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Abstract 

Cluster randomized controlled trials are increasingly used to assess the 

effectiveness of life-style interventions in improvement of health services or prevention 

of disease. However, statistical methods in the analysis of cluster randomized 

controlled trials are not well established especially for analyzing binary outcomes. 

This project is motivated by the Community Hypertension Assessment Trial 

(CHAT) to assess the effectiveness of a 12-month community-based blood pressure 

management program in improving the management and monitoring of high blood 

pressure (BP) among older people. The study is a paired cluster randomized controlled 

trial, where the family physicians' practices are the clusters randomly allocated to 

CHAT intervention or usual practice, and a random sample of 55 patients 65 years and 

older were selected from the 14 practices in each study arm for health record review. 

The primary outcome was controlled BP over 12 months defined as systolic BP c:; 140 

and diastolic BP c:; 90 for patients without diabetes or target organ damage or systolic 

BP c:; 130 and diastolic BP c:; 80 for patients with diabetes or target organ damage. 

Secondary outcomes include frequency of BP monitoring and average BP over a 12 

month period. 

The clinical objective of this project is to evaluate the effectiveness of the 

CHAT intervention. The statistical objective is to compare Bayesian and classical 

methods of analyzing cluster-randomized trials using CHAT study as an example. We 

compared the results of different cluster-level analysis methods: i) un-weighted 
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regression, ii) weighted regression, iii) random-effects meta-analytic approach, and 

different individual-level analyses: i) standard logistic regression, ii) robust standard 

errors approach, iii) generalized estimating equations, iv) random-effect logistic 

regression, v) Bayesian random-effect regression. 

We find that there is no sufficient evidence in support of the effectiveness of the 

CHAT intervention on all outcomes. For BP control, odds ratio (95% confidence 

interval) is 1.14 (0.72, 1.80) from generalized estimating equations. This result remains 

robust under different methods. We also find that the results from different statistical 

methods are different. The results from cluster-level analysis methods are quite 

different, while the results from the individual-level analysis methods are similar. 

We conclude that using various methods to analyze the trial provide good 

sensitivity analyses to help in interpreting the results of cluster randomized trials. 

Extensive simulation studies comparing the statistical powers of the different methods 

in different situations are required. 
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Chapter 1 

Introduction 

1.1 The CHAT Trial 

The prevalence of high blood pressure (BP) is about 22% among Canadian 

adults and it increases with age [1]. In Canada, within the age group from 65 to 74 

years, 58% of females and 56% of males have mean BP 2: 140/90 mmHg [2]. 

Hypertension is a modifiable risk factor for cardiovascular diseases including stroke [3], 

kidney disease [1] and Alzheimer's disease [4-5]. Even though BP health services are 

available throughout the community, it remains one of the most significant and costly 

health problems facing Canadians. Many researchers are trying to find an optimal way 

to organize and deliver the health care to patients with high BP [6-10]. 

According to the review report on interventions used to improve control of 

blood pressure in patients with hyPertension [11], the majority of randomized 

controlled trials [12-16] are associated with improved BP control comparing the health 

professional led care to the usual care. However, further investigation and evaluation 

are required. 

The Community Hypertension Assessment Trial (CHAT) was designed and 

conducted to evaluate the effectiveneSs of community pharmacy BP clinics linked with 
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family practices (FP) on monitoring and management of high BP among older adults 

[1 ]. 

The CHAT was a multi-center, paired cluster randomized controlled trial using blocked 

stratified cluster randomization. The participants of the CHAT trial included family 

physicians (FP), patients, pharmacies, health personnel, and peer volunteers in the 

cities of Hamilton and Ottawa. FP was the unit of randomization. Eligible physicians 

were those who had a non-academic, full-time, regular family practice in terms of size 

of patient population and case mix, and were able to provide a roster of their regular 

patients aged 65 and over. Eligible patients must be community-dwelling patients with 

at least 65 years and be able to visit the community pharmacy. Eligible FPs were 

stratified according to two criteria: First, the median number of patients in the practices 

with adequate BP control. Second, the median number of patients aged 65 years and 

older according to the baseline chart review. FPs within each stratum were randomly 

allocated to the intervention or control group, therefore 1:1 distribution of FPs below 

and above the median at baseline was achieved. Patients from the same FP were 

allocated to the same treatment. The design of the study is summarized in Figure 1 in 

Appendix D. 

Patients allocated to the intervention group were invited to the BP clinic in the 

pharmacy. The BP clinic staff measured the BP of the patients and reviewed 

cardiovascular risk factors with patients with high BP readings. They then faxed the 

patients' information to the FP's Office. Patients allocated to the control group got usual 
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care at their FP' s office. The detailed comparison of the intervention and control is 

presented in Figure 2 in Appendix D. 

The health records of the patients were collected at baseline and 12 months after 

the intervention, i.e. the end of the trial, through the chart review. The primary outcome 

was controlled BP over 12 months defined as systolic BP ~ 140 mmHg and diastolic 

BP ~ 90 mmHg for patients without diabetes or target organ damage or systolic 

BP ~ 130 mmHg and diastolic BP ~ 80 mmHg for patients with diabetes or target organ 

damage. The definitions of the primary outcomes are presented in Table B 1 in 

Appendix B. Secondary outcomes included BP monitored (binary), BP monitoring 

frequency (count), mean systolic BP (continuous), mean diastolic BP (continuous), 

percentage of patients with BP controlled (continuous), difference of percentage of 

patient with BP controlled between baseline and the end of the trial (continuous). The 

definitions ofthe secondary outcomes are presented in Table C1 in Appendix C. 

In the CHAT trial, 28 FPs and 55 patients from each FP participated in the 

study. Fourteen of the FPs were randomly allocated to the intervention and control 

groups respectively. Patients from the same FP were assigned to the same treatment. 

Therefore, the total number of participants was 1540, and the number of patients 

allocated to each treatment arm was 770. This sample size was calculated to detect a 

minimal clinically important difietence of 20% (two sided) between the intervention 

and control groups at significance level of 5% and power of at least 80%. To estimate 

the sample size, we assumed that the intra-cluster correlation coefficient (ICC) was 
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0.13, which was obtained based on the information from the pilot study (the SMART 

data). 

1.2 Objective of the Report 

Cluster randomized control trials are increasingly being used in health care. 

Motivated by the CHAT study to assess the effectiveness of the intervention relative to 

the control in improving the monitoring and management of high blood pressure among 

older adults, we explore the differences between statistical methods in analysis of 

cluster randomized trials. 

The clinical objective of this thesis is to assess the impact of CHAT 

intervention in improving the patients' blood pressure compared to the control. To 

achieve this goal, we applied four cluster-level, four individual-level and one Bayesian 

individual-level analysis methods and some other parametric and non-parametric 

methods to the CHAT data. The results from the analysis will help health researchers to 

develop an effective and practical solution to the challenges of regular monitoring of 

the BP among older adults. 

The statistical objective of this thesis is comprised of three parts. First, compare 

the results from the individual-level versus the cluster-level analysis methods. Second, 

compare the results from classical statistical methods with the results from the 

Bayesian analysis. Third, investigate the differences of the statistical methods in 

analysis of cluster randomized trials and discuss the robustness of different methods 

based on a sensitivity analysis. Many statistical methods are available to analyze cluster 

4 
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randomized trials at both cluster-level and individual-level [17-18]. However, the 

efficiency and consistency using different analytical methods, especially the methods 

for analyzing binary outcomes, have received little attention. The comparisons and 

discussions in this thesis provide insights into analysis of cluster randomized trials. 

1.3 Scope of the Report 

In this thesis, we first briefly introduce the background and design of the CHAT 

trial. Using the CHAT trial as an example, we then discuss the cluster-level and 

individual-level statistical methods in analysis of cluster randomized controlled trials 

for both the binary and continuous outcomes. We also report the results of the CHAT 

trial from all the statistical methods. We compare the results from different statistical 

methods and investigate why they differ. Finally, we make conclusions based on our 

results and discussions. 

Specifically, in Chapter 2 we briefly review all the statistical methods which we 

apply to the CHAT data in the analysis of this cluster randomized trial. We illustrate 

how each statistical method handles the clustering of the data. These statistical methods 

include some classical methods and a Bayesian method. We also discuss the sensitivity 

analysis of the Bayesian models. 

In Chapter 3, we report and compare the results for primary and secondary 

outcomes of the CHAT trial from different statistical methods. We present the results 

5 
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from the Bayesian method when assuming different prior distributions for the variance 

of the cluster-level random effect. 

In Chapter 4, we present our key findings in the analysis of the CHAT trial. We 

also discuss the reasons of why different methods give different results. In addition, we 

point out the strength and limitations in the design of the CHAT trial and compare our 

results for the CHAT trial with the results for other similar trials. We also discuss the 

robustness of the Bayesian model. 

Finally, in Chapter 5, we draw conclusions and provide some suggestions on 

analyzing cluster randomized controlled trials based on our findings and results. 

6 
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Chapter 2 

Statistical Methods 

2.1 Overview 

In this section, we provide an overview of the statistical methods used to 

analyse both primary and secondary outcomes. We also describe the sensitivity analysis 

for the Bayesian model. In addition, since the randomization unit is cluster (FP), it is 

important to check the balance of the demographic and baseline diagnostic 

characteristics of the patients between the intervention and control groups. 

The demographic and baseline diagnostic characteristics of the patients were 

analysed using descriptive statistics presented as mean (standard deviation) or median 

(minimum, maximum) for continuous variables and count (percent) for categorical 

variables. 

The analysis of primary and secondary outcomes was done using intention-to­

treat (ITT) analysis. For each primary outcome, eight classical methods and one 

Bayesian method were applied to analyze the CHAT data. The classical methods used 

in this report included four cluster-level statistical methods and four individual-level 

statistical methods. The cluster-level methods were un-weighted regression, weighted 

regression, random-effect meta-regression without adjustment for variance inflation 
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factor (VIF) and random-effect meta-regression with adjustment for VIF. The four 

individual-level methods were standard logistic regression [19-20], robust standard 

error, generalized estimating equations (GEE), and random-effect logistic regression. 

The Bayesian approach used in this thesis is Bayesian random-effect logistic regression, 

which was also an individual-level method. We also performed sensitivity analysis for 

Bayesian random-effect model to assess the impact of choosing different priors for the 

primary outcome- BP controlled. For secondary outcomes, we also used two-sample 

t-test [21] and Mann-Whitney Utest (Wilcoxon rank sum test) [21] . 

All classical analyses were performed using SAS Version 9.0 and Bayesian 

analysis was performed using WinBugs Version 1.4. The results of the analyses for 

binary outcomes are reported as odds ratio (OR), corresponding 95% confidence 

interval (CI) and associated p-values. For analysis of continuous outcomes, the results 

are reported as estimate of treatment effect (coefficient), corresponding 95% CI and 

associated p-values. P-values are reported to three decimal places with p-values less 

than 0.001 reported as p<O.OO 1. 

The reporting ofthe results follows the CONSORT (Consolidated Standards of 

Reporting Trials) statement guidelines for reporting cluster-randomized trials [22] and 

ROBUST guideline [23] for reporting Bayesian analysis. The general schema of study 

analysis is described at Figure 3 in Appendix D. The code for running classical 

statistical models on SAS andBayesian models on WinBugs along with the initials are 

presented in Appendix F. 

8 
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2.2 Cluster-Level Analysis Methods 

For the cluster-level analysis, we assume that the number of patients in 

cluster/FP i ( i =I to 28) with BP controlled and the total number of patients in the 

cluster/FP are denoted by ~ and ni, respectively. For FP i , the log odds of number of 

patients with BP controlled is estimated as 

and its variance is 

1 1 
vari =-+---

ri ni -ri 

2.2.1 Un-weighted Regression 

Comparison to the standard multiple linear regression: log odd i = fJxi + ui, in 

which the vector of regression coefficients fJ represents differences in the log odds of 

the number of patient with BP controlled corresponding to the effects of the covariates 

X , the un-weighted regression methods [19, 20] assume the cluster-level random 

effects ui follow normal distribution with mean zero and constant variance CJ
2 

• In this 

method, each cluster/FP is given equal weight, which does not allow for the differing 

precision with which the log odds is estimated in each FP. 

9 
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2.2.2 Weighted Regression 

The weighted regression method [19,20] uses the same model as the 

unweighted regression method above, i.e. log odd i = f3xi + ui . However, when 

obtaining the estimate of coefficient f3, it allocates different weights to each cluster/FP. 

The weight for each cluster/FP is defined as wi = 1 I vari for FP i . Therefore, FP with 

smaller variance, i.e. greater precision, will have larger influence on the estimated 

regression coefficients. This model assumes that the variance of the log odds in each 

FP is varix¢, where ¢ is the over-dispersion parameter. 

2.2.3 Random-Effect Meta-Regression 

If we assume that the data from each paired cluster are arising from a meta­

analysis of independent randomized controlled clinical trials, then we can apply the 

traditional random effect meta-analytic method to pool the results from all the pairs [24, 

25]. The random-effect meta-regression method for analysing cluster randomized trial 

consists of two steps. First, the treatment effect is estimated for each paired clusters. 

Second, the overall treatment estimator is calculated as a weighted average of the 

paired clusters estimates, where weights equals to the inverse of the estimated 

variances of treatment effects of the paired clusters. 

10 
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When calculating the weights of the treatment effect of the paired clusters, we 

considered two situations: First, without adjusting the variance with variance inflation 

factor (VIF), i.e. weight i = 1 I vari, where weight i is the weight assigned to the i1
h pair 

of FPs. Second, with adjusting the variance with VIF, i.e. weight i = 1 /(varix VIF), 

where VIF=l+(m-1)xiCC, m=55 is the number ofpatients from each FP, ICC= 

0.077 is the intra-cluster correlation coefficient estimated from the CHAT data. 

2.3 Individual-Level Analysis 

All the individual-level analysis methods in this thesis are based on the same 

model- standard logistic. regression model. We assume that the number of patients in 

cluster/FP i ( i =1 to 28) with BP controlled and the total number of patients in the 

cluster/FP are denoted by ri and ni, respectively. For patient j from FP i , the 

standard logistic regression model is: 

p(yij = 1) 
log = fJxiJ + Jli, 

1- p(yij = 1) 

where 

i = 1,2, ···,28. j = 1,2, ... ,55; 

r. 
p(yij = 1) =_I ; 

ni 

xiJ is individual-level explanatory variables including study group assignment. 

11 
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Standard logistic model assumes that data from different patients are independent. 

Therefore it is not valid for analyzing cluster randomized trials. However, the following 

statistical methods extend the standard logistic methods by adding particular strategies 

to handle the clustering of the data, and therefore are valid for analyzing clustering data. 

2.3.1 Robust Standard Error 

Compare to the standard logistic regression, the robust standard error method 

[19, 26] gives the same estimates since both of them assume independent data to get the 

estimate of the treatment effect. However, in the robust standard errors method, the 

standard errors for all the estimates are adjusted to allow for clustering of the data, 

while the standard logistic regression still assumes independent data to calculate the 

standard errors. The 'robust' standard errors are calculated using the 'sandwich' 

variance estimator. 

2.3.2 Generalized Estimating Equations 

Generalized estimating equations (GEE) [19, 27, 28] extend the standard 

logistic regression model to allow for clustering. This is achieved by specifying a 

correlation matrix that describes the association between different individuals in the 

same cluster. For cluster randomized trial, it is assumed that all correlations between 

12 
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different individuals in the same cluster are the same, i.e. the correlation matrix is 

exchangeable. 

2.3.3 Random Effect Logistic Regression 

Compared to the standard logistic regressiOn, the random effect logistic 

regression method [19, 20, 25, 28] includes a cluster-level random effect in the model 

and assumes this random effect follows normal distribution with zero mean and 

unknown variance r 2 
(the between cluster variance); r 2 

is estimated in the regression. 

2.3.4 Bayesian Random Effect Regression 

Compared to the classical random effect logistic regression, in the Bayesian 

random effect regression model [29], we assume the random effect follows a normal 

distribution with zero mean and unknown variance r 2
. The uncertainty of r 2 

is taken 

into account by assuming a prior distribution which presents the researcher's pre-belief 

or external information to r 2 
• The observed data are presented as a likelihood 

function, which is used to update the researcher's pre-belief and then obtain the final 

results. The final results are presented as the posterior distribution. For binary 

outcomes, we obtain the log odds ratio of the treatment effect directly from the 

posterior distribution. The log odds ratio can be easily transformed to odds ratio scale 

in which we are interested. 

13 
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In our Bayesian analysis, we assume the uniform non-informative pnor 

distribution with lower and upper bounds as 0 and 10 respectively, to minimize the 

influence of the researcher's pre-belief or external information on the observed data. 

Consequently, the result from the Bayesian approach should be comparable to the 

results from the classical statistical methods. We also assume that the prior distribution 

for all the coefficients follows a normal distribution with mean zero and variance l.OE-

6. The total number of iterations to obtain the posterior distribution for each end point 

is 500,000, the burned-in number is 10,000, the seed is 314159. The convergence of the 

Markov Chain can be evaluated from the plot of the entire posterior distributions 

including dynamic trace plots, times series plots, density plots and autocorrelation plots. 

They are provided in Appendix D. The results from the Bayesian random effect logistic 

regression are discussed in Chapter 3 and presented in Appendix D and Appendix E. 

2.4 Sensitivity Analysis of Priors for Bayesian model 

In our primary analysis using the Bayesian model, we assume the prior of the 

variance of the cluster-level random effect follows a uniform distribution with 0 and 10 

as its lower and upper bounds, respectively. However, a sensitivity analysis is 

necessary to assess the robustness of this specification according to the guideline of 

reporting results of a randomized controlled trial from Bayesian analysis [23]. For one 

of the primary outcomes of the CHAT trial - BP controlled, we evaluate the influence 

of different priors on the estimated odds ratio of the treatment effect and its 95% 

14 
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confidence interval. The non-informative priors include uniform distribution with lower 

bound as 0 and upper bound as 1, 5, 10, 50, and 100 respectively. We also choose the 

conjugate priors for the variance of the random effect. They are Inverse Gamma (0.001, 

0.001), Inverse Gamma(0.01, 0.01) and Inverse Gamma (0.1, 0.1). 

15 
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Chapter 3 

Results 

3.1 Missing Data in the CHAT Trial 

Missing values was not a serious problem in the CHAT trial since the data 

collection was based on the chart review. There were no missing values for the primary 

outcomes and the secondary outcomes. The missing values about the demographic 

information and health conditions of the CHAT patients were very few and they were 

quite balanced between the intervention and control groups. 

For the demographic information, there was only one missing value about the 

age and gender in the CHAT trial and it was in the intervention group. Since neither 

age nor gender was a significant covariate in predicting the primary or secondary 

outcomes, we did not perform any imputation for them. 

For the baseline diagnostic characteristics of the CHAT patients, there were 

three missing values indicating if the patients had diabetes at the baseline. Two of the 

missing values were in the control group and the other missing value was in the 

intervention group. We treated these three patients as without diabetes at baseline when 

determing if the patient's BP was controlled or not. The missing values of baseline 

diagnostic characteristic such a~ heart disease, stroke or TIA, hypertensive medication, 
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hypertension, smoke status and so on, were very few. Therefore, imputations for these 

values were not necessary. 

The detailed information about the mtssmg data m the CHAT trial was 

presented at Table 1 in Appendix E. 

3.2 Demographic Information and Diagnostic Characteristics 

Of the 1540 patients who were cluster randomized, there were 41% (319/770) 

male patients in the control group and 44% (339/769) male patients in the intervention 

group. At the beginning of the trial, the mean age of the patients is 74.36 with standard 

error (SE) 6.22 and 74.16 with SE 6.14 in the control and intervention groups, 

respectively. The detailed demographic information of the CHAT patients is presented 

at Table 2 in Appendix E. 

