
Bioinformatic Applications in Protein Low Complexity Regions and Targeted Metagenomics



BIOINFORMATIC APPLICATIONS IN PROTEIN LOW COMPLEXITY
REGIONS AND TARGETED METAGENOMICS

By Zachery William DICKSON, Bachelor of Technology

A Thesis Submitted to the School of Graduate Studies in the Partial Fulfillment of the
Requirements for the Degree Doctor of Philosophy

McMaster University © Copyright by Zachery William DICKSON November 30 2023

http://www.mcmaster.ca/


McMaster University
Doctor of Philosophy (2023)
Hamilton, Ontario (Department of Biology)

TITLE: Bioinformatic Applications in Protein Low Complexity Regions and Targeted Metage-
nomics
AUTHOR: Zachery William DICKSON Bachelor of Technology (McMaster University)
SUPERVISOR: Dr. Brian GOLDING

NUMBER OF PAGES: xvi, 220

ii

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/
http://www.mcmaster.ca/


Lay Abstract

This thesis describes research in two fields: repetitive protein sequences and methods for
sequencing the portions of a sample in which one is most interested. In the first part I describe
the general properties of repetitive proteins, establish a connection between the presence of
repeats in a protein and the amount of that protein which a cell maintains, and show that these
two quantities evolve together. This informs our understanding of evolution and regulation with
implications for repeat related diseases and further evolutionary research. In the second part I
describe a method for selecting short nucleotide sequences which can be used to capture
specifically the DNA of organisms of interest, as well as applications of this and other methods.
These contributions are widely applicable as targeted sequencing is useful in fields as far apart
as clinical sepsis diagnosis and determining the colour of ancient animals.
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Abstract
Part I: Low complexity regions (LCRs) are common motifs in eukaryotic proteins, despite the
fact that they are also mutationally unstable. For LCRs to be widely used and tolerated there
must be regulatory mechanisms which compensate for their presence. I have endeavored to
characterize the relationships and co-evolution of LCRs with the abundance of the proteins that
host them as well as the transcripts which encode them. As the abundance of a gene product is
ultimately responsible for its associated phenotype, any relationships have implications for the
many neurodegenerative diseases associated with LCR expansion. I found that there are indeed
relationships. LCRs are more associated with low abundance proteins, but the opposite is true
at the RNA level: LCRs encoding transcripts have higher abundance. Investigating the
co-evolution of LCRs and transcript abundance revealed that on short evolutionary timescales
indels in LCRs influence the selective pressures on TAb. Viewing LCRs through the previously
unexplored lens of abundance has generated new results. Results which, together with
explorations of information flow and low-complexity in untranslated regions, expand our
knowledge of the functional impacts of LCRs evolution.

Part II: A commonly encountered problem in DNA sequencing is a situation where the DNA
of interest makes up a small proportion of the DNA in a sample. This challenge can be
compounded when the DNA of interest may come from many different organisms. Targeted
metagenomics is a set of techniques which aim to bias sequencing results towards the DNA of
interest. Many of these techniques rely on carefully designed probes which are specific to
targets of interest. I have developed a bioinformatic tool, HUBDesign, to design oligonucleotide
probes to capture identifying sequences from a given set of targets of interest. Using
HUBDesign, and other methods, I have contributed to projects ranging in context from clinical
to ancient DNA.
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Preamble
As my graduate career has been rooted in pure bioinformatics, I was not limited to data that I
can generate. Rather I was able to explore a few areas of biological sciences. Unfortunately,
given enough time and effort on diverging branches of research, one might look back and
realize that the projects have little overlap, much like speciation on the tree of life. Two highly
diverged topics form the two parts of my thesis. Both have been rewarding and pleasurable
challenges, as evidenced by my inability to let either of them go. Part I details my exploration
of LCRs and the impact they have on the expression, abundance, and evolution of the proteins
which host them. In Part II, I describe the work I have done in the development of tools for
targeted metagenomic sequencing. The second part is intended to be a matter of record for the
work I have done over the course of my graduate career.

Early on, while still shaping my research on LCRs, I was asked to look into a program called
BOND and its applications. Years of development later, a heavily modified version became the
core of a family of probe design pipelines. The applications of which range widely from
detecting parasites in the sediment from an ancient village to rapidly identifying potential
pathogens in sepsis patients.

Throughout the work developing tools for metagenomic sequencing, I continued my branch of
research on LCRs in proteins. The research program was done with the support of and in
collaboration with a series of undergraduate volunteers and thesis students. The main trunk of
that research had multiple branches from the flow of biological information to the temporal
order of events in the evolution of gene expression and sequences.

These two research branches now appear to be completely distinct, tied together by their
membership in the vast class of bioinformatic research. However, at the core both share a
particular kind of problem that fascinates me. How to decompose multiple overlaid signals, cut
through the noise, and reveal the nuggets of truth. The evolutionary landscape of LCRs is
highly multidimensional, nucleotide and amino acid composition, secondary structure, binding
partners, selection, and more all exert pressures. Teasing these apart to find the relationships
between sequence and expression evolution has been a fulfilling challenge. Likewise, targeted
metagenomics is centered on amplifying signals of interest to ease the challenge of
disentangling noise from signal.

Either topic alone may be enough to constitute a thesis on its own, but together they better
demonstrate how I have contributed and hope to continue contributing to the field of biology
through bioinformatics.

xvi



Part I

Protein Low Complexity Regions
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Chapter 1

Introduction

I was first introduced to low complexity regions (LCRs) while employed in the biotechnology
sector. I was looking to return to academia and was researching potential bioinformatics
research programs. I found a paper by Lenz et al. (2014) exploring increased mutation rates
both in and around LCRs. I found the idea of such simple sequence features being associated
with long term evolutionary dynamics fascinating as it played into two of my favourite ways of
understanding biology at the molecular level. Both a beautiful dance of mechanical automation,
and a concerted mixture of influences both large and small: noisy but with signals still
discernible. My interest in the topic may have been helped along by discovering I realized my
newly hired co-worker was the first author of the paper I had just read!

The instability of LCRs extends beyond the point mutations that Lenz et al. (2014) described.
LCRs are also liable to rapid expansion and contraction via replication slippage (Huntley and
Golding 2006) and unequal crossing over (DePristo et al. 2006). These indels can be
pathological, with LCRs being associated with several neurodegenerative diseases (Cummings
and Zoghbi 2000; Day and Ranum 2005; Verstrepen et al. 2005; Musova et al. 2009).
Structurally, LCRs are also often intrinsically disordered (Romero et al. 2001; Dosztányi et al.
2006): having no defined globular structure under physiological conditions. The lack of
structure lends itself to another property of promiscuity. Many LCR containing proteins are not
limited to specific partners (Dosztányi et al. 2006; Ekman et al. 2006; Coletta et al. 2010;
Fomicheva and Ross 2021). Despite the discordance these sequences seem to bring to the
molecular ballet, they seem to be tolerated by selection. Indeed, LCRs are extremely common
in eukaryotic proteins (Golding 1999; Huntley and Golding 2000; Karlin et al. 2002). The
mutational instabilities and flexible binding give them uses on both evolutionary and
physiological timescales. They play roles in the hubs of interaction networks (Dosztányi et al.
2006); participate in transient organelles (Kedersha and Anderson 2002; Kato and McKnight
2017; Fomicheva and Ross 2021); and can also serve as the raw materials on which evolution
can act (Radó-Trilla et al. 2015; Persi et al. 2023).

Evolutionary biology is an undirected performance. Each player on the molecular stage acts
according to its sequence defined form, and a sequence ensemble which forms a sufficiently
cohesive whole is allowed to keep performing. We observe LCRs to be chaotic in their form
and function, but with important roles to play. Furthering our understanding of the balancing
act between LCR costs and benefits has been the focus of my research. This has been primarily
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through the lens of abundance. The cellular machinery that is most heavily invested in tends to
be the most important, sensitive to disruption, and therefore most highly
conserved (Drummond et al. 2005). The abundance of proteins is highly regulated with a
multitude of overlapping effects. It offers a medium through which to explore the impacts of
LCR beyond changes in DNA sequence alone. How does the presence of LCR affect the
abundance of proteins? Are there biases in which proteins are allowed to have LCR? What
mechanisms exist to regulate LCR and abundance co-evolution?

In this part of my thesis, I describe my work to explore and understand the roles played by
LCRs on the stage of biology. The range of properties that LCR can possess is wide presenting
a challenge to concretely identifying them. In Chapter 2 I explore several approaches for
identifying LCRs in the process demonstrating that no one method is completely satisfactory.
For the questions I ultimately wished to explore, a definition with a low false-positive rate is
preferable. Every ‘normal’ protein falsely included dilutes any effects which may be seen. With
this in mind the definition chosen was based on information content. This low-entropy
definition proves useful in Chapter 3 where I contributed to a tracing of the flow of information
from DNA to protein via RNA. We found that this flow is not as simple as one might naïvely
think, pointing to evolutionary forces beyond neutral selection influencing LCRs. As these
motifs are involved in many processes it may be unsurprising that their evolution is intertwined
with other properties. In Chapter 4, I examined the relationship with both transcript abundance
(TAb) and protein abundance (PAb) as properties which may be connected to LCRs and found
that these were indeed connected but having contrasting impacts at the RNA and protein levels.
This prompted exploration of untranslated regions (UTRs) in Chapter 5 and evolutionary
history of these properties in Chapter 6. UTRs are hotbeds of signaling motifs where
low-complexity (LC) may be playing a previously unrecognized role. Understanding the
temporal order of TAb shifts and LCRs appearance is important for informing the mechanisms
that drive the intertwining of these two properties. Ultimately my research is an exploration of
the highly complex interactions LCRs allow for in molecular interactions and evolution.
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Chapter 2

Methods for Identifying Low
Complexity Regions

2.1 Introduction

Once thought of as junk or spacer regions between more ‘important’ globular regions in
proteins, low complexity regions (LCRs) are loosely defined as compositionally biased
sequences. As there was little interest in these regions the original goal in identifying LCRs
was to mask them so that they would not interfere with attempts to align homologous
proteins (Wootton 1994b). Since then, protein LCRs have been revealed to have important
functions and effects at both the nucleotide and protein level in neurodegenerative
disease (Cummings and Zoghbi 2000), protein-protein interaction (Dosztányi et al. 2006), and
formation of membraneless organelles (Dignon et al. 2018).

As such, identifying LCRs has become much more important to a variety of fields in biology.
As the roles that LCRs have been revealed to play have expanded, so too has the variety of
properties that could be used to identify them. A more fulsome review of these properties will
follow in Section 2.2, but they can be broadly divided into sequence and structural properties.
Mier et al. (2020) published a review of several statistical methods for identifying LCRs, as
well as a tool for categorizing proteins on the basis of amino acid bias and repetitiveness. This
review of methods includes some statistical methods they include, but also looks at others and
attempts to evaluate them with a common dataset.

2.2 Tools for LCR detection

2.2.1 Sequence methods

One of the earliest tools specifically intended for the identification of LCRs in protein
sequences was SEG developed by Wootton and Federhen (1993). The algorithm relies on the
concept of sequence entropy and probability to flag and refine LCR hits. The program has three
parameters used in the initial flagging of low entropy sequences. These are the window length,
the lower entropy bound (K1), and the upper entropy bound (K2). Sliding the window along a
sequence, the Shannon entropy is calculated according to Equation (3.1); If this is lower than
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K1, a putative LCR is called as the sequence in the window. This sequence is extended on both
sides if the window in that direction has an entropy higher than K2. After extension, the LCR is
refined by selecting the lowest probability subsequence of the putative sequence. Here the
probability is calculated as the probability of observing the particular composition of residues,
given an unbiased selection of any particular residue.

The major advantage of Seg is speed. For example, NCBI’s BLAST (McGinnis and Madden
2004) uses Seg as a preprocessing step to mask LCRs (Fassler and Cooper 2011) in proteins. It
is also able to rank the compositional bias of sequences; homopolymers will have zero entropy
with the value rising with less bias. The method is also applicable to DNA, RNA, and protein
alphabets, however the widely used implementation hard-codes the use of a protein alphabet
and tolerates the DNA alphabet as the latter is a subset of the former. While this limitation has
no impact on protein calculations, it can affect studies at other levels. Modification made to the
original Seg algorithm to overcome this limitation are described in Chapter 3.

One of the limitations of Seg is that it completely ignores the order of residues in determining
if they are low complexity. For example, QPPQQP would have the same entropy as QQQPPP
and QPQPQP, despite the latter two having recognizable repeat patterns. Li and Kahveci (2006)
developed graph based algorithm (GBA) in an attempt to account for this by modifying the score
for a particular residue depending on those which precede it. GBA also attempts to incorporate
amino acid properties with the assumption that a string of similar amino acids may also be a
low complexity region. This is achieved with the use of a scoring matrix like BLOSUM62 to
determine similarity between amino acids.

While Seg uses low probability to refine the LCR hits it discovers with entropy, it is possible to
entirely focus on the probability of subsequences. LCRs are inherently low probability
sequences as their compositional bias is distinct from ‘normal’ amino acid usage. Fast low
probability sequences (FLPS) is a program developed by Harrison (2017) to identify
compositional bias, with the claim of higher speeds than Seg. The program works by
calculating the probability of subsequences up to some maximum size, using an amino acid
usage table. It includes a pre-calculated table constructed based on a curated set of protein
domains but can also use unbiased or user defined usage tables. A probability threshold is used
to define compositional bias.

2.2.2 Structural methods

Aside from amino acid properties and compositional bias, the structural properties of proteins
can be used to identify LCRs. Often, LCRs do not form fixed 3D structures at physiological
conditions; they are intrinsically disordered (Romero et al. 2001). As structural prediction for
proteins is a popular topic in computational biology there are a plethora of tools which could be
used in this area, however the majority of them are gargantuan models, generally focused on
globular protein prediction, making them slow, unwieldy, and ill-suited to identification of
LCRs.

Two tools developed specifically for intrinsic disorder are IUPred (Dosztányi et al. 2005) and
SPINE-D (Zhang et al. 2012). The former uses pairwise amino acid energy content to
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differentiate between structured and unstructured regions, while the latter is a pipeline using
position specific scoring matrices and treating each amino acid as having two half shell
neighbourhoods (for example a surface exposed half and a protein embedded half) to predict
the final 3D structure. For both of these programs the output is a value for each residue: the
probability that this particular residue is in an intrinsically disordered region. To collapse to a
defined LCR, a probability threshold and a minimum length can be used.

2.3 Materials and Methods

Given that LCRs have several intersecting, but not fully overlapping properties, any method
which seeks to identify LCRs based on any one property will be imperfect. Additionally
comparing between methods can be difficult simply because defining a test dataset with
perfectly known LCR+ and LCR− proteins is impossible. However, for the purposes of
reviewing the methods presented above, an approximation of such a dataset was constructed.

The Uniprot database (The UniProt Consortium 2017) contains SwissProt, a manually
annotated database of proteins. The set of human SwissProt proteins which had an annotation
for compositional bias was selected as a set of LCR+ proteins. The set of LCR− proteins was
defined as human SwissProt proteins, which lacked an annotation for compositional bias and
had 3D structure resolved by x-ray crystallography. The intrinsic disorder of LCRs is most
likely to affect the success of x-ray crystallography. Uniprot uses MobiDB-lite (Necci et al.
2017) to generate compositional bias annotations, which is a tool for identifying intrinsically
disordered regions. The greatest bias in this dataset should be towards methods based on
intrinsic disorder.

These requirements resulted in a set of 31,020 LCR+ proteins and 17,605 LCR− proteins; or
64% LCR+. However, human proteomes are nearer to 20% LCR+ (Karlin et al. 2002). To have
a dataset which better represented biological reality, a random sample of 1000 proteins was
selected, 200 from the LCR+ set and 800 for the LCR− set. Each method was run on this
combined set and evaluated for accuracy and runtime, the parameters for each method are
described below.

Each identification method was compared using the programs default parameters, as well as the
set of parameters which give the lowest error rates. These parameters can be found in Table 2.1,
and a clarification of some parameter names follows. Forget rate is the reduction in influence a
preceding residue has on the current residue as it is more distant. If the value were 0.5, the
preceding residue would have half influence, and the next before it one quarter. AA usage
describes how the table of amino acid usages was constructed. It can be either precalculated
from a curated set of protein domains or sampled from the set of proteins being evaluated.
Search mode describes the strategy of IUPred and SPINE-D. The former doesn’t have a default
strategy, instead it can search for globular protein domains, where LCRs are the remainder.
Alternatively, it can search for long or short stretches of intrinsic disorder. SPINE-D can also be
optimized for long stretches of disorder. As an additional note, the optimized parameters for
Seg have been previously described (Huntley and Golding 2000, 2002, 2006; Haerty and
Golding 2010; Lenz et al. 2014).
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TABLE 2.1: Parameters used for comparing LCR identification methods

Tool Parameters

Seg
Window Size K1 K2

Default Case 12 residues 2.2 bits 2.5 bits
Best Case 15 residues 1.9 bits 2.2 bits

GBA
Window Size Forget Rate Max Indels

Default Case 15 residues 0.95 3
Best Case 3 residues 0.85 0

fLPS
Maximum Length Min Probability AA Usage

Default Case 500 residues 1×10−3 precalculated
Best Case 500 residues 1×10−9 sampled

IUPred
Search Mode Min Probability Min Length

Default Case globular 50% 3 residues
Best Case long 75% 15 residues

SPINE-D
Search Mode Min Probability Min Length

Default Case default 50% 3 residues
Best Case long 75% 15 residues

As the compositional bias annotation in UniProt are assigned to particular amino acid intervals
in proteins, it is possible to assess both the ability of tools to separate LCR+ and LCR−

proteins and the ability to assign specific amino acids to low and high complexity regions. The
assessment of both is divided into calculating the proportion of false positives and negatives.
These can be summed to an overall error rate.

2.4 Results

As the number of proteins one wishes to analyze increases, the speed of a computational tool
becomes increasingly important. When analyzing whole proteomes, the differences of seconds
or minutes can become days. The runtime of the tools is recorded in Table 2.2. The fastest tool
was Seg at less than a second regardless of the parameters used as it performs simple
calculations. On the other hand, GBA was the slowest, taking up to 40 minutes to process 1000
proteins. When preprocessing time is taken into account, SPINE-D, which performs the most
intense structural predictions, was the slowest program. It required 4 days to construct the data
necessary for structural predictions.

The ability of each tool to correctly categorize proteins and amino acids into LCR+ and LCR−

can be found in Figure 2.1. At the protein level, the default parameters of most of the tools were
not ideal for accurately determining LCR status. The best was IUPred with an overall error rate
of 32±3% while the worst was GBA at 80±3%. In every default case the error rate was driven
almost entirely by incorrectly identifying LCRs in LCR− proteins (false positives), while
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TABLE 2.2: Runtime of LCR Identification Methods

Tool
Time

Preprocessing Default Case Best Case

Seg NA 0.23 s 0.23 s
GBA NA 39 min 4 min
IUPred NA 10.3 s 10.3 s
SPINE-D 4 days 2.6s 2.6s
fLPS 1.0 s 4.8 s 0.25 s

correctly categorizing most LCR+ proteins (true positives). This remains true when we look at
the best case parameters, except for Seg and fLPS where the errors are more balanced or lean
towards false negatives. These two programs have similar performance as well with Seg at an
overall error rate of 14±3% and fLPS at 13±3%. At 47±4%, GBA with optimized parameters
still had the worst performance even being outperformed by the defaults for IUPred. IUPred
was also the most consistent with its default and best cases performing similarly. FLPS was the
most sensitive to parameters with a 60% shift in error rate depending on parameters.

At the amino acid level, the overall results are similar with several particularities which differ
(Figure 2.1b). Overall, the error rates are lower, as the predicted LCRs tend to be small
compared to the length of the proteins which contain them. The worst performing tool was
fLPS with default parameters which incorrectly placed 62.6±0.5% of amino acids. It was
again most sensitive to parameters, flipping to the best performing with optimized parameters
at 10.3±0.5%. With the exception of fLPS with default parameters, failure to place amino
acids inside LCRs was a much more common error. The least parameter sensitive method in
this case was Seg.

2.5 Discussion

I have described a small sample of the tools available for detecting LCRs based on sequence
and structural properties, as well as compare their performance on a common dataset. This
dataset has some deficiencies for the task which stem from the lack of a consensus for how to
identify LCRs. Without this consensus it is not possible to construct a dataset where the LCR
status is perfectly known. Instead, the dataset will always be biased towards the tools used to
construct it. In this case MobiDB-lite was used to generate the annotations used to classify
proteins as LCR+. This tool is based on the identification of intrinsic disorder and would be
expected to bias the results towards other tools with this basis. This is especially true for
IUPred as the papers describing the two tools (Dosztányi et al. 2006; Necci et al. 2017)
actually share an author. This doesn’t appear to be the case as the false negative rates are similar
with optimized parameters between IUPred, SPINE-D, Seg, and fLPS. The selection of LCR−

proteins had an extra, structure-based filter in that those proteins must also not have an X-ray
crystallography structure. Huntley and Golding (2002) showed that the sequence property of
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FIGURE 2.1: Probability and entropy based methods have lower error rates. A
plus sign in the tool label indicates the use of best case parameters. Maroon,
or the lower section of the bars indicates the proportion of proteins from the
LCR− set incorrectly called as LCR+, and grey (upper section) indicates the
proportion of proteins from the LCR+ set incorrectly called as LCR−. a The
error rates in categorization of 1000 proteins as LCR+ and LCR−. b The error
rates in categorization of 460,902 amino acid residues from the 1000 proteins as
being inside or outside of an LCR.
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low entropy was associated with under-representation in a structural database. While imperfect,
the dataset presented represents a reasonable common comparison for the methods.

In general, Figure 2.1 shows that when using optimized parameters Seg and fLPS have the best
performance, and yet GBA another entropy based method was consistently the worst performer.
The optimized parameters for all programs, except for Seg, were determined solely with the
test data and may be over-fitted.

By examining differences between the protein and amino acid level performance we can gain
insight into the types of mistakes each program makes. For example, GBA has very high false
positive rates at the protein level, however at the amino acid level the overall error rate is lower
and less biased towards false positives. As GBA predicts short LCRs in most proteins, it
incorrectly assigns proteins to the LCR+ category, but their relatively small size has little
impact at the amino acid level. As GBA incorporates information on amino acid properties, it
may be identifying regions where amino acids with similar properties are concentrated. The
evolutionary forces bringing similar amino acids together are more likely to be due to selection
for function and may be dissimilar to the forces creating repetitive amino acid tracts. The
overall high false positive rates at the protein level imply an overzealousness in calling LCRs.
When this is paired with higher false negative rates at the amino acid level, it is implied that
even when a tool successfully calls a protein as LCR+ it may be placing the LCR at the
incorrect position within the protein.

Accepting that no tool is ever perfect, especially when what constitutes an LCR is up for
debate, the important criteria are the ultimate goals of the study. If the goal is to characterize
every LCR in a proteome, using a tool with a low false negative rate would be desirable. When
attempting to correlate some other property with the presence of an LCR it is desirable to have
the errors that do occur to be balanced between false positives and negatives. With a balance
the effect of proteins near the boundary being incorrectly assigned is also balanced. This will
increase the noise around any observed effect, but not the accuracy. Additionally, one must
account for whether their property of interest is most affected at the structural or sequence
level. If the former, a structural tool is most appropriate. For an analysis attempting to correlate
the expression level of both mRNA and protein sequences with the presence of LCRs at the
protein level, a balanced, low error rate program such as Seg is most appropriate.

Like Mier et al. (2020), our review has shown that no single tool is best at identifying LCRs,
even in the case where the construction of the dataset may favour certain tools. There is
significant room for improvement in this space, potentially in the form of tools which account
for the evolutionary forces which spawn and maintain LCRs. With the current state of LCR
identification tools it is imperative that researchers carefully consider which LCR definition and
types of errors would be most appropriate for the questions they seek to answer.
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Chapter 3

Correlating DNA and Protein sequence
entropies

3.1 Preface

This chapter was published in Molecular Biology and Evolution in April, 2023
(https://doi.org/10.1093/molbev/msad084), with Johanna M Enright, Zachery W
Dickson, and G Brian Golding as co-authors. JME wrote python scripts which parsed
annotated genomes, called a modified version of Seg to identify low complexity regions
(LCRs), calculated correlation coefficients, and simulated proteomes. JME also wrote the first
rough draft of the manuscript, and passed it to me it to me for first revisions. JME and GBG
contributed to later revisions. ZWD modified Seg to accept any alphabet and properly account
for ambiguous residues in nucleotide sequences, devised approaches for simulations and
interpretation of results, wrote first drafts of portions of the discussion, generated figures, as
well as handled revisions and the publication process. GBG devised the initial project, edited
the manuscript, and provided guidance to keep the project in a reasonable scope.

In this manuscript we set out to determine how well the entropy of DNA and protein sequences
are correlated in LCRs. As information flows from DNA to protein the entropy of the two
should be reasonably well correlated. However, we found that compared to simulations with
some reasonable assumptions on LCR evolution the correlation was generally lower than
expected, especially in LCRs with cryptic repeats. The impact of the work is in showing that
evolutionary forces beyond neutral slippage, and retention of the amino acid sequence shape
LCRs.

3.2 Introduction

Low complexity regions (LCRs) are segments of a protein or DNA sequence which are biased
in composition (Wootton and Federhen 1993). LCRs can present as periodic repeats,
ambiguous cryptic repeats, or can contain no apparent pattern at all, but simply deviate from a
randomized composition (Tautz et al. 1986; Wootton 1994a). LCRs contain low information
and have a low entropy (Wootton and Federhen 1993). Entropy, as measured by Shannon’s
Entropy equation (Shannon 1948), is a measure of compositional complexity which uses the
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proportion of residue(s) in a subsequence to measure the compositional state of that
subsequence (Wootton 1994b). A lower variety of residues would result in a lower entropy for
that subsequence. Thus, minimal entropy would contain a subsequence consisting of only a
single residue, whereas maximal entropy would contain all possible residues in an alphabet in
equal proportions. In proteins, LCRs are typically composed of hydrophilic and small amino
acid residues (Faux et al. 2005).

Interest in protein LCRs has grown in recent decades as involvement of LCRs in protein
function and disease has been further illuminated. Due to a lack of motif conservation and a
tendency to form non-globular protein domains, LCRs were once considered to be merely
tolerated within their protein, offering no functional, biologic contribution (Huntley and
Golding 2000, 2002). It is now believed that LCRs may offer a range of functions to various
proteins, many which are linked to this non-globular, intrinsically disordered nature.
Intrinsically disordered regions can allow for longer, more accessible protein domains, protein
flexibility, and plasticity in molecular binding partners (Dosztányi et al. 2006; Ekman et al.
2006). As such, LCRs are often found in proteins involved in signaling pathways and can act as
scaffolds in the formation of large protein complexes (Coletta et al. 2010; Dyson and Wright
2005). They are also enriched in transcription factors (Millard et al. 2020), developmental
proteins (Huntley and Clark 2007) and can offer accessible regions for post-translational
modifications (Jeronimo et al. 2016; Monahan et al. 2017).

As protein LCRs are ultimately the result of changes to the underlying DNA, their evolution is
likely similar to that of inter-genic, noncoding DNA microsatellites (DePristo et al. 2006).
Microsatellites are believed to evolve rapidly by expansion or contraction via two main
mechanisms: the first and predominant mechanism being polymerase slippage, in which the
DNA template and coding strand shift relative to one another and re-anneal with another repeat
unit causing either insertion or deletion of a repeat unit (Levinson and Gutman 1987; Viguera
et al. 2001). The second mechanism is unequal recombination which occurs via the
misalignment of homologous repeat sequences during meiosis and results in the gain of repeats
in the sequence of one chromosome and loss of repeats in other (Richard and Paques 2000).
Other factors, including mismatch repair mechanisms (Levinson and Gutman 1987), repeat unit
length (Schug et al. 1998), ability of the DNA to form structures (Dere et al. 2004; Moore et al.
1999; Murat et al. 2020), and repeat unit composition (Gragg et al. 2002) play a role in the rate
of microsatellite slippage. Microsatellites above a certain threshold repeat length will undergo
slippage and expand or contract, with longer microsatellites being more unstable and more
likely to undergo slippage (Lai and Sun 2003). In coding regions, slippage of repeats whose
units are multiples of three are more likely to be permitted compared to other repeat unit
lengths because an insertion or deletion will not cause a frameshift mutation in the downstream
coding sequence (Metzgar et al. 2000). Thus, they will be less likely to result in a deleterious
mutation that will be selected against (Metzgar et al. 2000).

Codon homogeneity is also an important factor in LCR evolution. Because LCRs are believed
to arise primarily via polymerase slippage, microsatellites of homogeneous codon runs are
thought to be more unstable, evolve faster, and to be less conserved than sequences encoded by
a heterogeneous mixture of synonymous codons (Albà et al. 1999). Over time, accumulation of
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synonymous mutations in LCR coding regions can help to conserve the LCR by breaking up
repeats and reducing the chance of slippage (Albà et al. 1999).

With important physiological roles and high mutation rates, it follows that LCRs have the
potential for pathogenesis. In humans, one of the most notable examples is Huntington’s
disease (Everett and Wood 2004). Slippage of long tracts of CAG trinucleotide repeats result in
an expanded polyglutamine tract. The mutant Huntingtin protein develops a toxic gain of
function effect within the cell (Everett and Wood 2004). Other neurodegenerative diseases
resulting from trinucleotide repeat expansion include spinocerebellar ataxia and muscular
dystrophy, encoding polyglutamine and polyalanine tracts, respectively (Brown and Brown
2004; Everett and Wood 2004). As well, LCRs have been shown to contribute to antigenic
variation and immune system evasion of human pathogens (Kebede et al. 2019; Velasco et al.
2013; Verstrepen et al. 2005).

Various studies have suggested that low entropy in nucleotide content correlates with LCRs in
proteins. Li et al. (2015) showed how GC content constrains the types of amino acids which
can be encoded, resulting in a bias towards amino acids encoded by codons with a high GC
proportion and a bias against those with a lower GC proportion. The malaria parasite,
Plasmodium falciparum, contains a high genomic AT content, which is strongly associated
with the presence of protein LCRs, leading to preference for certain codons and amino acid
types over others (DePristo et al. 2006). Xue and Forsdyke (2003) suggest that LCRs at the
protein level are a result of AG content bias at the nucleotide level, and thus pressures at the
DNA level can explain the presence of LCRs at the protein level. This was further supported by
analyzing the nucleotide composition at first, second, and third codon bases, where AG content
was higher in the first two, suggesting the importance of AG content to encode particular amino
acids (Xue and Forsdyke 2003).

The structure of codons can significantly impact the entropy of the sequence they make up.
Codons can be classified by the number of unique nucleotides in the codon, a property that we
will refer to as nucleodicity. The DNA level entropy varies significantly among these codons:
mononucleic codons such as AAA have an entropy of zero, dinucleic codons such as AGA
have an entropy of 0.918, and trinucleic codons such as AGC have an entropy of 1.58.
However, this property can only affect entropy at the DNA level as the information is lost when
the codon is translated to a single amino acid. LCRs with codons of different nucleodicities
may evolve differently as the repeats have variable abilities to form secondary structure during
transcription and translation (Barik 2017). This property is thought to be an influencing factor
in the likelihood of polymerase slippage (Murat et al. 2020).

Polymerase slippage, such as that seen in microsatellite expansion, is suggestive of a neutral
model of evolution whereby the unstable LCR is merely tolerated within the protein so long as
it does not impart deleterious effects (Radó-Trilla and Albà 2012). The LCR can then be
preferentially retained if it confers a selective advantage. This is in contrast to a strict selective
model of LCR evolution which maintains that LCRs within a protein are a result of selective
pressures constraining the types and ordering of amino acids so as to create an amino acid
motif which confers a particular function (Haerty and Golding 2010).
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There have been multiple studies supporting both neutral evolution as well as selective
evolution, with LCRs being created due to forces acting on the protein/amino acid level.
Evidence for selective neutrality includes a large variation in LCR tract size both intra and
interspecifically (Haerty and Golding 2010). Such high length polymorphic variability is also
associated with a homogeneous codon tract and high slippage rates (Mularoni et al. 2007).
Whereas conservation of LCR motifs and selective evolution may entail a heterogeneous codon
tract of synonymous codons. That is, assuming the codons were a result of pressure from the
protein level and not due to the degeneration of trinucleotide repeats (Albà et al. 1999; Huntley
and Golding 2006). Neutral proteins could contain a high variation in repeat tract size as a
result of unstable replicative slippage and also could undergo non-synonymous mutations
which would be permitted due to the lack of purifying selection (Mularoni et al. 2007).
However, increased repeat length has been observed to correspond with low non-synonymous
mutation rate, suggesting the conservation of long LCRs (Mularoni et al. 2007). Studies
showing synonymous mutations closer to LCRs have indicated that these regions may be
evolutionarily conserved and hold functional significance (Lenz et al. 2014).

In this study, we have identified LCRs in proteins and assessed the correlation between their
entropy and their corresponding DNA sequence entropy. We also identified LCRs in DNA
sequences and comparing their entropy to that of their corresponding amino acid sequence. If
the origin and evolution of LCRs were primarily a result of mutation acting at the DNA level
via polymerase slippage and LCR expansion being allowed due to low selective constraints, we
would expect to see a high correlation between protein entropy and its corresponding coding
sequence entropy in LCRs. As DNA entropy decreased, codon types would be constrained
thereby constraining and lowering the protein entropy as well as increasing chances of
polymerase slippage for further LCR generation. If selection was the predominant mechanism
by which LCRs were formed, we would expect to see a lower correlation between DNA and
protein sequence entropy of corresponding sequences. This is because selection, unlike
slippage, would not necessarily favour a homogeneous run of codons, but could instead allow a
more random collection of synonymous codons for a particular amino acid residue. Ultimately,
this would allow for a wider range of possible DNA entropies given a particular protein LCR.

3.3 Materials and Methods

All custom scripts and commands used in this analysis can be found on GitHub at
https://github.com/JohannaEnright/LCREntropyProject/.

3.3.1 Sequence Data

Two correlation studies of sequence entropy were conducted. The first identified LCRs in
proteins from the entire proteome of five model organisms Saccharomyces cerevisiae,
Homo sapiens, Arabidopsis thaliana, Caenorhabditis elegans, and Drosophila melanogaster.
For each protein we identified LCRs and compared the entropy in the corresponding coding
DNA sequence. The second study did the inverse; identifying LCRs in the coding DNA
sequences and compared their entropy to the entropy of the amino sequence that they encode.
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The genomes of the five organisms were downloaded from NCBI. Access dates and accession
numbers are listed in Table A1.1.

Annotated sequences representing a haploid assembly for each organism were downloaded in
genbank and fasta format. A custom python script was written to identify LCRs within coding
sequences and locate their corresponding amino acid sequences and vice versa (Van Rossum
and Drake 2009). LCRs were identified using the Seg algorithm (Wootton and Federhen 1993).
Adjustments were made to Seg to account for alphabet size depending on the sequence type.
Ambiguous characters were accounted for when identifying regions of low complexity by
adding a fractional count to each residue represented by the ambiguous character. When
searching for LCRs within proteins, Seg parameters were set to a window length (W) of 15, a
trigger complexity (K1) of 1.9, and an extension complexity (K2) of 2.2 (see Table A1.2 for
alternate parameters examined). To identify LCRs in coding sequences, parameters were set to
45 for W (three times the length used for amino acids) 1.3 for K1, and 1.5 for K2 (see
Table A1.3 for alternate parameters examined).

A non-redundant set of coding sequences was selected by retaining only the longest isoform for
each gene. This was done to reduce redundancy introduced by splice variants, duplicate genes
in the pseudo-autosomal regions of the X and Y chromosomes, and duplicate genes present in
alternate assemblies. If isoforms were the same length, the one which mapped to a
chromosome was chosen over that from an alternate assembly. As well, an X chromosome
isoform was chosen over a Y chromosome isoform. In addition, any coding sequences which
encoded only a portion of a final protein product, such as immunoglobulin gene segments, or
sequences which were not exactly three times the length of the amino acid sequence, were
excluded as a direct mapping between amino acid sequence and coding sequence could not be
made. For later simulations, the codon frequency, protein length, and proportion of proteins
containing LCRs were calculated using this set.

For LCR analysis, only the longest LCR from each isoform was taken. We have observed in
human data that less than 10% of LCR containing proteins have multiple LCRs, and the
composition of LCRs tends to be similar within the same protein. Taking the longest allows for
a simpler analysis with one signal per protein. If multiple LCRs from a single sequence were
the same length, the one with the lowest entropy was chosen. Once all LCRs were obtained, the
entropy of the corresponding amino acid or DNA sequence was calculated using the Shannon’s
Entropy equation (Shannon 1948):

H =
n

∑
i=1

pi log2 pi (3.1)

where pi refers to the proportion of each unique letters in a sequence and n refers to the total
number of unique letters (Equation (3.1)).

While calculating entropy, ambiguous characters were handled in the same manner as above.
DNA LCRs were trimmed at the ends to ensure a direct correspondence between a codon and
its amino acid. These end adjustments were taken into account before determining the longest
LCR from a coding sequence.
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Scatter plots were created for each organism and set of parameters. A linear regression and
correlation coefficient calculation was performed for each plot in R (R Core Team 2022).

For the purpose of later simulations, the codons in the LCRs were classified by nucleodicity,
the number of unique nucleotides in a codon. The nucleodicity of the LCR as whole was set to
match the most frequent nucleodicity class amongst its codons. For example, an LCR made up
of 6 AAA, 2 ATC, and 1 GCA would be assigned a nucleodicity of 1. In the case of a tie for the
most frequent nucleodicity, an LCR would be partially assigned all tied nucleodicities. For
example, an LCR with equal counts of mono-, di-, and tri- nucleic codons would be counted as
one third for each class. Using these potentially partial counts the number of observed LCRs of
each nucleodicity was counted. The number of expected LCRs for each nucleodicity class was
calculated based on the codon usage for each organism by multiplying the total frequency for
each class by the total number of observed LCRs. As an example, with completely unbiased
codon usage, 6.6% ( 4

61 ) of LCRs would be expected to be mononucleic, 57% ( 35
61 ) dinucleic,

and 36% ( 22
61 ) trinucleic. The actual proportions vary between species based their codon usage.

The significance of differences between observed and expected numbers of LCRs in each class
was evaluated using a chi squared test. A preference coefficient was calculated for each
nucleodicity class to represent the observed preference for a codon class relative to the
expected value. The coefficients are normalized relative to the most preferred codon class and
are calculated as

Pi, j =
Oi, j/Ei, j

maxk(Oi,k/Ei,k)
(3.2)

where P is the preference coefficient, O is the observed number of LCRs, E is the expected
number of LCRs, organisms are indexed by i organism, and the number of unique codons in a
codon class is indexed by j and k.

3.3.2 LCR Simulations

It was critical to have null expectations to which to compare the biologically observed values
for entropy and correlation. To that end, several simulations were implemented with the python
language (Van Rossum and Drake 2009). Simulations were performed separately for each
organism studied and for several models of evolution. In each simulation, a set of 100000 equal
length coding sequences were generated according to the relevant evolutionary model as well
as the organism’s codon usage. Each coding sequence had as many codons as the organism’s
average protein length (n) and a stop codon, for a total of n+1 codons. The evolutionary
models considered are intended to simulate varying levels of replication slippage, codon
nucleodicity class, and substitution. Overall, five models were used: Null, Slip, Slip + CC, Slip
+ Syn, and Slip + CC + Syn.

