t).

• Φ(s, o, t) – vector decision variable denoting the pitch angle for the scan of

task t by AEOS s during revolution o. The size of the vector would be the

same as Tst(s, o, t).

• θi
t – decision variable denoting roll angle for ith scan of task t.

• ϕi
t – decision variable denoting pitch angle for ith scan of task t.

• D(s, o, t) – a vector decision variable containing duration for all the assigned

scans of AEOS s in revolution o to task t. The size of the vector would be

the same as Tst(s, o, t).

• d(s, o, t, i) – decision variable denoting ith element for D(s, o, t), which is

the duration of the ith scan for task t. It can take any value from 0 to the
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maximum duration required for a scan using satellite s.

• T start
(k,t) – start time of the kth scan for task t including all the AEOSs and all

their revolution calculated from Tst(s, o, t).

• dk
t – duration of scan for kth scan of task t.

• At – total area of task t.

• Ã(s, o, t, i) – area of task t scanned by AEOS s in revolution o in the ith

scan.

• α(t) – earliness penalty cost for task t per unit time step.

• β(t) – tardiness penalty cost for task t per unit time step.

• Rmax(t) – the maximum reward for the task t provided by the user.

• Rt
unit – reward for scanning unit area of task t.

• R̃(s, o, t, i) – the reward obtained for successful completion of ith scan by

AEOS s for task t in revolution o.

• Runit(s, o, t, i) – unit reward for ith scan by AEOS s in revolution o for task

t including the penalty.

• ζ(t, θ, ϕ) – the reward factor for the AEOSs’ roll and pitch angles during the

scan.

• Nt – the number of tasks specified by the users
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• Ns – the number of AEOSs in the mission

• Nos – number of revolutions performed in the trajectory of AEOS s in the

given time horizon.

• N t
i – the number of assigned scans for task t.

• Ns,g,ĝ – number of scans by AEOS s between communication with ground

station g and ĝ

• θi
t – decision variable denoting roll angle for ith scans of task t.

• ϕi
t – decision variable denoting pitch angle for ith scans of task t.

• Θmax,Φmax – maximum roll and pitch angles for AEOSs

• ψ – swath width angle of AEOSs

• m(s, o, t, i) – memory used for ith scan of task t by AEOS s in revolution o.

• munit – memory used to scan per unit time step.

• mmax – maximum memory capacity of an AEOS.

• Tg(s, o) – communication start time to ground station g for satellite s in

revolution o.

• dg(s, o) – communication duration to ground station g for satellite s in rev-

olution o.

• B̃t – Set of overlapped region for task t due to multiple scans.
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• Bt
n – Reward accumulated for the nth overlapped scan for task t.

In the following equations, maximize has been used to define the maximization of

an objective function whereas, max has been used to define the maximum of two

components. When the AEOSs perform scanning tasks, some scans need to be

initiated within a specified time window defined by the user. If the scanning is

done before or after the specified time window, an earliness or a tardiness penalty is

applied, respectively. Let the scanning of a task t have a requirement to be started

within a particular time window, defined as
[
τ l

t , τ
u
t

]
where τ l

t and τu
t denote the

start time and the end time of the time window, respectively. As discussed in

section 3.2, multiple scans might be needed to cover the whole region for the task

t. If a scan of task t starts earlier than τ l
t , then an earliness penalty is incurred

and, if it starts later than τu
t , then a tardiness penalty is incurred. Let tst(s, o, t, i)

denote the start time of the ith scan of task t by AEOS s in revolution o. Then

the earliness E(s, o, t, i) and tardiness L(s, o, t, i) factors are calculated as follows,

E(s, o, t, i) = max
(
τ l

t − tst(s, o, t, i), 0
)

(3.1)

L(s, o, t, i) = max (tst(s, o, t, i)− τu
t , 0) (3.2)

To fulfill the requirements of task t, all the scans required may not be performed

by a single AEOS in a single revolution. The reward achieved by scanning the

area Ã(s, o, t, i) in the ith scan for task t by AEOS s in revolution o will get

penalized if it does not occur within the specific time window
[
τ l

t , τ
u
t

]
. Since this

reward accumulated is to be maximized, either of the penalties due to earliness

and tardiness incurred would be subtracted from the reward. Here, α(t) and

71

http://www.mcmaster.ca/
https://computational.mcmaster.ca/


Ph.D.– Abhijit Chatterjee; McMaster University–ECE

β(t) are the associated earliness and tardiness costs per unit of the time factors,

respectively, for task t. This penalty would be effective only on the area scanned

by the AEOS Ã(s, o, t, i). The reward achieved by scanning might depend on the

observation angle, which is the combination of roll (θ) and pitch (ϕ) angles for the

position of task t from the AEOS s. The relationship of reward with observation

angle is specific to the task and defined by the user. In general, the reward is

inversely proportional to the observation angle, i.e., when an AEOS performs the

scans directly above the task region, with 0◦ roll and pitch, it gathers the maximum

reward (Liu et al.; 2017). The swath width of the satellite is considered to be small

enough that the earth’s curvature does not affect the area scanned by the AEOS.

An analysis is done in (Chatterjee and Tharmarasa; 2022), where the effect of

reward corresponding to the change in observation angle is shown. The observation

angle is calculated as a combination of the roll and pitch angle movements of the

AEOS, depending on the position of the task. A reward factor corresponding to the

roll and pitch angles, ζ(t, θi
t, ϕ

i
t), is multiplied in the reward calculation to address

this issue. If the reward does not depend on the angle of the scan, ζ(t, θi
t, ϕ

i
t) can

be considered as 1. Considering the above factors, the reward accumulated by

AEOS s in revolution o for ith scan for task t can be given as,

R̃(s, o, t, i) = Rt
unitÃ(s, o, t, i)ζ(t, θi

t, ϕ
i
t)−

[
Ã(s, o, t, i)

At

(α(t)E(s, o, t, i)

+ β(t)L(s, o, t, i)

= Ã(s, o, t, i)Runit(s, o, t, i)

(3.3)

where, Rt
unit = Rmax

At
is the reward for scanning unit area of task t and Runit(s, o, t, i)

is the unit reward for ith scan by AEOS s in revolution o for task t which includes
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the penalty. Since the tasks may need multiple scans to be completed successfully,

there might be overlaps of areas during the scans. The reward calculation for a

task comprising all scans must compute rewards for each overlapping area only

once. Let B̃t be the nt overlapped regions in the scans for task t.

B̃t = {B̃t
1, B̃

t
2, . . . B̃

t
nt} =

⋂
(s,o,i)

Ã(s, o, t, i) (3.4)

Since earliness or tardiness penalties are associated with the rewards based on the

time of the scan, each scan might collect different rewards for the overlapped areas.

The reward accumulated by the nth overlap by AEOS s in revolution o for ith

scan can be given by

Bt
n = B̃t

nRunit(s, o, t, i) (3.5)

To maximize the reward for a particular task, the scan that collects the maximum

reward for the overlapped areas will only be considered. According to the problem

definition, since successfully scanning a particular region once is enough to obtain

the full reward, the reward collected by all the scans for task t is calculated by

finding the summation of the reward for each scanned area only once. This means

that except for the scan that gathers the maximum reward, the rest of the n − 1

overlapped scans for the same area in a task t will need to be ignored in the

computation of the reward. The reward to subtract from (3.5) is defined as

n∑
k=1

Bt
k −max(Bt)

where Bt = {Bt
1,Bt

2, ...,Bt
n}

(3.6)
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Thus, the total reward for task t can be calculated as

∑
s

∑
o

∑
i

R̃(s, o, t, i) =
∑

s

∑
o

∑
i

Ã(s, o, t, i)Runit(s, o, t, i)−
(

n∑
k=1

Bt
k −max(Bt)

)
(3.7)

for s ∈ [1, Ns] , o ∈ [1, Nos] i ∈ [i1, i2, . . . , iI ]

where iI is the total number of scans by AEOS s in revolution o for task t. The

objective function of the considered optimization problem needs to be an aggre-

gation of the accumulated rewards from all the user-specified tasks assigned to all

the AEOSs in the mission and is defined as follows

maximize
D

∑
t

∑
s

∑
o

x(s, o, t)
∑

i

R̃(s, o, t, i)

where D ∈ {x(s, o, t), Tst(s, o, t), D(s, o, t), Θ(s, o, t), Φ(s, o, t)}

∀s ∈ [1, Ns] ,∀o ∈ [1, Nos]∀t ∈ [1, Nt]

(3.8)

In order to deal with the complexity and size of the optimization problem defined

above, a multi-stage optimization framework has been proposed. A flowchart of

the described multi-stage optimization problem framework is illustrated in Figure

3.1.

In the first stage, the AEOSs are assigned to the tasks with the consideration

of the user-specified time windows. At this stage, the assignment process would

involve determining the decision variables associated with the assignment of tasks,

their starting times, and their duration, i.e., x(s, o, t), Tst(s, o, t) and D(s, o, t) re-

spectively. The assignment of tasks having massive AOIs would involve processing

on the basis of the information available prior to the start of the mission, i.e., the

AEOS trajectories and the task requests with the corresponding coordinates of
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Figure 3.1: Flowchart of the multi-stage optimization prob-
lem framework
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the AOIs. Then, in the second stage, corresponding to the AEOS assignments in

the first stage, each AOI is considered individually. Since these tasks are massive,

each assigned scan to a single AOI can only scan a portion of the required AOI.

The optimal roll and pitch angles of the AEOSs needed to perform the scanning

tasks for each assigned scan are calculated at this stage. This means that in the

second stage, the optimal roll and pitch angles, Θ(s, o, t) and Φ(s, o, t) respectively,

are to be determined to cover the maximum area of the specified AOI by the as-

signed AEOSs. However, the determination of the optimal schedule would involve

optimizing the first and the second stages hand-in-hand for several iterations.

As shown in Figure 3.1, at the beginning of the optimization process, the first

stage finds a sub-optimal assignment of the satellites, then the second stage finds

the roll and pitch angle corresponding to each assignment. The process goes back

to the first stage to find a better solution to the assignment problem, and the

cycle continues for several iterations. The optimization of Θ(s, o, t) and Φ(s, o, t)

in the second stage will determine the scanned areas corresponding to the decision

variables x(s, o, t), Tst(s, o, t) and D(s, o, t) identified in the first stage. This would

consequently allow to calculate the reward obtained for the scans corresponding

to this combination of decision variables. As these tasks are independent of each

other, the second stage of optimization for all the tasks can be done with parallel

processing to reduce computational time. The third stage deals with the uncer-

tainty originating from the failure of scans. A Markov Decision Process based

intermediate stage is introduced to fine-tune the roll and pitch angles for the con-

secutive assignments, if any previous assignment has failed. Additionally, the role

of the third stage will be effective in the identification of roll and pitch angles
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should any failure of scans occur in an online setting of optimization. The above-

mentioned multi-stage optimization framework is illustrated in a detailed manner

as follows.