The baseline diagnostic characteristics of the CHAT patients were almost 

balanced between the intervention and control groups. For examples, 16% (123/768) 

patients in the control group and 18% (140/769) patients in the intervention group had 

diabetes at baseline; 25% (192/769) patients in the control group and 26% (201/767) 

patients in the intervention group had heart disease at baseline; 5% (41/766) and 8% 

(62/768) patients had stroke or TIA at baseline in the control and intervention groups, 

respectively. However, the percentages of patients who took anti-hypertensive 

medication at baseline were different between intervention and control groups. In the 

control group, there was only 54% (415/770) of patients who took anti-hypertensive 
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medication, while there were 62% (477/769) of patients who took anti-hypertensive 

medication in the intervention group. The details of the baseline diagnostic 

characteristics ofthe CHAT patients are summarized at Table 3 in Appendix E. 

3.3 Comparison of Patients BP at Baseline and end of Trial 

At baseline, the mean systolic BP of the patients in the control and intervention 

groups were 136.14 mmHg (SD=17.92) and 135.41 mmHg (SD=17.41), respectively. 

At the end of the trial, the mean systolic BP of the patients in the control and 

intervention group was 135.74 mmHg (SD=17.84) and 133 .66 mmHg (SD=17.29), 

respectively. The differences of the mean systolic BP between the intervention and 

control group was very small at both baseline and the end of the trial. The situation of 

the mean diastolic BP was similar to that of the systolic BP. 

In addition, there were 55% (425/770) of patients in the control group and 55% 

( 420/77) of patients in the intervention group with controlled BP at baseline. There 

were 53% (409/770) of patients in the control group and 56% (434/770) of patients in 

the intervention group with controlled BP at the end of the trial. The percentages of 

patients with controlled BP in the intervention and control groups at baseline were 

quite similar to those at the end of the trial. The situation for the patients with 

controlled systolic BP was very similar to that for patients with controlled BP. 

The balances of the patients' BP condition between the baseline and the end of 

the trial indicated that the intervention of pharmacy BP clinic linked with the FPs did 

18 



M.Sc. Thesis- J. Ma McMaster- Statistics 

not Improve the patients' BP significantly. The detailed information about the 

comparison of patients BP at baseline and the end of the trial is presented at Table 4 in 

Appendix E. 

3.4 Results of Primary Analysis 

In analyzing the binary primary outcomes of the CHAT trial - BP controlled, 

systolic BP controlled, average BP controlled, and average systolic BP controlled, we 

applied eight classical statistical methods and one Bayesian method. The results from 

different statistical methods were different. However, the estimates obtained from all of 

the nine methods showed that there were no significant differences in improving the 

patients' BP between the intervention and the control groups. 

For the primary outcome "BP controlled", without adjustment for covariates, 

the odds ratio and 95% confidence interval for the treatment effect from the cluster­

level analysis were 1.14 (0.71 1.83) for unweighted regression, 1.30 (0.87 1.93) for 

weighted regression; · l.o9 (0.68 1.74) for random effect meta-regression without 

adjusting for VIF, and 1.17 (0.72 1.90) for random effect meta-regression with 

adjusting for VIF. The results from different methods are quite different from each 

other. For two of the cluster-level methods, i.e. un-weighted and weighted linear 

regression methods, when including 'center' as the covariate in the models, we found 

that 'center' was not significant at level of a= 0.05 on predicting if the patients' BP 

were controlled at the end of the trial. Compared to the model without adjustment for 
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' center', the treatment effects were slightly different and the 95% confidence intervals 

for the treatment effects were narrower. When adjusting for 'center' as a covariate, the 

odds ratio and 95% confidence interval for the treatment effect were 1.14 (0.72 1.81) 

for un-weighted regression and 1.30 (0.89 1.91) for weighted regression. 

For individual-level methods, without adjustment for covariates, the odds ratios 

and 95% confidence interval of the treatment effect were 1.14 (0.93 1.39) for standard 

logistic regression method, 1.14 (0.72 1.80) for robust standard error method, 1.14 

(0.72 1.80) for GEE method, 1.10 (0.65 1.86) for random effect logistic regression 

method, and 1.09 (0.61 1.94) for Bayesian random effect logistic regression method 

without adjustment Ior any covariate. When we included some patients' baseline 

information as the co variates in · the models, the odds ratios of the treatment effect 

slightly changed and the 95% confidence intervals tend to be much narrower compared 

to without adjustment for any covariate. The odds of the treatment effect were 1.17 

(0.95 1.44) for standard logistiC regression method, 1.17 (0.79 1.73) for robust 

standard error method, 1.15 (0.76 1. 72) for GEE method, 1.13 (0. 71 1.80) for random 

effect logistic regression method, and 1.13 (0.68 1.87) for Bayesian random effect 

logistic regression method. We included 'diabetes' , 'heart disease' and ' BP controlled' 

at baseline as covariates in the models since they were all significant factors in 

predicting if BP controlled at the end of the trial at level of a= 0.05. The other 

factors, such as age, gender, experienced stroke or TIA, retinopathy, nephropathy, PVD, 

aortic aneurysm and anti-hypertensive medication prescribed at baseline were not 

included in the models since they were not significant at level of a= 0.05 . The 
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results indicated that patients with diabetes at baseline were more likely to get 

controlled BP at the end of the trial. Also, patients without heart disease and whose BP 

were controlled at baseline were more likely to achieve controlled BP. 

Compare the results from different statistical methods, we found that the 

estimates for the treatment effect from the cluster-level analysis methods are quite 

different, while the estimates from the individual-level analysis methods are similar. 

The estimate of the treatment effect from the model of random effect meta-regression 

with adjustment for VIF was more similar to the weighted and un-weighted linear 

regression models compared to the model without adjustment for VIF. In our case, 

adjusting the model for VIF is more appropriate since the clustering of the data was 

taken into account. 

Among all the methods we applied, we found that the Bayesian random effect 

logistic regression gave the largest standard error for the estimate, while the standard 

logistic regression method produced the smallest standard error for the estimate. This 

was due to the fact that standard logistic regression model did not count the effect of 

clustering while the Bayesian random effect logistic regression collected all the 

uncertainty of the parameters. For primary outcomes - systolic BP controlled, the 

results were quite similar to primary outcome of if BP controlled. 

Compared to the treatment effect in analysis of outcomes 'BP controlled', and 

'systolic BP controlled', we found that the odds ratios in analysis of the outcome 

'average BP controlled' and 'average systolic BP controlled' were closer to 1. For 

example, in analysis of outcome 'average BP controlled', the odds ratios and 95% 
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confidence intervals were 1.03 (0.63 1.69), 1.12 (0.73 1.74), 1.00 (0.60 1.67), 1.04 

(0.64 1.69), 1.03 (0.84 1.26), 1.03 (0.64 1.66), 1.03 (0.64 1.66), 1.01 (0.59 1.72), 

1.01 (0.57 1.80) from unweighted regression, weighted regression, random-effect 

meta-regression without adjustment for VIF, random-effect meta-regression with 

adjustment for VIF, standard logistic regression, robust standard error, GEE, random 

effect logistic regression and Bayesian random effect logistic regression methods 

respectively. This difference was due to the different definitions to the outcomes. The 

determination of if patients' average BP controlled was based on the average of the last 

three BP readings in the period between the randomization and the end of the trial, 

while the determination of if patients' BP controlled was based on the last BP reading 

within that period. 

The comparison of the results from different statistical methods are discussed in 

detain in Chapter 4. The detailed results for primary outcomes are presented and ploted 

in Tables 4-7 and Figures4-11 in Appendix D and E. 

3.5 Results of Secondary Analysis 

Eight secondary outcomes were analyzed for the CHAT trial. They were BP 

monitored, the frequency of BP monitoring, average systolic BP, average diastolic BP, 

· -

percent of patients with BP controlled at the end of the trial, percent of patients with 

systolic BP controlled at the end of the trial, difference of percent of patients with BP 

controlled between baseline and at the end of the trial, and the difference of percent of 
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patients with systolic BP controlled between baseline and at the end of the trial. The 

definitions of the secondary outcomes are given at Table C3 in Appendix C. The 

treatment was not significant for all of these secondary outcomes compared to the 

control at level of a= 0.05. 

For the binary outcome 'BP monitored' , the odds ratio of the treatment effect 

and its corresponding 95% confidence interval were 1.16 (0.73 1.86) from the cluster 

level analysis using random effect meta-regression model, which is consistent with the 

result from the individual-level analysis using GEE model without adjustment for any 

covariate 1.15 (0.72 1.84). When using the GEE model with adjustment for covariates, 

we found that patients with hypertension at last review or taking hypertensive medicine 

were more likely to have their BP recorded during the twelve month period of the trial 

compare to patients who had no hypertension at last review or were not taking anti­

hypertensive medications. · 

For the secondary outcome 'frequency of BP monitoring' , the estimate for the 

treatment effect and its 95% CI were 0.26 (-0.52 1.04), which indicated that the 

treatment did not change the frequency of BP monitoring significantly. After including 

baseline characteristics in the linear regression, the treatment effect was still not 

significant with the estimate and its 95% CI being 0.04 (-0.39 0.47). We also found 

that the BP for patients with hypertension at last review, nephropathy at baseline, or 

heart disease at baseline were more frequently monitored than the patients without 

those diseases. The frequency of the BP monitoring was higher for older patients 

compare to the yol.mger patients. The frequency of BP monitoring for patients who 
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were taking hypertensive medicine tends to be higher than the patients who were not 

taking hypertensive medicine. 

For other continuous secondary outcomes, we found that the CHAT 

intervention did not change the systolic BP, diastolic BP, percentage of patients with 

BP controlled at the end of the trial, and the percentage of patients with systolic BP 

controlled at the end of the trial, the difference of percentage of patients with controlled 

BP or controlled systolic BP between baseline and the end of the trial at significant 

level of a= 0.05. The results were consistent when using different statistical methods. 

For example, the estimated treatment effects for the cluster-level average diastolic BP 

were 0.52 (-1.44 2.48) from the weighted linear regression model, 0.35 (-1.65 2.35) 

from two sample T-test, and 0.31 (-1.75 2.37) and 0.08 (-2.06 2.22) from random 

effect meta-regression model without and with adjustment for VIF respectively. The 

result from Wilcoxon rank sum test, a nonparametric method, also indicated non­

significance of the treatment effect at level of a= 0.05 . The detail results for 

secondary outcomes were presented at Table 9 in Appendix E. 

3.6 Impact of Priors for Bayesian Analysis 

To verify the robustness of the results from Bayesian random effect logistic 

regression, we evaluated the impact of different prior distributions of the variance 

parameter for the cluster-level random effect in analysis of a primary outcome, BP 
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controlled, without adjustment for any covariates. We chose non-informative priors 

including uniform(O, 1 ), uniform(O, 5), uniform(O, 1 0), uniform(O, 50), uniform(O, 1 00), 

Inverse Garnma(0.001, 0.001), Inverse Gamma(0.01, 0.01) and Inverse Gamma(O.l, 

0.1 ). The Inverse Gamma prior is also the conjugate prior for the variance parameter. 

The odds ratios and 95% Cis were 1.11 (0.64 1.92), 1.09 (0.61 1.94), 1.09 (0.61 1.94), 

1.09 (0.61 1.94), 1.09 (0.61 1.94), 1.11 (0.63 1.94), 1.11 (0.63 1.95), 1.12 (0.64 

1.95) correspondingly. We found that results were quite consistent when using different 

priors. For non-informative priors, the estimates and the 95% Cis were almost the 

same when the upper bound of the uniform distribution was greater than or equal to 5, 

which implied that 1 might not be a big enough upper bolind for the uniform prior in 

our case. The results of this comparison were presented at Table 10 in Appendix E. 
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Chapter 4 

Discussion 

4.1 Summary of Key Findings 

In this thesis, we applied four cluster-level summary statistics and five 

individual-level analysis [see Chapter 2]. Only one method, individual-level standard 

logistic regression, is invalid because it fails to account for the between-cluster 

variation. Ignoring the clustering of the data leads to underestimate the standard error 

for the treatment effect. Therefore, standard logistic regression tends to overestimate 

the treatment effect if being used to analyze the clustering data. Each of the other 

methods handled clustering by certain techniques, and would therefore be appropriate. 

All of the statistical methods are based on the same underlying model -

logistic regression. However, their parameter estimates and especially their standard 

errors differed due to different strategies to deal with the clustering of the data. The 

parameter estimates from the cluster-level analyses are quite variable. However, since 

the standard errors varied correspondingly, the P-values are more consistent. Results 

from random- effect meta-regression with adjustment for VIF were more comparable to 

the un-weighted than the weighted regression. In our case, including the adjustment for 
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VIF for the meta-regression model yielded more consistent results with other cluster­

level statistical methods. 

For individual-level methods, the log odds ratios were identical for standard 

logistic regression method and robust standard errors method because both of the 

methods obtained their estimates by assuming independence of the data. However, 

robust standard error method adjusts its standard errors using "sandwich" variance 

estimator by allowing for clustering. 

Both with and without adjustment for covariates, odds ratios from classical 

random effect logistic regression and Bayesian random effect logistic regression were 

similar. However, the confidence interval from Bayesian logistic random effect model 

was much wider than the confidence intervals from other methods since Bayesian 

approach incorporates all kinds of variability. The point estimates, standard errors and 

hypothesis tests for the classical methods are based on the assumption of infinite but 

identical repetitions on the fixed unknown parameters. This process is deductive and 

the estimates of parameters are summarized from the observations directly. Compared 

with these classical methods, Bayesian method treats all of the unknown parameters as 

random variables. 

In Bayesian analysis, the researcher's subjective pre-beliefs are expressed as 

prior distribution functions. Even though these beliefs can be updated by the likelihood 

function of the observed data, misspecification of priors has some impact on the 

posterior in some cases. In our ·sensitivity analysis of the Bayesian random effect 

logistic regression model, we assumed that the variance of the cluster-level random 
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effect follows normal distribution with mean zero and variance r 2
• The commonly 

used priors for the variance parameter are uniform and inverse gamma [30]. When 

assuming a uniform prior distribution, we find that the results become stable when the 

upper bound of the uniform prior is at least 5. We also find that the results are sensitive 

to the parameter & when assuming prior distribution as inverse gamma( & , & ). As 

pointed out by Gelman [30], when r 2 is estimated to be close to zero, the results are 

sensitive to the parameter & . It convinces us that the uniform(O, 1 0) distribution is a 

proper non-informative prior for our analysis. 

In the analysis of cluster randomized controlled trials, adjusting for important 

covariates correlated with outcome was able to increase the precision in analysis. By 

adjusting for important covariates, we were able to control for the effect of imbalances 

in baseline risk factors and reduce the unexplained variation. 

In summary, the key statistical findings can be summarized as: 

1) All but weighted regression method yield similar point estimates of the 

treatment effect. This is not surprising since weighted regression method can 

potentially affect the location of the estimate as well as the precision. 

2) The random effect meta-regression method yields different estimates with 

or 

without adjustment for VIF. Adjusting for VIF is more appropriate in the 

analysis of cluster randomized trials. 

3) Ignoring the clustering yields a narrower confidence interval, but this is not 

correct. 
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4) The Bayesian method yields widest confidence interval. 

5) Adjusting for significant covariates increases the precision in the analysis of 

cluster randomized trials. 

The above statistical findings from our study are comparable with findings from 

another study [31]. 

4.2 How the Findings Compare With Results from Other Studies 

According to our literature search, several randomized controlled trials were 

relevant to the CHAT study in terms of the intervention and outcome. 

Results from Syme's study [12] of people with high BP indicated that BP was 

most likely to be controlled among patients receiving visits from community health 

workers. The community health workers provided the information about hypertension 

and discussed family difficulties, financial strain, and employment opportunities. They 

also provided support and assistance when appropriate. 

The study by Nessman et al. [13] improved the Freire's theory that 

individualized the information to the subjects' problems is the most effective 

educational material. This approach was translated into a management program for 

high BP aimed at empowering patients to learn enough about high BP so that they 

could monitor their disease and select their own drugs for treatment. Compared with 

control patients, intervention patients had significantly lower diastolic BPs. 
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In the study by Zarnke et al. [14], they found that patient-directed management 

of high BP resulted in a significant, favourable change in mean BP, compared to office­

based care. 

In the systematic review by Fahey et al. [11] on interventions used to improve 

control of the blood pressure in patients with hypertension, their results show that 

educational interventions themselves seem unlikely to improve the BP of patients, and 

the health professional led care might associate with the improved blood pressure 

control. 

From our analysis, the CHAT intervention - community based BP management 

program, does not improve the BP of patients significantly. Comparing our results with 

the other studies mentioned above and the similar studies reviewed by Fahey et al., we 

found that the difference between the result from the CHAT study and other studies 

may be due to the difference in designing trials. First, the target population of the 

CHAT study is the older adults at least 65 years old. However, all the other studies 

have strict inclusion and exclusion criteria, and focus on only the patients with 

hypertension. Second, all of the other studies are relatively small trials compared with 

the CHAT study. In the CHAT trial, there are 1540 patients participating the study. 

However, there are less than hundred participants in most of the other trials. For 

example, in Nessman's study, the participants were only 52 previously noncompliant 

hypertensive patients. Third the multi-faceted intervention of the CHAT trial is similar 

to but not exactly the same as the interventions of the other studies. In addition, the 

intensiveness and duration ofth~ interventions differ markedly between the CHAT trial 
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and the other studies. For example, in Zarnke's study, 31 patients who had chronic 

stable essential hypertension without secondary causes or unstable cardiovascular 

disease were selected from 11 family physicians' office and a tertiary care hypertension 

research unit. Patients were randomly assigned (2: 1 ratio) to either a patient-directed 

management strategy using home blood pressure monitoring to adjust drug therapy if 

readings consistently exceeded defined limits, or office-based management through 

physician visits. The duration of the intervention is only 8 weeks. All of the above 

differences between the CHAT study and other studies might lead to differences in 

results. 

4.3 Limitations of the CHAT Study 

The CHAT trial is a pragmatic trial. Compared to the explanatory trials which 

are designed to find out the efficacy of a treatment under ideal, experimental conditions, 

pragmatic trials are designed to evaluate the benefits of an intervention in normal 

clinical or routine care settings [29], which is exactly the objective of the CHAT trial. 

The pragmatic trial has high external validity and relevance on practice [32]. In 

addition, the multi-faceted intervention of the CHAT trial emphasizing community 

pharmacy BP clinics linked with FPs comprise a number of separate elements which 

seem essential to the proper functioning of the intervention although the 'active 

ingredient' of the intervention that is effective is difficult to specify. In the CHAT trial, 
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we attempted to operate BP management guidelines and we found no evidence of harm 

created by the intervention. 

Though we exerted all the strength of multi-faceted intervention and the 

pragmatic trial, we are still limited by some design issues. 

The first design limitation is about the sample size. From each of the 28 FPs, we 

randomly sample 55 patients, which is relatively small. Some patients in the 

intervention group may not comply with the intervention, which leads to underestimate 

the treatment effect. 

The second design limitation is that the type of the intervention in CHAT study 

may not be intensive and long enough for the behavior change of the patients. 

Community pharmacy BP clinics help older adults to learn more about hypertension so 

that they can take a more active role in monitoring their BP and better understand their 

own risk profile. These features of the intervention are hypothesized to translate into 

improved patients' awareness and adherence to BP self-care, and therefore improve 

their BP. According to leek Aizen [33], a long term and intensive communication with 

the patients is necessary to change their attitudes or behaviors. And moreover, the 

benefits from the change of attitude or behavior, such as the improvement of BP in our 

study, can only be observed or detected after persisting in the new attitude or life style 

for a long time. 

Finally, the multi-faceted intervention of the CHAT trial is a complex 

intervention. It consists of several separate elements which seem essential to make the 

intervention function properly. However, it also causes difficulties to the evaluation. In 
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this complex intervention, each element may be an important contribution to the 

effectiveness of the community pharmacy BP clinics. For example, the peer health 

educator in the CHAT study is one potentially complex contribution in a large and 

complex combination of diverse health professionals' expertise, medications, 

organizational arrangements and treatment protocols that constitute the intervention 

[34]. 