The first model, Null, is the simplest and is intended as a naïve model. Each coding sequence
was constructed by randomly sampling from the 61 amino acid encoding codons. Each codon
had an equal probability of being sampled. This model does not generate significant numbers
of LCRs.
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In the Slip model, codons are randomly selected according to each specific organism’s genomic
codon bias. However, once the same codon has been sampled at least twice the weighting for
that codon is increased. As a result, runs of identical codons which encode LCRs are more
likely. This elevated weighting is maintained until a different codon is selected at which point it
returns to using the original genomic codon bias. The amount by which the probability is
increased, the ’slope’, is dynamically set such that the overall proportion of LCR containing
proteins in the generated proteome matches that observed in the organism. The increase in
weight is applied each time the codon is consecutively sampled. As a result, the probability of
slippage increases linearly with the length of the LCR. Slippage on the basis of codons was
used instead of nucleotide based slippage as there is strong selection against frameshift
mutations in coding sequences (Metzgar et al. 2000).

There may be biological preferences for or against runs of identical codons in each nucleodicity
class. Hence, the Slip+CC model generates sequences according to the Slip model and has a
later additional step which attempts to mimic the species specific use of nucleodicity class.
After a protein was constructed, according to the Slip model, Seg is used to identify any LCRs.
The LCR is classified by its nucleodicity and is retained with a probability equal to the
organism specific preference coefficient (See Equation (3.2)). If a protein is not retained, a new
protein is generated. This process continues until a proteome of 100000 proteins with the same
proportion of LCRs as observed biologically is constructed. In addition, this will generate a
proteome which has LCRs in each nucleodicity class with the same proportions as is
biologically observed.

As a final step, subsequent synonymous substitutions maintaining the amino acid sequence
were simulated for the Slip model (Slip+Syn), and the Slip+CC model (Slip+CC+Syn). This
was implemented by randomly selecting a codon within the previously simulated sequence.
Any codon in the artificial protein could be selected, regardless of inclusion in an LCR. Then
the first or third position nucleotide was randomly selected and randomly changed to any of the
three other nucleotides with equal weight. This change was only accepted if the resulting codon
was synonymous with the original. This process was repeated until 1000 accepted synonymous
mutations were made. Each attempt was completely independent of any previous iterations,
therefore potential mutation sites were sampled with replacement. Differences in probability
between transitions and transversions were not explicitly accounted for, however the nature of
the genetic code forces more synonymous transitions than synonymous transversions (Koonin
and Novozhilov 2009) since transitions are more likely to be synonymous than transversions.
The process of adding 1000 synonymous mutations was repeated for each of the proteins in the
simulated proteome.

For all simulations, the same python script and Seg parameters described in the previous
section were used to identify protein LCRs, calculate their entropy, and calculate the entropy of
their corresponding coding sequences. The same was done for LCRs within coding sequences.
See Tables A1.4 to A1.8 for alternate parameters examined in the Null, Slip, and Slip+Syn
simulations. Each pair of entropy values were plotted and a linear regression and correlation
coefficient were calculated (R Core Team 2022).
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3.3.3 Confidence Intervals for Correlation Coefficient

To determine if the entropy correlations were significantly different, 95% confidence intervals
(α = 0.05) for the correlation coefficient were calculated. A Fisher transformation
(Equation (3.3)) was first performed on the r values to improve normality with increasing
sample size (David Shen 2006). The lower and upper confidence limits were then calculated
(Equation (3.4)) and these limits were transformed back (Equation (3.5)) (David Shen 2006).

Calculations were performed using the following equations:

fr = 0.5ln
(

1+ r
1− r

)
(3.3)

ζl = fr− z(1−α/2)

√
1

n−3

ζu = fr + z(1−α/2)

√
1

n−3

(3.4)

rl = tanh(ζl)

ru = tanh(ζu)
(3.5)

3.3.4 Identifying LCRs in Codons

LCRs at the codon level were identified and compared against the entropy of their encoded
protein sequences. Seg was modified to be able to use an alphabet with 61 letters. Seg
parameters used to identify codon LCRs were 15 for W, 2.5 for K1, and 2.9 for K2. All
additional steps were performed as in the previous sections.

3.3.5 Identifying Periodic Repeats in LCRs

Mono-, di-, and tri- periodic repeats were identified at the protein level from the previously
determined protein and DNA LCRs using a custom python script. Minimal repeat lengths for
mono-, di-, and tri- repeats were 6, 5, and 4, respectively. LCRs which contained one or more
of the three repeat types were classified as periodic LCRs, whereas LCRs which did not contain
any of the three repeat types were classified as cryptic LCRs. Minimal repeat length parameters
were varied to ensure consistent trends in sequence correlation for periodic repeats. Results for
periodic LCRs and cryptic LCRs of alternate repeat lengths can be found in Tables A1.9
and A1.10.
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3.4 Results

3.4.1 Entropy of LCRs in Protein and DNA Correlate Poorly with
Corresponding Sequence Entropies

Protein and DNA sequence entropy comparisons were performed on the genome and proteome
of five model organisms Saccharomyces cerevisiae, Homo sapiens, Arabidopsis thaliana,
Caenorhabditis elegans, and Drosophila melanogaster. In general, we observed a low
correlation between corresponding sequence entropies when LCRs were identified in both
coding regions and proteins. This lack of correlation was observed for all organisms, all of
which had correlation coefficients at or below r = 0.579 for both LCR types. The low
correlation suggests that DNA LCRs can encode a variety of amino acid sequence
compositional complexities and that protein LCRs can be encoded by a mixture of nucleotide
complexities and by a heterogeneous mixture of synonymous codons. To avoid being
redundant, only the results from S. cerevisiae and H. sapiens will be described in detail.
Corresponding results and figures for A. thaliana, C. elegans, and D. melanogaster can be
found in Figures A1.1 to A1.3.

Despite the consistently low correlation between sequence entropies, there were significant
differences in correlation coefficient values between LCR sequence types in some, but not all
organisms. For example, in S. cerevisiae, sequence entropy comparisons in protein LCRs yield
a correlation coefficient of r = 0.488 (95% CI: 0.435−0.538; Figure 3.1a). The correlation
between DNA LCRs and their corresponding protein sequences in S. cerevisiae was lower than
for protein LCRs, although not significantly (r = 0.428, 95% CI: 0.281−0.555; Figure 3.2a).
In H. sapiens, the correlation coefficient for sequences entropies between protein LCRs and
DNA was r = 0.374 (95% CI: 0.347−0.400; Figure 3.1b). However, the correlation coefficient
between DNA LCRs and their corresponding amino acid sequences was significantly higher at
r = 0.579 (95% CI: 0.541−0.614; Figure 3.2b). A summary of results for all five organisms
can be found in Table A1.11.

Next, we examined the general trends in the entropy distributions. The majority of protein and
DNA LCRs have entropies near or within the low and high cut Seg parameter values and
quickly taper off as they near more extreme entropies. Protein LCRs are encoded
predominantly by higher entropy coding sequences with very few being encoded by low
entropy coding sequences (Figure 3.1). Comparatively, DNA LCRs typically encode relatively
midrange entropy protein sequences and are more evenly distributed within the possible protein
sequence entropy range (Figure 3.2). This indicates that low entropy DNA sequences encode
comparatively lower entropy protein sequences whereas, low entropy protein sequences can
still be encoded by relatively high entropy DNA sequences. At the extremes of the distribution,
a vertical line at a protein entropy of 0 was observed in protein and DNA LCRs of both species
(Figures 3.1 and 3.2). This line corresponds to homopeptide repeats of a single amino acid
residue which was evidently encoded by codons with various nucleotide compositions as well
as a potential mix of heterogeneous, synonymous codons, hence the wide range of
corresponding DNA entropies.
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FIGURE 3.1: Entropy comparisons of protein LCRs and corresponding se-
quences in the S. cerevisiae and H. sapiens genome. Distributions of sequence
entropies can be found along the vertical and horizontal axes with values indi-
cating the mode. a 1034 LCRs were identified from 6016 protein sequences in
S. cerevisiae and their entropies were plotted against the entropies of the corre-
sponding coding sequences (r = 0.488). b 5005 LCRs were identified from 133
689 protein sequences in H. sapiens and their entropies were plotted against the
entropies of the corresponding coding sequences (r = 0.374).
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FIGURE 3.2: Entropy comparisons of LCRs and corresponding sequences in the
S. cerevisiae and H. sapiens genome. Distributions of sequence entropies can be
found along the vertical and horizontal axes with values indicating the mode.
a 171 LCRs were identified from 6016 coding sequences and their entropies
were plotted against the entropies of the corresponding protein sequences (r =
0.428). b 1571 DNA LCRs were identified from 133 689 coding sequences and
their entropies were plotted against the entropies of the corresponding protein
sequences (r = 0.579).
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Protein LCRs

> NP 001369.1 NC 000002
REEKKRKEEERKKKE H = 1.52

> NP 001369.1 NC 000002
AGAGAGGAAAAGAAGAGAAAAGAA

GAAGAAAGGAAAAAAAAAGAA H = 0.867

> NP 056007.1 NC 000020
DDDDDDDD H = 0

> NP 056007.1 NC 000020
GACGACGACGATGATGATGATGAC H = 1.92

DNA LCRs

> XP 024307650.1 NC 000020
GGTTTTTTGTTTTTTGTTTTTTTG

GTTTTTGTTTGTTTGTTTTTT H = 0.722
> XP 024307650.1 NC 000020
GFLFFVFLVFVCLFF H = 1.96

> XP 011508832.1 NC 000002
CCACCGCCGCCGCCGCCCCCTCC

TCCACCTCCTCCTCCCCCACCGC

CCCCTCCGCCTCCTCCTCTC H = 1.28
> XP 011508832.1 NC 000002
PPPPPPPPPPPPPPPPPPPPPL H = 0.267

FIGURE 3.3: Example entropy comparisons from the opposing extremes among
H. sapiens sequences, obtained from LCRs in protein sequences (Protein LCRs)
and LCRs in DNA sequences (DNA LCRs). Protein LCRs) On the top, a rel-
atively higher entropy protein LCR is encoded by a comparatively low entropy
DNA sequence. On the bottom, an extremely low entropy protein LCR is en-
coded by a high entropy DNA sequence. DNA LCRs) On the top, a low entropy
DNA LCR codes for a relatively high entropy protein sequence. On the bottom,
a relatively higher entropy DNA LCR codes for a relatively low entropy protein
sequence.

Other examples of extreme deviations include having high protein entropy but low DNA
entropy or vice versa. Examples of both are shown in Figure 3.3 and provide insight into the
low sequence correlations observed. Protein LCRs with high protein entropy and unexpectedly
low DNA entropy consist of amino acid residues whose codons share the same nucleotides and
contain two or fewer different nucleotides (Figure 3.3). For example, the protein LCR with
relatively higher entropy composed of R, E, and K are encoded by the codons AGA, AGG (R), GAG,
GAA (E), and AAG, AAA (K), all of which share the nucleotides, A and/or G. In contrast, low
entropy protein regions with high entropy DNA sequences can be the result of a DNA sequence
composed of distinct, but synonymous codons which are composed of three different
nucleotides. In this case, the aspartic acid homopolymer encoded GAC and GAT. The DNA
LCRs with low entropies and unexpectedly high protein entropies again tend to be encoded by
codons which all share the same nucleotides in different rearrangements but encode different
amino acids. Additionally, few distinct, synonymous codons are used for each amino acid. In
this case, the sequences are composed of: G (GGT), F (TTT), L (TTG), V (GTT), and C (TGT). In
DNA LCRs with relatively high DNA entropy and comparatively low protein entropy, different
residues are encoded by synonymous codons which often do not share the same nucleotides.
Hence, the degree of codon homogeneity, the codon nucleodicity, as well as the potential for
shared nucleotides between codons, all affect the degree of correlation between entropies of
protein and DNA sequences in LCRs.
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FIGURE 3.4: Entropy of LCRs from the null simulated proteomes. Distributions
of sequence entropies can be found along the vertical and horizontal axes with
values indicating the mode. 70 LCRs were identified from a sample of 100 000
protein sequences.

3.4.2 Using Slippage and Substitution Models to Compare and Explain
Observed Entropy Correlations in Biological Sequences

To further examine the significance of the sequence entropy correlations, proteomes were
simulated according to five different slippage and substitution models. The first proteome,
generated according to the Null model, contained only 70 proteins with LCRs. The correlation
between protein and coding sequence entropy for these LCRs was low at r = 0.126 (95% CI:
−0.139−0.374; Figure 3.4). The correlation coefficient for the random simulation was lower
than that in both H. sapiens and S. cerevisiae, although this difference was only significant in
S. cerevisiae. There was only one DNA LCR which was identified from the 100 000 Null
model DNA sequences. Due to the lack of data points, a linear regression could not be
performed. The small number of LCRs identified from the Null model sequences in both
proteins and DNA, as well as the low sequence entropy correlation in protein LCRs suggests,
not surprisingly, that LCRs are not the sole result of randomness in nature and are the result of
some biological driving force. This is consistent with the literature which shows that LCRs are
caused by replication error events like polymerase slippage which are exacerbated by an
increase in repeat length (Viguera et al. 2001; Lai and Sun 2003; Levinson and Gutman 1987).

The second proteome, generated according to the Slip model, consisted of sequences with a
propensity to form LCRs in a repeat length dependent manner in an attempt to mimic LCR
formation by DNA polymerase slippage. In general, the Slip model resulted in higher LCR
sequence entropy correlations than in the biological LCRs. When looking at protein LCRs and
their corresponding DNA sequences in the S. cerevisiae specific simulation, the correlation
coefficient was significantly higher than for the S. cerevisiae biological sequences at r = 0.566
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(95% CI: 0.555−0.577; Figure 3.7a). DNA LCRs and their corresponding protein sequences
in S. cerevisiae had a correlation coefficient of r = 0.591 (95% CI: 0.573−0.608; Figure 3.7b)
which was also significantly higher than the biological S. cerevisiae DNA LCRs. In the Slip
simulation specific to H. sapiens, when looking at protein LCRs and their corresponding DNA
sequences, the correlation coefficient was significantly higher than for the biological protein
LCRs in H. sapiens at r = 0.658 (95% CI: 0.637−0.678; Figure 3.7c). The correlation
coefficient for the DNA LCRs and their corresponding protein sequences in the H. sapiens Slip
model was slightly lower than the H. sapiens biological sequences although not significantly at
r = 0.573 (95% CI: 0.503−0.636; Figure 3.7d). Overall, the higher correlations in the Slip
model suggest that if LCRs were formed strictly in a neutral manner by DNA polymerase
slippage, we would expect to see higher correlations in the biological sequences than what were
actually observed.

To simulate conservation of the amino acid sequences, 1000 synonymous mutations were
added to the coding sequences from the Slip model, generating a third proteome, the Slip+Syn
model. In general, implementing synonymous mutations into the coding sequences decreased
the correlation compared to the Slip model. Correlations when going from the Slip model to the
Slip+Syn model in the S. cerevisiae specific simulation were significantly lower for protein
LCRs and their corresponding sequences (r = 0.459; 95% CI: 0.446 - 0.472; Figure 3.8a) as
well as the reverse (r = 0.517; 95% CI: 0.489 - 0.544; Figure 3.8b). In the H. sapiens specific
Slip+Syn simulation, protein LCRs and their corresponding sequences had a significantly lower
correlation compared to the Slip model (r = 0.585; 95% CI: 0.561 - 0.608; Figure 3.8c).
However, DNA LCRs and their corresponding sequences were slightly higher although this was
not significant (r = 0.588; 95% CI: 0.492 - 0.670; Figure 3.8d). This helped confirm that we
could expect LCR sequence entropy correlation to be lower if a homogeneous run of codons
was broken up by synonymous mutations and the LCR had thus been conserved or selected for.
When comparing Slip+Syn simulations to the biological sequences, there were varying results
depending on the organism and LCR sequence type. For protein LCRs and corresponding
sequences in S. cerevisiae, the correlation was insignificantly lower. For DNA LCRs and their
encoded protein sequences, the correlation was insignificantly higher. In H. sapiens, the
correlation for protein LCRs and corresponding sequences had a significantly higher
correlation. Also, DNA LCRs and corresponding sequences had an insignificantly higher
correlation. Thus, the biological sequences have LCR sequence entropy correlation more
similar to the LCRs generated from slippage followed by synonymous mutations although this
model may still be limited in its ability to describe and predict LCR evolution.

The Slip and Slip+Syn simulations did have a greater tendency to generate mono-codon runs of
LCRs as made evident by the large fraction of both DNA and protein LCRs with a protein
entropy of 0. Since this trend was not observed in the biological sequences, this suggested that
perhaps biology has a preference against runs of identical codons in LCRs. Thus, a preference
for codon nucleodicity class was investigated in each organism. In the coding sequences for
protein LCRs a strong nucleodicity class bias was observed for S. cerevisiae
(χ2 = 9.749×10−30) and H. sapiens (χ2 = 1.138×10−280). Sequences in both organisms
showed a greater number of codons with a nucleodicity of two and fewer codons with a
nucleodicity of one and three. The fourth proteome, Slip+CC was generated taking this codon
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nucleodicity bias into account. Correlation coefficients from this model specific to S. cerevisiae
were r = 0.699 (95% CI: 0.690 - 0.707; Figure 3.9a) for Protein LCRs and corresponding
coding sequences. This was significantly higher than the corresponding correlation coefficient
for the S. cerevisiae Slip simulation as well as the S. cerevisiae biological sequences. A
correlation coefficient of r = 0.553 (95% CI: 0.534 - 0.572; Figure 3.9b) was observed for
DNA LCRs and their encoded protein sequences which was significantly lower than in the
corresponding Slip simulation and insignificantly higher than for the biological S. cerevisiae
DNA LCRs. For the H. sapiens specific model, the correlation coefficient for protein LCRs and
their corresponding sequences was r = 0.808 (95% CI: 0.795 - 0.820; Figure 3.9c). Again, this
was significantly higher than in the corresponding Slip simulation as well as for the H. sapiens
biological sequences. The correlation coefficient for DNA LCRs and their corresponding
sequences was r = 0.546 (95% CI: 0.479 - 0.607; Figure 3.9d) which was insignificantly lower
than in the Slip simulation as well as for the biological H. sapiens DNA LCRs. Thus, the
Slip+CC simulation did not model the LCR sequences as anticipated and result in higher
correlations for protein LCRs and their corresponding sequences but have less of a discernible
effect on the correlation of DNA LCRs and their corresponding sequences.

Lastly, 1000 synonymous mutations were added into the coding sequences from the Slip+CC
simulations to produce a fifth proteome, Slip+CC+Syn. Similarly to the Slip and Slip+Syn
simulations, the correlations from Slip+CC+Syn compared to Slip+CC were lower for both the
S. cerevisiae and H. sapiens in both LCR sequence types. This was significant for all values
except DNA LCRs and corresponding sequences in H. sapiens. In the S. cerevisiae specific
version of this simulation, the correlation for protein LCRs and their corresponding sequences
was close compared to the biological S. cerevisiae protein LCRs at r = 0.490 (95% CI: 0.477 -
0.503; Figure 3.10a). The correlation for DNA LCRs and their corresponding sequences was
r = 0.430 (95% CI: 0.397 - 0.462; Figure 3.10b) which was also close to the biological
S. cerevisiae DNA LCRs. For the H. sapiens specific simulation, the correlation between
protein LCRs and their corresponding sequences was significantly higher than in the biological
sequences at r = 0.620 (95% CI: 0.598 - 0.641; Figure 3.10c). The correlation between DNA
LCRs and their corresponding sequences was insignificantly lower at r = 0.536 (95% CI: 0.446
- 0.615; Figure 3.10d). Thus, while this simulation seemed a good model for S. cerevisiae, this
was not the case for H. sapiens suggesting length dependent slippage and incorporation of
codon nucleodicity preferences followed by synonymous mutations is not sufficient to explain
the correlations observed and therefore the mode of LCR evolution. Figure 3.5 summarizes the
entropy correlations from the five simulations and compares them to the entropy correlations
from the biological sequences. A summary table of the main results can be found in
Table A1.11.

3.4.3 Comparing Correlations Between LCRs categorized as Periodic or Cryptic
Repeats in Biological Sequences

The original analysis of LCRs and corresponding sequences of the five model organisms
looked at sequence entropy correlations of LCRs as a whole. However, some studies have
suggested that different types of LCRs, particularly protein LCRs with tandem periodic amino
acid repeats may evolve differently than cryptic repeat LCRs with periodic repeat LCRs being
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1FIGURE 3.5: A summary of the LCR entropy correlation coefficients and 95%
confidence intervals for each model organism and species specific simulated pro-
teome. Exact correlation coefficient values can be found in Table A1.11. a Cor-
relation coefficients are from protein LCRs and corresponding coding sequence
linear regressions. The non-species specific Null proteome is also included (the
shaded area which spans all 5 species). b Correlation coefficients are from DNA
LCRs and corresponding protein sequence linear regressions. A linear regres-
sion could not be performed for DNA LCRs from the Null simulation due to
lack of data points.
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more likely to have evolved through DNA polymerase slippage (Battistuzzi et al. 2016). To test
this theory, LCRs from the biological sequences were divided into two categories, those with
periodic amino acid repeats and those without periodic amino acid repeats (cryptic repeats).
Sequence entropy correlations between these two LCR classes were only investigated for
protein LCRs as this seemed more biologically relevant for repeats at the amino acid level and
because tri- or hexa- repeats at the DNA level would lead to repeats at the corresponding amino
acid level and thus would likely not be informative of LCR evolution. For all organisms, LCR
sequence entropy correlations were always significantly higher in periodic repeat LCRs
compared to cryptic repeat LCRs Figure 3.6. Correlations for LCRs with periodic repeats were
also either higher or significantly higher than the correlation for both LCR types combined, and
correlations in cryptic repeats were significantly lower than the correlation for both LCR types
combined. For S. cerevisiae, the correlation between protein LCRs and corresponding
sequences with periodic repeats and cryptic repeats was r = 0.573 (95% CI: 0.481−0.652) and
r = 0.322 (95% CI: 0.248 - 0.392), respectively. For H. sapiens, the correlations for periodic
repeats versus cryptic repeats were r = 0.488 (95% CI: 0.402−0.492) and r = 0.242 (95% CI:
0.207 - 0.277), respectfully (Figure 3.6). Overall, these results suggest that LCRs containing
periodic amino acid repeats are more likely to evolve via DNA polymerase slippage whereas
cryptic repeat LCRs are more likely to be selected for. Thus, of the five slippage and
substitution models, the Slip simulation should be the most accurate model for the evolution of
the periodic repeat LCRs. Overall, the Slip simulation did bear the closest resemblance in
correlation to the biological sequences with the correlation being similar between Slip and
periodic LCRs in S. cerevisiae but significantly higher compared to periodic LCRs in
H. sapiens (Figure 3.6). On the contrary, the cryptic LCRs did not bear resemblance to any of
the slippage or substitution models and were significantly below the correlations for all species
specific models in all organisms (Figure 3.6).

3.5 Discussion

At the outset, the fact that information flows from coding sequence to protein sequence might
lead one to have a naïve expectation that the entropies of LCRs at each level would be highly
correlated. However, for each of the genomes from the model organisms examined the
correlations observed were low to moderate.

To ensure that the choice of parameters chosen for the measurement of LCRs via Seg was not
the cause of this unusual effect, LCRs were identified using varying sets of parameters. To
identify protein LCRs, parameters were chosen based on previous studies which found these
parameters to work well for identifying highly repetitive LCRs while avoiding sequences that
had higher complexity (Huntley and Golding 2002; Haerty and Golding 2010; Battistuzzi et al.
2016). These were then increased and decreased to explore the effect of the parameters as
shown in Table A1.2. It was difficult to determine the biologically equivalent parameters for
finding DNA LCRs as there are no known studies which have used Seg for DNA LCRs
previously. We therefore chose to use the parameters suggested in the Seg manual and varied
the parameters around these values as shown in Table A1.3. As can be seen in these tables,
adjusting window length, low cut, and high cut parameters overall had little impact on the
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1FIGURE 3.6: A summary of the correlation coefficients with 95% confidence
intervals for protein LCRs with periodic amino acid repeats, all LCR types com-
bined, and cryptic repeats for the five model organisms. The correlations for
the four species specific slippage and substitution models and the Null model
with 95% confidence intervals are also given for comparison. Exact correlation
coefficient values can be found in Table A1.11

degree of correlation for the biological sequences (Tables A1.2 and A1.3). The value of the
high cut parameter (K2) had the greatest impact on correlation. In general, and particularly in
the DNA based results, increasing the values of the three parameters (window length, low and
high cutoffs) resulted in higher correlation coefficients but at an extreme cost of many fewer
regions considered to be low complexity. This could be because low entropies at long window
lengths are less common, and higher low cut and high cut parameters results in less extreme
LCRs being considered.

The analysis of the simulated proteomes, Null, Slip, and Slip+Syn, was also performed with the
Seg parameter sets described in Tables A1.4 to A1.8. Regardless of the set of parameters used,
organism examined, and sequence type in which the LCRs were identified in, the results were
qualitatively the same: The correlations observed in biological data were lower than the
correlations produced in any simulation. In most cases, the biological correlations were
significantly lower, however the exceptions were concentrated at the high complexity extreme
of Seg parameters tested. For example, in the instances where the biological correlation was
significantly higher than the correlations in Slip and Slip+Syn for LCRs identified in proteins,
all occurred at the settings with highest K2 values. K2 values much higher than K1 cause Seg
to degenerate to finding the least probable subsequence in a protein regardless of entropy
values. We observed that the excess correlation in the simulations was greatest when the
definition of an LCR was strictest. This indicates that the evolutionary mechanisms embodied
in the simulations: replication slippage as well as nucleodicity and synonymous substitutions
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insufficiently explain the observed distribution of protein LCRs, especially for highly repetitive
LCRs.

Even when the correlations seen in the simulations were not significantly different from the
biological sequences, the distribution of sequence entropies was very different. All of the
simulations which included slippage produced lower entropy LCRs both at the DNA and
protein level (Figures 3.7 and 3.9). Slippage produced far more mono-amino acid repeats than
observed biologically, indicating that slippage alone doesn’t explain the abundance of less
compositionally biased LCRs. Non-synonymous mutations which break up the amino acid tract
would shift the distribution away from homopolymers towards the more commonly observed
entropies (Figures 3.8 and 3.10). The distribution of DNA entropies in simulations which did
not include synonymous mutations was also biased towards lower entropies but was also
multimodal with peaks near the entropies corresponding to the nucleodicity of the plurality
codon in the sequence (Figures 3.7 and 3.9). The addition of synonymous mutations brings the
DNA entropy distribution more in line with what is seen biologically: unimodal with a peak at
higher entropy (Figures 3.8 and 3.10). There may be a sample size effect, as we see the most
dissimilarity between simulation and biology in H. sapiens which had the most LCR containing
proteins at 5005 while S. cerevisiae had only 1034.

Comparing LCRs identified in proteins or in DNA coding sequences, the correlations for LCRs
found in coding sequences were usually significantly higher in biological sequences. The
exceptions are S. cerevisiae and D. melanogaster which both had the fewest LCRs identified in
coding sequences at 176 and 187, respectively. The patterns are also unclear for the simulated
proteomes: the Slip model often had higher correlation at the protein level, but the Slip+Syn
model often showed the reverse. Without considering the bias in codon usage each organism
has, correlations would be expected to be higher when identifying LCRs in coding sequences as
some information is lost during the translation process. That is, the total entropy of the DNA
sequence can never be lower than the protein sequence it encodes. The maximum entropy for a
nucleotide is 2 bits, while the maximum entropy for an amino acid is roughly 4.32 bits.
However, each amino acid is encoded by three nucleotides, for a maximum entropy of 6 bits.
Thus, if the nucleotide variation is substantially constrained, as seen in DNA LCRs, the amino
acids which can be encoded are limited to a select few. On the contrary, if the amino acid
variation is limited, as seen with protein LCRs, there is still a possibility to have up to all four
nucleotides comprising its coding sequence. Essentially, limiting DNA information content will
limit protein information content, but the same is not necessarily true in the reverse direction.
Hence, LCR sequences taken in one direction might be less correlated than LCR sequences
taken in the other direction. Biological biases in codon usage, as well as the codons and amino
acids tolerated in LCRs may modify this effect, and lead to the inconsistent pattern we observe.

It is interesting that DNA entropy for both protein and DNA LCRs rarely goes below one bit as
there is evidence suggesting a bias toward the use of two nucleotides to drive particular codon
usage which is thought to be associated with the presence of LCRs (Albà and Guigó 2004;
DePristo et al. 2006; Knight et al. 2001; Li et al. 2015; Xue and Forsdyke 2003). In coding
regions, there are rarely subsequences of DNA containing two or fewer nucleotides for 45 or
more consecutive nucleotides. The percentage of protein LCRs with a corresponding DNA
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FIGURE 3.7: Entropy of LCRs from the Slip simulated proteomes specific to
S. cerevisiae and H. sapiens. Distributions of sequence entropies can be found
along the vertical and horizontal axes with values indicating the mode. LCRs
were identified from a sample of 100 000 sequences. a 17 239 LCRs were iden-
tified from protein sequences in S. cerevisiae and their entropies were plotted
against the entropies of their corresponding coding sequences (r = 0.566). b
6615 LCRs were identified from coding sequences in S. cerevisiae and their
entropies were plotted against the entropies of their corresponding protein se-
quences (r = 0.591). c 3765 LCRs were identified from protein sequences in
H. sapiens and their entropies were plotted against the entropies of their cor-
responding coding sequences (r = 0.658). d 488 LCRs were identified from
coding sequences in H. sapiens and their entropies were plotted against the en-
tropies of their corresponding protein sequences (r = 0.573).
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FIGURE 3.8: Entropy of LCRs from the Slip+Syn simulated proteomes spe-
cific to S. cerevisiae and H. sapiens. Distributions of sequence entropies can be
found along the vertical and horizontal axes with values indicating the mode.
LCRs were identified from a sample of 100 000 sequences. a 17 239 LCRs were
identified from protein sequences in S. cerevisiae and their entropies were plot-
ted against the entropies of their corresponding coding sequences (r = 0.459).
b 3315 LCRs were identified from coding sequences in S. cerevisiae and their
entropies were plotted against the entropies of their corresponding protein se-
quences (r = 0.517). c 3765 LCRs were identified from protein sequences in
H. sapiens and their entropies were plotted against the entropies of their cor-
responding coding sequences (r = 0.585). d 260 LCRs were identified from
coding sequences in H. sapiens and their entropies were plotted against the en-
tropies of their corresponding protein sequences (r = 0.588).
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FIGURE 3.9: Entropy of LCRs from the Slip+CC simulated proteomes spe-
cific to S. cerevisiae and H. sapiens. Distributions of sequence entropies can be
found along the vertical and horizontal axes with values indicating the mode.
LCRs were identified from a sample of 100 000 sequences. a 17 255 LCRs were
identified from protein sequences in S. cerevisiae and their entropies were plot-
ted against the entropies of their corresponding coding sequences (r = 0.699).
b 6505 LCRs were identified from coding sequences in S. cerevisiae and their
entropies were plotted against the entropies of their corresponding protein se-
quences (r = 0.553). c 3767 LCRs were identified from protein sequences in
H. sapiens and their entropies were plotted against the entropies of their cor-
responding coding sequences (r = 0.808). d 579 LCRs were identified from
coding sequences in H. sapiens and their entropies were plotted against the en-
tropies of their corresponding protein sequences (r = 0.546).
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FIGURE 3.10: Entropy of LCRs from the Slip+CC+Syn simulated proteomes
specific to S. cerevisiae and H. sapiens. LCRs were identified from a sam-
ple of 100 000 sequences. Distributions of sequence entropies can be found
along the vertical and horizontal axes with values indicating the mode. a
17255 LCRs were identified from protein sequences in S. cerevisiae and their
entropies were plotted against the entropies of their corresponding coding se-
quences (r = 0.490). b 3004 LCRs were identified from coding sequences in
S. cerevisiae and their entropies were plotted against the entropies of their cor-
responding protein sequences (r = 0.430). c 3767 LCRs were identified from
protein sequences in H. sapiens and their entropies were plotted against the en-
tropies of their corresponding coding sequences (r = 0.620). d 340 LCRs were
identified from coding sequences in H. sapiens and their entropies were plotted
against the entropies of their corresponding protein sequences (r = 0.536).
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sequence entropy under 1 bit was 1.16% and 1.04% for S. cerevisiae and H. sapiens,
respectively. None of the simulated proteomes had proportions as low, with the exception of the
Null simulated proteome where no LCRs had DNA entropy less than 1. The Slip and Slip+CC
models both produced proteomes where 31.6 (in H. sapiens Slip) to 53.2% (in C. elegans
Slip+CC) of LCRs had DNA entropies less than 1.0, while the addition of synonymous
mutations brought this proportion down to 14.6 (in H. sapiens Slip+Syn) to 21.2% (in
S. cerevisiae Slip+Syn). Because the simulated values are much higher than observed in nature,
it might indicate that biological sequences tend toward coding sequences with a higher
variation of nucleotides than would be expected if both polymerase slippage resulting in codon
repeats or a more heterogeneous mixture of codons was present.

It was possible that examining entropy at the codon level may have provided insights into LCR
evolution. Each nucleotide triplet could be considered its own distinct character, especially
considering that strong selection against frameshift mutations results in only replication
slippage of whole codons being tolerated in coding regions (Metzgar et al. 2000). Because of
this, we also calculated entropy at the codon level for each LCR. However, when comparing
protein sequence entropy to codon entropy, there are mathematical constraints which force
LCRs in the scatter plot to lie within a very constrained minimum and maximum threshold
value, forcing a more linear relationship. (Figure A1.5). The maximal codon entropy for a
homopolymeric sequence would occur if the amino acid had a 6 codon degeneracy at log2 6
which is 2.58 bits (Figure A1.5. While the minimal codon entropy is zero for the repetitive
usage of a single codon. Due to these tight mathematical constraints, entropy at the codon level
was not further considered.

The mathematical constraints on possible entropies are the result of codon nucleodicity.
Nucleodicity bias would therefore play a role in the correlation between DNA and protein level
entropies. In all organisms examined there was a significant bias against the formation or
maintenance of mononucleic codon repeats. This definitely impacts the correlation between
protein and DNA sequence entropies, as exemplified in Figure 3.3. However, including this
bias in the simulations increases the correlation between DNA and protein sequence entropies,
while leaving the distribution of protein entropies largely unaffected. Therefore, the
nucleodicity bias not only doesn’t explain the low biological correlation but seems to drive the
correlation up. This indicates that other mechanisms must be acting as well.

One possible explanation for these low correlation results is that these LCRs are formed under
a high selective pressure rather than through just polymerase slippage with low selective
constraints. This result is surprising because there is a great deal of evidence to suggest that
LCRs are the product of polymerase slippage at microsatellites, resulting in either the
expansion or contraction of a repeat sequence (Hannan 2018; Levinson and Gutman 1987;
Tompa 2003; Viguera et al. 2001; Wierdl et al. 1997). Also, evidence suggests that the
polymorphic nature of LCRs is a result of this instability in combination with low selective
pressure acting on either the protein as a whole, or this specific region of the protein (Fan and
Chu 2007; Mularoni et al. 2007; Behura and Severson 2012). In vitro studies have also shown
polymerase slippage can explain the observed microsatellite distributions within a genome
(Madsen et al. 1993). Sequences consisting of pure codon repeats are more likely to undergo
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slippage than codon tracts with synonymous mutations. Such mutations break up trinucleotide
repeats and have been shown to help stabilize and conserve LCRs (Albà et al. 1999). Still other
studies suggest that LCR expansion is in an equilibrium between insertions which decrease
tract stability and point mutations which increase tract stability (Brandström and Ellegren 2008;
Kruglyak et al. 1998). The length of repeat has also been shown to have a positive correlation
with the chance of slippage (Lai and Sun 2003). Together this led us to hypothesize that as
protein LCRs came nearer to a perfect repeat, and as the length of an uninterrupted tandem
amino acid repeat became longer, that the chance of it being a result of slippage and having a
corresponding DNA sequence consisting of pure codons also would increase.

Of course, if LCRs were a product of high selective pressures forcing an irregularly biased
amino acid composition, the length and biochemical properties of the amino acids at the protein
level would be the major important factor in determining the repetitiveness and ordering of an
LCR. This suggests that the codon choice at the DNA level would be unimportant and could
consist of any codons so long as they encoded for the correct amino acid. In this case, variety in
codon usage would increase, likely resulting in a greater variety of nucleotides used. Thus, a
high DNA entropy could encode for a wide range of protein LCR entropies, ultimately
resulting in a lower correlation between sequence entropies. The correlations from the Slip+CC
proteome was significantly higher than those observed for the biological sequence comparisons
in both S. cerevisiae and H. sapiens (Figure 3.5). If slippage were the predominant LCR driving
force with low selective constraints, it would be expected that the correlation coefficients for
these organisms would be closer to those observed from the simulations. Instead, sequence
entropy correlations were significantly different from that observed in the Slip and Slip+Syn
proteomes. As well, the decrease in correlation coefficient between Slip and Slip+CC suggests
that if LCRs were created predominantly by polymerase slippage and contained more pure
codon repeats, the DNA and protein sequence entropies would be more highly correlated than
if they were a product of selection and contained a greater mixture of synonymous codons
(Figure 3.5).

Overall, the selective retention or loss or an LCR may be dependent on the location of the LCR
within the protein (Coletta et al. 2010; Huntley and Clark 2007), the LCR type (Kobe and
Kajava 2001; Radó-Trilla et al. 2015), the protein function (Coletta et al. 2010; Ekman et al.
2006), and the organism itself (Karlin et al. 2002). Battistuzzi et al. (2016) and Zilversmit et al.
(2010) suggest that LCR type and periodicity may constitute factors which affect the mode of
LCR evolution. They propose that slippage may be a more prominent mechanism as an LCR
gets closer to a perfect repeat, and selection may be more important for LCRs with a higher
complexity and lower periodicity. This would make sense, as slippage is thought to occur at
higher rates at longer continuous repeat sequences (Leclercq et al. 2010; Lai and Sun 2003).
When looking only at highly repetitive LCRs, our analyses agree. The results of the slippage
based simulations do closely resemble the biological sequences for LCRs which are mainly
periodic repeats (Figure 3.6). The differences seen when looking at all LCRs are driven by the
non-repetitive LCRs. These compositionally biased domains with a lack of periodicity (cryptic
repeats) would be less likely to undergo slippage and their presence would be more reasonably
attributed to selection. But this discounts any suggestion that the cryptic repeats were at one
point a periodic repeat which degenerated over time (Radó-Trilla and Albà 2012). Similarly,
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Zilversmit et al. (2010) showed that in P. falciparum compositionally biased, aperiodic LCRs
are less variable and evolve slower, whereas regions with long asparagine tracks are more
variable and thought to evolve via replication slippage. We investigated the effect of periodicity
on LCR entropy correlation using a range of minimum repeat lengths and found that when only
sequences containing periodic repeats were compared, sequence entropy correlations were
significantly higher in H. sapiens and higher, although not significantly, in S. cerevisiae
compared to correlations of all LCR types combined (Figure 3.6). Correlations for periodic
repeat LCRs were always significantly higher when comparing correlations for only cryptic
repeat LCRs (Figure 3.6). The overall higher LCR sequence entropy correlation for periodic
amino acid repeats is consistent with the findings of Battistuzzi et al. (2016) and Zilversmit
et al. (2010).