3.3.1 Stage 1: The Optimal Assignment of Tasks to the

AEOSs

The assignment of the AEOSs to the tasks in the first stage is optimized by max-

imizing the reward obtained by Ns AEOSs scanning Nt tasks. In the simplest

form, the reward accumulation may be framed in the form of the following objec-

tive function,

maximize
D1

Nt∑
t=1

Ns∑
s=1

Nos∑
o=1

x(s, o, t)
∑

i

 i∏
j=1

C(j)
 R̃(s, o, t, i)


where D1 ∈ {x(s, o, t), Tst(s, o, t), D(s, o, t)}

(3.9)

Here, x(s, o, t) is a binary decision variable that takes the value 1 if AEOS s is

assigned to task t in revolution o, otherwise, it takes the value 0. Once an AEOS s

has been assigned to a particular task t in revolution o, multiple scans might occur

as discussed above. To monitor the number of scans in a particular revolution o

by AEOS s for task t, a new binary decision variable C(j) with values of 0 and 1 is

introduced, where j ∈ [1, i]. The constraints of the objective function at this stage

are defined as follows in equations (3.10) and (3.12). The maximization of the

reward R̃(s, o, t, i) is performed with respect to determining the optimal decision

variables D1.
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3.3.1.1 Time Constraint

The schedule needs to consider that a particular AEOS has enough time to finish an

assigned scan i before proceeding to the next assignment j. This is incorporated

with respect to the user-specified time windows, in terms of the start time and

duration of the consecutive scans as follows,

tst(s, o, t, j) > tst(s, o, t, i) + d(s, o, t, i) ∀t, i ̸= j (3.10)

Hence, the constraint (3.10) ensures that any new assignment j for AEOS s in

revolution o on task t occurs after the assigned duration for assignment i has

passed.

3.3.1.2 Memory Constraint

The onboard memory of AEOS is finite. The memory required for ith scan for

task t by satellite s is defined as

m(s, o, t, i) = munit × d(s, o, t, i) (3.11)

When the AEOS passes over the VW of the ground station, it transmits the data

from the onboard memory. After each communication with the ground station,

the onboard memory is reset. The scans can be performed by the AEOS until the

maximum capacity of the onboard memory, mmax is reached. The satellite s can

only perform a specific number of scans in between the communication to ground
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station g and the next available ground station ĝ, which is defined as,

∑
N(s,g,ĝ)

m(s, o, t, i) ≤ mmax ∀s, g, ĝ ̸= g (3.12)

The value of N(s,g,ĝ) is calculated from the decision variable Tst(s, o, t), which de-

notes the start time of the scan in the interval between two consecutive communi-

cations with the ground station g and ĝ for AEOS s.

N(s,g,ĝ) = |Tst(s, o, t)| where (Tg(s, o) + dg(s, o)) < tst(s, o, t, i) < Tĝ(s, o) (3.13)

The values of Tg(s, o) and dg(s, o), which is a function of mmax, are predefined.

3.3.2 Stage 2: The Optimal Selection of Roll and Pitch

Angles

Now, in the next stage, the optimal roll and pitch angles for each assignment

need to be determined in order to maximally cover the AOI corresponding to

the task. In the first stage, the assignment of the AEOS to each task is set and

passed on to the second stage of the optimization problem. In the context of

each task, the combination of roll and pitch angles for each assignment decides

the area that will be scanned. The area scanned for each unit time is calculated

with the help of trigonometric relationships between the position of the AEOS in

its trajectory and the roll and pitch angle of the sensors, as illustrated in Fig-

ure 3.2. The AOI corresponding to a single task is represented as the area

PQRS in Figure 3.2 on the earth’s surface. The dark-shaded region DEGH in-

side PQRS is the area covered in a single scan for unit time stamp. Let the
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Figure 3.2: Scanned area for unit time stamp arising from
each assignment

AEOS be at position B and the projection of the AEOS’s position (Spacecraft

nadir-point) on the earth’s surface be A. The coordinates of B, say, (x, y) are

known prior to the mission from the trajectory of the AEOS, which is the same

as A. Now, let (θ, ϕ) be the roll and pitch angles of the scan. In this figure, the

pitch angle ϕ is considered zero, and the trajectory of the AEOS is parallel to

the longitude lines of the earth’s surface. Then with the rules of trigonometry,

the coordinates of the points C and F can be calculated as (x, y + h tan(θ)) and

(x, y + h tan(θ + ψ)), where h is the height of the AEOS and ψ is the swath width

of the AEOS. Since C is the mid-point between the line segment joining H and D

and the swath width of the AEOS is known, the coordinates of H and D can be cal-

culated. Since the length of the line segment HD is equal to CF , the coordinates of

H and D can be calculated as
((
x+ h

2 (tan (θ + ψ)− tan θ)
)
, (y + h tan(θ))

)
and((

x− h
2 (tan (θ + ψ)− tan θ)

)
, (y + h tan(θ))

)
respectively. In a similar manner,

the coordinates of G and E are
(
x+ h

2 [tan (θ + ψ)− tan θ] , y + h tan(θ + ψ)
)

and
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((
x− h

2 (tan (θ + ψ)− tan θ)
)
, (y + h tan(θ + ψ))

)
respectively. Then, the area

covered by a unit timestamp DEGH can be determined. This illustrates an in-

stance of the determination of the decision variable Ã(s, o, t, i) corresponding to

the area covered in the ith scan of task t by AEOS s with revolution o. At this

stage, the following objective function maximizes the total area covered for task t,

maximize
D2

⋃
s,o,i

Ã(s, o, t, i)

where D2 ∈ {Θ(s, o, t), Φ(s, o, t)}
(3.14)

3.3.2.1 Roll and Pitch Angles Constraints

According to the specifications of the AEOS, the maximum possible roll and pitch

angles for each scan are defined. During the scan, these decision variables need to

follow the constraints stated below,

θi
t ≤ Θmaxs (3.15)

ϕi
t ≤ Φmaxs (3.16)

Equations (3.15, 3.16) ensure that the assigned roll and pitch angles are within the

maximum limits of the specifications of the AEOS. The above-defined objective

function and constraints in the second stage allow to find the maximum area

coverage by optimizing the roll and pitch angles. As discussed in equations (3.4)

to (3.7), the rewards accumulated during the overlapped region are discarded.

Since the first and second stage of optimization is performed simultaneously for

multiple iterations, the reward obtained by scanning the region Ã(s, o, t, i) is given
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as,

R̃(s, o, t, i) = Ã(s, o, t, i)Runit(s, o, t, i)−
(

n∑
k=1

Bt
k −max(Bt)

)
(3.17)

It should be noted that the reward R(s, o, t, i) is the same as in equation (3.9)

in stage 1 of the optimization framework. Since each task is independent of the

other, maximizing the reward corresponding to each task can be calculated with

parallel processing.

3.3.3 Stage 3: Markov Decision Process to handle uncer-

tainty

Due to unpredictable cloud coverage, sensor and equipment malfunctions and other

factors, failure of scans might occur. For handling the uncertainties arising due to

these unprecedented reasons, an MDP-based approach is proposed as an additional

step in the multi-stage optimization framework. Since these tasks correspond to

massive AOIs, multiple scans are needed to cover the whole region. Failure of a sin-

gle scan would impact the coverage of the whole task corresponding to the existing

assignment. A re-allocation of scanning areas for the upcoming assignments in the

mission horizon might be helpful to append some portions of the missed region of

the failed scan. This is achieved through the determination of an updated optimal

choice of roll and pitch angles of the consequent assignment to ensure maximum

coverage, including portions of missed regions, and hence maximize the reward.

3.3.3.1 State space (S)

The sample state space for the MDP is defined as follows,

• ν – Area to be scanned in the next assignment
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• w – Weather prediction for the next scan

Here,

ν ∈ Vt, where Vt =
⋃

∀ s, o, i

Ã(s, o, t, i) (3.18)

The set of assignments corresponding to the areas Ã(s, o, t, i) for task t is defined

as Vt. During the mission horizon, the AEOSs get updated real-time information

about the weather. Based on the current weather, the state variable w is defined

as 0 or 1, where 0 indicates bad weather conditions and 1 indicates good weather

conditions. A multi-tier weather condition state variable can also be used instead of

the two-tier(0, 1) but that will increment the number of states and the complexity.

3.3.3.2 Action space (A)

The possible actions for the MDP, depending upon the current state, are given as

follows,

• as – Skip the next scan

• ap – Proceed to the next scan

By the action as, the AEOS will skip the next scheduled scan and preserve the

resources. The action ap will perform the scan and depreciate resources irrespective

of the outcome.

3.3.3.3 Transition Probability (T )

The transition probabilities for the actions are dependent on weather conditions,

sensor failure, and other factors. When the weather condition is favorable (w =
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1), the probability of success (ξg) for a scan is higher than when the weather is

unfavorable, (w = 0). The probability of success when the weather condition is

not favorable, is defined as ξb. Sensor failures and other factors may still result in a

scan failure even if the weather is in favour. The probability condition is reversed

when the weather condition is adverse (w = 0). The transition probability for

having a successful or failed scan can be defined as:

Pr(Success|ap, w = 1) = ξg

Pr(Failure|ap, w = 1) = (1− ξg)

Pr(Success|ap, w = 0) = ξb

Pr(Failure|ap, w = 0) = (1− ξb)

Pr(Failure|as, w = ∗) = 1 (3.19)

The probability of the weather prediction is defined as:

Pr(w = 1|a∗, w = ∗) = wp

Pr(w = 0|a∗, w = ∗) = (1− wp) (3.20)

where 0 ≤ ξg, ξb ≤ 1 is the success rate of a scan and 0 ≤ wp ≤ 1 is the weather

prediction at each state, a∗ denotes either of the action and w = ∗ denotes either

state condition for w. The final transitional probability is calculated by the product

of (3.19) and (3.20).

3.3.3.4 Reward function(R)

The reward function for the MDP includes the following factors,
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• reward for completing the current scan

• no reward for skipping the scan

• penalty for utilizing the resource

The penalty for using the resources is applied every time a scan is performed,

irrespective of the success or failure of the scan.

Rt =



R̃(s, o, t, i)− p×m(s, o, t, i) if scan is successful

−p×m(s, o, t, i) if scan is unsuccessful

0 if scan is skipped

(3.21)

where Rt is the reward for the state transition. Here, p is the penalty for utilizing

the unit resources. The penalty is chosen by the user. The AEOSs can conserve

resources by skipping a scan. In this work, the utilization of the reserved resource

is not considered but kept for future work.