4.4 Clinical Implications of Results 

This trial evaluated the effectiveness of the community-based BP monitoring 

program in improvement of the BP for older patients. According to our analysis results, 

it does not significantly improve the patients' BP in terms of increasing the number of 

patients with BP controlled, decreasing the systolic or diastolic BP and increasing the 

frequency of BP monitoring in the intervention compared to those in the control group. 

However, this process may improve the diagnostic accuracy, health profession 

adherence, patient adherence to selr-care recommendations, and coverage. In addition, 

this process has the potential to improve the cardiovascular health of older adults by 

providing convenient, reliable BP monitoring and enhancing knowledge and 

communication among providers and patients. Moreover, patient education and self­

monitoring can reduce physicians' time spent on following low-risk patients, identify 

high-risk patients earlier and use resources more efficiently. Further investigation in 

this direction may gerfruitful results. 
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Although the results are not positive, the CHAT study also provides a feasibility 

to create a multi-faceted community-based solution to manage the BP -- the 

Cardiovascular Health Awareness Program (CHAP) [35]. The program will help to 

identify and monitor senior patients who are at risk for cardiovascular disease and 

stroke by adequate treatment and follow-up from the appropriate health professionals. 

4.5 Usefulness of Performing Sensitivity Analysis and Simulation 

Study 

Sensitivity analysis is used to determine how sensitive a model is to changes in 

the value of the parameters and to changes in the structure of the model. For a cluster 

randomized control trial, several sensitivity analyses can be considered. 

First, a variety of statistical methods for the binary outcomes have been 

proposed. However, there are very few methodological studies that provide guidance 

on determining which method is the best. In practice, these different results might 

cause confusion. Therefore, comparing the results from different methods might help 

researchers to draw a safer conclusion. 

Second, sensitivity analysis can be used to investigate the sensitivity of the 

conclusions to different model assumptions. For example, in the random-effects model, 

we assume that the cluster-level random effect follows a normal distribution on the log 

odds scale. However, a sensitivity analysis can be carried out by allowing empirical 

investigation on the distribution of the random effects. In addition, a sensitivity analysis 
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can also indicate which parameter values are reasonable to use in the model. For 

example, in our Bayesian random effect logistic regression model, the impact of 

different prior distributions of the variance of the random effect is investigated. A 

proper prior is specified based on the comparison of the results from different prior 

assumptions. 

Finally, a sensitivity analysis can be performed to compare the results from 

different methods by allowing the degree of clustering to vary. In other words, we can 

investigate the changing behavior of the results from different methods given the intra­

cluster correlation coefficient changing from 0 to 1. 

To compare statistical power of different statistical methods under different 

situations, extensive simulations are required. Recently, a simulation study by Austin 

[36] suggests that the statistical power of GEE is the highest among t-test, Wilcoxon 

rank sum test, permutation test, adjusted chi-square test, logistic random effects model 

and GEE given different ICC, number of clusters, and average number of patients in 

each cluster. Some of the statistical tnethods used in this thesis are not included in this 

simulation study. 
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Chapter 5 

Conclusions 

For the primary outcomes of the CHAT trial, our analysis results from both 

classical and Bayesian methods indicate that the treatment of community-based BP 

care program does not make significant difference in improving the BP of patients 

compared to the usual care at the FP's office. For the secondary outcomes ofthe CHAT 

trial, our analysis results show that the treatment does not significantly decrease the 

mean systolic and diastolic BP of patients, does not increase the proportion of patients 

who achieves controlled BP, does not significantly increase the frequency of the BP 

monitoring of the patients. This might be due to the limitations of the study design such 

as the length of the study might be not long enough and the intervention might be not 

intensive enough to achieve the behaviour change of the patients. However, the CHAT 

trial provides an evidence for the feasibility of community-based solution to manage 

the BP of the patients. 

Theoretically, all the methods discussed in this thesis are valid methods for the 

analysis of cluster randomized controlled trials with binary outcomes except for the 

standard logistic regression model. The standard logistic regression method does not 

take into account the clustering of the data, while all the other methods handle the 

clustering of the data with their particular strategies. Therefore, the standard logistic 
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regression tends to underestimate the standard error of the treatment effect and its p­

value. Correspondingly, this method might exaggerate the treatment effect. 

According to our results in the analysis of primary outcomes of the CHAT trial, using 

different statistical models, or including baseline or diagnostic factors as covariates in 

the model can make the estimate of the treatment effect and its standard error different. 

The variability of the results from cluster-level statistical methods is quite large. The 

results from the individual-level statistical methods are similar. 

The difference between the results from cluster-level random-effect meta­

regression with adjustment for VIF and without adjustment for VIF is very large. The 

results from the random effect meta regression with adjustment for VIF are more 

consistent with the results from the un-weighted linear regression and weighted linear 

regression. We conclude that adjusting for VIF in the random-effect meta-regression is 

more proper than without adjusting for VIF. Many studies do not take into account the 

impact of VIF when analysing correlated data. This may be acceptable in some cases 

when the homogeneity of the outcome within each cluster is not very strong. However, 

in trials like the CHAT, patients from the same cluster/FP are more similar than 

patients from other FPs in terms of social and economic status, living regions and 

health care services they get. Therefore, it is necessary to include the impact from VIF 

in the model to assess the effectiveness of the treatment effect. 

Among all the statistical methods, Bayesian analysis gives us the largest 

standard error for the treatment effect and the widest 95% CI correspondingly since the 

Bayesian analysis captures all kinds of variability and therefore provides more 
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conservative evidence to the readers. The robustness of the results from Bayesian 

analysis can be verified if it is consistent with the results obtained from using different 

prior distributions and consistent with the results from classical statistical methods as 

well. 

Since different statistical methods, including covariates or without covariates in 

the models, give different results, we may suspect that different conclusions might be 

made when choosing different methods or adding significant covariates in the model. 

From the results in this study, we can not conclude which method is superior in the 

analysis of the cluster randomized control trial with binary outcome. Methodological 

studies are few to provide guidance on determining which method is the best. 

Simulation study including all of valid statistical methods under all kinds of situations 

is required. 
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Appendix A: 

Definitions 

Table Al. Summary of Definitions 
Index Definition 
Al Blood Pressure at Baseline 

• The last BP reading before the randomization date . 

• Not available if there is no BP reading before the randomization date . 
A2 Average Blood Pressure at baseline 

• The average of the last three BP readings if there are 3 or more than 3 BP 
readings before the randomization date. 

• The average of the last two BP readings if there are only 2 BP readings 
before the randomization date. 

• The last BP readings if there is only I BP reading before the randomization 
date. 

• Not available if there is no BP reading before the randomization date . 
A3 Blood Pressure at The End of Trial 

• The last BP reading during the period from the beginning of the 
randomization date to 12 months after the randomization date. 

• Not available if there is no BP reading during the period from the beginning 
of the randomization date to 12 months after the randomization date. 

A4 Average Blood Pressure at The End of Trial 
• The average of the last three BP readings if there are 3 or more than 3 BP 

readings during the period from the beginning of the randomization date to 
12 months after the randomization date. 

• The average of the last two BP readings ifthere are only 2 BP readings 
during the period from the beginning of the randomization date to 12 months 
after the randomization date. 

• The last BP reading if there is oniy 1 BP reading during the period from the 
beginning of the randomization date to 12 months after the randomization 
date. 

• Not available if there is no BP reading during the period from the beginning 
of the randomization date to 12 months after the randomization date. 

AS Systolic Blood Pressure at Baseline 

• The last systolic BP reading before the randomization date . 

• Not available ifthere is no systolic BP reading before the randomization 
date. 
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Table Al. Summary of Definitions (Continued) 

Index Definition 
A6 Average Systolic Blood Pressure at Baseline 

• The average of the last three systolic BP readings ifthere are 3 or more than 
3 systolic BP readings before the randomization date. 

• The average of the last two systolic BP readings ifthere are only 2 systolic 
BP readings before the randomization date. 

• The last systolic BP readings if there is only 1 systolic BP reading before the 
randomization date. 

• Not available if there is no systolic BP reading before the randomization 
date. 

A7 Systolic Blood Pressure at End of Trial 

• The last systolic BP reading during the period from the beginning of the 
randomization date to 12 months after the randomization date. 

• Not available if there is no systolic BP reading during the period from the 
beginning of the randomization date to 12 months after the randomization 
date. 

A8 Average Systolic Blood Pressure at End of Trial 

• The average ofthe last three systolic BP readings if there are 3 or more than 
3 systolic BP readings during the period from the beginning of the 
randomization date to 12 months after the randomization date. 

• The average of the last two systolic BP readings if there are only 2 systolic 
BP readings during the period from the beginning of the randomization date 
to 12 months after the randomization date. 

• The last systolic Bi> reading if there is only 1 systolic BP reading during the 
period from the beginning of the randomization date to 12 months after the 
randomization date. 

• Not available if there is no systolic BP reading during the period from the 
beginning of the randomization date to 12 months after the randomization 
date. 

A9 (Average) BP controlled 

• Ifthe (average) BP reading is available and the (average) systolic BP<=140 
and (average) diastolic BP<=90 for patients without diabetes or target organ 
damage. 

• Ifthe (average) BP reading is available and the (average) systolic BP<=130 
and (average) diastolic BP<=80 for patients with diabetes or target organ 
damage. 

A10 (Average) Systolic BP Controlled 

• If the (average) systolic BP reading is available and the (average) systolic 
BP<= 140 for patients without diabetes or target organ damage. 

• Ifthe (average) systolic BP reading is available and the (average) systolic 
BP<=130 for patients with diabetes or target organ damage. 
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Appendix B 

Primary Outcomes 

Table Bl Summary of Primary Outcomes 
Index Type Definition 
B1 Binary BP Controlled at End of Trial [see Definition A3 and A9] 

• 1 if the BP at 12 month after baseline is controlled no matter the 
BP at the baseline is controlled, not controlled or not available. 

• 0 if the BP at 12 month after baseline is not controlled or not 
available no matter the BP at the baseline is controlled, not 
controlled or not available. 

B2 Binary Systolic BP Controlled at End of Trial [see Definition A7 and AJO] 

• 1 if the systolic BP at 12 month after baseline is controlled no 
matter the systolic BP at the baseline is controlled, not controlled 
or not available. 

• 0 if the systolic BP at 12 month after baseline is not controlled or 
not available no matter the systolic BP at the baseline is 
controlled, not controlled or not available. 

B3 Binary Average BP Controlled [see Definition A4 and A9] 

• 1 if the average BP at 12 month after baseline is controlled no 
matter the average BP at the baseline is controlled, not controlled 
or not available. 

• 0 if the average BP at 12 month after baseline is not controlled or 
not available no matter the average BP at the baseline is 
controlled, not controlled or not available. 

B4 Binary Average Systolic BP Controlled [see Definition A8 and AI 0] 

• 1 if the average systolic BP at 12 month after baseline is controlled 
no matter the average systolic BP at the baseline is controlled, not 
controlled or not available. 

• 0 if the average systolic BP at 12 month after baseline is not 
controlled or not available no matter the systolic BP at the baseline 
is controlled, not controlled or not available. 

Note: The definitions were presented at Table Al in Appendix A. 
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Appendix C 

Secondary Outcomes 

Table Cl Summary of Secondary Outcomes 
Index Type Definition 
Cl Binary If BP monitored 

• I if there is at least one BP reading recorded in the last 12 
month. 

• 0 if there is no BP reading recorded in the last 12 month . 

C2 Count Frequency ofBP monitoring 
Total number ofBP readings recorded in the last 12 month. 

C3 Continuous Average Systolic BP 
Average systolic BP of each practice. 

C4 Continuous Average Diastolic BP 
Average diastolic BP of each practice. 

cs Continuous Percent of Patient with BP Controlled at End of Trial 
Percent of patient with BP controlled at 12 months after the 
randomization date (i.e. at the end of the trial) in the intervention 
compared to the control practices. 

C6 Continuous Percent of Patient with Systolic BP Controlled at End of Trial 
Percent of patient with BP controlled at 12 months after the 
randomization date (i.e. at the end of the trial) in the intervention 
compared to the control practices. 

C7 Continuous Difference of Percent of Patients with BP Controlled Between 
Baseline and End of Trial 
Difference of the percent of patient with BP controlled between the 
end ofthe trial and the baseline in the intervention compared to the 
control practices. 

C8 Continuous Difference ofPercent of Patients with Systolic BP Controlled 
Between Baseline and End of Trial 
Difference of percent of patient with systolic BP controlled between 
the end of the trial and the baseline in the intervention compared to the 
control practices. 
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AppendixD 

Figures 
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Figure 1 The Progress of Clusters and Individuals Through The Phases ofThe CHAT Trial 
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Figure 2 Graph depictions of interventions in the CHAT trial 

Time Line Intervention Control 
Pre-randomization 

0 
Randomization 
Baseline (time 0) 
During 1 year from baseline 

88 8 8 
88 8 
8 

1 year (end of the trial) Measurement of outcome 
1) BP controlled; 2) BP monitored; 3) Frequency ofBP 
monitoring; 4) mean systolic and diastolic BP; 5) Percentage of 
patients with BP controlled; etc. 

BP = Blood Pressure; 

FP =Family Practice; 

BP controlled if 
the BP reading is available and systolic BP ~ 140 mmHg and diastolic BP ~ 90 for patient without 
diabetes or target organ damage; 
the BP reading is available and systolic BP ~ 130 mmHg and diastolic BP ~ 80 for patient with diabetes 
or target organ damage; 

50 



M.Sc. Thesis- J. Ma McMaster- Statistics 

Figure 2 Graph depictions of interventions in the CHAT trial (continued) 
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Figure 3. Schema of Study Analysis 
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Figure 4. Forest Plot: BP Controlled Without Adjustment for Covariates 
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Figure 5. Forest Plot: BP Controlled With Adjustment for Covariates 
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Figure 6. Forest Plot: Systolic BP Controlled Without Adjustment for Covariates 
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Figure 7. Forest Plot: Systolic BP Controlled With Adjustment for Covariates 
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Figure 8. Forest Plot: Average BP Controlled Without Adjustment for Covariates 
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Figure 9. Forest Plot: Average BP Controlled With Adjustment for Covariates 
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Figure 10. Forest Plot: Average Systolic BP Controlled Without Adjustment for 
Co variates 

Metnoas OR 95%CI 

Cluster Level 
Un-weighted Reg 1 04 (0.63 1 .. 69) 
Weighted Reg. 1 13 (073 1 75} 
Random Effect Meta Reg. {1) 1.00 (0.61 1 .. 66) 
Random Effect Meta Reg. (2) 1.05 (0.65 1 71) -----· --· ·-··--

Individual level 
Standard logistic Reg. 104 (0.85 127) ----Robust Standard Errors 1.04 (0.65 166) -------····-··---·· 

GEE 1.04 (0 .65 1.66) -------------- ·--------
Random Effect Logistic Reg 1 01 (0.59 1 73) 
Bayesian Analysis 1 01 (0.57 1.80) 

0.4 \1.6 ~ ~ l-0 1.2 1.4 1.5 1.8 

Figure 11. Forest Plot: Average Systolic BP Controlled With Adjustment for 
Co variates 
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Figure 12. Diagnosis Plot for Bayesian Analysis -BP Controlled (without covariates) 
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Figure 13. Diagnosis Plot for Bayesian Analysis- BP Controlled (with covariates) 
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Figure 14. Diagnosis Plot for Bayesian Analysis- Systolic BP Controlled (without 
co variates) 
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Figure 15. Diagnosis Plot for Bayesian Analysis -Systolic BP Controlled (with 
co variates) 
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Figure 16. Diagnosis Plot for Bayesian Analysis -Average BP Controlled (without 
co variates) 
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Figure 17. Diagnosis Plot for Bayesian Analysis- Average BP Controlled (with 
co variates) 
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Figure 18. Diagnosis Plot for Bayesian Analysis- Average Systolic BP Controlled 
(without co variates) 
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Figure 19. Diagnosis Plot for Bayesian Analysis -Average Systolic BP Controlled 
(with co variates) 
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Table 2. Patients Demographic Information 

Demographic Information Control Intervention 

(n=770) (n=769) 

Gender 

male(%) 319 (41%) 339 (44%) 

Age (years) * 
mean(SD) 74.36 (6.22) 74.16 (6.14) 

*Age: The number of years between the randomization date and the date ofbirth of the 
CHAT patient. 

NOTE: The percentage is calculated based on the total number of patients in each 
. study group. 
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Table 3. Baseline Diagnostic Characteristics of CHAT Patients 

Health Conditions Control Intervention 

Diabetes n=768 n=769 

disease(%) 123 (16%) 140 (18%) 

Heart Disease n=769 n=767 

disease(%) 192 (25%) 201 (26%) 

Stroke or TIA n=766 n=768 

disease(%) 41 (5%) 62 (8%) 

PVD n=766 n=770 

disease(%) 22 (3%) 26 (3%) 

Smoke Status Changed n=753 n=747 

no change(%) 
- . 

586 (78%) 547 (73%) 

No Anti-hypertensive Medication 

Prescribed at Baseline -· n=770 n=769 

medication(%) 415 (54%) 477 (62%) 

Hypertensive Status at Last Review n::;:;768 n=769 

disease(%) 384 (50%) 425 (55%) 

Retinopathy --
n=766 n=769 

disease(%) 5 (1%) 5 (1%) 

Nephrophathy n=766 n=767 

disease(%) 20 (3%) 31 (4%) 

Aortic Aneurysm ll""769 n=770 

disease(%) 14 (2%) 17 (2%) 

NOTE: The percentage is calculated based on the total number of patients in each 
group of the CHAT trial. 
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Table 4. Comparison of Patients BP at Baseline and End ofTrial 

Baseline End of Trial 

Control Intervention Control Intervention 

Systolic BP 

mean (SD) 136.14(17.92) 135.41(17.41) 135.74(17.84) 133.66(17.29) 

Diastolic BP 

mean (SD) 74.88(9.11) 75 .58(10.24) 73.88(9.90) 73.60(10.02) 

Systolic BP controlled 

percentage 56%( 428/770) 56%( 428/770) 54%(417/770) 57%(439/770) 

BP controlled 

percentage 55%(425/770) 55%(420/770) 53%(409/770) 56%(434/770) 
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Table 5. Results for Binary Outcome- BP Controlled 

Unit of Method of No Adjustment Adjusting For 

Analysis Analysis for Covariates Covariates * 

OR 95%CI OR 95%CI 

Cluster Un-weighted Regression 1.14 (0.71 1.83) 1.14 (0.72 1.81) 

Weighted Regression 1.30 (0.87 1.93) 1.30 (0.89 1.91) 

Random Effect Meta Regression ( 1) 1.09 (0.68 1.74) 

Random Effect Meta Regression (2) 1.17 (0.72 1.90) 

Individual Standard Logistic Regression 1.14 (0.93 1.39) 1.17 (0.95 1.44) 

Robust Standard Error 1.14 (0.72 1.80) 1.17 (0.79 1.73) 

Generalized Estimating Equations 1.14 (0.72 1.80) 1.15 (0.76 1.72) 

Random Effect Logistic Regression 1.10 (0.65 1.86) 1.13 (0.71 1.80) 

Bayesian Random Effect Regression 1.09 (0.61 1.94) 1.13 (0.68 1.87) 

* For cluster-level analysis, include 'center' (i.e. Hamilton and Ottawa) as the 
covariate. 

* For individual-level analysis, include 'diabetes at baseline', 'heart disease at 
baseline', and 'BP controlled at baseline' as the covariates. Other covariates (age, 
gender, experienced stroke or TIA, retinopathy, nephropathy, PVD and aortic 
aneurysm at baseline) were removed from the model since they were not significant. 

(1) Fit the random effect meta regression model without adjusting the variance of 
log OR with VIF. 

