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Abstract

Building a standard library of mathematical knowledge for a proof system is a complex

task that relies on human effort. By conducting a survey on the standard library of four

proof systems (Agda, Idris, Lean, and Coq), we define the scope for our research to study

types of algebraic structures in proof systems. From the result of the survey, we establish

our focus to contribute to the Agda standard library.

Universal algebra studies structures by abstracting out the specific definitions and

properties of algebraic structures. Providing an extensive and well-defined library of

algebraic structures and theorems in Agda will enable researchers to explore new domains

and build upon existing definitions (and theorems). We explore capturing a select subset

of algebraic structures such as quasigroups, loops, semigroups, rings, and Kleene algebra

with some of their constructs. Constructs like homomorphism, isomorphism and direct

products are given to us by universal algebra which provides a way to relate different

structures in a systematic and rigorous way. Homomorphisms allow us to understand

how different structures are related.

During our exploration of capturing these structures in Agda, we encountered several

issues. We categorized these issues into five classes and analyzed each problem to provide

plausible solutions. As part of this research, we define more than 20 algebraic structures

and add more than 40 proofs to the Agda standard library
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Chapter 1

Introduction

Abstract algebra is the study of algebraic structure that came into existence in the early

nineteenth century as complex problems and solutions evolved in other branches of

mathematics such as geometry, number theory, and polynomial equations. With the

growing help of technology, mathematicians are more indulged in automated reasoning.

Increasing powers of computers and software tools that help automated reasoning be-

come useful in their research. Although the proof systems that support first-order logic

are successful, developing a tool that supports higher-order logic is complex and requires

carefully defining mathematical objects and concepts [Phillips and Stanovskỳ(2010)].

Proof assistant systems act as a bridge between computer intelligence and human effort

in developing mathematical proofs. Agda, Coq, Isabelle, Lean, and Idris are some com-

monly used proof assistant systems. Mathematicians use these proof assistants to check

their proof for validity, build proofs and sometimes even generate them via proof search

tools. For the scope of the thesis, we only discuss types of algebraic structures in proof

systems.

For any software system to be robust, all its dependencies must similarly be robust.

1
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The standard libraries of these systems should support the user with the necessary func-

tionalities to be able to use the system easily without having to define all functionalities.

The paper [Carette et al.(2018)] explores techniques to generate libraries with minimum

human effort. Although generated libraries can define algebraic concepts, they are not

considered the "standard library" for any proof system. For now, building standard li-

braries for proof systems relies on human efforts. This led to the question of what is the

current scope of algebraic structures in the standard libraries of proof assistant systems.

A survey of the coverage of algebraic structures in the standard libraries of proof assistant

systems can help us understand which algebraic structures are already supported by

various proof assistants, and which structures are still missing. This information can help

researchers to identify gaps in existing proof assistants and guide future development. A

survey was conducted to better understand the coverage of algebra in four proof systems

Agda, Idris, Lean, and Coq. Agda was one such system where there was better scope to

contribute to the standard library.

Agda is used by mathematicians and computer scientists for research purposes. Con-

tributing certain algebraic structures and theorems to Agda would help researchers

explore new domains by building upon the existing definitions and theorems easily.

The Agda standard library follows an algebra hierarchy that starts with magma as the

initial structure from which other structures are defined. A magma is a set S with a

binary operation · such that, ∀x, y ∈ S, (x·y) ∈ S. A magma with associativity is called a

semigroup.

The definitions of constructs like homomorphism and direct product are given to us

by universal algebra. Universal algebra provides a common framework by abstracting

out the specific definitions and properties of algebraic structures. It helps us to study the

2
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commonalities of algebraic structures and define their constructs. An algebra in universal

algebra is defined as an ordered pair (S,F ) where S is a set and F = (Fi : i ∈ I ) is a finitary

operations on A for some indexing set I [Sannella and Tarlecki(2012)]. Certain constructs

like homomorphisms, isomorphisms and direct products help us to relate different

mathematical objects and structures in a systematic and rigorous way. Homomorphisms

allow us to understand how different algebraic structures are related to one another.

Direct product, on the other hand, is a useful tool for combining structures, such as

monoids, groups, or rings, to create new and more complex structures that retain the

properties of the original structures. This allows us to study and understand larger, more

complex systems and their properties.

1.1 Research Outline

To define the scope of our research, that is to study algebraic structures in proof assistant

systems, we capture the current coverage of algebraic structures in the standard libraries

of some commonly used proof assistant systems. As part of the survey, we consider four

libraries: The Agda standard library, the mathematical component library for Coq, Idris

2, and mathematical library for Lean 3. In the effort to find the coverage of algebraic

structures in these libraries, we develop a clickable table that directs to the definition of

the structure in the source code of these systems. Through the survey, we establish our

focus on contributing to the Agda standard library1.

Inspired by the ways algebraic structures are used in research, in this work we explore

capturing a select subset of them in the Agda standard library. We study two important

1I was exposed to Agda during coursework for my Master’s degree, further adding bias to choosing Agda
over other systems

3
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non-associative algebra that is quasigroup and loop structures. By defining them with

their constructs like homomorphism, monomorphism, isomorphism, and direct product

constructs, we can study their properties and relationships more systematically. We also

explore various types of loops such as bol-loop and moufang-loop and their properties.

Semigroups are used in various fields such as probability theory and formal systems. One

of the most commonly studied algebraic structures is the ring. In this thesis, we study

types of rings such as near-ring, quasi-ring, and non-associative ring. I was exposed to

Kleene algebra in discrete mathematics course. Inspired by the applications of Kleene

algebra in finite state machines, regular expressions, and other branches of computer

science, we study Kleene algebra by providing proof for its properties that may be used in

developing other systems or applications. By contributing to the Agda standard library,

we hope that this work will be used by others.

As we explored capturing these structures in Agda, we encountered several problems.

In this work, we abstract these problems into five classes:

1. Ambiguity in naming structures.

2. Equivalent structures that are structurally different.

3. Redundant field during structural inheritance.

4. Identical structures that can be derived in many ways in algebra hierarchy

5. Equivalent structures that are structurally the same.

We analyze each problem and provide plausible solutions to each one of them.

4
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1.2 Thesis Outline

Chapters 2 and 3 focus on the background information necessary for reading this work,

focusing on reviewing universal algebra and algebraic structures in Agda, respectively.

Chapter 4 is a survey on algebraic coverage in proof systems. The next three chapters 5, 6

and 7 are dedicated to discussing the structures in detail. Chapter 5 explores quasigroup

and loop structures with their variations. Chapter 6 discusses the properties of semigroup

and ring. Chapter 7 explores Kleene algebra, definition, construct and properties in Agda.

Chapter 8 describes various problems we faced during this work, as well as advice on

handling common issues in programming algebra in proof systems. Finally, Chapter 9

concludes this work with notes on related future works and some closing thoughts.

5



Chapter 2

Universal Algebra: An Overview

Universal algebra is a branch of mathematics that studies algebraic structures in a general

and abstract way. It provides a framework that allows mathematicians to study alge-

braic structures such as groups, rings, fields, lattices, and Boolean algebras, rather than

studying them individually. Universal algebra provides constructs like homomorphisms,

subalgebras, direct products, and more. These constructs help us understand the alge-

braic structures and relationships between them. Algebraic structures, like monoids,

loops, groups, and rings have similar properties. Universal algebra studies these struc-

tures by abstracting out the specific definitions and properties of algebraic structures.

Universal algebra will deal with these algebraic structures as axiomatic theories in equa-

tional first-order logic [Sharoda(2021)].

In this chapter, we study the concepts from universal algebra that help understand the

characterization of algebraic structures with their constructs in Agda in the later chapters.

We assume the reader to have basic knowledge of set theory (set, functions, and rela-

tions), knowledge of notation and concepts of first-order logic. Section 2.1 defines terms

like signature, theory, and algebra. We introduce constructs such as homomorphisms,

6
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monomorphisms, isomorphisms, and direct products in Section 2.2. The definitions in

this chapter are adapted from [Sankappanavar and Burris(1981)], [Wechler(2012)] and

[Sannella and Tarlecki(2012)].

2.1 Universe, Type, and Signature

Before we dive into defining algebra, we introduce some concepts that are used later in

the chapter.

• A term in logic represents an object in the domain of discourse.

• A function f : X → Y is a mapping that associates each element of domain (x ∈ X )

with a unique element in co-domain (y ∈ Y ).

• A function symbol (or operation name) represents an operation that maps the

elements of the domain to a unique element in the co-domain.

• The number of operands in a function (or operation) is the arity of the operation.

• A formula is a finite sequence of symbols from the set of alphabets of a language. A

well-formed formula is a formula that is valid according to the rules of the specific

language being used.

• Term expressions is a composition of terms with function symbols.

• For some formulas in propositional logic (a,b), we say a is a substitution instance

of b if and only if a may be obtained from b by substituting formulas for symbols

in b.

7
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Logic allows us to describe properties of entities as formulas and provide reasoning

about them. Equational logic limits these formulas (such as axioms or theorems) to be

universally quantified equations of the form t1 = t2. Here t1 and t2 are terms expressible in

the language of theory. A proposition is true if it is derivable from other true propositions

using inference rules. The three inference rules in equational logic described in [Gries

and Schneider(1993)] are:

• Leibniz equality: If two expressions are equal, then one expression can be substi-

tuted with the other without changing the truth statement.

t1 = t2

t [x 7→ t1] = t [x 7→ t2]

• Transitivity: If t1 = t2 and t2 = t3 then t1 = t3.

t1 = t2 t2 = t3

t1 = t3

• Substitution: For predicate p, if p t is true, it remains true on all conditions.

pt

p(t [xs 7→ t s])

where t , t1, t2,andt3 are term expressions, x is some symbol in the language, xs and t s

denote the list of symbols and expressions respectively.

• A signature is a set Σ. The elements of the set are called operation symbols (or

function names) together with the arity function ar : Σ→ N that assigns each

operation symbol with its finite arity.

8
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• A realization of an n-ary function name in a set A is an n-ary function on A.

• A Σ-algebra in [Wechler(2012)] is defined as: "Given a signature Σ, a Σ-algebra A

is a pair A = (A,ΣA) consisting of a set A called the carrier of A and a family of

realizations ΣA = (σA|σ ∈Σ) of realizations σA of operation symbols σ from Σ".

• Let E be a set of Σ-equations, then model (ModΣ(E )) denotes the class of Σ-algebra

satisfying all the Σ-equations in E .

ModΣ(E) = {A|A is a Σ-algebra and A |= E } = Mod [〈Σ,E〉]

• For a Σ-algebra A, the theory of A (T h(AΣ)) denotes the set of all Σ-equations

satisfied in A.

T h(AΣ) = {e|eis an equation and A |= e}

• A presentation is a pair (Σ,E) where Σ denotes the signature and E is a set of Σ-

equations.

• A theory can be defined in terms of presentation as a pair (Σ,E) that is a presenta-

tion such that E is closed. A set of Σ-equations (E) is closed if E = T hΣ(ModΣ(E)).

• The type (or language) of the algebra is a set of function symbols. Each member of

this set is assigned a positive number which is the arity of the member.

2.2 Constructions

Universal algebra provides definitions of constructions related to algebraic structures. In

this section, we will describe some of these constructions.

9
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• The congruence relation for an algebraic structure can be defined as an equivalence

relation that is compatible with the structure such that the operations are well-

defined on the equivalence class. For an algebra (A,F ), θ is a congruence on A if

θ satisfies the compatibility property. The compatibility property states that for

each n-ary function symbol f ∈ F and xi , yi ∈ A, If xi θ yi holds for 1 ≤ i ≤ n then

f A(x1, ..., xn) θ f A(y1, ...., yn) holds [Sankappanavar and Burris(1981)].

• A homomorphism is a structure-preserving map between two algebraic structures.

It is an abstraction that generalizes the map between two structures or mathe-

matical objects in general. If A and B are two algebras of same type F , then a

homomorphism is defined as a function α : A → B such that:

α ( f A(a1....an)) = f B ((α a1)....(α an))

For each n-ary f in F and each sequence a1....an from A.

Some variants of homomorphism are:

1. Monomorphism: For two algebras A and B , if α : A → B is a homomorphism

from A to B , and if α satisfies one-to-one mapping (i.e., α is injective) then

the homomorphism α is called a monomorphism.

2. Isomorphism: For algebra A and B , a homomorphism f : A→B is an isomor-

phism if it has an inverse, i.e. there is a homomorphism f −1 : B→A such that

f f −1 = i d|A| and f −1 f = i d|B |

3. Endomorphism: A homomorphism from an algebra A to itself is called endo-

morphism. In other words, if f is a homomorphism on A such that f : A → A

then, f is an endomorphism.

10
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4. Automorphism: An isomorphism from an algebra A to itself is called auto-

morphism.

5. Epimorphism: For two algebras A and B , if α : A → B is a homomorphism

from A to B , and if α is surjective then the homomorphism α is called a

epimorphism.

• For algebras A, B , and C the composition of homomorphisms f : A → B and

g : B → C is denoted by the function g ◦ f : A → C and is defined as (g ◦ f ) a =
g ( f a), ∀ a ∈ A. In [Sankappanavar and Burris(1981)], the author proves that

the composite of two homomorphisms (monomorphisms/isomorphisms) is also a

homomorphism (monomorphism/isomorphism).

• Product algebra: For two Σ-algebra A and B , the product algebra (A ×B) is the

Σ-algebra defined as:

– |A×B | = |A|× |B |

– for each operation f in Σ: f (x1A , x1B )...(xnA , xnB ) = ( f A x1A ...xnb , fB x1B , xnB )

where x1A , ..., xnB are elements in A and x1B , ..., xnB are elements in B .

• Direct product: For set of algebra {Ai |i ∈ I } of same type indexed by some arbitrary

set I , the cartesian product of the underlying sets is defined as A =∏
i∈I

Ai . Let ωAi

be the corresponding n-ary operator on Ai . We can define ωA : An → A by

ωA(a1, ...an)(i ) =ωAi (a1(i ), ..., an(i ))∀i ∈ I

where element a ∈ A is a function from indexing set I to
⋃

Ai such that i ∈ I , a(i ) ∈ A.

The algebra A equipped with all ωA on A is the direct product of Ai . Each Ai is

11
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called the direct factor of A.

• The direct sum of two algebraic structures A and B is an algebra denoted as A
⊕

B .

The underlying set of |A ⊕
B | is the disjoint union of the underlying sets of A

and B , and the operations are defined separately on each component. If A has

operations f1, f2, ... fn and B has operations g1, g2, ...g2, then A
⊕

B has operations

f1, f2, ... fn , g1, g2, ...g2 defined component-wise [Bailey(2023)].

12



Chapter 3

Agda

Agda is a dependently typed programming language based on Martin-Löf type theory

[Agda Development Team(2023c)]. Agda allows programmers to define types that depend

on values, to write functions that utilize these types, and to prove the correctness of

the program in the same language [Stump(2016)]. Agda is also a proof assistant system.

Agda is designed to help programmers write and verify correct programs by allowing

them to express their intentions in a precise and formal way. Agda has been used in

various applications such as formal verification, program synthesis, theorem proving,

and automated reasoning [Saqib Nawaz et al.(2019)]. It is also used by researchers and

academicians to teach and explore the concepts of functional programming, type theory,

and formal methods.

In this chapter, we’ll discuss several concepts in Agda. Section 3.1, explores types and

functions, understanding how they work in Agda. Section 3.2 and 3.3 discuss the type

levels and equality in Agda respectively. Characterization of algebraic structures with

respect to the Agda standard library is discussed in section 3.4. The chapter also covers

essential constructs such as homomorphism, isomorphism, and direct product in Agda

13
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in section 3.5 and section 3.6. We do not discuss other constructs like quotient algebra

[Wechler(2012)] to keep uniformity with what is in the Agda standard library. Finally,

section 3.7 discusses equational proofs in Agda.

3.1 Types And Functions In Agda

3.1.1 Types In Agda

Agda is based on a core language that provides a minimal set of primitives and types

and is extended with libraries and modules that define more complex data structures,

algorithms, and abstractions. Agda’s type system allows for the definition of new types

and operations that are tailored to the specific needs of a particular application or domain.

Agda supports inductive types, simple types, and parameterized types [Bove et al.(2009)].

A data type in Agda can be declared using the keyword data or record.

data Bool : Set where
false : Bool
true : Bool

In the above example code, there are four things to notice.

1. data is the keyword used to define a new data type.

2. Bool is the name of the data type.

3. Bool is a type of kind Set. (More about Set is explained later in the chapter)

4. There are two constructor values of type Bool. They are false and true.

14
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Let us consider another example of inductive datatype1 to define natural numbers

Nat.

data Nat : Set where
zero : Nat
suc : Nat -> Nat

We can see that for defining natural numbers, it is impractical to list all the construc-

tors like how we did for Bool. Instead, we give two ways to construct a natural number:

zero is a natural number and suc is the successor of a natural number. In the above

definition, Nat is an inductive type defined with base constant zero and an inductive

data constructor suc. zero and suc are constructors, where suc has a parameter of type

Nat and zero has no parameters.

A record type in Agda is defined by using the keyword record. For example:

record Person : Set where
field

name : String
age : Nat

In the example code, there are four things to notice.

• Person is the name of the data type.

• In record type, parameters may be defined after the record’s name declaration or

may be declared with field keyword.

• field keyword indicates the start of field declaration.

• name : String and age : Nat denotes that name and age are fields of type

String and Nat respectively.

