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SCOPE AND CONTENTS:

fhis work is concerned with the use of different
"effective" nucleon"nucleon>interactions in the calculation
of binding energies and spectra of some of the oxygen iso-
topes.

The variational procedure consists of using a
complete set of Slater determinant wave functions, having
the same total M value for the projection of the angular
momentum, in order to minimize the ground states of
various nucleonié configurations in.the 2s-1d nuclei. The
parameters obtained are used in the subsequent diagonali-
zation of the Hamiltonian and its eigenvalues are inter-
preted as energy eigenvalues. The calculations performed
in this work led to the conclusion that'the density
- dependence of the effective force is extremely important and
should not be negiected, at least in the calculation of

binding energies.
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CHAPTER I
INTRODUCT ION

The usual trend in performing nuclear structure

B

calculations in order to fit the spectruwm of nuclei is to
neglect the binding energies of the systems under investi-
gation. Furthermore, if the harmonic oscillator approxif
mation is used, separate variations of the oséillator
radii for the various orbitals (s, p, etc.) are usually
not allowed in the sense that such a variation is assumed
not to be critical.

Work performed by Volkov [Vo 64], [Vo 651, Volkov
and Hughes [V.H. 66}, and Volkov and Manning [Ma 67]
pointed out the importance that such a variation could have
on the deformation characteristics of nuclei. In particular,
the equilibrium deformatiors for nuclei were found to be
less than those predicted by Nilsson.

Such investigations'showcd also the possibility
that calculations performed at zero deformation 'with an ap-
prepriate nuclear interaction could yield level ordering
and spacing of nuclear spectra, in agreement with experimental
data and that the binding energy so calculated could be
close to the experimental ones.

The extensive work done using the shell model approach,

or the Nilsson model, clearly indicates the validity of the

1



independent particle potential as a first approximation
to the nuclear problem. One is led to the search for possible
two body nuclear interactions which should approximately re-

produce the scattering data and which could be used at the

' same time to calculate the properties of nuclear structure.

In order to avoid the difficulties posed by the
presence of a hard core Which appears in most "realistic”
interactidns, one often uses phenomenological potentials
in nuclear spectroscopy to explain configuration mixing
and the observed spectra. One has to solve the Schroedinger
equation for an A particle system (A = N + %) in general,
or a V (valence particle) system in the usual shell model
approach by using an appropriate phenomenological interac-
tion. It is well known that the solution of such a differen-
tial equation is equivalent to finding functions

which make the integral

(¥|uly) (1.1)

stationary subject to the condition that the normalization
of the wave function is maintained in the process.
Such variational calculations can be performed in

different ways. In the most general case the wave functions

should be determined without imposing any functional "constraint"

on them. More often a restricted version is used in the sense



that a particular set of single particle wave functions is
chosen and the variation is performed on some parameters
appearing in them. One can then obtain the best approxi-
‘mation to the true nuclear wave function corresponding

to the given functional form. This is the approach used

in the present investigation of the spectra of the isotopes
of oxygen. |

In cohtrast to the usual form of the Hartree Fock
approximation, the variations are made with respect to a
complete basis of Slater determinants, i.e. we include all
possible configurations in the és - 1ld shell compatible with
a given nucleus.

The procedure consists essentially in the following:
the complete set of Slater determingnt wave functions having
the same total M value are generated and the Hamiltonian
matrix in this representation is diagonalized.

The ground state so ébtained is then minimized with
respect to the orbital parameters which in the more general
casc should include orbital sizes and deformations.

The eigenvalues of the Hamiltonian corresponding
“to this minimum value of the ground state are then inter-
preted as energy levels and the eigenvectors as nuclear wave
functions.

The use of Slater determinants is necessary in the

deformed cases where the angular momentum is not conserved and



and the usual technigques of the irreducible representations
of the rotation group can no longer be applied, if one
desires to keep the representation small and avoid lengthy
 projection calculations.

‘ It must be noted further that the use of Slater
determinants is convenient in the sense that the correspon-
ding matrix can be diagonalizéd fairly rapidly with present

day computers.