A sample state space with actions for the example from subfigure 3.3 for the

above MDP model is shown in Figure 3.4. The subfigure 3.3a illustrates an instance

of area distribution for scans obtained by optimization of roll and pitch angles in

the second stage. It is shown that there are four scans to be performed in the

considered task AOI. The areas are named 1, 2, 3 and 4, corresponding to the

order of the scan in the mission horizon. This area distribution will yield the

maximum reward if all these four scans are successful as calculated in (3.9) and

(3.17). However, as illustrated in subfigure 3.3b, if scan 1 is unsuccessful, the

second stage of the optimization is called again, and the roll and pitch angles are
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(a) Start of Region 1, 2, 3, 4 to be
scanned

(b) Region 1 failed scan,
11, 12, 13 to be scanned

(c) Region 11 success,12, 13 to be
scanned

(d) Region 12 failed scan,121 to
be scanned

Figure 3.3: The re-allocation of the areas corresponding to
assignments arising from unsuccessful scans

recalculated for the remaining three assignments to maximize the area coverage.

In subfigure 3.3b, the change in the area distribution after the recalculation and

the updated numbering of the areas are illustrated. The adopted rule of numbering

the re-allocated areas includes the index of the unsuccessful scan followed by the

order of the scan according to the mission horizon. Since the scan corresponding

to the area 11 is successful, no further reallocation of the area is needed for the

remaining scans 12 and 13, as shown in subfigure 3.3c. Further in the mission

horizon, when the scan corresponding to area 12 is unsuccessful, the second stage

is called again to find an optimal roll and pitch to maximize the area corresponding

to scan 121, illustrated by subfigure 3.3d. Figure 3.4 shows some of the states for

the example above. The next section illustrates the solution methodology for the

formulated problem in this section.
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Figure 3.4: Tree diagram for the states of the MDP for in-
stance illustrated in Figure 3.3

3.4 Solution Methodology

In the current section, solution techniques for the proposed optimization model

are illustrated. As discussed in section 3.3, a three-stage optimization model has

been developed with the help of a randomized heuristic using an elitist genetic

algorithm technique (in the first stage), constrained non-linear optimization solver

(in the second stage) coupled with MDP solution strategy (in the third stage). The

randomized heuristic which is an adaptation of the solution strategy in (Chatterjee

and Tharmarasa; 2022) is described in the following subsection. For the second

stage, any constrained non-linear optimization algorithm will be suitable, however,

for this paper, the interior point method has been used in the simulations (Byrd

et al.; 1999). The third stage of the problem is solved using the value iteration

technique (Tharmarasa, Chatterjee, Wang, Kirubarajan, Berger and Florea; 2019).

Prior to the mission, the third stage fine-tunes the schedule from the first and
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second stages. In order to reduce the computational load, the third stage can be

started after a few initial generations of the first and second stages. A comparison

of this is shown in the simulation section below.

Elitist Mixed Coded Scheduling (EMCS)

EMCS is based on a modified elitist genetic algorithm (Kim and Ellis Jr; 2008)

with binary and continuous variables together in the structure of the chromosome.

EMCS considers an initial population of candidate solutions, which are random

schedules of all the AEOSs performing the tasks across the whole mission horizon.

Our goal is to find the near-optimal schedule, that is near-optimal chromosome

from the population. The algorithm uses crossover and mutation of schedules to

create offspring, and an elitist selection operator is used to select from a pool of

offspring schedules. The chromosomes are sorted based on the reward accumulated

for the corresponding schedule. In each generation, the best half of the population

is chosen for creating the next generation with the help of mutation, crossover and

elitist selection operators. The structure of the EMCS is described in Algorithm

3. Operations of the algorithm are detailed below:

Where λ (population size) and threshold are both user-defined and based on

the complexity of the problem.

3.4.1 Preprocessing

A set of preprocessing operations are performed to make the algorithm computa-

tionally efficient. A task may not be present in the VTW of an AEOS in all of its

orbits of the AEOS trajectory. Depending on the trajectory of the AEOS and the
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Algorithm 3: Elitist Mixed Coded Scheduling
Set population of schedules, P0 = ∅;
while population size, |P0| ≤ λ do

Allocate a task randomly along with the task start time and the
duration to each AEOS in each orbit to generate random chromosome
p;

The task start time and the duration corresponding to each
assignment are selected as a random variable that falls inside the
VTW of each exposure. P0 = P0 ∪ p;

Gen = 0;
while Stopping criteria not reached do

if Gen ≤ threshold then
Sort population PGen by reward accumulated only in second stage;

else
Sort population PGen by reward accumulated with second stage;

Select λ/2 best chromosomes from population, Pλ/2
Gen;

for |PGen+1| ≤ λ do
Select 2 parents p1, p2 randomly from Pλ/2

Gen;
Obtain children c1, c2 by crossover on p1, p2;
Mutate c1, c2 to obtain cm1, cm2;
Check feasibility of c1, c2, cm1, cm2 ;
Add best feasible individual to PGen+1;

Gen = Gen+ 1;
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Figure 3.5: Structure of chromosome for the algorithms

specifications (maximum roll and pitch angle) of the AEOS, the orbits in which a

task is exposed to the AEOS are calculated. This preprocessing helps to remove

the redundant orbits from the search, where a task is not exposed to the AEOS.

This makes the algorithm efficient by reducing the size of the chromosomes.

3.4.2 Structure of Chromosome

Each chromosome has three parts as shown in Figure 3.5. The dashed section rep-

resents the task assignment, the light grey section represents the start time of the

operations, and the darker grey section represents the duration of the operation

for the AEOSs. The respective schedules of Ns AEOSs are juxtaposed to create

the chromosome. Since the exposed orbits for each AEOS corresponding to each

task calculated in the preprocessing stage are not equal, the number of bits corre-

sponding to the task allocation of each AEOS is different. A schedule of an AEOS

is designed as a combination of bits containing binary and continuous numbers.

The possibility of occurrence of the scan for a task on an exposed orbit x(s, o, t)

is the binary bits stored at the beginning of the chromosome. The length of the

binary bits is the same as the total number of exposed orbits for all the tasks. The

start-time of each corresponding scan tst(s, o, t, i) and the duration d(s, o, t, i) are
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stored in the continuous bits, following the binary bits. The dotted line shows how

the sections are adjoined to create the whole chromosome. The total length of the

bits containing start-time and duration are the same as the length of the binary

bits as illustrated in Figure 3.5.

3.5 Simulation

In this section, the above-mentioned methodology has been illustrated with exper-

iments on simulated scenarios. The experiments are carried out with MATLAB

r2020a in an Intel i7, 10th generation processor with 16GB of RAM. The simulated

scenarios corresponding to the number of tasks are described in the following sub-

sections in detail. There are five identical AEOSs in the mission, and the number

of AEOSs is kept the same for both small-scale and large-scale. The time horizon

for the mission to be planned has been set to 12 hours. The user-requested tasks

that need to be scheduled are known prior to the start of the mission. The opti-

mization process for the assignment of tasks to the AEOSs is performed prior to

the start of the mission. The trajectories of the AEOSs are predefined. From the

trajectory of the AEOSs, it is calculated that one revolution takes around 1 hour

20 minutes for each AEOS. The maximum roll and pitch angles for each AEOS

are set to 50◦ and 60◦, respectively. The swath width of the satellites is consid-

ered 80kms. Table 4.1 shows the orbital elements for the 5 satellites used in the

simulation in the two-line element (TLE) format.
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Table 3.1: Orbital elements of the satellites in TLE format

Sat 1 1 99999U 15182.00000000 .00000125 00000-0 12143-4 0 00008
2 99999 097.7544 188.7205 0002363 359.8062 142.7546 14.92589026000017

Sat 2 1 99999U 14350.00034722 .00000061 00000-0 59555-5 0 00000
2 99999 097.7404 354.5712 0012530 325.4255 209.1276 14.92590498000011

Sat 3 1 99999U 14350.00034722 -.00000135 00000-0 -13100-4 0 00009
2 99999 097.7404 354.5711 0012490 325.3906 089.1576 14.92590756000013

Sat 4 1 99999U 14350.00034722 -.00000125 00000-0 -10109-4 0 00009
2 99999 097.7504 254.5918 0012630 345.4306 109.1476 14.92590156000013

Sat 5 1 99999U 15230.00022326 -.0000075 00000-0 -11105-4 0 00007
2 99999 097.7404 178.3841 0012490 327.3726 136.1735 14.92590756000013

3.5.1 Small-scale scenario

In the small-scale scenario, ten user-requested tasks are considered, and the task

parameters are described in Table 3.2. In Table 3.2, the first column represents the

task ID, and the second column represents the corresponding maximum achievable

reward. The scanning tasks are set up as quadrilateral regions, which cannot be

scanned in a single attempt. The third to sixth columns of table 3.2 represent the

coordinates of the chosen task vertices. The eighth and ninth columns represent the

early penalty and the late penalty for each task. The last two columns represent the

user-specified time requirement for each task referring to the start of the mission

as 00:00:00.

By considering the maximum roll and pitch angles, the exposure of each task

to a particular AEOS on its revolution is calculated. Prior to the multi-stage

optimization, a pre-processing of the simulated data is done to eliminate redundant

revolutions in which no tasks are exposed to the AEOS. Table 3.3 illustrates the

number of exposures of each task for each AEOS. It should be noted that, due to

the positional advantages of tasks 8, 9 and 10 with respect to the AEOS trajectories
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Figure 3.6: Locations of the tasks

considered, these tasks are exposed to the AEOSs in a higher number of orbits

than the other tasks.

In this simulation, the AEOSs periodically communicate with 6 ground stations.

Table 3.4 shows the locations of the considered ground stations in terms of latitude

and longitude. Prior to the mission, the number of possible communications of

the AEOSs with the ground stations based on the VTW of the ground stations is

Table 3.3: Task-wise exposure details of five AEOSs

Tasks → 1 2 3 4 5 6 7 8 9 10
Sat 1 1 1 1 1 1 1 2 3 3 4
Sat 2 1 1 1 1 1 1 1 4 3 4
Sat 3 2 2 2 1 1 1 1 3 4 4
Sat 4 1 1 1 1 1 1 2 3 3 4
Sat 5 1 1 1 1 1 1 2 3 3 4
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calculated in a similar manner of preprocessing as done for task exposures.

Table 3.4: Ground station locations

Name Latitude (deg) Longitude (deg)
Ground station 1 45.58 -75.81
Ground station 2 68.31 -133.5
Ground station 3 53.43 -105.18
Ground station 4 -15.00 30.00
Ground station 5 28.59 77.15
Ground station 6 -7.00 79.00

Table 3.5 shows the number of times the AEOSs are exposed to a particular

task AOI combined from table 3.3. This table further shows how many times each

task has been scanned and the reward collected by all the AEOSs for each task.

It is noticeable from table 3.5 that for tasks 6− 10 the number of scans is higher,

and AEOSs have collected the full reward from them. For task 1 − 5 because of

their close positioning (can be seen in figure 3.6), the number of scans by all the

AEOSs is less, and they have not received the full reward.