(2) Fit the random effect meta regression model with adjusting the variance of log 
OR with VIF. 
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Table 6. Results for Binary Outcome- Systolic BP Controlled 

Unit of Method of No Adjustment Adjusting For 

Analysis Analysis for Covariates Covariates * 
OR 95%CI OR 95% CI 

Cluster Un-weighted Regression 1.12 (0.70 1.81) 1.12 (0.71 1.78) 

Weighted Regression 1.30 (0.87 1.93) 1.30 (0.89 1.90) 

Random Effect Meta Regression (1) 1.07 (0.66 1.72) 

Random Effect Meta Regression (2) 1.17 (0.72 1.89) 

Individual Standard Logistic Regression 1.12 (0.92 1.37) 1.14 (0.92 1.40) 

Robust Standard Error 1.12 (0.71 1.78) 1.14 (0.76 1.70) 

Generalized Estimating Equations 1.12 (0.71 1.78) 1.11 (0.74 1.68) 

Random Effect Logistic; Regression 1.07 (0.63 1.84) 1.10 (0.68 1.76) 

Bayesian Random Effect Regression 1.07 (0.60 1.93) 1.09 (0.64 1.84) 

* For cluster-level analysis, include 'center' (i.e. Hamilton and Ottawa) as the 
covariate. 

* For individual-level analysis, include 'diabetes at baseline', 'heart disease at 
baseline', and 'BP controlled at baseline' as the covariates. Other covariates (age, 
gender, experienced stroke or TIA, retinopathy, nephropathy, PVD and aortic 
aneurysm at baseline) were removed from the model since they were not significant. 

(1) Fit the random effect meta regression model without adjusting the variance of 
log OR withVIF~ 

(2) Fit the random effect meta regression model with adjusting the variance of log 
OR with VIF. 
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Table 7. Results for Binary Outcome- Average BP Controlled 

Unit of Method of No Adjustment Adjusting For 

Analysis Analysis for Covariates Covariates * 

OR 95%CI OR 95%CI 

Cluster Un-weighted Regression 1.03 (0.63 1.69) 1.03 (0.65 1.64) 

Weighted Regression 1.12 (0.73 1.74) 1.12 (0.75 1.69) 

Random Effect Meta Regression ( 1) 1.00 (0.60 1.67) 

Random Effect Meta Regression (2) 1.04 (0.64 1.69) 

Individual Standard Logistic Regression 1.03 (0.84 1.26) 1.04 (0.84 1.29) 

Robust Standard Error 1.03 (0.64 1.66) 1.04 (0.69 1.56) 

Generalized Estimating Equations 1.03 (0.64 1.66) 1.02 (0.67 1.54) 

Random Effect Logistic Regression 1.01 (0.59 1.72) 1.02 (0.64 1.63) 

Bayesian Random Effect Regression 1.01 (0.57 1.80) 1.02 (0.62 1.68) 

* For cluster-level analysis, include 'center' (i.e. Hamilton and Ottawa) as the 
covariate. 

* For individual-level analysis, include 'diabetes at baseline', 'heart disease at 
baseline', and 'BP controlled at baseline' as the covariates. Other covariates (age, 
gender, experienced stroke or TIA, retinopathy, nephropathy, PVD and aortic 
aneurysm at baseline) were removed from the model since they were not significant. 

(1) Fit the random effect meta regression model without adjusting the variance of 
log OR with VIF. 

(2) Fit the random effect meta regression model with adjusting the variance of log 
OR with VIF. 
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Table 8. Results for Binary Outcome- Average Systolic BP Controlled 
Unit of Method of No Adjustment Adjusting For 

Analysis Analysis for Covariates Covariates * 
OR 95%CI OR 95%CI 

Cluster Un-weighted Regression 1.04 (0.63 1.69) 1.04 (0.66 1.64) 

Weighted Regression 1.13 (0.73 1.75) 1.13 (0.76 1.69) 

Random Effect Meta Regression (1) 1.00 (0.61 1.66) 

Random Effect Meta Regression (2) 1.05 (0.65 1.71) 

Individual Standard Logistic Regression 1.04 (0.85 1.27) 1.04 (0.84 1.29) 

Robust Standard Error 1.04 (0.65 1.66) 1.04 (0.69 1.56) 

Generalized Estimating Equations 1.04 (0.65 1.66) 1.02 (0.67 1.54) 

Random Effect Logistic Regression 1.01 (0.59 1.73) 1.02 (0.64 1.62) 

Bayesian Random Effect Regression 1.01 (0.57 1.80) 1.02 (0.61 1.70) 

* For cluster-level analysis, include 'center' (i.e. Hamilton and Ottawa) as the 
covariate. 

* For individual-level analysis, include 'diabetes at baseline', 'heart disease at 
baseline' , and 'BP controlled at baseline' as the covariates. Other covariates (age, 
gender, experienced stroke or TIA, retinopathy, nephropathy, PVD and aortic 
aneurysm at baseline) were removed from the model since they were not significant. 

(1) Fit the random effect meta regression model without adjusting the variance of 
log OR with VIF. 

(2) Fit the random effect meta regression model with adjusting the variance of log 
OR with VIF. 
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Table 9. Results for Secondary Outcomes 
Secondary Outcome Type Estimate &95%CI P-

Value 

If BP Monitored Binary OR Scale 

Random Effect Meta Regression 1.16 (0.73 1.86) 0.54 

GEE ( no adjustment for covariates) 1.15 (0.72 1.84) 0.56 

GEE (with adjustment for covariates) * 1.22 (0.76 I.96) 0.40 

Frequency of BP monitoring Counts 

Linear Regression (no adjustment for covariates) 0.26 (-0.52 1.04) 0.5I 

Linear Regression ( with adjustment for co variates)+ 0.04 ( -0.39 0.47) 0.87 

Average Systolic BP Continuous 

Weighted Linear Regression 3.90 (0.4I 7.39) 0.04 

Two Sample T-Test 2.42 ( -I.40 6.24) 0.23 

Wilcoxon Rank Sum Test 227 0.28 

Random Effect Meta Regression (I) 2.29 (-1.06 5.64) 0.20 

Random Effect Meta Regression (2) 1.66 (-2.06 5.38) 0.87 

Average Diastolic BP Continuous 

Weighted Linear Regression 0.52 ( -1.44 2.48) 0.60 

Two Sample T-Test 0.35 ( -1.65 2.35) 0.73 

Wilcoxon Rank Sum Test 205 0.95 

Random Effect Meta Regression (I) 0.3I (-1.75 2.37) 0.29 

Random Effect Meta Regression (2) 0.08 (-2.06 2.22) 0.07 

Percent of Patient with BP Controlled at End of Continuous 

Trial 

Weighted Linear Regression 0.04 (-O. IO 0.18) 0.59 

Random Effect Meta Regression (I) 0.03 (-0.07 0.13) 0.58 

Random Effect Meta Regression (2) 0.02 (-0.10 0.14) 0.76 

Percent of Patient with Systolic BP Controlled at Continuous 

End of Trial 

Weighted Linear Regression 0.05 (-O.II 0.2I) 0.41 

Random Effect Meta Regression (I) 0.03 (-0.07 O.I3) 0.64 

Random Effect Meta Regression (2) O.OI (-O.II 0.13) 0.84 
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Table 9. Results for Secondary Outcomes (Continued) 
Secondary Outcome Type Estimate & P-

95%CI Value 

Difference of Percent of Patient with BP Continuous 

Controlled Between Baseline and End of Trial 

Weighted Linear Regression 0.01 (-0.03 0.05) 0.65 

Random Effect Meta Regression (1) 0.04 (-0.02 0.10) 0.19 

Random Effect Meta Regression (2) 0.02 ( -0.02 0.06) 0.39 

Difference of Percent of Patient with Systolic BP Continuous 

Controlled Between Baseline and End of Trial 

Weighted Linear Regression 0.01 ( -0.03 0.05) 0.58 

Random Effect Meta Regression (1) 0.03 ( -0.03 0.09) 0.33 

Random Effect Meta Regressio~ (2) 0.02 ( -0.02 0.06) 0.49 
-

* Patients' hypertensive status at last review, PVD at baseline, if taking 
hypertensive medicine and if patients' smoking status changed are included in the 
model as co variates. Other co variates (age, gender, diabetes, heart disease, experienced 
stroke or TIA, retinopathy, nephropathy and aortic aneurysm at baseline) were removed 
from the model since they were not significant. 

+ Patients' hypertensive status at last review, heart disease at baseline, if taking 
hypertensive medicine, age, if patient has nephropathy at baseline are included in the 
model as co variates. Other co variates (diabetes at baseline, experienced stroke or TIA, 
retinopathy, PVD, gender, and aortic aneurysm at baseline) were removed from the 
model since they were not significant. 

(1) Fit the random effect meta regression model without adjusting the variance with 
VIF. 

(2) Fit the random effect meta regression model with adjusting the variance with 
VIF. 
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Table 10. Comparison of the Impact of Different Priors on Bayesian Model 

Prior Outcome: BP controlled 

(without adjustment for covariates) 

Type of Prior Prior Dist. Odds Ratio 95% C.l. 

Uniform (0, 1) 1.11 (0.64 1.92) 

Uniform(O, 5) 1.09 (0.61 1.94) 

Non- Uniform(O, 1 0) 1.09 (0.61 1.94) 

informative Uniform(O, 50) 1.09 (0.61 1.94) 

Uniform(O, 100) 1.09 (0.61 1.94) 

IGamma(0.001, 0.001) 1.11 (0.63 1.94) 

Conjugate IGamma(0.01, 0.01) 1.11 (0.63 1.95) 

IGamma(0,1, 0.1) 1.12 (0.64 1.95) 
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AppendixF 

Code 

Fl. WinBugs Codes for Bayesian Analysis 
fi##HUUH#U#V#Hfl#O###CVUC#H#####H##UHH###U#NHU#U#UH#ff#H##HUEHV#U#HflC#Y## 
# 
# model for BP controlled without adjustment for covariates 
# 
###CD#UUU#H##U#UN###UY##UU#H###NU##UU#UKU#####U##H#N##HH#U#####UUUHU#J 

model 
{ 

for (i in 1 :28) 
{ 

u[i]- dnorm{O,tau); 

for (j in 1 :55) 
{ 

y_bpimproved[i,j] <- last_bpimproved[(i-1 )*55+j] 
x_assigned[i,j] <- assigned[(i-1 )*55+j] 
y_bpimproved[i,j] - dbern(p[i,j]) 

logit(p[i,j]) <- alphaO + alpha1 * x_assigned[i,j] + u[i] 

alphaO- dnorm(O, 1.0E-6) 
alpha1 - dnorm(O, 1.0E-6) 
tau<-1/(sigma*sigma) 
sigma- dunif(O; 10) 

U#UVU#UU#NUJUU#UUVUUCUUU##UU###H#H##U#U#N#HH#####HURU#UUUUU#CUUUC#NN## 
# 
# model for BP controlled with adjustment for covariates 
# 
#U#UHNHUHVHUUUU#UH##U##U#R#U#U#H##H##H##Hff#HK######H########NUU#C#NU## 

model 
{ 

for (i in 1 :28) 
{ 

u[i]- dnorm(O,tau); 

for (j in 1 :55) 
{ 

y_bpimproved[i,j] <- last_bpimproved[(i-1 )*55+j] 
x_assigned[i,j] <- assigned[(i-1 )*55+j] 
x_diabbase[i,j] <- diabbase[(i-1 )*55+j] 
x_hdbase[i,j] <- hdbase[(i-1 )*55+j] 
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x_base_bpcontrolled[i,j] <- base_bpcontrolled[(i-1 )*55+j] 

y_bpimproved[i ,j]- dbern(p[i ,j]) 

logit(p[i,j]) <- alphaO + alpha1 • x_assigned[i,j] + alpha2 • x_diabbase[i,j] 
+ alpha3 • x_hdbase[i,j] + alpha4 • x_base_bpcontrolled[i ,j] 
+ u[i] 

alphaO- dnorm(O, 1.0E-6) 
alpha1 - dnorm(O, 1.0E-6) 
alpha2 - dnorm(O, 1.0E-6) 
alpha3 - dnorm(O, 1.0E-6) 
alpha4 - dnorm(O, 1.0E-6) 
tau<-1/(sigma*sigma) 
sigma - dunif(O, 1 0) 

flfffffiiifffill!f#liflii:tllffll!fNI/f!lflllfii/JJI!JIIJJ!fiiff/Jif#lti!/JIII!f!/J!IIf)ilJiliiifJfff/Jflfillff!!ffJ!ii/JIIIfllil!l!!iiif 
# 
# model for systolic BP controlled without adjustment for covariates 
# 
#HUU##U#H##U####fi##V#il#/J##llU####U#U#UUU#HU#H#U#HUUUUHH##U#UKU###il#ffli#U 

model 
{ 

for (i in 1 :28) 
{ 

u[i]- dnorm(O,tau) ; 

for 0 in 1 :55) 
{ 

y_sysimproved[i,j] <- last_sysimproved[(i-1 )*55+j] 
x_assigned[i ,j] <- assigned[(i-1 )*55+j] 
y_sysimproved[i,j]- dbern(p[i,j]) 

logit(p[i,j]) <- alphaO + alpha1 • x_assigned[i ,j] + u[i] 

alphaO - dnorm(O, 1.0E-6) 
alpha1- dnorm(O, 1.0E-6) • 
tau<-1/(sigma*sigma) 
sigma- dunif(O, 1 0) 

H#UUUUCC#U###U#N#fiUffH##Nli#U########U#J/#ilU#CUVNUUU###UUUHUNU##UUUU###H# 
# 
# model for systolic BP controlled with adjustment for covariates 
# 
HUHKEUUUVUUUUUUUUUUUU###U#H#HUli#RNUHCUUUUJUUUUUU#H#Ull##HUU##U#il#NUH#Hff 

model 
{ 
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for (i in 1 :28) 
{ 

u(i]- dnorm(O,tau); 

for G in 1 :55) 
{ 
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y_sysimproved[i,j] <- last_sysimproved[(i-1 )*55+j] 
x_assigned[i,j] <- assigned[(i-1 )*55+j] 
x_hdbase[i,j] <- hdbase[(i-1)*55+j] 
x_base_syscontrolled[i ,j] <- base_syscontrolled[(i-1 )*55+j] 
x_diabbase(i,j] <- diabbase[(i-1)*55+j] 

y_sysimproved[i,j]- dbern(p[i,j]) 

logit(p[i,j]) <- alphaO + alpha1 * x_assigned(i,j] + alpha2 * x_diabbase[i,j] 
+ alpha3 * x_hdbase[i,j] + alpha4 * x_base_syscontrolled[i,j] 
+ u[i] 

alphaO - dnorm(O, 1.0E-6) 
alpha1 - dnorm(O, 1.0E-6) 
alpha2 - dnorm(O, 1.0E-6) 
alpha3 - dnorm(O, 1.0E-6) 
alpha4 - dnorm(O, 1.0E-6) 

tau<-1/(sigma*sigma) 
sigma - dunif(O, 1 0) 

llllf!IJ!Iff/l#f!!fflffl!fiffllflf/ffii/Jfffffif!#lififf#lf#ttliff/i#il:tilf!Niff!!!lffi)Jf!#tflf#f/!!ffJt/illlllfliliffttffJtfJ!ft! 
# 
# model for average BP controlled without adjustment for covariates 
# 
#llUUUUU#U#HUUHU###ffCUUUUUC#UUUU#UUUCC#UU##UU##UEVHUUUUU#N##H#flUUCUU#UU 

model 
{ 

for (i in 1 :28) 
{ 

u[i]- dnorm(O,tau) ; 

for G in 1 :55) 
{ 

y_bpimproved[i,j] <- ave_bpimproved[(i-1 )*55+j] 
x_assigned[i,j] <- assigned[(i-1 )*55+j] 
y_bpimproved[i,j]- dbern(p[i,j]) 

logit(p[i,j]) <- alphaO + alpha1 * x_assigned[i,j] + u[i] 

alphaO - dnorm(O, 1.0E-6) 
alpha 1 - dnorm(O, 1.0E-6) 
tau<-1/(sigma*sigma) 
sigma- dunif(O, 10) 
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Jffi!!Jfif/J!fii/Jf!Jiiffflfiflfiiffffllfiifiifiiitifllfiiffffffiif!Jflii!ffli!!!!IJ!f!!ffilffiliflfiiffffiillfifiiiii/JII!IJ/i!tlfilfffiNi 
# 
# model for average BP controlled with adjustment for covariates 
# 
UK#CHUH#ffil#UU#UUUUJKUUYKUUUUUEUCUU###il##NU##UH#UU#HHUUU#U#UCUU#HUCUNU# 

model 
{ 

for (i in 1 :28) 
{ 

u[i]- dnorm(O,tau); 

for G in 1 :55) 
{ 

y_bpimproved[i,j] <- ave_bpimproved[(i-1 )*55+j] 
x_assigned(i,j] <- assigned[(i-1 )*55+j] 
x_diabbase[i,j] <- diabbase[(i-1)*55+j] 
x_hdbase[i ,j] <- hdbase[(i-1 )*55+j] 
x_base_bpcontrolled(i ,j] <- ave_base_bpcontrolled[(i-1 )*55+j] 

Y.:;.bPimprpved[i ,iJ .- _dbern(p[ij]) 

logit(p[i,j]) <- alphaO + alpha1 * x_assigned[i,j] + alpha2 * x_diabbase[i ,j] 
+ alpha3 * x_hdbase[i,j] + alpha4 * x_base_bpcontrolled[i,j] 
+u[i] 

alphaO- dnorm(O, 1.0E-6) 
alpha 1 - dnorm(O, 1.0E-6) 
alpha2 - dnorm(O, 1.0E-6) 
alpha3- dnorm(O, 1.0E-6) 
alpha4 - dnorm(O, 1.0E-6) 

tau<-1/(sigma*sigma) 
sigma- dunif(0 ,10) 

liffN/JIIJJ/Jf!Jilflflil!lfliiiiiiii/JJJ/!IJJI/IIJ!IIIIiff!f~fi!JiJJI!!iiUif#U#i!-f!J!fifJ/Jiifflliiffii/1/Jiffffifi/fl!f!f!lffUiifffff 
# 
# model for average systolic BP controlled without adjustment for covariates 
# 
KUHUH#U#UU#U#EUHUUUU#UJUHUUUUEU?HQ~UN##H##HU#UVHJUUUU###C#fi##EUUUVUHUK 

model 
{ 

for (i in 1 :28) 
{ 

u[i]- dnorm(O,tau); 

for G in 1 :55) 
{ 

y_sysimproved(i ,j] <- ave_sysimproved[(i-1 )*55+j] 
,x_assigned[i ,j] <- assigned[(i-1)*55+j] 
y_sysimproved(i,j]- dbern(p(i,j]) 

logit(p[i,j]) <- alphaO + alpha1 * x_assigned[i,j] + u[i] 

__ . ..::., --:- .-:.·-n 
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alphaO- dnorm{O, 1.0E-6) 
alpha1 - dnorm{O, 1.0E-6) 
tau<-1/{sigma*sigma) 
sigma - dunif{O, 1 0) 
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#UH#U#U#U#ff##fi##U##U#fi#UUUU#UUUVUU#U#CU#UU#UHU#UU#U##Uff##HUU###N##UUH# 
# 
# model for average systolic BP controlled with adjustment for covariates 
# 
##U##HH#H#U###UJHU#U#UU#UUUU#il#UU#U#U#UUHUH#UU#H##NUfi####fiUH#U##UHH#flH 

model 
{ 

for {i in 1 :28) 
{ 

u[i]- dnorm{O,tau); 

for G in 1 :55) 
{ 

y_sysimproved[i,j] <- ave_sysimproved[{i-1 )*55+j] 
x_assigned[i ,j] <- assigned[{i-1)*55+j] 
x_diabbase[i ,j] <- diabbase[{i-1 )*55+j] 
x_hdbase[i,j] <- hdbase[{i-1 )*55+j] 
x_base_syscontrolled[i,j] <- ave_base_syscontrolled[{i-1 )*55+j] 

y_sysimproved[i,j] .- dbern{p[i,j]) 

logit(p[i,j]) <- alphaO + alpha1 * x_assigned[i ,j] + alpha2 * x_diabbase[i,j] 
+ alpha3 * x_hdbase[i,j] + alpha4 * x_base_syscontrolled[i ,j] 
+ u[i] 

alphaO - dnorm(O, 1.0E-6) 
alpha1 - dnorm{O, 1.0E-6) 
alpha2 - dnorm(O, 1.0E-6) 
alpha3 - dnorm(O, 1.0E-6) 
alpha4- dnorm(O, 1.0E-6) 
tau<-1/(sigma*sigma) 
sigma - dunif(O, 1 0) 