1An inductive datatype is a datatype that is defined in terms of itself.
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You can then create instances of this record type by providing values for the fields:

alice : Person
alice = record { name = "Alice" ; age = 25 }

We can access the fields of a record using dot notation:

nameOfAlice : String
nameOfAlice = alice.name

ageOfAlice : Nat
ageOfAlice = alice.age

We can use constructor keyword in record type declaration to define a constructor

function for creating instances of the record type. For example:

record Person1 : Set where
constructor makePerson
field

name : String
age : Nat

We can use the constructor makePerson to create instances of the Person1 record:

alice : Person1

alice = makePerson "Alice" 25

In Agda, the types of fields within a record can depend on the values of other fields

within the same record. This way we can express the relationship or constraints between

the components of a record. An example of this is the Agda’s built-in Σ-type of dependent

pairs.

record Σ {a b} (A : Set a) (B : A → Set b) : Set (a t b) where
constructor _,_
field

fst : A
snd : B fst
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The Σ type represents a pair of values where the type of the second value depends

on the value of the first. The underscore in the constructor denotes where the argument

goes. We see more examples of this kind when we talk about functions later in the chapter.

To instantiate this Σ record type, we need to provide an element of type A and a value of

type B fst:

alice : Σ String (λ _ → Nat)
alice = "Alice" , 25

Σ is a dependent pair type constructor that takes two arguments of type String and

(λ _ → Nat). The underscore in λ _ → Nat serves as a placeholder indicating that

the type of the second component depends on the value of the first component. The

underscore (_) placeholder is often used in Agda to indicate that you don’t need to

provide a name for a variable when its value isn’t explicitly used in the expression. We see

more examples of record type when we define algebraic structure later in the chapter.

3.1.2 Functions In Agda

Those familiar with Haskell will find Agda to be somewhat familiar. For example, functions

have a very similar syntax to those in Haskell. A function in Agda is defined by declaring

the type followed by the clauses.

f : (x1 : A1) → ... → (xn : An) → B
f p1 ... pn = d
...
f q1 ... qn = e

Where f is the function name, p and q are the patterns of type A. d and e are ex-

pressions. There are other ways to define a function such as using dot patterns, absurd

patterns, as patterns and case trees [Bove et al.(2009)].
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With the above definition of type Bool, let us define not function using pattern

matching as:

not : Bool → Bool
not false = true
not true = false

not function takes an argument of type Bool. The equal sign (=) is used to say that

when a clause on the left-hand side of the equal sign is seen, and the right-hand side is

what’s computed.

Similar to Haskell, Agda doesn’t have the concept of multi-argument functions. For ex-

ample, to define addition (add) function on natural numbers (Nat), we take an argument

Nat and return a function that takes Nat and returns Nat.

add : Nat → Nat → Nat
add zero m = m
add (suc n) m = suc (add n m)

Operators in Agda are typically defined using symbolic notation or special operator

symbols. Addition as an infix operation can be defined in Agda as:

_+_ : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)

In the above example, the function _+_ takes two arguments of type Nat and returns

a value that is the sum of the two arguments of type Nat. The underscore symbol in the

name specifies where the argument goes. A recursive call must be made on a structurally

smaller argument. For the function _+_ above, the first argument n is smaller in the

recursive call suc n. Operators can have different associativity and precedence rules.

You can specify the fixity of operators to control how they are parsed. For example,

infixl 5 _+_
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3.2 Type Levels In Agda

In the above section, we said Bool is a type of kind Set. What we normally call Type

in programming, Agda calls it Set. If Set is a type of type, is it possible that Set is its

own type? If we make Set a type of itself, then the language becomes non-terminating

[Stump(2016)].

Bertrand Russell introduced a paradox when defining the collection of all sets and is

called Russell’s paradox. The naive set theory defines a set as a well-defined collection of

objects. The paradox [Russell(1939)] defines the set of all sets that are not members of

themselves. This develops into two kinds of contradictions.

• If the set contains itself, then it should not be a member of itself by definition

• If the set does not contain itself then it is not a member of itself.

In Martin-Löf’s type theory, when we make a Set its own type, it causes inconsistency,

by Girard’s paradox [Coquand(1986)]. To overcome this paradox, Agda introduces a series

of universes to create the type hierarchy, and each universe represents a level of types

[Agda Development Team(2023a)]. A universe is a type whose elements are type [Agda

Development Team(2023b)]. This primitive type is useful to define and prove theorems

about functions that operate on large sets. In Agda, not every type belongs to Set. Since

we cannot have a type Set : Set, Agda provides a hierarchy of universes Set, Set1,

Set2 and so on. Set stands for Set0 and it is the base universe. From the definition of

Bool discussed in section 3.1, false and true is of type Bool, the type of Bool is Set,

Set is of type Set1, and so on. Agda doesn’t allow types at a given level to depend on

types from higher universes.

We saw that in Agda, not every type belongs to Set. Every type belongs somewhere
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in the hierarchy Set0, Set1, Set2, and so on. This definition works if we are comparing

two values of some type in Set. But, we cannot compare two values that belong to

Set ` for some arbitrary `. To solve this problem, Agda provides type Level. The type

Set ` represents the type of all types at level `. For example, Set 0 represents Set0,

Set 1 represents Set1, and so on. This type helps us to define equality generalized to an

arbitrary level.

3.3 Equality

In Chapter 2, when defining theory, we said that an equation is of the form t1 = t2 where

t1 and t2 are term expressions and = represents equality relation. In dependent type

theory, equality is a complex concept. Equality says that two things are "equal". But

asking "when two things are equal" is nontrivial. In this section, we discuss a hierarchy of

"sameness" from [Bocquet(2020)] and [Eremondi et al.(2022)].

3.3.1 Syntactic Equality

For some symbol t1andt2, t1 = t2 if t1and t2 are literally the same symbols. This is called

syntactic equality.

3.3.2 Definitional Equality

Definitional equality says that t1 = t2 when solving one symbol by applying some defi-

nitions leads to syntactic equality. Two programs are equal if they compute to the same

value. For example, (λx → x + y)5 and 5+ y are the same. 5+ y is obtained when we

compute the value of the expression (λx → x + y)5.
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When we write a function in Agda, we add defining equations to Agda’s definitional

equality. For example, let us write a logical AND function (_^_) in Agda:

_^_ : Bool → Bool → Bool
true ^ true = true
x ^ y = false

In Agda, not every equation we write holds literally. In the above example, only the

equation true ^ true = true holds. The equation x ^ y = false overlaps with the

first equation when both x and y are true. This equation does not hold definitionally. In

Agda, when pattern matching, cases are tried in order from top to bottom. Agda will split

the above clause to three equations which holds definitionally [Abel(2012)]:

false ^ true = false

true ^ false = false

false ^ false = false

Some fundamental rules that Agda follows for definitional equality are:

• Beta reduction - We apply a lambda abstraction to an argument by substituting

the argument into the body of the function. In Agda, we can replace the formal

parameter of a lambda abstraction with an actual argument. This leads to the

simplification of the expression.

• Congruence Rules - If two expressions are equal, and you perform an operation on

both expressions, the results should also be equal. In Agda, if two expressions are

definitionally equal, we can replace the sub-expressions with equal expressions

that will result in equal expressions.
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• eta-expansion - For the record definition Person given in section 3.1, every x : Person

is definitionally equal to record {name = Person.name x ; age = Person.age x}.

It is based on the principle that two functions are equal if they produce equal results

for all possible arguments.

We limit the scope of definitional equality here. Some references to find more infor-

mation about definitional equality are [Norell(2007)] and [Martin-Löf and Sambin(1984)].

3.3.3 Propositional Equality

When we write proof to say that two programs are equal, this proof may not be a defini-

tional equality. Instead, this proof itself can be a program that expresses that two things

are equal. In a universe polymorphic type system like Agda, types are classified into

various levels denoted as Set0, Set1, Set2, and so on. The definition of propositional

equality in the Agda standard library is universe polymorphic. That is a generic definition

of propositional equality is given using universes that can be used in different levels.

data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x

In the above definition, a is an implicit parameter representing the universe level of

the set. In Agda, propositional equality _≡_ is defined for any type A and any element x of

type A, the identifier refl provides evidence that x ≡ x. Therefore every value is equal

to itself and there is no alternative way to show values are equal. From this definition of

equality, we can prove that it is an equivalence relation.

sym : Symmetric {A = A} _≡_
sym refl = refl
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trans : Transitive {A = A} _≡_
trans refl eq = eq

We see how Symmetric and Transitive are defined in subsection discussing equiva-

lence.

3.3.4 Equivalence

In Agda’s standard library, equivalence (_≈_) is often preferred over propositional equality

(_≡_) when defining algebraic structures [Al Hassy(2021)]. In Agda, equivalence is defined

as a record type with three fields to say that the relation is reflexive, symmetric and

transitive:

record IsEquivalence : Set (a t `) where
field

refl : Reflexive _≈_
sym : Symmetric _≈_
trans : Transitive _≈_

In the above code, IsEquivalence is defined over for carrier A : Set a and binary

relation _≈_ : REL A ` that are parameters to the module Relation.Binary.Core.

We see why modules are parameterized with carrier set and equality relation later in the

chapter when defining algebraic structures. The field refl is of type Reflexive _≈_

and is defined as:

Reflexive : Rel A ` → Set _
Reflexive _∼_ = ∀ {x} → x ∼ x

Where _∼_ is a relation of type Rel A ` that says for all element x, the elements are

related to itself x ∼ x. Type-level functions refer to functions that operate on types rather

than on values. They are functions that take types as input and return types as output.
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Symmetric relation is defined over a generalized symmetry that flips the order of

arguments.

Sym : REL A B `1 → REL B A `2 → Set _
Sym P Q = P ⇒ flip Q

The first line declares Sym that takes two arguments: P of type REL A B `1 and Q of type

REL B A `2. Where A and B are carrier sets over arbitrary universe level. The module

result type Set _, where the underscore represents a universe level that will be inferred.

flip is a function to flip the order of the arguments.

Symmetric : Rel A ` → Set _
Symmetric _∼_ = Sym _∼_ _∼_

Symmetric uses the previously defined Sym that states that a relation _∼_ is symmetric

if it satisfies the conditions of symmetry as defined in the Sym. Symmetric will evaluate

to type that ∀ x y : A, x ∼ y → y ∼ x for relation ∼ of type REL A `.

Similar to symmetric relation, transitivity is defined using generalized transitive rela-

tion and Transitive will evaluate to type that∀ i j k : A, i ∼ j → j ∼ k → i ∼ k

for relation ∼ of type REL A `.

Trans : REL A B `1 → REL B C `2 → REL A C `3 → Set _
Trans P Q R = ∀ {i j k} → P i j → Q j k → R i k

Transitive : Rel A ` → Set _
Transitive _∼_ = Trans _∼_ _∼_ _∼_

3.4 Structure Definition

A design decision was made in the Agda standard library to define algebraic structures as

a record type. The category theory library [Hu and Carette(2021)] also follows the same
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design pattern to use record types. There are several advantages to using record type:

• Record types provide a convenient and flexible way to bundle together data and

operations that satisfy certain algebraic properties.

• Algebraic structures may have dependent relationships between their components.

For example, the type of an identity element depends on the type of elements

in the set. Record types support dependent types, allowing you to express these

relationships accurately.

• Records behave as modules. This allows us to export symbols in record type and

bring them to scope. We may also need to make sure doing so does not create

ambiguity.

• Record types have good IDE support(via Emacs)

Let us now try to define IsMonoid, an algebraic structure in Agda. A monoid is

an algebraic structure with a binary operation that satisfies associativity and has an

identity element. In Agda, we can define a structure as a record type using the keyword

record. The record type allows to have parameters immediately after the record’s name

declaration or may be declared with field keyword.

record IsMonoid (A : Set) : Set where
field

e : A
op : A → A → A

assoc : ∀ {x y z} → op x (op y z) ≡ op (op x y) z
leftId : ∀ {x} → op e x ≡ x
rightId : ∀ {x} → op x e ≡ x

In the above example, we see that IsMonoid structure has a parameter A : Set with
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fields e - the identity element and op - the binary operation. We give the laws of monoid

structure as its field. Another way to define a monoid structure is to parameterize the

binary operation and the identity element.

record IsMonoid0 {A : Set} (_·_ : A → A → A) (ε : A) : Set where
field

assoc : ∀ {x y z} → op x (op y z) ≡ op (op x y) z
leftId : ∀ {x} → op e x ≡ x
rightId : ∀ {x} → op x e ≡ x

In the above definition, the carrier set A becomes implicit and we parameterize the

operations of the structure. In theory, both the definitions are the same. Using fields

inside the record may provide a more encapsulated and self-contained representation of

the algebraic structure while having them after the record name allows more flexibility in

choosing the carrier set and operation when creating instances of the record.

From the above definition of IsMonoid0, when we try to define IsGroup2, we see

that both monoid and group have things in common. They both have a carrier set (A), a

binary operation (op), and an identity element (e). Given two structures that share some

components, expressing that sharing component becomes difficult [Al Hassy(2021)].

To overcome these difficulties, we may parameterize the sharing components like the

operations and the carrier set.

We may observe that all the algebraic structures have a carrier set. When defining

algebraic structures in a module, we can make the carrier set as the argument to the

module, so it is accessible by all the structures defined under that module. The module

declaration is treated as a top-level function that takes the parameters of the module as

arguments. The parameters can be values and types but not other modules.

In section 3.3, we introduced different ways to say when two things are equal. When

2Group is an algebraic structure that is a monoid with inverse operation.
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defining IsMonoid, we used Agda’s propositional equality (_≡_) to compare the terms.

However, in practice, this definition of propositional equality is too strong and one prefers

to use a finer equivalence relation [Al Hassy(2021)]. Equivalence is useful when we want

to capture "sameness" in a more flexible way. Agda standard library gives a binary relation

as an argument to the module and equivalence relation (isEquivalence) as a field to

the IsMagma (defined later in the chapter) structure from which other structures are

extended.

module Algebra.Structures
{a `} {A : Set a}
(_≈_ : Rel A `)
where

In the above code, we see that the Agda standard library allows us to define things at

some arbitrary level. A is a Set in some level a and _≈_ is a homogeneous binary relation

Rel on universe A `.

Now we can define a magma structure in Agda with equivalence as:

record IsMagma0 {A : Set} (_·_ : A → A → A) : Set where
field

isEquivalence : IsEquivalence _≈_

Although the equivalence allows us to compare the terms, it becomes restrictive to

play with equal terms. In this case, we can use congruence which says that if two elements

are equivalent, then applying certain operations to them should yield equivalent results.

For example, let ≈ be an equivalence relation on a set S and operation f : S×S→S. The

operation f is said to be congruent with respect to the equivalence if, for all a,b,c,d ∈
S, a≈b and c≈d , then f (a,c)≈ f (b,d). Therefore when defining a structure we give

congruence with the operation.
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Let us understand how algebraic structure is defined in the Agda standard library.

An algebraic structure is defined in the Agda standard library as a record type using

the record keyword. The structures are obtained by wrapping the predicates that are

expressed as "is-a" relation [Hu and Carette(2021)]. The types of algebraic structures are

defined in module Algebra.Structures that have an underlying set A and a homoge-

neous binary relation _≈_. The following example shows how to characterize magma

structures in Agda:

record IsMagma (· : Op2 A) : Set (a t `) where
field

isEquivalence : IsEquivalence _≈_
·-cong : Congruent2 ·

open IsEquivalence isEquivalence public

In the above example, structure IsMagma is defined as a record type with a parameter

Op2 A. The properties of the structure IsMagma are declared as the fields of the record,

which include equivalence (isEquivalence) and congruence (·-cong). · is a binary

operation on the set A. a t ` gives the largest of two levels. _≈_ is the binary operation

argument for IsEquivalence. IsEquivalence and Congruent2 are predicates defined

in standard library. We open the module isEquivalence to bring its definition into scope.

The open statement is made public using the keyword public to be able to re-export the

names from another module.

In the above definition, we see (· : Op2 A), the binary operation. Instead of writing

A → A → A, the Agda standard library defines a type-level function Op2.

Op2 : ∀ {`} → Set ` → Set `

Op2 A = A → A → A

The subscript 2 represents that it is a binary operation. Similarly, the standard library
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defines Op1:

Op1 : ∀ {`} → Set ` → Set `

Op1 A = A → A

Although parameterized structures are same as the unparameterized (unbundled)

versions, in practice there may be certain presentations that are useful. Paper [Al-hassy

et al.(2019)] discusses ways to unbundle a structure at will. When building a library, it

is not practical to provide all ways of parameterized structures. Agda standard library

provides a bundled version of the structures. The bundled version of the structures

contains the operations of the structures, sets and axioms. Agda standard library defines

the raw representation of a theory that is the definition of its signature. RawMagma in Agda

standard library is defined as:

record RawMagma c ` : Set (suc (c t `)) where
infixl 7 _·_
infix 4 _≈_
field

Carrier : Set c
_≈_ : Rel Carrier `

_·_ : Op2 Carrier

infix 4 _6 ≈_
_6 ≈_ : Rel Carrier _
x 6 ≈ y = ¬ (x ≈ y)

_6 ≈_ is the inequality relation that states that two elements are not equal x 6 ≈ y

if they are not equal under the equivalence relation. Bundled version structures are

defined by importing structures from Algebra.Structures so we can parameterize the

definitions with equality that is used to compare the terms of the structure.
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record Magma c ` : Set (suc (c t `)) where
infixl 7 _·_
infix 4 _≈_
field

Carrier : Set c
_≈_ : Rel Carrier `

_·_ : Op2 Carrier
isMagma : IsMagma _≈_ _·_

open IsMagma isMagma public

rawMagma : RawMagma _ _
rawMagma = record { _≈_ = _≈_; _·_ = _·_ }

open RawMagma rawMagma public
using (_6 ≈_)

Above is the bundled version of IsMagma structure. RawMagma is the raw version of

the magma with only the operators and set. infix<l,r> denotes the fixity and precedence

of the operator. The operator with higher fixity binds more strongly than an operator

with a lower numeric value. _≈_ defines equality used to compare terms of Magma. using

keyword is used to limit the imported components.