CHAPTER II

MANY BODY FORMULATION OF THE PROBLEM

The nuclear many body problem that we must solve
is a very restricted one, in the sense that two basic
assumptions are made. The first one is that only nuclear
coordinates are introduced into the relevant equations and
the second is that only two body interactions are considered
to be important.

The first condition which actually prevents the
production of virtual mesons is a low energy approximation
and further suggests that the motion of nucleons inside
the nucleus should be treated non "relativistically".

The basic question of ‘the validity of such assump-
tions has not been answered yet, and the simplifications
that follow are accepted rather on the basis of the absence
of a clear indication of their breakdown in the usual energy
ranges.

As a first approximation we are then led to consider

the following model Hamiltonian

A p”
Hmod = 'E [me + V(rj)] (2.1)
j=1 J

where V(rj) is a suitable potential, which for the moment

is left undetermined.



It is well known that in such a case eigenfunctions
of the Hamiltonian of eg. (2.1) can be constructed as products
of the eigenfunctions ¢a(;) of the single particle Schroedinger

equation.

2 S ' >
Bo + Vo] ¢ () = e 0 (¥) (2.2)

t

>
Ho  (r)
where o stands for the set of quantum numbers which are needed
to label the single particle states.
if we insist on the antisymmetry properties which a
system of fermions must obey, then an initial set of eigen-
functions of equation (2.1) which is complete, orthogonal
and antisymmetric consists 6f Slater determinants of the

- order A, i.e.

(1)(1.1 (rl) « o s o e e s ¢(xl (rA)
. . - .
y = e * ¢ (203)
Vooo(anx . .
¢aA(n) ' ¢aA(rA)‘

where o, represents the set of quantum numbers of the ith
nucleon, i.,e. position, spin and isospin coordinates, and v

0..). The

‘stands for the set of o, quantum numbers'(ocloc2 - Oy

N
eigenvalues of eq. (2.1) corresponding to the eigenfunctions
defined in (2.3) are naturally determined by the eigenvalues

of eq. (2.2) and by the set of quantum numbers represented

by v i.e.



A

E £ (2.4)

vy ey

If we are dealing with a closed shell nucleus, the
ground state is represented by a single Wv with the set of
‘a; with lowest energy.

Otherwise, there will be degeneracy corresponding to
the alternative mutual orientations of the nuclear orbits.
Construction of linear combinations of Wv by well known
methods is then required to single out ground and excited
state wave functions with definite values of angular momen-
tum and other constants of motion.

The central field approiimation considered so far
is certainly too crude an approximation to be able to
predict satisfactorily most of the physical properties of a
complex system like a nucleus.

The fact that the eigenfunctions (2,3) are a complete

set, suggests the introduction of a more general Hamiltonian

of the form

i 4+ 3 V(r..)+CZQ?.-s.—-T‘ (2.5)
i $>9 17 A R | cm .

where V(rij) is some phenomenological potential which includes
in the general case the various exchange operators and where
Tcm' the centre-of-mass kinetic energy is subtracted in order

to make H depend only on the intrinsic coordinates. Starting

from the eigenfunctions WV of the model Hamiltonian, we face



the following situation.
Let us consider the matrix element of H between two

states Wv and Wv, written as

(v'|u]|v) : (2.6)
The diagonal eiements (v|H]v) give expectation values of
the energy corresponding to the approximate WV . The
magnitude of the off diagonal terms,which would vanish if
the Wv wéré exact wave functions, indicates the degree of
approximation reached at this point and the relevant approxi-
mation indices for two configurations v' and v" are givén

by [FA]
(v']a]v") = [(v'[H]V') = (v"[H]V")]

It should be mentioned "en passant", that among the wave
functions with structure (2.3), the best approximation to an
energy eilgenstate is constructedeith single particle wave
functions, which obey the Haftree Fock system of equations
rather than the model equation (2.1).

We did not follow the Hartree Fock approacﬁ, at
least in its usual form, because it is not too practical to
form a complete orthogonal set of eigenstates and eigenvalues
in this manner.

Improved wave functions WU of (2.5) can be construc-

ted by taking linear combinationgof the original WV i.e.

Yy =5 Vv U (2.7)
v : -

s



where in order for the Wp to be orthogonal, the matrix of
the coefficients qu has to be unitary.