The data presented here demonstrates that there is an unusually low correlation between the
entropies of LCRs within proteins and their corresponding DNA coding sequences. This is
largely driven by LCRs with cryptic rather than periodic repeats. Although LCRs are thought to
be primarily created via polymerase slippage, the simulations conducted suggest that the
correlations would be higher if this were the sole mechanism. Continuing evolution of cryptic
LCRs via synonymous substitutions cannot reduce the size of the correlation and still maintain
the size and entropy of the observed LCRs. Instead, the data suggests that these protein LCRs
are maintained by genome wide, pervasive selection which acts to reduce the correlation by
favouring synonymous substitutions that lower the correlation by lowering the repetitiveness of
the LCRs at the DNA level and hence increasing the stability of the LCR. This may be partially
facilitated through a bias against mononucleic codon repeats as we observe significantly fewer
of these than codon usage frequencies would suggest. This would make the LCRs less prone to
potentially deleterious slippage mutations. In the future, it is necessary to know if the
correlations in sequence entropies change with the age of the proteins. If this hypothesis is true,
we would expect a higher correlation in more recently evolved proteins (Toll-Riera et al. 2012)
compared to older, more highly conserved proteins. Future investigations should also determine
how preferred amino acid residue, protein function, protein age, and role of the LCR within the
protein influences the relation between protein and DNA sequence entropies in LCRs.
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Chapter 4

Characterizing Low Complexity
Region associated Transcript and
Protein Abundance

4.1 Preface

This chapter was published in Molecular Biology and Evolution in May, 2022
(https://doi.org/10.1093/molbev/msac087), with Zachery W Dickson and G Brian
Golding as co-authors. ZWD devised the project idea, performed all analyses, and prepared the
manuscript and figures. GBG provided guidance and edited the manuscript.

In this work our goal was to test a hypothesis that highly mutable low complexity regions
(LCRs) are unlikely to be tolerated in important, high abundance proteins. We did show this but
observed that this observation was not consistent at the transcript level. In general, transcripts
which encode LCRs are more abundant than those which do not, an observation which was
consistent across tested mammalian species. The implication is that more transcripts are
required to maintain the same level of protein production if an LCR is present. Our results
should also give pause to researchers who wish to draw physiological conclusions based on
protein level effects based purely on transcript level data.

4.2 Introduction

Low complexity regions (LCRs) are some of the most common motifs in eukaryotic
proteins (Golding 1999; Huntley and Golding 2000). These regions are highly repetitive and are
enriched for one or a few amino acid residues. These regions are often intrinsically disordered,
lacking fixed structures under normal physiological conditions (Romero et al. 2001). Perhaps
as a result, these regions were thought of as a protein analog for ’junk-DNA’, or as spacers
between other protein regions (Golding 1999). However, more research has shown that these
regions can perform various specific roles. They have been associated with phenotypic
variation (Fondon and Garner 2004), implicated in neurodegenerative diseases (Cummings and
Zoghbi 2000), suggested as hub proteins for interaction networks (Dosztányi et al. 2006), and
shown to be essential to the normal functioning of some proteins (Loya et al. 2012).
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LCRs are broadly defined by compositional bias (Mier et al. 2020), and there exist multiple
methods for detecting and classifying LCRs. The basis for these methods ranges from sequence
entropy (Wootton and Federhen 1993) and probability (Harrison 2017) to prediction of intrinsic
disorder (Dosztányi et al. 2005). LCRs can be classified in several different manners including
by primary amino acid, by location in the protein, by length, and by function (if known). A
recent study found that for some proteins containing an essential LCR, the region could be
replaced with some LCRs from other proteins without loss of function (Loya et al. 2017). The
inter-operability of LCRs could thus be used as another classifier.

LCRs can expand and contract rapidly via slippage of DNA polymerase during
replication (Huntley and Golding 2006) and can arise from unequal crossover events (DePristo
et al. 2006). They may also evolve as the result of selection. Whether the LCR is retained in the
protein once it has arisen is affected by several factors. Recent work has suggested that LCRs
are preferentially retained in proteins which are already tightly regulated, possibly as the
existing regulation ameliorates any deleterious effects from the LCR’s presence (Chavali et al.
2017).

LCRs are also thought to arise in regions under relaxed selection, however previous work,
examining serine homopolymers, found evidence of selection based on codon usage (Huntley
and Golding 2006). Lenz et al. (2014) found that substitution rates increase in primate proteins
in those regions flanking repetitive sequences like LCRs and microsatellites, and that these
regions were under higher purifying selection. All of these results suggest that the presence of
LCRs has evolutionary consequences for their host proteins.

It is well known that expression levels are positively correlated with selection pressure, with
those genes which are most highly and broadly expressed being under strong selection (Pál
et al. 2001). The abundance of these proteins makes their fitness sensitive to perturbations in
their function as defined by their structure (whether globular or intrinsically disordered). The
appearance, expansion, and deletion of an LCRs all have the capacity to dramatically alter the
ability of a protein to perform its function. The majority of such mutations are deleterious and
would be subject to purifying selection, and only tolerated where the effect is smaller, such as
low abundance proteins under more relaxed selection. The intolerance for LCRs in high
abundance proteins would result in a negative association between protein abundance and the
presence of LCRs. It would then be expected that LCR positive (LCR+) proteins would have
lower expression than LCR− proteins.

Previously, this relationship has only been incidentally examined. Some specific LCR+

proteins have been studied for their influence on human health or their structural
properties (Cornman and Willis 2009; Shin et al. 2016). A more general study of
Saccharomyces cerevisiae proteins which contained homo-repeats found that these proteins are
in lower abundance than other proteins (Chavali et al. 2017). This study examined only this one
type of LCR which may have different properties from other LCR types.

Characterizing the relationship between LCRs, gene expression, and protein abundance (PAb)
is an opportunity to shed light on the complex relationship between the latter two. There are
multiple levels of regulation applying to protein expression at every step from transcription,
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through translation, and protein stability. Not all of these processes are well understood and
thus attempts to predict PAb from mRNA levels have been met with mixed success (Nie et al.
2006, 2007). This is a concern as gene expression research is increasingly being used to
develop therapies, despite weak connections to the more physiologically relevant PAb. Nie
et al. (2006) have used sequence characteristics to address a portion of the variation observed.
Among the characteristics examined were amino acid and codon usage, but LCRs were not
considered.

To our knowledge the research here is the first to comprehensively examine LCR+ protein
expression across mammals. We characterize the relationships between LCRs of different types
and their expression in various tissues. We examine the apparent differences between transcript
abundance (TAb) and PAb through the lens of LCRs and show that PAb is negatively associated
with the presence of LCRs, but TAb is, unexpectedly, positively associated with the presence of
LCRs.

4.3 Results

Human TAb and PAb from the GTEx project and the PaxDb were collected for 17975 proteins.
Of these, 4246 (23.6%) were identified as containing an LCR as determined by the presence of
a 15 amino acid window with Shannon entropy less than 1.9 bits. One million random
permutations of the labeled LCR status were performed to generate distributions of expected
quartile shifts. The observed median PAb for LCR+ proteins was lower than that found in
99.2% of the permutations. On the other hand, the observed median TAb was higher than all
medians found in the permutations (Figure 4.1). In both cases, the shift is significantly different
from zero by the Mann-Whitney U test (pPAb < 10−16, pTAb = 1.06×10−11).

Figure 4.2 shows the significance of the observed shift for the baseline, entropy based
permutation and several potential biasing factors. Permutation testing using intrinsic disorder
instead of LCR status yielded qualitatively similar results with two exceptions. The bottom
quartile of abundance for LCR+ proteins shows significantly greater abundance than that for
LCR− proteins, and there was no significant difference observed for the top quartile of TAb.
Ischemia-time-adjusted TAb values give near identical results to the unadjusted TAb values.
Qualitatively similar results are also observed when accounting for isoform redundancy and
when restricting to only heteropolymer LCRs. The shifts observed for homopolymer LCRs are
much less significant but are qualitatively similar.

The median tau index of LCR+ proteins (0.74) is lower than that for LCR− proteins (0.76) (p <
10−5) indicating that LCR+ proteins are more common among broadly expressed proteins. As
a result, the proportion of LCR+ proteins is higher than in the aggregate. These proportions
vary from 24.1% in the testis to 25.1% in the brain. Regardless of these differences, the
aggregate permutation results are qualitatively consistent with the results across tissues
(Figure 4.3). Liver tissue is an exception. However, it had the smallest number of expressed
proteins (12914), the second lowest proportion of LCRs among those proteins (24.6%), and the
highest standard deviation in log2 scaled TAb (3.15).
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FIGURE 4.1: Under permutation all abundance quartiles are significantly dif-
ferent based on LCR status. The distribution of shifts in abundance quartiles
after one million permutations is shown; the lower plots are insets of the upper
plots. The observed shift for each quartile (dashed lines) can be compared to
the matching distribution of location shifts under permutation. LCR+ proteins
have lower abundance for all quartiles (p≤ 0.023) but higher for TAb at all three
quartiles (p≤ 2×10−6).

These results suggest that the presence of LCRs is associated with an increase in the level of
TAb which might be required to maintain a particular PAb level, as compared to LCR−

proteins. While there are many processes in the pathway from gene transcription to protein
degradation, we focused on the rates of protein degradation and translation. Coefficients of
degradation (kdeg) for 3222 human proteins were aggregated, of which 965 (30.0%) were
LCR+. Schwanhäusser’s data for 2180 mouse proteins included 450 (20.6%) LCR+ proteins.
In both datasets, LCR+ proteins degrade 20-30% more rapidly (Table 4.1).

The perturbability and resupply of local codon supply were estimated using Schwanhäusser’s
mouse data. The estimated parameters indicated low perturbability but slow resupply meaning
translation is only likely to be affected for longer, more repetitive transcripts. A single
translation step consumes 5.78% of the tRNA isoacceptor supply of the least supplied codon,
while 0.064% of the deficit between local and global supply is ameliorated. These parameters
result in a correlation between measured translation rates and calculated time weighted
normalized translation efficiency (TWnTE) values of 0.53 (95% CI [0.51,1.0]).

Using these translation parameters and selective wobble constraints optimized for each dataset
(Table A2.2), TWnTE values were calculated using GTEX and Schwanhäusser data for 18054
(30.9% LCR+) human and 3407 (34.0% LCR+) mouse proteins. For both species, transcripts
encoding LCR+ proteins are translated 35-55% less efficiently (Table 4.1).

Logistic regression was used to estimate the relationship between abundance and LCR status
while accounting for protein degradation, translation efficiency, and the increased odds of
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FIGURE 4.2: Observed shifts in LCR status remain after controlling for several
technical explanations and known biological conditions. Bars represent empiri-
cal P values, calculated as the proportion of 100,000 permutations of GTEx and
PaxDB human data with quartile shifts at least as large as the observed shift.
Bars above the horizontal axis have observed shifts where LCR+ proteins are
greater than the null expectation, while bars below the horizontal axis represent
observed shifts where LCR+ proteins are below the null expectation. Dotted
horizontal lines indicate a significance threshold of 0.05. All results are qualita-
tively similar to the baseline analysis.

TABLE 4.1: Summary of Protein Degradation and Translation

Process Species LCR Status N Median
95% CI

lower upper

Degradation Human - 965 1.82×10−2 1.75×10−2 1.88×10−2

k.deg (1/hr) + 2257 2.42×10−2 2.28×10−2 2.57×10−2

Mouse - 450 1.38×10−2 1.30×10−2 1.45×10−2

+ 1730 1.57×10−2 1.46×10−2 1.79×10−2

Translation Human - 4259 2.90×10−2 2.84×10−2 2.95×10−2

TWnTE + 13795 1.41×10−2 1.37×10−2 1.48×10−2

Mouse - 865 2.28×10−4 2.20×10−4 2.37×10−4

+ 2542 1.47×10−4 1.38×10−4 1.54×10−4
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FIGURE 4.3: Differences in abundance between LCR+ and LCR− proteins are
consistent across tissues in humans. Bars represent empirical P values, calcu-
lated as the proportion of 1×106 permutations of GTEx and PaxDB human data
with quartile shifts at least as large as the observed shift. Bars above the hori-
zontal axis have observed shifts where LCR+ proteins are greater than the null
expectation, while bars below the horizontal axis represent observed shifts where
LCR+ proteins are below the null expectation. Dotted horizontal lines indicate
a significance threshold of 0.05. TAb shifts are consistently and significantly
positive while the PAb shifts are consistently, significantly negative.
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FIGURE 4.4: Logistic regression shows PAb and TAb are significantly associ-
ated with the probability of a protein containing an LCR. Regression is based
on GTEx and PaxDB human abundance data as well as Schwanhäusser mouse
data controlling for protein degradation and translation efficiency. Regressors
are standardized so that the effect magnitudes may be compared (a) Estimated
regression coefficients (maroon lines) are compared to a standard normal dis-
tribution (Teal). PAb and LCRs are negatively correlated, while the opposite is
true for TAb. (b) Split violin plots showing the distributions of the regressors’
values across LCR+ (maroon) and LCR− (grey) proteins. Yellow bars indicate
the median, and interquartile for the distribution in which the bar is embedded.

finding LCRs in longer proteins. There were complete data for 3107 (29.1% LCR+) human
proteins and 2155 (20.7% LCR+) mouse proteins. Figure 4.4 shows the standardized
regression coefficients. Despite including two regulatory steps and the length of the proteins,
PAb is still negatively associated with the presence of LCRs. From the coefficients in
Table A2.3, we estimate that a human protein which has double the abundance of an otherwise
similar protein would have 5.5 (95% CI [2.5,8.5])% lower odds of having an LCR. Conversely
TAb is positively associated with the presence of LCRs. A doubling in TAb is associated with
an 8.9 (95% CI [4.6,13])% increase in the odds of encoding an LCR. The PAb results are not
significant for mice but tend towards a negative relationship with a 2.6 (95% CI [-3.0,7.9])%
odds reduction for doubling PAb. The relationship with TAb is qualitatively the same between
human and mouse proteins. For mice, the odds of encoding an LCR are 13 (95% CI [2.1,25])%
higher for each doubling in TAb. There was no qualitative difference in the relationships to
either PAb or TAb with changes to the translation parameters used when calculating TWnTE,
or even whether TWnTE was included in the regression (Figure A2.1).

While PAb and degradation data are not as readily available across mammalian species,
RNA-Seq data are plentiful. Therefore, transcriptomic data were processed together and
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FIGURE 4.5: TAb is associated with an increased probability of an LCR be-
ing present, based on consistently processed RNA-Seq data from 9 mammalian
species. Regressors are standardized so that the effect magnitudes may be com-
pared. (a) Estimated regression coefficients (contrastingly coloured lines) are
compared to a standard normal distribution (Teal). In all cases TAb is posi-
tively associated with the presence of LCRs. (b) Split violin plots showing the
distributions of the regressors’ values across LCR+ (maroon) and LCR− (grey)
proteins. Yellow bars indicate the median, and interquartile for the distribution
in which the bar is embedded.

aggregated for 9 mammalian species. As raw RNA-Seq results were not available for the GTEx
or Schwanhäusser datasets, the human and mouse data are not the same as in the previous
analyses. The results of a logistic regression of LCR status against TAb, protein length, and
TWnTE can be seen in Figure 4.5. Each regression used data from at least 30k proteins, with
LCR+ rates between 23.0% (Human) and 27.6% (Horse). See Table A2.4 for details. The
positive relationship between TAb and the presence of LCRs was qualitatively consistent across
mammals. All estimates for the increase in odds of encoding an LCR were between 1.5% and
4.4% for each doubling in TAb.

4.4 Discussion

As would be expected if there were selective pressures against evolutionarily unstable regions
in highly abundant proteins, we have found that PAb is negatively associated with LCRs.
However, the opposite is true at the level of TAb where LCR encoding transcripts have higher
abundance than expected. The observed associations are consistent across mammalian taxa.
This is true even when accounting for two of the processes along the pathway from gene
expression to protein degradation. This indicates that the associations between LCRs and
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abundance cannot be explained solely by reduced translation efficiency of repetitive sequences
or elevated degradation rates of LCR+ proteins.

We investigated several technical explanations of the observed effect, the first of which was
whether the effect was an artifact our choice of LCR threshold. We reanalyzed our data with
minimum entropy thresholds ranging from 0 to 2.2 bits and observed that elevated TAb for
LCR encoding transcripts is only observed for thresholds between 1 and 2. Increasing the
entropy threshold dilutes the effect of LCRs via the inclusion of more false-positives in the
LCR+ category. This reduces the observed differences between the two groups. Conversely, the
loss of signal with lower thresholds is due to a loss of statistical power. With the proportion of
LCR+ proteins dropping from 24% at a threshold of 1.9 down to 4% at a threshold of one, the
power to detect an effect as large as we have observed drops below 0.5. Our chosen threshold
strikes the balance between sample size, while still limiting the analysis to proteins with
minimum entropies which are correlated with biological effects. This is further supported by
the qualitatively similar results when looking at intrinsically disordered protein regions which
often overlap LCRs (Figure 4.2).

We also investigated the possibility that bias in the mapping of short reads to highly repetitive
sequences would explain the elevated TAb we observed. In that case, it would be expected that
within a transcript, the LCR encoding region would have a higher depth of coverage than
LCR− regions. As we had access to the raw reads for the mammalian RNA-Seq experiments,
we were able to evaluate this and found that there was no significant difference in depth of
coverage for LCR− encoding regions.

The data from the GTEx project is generated from human donors and time does pass between
the death of the donor and stabilization of tissues for RNA-Seq. This ischemia time may have
biased TAb towards more stable transcripts as unstable transcripts would be degraded during
the ischemic window. If the observed shift in TAb were the result of this bias, it would suggest
that LCR encoding transcripts are more stable. However, this is not the case. Almost identical
effects are observed when using unadjusted or ischemia-time-adjusted TAb values (Figure 4.2).
This indicates that the observed effect is not the result of a bias towards more stable transcripts.

The GTEx/PAb analysis had a small potential for redundancy as a result of protein isoforms. Of
the 18,016 genes for which we obtained complete TAb, PAb, and LCR data, 49 had data from
multiple isoforms. The abundance of each isoform was unique, and we observed near identical
results to the baseline observations (Figure 4.2).

Chavali et al. (2017) have previously shown that yeast proteins which contain amino acid
homopolymers have lower abundance than homopolymer free proteins. We repeated our
permutation analysis twice: comparing only homopolymer containing proteins to LCR−

proteins and comparing only heteropolymer LCRs to LCR− proteins (Figure 4.2). We found a
much weaker signal for homopolymer containing proteins, likely due to a lack of statistical
power as only 536 of the 4259 LCR+ proteins had homopolymers. Homopolymer LCRs were
qualitatively similar to the baseline results, but do not completely drive the effects we have
observed, as they are consistent for heteropolymer LCRs as well.
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Data availability presented a limitation to our ability to interrogate the biological mechanisms
driving the elevated TAb of LCR encoding transcripts and the prevalence of elevated TAb and
reduced PAb across mammals. For the latter, proteome wide PAb data are not widely available
across mammals. However, the consistent observation of a positive association at the transcript
level across mammals may indicate that the same relationship observed for humans and mice
holds across mammals for PAb. Regardless, our work shows that there can be a disconnect
between transcript and protein levels. This highlights the importance of carefully investigating
RNA-Seq based conclusions to ensure that the physiologically relevant proteins are likewise
up- or down-regulated.

The lack of translation rate data across mammals also limited the confidence in the accuracy of
our calculations of TWnTE. However, we demonstrate that the particulars of the calculation did
not significantly impact the conclusions about the relationships between TAb, PAb, and the
presence of LCRs (Figure A2.1). Regardless, we believe that TWnTE is a useful method for
calculating translation efficiency as it goes beyond merely considering sequence composition.
In contrast to the standard normalized translation efficiency (nTE), TWnTE allows us to
account for the inherently ordered nature of the codons in a transcript. This method of
calculation clearly shows a difference in translation efficiency between transcripts for LCR+

and LCR− proteins as seen in Figures 4.4 and 4.5.

The inclusion of TWnTE does make the interpretation of coefficients for the logistic regression
more difficult. TWnTE, as calculated with a low coefficient of resupply, is highly correlated
with protein length; longer proteins have lower TWnTE. This correlation and the differences in
TWnTE between the GTEx human and Schwanhäusser mouse data cause the apparent
difference in effect for protein length in Figure 4.4. However, the main goal of this analysis was
to assess the relationships with TAb and PAb which are not strongly correlated with any of the
other parameters. As a result, our conclusion that the presence of an LCRs is positively
associated with TAb is unaffected.

Aside from data limitations, our analyses are also limited to an aggregate view across the wide
variety of LCR compositions and properties. LCR composition is associated with variation in
both transcript and protein abundance as shown by Cascarina and Ross (2018). They observed
that PAb, nTE, and protein half-life can have qualitatively different relationships depending on
the primary amino acid in an LCR (Cascarina and Ross 2018). Figure A2.2 shows the results of
logistic regression for human GTEx data when the most prevalent amino acid in the minimum
entropy regions of a protein is included as an interaction term with PAb and TAb. For
statistically significant coefficient estimates, the observation made in aggregate holds true. PAb
is negatively associated with LCRs, and TAb is positively associated with LCRs. Glycine, the
least conformationally restricted amino acid, is the sole exception. The positive association of
PAb with LCRs in proteins where glycine is the primary amino acid in low entropy regions may
be driven by the high frequency of glycine in abundant structural proteins such as keratin (Parry
and North 1998) and collagen (Persikov et al. 2000) which have repeating structures.

The structural function of these LCRs are undoubtedly a subset of the many important
functional roles LCRs fulfil. These roles require a particular level of abundance to be
maintained, leading to selective pressures on mechanisms which regulate abundance. Our
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proposed explanation of the disconnect between TAb and PAb for LCR+ proteins is that
elevated TAb is an adaptive response to the appearance of LCRs in protein sequences. While
the processes we investigated did not explain the disconnect, it is likely that through the
combined effect on multiple regulatory processes LCRs lead to a reduction in steady-state
protein levels. As these proteins still carry out important functions, there is a selective pressure
to counter the LCR-associated reduction. Either increased transcription or stabilization of LCR
encoding transcripts may be the specific adaptive response leading to elevated TAb. Follow-up
studies will examine the ancestral states of the proteins and their abundance to examine this
hypothesis. As well as to determine the specific biological mechanism leading to decreased
PAb and yet increased TAb of LCR+ proteins.

4.5 Materials and Methods

PAb data for human proteins were downloaded from PaxDb v4.1 (Wang et al. 2012). Data from
brain, colon, esophagus, heart, kidney, liver, lung, ovary, pancreas, prostate, skin, testis, and
uterus tissues were integrated with each protein being assigned abundance equal to the median
abundance across tissues in which the protein was expressed. TAb data were downloaded from
the GTEx project v8 (GTEx Consortium 2013). Data for the 13 tissues listed above were
integrated in the same way to give a median across tissues where the transcript is expressed.
The exclusion of tissues with zero measured expression maximizes the number of proteins
which can be used in the analysis as half of transcripts have zero abundance in the majority of
the selected tissues in the GTEx data. While there is variance in the abundance of a protein and
its transcript across tissues, the sequences comprising LCRs remain constant across tissues.

Breadth of expression and initial expression were calculated from the raw GTEx TAb data. The
former was quantified using the tau index (Yanai et al. 2005). This index ranges from 0 to 1,
where 0 indicates a gene expressed in all tissues equally and a 1 indicates a tissue which is
expressed only in one tissue. The TAb at time of death for GTEx data was estimated by fitting
exponential curves to TAb as a function of ischemia time across samples for each transcript in
each tissue.

Transcript and protein sequences were downloaded from the Ensembl database, release
99 (Howe et al. 2021). As identifiers used across studies differed, all sequence identifiers were
mapped to UniProt protein identifiers using the UniProt Retrieve/ID mapping service (The
UniProt Consortium 2017). The thirteen mitochondrial encoded proteins with both TAb and
PAb data were excluded as mitochondrial genes are under fundamentally different constraints
from the majority of nuclear genes.

LCRs in protein sequences were identified using the Seg algorithm (Wootton and Federhen
1993) using a window of 15 amino acids, a lower complexity bound of 1.9, and a higher
complexity bound of 2.5 as these parameters were shown to detect longer, more repetitive
regions in previous research (Golding 1999). This value also represents the lower inflection
point in the distribution of minimum entropies across human proteins. The overlapping
property of intrinsic disorder was also calculated. Proteins with intrinsically disordered regions
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were identified using IUPred (Dosztányi et al. 2005) in glob mode. A protein was considered to
have an intrinsically disordered region if it contained a non-globular region.

As LCRs range from homopolymer tracts to compositional bias we subdivided observed LCRs
into homo- and heteropolymer LCRs. An LCR was considered a homopolymer if there was a
contiguous tract of a single amino acid which made up at least half the length of the LCR.

Mouse TAb and PAb, as well as protein degradation rates, and translation rates were extracted
from data generated by Schwanhäusser et al. (2011). Human Protein degradation rates were
integrated from multiple sources (Doherty et al. 2009; Cambridge et al. 2011; Zhang et al.
2016; Zecha et al. 2018) by first converting all reported values to the coefficient of degradation.
The geometric mean value of the coefficient across studies for each protein was used.

Translation efficiency was calculated based on the transcript sequences, in a method derived
from the nTE scale (Pechmann and Frydman 2012). On this scale, the translation efficiency of
a transcript is the geometric mean of the translation efficiencies for each codon within the
transcript. The value for each codon is calculated as the ratio of the supply of tRNA
isoacceptors for a codon to the global usage of that codon. This translation efficiency scale
does not account for the ordering of codons within a transcript, which can have a profound
effect through local tRNA depletion. For this work the codon usage values are calculated using
Equation (4.1) as described by Pechmann and Frydman (2012), however the standard
calculation of codon supply is treated as initial conditions for the translation of a transcript. For
each subsequent codon in a transcript, the local supply of tRNA isoacceptors is updated
according to Equation (4.2): accounting for perturbation of the local supply as well as resupply
from the cellular environment. The perturbability is the proportion of the local supply used,
scaled to the least supplied codon. Resupply is the portion of the local deficit which is
ameliorated at each time step. Calculating TWnTE allows for codons which appear at the end
of a repeat to have lower translation efficiency than those which appear alone or at the start of a
repeat.

Si,0 =
ni

∑
j=1

(1− si, j)Ni, j/maxS0 (4.1)

where:
ni = The number of tRNA isoacceptors for codon i
si, j = Wobble constraint between codon i and the jth tRNA
Ni, j = The copy number of codon i’s jth tRNA

Si,t = βSi,0 +(1−β )(1−αi)Si,t−1 (4.2)

where:

Si,0 = Normalized initial codon supply
Si,t = Local codon supply for the codon i at time t
αi = Normalized perturbability for codon i
β = Coefficient of resupply of tRNA isoacceptors
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The selective constraints on wobble base pairing are a measure of how tolerant the ribosome is
of different types of mismatches between codon-anticodon pairs. Most mismatches are not
tolerated, but values were allowed to vary between 0 (tolerant) and 1 (intolerant) for A-A, U-G,
G-U, and A-C mismatches. Wobble constraints were set for each organism by optimizing the
correlation between codon supply and codon demand with R (R Core Team 2013) using the
neldermead package (Bihorel and Baudin 2018), with initial conditions from estimates
generated for yeast (dosReis et al. 2004). Codon supply was determined from genomic tRNA
counts which can vary widely even in mammals. For example, Bos taurus (GCF_002263795.1)
and Rattus norvegicus (GCF_000001895.5) respectively have 1637 and 377 annotated tRNA
genes differentially distributed across potential anti-codons. Codon demand was determined
from TAb weighted codon counts in the transcriptome. A consistent set of transcripts for codon
usage calculations was constructed from across human transcripts which had data for both TAb
and PAb available. For all other mammals the orthologous transcripts were determined based
on mammalian orthogroups from PaxDb (Wang et al. 2012).

The perturbability and resupply parameters were selected by optimizing the correlation
between calculated TWnTE values and measured translation rates across all proteins in the
Schwänhausser dataset (Schwanhäusser et al. 2011). The optimization was performed with
R (R Core Team 2013) using the neldermead package (Bihorel and Baudin 2018) with initial
estimates of 0.5 for both parameters. The perturbability parameter is normalized to an
organism’s codon usage and tRNA availability, and the resupply parameter is based on basic
diffusion. As only the Schwänhausser-based mouse dataset had translation rates, the TWnTE
calculations for all other mammals used the same parameter values, under the necessary
assumption that translation dynamics are consistent across the mammals tested.

Primate RNA-Seq data were acquired from the Non-Human Primate Reference Transcriptome
Resource (Peng et al. 2015). Additional reads were downloaded via the Sequence Read
Archive (Leinonen et al. 2011) for seven other transcriptomic studies (Brawand et al. 2011;
Merkin et al. 2012; Fushan et al. 2015; Tang et al. 2017; Carelli et al. 2018; Valberg et al. 2018;
Chen et al. 2019). The dataset assembled represents nine mammalian species: humans,
chimpanzees, macaques, mice, rats, dogs, horses, cows, and pigs with data from six tissues:
brain, heart, kidney, liver, lung, and muscle tissues. All RNA-Seq data were processed through
the same pipeline to maximize consistency between datasets. Adapter removal, quality control,
and read merging was performed using fastp (Chen et al. 2018) with quality windows of 4bp,
minimum quality thresholds of 20, a minimum read length of 30bp, and merging any paired
reads which overlapped by at least 20bp with 80% similarity. TAb quantification was
performed with Salmon (Patro et al. 2017) using reference transcriptomes acquired from
RefSeq (O’Leary et al. 2016), and the validate mappings flag. As orphan reads were generated
during quality control, quantification was performed separately for orphaned and paired reads
for each sample before pooling the library-size-adjusted results together.

The number of genes or proteins for which data were acquired can be found in Table A2.1.
Total and LCR+ counts are broken down by data set, data type, species, and tissue.

Permutation testing was performed on the GTEx and PaxDB data by randomly shuffling the
LCR status of proteins which had both TAb and PAb data. For each permutation, the 1st
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quartile, median, and 3rd quartile of abundance was calculated for both the LCR+ and LCR−

groups. The difference between the values was recorded to establish null distributions for each
quantile where LCR status is unrelated to abundance. The results of the permutation test of
median abundance were verified with a Mann-Whitney U test. The difference between each
quantile was used rather than simply the difference between the median as it provides a better
view of how LCRs are correlated with abundance across the wide distribution of abundances
observed.

Permutation testing was also done as described above for several alternative conditions. To
compare entropy-based and structure-based LCR identification, intrinsic disorder status was
used as the permuted factor. To assess the effect of differential transcript stability, raw TAb was
substituted with ischemia-time-adjusted TAb. To examine the effect of different classes of
LCRs, separate permutation tests were performed which compared whether homo- or
heteropolymer LCR+ proteins to LCR− proteins. To assess if redundancy from protein
isoforms was affected results, permutations were done using a subset of the data such that only
one transcript-protein pair was used for each gene.

Logistic regression was used to assess the probability of a protein containing an LCR given the
TAb and PAb, while accounting for differences in protein degradation rates, translation
efficiency, and protein length. All regressors were log transformed to meet the assumptions of
linearity, then all regressors were standardized to allow comparisons of their effects on LCR
probability. The fold change in odds for a unit change in each regressor can be obtained by
natural exponentiation of the estimated regression coefficients. When performing logistic
regression on the mammalian RNA-Seq data, only TAb and protein length were included as
regressors. Regressions for all organisms were performed independently.

To evaluate the robustness of the analysis to the assumption that mouse translation parameters
are applicable to other mammals, the logistic regression above was repeated for humans using
standard nTE calculations, excluding translation efficiency from the model completely, and 25
pairs of parameter values evenly spread across the valid parameter space. The change to the
estimated PAb and TAb coefficients was evaluated for qualitative changes to the conclusions.
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Chapter 5

Low Complexity Regions as signals in
Untranslated Regions

5.1 Preface

This chapter was aided by undergraduate volunteers, under my supervision. Daniel Ruiz
performed the initial analysis showing that low complexity regions in untranslated regions
(UTRs) have significant impacts on both the protein abundance and transcript abundance of
downstream products. Megan Bilodeau performed a battery of analyses to examine which, if
any, known signaling motifs in UTRs have overlap in presence and effect with untranslated
low-complexity motifs. She also performed analysis to identify novel motifs. In both cases, I
devised the research questions and methodology as well as interpretation of the results.

5.2 Introduction

Repetitive sequences are common not just in protein sequences but also non-coding regions
throughout eukaryotic genomes. Repeats can be structurally important as in telomeres and
centromeres (Price 1992) and they can also be sources for genetic variation (Tautz et al. 1986).
These repetitive regions are ubiquitous, for example SINEs and LINEs (short and long
interspersed nuclear elements), which make up 17 (Lander et al. 2001) and 13% (Zhang et al.
2021) of the human genome, respectively. Smaller scale repeats also exist: microsatellites are
tandemly repeating elements in intergenic regions (Ellegren 2004). The evolution of these has
best informed how we understand the evolution of repeats in coding regions as well.

The distinction between coding and non-coding repeats is important due to the significant
physiological impacts for protein sequences. Protein low complexity regions (LCRs) are
associated with abundance shifts at both the transcript and protein level (Dickson and Golding
2022). Some of the effects may be at the RNA level through changes in translation rate (Liu
et al. 2016; Li et al. 2017). However, repeats in transcribed sequences can also have an effect
during the transient RNA phase (Choi et al. 2009; Wang et al. 2017; DelCampo et al. 2015).

Transcribed but untranslated gene sequences can affect abundance through signaling
transcription factors, transcript mobility and stability, and ribosomal occupancy (Kedersha and
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Anderson 2002; Faux et al. 2005; Everett and Wood 2004; Horton et al. 2023). For example,
myotonic dystrophy type 2 is caused by a tetra-nucleotide repeat in an intron of the CNBP
gene (Ranum and Day 2002; Dere et al. 2004; Day and Ranum 2005; Musova et al. 2009).
Even this transient inclusion of a repetitive element in the mRNA dis-regulates the abundance
of the transcript and its protein. Beyond the extreme cases of pathological states, signaling
motifs in the five and three prime untranslated regions (UTRs) of transcripts are well known
and catalogued (Dalphin et al. 1996; Jacobs et al. 2000, 2002).

Some of the UTR signaling motifs are repetitive in nature, such as C-Rich stability
elements (Kong and Liebhaber 2007). However, the overall effect of low-complexity (LC)
motifs in UTR is not well understood. If the impacts of LC on abundance are purely the result
of peri- and post-translational pressures, it would be expected that LC motifs in UTRs would
not be strongly associated with changes in abundance. However, if LC motifs in UTR do have
significant effects it may be due to overlap with known or potentially novel signaling motifs.

In this work we investigate the relationship between transcript abundance (TAb), protein
abundance (PAb), and the presence of untranslated low-complexity motifs (ULCM). And
further investigate the degree of overlap between known signaling motifs in UTRs.

5.3 Methods

PAb data for human proteins were downloaded from PaxDb v4.1 (Wang et al. 2012). Data from
brain, colon, esophagus, heart, kidney, liver, lung, ovary, pancreas, prostate, skin, testis, and
uterus tissues were integrated with each protein being assigned abundance equal to the median
abundance across tissues in which the protein was expressed. Tissues where no expression was
detected, or enumerated were excluded from this calculation. TAb data were downloaded from
the GTEx project v8 (GTEx Consortium 2013). Data for the 13 tissues listed above were
integrated in the same way to give a median across tissues where the transcript is expressed.

Gene sequences were taken from the annotated human genome (GRCh38 Schneider et al.
2016). LCRs were identified in coding sequences using Seg (Wootton and Federhen 1993),
with a window of 15 amino acids, a lower entropy bound (K1) of 1.9 bits, and an upper entropy
bound (K2) of 2.2bits. A K1 of 1.9 has been used in several previous publications (Huntley and
Golding 2000, 2002; Lenz et al. 2014; Dickson and Golding 2022) and found empirically to
give good results. It is also the lower inflection point in the distribution of minimum entropies
across human proteins. A modified version of Seg which properly accounts for the DNA
alphabet (Enright et al. 2023) was used to identify ULCMs and LCRs. Window length of 45bp
for DNA and 15 amino acids for protein were used. The K1 values in each of the 5′ and 3′

UTRs, the coding sequence, and the protein sequence were determined by taking the lower
inflection point in the distribution of minimum entropies across human transcripts. The mode
of this distribution was taken to be the value of K2. Each transcript region has its own
distribution and K1 and K2 values.

The relationship of PAb and TAb with the presence of LCRs and ULCM was investigated using
multivariate linear models implemented in R (R Core Team 2022). Later analyses which
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included known signaling motifs and subdivisions of ULCM were also evaluated in this
manner.

A set of known motifs in 5′ and 3′ UTRs was acquired from the TransTerm database (Jacobs
et al. 2002). PatScan (Overbeek et al. 2010) was used to search for the known motifs in 5′

ULCMs. Motifs from both UTRs were acquired and searched for in both the 5′ and 3′ to
investigate whether motifs canonically known to have effects when in one region have similar
effects in the other.

A python script (Van Rossum and Drake 2009) was written to de novo identify ULCM motifs
associated with changes in TAb. The general approach is seed based where the highest scoring
motif is found between the first two sequences, then the best match to that motif is found in all
subsequent sequences. Averaging the motifs resulting from repeatedly, randomly selecting the
pair of sequences for the seed each time converges to the identified motif.

In general, the input sequences to such a program will have some a priori knowledge that a
motif will be present, for example a collection of regions upstream of a transcription start site
in genes known to be regulated by the same transcription factor. In our case, the only
knowledge we have is associations with TAb. It is not reasonable to expect that all UTR with a
ULCM will have the same TAb associated motif. To address this, we take random bootstraps of
the ULCM sequences, where the weighting for each sequence is proportional to the TAb. In
this way we can bias the input sequences to those more likely to have a common motif which
can be identified. In our implementation, sequences were randomly selected from the input
with replacement with the probability of a particular ULCM being selected weighted based on
TAb. The ULCM with the lowest TAb is given a weight of 1 and all others are given a
logarithmically scaling weight of at least 1. All weights (W ) were truncated to the nearest
integer. The weight was calculated as

Wi =
⌊

log2
xi

minx

⌋
+1, (5.1)

where xi is the TAb for the ith ULCM. As the entire bootstrap was randomly selected, the first
two sequences, which are used for the seed, were also random.

The score used when comparing motifs was based on the information content of the resulting
nucleotide profile. The profile being the frequency of each nucleotide at each position in the
motif. The score for profile P was calculated as:

P =
k

∑
i=1

2−H( fi), (5.2)

where k is the length of the motif, fi is the frequency of each nucleotide at the ith position of the
profile, and H(x) is the Shannon Entropy of a frequency table, calculated according to
Equation (3.1). The total information content score was used as high conservation is correlated
with high information content while still accounting for potential degeneracy. Additionally, the
scale of information content does not depend on the number of input sequences making scores
comparable between differently sized sets.
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To find the seed for a motif, every pairwise comparison of k length subsequence from the first
two ULCMs was made, and the seed was the pair with the highest scoring profile. Every k
length subsequence of the third ULCM was then compared to the seed to find the profile of
three sequences with the highest score. This was repeated until all ULCM in the bootstrap have
been added to the profile. At this point the frequency of each nucleotide at each position in the
profile was weighted by the score of the profile and added to an overall profile. In this way,
high scoring profiles contribute more to the overall profile than low scoring profiles. After the
desired number of ‘permutations’ have been completed the final identified motif was the
consensus of the overall profile. This entire procedure was repeated for values of k between 10
and 30 bp, each with 400 permutations.

5.4 Results

To determine entropy thresholds for Seg to use in the identification of ULCM we examined the
distribution of minimum entropies in 5′ UTRs of 17,919 mRNA sequences. The distributions
for each transcript region, and the translated protein sequence can be seen in Figure 5.1. The K1
for 5′ and 3′ UTRs was found to be 1.38 bits, while the higher complexity coding and protein
sequences had K1 values of 1.52, and 1.97 bits respectively.

We compiled data from 15,184 proteins for which non-zero transcript and protein abundance
data were available and identified ULCMs in their 5′ and 3′ UTRs, as well as LCRs in the
translated coding sequences. We observed 2255 (14.8%) of 5′ UTRs contained a ULCM, while
3874 (25.5%) of 3′ UTRs had a ULCM and 4733 (31.2%) of proteins had an LCR. The
correlation in LC was low between the transcript regions. The highest observed correlation was
between the presence of a ULCM in the 5′ UTR and the presence of an LCR in the protein
sequence (r = 0.10). We also observed low correlation between the lengths of the transcript
regions, the highest correlation being between the lengths of the UTRs at r = 0.08.