Before we finish discussing the structure definition, there is one important concept

to discuss that is renaming. Although the choice of name is theoretically irrelevant,

renaming is often used to provide more generic and consistent naming conventions,

making the library easier to use and more accessible to users. The Agda standard library

uses certain conventions for renaming. Keyword renaming is used to rename the fields.

Consider the below example:
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record IsNearSemiring (+ * : Op2 A) (0# : A) : Set (a t `) where
field

+-isMonoid : IsMonoid + 0#
*-cong : Congruent2 *
*-assoc : Associative *
distribr : * DistributesOverr +
zerol : LeftZero 0# *

open IsMonoid +-isMonoid public
renaming
( assoc to +-assoc
; ·-cong to +-cong
; ·-congl to +-congl

; ·-congr to +-congr

; identity to +-identity
; identityl to +-identityl

; identityr to +-identityr

; isMagma to +-isMagma
; isUnitalMagma to +-isUnitalMagma
; isSemigroup to +-isSemigroup
)

*-isMagma : IsMagma *
*-isMagma = record

{ isEquivalence = isEquivalence
; ·-cong = *-cong
}

*-isSemigroup : IsSemigroup *
*-isSemigroup = record

{ isMagma = *-isMagma
; assoc = *-assoc
}

open IsMagma *-isMagma public
using ()
renaming
( ·-congl to *-congl

; ·-congr to *-congr

)
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We use using, hiding, and renaming to control which names are brought into scope.

From the above example, we see that for addition operation (+), the fields of the form

X are renamed to +−X . [Al Hassy(2021)] proposes packaging the renaming to helper

modules. However, as new algebraic structures are added to the library, it becomes more

difficult to maintain the conventions and requires carefully defining the structures.

3.5 Homomorphism In Agda

A homomorphism is a structure-preserving map between two structures. For two magma

structures (A, ·) and (B ,◦), a homomorphism f : A → B is defined as:

f (x · y) = f (x) ◦ f (y)

In Agda, homomorphism for two magma structures is defined as a record type:

module MagmaMorphisms (M1 : RawMagma a `1) (M2 : RawMagma b `2) where

open RawMagma M1 renaming (Carrier to A; _≈_ to _≈1_; _·_ to _·_)
open RawMagma M2 renaming (Carrier to B; _≈_ to _≈2_; _·_ to _◦_)

record IsMagmaHomomorphism (�_� : A → B) : Set (a t `1 t `2) where
field

isRelHomomorphism : IsRelHomomorphism _≈1_ _≈2_ �_�
homo : Homomorphic2 �_� _·_ _◦_

open IsRelHomomorphism isRelHomomorphism public
renaming (cong to ��-cong)

The raw structures, in the above example, RawMagma is the definition of the signa-

ture of the structure. IsMagmaHomomorphism is a record type with fields isRelHomomorphism

and homo. Since the formalization of the types of algebraic structures in Agda is based on
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setoid, IsRelHomomorphism is defined for homomorphism between the homogeneous

equivalence relations _≈1_ and _≈2_. Homomorphic2 is defined for two binary operations

as:

Homomorphic2 : (A → B) → Op2 A → Op2 B → Set _
Homomorphic2 �_� _·_ _◦_ = ∀ x y → � x · y � ≈ (� x � ◦ � y �)

From this definition of homomorphism, monomorphism of the structure is given as:

record IsMagmaMonomorphism (�_� : A → B) : Set (a t `1 t `2) where
field

isMagmaHomomorphism : IsMagmaHomomorphism �_�
injective : Injective �_�

open IsMagmaHomomorphism isMagmaHomomorphism public

IsMagmaMonomorphism is defined as a record type with field isMagmaHomomorphism

and injective. The Injective function is a one-to-one map defined as:

Injective : (A → B) → Set (a t `1 t `2)
Injective f = ∀ {x y} → f x ≈2 f y → x ≈1 y

where _≈1_ is the equality over the domain A and _≈2_ is the equality over codomain

B.

Isomorphism of a structure can be derived from monomorphism with surjectivity.

record IsMagmaIsomorphism (�_� : A → B) : Set (a t b t `1 t `2) where
field

isMagmaMonomorphism : IsMagmaMonomorphism �_�
surjective : Surjective �_�

open IsMagmaMonomorphism isMagmaMonomorphism public

IsMagmaIsomorphism is defined as a record type with field isMagmaMonomorphism

and surjective. A surjective relation requires equality (_≈2_) on the codomain B and is
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defined as:

Surjective : (A → B) → Set (a t b t `2)
Surjective f = ∀ y → ∃ λ x → f x ≈2 y

3.6 Product Algebra

Recall the definition of product, direct product, and direct sum discussed in Chapter 2. A

co-product of an algebra is the dual of the product algebra [Sannella and Tarlecki(2012)].

A bi-product of algebra is an algebra that is both a product and a co-product. The standard

library defines objects that are products of appropriate algebras and calls them direct

products. In many cases, the bi-product coincides with the direct product when certain

conditions are met [Szabo(2000)]. For the scope of the thesis, we do not consider this

distinction. There is currently an issue in the standard library to address this problem.

The difference between a direct product and a cartesian product is mainly related to

the type of mathematical structures you are dealing with. Cartesian product refers to sets

with no additional structure. The Cartesian product of two sets A and B , denoted as A×B ,

is a new set that contains ordered pairs (a,b) where a is an element from set A, and b is

an element from set B . A direct product typically deals with algebraic structures, such as

groups, rings, or vector spaces.

The products of various structures are defined under the module Algebra.Construct. c

DirectProducts in the Agda standard library. The product of magma structure is defined

as:
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magma : Magma a `1 → Magma b `2 → Magma (a t b) (`1 t `2)
magma M N = record

{ Carrier = M.Carrier × N.Carrier
; _≈_ = Pointwise M._≈_ N._≈_
; _·_ = zip M._·_ N._·_
; isMagma = record

{ isEquivalence = ×-isEquivalence M.isEquivalence N.isEquivalence
; ·-cong = zip M.·-cong N.·-cong
}

} where module M = Magma M; module N = Magma N

where Magma is the bundled version of the magma structure. The carrier set for the

direct product of M and N is the product M ×N . Pointwise gives the product of relations

(_≈_) in M and N. zip gives aΣ-type of dependent pairs. ×-isEquivalence is the product

of equivalence relations in M and N.

3.7 Equational Proofs In Agda

A proof is a sequence of steps that transform one expression into another using a set of

rules. Agda allows us to declare properties of functions and data types that need to be

verified by the compiler [Kidney(2020)]. A constructive equational proof in Agda refers

to the process of proving a logical proposition using equational reasoning within Agda’s

type system [Murray(2022)].

In section 3.1, we have seen how to define natural numbers and addition function

on it. Now, we will write an inductive proof using pattern matching that states that the

addition of two natural numbers is commutative.

comm : ∀ (m n : Nat) → m + n ≡ n + m
comm zero zero = refl
comm zero (suc n) = cong suc (comm zero n)
comm (suc m) n = cong suc (comm m n)
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In the above example, we see three cases:

• Case 1: When comm zero zero, that is m = n = 0. Then zero + zero = zero

holds by reflexivity. The proof comm zero zero represents commutative prop-

erty where both m and n are zero. The refl function is used to prove that two

expressions are equal using the reflexivity of equality.

• Case 2: comm zero (suc n), in this case, m is zero and n is a successor of some nat-

ural number. The proof proceeds recursively using induction on n. The recursive

assumption is that comm zero n is already proved. That is zero + n = n + zero.

Using this assumption, we can conclude that zero + suc n is equal to suc n + zero,

by incrementing both sides of the equation with suc.

• Case 3: comm (suc m) n, In this case, m is a successor of some natural number, and

n can be any natural number. The proof uses induction on m. The inductive step

relies on the assumption that comm m n is true. The proof applies the successor

function suc to both sides of the equation, to show that suc m + n is equal to

n + suc m.

In algebraic structure, consider the example of the proposition that x·(y ·z) = y ·(x·z)

for a commutative semigroup i.e., a Magma with associativity (x·(y ·z) = (x·y)·z) and

commutativity (x·y) = (y ·x). The proof can be written in Agda as:

x·yz≈y·xz : ∀ x y z → x · (y · z) ≈ y · (x · z)
x·yz≈y·xz x y z = begin

x · (y · z) ≈〈 sym (assoc x y z) 〉
(x · y) · z ≈〈 ·-congr (comm x y) 〉
(y · x) · z ≈〈 assoc y x z 〉
y · (x · z) ■
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To make proofs more readable, people have tried to emulate textual proofs, for ex-

ample, by creating "begin" and "end" syntax. begin indicates the start of the proof.

begin_ is a function that takes two type arguments x and y, and an argument of type x

IsRelatedTo y. It returns a proof that x is equivalent (∼) to y. The function simply uses

pattern matching to extract the proof x∼y and returns it.

begin_ : ∀ {x y} → x IsRelatedTo y → x ∼ y
begin relTo x∼y = x∼y

IsRelatedTo is a type defined to infer arguments even if the underlying equality

evaluates. Standard step to relation is defined as step-∼.

step-∼ : ∀ x {y z} → y IsRelatedTo z → x ∼ y → x IsRelatedTo z
step-∼ _ (relTo y∼z) x∼y = relTo (trans x∼y y∼z)

The step-∼ function provides a way to extend an equational proof using the relation

IsRelatedTo while maintaining the equality (∼). It takes an initial proof that x ∼ y, a

proof relTo y∼z of y IsRelatedTo z, and produces a proof of x IsRelatedTo z. The

trans is the transitivity used to combine two proofs of relatedness.

The step-≈ gives convenient syntax for invoking the step-∼. step using equality is

given as:

step-≈ = Base.step-∼
syntax step-≈ x y≈z x≈y = x ≈〈 x≈y 〉 y≈z

It provides a syntax shortcut for using the ≈〈 〉 notation, which allows you to chain

relatedness proofs using equational reasoning.

The termination (i.e., QED) of the proof is given using _■ that relates object to itself.

_■ : ∀ x → x IsRelatedTo x
x ■ = relTo refl
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Chapter 4

Types Of Algebraic Structures In Proof

Assistant Systems - Survey

A survey of coverage of algebraic structures in proof systems will help to identify the gaps

in the system. A survey can provide insights into how well each proof assistant supports

the formalization of algebraic structures, making it easier for researchers and developers

to choose the right platform for their mathematical formalization. Researchers and

developers may be inspired to work on formalizing missing algebraic structures, which

can lead to improvements in the tools and expand their utility.

This chapter provides the coverage of algebraic structures in proof assistant systems.

Since I was exposed to Agda in the coursework, it added bias to select systems that are

comparable with Agda thus eliminating systems such as Mizar and Isabelle. We consider

four proof assistant systems that are all dependently typed higher-order programming

languages [Saqib Nawaz et al.(2019)]. A standard library for a system is a collection

of mathematical definitions with logical constructs, proof tactics, and utility functions
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that provide a foundational set of tools and definitions for users of these proof assis-

tants [Kohlhase and Rabe(2021)]. For the scope of the thesis, we consider the libraries

as standard libraries that are commonly used and referenced for the respective proof

systems in the context of algebra. This chapter aims to provide documentation for the

algebraic coverage in the standard libraries of proof assistant systems Agda, Idris, Coq,

and Lean. In this chapter, the latest available versions are considered i.e., Agda standard

library v1.7 [Community"(2022)], Idris 2.0 [Brady(2021)], The Mathematical Components

Library v1.13.0 [Mahboubi and Tassi(2021)], and The Lean mathematical library[mathlib

Community(2020)].

The rest of the chapter is organized as follows: Section 4.1 gives a brief overview of

the proof systems that we discuss in this chapter. The experiment setup is discussed

in Section 4.2. In Section 4.3, we discuss the threat to validity. Section 4.4 discuss how

algebraic structures are defined in each system by taking Monoid as an example. Section

4.5 provides a table that provides the results of the survey.

4.1 Proof Assistant Systems

This section provides an overview of proof assistant systems Coq, Idris, and Lean. We

intentionally omit discussing Agda in this section since it is discussed in the previous

chapter.

4.1.1 Coq

Coq [Paulin Mohring(2012)] is a theorem-proving system that is written in the OCaml

programming language. It is designed to assist in the formalization of mathematical
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theorems by using constructive and higher-order logic. It was first released in 1989 and is

one of the most widely used proof assistant systems to define mathematical definitions,

and theory and to write proofs. The Coq specification language is called Gallina. Users

can write functions and algorithms in Gallina and then formally verify their correctness

within the Coq environment [Bertot and Cast’eran(2013)]. Coq provides an interactive

proof development environment where users can interact with Coq through a command

line interface (or supported IDEs) to construct proofs.

The mathematical components library (v1.13.0) [Mahboubi and Tassi(2021)] includes

various topics from data structures to algebra. The library provides an extensive collec-

tion of predefined data structures, algebraic structures (e.g., groups, rings, fields), and

mathematical concepts (e.g., natural numbers, integers, rational numbers) [Saqib Nawaz

et al.(2019)]. The mathcomp library was started with the Four Colour Theorem to support

formal proof of the odd order theorem.

4.1.2 Idris

Idris is a functional programming language and interactive theorem prover created by

Dr. Edwin Brady. Idris is built on a foundation of dependent type theory. The proofs

are alike with Coq and the type system in Idris is uniform with Agda [Brady(2017)]. Idris

includes a totality checker, which helps ensure that functions are defined for all inputs

and that programs are guaranteed to terminate [Brady(2013)]. Idris 2 is a self-hosted

programming language that combines linear-type systems. Idris like Agda, supports

literate programming, this helps code and documentation to be interleaved in a natural

and readable way. This is helpful for creating well-documented, readable formalizations.

In this chapter, Idris 2 and Idris are used interchangeably and refer to Idris 2. Currently,
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there are no official package managers for Idris 2. However, several versions are under

development.

4.1.3 Lean

Lean [de Moura et al.(2015)] is an open-source project by Microsoft Research. Lean is

a proof assistant system written in C++. Lean is based on a foundation of dependent

type theory, similar to Coq and Idris. Lean has a powerful metaprogramming system

that allows users to extend the language and develop domain-specific features [Ebner

et al.(2017)]. The last official version of Lean was 3.4.2 and is now supported by the Lean

community. Lean 4 is the latest version of Lean and is a complete rewrite of previous

versions of Lean. Lean has been used in various research projects and has seen adoption

in both academia and industry. Lean has found applications in formal mathematics,

formalization of mathematical proofs, software verification, and formal methods research.

It has been used to verify complex software systems and to formalize mathematical

concepts.

Lean comes with a standard library that covers a wide range of mathematics, including

number theory, algebra, analysis, and set theory. The mathematical library (mathlib)

[mathlib Community(2020)] for Lean 3 has the most coverage of algebra compared to the

other 3 proof assistant systems discussed in the paper. The mathlib library of Lean is also

maintained by the Lean community for community versions of Lean. It was developed

on a small library that was in Lean. It contained definitions of natural numbers, integers,

and lists and had some coverage over the algebra hierarchy. The latest version of mathlib

has over 2794 definitions of algebra [Saqib Nawaz et al.(2019)].
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4.2 Experimental Setup

It is not time-efficient to manually look for the definitions in a large library. The source

code of the standard libraries of Agda, Idris, Coq, and Lean are publicly available. We

created a web crawler that extracts the code from the source code webpage and built

a regular expression that is unique to each system to extract definitions. To build the

web crawler, we first manually select the source pages where the algebraic definitions

can be found in each system. The regular expression will make use of the keyword used

in each system to define algebraic structure. Thus, a part of the process of building the

table 4.1 was automated. We then verify manually to make sure the algebraic structures

are correctly extracted by the web crawler. Since the standard libraries are open-source

projects, it is difficult to maintain uniformity in the code. For example, the definition

might start with a comment in the same line or structure parameters might be written

in a new line. All this makes it difficult to correctly build the regular expression and will

necessitate the task of verifying the results manually to some extent. Section 4.3 will

discuss the threat to validity of this approach.

4.3 Threat To Validity

In this section, we discuss threat to validity of the survey data.

• The libraries that we considered are under continuous development. The defi-

nitions that our web crawler extracted may not reflect the most recent code. We

limit to a specific version of the library so that all the definitions in that version are

captured.

• The threat in using regular expression is that it may not capture all variations and
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formats of definitions. Some definitions may be missed, leading to incomplete

data. We manually verify the result to look for missing definitions in the library.

• Each proof assistant has different language features that regular expressions need

to account for. Ensuring that regular expressions work seamlessly across multiple

proof assistants is challenging. We build unique regular expressions for each

system.

• Different formalizations of algebraic structures may vary in their definitions and

naming conventions. For example, In Agda a ring without multiplicative identity is

called RingWithoutOne. The same structure in Idris is called Ring. These changes

in naming will necessitate manually verifying the result in building the table 4.1.