Table 3.6 demonstrates the effects of redistributing the roll and pitch angle by

using the MDP when a scan is unsuccessful. For task 1, all the scans are successful,

so the MDP did not affect the total reward accumulated. For task 2, only 2 out of

the 3 scans were successful. The MDP redistributed the area, and it yielded more

rewards. A similar scenario is observed for tasks 6 and 8.

The success rate of a scan for the AEOSs determines the total reward collected

by the AEOSs during the mission. Table 3.7 shows that using the MDP to real-

locate the areas to be scanned yields higher reward collected. The value of ξb is

kept at 0.1 and wp = 0.9. When the ξg value is low, which means the probability

of a successful scan is low, the inclusion of MDP helps to gather more rewards.
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Table 3.5: Total number of scans performed by all the
AEOSs

Number
of Exposure

Scans
done

Max
reward Reward collected

T1 6 3 10 8.3
T2 6 3 10 6.65
T3 6 1 10 4.15
T4 5 2 10 7.38
T5 5 2 25 9.36
T6 5 4 10 10
T7 8 5 17 17
T8 16 6 11 11
T9 16 6 15 15

T10 20 7 20 20

In the simulation, it took an average of 380 generations of the first stage to

reach convergence. Table 3.8 compares how the total reward accumulated changes

based on when the 3rd stage is introduced to fine-tune the result. It is noted that

the processing time is higher when the 3rd stage is used from the earlier part of

the solution but yields more reward than when introduced in the later part.

Table 3.9 compares the reward collected by the proposed method in this work

and the conventional strip method. From the table, it can be observed that in

most of the tasks, the proposed method of assigning roll and pitch angel to create

strips that are not parallel to the trajectory of the AEOSs collects more reward

than the conventional strip method (Xu et al.; 2018). It is also shown in table

3.9, the memory consumed by the strip-based method is more than the proposed

method. Figure 3.7(a) shows that in the conventional strip method how the strips

are formed parallel to the trajectory of the AEOSs, which are marked as the dotted

line. The green polygon is the area of task 4. Figure 3.7(b) shows which strips
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Table 3.7: Performance comparison for different rates of ξg

with ξb = 0.1

ξg
Total reward

collected with MDP
Total reward

collected without MDP
1 109.68 109.68

0.9 106.05 103.42
0.8 103.67 97.35
0.7 100.94 94.28
0.6 97.17 90.47
0.5 92.88 84.53

Table 3.8: Performance comparison for the use of MDP in
the simulation

With MDP
from

the beginning

With MDP
starting at 100th

generation

With MDP
starting at 200th

generation
Without MDP

Reward collected 109.76 109.04 105.24 103.42
Normalized

processing time 1 0.89 0.81 0.72

are actually scanned during the mission with the strip method. The duration of

a scan will depend on the task size, satellite trajectory, and the swath width of

the satellite. Figure 3.7(c) shows that with the proposed methodology, the area

scanned by the two AEOSs is not parallel to the trajectory, and they cover more

area than the strip method as shown in Figure 3.7(b).

3.5.2 Large-scale scenario

For a large-scale scenario, a significantly larger task allocation problem with 400

tasks is considered. This section of the simulation provides insight into the task

allocation when the number of tasks increases significantly. These tasks have

rewards uniformly distributed between 10 and 30. The areas of these tasks are

uniformly distributed throughout the map shown in Figure 3.6. The considered
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(a) All possible strips
(b) Scans with strip method (Xu
et al.; 2018)

(c) Scans with proposed approach

Figure 3.7: Comparison of Strip method vs. proposed
method for task 4

AEOS parameters are kept the same as in the small-scale scenario. The structure of

the chromosome is modified according to the exposures of the tasks for all of the five

AEOSs. The ground station specifications are also kept the same as the small-scale

scenario. Figure 3.8 shows the comparison between the proposed methodologies

and the strip-based method. It shows that with the proposed method, the total

reward accumulated is much larger than the strip-based method.
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Figure 3.8: Reward comparison for the proposed method
and the strip method in large-scale scenario

3.6 Conclusion

In this work, a three-stage AEOS scheduling model has been proposed to find

the optimal assignment to task regions that have large areas. The model includes

finding the optimal time and duration for each scan by the AEOSs along with the

optimal roll and pitch angles for each scan. The proposed methodology minimizes

the region overlapping between the scans, which is a drawback of strip-based task

segregation for larger task regions. In both small and large-scale scenarios, this has

been illustrated with simulation results. The inclusion of MDP in dealing with task

failure uncertainty provides superior performance in terms of reward accumulation.

This work has future scopes of research considering an application-oriented fixed

quantity of necessary overlapping in scans to account for compensation errors and

the arrival of new tasks during the mission.
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Chapter 4

Learning-Based Predictive

Scheduling for Multiple Agile

Satellites with Task Arrivals

During Mission

The content of this chapter is submitted to IEEE Transactions on Aerospace and

Electronic Systems

Chatterjee, Abhijit and Tharmarasa, Ratnasingham (2023) Learning-based

predictive scheduling for multiple agile satellites with new task arrivals dur-

ing mission, Submitted to IEEE Transactions on Aerospace and Electronic

Systems.
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Learning-Based Predictive Scheduling for

Multiple Agile Satellites with New Task Arrivals

During Mission

Abstract

In an Agile Earth Observation Satellite (AEOS) mission, the user-requested tasks

arrive prior to the start of the mission, as well as, during the mission. Although

the constraints on computational costs and available time to schedule those tasks

that have arrived prior to the mission are more relaxed, these constraints are much

stricter for scheduling new task arrivals during the mission. Complete rescheduling

of the tasks during the mission will also create havoc by disrupting the original

mission schedule that is generated prior to the mission. A four-phase online-offline

predictive schedule strategy, where historical data is used to predict the pattern

of the newly arrived tasks, is proposed in this work to include the newly arrived

tasks with minimum disruption and computational cost. The predictive schedule

created with dummy tasks creates idle spaces in the original mission schedule while

minimizing disruption. During the mission, newly arrived tasks are assigned to

the idle spaces corresponding to the dummy tasks with the actual new tasks using

a fast polynomial-time assignment algorithm. Some of the tasks which can not

be assigned are used for rescheduling. This results in a more efficient and less
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disruptive schedule than performing complete rescheduling multiple times when

new tasks arrive. This combination of offline-online strategy is illustrated with

simulations.

Keywords: Agile satellite scheduling, predictive scheduling, disruption, learning,

online scheduling.

4.1 Intoduction

Earth Observation Satellites (EOS) play an important role in surveillance, track-

ing or monitoring situations for several real-world domains. The recent generation

of Agile EOS (AEOS) has emerged to be highly effective due to their attitude

manoeuvring capabilities along three degrees of freedom – roll, pitch and yaw. In

the past couple of decades, AEOS scheduling problem has been of much inter-

est to researchers due to its complex search space and vast-ranged applicability

requirements (Wang et al.; 2020).

The AEOS scheduling problem comprises finding an optimal assignment of user-

requested imaging tasks to respective AEOSs by satisfying the resource constraints

in a specified time frame (Hall and Magazine; 1994). The Areas of Interest (AOIs)

for these imaging tasks have diverse specifications involving geometry and loca-

tion of AOIs and time-bounded task completion requirements. These tasks may

stem from imaging requirements in the identification, tracking, and surveillance

of targets. The workflow of EOS systems generally consists of collecting imaging

task requests from the users, planning the optimal task schedule of the EOSs,
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up-linking the schedule to the EOSs, down-linking the obtained image data from

the EOSs and processing the information before sending it to the users. Some

of the operational resource constraints in the AEOS scheduling problem involve

consideration of the energy requirements due to appropriate attitude manoeuvring

for imaging the AOI and having enough memory for data collection (Chatterjee

and Tharmarasa; 2022).

The user-requested task schedule is uplinked to the AEOSs during their com-

munications with the ground stations. In a mission, these communications can

occur several times. A considerable amount of literature has investigated the opti-

mality of task assignments prior to the start of the mission in the form of an offline

optimization framework (Globus et al.; 2003; Habet et al.; 2010; Tangpattanakul

et al.; 2015; Liu et al.; 2017; Peng et al.; 2020). In this case, the scheduling is

generally performed in a single step before the mission starts. As a result, though

the optimization problem is complex in nature due to operational constraints, it

does not consider schedule updations for failed tasks due to sensor malfunctions

or cloud coverage.

Based on the applications of the imaging tasks, schedule updations during the

mission may be required. These can occur due to requirements for the completion

of a new task or several new task requests during the mission. Schedule updates

may also be required in dynamic scenarios such as the presence of cloud cover-

age or sensor malfunctions creating uncertainty in task initiation and completion

(He et al.; 2019; Wang et al.; 2019). Recent literature on AEOS schedule upda-

tions considers online rescheduling when real-time information is available (Chu

et al.; 2017; Haijiao et al.; 2019). However, in dynamic environments, complete
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rescheduling with real-time information requires a huge computational load and

valuable time(Zhai et al.; 2015).

This work focuses on dealing with the challenging problem of online scheduling

when new tasks arrive during an ongoing mission. The AEOS scheduling problem

is traditionally considered difficult to address for its NP-hard nature (Lemaître

et al.; 2002). Additionally, the aspect of online real-time scheduling with new

tasks arriving during the mission increases the complexity of the problem scenario

manifold.

In response to real-time task requests, a completely online scheduling strategy

using deep reinforcement learning is employed to maximize expected profit for

performing user-requested tasks(Haijiao et al.; 2019). This method requires se-

quential training in several steps during the mission. Another work on sequential

task scheduling using long short-term memory (LSTM) (Peng et al.; 2018) consid-

ers tasks known prior to the mission, however, the decision-making is performed in

a completely online strategy and does not consider the arrival of new tasks during

the mission. However, these completely online scheduling methods may be used

for the dynamic arrival of tasks, but are not adequate for daily imaging tasks, an

important requirement in real-world AEOS applications. A combination of both

offline and online scheduling strategies is necessary to achieve global optimality for

the tasks known prior to the mission, and near-optimality for emergent tasks or

dynamic environments during the mission. A recent work on the combination of

offline and online scheduling for cloud coverage considers an offline pre-assignment

of AEOSs to the tasks with a rough schedule without an exact start time for the

tasks. Then consequently, an online schedule is proposed to refine the start time
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using real-time cloud information (He et al.; 2019). However, this above-mentioned

work considers only low-orbit EOSs and does not consider new task arrivals. In

contrast, the focus of the present work is on dealing with new task arrivals by con-

sidering an offline scheduling approach for pre-mission known tasks and an online

scheduling approach for new task arrivals.