We performed multivariate linear regression with TAb and PAb as regressands and the Boolean
status of the presence of a ULCM or an LCR in the UTRs or protein sequence as regressors.
The lengths of each region were included as nuisance variables. The full results of this
regression can be found in Table 5.1. The presence of a ULCM in the 5′ UTR was significantly
associated with any change in abundance: a positive association with TAb. Protein LCRs were
positively associated with TAb and negatively associated with PAb.

All further investigations focused on the 5′ UTR and attempted to identify known or novel
motifs associated with the observed impacts on TAb. PatScan was used to find known
translation motifs from the TransTerm database in 5′ UTRs of 16,049 transcripts. Considering
the UTRs in which known motifs are found and the UTRs in which ULCM were found, the
known motifs with the most similar pattern of presence and absence were m1A methylation
sites, pseudoknot like structures, and stem loop structures. The former is post-transcriptional
modification where an adenine ribonucleotide has a methyl group appended to the pyrimidine
ring. This interferes with base pairing with functional consequences during translation (Shima
and Igarashi 2020). For the top three motifs, Jaccard similarity indices with ULCMs were 0.23,
0.17, and 0.14, respectively. All known motifs detected as well as their correlation and Jaccard
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FIGURE 5.1: The distribution of minimum entropies in 45 bp (or 15 amino
acid) windows across 17,919 mRNA sequences separated by transcript region.
The lower inflection point and maximum of the distribution are marked, as well
as 95% confidence intervals based on 1000 bootstraps of the mRNA sequences.
These values were used as lower and upper entropy thresholds for ULCM iden-
tification with Seg.
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TABLE 5.1: Multivariate Linear Regression of Abundance against LC presence

Region Variable
TAb PAb

ANOVA log10P
Coef (std.err) Coef (std.err)

UTR5 ULCM+ 0.559 (0.065) 2.28 (0.056) -16
Length -8.09×10−4 (9.2×10−5) -8.48×10−4 1.2×10−4 -21

Protein LCR+ 0.302 (0.050) -0.213 (0.067) -22
Length -5.81×10−4 (3.7×10−5) -1.08×10−3 5.0×10−5 -114

UTR3 ULCM+ -0.114 (0.058) -0.104 (0.077) -4.4
Length -2.19×10−5 (1.4×10−5) -1.64×10−5 1.8×10−5 -0.59

similarity with ULCMs can be found in Table 5.2. Of the 7561 UTRs where m1A methylation
sites were found, in 1060 of them the motif was entirely included within a ULCM.

We repeated the linear regression above but altered the 5′ UTR regressor to include information
on the presence of m1A methylation sites, the motif with the highest Jaccard similarity to
ULCM. Instead of a Boolean variable it was considered as a factor with three levels: no
ULCM, a ULCM without an m1A methylation site, and a ULCM containing an m1A
methylation site. The estimated regression coefficient for TAb values for the latter
(0.894±0.090) was 1.6 times higher than the original estimate for simple ULCM presence
(0.559±0.065 Table 5.1). The coefficient for ULCMs without m1A methylation sites was 2.1
times smaller at 0.264±0.085. The coefficients for other transcript regions were not
significantly different between the two regressions.

We used a method which bootstraps the ULCM sequences, weighted by their transcripts’
abundance to de novo identify any motifs in 5′ UTR associated with elevated TAb. For all motif
lengths tested we found that poly-cytosine motifs were most conserved and most TAb
associated. (Figure 5.2). The sequences identified also indicate that guanine residues are also
often present in the motif.

5.5 Discussion

We have examined human abundance data for both proteins and transcripts and investigated
their relationship with the presence of ULCM. Accounting for LC in UTRs we were able to
recapitulate previous results demonstrating differential impacts at the transcript and protein
levels associated with the presence of LCRs in protein sequences. We have additionally shown
that the presence of 5′ ULCM is positively associated with TAb, even after removing the
influence of LC and length in other transcript regions. Further investigating 5′ ULCM, we
found the known motif whose pattern of presence and absence was most similar to and
correlated with ULCM presence was m1A methylation sites. These sites account for a large
fraction of the relationship between 5′ ULCM and TAb. We attempted to de novo identify any
novel TAb associated motifs and identified GC rich sequences with a cytosine bias as the best
candidate.
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TABLE 5.2: Known translation motifs found in human 5′ UTR, sorted by Jac-
card Index

Proteins with Motif Overlap with ULCM
Motif Name Count (%) Correlation Jaccard Index

m1A methylation site 7561 (47.11) 0.26 0.23
Pseudoknot like structure 9944 (61.96) 0.12 0.17
Stem loop structure 15854 (98.78) -0.01 0.14
CAG Element 3569 (22.24) 0.04 0.11
Musashi binding element (MBE) 5310 (33.09) -0.01 0.11
Plant Polyadenylation Element 7782 (48.49) -0.03 0.11
CUG Element 2849 (17.75) 0.03 0.1
Mammalian Polyadenylation Element 816 (5.08) 0.02 0.05
K-Box (KB) 778 (4.85) 0 0.04
Readthrough Element BYDV 303 (1.89) 0.09 0.04
Translational control sequence (TCS) 576 (3.59) 0.03 0.04
In vitro selected consensus stability element 686 (4.27) -0.01 0.03
15-LOX-DICE Element 195 (1.22) 0.05 0.02
GU-Rich Element (GRE) 83 (0.52) 0.07 0.02
Yeast Polyadenylation element 259 (1.61) 0.01 0.02
AU-Rich Stability Element (ARE) 65 (0.41) 0.03 0.01
Brd-Box (Brd) 137 (0.85) 0 0.01
C-Rich Stability Element 95 (0.59) 0.05 0.01
Cytoplasmic polyadenylation element consensus (CPE) 84 (0.52) 0.01 0.01
GU-rich destabilization element UTRSite 51 (0.32) 0.04 0.01
Pumilio binding element (PBE) 88 (0.55) 0.01 0.01
tRNA like structure 114 (0.71) 0.02 0.01
Actin Localising Element 3 (0.02) 0.02 0
ADH_DRE Stability Element 95 (0.59) -0.01 0
ARE database (ARED) Cluster III 4 (0.02) 0.02 0
ARE database (ARED) Cluster V 25 (0.16) 0.03 0
Yeast Puf4 consensus element 10 (0.06) 0 0
Cytoplasmic polyadenylation element (CPE) UTRSite 2 (0.01) 0 0
Cytoplasmic polyadenylation element non-consensus 36 (0.22) 0 0
Dinucleotide Repeat 5 (0.03) 0.04 0
Elastin G3A 3’UTR stability motif (G3A) 7 (0.04) 0.02 0
FMRP Translational regulator G-quartet 8 (0.05) 0.01 0
GLUT1 3 Prime Stability Element 2 (0.01) 0 0
Yeast Puf5 consensus element 20 (0.12) 0.02 0
HAC1 3’ Binding Element (3’BE) yeast 3 (0.02) 0.01 0
Histone 3 prime stemloop UTRSite 1 (0.01) 0 0
Iron Responsive Element (IRE) 6 (0.04) 0 0
Yeast Puf3 consensus element 12 (0.07) 0 0
Mitochondrial Ribosomal Prot S12 Transl Cont Element 1 (0.01) 0 0
Musashi binding element (MBE) UTRSite 9 (0.06) 0.03 0
MYC mRNA localisation element 1 (0.01) 0 0
Nanos translation control element (NANOS_TCE) UTRSIte 62 (0.39) 0.01 0
Readthrough Element -from TMV 26 (0.16) 0 0
SAUR Plant Stability Element 1 (0.01) 0 0
Yeast Down Stream Element 5 (0.03) -0.01 0
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FIGURE 5.2: Sequence logos for best 17bp motif de novo identified in 5′ UL-
CMs. The probability of each nucleotide is displayed in a, and the information
content in b. The LC Sequences most associated with TAb elevation in 5′ UTRs
are C/G rich sequences.

It must be noted that the results of the analyses performed are influenced by the choice of
entropy thresholds. We examined this impact by varying K1 for each transcript region
independently and observing how this would affect the linear regression. Specifically, we
examined whether different choices of K1 for any transcript region might alter the estimated
change in TAb and PAb due to the presence of LC in each transcript region. The results of this
test are shown in Figure 5.3. For all cases where the K1 value was varied in one transcript
region, the coefficient estimates for the other two regions never qualitatively changed: the
coefficient values were always had the same sign regardless of K1 value used. However, signs
do change for the transcript region being varied. In all three transcript regions, if the K1 value
for that region was less than one bit, the relationship with either abundance would be negative,
however these tend to be extreme sequences with very few transcripts having entropies in this
range (Figure 5.1). For all three transcript regions the coefficient estimates are qualitatively
stable for values near the inflection-point-based choice of K1. Conclusions again change for
high K1 values. However, these are unreasonable thresholds as they are higher than the
maximum-based choice of K2; a definition of low entropy sequences which include those which
minimum entropies higher than the modal minimum entropy value is a poor definition of low.
While the conclusions are not completely robust to choice of K1, our analysis is based on
choices which adequately bracket LC sequences. Our conclusions are robust to choices of K1 in
the neighbourhood of our chosen K1 values.

The known motifs which we observed to have the highest Jaccard similarity in presence or
absence to 5′ ULCM were ubiquitous structural motifs and m1A methylation sites. The former
include sequences associated with pseudoknot-like and stem loop structures and were near
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FIGURE 5.3: Qualitative conclusions about the relationship between ULCM
and abundance are robust to choice of lower entropy bound (K1). Each plot
shows how the K1 used to identify LC in the y-axis transcript region affects
the estimated change in both TAb and PAb based on the LC status of the x-
axis transcript region. The main diagonal shows how changing K1 for a region
affects its own abundance coefficients, while the off diagonals show the varied
K1 affects estimates in other regions. The orange and purple traces show the
TAb and PAb coefficients respectively. The entropy thresholds identified based
on critical points in the distribution are indicated by the green and blue vertical
lines. The horizontal dotted line indicates a coefficient estimate of zero, if there
is no such line then the coefficient estimates are always qualitatively the same
regardless of K1 value. The abundance traces crossing the zero-line indicate a
qualitative change in conclusions. No trace ever crosses the zero line in the off
diagonals. On the main diagonal the inflection point based K1 value used in the
analysis is in a region where small changes in the K1 value do not qualitatively
alter the conclusions.
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ubiquitous: respectively, 62 and 99%, of 5′ UTRs having at least one of these
structure-associated motifs. While mRNA structure is established as influencing TAb and
PAb (DelCampo et al. 2015; Wang et al. 2017), the ubiquity of these motifs makes it unlikely
that they explain the observed association between TAb and ULCM. In contrast, m1A
methylation sites are somewhat more rare (47% of UTRs) and have higher correlation and
similarity to the pattern of ULCMs. These motifs are well studied for their critical role in tRNA
structure and stabilization (Basavappa and Sigler 1991; Liu et al. 2016), but less well
characterized in mRNA. There is evidence that m1A methylation in coding sequences hampers
translation, however in the 5′ UTR this modification is associated with greater translation
efficiency (Li et al. 2017). We observed that m1A methylation sites embedded in ULCMs
account for a large portion of the positive association TAb between 5′ ULCMs. This may
indicate that m1A methylation also plays a role in stabilizing mRNA.

The m1A methylation site motif from TransTerm (Dalphin et al. 1996) consists of a 17bp
sequence with a central adenine residue (the methylated base) preceded by a GC dinucleotide,
the remainder of the motif is either guanine or cytosine residues. While our attempts to de novo
identify TAb associated motifs did not recapitulate this sequence, we consistently found GC
rich sequences with a cytosine bias to be the TAb associated motif in 5′ ULCM. This was
regardless of the motif length investigated. Poly-cytosine motifs may be targets for poly-C
binding proteins which are known regulators of gene expression (Choi et al. 2009). These
bonding proteins effects can be tissue specific, for example they are well known regulators in
red blood cell development (Zhao et al. 2022). While C-rich elements are known to promote
stability, they are generally observed in 3′ UTRs. Our observations show an expanded range of
action for poly-C binding proteins is possible.

Our work shows that ULCMs in 5′ UTRs are associated with elevated transcript abundance.
This appears to be largely, but not entirely, explained by GC-rich, and especially C-rich LC
regions associated with post-transcriptional modification and protein binding regions which
increase transcript stability and translation efficiency. Next steps could include experimental
verification of m1A methylation. It is unclear if these potential sites are truly modified in vivo.
If so the impact of the surrounding context of the larger ULCM on the effectiveness and
frequency of the modification could be investigated. It is also unclear whether the potential
regulatory mechanism has any tissue specificity. Our work advances our understanding of the
breadth of potential regulation of TAb and opens avenues towards further investigation of this
complex and critical biological process.
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Chapter 6

Modeling the Co-evolution of Low
Complexity Regions and Transcript
Abundance

6.1 Preface

At the time of writing, this chapter has been submitted to the Journal of Molecular Evolution
and is under review. The submitted manuscript is entitled "Evolution of Transcript Abundance
is Influenced by Indels in Encoded Protein Low Complexity Regions". The Authors of the
paper are Zachery W Dickson, and G Brian Golding. GBG contributed to the conceptualization
of the project, especially the suggestion of an ABC approach, and edited the manuscript. ZWD
executed the project including data collection and processing, coding, and writing to the
manuscript.

The goal of this work was to identify the temporal order of the evolution of low complexity
regions (LCRs) and changes in transcript abundance (TAb). Based on the results described in
Chapter 4 we hypothesized the observed elevation in TAb was an adaptive response to the
appearance of LCRs in the protein sequence. Using data from human data to examine a short
evolutionary time scale in combination with ancestral reconstruction and an ABC based
modelling approach, we showed that co-evolution between LCRs and TAb best explains the
data. The short timescale examined does not completely describe the evolutionary history of
these data but demonstrates that examining multiple outcomes gives a more complete image of
that history.

6.2 Introduction

In any given mammalian proteome, approximately a fifth of protein sequences contain at least
one region where the amino acids are highly repetitive or compositionally biased (Karlin et al.
2002). These low complexity regions (LCRs) were once considered ‘junk’ protein sequences,
at most spacers between more traditional protein domains (Golding 1999).
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The proteins which contain them have since been shown to have important roles enabled by
their LCRs which confer a host a properties depending on their specific amino acid
composition. Many LCRs are intrinsically disordered at physiological conditions (Romero
et al. 2001), but changes in those conditions can lead to conformal or phase shifts (Martin and
Mittag 2018). Another common property is promiscuous binding. As the regions are
unstructured and have little variation in amino acids, they cannot discriminate binding targets
unless there is some impact from the context of the protein itself (Mier et al. 2017).
Non-specific binding to RNA and protein allows LCR+ proteins to function as hubs for protein
interaction networks (Dosztányi et al. 2005), and in generalized complexes for transcription
(e.g. Nab3; Loya et al. 2017) and splicing (e.g. hhRNPG; Zhou et al. 2019). The latter of
which occurs in the spliceosome which is a membraneless organelle; a liquid droplet of RNA
and protein. Non-specific binding and inducible phase change also make LCRs critical in
another type of membraneless organelle: stress granules (Fomicheva and Ross 2021). LCRs
also make appearances in structural proteins like keratin (Parry and North 1998) and
collagen (Persikov et al. 2000).

The same properties that make LCRs useful can be harmful if the balance of properties shifts.
Expanded LCRs are hallmarks of several neurodegenerative diseases such as
Huntington (Cummings and Zoghbi 2000). The number of associated diseases is likely related
to the fact that LCRs are mutationally unstable. They evolve rapidly through replication
slippage (Huntley and Golding 2006), unequal crossing over (DePristo et al. 2006), and point
mutations (Lenz et al. 2014). The tension between the multiple important roles LCR+ proteins
have and the mutational risk of utilizing them create evolutionary pressures on the regulation of
these proteins. LCR+ proteins tend to have lower levels of protein abundance (PAb) (Chavali
et al. 2017; Dickson and Golding 2022) as compared to highly conserved, important
proteins (Pál et al. 2001). Despite the lower PAb, it has been shown in mammals that LCR
encoding transcripts have higher abundance than those which do not (Dickson and Golding
2022).

The disconnect between protein and transcript abundance (TAb) for LCR+ proteins may be
explained by any or all of the regulatory steps between gene transcription and eventual protein
degradation. At the transcription level, Horton et al. (2023) recently showed that transcription
factors interact directly with short tandem repeats (a type of DNA LCR) flanking canonical
binding motifs, ultimately affecting the expression of the gene. Non-specific binding to other
regulatory proteins may be a mechanism by which protein LCRs alter the abundance of their
host transcripts and proteins.

Regardless of the particular changes, protein regulation and LCR sequences must co-evolve to
maintain physiologically useful protein levels. Of particular interest is the question of temporal
order, does the appearance or expansion of LCRs create selective pressures on the regulation of
the proteins which contain them? Or is it that LCRs are only tolerated in proteins which have
appropriate regulatory frameworks in place? To answer this, we must understand the
co-evolution of both LCRs sequences and regulation of PAb.

Most of what is known about LCR evolution has been through study of DNA microsatellites,
short tandem repeats in intergenic regions. Most models of their evolution are length dependent
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stepwise models with slippage being more likely with longer repeats (Kruglyak et al. 1998;
Dieringer and Schlotterer 2003; Sainudiin et al. 2004). Point mutations are also included in
these models as a mechanism which breakup long repeats. These models indicate the balance
of insertions, deletions and point mutations as the explanation for the observed distribution of
microsatellite lengths. While the mechanisms of evolution may be similar for protein LCRs the
selective pressures for coding regions are very different. Due to significant selection against
frameshift mutations, only tri- and sometimes hexanucleotide repeats are tolerated. While the
underlying evolutionary change is at the DNA level, models which only allow full codon indels
functionally operate as amino acid indels.

As LCRs are ultimately features of primary sequences, they can only evolve through direct
changes to the DNA including both indels and point mutations. This contrasts with the
cornucopia of ways to evolutionary vary PAb, most of which stem from the many steps from
gene transcription to protein degradation. Mutations to the gene itself can alter the rate of
translation as well as protein stability. Changes altering TAb will also affect PAb, and even here
there are multiple indirect mechanisms for evolution. Considering changes which only affect
gene transcription, TAb can be altered by mutations in the sequences of transcription factor
binding sites and proximal sequences (Odom et al. 2007; Bradley et al. 2010; He et al. 2011).
TAb can also evolve through the loss and formation of binding sites (Ni et al. 2012), this is
especially true for longer binding motifs which often evolve from transposable element and
repeat expansion (Bourque et al. 2008). The level of sequence and binding conservation varies
across the tree of life and differs between tissue specific and constitutive transcription
factors (Villar et al. 2014). He et al. (2011) showed that binding can be combinatorial, allowing
compensatory changes across multiple transcription factors and binding sites. Evolution of TAb
is the net effect of a large number of possible effectors.

The combination of many effects will tend towards a normal distribution through the central
limit theorem. Therefore, the evolution of gene expression is often modelled as a stochastic
process with Gaussian increments such as Brownian motion (Bedford and Hartl 2009) or
Ornstein–Uhlenbeck (OU) process (Rohlfs et al. 2014). The former of which considers the
expression to take a random walk over evolutionary time, radiating away from an ancestral
state, while the latter introduces a selective optimum which exerts pressure on the abundance
value. Either of these can be incorporated into a Bayesian framework to estimate the
parameters of an evolutionary model. However, to incorporate interactions with LCR length the
likelihood calculations become analytically intractable and computationally prohibitive. As an
alternative, an approximate Bayesian calculation (ABC) can be performed, where simulations
are performed and compared to the data in order to estimate the likelihood. Beaumont et al.
(2002) describe methods which compare summary statistics for observed and simulated data.
Using these methods one can also infer parameters in a multivariate space. Haba and
Kutsukake (2019) used an ABC to jointly model both group size and sociality in naked mole
rats, demonstrating an example of multivariate analysis over evolutionary time.

In addition to interactions between TAb and LCRs, the evolutionary age of proteins may be a
lurking variable which could alternately explain the observed positive correlation between the
two. Persi et al. (2023) demonstrated that the relative contribution of LCRs and gene
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duplications to the evolution of protein families trades off as the families age and become
established. Newer protein families evolve primarily through LCR evolution, while gene
duplications are the primary mechanism for older families. Likewise, there are differences in
gene expression between young and old genes, as shown by Werner et al. (2018).

In this work we attempt to determine the evolutionary relationships between LCRs and TAb on
the short timescale of human evolution. While of interest, PAb data on a proteome level for
individuals is not generally widely available. We characterize changes in LCR sequences and
TAb across individuals and use an ABC to estimate the degree of interaction and temporal
order of these evolutionary events.

6.3 Materials and Methods

6.3.1 Overview

In order to investigate the temporal order of changes in LCR and TAb it would be ideal to have
a set of individuals where the evolutionary history of the individuals, as well as the sequences
and abundances of their proteins is known. From that point it is possible to investigate
evolutionary models. However, such an ideal situation is not generally possible without
intentional artificial evolution experiments. What follows is a general overview of our approach
to reconstruct evolutionary histories from the observed data. The details of how this set of
evolutionary histories was compiled and modelled are discussed in the following sections.

For mammals, proteome scale data is sparse as are complete evolutionary histories. We have
used the available data for humans to build a common set of proteins which have quantified
TAbs and a consistent method for identifying LCRs. We then employ parsimony and Brownian
motion models to reconstruct the evolutionary history for LCRs and TAb respectively. We
investigate models of co-evolution using an ABC approach, where simulations are used to
estimate the probability of observing the data given a particular model of evolution.

6.3.2 Genomic and Transcriptomic Data

Human data was acquired from the International Genome Sample Resource (IGSR),
specifically the “1000 Genomes 30x on GRCh38” (Byrska-Bishop et al. 2022) and “Human
Genome Structural Variation Consortium, Phase 2” (Ebert et al. 2021) datasets. Only
individuals which had both high coverage genome assemblies and transcriptomic data were
selected. A set of 28 human individuals and their accession ids can be found in Table A3.1. In
addition to the genome assemblies and raw RNA-Seq reads, single nucleotide polymorphism
(SNP) calls were also acquired.

In order to ensure consistent annotation of genes and transcripts across assemblies, annotations
were transferred from the reference genome GRCh38 (GCF_000001405.39; Schneider et al.
2016) to each assembly using the annotation mapping program Liftoff (Shumate and
Salzberg 2021) with the polish option. The reference annotation was filtered to only include
entries for coding sequences to decrease runtime.
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6.3.3 Construction of phylogenetic tree

The phylogenetic tree was constructed on the basis of SNPs on chromosome 19 of the human
genome. A single chromosome was selected to reduce the time required for tree construction.
Our analysis focuses on protein coding sequences, therefore chromosome 19 was selected as it
is the most gene dense human chromosome (Grimwood et al. 2004). For the purposes of
outgrouping, the chimpanzee reference genome (GCF_002880755.1; Sequencing and
Consortium 2005) was used. Human SNP calls were acquired from the IGSR. Chimpanzee
SNPs were generated by mapping fragments of the chimpanzee reference chromosome 19 to
the homologous human chromosome 19. The 150bp fragments were generated by sliding a
500bp window in 200bp overlapping increments and taking the first and last 150bp in the
window. These fragments were mapped to the human reference using BWA (Li and Durbin
2009). The mappings were sorted and indexed with Samtools (Li et al. 2009). BCFtools (Li
2011) was used to call chimpanzee SNPs as well as indexing all SNP calls, filtering human
calls to the relevant samples, and merging the calls for both species. As human SNP calls were
made with a larger set of individuals than the subset used in this study, some sites were
invariant in the subset even when including the outgroup. These were discarded with a
Perl (Wall et al. 2000) script utilizing the BioPerl package (Stajich et al. 2002). The final set of
SNPs was converted to fasta format using VCF-kit (Cook and Andersen 2017). The tree was
constructed using IQ-TREE 2 (Minh et al. 2020) with a general time reversible model including
an ascertainment bias correction as only SNP data was used.

6.3.4 Processing of transcriptomic data

Adapter sequences present in the raw RNA-Seq data were identified with FastQC (Andrews
2015). Adapter removal, as well as trimming, was performed with fastp (Chen et al. 2018).
Reads from each sample were mapped to the genome from which they originated using the
splice aware mapper STAR (Dobin et al. 2013). The splice junctions used by STAR were
generated from the Liftoff generated genome annotations. Quantification of read counts was
performed using stringtie (Pertea et al. 2015), which is also capable of assembling and
quantifying transcripts outside of the reference annotation. The abundance value used in later
analysis is the normalized read count per transcript rather than a sample specific value such as
transcripts per million. Normalization for library size is performed using the median of
geometric means method as described for DESeq2 (Love et al. 2014). After normalization, the
‘primary’ transcript was identified as that which had the highest geometric mean abundance
across individuals. Only the primary transcript was used in later analysis. Reconstruction of
abundance values at the common ancestor of the human individuals was performed in R (R
Core Team 2022) using the Rphylopars package (Goolsby 2017) supported with the phytools
package (Revell 2012).

6.3.5 Conserved minimum entropy regions

Protein encoding sequences were extracted from each assembly based on the transferred
annotation. The following set of quality control steps were performed on the transferred
annotations. Coding sequences which had an inconsistent number of exons across individuals
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were discarded. Selenocysteine residues were recoded as cysteine residues. Coding sequences
where any individual appeared to have a non-sense mutation were discarded. For individuals
where there was an apparent frame-shift mutation as indicated by an in-frame stop, and a
consistent gap in alignments across individuals, the frameshift was repaired by deleting an
apparent insertion or inserting the consensus residue for apparent deletions. If in-frame stops
were still present after a single repair, the protein was abandoned. The attempts at repair were
made rather than discarding due to the high frequency of apparent frame-shift mutations. This
was interpreted as issues from genome assembly or annotation transfer rather than true
biological variation leading to hundreds of faulty proteins in any given individual. After repair,
the coding sequences were translated. We also used half-alignment ratios as an additional filter
to remove proteins which were incorrectly annotated as the same isoform. Each alignment was
divided into two sequences, and for each half the harmonic mean of plurality residue proportion
was calculated across sites, as well as the proportion of gaps. The ratio of the value calculated
for the first and second half should be near one for proper alignments of the same isoform
across individuals. If a different isoform is incorrectly included, then the two halves will appear
markedly different. We excluded the top 5% of proteins based on their Euclidean distances
from both ratios being 1. All of this was done using custom Perl scripts utilizing the BioPerl
package and performing alignments with MAFFT (Katoh and Standley 2013).

In this work we use the low entropy definition of LCRs, and perform identification with
Seg (Wootton and Federhen 1993), using a window length of 15 amino acids, a lower entropy
bound (K1) of 1.9 bits and an upper entropy bound (K2) of 2.2 bits. We use a modified version
of Seg which properly accounts for alphabet size as described in Enright et al. (2023). However
binning proteins into LCR+ and LCR− is insufficient for temporal analyses as this
categorization cannot distinguish between evolutionary events which nudge a sequence across
the threshold and events which radically change the entropy of the sequence. We introduce the
concept of a conserved minimum entropy region (CMER) to deal with this. A CMER can have
variable lengths and entropy in different individuals, or not be present, but always refers to a
homologous stretch of the protein. Additionally, all proteins have a CMER regardless of their
LCR status and will generally have lower entropy for LCR+ proteins.

To identify CMERs, the minimum entropy window is found for each individual’s version of a
protein, Seg is then run on the protein with the same window length, a K1 equal to the entropy
of the minimum entropy window, and a K2 0.3 bits higher than K1. Each LCR identified in the
protein is a minimum entropy region, and its location in the individual’s protein version are
noted. All versions of the protein are aligned using MAFFT. The coordinates of individual
minimum entropy regions are converted to alignment coordinates and all overlapping intervals
are combined together into a CMER. For individuals, the length and entropy of the CMER are
calculated from the gap free sequence. An example can be found in Table 6.1. The length and
entropy can also be calculated for the consensus sequence of the CMER. This is useful to
compare different CMERs, for example when there are multiple CMERs in a protein we
analyze the one with minimum entropy, then maximum length, then earliest position in the
protein sequence.

Ancestral reconstruction of indel events in CMERs was performed using a parsimony based
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TABLE 6.1: Example of CMERs in NM_001466.4, Frizzled Class Receptor 2.
This protein has two minimum entropy regions, the latter of which is perfectly
conserved across all 28 individuals. In HG00732 two additional leucine residues
have been inserted.

Individual Region 1 (6 - 22) Region (176 - 192)
Alignment Entropy Length Alignment Entropy Length

Consensus ...ALPRLLLP--LLLLPAA... 1.574 15 ...PGAGGTPGGPGGGGAP... 1.609 17

HG00096 ...ALPRLLLP--LLLLPAA... 1.673 15 ...PGAGGTPGGPGGGGAP... 1.609 17
HG00732 ...ALPRLLLPLLLLLLPAA... 1.574 17 ...PGAGGTPGGPGGGGAP... 1.609 17

method described by Fitch (1971) and implemented in Perl. The evolutionary states are the
length of the CMER, and the probability of observing a change of a given length in a given
time (branch length) is assumed to follow a Poisson distribution:

P(∆L = `) =
ωt`e−ωt

`!
, (6.1)

where ω is an estimate of the indel rate. The estimate is calculated from the observed deviation
in CMER length across individuals and the distances between individuals. Specifically:

ω =
2

M̃AD · D̄
, (6.2)

where M̃AD is the median of mean absolute deviation (MAD) in CMER length across all
proteins, and D̄ is the mean pairwise distance between leaves of the tree. The MAD value for
protein i is calculated as:

MADi =
∑

m
u=1 |xi,u− x̄i|

m
, (6.3)

where m is the number of individuals, and xi,u is the CMER length of protein i for individual u.
The mean pairwise distance between leaves is calculated as:

D̄ =
2

n(n+1)

n−1

∑
u=1

n

∑
v=u+1

Du,v, (6.4)

where n is the number of tips in the tree, and Du,v is the distance between leaves u and v.

6.3.6 Evolutionary Model

The evolution of CMERs and TAb were modeled as stepwise and OU processes respectively.
Each process also included a term which depended on the value of the other variable to model
co-evolution. For TAb, fold changes in the CMER length relative to the length at the root of the
tree alter the selective optimum of the OU process. Similarly fold changes in the TAb relative
to the root of the tree alter the rate of indels. Point mutations were also accounted for in the
evolution of CMER length; when a mutation occurs the CMER is broken into two parts, and the
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longer part is then considered to be the CMER. Equations (6.5) and (6.10) describe the
co-evolution of CMER and TAb along any given branch of the tree.

The length of a CMER is the result of 3 processes: insertions, deletions, and point mutations.
The length of a CMER at a node which is t time units diverged from a parent node at time T is:

LT+t = M ·max [LT +Nλ −Nκ ,0] , (6.5)

where M is the proportional length of the longest fragment of the CMER after point mutations,
LT is the length at the parent node, and Nx is the number of insertions or deletions. All indels
are Poisson distributed:

Nx = Pois(xLT ϒt), (6.6)

where x is the length, time, and abundance dependent insertion (λ ) or deletion (κ) rate. ϒ is the
effect of abundance on indels:

ϒ = (AT/A0)
υ , (6.7)

where AT is the abundance at the parent node, A0 is the abundance at the root node and υ is the
strength of indel dependence on abundance. A positive υ indicates that as abundance rises, so
too do indel rates. This could be equivalently considered as relaxed selection on indels. The
opposite is indicated with a negative υ .

If point mutations break the CMER at uniformly distributed points, it has been shown that
length of the longest of N segments is distributed as the ratio of the maximum of N
exponentially distributed random variables divided by their sum (Holst 1980).

M =
maxR

i=1(Xi)

ΣR
i=1Xi

, (6.8)

where each Xi is an exponentially distributed random variable with a mean of one. The number
of these variables R depends on number of mutations expected to occur in the CMER in time t,
and is Poisson distributed:

R = Pois(µLT t), (6.9)

where µ is the length and time dependent substitution rate.

The TAb at a particular node is the result of two processes, drift which depends only on time,
and selection which pushes the mean towards a selective optimum which depends on the
CMER length. The TAb at a node which is t time units diverged from some parent node which
is T time units diverged from the root is:

AT+t = ĀT+t · eNorm(0,σt), (6.10)

where σ is the strength of drift, and ĀT+t is the modal TAb value at the node. The mode is the
selection weighted average of the parental node’s value AT and the selective optimum adjusted
by a length dependent factor (∆τ ).

ĀT+t = AT e−δ t +A0∆τ(1− eδ t), (6.11)
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where δ is the strength of selection, and A0 is the TAb value at the root of the tree which is
assumed to be the selective optimum. A0 was reconstructed using Rphylopars which uses a
Brownian motion model, setting the selective optimum centrally (After accounting for
phylogeny) within the range of observed TAbs. This models the TAb and CMER length at the
root as being in equilibrium and only needing to change in response to mutations in one or the
other. This choice of selective optimum is reasonable given the short evolutionary timescale
and the amount of TAb variation observed at the tips of the tree. The selective optimum at any
given node is inflated (or shrunk) based on the CMER length dependent factor:

∆τ = (LT/L0)
τ , (6.12)

where τ is the strength of length’s effect on optimum abundance. As the length of the parent’s
CMER (LT ) grows relative to the length at the root of the tree (L0), a positive τ would indicate
an increasing demand for higher TAb, and A negative τ would indicate that longer CMERs
select for lower TAb.

Our model includes multiplicative drift: the ĀT+t is multiplied by a log Normal deviate with a
scale proportional to the strength of drift and time. Many biological processes are inherently
multiplicative rather than additive and we found that a multiplicative drift led to more
consistent results.

6.3.7 Approximate Bayesian calculation

As the parameters of interest (τ: effect of length on optimum abundance and υ : effect of
abundance on indel rate) could only be meaningfully assessed for proteins which had variation
in length, the model was fitted using an ABC using the subset of the protein data where
variability in CMER length was observed. We evaluated four versions of the model. The full
Stepwise OU model’s priors for τ and υ were Normal(0,2) and Uni f orm(−1,1) respectively.
The full priors for all models can be found in Table A3.2. Three special cases of the full model
were investigated: τ was fixed at zero (-tau), υ was fixed at zero (-upsilon), and both were fixed
at zero (-tau-upsilon).

The fixing of the τ and υ parameters makes assumptions about the co-evolution of CMER
length and TAb. The τ parameter describes the impact of changes in CMER length on the
selective optimum for TAb. Fixing τ at zero in the -tau model assumes that there is no impact:
TAb is independent of CMER length. Similarly, the υ parameter describes the effect of changes
in TAb on the indel rates in CMER. Therefore, fixing υ at zero in the -upsilon model assumes
indel rates are unaffected by changes in TAb. Setting both to zero in the -tau-upsilon model
assumes there is no co-evolution, and both evolve independently of the other. By fixing
different sets of parameters, we can compare the family of Stepwise OU models to evaluate
which best describes biological reality.

As the specific parameter values are unknown, general priors were selected which gave
appropriate bounds on the domain. For example, log-normal priors for λ and κ ensured both
remained strictly positive. Additional restrictions were placed on the domains of the δ and µ

parameters. The former was given a finite upper bound at a value which would result in the AT
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having a negligible contribution to the value of ĀT+t in Equation (6.11). Specifically, the term
would be less than one for even the highest abundance transcript along the longest branch of
the tree. Any higher values are functionally equivalent to infinite selection strength and are
unnecessary to explore. The lower bound of µ was set such that the probability of even one
mutation in the combined length of all CMERs along the longest root to tip path in the tree was
less than 10−9. Any lower than this is functionally equivalent to a mutation rate of zero in
Equation (6.9) and was unnecessary to explore. The υ parameter was bounded between
negative and positive one, not because the value was known to lie in this interval but for
numerical reasons. As the variation TAb values was observed to be relatively high the result of
Equation (6.7) can be extreme for absolute υ values above one. In many cases the tolerances of
tools for numerically evaluating the results are exceeded. Bounding absolute υ below one made
computation possible while still allowing investigation of the qualitative outcomes of positive,
negative, and zero values for υ .

Our ABC implementation uses simulations to estimate the likelihood of the data given a set of
model parameters. For each simulation, the root of the tree is initialized with the ancestrally
reconstructed values and then the length and abundance values at each node of the tree are
sampled according to Equations (6.5) and (6.10). For each human individual i and protein j in
the kth simulation the absolute relative error between observed (O) and simulated (S) values is
calculated as

Ei, j,k,x =
|Oi, j,k,x−Si, j,k,x|

Oi, j,k,x
, (6.13)

where x indicates that the same calculation is done for length and abundance. The simulated
value is not considered to match the observed value if the absolute relative error is greater than
some threshold (ε). For relative errors less than ε , A partial match between 1 (zero error) and 0
(ε or more error) is counted:

Ci, j,k,x =


1− Ei, j,k,x

ε
, Ei, j,k,x < ε

0, otherwise

(6.14)

For observed values of zero, only an exact match or mismatch is possible. Partial matches were
used rather than exact matches as the latter would happen rarely in a computationally feasible
number of simulations, leading to severe underestimation of the likelihood. Bounding partial
matches between zero and ε ensures that only positive matches are counted and precluding the
possibility of negative estimated probabilities. In this work we used an ε value of 10% which
gave a balance between underestimating from exact matches and accuracy of the simulated
results. Pseudocounts were included to prevent counts of zero by increasing the observed
match count by one, and the number of opportunities for matches by 2. The proportion of
matches across all simulations is then the estimated likelihood for that value:

L̂i, j,x =
1+∑

s
k=1Ci, j,k,x

r+2
, (6.15)
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where s is the number of simulations. The product of all estimated likelihoods for length and
abundance across individuals, and proteins is the overall estimated likelihood:

L̂ =
n

∏
i=1

m

∏
j=1

L̂i, j,L · L̂i, j,A. (6.16)

Due to the simulated nature of this likelihood estimation, there is variance around the estimate.
Given the same set of parameters, multiple evaluations will give a range of likelihood values.
We observed the likelihood estimate to be approximately log-normally distributed. This
variation combined with asymmetrically preferring higher likelihoods can lead to chains
becoming ‘stuck’, not accepting any proposals. If a model was evaluated on the higher end of
the distribution for a given set of parameters, nearby proposals will appear to have lower
relative likelihoods. This could be corrected for by evaluating each set of parameters multiple
times, but this becomes computationally prohibitive. Instead, a parameter which adjusts how
generously proposals are interpreted was included. For a single likelihood estimation, we
cannot know where it came from in the distribution. If we interpret proposals generously, we
assume that the proposals evaluation was in the lower end of its distribution, and the current
model’s evaluation was in the higher end of its distribution. Assuming the variance is constant
between the two distributions we can adjust for the difference by multiplying the proposal’s
likelihood by a value proportional to the variance. On a logarithmic scale, the generosity (G) is
calculated as:

G = Norm∗1−α ·
√

2σlnL̂ , (6.17)

where σlnL̂ is the standard deviation of the estimated log likelihood, Norm∗x is a standard
normal quantile, and α is the complement of the assumed deviate from the mean of the log
likelihood distribution. It falls in the interval (0,1] where a value of one indicates that the
estimate is assumed to be at the mean and no adjustment is necessary. Conversely as α

approaches zero the adjustment grows without bound. By observing the current rate of proposal
acceptances, we can update this value as necessary, decreasing α if the chain is ‘stuck’ and
increasing α if it is exploring excessively. We periodically estimated the chain’s simulation
variance by evaluating the current parameter set multiple times.

We made use of heated chains to increase the rate at which the parameter space was explored.
Each heated chain’s probability of accepting proposals is elevated based on an adaptive
temperature increment, where the increment is varied to achieve some target swap rate.
Periodically the chains are synced and an attempt to make a swap between two chains is made
which depends on relative temperature and estimated likelihood of each chain’s current
parameter set. The effect of heating on proposal acceptance, and chain swapping is as
described by Shi and Rabosky (2015).