The coefficients‘qu which reduce the Hamiltonian
‘matrix to its diagonal form obey the infinite system of

equations

z Hiv') U = U E 2.8
v.(\’ll)v'u Vi Tu _ ( )

providiné,'at least in principle, the required energy levels
and wave functions of the system. In practice one does not
consider the infinite set of eqguations (2.8), but instead

a finite, truncated, set of states are used in oxder to

obtain an approximate solution of (2.8).



CHAPTER III

SINGLE PARTICLE POTENTIAL

Still not defined is the form of the central poten-
%tial of eq. (2.1) which defines completely the set of single
particle wave functions in the Slater determinants (2.3}.

As mentioned before, the correct methoa of obtaining
the set of single particle wave functions should be through
a self consistent prbcess, such as to determine the ¢u.
by the variational principle itself, without any furth;r
restrictions. Very often this principle is replaced by a
more restricted one in which the initial states are deter-
mined "a priori" at least in their functional forms. 1In
this context, since the development of the shell model ex-
tensive use has been made of the infinite square well poten-
tial and the infinite harmonic oscillator potential well.

In these two cases one can obtain an exact solution
and they provide two contrasting viewpoints.

The square well has an infinitely sharp edge whereas
the harmonic oscillator potential increases smoothly at
- the edges.

The main feason for the use of the Harmonic Oscillator
potential well is due essentially to the analytic properties

of its solution, which simplify the calculations of matrix

10
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elements and to the fact that the harmonic oscillator well

reproduces fairly well the shell closures occuring at the

so~-called magic numbers, if an appropriate spin orbit

coupling is introduced.

The fact that such wave functions are not self con-

sistent is not a very serious drawback, in the sense that

it has been possible to prove that harmonic osc¢illator wave

functions are indeed very close to being self consistent

(Ne 59) and also that eigenvalues and eigenvectors of a

cut off oscillator well are very close to the corresponding

ones of an infinite well.

Actually, a potential which is intermediate between

the square well and the harmonic oscillator well and which

also has an experimental basis is the Wood Saxon potential

obtained by fitting the data on nucleon-nucleus scattering.

This potential which is flat at the center and falls off

smoothly to zero at the edge of the nucleus is given by

V(r) = - VO/[l + exp uf{r - R)]
where
uﬁl =z 0,5 x 10*13 cm.‘
~and
R = 1.33 a%/3 x 10713 cn

[

A being the mass number of the nucleus and Vo

v 50460 MeV,

For B o> oo , V(r) = - Vo for r < R
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and V(r) = 0 for r > R and the potential corresponds to the
square well,

For the Wood-Saxon potential, an exact solution
, cannot be obtained and numerical methods must be employed.
iIn fact even in the square well and the harmonic oscillator
well solutions in terms of known ﬁathematical functions
are only possible provided the former falls off infinitely
sharply and the latter extends to infinity. However, for
the consideration of low lying bound states, it is not of
great importance whether thé wells are cutoff or not.
Thisrbeing the case, and the fact that, at least for light
nuclei, the levels of a Wood-Saxon potential are very close
to those of an harmonic oscillator potenfial, one can safely
assume that the single particle orbitals are eigenfunctions

of a Schrodinger equation with a poteﬁtial of the form

Vr) = %‘mwQ (X2 +‘y2 + 22) (3.1)

One usually treats the harmonic oscillator energy fiw re-

. 2 _
lated to the nuclear radius parameter b by b™ = o as
a variational parameter, in order to minimize the energy in

the expression

S j ¥* HY dr = 0 (3.2)

The Schroedinger eqguation with the potential given in (3.1)
can be solved in various coordinate systems.

If one uses Cartesian coordinates, the above
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_ 1
e = (2mt+|m|+1) ho, (m, + 5)ho, (3.4)

Although originally applied to those regions of the
nuclide chart where nuclei are clearly deformed, more recent
|
|

%investigations by Volkov, Hughes and Manning indicate the

interest of such approach to light nuclei as well.

Extensive calculations performed in the lp {Hu 69) <

region have shown that most nuclei are indeed deformed
justifying the use of an axially-symmetric oscillator poten-
tial as a natural representation for such nuclei. 1In the
present work we use suchAapproaqh in the 2s-1d region in
an attempt to fit the spectrwf of the oxygen isotopés with
different phenomenological potentials.