• Regular expressions might capture irrelevant text that matches the pattern but is

not part of the actual definition. For example, the comments in the source file may

mislead the web crawler.

• Regular expressions are typically pattern-based and may not consider the broader

context in which the definitions appear. This lack of context can result in misinter-

pretations.

4.4 Algebraic Structures

In this section, we discuss the characterization of the monoid structure in different li-

braries. A monoid is a mathematical structure consisting of a set, an associative binary

operation, and an identity element for that operation. This section discusses the defini-

tion of the monoid structure in each proof system and gives a brief overview of the syntax
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used in the definition. We intentionally keep some overlap from the previous chapter

when discussing the definition of monoid in Agda to have uniform coverage for each

system.

4.4.1 Agda Standard Library

In the Agda standard library, algebraic structures are defined over a setoid [Commu-

nity"(2022)].

record IsMonoid (· : Op2 A) (ε : A) : Set (a t `) where
field

isSemigroup : IsSemigroup ·
identity : Identity ε ·

open IsSemigroup isSemigroup public

IsMonoid is defined as a record type over set A and equivalence _≈_ that takes two

parameters: ·, is a binary operation Op2 A on a set A. ε, an element. The Set (a t `)

specifies the universe level at which this record exists. field the keyword indicates the

start of the field declaration. Field isSemigroup, says that the binary operation · forms

a semigroup, which means it is associative. The IsSemigroup type is defined as proof

of associativity for the binary operation. Field identity indicates that ε is an identity

element for the binary operation ·. The Identity type says that ε behaves as a left and

right identity element for ·. Agda opens the IsSemigroup field isSemigroup so that

when you have an instance of IsMonoid, you can directly access its isSemigroup field

without any additional qualifiers.

The same follows for the bundled definitions of respective structures. A hierarchical

approach is adapted to define algebraic structures to make the system scalable with

minimal redundancy. One exemption for this hierarchical definition is the definition
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of a lattice. A lattice is defined independently in the standard library to overcome the

redundant idempotent fields. A lattice structure that is defined in terms of join and meet

semi-lattice is added as a biased structure. The Agda standard library defines left, right,

and bi semi-modules and modules. A similar hierarchical approach as other algebraic

structures is followed in defining modules. For example, a module is defined using

bimodules and bi-modules using bi-semimodules. An alternative definition of modules

is given in Algebra.Module.Structure.Biased.

4.4.2 The Mathematical Components Library

The algebra structures design hierarchy of the mathcomp library is inspired by the Pack-

ing mathematical structures. The ssralg.v file defines some of the simple algebraic

structures with their type, packers, and canonical properties. The hierarchy extends

from Zmodule, rings to ring morphisms. The countalg file extends ssralg file to define

countable types. A monoid in the mathcomp library is defined as:

Module Monoid.

Section Definitions.
Variables (T : Type) (idm : T).

Structure law := Law {
operator : T -> T -> T;
_ : associative operator;
_ : left_id idm operator;
_ : right_id idm operator

}.
Local Coercion operator : law >-> Funclass

The definition starts a new Coq module named Monoid. Modules in Coq are used to
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group related definitions and theorems together for better organization and encapsu-

lation. A new section named Definitions is opened to manage the scope of variables

and definitions. Two variables within the scope of the definition section are: T is a type

variable representing the underlying set and idm is a variable of type T representing the

identity element of the monoid. Structure law := Law { ... } line represents the

properties of a monoid. operator is a binary operation of type T -> T -> T. The next

three lines denote associativity and left and right identity laws.

4.4.3 Idris

In Idris 2, there is considerable overlap between abstract algebra and category theory.

Some algebraic structures are provided as an extension of two other algebraic structures.

The structures also include respective bundle definitions. A module is an Abelian group

with a ring of scalars. The ring of scalars has an identity element. The library defines

various algebraic structures that include semigroup, monoid, group, Abelian-group,

semiring, and ring. It follows a hierarchical approach in defining structures similar to

that in Agda. For example, a semigroup is defined as a set with a binary operation that is

associative, and a monoid is defined in terms of a semigroup with an identity element.

Idris addresses identity as a neutral element.

public export
interface Semigroup t => Monoid t where

neutral : t

monoidNeutralIsNeutralL : (l : t) -> l <+> neutral = l
monoidNeutralIsNeutralR : (r : t) -> neutral <+> r = r

The definition is made public and available for export, making them accessible out-

side the module or scope where they are defined. An interface named Monoid extends
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the Semigroup interface so that any type t that is an instance of Monoid must also

satisfy the requirements of the Semigroup interface. neutral represents the identity

element for the binary operation defined on type t. monoidNeutralIsNeutralL and

monoidNeutralIsNeutralR specifies that for any value l (or r) of type t when you com-

bine (using the <+> operator) l (or r) with the neutral element on the left side (or right

side), it should result in l (or r). neutral element acts as an identity element on the

binary operation.

4.4.4 The Mathematical Library

The mathlib library for Lean extends the algebra hierarchy from semigroup to ordered

fields. The library defines instances of free magma, free semigroup, free Abelian group,

etc. An example of the monoid structure definition in the library is given below [Baa-

nen(2022)]:

@[ancestor semigroup mul_one_class, to_additive]
class monoid (M : Type u) extends semigroup M, mul_one_class M :=
(npow : N → M → M := npow_rec)
(npow_zero' : ∀ x, npow 0 x = 1 . try_refl_tac)
(npow_succ' : ∀ (n : N) x, npow n.succ x = x * npow n x .

try_refl_tac),→

In Lean, classes can inherit properties and methods from other classes. The monoid

class inherits from the semigroup and mul_one_class classes. to_additive indicates

that an additive version of the monoid class should be generated. The parameter

(M : Type u) specifies that M is a type parameter that is the underlying set and Type u

indicates that M is of a certain universe level. monoid class introduces an operation npow,

a power operation that takes a natural number and an element of the monoid and cal-

culates the repeated application of the monoid’s binary operation. The class provides
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two properties for this npow operation: npow_zero' specifies that raising any element

to the power of 0 results in the identity element, and npow_succ' specifies the recur-

sive behavior of the npow operation, where raising an element to a successor natural

number is equivalent to multiplying it with the element raised to the previous power.

The . try_refl_tac suggests that Lean should try to automatically prove this property

using reflexivity tactics.

4.5 Result

In table 4.1, every checkmark links to the implementation in the source code of the library.

In the Agda column, the checkmark in blue ( ) indicates the algebraic structures defined

as part of this thesis.

Table 4.1: Algebraic structures in proof assistant systems

Algebraic Structure Agda Coq Idris Lean

Magma X - - -

Commutative Magma X - - -

Selective Magma X - - -

IdempotentMagma - - -

AlternativeMagma - - -

FlexibleMagma - - -

MedialMagma - - -

SemiMedialMagma - - -

Continued on next page
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Table 4.1 – continued from previous page

Algebraic Structure Agda Coq Idris Lean

Semigroup X X X X

Band X - - -

Commutative Semigroup X - - X

Semilattice X - - X

Unital magma - - -

Monoid X X X X

Commutative monoid X X - X

Idempotent commutative monoid X - - -

Bounded Semilattice X - - -

Bounded Meetsemilattice X - - -

Bounded Joinsemilattice X - - -

Invertible Magma - - -

IsInvertible UnitalMagma - - -

Quasigroup - - -

Loop - - -

Moufang Loop - - -

Left Bol Loop - - -

Middle Bol Loop - - -

Right Bol Loop - - -

NilpotentGroup - - - X

Continued on next page
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Table 4.1 – continued from previous page

Algebraic Structure Agda Coq Idris Lean

CyclicGroup - - - X

SubGroup - - - X

Group X X X X

Abelian group X - X X

Lattice X - - X

Distributive lattice X - - -

Near semiring X - - -

Semiringwithout one X - - -

Idempotent Semiring - - -

Commutative semiring without one X - - -

Semiring without annihilating zero X - - -

Semiring X X - X

Commutative semiring X - - X

Non associative ring - - -

Nearring - - -

Quasiring - - -

Local ring - - - X

Noetherian ring - - - X

Ordered ring - - - X

Cancellative commutative semiring X - - -

Continued on next page

50

https://github.com/leanprover-community/mathlib/blob/395e27554fc8db530ad6a1c3dbaff0a602653aa6/src/group_theory/specific_groups/cyclic.lean#L56
https://github.com/leanprover-community/mathlib/blob/395e27554fc8db530ad6a1c3dbaff0a602653aa6/src/group_theory/subgroup/basic.lean#L100
https://github.com/agda/agda-stdlib/blob/42d13fdea1b1861e545c5a0799d605edfa0acc31/src/Algebra/Structures.agda#L199
https://github.com/math-comp/math-comp/blob/c553e54b4c5465539fb6e45295e2b9e778cd4ef1/mathcomp/fingroup/fingroup.v#L734
https://github.com/idris-lang/Idris2/blob/78ff2059f39cb65ad9ed09dec1416621b6e662a5/libs/contrib/Control/Algebra.idr#L29
https://github.com/leanprover-community/mathlib/blob/395e27554fc8db530ad6a1c3dbaff0a602653aa6/src/algebra/group/defs.lean#L600
https://github.com/agda/agda-stdlib/blob/42d13fdea1b1861e545c5a0799d605edfa0acc31/src/Algebra/Structures.agda#L238
https://github.com/idris-lang/Idris2/blob/78ff2059f39cb65ad9ed09dec1416621b6e662a5/libs/contrib/Control/Algebra.idr#L53
https://github.com/leanprover-community/mathlib/blob/c25bd03efeb4f89dfd92e1a598a5ae86c61a26d3/src/group_theory/abelianization.lean#L35
https://github.com/agda/agda-stdlib/blob/42d13fdea1b1861e545c5a0799d605edfa0acc31/src/Algebra/Lattice/Structures.agda#L125
https://github.com/leanprover-community/mathlib/blob/c25bd03efeb4f89dfd92e1a598a5ae86c61a26d3/src/order/lattice.lean#L460
https://github.com/agda/agda-stdlib/blob/42d13fdea1b1861e545c5a0799d605edfa0acc31/src/Algebra/Lattice/Structures.agda#L157
https://github.com/agda/agda-stdlib/blob/42d13fdea1b1861e545c5a0799d605edfa0acc31/src/Algebra/Structures.agda#L260
https://github.com/agda/agda-stdlib/blob/42d13fdea1b1861e545c5a0799d605edfa0acc31/src/Algebra/Structures.agda#L292
https://github.com/agda/agda-stdlib/blob/f7bfeba6cfc03b9488e6d91ea0b011831f53be8a/src/Algebra/Structures.agda#L545
https://github.com/agda/agda-stdlib/blob/42d13fdea1b1861e545c5a0799d605edfa0acc31/src/Algebra/Structures.agda#L325
https://github.com/agda/agda-stdlib/blob/42d13fdea1b1861e545c5a0799d605edfa0acc31/src/Algebra/Structures.agda#L346
https://github.com/agda/agda-stdlib/blob/42d13fdea1b1861e545c5a0799d605edfa0acc31/src/Algebra/Structures.agda#L394
https://github.com/math-comp/math-comp/blob/c553e54b4c5465539fb6e45295e2b9e778cd4ef1/mathcomp/algebra/ssralg.v#L3575
https://github.com/leanprover-community/mathlib/blob/c25bd03efeb4f89dfd92e1a598a5ae86c61a26d3/src/algebra/ring/basic.lean#L119
https://github.com/agda/agda-stdlib/blob/42d13fdea1b1861e545c5a0799d605edfa0acc31/src/Algebra/Structures.agda#L419
https://github.com/leanprover-community/mathlib/blob/c25bd03efeb4f89dfd92e1a598a5ae86c61a26d3/src/algebra/ring/basic.lean#L588
https://github.com/agda/agda-stdlib/blob/f7bfeba6cfc03b9488e6d91ea0b011831f53be8a/src/Algebra/Structures.agda#L695
https://github.com/agda/agda-stdlib/blob/f7bfeba6cfc03b9488e6d91ea0b011831f53be8a/src/Algebra/Structures.agda#L741
https://github.com/agda/agda-stdlib/blob/f7bfeba6cfc03b9488e6d91ea0b011831f53be8a/src/Algebra/Structures.agda#L572 
https://github.com/leanprover-community/mathlib/blob/c25bd03efeb4f89dfd92e1a598a5ae86c61a26d3/src/ring_theory/ideal/local_ring.lean#L35
https://github.com/leanprover-community/mathlib/blob/c25bd03efeb4f89dfd92e1a598a5ae86c61a26d3/src/ring_theory/noetherian.lean#L661
https://github.com/leanprover-community/mathlib/blob/c25bd03efeb4f89dfd92e1a598a5ae86c61a26d3/src/algebra/order/ring.lean#L853
https://github.com/agda/agda-stdlib/blob/42d13fdea1b1861e545c5a0799d605edfa0acc31/src/Algebra/Structures.agda#L446


M.Sc. Thesis—Akshobhya K M McMaster University—Computer Science

Table 4.1 – continued from previous page

Algebraic Structure Agda Coq Idris Lean

Sub ring - - - X

Ring X X X X

Unit Ring X X -

Commutative Unit ring - X - -

Commutative ring X X - X

Integral Domain - X - -

LieAlgebra - - - X

LieRing module - - - X

Lie module - - - X

Boolean algebra X - - -

Preleft semimodule X - - -

Left semimodule X - - -

Preright semimodule X - - -

right semimodule X - - -

Bi semimodule X - - -

Semimodule X - - -

Left module X X - -

Right module X - - -

Bi module X - - -

Module X X - X
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Table 4.1 – continued from previous page

Algebraic Structure Agda Coq Idris Lean

Field - X X X

Decidable Field - X - -

Closed field - X - -

Algebra - X - -

Unit algebra - X - X

Lalgebra - X - -

Commutative unit algebra - X - -

Commutative algebra - X - -

NumDomain - X - -

Normed Zmodule - X - -

Num field - X - -

Real domain - X - -

Real field - X - -

Real closed field - X - -

Vector space - X - -

Zmodule Quotients type - X - -

Ring Quotient type - X - -

Unit rint quotient type - X - -

Additive group - X - -

characteristic zero - - - X
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Table 4.1 – continued from previous page

Algebraic Structure Agda Coq Idris Lean

Domain - - - X

Chain Complex - - - X

Kleene Algebra - - -

HeytingCommutativeRing X - - -

HeytingField X - - -
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Chapter 5

Theory Of Quasigroup And Loop In Agda

Quasigroups and loops find applications in various fields of mathematics, computer

science, and physics. For example, Einstein’s formula of addition of velocities gives a loop

structure [Ungar(2007)]. In computer science, they are used in error-correcting codes

and cryptography, where properties like uniqueness of solution and error detection play

a crucial role [Phillips and Stanovskỳ(2010)]. The properties of loops help in the devel-

opment of efficient computational algorithms, in the areas of optimization, scheduling,

and permutation-based problems [Khan et al.(2015)]. In this chapter, we formalize two

important non-associative algebras - quasigroup, and loop structure.

5.1 Definitions

A quasigroup is a set equipped with binary operations that satisfies the quasigroup prop-

erty. Formally, a quasigroup (Q, ·/\) is an algebra consisting of a set (Q) and three binary

operations · (multiplication), \ (left division), and / (right division). These operations

satisfy the following identities ∀x y ∈Q:
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y = x · (x \ y) (5.1.1)

y = x \ (x · y) (5.1.2)

y = (y / x) · x (5.1.3)

y = (y · x) / x (5.1.4)

In Chapter 3, we may observe that Agda supports many unicode characters (UTF-

8) that can be used in identifiers. However, there are some limitations in the use of

certain characters due to their reserved status that can cause conflict with Agda’s syntax.

Backslash (\) is used in Agda’s syntax for various purposes, such as defining Unicode

characters and escape sequences, which would result in potential conflicts if it were

allowed as an identifier. To overcome this issue, we use // and \\instead of / and \

respectively.

We can write the above predicates in Agda as:

LeftDividesl : Op2 A → Op2 A → Set _
LeftDividesl _·_ _\\_ = ∀ x y → (x · (x \\ y)) ≈ y

LeftDividesr : Op2 A → Op2 A → Set _
LeftDividesr _·_ _\\_ = ∀ x y → (x \\ (x · y)) ≈ y

RightDividesl : Op2 A → Op2 A → Set _
RightDividesl _·_ _//_ = ∀ x y → ((y // x) · x) ≈ y

RightDividesr : Op2 A → Op2 A → Set _
RightDividesr _·_ _//_ = ∀ x y → ((y · x) // x) ≈ y

We can combine two predicates using the product (×) as:
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LeftDivides : Op2 A → Op2 A → Set _
LeftDivides · \\ = (LeftDividesl · \\) × (LeftDividesr · \\)

RightDivides : Op2 A → Op2 A → Set _
RightDivides · // = (RightDividesl · //) × (RightDividesr · //)

A quasigroup in Agda is defined as a record type:

record IsQuasigroup (· \\ // : Op2 A) : Set (a t `) where
field

isMagma : IsMagma ·
\\-cong : Congruent2 \\
//-cong : Congruent2 //
leftDivides : LeftDivides · \\
rightDivides : RightDivides · //

open IsMagma isMagma public

In the above definition, IsQuasigroup is a record type with three binary operations

·, \\ // on setoid A. The structure has five fields. We restrict discussing the syntax of the

definition as it is covered in Chapter 3.