For any particular parameter, a new value is proposed with a normal deviate from the current
parameter’s value. The proposal density is truncated to match the domain of the prior for the
parameter. The scale of the proposal density is adaptive over the Markov Chain Monte Carlo
(MCMC) run: increased or decreased in order to keep proposal acceptance rates at some target
value. Both proposal scaling and proposal generosity are adapted in an attempt to achieve a
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target acceptance rate of 23.4% which has been shown to lead to optimal mixing in many
cases (Schmon and Gagnon 2022). On any given iteration of the MCMC some combination of
parameters is allowed to vary. This is performed systematically by initially enumerating all
combinations and then shuffling the combinations to break up runs where one parameter is
altered or fixed many times consecutively. This shuffled order is then cycled through on each
iteration.

After estimating the likelihood of the proposal, the probability of accepting the proposal is
calculated according to:

P = min

1,

(
eGL̂pπ(p)

L̂mπ(m)

)T
 , (6.18)

where π(x) is the prior density of the parameter set for the current model (m) or the proposed
model (p), and T is the temperature of the chain. The acceptance probability depends on the
likelihood ratio; the Hastings ratio, which accounts for the asymmetric proposal densities
(Hastings 1970); the chain temperature; and the simulation variance.

Iteration of MCMC chains was stopped based on multivariate effective sample size (mESS) as
defined by Vats et al. (2017). Specifically, iteration terminated after mESS crossed a threshold
of 1000 effective samples or the expected Monte Carlo error fell below 15%

6.3.8 Model Analysis

After an ABC evaluation, the maximum likelihood estimate for modal parameters is the
parameter values at the multivariate mode of the posterior density. To estimate this value, the
smoothed multivariate density was estimated for each sample using a multivariate normal
kernel. The sample with the highest density was used as an initial estimate. This estimate was
then iteratively improved by estimating the gradient in the smoothed density at the current
point, then using golden section search (Kiefer 1953) to find the maximum density along the
line in the gradient direction. This is repeated until there is no increase in density, or the
gradient magnitude is sufficiently small.

The final likelihood of each model was evaluated as the geometric mean of 10 evaluation runs,
each with 10000 simulations. Model selection was performed using Akaike information criteria
(AIC; Akaike 1998). A q% credibility region was determined by standardizing all parameter
estimates to bring them to the same scale, ordering the smoothed multivariate densities of each
sample by the Euclidean distance from the multivariate mode, and finding the distance at which
the cumulative density is q% of the total smoothed density. Transforming a hypersphere with
this radius results in the ellipsoid credibility region. The corresponding credibility interval for
each parameter is then the range of values observed within the region.

6.3.9 Code Availability

Custom Perl and R scripts used for quality control of input data and reconstruction of ancestral
TAb and LCR states can be found on GitHub at:
github.com/zacherydickson/AncRecon-LCR-TAb
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The program written to perform ABC inference of co-evolutionary models can be found on
GitHub at: github.com/zacherydickson/ABC-LCR-TAb

6.4 Results

After implementing consistent annotation with Liftoff, sequence repair, and quality control
filters, we identified 7331 primary transcripts and their associated proteins which were present
in all 28 individuals. Of these, variation in CMER length was only observed in 57 proteins. As
such the most parsimonious estimate of the number of indel events for all other proteins is zero.
In the small subset of proteins with CMER length variation we inferred a maximum parsimony
set of 132 events. The number of insertions and deletions were 84 and 48 respectively, which is
significantly unbalanced by Chi-squared test (p < 0.01). The branches along which these indels
were inferred can be seen in Figure 6.1a.

The inference of indel events also provides a reconstruction of the CMER length for the LCA
of the individuals. The proteins can be subdivided into LCR+ and LCR− by comparing the
entropy of their most extreme CMER to a K1 of 1.9 at the LCA. We observe that 1856 (25.3%)
of proteins contained an LCR at the LCA. In contrast, 48 (84.2%) of the proteins where we
observed CMER length variation were LCR+.

There were 2 proteins where indel events would cause entropy to cross K1 and change the LCR
status of the protein. The transcripts encoding these proteins are NM_015440, which encodes a
protein with a C-terminal poly-glycine tract, and NM_145269, which encodes a protein with a
glutamate-rich N-terminal region. In both cases the deletion of a single residue increases the
entropy in the region to just above K1, causing a ‘loss’ of the ancestral LCR. These two proteins
are specifically marked points in Figure 6.1.

In Figure 6.1c the CMER lengths at the LCA are broken down by LCR status and CMER
length variability. The same breakdown for the ancestrally reconstructed TAb is in Figure 6.1b.
For length, we observed that static CMERs in LCR− proteins have a median length of 17
(95% CI [17,17]) amino acids, longer than the 14 (95% CI [14,15]) of those with LCRs.
Proteins with variability in CMER length also had a longer median length of 17
(95% CI [16,18]). The median TAbs (in thousands of normalized reads) for LCR+ positive
proteins with static and variable CMER lengths were, respectively, 7.56 (95% CI [7.14,8.03])
and 10.8 (95% CI [9.43,14.1]). Both medians for LCR+ proteins (static or variable) are higher
than the median for static LCR− proteins: 5.84 (95% CI [5.60,6.10])

We used ABC to fit four evolutionary models describing the co-evolution of TAb and CMER
length. A summary of all estimated parameter values and likelihoods can be found in Table 6.2.
The model which consistently had the highest likelihood was -upsilon with log likelihoods
ranging from −5374±2.137 to −5386±3.043. This model fixes the value of υ (the degree to
which shifts in TAb impact indel rates) at zero, and assumes CMER indels are
TAb-independent. As υ is fixed it has fewer free parameters and was more consistent than the
full model which was the model with the next highest likelihood. The best full replicate had a
log likelihood of −5387±1.924. With an already higher likelihood, the -upsilon model also
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FIGURE 6.1: Properties of the proteins used in ABC modeling. a The SNP tree
for chromosome 19 of 28 human individuals. All 132 indel events in CMERs
are shown on the branch along which they are inferred to have occurred. Green,
Upward-pointing triangles indicate the 84 insertions, while orange, downward-
pointing triangles indicate the 48 deletions. Sex as well as population and super-
population codes are shown for each individual. Circles indicate indels which
changed LCR status. The chimpanzee outgroup is not shown. b TAb data and c
length data reconstructed for the LCA of 28 human individuals broken down by
LCR status and whether any variation in CMER length was observed. Notches
indicate approximate 95% confidence intervals on the median, which may be
wider than the interquartile distance. Circled points indicate events which would
cause a change in LCR status.
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had the replicate with the lowest AIC (1.076×104±4.275). This may indicate that indels have
a bigger impact on TAb evolution than the reverse.

As additional evidence for indels having a bigger effect: both models which set τ at zero had
significantly lower likelihoods. As τ describes the degree to which indels impact TAb
evolution, fixing τ at zero assumes TAb is independent of CMER length. The highest
likelihood between these two zero-τ models was replicate 3 of -tau which had a log likelihood
of −5429±3.398: 25 natural orders of magnitude less likely than the worst estimate for a
model which included non-zero τ . This may indicate that TAb evolution is impacted by the
evolution of CMER length.

In all models where τ (the impact of indels on TAb evolution) was estimated, the 95%
credibility interval included zero, however the multivariate modal value was consistently below
zero. In contrast υ values largely filled the range of possible values defined by its prior.
Substitution rates, as measured by µ , were lower, and in no accepted sample did the mutation
rate rise above 10−2 amino acid substitutions per site per unit time. The modal estimates range
between 10−12 to 10−4. The strength of selection appears to be able to take on any value so
long as it is sufficiently high (above 10 per unit time). In contrast the strength of drift was
consistent: the drift factor between two nodes of a tree follows a log-normal distribution with a
scale factor between 9.0 and 9.7 per unit time.

Estimated insertion and deletion rates were consistently estimated as approximately equal, or at
least insignificantly different. While their credibility intervals span 4 orders of magnitude, the
modal values were consistently estimated between 0.001 and 0.01 amino acid indels per site
per unit time. We ran two additional models equivalent to the full model and -upsilon, but
explicitly setting insertion and deletion rates to be equal. Visualizations for these two models
can be found in Figures A3.36 to A3.41. The AICs values and their standard deviations for the
equal indel models which otherwise match the full and -upsilon models were
1.081×104±5.002 and 1.079×104±5.411, respectively. The former is at the upper range of
values seen for the full model, while the latter is outside the range (Table 6.2). The non-indel
parameter estimates were not qualitatively different. Models which allow for even small
imbalances between insertions and deletion rates better explain the data.

The posterior distribution for -upsilon replicate 1 can be found in Figure 6.2. For the δ and µ

parameters it can be seen that they can take on any value allowed by their priors except at the
lower and upper extremes, respectively. That is, selection strength can be any value so long as it
is sufficiently high, and substitution rates can be any value so long as they are sufficiently low.
Indel parameters κ and λ are constrained to the lower quadrant: both must be low. Both σ and
τ appear to take on defined values with a specific, strong drift strength, and a specific, negative,
and small magnitude dependence of TAb on CMER length. For most parameters, the
simulations are robust to their values: the range of parameter values which produce acceptable
simulation results is quite wide. However, for τ there is a much narrower window where the
model is able to predict observations. The predictive power of the depends strongly on the
value of τ .
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The MCMC traces and a closer look at the univariate posteriors for each parameter can be
found in Figures A3.19 and A3.20, respectively. Similar visualizations for every modeling run
can be found in Appendix C.

6.5 Discussion

Constructing evolutionary models for TAb and CMER length based on the human proteins
where we were able to definitively identify amino acid indel events has demonstrated that
co-evolution of the two is required by the data. The model which assumed the evolution of both
were mutually independent (-tau-upsilon) was least likely to produce the data. More
specifically TAb is more likely to be impacted by indels than the rate or tolerance of indels is to
be impacted TAb. Any model which included a dependence of TAb on CMER length had a
higher likelihood, than any which did not. Additionally, between the full model and -upsilon
model, the later achieved a higher likelihood with fewer free parameters. Fixing upsilon at zero
assumes that CMER length evolves independently of TAb, and therefore the apparent better fit
of the -upsilon model over all others would indicate that the effect of TAb on LCR evolution is
weaker than the reverse. However, there are important factors in the data used which may limit
the scope of conclusions that may be drawn.

First the number, type, and distribution of inferred amino acid indel events. We observed
significantly more insertions than deletions which is consistent with a finding by Gonzalez
et al. (2019) showing higher tolerance of indels in β -lactamases. Indels in terminal regions also
tend to have higher tolerance (Lin et al. 2017), and we did observe bias towards the termini.
Taking the central position of a CMER as a proportion of the protein length and fitting the two
shape parameters of a beta distribution can give a general description of where the CMERs are
located. In the 57 proteins where variation in CMER length were observed, a
Beta(0.56±0.094,0.59±0.102) distribution best describes the CMER position distribution.
Values below one indicate bias towards the C- or N-terminal regions, respectively. Given that
the unform distribution is a special case of the beta distribution with both parameters equal to
one, the probability of the observed Beta fit given trully uniform data is less than 10−7. Across
all proteins the distribution of CMER positions is generally non-uniform, with a bias towards
the C-terminus with a Beta(0.80±0.012,0.94±0.015) distribution (P(uniform)< 10−67).

We also observe an uneven distribution of inferred indels across time. In Figure 6.1a, events are
biased towards terminal branches of the tree. Accounting for branch lengths, the indel rate is
significantly higher on terminal branches than internal branches (Wilcox test: p = 0.0001).
This is not likely to be the biological truth as there is no mechanism to explain increasing indel
rates at tree tips. It is more likely that there are hidden insertions and deletions masking
each-other. If we assume an opposing insertion and deletion pair along each branch, the
internal rates exceed that on terminal branches and the difference becomes insignificant
(Wilcox test: p = 0.16). While we do not explicitly correct underestimated internal events, our
evolutionary models allow simultaneous insertions and deletions, and the likelihood estimation
depends only on the known tip data. However, the reconstructed root state used as the start
point for simulations may have been more similar to the observed tips than the true root state.
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FIGURE 6.2: A visual summary of the posterior distribution estimate by ABC
of the StepwiseOU-upsilon evolutionary model which assumes indel rates are
independent of TAb . The central black point indicates the multivariate mode
of parameter estimates, with colours indicating the credibility interval within
which each posterior sample fell. Each scatter plot is a projection of the posterior
distribution down to two dimensions. The parameters are the selection strength
(delta); deletion (kappa), insertion (lambda), and substitution (mu) rates; the
scale of drift (sigma); the strength of CMER length on TAb (tau), and the impact
of TAb on indel rates (upsilon). The parameter mu is shown in natural orders of
magnitude. Note that the parameter upsilon is fixed at zero in this model, which
sets the indel rates as independent of TAb.
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More important to our conclusions than the events themselves is the CMER length and TAb of
the proteins in which we observed the events. In general, these proteins would be classified as
LCR+, with longer CMERs than the LCR+ proteins where we did not observe variation in
CMER length (Figure 6.1c). The fact that we only observed changes in longer low-complexity
regions on this short evolutionary timescale is consistent with indel rates being proportional to
the length of repeats, which has been well established (Kruglyak et al. 1998; Dieringer and
Schlotterer 2003; Sainudiin et al. 2004). Of note is that among proteins with static CMER
lengths, LCR− proteins tended to have longer CMERs than LCR+ proteins. CMER length
alone is not indicative of more extreme LCRs. A minimum entropy region is a minimum for
that protein, therefore both a protein with uniform, high complexity and a protein with a long
homo-repeat could have long minimum entropy regions. The difference would be in the
entropy of those regions, with the former being high, and the latter low. The proteins which had
variable CMER length had long and low-entropy CMERs.

Turning to TAb, we observe that the proteins which we were able to include in our evolutionary
models had higher TAb than those where CMER lengths remained static. While this is
consistent with our previous work showing that LCR+ proteins are encoded by higher
abundance transcripts (Dickson and Golding 2022), it also indicates that whatever mechanism
causes the elevated transcript abundance has already had its effect for these proteins. As a
result, our modelling does not capture the full evolutionary interplay between TAb and LCR
evolution. Our conclusions are limited to describing how these properties co-evolve after the
regulatory or evolutionary machinery accommodating LCRs is in place.

This potentially explains why the effect of increasing CMER length appears to apply negative
evolutionary pressure to TAb, despite the net observed effect of LCR presence being an
elevation of TAb. In either case where regulatory changes allowed an LCR to be tolerated, or
the appearance of an LCR induced compensatory increases in TAb, further increases in the LCR
length may tip the fitness balance in the other direction. The benefits of maintaining the protein
concentration may be outweighed by the increased deleterious effects of the longer LCRs.

Persi et al. (2023) showed that the evolutionary pressures and mechanisms differ depending on
the age of the protein family. We made an effort to get relative ages for the proteins in our
dataset. For each protein we constructed a consensus sequence based on the MAFFT alignment
from all 28 individuals. Then we used BLAST (McGinnis and Madden 2004) to search for
homologues to the consensus sequence. Ignoring synthetic or other artificial constructs, we
identified the LCA across all proteins matching to the consensus sequence. This was done
using a Perl script which made use of TaxonKit (Shen and Ren 2021). This assignment of an
LCA is taken as an approximate age for the protein ranging from human specific to shared by
all eukaryotes. The median LCA for proteins with static length was at the superclass level
(Sarcopterygii) while the median for proteins with variable length CMER was the class level
(Mammalia). However, by chi squared test the distribution across all 16 taxonomic ranks
considered was not significantly different (p = 0.17). In general, the proteins included in the
modeling are ancient relative to the timescale analyzed. This is further evidence that the
evolutionary impacts of LCR appearance have already been felt, and the evolution we modelled
is nested within that effect.
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We observed a negative relationship between LCR length and TAb on short evolutionary
timescales after the establishment of LCRs, despite an overall positive relationship between
LCR presence and TAb. This offers hints as to temporal order of LCR establishment and TAb
elevation. It suggests that regulatory frameworks may be in place prior to establishment of
LCR, however further work is needed. Deeper time datasets are needed to identify the
establishment of LCRs in protein families. This is a critical step to answering the temporal
question of TAb and LCR evolution. Challenges to overcome include the fact that LCRs evolve
rapidly which makes identifying evolutionary events increasingly difficult with deeper time.
Also, there is limited availability of high quality genomes and transcriptomes to properly
bracket the required timescales.

While we cannot currently elucidate the original temporal order of TAb and LCR, our results
indicate that it is most likely that TAb evolution is coupled to changes in LCRs. After
establishment of an LCR further increases to the LCR may increase selective pressure against
further elevating transcript abundance. Our work demonstrates the usefulness and importance
of incorporating multiple evolutionary outcomes into models to fully understand the
contributions of all factors.
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Chapter 7

Discussion

The name of low complexity regions (LCRs) is potentially a misnomer. While defined by
relatively simple primary sequences, most of their biological impacts are highly complicated.
The answers to most questions around LCRs are rarely simple. Answering these questions
requires careful analysis to process the complex mixture of signals and reveal the signatures of
LCRs.

How do we identify LCRs? In Chapter 2, I demonstrated that selecting an all-encompassing
definition of LCRs is difficult, with no one method fully sufficient. The choice of a
low-entropy, information content based definition of LCRs naturally lends itself to a question
on the flow of information necessary to the functioning of known biological systems. How do
LCRs affect the flow of information from DNA to RNA to protein? Johanna Enright and I
showed, in Chapter 3, that despite the constraints on information present in LCRs, it is a less
than ideal predictor of the information present in the DNA. This implies that forces beyond
neutral evolution are influencing LCRs. As it was known that these sequences are mutationally
unstable we explored these forces by asking about the proteins which tolerate them. Are LCRs
constrained to low abundance, side roles in the interplay of cellular machinery? My work in
Chapter 4 demonstrated the importance of widening the field of view: despite low protein
abundance (PAb) of LCR containing proteins, the messenger RNA encoding those proteins
have higher transcript abundance (TAb). The modes of abundance regulation are widely varied
with mechanisms at every step between gene transcription and eventual protein degradation. As
the LCRs I examined were in coding sequences, a natural process to examine was translation.
Is the influence of low-complexity (LC) restricted to coding regions of genes? In Chapter 5 my
undergraduate volunteers and I demonstrated that compositional bias in 5′ untranslated region
(UTR) are associated with higher TAb, and that untranslated low-complexity motifs (ULCM)
offer sites for regulatory control. Observing LC associated changes in PAb led to asking about
evolutionary effects as the amount of protein affects how well its function is fulfilled. How do
LCRs affect the evolution of expression and regulation? In Chapter 6, I showed that sequence
evolution through indels and TAb are coupled together. Specifically, the former influences the
latter more than the reverse; at least in proteins which have already tolerated the evolution of an
LCR.

I have used the lens of abundance to expand the view of the importance of LCRs to the
evolution of biological systems. While previously explored only incidentally, this view of the
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evolutionary landscape makes clearer the complexity of the systems which drive biology. The
wide variety in LCRs goes in hand with the variety of their impacts. The varied constraints
along the path from gene to protein require both stringent control, and flexibility. High
mutability serves as an engine of evolution not only for the development and refinement of new
protein domains, but also in the regulation of abundance.

As most lines of inquiry do, we are ultimately left with more questions than when we began.
The largest of these is that the mechanism which causes the positive association of TAb with
LCRs is unknown. There are solid pointers for the negative association with PAb: lower
translation efficiency and more rapid degradation of LCR+ proteins as well as other similar
effects for other processes. However, it is still unclear whether TAb elevation is an adaptive
response to counter the protein level effects of LCR or LCRs are only tolerated in proteins with
the appropriate regulatory framework. The process of answering this question will open
opportunities to examine both the past and present.

Experimental validation of the effects we have observed would likely hint at a mechanistic
solution. Specifically, targeted mutants could be generated where the size or presence of an
LCR is varied, and the resulting impacts on abundance are observed. Adaptive TAb would
imply that smaller or removed LCRs, when not deleterious, would lead to increased PAb
without significantly altering TAb. Whereas little to no effect on abundance would imply an
entrenched, robust regulatory framework. However, even this is limited by our observation that
recent evolution is happening in the context of ancient changes.

Answering the temporal question has several challenges and overcoming them would advance
our understanding significantly. We examined a short evolutionary timescale so that LCR
would be ‘easily’ recognizable between individuals. However, it is clear that the appearance of
LCR, and the TAb framework around them, was already established for these proteins, and
therefore a deeper time approach is required. The question of LCR identification rears its head
here as the imperfect solutions we use, combined with rapid LCR evolution, make identifying
conserved, novel, and unique LCRs increasingly more difficult as one looks deeper in time.
There is an opportunity for more robust methods of LCR identification which take into account
evolution. These could not only accurately identify extant LCRs, but also distinguish between
medium complexity regions and ‘fossil’ LCRs which have been fixed and degraded by
substitutions. A reliable method for identifying proteins which are LCR+ in some species but
not others would allow us to finally examine how the presence or absence of an LCR is
associated with abundance on an evolutionary timescale.

Beyond the direct effects of LCR in coding sequences there are many avenues of exploration
for LC in signaling and indirect effects. The context of any signaling motif is known to
modulate its efficacy (Reiter et al. 2023), and Horton et al. (2023) showed that direct interaction
between short tandem repeats (a type of LCR) can be the mechanism for this. A similar
mechanism may be at work in UTRs, where ULCM are modulating the effectiveness of other
signals in the sequence. If this were the case, and it could be properly understood it offers a
mechanism by which we might alter untranslated sequences to have more desirable properties
in experimental setups or therapeutics like mRNA vaccines. In general, a better understanding

83

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Zachery William DICKSON; McMaster University– Department of Biology

of the regulatory mechanisms which interact with LCRs to affect abundance may lead to
treatments or prevention for LCR associated neurodegenerative diseases.

I believe my work has added a new lens through which we can examine LCRs and other
sequence motifs, and established a foundation from which several new avenues of research can
be built. In addition to abundance there are likely other important properties that LCRs are
associated with. My work may serve as a template for integrating information together into an
evolutionary context.
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Chapter 8

HUBDesign: Probe Design for Broad
yet Targeted DNA Capture

8.1 Preface

This chapter was published in Cell Reports Methods in October of 2021
(https://doi.org/10.1016/j.crmeth.2021.100069, with Zachery W Dickson, Dirk
Hackenberger, Melanie Kuch, Art Marzok, Arinjay Banerjee, Laura Rossi, Jennifer Ann
Klowak, Alison Fox-Robichaud, Karen Mossmann, Matthew S Miller, Michael G Surette, G
Brian Golding, and Hendrik Poinar as co-authors. See Section 8.7 for specifics on author
contributions.

Additionally, an erratum was published in July of 2022
(https://doi.org/10.1016/j.crmeth.2022.100246). The main text was unaffected, but
corrected versions of Figures 8.4 and 8.5 were made available. The corrected versions are the
ones included in this chapter.

A wide variety of metagenomic research efforts are hampered by the same challenge: low
concentrations of targets of interest combined with overwhelming amounts of background
signal. While PCR or naïve DNA capture can be used when there are a small number of
organisms of interest, design challenges become untenable for large numbers of targets. We
present HUBDesign, a bioinformatic pipeline which designs probes for targeted DNA capture
which leverages sequence homology to identify probes sets which maximize the breadth of
coverage for targets while maintaining specificity. We validated HUBDesign by generating
probe sets targeting the breadth of coronavirus diversity, as well as a suite of bacterial
pathogens often underlying sepsis. In separate experiments demonstrating significant,
simultaneous enrichment, we captured SARS-CoV-2 and HCoV-NL63 in a human RNA
background and seven bacterial strains in human blood. HUBDesign
(https://github.com/zacherydickson/HUBDesign) has broad applicability wherever
there are multiple organisms of interest.
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8.2 Introduction

Several critical monitoring, clinical, and research efforts are hampered by the same challenge:
low concentrations of targets of interest combined with overwhelming amounts of background
signal. Whether it be monitoring the reservoirs, disease ecology, and transmission of zoonotic
infections, such as COVID-19 (Rodriguez-Morales et al. 2020; Boni et al. 2020); or attempting
to determine which of a huge array of potential pathogens is present in a patient displaying
sepsis, the combination of low signal in a high background presents a significant challenge.
Attempts to overcome this have been stymied by the difficulty associated with detecting or
culturing these microbes (Wade 2002; Papafragkou et al. 2014).

The advent of next generation sequencing and the ever declining cost of sequencing has made
feasible a wide variety of research including transcriptomics, ancient genomics, and microbial
metagenomics. It is now viable to use RNA or DNA sequencing to rapidly identify organisms
and characterize the diversity of nucleic acids in heterogeneous samples (Wang et al. 2019).
However, there remain limits to sequencing depth and cost. In some cases, rare and interesting
microbes may remain undetected.

Rare taxa can be clouded by high backgrounds from host or environmental sources which often
make up 99% of sequencing depth. In addition to the obscuring effects from sample
backgrounds, differentiating true signals from contaminants becomes increasingly difficult as
the organisms of interest often make up a small fraction of the sample. A naïve approach of
simply sequencing deeper is an unbiased, yet costly way to overcome these issues. Pathogens
in clinical or wildlife settings can easily make up less than 1 millionth of a sample, especially
in early stages of infection where detection would be most useful for patients (Opota et al.
2015). Even with inexpensive sequencing costs, it becomes extremely wasteful and inefficient
to spend sometimes critical time and resources to acquire and analyze these data when the
majority is ultimately uninformative.

One way to alleviate the issue of cost is to bias detection towards targets of interest.
Polymerase chain reaction (PCR) is one such technique used in many rapid detection
systems (Tatti et al. 2011; Benirschke et al. 2019), including those used to detect individual
sepsis pathogens and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the
causative agent of COVID-19 (Coronaviridae Study Group of the International Committee on
Taxonomy of Viruses 2020). The technique relies on primers that bind to nucleic acid
sequences specific to an organism or group of organisms. While capable of sensitive, rapid
detection and quantification of a particular target, PCR is limited when multiple loci are
targeted by primers. Identifying ‘barcoding’ regions has been used to amplify related
organisms (Stahlberg et al. 2017; Adamowicz 2015), and multiplexed PCR can allow for the
amplification of multiple disparate targets (Hayden et al. 2008). The former is only possible for
closely related groups, and the latter can be prone to bias and interference between the various
primers in use (Elnifro et al. 2000). Additionally, PCR is susceptible to failure in rapidly
evolving organisms like viruses where mutations occurring at priming sites can prevent
amplification, as seen in SARS-CoV-2 (Rahman et al. 2020).
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Another important technique in this area is microarrays. Oligonucleotide probes are designed
which specifically hybridize to sequences of interest. These probes are then immobilized such
that each probe sequence is in a known position, and the entire array is exposed to a DNA
sample. Target sequences will be retained, while the remainder are washed away. Fluorescently
labeling the libraries allows captured targets to be visualized to determine the presence of key
taxa within a sample (Brown and Botstein 1999). Such microbial detection arrays have
demonstrated effectiveness (Gardner et al. 2010). However, they are limited to detection and
identification of only known sequences, and there are challenges in efficiently designing probes
to capture the targets of interest. A complementary solution is targeted enrichment.
Oligonucleotide probes are designed to hybridize to target nucleic acids, however ’capture’ is
performed in solution and preferentially retains them over non-target sequences (Mertes et al.
2011). This leads to an enrichment of the target relative to the background and less effort and
resources expended on sequencing and identifying uninformative molecules. A major
advantage over PCR is the ability to design probes capturing multiple loci simultaneously, like
those designed to capture ~2000 antimicrobial resistance genes (Guitor et al. 2019). Where
identification and detection are important, capturing multiple independent loci in a genome
provides more confidence of an organism’s presence. Having multiple loci also assists in
tracking variation between strains as they emerge and evolve. The simplest probe design for a
single organism is to select probes with a window which slides along the genome. Typically,
each subsequent window overlaps the previous one. The resulting overlapping probes tile the
target and are likely more effective than non-overlapping probes (Bertone et al. 2006). This
approach can be extended to multiple organisms; however, the number of probes increases
rapidly as more genomes are targeted, and there is this method makes no effort to ensure the
probes are specific to the organisms of interest. Each additional genome adds its length in
probes increasing the chances for probe sequences to match multiple genomes. These matches
are most often due to sequence homology between related organisms. As hybridization between
probe and target is not perfectly specific (Mason et al. 2011), imperfect matches increase the
chance of cross-reactivity and make most of the probes generated in this manner redundant.

Fortunately, sequence homology and variable hybridization are beneficial for the design of
more efficient probes which are capable of specifically and simultaneously capturing targets
from known and novel members of a group of organisms. While a probe will preferentially
hybridize to its exact complement in a competitive environment, hybridization to sequences up
to 20% divergent is possible (Mason et al. 2011; Delsuc et al. 2016). This has been used to
design probes based on sequences from extant organisms facilitating the capture and
enrichment of DNA from distantly related extinct taxa (Wagner et al. 2014; Enk et al. 2016;
Delsuc et al. 2016). Increased success was obtained by designing probes based on ancestral
reconstructions (Delsuc et al. 2016). Ancestral reconstruction infers past character states from
the diversity of modern states (Joy et al. 2016), and in the context of probe design may be seen
as constructing a sequence representing the diversity of a set of input sequences. The
representation may also capture diversity that is not represented by existing nodes on a tree.
More generally the concept of representative sequences will be used to design probes capable
of capturing a broad set of sequences.

Genomes, especially those of bacteria and viruses, are mosaic in nature with different genes
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TABLE 8.1: Statistics for various probe sets produced

Dataset Method Number of Probes Nucleotide Coverage (%) Depth of Coverage Efficiency Runtime (hr) Peak Memory (GB)

Coronavirus HUBDesign 13500 25.0% 4.72x 1.87 0.87 0.5
CATCH strict 3846 20.0% 1.01x 1.13 1.7 6
CATCH permissive 1474 22.6% 1.29x 4.23 0.73 4
Naïve 21267 20% 5x 1 0.02 0.02

Sepsis HUBDesign 26,870 2.09% 3.64x 29.3 6.1 7
Naïve 2 million 2% 5x 1 3.5 7

and genomic regions offering unique evolutionary histories (Pedulla et al. 2003; Martin 1999).
As a result, hierarchical trees constructed based on sequence similarity for entire organisms
may differ from those constructed for individual genes (Goodman et al. 1979). Given a gene
tree, a representative sequence can be constructed for each node in the tree by collapsing the
sequences of all tips of the tree descended from that node. We have developed a pipeline that
designs probes based on representative sequences at multiple hierarchical levels (e.g. family,
genus, species). The resulting probes specifically target and enrich nested clades allowing for
enrichment and identification of sequences from known and novel organisms.

Here we present and describe HUBDesign, a bioinformatic pipeline which leverages sequence
homology and flexible DNA hybridization to design probes which can efficiently target
sequences from a broad selection of organisms while maintaining specificity. To demonstrate
the capabilities and effectiveness of HUBDesign we have designed and tested two probe sets. A
coronavirus probe set capable of simultaneously detecting all sequenced coronaviruses, and a
set of probes targeting bacterial pathogens associated with sepsis.

8.3 Results

8.3.1 Probe Design

Multiple methods of designing probes were performed, and information on each is detailed in
Table 8.1. Given differences in breadth and depth of coverage a comparable metric of efficiency
was calculated as the average number of distinct genomes any given probe maps to. For the
relatively small coronavirus dataset, the runtime (52min) and effectiveness (1.87) of
HUBDesign falls within the performance range CATCH given reasonable hybridization
parameters, (44-102 min, and 1.13 - 4.23). However, HUBDesign is more memory efficient
which allows it to scale to the much larger sepsis dataset, for which CATCH failed with all
tested parameter sets. Both methods produce more compact and efficient probe sets than a
naïve strategy.

The HUBDesign probe set for coronaviruses was tiled such that each taxon was targeted by
approximately 400 probes. As seen in Figure 8.1 all genomes, where possible, are targeted by a
minimum of 200 probes. The four lowest probe counts are for two gammacoronaviruses
(Turkey Coronavirus: txid11152; 23 probes, and Infectious Bronchitis virus: txid11120; 8) and
two alphacoronaviruses (BtRf-AlphaCoV/YN2012: txid1503293, and Rhinolophus bat
coronavirus HKU2: txid693998) with zero probes.
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The majority (62.5%) of the probes have targets which are specific to one virus. Of the probes
targeting multiple viruses, most (78.1%) target two or three. The remaining three sets of probes
target loci specific to merbecoviruses and embecoviruses (both are Betacoronavirus subgenera)
and loci common to the Deltacoronavirus genus. Both SARS-CoV-2 and
Human coronavirus NL63 (HCoV-NL63) have probes at two levels in the hierarchy. For
SARS-CoV-2 there are nearly 400 probes which target sequences common to SARS-CoV-2 and
severe acute respiratory syndrome coronavirus 1 and an additional 400 probes which target
Sarbecovirus sequences in general. While there are no probes which target SARS-CoV-2
specific loci, the virus is easily differentiated by its sequence at those bait positions.
HCoV-NL63 has 400 probes targeting Setracovirus sequences and an additional 4 probes which
specifically target HCoV-NL63 loci.

The HUBDesign probe set for sepsis pathogens contained 26,870 probes targeting bacterial
pathogens covering 2.09% of all nucleotides in the input dataset at an average depth of
coverage of 3.64x. A naïve tiling achieving 2% coverage at 5x would require over 2 million
probes. All 1926 bacterial strains are targeted by probes which are at least at the genus level,
and 53.3% of strains are targeted at the species level. The only genus which did not have any
probes was Clostridium, but all strains in the genus were targeted at the species level. These
species C. botulinum, C. perfringens, and C. tetani, also had the lowest probe counts at 12, 44,
and 71, respectively. The next lowest were Rickettsia prowazekii and Borrellia burgdorferi at
53 and 90 probes, respectively. All other species have at least 100 probes, with an overall
median of 478 probes per species. The seven spiked strains are targeted by at least 110 probes
(S. sanguinis) and up to 564 probes (Burkholderia multivorans). S. sanguinis is the only spiked
strain targeted at only the genus level, as it was not included in the dataset used to design the
probes. Details on the number of probes per genus and species are in Table A4.6.

8.3.2 Coronavirus Probe Validation

Figure A4.1 shows how the amplicon levels compare to the rest of the coronavirus genomes.
While there is a peak in the coverage in this region, it is within the variability of nearby
genomic regions. The estimated copy masses of HCoV-NL63 and SARS-CoV-2 are 29.5
attograms/copy and 10.8 attograms/copy, respectively. Note that the copy mass of HCoV-NL63
was nearly 3x higher and therefore the nominal ratios based on copy number will not be
represented in the sequencing results. For example, the EH sample was prepared with an
amount of viral extract expected to result in 20000 copies of each virus. However, based on the
shotgun baseline, the actual amounts of viral RNA are 215 and 589 femtograms of
SARS-CoV-2 and HCoV-NL63, respectively. This gives a ratio closer to 1:3 rather than the
original PCR estimated ratio of 1:1.

The proportion of reads assigned to SARS-CoV-2, HCoV-NL63, human, or otherwise can be
seen for each sample in Figure 8.2. The proportion of viral reads is significantly and highly
enriched relative to a shotgun sample with the same amount of viral RNA. The combined
number of reads assigned to either of the two spiked viruses was considered to be the number
of on-target reads. This and the number of off-target reads were used to perform logistic
regression. We observed fold enrichment in on target reads of 97.6x (95%CI: 96.4-98.9x). The
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summary of the logistic regression can be found in Table A4.8. To examine the performance of
individual probes, the two genomes were divided into alternating regions with and without
probes. For example, the SARS-CoV-2 genome was broken into 20 regions, the first of which
covers the first 4,950 bp in the genome and was targeted by 166 probes. It is followed by a 956
bp region not targeted by any probes, which is in turn followed by a 773 bp region with one
probe at its center. Region boundaries were defined as 350 bp upstream and downstream of
overlapping probes. This allows the analysis to account for the extended field of influence of
probes resulting from capturing fragments with significant overhang. The following values
were calculated for each region: the GC content, the number of probes, the average level of
divergence from the genome sequence across the probes, and the fold enrichment. Differences
in library size were accounted for by adjusting the enriched library’s read counts by the relative
size of the paired shotgun library. The fold enrichment for each region was calculated by
dividing the observed read count in the enriched sample by the adjusted read count in the paired
shotgun sample.

Due to the low sample concentration of viral RNA, there were several regions with no read
coverage in the shotgun samples. The shotgun baseline was used to adjust shotgun read counts
to reduce zeros. For each region, the proportion of reads from the shotgun baseline in that
region was calculated. The adjusted read count for each region was the proportion in the
shotgun baseline multiplied by an estimate of total reads across the genome taken from a
weighted average across all regions.

Based on linear regression, increases in GC content from the genomic mean are negatively
associated with fold enrichment. An increase in GC content of 11.3% is associated with a
halving of fold enrichment, however this effect is not significant in genomic regions targeted by
probes. This amelioration of negative relationships when probes are present holds across all
predictors. Another linear regression was also done which only used regions which had probes.
Surprisingly, GC content, probe divergence, and shotgun baseline levels had little if any
significant effect. However, probe density was significantly and positively associated with fold
enrichment. Every additional 77probes/kb resulted in a doubling of fold enrichment. Both
regressions show a positive relationship with viral load over the range of viral loads tested. The
relationship was weaker for HCoV-NL63 which had more RNA per nominal copy, consistent
with expected diminishing returns in fold enrichment at high viral loads. A complete summary
of these regressions can be found in Table A4.9. GC content and baseline shotgun levels only
have a significant effect in probe-free regions. It is likely that these factors increase the number
of sequenced reads overall rather than affecting the enrichment specifically.

Figure 8.3 shows the fold enrichment, probe coverage, and GC content at each position in both
genomes. There is no discernible relationship between GC content and fold enrichment,
especially given the correlation between probe coverage and GC content. HUBDesign’s
selection of probes is based on finding unique sequences, and biased nucleotide content makes
unique sequences less likely. Coronaviruses have an average of 30% GC content overall, but
there are genomic regions with GC content at parity with AT content. As unique sequences are
more likely to be found in these regions, it explains the correlation between increasing GC
content and higher numbers of probes.
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regions of the genome. Also see Table A4.9 and Figure A4.2.
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8.3.3 Sepsis Probe Assessment

The proportion of reads assigned to each of the spiked strains, with all Streptococcus spp.
grouped together, as well the proportion of human or other organisms can be seen in Figure 8.4.
Enrichment of the spiked taxa, but not the human background, is observed in the blood blanks.
We detected genomic sequences from every spiked strain in the blank shotgun samples, and
these contaminant sequences were captured by the probes intended to do so. Enrichment of
sequences targeted by probes, but unintentionally present in the samples is also apparent when
examining the ’Other’ category. The majority of these reads are assigned to probes targeting
Shigella (69%) and Escherichia (30%) sequences. Adjusting for library size, there were 466x
more reads for these two genera in the water blank samples than the blood blank samples. Fold
enrichments estimated with logistic regression were 11.8x (95% CI: 8.87-15.7x) in the Low
sample, 64.3x (95% CI: 40.1-103x) in the Medium sample, and 18.6x (95% CI: 12.4-27.9x) in
the High sample.

To assess the difference in performance between probes targeting at the genus and species
levels, all reads were remapped competitively to the genomes of the spiked bacterial strains
with BLASTn being used to disambiguate reads which mapped to multiple positions within a
genome or reads which mapped to multiple genomes. The genomes were broken up into
regions targeted by probes at each taxonomic level, and one large region composed of all
untargeted genomic regions. Within each region the log ratio of enriched reads to shotgun reads
was calculated. The difference in library depth was accounted for by adjusting read counts in
the larger library down by the ratio in size between the two libraries. Linear regression was
used to account for properties of the baits and assess the difference between species level and
genus level probes. This difference was only significant for Staphylococcus aureus, which also
had the greatest disparity between the number of regions targeted at the genus and species level
(Table A4.10). In all cases the variation due to properties of the probes, especially probe
density and probe divergence, was larger than the variation due to taxonomic level. The
performance in the probe regions across the spiked strains can be seen in Figure 8.5.