The wave functions used have the virtue of méintaining
the cylindrical symmetry of the problem, conserving the z
component of the total angular momentum as a good quantum
number, and thus simplifying the coﬁstruction and diagonali-
zation of the energy matrix.

Ideally one would like to perform these calculations
in the whole 2s-1d shell. Unfortunately the number.of con-

figurations which are involved gets very rapidly out of hand

and limits the method to but a few of all possible nuclei.

a.



CHAPTER IV

MODEIL SPACE

As mentioned, the aim of explaining the propérties
of complex nuclei it furthered by separating the potential in-
t; two parts, one of whicQ is, or at least is hdped to be,
a good first approXimation to the true potential felt by
a nucleon inside a nucleus.
This leads, as we héve seen, to a matrix equation

of the form

% Hiv' U = U E 4.1
v' (v]]v) Vi VU T ( )

i.e. to an infinite system of eguations in the representation
spanned by a "complete" set of Slater determinants, whose
constituent wave functions spon the complete Hilbert space
H' of the system. The dimensions of H' exceed all bounds

and the many body problem involved cannot be solved by

simply choosing a particular basis in this space; this

would involve the solution of a Shroedinger equation, whose
»Hamiltonian is acting on an infinite dimensional space.

We are faced with the necessity of defining a Hamiltonian
acting on a finite dimensional space "h", which would be
small enough to carry out the numerical analysis of the
problem, and at the same time be "wide" enough so as to contain

15
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Its subsequent diagonalization, which corresponds to a
solution of the Schroedinger equation within this model
space, can then be performed separately in each subspace

of the model space h.



CHAPTER V

NUCLEAR INTERACTIONS

The assumptions of chapter II thus lead to the
general form of the phenomenélogical potentials used, as a two
body interaction, i.e., as
3 V(I}‘i—}jp (5.1)
i<j :

The first condition that the potentials must satisfy is due
to the use of harmonic oscillator wave functions as basis
states. One then reQuires that such an interaction has well
defined matrix elements between such states.

The desirability of using "realistic interactions" is
ruled out by the fact that most of them possess a hard core,
vsuch that the corresponding matrix elements are not finite.

One is thus led to the search of effective potentials,
which have a simple analytical form and which contain few
parameters that can be adjusted in order to reproduce the most
important experimental features of the interaction.

The first type of fdrce used and which satisfies the
requirement of easy evaluation of matrix elements (and referred

to as force 1) is the Volkov force [see Table I]

2 2
X
V(r) = [wtmP_+bP_+hP ] # V. exp( ;ﬁ') + Vp exp (- }’\"2) (5.2)
a . My

18
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where P, P p_are the space, spin, isospin exchange opera-

G’
tors respectively and where the radial dependence (the sum of
two gaussians) gives a shape which is similar to the Moszkowski-
Scott form for Vg (the effective long range part of the inter-

gaction).

The parameters V Ar‘ which have been used,

a Vg *a
were evaluated by M. Manning and D. J. Hughes,.in order to
fit the binding energy of 016 and approximately fit the
low energy scattering data. The same calculations gave
values for m, b, h, parameters (w = 1l-m) with one exchange
parameter still undetermined.

In the calculation perférmed for the oxygeﬁ isotopes,

a moderate spin-orbit force was included.

The value 2.0 for the constant ¢ in the epxression

0

—>
\ = - C -

was chosen in order to give the experimental splitting between

the d and levels, which are observed in stripping

a3/,
016.

5/2

reactions on
This type of force has been used extensively in 1lp
shell nuclei calculations, and gives fairly good agreement
.for binding energies and energy spectra for nuclei in this»
region,
Unfortunately, it has been found that such a potential
for nuclei larger than O16 leads to too small sizes and pro-

gressive collapse. This phenomenon increases with the number
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of nucleons. This is due to the fact that the forces of this
type did not saturate nuclear matter,
Another type of force has also been used in this work:

it has a density dependent character and was obtained by

i
|

' imposing the requirements that

3l) it reproduces approximately the correct phase shift for
free nucleon-nucleon scattering up to 250 MeV.,

2) it has approximately the same long range ag realistic
potentials and

3) it gives the correct saturation properties in nuclear
matter. In particular, condition 3) is important for
application to a wide range.of nuclei.