AEOS scheduling problems have structural similarities with the combinatorial

job scheduling problem (Lemaître et al.; 2002). In the context of rescheduling

for new job arrivals in a job scheduling problem, a detailed theoretical analysis

has been carried out to minimize the change in the original schedule (Hall and

Potts; 2004; Hall et al.; 2007). In order to reduce the havoc in original resource

allocations, disruption costs to the original schedule are considered an important

metric to minimize change to the existing schedule. A similar concept has been

adopted in the present work by using a multi-objective optimization framework

that considers the trade-off between reward maximization by existing and newly

arrived task completions and minimizing disruption to the original schedule for

the new tasks.

In recent literature on AEOS scheduling problems, machine learning has been

used to improve solution quality in online and offline scheduling (Wang et al.;

2020). In the case of online scheduling for new task arrivals, a classifier based on

random forests has been implemented to identify whether to accept a new task to

integrate into the schedule or not (Lu et al.; 2020). This classifier is further at-

tached to an existing onboard scheduling algorithm (Liu et al.; 2017). The current

work is a combination of online and offline strategies of scheduling to address both

known tasks before the mission and new task arrivals, a learning-based dummy
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task estimator is considered on the basis of historical data. These dummy tasks

are further used to generate a predictive schedule that minimizes disruption to

the original schedule and maximizes the total reward from task completion. The

creation of this predictive schedule and ultimately using an assignment problem to

match actual new tasks to the dummy tasks is a major contribution of this work.

In section 4.2, the problem statement is formalized. The mathematical formu-

lation of the problem is discussed in section 4.3. Sections 4.4 and 4.5 illustrate

the solution methodology and experimental validations using simulations for the

proposed predictive scheduling of new tasks. The final section 4.6 concludes the

work and discusses the future scopes of this work.

4.2 Problem Statement

The user-specified tasks in an AEOS scheduling problem involve imaging particular

geographical locations (AOIs) with multiple AEOSs on their respective orbits.

Successful completion of the tasks yields rewards. A single successful scan of

the specified AOI would yield the corresponding maximum reward for a task.

When the user requests a scanning task during the mission, adequate operational

resources and time have to be assigned to ensure the successful accommodation

of the task. The satellites can perform these tasks within a certain visible time

window (VTW) in their trajectory based on the location of the tasks and the

attitude maneuvering capability of the AEOSs in terms of roll and pitch angles.

The satellites need to reserve enough energy resources to obtain the appropriate

maneuver required in imaging a particular AOI.
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The ground stations are distributed across the Earth and are connected as a

centralized network. The satellites can communicate with these ground stations

only when they are within the VTW of the ground stations. The information

obtained from the scanning tasks is down-linked and processed in these ground

stations. After the down-link, the onboard memory of the satellites is reset to

enable information acquisition from the consequent imaging tasks. The satellites

have a limited onboard memory to store the information collected during the scans.

(a) Schedule of original tasks along with the arrival
of new tasks

(b) Existing schedule updation to accommodate new
tasks

Figure 4.1: Updation in existing schedule to accommodate
new task arrivals during mission

The main focus of this work lies in the accommodation of newly arrived tasks

during an ongoing AEOS mission. The arrival of new tasks may occur multiple

times as a unit task or in batches throughout the mission horizon. An unsuccessful

scan of a task during the mission can also be considered as a new task in the
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succeeding time periods of the mission horizon. The existing schedule consisting

of the tasks that arrived prior to the start of the mission needs to be updated

after each arrival. These updated schedules have to be up-linked from the ground

stations to the AEOSs during the communications.

The updation of the existing schedule may be handled through complete reschedul-

ing of all the tasks that were known prior to the mission and the new tasks that

have arrived during the mission. This can lead to a high degree of deviation from

the existing schedule, which will result in havoc in the form of schedule disruptions,

delays in existing task completion, and skipping of existing tasks. The accommo-

dation of new tasks in real-time with a complete reschedule can also result in

high computational costs. This work addresses the issues of disruption and high

computational cost with a four-phase scheduling strategy. Fig. 4.1 shows an ex-

ample scenario of the problem considered in this paper. Subfigure 4.1a shows the

original schedule of nine tasks assigned to three satellites. It also shows the five

new tasks that arrived during the mission. Subfigure 4.1b shows that the original

mission schedule has been updated, where some of the tasks have been moved to

accommodate the new tasks.

In this work, the consideration of historical data and machine learning-based

predictive scheduling is adopted in the pre-mission stages in order to gain insights

regarding future task arrivals. This predictive modelling of task arrivals will pro-

vide a reflection of the past trends from historical missions and current trends of

task arrivals originating during the mission.
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4.3 Problem Formulation

Let Ns satellites in the mission have pre-defined trajectories and periodic commu-

nications with Ng ground stations. Prior to the start of the mission, a set of J0

user-requested tasks is to be assigned to the satellites. Let the assignment ob-

tained at this stage for the J0 tasks be π∗ for the entire mission horizon [0,T].

This assignment will be obtained by maximizing the reward obtained for success-

fully completing tasks with the optimal roll and pitch angle combinations and

satisfaction of resource constraints as described in subsection 4.3.2.

The main focus of this work lies in accommodating the sets of Jτi
new newly arrived

tasks in the existing schedule π∗, where the tasks arrive during the k time periods

denoted by τi ⊂ [0,T] ,∀i ∈ [1, k]. The disruption to the existing schedule π∗ for

the insertion of these new Jτi
new tasks should be minimized to avert delay in task

completion and to discard the possibilities of reduction in the potential reward

from the existing schedule π∗. Updations in the existing schedule π∗ with all the

new task arrivals would result in an updated schedule π∗
new that minimally disrupts

the existing schedule. Since this process of arrival of new tasks is highly dynamic

in nature, the optimal generation of an online schedule π∗
new could be extremely

challenging. The new task arrivals Jτi
new, ∀i are assumed to be correlated with

historical data of task arrivals, hence an approach of learning-based predictive

rescheduling, using predicted dummy tasks J̃τi
new,∀i from historical data, followed

by the assignment of actual tasks to the dummy tasks is proposed.

The predictive rescheduling is run prior to the mission to reduce the disruption

and complexity and to increase the efficiency of online task scheduling during the
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mission. The rate of task arrivals is learned with a function approximation, and a

set of dummy tasks J̃τi
new is generated on that basis. These J̃τi

new tasks are inserted

within the existing schedule π∗ with consideration of the resource constraints and

the satellite trajectories to create a predictive schedule πnew using a multi-objective

optimization that minimizes disruption to the existing schedule and maximizes

the reward for performing the tasks. Here, πnew generates predictive slots of idle

times for the satellites using the J̃τi
new tasks. During these idle times, the satellites

are available to take up new tasks if needed during the mission. Following this

predictive reschedule, πnew, an assignment optimization problem is solved during

the mission for appropriate matching of newly arrived actual tasks, Jτi
new to the

dummy tasks, J̃τi
new. If some new tasks cannot be matched with the dummy tasks,

they have to be assigned within the schedule containing tasks known prior to the

mission and the new tasks already matched with the dummy tasks. The predictive

rescheduling thus ensures that the computational requirements of scheduling only

these unmatched new tasks during the mission are much lesser than rescheduling

for all the new task arrivals during the mission.

The complete optimization model is illustrated in Fig. 4.2. The first three

phases run prior to the mission, and phase four runs during the mission, in a

combination of offline-online setup. The four phases of the optimization model are

described in a detailed manner in the following subsections.

4.3.1 Phase 1 – Learning the historical trend of new task

arrival

(Prior Mission)
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Figure 4.2: Multi-stage optimization model with learning-
based predictive scheduling for new task arrivals

It is assumed that the time horizon is partitioned into k intervals, as shown in

Fig. 4.3. In order to learn the pattern of potential new task arrivals, a function

approximator is used that generates the predicted new task arrival rate at each

time interval. The training data for this predictive function approximator would

be the historical data of new task arrivals for the past N days. Let the variable∣∣∣Jτi
m

∣∣∣,m ∈ [1,N ] , i ∈ [1, k] denote the historical number of task arrivals on day m

at the time period τi.

Figure 4.3: Mission horizon

There may exist correlations in the rate of task arrivals in consecutive time

periods. In order to capture any hidden pattern between preceding time periods
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and the current time period, this function approximator treats this information of

task arrivals as the input and learns the hidden pattern, if it exists. Let the input

consist of the number of task arrivals for the preceding κ time periods and the

index of the current time period, i. Then the input for the function approximator

may be defined as the tuple given by
〈∣∣∣Jτi−1

m

∣∣∣, ∣∣∣Jτi−2
m

∣∣∣, . . . , ∣∣∣Jτi−κ
m

∣∣∣, i〉. The output is

defined as
∣∣∣J̃τi

m

∣∣∣, which is the predicted number of task arrivals in the time period

i. The correlation of the rate of task arrivals in consecutive time periods is learned

by training the function approximator on all of the i ∈ [κ + 1, k] time periods.

This means that if the trained function approximator knows which time interval

it is predicting and the number of task arrivals for the preceding time periods, it

is able to predict the number of task arrivals in any time period throughout the

mission horizon.

The arrival of new tasks might vary from one region to another and may have

correlations within the neighboring regions. In the case of surveillance and tracking

tasks, the target may move from one region to the neighboring region. As a

result, the number of required imaging tasks to fulfill this surveillance will have a

correlation within these neighboring regions. Learning may be used to detect the

pattern of these correlations, in the scenarios, where this pattern is maintained

over historical data.

Let the total mission region be split into equal-sized L sub-regions. Depending

upon the tasks in the historical data, the size of each sub-region may be defined.

Let the variable
∣∣∣JRl

m

∣∣∣,m ∈ [1,N ], l ∈ [1, L] denote the number of task arrivals

on day m in region Rl. Combining the rate of task arrivals corresponding to
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respective time intervals and regions from the historical data, an updated vari-

able |Jτi,Rl
m |,m ∈ [1, n], i ∈ [1, k], l ∈ [1, L] is considered. In order to learn the

hidden pattern of the rate of task arrivals, the inputs of the function approxi-

mator may be defined by the tuple
〈
|Jτi−1,Rl1

m |, |Jτi−2,Rl1
m |, . . . , |Jτi−κ,Rl1

m |, |Jτi−1,Rl2
m |,

|Jτi−2,Rl2
m |, . . . , |Jτi−κ,Rlp

m |, |Jτi−1,Rl
m |, |Jτi−2,Rl

m |, . . . , |Jτi−κ,Rl
m |, τi, Rl

〉
, whereRl1 , Rl2 , . . . , Rlp

are the adjacent p-point neighbors of the region Rl. The output of the function

approximator provides a predicted rate of arrival
∣∣∣J̃τk,Rl

m

∣∣∣ ∀i ∈ [1, K], l ∈ [1, L]. If

there is no correlation between the region and its neighbours, the information of

the neighbours can be omitted from the input tuple.

The training of the function approximator with the historical data is performed

by minimizing the difference between the predicted value and the actual value.