A loop is a quasigroup that has an identity element. The identity axiom is given as:

x · e = e · x = x (5.1.5)

Like left/right division, the identity predicate in Agda is given as:

LeftIdentity : A → Op2 A → Set _
LeftIdentity e _·_ = ∀ x → (e · x) ≈ x

RightIdentity : A → Op2 A → Set _
RightIdentity e _·_ = ∀ x → (x · e) ≈ x

Identity : A → Op2 A → Set _
Identity e · = (LeftIdentity e ·) × (RightIdentity e ·)
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A loop structure can be characterized in Agda as:

record IsLoop (· \\ // : Op2 A) (ε : A) : Set (a t `) where
field

isQuasigroup : IsQuasigroup · \\ //
identity : Identity ε ·

open IsQuasigroup isQuasigroup public

Bol loops are non-associative algebraic systems that satisfy a weakened form of the

associative property. A loop is called a right bol loop if it satisfies the right-bol identity

((z · x) · y) · x = z · (( x · y) · x)

A loop is called a left bol loop if it satisfies the left-bol identity

x · (y · (x · z)) = (x · (y · x)) · z

A loop is called middle bol loop if it satisfies the middle-bol identity

(z · x) · (y · z) = z · ((x · y) · z)

A left-right bol loop is called a moufang loop if it satisfies the moufang identity.

Moufang loops have applications in the fields of geometry, and theoretical physics

[Kunen(1996)].

(z · x) · (y · z) = z · ((x · y) · z)

The definition of these structures is similar to IsLoop and can be found in the Agda

standard library in module Algebra.Structures.
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5.2 Homomorphism

A structure-preserving map f between two structures of same type is called a homo-

morphism. For quasigroups (Q1, ·,\\,//) and (Q2,◦,\,/), homomorphism is defined as a

function f : (Q1, ·,\\,//) → (Q2,◦,\,/) such that:

• f preserves the binary operation: f (x·y) = f (x)◦ f (y)

• f preserves the left division operation : f (x\\y) = f (x)\ f (y)

• f preserves the right division operation: f (x//y) = f (x)/ f (y)

In Agda, quasigroup homomorphism can be defined as:

record IsQuasigroupHomomorphism (�_� : A → B) : Set (a t `1 t `2)
where,→

field
isRelHomomorphism : IsRelHomomorphism _≈1_ _≈2_ �_�
·-homo : Homomorphic2 �_� _·1_ _·2_
\\-homo : Homomorphic2 �_� _\\1_ _\\2_
//-homo : Homomorphic2 �_� _//1_ _//2_

open IsRelHomomorphism isRelHomomorphism public
renaming (cong to ��-cong)

The loop homomorphism preserves left and right divisions along with the identity

element. The homomorphism f preserves all the binary operations as quasigroup along

with the identity element. For two loop structure (L1, ·,\\,//,e1)and(L2,◦,\,/,e2), the

function f : (L1, ·,\\,//,e1) → (L2,◦,\,/,e2) is a loop homomorphism if it is a quasigroup

homomorphism and:

f (e1) = e2

where e1 is the identity element of loop L1 and e2 is the identity element of loop L2. In

Agda, loop homomorphism can be defined using quasigroup homomorphism as:
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record IsLoopHomomorphism (�_� : A → B) : Set (a t `1 t `2) where
field

isQuasigroupHomomorphism : IsQuasigroupHomomorphism �_�
ε-homo : Homomorphic0 �_� ε1 ε2

open IsQuasigroupHomomorphism isQuasigroupHomomorphism public

The definitions of quasigroup loop monomorphism and isomorphism can be defined

similarly to magma homomorphism as discussed in Chapter 3. These definitions can be

found in the Agda standard library under module Algebra.Morphism.Structures.

5.3 Composition of Homomrphism

If f is a homomorphism such that f : a → b and g is a homomorphism such that

g : b → c , then the composition of homomorphism can be defined as g ◦ f : a → c . In

Agda we can prove that the composition of quasigroup homomorphism is homomorphic

as:

isQuasigroupHomomorphism
: IsQuasigroupHomomorphism Q1 Q2 f
→ IsQuasigroupHomomorphism Q2 Q3 g
→ IsQuasigroupHomomorphism Q1 Q3 (g ◦ f)

isQuasigroupHomomorphism f-homo g-homo = record
{ isRelHomomorphism = isRelHomomorphism F.isRelHomomorphism

G.isRelHomomorphism,→

; ·-homo = λ x y → ≈3-trans (G.��-cong ( F.·-homo x y
)) ( G.·-homo (f x) (f y) ),→

; \\-homo = λ x y → ≈3-trans (G.��-cong ( F.\\-homo x
y )) ( G.\\-homo (f x) (f y) ),→

; //-homo = λ x y → ≈3-trans (G.��-cong ( F.//-homo x
y )) ( G.//-homo (f x) (f y) ),→

} where module F = IsQuasigroupHomomorphism f-homo;
module G = IsQuasigroupHomomorphism g-homo
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In the above quasigroup homomorphism composition, f is a homomorphism from

quasigroup Q1 to Q2, g is a homomorphism from quasigroup Q2 to Q3. isRelHomomorphism

field gives the composition of homomorphism for a homogeneous binary relation (≈). We

can prove that the composition of binary operations homomorphism (·) for quasigroup

is homomorphic using transitive relation ≈3-trans such that

g ( f ((Q1·x)y))≈(g ((Q2· f x)( f y)) and g ((Q2· f x)( f y)))≈((Q3·g ( f x))(g ( f y)))

⇒ g ( f ((Q1·x)y))≈((Q3·g ( f x))(g ( f y)))

Monomorphism and isomorphism composition constructs for quasigroup and loop

are defined similar to homomorphism and can be found in the Agda standard library.

5.4 Product Algebra

The product algebra M × N of two quasigroups M and N is defined in Agda as:
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quasigroup : Quasigroup a `1 → Quasigroup b `2 → Quasigroup (a t b)
(`1 t `2),→

quasigroup M N = record
{ _\\_ = zip M._\\_ N._\\_
; _//_ = zip M._//_ N._//_
; isQuasigroup = record

{ isMagma = Magma.isMagma (magma M.magma N.magma)
; \\-cong = zip M.\\-cong N.\\-cong
; //-cong = zip M.//-cong N.//-cong
; leftDivides = (λ x y → M.leftDividesl , N.leftDividesl <*> x <*>

y) , (λ x y → M.leftDividesr , N.leftDividesr <*> x <*> y),→

; rightDivides = (λ x y → M.rightDividesl , N.rightDividesl <*> x
<*> y) , (λ x y → M.rightDividesr , N.rightDividesr <*> x <*>
y)

,→

,→

}
} where module M = Quasigroup M; module N = Quasigroup N

In the above code, zip gives a Σ-type of dependent pairs. <*> is used to convert the

curried functions to a function on a pair. Currying a function is to break down a function

that takes multiple arguments into a series of functions that take exactly one argument.

The product of loop structure can be defined similarly to quasigroup.

5.5 Properties

In this section, we prove some properties of quasigroup, loop, middle bol loop, and mo-

ufang loop using Agda. The proofs for quasigroup and loop are adapted from [Stener(2016)]

and [Bruck(1944)].

5.5.1 Properties Of Quasigroup

Cancellative quasigroups are used in cryptographic protocols. Properties such as left and

right cancellation can be used to ensure the confidentiality of data during encryption
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and decryption processes [Shcherbacov(2017)]. Let (Q, ·,/,\) be a quasigroup then:

1. Q is cancellative. A quasigroup is left cancellative if x · y = x · z then y = z and

a quasigroup is right cancellative if y · x = z · x then y = z. A quasigroup is

cancellative if it is both left and right cancellative.

2. If x · y = z then y = x \ z

3. If x · y = z then x = z / y

Proof:

1. cancell : LeftCancellative _·_
cancell x y z eq = begin

y ≈〈 sym( leftDividesr x y) 〉
x \\ (x · y) ≈〈 \\-congl eq 〉
x \\ (x · z) ≈〈 leftDividesr x z 〉
z ■

cancelr : RightCancellative _·_
cancelr x y z eq = begin

y ≈〈 sym( rightDividesr x y) 〉
(y · x) // x ≈〈 //-congr eq 〉
(z · x) // x ≈〈 rightDividesr x z 〉
z ■

cancel : Cancellative _·_
cancel = cancell , cancelr

2. y≈x\\z : ∀ x y z → x · y ≈ z → y ≈ x \\ z
y≈x\\z x y z eq = begin

y ≈〈 sym (leftDividesr x y) 〉
x \\ (x · y) ≈〈 \\-congl eq 〉
x \\ z ■
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3. x≈z//y : ∀ x y z → x · y ≈ z → x ≈ z // y
x≈z//y x y z eq = begin

x ≈〈 sym (rightDividesr y x) 〉
(x · y) // y ≈〈 //-congr eq 〉
z // y ■

5.5.2 Properties Of Loop

Properties of division operation hold for a loop.

Let (L, ·,/,\,e) be a Loop with identity x · e = x = e · x then the following properties

holds

1. x / x = e

2. x \ x = e

3. e \ x = x

4. x / e = x

Proof:

1. x//x≈ε : ∀ x → x // x ≈ ε

x//x≈ε x = begin
x // x ≈〈 //-congr (sym (identityl x)) 〉
(ε · x) // x ≈〈 rightDividesr x ε 〉
ε ■

2. x\\x≈ε : ∀ x → x \\ x ≈ ε

x\\x≈ε x = begin
x \\ x ≈〈 \\-congl (sym (identityr x )) 〉
x \\ (x · ε) ≈〈 leftDividesr x ε 〉
ε ■
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3. ε\\x≈x : ∀ x → ε \\ x ≈ x
ε\\x≈x x = begin
ε \\ x ≈〈 sym (identityl (ε \\ x)) 〉
ε · (ε \\ x) ≈〈 leftDividesl ε x 〉
x ■

4. x//ε≈x : ∀ x → x // ε ≈ x
x//ε≈x x = begin

x // ε ≈〈 sym (identityr (x // ε)) 〉
(x // ε) · ε ≈〈 rightDividesl ε x 〉
x ■

5.5.3 Properties Of Middle Bol Loop

Middle Bol loops are used in combinatorial design theory to construct specific types of

combinatorial designs. The proofs for properties of the middle bol loop are adapted from

[Jaiyeola et al.(2021)]. Let (M , ·,/,\,e) be a middle bol loop then the following identities

hold.

1. x · ((y · x) \ x) = y \ x

2. x · ((x · z) \ x) = x / z

3. x ·(z \ x) = (x / z) · x

4. (x / (y · z)) · x = (x / z) · (y \ x)

5. (x / (y · x)) · x = y \ x

6. (x / (x · z)) · x = x / z

Proof:
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1. xyx\\x≈y\\x : ∀ x y → x · ((y · x) \\ x) ≈ y \\ x
xyx\\x≈y\\x x y = begin

x · ((y · x) \\ x) ≈〈 middleBol x y x 〉
(x // x) · (y \\ x) ≈〈 ·-congr (x//x≈ε x) 〉
ε · (y \\ x) ≈〈 identityl ((y \\ x)) 〉
y \\ x ■

2. xxz\\x≈x//z : ∀ x z → x · ((x · z) \\ x) ≈ x // z
xxz\\x≈x//z x z = begin

x · ((x · z) \\ x) ≈〈 middleBol x x z 〉
(x // z) · (x \\ x) ≈〈 ·-congl (x\\x≈ε x) 〉
(x // z) · ε ≈〈 identityr ((x // z)) 〉
x // z ■

3. xz\\x≈x//zx : ∀ x z → x · (z \\ x) ≈ (x // z) · x
xz\\x≈x//zx x z = begin

x · (z \\ x) ≈〈 ·-congl (\\-congr( sym (identityl z))) 〉
x · ((ε · z) \\ x) ≈〈 middleBol x ε z 〉
x // z · (ε \\ x) ≈〈 ·-congl (ε\\x≈x x) 〉
x // z · x ■

4. x//yzx≈x//zy\\x : ∀ x y z → (x // (y · z)) · x ≈ (x // z) · (y \\
x),→

x//yzx≈x//zy\\x x y z = begin
(x // (y · z)) · x ≈〈 sym (xz\\x≈x//zx x ((y · z))) 〉
x · ((y · z) \\ x) ≈〈 middleBol x y z 〉
(x // z) · (y \\ x) ■

5. x//yxx≈y\\x : ∀ x y → (x // (y · x)) · x ≈ y \\ x
x//yxx≈y\\x x y = begin

(x // (y · x)) · x ≈〈 x//yzx≈x//zy\\x x y x 〉
(x // x) · (y \\ x) ≈〈 ·-congr (x//x≈ε x) 〉
ε · (y \\ x) ≈〈 identityl ((y \\ x)) 〉
y \\ x ■
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6. x//xzx≈x//z : ∀ x z → (x // (x · z)) · x ≈ x // z
x//xzx≈x//z x z = begin

(x // (x · z)) · x ≈〈 x//yzx≈x//zy\\x x x z 〉
(x // z) · (x \\ x) ≈〈 ·-congl (x\\x≈ε x) 〉
(x // z) · ε ≈〈 identityr (x // z) 〉
x // z ■

5.5.4 Properties Of Moufang Loop

The properties of Moufang loops have applications in computational mathematics and al-

gorithm design. They provide insights into the efficient implementation of mathematical

algorithms and data structures [Kunen(1996)]. The proofs in this sub-section are adapted

from [Stener(2016)]. Let (M , ·,/,\,e) be a moufang loop then the following identities hold.

1. Moufang loop is alternative. A moufang loop is left alternative if it satisfies (x · x) · y =
x · (x · y), a moufang loop is right alternative if it satisfies x · (y · y) = (x ·y) · y and

if a moufang loop alternative if it is both left and right alternative.

2. Moufang loop is flexible. A Moufang loop is flexible if it satisfies flexible identity

(x · y) · x = x · (y · x)

3. z · (x · (z · y)) = ((z · x) · z) · y

4. x · (z · (y · z)) = ((x · z) · y) · z

5. z · ((x · y) · z) = (z · (x · y)) · z

Proof:
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1. alternativel : LeftAlternative _·_
alternativel x y = begin

(x · x) · y ≈〈 ·-congr (·-congl (sym (identityl x))) 〉
(x · (ε · x)) · y ≈〈 sym (leftBol x ε y) 〉
x · (ε · (x · y)) ≈〈 ·-congl (identityl ((x · y))) 〉
x · (x · y) ■

alternativer : RightAlternative _·_
alternativer x y = begin

x · (y · y) ≈〈 ·-congl(·-congr(sym (identityr y))) 〉
x · ((y · ε) · y) ≈〈 sym (rightBol y ε x) 〉
((x · y) · ε ) · y ≈〈 ·-congr (identityr ((x · y))) 〉
(x · y) · y ■

alternative : Alternative _·_
alternative = alternativel , alternativer

2. flex : Flexible _·_
flex x y = begin

(x · y) · x ≈〈 ·-congl (sym (identityl x)) 〉
(x · y) · (ε · x) ≈〈 identical y ε x 〉
x · ((y · ε) · x) ≈〈 ·-congl (·-congr (identityr y)) 〉
x · (y · x) ■

3. z·xzy≈zxz·y : ∀ x y z → (z · (x · (z · y))) ≈ (((z · x) · z) · y)
z·xzy≈zxz·y x y z = sym (begin

((z · x) · z) · y ≈〈 (·-congr (flex z x )) 〉
(z · (x · z)) · y ≈〈 sym (leftBol z x y) 〉
z · (x · (z · y)) ■)

4. x·zyz≈xzy·z : ∀ x y z → (x · (z · (y · z))) ≈ (((x · z) · y) · z)
x·zyz≈xzy·z x y z = begin

x · (z · (y · z)) ≈〈 (·-congl (sym (flex z y ))) 〉
x · ((z · y) · z) ≈〈 sym (rightBol z y x) 〉
((x · z) · y) · z ■
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5. z·xyz≈zxy·z : ∀ x y z → (z · ((x · y) · z)) ≈ ((z · (x · y)) · z)
z·xyz≈zxy·z x y z = sym (flex z (x · y))
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Chapter 6

Theory Of Semigroup And Ring In Agda

In early 20th century, mathematician Hilbert proposed the H10 problem: "Is there a gen-

eral approach to verify whether a Diophantine equation is solvable ?" [Larchey-Wendling

and Forster(2020)]. Although this problem was solved by 1970, in 1987 Siekmann and

Szabo concluded that the unification problem of DA-rewriting system[Siekmann and

Szabo(1989)] cannot be predicted. In [Deng et al.(2016)], the author uses a semigroup to

give a general construct of DA-rewriting system. Semigroup structures are also used in

finite automata systems, probability theory and partial differential equations [Liaqat and

Younas(2021)].

Similarly, ring is an algebraic structure that also has notable applications in number

theory [Pedrouzo-Ulloa et al.(2021)], in quantum computing [Netto et al.(2008)], in

cryptography [Khathuria et al.(2021)], and many other fields. Variations of ring structure

such as near-ring, quasi-ring, and non-associative rings are explored to make ring theory

(study of ring structures), more dynamic, concrete and useable. Now, the question arises:

how can we encode these structures in Agda? We will explore this question in this chapter.

This chapter aims to define these structures and prove some properties in the Agda
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standard library that can help build other systems that use these structures.