8.4 Discussion

The HUBDesign pipeline was able to rapidly design a compact and efficient probe-set covering
almost every one of the targeted coronaviruses. Overall design time was less than a day, the
majority of which was spent exhaustively filtering candidate probes against the human genome.
The collapsing of the genomes into representative sequences required less than an hour, and the
identification of candidates was completed in under a minute and required less than one GB of
memory. However, processing 56 viral genomes is a minor task compared to the capabilities of
the pipeline. Memory requirements for candidate identification scale linearly with genome size
and number of organisms, but time requirements grow much more quickly. The pipeline has
also been tested on three other input sets. Table A4.5 details the performance of SA_BOND on
each set of organisms. These datasets come from different stages in the development of the
HUBDesign pipeline, but the SA_BOND step has remained constant, and is also the most
memory intensive step. It should be noted that the amount of diversity within a set of organisms

95

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Zachery William DICKSON; McMaster University– Department of Biology

SG ENR

Blank

0.0e+00

5.0e−06

1.0e−05

1.5e−05

2.0e−05

2.5e−05

0.97

1

SG ENR

Low

0.00000

0.00007

0.00015

0.00022

0.00030

0.97

1

SG ENR

Medium

0.0000

0.0002

0.0004

0.0007

0.0009

0.0011

0.0013

0.0016

0.0018

0.0020

0.97

1

SG ENR

High

0.00

0.03

0.07

0.10

0.13

0.17

0.20

0.23

0.27

0.30

0.97

1

P
ro

po
rt

io
n 

of
 R

ea
ds

A

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Fold Enrichment

FC

Blank

Low

Medium

High

1/2 1 2 4 8 16 32 64 128 256

B

Burkholderia
Klebsiella

Staphylococcus
Streptococcus

Human
Other

On Target

FIGURE 8.4: (A) The proportion of reads assigned to four different spiked gen-
era and the human background. Reads assigned to other taxa are grouped to-
gether. The right column in each pair represents the sample enriched with the
probes. Error bars are the 95% confidence interval of the proportion. Each
sample is on a different scale to show the enrichment of the targeted genera.
(B) The fold enrichment of non-human sequences in each sample. The error
bars indicate 95% confidence intervals of difference between log read counts in
the enriched and matching shotgun libraries. The only insignificant enrichment
among the spiked genera is for Burkholderia and Klebsiella in the Blanks. The
blanks in both panels refer to libraries prepared from blood only without any
spiked bacteria.

96

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Zachery William DICKSON; McMaster University– Department of Biology

B. multivorans

1/10000

1/1000

1/200

1/20

2/5

2

20

160

1300

10000

75000

SGDensity

BaitDensity

Divergence

GC

Background Genus Species

K. pneumoniae

1/10000

1/1000

1/200

1/20

2/5

2

20

160

1300

10000

75000

SGDensity

BaitDensity

Divergence

GC

Background Genus Species

S. aureus

1/10000

1/1000

1/200

1/20

2/5

2

20

160

1300

10000

75000

SGDensity

BaitDensity

Divergence

GC

Background Genus Species

S. constellatus

1/10000

1/1000

1/200

1/20

2/5

2

20

160

1300

10000

75000

SGDensity

BaitDensity

Divergence

GC

Background Genus Species

S. intermedius

1/10000

1/1000

1/200

1/20

2/5

2

20

160

1300

10000

75000

SGDensity

BaitDensity

Divergence

GC

Background Genus Species

S. pneumoniae

1/10000

1/1000

1/200

1/20

2/5

2

20

160

1300

10000

75000

SGDensity

BaitDensity

Divergence

GC

Background Genus Species

S. sanguinis

1/10000

1/1000

1/200

1/20

2/5

2

20

160

1300

10000

75000

SGDensity

BaitDensity

Divergence

GC

Background Genus

GC (%)

30 40 50 60 70

Divergence (%)

0 5 10 15 20 25 30+

Bait Density (baits/kb)

0 5 10 15 20 25 30 35

Shotgun Density (reads/kb)

0 100 200 300 400 500

F
ol

d 
E

nr
ic

hm
en

t

FIGURE 8.5: Bar heights indicate the fold enrichment observed for each genomic region. Bars
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error bars are an attempt to incorporate incomplete information. Upward pointing arrows indicate
that in some replicates reads were present in the enriched sample and not the shotgun sample, and
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Downward facing arrows conversely indicate that the finite observed values are the maximum fold
enrichment. Arrows in both directions indicated both scenarios were observed, and there is very
likely no enrichment or depletion. Colour tracks below each bar plot indicate the bait or genomic
properties likely to affect fold enrichment, note that bait divergence ranges from 0% to 30% or more.
While there are differences between the performance of genus and species level baits, the direction
of this is inconsistent as the properties of the baits, especially bait divergence and bait density have
a larger effect than bait level. Also see Table A4.10 and Figure A4.3.
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is very important. For example, a dataset composed of 1473 common gut bacteria was tested.
While there are fewer genomes than the sepsis dataset, those genomes are spread over 161
genera compared to 35 for sepsis. As a result, there is less overall sharing of sequences,
allowing for less information to be collapsed into representative sequences, and the
corresponding runtime of SA_BOND is longer.

There were two viruses for which no candidate probes were found at any taxonomic level:
txid1503293 and txid693998. In the tree used during assignment of gene clusters, these two
viruses are labelled as alphacoronaviruses, without any indication of being more closely
related. (Figure 8.1). However, all but one of their genes consistently formed clusters which
were distinct from all other viruses. Given the tree, the apparent lowest common ancestor
(LCA) node for these two is the Alphacoronavirus node. As the two viruses represent only
8.7% of the strains in the genus, their clusters did not meet the penetrance threshold, thus their
sequences were not included in the pseudo-genome. Without any sequence to select from, no
probes were found for these viruses. We have recognized this and the current version of
HUBDesign constructs a new tree to be used during cluster assignment, which is based on the
observed clusters, and optionally guided by a user provided tree to resolve ambiguities.

Eleven mutations across SARS-CoV-2 isolates have been identified which can be used to
classify the virus into 5 clades (Guan et al. 2020). Our probes, which target SARS-CoV-2,
cover these mutations well. Four of the loci are in positions directly covered by the probes, five
more have a probe within 100 bp, and the remaining two are 267 and 546 bp from the nearest
probe. The validation results demonstrate that enrichment of genomic regions adjacent to the
probes occurs at least as far as 350 bp if not further (Figure 8.3). For these loci, all positions
demonstrated an average of at least 3-fold enrichment across all samples. With the two loci
furthest from a probe averaging 17-fold and 19-fold enrichment, respectively.

During analysis, we removed reads which mapped to amplicons generated during qPCR of the
viruses. This was performed to reduce potential contamination from any amplicons that had
escaped into the environment, which can occur relatively easily throughout the
procedures. (Rys and Persing 1993). Analysis of the reads filtered out suggested that our
approach was quite conservative, as out of the blank samples (a total of 6 million reads), only
one read mapped to an amplicon. The number of reads mapping to the amplicons correlates
well (cor = 0.997) with the nominal copy number of SARS-CoV-2 in the sample with one read
mapping to an amplicon for every 10.45 nominal copies of the virus present (p < 0.0001).
Despite conservatively removing these reads which were mostly true viral reads, high levels of
enrichment were observed.

In preparing each sample’s read data, only one read was carried forward for each unique
sequence observed. All other copies of that sequence are string duplicates which could be true
biological reads. When multiple copies of the genome are randomly fragmented, identical
sequences can be produced. However, given the experimental set up, it is much more likely that
these reads are the result of PCR duplication. To evaluate the effect of duplication, all analysis
were performed again without the deduplication step. The mean±SEM duplication rates in
human and viral reads was observed at 8.2±0.7% and 15.8±5.5%, respectively in shotgun
samples. In enriched samples duplication rates were 20.3±3.5% for human reads and
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54.2±5.6% for viral reads. Fold enrichment of viral reads was approximately doubled when
reanalyzing without duplication, consistent with the approximately doubled rates of duplication
in viral reads. The duplication rates for both human and viral reads are elevated in the enriched
samples, consistent with going through additional rounds of PCR. As the viral genomes are
much shorter than the human genome, it is much more likely for identical fragments to arise by
chance. This may explain the elevated duplication rates relative to humans. Deduplication
would then be reducing the true read count on viral reads, but failure to deduplicate artificially
inflates read counts in the enrichment relative to the shotgun. Despite our conservative
approach by removing duplicates, we still observed significant enrichment of both
SARS-CoV-2 and HCoV-NL63.

While the specifics of individual probe performance vary depending on the resolution and
method of analysis, the clear enrichment of sequences from both viruses is robust and apparent
with every analysis we performed. The target sequences of probes at all relevant hierarchical
levels were significantly enriched. Fold enrichment levels are highest in the EH pool and
lowest, but still significant, in the EL pool, the sample with the lowest viral input. The
relationship does not appear to be linear. Fold enrichment is about double for SARS-CoV-2
than in HCoV-NL63, however there were also nearly twice as many probes targeting the former
(796 probes) than the latter (402 probes). While the number of probes targeting a single locus
was not observed to have a significant effect, the global number of probes targeting an
organism does have an effect. This emphasizes the importance of balancing probe numbers
across organisms. The fact that there were nearly twice as many probes targeting loci in
SARS-CoV-2, and that these loci are more evenly spread across the genome contributes to the
apparent difference in enrichment profile observed in Figure 8.3. Enrichment across the
SARS-CoV-2 genome is relatively even, potentially because of the closely spaced probes.

There is evidence of enrichment in regions that are not targeted by probes for SARS-CoV-2 or
HCoV-NL63. A notable example is the peak visible near position 23k of HCoV-NL63 in
Figure 8.3. Three potential explanations for this are an extended field of influence for nearby
probes, off-target capture between viruses, and within genome off-target capture. We identified
14 regions that were significantly enriched which were also at least 350 bp away from the
nearest probe. Two were in HCoV-NL63, and the remaining in SARS-CoV-2. These regions
are highlighted in Figure 8.3 and are detailed in Table A4.7.

We identified 45,791 unique molecules in these regions across all enriched samples, making up
7.1% of all viral molecules. The large majority (92.4%) of these molecules best match
SARS-CoV-2, with nearly half of those mapping in the vicinity of on-target probes, consistent
with the range of enrichment around a probe being larger than 350 bp. This can be explained by
overhanging fragments. For example, if a 75 bp probe perfectly matches the end of a 300 bp
fragment, this leaves 225 bp of the fragment to potentially capture overlapping fragments from
the opposite strand. This allows the probe to enrich beyond its immediate target. If this were
occurring, we would expect to see bias in the strandedness of our captured viral sequence data.
The probes are designed to capture negative strand cDNA synthesized by reverse transcribing
the positive strand RNA of the virus. Most of the captured fragments should then be from the
negative strand, but fragments pulled down indirectly should be positive stranded. As can be
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seen in Figure A4.2, we do indeed see that most reads are negative stranded, but in regions
flanking enriched areas the strand bias flips. These indirectly enriched areas in some cases
explain regions where enrichment is occurring without targeted probes.

All off-target-enriched reads were remapped to probe regions excluding probes which capture
HCoV-NL63 and SARS-CoV-2. Only 763 (1.7% of all reads in noted regions) of these
molecules successfully mapped, but they always did so to a probe in the correct genera
(HCoV-NL63 reads mapping to other alphacoronavirus probes, and SARS-CoV-2 to other
betacoronavirus probes). When the remappings are broken down by their region in the genome,
only 3 of the 14 regions appear to be enriched by off-target probes. The region from positions
23k to 23.3k in the HCoV-NL63 genome appears to have been captured by a group of 27
probes targeting the same region of the Camel alphacoronavirus (txid1699095), which is about
25% divergent from HCoV-NL63. Two regions of the SARS-CoV-2 genome covering positions
15.4k-17.2k appear to have been captured by three sets of probes all targeting similar genomic
regions. The first set of 118 probes targets Betacoronavirus HKU24 (txid1590370), the second
set of 36 probes targets Rat coronavirus Parker (txid502102), and the third set is a single probe
targeting Rousettus bat coronavirus HKU9 (txid694006). Due to the overlapping nature of
probes, it is difficult to say which specific probe is responsible, except in the case of the
txid694006 probe which had 100 reads attributable to it. In general, the fold enrichment in
these off-target regions is lower than in on-target regions, and the off-target effects would be
expected to diminish if the true target of the probes were present. When not present these
probes can still be an advantage when the goal is hunting for novel organisms or identifying
and monitoring members of a community.

The third possibility for apparent enrichment at a distance from a probe is off-target capture by
probes within the same genome. The reads which map to the genome in probe-free enrichment
regions were mapped directly to probes, and the positions targeted by those probes was
compared to the original genomic position of the read. Of the 15,669 (34.2%) reads which
mapped to a probe almost all (97.9%) mapped to probe directly adjacent to a probe-free
enrichment region. This again indicates an extended field of influence of the probes. However,
there were 330 reads which mapped to a probe targeting a position at least 1000 bp away from
read’s genomic position, with the furthest being nearly 27000 bp away. These 330 reads fall
exclusively into 13 of the 14 probe-free enrichment regions identified. The only apparent
probe-free enrichment not at least partly explained by within genome off-target effects is the
region from 23k to 23.3k in HCoV-NL63.

A final concern for off-target enrichment is inadvertent capture of the background. Of the
nearly 29 million reads which mapped to the human genome only 57 (0.0002%) also mapped to
a probe or the 350 bp region immediately up- or downstream of the probe. Broken down by
sample, these reads are found more in the HiLo and LoHi samples (46 reads) than in the lower
viral load samples (11 reads), and none were found in the negative samples. This is the
opposite of what would be expected if the probes were enriching the human background. The
amount of human input is at least 10,000 times higher than viral input in the samples with the
highest concentration (and over 10 million times higher in the lowest). Therefore, the number
of off-target reads would be expected to be either constant or decrease with higher viral load as
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competition between the probes true target and a partial human match would favour capture of
the virus. As there is an increase with viral load, it is more likely that our human filtration step
over-zealously filtered out reads from the spiked viruses. Human background enrichment does
not appear to be occurring for the sepsis probes either, as we observed 0.00055% of human
reads also mapping to a probe. Most (67%) are in the blood blank samples, followed by the
blood-free positive controls (22%). While the same counter pattern as seen for the coronavirus
probes was not observed, given the overwhelming amount of human DNA present the low
number of reads at worst indicates extremely inefficient off-target enrichment. We also
observed enrichment in untargeted genomic regions of the spiked bacterial species. These
samples were prepared with a double stranded library preparation protocol and thus the same
strand bias as seen for the coronaviruses, would not be expected. Instead, we calculated the
minimum distance to the nearest on-target probe for each read, and calculated the fold
enrichment of reads at each distance. While there was clear enrichment far from probe regions
there was almost none observed near to, but outside of targeted regions (Figure A4.3). This
indicates that daisy-chain-enrichment was not a significant factor for these enrichments. This
may be due to differences in library prep and the strandedness of the input nucleic acids.
Another important factor is that the coronavirus genomes are orders of magnitude smaller, and
the pool of fragments from which to sample hybridizations during enrichment is also less
diverse. This makes it far more likely for a complementary fragment to be pulled down during
enrichment.

The majority of observed off-target enrichment is the result of probes meant for other taxa
targeting the spiked strains. There were 215 probes (0.8% of probes) which mapped to the
spiked genomes but had different nominal targets. Of these, 178 nominally targeted another
species in the correct genus. There were 31 probes which targeted at various levels within the
non-Klebsiella members of the Enterobacteriaceae family. Most notable were probes targeting
Enterobacter aerogenes, however since these probes were designed, this bacterium has since
been classified as a member of the Klebsiella genus. The remaining 6 probes are 5
S. intermedius probes mis-targeting Klebsiella pneumoniae, and one Klebsiella probe
miss-targeting S. sanguinis. The Enterobacteriaceae probes highlight a flaw in the design for
the sepsis probe set: the partitioning of clusters primarily based on the nominal taxonomy,
rather than observed sequence similarity. The sequences targeted by these probes are shared at
the family level, but the design considered the genera independently and selected candidate
probes which were not truly specific to their nominal targets. These flaws present in the older
version of HUBDesign have already been corrected in newer versions of HUBDesign, as we
continue to develop and improve it. The same cluster partitioning issue is likely the reason for
some highly divergent probes being included in the probe set, especially for the Streptococcus
spp.. Despite these points to improve, the probes were able to enrich S. sanguinis, a strain
’unknown’ to HUBDesign, with some genomic regions enriched over 100x (Figure 8.5).

While not among the bacteria intentionally spiked into the samples, we also observed
significant enrichment (2-16x) of reads mapping to Shigella and Escherichia probes. The latter
is a common reagent contaminant (Salter et al. 2014), and these two bacteria are closely
related. As a result of the cluster partitioning described above, the more numerous Shigella
probes Table A4.6 are also likely capturing contaminating Escherichia sequences. Both are
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also common human pathogens included in the design dataset for the sepsis probes. To avoid
the capture of reagent contaminants, backlist databases of common contaminant sequences
could be provided to HUBDesign during the filtration phase.

Overall, the fold enrichment observed in total reads for target organisms ranged between 10 and
100x for both probe sets. With individual regions of the viral genomes having mean fold
enrichment up to 1000x for the coronavirus probes and up to 20000x for some S. aureus probe
regions. This is comparable to the reported performance of CATCH (Metsky et al. 2019).
Using a set of ~350 thousand probes targeting 356 viral species on 30 patient samples with
known viral infections. The median fold enrichment at genomic positions ranged from 1x to
53x. They observed fold changes for the number of reads for a virus within a sample as high as
1000x. The enrichment achieved by HUBDesign’s probes can be translated in savings to
sequencing costs. To attain the same depth of coverage we observed in our enrichments with a
shotgun library, one would need to sequence 10 to 100x more deeply, with a commensurate
increase in sequencing costs!

8.5 Limitations of the Study

The validation experiments used artificial samples generated by pooling the desired
background with genomic extracts from the targets of interest. Nucleic acids in patient samples
and environmental extracts may have damage or modifications which reduce their availability
for capture, reducing efficacy without altering specificity. As the performance of probes is
dependent on the sequence properties of the targets, the level of enrichment will vary for each
produced probeset.

HUBDesign relies on annotated genomes to efficiently cluster sequences. Probes cannot be
designed for targets with unknown, or unannotatable genomes. HUBDesign may be able to
capture these sequences by targeting closely related taxa. Development on the pipeline is
ongoing to improve efficiency and reduce barriers to use.
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8.9 STAR Methods text

8.9.1 Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be
fulfilled by the lead contact, Zachery W Dickson (dicksoz@mcmaster.ca).

Materials Availability

• This study did not generate new unique reagents.

• Generated Probe Sequences and associated metadata can be found at
https://github.com/zacherydickson/HUBDesign/probes.

Data and Code Availability

• All sequencing data generated in the course of this work is available on the Sequence
Read Archive under the BioProject accession PRJNA674643.

• The source code for HUBDesign is available under the terms of the GPL-3.0 license at
https://github.com/zacherydickson/HUBDesign. DOI: 10.5281/zenodo.5156877 .

• Any additional information required to reanalyze the data reported in this paper is
available from the lead contact upon request

8.9.2 Experimental Model and Subject Details

Cell lines

VeroE6 cells were cultured in Dulbecco’s modified Eagle medium containing 10% fetal bovine
serum, 0.02M L-glutamine, 1,000 Units/mL Penicillin, and 1,000 µg/mL Streptomycin, as
previously described (Banerjee et al. 2020).
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Viruses

A clinical isolate of SARS-CoV-2 (SARS-CoV-2/SB3-TYAGNC) was propagated in Vero E6
cells and virus stocks were quantified and sequenced as previously mentioned (Banerjee et al.
2020). Virus stocks were maintained at -80◦C. Work with SARS-CoV-2 was performed in a
containment level 3 laboratory and all protocols were approved by the McMaster Presidential
Biosafety Advisory Committee.

HCoV-NL63 (NR-470; BEI) was propagated on VeroE6 cells and viral titers were quantified
using the 50% Tissue Culture Infectious Dose (TCID50) method. TCID50 values were
determined using the Reed-Muench method (Reed and Muench 1938). Viral stocks were stored
at -80◦C.

Bacteria

Seven bacterial strains were used in this work B. multivorans (ATCC17616), K. pneumoniae
(N25C9), S. aureus (IIDRC0017), S. constellatus (C1050), S. intermedius (B196),
S. pneumoniae (R6), and S. sanguinis (GC83). All strains with the exception of B. multivorans
were provided by Michael G Surette.

Frozen bacterial strains were independently cultured for 48 hours on agar.

8.9.3 Method Details

HUBDesign Pipeline

The Hierarchical Unique Bait Design (HUBDesign) pipeline aims to identify oligonucleotides
(probes) which will specifically hybridize with nucleic acids from any member of a clade, and
to do this for as many clades as possible within a given set of organisms. The probes designed
are intended to enrich loci which are common to members of a clade, while being unique to
that clade. This does not necessarily allow for whole genome enrichment, however by having
probes at multiple hierarchical levels conserved genomic regions can be targeted by higher
level probes while more variable regions are targeted by probes specific to a species or genome.
The design of these hierarchical and unique probes is achieved through three design phases:
clustering, identifying, and filtering.

In the clustering phase, sequences from the input organisms are grouped together and collapsed
into representative sequences which are then used in the subsequent phase (Figure 8.6.2). To
avoid computationally expensive all-vs-all comparisons, HUBDesign requires annotated
genomes which allows rapid identification of gene families for clustering. The grouping of
similar sequences serves as the source of hierarchical information and reduces computational
effort. This reduction makes it possible to rapidly design probes for inputs ranging from dozens
of viruses to thousands of bacteria. This implementation of the HUBDesign pipeline performs
clustering on gene sequences as annotated using Prokka (Seemann 2014). For each annotated
gene family, sequences are aligned using MAFFT (Katoh and Standley 2013), and then a
neighbour-joining (Saitou and Nei 1987) tree is generated based on the uncorrected edit
distance. The uncorrected distance is used rather than the evolutionary distance as the actual
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difference between sequences is more important in a probe design context. Clusters are
generated from the tree by selecting sub-trees which have a maximum root-to-tip divergence
less than the maximum amount of divergence which still allows hybridization between a probe
and target. A representative consensus sequence is generated for each gene cluster, and these
sequences are assigned to the LCA of each organism represented (Figure 8.6.3). The
representative sequence may not be appropriate to use if the represented organisms do not make
up a significant portion of all descendants of the LCA. Laterally transferred elements are cases
where a shared sequence is not useful in identifying a group of organisms. If an element is
horizontally transferred to a distantly related organism, the representative sequence would be
assigned to a node further from the tips of the tree. To prevent the use of these non-identifying
sequences, a penetrance threshold is set. The penetrance for a representative sequence is
calculated after its cluster has been assigned to the LCA of the genomes represented. The
proportion of the LCA node’s descendants which actually possess a member of the cluster is
the penetrance of the representative sequence. All representative sequences assigned to a given
node which pass the penetrance threshold are concatenated into a pseudo-genome for that node.
The individual representative sequences are buffered to prevent selecting probes which straddle
non-adjacent sequences. (Figure 8.6.4)

In the identification phase of the pipeline, pseudo-genomes are provided to a modified version
of the program Basic OligoNucleotide Design (BOND) (Ilie et al. 2013) (Figure 8.6.5). BOND
was originally designed for the rapid identification of a single unique oligonucleotide for each
gene on a chromosome. Unique is defined as sharing no more than 15 consecutive identities
and no more than 75% overall identity with any other oligo in the input. The entire program
was modified to handle larger inputs allowing for the identification of multiple unique oligos
for each genome in a set of genomes. The modified version (SA_BOND) is strand aware and
tolerant of sequences which are repeated within a single genome. In terms of memory, this is
the most computationally expensive phase in the pipeline. This is also the step where the
specificity of the probes is improved far beyond a naïve tiling strategy. All probes are unique to
the taxa they were designed for, allowing a probe targeting a taxon higher in the tree to capture
all that node’s descendants without also capturing unrelated organisms. In the filtration phase,
oligonucleotides are removed which hybridize to off-target or known background sequences
like the human genome or transcriptome (Figure 8.6.6). This implementation of the pipeline
utilizes BLAST (Altschul et al. 1990) to identify and exclude candidate oligos with significant
hits against background. The thresholds for this can be set based on how conservative one
wishes to be. Remaining candidate oligos which are overlapping are collapsed into contiguous
regions, and then low-complexity intervals are excluded using sdust (Morgulis et al. 2006). The
last step of the filtering phase selects the final set of oligonucleotides from the candidates in a
manner which attempts to reduce bias between organisms. The goal is to have the number of
probes targeting each organism to be as close as possible across the organisms (Figure 8.6.7).
Probe count balancing is achieved by varying tiling density such that oligos targeting
over-represented organisms are tiled less densely than oligos targeting under-represented
organisms. It has been shown that higher tiling density can improve the capture efficiency of
probes (Bertone et al. 2006). Varying tiling density in this way is a trade-off between the
number of unique targets and the efficiency with which those targets are captured. The
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Ĝ
n

4
.

A
ss

e
m

b
le

P
se

u
d
o
G

e
n
o
m

e
s

Ĝ
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hierarchical nature of the probes constrains the ability to balance across organisms as probes
can target multiple organisms which have different levels of coverage. HUBDesign takes an
iterative approach to this problem. Tiling density is performed on probe regions which are
composed of candidate probes with contiguous start positions, and which all target the same
taxon. The entire probe region is said to target that taxon, or all the descendent genomes if the
taxon is at an internal node in the tree. On each iteration of the procedure a target number of
probes per genome is set based on evenly dividing probes across organisms. Tiling strategies
are determined for each probe region based on length, leaf taxa targeted, and a minimum tiling
density specified by the user. If it would not be possible to bring the number of probes for an
organism down to the target level even if all probe regions targeting that organism were tiled at
minimum density, then all of those probe regions are assigned to be minimally tiled. If instead
it is not possible to bring the number of probes for an organism up to the target even by tiling at
maximum density (probes spaced apart by only 1 bp), then all probe regions targeting that
organism are assigned to be maximally tiled. If a probe region targets both an under-targeted
and an over-targeted organism, it will still be maximally tiled to ensure probes are available for
the under-targeted organism. On subsequent iterations the target number of probes per
organism is updated to reflect that the extremes are accounted for and should be excluded from
consideration. Organisms with below target numbers of probes leave more probes available for
the other organisms, and those with above target leave fewer. The new target is set by dividing
the available probes evenly across the remaining organisms. Tiling classes are then reassigned
based on this new target and iteration continues until tiling classes cease to change. Tiling
density of the probe regions not assigned to the extremes are set in the order of constraint:
Probe regions which target organisms which are targeted by the fewest probe regions are
processed first. Within each organism, probe regions that target the most organisms are
processed first. The tiling density is set as the weighted average of the minimum and maximum
tiling density, weighted towards the max when there are few potential probes for the organism,
or if the current number of probes is far from the target. Processing probe regions in this order
allows coarse adjustments to the balance from the most constrained regions, and fine tuning
from the least constrained.

Coronavirus Probe Design

In this section we describe the implementation of HUBDesign used to design probes for 56
coronaviruses taken from RefSeq (O’Leary et al. 2016). The set of viruses covers the Alpha-,
Beta-, Gamma-, and Deltacoronavirus genera and includes the four major seasonally
circulating human coronaviruses, as well as SARS-CoV-2 and viruses responsible for earlier
novel coronavirus outbreaks. (Table A4.1).

In the clustering phase, distances were calculated using the distmat tool from EMBOSS (Rice
et al. 2000), and neighbour joining trees constructed using the neighbour tool from the phylip
package (Felsenstein 1989). Clusters were generated from sub-trees with a maximum
root-to-tip divergence of 15%. This threshold was selected as probe sequences which diverge
from their targets by less than this are most likely to successfully hybridize (Mason et al. 2011;
Delsuc et al. 2016). Each cluster was assigned to the LCA in a dendrogram based on the
lineage recorded in NCBI’s taxonomy database for each genome (Schoch et al. 2020). A
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penetrance threshold of 50% was used, therefore only representative sequences which were
based on at least half of the descendants of the LCA were included in the pseudo-genome for
the LCA. We observed that 90% of all clusters had at least 50% coverage, and this value
ensured that pseudo-genomes representing all input taxa were constructed.

Candidate probes were identified using SA_BOND to search for all unique oligonucleotides of
length 75 across all pseudo-genomes. BLASTn was used to find and exclude any candidate
probe which matched the human genome (GRCh38 (Schneider et al. 2016)). Matches were
considered significant if they had at least 75% identity, were at least 30 bp long, and had an
e-value less than 0.01. Low-complexity regions were excluded using sdust (Morgulis et al.
2006) with the default parameters: a 64 bp window, and a score threshold of 20. The latter
approximately corresponds to a sequence where 80% of the nucleotide triples in the window
are the same. The final probe set was selected with a target minimum tiling density of 5x and a
maximum of 13500 probes. This is the smallest number of probes for which the most balanced
distribution of probes across targets still allows for tiling densities to vary between 5x and the
maximum (1bp spacing). Any fewer and the most balanced configuration has all probe regions
tiled at either of these extremes. Probes were balanced by treating all hierarchical levels
independently, which maximized the number of probes for taxa represented at only one
hierarchical level.

Sepsis Probe Design

The sepsis probe set was produced with an earlier version of HUBDesign. The input database
contained 1926 bacterial genomes across 81 species and 35 genera (Table A4.2). All genomes
were acquired from the PATRIC database (Davis et al. 2020).

Gene clusters were generated and assigned based on nominal taxonomy. Each genus was
independently and recursively processed. All genes of the same name with a minimum
penetrance of 95% in the particular genus were aligned using MAFFT (Katoh and Standley
2013). Then the conservation was calculated, and a consensus sequence was generated. A
minimum of 85% conservation was required. Clusters meeting the penetrance and conservation
thresholds were added to the genus’s pseudo-genome, while those which failed to meet the
criteria were broken up into clusters based on species. Each of these was realigned and tested
against the thresholds once more. Only clusters which passed at the genus or species level were
included in any pseudo-genome.

Up to 100 candidate 100bp probe regions per pseudo-genome were identified using
SA_BOND. All 75 bp sub-sequences of these probe regions were considered candidate probes,
and a maximum number of tiled probes were produced.

BLASTn was used to find and exclude any candidate probes which matched the human genome
(GRCh38 (Schneider et al. 2016)). Matches were considered significant if they had at least
75% identity and were at least 20 bp long. All remaining contiguous probe regions after
filtering were tiled with probes which were spaced apart by 5 bp. As 100 bp regions were
identified this resulted in most loci being targeted by 5 probes.
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Comparative Probe Design

As a baseline comparison, naïve tiling was performed on the genomes of the 56 reference
coronavirus genomes, and on the 1926 sepsis pathogens. Probes were identified by selecting
each 75bp subsequence of each genome, spaced apart by 15bp, and retaining only unique
sequences.

A recently described computational method for probe design is the CATCH python
package (Metsky et al. 2019). It can also be configured and applied to the task of finding
probes, meant for identification. CATCH was run on the 56 reference coronavirus genomes.
We selected two sets of hybridization parameters to account for the fact that CATCH and
HUDesign use opposing approaches to probe selection. HUBDesign identifies candidate probes
via elimination. A probe is only considered if it is unlikely to hybridize to another target in the
dataset. As a result, liberal hybridization parameters make HUBDesign more strict and the
resulting probes more specific. The opposite is true for CATCH. It identifies targets to which
each probe will likely hybridize and selects an optimal set of probes with desired coverage. The
two sets of hybridization parameters provided to CATCH were a strict set which did not allow
mismatches, and a more permissive set allowing up to 18 mismatches but requiring an island of
exact matches 15bp long. The permissive parameters are similar to those used by BOND (Ilie
et al. 2013) to eliminate non-specific probes. Probes which were 75bp long and spaced out by
5bp were designed using the identify flag, targeting 20% coverage of the target genomes. The
human genome (GRCh38 (Schneider et al. 2016)) was provided as a blacklist sequence.

Viral RNA Extraction

For SARS-CoV-2 infections, 2×105 Calu-3 cells were seeded in each well of a 6-well plate. A
clinical isolate of SARS-CoV-2 (SARS-CoV-2/SB3-TYAGNC (Banerjee et al. 2020)) was used
to infect Calu-3 cells at a multiplicity of infection of 0.01. Cells were harvested 48 hours post
infection and total RNA was extracted from infected Calu-3 cells using the QIAamp viral RNA
Mini kit (Qiagen) according to the protocol outlined by Banerjee et al. (Banerjee et al. 2020).

Viral RNA from HCoV-NL63-infected VeroE6 cells was extracted using the Qiagen RNeasy kit
with minor modifications. Briefly, 100 µL of supernatant was mixed with an equal volume of
RLT lysis buffer and 25 µL of 20 mg/mL proteinase K (Invitrogen). Samples were vortexed
and incubated at 56◦C for 15 minutes. Following, 200 µL of 70% ethanol was added to the
solution and RNA was eluted as outlined in the RNeasy manufacturer’s protocol.

Human total RNA was extracted from peripheral blood mononuclear cells using the RNeasy
extraction kit (Qiagen) according to manufacturer’s protocols.

Coronavirus Sample Preparation

The copy number of both viral extracts was determined using the Luna Universal Probe
One-Step RT-qPCR Kit (NEB) and the primers in Table A4.3, while human RNA was
quantified using Qubit RNA HS Assay Kit (Thermo Fisher). All three sets of RNA were
separately treated with DNase I (NEB), and the human ribosomal RNA depletion kit (NEB)
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according to manufacturer’s protocols. Following this, samples were thermally fragmented to
roughly similar fragment size distributions.

Four mock samples and a negative control were prepared by combining RNA extracts from the
two viruses and total human RNA background. The samples were prepared at a low level of
two hundred RNA copies and a higher level of twenty thousand RNA copies in a 1:1 ratio of
both viruses (EL and EH). Two additional samples were prepared with two thousand RNA
copies of one virus and two hundred thousand RNA copies of the other. In the LoHi sample
SARS-CoV-2 was the low-level virus, and HCoV-NL63 was in the HiLo sample. All samples
including the negative control contained one hundred nanograms total human RNA.

While qPCR copy numbers were used to prepare the mock pools, these copy numbers do not
represent full genome copies present at that level, only that the PCR amplicon is present at that
estimated copy number. Variation occurs as sub-genomic RNA molecules are created during
the coronavirus life cycle (Kim et al. 2020; Fehr and Perlman 2015). Different regions of the
genome are therefore likely to be better represented than others, with the expectation that the 3′

regions of the genome will have the highest copy numbers (Figure A4.1).

To generate a confident baseline to account for this, an additional sample containing a mixture
of the viruses was shotgun sequenced. The sample nominally contained 2.68 million copies of
the HCoV-NL63 genome and 5.1 million copies of the SARS-CoV-2 genome.

All pooled samples were prepared in triplicate. First strand synthesis was performed using
Superscript III Reverse Transcriptase (Thermo Fisher) according to manufacturer’s protocols
with 250ng random hexamers. This reaction was purified using AMPure XP beads (Beckman
Coulter) at a 1.8X ratio to sample. Single-stranded libraries were then prepared using the
SRSLY Nanoplus kit from Claret Bioscience. Attachment of indexing adapters was performed
according to the protocol outlined by Kircher et al. (Kircher et al. 2012), after which the
indexed libraries were purified using MinElute spin columns (Qiagen). Each replicate was split
in two where one half was enriched prior to sequencing and the other shotgun sequenced.

Probes were synthesized through Ann Arbor Biosciences myBaits custom DNA-Seq program.
Enriched samples were processed according to the Ann Arbor Biosciences myBaits targeted
enrichment protocol version 4.01 (Ann Arbor Biosciences 2018) with a 72-hour capture step.
After enrichment, both shotgun and enriched libraries were quantified alongside the Illumina
PhiX standard, before being pooled to equimolar quantities and undergoing a gel-based size
selection for fragments between 150-500 bp. Pools were then sequenced on an Illumina Hiseq
2x90 flow cell.

Bacterial Sample Preparation

Three mock pools were prepared in triplicate which contained human blood spiked with the
seven bacterial strains listed above. With the exception of S. sanguinis, the genomes of the
spiked bacteria were in the dataset used to design the probes. The three pools were at Low,
Medium, and High concentrations (101, 103, and 106 CFU/mL) of each bacteria. One
additional pool at each concentration was also prepared where all the bacteria were included
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but the blood was omitted. Three negative controls were prepared with water and five negative
controls were prepared with blood only.

Cultures of each of the strains to be spiked were suspended and diluted to the above
concentrations in 0.85% saline. At each of the Low, Medium, and High concentrations the
matching CFU counts for each strain were pooled together and pelleted. Fresh human blood
was drawn from a healthy donor into tubes containing EDTA as an anticoagulant. Bacterial
pellets for each pool were resuspended in the blood, or sterile saline for the no blood control.

DNA was extracted using the High Pure Viral Nucleic Acid Extraction large volume kit from
Roche, according to their version 7 protocol for a 1mL sample. Pools were sonicated to ~200bp
using a Covaris S220 focused ultrasonicator. Pools were divided such that each pool would
have one shotgun library and two enriched libraries. Samples for both shotgun and enrichment
were processed for library preparation using the NEBNext Ultra II DNA Library Prep Kit for
Illumina (CN E7645) according to manufacturer’s specifications. Probes were synthesized
through Ann Arbor Biosciences myBaits custom DNA-Seq program. Samples to be enriched
were processed using the Arbor Biosciences myBaits v5.0 kit with the high sensitivity protocol,
according to manufacturer’s specifications with a 63◦C hybridization temperature.

After enrichment, all samples including those prepared for shotgun sequencing were quantified
using KAPA SYBR FAST Bio-Rad iCycler Master Mix (Sigma Aldrich, CN KK4608), run
alongside PhiX Control Standards (Illumina, CN FC-110-3001). Based on these
concentrations, samples were pooled to equimolar amounts, then concentrated using a Minelute
PCR purification column (Qiagen, CN 28006). This concentrated pool was then size-selected
using NuSieve GTG Agarose (Lonza, CN 50081) in a 3% 1X TAE gel. Only molecules with a
total length between 200bp and 500bp were excised from the gel. The final pool was purified
from the gel using a Minelute Gel Extraction column (Qiagen, CN 28604), and eluted in 20µL.
This final pool was sequenced on an Illumina HiSeq 2x90 flow cell.

Sample Analysis

After demultiplexing, samples were trimmed and merged using FastP (Chen et al. 2018). Any
orphaned reads were treated as single ended reads going forward. Reads were string
deduplicated using prinseq (Schmieder and Edwards 2011) as identical reads are much more
likely to be PCR duplicates generated during sample preparation than identical templates
generated during fragmentation. String deduplication was selected over mapping-based
deduplication as a balance between removing PCR duplicates and retaining true biological
duplicates from high-copy numbers. Reads for were then filtered against the
GRCh38 (Schneider et al. 2016) version of the human transcriptome (coronaviruses) or genome
(sepsis) using BWA (Li and Durbin 2009). Reads from coronavirus libraries were also mapped
against amplicon sequences in Table A4.4, to assess possible aerosolized contamination from
previous PCR reactions performed in our and neighbouring labs.