This error calculation is done on the basis of the mean squared error, which can

be calculated as follows,

MSE
(
ϵτk,Rl

)
= 1
n

∑
n

∣∣∣∣∣∣J̃τi,Rl
m

∣∣∣− ∣∣∣Jτi,Rl
m

∣∣∣∣∣∣2 (4.1)

The parameters of the function approximator are tuned in each of the training

epochs while minimizing the Mean Squared Error (MSE) at each epoch. An ML-

based solution technique is discussed in section 4.4.1.

4.3.2 Phase 2: Assignment of J0 tasks

(Prior Mission)

The learning-based prediction of the rate of task arrivals provides an estimate

of the number of tasks that may arrive during the mission horizon. However, since
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the set of J0 tasks arrive prior to the mission initiation, the assignment of these

tasks π∗ needs to be performed prior to the mission. In this subsection, the phase

of the optimization strategy, where J0 tasks are assigned, is illustrated (Chatterjee

and Tharmarasa; 2022).

The objective function for the assignment problem involves maximizing the

reward accumulated by all the satellites during the mission by performing the

successful scan of the J0 tasks, which may be defined as follows,

max
a(s,o,t), T st

(s,o,t)

|J0|∑
t=1

Ns∑
s=1

Nos∑
o=1

a(s,o,t)R(s,α,t) (4.2)

where t, s, o indicate the indices for J0 tasks, N s satellites, and the corresponding

N os revolutions, respectively. Here, a(s,o,t) is a binary decision variable, which

denotes whether task t is assigned to s in revolution o (a(s,o,t) = 1) or not (a(s,o,t) =

0) and T st
(s,o,t) denotes the start time of the scan. The reward R(s,α,t) achieved by

scanning depends on the observation angle α of the task t from the satellite s

defined by the start time of the task T st
(s,o,t). The correlation between the reward

and observation angle is dependent on the task and is determined by the user.

Typically, the reward decreases as the observation angle increases. To calculate the

angle α, the satellite’s roll and pitch angle movements are combined based on the

relative location of the task and the satellite illustrated in Fig. 4.4. For example,

the relationship of the observation angle with the reward may be calculated as,

(Chatterjee and Tharmarasa; 2022)

R(s,α,t) = Rmax
t −

(
Rmax

t

2 × θ + ϕ

θmax + ϕmax

)
(4.3)
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where Rmax
t is the maximum possible reward to accumulate for task t. Here, θ and

ϕ are the roll and pitch angles for the scan, and θmax and ϕmax are the maximum

allowable roll and pitch angles for the satellite.

Figure 4.4: Observation angle of a satellite

The objective function maximizing the reward accumulated for J0 tasks is sub-

ject to several resource constraints originating from satellite specifications and

trajectories. These constraints are defined as follows.

Let the available charge at the starting time for a scan of task t by satellite s

be denoted as C(
s,T st

(s,o,t)

). The energy e(s,o,t) required to scan task t in revolution o

should always be lesser than or equal to the available charge at the starting time

C(
s,T st

(s,o,t)

) of the scan and the gained energy chs × d(s,o,t) during the scan, where

chs is the charging rate of the satellite and d(s,o,t) is the duration of scanning the
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task t by satellite s in revolution o. The energy constraint can be defined as

C(
s,T st

(s,o,t)

) + chsd(s,o,t) − e(s,t)

 ≥ ρ ∀s, o, t when a(s,o,t) = 1 (4.4)

where ρ is the minimum energy level the satellite needs to maintain. The value of

ρ can be zero if the energy level of the satellites can be as minimum as zero.

It is important to ensure that the satellite has enough energy to rotate. The

total available energy at the start of the rotation is given by C(
s,T rot

(s,o,t,t̂)

), where

T rot
(s,o,t,t̂) is the start time of the rotation. The energy gained by the satellite dur-

ing the roll and pitch movements is given by chs

(
droll

s θt,t̂
(s,o)

)
and chs

(
dpitch

s ϕt,t̂
(s,o)

)
,

respectively, where θt,t̂ and ϕt,t̂ are the required rotations along the roll and pitch

angles, respectively, while transitioning from task t to task t̂, and droll
s and dpitch

s

are the duration for each roll and pitch angle.

C(
s,T rot

(s,o,t,t̂)

) + chs

(
droll

s θt,t̂
(s,o) + dpitch

s ϕt,t̂
(s,o)

)
−
(
θt,t̂

(s,o)e
roll(s) + ϕt,t̂

(s,o)e
pitch(s)

)
≥ ρ

∀s, o, t ∈ [1, |J0|], t̂ ̸= t (4.5)

where eroll(s) and epitch(s) are the energy needed for each roll and pitch angle

change, respectively.

The memory constraints are illustrated in equations (4.6) and (4.8). While

scanning, the on-board memory of the satellite is utilized, and the memory is reset

during the communication with the ground station. Let m(s,t) be the memory

used by satellite s for task t and mmax
s be the maximum capacity of the satellite

s. The satellite s can only perform a specific number of scans in between the
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communication to ground station g and the next available ground station ĝ. The

value of N(s,g,ĝ) is calculated from the decision variable T st
(s,o,t), which denotes the

start time of the scan in the interval between two consecutive communications

with the ground station g and ĝ for AEOS s.

∑
N(s,g,ĝ)

m(s,t) ≤ mmax
s ∀s, g, ĝ ̸= g (4.6)

The memory constraints (4.7) and (4.8) ensure that the communication between

the ground station and the satellites does not occur during a scan, where dmem
s is

the time needed for satellite s to communicate with ground stations.

T st
(s,o,t) > dmem

s + T sg
(s,o,g) ∀s, o, t, g (4.7)

T sg
(s,o,g) > T st

(s,o,t) + d(s,o,t) ∀s, o, t, g (4.8)

The timing constraints (4.9) and (4.10) ensure that the start time of commu-

nication between the ground station and the satellite, as well as the start time

of the tasks, are within the VTW of the satellites. The VTW of the ground

station g is defined as
[
T V T Wst

(s,o,g) , T
V T Wend

(s,o,g)

]
and the VTW for task t is defined as[

T V T Wst

(s,o,t) , T V T Wend

(s,o,t)

]
.

T V T Wst

(s,o,g) ≤ T st
(s,o,g) ≤ T V T Wend

(s,o,g) − dmem
s ∀s, o, t (4.9)

T V T Wst

(s,o,t) ≤ T st
(s,o,t) ≤ T V T Wend

(s,o,t) − d(s,o,t) ∀s, o, t (4.10)
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The constraint (4.11) checks if there is enough time between the start time of

the next task and the end time of the previous task for the satellites to manoeuvre

the sensor to the appropriate roll and pitch angles.

T st

(s,o,t̂) ≥ T st
(s,o,t) + d(s,o,t) + droll

s θt,t̂
(s,o) + dpitch

s ϕt,t̂
(s,o) ∀s, o, t (4.11)

In this work, it is assumed that the start time of the communications, T st
(s,o,g),

is pre-determined. However, it may be considered as a decision variable as done

in (Chatterjee and Tharmarasa; 2022).

4.3.3 Phase 3: Predictive scheduling for new task arrivals

(Prior Mission)

In the previous phase, J0 tasks are assigned to the satellites at the start of the

mission. In order to obtain the dummy tasks J̃τi
new for time period τi,∀i ∈ [1, k], the

output of the trained function approximator from phase one is used. The number

of tasks (including the existing and the new dummy tasks) to be assigned to the

satellites in consecutive time intervals can be defined as follows,
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|J τi | =



|J0| at time 0

|Ĵτ1|(1− ξ1) + |J̃τ1
new| at time τ1

|Ĵτ2|(1− ξ2) + |J̃τ2
new| at time τ1 + τ2

. . . . . .

|Ĵτk |(1− ξk) + |J̃τk
new| at time τ1 + τ2 + · · ·+ τk

, τi ⊂ [0,T] (4.12)

where |Ĵτi(⊂ J0)| is the number of tasks scheduled for the time interval τi, i ∈ [1, k]

in phase 2. Here, ξi is the probability of a successful scan for the time interval τi.

The unsuccessful scans of the existing tasks J0 at the start of the time period τi

are denoted by Ĵτi(1− ξi).

At this stage, a predictive reschedule is performed on the original task requests

J0 and the newly arrived dummy tasks to avoid creating havoc and to reduce the

scheduling costs. This predictive schedule πnew has to be generated in a manner

that produces the least disruption to the existing schedule π∗. The disruption cost

measures the difference in the start times of the existing J0 tasks in π∗ and πnew. A

metric for disruption cost in terms of completion times of a job in job scheduling

problems can be referred to in (Hall et al.; 2007). Either way, minimizing the

disruption ensures the minimal change in the tasks for the existing schedule π∗.

The disruption cost for task t due to the updated schedule πnew can be defined

by,

∆t(π∗, πnew) =
∣∣∣T st

(s,o,t)(π∗)− T st
(s′,o′,t)(πnew)

∣∣∣ ∀t ∈ J0 (4.13)
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Since there exists a trade-off between minimizing disruption in the existing

schedule and maximizing the potential reward in the updated schedule with the

newly arrived tasks, the following multi-objective optimization problem is ad-

dressed at this stage.

f1 = arg
a(s,o,t), T st

(s,o,t)

max
|J |∑
t=1

Ns∑
s=1

Nos∑
o=1

a(s,o,t)R(s,α,t), where J =
∑
J τi , τi ⊂ [0,T](4.14)

f2 = arg
T st

(s,o,t)

min
|J0|∑
t=1

∣∣∣T st
(s,o,t)(π∗)− T st

(s′,o′,t)

∣∣∣ (4.15)

subject to the constraints defined in equations (4.4 – 4.11). The potential reward to

be achieved at this stage R(s,α,t) includes the potential completion of the predicted

dummy tasks, failed tasks and the tasks from J0. The individual rewards for

the predicted dummy tasks are considered to be much lower than the reward

achievement for J0 tasks to ensure the optimization problem does not skip the

original tasks. The skipped tasks are also selected randomly based on the failure

probability due to the weather condition of a particular location from the set Ĵτi ,

and the reward is set to a lower value as well due to the uncertainty of the failure.

Since the newly arrived dummy tasks have to be scheduled after their arrival,

an additional constraint has to be considered, given as,

τi < T st
(s,o,t∗) < T, ∀t∗ ∈ J̃τi

new (4.16)
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4.3.4 Phase 4: Onboard scheduling in real-time (During

Mission)

Based on the number of actual new task arrivals, |Jτi
new| compared to the number of

predicted dummy tasks, |J̃τi
new|, along with the predicted missed tasks |Ĵτi |(1− ξi)

and actually missed tasks |Jτi
miss| the following two scenarios may arise,

• Case 1: |Jτi
act| ≤ |Jτi

pred|

• Case 2: |Jτi
act| > |Jτi

pred|

where |Jτi
act| = |Jτi

new| + |Jτi
miss| and |Jτi

pred| = |J̃τi
new| + |Ĵτi |(1 − ξi). For cases 1

and 2, the ground station scheduler accommodates the new tasks |Jτi
act| in the idle

spaces due to the dummy tasks |Jτi
pred| with the assignment problem defined below.