The more general nuclear interaction is then of the

same functional form as given in 5.2 but with

o N2
Ap = A ) =A% I+ e (kee,) )
m. /3
Vo=V, [l-cyp b (®)]
v = v Il + ¢4‘T‘é/3 (R)]

where k is the average relative wave number betwéen interacting
particles and p is the average density of the nucléus evaluated
at R = % (§l+§2)’the center of mass of the interacting particles
.[see Table II].

Again the parameters Va Ve Aa Ar ¢, ¢, are obtained
by approximately fitting the singlet and triplet wave phase
shifts to 250 MeV, with the difference between the sihglet

even and triplet even states so giving a value as for b - h

and saturating nuclear matter in a first order Hartree-Fock
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calculation [Ma 67]. It is possible to prove that all matrix
elements between many particle states of the [4,4,4,--—-- 4]
supermultiplet symmetry are uncﬁanged by variation in w, m, b, h
as long as the quantity = 10[w+m] - 8[b+h] remains unchanged.
Various values of ny and n, can be used with the.above

- potential, in order to fit the data

= 16 MeV

= 1.36 fm ¥

E
A
kF
for nuclear matter, allowing the determination of the con-
stants ¢

c, for given v.

3" 74
Four different forces of this form have been used
in this work,whose characteristic parameters are given in

Tables I and II and which will be referred to as force 2, 3,

4, 5 respectively.



CHAPTER VI

ENERGY MINIMIZATION

The deformation & can be defined as the rétio of
the two oscillator constants o and'B corresponding to the
p dependent part and to the z dependent part of the wave
functions bf‘a cylindrically symmetric harmonic oscillator.
Their ratio is given in Appendix A of Nilsson
paper [N 55] by

o _ € . 2e
g=0+5H /-3

where positive values of e represent a prolate deformation,

while negative values of

e represent an oblate shape.

As mentioned in Chapter I, investigations performed
on the 1lp shell‘nuclei have shown the.usefulness of allowing
the variation of the oscillator constants of the different
single particle orbitals of the approximate wave function.
The main reason for such an approach is the possibility that

it offers to provide a closer approximation to the more

"realistic" Wood Saxon potential, whilevavoiding the worst

~mathematical difficulties of the more realistic single

particle potential. In order to further simplify the calcu-
lations, it is required that the ratio of a's and B's for
the different corbitals involved be the same.

22
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This is equivalent to demanding that the deformation
e be the same for all orbits, which is in the spirit of a
Hartree Fock potential which should be similar for all the
orbitals.

| Furthermore, the extension to the 2s-1d shell nuclei
poses another constrainton such parameters in the sense that
in order to maintain orthogonality between the 150, ldo and 250
states, thg same oscillator constant must be assigned to them.

Actually, one could assign different orbital size
parameters to all siﬁgle particle levels, but in this case,
one would have to renormalize the corresponding Slater
determinants, in ordexr to regaiﬁ orthogonality which is not
easy.

In calculating spectra with the total angular momentum
a good guantum number, it is ﬁecessary-to use a set of func~
tions which form an appropriate basis of the rotational
group.

This constraint alloﬁs only two possible variational
parameters, which are the oscillator constants for the 1s (uo)
and the 1p (al) shells.

The énergy matrix is then calculated for a given force
‘and determines a g;ound state energy E(ao,al), which depends
on the value of oy and oy

One can define an auxiliary parameter

il
o

O

= (0
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and then minimize E(ao,c) with respect to oy and o. This

is done in our computation by applying a parabolic fit to
E(a_i0) E(a_+80_,0) »  E( _+280_,0)

' to yield:

' .
E(a O,o) , (6.1)
and then another parabolic fit to
E(ab,o+60) , E(uo+6ao,o+do) , E(ao+26uo,o+26o)

to yield:

n

E(ocO , 0 + 80) (6.2)

and finally another parabolic fit to
E(ao,o+260) ' E(a0+600,0+260) ' E(u6+26ao,0+260)

to yield:

E{a, ,0 + 260). ‘ . (6.3)
From (6.1), (6.2) and (6.3)

L(ao,cm) ' E(ao+6ao,0m) ' h(uo+26ao,0m)

is fit to yield

E(OLom'Om)

- where the parameters' values are the ones corresponding to
the minimum energy corresponding to zero deformation. The
process can be continued by repeating each step and starting

with the best fit value obtained in the previous calculation.
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. The poor fit to the energy levels obtained can be
in‘part attributed to the restriction on the oscillator
constants which has.been imposed in order to maintain ortho-
ganality of the eigenvectors.

This is dramatically observed in the case of O17 for
the J = % states, which in the case of force number 3 lies
at‘more than 4 MeV above the experimental level.

The restriction on the oscillator constant is then
such as to bring the 2s particle inside the orbits of the 1lp
particle in such a way that the valence particles feel the
repulsive part of the potential more £han they should.

In particular, the matrix elemeﬁts beﬁween the 2é
states are in general larger than the matrix elements between
s and d states. It is then expected that a decrease of the
coefficient Cy appearing in the éensiﬁy dependent part of
the repulsive part of the potential will increase the matrix
elements between the s states 1eading to the lowering of the
% levels [Hu 67). This is in fact what is observed as a
general trend with the use of forces 4 and 5.

The energy interval between experimental and calcula-
“ted % levels in the case of calculation with force 5 is
reduced to 3 MeV only and one expects that the relaxation of
the restriction on the oscillator constants, if possible, would

lower still further the level. The case of force number 2

shows the same tendency, although the different type of density
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dependence in this case prevents a direct comparison. Further-
more, the lowering of this level in this case is not as one
would expect, due to the presence of a higher density de-
pendence attractive part in the potential.

it should be noted also that the observed deviations
from the experimental ievels could be explained by allowing
an admixture of core excitation to the single particle
motion, whose evidence is found in the splitting of the 1/2+

17

and 3/2+ levels in 0~ ', the occurrence of low lying negative

parity states in this nucleus and the E2 admixture for the
neutron hole transition 3/2 =~ 1/2° in 015. The same phenomenon
appears in the case of O18 where the difference in energy
between the calculated and experimental 0" excited state
drops from about 7 MeV to about 5 from force 3 to force 5.
In an analogous way the 2t excited state comes down to about
0.8 MeV in the case of force 5.

It must be further noted that in the particular case
of 018 some of the levels such as O+, 2+ can be identified
as rotational levels. This brings further doubts on the
validity of the approach used here in the sense that the action
of truncation of the Hilbert space has been too drastic
and has no "life" left in it to describe such rcotational
levels.

In 019 this general trend is‘once more indicated by
the behaviour of the 1/2+ level found experimentally at 1l.46

MeV, and when calculated lies at 4.43 for force 3 and goes

down to 3.15 MeV for force 5. Similar behaviour is shown by
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the second 3/2 level, which comes down from 4.3 Mev to
3.94 Mev although ip this case no comparison with experiment
can be done, due to the lack of spin and parity assignments
in this level.
In O20 the spacings between the 2% ana 4% 1evels

found tend to indicate their nature as rotational levels.,

| The mechanism which has been assumed in explaining
the bad fit of the spectra obtained is confirmed in the
calculations performed with the so called density approxi-

mation 2 (DA2) performed for 617

with forces 3,4,5.

In this approximation the particles in 2s-1d shells
are with a bigger weighting factor than the corresponding
particles in the density approximation used so far.

The physical explanation.is that such particles
can be thought of as being less restricted by the condition
on the oscillator constants,

They tend to assume the value of the parameters
corresponding to no constraint and the lowering of the 1/2
level is particularly clear in the case of force 5.

The variation of the energy levels corresponding to
‘changes in the spin-orbit coefficients, as illustrated by
the graphs of Tables 19, 20, are.typical.

In this context it is seen that the 2° and 47 1evel
in O18 are of a nature (predominantly L -~ S$ coupling with S = 0)

which leads to practically no dependence on the spin-orbit

terim.
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It is important to note, finally, that the best fit
to’ the levels has been obtained by the use of force 1, in which
no density dependence has been included, although this force
in this particular region tends to overbind the nuclei.
The reéson for this behaviour is essentialiy
the fact that in obtaining such a force the emphasis was put

on the fit of energy levels in Li6.