Reads were mapped to contiguous probe regions, flanked by up to 350 bp of upstream and
downstream sequence. Reads mapping at this step were assigned to a probe and that probe’s
associated taxa. Non-mapped reads were competitively mapped to the genomes of the spiked
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organisms: SARS-CoV-2 and HCoV-NL63 coronavirus or B. multivorans, K. pneumoniae,
S. aureus, S. constellatus, S. intermedius, S. pneumoniae, and S. sanguinis. If any read
overlapped a region targeted by a probe, the read was assigned to that probe. Unassigned reads
were mapped to the set of other genomes used to design the respective probe sets.
SAMtools (Li et al. 2009) was used at each filtering step, and to calculate depth of coverage.

Conversion from nominal copy number to mass of viral RNA was calculated for both viruses
using the high copy number shotgun baseline sample. For both viruses, the genome was broken
into non-overlapping regions of the same length as the PCR amplicon generated during copy
number quantification. The ratio of the depth of coverage in each region to the reference region
then was used to calculate the copy number of each region across the genome. Using a
conversion of 320 g/mol/nt for ssRNA, and the length of the reference region for in each virus,
the mass in each genomic region was calculated and integrated across the genome to estimate
the total viral RNA given the nominal copy number.

To assess potential off-target enrichment of the human background, regions of interest in the
human reference were identified as any region with read counts above the 95th percentile
assuming read counts at each position are Poisson distributed with a mean equal to the average
read depth across the reference. Reads from enriched libraries which mapped to these regions
were additionally mapped to the probes and target genomes as above to determine by which, if
any, probes these reads were captured.

8.9.4 Quantification and Statistical Analysis

Logistic regression was used to assess the effect of enrichment. The probability of any given
read in a library mapping to a target genome was used as the regressand with enrichment input
concentrations as regressors. Fold enrichment for this analysis was the fold change in the odds
of observing an on target read, as determined by the value of coefficient estimate. For the CoV
dataset, the mass of input RNA for each virus and the interaction between were used as
continuous predictors, while whether the samples were enriched was used as a categorical
predictor. For the Sepsis dataset, the number of on target reads was corrected based on the
proportion of on target reads observed in the blank samples. This correction was done on a by
sample basis by subtracting a number of reads equal to the number of reads observed in the
blanks adjusted by the ratio in library size between each sample and the blanks. With this
adjusted read count, the proportion of on target reads was used as the regressand, with spike
level, enrichment status, and their interaction as categorical variables. Significance of
enrichment was determined using the Wald test on the regression coefficient estimate for the
enrichment parameter.

Linear regression on the with the number of doublings in fold enrichment as the regressand and
various parameters of the baits as regressors was used to assess the performance of baits
targeting different genomic regions. For both the CoV and Sepsis datasets continuous
predictors were transformed as necessary to meet the assumptions of linearity between the
predictors and the response.
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Two linear regressions were performed for the CoV dataset. The first considered all genomic
regions, while the latter only considered genomic regions targeted by baits. When considering
all regions separate coefficients were estimated for targeted and untargeted regions for the
following predictors: the deviation in GC content from the mean GC content across the
genome; the proportion of reads observed in a region in the shotgun baseline sample; and the
number of doublings in mass of RNA for both viruses. These predictors were untransformed.
All regions were assumed to be in the SARS-CoV-2 genome, with a coefficient estimating the
effect of actually being from HCoV-NL63. When considering only genomic regions, the
density of probes (number of probes per kilobase), and the mean divergence of probes from
their target were also included as predictors.

Linear regression performed for sepsis dataset with GC content, probe divergence, probe
density, the baseline levels in the shotgun as continuous regressors. Whether the sample was in
a blood or water background was used as a categorical predictor. Only data from the High
concentration samples and positive control were used as most probe regions had no data in the
shotgun samples at lower concentrations.
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Chapter 9

Applications of Targeted
Metagenomics

9.1 Preface

What follows is a brief description of several other projects to which I have contributed. These
projects have in general been targeted at ancient DNA, and in all cases the goal was a set of
probes to enrich the particular targets of interest, ranging from entire parasite species to
particular genes involved in horse coat colour.

At the time of writing these projects are still in progress with collaborators. Where possible
preliminary results have been included.

9.2 Intestinal Parasites

9.2.1 Contributions

This work was done in collaboration with Marissa Ledger, who was at the time affiliated with
the University of Cambridge, and Tyler Murchie from the McMaster ADNA Lab. Marissa
provided a set of parasite taxa of interest, with Tyler and Marissa performing the wet lab work.

9.2.2 Abstract

A late bronze age settlement known as Must Farm was previously described by (Ledger et al.
2019). At the site, parasite eggs were microscopically identified from a wide variety of parasite
species. While this expanded our knowledge of human associated parasites in the bronze age,
targeted DNA capture for parasite species could further expand this picture. To this end I used
SA_BOND (Dickson et al. 2021) in an iterative manner to design hierarchical probes to capture
the desired diversity of intestinal parasites. Probes were designed primarily for mitochondrial
sequences, as well as rRNA and a selection of nuclear genes. Of the 130 parasite species the
final set of 30,240 probes could target 98 (75%) of the species. Preliminary sequencing results
largely recapitulated the original findings.
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9.3 Human Gut Microbiome

9.3.1 Contributions

This work was done in collaboration with Henrik Poinar with funding from the Canadian
Institute for Advanced Research. Dr. Poinar provided the list of taxa of interest across human
proteomes. I was responsible for assembling a set of probes to capture as many as possible of
the taxa of interest.

9.3.2 Abstract

In almost every case where one might wish to examine the human gut microbiome, from
ancient DNA to clinical settings, the human background will be a huge component of the DNA
sequenced. Selectively depleting the entire human genome can be quite challenging and is
insufficient in the cases where more than a human background is expected, such as sediments
from historical latrines where environmental background is also of concern. Instead, this is an
ideal case for HUBDesign (Dickson et al. 2021). There is a known diversity of targets of interest
(human gut microbiota) but in any given sample it is unknowable which if any are present.

I applied HUBDesign as previously described (Dickson et al. 2021), with modifications to the
initial phase of clustering genes into representative sequences. In many applications the
annotated gene names can be used as a shortcut to avoid computationally expensive all-vs-all
comparisons of gene sequences. However, as the diversity of taxa included in the design
increases the failures of this strategy become more apparent. Some genes which are very
similar in sequence have completely distinct gene names, and name collisions can also become
a problem with inconsistent annotation. To resolve this, VSEARCH (Rognes et al. 2016) was
used to rapidly pre-cluster the gene sequences. The clustering and creation of representative
sequences then proceeds as previously described using the pre-clustering IDs in place of gene
names.

Using this pre-processing in combination with HUBDesign I was able to construct a set of
12,142 75 bp probes which could be used to efficiently identify 1792 different strains of human
gut microbiota spread across 435 species, 51 genera, and 24 families.

9.4 Butyrate Metabolism Genes

9.4.1 Contributions

This work was also performed in collaboration with Dr. Hendrik Poinar, as well as Melanie
Kuch and George S. Long. The former provided the sequences corresponding genes in the
butyrate metabolic pathway. Melanie performed the wet lab work, and George performed the
downstream analysis. I was responsible for designing a set of probes to efficiently capture the
diversity of sequences involved in butyrate metabolism.

115

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Zachery William DICKSON; McMaster University– Department of Biology

9.4.2 Abstract

Butyrate is a metabolic product often used as an indicator of the interactions between host and
microbiota health (Zhang et al. 2021). It is the main product of gut fermentation, and its levels
are influenced by diet and the composition of the gut microbiome. In this project the goal was
to sequence genes involved in butyrate metabolism across humans and primates through both
fecal and coprolite samples as well as explore the evolutionary history of gut microbiomes and
host behaviour. HUBDesign was used to design the probes, however rather than its usual goal of
probes which can identify taxa, the goal was identification of butyrate genes. Metabolic
processes can be divided across bacterial species, and the genes involved can be horizontally
transferred, therefore a functional perspective was more useful. The final probe set of 38,420
probes was designed to capture 31,807 alleles across 29 different genes involved in butyrate
metabolism.

9.5 CAPDesign: Multiplex primer set design

9.5.1 Contributions

This work is part of a larger collaboration with Safeguard Biosystems attempting to create a
reusable solid state array which can capture DNA sequences which are identifying for
pathogens as well as their AMR genes. While the probes for the array can be designed using
HUBDesign, a pre-amplification of all targets for the probes is required to achieve the desired
sensitivity. Thus, the motivation for designing highly multiplexed PCR primer sets.

I am responsible for the conceptualization of the primer set design, as well as the code to create
it. Rabia Raees has performed the work of testing the designed primer set, including running
PAGE gels to visualize the amplification products of various primer pools. While testing results
are so far are promising, the work is not yet complete.

9.5.2 Abstract

PCR can also be used to bias sequencing efforts towards targets of interest. For single, or small
numbers of targets this is relatively straightforward, however the challenge of primer design
scales exponentially with the number of targets. This is because each additional primer can
potentially interact with every other primer with a major consequence being primer dimers
which preferentially amplify over the target of interest. Recent work by (Xie et al. 2022)
describes SADDLE: a system for designing highly multiplexed primer sets with a low likelihood
of dimer formation based on simulated annealing. I have extended the concept with the concept
of primer interchangeability: where two candidate primers can be swapped without a change to
the set of targets amplified. I have implemented this with a set-cover algorithm to design
minimal sets of multiplex primers with reduced probability of dimer formation. As an
application, a set of 140 primers was designed to amplify 314 target sequences from 10 strains
across 4 genera. Based on the preliminary validation work, these primers effectively amplify
the targets of interest, without amplification of a human background, and without significant
dimer formation.
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9.5.3 Figures

FIGURE 9.1: A primer set designed with CAPDesign has a low propensity to
form primer dimers. 10% Urea PAGE of template free amplification reactions
with varying annealing temperatures. Primer dimers begin to form as the anneal-
ing temperature drops below 61.4◦C, however compared to the high concentra-
tion of primers present (140µM across 140 primers), the rate of dimer formation
is low.
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FIGURE 9.2: 10% Urea PAGE of amplifications with genome copy numbers
from 1 to 10×104 of S. aureus without (SA) and with 11.1ng of human DNA
spiked-in (SAH). On-target amplification is observed down to 10 copies of the
bacterial genome. The addition of the human background reduces the sensitivity
for larger amplicons but does not introduce significant off-target products.

9.6 Horse Coat Colour

9.6.1 Contributions

This project is in collaboration with Rachel Miller from the McMaster Ancient DNA center.
Rachel collected the current literature on the genetics of horse coat colour and provided the
known variants of interest for probe design. She is also performed the wet-lab work. I was
responsible for generating a probe set which could capture the diversity in horse coat colour.

9.6.2 Abstract

The outward appearance of an organism is a critical part of their adaptation to their
environment: Camouflage, conspecific communication, and thermotolerance. The genetics of
coat variation are unusually well understood in horses due to sophisticated artificial breeding
programs, but little is known of the genetics or appearance of ancient horses. The genes
involved in coat colour are often pleiotropic, with potentially deleterious effects in some cases.
Elucidating the diversity in coat colour in North American horses, prior to the influence of
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humans will give insight into the selective pressures balanced across the pleiotropic effects of
coat colour variants.

Capturing nuclear DNA in an ancient context is challenging, and we are employing a targeted
DNA capture approach. Probes were designed to capture 66 variants in 19 genes associated
with coat colour. Probes were additionally designed to capture the exons in these genes. The
final set of 4782 probes target all but 3 of the variants, all of which are single nucleotide
polymorphisms (SNPs) in the KIT genes.

9.7 Ancient Antibodies

9.7.1 Contributions

This in progress work focuses on enriching the genomic DNA of immune cells which have had
their populations expanded in response to exposure to a pathogen. This can provide insights
into past infections of extant individuals but can also be used to define the pathogen landscape
in the past. RNA viruses are of special interest here as their genomes are too labile to be
preserved and detected for all but the most recent past.

Sergey Yegorov collected the germline sequences for immune gene segments. I conceptualized
the probe design framework, and wrote the code for generating, filtering, and selecting the
probes. The work of validating the probe set designed was performed by Tess Wilson. Peter
Zeng and I performed analysis generated sequencing data.

9.7.2 Abstract

The immune system is one of the most complicated systems in human biology as it must face
constant challenge from a huge diversity of potential pathogens. The genomes of immune cells
are modified via recombination to generate the diversity of immune receptors to combat
pathogens. The entire population of immune cells defines an individuals’ immune repertoire.
As this varies over time a snapshot of repertoire provides information of the diversity of
pathogens and the frequency of exposures an individual has faced. This can provide a window
into studying pathogens which are difficult to identify directly such as RNA viruses in an
ancient context. To that end I have designed a set of probes to capture the recombined germline
sequences of B- and T-cells, using a graph based method to identify minimal sets of probes
covering all unique junctions between recombined immune segments.

The preliminary set of 9435 probes was tested on fractionated blood samples of individuals
both pre- and post- vaccination for influenza. We were able to show an average fold enrichment
of immune gene segments of 1000x. However, there are indications that random insertion of
nucleotides during the recombination process hampers the effectiveness of the probes. This is
especially true for immune loci where two phases of recombination occur. We are currently
working to explore this further.
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9.7.3 Figures
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FIGURE 9.3: Immune loci are preferentially enriched using probes designed
for the recombined junctions between immune segments. A barplot of fold-
enrichment in proportion of reads assigned to particular transcript bio-types
comparing proportions in enriched samples to a shotgun background. C, V, D,
and J segments are recombined segments of immune loci. The proportion of
reads mapping to these genomic regions are between 32 and 32000 times higher
in enriched samples as compared to a shotgun sequenced baseline.

9.8 Discussion

Each of these projects has the core goal of investigating some targets of interest in samples with
potentially complex backgrounds. In many cases we can leverage the fact that biological
sequences are shared between related individuals. By targeting the shared sequences at
different taxonomic levels, we can efficiently and specifically capture a wide array of targets. In
cases where it is more important that the sequences of interest are captured preferentially over
the background than it is that all the targets are immediately differentiable, we can even make
use of sequences that are shared by chance or through horizontal gene transfer. With clever
consideration of what the candidate sequences are, and how these candidates relate to each
other it is possible to efficiently design probes and primers applicable to a wide variety of
contexts.
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Afterword
This thesis has been the result of exploration on many branches of bioinformatics, with two
main trunks. The LCR trunk and its branches stem from an interest in understanding the
fundamental relationships between sequence characteristics and their consequences. The
metagenomics trunk and its many, continually sprouting, limbs are much more applied with a
focus on how to use our understanding and the body of knowledge of sequences to more
efficiently probe the world around us. Leaping between the branches of the tree has been a
challenge and I trust this thesis to demonstrate the heights I, my supervisors, my collaborators,
and my volunteers have climbed together.
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TABLE A1.4: Alternate Seg parameters used to identify LCRs from protein (a)
and DNA (b) sequences in the Null simulated proteomes. Correlation coeffi-
cients, number of LCR data points, and 95% confidence intervals are given for
each parameter set.

(A)

parameters Null

W K1 K2 r n 95% CI

1.7 0.162 203 0.009 0.308
1.7 2 0.222 203 0.071 0.363

2.7 0.485 203 0.358 0.594

1.9 0.319 1587 0.269 0.367
12 1.9 2.2 0.351 1587 0.302 0.398

2.9 0.533 1587 0.493 0.571

2.1 0.318 7303 0.295 0.341
2.1 2.4 0.369 7303 0.347 0.391

3.1 0.597 7303 0.580 0.613

1.7 0.652 18 0.211 0.872
1.7 2 0.658 18 0.221 0.875

2.7 0.188 18 -0.357 0.638

1.9 0.217 70 -0.046 0.452
15 1.9 2.2 0.126 70 -0.139 0.374

2.9 0.323 70 0.068 0.538

2.1 0.211 638 0.127 0.292
2.1 2.4 0.255 638 0.172 0.334

3.1 0.447 638 0.375 0.514

1.7 NA 0 NA NA
1.7 2 NA 0 NA NA

2.7 NA 0 NA NA

1.9 -1.000 2 NaN NaN
20 1.9 2.2 -1.000 2 NaN NaN

2.9 1.000 2 NaN NaN

2.1 0.047 17 -0.491 0.559
2.1 2.4 0.048 17 -0.490 0.559

3.1 0.294 17 -0.274 0.710

(B)

parameters Null

W K1 K2 r n 95% CI

1 0.200 64 -0.077 0.448
1 1.2 0.308 64 0.039 0.536

1.3 0.473 64 0.230 0.660

1.3 0.606 2211 0.576 0.635
21 1.3 1.5 0.675 2211 0.649 0.700

1.6 0.704 2211 0.680 0.727

1.7 0.649 92462 0.645 0.653
1.7 1.9 0.728 92462 0.725 0.731

2 0.868 92462 0.866 0.870

1 NA 0 NA NA
1 1.2 NA 0 NA NA

1.3 NA 0 NA NA

1.3 NA 1 NA NA
45 1.3 1.5 NA 1 NA NA

1.6 NA 1 NA NA

1.7 0.645 2853 0.620 0.668
1.7 1.9 0.733 2853 0.713 0.751

2 0.825 2853 0.811 0.838

1 NA 0 NA NA
1 1.2 NA 0 NA NA

1.3 NA 0 NA NA

1.3 NA 0 NA NA
60 1.3 1.5 NA 0 NA NA

1.6 NA 0 NA NA

1.7 0.660 159 0.550 0.748
1.7 1.9 0.666 159 0.557 0.752

2 0.735 159 0.644 0.806
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FIGURE A1.4: Heat maps showing the excess correlation of the slippage and
substitution models compared to the biological correlations in S. cerevisiae (sc),
H. sapiens (hs), A. thaliana (at), C. elegans (ce), and D. melanogaster (dm).
Blue indicates a higher correlation in the simulated sequences relative to the
biological sequences while red indicates a lower correlation in the simulated se-
quences relative to the biological sequences. A) Excess correlation in protein
LCRs and corresponding coding sequences in the Slip simulated sequences. B)
Excess correlation in DNA LCRs and corresponding protein sequences in the
Slip simulated sequences. C) Excess correlation in protein LCRs and corre-
sponding coding sequences in the Slip+Syn simulated sequences. D) Excess
correlation in DNA LCRs and corresponding protein sequences in the Slip+Syn
simulated sequences.
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TABLE A2.1: Number of genes/proteins with data by species and tissue

Dataset Type Species Tissue Total LCR+

GTEx TAb Human Aggregate 18067 4259 (23.6%)
Brain 13903 3536 (25.4%)
Colon 13981 3508 (25.1%)

Esophagus 13694 3435 (25.1%)
Heart 13223 3330 (25.2%)

Kidney 13913 3437 (24.7%)
Liver 12914 3180 (24.6%)
Lung 14146 3524 (24.9%)
Ovary 13582 3432 (25.3%)

Pancreas 13291 3333 (25.1%)
Prostate 14118 3532 (25.0%)

Skin 13935 3491 (25.1%)
Testis 15931 3839 (24.1%)

PaxDB PAb Human Aggregate 20108 4246 (21.1%)
Brain 8771 2437 (27.8%)
Colon 7833 1944 (24.8%)

Esophagus 6125 1434 (23.4%)
Heart 10388 2675 (25.8%)

Kidney 7427 1782 (24.0%)
Liver 13341 3340 (25.0%)
Ovary 11684 2986 (25.6%)

Pancreas 9450 2437 (25.8%)
Prostate 8992 2328 (25.9%)

Skin 4267 950 (22.3%)
Testis 12305 3158 (25.7%)

Schwanhäusser TAb Mouse Fibroblast 3407 865 (25.4%)
PAb 3407 865 (25.4%)

k. Deg 4746 450 (9.5%)
Trans. Eff. 3457 885 (25.6%)

Degredation k. Deg Human Aggregate 8315 965 (11.6%)

RNA-Seq TAb Mouse Brn/Hrt/Kdn/Lvr 70989 18094 (25.5%)
Rat 55312 12915 (23.3%)

Macaque 67926 18097 (26.6%)
Chimpanzee 80690 20777 (25.7%)

Human 108155 25233 (23.3%)
Dog 58683 14908 (25.4%)

Horse 60473 16543 (27.4%)
Pig 63500 17571 (27.7%)

Cow 63508 16756 (26.4%)
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TABLE A2.2: Dataset specific estimates of wobble base-pairing selective con-
straints

Dataset Species AA TG GT AC

GTEx Human 1.000 0.3040 0.8406 1.370×10−2

Schwanhäusser Mouse 0.9945 1.190×10−2 0.9678 1.470×10−2

RNA-Seq Mouse 1.000 0.5059 0.6665 1.049×10−3

Rat 1.000 0.2250 0.5793 9.999×10−7

Macaque 0.9991 0.6875 0.2960 2.600×10−4

Chimpanzee 0.9992 0.5311 0.2136 0.1583
Human 0.9997 0.831 0.0629 0.1059
Dog 1.000 0.6399 0.1149 4.700×10−4

Horse 0.9998 0.1196 0.1166 0.1417
Pig 1.000 0.4881 0.3497 0.1288
Cow 0.9999 3.528×10−5 0.9999 0.9973

TABLE A2.3: Logistic regression using standardized GTEx and Schwänhausser
data

Mammal Proteins LCR+ Parameter Transformation X̄ SDX̄ β SEβ Z value

Human 3107 903 (Intercept) NA NA NA -1.16 0.0628 -18.4
Length log2 8.78 1.060 -0.237 0.116 -2.040

TAb log2 0.638 2.87 0.244 0.0585 4.16
PAb log2 1.23 3.74 -0.212 0.0608 -3.49

TWnTE log2 -5.48 1.36 -0.910 0.112 -8.15
k.deg log -3.83 0.852 0.147 0.0475 3.10

Mouse 2155 446 (Intercept) NA NA NA -1.38 0.0631 -21.8
Length log2 8.77 1.080 0.409 0.148 2.77

TAb log2 6.83 1.53 0.188 0.0801 2.35
PAb log2 3.81 3.24 -0.0843 0.0920 -0.916

TWnTE log2 -12.0 1.40 -0.449 0.200 -2.25
k.deg log -4.20 1.030 0.115 0.0668 1.72

142

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Zachery William DICKSON; McMaster University– Department of Biology

TABLE A2.4: Logistic regression using standardized mammalian RNA-Seq
data

Mammal Proteins LCR+ Parameter Transformation X̄ SDX̄ β SEβ Z value

Chimp 73001 18614 (Intercept) NA NA NA -1.21 0.00948 -128
Length log2 9.020 1.13 -0.289 0.0291 -9.91

TAb log2 -0.564 2.44 0.0902 0.00914 9.87
TWnTE log2 -4.50 1.31 -1.080 0.0280 -38.7

Cow 58860 15584 (Intercept) NA NA NA -1.15 0.0105 -110
Length log2 8.98 1.090 0.561 0.0188 29.8

TAb log2 -0.0590 2.60 0.0901 0.0101 8.91
TWnTE log2 -14.9 1.14 -0.241 0.0211 -11.5

Dog 32599 8075 (Intercept) NA NA NA -1.27 0.0145 -87.1
Length log2 8.96 1.080 -0.381 0.0361 -10.6

TAb log2 0.457 2.74 0.0821 0.0141 5.81
TWnTE log2 -4.61 1.15 -1.080 0.0342 -31.7

Horse 52030 14389 (Intercept) NA NA NA -1.060 0.0107 -99.3
Length log2 9.040 1.11 -0.295 0.0289 -10.2

TAb log2 0.354 3.030 0.0477 0.0108 4.42
TWnTE log2 -4.55 1.29 -1.030 0.0282 -36.4

Human 88026 20201 (Intercept) NA NA NA -1.37 0.00908 -151
Length log2 8.94 1.090 -0.312 0.0291 -10.7

TAb log2 -0.252 2.64 0.115 0.00862 13.3
TWnTE log2 -5.89 1.35 -1.090 0.0282 -38.6

Macaque 63441 16578 (Intercept) NA NA NA -1.18 0.0101 -117
Length log2 8.99 1.12 -0.366 0.0312 -11.7

TAb log2 -0.0632 2.57 0.0830 0.00988 8.40
TWnTE log2 -4.58 1.39 -1.14 0.0302 -37.8

Mouse 54544 13644 (Intercept) NA NA NA -1.28 0.0118 -108
Length log2 8.96 1.10 0.330 0.0368 8.96

TAb log2 -0.419 3.060 0.0938 0.0107 8.75
TWnTE log2 -12.2 0.999 -0.569 0.0444 -12.8

Pig 55521 15144 (Intercept) NA NA NA -1.080 0.0104 -104
Length log2 9.030 1.070 -0.0985 0.0270 -3.65

TAb log2 -0.635 2.82 0.0418 0.0104 4.030
TWnTE log2 -4.22 1.20 -0.820 0.0260 -31.6

Rat 35562 8429 (Intercept) NA NA NA -1.37 0.0153 -90.1
Length log2 8.88 1.080 -0.280 0.0452 -6.20

TAb log2 -0.0723 3.060 0.0868 0.0136 6.40
TWnTE log2 -10.7 1.11 -1.15 0.0515 -22.3
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FIGURE A2.2: Aggregate LCR associations are also present for individial
amino acids. Bars represent the z values of estimated logistic regression co-
efficients for the TAb and PAb with interaction terms for each amino acid. The
amino acid for each protein is the amino acid which appears most often in the 15
AA windows of the protein sequence which have minimum entropy. The dotted
line represents the z value corresponding to the 95% threshold. Individual points
are the number of proteins with complete data which have the corresponding pri-
mary AA.
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A1 Human Accessions

TABLE A3.1: IGSR Samples used to analyze temporal order of LCRs and TAb

Sample ID Sex Ancestry

HG00732 female American
HG00864 female East Asian
HG00512 male East Asian
HG01596 male East Asian
HG02492 male South Asian
HG02587 female African
HG03065 male African
HG03371 male African
HG03732 male South Asian
NA18534 male East Asian
NA18939 female East Asian
NA19239 male African
NA20509 male European
HG00171 female European
HG00096 male European
HG00513 female East Asian
HG00731 male American
HG01114 female American
HG00514 female East Asian
HG02011 male African
HG01505 male European
NA12329 female European
HG03683 female South Asian
NA19238 female African
NA19240 female African
NA19983 female African
NA19650 male American
NA20847 female South Asian
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A2 Model Priors

TABLE A3.2: Priors for Stepwise OU TAb and LCR co-evolutionary models

Model Parameter Distribution Lower Bound Upper Bound

all Models

δ Normal(0,10) 0 3300
κ LogNormal(-0.5,0.5) 0 ∞

λ LogNormal(-0.5,0.5) 0 ∞

µ LogNormal(-13.5,2.0) e−35 1
σ Normal(0,10) 0 ∞

full
τ Normal(0,2) −∞ ∞

υ Uniform(-1,1) -1 1

-tau
τ Fixed(0) 0 0
υ Uniform(-1,1) -1 1

-upsilon
τ Normal(0,2) −∞ ∞

υ Fixed(0) 0 0

-tau-upsilon
τ Fixed(0) 0 0
υ Fixed(0) 0 0
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A3 Modeling Summaries

A3.1 StepwiseOU-full-1

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

FIGURE A3.1: MCMC traces for full replicate 1. a and b show the entire trace
for negative log likelihood and the trace after removing the burn-in. Remaining
plots show the traces for the model parameters, after burning. Grey track along
the bottom indicates where the chain swapped between the main chain and a
heated chain.
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(A) (B) (C)

(D) (E) (F)

FIGURE A3.2: Density plots for full replicate 1. Each plot show the univariate
posterior density for each modelling parameter. On the left is a purely univariate,
high bandwidth density with the median marked. On the right is a projection of
the multivariate density with the multivariate mode marked. Colours indicate
the tightest credibility region each sample resides in. Respectively, 50, 90, 95,
and 99% correspond to coral, purple, dark blue, and light blue.
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FIGURE A3.3: A visual summary of the posterior distribution estimate by ABC
of the full Stepwise OU model (full replicate 1).
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A3.2 StepwiseOU-full-2

(A) (B) (C)
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FIGURE A3.4: MCMC traces for full replicate 2. a and b show the entire trace
for negative log likelihood and the trace after removing the burn-in. Remaining
plots show the traces for the model parameters, after burning. Grey track along
the bottom indicates where the chain swapped between the main chain and a
heated chain.
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FIGURE A3.5: Density plots for full replicate 2. Each plot show the univariate
posterior density for each modelling parameter. On the left is a purely univariate,
high bandwidth density with the median marked. On the right is a projection of
the multivariate density with the multivariate mode marked. Colours indicate
the tightest credibility region each sample resides in. Respectively, 50, 90, 95,
and 99% correspond to coral, purple, dark blue, and light blue.
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FIGURE A3.6: A visual summary of the posterior distribution estimate by ABC
of the full Stepwise OU model (full replicate 2).
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A3.3 StepwiseOU-full-3
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FIGURE A3.7: MCMC traces for full replicate 3. a and b show the entire trace
for negative log likelihood and the trace after removing the burn-in. Remaining
plots show the traces for the model parameters, after burning. Grey track along
the bottom indicates where the chain swapped between the main chain and a
heated chain.
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FIGURE A3.8: Density plots for full replicate 3. Each plot show the univariate
posterior density for each modelling parameter. On the left is a purely univariate,
high bandwidth density with the median marked. On the right is a projection of
the multivariate density with the multivariate mode marked. Colours indicate
the tightest credibility region each sample resides in. Respectively, 50, 90, 95,
and 99% correspond to coral, purple, dark blue, and light blue.
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FIGURE A3.9: A visual summary of the posterior distribution estimate by ABC
of the full Stepwise OU model (full replicate 3).
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A3.4 StepwiseOU-tau-1
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(F) (G) (H)

FIGURE A3.10: MCMC traces for -tau replicate 1. a and b show the entire trace
for negative log likelihood and the trace after removing the burn-in. Remaining
plots show the traces for the model parameters, after burning. Grey track along
the bottom indicates where the chain swapped between the main chain and a
heated chain.
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FIGURE A3.11: Density plots for -tau replicate 1. Each plot show the univariate
posterior density for each modelling parameter. On the left is a purely univariate,
high bandwidth density with the median marked. On the right is a projection of
the multivariate density with the multivariate mode marked. Colours indicate
the tightest credibility region each sample resides in. Respectively, 50, 90, 95,
and 99% correspond to coral, purple, dark blue, and light blue.
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FIGURE A3.12: A visual summary of the posterior distribution estimate by
ABC of an evolutionary model which assumes TAb is independent of CMER
length (-tau replicate 1).
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A3.5 StepwiseOU-tau-2
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FIGURE A3.13: MCMC traces for -tau replicate 2. a and b show the entire trace
for negative log likelihood and the trace after removing the burn-in. Remaining
plots show the traces for the model parameters, after burning. Grey track along
the bottom indicates where the chain swapped between the main chain and a
heated chain.
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(D) (E)

FIGURE A3.14: Density plots for -tau replicate 2. Each plot show the univariate
posterior density for each modelling parameter. On the left is a purely univariate,
high bandwidth density with the median marked. On the right is a projection of
the multivariate density with the multivariate mode marked. Colours indicate
the tightest credibility region each sample resides in. Respectively, 50, 90, 95,
and 99% correspond to coral, purple, dark blue, and light blue.
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FIGURE A3.15: A visual summary of the posterior distribution estimate by
ABC of an evolutionary model which assumes TAb is independent of CMER
length (-tau replicate 2).
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A3.6 StepwiseOU-tau-3
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FIGURE A3.16: MCMC traces for -tau replicate 3. a and b show the entire trace
for negative log likelihood and the trace after removing the burn-in. Remaining
plots show the traces for the model parameters, after burning. Grey track along
the bottom indicates where the chain swapped between the main chain and a
heated chain.
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FIGURE A3.17: Density plots for -tau replicate 3. Each plot show the univariate
posterior density for each modelling parameter. On the left is a purely univariate,
high bandwidth density with the median marked. On the right is a projection of
the multivariate density with the multivariate mode marked. Colours indicate
the tightest credibility region each sample resides in. Respectively, 50, 90, 95,
and 99% correspond to coral, purple, dark blue, and light blue.
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FIGURE A3.18: A visual summary of the posterior distribution estimate by
ABC of an evolutionary model which assumes TAb is independent of CMER
length (-tau replicate 3).
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A3.7 StepwiseOU-upsilon-1
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FIGURE A3.19: MCMC traces for -upsilon replicate 1. a and b show the en-
tire trace for negative log likelihood and the trace after removing the burn-in.
Remaining plots show the traces for the model parameters, after burning. Grey
track along the bottom indicates where the chain swapped between the main
chain and a heated chain.

167

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Zachery William DICKSON; McMaster University– Department of Biology

(A) (B) (C)
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FIGURE A3.20: Density plots for -upsilon replicate 1. Each plot show the uni-
variate posterior density for each modelling parameter. On the left is a purely
univariate, high bandwidth density with the median marked. On the right is
a projection of the multivariate density with the multivariate mode marked.
Colours indicate the tightest credibility region each sample resides in. Respec-
tively, 50, 90, 95, and 99% correspond to coral, purple, dark blue, and light
blue.
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A3.8 StepwiseOU-upsilon-2
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FIGURE A3.21: MCMC traces for -upsilon replicate 2. a and b show the en-
tire trace for negative log likelihood and the trace after removing the burn-in.
Remaining plots show the traces for the model parameters, after burning. Grey
track along the bottom indicates where the chain swapped between the main
chain and a heated chain.
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FIGURE A3.22: Density plots for -upsilon replicate 2. Each plot show the uni-
variate posterior density for each modelling parameter. On the left is a purely
univariate, high bandwidth density with the median marked. On the right is
a projection of the multivariate density with the multivariate mode marked.
Colours indicate the tightest credibility region each sample resides in. Respec-
tively, 50, 90, 95, and 99% correspond to coral, purple, dark blue, and light
blue.
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FIGURE A3.23: A visual summary of the posterior distribution estimate by
ABC of an evolutionary model which assumes indel rates are independent of
TAb (-upsilon replicate 2).
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A3.9 StepwiseOU-upsilon-3
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FIGURE A3.24: MCMC traces for -upsilon replicate 3. a and b show the en-
tire trace for negative log likelihood and the trace after removing the burn-in.
Remaining plots show the traces for the model parameters, after burning. Grey
track along the bottom indicates where the chain swapped between the main
chain and a heated chain.
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FIGURE A3.25: Density plots for -upsilon replicate 3. Each plot show the uni-
variate posterior density for each modelling parameter. On the left is a purely
univariate, high bandwidth density with the median marked. On the right is
a projection of the multivariate density with the multivariate mode marked.
Colours indicate the tightest credibility region each sample resides in. Respec-
tively, 50, 90, 95, and 99% correspond to coral, purple, dark blue, and light
blue.
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FIGURE A3.26: A visual summary of the posterior distribution estimate by
ABC of an evolutionary model which assumes indel rates are independent of
TAb (-upsilon replicate 3).
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A3.10 StepwiseOU-tau-upsilon-1
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FIGURE A3.27: MCMC traces for -tau-upsilon replicate 1. a and b show the
entire trace for negative log likelihood and the trace after removing the burn-in.
Remaining plots show the traces for the model parameters, after burning. Grey
track along the bottom indicates where the chain swapped between the main
chain and a heated chain.
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FIGURE A3.28: Density plots for -tau-upsilon replicate 1. Each plot show
the univariate posterior density for each modelling parameter. On the left is a
purely univariate, high bandwidth density with the median marked. On the right
is a projection of the multivariate density with the multivariate mode marked.
Colours indicate the tightest credibility region each sample resides in. Respec-
tively, 50, 90, 95, and 99% correspond to coral, purple, dark blue, and light
blue.
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FIGURE A3.29: A visual summary of the posterior distribution estimate by
ABC of an evolutionary model which assumes acstab and CMER length are
independent of eachother (-tau-upsilon replicate 1).
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A3.11 StepwiseOU-tau-upsilon-2
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FIGURE A3.30: MCMC traces for -tau-upsilon replicate 2. a and b show the
entire trace for negative log likelihood and the trace after removing the burn-in.
Remaining plots show the traces for the model parameters, after burning. Grey
track along the bottom indicates where the chain swapped between the main
chain and a heated chain.
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FIGURE A3.31: Density plots for -tau-upsilon replicate 2. Each plot show
the univariate posterior density for each modelling parameter. On the left is a
purely univariate, high bandwidth density with the median marked. On the right
is a projection of the multivariate density with the multivariate mode marked.
Colours indicate the tightest credibility region each sample resides in. Respec-
tively, 50, 90, 95, and 99% correspond to coral, purple, dark blue, and light
blue.
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FIGURE A3.32: A visual summary of the posterior distribution estimate by
ABC of an evolutionary model which assumes acstab and CMER length are
independent of eachother (-tau-upsilon replicate 2).
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A3.12 StepwiseOU-tau-upsilon-3
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FIGURE A3.33: MCMC traces for -tau-upsilon replicate 3. a and b show the
entire trace for negative log likelihood and the trace after removing the burn-in.
Remaining plots show the traces for the model parameters, after burning. Grey
track along the bottom indicates where the chain swapped between the main
chain and a heated chain.
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FIGURE A3.34: Density plots for -tau-upsilon replicate 3. Each plot show
the univariate posterior density for each modelling parameter. On the left is a
purely univariate, high bandwidth density with the median marked. On the right
is a projection of the multivariate density with the multivariate mode marked.
Colours indicate the tightest credibility region each sample resides in. Respec-
tively, 50, 90, 95, and 99% correspond to coral, purple, dark blue, and light
blue.
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FIGURE A3.35: A visual summary of the posterior distribution estimate by
ABC of an evolutionary model which assumes acstab and CMER length are
independent of eachother (-tau-upsilon replicate 3).
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A3.13 StepwiseOU-eqIndel-1
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FIGURE A3.36: MCMC traces for -eqIndel1. a and b show the entire trace
for negative log likelihood and the trace after removing the burn-in. Remaining
plots show the traces for the model parameters, after burning. Grey track along
the bottom indicates where the chain swapped between the main chain and a
heated chain.