The scheduler then tries to accommodate the rest of the tasks to the pre-existing

idle spaces in the schedule other than the idle spaces created from the dummy

tasks. Some of the tasks which are still not assigned are kept for rescheduling.

The probability of rescheduling is higher for case 2 than case 1 due to the excess

number of actual new tasks.

4.3.4.1 Assignment of actual tasks to predicted tasks

The assignment of the new tasks to idle spaces is done by matching the predicted

tasks of Jτi
pred and actual tasks of Jτi

act. The method of matching these tasks is

essentially a linear assignment problem in combinatorial optimization.
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Let a binary assignment variable Ai(p, q) that associates the tasks for the time

interval τi, i ∈ [1, k] be defined as,

Ai(p, q) =


1 Task Jτi

pred(p) is associated to task Jτi
act(q)

0 otherwise
(4.17)

Here, the association indices for Jτi
pred and Jτi

act are given by p and q, respectively.

Then, the set of assignments for all the associations for tasks in Jτi
act to Jτi

pred for

the time interval τi can be defined as,

Ai = {Ai(p, q); p = 0, 1, . . . , |Jτi
pred|; q = 0, 1, . . . , Jτi

act} (4.18)

Let the indices p = 0 and q = 0 be the indices for non-existent tasks. Assign-

ment Ai(0, q) denotes that actual task Jτi
pred(q) is not associated to any dummy

task in Jτi
act. Equivalently, Assignment A⟩(p, 0) signifies that dummy task Jτi

act(q)

is not associated with any actual task in Jτi
pred.

This assignment is performed by a single-objective optimization problem that

minimizes the cost of the association of the actual tasks to the dummy tasks. The

objective of the assignment is to find the optimal assignment A∗
i given by,

A∗
i = arg max

Ai

|Jτi
pred

|∑
p=0

|Jτi
act|∑

q=0
Ai(p, q) ci(p, q) (4.19)

where ci(p, q) is the reward for the assignment Ai(p, q). The value of the ci(p, q) is

the weighted sum of reward for task q and inversely proportional distance between

tasks p and q. For example, in the simulation of this paper, the following equation
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has been used.

ci(p, q) = w1R
max
q + w2

1
dist(p, q) (4.20)

where dist(p, q) is the locational distance between task p and q. The inversely

proportional reward for the distance ensures that the distances between the dummy

tasks and the actual tasks are minimized to reduce the effect of roll and pitch angle

in the reward accumulated and the energy constraint. The values of w1 and w2

can be tuned based on the applications of the task.

This assignment problem is optimized by satisfying the constraints given below,

• One-to-one mapping constraints:

Ai(p, q) ∧ Ai(p′, q) ̸= 1 ∀p ̸= p′; p, p′ ̸= 0 (4.21)

Ai(p, q) ∧ Ai(p, q′) ̸= 1 ∀q ̸= q′; q, q′ ̸= 0 (4.22)

These constraints ensure that exactly one actual task is associated with

exactly one dummy task. The only exception occurs for the non-existent

tasks (p = 0, q = 0), which can be associated with multiple actual tasks and

multiple dummy tasks.

• Start time constraint:

T st
(s,o,q) = T st

(s,o,p) ± δTst
q (4.23)

The start time of task q should also be closer to the start time of task p. The

term δTst
q ensures that even though the start time is not exactly the same,

the actual task q can still be assigned to the dummy task p when there is

enough idle time. This can be defined by the following equations (4.24) and
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(4.25) in the context of tasks t and t′ that are already scheduled.

T st
(s,o,q) + d(s,o,q) < T st

(s,o,t), where task t is followed by task q (4.24)

T st
(s,o,t′) + d(s,o,t′) < T st

(s,o,q), where task q is followed by task t′ (4.25)

In order to minimize the computational complexity during the mission, the

value of δTst
q is chosen as small as possible to set the start time of task q as

close to task p as possible when it follows the equations (4.24) and (4.25).

• Roll and pitch angle constraints:

θ(q) ≤ θmax (4.26)

ϕ(q) ≤ ϕmax (4.27)

These constraints ensure that during the mapping, the roll and pitch angles

assigned to the actual task (i.e., θ(q), ϕ(q)) are within the maximum limit of

the roll and pitch angles.

4.3.4.2 Rescheduling of the remaining tasks

The remaining tasks are attempted to be assigned to the limited idle spaces avail-

able in the existing schedule. A modified optimization model can be used similar to

the proposed phase 2, with only the remaining tasks and an additional constraint

that only the idle spaces are available.

[T st
(s,o,t), T

st
(s,o,t) + d(s,o,t)] ∈ D(π∗

new) (4.28)
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where D(π∗
new) is a vector variable for the idle time slots for the schedule π∗

new.

For the scheduling of the remaining tasks, which were not associated with any

dummy task or can not be placed in the idle spaces, the multi-objective opti-

mization model from phase 3 is used. Here, the set of initial tasks used in phase

3, J0 is updated with the tasks that are already scheduled at this point during

the mission by the assignment problem. Then the set of initial tasks now becomes

J ′
0 = J0+Jτ ′

i
new, where Jτ ′

i
new is the set of tasks scheduled during the above-mentioned

method of assignment. The dummy tasks in the phase 3 optimization model are

now replaced with the remaining tasks Jτi
new − J

τ ′
i

new from the assignment problem.

4.4 Solution Methodology

4.4.1 Phase 1:

In recent decades, neural networks are widely used as acceptable function approx-

imators in a range of learning tasks having dynamic and complex information

(Scarselli and Tsoi; 1998; Ferrari and Stengel; 2005; Yang et al.; 2013; Sutton and

Barto; 2018; Elfwing et al.; 2018).

For predicting the rate of task arrivals using the historical data, a feed-forward

fully connected neural network has been used (Svozil et al.; 1997). During the

training process, the neural network updates the hyper-parameters by minimizing

the MSE as discussed in equation (4.1). This ensures that the hyper-parameters

are tuned according to the historical data and can provide high accuracy in the

prediction of the task arrival rate. This learning approach in the first phase of the
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optimization framework generates the estimated rate of new task arrivals during

a specific time period in a particular region.

4.4.2 Phase 2:

The goal of the scheduling process in phase 2 lies in finding an optimal schedule

from equation (4.2) for the tasks J0. In (Chatterjee and Tharmarasa; 2022), an

elitist mixed-coded genetic algorithm-based satellite scheduling (EMCGA-SS) is

proposed that provides efficient assignment in small and large-scale agile multi-

satellite scheduling. This algorithm handles uncertainty in task completion by the

satellites along with multiple scanning requirements for the tasks. The comparisons

of the performance of EMCGA-SS with other meta-heuristics algorithms, such as

tabu search (Habet et al.; 2010), and simulated annealing (Wu et al.; 2017) are

illustrated in (Chatterjee and Tharmarasa; 2022).

The structure of the chromosome is a hybrid between binary and continuous

variables corresponding to the assignment of tasks to the satellites in their specific

revolutions and the starting time of the tasks within the VTW, respectively. The

processes of crossover and mutation are consistent with the mixed-coded nature

of the candidate chromosomes representing the assignment schedules. It is also

shown that an initialization with a population of candidate solutions generated

with a hill climber enhances the performance of the algorithm EMCGA-SS. A

similar approach based on the elitist mixed-coded genetic algorithm may be used

to obtain the schedule π∗ that is generated from the task set J0. The required

modifications in the algorithm would be the consideration of single scans for each

task and a learning-based estimation of task failures. Fig. 4.5 shows the modified
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chromosome used in this work.

Figure 4.5: Structure of chromosome

4.4.3 Phase 3:

In multi-objective optimization, dominance relationships between candidate solu-

tions are the key factor when comparing objective function values (Deb; 2011).

In the case of this optimization framework, candidate solutions are assignment

schedules that illustrate the assignment of satellites to specific tasks in specific

revolutions as defined by the trajectories and the corresponding starting times of

the tasks. For the multi-objective problem (f1, f2), defined in equations (4.14)

and (4.15), where f1 is a maximization objective function and f2 is a minimiza-

tion objective function, the dominance between two candidate solutions, i.e., two

schedules can be defined as follows,

Definition 1 The assignment schedule πx
new dominates the assignment schedule

πy
new, (πx

new >dominates π
y
new), if both of the following conditions are satisfied.
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• The assignment schedule πx
new is no worse than πy

new in all objectives, given

by,

f1(πx
new) ≥ f1(πy

new) (4.29)

f2(πx
new) ≤ f2(πy

new) (4.30)

• The assignment schedule πx
new is strictly better than πy

new in at least one of

the objectives, given by,

(f1 (πx
new) > f1 (πy

new)) ∨ (f2 (πx
new) < f2 (πy

new)) = 1 (4.31)

Definition 2 Two assignment schedules πx
new and πy

new are non-dominating, if

neither (πx
new >dominates π

y
new) nor (πy

new >dominates π
x
new) hold, given by,

(f1(πx
new) > f1(πy

new)) ∨ (f2(πx
new) < f2(πy

new)) = 0 (4.32)

Algorithm 4: Hill-Climber Style Multi-Objective Predictive Scheduler
Set initial population P empty; Initialise feasible schedule πx

new from π∗

and add to population P ;
while termination condition not reached;
do

Randomly pick πy
new from P and mutate to get πy′

new; Repeat the step if
πy′

new is not feasible; If πy′
new is not dominated by any solution in P and

πy′
new ̸∈ P ,

add πy′
new to P and discard all solutions in P that πy′

new dominates;

The multi-objective optimization approach for generating the predictive sched-

ule with dummy tasks is illustrated in Algorithm 4. The termination condition

could be the maximum number of iterations reached.
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4.4.3.1 Structure of Chromosome

The structure of the chromosome is an updated structure used during the solution

methodology. Fig. 4.6 illustrates an example of how the structure is updated from

the original mission schedule chromosome structure. When a new task arrives to

the mission, one extra bit is added to each revolution of each satellite in the binary

bit section. Consecutively, the same is done in the continuous bit section as well. A

random number between 0 and 1 is assigned to the added bit in the binary section.

The corresponding bit in the continuous section to a 1 bit in the binary section is

assigned a random number in the VTW of the task for the particular satellite in the

particular orbit. If the chromosome is not feasible, then the process is repeated. In

Fig. 4.6, it is shown that an extra bit is added to each revolution of each satellite.

However, a pre-processing of the chromosomes can be implemented to reduce the

size of the chromosome. Only the revolutions of those satellites during which it is

feasible to perform the scanning tasks are added to the chromosome.