F2. WinBugs Codes for Sensitivity Analysis 

ff!J!!!!H!(J!#!!!ff!ff/Jif!!f!U!!l!J/f!ilfl!l!i/J!f!itlli!JJJ!J!f/J#!J!J!!IJIJ/!!1tiii!Jt!!l/!!li!##tiJt1/!lll!!!f/J!!!!!!II!!N!!fff/ 
# 
# Sensitivity analysis: model for BP controlled without adjustment for covariates 
# 
iJJJJ!ffiffltllfffilf!JII!IIIII/111/II/JflifiJJ/filiff!il!fJIII!I!NIIflfli!.li!ffflllff/i!llilf!(f!Jiilff/ffilfflifffffffi!!JJJJJ!!!!Jf!ffff 

model 
{ 
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model 
{ 

for (i in 1 :28) 
{ 

u[i]- dnorm(O,tau); 

for 0 in 1 :55) 
{ 
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y_bpimproved[i,j] <- last_bpimproved[(i-1 )*55+j] 
x_assigned[i,j] <- assigned[(i-1 )*55+j] 
y_bpimproved[i,j]- dbern(p[i,j]) 

logit(p(i,j]) <- alphaO + alpha1 * x_assigned[i ,j] + u[i] 

alphaO- dnorm(O, 1.0E-6) 
alpha1 - dnorm(O, 1.0E-6) 
tau - dgamma(0.001 , 0.001) 
#tau - dgamma(0.01 , 0.01) 
# tau - dgamma(0.1, 0.1) 
sigma <- 1 I sqrt(tau) 

for (i in 1 :28) 
{ 

u[i]- dnorm(O,tau); 

for 0 in 1 :55) 
{ 

y~bpimproved[i ,j] <- last_bpimproved[(i-1 )*55+j] 
x._assigned[i,j] <- <.~~sign~d((i~ 1 t55+j) 
y_bpimproved[i,j]- dbern(p[i,j]) 

logit(p[i,j]) <- alphaO + alpha1 * x_assigned[i,j] + u[i] 

alphaO - dnorm(O, 1.0E-6) 
alpha1 - dnorm(O, 1.0E-6) 
tau<-1/(sigma*sigma) 
sigma - dunif(O, 1 0) 
# sigma - dunif(O, 1) 
# sigma - dunif(0,5) 
# sigma - dunif(0,50) 
#sigma- dunif(0,100) 

#fili#BU##U#UU#UUUUUll#UG#Ufifi##ilU###UUUUUHHUU#UUU###il##il#Ufi#U#HUUUU##UU#H 
# 
# initial values 
# 
lllfllllltfftift#li!Jffllffft!!ttir'Jt!Jtf/!l!lllf[tli(IUI!If!ftii!J/Iflllfll!i!II!Nt!_lflf.Jflf!J!tli!i!!!!fffJJJHiiJfl!lllflifi!f!Jfifl/J 

