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Chapter 1: Introduction 

Since at least the early 2000s, expenditures on pharmaceutical innovations have continued to rise 

worldwide, and drug budgets are under increasing pressure1,2. While the reasons for these increases 

may be complex and multifactorial, several key factors have been identified, including an aging 

population3 and the extremely high costs of innovation4. Against this backdrop of ever-increasing drug 

expenditures, the advent of HTA has provided a practical means for payers, governments, and other 

stakeholders in a growing number of countries to pursue cost-containment of innovative 

pharmaceuticals in a systematic, value-based way. Previously, HTA had been defined as “the systematic 

evaluation of the properties and effects of a health technology, addressing the direct and intended 

effects of this technology, as well as its indirect and unintended consequences, and aimed mainly at 

informing decision making regarding health technologies”5. However, while the lifecycle of a new 

pharmaceutical may last years or even decades, HTA is typically conducted only once at the time of 

technological adoption based on data that is available at that point in time and is rarely, if ever, updated 

with new data. As a result, the cost-effectiveness of pharmaceuticals across their lifecycle remains 

largely unresearched and unknown. 

More recently, a shift in HTA towards encompassing a life-cycle approach has resulted in the emergence 

of a new paradigm of health technology management (HTM). Accordingly, HTA itself has been redefined 

as “a multidisciplinary process that uses explicit methods to determine the value of a health technology 

at different points in its lifecycle”5. This new definition of health technology decision making explicitly 

considers the value of medications at multiple points across their full lifespan, accounts for maturity of 

clinical data over time, and thus may be better suited to the comprehensive economic evaluation of 

pharmaceuticals. Several HTA agencies have expressed intent to pursue some form of HTM in order to 

not only evaluate the economic value of drugs at the point of adoption, but also later in their lifecycle. 

For example, the Canadian Agency for Drugs and Technologies in Health (CADTH) has signaled intent to 
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re-assess already reimbursed drugs to ensure that the clinical and economic benefits described in initial 

economic evaluations continues to be realized over time6.  In the United Kingdom (UK), the National 

Institute for Health and Care Excellence (NICE) has recently launched a 5-year strategy in which a 

dynamic approach to HTM is being considered7. It seems likely that HTM could be implemented in some 

form by HTA agencies in the not-to-distant future, however, at present reimbursement decisions are 

rarely re-assessed, even in cases where additional data have become available. 

Economic evaluations to support HTA and HTM 

To support HTA in their respective countries, reimbursement submission guidelines have been issued by 

HTA agencies which provide prescriptive guidance for the conduct of economic evaluations. These 

guidelines specify the content and structure required to be submitted to facilitate review by the HTA 

agency. In Canada, CADTH has published several iterations of guidelines for reimbursement submissions 

of new drugs8. At NICE in the UK, extensive technology appraisal guidance documents9, as well as a 

comprehensive suite of methodology guidelines, have been published. In Australia, the Pharmaceutical 

Benefits Advisory Committee (PBAC) also provides guidelines for appraisals of new drugs submitted for 

reimbursement10. Similarly, a multitude of guidelines are available from a growing number of countries 

which have implemented HTA processes, including but not limited to Japan, Korea, China, Taiwan, 

Sweden, Scotland, and the Netherlands11-14. In addition to HTA agency guidance documents, best 

practice guidelines have been published by several academic groups to assist researchers in the conduct 

of economic evaluation outside of HTA agency reimbursement submissions11,15,16. 

Theoretically, HTAs can be conducted based on either clinical trials11 or predictive models17. However, 

trial-based economic evaluations are associated with a number of downsides, despite being a potentially 

superior source of data, which can include the length of time needed to conduct the analysis, the cost 

required to run the trial, and the limitations imposed by the analysis scope17. In practice, likely at least in 
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part due to the limitations noted above, greater than 80% of published economic evaluations have been 

observed to be model-based18. Methods development in cost-effectiveness research has grown 

substantially over the past several decades. The application of cost-effectiveness analysis to healthcare 

has occurred since at least 1982, and a formal willingness-to-pay (WTP) threshold per quality-adjusted 

life-year (QALY) gained has been in place in several countries since 199619. An increasing number of 

countries are formalizing health technology assessment (HTA) as part of their drug coverage decision 

making processes, and value-for-money calculations acquire ever-greater importance as list prices for 

drugs continue to increase over time.  