6.1 Definition

A semigroup is an algebraic structure that consists of a set equipped with an associative

binary operation. Formally, a semigroup is defined as: Let S be a set, and let · be a binary

operation on S, the structure (S, ·) is a semigroup if the following property holds:

∀ x y z ∈ S, x · (y · z) = (x · y) · z

A semigroup that satisfies the commutative property is called a commutative semi-

group. For binary operation · on a set S, commutative property is defined as:

∀ x y ∈ S, x · y = y · x

In Agda, the above predicates can be written as:

Associative : Op2 A → Set _
Associative _·_ = ∀ x y z → ((x · y) · z) ≈ (x · (y · z))

Commutative : Op2 A → Set _
Commutative _·_ = ∀ x y → (x · y) ≈ (y · x)

In Agda, we can define a semigroup as a record type to ensure that the properties of

the semigroup are satisfied.
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record IsSemigroup (· : Op2 A) : Set (a t `) where
field

isMagma : IsMagma ·
assoc : Associative ·

open IsMagma isMagma public

Similarly, commutative semigroup can be defined using semigroup as:

record IsCommutativeSemigroup (· : Op2 A) : Set (a t `) where
field

isSemigroup : IsSemigroup ·
comm : Commutative ·

open IsSemigroup isSemigroup public

We may encode various ring structures as follows: Non-associative ring on set R is

an algebraic structure with two binary operations (+) addition and (∗) multiplication.

Addition (R,+, -1,0) is an Abelian group that is a group with commutative property. Multi-

plication (R,∗,1) is a unital magma that is a magma with identity. A group is a monoid

with an inverse and a monoid is a semigroup with identity. A magma is called unital if it

has an identity. In a non-associative ring, multiplication distributes over addition, and it

has an annihilating zero. Formally, nonAssociativeRing (R,+,∗,−1 ,0,1) should satisfy the

following identities:

• (R,+, -1,0) is an Abelian Group:

– Associativity: ∀x, y, z ∈ R, x + (y + z) = (x + y)+ z

– commutativity : ∀x, y ∈ R, (x + y) = (y +x)

– Identity: ∀x ∈ R, (x +0) = x = (0+x)

– Inverse: ∀x ∈ R, (x +x-1) = 0 = (x-1 +x)
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• (R,∗,1) is a unital magma

– Identity: ∀x, y ∈ R, (x ∗1) = x = (1∗x)

• Multiplication distributes over addition: ∀x, y, z ∈ R, (x ∗ (y + z)) = (x ∗ y)+ (x ∗ z)

and (x + y)∗ z = (x ∗ z)+ (y ∗ z)

• Annihilating zero: ∀x ∈ R, (x ∗0) = 0 = (0∗x)

record IsNonAssociativeRing (+ * : Op2 A) (-_ : Op1 A) (0# 1# : A) :
Set (a t `) where,→

field
+-isAbelianGroup : IsAbelianGroup + 0# -_
*-cong : Congruent2 *
*-identity : Identity 1# *
distrib : * DistributesOver +
zero : Zero 0# *

open IsAbelianGroup +-isAbelianGroup public

We don’t define IsNonAssociativeRing with *-isUnitalMagma to remove the re-

dundant equivalence relation. This is discussed in Chapter 8. The same technique is

followed when defining other ring-like structures.

A quasiring is an algebraic structure for which both addition and multiplication

forms a monoid, multiplication distributes over addition and has an annihilating zero. A

quasiring (Q,+,∗,0,1) should satisfy the following identities:

• (Q,+,0) is a monoid:

– Associativity: ∀x, y, z ∈Q, x + (y + z) = (x + y)+ z

– Identity: ∀x ∈Q, (x +0) = x = (0+x)

• (Q,∗,1) is a monoid:
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– Associativity: ∀x, y, z ∈Q : x ∗ (y ∗ z) = (x ∗ y)∗ z

– Identity: ∀x ∈Q, (x ∗1) = x = (1∗x)

• Multiplication distributes over addition: ∀x, y, z ∈Q, (x ∗ (y + z)) = (x ∗ y)+ (x ∗ z)

and (x + y)∗ z = (x ∗ z)+ (y ∗ z)

• Annihilating zero: ∀x ∈Q, (x ∗0) = 0 = (0∗x)

record IsQuasiring (+ * : Op2 A) (0# 1# : A) : Set (a t `) where
field

+-isMonoid : IsMonoid + 0#
*-cong : Congruent2 *
*-assoc : Associative *
*-identity : Identity 1# *
distrib : * DistributesOver +
zero : Zero 0# *

open IsMonoid +-isMonoid public

A quasiring with additive inverse is called a nearring. For the structure nearring,

addition forms a group, multiplication forms a monoid, multiplication distributes over

addition and has an annihilating zero.

record IsNearring (+ * : Op2 A) (0# 1# : A) (_-1 : Op1 A) : Set (a t
`) where,→

field
isQuasiring : IsQuasiring + * 0# 1#
+-inverse : Inverse 0# _-1 +
-1-cong : Congruent1 _-1

open IsQuasiring isQuasiring public

A ring without one or rig or ring without unit is an algebraic structure with two binary

operations, a unary and a nullary operation. A ringWithoutOne (R,+,∗, -1,0) should

satisfy the following identities:
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• (R,+, -1,0) is an Abelian Group:

– Associativity: ∀x, y, z ∈ R, x + (y + z) = (x + y)+ z

– commutativity: ∀x, y ∈ R, (x + y) = (y +x)

– Identity: ∀x ∈ R, (x +0) = x = (0+x)

– Inverse: ∀x ∈ R, (x +x-1) = 0 = (x-1 +x)

• (R,∗) is a semigroup

– Associativity: ∀x, y, z ∈ R, x ∗ (y ∗ z) = (x ∗ y)∗ z

• Multiplication distributes over addition: ∀x, y, z ∈ R, (x ∗ (y + z)) = (x ∗ y)+ (x ∗ z)

and (x + y)∗ z = (x ∗ z)+ (y ∗ z)

• Annihilating zero: ∀x ∈ R, (x ∗0) = 0 = (0∗x)

record IsRingWithoutOne (+ * : Op2 A) (-_ : Op1 A) (0# : A) : Set (a t
`) where,→

field
+-isAbelianGroup : IsAbelianGroup + 0# -_
*-cong : Congruent2 *
*-assoc : Associative *
distrib : * DistributesOver +
zero : Zero 0# *

open IsAbelianGroup +-isAbelianGroup public

6.2 Homomorphism

A structure-preserving map between two structures is called a homomorphism. In this

section, the homomorphism of RingWithoutOne structure is discussed. The homomor-

phism for ringWithoutOne structure can be defined using group homomorphism. For two
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group structures (G1,+1,−1 ,e1) and (G2,+2,−1 ,e2), homomorphism f : (G1,+1,−1 ,e1) →
(G2,+2,−1 ,e2) is a structure-preserving map such that:

• f preserves the binary operation: f (x +1 y) = f (x)+2 f (y)

• f preserves the inverse operation: f (x-1) = f (x)-1

• f preserves the identity: f (e1) = e2 where e1 is the identity in G1 and e2 is the

identity in G2

In Agda, homomorphism for ringWithoutOne is defined using group homomorphism

such that for two ringWithoutOne structures R1 and R2, the homomorphism f : R1 → R2

is a group homomorphism and preserves the multiplication operation. That is f is a

group homomorphism and f (x ∗1 y) = f (x)∗2 f (y).

record IsRingWithoutOneHomomorphism (�_� : A → B) : Set (a t `1 t `2)
where,→

field
+-isGroupHomomorphism : +.IsGroupHomomorphism �_�
*-homo : Homomorphic2 �_� _*1_ _*2_

open +.IsGroupHomomorphism +-isGroupHomomorphism public
renaming (homo to +-homo; ε-homo to 0#-homo;
isMagmaHomomorphism to +-isMagmaHomomorphism)

In the above definition, IsRingWithoutOneHomomorphism is defined as a record

type with two fields +-isGroupHomomorphism and *-homo. The definition of isomor-

phism and monomorphism can be found in the Agda standard library under the module

Algebra.Morphism.Structures.
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6.3 Composition of Homomorphism

If f is a homomorphism such that f : a → b and g is a homomorphism such that

g : b → c, then composition of homomorphisms can be defined as g ◦ f : a → c.

isRingWithoutOneHomomorphism
: IsRingWithoutOneHomomorphism R1 R2 f
→ IsRingWithoutOneHomomorphism R2 R3 g
→ IsRingWithoutOneHomomorphism R1 R3 (g ◦ f)

isRingWithoutOneHomomorphism f-homo g-homo = record
{ +-isGroupHomomorphism = isGroupHomomorphism ≈3-trans

F.+-isGroupHomomorphism G.+-isGroupHomomorphism
; *-homo = λ x y → ≈3-trans

(G.��-cong (F.*-homo x y)) (G.*-homo (f x) (f y))
} where module F = IsRingWithoutOneHomomorphism f-homo;

module G = IsRingWithoutOneHomomorphism g-homo

In the above ringWithoutOne homomorphism composition, f is a homomorphism from

ringWithoutOne structures R1 to R2, g is a homomorphism from ringWithoutOne struc-

tures R2 to R3. isGroupHomomorphism field gives the composition of group homomor-

phism. We can define the composition for binary operations homomorphism (*) using

transitive relation ≈3-trans from R1 to R3 such that

g ( f ((R1 ∗x)y))≈(g ((R2 ∗ f x)( f y)) and g ((R2 ∗ f x)( f y)))≈((R3 ∗ g ( f x))(g ( f y)))

⇒ g ( f ((R1 ∗x)y))≈((R3 ∗ g ( f x))(g ( f y)))

6.4 Product Algebra

The product of ring-like structures in Agda is defined as:
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ringWithoutOne : RingWithoutOne a `1 →
RingWithoutOne b `2 → RingWithoutOne (a t b) (`1 t

`2),→

ringWithoutOne R S = record
{ isRingWithoutOne = record

{ +-isAbelianGroup = AbelianGroup.isAbelianGroup
((abelianGroup R.+-abelianGroup S.+-abelianGroup))

; *-cong = Semigroup.·-cong
(semigroup R.*-semigroup S.*-semigroup)

; *-assoc = Semigroup.assoc (semigroup R.*-semigroup
S.*-semigroup),→

; distrib = (λ x y z →
(R.distribl , S.distribl) <*> x <*> y <*> z)

, (λ x y z →
(R.distribr , S.distribr) <*> x <*> y <*> z)

; zero = uncurry (λ x y → R.zerol x , S.zerol y)
, uncurry (λ x y → R.zeror x , S.zeror y)

}

} where module R = RingWithoutOne R; module S = RingWithoutOne S

The definition of product is similar to quasigroups discussed in Chapter 5. The

definitions of products of nonAssociativeRing, quasiring, and nearring can be de-

fined similarly to ringWithoutOne. These definitions can be found in the Agda standard

library.

6.5 Properties

With these definitions, we can prove some frequently used properties and theories about

the structures.1

1This section provides proof for properties that was contributed by the author and other properties can
be found in the Agda standard library.
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6.5.1 Properties Of Semigroup

Let (S, ·) be a semigroup then

1. S is alternative. The Semigroup S left alternative if (x · x) · y = x · (x · y) and right

alternative is x · (y · y) = (x · y) · y . Semigroup is said to be alternative if it is both

left and right alternative.

2. S is flexible. The Semigroup S is flexible if x · (y · x) = (x · y) · x.

3. S has Jordan identity. Jordan identity for binary operation · can be defined on set S

as (x · y) · (x · x) = x · (y · (x · x)).

Proof:

1. alternativel : LeftAlternative _·_
alternativel x y = assoc x x y

alternativer : RightAlternative _·_
alternativer x y = sym (assoc x y y)

alternative : Alternative _·_
alternative = alternativel , alternativer

2. flexible : Flexible _·_
flexible x y = assoc x y x

3. xy·xx≈x·yxx : ∀ x y → (x · y) · (x · x) ≈ x · (y · (x · x))
xy·xx≈x·yxx x y = assoc x y ((x · x))

6.5.2 Properties Of Commutative Semigroup

An application of semimedial property of commutative semigroup is seen in the study of

quasigroups and loops [Liaqat and Younas(2021)]. The proofs in this section are adapted
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from [Deng et al.(2016)]. Let (S, ·) be a commutative semigroup then

1. S is semimedial. The semigroup S is left semimedial if (x · x) · (y · z) = (x · y) · (x · z)

and right semimedial if (y · z) · (x · x) = (y · x) · (z · x). A structure is semimedial if

it is both left and right semimedial.

2. S is middle semimedial. The semigroup S is middle semimedial if (x · y) · (z · x) =
(x · z) · (y · x)

Proof:

1. semimediall : LeftSemimedial _·_
semimediall x y z = begin
(x · x) · (y · z) ≈〈 assoc x x (y · z) 〉
x · (x · (y · z)) ≈〈 ·-congl (sym (assoc x y z)) 〉
x · ((x · y) · z) ≈〈 ·-congl (·-congr (comm x y)) 〉
x · ((y · x) · z) ≈〈 ·-congl (assoc y x z) 〉
x · (y · (x · z)) ≈〈 sym (assoc x y ((x · z))) 〉
(x · y) · (x · z) ■

semimedialr : RightSemimedial _·_
semimedialr x y z = begin
(y · z) · (x · x) ≈〈 assoc y z (x · x) 〉
y · (z · (x · x)) ≈〈 ·-congl (sym (assoc z x x)) 〉
y · ((z · x) · x) ≈〈 ·-congl (·-congr (comm z x)) 〉
y · ((x · z) · x) ≈〈 ·-congl (assoc x z x) 〉
y · (x · (z · x)) ≈〈 sym (assoc y x ((z · x))) 〉
(y · x) · (z · x) ■

semimedial : Semimedial _·_
semimedial = semimediall , semimedialr
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2. middleSemimedial : ∀ x y z → (x · y) · (z · x) ≈ (x · z) · (y · x)
middleSemimedial x y z = begin

(x · y) · (z · x) ≈〈 assoc x y ((z · x)) 〉
x · (y · (z · x)) ≈〈 ·-congl (sym (assoc y z x)) 〉
x · ((y · z) · x) ≈〈 ·-congl (·-congr (comm y z)) 〉
x · ((z · y) · x) ≈〈 ·-congl ( assoc z y x) 〉
x · (z · (y · x)) ≈〈 sym (assoc x z ((y · x))) 〉
(x · z) · (y · x) ■

6.5.3 Properties Of Ring Without One

Let (R,+,∗,−,0) be ring without one structure then:

1. −(x ∗ y) = −x ∗ y

2. −(x ∗ y) = x ∗ −y

Proof:

1. -^distribl-* : ∀ x y → - (x * y) ≈ - x * y
-^distribl-* x y = sym $ begin

- x * y
≈〈 sym $ +-identityr (- x * y) 〉

- x * y + 0#
≈〈 +-congl $ sym ( -^inverser (x * y) ) 〉

- x * y + (x * y + - (x * y))
≈〈 sym $ +-assoc (- x * y) (x * y) (- (x * y)) 〉

- x * y + x * y + - (x * y)
≈〈 +-congr $ sym ( distribr y (- x) x ) 〉

(- x + x) * y + - (x * y)
≈〈 +-congr $ *-congr $ -^inversel x 〉

0# * y + - (x * y)
≈〈 +-congr $ zerol y 〉

0# + - (x * y)
≈〈 +-identityl (- (x * y)) 〉

- (x * y)
■
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2. -^distribr-* : ∀ x y → - (x * y) ≈ x * - y
-^distribr-* x y = sym $ begin

x * - y
≈〈 sym $ +-identityl (x * (- y)) 〉

0# + x * - y
≈〈 +-congr $ sym ( -^inversel (x * y) ) 〉

- (x * y) + x * y + x * - y
≈〈 +-assoc (- (x * y)) (x * y) (x * (- y)) 〉

- (x * y) + (x * y + x * - y)
≈〈 +-congl $ sym ( distribl x y ( - y) ) 〉

- (x * y) + x * (y + - y)
≈〈 +-congl $ *-congl $ -^inverser y 〉

- (x * y) + x * 0#
≈〈 +-congl $ zeror x 〉

- (x * y) + 0#
≈〈 +-identityr (- (x * y)) 〉

- (x * y)
■

6.5.4 Properties Of Ring

Properties of rings can be found in number theory and algebraic geometry, where they

are used to study algebraic curves, surfaces, and other geometric objects. They help in

understanding the properties of prime numbers, factorization, and algebraic varieties

[Pedrouzo-Ulloa et al.(2021)]. Let (R,+,∗,−,0,1) be a ring structure then

1. −1 ∗ x = −x

2. if x + x = 0 then x = 0

3. x ∗ (y − z) = x ∗ y − x ∗ z

4. (y − z) ∗ x = (y ∗ x) − (z ∗ x)

Proof:
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1. -1*x≈-x : ∀ x → - 1# * x ≈ - x
-1*x≈-x x = begin

- 1# * x ≈〈 sym (-^distribl-* 1# x ) 〉
- (1# * x) ≈〈 -^cong ( *-identityl x ) 〉
- x ■

2. x+x≈x⇒x≈0 : ∀ x → x + x ≈ x → x ≈ 0#
x+x≈x⇒x≈0 x eq = begin

x ≈〈 sym(+-identityr x) 〉
x + 0# ≈〈 +-congl (sym (-^inverser x)) 〉
x + (x - x) ≈〈 sym (+-assoc x x (- x)) 〉
x + x - x ≈〈 +-congr(eq) 〉
x - x ≈〈 -^inverser x 〉
0# ■

3. x[y-z]≈xy-xz : ∀ x y z → x * (y - z) ≈ x * y - x * z
x[y-z]≈xy-xz x y z = begin

x * (y - z) ≈〈 distribl x y (- z) 〉
x * y + x * - z ≈〈 +-congl (sym (-^distribr-* x z)) 〉
x * y - x * z ■

4. [y-z]x≈yx-zx : ∀ x y z → (y - z) * x ≈ (y * x) - (z * x)
[y-z]x≈yx-zx x y z = begin

(y - z) * x ≈〈 distribr x y (- z) 〉
y * x + - z * x ≈〈 +-congl (sym (-^distribl-* z x)) 〉
y * x - z * x ■
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Chapter 7

Theory Of Kleene Algebra In Agda

Kleene algebra is an algebraic structure named after Stephen Cole Kleene, for his con-

tribution in the field of finite automata and regular expressions. Kleene algebras are

used in various fields such as relational algebra, automata and formal theory, design

and analysis of algorithms, program analysis and compiler optimization [Kozen(1997)].