seed 314159 

# initial values when using inverse gamma prior (witho.ut adjustment for covariates) 
~~~ . . 

alphaO = 0, alpha1 = 0, tau = 1, 
u = c(O, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, o, 0, 0, 0,0,0,0,0,0,0,0)) 

# initial values when using uniform prior (without adjustment for covariates) 
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list( 
alphaO = 0, alpha1 = 0, sigma= 1, 
u = c(O, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0)) 

#initial values when using inverse gamma prior (with adjustment for covariates) 
list( 
alphaO = 0, alpha1 = 0, alpha2=0, alpha3=0, alpha4=0, tau= 1, 
u = c(O , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O,O,O,O,O,O,O,O)) 

# initial values when using uniform prior (with adjustment for covariates) 
list( 
alphaO = 0, alpha1 = 0, alpha2=0, alpha3=0, alpha4=0, sigma= 1, 
u = c(O, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0)) 

F3. SAS Codes for Merge and Extract Data From Original Data Files 
#H#UHUHU####U##H##U##H#Ull#U#UUUH##UUN##HY##V#U##UHNU#UU##U##U# 
# 
# 
# 
# 

Prepare data set for analysis 
1.CHAT data 

#####U#Y#N###UHUUUHG##UUNU#U#UHUH#Uff#K#####U#VU######N#####HM# 

data chat1 ; 
set chat.chat_data; 

array bpdat{77} bpdt51 bpdt52 bpdt53 bpdt54 bpdt55 bpdt56 bpdt57 bpdt58 bpdt59 bpdt510 
bpdt511 bpdt512 bpdt513 bpdt514 bpcft5 f 5 bpdt516 bpdt517 bpdt518 bpdt519 bpdt520 
bpdt521 bpdt522 bpdt523 bpdt524 bpdt525 bpdt526 bpdt527 bpdt528 bpdt529 bpdt530 
bpdt531 bpdt532 bpdt533 bpdt534 bpdt535 bpdt536 bpdt537 bpdt538 bpdt539 bpdt540 
bpdt541 bpdt542 bpdt543 bpdt544 bpdt545 bpdt546 bpdt54 7 bpdt548 bpdt549 bpdt550 
bpdt551 bpdt552 bpdt553 bpdt554 bpdt555 bpdt556 bpdt557 bpdt558 bpdt559 bpdt560 
bpdt561 bpdt562 bpdt563 bpdt564 bpdt565 bpdf566 bpdt567 bpdt568 bpdt569 bpdt570 
bpdt571 bpdt572 bpdt573 bpdt574 bpdt575 bpdt576 bpdt577; 

array bpsys{77} bpsys51 bpsys52 bpsys53 bpsys54 bpsys55 bpsys56 bpsys57 bpsys58 bpsys59 bpsys51 0 
bpsys511 bpsys512 bpsys513 bpsys514 bpsys515 bpsys516 bpsys517 bpsys518 bpsys519 bpsys520 
bpsys521 bpsys522 bpsys523 bpsys524 bpsys525 bpsys526 bpsys527 bpsys528 bpsys529 bpsys530 
bpsys531 bpsys532 bpsys533 bpsys534 bpsys535 bpsys536 bpsys537 bpsys538 bpsys539 bpsys540 
bpsys541 bpsys542 bpsys543 bpsys544 bpsys545 bpsys546 bpsys547 bpsys548 bpsys549 bpsys550 
bpsys551 bpsys552 bpsys553 bpsys554 tipsys555 bpsys556 bpsys557 bpsys558 bpsys559 bpsys560 
bpsys561 bpsys562 bpsys563 bpsys564 bpsys565 bpsys566 bpsys567 bpsys568 bpsys569 bpsys570 
bpsys571 bpsys572 bpsys573 bpsys574 bpsys575 bpsys576 bpsys577; 

array bpdia{77} bpdia51 bpdia52 bpdia53 bpdia54 bpdia55 bpdia56 bpdia57 bpdia58 bpdia59 bpdia510 
bpdia511 bpdia512 bpdia513 bpdia514 bpdia515 bpdia516 bpdia517 bpdia518 bpdia519 bpdia520 
bpdia521 bpdia522 bpdia523 bpdia524 bpdia525 bpdia526 bpdia527 bpdia528 bpdia529 bpdia530 
bpdia531 bpdia532 bpdia533 bpdia534 bpdia535 bpdia536 bpdia537 bpdia538 bpdia539 bpdia540 
bpdia541 bpdia542 bpdia543 bpdia544 bpdia545 bpdia546 bpdia547 bpdia548 bpdia549 bpdia550 
bpdia551 bpdia552 bpdia553 bpdia554 bpdia555 bpdia556 bpdia557 bpdia558 bpdia559 bpdia560 
bpdia561 bpdia562 bpdia563 bpdia564 bpqia565 tipdia566 bpdia567 bpdia568 bpdia569 bpdia570 
bpdia571 bpdia572 bpdia573 bpdia574 bp~ia575 bpdia576 bpdia577; 

array sysbef {3} sysbef1-sysbef3; 
array diabef {3} diabef1-diabef3; 
array sysaft {3} sysaft1-sysaft3; 
array diaaft {3} diaaft1-diaaft~ ; · 

tmpb=O; 
do i=77 to 1 by -1 ; 
if(bpdat[i]"=.) and (bpdat[i]<endper1) and (tmpb<3) then do; 

tmpb=tmpb+1; · 
sysbef[tmpb]=bpsys[i]; 

98 



M.Sc. Thesis- J. Ma McMaster- Statistics 

end; 
end; 

diabef[tmpb]=bpdia[i]; 

tmpa=O; 
do i=77 to 1 by -1 ; 
if(bpdat[i]11=.) and (endper1<bpdat[i]<endper2) and (tmpa<3} then do; 

tmpa=tmpa+1 ; 

end; 
end ; 

sysaft[tmpa]=bpsys[i]; 
diaaft[tmpa]=bpdia[i]; 

monfreq=O; 
do i=77 to 1 by -1 ; 
if(bpdat[ijll=.) and (endper1 <bpdat[i]<endper2) then monfreq=monfreq+1 ; 
end; 

monfreqbase=O; 
do i=77 to 1 by -1; 
if(bpdat[i]ll=.) and (beginper<bpdat[i]<endper1) then monfreqbase=monfreqbase+1 ; 
end; 

if sysaft[1]11=888 and sysaft[f]11=999 then lastsysaft=sysaft[1]; 
if diaaft[1]11=888 and diaaft[1 )11=999 then lastdiaaft=diaaft[1]; 

if sysbef[1]11=888 and sysbef[1]11=999 then lastsysbef=sysbef[1]; 
if diabef[1]11=888 and diabef[1]11=999 then lastdiabef=diabef[1]; 

if lastsysbef=. then base_syscontrolled=O; 
else do; 
if (diabbase=1) then do; 

if (lastsysbef<=130) then base_syscontrolled=1 ; 
else base_syscontrolled=O; 

end; 
else do; 

end ; 
end; 

if (lastsysbef<=140) then base_syscontrolled=1 ; 
else base_syscontrolled=O; 

if (lastsysbef=. or lastdiabef=.) then base_bpcontrolled=O; 
else do; 
if (diabbase=1) then do; 

if (lastsysbef<=130 and lastdiabef<=80) then base_bpcontrolled=1 ; 
else base_bpcontrolled=O; 

end; 
else do; 

if (lastsysbef<=140 and lastdiabef<=90) then base_bpcontrolled=1 ; 
else base_bpcontrolled=O; 

end; 
end; 

if tmpa>=3 then do; 
avesysa= int( ( sysaft{ 1 }+sysaft{2}+sysaft{3} )/3) ; 
avediaa=int( ( diaaft{1 }+diaaft{2}+diaaft{3})/3) ; 
end; · 
else if tmpa=2 then do; 
avesysa=int( (sysaft{1 }+sysaft{2} )/2) ; 
avediaa=int((diaaft{1}+diaaft{2})/4); 
end ; · 

else if tmpa=1 then do; 
avesysa=sysaft{1 }; 
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avediaa=diaaft{1 }; 
end ; 

if tmpa>=1 then bpmonitored=1 ; 
else bpmonitored=O; 

if tmpb>=3 then do; 
avesysb=int( (sysbef{1 }+sysbef{2}+sysbef{3})/3); 
avediab=int((diabef{1}+diabef{2}+diabef{3})/3); 
end ; 
else if tmpb=2 then do; 
avesysb=int( ( sysbef{1 }+sysbef{2} )/2); 
avediab=int( ( diabef{ 1 }+diabef{2} )/2); 
end ; 
else if tmpb=1 then do; 
avesysb=sysbef{1 }; 
avediab=diabef{1 }; 
end ; 

if avesysa=. or avediaa=. then ave_bpimproved=O; 
else do; 
if (diabbase=1) then do; 
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if (avesysa<=130 and avediaa<=80) then ave_bpimproved=1 ; 
else ave_bpimproved=O; 

end; 
else do; 

if (avesysa<=140 and avediaa<=90) then ave_bpimproved=1; 
else ave_bpimproved=O; 

end; 
end; 

if avesysa=. then ave_sysimproved=O; 
else do; 
if {diabbase=1) then do; 

if (avesysa<=130) the.n ave_sysimproved=1 ; 
else ave_sysimproved=O; -

end; 
else do; 

end; 
end ; 

if (avesysa<=140) then ave_sysimproved=1 ; 
else ave_sysimproved=O; 

if lastsysaft=. or lastdiaaft=. then last_bpimproved=O; 
else do; 
if (diabbase=1) then do; 

if (lastsysaft<=130 and lastdiaaft<=80) then last_bpimproved=1 ; 
else last_bpimproved=O; 

end; 
else do; 

if (lastsysaft<=140 and lastdiaaft<=90) then last_bpimproved=1 ; 
else last_bpimproved=O; 

end; 
end; 

if lastsysaft=. then last_sysimproved=O; 
else do; 
if (diabbase=1) then do; . 

if (lastsysaft<=130) then last_sysimpioved=1 ; 
else last_sysimproved=O; 

end; 
else do; ,. _ 

end; 

if (lastsysaft<=140) then last_syslmproved=1 ; 
else last_sysimproved=O; 
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end; 

keep assigned assfpid pairedto beginper2 ptid hypstat diabbase retinobase nephrobase hdbase strokebase 
pvdbase aortanbase smokchg nomedbase deceased tmpb avesysb avediab tmpa avesysa avediaa lastsysbef 
lastdiabef lastsysaft lastdiaaft ave_bpimproved ave_sysimproved last_bpimproved last_sysimproved 
bpmonitored monfreq monfreqbase base_bpcontrolled base_syscontrolled ; 
run ; 

proc print data=chat1 ; 
run; 

#Uil#Uil##UH#UUUUU#######KililUK##UU#U###VffH##ilfi#UH###UU#HUHE####V 
# 
# 
# 
# 

Prepare data set for analysis 
2.CHAT patient demographic data 

#fflfllflfllliflf!!tPfl'!f#ffHffffffUJJff!!JiHii#fflltiftiJ!fi!JJ!f!I!!Jtllf!HFIIIJ/Hiff!IIF!Cff!!!fifflfflfffi1/fr'/ 

data chat2; 
set chat. chat_ all; 
run; 

proc print data=chat2; 
run; 

H########Y##U#####OHKHHU##li#HU#fi#fi###U##U##fi##Ufffi#Ufiff#HHHHU#VU 

Prepare data set for analysis 
# 
# 
# 
# 

3. merge CHAT data with the CHAT patient demographic data 

UUU#H#H#ll#ilff#N#U##ll#HU#RVUUUH######fiff#ll###Uil##HUUCUUU#KU#U#fi## 

proc sort data=chat1; 
by ptid; 
run; 

proc sort data=chat2; 
by ptid; 
run; 

options yearcutoff=1907; 
data chat.chatmerge; 
merge chat1 chat2; 
by ptid; 
age=intck('year',input(dob,mmddyy8.) ,beginper2); 
drop fpid ; 
run; 

proc print data=chat.chatmerge; 
run; 

F4. SAS Codes for Descriptive Statistics of Demographic Information 

fi#U#Uff#UUHH##HU#U###Hllff###VffUU#UUCU#H##UHRU#flN#HU#UU#il##U###Hif 
# 
# Patients characteristic statistics 
# 
#UUK##Y#####U#UU#fi###H##NV#Hll#H#UU#ff#U##UHU#UUH#HHC#HH#U#N###fi 

proc sql; 
select trim(assfpid), int(mean(age)*1 00)/1 00 as mean_age,int(sqrt(var(age))*1 00)/1 00 as se_age 
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from chat.chatmerge 
group by assfpid; 

proc sql; 
select ptid 
from chat.chatmerge 
where age=.; 

procsql; 
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select trim(assfpid), sum(sex=1) as male, sum(sex=1 )/55 as per_male, sum(sex=2) as female, sum(sex=2)/55 as 
per_female 

from chat.chatmerge 
group by assfpid, sex; 

proc sql; 
select assigned, sum(sex=1) as male, sum(sex=2) as female 
from chat.chatmerge 
group by assigned, sex; 

FS. SAS Codes for Descriptive Statistics of Baseline Diagnostic Characteristics 

##U#U##KUU#C#fi#UU###YU#U####fi##HHU#U#il#U##N##fi##Y#U#HU##UUCUUU 
# 
# Patients characteristic statistics 
# 
BU####N##UV#UUEU#U#UHHVU#UNU#O#####NH####NUN##UVHfiN#####UHU### 

proc sql; 
select assigned, sum(diabbase=1) as disease, sum(diabbase=O) as nodisease, 

sum(diabbase<>O and diabbase<>1) as missing 
from chat.chatmerge 
group by assigned; 

proc sql; 
select assigned, sum(hdbase=1) as disease, sum(hdbase=O) as nodisease, 

sum(hdbase<>O and hdbase<>1) as missing 
from chat.chatmerge 
group by assigned; 

proc sql; 
select assigned, sum(strokebase =1) as disease, sum(strokebase =0) as nodisease, 

sum(strokebase <>0 and strokebase <>1) as missing 
from chat.chatmerge 
group by assigned; 
proc sql; 
select assigned, sum(pvdbase =1) as disease, sum(pvdbase =0) as nodisease, 

sum(pvdbase <>0 and pvdbase <>1) as missing 
from chat.chatmerge 
group by assigned; 

proc sql; 
select assigned, sum(retinobase =1) as disease, sum(retinobase =0) as nodisease, 

sum(retinobase <>0 and retinobase <>1) as missing 
from chat.chatmerge 
group by assigned; 
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proc sql; 
select assigned, sum(nephrobase =1) as disease, sum(nephrobase =0) as nodisease, 

sum(nephrobase <>0 and nephrobase <>1) as missing 
from chat.chatmerge 
group by assigned; 

proc sql; 
select assigned, sum(aortanbase =1) as disease, sum(aortanbase =0) as nodisease, 

sum(aortanbase <>0 and aortanbase <>1) as missing 
from chat.chatmerge 
group by assigned; 

procsql; 
select assigned, sum(hypstat =1) as disease, sum(hypstat =0) as nodisease, 

sum(hypstat <>0 and hypstat <>1) as missing 
from chat.chatmerge 
group by assigned; 

proc sql; 
select assigned, sum(nomedbase =1) as disease, sum(nomedbase =0) as nodisease, 

sum(nomedbase <>0 and nomedbase <>1) as missing 
from chat.chatmerge 
group by assigned; 

proc sql; 
select assigned, sum(smokchg =0) as changeD, sum(smokchg =1) as change1, sum(smokchg =2) as change2, 

sum(smokchg<>1 and smokchg<>2 and smokchg<>O) as missing 
from chat.chatmerge 
group by assigned; 

F6. SAS Codes for Cluster-Level Analysis of Primary Outcomes 

llf!J/I//)J/{/f!Jifl#f!fili/!l!!iffffiiii!Jiflff}fflffl!!lffllf!Jif)/ffffllfffflllfltli!JffffiJiiffifffiilf!Jfffff!!!!J 
# 
# Prepare code for cluster-level analysis 
# 
ff#CC#ffCUUUHHll#UUDN#SUH##UCUJHll#ilU#N##Uil#fi#ff##R#UU###HUZUUCHff 

data chat.cluster_chat; 
set chat.chatmerge; 
keep assigned assfpid pairedto ave_bpimproved ave_sysimproved last_bpimproved last_sysimproved bpmonitored; 
run ; 

proc SOL; 
select trim(assfpid) as Assfpid , trim(pairedto) as Pairedto, sum(input(assigned,2.0))/55 as Assign, 

sum(ave_bpimproved) as Ave_bp, 
sum(ave_sysimproved) as Ave_sys, sum(last_bpimproved) as Last_bp, sum(last_sysimproved) as Last_sys, 
sum(bpmonitored) as Bpmonitored 
from chat.cluster_chat 
group by assfpid , pairedto; 

data cluster; 
input assfpid $ pairedto $ center $ assigned $ ave_bpimproved ave_sysimproved last_bpimproved last_sysimproved 

bpmonitored N; 
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data lines; 
H-01 H-02 H 1 11 11 15 16 41 
H-02 H-01 H 2 32 32 36 36 50 
H-03 H-04 H 2 22 22 24 24 45 
H-04 H-03 H 1 20 20 19 19 40 
H-05 H-06 H 1 26 26 24 24 44 
H-06 H-05 H 2 22 23 24 25 39 
H-07 H-08 H 2 25 25 33 33 41 
H-08 H-07 H 1 46 46 48 48 51 
H-09 H-10 H 2 20 20 24 24 41 
H-10 H-09 H 1 28 28 29 30 39 
H-11 H-12 H 1 21 21 20 20 49 
H-12 H-11 H 2 25 25 27 27 43 
H-13 H-14 H 1 22 22 27 28 44 
H-14 H-13 H 2 34 34 34 34 49 
0-01 0-03 0 1 39 40 39 40 51 
0-02 0-04 0 1 18 18 20 20 40 
0-03 0-01 0 2 23 24 25 25 39 
0-04 0-02 0 2 33 33 36 36 46 
0-05 0-08 0 1 41 41 39 39 52 
0-06 0-07 0 2 35 35 36 37 45 
0-07 0-06 0 1 20 22 21 23 43 
0-08 0-05 0 2 34 36 35 37 54 
0-09 0-13 0 2 29 29 30 31 43 
0 -10 0-12 0 2 36 36 31 31 44 
0-11 0 -14 0 2 38 38 39 39 53 
0-12 0-10 0 1 30 30 30 31 48 
0-13 0-09 0 1 31 31 27 27 52 
0-14 0-11 0 1 49 49 51 52 53 

proc print data=cluster; 
run ; 

~######~#~##~######~##~#####U####~#######~##########U#Un#U### 

# 
# code for last BP controlled 
# 
##U###U#UU#U#UU#NU#ilfi##U#C#Dil#U##U#HB##HY#UN#N#HKUU#UHUUU#U## 

#U#UUUU#U##UUHHnHU######U#####H###U####U#########UH#HU##U##### 
# 
# cluster-level unweighted logistic regression 
# 
##UHUUfi#fi#UKUHUH#Hil#HU#VU6UUU#U#UU##il##HUH#N#U##llUUUH#UUUUHUHU 

proc genmod data=cluster descending; 
class center assigned/desc; 
modellast_bpimproved/N=assigned /dist=bin link=logit pscale; 
run; 

proc genmod data=cluster descending; 
class center assigned/desc; 
modellast_bpimproved/N=9ssignedcenter/dist=bin link=logit pscale; 
run ; 

HHUH#HUU#UUJU#XO#UHU#HUUH##U##fiHUj#ll#UU####H#HUH####U#H#HHUHUU 
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# 
# cluster-level weighted logistic regression 
# 
U#H##N#NUH#UUHHUUUUUUYCU##Hil#HU##HU#UCH#HUHUHU#UUUHU######HU#U 

data cluster_wt; 
set cluster; 
wt=1/( 1/last_bpimproved+ 1/(N-Iast_bpimproved) ); 
run ; 

proc genmod data=cluster_wt descending; 
class center assigned /desc; 
modellast_bpimproved/N=assigned /dist=bin link=logit pscale; 
weight wt; 
run; 

proc genmod data=cluster_wt descending; 
class center assigned /desc; 
model last_bpimproved/N=assigned center/dist=bin link=logit pscale; 
weight wt; 
run ; 

data cluster_wt_ajust; 
set cluster; 
wt=1/((1/last_bpimproved+1/(N-Iast_bpimproved))*(1+54*0.0766553091)); 
run ; 

proc genmod data=cluster_wt_ajust descending; 
class center assigned /desc; 
modellast_bpimproved/N=assigned /dist=bin link=logit pscale; 
weight wt; 
run; 

proc genmod data=cluster_wt_adjust descending; 
class center assigned /desc; 
model last_bpimproved/N=assigned center/dist=bin link=logit pscale; 
weight wt; 
run ; 

#U#UBHC#U#H#DUUUUCCHKUH#li#HH#UUCUUU#HUV#U##UU##H#####U##UUUUUU 
# 
# cluster-level random effect meta regression 
# 
#UNCHHUHU###U##HU#U###CHU#U£#VHUHCU#UUHDHUUUEU#UHHUDUU#N#UN### 

data meta_last_bp; 
input pairnum last_bp_1 last_bp_2 center$; 
N=55; 
logor=log((last_bp_2*(N-Iast_bp_1 ))/(last_bp_1 *(N-Iast_bp_2))); 
varlogor=1/last_bp_1 +1/(N-Iast_bp_1 )+1/last_:bp_2+1/(N-Iast_bp_2); 
datalines; 
1 15 36 H 
2 19 24 H 
3 24 24 H 
44833H 
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5 29 24 H 
6 20 27 H 
7 27 34 H 
8 39 25 0 
9 20 36 0 
10 39 35 0 
11 21 36 0 
12 27 30 0 
13 30 31 0 
14 51 39 0 

run ; 

proc print data=meta_last_bp; 
run; 

proc mixed data=meta_last_bp method=ml; 
class pairnum; 
model log or= I s cl; 
repeated I group=pairnum; 
random intercept ltype=un subject=pairnum; 
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parms (0) 
(0.17208)(0.15433)(0.14785)(0.23945)(0.14687)(0.15132)(0.14978) 
(0.16147)(0.15898)(0.16671)(0.15744)(0.14608)(0.14726)(0.35775) 
I eqcons=2 to 15; 
run ; 

data meta_last_bp_adjust; 
input pairnum last_bp_1 last_bp_2 center$; 
N=55; 
logor=log((last_bp_2*(N-Iast_bp_1 ))l(last_bp_1 *(N-Iast_bp_2))); 
varlogor=(1/last_bp_1 +11(N-Iast_bp_1 )+1/last_bp_2+11(N-Iast_bp_2))*(1 +54*0.0766553091 ); 
data lines; 
1 15 36 H 
2 19 24 H 
3 24 24 H 
4 48 33 H 
5 29 24 H 
6 20 27 H 
7 27 34 H 
8 39 25 0 
920360 
10 39 35 0 
11 21 36 0 
12 27 30 0 
13 30 31 0 
14 51 39 0 

run ; 

proc print data=meta_last_bp_adjust; 
run ; 

proc mixed data=meta_last_bp_adjust method=ml; 
class pairnum; 
model Iogar= I s cl; 
repeated I group=pairnum; 
random intercept ltype=un subject=pairnum; 
parms (0) 
(0.88437)(0. 79318)(0. 75986)(1.23062)(0. 75482){0. 77771 )(0. 76979) 
(0.82988)(0.81706)(0.85680)(0.80915)(0. 75079)(0. 75682)(1 .83861) 
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I eqcons=2 to 15; 
run; 
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H###il##H##E#U#il#N#U#C#ECUUHU#U#EHHHUHUHU#HHUHU##O#U##H##U#Ufi# 
# 
# code for last systolic BP controlled 
# 
NU#U####N##N#U###fi##HC#UUHN#####U#HU#U#il####UUU#Ufi#UH#HUUH#Ufi 

U#U####H#Ufi###H#N##UHU#fl#illi##UHXUHHCH######H##UU#HNN#Uf#Ufi##UU 
# 
# Systolic BP: Cluster-level unweighted logistic regression 
# 
#UNU#RU##UUDUHUCHJDHKCH#N#NU#HUUC#CVNUUUHH£###6#ffH###il##GU#il#U 

proc genmod data=cluster descending; 
class center assigned/desc; 
model last_sysimproved/N=assigned /dist=bin link=logit pscale; 
run; 

proc genmod data=cluster descending; 
class center assigned/desc; 
modellast_sysimproved/N=assigned center/dist=bin link=logit pscale; 
run ; 

fiUN#####N##H###H#fiU#R###U#UU#fiUUUV#H#UVUff#UCRUKUUU##HUH##NH#R# 
# 
# Systolic BP: Cluster-level weighted logistic regression 
# 
#UU####UU#CUK#UUN#U#U#RN####UHUHUBHV######U###U#UU#UHNH#HU#UU# 

data cluster_syswt; 
set cluster; 
wt= 1/( 1/last_sysimproved+1/(N-Iast_sysimproved) ); 
run ; 

proc genmod data=cluster_syswt descending; 
class center assigned /desc; 
model last_sysimproved/N=assigned /dist=bin link=logit pscale; 
weight wt; 
run; 

proc genmod data=cluster_syswt descending; 
class center assigned /desc; 
modellast_sysimproved/N=assigned center/dist=bin link=logit pscale; 
weightwt; 
run; 

##HNUU#Bli#Hll#UKUUUU#DUH#il###HHUU##ilHflC#HVHUU#liU#UR###HUU#fiHU## 
# 
# Systolic BP: Cluster-level random effect meta regression 
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# 
U##R##KHK#N#U#fi#UUUUUU#fl##UUHli#liU#H#lifi#fi#6fili#HHUU#Ufi#HUKU#H#U# 

data meta_last_sys; 
input pairnum last_sys_1 last_sys_2 center $; 
N=55; 
logor=log((last_sys_2*(N-Iast_sys_1 ))l(last_sys_1 *(N-Iast_sys_2))); 
varlogor=111ast_sys_1 +11(N-Iast_sys_1 )+111ast_sys_2+11(N-Iast_sys_2) ; 
data lines; 
1 16 36 H 
2 19 24 H 
3 24 25 H 
4 48 33 H 
5 30 24 H 
6 20 27 H 
7 28 34 H 
8 40 25 0 
9 20 36 0 
10 39 37 0 
11 23 37 0 
12 27 31 0 
13 31 31 0 
14 52 39 0 

run ; 

proc print data=meta_last_sys; 
run ; 

proc mixed data=meta_last_sys method=ml; 
class pairnum; · 
modellogor= I s cl ; 
repeated I group=pairnum; 