4.4.3.2 Mutation of a schedule

The mutation operation is performed on the chromosomes to move from one sched-

ule to the next. Here, the commonly used mutation rate 1/m is considered (Doerr

et al.; 2017), where m is the string size of the chromosome. To mutate, on the

binary bit, a random bit from the binary bit section is picked, and the bit value

is flipped. For the continuous bits representing the start-time of the scan, the bit

corresponding to the bit selected in the binary bit is mutated. If the binary bit is

flipped from 1 to 0, the corresponding continuous bit is also set to 0. If the binary

bit is set to 1 from 0, a random number from the VTW of the task is chosen as
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the bit value.

Figure 4.6: Sample structure of chromosome

4.4.4 Phase 4

Since this phase is performed during the mission, it is important to solve the

assignment problem with a fast algorithm. For the linear assignment problem, the

Hungarian algorithm (Kuhn; 2010) is widely used. Since this algorithm can solve

the assignment problem in polynomial time, it is used for the proposed method.

4.5 Simulations

In this section, the above-mentioned formulation with the proposed solution method-

ology has been illustrated with experiments on simulated scenarios. The experi-

ments are performed using MATLAB r2020a in an Intel i7, 10th generation pro-

cessor with 16GB of RAM. The simulated scenarios corresponding to the number
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of new task arrivals and the proposed solution strategy are described in this sec-

tion in a detailed manner. Let there be five identical AEOSs in the mission. The

trajectories of the AEOSs are predefined. From the trajectory of the AEOSs, it is

calculated that one revolution takes around 1 hour 20 minutes for each AEOS. The

maximum roll and pitch angles for each AEOS are set to 50◦ and 60◦, respectively.

Table 4.1 illustrates the orbital elements for the 5 satellites used in the simulation

in the two-line element (TLE) format. The mission horizon for these simulations

is set to 12 hours.

Table 4.1: Orbital elements of the satellites in TLE format

Sat 1 1 99999U 15182.00000000 .00000125 00000-0 12143-4 0 00008
2 99999 097.7544 188.7205 0002363 359.8062 142.7546 14.92589026000017

Sat 2 1 99999U 14350.00034722 .00000061 00000-0 59555-5 0 00000
2 99999 097.7404 354.5712 0012530 325.4255 209.1276 14.92590498000011

Sat 3 1 99999U 14350.00034722 -.00000135 00000-0 -13100-4 0 00009
2 99999 097.7404 354.5711 0012490 325.3906 089.1576 14.92590756000013

Sat 4 1 99999U 14350.00034722 -.00000125 00000-0 -10109-4 0 00009
2 99999 097.7504 254.5918 0012630 345.4306 109.1476 14.92590156000013

Sat 5 1 99999U 15230.00022326 -.0000075 00000-0 -11105-4 0 00007
2 99999 097.7404 178.3841 0012490 327.3726 136.1735 14.92590756000013

In the first phase, the historical data for the tasks has been simulated for 500

days. The North American region (latitude: (30◦N − 75◦N), longitude: 60◦W −

165◦W ) has been divided into 5×11 grids with each grid of size 10◦ × 10◦ latitude

and longitude. For each of the 24 time periods, each of duration 30 minutes, the

historical data for the arrival time of new tasks are generated with the combination

of Gaussian distribution and uniform distribution for 3 hours juxtaposed together

over 12 hours. The arrival times in the first and the last 3 hours window follow a

Gaussian distribution, and the rest follow a uniform distribution. Each Gaussian

distribution for arrival time follows the distribution with mean µ = 90 minutes
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Table 4.2: Distibution of number of tasks over 24 time peri-
ods

Time period Distribution
0-6 N1 ∼ U(50, 80)
6-12 N2 ∼ U(25 + 0.2N1, 50 + 0.2N1)
12-18 N3 ∼ U(30 + 0.2N2, 50 + 0.2N2)
18-24 N4 ∼ U(45 + 0.2N3, 80 + 0.2N3)

and standard deviation σ = 30 minutes. The number of total tasks follows the

distribution in table 4.2, where the U indicates the uniform distribution.

To train the neural network, a feed-forward neural network with ten hidden

layers is used, and to obtain an output of the predicted new task arrivals in a

particular time period for a particular grid, the information on new task arrivals

for the preceding three time periods is used. The dataset is divided into 80−10−10

for training, validation, and testing. Fig. 4.7 shows the error histogram of the

trained and tested instances. It is clearly evident that the zero error in training

has the highest peak in the maximum number of instances. The histogram also

shows that very few instances have high errors, which may be unavoidable due to

the random nature of the tasks.

Table 4.3: Reward accumulation during phase two

Number of tasks Max reward Reward Time needed (s)
100 1480 1315.89 113
400 5160 4867.87 846
600 7240 6539.67 1055

The simulation is performed with a varied number of initial tasks known prior

to the start of the mission, namely, 100, 400 and 600 tasks. Using the EMCGA-SS

algorithm, these tasks are initially assigned to the 5 AEOSs before the mission
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Figure 4.7: Error histogram for the performance of the neu-
ral network

starts. The potential rewards to be accumulated if all the tasks are successful

are illustrated in Table 4.3. The table shows that the maximum reward is not

achievable. This may occur due to the VTW of the tasks not overlapping with the

trajectories of the satellites.

The table 4.4 illustrates the total reward achieved after the predictive schedule

in phase three is complete. While generating the dummy tasks, the rewards for

those are generated randomly between 1 to 5. The reward accumulated is lower

for the original tasks from phase two due to the disruption in the schedule.

When new tasks arrive, during the mission, in the range of 100, 250 and 500

tasks during the mission, either a full reschedule at each time period during the
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Table 4.4: Predicted reward during phase three

Number of
original tasks

Average number of
predicted new tasks

Total
reward

Reward for
original tasks Time needed (s)

100 100 1562.54 1278.48 102
250 1975.87 1254.23 134
500 2659.65 1210.21 176

400 100 5231.16 4834.65 897
250 5521.31 4798.21 932
500 6128.97 4754.32 1044

Table 4.5: Comparison of the number of rescheduled tasks
for the proposed method and complete reschedule

Complete
reschedule

Proposed
method

Number of
new tasks

Number of
reschedule period

Number of tasks
rescheduled

Number of
reschedule period

Number of tasks
rescheduled

100 8 100 2 13
250 14 250 5 21
500 16 500 8 34

mission or the proposed method in an offline-online strategy may be applied. The

new tasks might not arrive every time period, so rescheduling is only needed after

those time periods when the new tasks arrive. Table 4.5 shows the number of

rescheduled periods and the number of tasks to be rescheduled for full rescheduling

and the proposed strategy.

Table 4.6 illustrates the rewards accumulated from using the proposed method

over rescheduling. The table also shows the reward accumulated if the final

rescheduling of phase four of the proposed method is skipped. The table fur-

ther shows the reward accumulated when the complete rescheduling is done with

minimum disruption as an objective. Finally, the reward achieved by simply plac-

ing the tasks in the idle times of the original schedule is also compared in the

table.
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One of the most important requirements of an online scheduler is the fast pro-

cessing time during the mission. Table 4.7 shows the total processing time and

the processing time during the mission for the above-mentioned strategies. The

table clearly illustrates that the proposed method with skipping the rescheduling

and placing the tasks into idle spaces is the quickest during the mission.
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Figure 4.8: Disruption in minutes vs. number of new tasks
over 100 Monte-Carlo runs

In Fig. 4.8, a boxplot is depicted to illustrate the increase in disruption to the

existing schedule when new tasks arrive during the mission. This boxplot is gener-

ated with 100 Monte-Carlo runs. The figure shows that with the proposed method,

the disruption to the existing schedule would be much lower than rescheduling at

every instance when new tasks arrive. This clearly shows a completely online

strategy is harmful and will create delays in task completion and will affect the re-

ward collection, as a whole. A combination of an online-offline strategy is a much
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beneficial choice in dynamic scenarios such as new task arrivals during ongoing

missions.

4.6 Conclusions

This work focuses on accommodating newly arrived tasks during the mission to

the existing schedule of AEOSs. Although a complete reschedule on a regular

interval is an easier option, it creates disruptions to the existing schedule and has

a high computational cost. A four-phase, online-offline AEOS scheduling strategy

is proposed in this work to deal with new task arrivals. The historical pattern of the

new task arrivals is learned using a neural network-based function approximator in

the first phase. In the second phase, pre-mission user-requested tasks are scheduled

using a constrained optimization problem with resource constraints. The third

phase uses the obtained schedule from the previous phase and the trained data from

phase one to create a predictive schedule with dummy new task arrivals. While

these three above-mentioned phases are performed before the mission, during the

mission, the fourth phase assigns the newly arrived real tasks to the dummy tasks

in the predictive schedule using a simple linear assignment problem. Only a few

tasks, which cannot be assigned, are kept for rescheduling. The experimental

results show that although a complete reschedule might yield more reward in most

cases, the computational cost and the disruption to the existing schedule are too

high to perform in an online manner with respect to the proposed method.

A possible future scope of this work is extending an online-offline strategy for

accommodating new task arrivals when the AOIs are large and cannot be imaged
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in a single scan, or there are multiple visit requirements for the user-requested

tasks.
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Chapter 5

Conclusions

5.1 Research Summary

In this thesis, AEOS scheduling problems with realistic operational constraints and

task specifications are studied. A mixed-integer non-linear optimization problem is

formulated in Chapter 2 that finds the optimal schedule by maximizing the reward

with realistic satellite resources as energy and memory constraints. To incorporate

the need for multiple scans to complete a task, a reward factor is included in

the objective function. Probability-based failure and success rates for completion

of scanning the tasks are also taken into consideration. An elitist mixed-coded

genetic algorithm-based methodology has been developed to solve the proposed

scheduling model. A three-stage AEOS scheduling model has been proposed to find

the optimal task assignment when the AOIs are too large to complete in a single

scan in Chapter 3. The proposed methodology minimizes the region overlapping

between the scans, which is a drawback of strip-based task segregation for larger

task regions. In both small and large-scale scenarios, this has been illustrated with
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simulation results. The inclusion of MDP in dealing with task failure uncertainty

provides superior performance in terms of reward accumulation. In Chapter 4,

new task arrivals during the mission are accommodated in the existing schedule of

AEOSs which is generated prior to the mission. Although a complete reschedule on

a regular interval is an easier option, it creates disruptions to the existing schedule

and has a high computational cost. A four-phase, online-offline AEOS scheduling

strategy is proposed in this chapter.

5.2 Future Scopes of Research

An obvious future step of this work is developing an online-offline strategy for

accommodating new task arrivals when the AOIs are large and cannot be imaged

in a single scan, or there are multiple visit requirements for the user-requested

tasks. Consideration of the AEOSs as a decentralized network, where the satellites

are autonomous agents that are cooperating with each other can be an interesting

future step as well.
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