Kleene algebra generalizes operations from regular expressions. The axiomization of

the algebra of regular events was proposed in 1966 but it was in 1984, that a complete-

ness theorem for relational algebra with a proper subclass of Kleene algebra was given

[Kozen(1994)]. Although there are some differences in axioms of Kleene algebra, in this

chapter we consider the axioms defined in [Kozen(1994)]

7.1 Definition

A set S with two binary operations + and ∗ generally called addition and multiplication

such that (S,+,0) is a commutative monoid, (S,∗,1) is a monoid, and ∗ distributes over +
with annihilating zero is called a semiring. A semiring satisfying idempotent property
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is called idempotent semiring. An idempotentSemiring (S,+,∗,0,1) should satisfy the

following axioms:

• (S,+,0) is a commutative monoid:

– Associativity: ∀x, y, z ∈ S, x + (y + z) = (x + y)+ z

– Identity: ∀x ∈ S, (x +0) = x = (0+x)

– Commutativity: ∀x, y ∈ S, (x + y) = (y +x)

• (S,∗,1) is a monoid:

– Associativity: ∀x, y, z ∈ S, x ∗ (y ∗ z) = (x ∗ y)∗ z

– Identity: ∀x ∈ S, (x ∗1) = x = (1∗x)

• Idempotent: ∀x ∈ S, (x +x) = x

• Multiplication distributes over addition: ∀x, y, z ∈ S, (x ∗ (y + z)) = (x ∗ y)+ (x ∗ z)

and (x + y)∗ z = (x ∗ z)+ (y ∗ z)

• Annihilating zero: ∀x ∈ S, (x ∗0) = 0 = (0∗x)

A Kleene Algebra over set S that is an idempotent semiring with unary operator (∗)

that satisfies the following axioms.

∀ x ∈ S : 1 + (x · (x∗)) ≤ x∗ (7.1.1)

∀ x ∈ S : 1 + (x∗) · x ≤ x∗ (7.1.2)

∀ a, b, x ∈ S : If b + a · x ≤ x then, (a∗) · b ≤ x (7.1.3)
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∀ a, b, x ∈ S : If b + x · a ≤ x then, b · (a∗) ≤ x (7.1.4)

where ≤ refers to the natural partial order:

a ≤ b ↔ a +b = b

In Agda we define the partial order axioms in terms of equality. 1

StarRightExpansive : A → Op2 A → Op2 A → Op1 A → Set _
StarRightExpansive e _+_ _·_ _* = ∀ x → (e + (x · (x *))) + (x *) ≈

(x *),→

StarLeftExpansive : A → Op2 A → Op2 A → Op1 A → Set _
StarLeftExpansive e _+_ _·_ _* = ∀ x → (e + ((x *) · x)) + (x *) ≈ (x

*),→

StarExpansive : A → Op2 A → Op2 A → Op1 A → Set _
StarExpansive e _+_ _·_ _* = (StarLeftExpansive e _+_ _·_ _*) ×

(StarRightExpansive e _+_ _·_ _*),→

StarLeftDestructive : Op2 A → Op2 A → Op1 A → Set _
StarLeftDestructive _+_ _·_ _* = ∀ a b x → (b + (a · x)) + x ≈ x →

((a *) · b) + x ≈ x,→

StarRightDestructive : Op2 A → Op2 A → Op1 A → Set _
StarRightDestructive _+_ _·_ _* = ∀ a b x → (b + (x · a)) + x ≈ x →

(b · (a *)) + x ≈ x,→

StarDestructive : Op2 A → Op2 A → Op1 A → Set _
StarDestructive _+_ _·_ _* = (StarLeftDestructive _+_ _·_ _*) ×

(StarRightDestructive _+_ _·_ _*),→

1Kleene algebra with partial and pre-order structures are defined in "Algebra.Ordered.Structures" in
Agda standard library.
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The Kleene algebra can be defined using idempotent semiring. In the Agda standard

library, + and ∗ operations are used to denote addition and multiplication. To keep the

same template, ? is selected to denote the unary star operation.

record IsKleeneAlgebra (+ * : Op2 A) (? : Op1 A) (0# 1# : A) : Set (a
t `) where,→

field
isIdempotentSemiring : IsIdempotentSemiring + * 0# 1#
starExpansive : StarExpansive 1# + * ?

starDestructive : StarDestructive + * ?

open IsIdempotentSemiring isIdempotentSemiring public

In the above definition, IsKleeneAlgebra structure is defined as a record type with three

fields. Since * is used to denote binary multiplication operation, we use ? for the unary

star operator. The field isIdempotentSemiring makes an idempotent semiring with the

operator +,∗,0#, and 1#. Fields starExpansive and starDestructive are used to give

the axioms for the star operator. We open isIdempotentSemiring to bring its definitions

into scope.

7.2 Homomorphism

A homomorphism of Kleene algebra is a function between two Kleene algebras that

preserves the algebraic structure of the underlying semiring and the Kleene star operation.

Homomorphisms of Kleene algebra are important in the study of regular languages and

automata, as they allow us to relate the behavior of different automata and regular

expressions to each other.

For Kleene algebra (K1,+1,∗1,∗1 ,01,11) and (K2,+2,∗2,∗2 ,02,12), the homomorphism

f : K1 → K2 can be defined by using the homomorphism of structure idempotent semiring
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and preserving the ∗ operator. Formally, f : K1 → K2 is a structure-preserving map such

that:

• f preserves binary operation +: f (x +1 y) = f (x)+2 f (y)

• f preserves binary operation ∗: f (x ∗1 y) = f (x)∗2 f (y)

• f preserves additive identity: f (01) = 02

• f preserves multiplicative identity: f (11) = 12

• f preserves star operation: f (x∗1 ) = f (x)∗2

record IsKleeneAlgebraHomomorphism (�_� : A → B) : Set (a t `1 t `2)
where,→

field
isSemiringHomomorphism : IsSemiringHomomorphism �_�
?-homo : Homomorphic1 �_� _?1 _?2

open IsSemiringHomomorphism isSemiringHomomorphism public

By characterizing these constructs in Kleene algebra, researchers can gain insights

into the structural properties between two regular languages.

7.3 Composition of Homomorphism

If f is a homomorphism such that f : a → b and g is a homomorphism such that

g : b → c, then composition of homomorphisms can be defined as g ◦ f : a → c.
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isKleeneAlgebraHomomorphism
: IsKleeneAlgebraHomomorphism K1 K2 f
→ IsKleeneAlgebraHomomorphism K2 K3 g
→ IsKleeneAlgebraHomomorphism K1 K3 (g ◦ f)
isKleeneAlgebraHomomorphism f-homo g-homo = record
{ isSemiringHomomorphism = isSemiringHomomorphism ≈3-trans

F.isSemiringHomomorphism G.isSemiringHomomorphism,→

; ?-homo = λ x → ≈3-trans (G.��-cong (F.?-homo x))
(G.?-homo (f x)),→

} where module F = IsKleeneAlgebraHomomorphism f-homo; module G =
IsKleeneAlgebraHomomorphism g-homo,→

In the above quasigroup homomorphism composition, f is a homomorphism from

Kleene algebra K 1 to K 2, g is a homomorphism from Kleene algebra K 2 to K 3. The

proof for homomorphism composition is homomorphic is given using the proof for

semiring homomorphism composition. ?-homo gives composition for star operator

using transitive relation such that:

g ( f (x∗1 )) = (g ( f x)∗2 ) and (g ( f x)∗2 ) = (g ( f x))∗3

⇒ g ( f (x∗1 )) = (g ( f x))∗3

The composition of monomorphism and isomorphism can be defined similar to homo-

morphism and can be found in the Agda standard library.

7.4 Product Algebra

The product of two Kleene algebra structures in Agda is defined using the product defini-

tion of idempotent semiring structure as:

88



M.Sc. Thesis—Akshobhya K M McMaster University—Computer Science

KleeneAlgebra : KleeneAlgebra a `1 → KleeneAlgebra b `2 →
KleeneAlgebra (a t b) (`1 t `2),→

KleeneAlgebra K L = record
{ isKleeneAlgebra = record

{ isIdempotentSemiring = IdempotentSemiring.isIdempotentSemiring
(idempotentSemiring K.idempotentSemiring L.idempotentSemiring),→

; starExpansive = (λ x → (K.starExpansivel , L.starExpansivel)
<*> x),→

, (λ x → (K.starExpansiver , L.starExpansiver)
<*> x),→

; starDestructive = (λ a b x x1 → (K.starDestructivel ,
L.starDestructivel) <*> a <*> b <*> x <*> x1),→

, (λ a b x x1 → (K.starDestructiver ,
L.starDestructiver) <*> a <*> b <*> x <*>
x1)

,→

,→

}
} where module K = KleeneAlgebra K; module L = KleeneAlgebra L

where idempotentSemiring is the product of two idempotent semiring structures.

7.5 Properties

Property of union (a+b)∗ = a∗∗(b∗(a∗))∗ require monotonicity to prove [Broda et al.(2014)].

Since the identities of Kleene algebra with partial order are defined in terms of equality

(a ≤ b ↔ a +b = b), these properties become non-provable. For the scope of the thesis,

we omit discussing properties that require monotonicity. In this section, we prove some

properties of Kleene algebra. The proofs are adapted from [Kozen(1997)].

Let (K ,+,∗,∗ ,0,1) be a Kleene algebra then:

1.

1 + x∗ = x∗

x + x∗ = x∗
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This property allows for the repetition and concatenation of language constructs.

An application of this property is found in the development of pattern-matching

algorithms in text processing and computational linguistics [Ulus(2018)].

1+x?≈x? : ∀ x → 1# + x ? ≈ x ?

1+x?≈x? x = begin
1# + x ? ≈〈 +-congl (sym(starExpansiver x)) 〉
1# + (1# + x * x ? + x ?) ≈〈 +-congl (+-assoc 1# (x * x ?) (x

?)) 〉,→

1# + (1# + (x * x ? + x ?)) ≈〈 sym(+-assoc 1# 1# (x * x ? + x
?)) 〉,→

1# + 1# + (x * x ? + x ?) ≈〈 +-congr (+-idem 1#) 〉
1# + (x * x ? + x ?) ≈〈 sym(+-assoc 1# (x * x ?) (x ?)

) 〉,→

1# + x * x ? + x ? ≈〈 starExpansiver x 〉
x ? ■

x+x?≈x? : ∀ x → x + x ? ≈ x ?

x+x?≈x? x = begin
x + x ? ≈〈 +-congl(sym(starExpansiver

x)) 〉,→

x + (1# + x * x ? + x ?) ≈〈 +-congr(sym(*-identityr x))
〉,→

x * 1# + (1# + x * x ? + x ?) ≈〈 +-congl((+-assoc _ _ _)) 〉
x * 1# + (1# + (x * x ? + x ?)) ≈〈 sym(+-assoc _ _ _ ) 〉
x * 1# + 1# + (x * x ? + x ?) ≈〈 +-congr(+-comm (x * 1#) 1#)

〉,→

1# + x * 1# + (x * x ? + x ?) ≈〈 +-assoc _ _ _ 〉
1# + (x * 1# + (x * x ? + x ?)) ≈〈 +-congl(sym (+-assoc _ _ _))

〉,→

1# + ((x * 1# + x * x ?) + x ?) ≈〈 +-congl(+-congr(sym(distribl

_ _ _))) 〉,→

1# + (x * (1# + x ?) + x ?) ≈〈
+-congl(+-congr(*-congl(1+x?≈x? x))) 〉,→

1# + (x * x ? + x ?) ≈〈 sym(+-assoc _ _ _) 〉
1# + x * x ? + x ? ≈〈 starExpansiver x 〉
x ? ■
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2. The absorption property is used in the simplification of regular expressions.

x ∗x∗+x∗ = x∗

x∗ +x∗ ∗ x = x∗

They are used in the analysis of language hierarchies and the development of

language recognition algorithms in natural language processing and computational

linguistics [Desharnais et al.(2004)].

xx?+x?≈x? : ∀ x → x * x ? + x ? ≈ x ?

xx?+x?≈x? x = begin
x * x ? + x ? ≈〈 +-comm _ _ 〉
x ? + x * x ? ≈〈 +-congr (sym(starExpansiver

x)) 〉,→

1# + x * x ? + x ? + x * x ? ≈〈 +-assoc _ _ _ 〉
1# + x * x ? + (x ? + x * x ?) ≈〈 +-congl(+-comm (x ?) ( x *

x ?)) 〉,→

1# + x * x ? + (x * x ? + x ?) ≈〈 +-assoc _ _ _ 〉
1# + (x * x ? + (x * x ? + x ?)) ≈〈 +-congl (sym (+-assoc _ _

_)) 〉,→

1# + (x * x ? + x * x ? + x ?) ≈〈 +-congl (+-congr (+-idem
_)) 〉,→

1# + (x * x ? + x ?) ≈〈 sym( +-assoc 1# (x * x ?)
(x ?) ) 〉,→

1# + x * x ? + x ? ≈〈 starExpansiver x 〉
x ? ■

x?+x?x≈x? : ∀ x → x ? + x ? * x ≈ x ?

x?+x?x≈x? x = begin
x ? + x ? * x ≈〈 +-congr (sym (1+x?≈x? x)) 〉
1# + x ? + x ? * x ≈〈 +-assoc _ _ _ 〉
1# + (x ? + x ? * x) ≈〈 +-congl (+-comm (x ?) (x ? * x)) 〉
1# + (x ? * x + x ?) ≈〈 sym (+-assoc _ _ _) 〉
1# + x ? * x + x ? ≈〈 starExpansivel x 〉
x ? ■
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3. Zero and one element By the zero element property simplifies to x∗. That is the zero

(and one) element does not alter the result when combined with language elements

and their Kleene star. These properties are also used in regular expressions and

pattern-matching algorithms.

0 +x + x∗ = x∗

1 +x + x∗ = x∗

0+x+x?≈x? : ∀ x → 0# + x + x ? ≈ x ?

0+x+x?≈x? x = begin
0# + x + x ? ≈〈 +-assoc 0# x (x ?) 〉
0# + (x + x ?) ≈〈 +-identityl ((x + x ?)) 〉
(x + x ?) ≈〈 x+x?≈x? x 〉
x ? ■

1+x+x?≈x? : ∀ x → 1# + x + x ? ≈ x ?

1+x+x?≈x? x = begin
1# + x + x ? ≈〈 +-assoc _ _ _ 〉
1# + (x + x ?) ≈〈 +-congl (x+x?≈x? x) 〉
1# + x ? ≈〈 1+x?≈x? x 〉
x ? ■

4. To prove the property:

x∗ ∗ x∗ + x∗ = x∗

We need to prove that x∗+x∗x∗+x∗≈x∗. This proof can be used in Agda as shown

in the proof below.
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x?+xx?+x?≈x? : ∀ x → x ? + x * x ? + x ? ≈ x ?

x?+xx?+x?≈x? x = begin
x ? + x * x ? + x ? ≈〈 +-assoc _ _ _ 〉
x ? + (x * x ? + x ?) ≈〈 +-congl (+-comm _ _) 〉
x ? + (x ? + x * x ?) ≈〈 sym (+-assoc _ _ _) 〉
x ? + x ? + x * x ? ≈〈 +-congr (+-idem _) 〉
x ? + x * x ? ≈〈 +-comm _ _ 〉
x * x ? + x ? ≈〈 xx?+x?≈x? x 〉
x ? ■

x?x?+x?≈x? : ∀ x → x ? * x ? + x ? ≈ x ?

x?x?+x?≈x? x = starDestructivel x (x ?) (x ?) (x?+xx?+x?≈x?
x),→

Here are some other notable properties of Kleene algebra along with their proofs in

Agda.