random intercept ltype=un subject=pairnum; 
parms (0) 
(0.16855)(0.15433)(0.14726)(0.23945)(0.14726)(0.15132)(0.14978) 
(0.16500)(0.15898)(0.17072)(0.15731 )(0.14668)(0.14785)(0.44071) 
I eqcons=2 to 15; 
run ; 

data meta_last_sys_adjust; 
input pairnum last_sys_1 last_sys_2 center $; 
N=55; 
logor=log((last_sys_2*(N-Iast_sys_1 ))l(last_sys_1*(N-Iast_sys_2))); 
varlogor=(111ast_sys_1 +11(N-Iast_sys_1 )+111ast_sys_2+11(N-Iast_sys_2))*(1 +54*0.0766553091 ); 
datalines; 
1 16 36 H 
2 19 24 H 
3 24 25 H 
4 48 33 H 
5 30 24 H 
6 20 27 H 
7 28 34 H 
8 40 25 0 
9 20 36 0 
10 39 37 0 
11 23 37 0 
12 27 31 0 
13 31 31 0 
14 52 39 0 

run ; 

108 



proc print data=meta_last_sys_adjust; 
var varlogor; 
run ; 

proc mixed data=meta_last_sys_adjust method=ml; 
class pairnum; 
model logor= I s cl; 
repeated I group=pairnum; 
random intercept /type=un subject=pairnum; 
parms (0) 
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(0.86625) (0.79318) (0.75682) (1 .23062) (0.75682) (0 .77771) (0.76979) 
(0.84800) (0.81706) (0.87741) (0.80848) (0.75382) (0 .75986) (2.26495) 
I eqcons=2 to 15; 
run; 

######ll#UUUU#HUUHU#U#HUNU#HXHUU#UU#llHN####UO##BK##UHUUU#UHU## 
# 
# code for average BP controlled 
# 
UUUC######U#UUKCUUHKUUUCUUHNUUUUUUU#NU##H#UUU#NUU#UUUU##U#U## 

##UUHUU#N#UUUUUUC##UN#NU##ll###U#R#ll#UUUN#UUKUUUUUVU######EUUUV 
# 
# Cluster-level unweighted logistic regression 
# 
91UUHHNHEU##llU###U#Nfi#H#li##U#UH#N###HUUUU#H#UH#V#UU#UUU##Hfi##U 

proc genmod data=cluster descending; 
class center assigned/desc; 
model ave_bpimproved/N=assigned /dist=bin link=logit pscale; 
run; 

proc genmod data=cluster descending; 
class center assigned/desc; 
model ave_bpimproved/N=assigned center/dist=bin link=log it pscale; 
run ; 

#UU#UUHU##U#U##UU#UEUCUUU#HUUDUUUCUHUUUUUUUUUUUVUHUU#UU#HUEUUU 
# 
# Cluster-level weighted logistic regression 
# 
U#NU#H##UU##UUHU#UUUCUDHHUUHUUCU#UVNCUUUUHU#NHHUHUUUHU#HU###HU 

data cluster_wt; 
set cluster; 
wt=1/(1/ave_bpimproved+1/(N-ave_bpimproved)) ; 
run ; 

proc genmod data=cluster_wt descending; 
class center assigned /desc; 
model ave_bpimproved/N=assigned /dist=bin link=logit pscale; 
weight wt; 
run; 
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proc genmod data=cluster_wt descending; 
class center assigned ldesc; 
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model ave_bpimprovediN=assigned centerldist=bin link=logit pscale; 
weight wt; 
run ; 

N#U#fi##HUHU#U#HU#HUU#HHfill#NU##H#H#H#Ufi#HH#UU#U##U#U#####U####U 
# 
# 
# 

Cluster-level random effect meta regression 

UNNUUUUHUH##H###U#####H##H#N#Ufi##O##U#N#MU###H#UU#HDUU#UHUHH#K 

data meta_ave_bp; 
input pairnum ave_bp_1 ave_bp_2 center$; 
N=55; 
logor=log((ave_bp_2*(N-ave_bp_1 ))l(ave_bp_1 *(N-ave_bp_2))); 
varlogor=11ave_bp_1 +11(N-ave_bp_1 )+11ave_bp_2+11(N-ave_bp_2) ; 
varlogor_adjust=(11ave_bp_1 +11(N-ave_bp_1 )+11ave_bp_2+11(N-ave_bp_2))*(1 +54*0.0766553091 ); 
datalines; 
1 11 32 H 
2 20 22 H 
32622H 
44625H 
5 28 20 H 
6 21 25 H 
7 22 34 H 
8 39 23 0 
9 18 33 0 
10 41 34 0 
11 20 35 0 
12 31 29 0 
13 30 36 0 
14 49 38 0 

run ; 

proc print data=meta_ave_bp; 
var varlogor_adjust; 
run ; 

proc mixed data=meta_ave_bp method=ml; 
class pairnum; 
model log or= I s cl; 
repeated I group=pairnum; 
random intercept ltype=un subject=pairnum; 
parms (0) 
(0.18836) (0.15433) (0.14870) (0.20618) (0.15132) (0.15036) (0.15279) 
(0.16287) (0.15834) (0.17285) (0.15714) (0.14687) (0.15374) (0.27221) 
I eqcons=2 to 15; 
run ; 

proc mixed data=meta_ave_bp method=ml; 
class pairnum; 
model log or= I s cl; 
repeated I group=pairnum; 
random intercept ltype=un subject=pairnum; 
parms (0) 
(0.96808) (0.79316) (0.76424) (1 .05966) (0.77771) (0.77278) (0.78524) 
(0 .83705) (0.81377) (0.88834) (0.80762) (0.75482) (0.79014) (1 .39901) 
I eqcons=2 to 15; 
run ; 
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#UHXU#U#H####HRUUNH#U#UU#il##N##N#N##HY##UUUHUCHUUUUU#U 
# 
# code for ave systolic BP controlled 
# 
UUUH#UU##h######ll#UUHUUUU#U#####N#li###il#fi#R##ff###HUUUHUU#CUU 

!t!!J!f!!f#!flif!fJifi!i!liJIJJII/J!Jiii/JJJ/IIJJIII!fiJJfllfflllf111fffflfff#ffi!JJJtfJf;;;;;JJJJ/!t:!lff!!flf!fff!IIJ/# 
# 
#Systolic BP: Cluster-level unweighted logistic regression 
# 
RUR~N#H##UH##U#UUUH###U#UUUHUUHJU#U#Uli#U#U###KH###N#H##UUH#HUK 

proc genmod data=cluster descending; 
class center assigned/desc; 
model ave_sysimproved/N=assigned /dist=bin link=logit pscale; 
run; 

proc genmod data=cluster descending; 
class center assigned/desc; 
model ave_sysimproved/N=assigned center/dist=bin link=logit pscale; 
run; 

UU###Y#U##fi##/!#UJEUUEUUCUHH##UUU#HUH#HUUU#U#UU#Ufi#H####ll#U#UH# 
# 
# Systolic BP: Cluster-level weighted logistic regression 
# 
fi##CUUU#YU#H##Hfi#U#U#N#HU###fill#U#VN#fi#UUU#YH##H#U#UUHUH###fi#NU 

data cluster_syswt; 
set cluster; 
wt=1/(1/ave_sysimproved+1/(N-ave_sysimproved)); 
run; 

proc genmod data=cluster_syswt descending; 
class center assigned /desc; 
model ave_sysimproved/N=assigned /dist=bin link=logit pscale; 
weight wt; 
run; 

proc genmod data=cluster_syswt descending; 
class center assigned /desc; 
model ave_sysimproved/N=assigned center/dist=bin link=logit pscale; 
weight wt; 
run; 

il#Ufi#H#UUUUUU#UHU#UUUU#CU#UHHUUJUH##UUUU#fi#UUUU#U#U#fi####HU#UU 
# 
# Systolic BP: Cluster-level random effect meta regression 
# 
nucuuuuuuuuneuucuuunuHunnuauuuNnnnu~qpuuuuuuuuunnuuuuuuuuuuca1 

data meta_ave_sys; 
input pairnum ave_sys_1 ave_sys_2 center$; 
N=55; 
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logor=log((ave_sys_2*(N-ave_sys_1 ))l(ave_sys_1 *(N-ave_sys_2))); 
varlogor=11ave_sys_1 +11(N-ave_sys_1 )+11ave_sys_2+11(N-ave_sys_2); 
varlogor_adjust=(11ave_sys_1 +11(N-ave_sys_1 )+11ave_sys_2+11(N-ave_sys_2))*(1 +54*0.0766553091 ); 
data lines; 
1 11 32 H 
2 20 22 H 
3 26 23 H 
4 46 25 H 
5 28 20 H 
6 21 25 H 
7 22 34 H 
8 40 24 0 
9 18 33 0 
10 41 36 0 
11 22 35 0 
12 31 29 0 
13 30 36 0 
14 49 38 0 

proc print data=meta_ave_sys; 
var varlogor_adjust; 
run ; 

proc mixed data=meta_ave_sys method=ml; 
class pairnum; 
model Iogar= I s cl; 
repeated I group=pairnum; 
random intercept ltype=un subject=pairnum; 
parms (0) 
(0.18836) (0.15433) (0.14767) (0.20618) (0.15132) (0.15036) (0.15279) 
(0.16559) (0.15834) (0.17623) (0.15433) (0.14687) (0.15374) (0.27221) 
I eqcons=2 to 15; 
run; 

proc mixed data=meta_ave_sys method=ml; 
class pairnum; 
modellogor= I s cl; 
repeated I group=pairnum; 
random intercept ltype=un subject=pairnum; 
parms (0) 
(0.96808) (0.79316) (0.75895) (1.05966) (0.77771) (0.77278) (0.78524) 
(0.85104) (0.81377) (0.90570) (0.79316) (0.75482) (0.79014) (1.39901) 
I eqcons=2 to 15; 
run ; 

F7. SAS Codes for Individual-Level Analysis of Primary Outcomes 

lfi/J/JfiiflllftffiflffJfffiflfftliifilt/Jff!!I!!Jii/JIJ'il!lfl/!!lf!lllll!i!!!fflf!Jff/J!IJ!!Jfflfiitffi/Jffffl;tt;;JJI!!ifl!!!/1! 
# 
# prepare individual-level analysis 
# 
####HUHH#ff#U#NU##Hff#VUEUU#UCUHUKHUUHHHCHVHUUU#U####HU#UU#UVUHUH#fl 

data chatnew; 
set chat.chatmerge; 
if (diabbase=8 or diabbase=9) then diabbase=O; 
if (strokebase=8 or strokebase=9) then strokebase=O; 
if (hypstat=8 or hypstat=9) then hypstat=O; 
if (hdbase=8 or hdbase=9) then hdbase=O; 

112 



if (nephrobase=8 or nephrobase=9) then nephrobase=O; 
if (pvdbase=8 or pvdbase=9) then pvdbase=O; 
if (retinobase=8 or retinobase=9) then retinobase=O; 
run; 
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###H##U#UUCUH#ll#NU####NH#V#il#H#N##U####U#UUU##U#KHKUH#U#HU##UU 
# 
# code for last BP controlled 
# 
##Nfi#H#CUXH###UO#il#U####C#HUJUCUJU##UU#Hil#UEUUUU#fi#UUHUUUUUJV# 

H##UUUUU##UHUCU##UOU#ll#ilfi#li##U#UCUU####Ufl#Vfi#U#NJUU#H##ilNH#UUH 
# 
# 
# 

Individual-level standard logistic regression 

#NUU#U####llUN#li#HUUUNUUVHUUKEUUNUHUUUHUUHUUUUUUUUUUUUHHJUUNUU# 

proc genmod data=chatnew descending; 
class assigned /desc; 
model last_bpimproved=assigned /D=B link=logit; 
run; 

proc genmod data=chatnew descending; 
class assigned hypstat diabbase hdbase strokebase sex base_bpcontrolled retinobase nephrobase pvdbase/desc; 
model last_bpimproved=assigned hypstat diabbase hdbase strokebase base_bpcontrolled retinobase pvdbase 

nephrobase/D=B link=logit; 
run; 

proc genmod data=chatnew descending; 
class assigned diabbase hdbase base_bpcontrolled/desc; 
modellast_bpimproved=assigned diabbase hdbase base_bpcontrolled/D=B link=logit; 
run; 

##U#UNU#U#UUUUUUU##K#UU#UU#il#UUUU#UUUUUUH##ff#Nlili#UUUVVNC#UVUUJ 
# 
# Individual-level robust standard errors 
# 
HHHUU###UHJ#VUU#UU#HUHU#UUH##U#UUU##HU#Ufi#Kfl#HUU#UUUU#UUUUUU#fl 

proc genmod data=chatnew descending; 
class assigned assfpid I desc; 
model last_bpimproved=assigned /D=B .link=logit; 
repeated subject=assfpid/type=ind; 
run; 

proc genmod data=chatnew descending; 
class assfpid assigned diabbase hdbase base_bpcontrolled/desc; 
modellast_bpimproved=assigned diabbase hdbase base_bpcontrolled/D=B link=logit; 
repeated subject=assfpid/type=ind; 
run ; 

UR#U##HHH#UU##H#N#UURU#fi##Nfili#il##H#fiff#H##HUE#H#####H#UN###fl##fl 
# 
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# 
# 

Individual-level GEE 
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liftllflfliil!li!fi!IJ!f!J!!JJI/!IIIHJJ#ff!Jffil#IJ!J/J!itfii/Jff#flli!iffliflf!if#ffflliffilllflilflffffii#Jil!ilffff 

proc genmod data=chatnew descending; 
class assigned assfpid /desc; 
model last_bpimproved=assigned /D=B link=logit; 
repeated subject=assfpid/type=exch; 
run ; 

proc genmod data=chatnew descending; 
class assigned assfpid diabbase hdbase base_bpcontrolled /desc; 
modellast_bpimproved=assigned diabbase hdbase base_bpcontrolled/D=B link=logit; 
repeated subject=assfpid/type=exch; 
run; 

proc genmod data=chatnew descending; 
class assigned assfpid /desc; 
modellast_bpimproved=assigned /D=BJink=logit; 
repeated subject=assfpid/type=AR(1 ); 
run; 

proc genmod data=chatnew descending; 
class assigned assfpid hypstat diabbase hdbase strokebase sex /desc; 
model last_bpimproved=assigned hypstat di.abbase hdbase strokebase sex age/D=B link= log it; 
repeated subject=assfpid/type=AR( 1 ); 
run; 

proc genmod data=chatnew descending; 
class assigned assfpid /desc; 
model last_bpimproved=assigned /D=B link=logit; 
repeated subject=assfpid/type=unstr; 
run; 

proc genmod data=chatnew descending; 
class assigned assfpid hypstat diabbase hdbase strokebase sex /desc; 
modellast_bpimproved=assigned hypstat diabbase hdbase strokebase sex age/D=B link=logit; 
repeated subject=assfpid/type=unstr; 
run ; 

HU###H#ffli#HH##HH##/J##UHU##UN#UN#EE#CUH#HUCE#U###UUUUVUHN##UHUH 
# 
# Individual random effects logistic regression 
# 
HU#ilU##UUU#HY#U##liHUilU#UUUH#fi#H##U#d#Uff##HHUUU#Nff##Uh##Uil####il 

data temp; 
set chatnew; 
n=1 ; 
run; 

%glimmix(data=temp, stmts=%str( 
class assigned assfpid; 
model last_bpimproved/n=assigned /solution; 
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random assfpid; 
)) 

%glimmix(data=temp, stmts=%str( 
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class assigned assfpid diabbase hdbase base_bpcontrolled; 
modellast_bpimproved/n=assigned diabbase hdbase base_bpcontrolled/solution; 
random assfpid; 
)) 

il#HU##llUNU#UJH#HVUUUll#UUUUUUUCHVUCUtUHUHU#UVHUNUVUU#C##ililHUU#H 
# 
# code for last systolic BP controlled 
# 
HN#illl##Uli#RVUUEHVUUUCU#CUH#UHUHUH#D#Hilfillfiililll####H###fiil##H#UU## 

#U#UUUH#U#UUN#U#U##N#####Ufi#UK###NUH####UNUfiliilliil##li##HBU#U#UNH 
# 
# Systolic BP: Individual-level standard logistic regression 
# 
###HEU#VUH#U#UU##U##HUUHUN#H#Ufillli#U##H#UVUUU##U#U##N#K##HH#HV# 

proc genmod data=chatnew descending; 
class assigned /desc; 
modellast_sysimproved=assigned /D=B link=logit; 
run ; 

proc genmod data=chatnew descending; 
class assigned hypstat diabbase hdbase strokebase sex base_syscontrolled retinobase nephrobase pvdbase/desc; 
model last_sysimproved=assigned hypstat diabbase hdbase strokebase base_syscontrolled retinobase pvdbase 

nephrobase/D=B link=logit; 
run ; 

proc genmod data=chatnew descending; 
class assigned hdbase diabbase base_syscontrolled/desc; 
modellast_sysimproved=assigned diabbase hdbase base_syscontrolled/D=B link=logit; 
run; 

N##HU#U#UUUU##N#H####N#li##NU#N####U#UU#NU##ll#HflUUUUUUHUUYU#fill# 
# 
# Systolic BP: Individual-level robust standard errors 
# 
!J!!!f/ffllf!fffJ!#illliiff!!fllfllffil!ll!f/ii!!illflfiii/Jflfffffllf!_lfiiiii!Jfllfllff/fflilfilii#fflJfJiilififf!Jfff!if 

proc genmod data=chatnew descending; 
class assigned assfpid I desc; 
modellast_sysimproved=assigned /D=B link=logit; 
repeated subject=assfpid/type=ind; 
run; 

proc genmod data=chatnew descending; 
class assfpid assigned diabbase hdbase base_syscontrolled/desc; 
modellast_sysimproved=assigned diabbase hdbase base_syscontrolled/D=B link=logit; 
repeated subject=assfpid/type=ind; 
run ; 
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U#U#il####KUUUH#U#UUKNUUC#NU#UH#HUUUVNUil####UUU#UJ#HU#UUUU####H 
# 
# Systolic BP: Individual-level GEE 
# 
fiVN##H#UNU#U#H####UU#JU#N##Ufl#######C#U##UHfi#HUHKEUH###N#KflUUU 

proc genmod data=chatnew descending; 
class assigned assfpid /desc; 
modellast_sysimproved=assigned /D=B link=logit; 
repeated subject=assfpid/type=exch; 
run ; 

proc genmod data=chatnew descending; 
class assigned assfpid diabbase hdbase base_syscontrolled /desc; 
modellast_sysimproved=assigned diabbase hdbase base_syscontrolled/D=B link=logit; 
repeated subject=assfpid/type=exch; 
run; 

proc genmod data=chatnew descending; 
class assigned assfpid /desc; 
model last_sysimproved=assigned /D=B link=logit; 
repeated subject=assfpid/type=AR( 1); 
run ; 

proc genmod data=chatnew descending; 
class assigned assfpid hypstat diabbase hdbase strokebase sex /desc; 
modellast_sysimproved=assigned hypstat diabbase hdbase strokebase sex age/D=B link= log it; 
repeated subject=assfpid/type=AR(1 ); 
run ; 

proc genmod data=chatnew descending; 
class assigned assfpid /desc; 
modellast_sysimproved=assigned /D=B link=logit; 
repeated subject=assfpid/type=unstr; 
run; 

proc genmod data=chatnew descending; 
class assigned assfpid hypstat diabbase hdbase strokebase sex /desc; 
model last_sysimproved=assigned hypstat diabbase hdbase strokebase sex age/D=B link=logit; 
repeated subject=assfpidltype=unstr; 
run; 

U####liUBUUli#il#UUVUHH##flUE#CJUHUU#CUflHHCUUUUUU##HUNHHUH##HXUCCU 
# 
# Systolic BP: Individual random effects logistic regression 
# 
U#UUfl#Ufi#fiGU#H#H#fi#tUU#KUUUNH#UUH####U#UHHU#UU#UU#UUflUU#####HU 

data temp; 
set chatnew; 
n=1 ; 
run; 
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%glimmix(data=temp, stmts=%str( 
class assigned assfpid; 
modellast_sysimproved/n=assigned /solution; 
random assfpid; 
)) 

%glimmix(data=temp, stmts=%str( 
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class assigned assfpid diabbase hdbase base_syscontrolled; 
modellast_sysimproved/n=assigned diabbase hdbase base_syscontrolled/solution ; 
random assfpid ; 
)) 

UU#U#U###Uhilhffhh:JCUYCKH#H#UUUH#U#CH######HHK#HVUUU#U#UH###H## 
# 
# code for average BP controlled 
# 
###HH#fi#H###UE#UUHH#HUU#HHHUKKUCKUCUUU#H#fllifi###K##CUCUUU##UU# 

H#liUU#UHU##U##UHU#U##NUH#UU########fi######U#####HHH#U####fiU##Y 
# 
# 
# 

Individual-level standard logistic regression 

###HJ###H#fi#U##HN##Ufl#H#N#UU#N###ilil##Nilfi##U#U#OUHHU#UUUHU#fi#HH 

proc genmod data=chatnew descending; 
class assigned /desc; 
model ave_bpimproved=assigned /D=B link=logit; 
run ; 

proc genmod data=chatnew descending; 
class assigned hypstat diabbase hdbase strokebase sex base_bpcontrolled retinobase nephrobase pvdbase/desc; 
model ave_bpimproved=assigned hypstat diabbase hdbase strokebase base_bpcontrolled retinobase pvdbase 

nephrobase/D=B link=logit; 
run ; 

proc genmod data=chatnew descending; 
class assigned diabbase hdbase ave_base_bpcontrolled/desc; 
model ave_bpimproved=assigned diabbase hdbase ave_base_bpcontrolled/D=B link=logit; 
run ; 

!Jf!Ufftftf/J/Jfflllllf/Jfllfllfllfffiffiffli!J#flfiflfJNJJiJ/fifiiff##ff/Jiffftlfiiiff#/J!fHIIJIJJ!fffll!llflilfliJ! 
# 
# Individual-level robust standard errors 
# 
ff###ff#UHUUUUUUU#Ufifi#UKUUHUHY##U###UHUHHU#UUU##U#KUU###HN#UU### 

proc genmod data=chatnew descending; 
class assigned assfpid I desc; 
model ave_bpimproved=assigned /D=B link=logit; 
repeated subject=assfpidltype=ind; · · 
run; 

proc genmod data=chatnew descending; 
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class assfpid assigned diabbase hdbase ave_base_bpcontrolled/desc; 
model ave_bpimproved=assigned diabbase hdbase ave_base_bpcontrolled/D=B link=logit; 
repeated subject=assfpid/type=ind; 
run; 

ununuuuuuuuxnuuuuuxnuucuuuuucuuuunuuunuununuunuunuuuurnununuuq 
# 
# 
# 

Individual-level GEE 

UU##NHEUUJUUHV#U#EUC#HEUU#HUUH#H#HUHU###H#UC#HU#UKUUJUNU#NUH#il 

proc genmod data=chatnew descending; 
class assigned assfpid /desc; 
model ave_bpimproved=assigned /D=B link=logit; 
repeated subject=assfpid/type=exch; 
run; 

proc genmod data=chatnew descending; 
class assigned assfpid diabbase hdbase ave_base_bpcontrolled /desc; 
model ave_bpimproved=assigned diabbase hdbase ave_base_bpcontrolled/D=B link=logit; 
repeated subject=assfpidltype=exch; 
run ; 

proc genmod data=chatnew descenoing; 
class assigned assfpid /desc; 
model ave_bpimproved=assigned /D=B link=logit; 
repeated subject=assfpid/type=AR( 1 ); 
run ; 

proc genmod data=chatnew descending; 
class assigned assfpid hypstat diabbase hdbase strokebase sex /desc; 
model ave_bpimproved=assigned hypstat diabbase hdbase strokebase sex age/D=B link=logit; 
repeated subject=assfpid/type=AR(1 ); 
run; 

proc genmod data=chatnew descending; 
class assigned assfpid /desc; 
model ave_bpimproved=assigned /D=B link=logit; 
repeated subject=assfpid/type=unstr; 
run ; 

proc genmod data=chatnew descending; 
class assigned assfpid hypstat diabbase hdbase strokebase sex /desc; 
model ave_bpimproved=assigned hypstat diabbase hdbase strokebase sex age/D=B link=logit; 
repeated subject=assfpidltype=unstr; 
run; 

UilUO#H##N#KHUUCU##liUUU#N#N#HfiUJ#fiilUUU#UUUUU#UVHUKUUCUU####UfiUH 
# 
# Individual random effects logistic regression 
# 
H#UU#Kfi#U#UUUHH#UUUUUH#il#Ull#UUU#UH#C#UUUCUU#UH#VUUOUUHUN#UU##U 
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data temp; 
set chatnew; 
n=1 ; 
run ; 

%glimmix(data=temp, stmts=%str( 
class assigned assfpid; 
model ave_bpimproved/n=assigned /solution; 
random assfpid; 
)) 

%glimmix(data=temp, stmts=%str( 
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class assigned assfpid diabbase hdbase ave_base_bpcontrolled; 
model ave_bpimproved/n=assigned diabbase hdbase ave_base_bpcontrolled/solution; 
random assfpid; 
)) 

U##N#C#HJU#UH#HUCXKDHUUNUUUHUHUGCHHVUH###fi#NUNNVUUUU#UUH#llfiUU# 
# 
# code for ave systolic BP controlled 
# 
lll!lf/fii#ifJJIJJJlifttffi!I!Jf!f!f!!l!l!lf!i!ff!JYJt!HJ!JJ!!!!!!!!i!ff!fiifi#Jiilff#fffffffflf!Jiflll!!!l!f!fftlfililf 