CHAPTER VIII

CONCLUSIONS

The use of different types of nucleon-nucleon
interactions in the region of 2s—la shell nuclei has proved
the wvalidity of harmonic oscillator wave functions in
cylindrical coordinateé in the study of binding energies
and spectra of such.nucleonic configurations. While some
formal difficulties still rémain to be solved, such as the
independent variation of all the oscillator constants, several
new areas appear for future investigations. In particular
one should attempt to extend the calculation presented to
other nuclei in this region.

The major difficulty of having.Hamiltoniaﬁs whose
dimensions are extremely large, could be overcome by
avoiding the full diagonalization procedure and looking at
a few of the low lying excited states by using approximate
methods for the evaluation of the required eigen&alues (MM 64).
Investigations performed earlier have shown that except
for possiblé excited states resulting from particle-levels
states O17 and OlB”are essentially spherical nuclei, thus

providing further justification to the approach used in this

work.

32
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On the other hand, nuclei such as El9 and Nezo have

been found to have strong prolate deformations [Co 65]
due to the progressive influence of the ldo orbitals chsﬁant
;some'doubts on the possibility of evaluating the spectra
of sucn nuclei at zero deformation.
An important conclusion reached is that forces
which are density and energy (state) dependent.are extremely
important énd should not be neglected at least in the
calculations of the binding.energies of such nuclei [Ma 67).
The reason why such forces give a poor fit to the
energy levels with respect to a force not density dependent
as force 1, is not clear yet and this problem should be

further investigated.






FORCES # 1, 2
Analytic form:

v(r, R) = (1 - Cq

where X (k) = A0
r T

Force Parameters

F ¥ v
orce A
1 -78.C3
2 =250
%*
v

02’3 R)) (w+mP *bP +npP
X (]

1+ ¢y (& - 02)2>

82.8
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0.8

1.247
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Forces # 3, 4, 5

Analytic form:

- _— ; + +
v{r, R) (w+m Px b PG h PT) iVa exp (
where
[ 1/3]
Va _ VA il c3 j
v 2/3"
= v T :
Vr VR Pt + C& 0 i
L A
A= 22 (1+ ¢, (k=~-c¢c))?
r r 1 2
- P < . )
Force # (A VR Aa AL cl
3 ~250 255 1.5 1.247  0.15
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CONFIGURATIONS

Nucleus

017

018

MZ Value

1/2
3/2
5/2

& W = O

1/2
3/2
5/2
7/2
9/2

11/2

S > W = O

TABLE IIX

14
11

37
32
22
12

81
72
60

24

Hamiltonian

X N
=N

x 81
x 72
x 60
x 39
x 24

9 x 9



Calculations for ol7

[

Occupation matrix !
L

2. oooo} 8

Restrictions on minimization

For minimum energy

Force Radius
1 2.131
2 2.915
3 2.890
4 2.963
5 3.025

"none"

W

.027

.665



10. 08333 12
{ :

22 a(l) a(2) B.E. (mev)
1.514 46418 .52877 - ~125.432
2.833 .23250 .29054 ~123.135
2.784 .25227 .28762 ~151.580
2.927 24153 .27289 ~131.262
3.05 .23193 .26184 -114.198
TABLE IV

8¢









Calculations for 01!°
Occupation matrix [2.000; 1.24999]

Minimization of the ground state performed in a model space s?anned by the basis states
(002)2 (01 1) (00232 (100); (01 1)2(0=-11)%; (01 1)2 (0-~20)1;

For minimum energy

Force Radius 02 z2 : a (1) d(Z) B.E. {(mev)
1 2,278 3,459 1.729 .42380 50296 ~-123.273
2 3.071 6,287 3.144 22362 .28463 -131.099
3 3.028 6.112 3.056 24162 .28331 -161.250
4 3.095 ‘ 6.387 3.1%4 73146 .27087 -140.976
5 3.151 5.621 3.310 22244 .26198 -123.847
TABLE VI

ov
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