5. If x = y then, 1 + x ∗ y∗ + y∗ = y∗

x≈y⇒1+xy?≈y? : ∀ x y → x ≈ y → 1# + x * y ? + y ? ≈ y ?

x≈y⇒1+xy?≈y? x y eq = begin
1# + x * y ? + y ? ≈〈 +-assoc _ _ _ 〉
1# + (x * y ? + y ?) ≈〈 +-congl (+-congr (*-congr (eq))) 〉
1# + (y * y ? + y ?) ≈〈 sym(+-assoc _ _ _) 〉
1# + y * y ? + y ? ≈〈 starExpansiver y 〉
y ? ■

6. If a ∗ x = x ∗ b then, a∗ ∗ x + x ∗ b∗ = x ∗ b∗
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ax≈xb⇒x+axb?+x?b≈xb? : ∀ x a b → a * x ≈ x * b → (x + a * (x
* b ?)) + x * b ? ≈ x * b ?,→

ax≈xb⇒x+axb?+x?b≈xb? x a b eq = begin
(x + a * (x * b ?)) + x * b ? ≈〈 +-congr( +-congl

(sym(*-assoc a x (b ?)))) 〉,→

(x + a * x * b ?) + x * b ? ≈〈 +-congr(+-congr (sym
(*-identityr x))) 〉,→

(x * 1# + a * x * b ?) + x * b ? ≈〈 +-congr (+-congl (*-congr

(eq))) 〉,→

(x * 1# + x * b * b ?) + x * b ? ≈〈 +-congr (+-congl (
*-assoc _ _ _)) 〉,→

(x * 1# + x * (b * b ?)) + x * b ? ≈〈 +-congr(sym (distribl x
1# (b * b ?))) 〉,→

x * ( 1# + b * b ?) + x * b ? ≈〈 sym(distribl _ _ _) 〉
x * (1# + b * b ? + b ?) ≈〈 *-congl (starExpansiver

b) 〉,→

x * b ? ■

ax≈xb⇒a?x≈xb? : ∀ x a b → a * x ≈ x * b → a ? * x + x * b ?

≈ x * b ?,→

ax≈xb⇒a?x≈xb? x a b eq = starDestructivel a x ((x * b ?))
(ax≈xb⇒x+axb?+x?b≈xb? x a b eq),→

7. (x ∗ y)∗ ∗ x + x ∗ (y ∗ x)∗ = x ∗ (y ∗ x)∗

[xy]?x+x[yx]?≈x[yx]? : ∀ x y → (x * y) ? * x + x * (y * x) ?

≈ x * (y * x) ?,→

[xy]?x+x[yx]?≈x[yx]? x y = ax≈xb⇒a?x≈xb? x (x * y) (y * x)
(*-assoc x y x),→
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Chapter 8

Problem In Programming Algebra

Algebraic structures show variations in syntax and semantics depending on the system

or language in which they are defined. Each system discussed in Chapter 3 have their

own style of defining structures in the standard libraries. For example, in Idris, the ring is

defined without a multiplicative identity (Ring). However, in Agda, the ring has a multi-

plicative identity (IsRing) and rng is defined as ringWithoutOne that has no multiplicative

identity (IsRingWithoutOne). This ambiguity in naming is also seen in literature. For

example, [Ánh and Márki(1987)], [Jacobson(1964)], [Persson(1999)] define ring without

the multiplicative identity and [Lehmann(1977)], [Geuvers et al.(2002)] define ring with

multiplicative identity. Another example is the same structure having multiple definitions

like Quasigroups. Quasigroups can be defined as a type(2) algebra with Latin square

property or as a type(2,2,2) with left and right division operators. Both definitions are

equivalent [Shcherbacov(2017)], but they are structurally different. This chapter iden-

tifies and classifies five important problems that arise when defining types of algebraic

structures in proof assistant systems.
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8.1 Ambiguity In Naming

Ambiguity arises when something can be interpreted in more than one way. The example

of a quasigroup having more than one definition can give rise to a scenario of making

an incorrect interpretation of the algebraic structure when it is not clearly stated. In

abstract algebra and algebraic structure, these scenarios can be more common and this

can be attributed to the lack of naming convention that is followed in naming algebraic

structures and their properties. For example, consider algebraic structures ring and rng.

Some mathematicians define a ring as an algebraic structure that is an Abelian group

under addition, a monoid under multiplication, multiplication distributes over addition

and has an annihilating zero. This definition is also named explicitly as ring with unit or

ring with identity. Rng is defined as an algebraic structure that is an Abelian group under

addition and a semigroup under multiplication. The same structure is also defined as ring

without identity or ring without unit. However, these definitions are often interchanged

i.e., some mathematicians define ring as ring without identity that is multiplication has

no identity or is a semigroup. This ambiguity may be attributed to the language of origin

of the algebraic structures. In this case, rng is used in French whereas ring is in English.

These confusions can be seen in literature and in online blogs where it is difficult to imply

the definition of intent when they are not explicitly defined.

In Agda, a ring structure is defined as an algebraic structure with two binary opera-

tions + and ∗, one unary operator −1, and two elements 0 and 1 on setoid A. (A,+,−1 ,0)

is an Abelian group and (A,∗,1) forms a monoid. The binary operation ∗ distributes over

+, and it has annihilating zero.
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record IsRing (+ * : Op2 A) (-_ : Op1 A) (0# 1# : A) : Set (a t `)
where,→

field
+-isAbelianGroup : IsAbelianGroup + 0# -_
*-cong : Congruent2 *
*-assoc : Associative *
*-identity : Identity 1# *
distrib : * DistributesOver +
zero : Zero 0# *

open IsAbelianGroup +-isAbelianGroup public

Rng is defined as IsRingWithoutOne that is a ring structure without multiplicative

identity.

record IsRingWithoutOne (+ * : Op2 A) (-_ : Op1 A) (0# : A) : Set (a t
`) where,→

field
+-isAbelianGroup : IsAbelianGroup + 0# -_
*-cong : Congruent2 *
*-assoc : Associative *
distrib : * DistributesOver +
zero : Zero 0# *

open IsAbelianGroup +-isAbelianGroup public

Lam in [Lam(1991)] discusses the confusion between "Ring" and "Rng" and how the

term "Rng" refers to rings without unity, leading to potential misunderstandings in the

literature. The issue is also seen in [Bosma et al.(1997)], [Jacobson(1964)], [Persson(1999)],

[Lehmann(1977)], and [Geuvers et al.(2002)].

Another example of ambiguity arises when defining structure nearring. Nearring

is defined as a structure for which addition is a group and multiplication is a monoid,

and multiplication distributes over addition. However, some mathematicians use the

definition where multiplication is a semigroup. The same confusion also arises in defining
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semiring and rig structures. [Rasuli(2022)] states that the term rig originated as a joke

that it is similar to rng and is missing the alphabet "n" and "i" to represent that the

identity does not exist for these structures. In Agda, the algebraic structure rig is defined

as SemiringWithoutOne where one represents the multiplicative identity.

For axioms of structures, the names are usually invented when defining the struc-

ture. As an example when defining Kleene Algebra in Chapter 7, starExpansive and

starDestructive names were invented (inspired from what is used in literature). Due

to the lack of standardized names, many names can be coined for the same axiom.

8.2 Equivalent But Structurally Different

Quasigroup structure is an example that can be defined in two ways that are equivalent

but structurally different. A type (2) Quasigroup can be defined as a set Q and binary

operation · that forms a magma and satisfies the Latin square property. Latin square

property states that for each a, b in set Q there exists unique elements x, y in Q such that

the following property is satisfied:

a·x = b (8.2.1)

y ·a = b (8.2.2)

Another definition of quasigroup is given as type a (2,2,2). In Chapter 5, we defined

quasigroup with three binary operations (·,\,/) that satisfy the identities below.

x · (x \ y) = y (8.2.3)

x \ (x · y) = y (8.2.4)
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(y / x) · x = y (8.2.5)

(y · x) / x = y (8.2.6)

A quasigroup that is a type (2) algebra and a quasigroup that is a type (2,2,2) algebra

are equivalent but are structurally different. We can show that both the definitions of

quasigroup are isomorphic to each other. The proof is adapted from [Shcherbacov(2017)].

1. Let (Q, ·) be a quasigroup (satisfies Latin square property). Since a·x = b, we can

associate this with an operation such that a·x = b 7→ a\b = x. We can substitute

this in equation a·x = b to get a·(a\b) = b∀a,b ∈Q which is 8.2.3.

Similarly, y ·a = b 7→ a/b = y . Substituting this we get (a/b)·a = y which is 8.2.5.

Equation 8.2.4 and 8.2.6, follows from the definition of operation \ and /. That is

x\(x·y) = y 7→ x·y = x·y and (y ·x)/x 7→ y ·x = y ·x.

2. Let (Q, ·,\,/) be a quasigroup (satisfies division). We need to show the existence of

a unique solution of equation a·x = b and y ·a = b.

To prove the existence of a solution, let x = a\b and y = b/a. Substituting x and y in

above equation, we get a·x = a·(a\b) = b from equation 8.2.3 and y ·a = (b/a)·a = b

from equation 8.2.5.

To prove the uniqueness of the solution, we can assume there exist two solutions

x1 and x2 that is a·x1 = b and a·x2 = b. Then x1 = a\b. Therefore we get x1 = a\b =
a\(a·x2) = x2 from equation 8.2.5

Similarly, if y1 and y2 two solutions that is y1·a = b and y2·a = b, we get y1 = b/a =
(y2·a)/a = y2 from equation 8.2.6.
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In the algebra hierarchy, a Loop is an algebraic structure that is a quasigroup with

identity. It can be observed the same problem persists in the hierarchy. If a loop is defined

with a quasigroup that is a type (2,2,2) algebra then, a loop structure of type (2) will be

forced to be defined with a suboptimal name. One possible solution to this problem is

to define the structures in different modules and import restrict them when used. This

problem of not being able to overload names for structures also affects when defining

types of quasigroup or loops such as bol loop and moufang loop. Since quasigroup is

defined in terms of division operation, the loop is also defined as a type (2,2,2) algebra in

the Agda standard library.

8.3 Redundant Field In Structural Inheritance

Redundancy arises when there is duplication of the same field. In programming re-

dundant code is considered a bad practice and is usually avoided by modularizing and

creating functions that perform similar tasks. In algebraic structures, redundant fields

can be introduced in structures that are defined in terms of two or more structures. For ex-

ample, semiring can be defined with commutative monoid under addition and a monoid

under multiplication. In Agda, both monoid and commutative monoid have an instance

of equivalence relation. Hence, if semiring is defined in terms of commutative monoid

and monoid then this definition of the semiring will have a redundant equivalence field.

This redundancy can also be seen in other structures like ring, lattice, module, and other

algebraic structures. To remove this redundant field in Agda, the structure except the first

is opened and expressed in terms of independent axioms that they satisfy. For example,

semiring without identity or rig structure in Agda is defined as:
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record IsSemiringWithoutOne (+ * : Op2 A) (0# : A) : Set (a t `)
where,→

field
+-isCommutativeMonoid : IsCommutativeMonoid + 0#
*-cong : Congruent2 *
*-assoc : Associative *
distrib : * DistributesOver +
zero : Zero 0# *

open IsCommutativeMonoid +-isCommutativeMonoid public

From the above definition, we can observe that the operation ∗ is a semigroup ex-

pressed with axioms congruent and associative. But, there is no field to say that ∗ is a

semigroup. To overcome this problem an instance is created in the definition as follows

along with near semiring structure.

*-isMagma : IsMagma *
*-isMagma = record

{ isEquivalence = isEquivalence
; ·-cong = *-cong
}

*-isSemigroup : IsSemigroup *
*-isSemigroup = record

{ isMagma = *-isMagma
; assoc = *-assoc
}

isNearSemiring : IsNearSemiring + * 0#
isNearSemiring = record

{ +-isMonoid = +-isMonoid
; *-cong = *-cong
; *-assoc = *-assoc
; distribr = proj2 distrib
; zerol = zerol

}

The above technique will remove the redundant equivalence relation. However, it
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fails to express the structure in terms of two or more structures that are commonly used

in literature and other systems. Agda 2.0 removed redundancy by unfolding the structure.

This solution should ensure that the structure exports the unfolded structure whose

properties can be imported when required.

8.4 Identical Structures

In abstract algebra when formalizing algebraic structures from the hierarchy, the same

algebraic structure can be derived from two or more structures. One such example

is Nearring. Nearring is a group under addition, a monoid under multiplication, and

multiplication right distributes over addition. In this case, nearring is defined using two

algebraic structures group and monoid. Another definition of nearring can be derived

using the structure quasiring. Quasiring is an algebraic structure in which addition is a

monoid, multiplication is a monoid and multiplication distributes over addition. Using

this definition of quasiring, nearring can be defined as a quasiring that has an additive

inverse. In Agda nearring is defined in terms of quasiring with additive inverse as:
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record IsNearring (+ * : Op2 A) (0# 1# : A) (_-1 : Op1 A) : Set (a t
`) where,→

field
isQuasiring : IsQuasiring + * 0# 1#
+-inverse : Inverse 0# _-1 +
-1-cong : Congruent1 _-1

open IsQuasiring isQuasiring public

+-isGroup : IsGroup + 0# _-1

+-isGroup = record
{ isMonoid = +-isMonoid
; inverse = +-inverse
; -1-cong = -1-cong
}

In some literature, a nearring is defined such that multiplication is a semigroup.

This can be attributed to the problem of ambiguity. It can be analyzed that having two

different definitions for the same structure is not a good practice. If nearring is defined

using quasiring then it should also give an instance of an additive group without having

to construct it when using the above formalization. This solution might solve the problem

at first but in practice, this becomes tedious and may go to a point at which this can

be impractical especially when formalizing structures at higher levels in the algebra

hierarchy.

8.5 Equivalent Structures

Consider the example of idempotent commutative monoid and bounded semilattice.

Both idempotent commutative monoid and bounded semilattice are equivalent struc-

tures that are also of the same type. It is redundant to define two different structures

from different hierarchies. Instead, in Agda, aliasing may be used to say that the bounded
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semilattice is same as the idempotent commutative monoid. Idempotent commutative

monoid is defined and an aliasing for bounded semilattice is given.

record IsIdempotentCommutativeMonoid (· : Op2 A) (ε : A) : Set (a t `)
where,→

field
isCommutativeMonoid : IsCommutativeMonoid · ε
idem : Idempotent ·

open IsCommutativeMonoid isCommutativeMonoid public

IsBoundedSemilattice = IsIdempotentCommutativeMonoid
module IsBoundedSemilattice {· ε} (L : IsBoundedSemilattice · ε) where

open IsIdempotentCommutativeMonoid L public

Some mathematicians argue that bounded semilattice and idempotent commutative

monoid are not the same structures but are isomorphic to each other. We do not consider

this argument in the scope of this thesis.

8.6 Summary

The table below provides a summary of the issues classified and recommendations to

mitigate the issues.

Table 8.1: Problem in programming algebra

Issue Recommendation
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Ambiguity in naming
• Encouraging standardization by adopting com-

monly accepted definitions and terminology.

• When defining terms in standard libraries or in

literature, provide contextual clarification when

introducing potentially ambiguous terms.

Equivalent but struc-

turally different
• Provide proofs for equivalence in algebraic struc-

tures.

• Make the system capable of overloading names.

• Provide commonly used definitions in different

modules to avoid conflict.

Redundant field in

structural inheritance
• Unfold structure to remove redundant fields.

• Provide all instances of structure that were avail-

able before unfolding.

Identical structures
• Make a note of diamonds in the hierarchy when

defining structures.

• Provide the instance of structure that was not de-

fined with the field.
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Equivalent structures
• Give aliasing instead of defining the structure

again.

• Provide proof if the structures are isomorphic to

each other.
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Chapter 9

Conclusion And Future Work

The primary of this work was to study types of algebraic structures in proof assistant

systems. To define the scope of the work, we do a survey on the coverage of types of

algebraic structures in four proof assistant systems which are Agda, Idris, Coq, and Lean.

The thesis shows how to define a structure with some of its constructs and properties in

Agda. We divided this into three main chapters based on the closeness of structures that

is quasigroup and loop, semigroup and ring, and Kleene algebra. We then analyzed five

problems that arise when defining types of algebraic structures in proof systems.

In section 9.1, we summarize the contributions of this work and how it refers to the

research outline described in Chapter 1. Section 9.2 discuss some extensions or future

work of this work.

9.1 Summary Of Contributions

Universal algebra is a well-studied and evolving branch of mathematics. Proof systems are

useful in automated reasoning and becoming popular in research and applications more
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than ever. With an introduction to universal algebra in Chapter 1 and Agda in Chapter 2,

and Chapter 3 provide an overview of the quantitative use of algebraic structures in proof

assistant systems. We create a clickable table that takes to the definition of structures in

the standard libraries of the systems studied (Agda, Idris, Lean, and Coq).

This leads to defining the scope of contribution to the Agda standard library. Chapter

5 is dedicated to studying the structures quasigroup, loop, and their variations. Chapter 6

provides an overview of semigroup and ring structures with definitions of their constructs

and prove their properties. Chapter 7 is dedicated to the study of Kleene algebra and its

properties in Agda. Along with these structures, we define structures unital magma, in-

vertible magma, invertible unital magma, idempotent magma, alternate magma, flexible

magma, semimedial magma, medial magma, with their constructs.

Our approach to defining these structures led us to encounter and analyze some

problems such as ambiguity in naming, equivalent and identical structures. Chapter

8 discussed how these problems become more evident in proof systems that might be

ignored in classical the ’pen-and-paper’ technique.

9.2 Future Work

Our work can be extended in different ways. The direct products defined in this thesis do

not clearly differentiate between direct products, products, and co-products of algebraic

structures. There is currently a discussion on the Agda standard library to overcome this

issue, but the changes are yet to come. The current solution adapted in the Agda standard

library to remove the redundant field will only remove the equivalence. However, there

can be other redundant fields. For example, in commutative monoid, right identity can

be obtained from left identity and commutativity. These problems are yet to be addressed.
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The current work will rely on human efforts in building strong libraries in the field of

abstract algebra. A more robust and reliable generative library will be helpful to reduce

human efforts.
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