The evolution of economic modeling methods has expanded to include state transition modeling using 

Markov processes20, and partitioned survival modeling (PSM) using the area-under-the-curve 

framework21,22. In oncology, the PSM modeling framework has become commonly utilized18,23 for 

economic evaluations due to its relative ease of conducting as it directly incorporates clinical trial 

endpoints and can be developed without having access to individual patient-level data24. The analysis of 

survival curves from clinical studies has also evolved to include multi-state modeling (MSM) for the 

analysis of time-to-event data25. More recently, the application of cubic splines26 in extrapolation of 

survival curves has allowed analysts and researchers to more accurately model survival outcomes over 

time, and the application of the mixture-cure27 modeling framework to estimate the clinical and 

economic benefits of potentially curative therapies has also been developed for use in economic 

evaluation. 

Thesis rationale and overview  

Despite a proliferation of economic evaluation methods development over the past several decades, 

gaps remain in the published literature regarding which methods are being used, by whom, and what 

the impact of using different methods is on the results of economic evaluation. It is currently unknown 
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the extent to which different methods, which may include survival analysis, parametric model selection, 

testing the proportional hazards assumption, guideline compliance, and attributes of clinical data used 

(short-term vs long-term), are used in economic evaluations in oncology. 

To fill a gap in the literature and to better inform decision making in oncology, this doctoral thesis 

investigates the role and impact of analytical methods in the economic evaluation of oncology 

medications through three main chapters which have been recently published.  

Chapter 2 presents a systematic literature survey of published economic evaluations in oncology over a 

10-year period in order to identify, examine, and describe analytical methods that have been utilized 

(published in Pharmacoeconomics Open in 2021). This chapter demonstrated that greater detail in 

reporting of extrapolation methods, statistical techniques, and validation procedures is needed in order 

to conform with best practices outlined in existing economic evaluation guidelines18.  

Chapter 3 complements the work of chapter 2 but takes a different perspective through an examination 

of the methods reported in economic evaluations published by HTA agencies in Canada, the UK, and 

Australia (published in Current Oncology in 2022). This chapter revealed significant reporting 

discrepancies across the agencies and concluded that common standards for reporting the results of 

HTAs should be implemented23.  

Building on chapters 2 and 3, chapter 4 provides a model-based health technology re-assessment of an 

oncology drug approved on the basis of interim trial data using recently published long-term follow up 

data (published in Current Oncology in 2023). The findings from this chapter highlight the importance of 

transparency in the reporting of methods, the impact of using a life-cycle approach to HTA, and 

demonstrate the existence of a tradeoff between clinical/economic uncertainty and the value of the 

incremental cost-effectiveness ratio (ICER). The final chapter provides the overall conclusions of the 

research and presents avenues for future research. 
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Importance of topic 

The importance of investigating the use of methods in economic evaluation is highlighted by the fact 

that different methods may have differential influence on the results of analyses (e.g. ICER value, HTA 

recommendation), and differing results may have implications for decision making. Very few previous 

studies have investigated economic evaluation methods in the published oncology literature and those 

that have were either focused on a single disease area28, a single methodological technique29, a single 

geographic region30,31, or examined data over a very limited timeframe of analysis28. Chapter 2 provides 

a view of the evolution of economic evaluation methods over time across all disease areas in oncology, 

and systematically captures a cross-section of methods usage over multiple geographic regions. This 

chapter presents the first comprehensive documentation of economic evaluation methods use in the 

published oncology literature. 

Consistency in the application and reporting of economic evaluation methods is also important as 

manufacturers are required to conform to economic guidelines published by HTA agencies, yet HTA 

agencies themselves are not required to follow any sort of guideline in the reporting of their appraisals. 

Non-standardized reporting and appraisal may result in access disparities between countries. 

Divergence in outcomes from HTA agency appraisals can be most commonly observed in terms of 

differing numerical ICER values, and in some cases, in terms of HTA recommendations. Health 

technology assessment agencies are also financed with public tax dollars, and non-standardized 

reporting and appraisal may restrict the public’s access to reimbursement information. Chapter 3 

assessed the consistency of reporting and appraisal of reimbursement submissions from manufacturers 

across HTA agencies in Canada, the UK, and Australia, and represents a first publication looking at 

methods in oncology.  
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Innovative oncology drugs are increasingly appraised, approved, and reimbursed based on interim 

clinical data from phase 2 non-comparative studies in which median survival outcomes have not been 

reached32, and immature data, even if initially promising, may or may not reflect the survival outcomes 

observed in later follow-up data33. Consequently, once long-term follow-up data becomes available 

(often several years after these medications have been reimbursed) economic evaluation based on 

longer-term data may yield different results, yet rarely are such reassessments undertaken. The 

approach taken in chapter 4 reflects a model-based application of economic evaluation methods to 

investigate a novel decision problem: the impact of longer-term follow-up data on the results of cost-

effectiveness analysis. Prior to the publication of chapter 4, the extent to which economic evaluation 

results differ based on long-term clinical follow-up compared with interim data was unknown. This is the 

first published evidence of the direct impact of taking a life-cycle approach to HTA. 