#il#K#UN###fi##N###UUUUHU##UU#UUU#ilff##U#U#fili#H#N#UUEUUU#UUU##N#H 
# 
# 
# 

average Systolic BP: Individual-level standard logistic regression 

Uff#U##Ufiff#UUN#Nlill#JUCC#NUilHC#ff##UUU#fiU#####ff##UU###NN#Hff#UH##V 

proc genmod data=chatnew descending; 
class assigned /desc; 
model ave_sysimproved=assigned /D=B link=logit; 
run; 

proc genmod data=chatnew descending; 
class assigned hypstat diabbase hdbase strokebase sex ave_base_syscontrolled retinobase nephrobase 

pvdbase/desc; 
model ave_sysimproved=assigned hypstat diabbase hdbase strokebase base_syscontrolled retinobase pvdbase 

nephrobase/D=B link=logit; 
run ; 

proc genmod data=chatnew descending; 
class assigned diabbase hdbase base_syscontrolled/desc; 
model ave_sysimproved=assigned diabbase hdbase ave_base_syscontrolled/D=B link=logit; 
run ; 

ff#UU#UCUU#U##Nfi#UUUHUVUOEUVUU#H#Nil###CUCHUUUUK!f#U##URNHfi#ilUHNff 
# 
# 
# 

Systolic BP: Individual-level robust standard errors 

KHUUUU#UUKUUVUH#NH#U#UUU##JCUUUUUCUHUHH#JUUUUKUU#ffV#RUU#ff#UU#U 

proc genmod data=chatnew descending; 
class assigned assfpid I desc; 
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model ave_sysimproved=assigned /D=B link=logit; 
repeated subject=assfpid/type=ind; 
run; 

proc genmod data=chatnew descending; 
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class assfpid assigned diabbase hdbase ave_base_syscontrolled/desc; 
model ave_sysimproved=assigned diabbase hdbase ave_base_syscontrolled/D=B link=logit; 
repeated subject=assfpidltype=ind; 
run; 

#U#li###ff#H##H#fi##Nfi####K#NUR#H##llfi#H#VUKKH#Hli##Nfi#KUCU#KU#Uli## 
# 
# 
# 

Systolic BP: Individual-level GEE 

U#UUUEU#UKKU#E#CUUNUGUHU#KUC##E#EKUHKJUUClilifi#K#C#H#CHil##Vli#C#il 

proc genmod data=chatnew descending; 
class assigned assfpid /desc; 
model ave_sysimproved=assigned /D=B link=logit; 
repeated subject=assfpid/type=exch; 
run; 

proc genmod data=chatnew descending; 
class assigned assfpid diabbase hdbase ave_base_syscontrolled /desc; 
model ave_sysimproved=assigned diabbase hdbase ave_base_syscontrolled/D=B link=logit; 
repeated subject=assfpid/type=exch; 
run; 

proc genmod data=chatnew descending; 
class assigned assfpid /desc; 
model ave_sysimproved=assigned /D=B link=logit; 
repeated subject=assfpid/type=AR( 1); 
run; 

proc genmod data=chatnew descending; 
class assigned assfpid hypstat diabbase hdbase strokebase sex /desc; 
model ave_sysimproved=assigned hypstat dlabbase hdbase strokebase sex age/D=B link=logit; 
repeated subject=assfpid/type=AR( 1); 
run; 

proc genmod data=chatnew descending; 
class assigned assfpid /desc; 
model ave_sysimproved=assigned /D=B link=logit; 
repeated subject=assfpid/type=unstr; 
run; 

proc genmod data=chatnew descending; 
class assigned assfpid hypstat diabbase hdbase strokebase sex /desc; 
model ave_sysimproved=assigned hypstat diabbase hdbase strokebase sex age/D=B link=logit; 
repeated subject=assfpid/type=unstr; 
run; 
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H#####fi##UNU#UC#tUU#UU#UHC##ff##il###H#UH#RUU#HUJU#UKU#UH#####flli 
# 
# Average Systolic BP: Individual random effects logistic regression 
# 
#UliUUUVU###UUY#CKNHUCU#CUU#CHUKUUN##NUH##UilU#illi#flU#U#fiNNUUU#HU 

data temp; 
set chatnew; 
n=1 ; 
run ; 

%glimmix(data=temp, stmts=%str( 
class assigned assfpid; 
model ave_sysimproved/n=assigned /solution; 
random assfpid; 
)) 

%glimmix(data=temp, stmts=%str( 
class assigned assfpid diabbase hdbase ave_base_syscontrolled ; 
model ave_sysimproved/n=assigned diabbase hdbase ave_base_syscontrolled/solution; 
random assfpid; 
)) 

F8. SAS Codes for Analysis of Secondary Outcomes 

U#U#O#U#Uli#UUUU##fi#HllH#liU#HU####Uli#fi###U#U##U#UCU#fi#H###fi#UUC# 
# 
# secondary outcome analysis: BP monitored 
# (cluster-level analysis, random effect meta analysis) 
# 
Uff#U#H#UHUUUUHHU##HU#il#UUHU##HH#EUU#U##NUH###U###fl##NU#U#UHUUU 

proc sql; 
select trim(assfpid) , sum(bpmonitored) as num_monitored, 55-sum(bpmonitored) as num_unmonitored 
from chat.chatmerge 
group by assfpid ; 

data chat.meta_bpmonitored; 
input pairnum inter_monitored control_monitored ; 
N=55; 
logor=log((inter_monitored*(N-control_monitored))/(control_monitored*(N-inter_monitored))); 
varlogor= 1/inter _monitored+ 1/(N-inter _monitored)+ 1/control_monitored+ 1/(N-control_monitored); 
datalines; 
1 41 50 
2 40 45 
3 44 ;39 
4 51 41 
5 39 41 
6 49 43 
7 44 49 
8 51 39 
9 40 46 
10 52 54 
11 43 45 
12 48 44 
13 52 43 
14 53 53 

run ; 
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proc print data=chat.meta_bpmonitored; 
run; 

proc mixed data=chat.meta_bpmonitored method=ml; 
class pairnum; 
model logor= I s cl; 
repeated I group=pairnum; 
random intercept ltype=un subject=pairnum; 
parms (0) 
(0.31582)(0.21389)(0.20178)(0.36543)(0.18396)(0.29366)(0.30071) 
(0.35775)(0.22452)(1 .371 08}(0.22881 )(0.27733)(0.45915)(1.03774) 
I eqcons=2 to 15; 
run ; 

#Uilil#H#U#O####HEUYUU##HUU#UHH######fi###H#HHUNUU##Ullll##U###Uilll# 
# 
# secondary outcome analysis: BP monitored 
# (individual-level analysis, GEE) 
# 
H###R#####KUMU##UCHUUH##il#H#UHUH##HKUUCHUUJ#N###GUO#llNUUKUV#H# 

proc genmod data=chat.chatmerge descending; 
class assigned assfpid; 
model bpmonitored=assigned ID=B link=logit; 
repeated subject=assfpidltype=exch; 
run; 

data tmp_bpmonitored; 
set chat.chatmerge; 
if (hypstat-=0 and hypstat-=1) then hypstat=.; 
if (diabbase-=0 and diabbase-=1) then diabbase=.; 
if (hdbase-=0 and hdbase-=1) then hdbase=. ; 
if (strokebase-=0 and strokebase-=1) then strokebase=.; 
if (sex-=1 and sex-=2) then sex=.; 
if (retinobase-=0 and retinobase-=1) then retinobase=.; 
if (nephrobase-=0 and nephrobase-=1) then nephrobase=. ; 
if (smokchg-=0 and smokchg-=1 and smokctig-=2) then smokchg=.; 
if (nomedbase-=0 and nomedbase-=1) then nomedbase=.; 
if (pvdbase-=0 and pvdbase-=1) then pvdbase=. ; 
run; 

proc print data=tmp_bpmonitored; 
var hypstat diabbase hdbase strokebase sex retinobase nephrobase smokchg pvdbase nomedbase; 
run; 

proc genmod data=tmp_bpmonitored descending; 
class assigned assfpid hypstat diabbase hdbase pvdbase nomedbase smokchg; 
model bpmonitored=assigned hypstat pvdbase nomedbase smokchg /D=B link=logit; 
repeated subject=assfpid/type=exch; 
run; 

!!lif!Jifl#ff/Jifff!lifl!lf/Jiifii/J!tffi/lf.flffffl#lifi/JiJfllflffflf/J##I/!ffllilfii#tlf!!l!!tiii!IIIIII!Hiflllfllil 
# 
# 
# 
# 

secondary outcome analysis: Frequency of BP monitoring 
(individual-level analysis) 

#Hfl#U#UH#UUU#H#fiU#UUUUCUHHUUK#GNil#UUH#ffffff#UK#il##fiUUNUH#fffi#U#NH 

proc capability data=chat.chatmerge graphics noprint; 
var monfreq; · 
histogram monfreq lcframe=gray 
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cfill=blue; 
run; 

proc genmod data=chat.chatmerge; 
class assigned assfpid; 
model monfreq=assigned /D=poisson link=identity; 
repeated subject=assfpid/type=exch; 
run ; 

proc genmod data=chat.chatmerge; 
class assigned assfpid; 
model monfreq=assigned /D=poisson link=log; 
repeated subject=assfpid/type=exch; 
run; 

proc genmod data=tmp_bpmonitored; 
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class assigned assfpid hypstat diabbase hdbase nomedbase sex nephrobase retinobase; 
model monfreq=assigned hypstat hdbase nomedbase age nephrobase/D=poisson link=identity; 
repeated subject=assfpid/type=exch; 
run; 

proc sql; 
select sum(monfreq) as total, mean(monfreq) as average, sqrt(var(monfreq)) as se 
from chat.chatmerge 
where assigned='1'; 

proc sql; 
select sum(monfreq) as total, mean(monfreq) as average, sqrt(var(monfreq)) as se 
from chat.chatmerge 
where assigned='2'; 

iiifiif!lllffl{f/Jiftlllii}lii!i!!iilili!iiiilllillliffi/lfffffllllllffflfflillflllflflllllfflflffiliilllfiiJ!lfi!lffiiifftf 
# 
# 
# 
# 
# 

secondary outcome analysis: Average BP 
(without multiple imputation) 
(Two sample T-test) 

###VUUCUC#VU####NUUUUUEHCHUUUUUUVCUU#ff#il#HUUHUEJ#VU###il##HUNU# 

proc sql; 
create table chat.averageBP as . 
select trim(assfpid) as cluster, trim( assigned) as group, mean(lastsysaft) as mean_systolic, 

sqrt(var(lastsysaft)) as se_sys, var(lastsysaft) as var_sys, mean(lastdiaaft) as mean_ diastolic, 
sqrt(var(lastdiaaft)) as se_dia , var(lastdiaaft) as var_dia 

from chat.chatmerge 
group by assfpid, assigned; 

proc sql; 
select trim( assigned) as group, 

mean(lastsysaft) as mean_sys_overall, sqrt(var(lastsysaft)) as se_sys_overall , 
mean(lastdiaaft) as mean_dia_overall, sqrt(var(lastdiaaft)) as se_dia_overall 

from chat.chatmerge 
group by assigned; 

proc sql; 
create table tmp1 as 
select trim( assigned) as group, lastsysaft, lastdiaaft 
from chat.chatmerge; 
where assfpid='H-01' or assfpid='H-02'; 

proc glm data=tmp1; 
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class group; 
modellastsysaft=group/solution; 
run ; 

proc glm data=tmp2; 
class group; 
model lastsysaft=group/solution; 
run; 

proc glm data=chat.averageBP; 
class group; 
model mean_systolic=group; 
weight var_sys; 
run ; 

proc glm data=chat.averageBP; 
class group; 
model mean_diastolic=group; 
weight var_dia; 
run ; 

proc ttest data=chat.averageBP; 
class group; 
var mean_systolic; 
run ; 

proc ttest data=chat.averageBP; 
class group; 
var mean_ diastolic; 
run; 

proc npar1way data=chat.averageBP; 
class group; 
var mean_systolic; 
run ; 

proc npar1way data=chat.averageBP; 
class group; 
var mean_ diastolic; 
run; 

data chat.meta_mean_bp; 
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input pairnum inter_sys inter_se_sys inter_var_sys inter_dia inter_se_dia inter_var_dia contr_sys contr_se_sys 
contr_var_sys contr_dia contr_se_dia contr_var_dia ; 

datalines; 
1 146.220 17.0873 291 .976 74.8780 10.4790 109.810 133.700 16.2484 264.010 71 .5400 9.7147 

94.376 
2 142.650 24.4599 598.285 75.4000 10.8906 118.605 138.067 19.8956 395.836 73.3778 

10.8571 117.877 
3 141 .023 17.8749 319.511 75.7045 8.8254 77.887 135.179 15.6657 245.414 70.8947 13.1925 

174.043 
4 126.235 8.2136 67.464 74.0784 7.2549 52.634 131 .756 15.7270 247.339 75.0976 7.6151 

57.990 
5 130.897 15.6269 244.200 70.7949 9.0268 81.483 139.854 23.0809 532.728 74.3171 10.9349 

119.572 
6 142.041 20.1339 405.373 71 .9375 11 .2238 125.975 139.767 16.1729 261 .564 75.1163 9.5224 

90.677 
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7 137.595 15.8331 250.686 73.8095 11.3809 129.524 132.667 17.4323 303.887 68.4375 
52.762 

8 128.843 16.9356 286.815 69.5686 8.4125 70.770 132.947 13.9593 194.862 74.2973 
43.715 

9 141 .692 20.2448 409.850 76.9231 10.6903 114.283 131 .630 17.6401 311 .171 77.2889 
92.574 

10 132.231 16.4527 270.691 72.2692 9.9747 99.495 133.574 18.3299 335.985 76.2963 
151 .609 

11 137.651 17.6148 310.280 79.2326 10.9801 120.564 127.837 15.9104 253.140 
8.6707 75.182 

12 134.511 16.9319 286.690 73.4894 10.9423 119.734 133.227 14.2631 203.436 
8.8813 78.877 

13138.231 16.811 1 282.612 75.6538 8.7378 76.348 130.791 16.9699 287.979 77.3953 
87.578 

14 126.264 8.5937 73.852 72.0943 6.4518 41 .626 131 .151 16.5115 272.631 71 .0189 
83.288 

run ; 

data meta_mean_sys_dia_bp (keep= pairnum diff_sys var_sys var_sys_adjust diff_dia var_dia var_dia_adjust) ; 
set chat.meta_mean_bp; 
diff_sys=inter_sys-contr_sys; 
var_sys=(inter_var_sys+contr_var_sys)/55; 
var _sys_adjust=(inter _ var _sys+contr _ var _sys )/55*( 1 +54 *0. 0766553091 ); 
diff_dia=inter_dia-contr_dia; 
var_dia=(inter_var_dia+contr_var_dia)/55; 
var _ dia_adjust=(inter _ var _ dia+contr _ var _ dia)/55*( 1 +54*0. 0766553091 ) ; 
run ; 

proc print data=meta_mean_sys_dia_bp; 
run; 

proc mixed data=meta_mean_sys_dia_bp method=ml; 
class pairnum; 
model diff_sys= Is cl ; 
repeated /group=pairnum; 
random intercept /type=un subject=pairnl,lm; 
parms (0) · 
(10.1088) (18.0749) (10.2714) (5.7237) (14.1260) (12.1261) (10.0831) 
(8.7578) (13.1095) (11 .0305) (1 0.2440) (8 .9114) (10.3744) (6.2997) 
I eqcons=2 to 15; 
run; 

proc mixed data=meta_mean_sys_dia_bp method=ml; 
class pairnum; 
model diff_sys= I s cl; 
repeated /group=pairnum; 
random intercept /type=un subject=pairnum; 
parms (0) 
(51 .9532) (92.8940) (52. 7885) (29.4163) (72.5988) (62.3209) (51 .8212) 
(45.0095) (67.3746) (56.6899) (52.6479) (45.7990) (53.3180) (32.3765) 
I eqcons=2 to 15; 
run; 

proc mixed data=meta_mean_sys_dia_bp method=ml; 
class pairnum; 
model diff_dia= Is cl; 
repeated /group=pairnum; 
random intercept /type=un sutiject=pairnum; 
parms (0) 
(3. 71247) (4.29967) (4.58055) (2.01135) (3.65555) (3.93913) (3.31429) 
(2.08155) (3.76104) (4.56553) (3.55902) (3.61111) (2.98047) (2.27116) 
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I eqcons=2 to 15; 
run; 

proc mixed data=meta_mean_sys_dia_bp method=ml; 
class pairnum; 
model diff_dia= I s cl; 
repeated /group=pairnum; 
random intercept /type=un subject=pairnum; 
parms (0) 
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(19.0798) (22.0977) (23.5412) (10.3371) (18.7873) (20.2447) (17.0334) 
(10.6979) (19.3294) (23.4640) (18.2912) (18.5589) (15.3178) (11.6724) 
I eqcons=2 to 15; 
run; 

####NUV#fi###UU##N##CU#ll##EHHU###BUfi####UH#B#UU#H#U#fi#fi#fi#####H 
# 
# 
# 
# 

secondary outcome analysis: Percentage of Patients with 
BP Controlled 

U#UH###H#fi##DH###H##U#U#U#U#####HUH###U#HU##Ufi#UHUU#U#U#H#fi#fi# 

proc sql; 
create table chat.per_bpcontrolled as 
select trim(assfpid) as cluster, trim( assigned) as group, sum(last_bpimproved) as sum_bpimproved, 

sum(last_bpimproved}l55 as bp_percent, 
sum(last_bpimproved)/55*(1-sum(last..;.bpimproved)/55)/55 as var_bp_per, 
sqrt(sum(last_bpimproved)/55*(1-sum(last_bpimproved)/55)155) as se_bp_per, 
11(sum(last_bpimproved)/55*(1-sum(last_bpimproved)/55)/55) as bp_wt, 
sum(last_sysimproved) as sum_sysimproved, 
sum(last_sysimproved)/55 as sys_percent, 
sum(last_sysimproved)/55*(1 -sum(last_sysimproved}/55)/55 as var_sys_per, 
sqrt(sum(last_sysimproved)/55*(1-sum(last_sysimproved)/55)/55) as se_sys_per, 
11(sum(last_sysimproved)l55*(1-sum(last_sysimproved)/55)155) as sys_wt 

from chat.chatmerge 
group by assfpid, assigned; 

proc print data=chat.per_bpcontrolled; 
run ; 

proc glm data=chat.per_bpcontrolled; 
class group; 
model percent=group/solution; 
weight wt; 
run; 

data chat.meta_percent_bp; 
input pairnum inter_bp inter_bp_per inter_var_bp inter_se_bp inter_bp_wt inter_sys inter_sys_per inter_var_sys 

inter_se_sys inter_sys_wt contr_bp contr_bp_per contr_var_bp contr_se_bp contr_bp_wt contr_sys 
contr_sys_per contr_var_sys contr_se_sys contr_sys_wt; 

datalines; · 
1 15 0.27273 .003606311 0.060053 277.292 16 0.29091 .003750563 0.061242 266.63 36 

0.65455 .004111195 0.064119 243.238 36 0.65455 .004111195 0.064119 243.24 
2 19 0.34545 .004111195 0.064119 243.238 19 0.34545 .004111195 0.064119 243.24 24 

0.43636 .004471826 0.066872 223.622 24 0.43636 .004471826 0.066872 223.62 
3 24 0.43636 .004471826 0.066872 223.622 24 0.43636 .004471826 0.066872 223.62 24 

0.43636 .004471826 0.066872 223.622 25 0.45455 .004507889 0.067141 221 .83 
4 48 0.87273 .002019534 0.044939 495.164 48 0.87273 .002019534 0.044939 495.16 33 

0.60000 .004363636 0.066058 229.1 67 33 0.60000 .004363636 0.066058 229.17 
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5 29 0.52727 .004531931 0.067320 220.656 30 0.54545 .004507889 0.067141 221 .83 
0.43636 .004471826 0.066872 223.622 24 0.43636 .004471826 0.066872 223.62 

6 20 0.36364 .004207363 0.064864 237.679 20 0.36364 .004207363 0.064864 237.68 
0.49091 .004543952 0.067409 220.073 27 0.49091 .004543952 0.067409 220.07 

7 27 0.49091 .004543952 0.067409 220.D73 28 0.50909 .004543952 0.067409 220.07 
0.61818 .004291510 0.065510 233.018 34 0.61818 .004291510 0.065510 233.02 

8 39 0.70909 .003750563 0.061242 266.627 40 0.72727 .003606311 0.060053 277.29 
0.45455 .004507889 0.067141 .221.833 25 0.45455 .004507889 0.067141 221 .83 

9 20 0.36364 .004207363 0.064864 237.679 20 0.36364 .004207363 0.064864 237.68 
0.65455 .004111195 0.064119 243.238 36 0.65455 .004111195 0.064119 243.24 

10 39 0.70909 .003750563 0.061242 266.627 39 0.70909 .003750563 0.061242 266.63 
0.63636 .004207363 0.064864 237.679 37 0.67273 .004003005 0.063269 249.81 

11 21 0.38182 .004291510 0.065510 233.018 23 0.41818 .004423742 0.066511 226.05 
0.65455 .004111195 0.064119 243.238 37 0.67273 .004003005 0.063269 249.81 

12 30 0.54545 .004507889 0.067141 221 .833 31 0.56364 .004471826 0.066872 223.62 
0.56364 .004471826 0.066872 223.622 31 0.56364 .004471826 0.066872 223.62 

13 27 0.49091 .004543952 0.067409 220.073 27 0.49091 .004543952 0.067409 220.07 
0.54545 .004507889 0.067141 221.833 31 0.56364 .004471826 0.066872 223.62 

14 51 0.92727 .001226146 0.035016 815.564 52 0.94545 .000937641 0.030621 1066.51 
0.70909 .003750563 0.061242 266.627 39 0.70909 .003750563 0.061242 266.63 

run ; 

data meta_per_bp_sys (keep= pairnum diff_bp var_bp var_bp_adjust diff_sys var_sys var_sys_adjust); 
set chat.meta_percent_bp; 
diff_bp=inter_bp_per-contr_bp_per; 
var_bp=inter_var_bp+contr_var_bp; 
var _bp_adjust=(inter _ var _bp+contr _ var _bp )*( 1 +54*0. 0766553091 ); 
diff_sys=inter_sys_per-contr_sys_per; 
var_sys=inter_var_sys+contr_var_sys; 
var _sys_adjust=(inter _ var _sys+contr _ var _ sys )*( 1 +54*0. 0766553091); 
run; 

proc print data=meta_per_bp_sys; 
run; 

proc mixed data=meta_per_bp_sys method=ml; 
class pairnum; 
model diff_bp= Is cl; 
repeated lgroup=pairnum; 
random intercept ltype=un subject=pairnum; 
parms (0) 
(0 .007717506) (0.008583021) (0.008943652) (0.006383170) (0.009003757) (0.008751315) (0.008835462) 
(0.008258452) (0.008318558) (0.007957926) (0.008402705) (0.008979715) (0.009051841) (0.004976709) 
I eqcons=2 to 15; 
run ; 

proc mixed data=meta_per_bp_sys method=ml; 
class pairnum; 
model diff_bp= Is cl; 
repeated lgroup=pairnum; 
random intercept ltype=un subject=pairnum; 
parms (0) 
(0.039663) (0.044111) (0.045965) (0.032806) (0.046274) (0.044976) (0.045409) 
(0.042443) (0.042752) (0.040899) (0.043185) (0.046150) (0.046521) (0.025577) 
I eqcons=2 to 15; 
run ; 

proc mixed data=meta_per_bp_sys method=ml; 
class pairnum; 
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model diff_sys= Is cl; 
repeated lgroup=pairnum; 
random intercept ltype=un subject=pairnum; 
parms (0) 
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(0.007861758) (0.008583021) (0.008979715) (0.006383170) (0.008979715) (0.008751315) (0.008835462) 
(0.008114200) (0.008318558) (0.007753568) (0.008426747) (0.008943652) (0.009015778) (0.004688204) 
I eqcons=2 to 15; 
run ; 

proc mixed data=meta_per_bp_sys method=ml; 
. class pairnum; 
model diff_sys= I s cl; 
repeated lgroup=pairnum; 
random intercept ltype=un subject=pairnum; 
parms (0) 
(0.040405) (0.044111) (0.046150) (0.032806) (0.046150) (0.044976) (0.045409) 
(0.041702) (0.042752) (0.039849) (0.043308) (0.045965) (0.046336) (0.024094) 
I eqcons=2 to 15; 
run; 
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