184

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Zachery William DICKSON; McMaster University– Department of Biology

(A) (B) (C)

(D) (E) (F)

FIGURE A3.37: Density plots for -eqIndel1. Each plot show the univariate
posterior density for each modelling parameter. On the left is a purely univariate,
high bandwidth density with the median marked. On the right is a projection of
the multivariate density with the multivariate mode marked. Colours indicate
the tightest credibility region each sample resides in. Respectively, 50, 90, 95,
and 99% correspond to coral, purple, dark blue, and light blue.
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FIGURE A3.38: A visual summary of the posterior distribution estimate by
ABC of an evolutionary model which assumes insertion and deletion rates are
equal (-eqIndel1).
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A3.14 StepwiseOU-upsilon-eqIndel-1
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FIGURE A3.39: MCMC traces for -upsilon-eqIndel1. a and b show the entire
trace for negative log likelihood and the trace after removing the burn-in. Re-
maining plots show the traces for the model parameters, after burning. Grey
track along the bottom indicates where the chain swapped between the main
chain and a heated chain.
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FIGURE A3.40: Density plots for -upsilon-eqIndel1. Each plot show the uni-
variate posterior density for each modelling parameter. On the left is a purely
univariate, high bandwidth density with the median marked. On the right is
a projection of the multivariate density with the multivariate mode marked.
Colours indicate the tightest credibility region each sample resides in. Respec-
tively, 50, 90, 95, and 99% correspond to coral, purple, dark blue, and light
blue.
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FIGURE A3.41: A visual summary of the posterior distribution estimate by
ABC of an evolutionary model which assumes insertion and deletion rates are
equal and assumes CMER length is eindependent of TAb (-upsilon-eqIndel1).
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TABLE A4.2: Bacteria included in the design dataset for the Sepsis probe set

Taxa PATRIC ID (or other ID)

Achromobacter xylosoxidans 562971.11 85698.16 85698.28 85698.48 85698.49 85698.50
Acinetobacter baumannii 1096995.4 1096996.4 1096997.4 1413216.3 1455315.5 405416.6

470.1288 470.1294 470.1295 470.1310 470.1311 470.1345
470.1375 470.1405 470.1574 470.1575 470.1576 470.1579
470.1763 470.1864 470.1865 470.1866 470.1867 470.1869
470.2026 470.2122 470.2668 470.2669 470.2670 470.2671
470.2672 470.2673 470.2674 470.2675 470.2908 470.2911
470.2912 470.2913 470.2928 470.2929 470.2930 470.2931
470.3044 470.3106 470.3347 470.3348 470.3349 470.3350
470.3351 470.3352 470.3353 470.3354 470.3355 470.3356
470.3357 470.3358 470.3362 470.3774 470.4258 470.4273
470.4286 470.4287 470.4288 470.4289 470.773 470.775
480119.5 557600.4

Acinetobacter nosocomialis 106654.21 106654.48
Bacillus anthracis 1392.86 1392.87 1392.92 1452727.3 592021.13 768494.3

Bordetella bronchiseptica 518.17
Bordetella hinzii 103855.14 103855.15

Bordetella holmesii 35814.12
Bordetella parapertussis 257311.4 519.5

Bordetella pertussis 257313.5 520.171 520.172 520.173 520.174 520.175
520.176 520.177 520.178 520.179 520.180 520.181
520.336 520.337 520.347 520.360 520.361 520.362
520.363 520.364 520.365 520.366 520.367 520.368
520.369 520.370 520.371 520.372 520.373 520.374
520.375 520.376 520.377 520.378 520.379 520.380
520.381 520.382 520.383 520.384 520.385 520.386
520.387 520.388 520.389 520.390 520.391 520.392
520.393 520.405 520.408 520.412 520.414 520.415
520.416 520.417 520.420 520.421 520.422 520.423
520.424 520.425 520.426 520.427 520.459 520.460
520.461 520.462 520.505 520.506 520.507 520.508
520.509 520.510 520.511 520.512 520.513 520.514
520.515 520.516 520.517 520.518 520.519 520.520
520.521 520.522 520.523 520.524 520.525 520.526
520.527 520.528 520.529 520.530 520.531 520.532
520.533 520.534 520.535 520.536 520.537 520.538
520.539 520.540 520.541 520.542 520.543 520.544
520.545 520.546 520.547 520.548 520.549 520.550
520.551 520.552 520.553 520.554 520.555 520.556
520.557 520.558 520.559 520.560 520.561 520.562
520.563 520.564 520.565 520.566 520.567 520.568
520.569 520.570 520.571 520.572 520.573 520.574
520.575 520.576 520.577 520.578 520.579 520.580
520.581 520.582 520.583 520.584 520.585 520.586
520.587 520.588 520.589 520.590 520.591 520.592
520.593 520.594 520.595 520.596 520.597 520.598
520.599 520.600 520.601 520.602 520.603 520.604
520.605 520.606 520.607 520.608 520.609 520.610
520.611 520.612 520.613 520.614 520.615 520.616
520.617 520.618 520.619 520.620 520.621 520.622
520.623 520.624 520.625 520.626 520.627 520.628
520.629 520.630 520.631 520.632 520.633 520.634
520.635 520.636 520.637 520.638 520.639 520.640
520.641 520.642 520.643 520.644 520.645 520.646
520.647 520.648 520.649 520.650 520.651 520.652
520.653 520.654 520.655 520.656 520.657 520.658
520.659 520.660 520.661 520.662 520.663 520.664

190



Doctor of Philosophy– Zachery William DICKSON; McMaster University– Department of Biology

Taxa PATRIC ID (or other ID)

520.665 520.666 520.667 520.668 520.669 520.670
520.671 520.672 520.673 520.674 520.675 520.676
520.677 520.678 520.679 520.680 520.681 520.682
520.683 520.684 520.685 520.686 520.687 520.688
520.689 520.690 520.691 520.692 520.693 520.694
520.695 520.696 520.697 520.698 520.699 520.700
520.701 520.702 520.703 520.704 520.705 520.706
520.707 520.708 520.709 520.710 520.711 520.712
520.713 520.714 520.715 520.716 520.717 520.718
520.719 520.720 520.721 520.722 520.729 520.730
520.731 520.737 520.738 520.739 520.740 520.742
520.743 520.744 520.745 520.746 520.747 520.748
520.749 520.750 520.751 520.752 520.753 520.754
520.755 520.756 520.757 520.758 520.761 520.769
520.770 520.771 520.772 520.773 520.774 520.775
520.776 520.777 520.778 520.779

Borrelia burgdorferi 139.88 139.89 139.96
Burkholderia ambifaria 398577.6

Burkholderia cenocepacia 331271.8 95486.299 95486.300 95486.301 95486.302 95486.303
95486.315 95486.74 95486.85 95486.86

Burkholderia cepacia 292.26
Burkholderia dolosa 1385930.3
Burkholderia latens 488446.5
Burkholderia mallei 13373.17 13373.25 13373.58 13373.65 243160.12

Burkholderia multivorans 87883.77 985079.5 ATCC_17616
Burkholderia oklaholmensis 441162.11
Burkholderia pseudomalli 1241583.3 1249468.3 1249469.3 1249470.6 1249475.3 1249658.4

1249659.3 1306417.5 1306419.4 1306420.5 1306421.4 1335307.3
1435985.3 1435994.3 1437000.3 272560.51 272560.6 28450.155
28450.156 28450.157 28450.244 28450.245 28450.246 28450.247
28450.248 28450.362 28450.365 28450.377 28450.378 28450.382
28450.383 28450.384 28450.385 28450.644 28450.645 28450.646
28450.647 28450.648 28450.651 28450.652 28450.653 28450.654
28450.655 28450.656 28450.657 28450.659 28450.660 28450.662
28450.663 28450.666 28450.667 28450.711 28450.713 28450.714
28450.83 28450.90 360118.8 884204.3 884204.6

Burkholderia stabilis 95485.5
Burkholderia thailandensis 1241582.3 1249663.3 57975.9
Burkholderia vietnamiensis 60552.42

Campylobacter coli 1358410.3 195.282
Campylobacter fetus 360106.6
Campylobacter jejuni 1338035.3 1340842.3 1349827.3 1357994.3 1380767.3 1380768.3

1383068.3 192222.6 197.11692 197.11720 197.11723 197.11724
197.11725 197.11726 197.11830 197.5229 197.5260 197.5261
197.5262 197.5263 197.5264 197.5265 197.5266 197.5267
197.5268 197.5269 197.5270 197.5271 197.5272 197.5273
197.5274 197.5275 197.5276 197.5277 197.5278 197.5279
197.5280 197.5281 197.5282 197.5283 197.5284 197.5285
197.5286 197.5287 197.5288 197.5289 197.5290 197.5291
197.5292 197.5293 197.5294 197.5295 197.5296 197.5297
197.5298 197.5299 197.5300 197.5301 197.5302 197.5303
197.5304 197.5305 197.5306 197.5307 197.5308 197.5309
197.5310 197.5311 197.5312 197.5313 197.5314 197.5323

32022.145 32022.146 32022.147 32022.148 32022.158 32022.159
32022.293 32022.294 407148.6 645464.3

Chlamydia pneumoniae 115711.10 138677.3 182082.4 83558.13 83558.14 83558.15
83558.16 83558.17 83558.18 83558.19

Chlamydia trachomatis 1260222.3 1260223.3 813.101 813.102 813.103 813.104
813.105 813.126 813.135 813.136 813.137 813.138
813.139 813.140 813.141 813.142 813.143 813.144
813.145 813.146 813.147 813.148 813.31 813.32
813.33 813.34 813.35 813.36 813.37 813.38
813.39 813.40 813.41 813.44 813.45 813.46
813.88 813.89 813.90 813.91 813.92 813.93
813.94 887712.6

Clostridioides difficile 645462.3 645463.3 699034.5 699035.5 699036.5 699037.5
Clostridium botulinum 1408283.5 1491.354 1491.355 1491.356 1491.662 515621.3

536232.3
Clostridium perfringens 1502.206 1502.338

Clostridium tetani 1231072.4 212717.8
Enterobacter aerogenes 548.115 548.154 548.155 548.156 935296.3
Enterobacter cloacae 1333849.3 1333850.3 1333851.3 1812934.3 1812935.7 550.1143

550.1232 550.1235 550.153 550.154 550.155 550.252
550.253 550.254 550.388 550.486 550.487 550.488
550.622 550.642 718254.4

Enterococcus faecalis 1287066.3 1351.496 1351.556 226185.9 936153.3
Enterococcus faecium 1155766.14 1305849.3 1352.1358 1352.1406 1352.1408 1352.1610

1352.1611 1352.1641 1352.1643 1352.1644 1352.1645 1352.1708
1352.1709 1352.1711 1352.1712 1352.1713 1352.1714 1352.1716
1352.1760 1352.1761 1352.2590 1352.2704 1352.2735 1352.2736
1352.2737 1352.2738 1352.657 1352.674 1352.770 1352.804

Escherichia albertii 1440052.3
Escherichia coli 1038927.31 1045010.15 1045010.16 1045010.21 1048254.4 1248902.3
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1248915.3 1355100.3 1355101.3 168807.6 199310.4 2048778.3
316435.10 331112.6 362663.9 364106.8 409438.11 431946.3
498388.3 511145.208 562.10006 562.10007 562.10008 562.10009

562.10826 562.10827 562.10887 562.10890 562.11294 562.11317
562.11318 562.11327 562.11469 562.11479 562.12823 562.12824
562.12825 562.12826 562.12907 562.12941 562.13544 562.13545
562.13546 562.13547 562.13550 562.13551 562.13552 562.13553
562.13554 562.13557 562.13559 562.14013 562.14016 562.15191
562.15192 562.15193 562.15194 562.15195 562.15196 562.15197
562.15198 562.15199 562.15200 562.15201 562.15202 562.15203
562.15204 562.15205 562.15206 562.15208 562.15209 562.15210
562.16428 562.16465 562.16466 562.16467 562.16499 562.17359
562.17710 562.17711 562.17734 562.17735 562.18998 562.19158
562.19192 562.19193 562.19574 562.20516 562.20517 562.22306
562.22307 562.22323 562.22326 562.22331 562.22333 562.22350
562.5740 562.6958 562.7071 562.7228 562.7235 562.7257
562.7300 562.7382 562.7564 562.7585 562.7586 562.7587
562.7588 562.7622 562.7692 562.7736 562.7943 562.7955
562.7956 562.8472 562.8489 562.8507 562.8517 562.8518
562.9096 562.9097 562.9098 562.9099 562.9316 569579.3
574521.7 591946.4 701177.3 741093.3 83334.221 941323.4
BW25113

Escherichia fergusonii 564.14
Francisella tularensis 119856.8 1341656.4 1386968.3 177416.18 263.138 263.91

264.23 418136.12
Genus Species PIDOID

Haemophilus influenzae 1232659.5 1295140.4 262727.7 262728.6 281310.6 374930.9
374931.10 727.1050 727.305 727.532 727.533 727.534
727.972

Haemophilus parainfluenzae 862965.3
Helicobacter pylori 102611.3 1055527.3 1055531.3 1055532.3 1127122.3 1163739.3

1163740.3 1163741.3 1163742.3 1163743.3 1311573.5 1321939.6
1321940.5 1352356.3 1382920.3 1382921.3 1382922.3 1382923.3
1382924.3 1382925.3 1382926.3 1382927.3 1391726.3 1407462.3
1407463.3 1431450.3 210.1380 210.1381 210.1916 210.1917
210.1918 210.1969 210.1970 210.2070 210.2071 210.2072
210.2437 210.2438 210.2439 210.2440 210.2441 210.2442
210.2712 210.2901 210.2902 210.2903 210.2904 210.2905
210.2906 210.2907 210.2908 210.2909 210.2910 210.2911
210.2912 210.2913 210.2914 210.2915 210.2916 210.2917
210.2918 210.2919 210.2920 210.2921 210.2922 210.2923
210.2924 210.2925 210.2926 210.2927 210.2928 210.2929
290847.5 357544.13 570508.6 585538.3 765963.4 794851.3
85962.8 85963.30 85963.7

Klebsiella oxytoca 1191061.3 1333852.3 571.108 571.110 571.199 571.213
571.33 571.62 571.63

Klebsiella pneumoniae 1123862.3 1225181.3 1244085.3 1263871.10 1328325.3 1380908.3
1392499.4 1420012.3 1420013.3 1463165.4 272620.9 573.12457
573.12458 573.12459 573.12460 573.12792 573.12796 573.1352
573.1358 573.1361 573.1369 573.1374 573.14839 573.1497

573.14988 573.1499 573.15001 573.1500 573.15234 573.15309
573.15310 573.15312 573.15317 573.15318 573.15319 573.15320
573.15321 573.15329 573.15365 573.15379 573.1761 573.1921
573.1922 573.1923 573.1924 573.1961 573.4021 573.4022
573.4026 573.4029 573.4030 573.4031 573.4032 573.4038
573.5649 573.5783 573.5786 573.6972 573.6973 573.6974
573.6995 573.6996 573.6997 573.7004 573.7015 573.7020
573.7226 573.7238 573.7239 573.7240 573.7241 573.7242
573.7243 573.7244 573.7245 573.7246 573.7247 573.7248
573.7249 573.7351 573.7352 573.7353 573.7354 573.7355
573.7356 573.7357 573.7358 573.7359 573.7360 573.9629
573.9630 573.9631 573.9632 573.9643 573.9645 573.9779

72407.108 72407.109 72407.110 72407.122 72407.123 72407.396
72407.626 72407.693 72407.733 72407.75 72407.77 72407.78
72407.79 72407.81 N25C9

Legionella pneumophila 1199191.3 400673.7 423212.4 446.556 446.588 446.637
446.638 446.639 446.640 446.641 446.650 446.651
91891.37

Listeria monocytogenes 1126011.4 1196159.3 1196160.3 1196162.3 1196163.3 1196166.3
1196167.3 1196169.3 1196171.3 1196172.3 1196174.3 1196176.3
1196177.3 1196178.3 1196179.3 1196180.3 1196181.4 1196184.3
1196186.3 1196189.3 1196190.3 1196191.3 1639.1083 1639.1084
1639.1085 1639.1160 1639.1207 1639.1511 1639.2298 1639.2421
1639.2613 1639.2624 1639.2641 1639.756 1639.758 1639.956
1639.965 1639.988 1639.989 1639.990 1639.991 1639.992
1639.993 265669.9

Micrococcus luteus 1270.31 465515.4
Moraxella catarrhalis 1236608.7 480.268 480.269 749219.3

Mycobacterium abscessus 1132508.3 1185650.3 1185650.4 1299325.4 1303024.3 1962118.4
319705.13 319705.14 319705.15 36809.213 36809.363 36809.364
36809.365 36809.366 36809.367 36809.368 36809.369 36809.370
36809.371 36809.372 36809.373 36809.374 36809.380 36809.381
36809.382 36809.383 36809.384
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Mycobacterium bovis 33892.16 561275.19
Mycobacterium tuberculosis 1249615.4 1262525.3 1262526.3 1262529.3 1266446.3 1295765.3

1344043.3 1344044.3 1344045.3 1344046.3 1344047.3 1344048.3
1346765.3 1346766.3 1346767.3 1346768.3 1346770.3 1346771.3
1346772.3 1346773.3 1346774.3 1346775.3 1346776.3 1346777.3
1346778.3 1346779.3 1346780.3 1346781.3 1346782.3 1346783.3
1346784.3 1346785.3 1346786.3 1346787.3 1346788.3 1352570.3
1352571.3 1352572.3 1352573.3 1352574.3 1352575.3 1352576.3
1352577.3 1352578.3 1352579.3 1352580.3 1352581.3 1352582.3
1352583.3 1352584.3 1352585.3 1352586.3 1352587.3 1352588.3
1352589.3 1352590.3 1352591.3 1352592.3 1352593.3 1352594.3
1352595.3 1352596.3 1352597.3 1352598.3 1352599.3 1352600.3
1773.2409 1773.249 1773.31 1773.349 1773.522 1773.523
1773.554 1773.5931 1773.5970 1773.5971 1773.6029 1773.6081

1773.6103 1773.6106 1773.6113 1773.6127 1773.6130 1773.6141
1773.6150 1773.6153 1773.6158 1773.6164 1773.6172 1773.6185
1773.6249 1773.6273 1773.6322 1773.6471 1773.6476 1773.6486
1773.6607 1773.6623 1773.6709 1773.6725 1773.6742 1773.6743
1773.6744 1773.6745 1773.6746 1773.6747 1773.6748 1773.8213
1773.8214 1773.8215 1773.8216 1773.8217 1773.8218 1773.836
1773.8399 1773.8650 1773.8651 1773.8652 1773.8653 1773.8657
1773.8658 1773.8659 1773.8660 1773.8661 1773.8662 1773.8663
1773.8664 1773.8665 1773.8666 1773.8667 1773.8668 1773.8669
1773.8670 1773.8671 1773.8672 1773.8673 1773.8674 1773.8675
1773.8676 1773.8677 1773.8678 1773.8679 1773.8680 1773.8681
1773.8682 1773.8683 1773.8684 1773.8685 1773.8686 1773.8687
1773.8688 1773.8689 1773.8690 1773.8691 1773.8692 1773.8693
1773.8694 1773.8695 1773.8696 1773.8697 1773.8698 1773.8699
1773.8700 1773.8701 1773.8702 1773.8703 1773.8704 1773.8705
1773.8706 1773.8707 1773.8708 1773.8709 1773.8710 1773.8711
1773.8712 1773.8713 1773.8714 1773.8715 1773.8716 1773.8717
1773.8718 1773.8719 1773.8720 1773.8721 1773.8722 1773.8723
1773.8724 336982.7 419947.17 419947.8 443150.4 478434.4
83331.22 83332.12 83332.293

Mycoplasma pneumoniae 1112856.4 1238993.3 1263756.3 1263757.3 1263758.3 1263760.3
1263761.3 1263762.3 1263763.3 1263835.4 1280940.3 1441379.3
2104.102 2104.136 2104.137 2104.162 2104.163 2104.164
2104.165 2104.166 2104.167 2104.168 2104.169 2104.189
2104.190 272634.6 722438.5

Neisseria gonorrhoeae 242231.10 485.508 485.509 485.510 485.879 485.881
521006.8 940296.3

Neisseria meningitidis 1095685.4 1386087.3 272831.7 487.1096 487.1102 487.1105
487.1106 487.1114 487.1118 487.1119 487.1124 487.1125
487.1129 487.1130 487.1134 487.1135 487.1136 487.1137
487.1138 487.1140 487.1143 487.1144 487.1145 487.1146
487.1147 487.1148 487.1149 487.1150 487.1151 487.1152
487.1153 487.1154 487.1155 487.1156 487.1157 487.1158
487.1159 487.1160 487.1161 487.1162 487.1163 487.1164
487.1165 487.1166 487.1167 487.1168 487.1169 487.1170
487.1171 487.1172 487.1173 487.1174 487.1175 487.1176
487.1177 487.1203 487.1231 487.1300 487.1301 487.1302
487.1303 487.1306 487.1548 487.1549 487.485 487.486
487.487 487.488 487.517

Proteus mirabilis 529507.6 584.106 584.140 584.217 584.218 584.82
584.84 584.85

Proteus vulgaris 585.12 585.15
Pseudomonas aeruginosa 1089456.3 1093787.3 1280938.3 1340851.3 1352355.3 1356855.3

1407059.3 1427342.3 208963.12 287.1309 287.1494 287.1773
287.1997 287.2542 287.2548 287.2549 287.2550 287.2551
287.2552 287.2553 287.2554 287.2555 287.2556 287.2557
287.2558 287.2559 287.2560 287.2561 287.2562 287.2570
287.2571 287.2578 287.2579 287.2580 287.2658 287.2665
287.2692 287.2816 287.2899 287.2900 287.2901 287.2902
287.2903 287.2904 287.2906 287.2907 287.2965 287.2966
287.2967 287.2970 287.3104 287.3867 287.3868 287.3869
287.3877 287.3878 287.4050 287.4051 287.4090 287.4091
287.4092 287.4094 287.4464 287.4554 287.4566 381754.6

Rickettsia prowazekii 1290427.3 1290428.3 272947.5
Salmonella enterica 1016998.12 1124936.4 1243585.3 1243619.3 1243621.3 1244111.3

1244112.3 1244113.3 1244118.3 1244119.3 1244120.3 1267753.3
1299044.4 1412451.3 1412452.3 1412592.3 1454583.3 1454592.3
1454593.3 1454594.3 1454596.3 1454606.3 1454607.3 1454608.3
1454610.3 1454611.3 1454612.3 1454627.3 1454640.3 1454641.3
1454642.3 1454643.3 1454644.3 1454645.3 149539.316 220341.7
28150.13 28901.1106 28901.2334 28901.2706 321314.9 54388.137

54388.139 54388.5 54388.6 59201.158 59204.12 59204.13
59204.14 600.8 600.9 611.112 611.119 611.120
611.125 611.128 611.129 611.65 90105.125 90105.85
90105.86 90370.2206 90370.929 90370.930 90371.1185 90371.1186

90371.1187 90371.1940 90371.2143 90371.2552 90371.686 90371.883
90371.903

Serratia marcescens 615.102 615.105 615.109 615.142 615.364 615.516
615.517 615.518 615.519 615.520 615.521 615.522
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615.523 615.524 615.525 615.526
Shigella boydii 344609.11 621.85

Shigella dysenteriae 754093.4
Shigella flexneri 1435046.4 1617964.3 1935181.3 198214.7 374923.3 374923.6

374923.7 42897.19
Shigella sonnei 624.1184 624.1185 624.1272 624.1273 624.1274 624.1285

624.635 624.637
Staphylococcus aureus 1006543.3 1123523.3 1229492.3 1241616.6 1280.10152 1280.10341

1280.10405 1280.10759 1280.11542 1280.11642 1280.11675 1280.11676
1280.11677 1280.11678 1280.11679 1280.11680 1280.11681 1280.11682
1280.11683 1280.11685 1280.11686 1280.11687 1280.11688 1280.11689
1280.11690 1280.12234 1280.12239 1280.12240 1280.12241 1280.12242
1280.12243 1280.12244 1280.12279 1280.12905 1280.12906 1280.12910
1280.14567 1280.14568 1280.14569 1280.14571 1280.14573 1280.3349
1280.3352 1280.3356 1280.3366 1280.3367 1280.3368 1280.3369
1280.3371 1280.3378 1280.3522 1280.3537 1280.3566 1280.3568
1280.3574 1280.3583 1280.3589 1280.4353 1280.4355 1280.4797
1280.4800 1280.4803 1280.4805 1280.4808 1280.4809 1280.4810
1280.4813 1280.4824 1280.4826 1280.4829 1280.4832 1280.4847
1280.4848 1280.4849 1280.4850 1280.4851 1280.4852 1280.5046
1280.5047 1280.5050 1280.5203 1280.5204 1280.5205 1280.5230
1280.7175 1280.7176 1280.7177 1280.7178 1280.7179 1280.7180
1280.7181 1280.7188 1280.7242 1280.7243 1280.7244 1280.7245
1280.7246 1280.8872 1280.8873 1321369.3 1343064.4 1392476.3
158879.11 196620.5 359786.13 359787.11 426430.24 46170.102
46170.127 46170.148 46170.149 46170.154 46170.155 46170.181
46170.182 46170.183 46170.244 46170.245 46170.246 46170.247
46170.248 46170.249 46170.276 46170.277 46170.290 46170.303
46170.304 46170.338 46170.86 IIDRC0017

Staphylococcus epidermidis 1282.1164 1282.2148 1282.2244 1282.2268 1282.2269 176279.9
Staphylococcus lugdunensis 28035.20 28035.28 28035.29 28035.30 28035.8 28035.9

698737.3
Staphylococcus pseudointermedius 1266717.69 984892.3

Staphylococcus saprophyticus 342451.11
Stenotrophomonas maltophilia 40324.126 40324.127 40324.128 40324.225 40324.252

Streptococcus agalactiae 1311.1246 1311.1314 1311.1315 1311.132 1311.133 1311.1349
1311.1451 1311.1452 1311.1453 1311.1454 1311.1455 1311.1456
1311.1457 1311.1458 1311.1459 1311.1504 1311.246 1311.337
1311.349 1311.350 1311.625 1311.694 1311.695 1311.983

1427374.3 211110.3
Streptococcus anginosus 1328.20 1328.24

Streptococcus constellatus 696216.3 862968.3 C1050
Streptococcus intermedius 1338.26 1338.30 1338.31 B196
Streptococcus pneumoniae 1313.13073 1313.13078 1313.13079 1313.13832 1313.13833 1313.13834

1313.13835 1313.15185 1313.15186 1313.15187 170187.11 525381.4
574093.3 R6

Streptococcus pyogenes 1010840.4 1048264.3 1150773.3 1207470.4 1235829.3 1314.131
1314.132 1314.134 1314.189 1314.191 1314.194 1314.195
1314.199 1314.200 1314.201 1314.202 1314.212 1314.213
1314.214 1314.239 1314.260 1314.261 1314.262 1314.263
1314.267 1314.375 1314.470 1314.492 1314.496 1314.497
1314.515 1314.534 1314.536 1437007.3 1437008.3 1440772.3

160490.10 160491.19 193567.3 286636.3 471876.6 487215.4
Vibrio cholerae 1224154.5 1420885.6 666.1986 666.1992 666.3404 686.14

Vibrio parahaemolyticus 1338032.3 1338034.3 670.1110 670.1228 670.961
Vibrio vulnificus 672.143 672.153 672.170 672.171

Yersinia enterocolitica 1262462.5 1262464.3 1262466.3 1262467.6 630.129 630.16
630.18 630.33 930944.6

Yersinia pestis 214092.181 214092.21 360102.15 547048.4 632.127 632.129
632.175
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TABLE A4.1: Coronaviruses to which the HUBDesign pipeline was applied

Virus Genus TaxID Acc.No.

Feline infectious peritonitis virus Alphacoronavirus 11135 NC_002306.3
Human coronavirus 229E Alphacoronavirus 11137 NC_002645.1
Transmissible gastroenteritis virus Alphacoronavirus 11149 NC_038861.1
Porcine epidemic diarrhea virus Alphacoronavirus 28295 NC_003436.1
Human coronavirus NL63 Alphacoronavirus 277944 NC_005831.2
Bat coronavirus 1A Alphacoronavirus 393767 NC_010437.1
Rhinolophus bat coronavirus HKU2 Alphacoronavirus 693998 NC_009988.1
Scotophilus bat coronavirus 512 Alphacoronavirus 693999 NC_009657.1
Miniopterus bat coronavirus HKU8 Alphacoronavirus 694001 NC_010438.1
Mink coronavirus strain WD1127 Alphacoronavirus 766791 NC_023760.1
Rousettus bat coronavirus HKU10 Alphacoronavirus 1241933 NC_018871.1
Ferret coronavirus Alphacoronavirus 1264898 NC_030292.1
Bat coronavirus CDPHE15/USA/2006 Alphacoronavirus 1384461 NC_022103.1
BtMr-AlphaCoV/SAX2011 Alphacoronavirus 1503289 NC_028811.1
BtNv-AlphaCoV/SC2013 Alphacoronavirus 1503291 NC_028833.1
BtRf-AlphaCoV/HuB2013 Alphacoronavirus 1503292 NC_028814.1
BtRf-AlphaCoV/YN2012 Alphacoronavirus 1503293 NC_028824.1
Lucheng Rn rat coronavirus Alphacoronavirus 1508224 NC_032730.1
Wencheng Sm shrew coronavirus Alphacoronavirus 1508228 NC_035191.1
Camel alphacoronavirus Alphacoronavirus 1699095 NC_028752.1
Swine enteric coronavirus Alphacoronavirus 1766554 NC_028806.1
NL63-related bat coronavirus Alphacoronavirus 1920748 NC_032107.1
Coronavirus AcCoV-JC34 Alphacoronavirus 1964806 NC_034972.1
Bovine coronavirus Betacoronavirus 11128 NC_003045.1
Murine hepatitis virus Betacoronavirus 11138 NC_001846.1
Murine hepatitis virus strain JHM Betacoronavirus 11144 AC_000192.1
Human coronavirus OC43 Betacoronavirus 31631 NC_006213.1
Human coronavirus HKU1 Betacoronavirus 290028 NC_006577.2
Rat coronavirus Parker Betacoronavirus 502102 NC_012936.1
Rousettus bat coronavirus HKU9 Betacoronavirus 694006 NC_009021.1
Tylonycteris bat coronavirus HKU4 Betacoronavirus 694007 NC_009019.1
Pipistrellus bat coronavirus HKU5 Betacoronavirus 694008 NC_009020.1
Severe acute respiratory syndrome-related coronavirus Betacoronavirus 694009 NC_004718.3
Bat coronavirus BM48-31/BGR/2008 Betacoronavirus 864596 NC_014470.1
Rabbit coronavirus HKU14 Betacoronavirus 1160968 NC_017083.1
Betacoronavirus England 1 Betacoronavirus 1263720 NC_038294.1
Middle East respiratory syndrome-related coronavirus Betacoronavirus 1335626 NC_019843.3
Betacoronavirus Erinaceus/VMC/DEU/2012 Betacoronavirus 1385427 NC_039207.1
Bat coronavirus Betacoronavirus 1508220 NC_034440.1
Bat Hp-betacoronavirus/Zhejiang2013 Betacoronavirus 1541205 NC_025217.1
Betacoronavirus HKU24 Betacoronavirus 1590370 NC_026011.1
Rousettus bat coronavirus Betacoronavirus 1892416 NC_030886.1
Severe acute respiratory syndrome coronavirus 2 Betacoronavirus 2697049 NC_045512.2
Infectious bronchitis virus Gammacoronavirus 11120 NC_001451.1
Turkey coronavirus Gammacoronavirus 11152 NC_010800.1
Beluga whale coronavirus SW1 Gammacoronavirus 694015 NC_010646.1
Bulbul coronavirus HKU11-934 Deltacoronavirus 572288 NC_011547.1
Munia coronavirus HKU13-3514 Deltacoronavirus 572289 NC_011550.1
Thrush coronavirus HKU12-600 Deltacoronavirus 572290 NC_011549.1
Common moorhen coronavirus HKU21 Deltacoronavirus 1159902 NC_016996.1
Magpie-robin coronavirus HKU18 Deltacoronavirus 1159903 NC_016993.1
Night heron coronavirus HKU19 Deltacoronavirus 1159904 NC_016994.1
Porcine coronavirus HKU15 Deltacoronavirus 1159905 NC_039208.1
Sparrow coronavirus HKU17 Deltacoronavirus 1159906 NC_016992.1
White-eye coronavirus HKU16 Deltacoronavirus 1159907 NC_016991.1
Wigeon coronavirus HKU20 Deltacoronavirus 1159908 NC_016995.1
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TABLE A4.3: Primers used for Viral RNA Quantification

Virus Target Genome Position Annealing Temp Primer

SARS-CoV-2 E Gene 26,269-26,381 57◦C F ACAGGTACGTTAATAGTTAATAGCGT
R ATATTGCAGCAGTACGCACACA

HCoV-NL63 RdRp Gene 13,547-13,743 60◦C F CTTCTTCCCCAGCACTCGTT
R AGCATCACCATTCTGTGCGA

TABLE A4.4: Contaminant amplicon sequences filtered against (Primers in
bold)

Amplicon Sequence

HCoV-NL63 CTTCTTCCCCAGCACTCGTTGATCAACGCACTATTTGTTT
TTCTGTTGCAGCATTGAGTACTGGTTTGACAAATCAAGT
TGTTAAGCCAGGTCATTTTAATGAAGAGTTTTATAACTTT
CTTCGTTTAAGAGGTTTCTTTGATGAAGGTTCTGAACTTA
CATTAAAACATTTCTTCTTCGCACAGAATGGTGATGCT

SARS-CoV-2 N TTACAAACATTGGCCGCAAATTGCACAATTTGCCCCCAGC
GCTTCAGCGTTCTTCGGAATGTCGCGCATTGGCATGGAAG
TCACACCTTCGGGAACG

SARS-CoV-2 RdRp AGTGTGCTCAAGTATTGAGTGAAATGGTCATGTGTGGCGG
TTCACTATATGTTAAACCAGGTGGAACCTCATCAGGAGAT
GCCACAACTGCTTATGCTAATAGTGTTTTTAACATTTGTC
AAGCTGT

SARS-CoV-2 E CGGAAGAGACAGGTACGTTAATAGTTAATAGCGTACTTCT
TTTTCTTGCTTTCGTGGTATTCTTGCTAGTTACACTAGCC
ATCCTTACTGCGCTTCGATTGTGTGCGTACTGCTGCAATA
TTGTTAACGT

SARS-CoV-2 ORF3a GTGAAATCAAGGATGCTACTCCTTCAGATTTTGTTCGCGC
TACTGCAACGATACCGATACAAGCCTCACTCCCTTTCGGA
TGGCTTATTGTTGGCGTTGCACTTCTTGCTGTTTTTCAGA
GCGCTTCCA

TABLE A4.5: Performance of SA_BOND on various input sets

Description Genomes Collapsed Input (Mbp) Genomes Covered Run Time (min) Memory (GB)

Coronaviruses 56 0.8 96% 0.5 0.5
Respiratory Viruses 110 0.6 100% 1.5 0.5
Sepsis Bacteria 1926 108 100% 25 7.1
Gut Bacteria 1473 4168 89% 1165 272
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TABLE A4.6: Probe counts by taxa in the Sepsis probe set

Genus Species Genus Level Species Level Total Probes

Achromobacter xylosoxidans 283 0 283
Acinetobacter baumannii 356 10 366
Acinetobacter nosocomialis 356 378 734
Bacillus anthracis 432 0 432
Bordetella pertussis 291 0 291
Bordetella bronchiseptica 291 254 545
Bordetella hinzii 291 377 668
Bordetella holmesii 291 420 711
Bordetella parapertussis 291 454 745
Borrelia burgdorferi 90 0 90
Burkholderia dolosa 255 69 324
Burkholderia cepacia 255 142 397
Burkholderia pseudomalli 255 269 524
Burkholderia stabilis 255 298 553
Burkholderia multivorans 255 309 564
Burkholderia cenocepacia 255 338 593
Burkholderia ambifaria 255 354 609
Burkholderia latens 255 373 628
Burkholderia mallei 255 382 637
Burkholderia thailandensis 255 397 652
Burkholderia oklaholmensis 255 406 661
Burkholderia vietnamiensis 255 419 674
Campylobacter jejuni 149 0 149
Campylobacter coli 149 24 173
Campylobacter fetus 149 363 512
Chlamydia trachomatis 414 155 569
Chlamydia pneumoniae 414 396 810
Clostridioides difficile 177 0 177
Clostridium botulinum 0 12 12
Clostridium perfringens 0 44 44
Clostridium tetani 0 71 71
Enterobacter aerogenes 338 338 676
Enterobacter cloacae 338 383 721
Enterococcus faecium 414 57 471
Enterococcus faecalis 414 441 855
Escherichia coli 167 0 167
Escherichia albertii 167 245 412
Escherichia fergusonii 167 435 602
Francisella tularensis 155 0 155
Haemophilus influenzae 383 19 402
Haemophilus parainfluenzae 383 389 772
Helicobacter pylori 389 0 389
Klebsiella pneumoniae 394 84 478
Klebsiella oxytoca 394 431 825
Legionella pneumophila 449 0 449
Listeria monocytogenes 408 0 408
Micrococcus luteus 238 0 238
Moraxella catarrhalis 439 0 439
Mycobacterium tuberculosis 427 81 508
Mycobacterium abscessus 427 336 763
Mycobacterium bovis 427 358 785
Mycoplasma pneumoniae 416 0 416
Neisseria meningitidis 380 242 622
Neisseria gonorrhoeae 380 277 657
Proteus vulgaris 368 24 392
Proteus mirabilis 368 42 410
Pseudomonas aeruginosa 344 0 344
Rickettsia prowazekii 53 0 53
Salmonella enterica 377 0 377
Serratia marcescens 362 0 362
Shigella boydii 240 202 442
Shigella sonnei 240 238 478
Shigella flexneri 240 303 543
Shigella dysenteriae 240 341 581
Staphylococcus aureus 390 25 415
Staphylococcus epidermidis 390 45 435
Staphylococcus lugdunensis 390 134 524
Staphylococcus saprophyticus 390 220 610
Staphylococcus pseudointermedius 390 426 816
Stenotrophomonas maltophilia 218 0 218
Streptococcus intermedius 111 81 192
Streptococcus anginosus 111 85 196
Streptococcus agalactiae 111 176 287
Streptococcus constellatus 111 197 308
Streptococcus pneumoniae 111 367 478
Streptococcus pyogenes 111 417 528
Vibrio cholerae 432 338 770
Vibrio parahaemolyticus 432 368 800
Vibrio vulnificus 432 435 867
Yersinia enterocolitica 413 361 774
Yersinia pestis 413 463 876
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TABLE A4.7: Regions of Viral Genomes with Apparent Bait Free Enrichment

Virus
Region Number of Off Target Enriched Reads

Start End All (+) Stranded Intragenomic Bait Extragenomic Bait

HCoV-NL63 11359 11445 6020 1602 7 1
23051 23304 971 698 0 390

SARS-CoV-2 4953 5255 905 167 2 0
5551 5910 538 318 5 0
6686 7214 2415 1017 24 0
7243 8356 7751 3847 31 0

10641 11512 7410 5733 44 0
13779 13891 145 115 1 2
14707 14912 858 59 1 17
15447 16107 2550 1336 8 609
16158 17169 26677 1595 2 114
19570 20200 1456 3593 13 41
25730 26339 18539 10645 68 0
27487 28060 14583 7590 124 0

TABLE A4.8: Logistic Regression of on-target coronavirus reads

Coefficient Unit Estimate Std Error 95% CI

Intercept NA -11.48 2.17×10−2 -11.51 -11.44
Enriched NA 4.58 6.59×10−3 4.57 4.59

MassSARS-CoV-2 fg−1 6.77×10−4 2.57×10−6 6.72×10−4 6.81×10−4

MassHCoV-NL63 fg−1 2.62×10−4 9.21×10−5 2.60×10−4 2.63×10−4

Mass Interaction fg−2 3.61×10−5 1.68×10−9 3.57×10−5 3.63×10−5
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FIGURE A4.1: The grey line is the observed read depth at every position. The
blue line segments are the mean depth across a region the same length as the
amplicon generated during qPCR. The purple line segment is the position within
the genome targeted by primers used to quantify the copy number of the viral
samples. The dotted line is the average depth across all primer-length regions in
the genome. In HCoV-NL63 the dotted line is higher than the purple reference
region indicating that one copy quantified during qPCR results in a mass of viral
RNA greater than one genome’s worth. The opposite is true for SARS-CoV-2.
The mass of viral RNA present when a single copy is quantified is the sum of
the blue line segments relative to the reference region.
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FIGURE A4.2: SARS-CoV-2 data from HiLo samples, and HCoV-NL63 data
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nearby baits are indicated by grey shading. Most reads, based on cDNA, are
negative stranded which indicates most RNA in the sample is positive stranded.
Strand bias flips on the flanks of enriched regions indicating indirect enrichment.
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FIGURE A4.3: . There is very little enrichment at distances near to, but outside
of bait regions, while there is clear enrichment at further positions.

202

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Doctor of Philosophy– Zachery William DICKSON; McMaster University– Department of Biology

TABLE A4.10: Estimated change in log fold enrichment from species level
to genus level probes corrected for GC content, divergence, probe density, and
baseline read counts

Strain Estimate StdErr 95% CI

Burkholderia multivorans 0.355 1.02 -1.32 2.03
Klebsiella pneumoniae 0.951 0.890 -0.514 2.41
Staphylococcus aureus 5.10 1.14 3.23 6.97

Streptococcus constellatus 13.1 11.1 -5.12 31.2
Streptococcus intermedius 2.43 2.46 -1.63 6.48
Streptococcus pneumoniae NA NA NA NA

Streptococcus sanguinis NA NA NA NA
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