Collectively, these chapters represent the first comprehensive effort to identify, describe, and assess 

how economic evaluation methods in oncology are utilized in actual practice, both in the published 

literature and among selected HTA agencies, as well as how economic evaluation methods can impact 

the results of cost-effectiveness analysis using a health technology reassessment framework. 
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Chapter 2: Onwards and Upwards: A Systematic Survey of Economic Evaluation Methods in Oncology 

1. Introduction 

Economic evaluation in healthcare estimates the value for money of health technologies through 

assessment of the comparative costs and clinical impacts, the results of which can inform the value of a 

specified allocation of healthcare resources[1]. To increase transparency and reporting of economic 

methods of health technologies, several guidelines have been published. For example, the National 

Institute for Clinical and Care Excellence (NICE) in the United Kingdom (UK) publishes a series of practice 

guidelines to aid submissions from manufacturers seeking reimbursement of their health technologies. 

Similar guidelines have been published by the Canadian Association for Drugs and Technologies in 

Health (CADTH) in Canada, the 2nd Panel on Cost-Effectiveness in Health and Medicine in the US, the 

Research Group on Economic Evaluation for Japanese Public Medical Benefits in Japan, and the Health 

Insurance Review and Assessment Service (HIRA) in South Korea, among many others[2-7]. Despite 

widespread publication and availability of guidelines, documentation of the utilization of specific 

methods in economic evaluation in oncology remains limited. This is important as the last decade has 

seen many important methodological advances when conducting economic evaluations of oncologic 

treatments. 

In addition to extrapolation and other survival analysis techniques, other quantitative methods (e.g. 

statistical testing, crossover adjustment techniques, alternative model structures) have been developed 

to overcome the limitations of previous methods. For example, clinical studies are finite in length, and in 

order for the results of clinical studies to be amenable to economic evaluation it is often necessary to 

extrapolate clinical outcomes beyond the study duration through survival analysis techniques[5, 8, 2, 9, 

6]. In addition, the analytical methods selected for economic evaluation in oncology have been shown to 
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influence survival results[10], and therefore it is important for appropriate methods to be used when 

evaluating oncology products.  

 However, only two previous studies have detailed the use of survival analysis in economic evaluations in 

oncology[11, 12]. The first of these studies examined survival modeling and extrapolation techniques 

used in oncology submissions to NICE in the UK before and after publication of the NICE Decision 

Support Unit’s Technical Support Document (TSD) on survival analysis[13]. The authors extracted data 

from 20 technology appraisals and reviewed information on model structure, data sources, 

extrapolation methods, and validation. The authors found that extrapolation techniques in practice have 

improved since the publication of the guidelines: some form of parametric extrapolation was used in 

almost all of the NICE submissions except one. However, nearly 30% of the submissions did not identify 

the source of overall survival data, and although the authors reported which parametric distributions 

were tested in the submissions, the specific distribution(s) chosen for extrapolation were not identified. 

Statistical testing methods used in the submissions were also documented but not disaggregated by 

type.  

A second study from 2019 reviewed 58 NICE technology appraisals and examined the extent to which 

recommendations made in the NICE Decision Support Unit’s Technical Support Document (TSD) on 

survival analysis have been followed since its publication[11]. The authors found that while there were 

increases in validation of results using data and/or clinical opinion following publication of the TSD, the 

proportion of submissions that adhered to the TSD recommendations did not change substantively over 

time. The authors concluded that despite the publication of the guidelines, survival analysis conducted 

as part of NICE technology appraisals remains suboptimal[11]. The study was limited to assessment of 

survival analysis and did not examine other characteristics of the NICE submissions. While these two UK 

studies are informative, their generalizability may be limited outside of the UK, and the results are not 

necessarily reflective of economic models found in the published oncology literature. 
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2.  Objectives 

To fill a gap in the literature, the present study aims to identify, examine, and describe the analytical 

methods used in economic evaluations, including study characteristics and model structure, though a 

systematic survey of the published oncology cost-effectiveness literature over a 10-year period between 

2010-2019 using commonly cited English language databases for economic evaluations in oncology. This 

approach allows a wider range of analytical techniques to be catalogued over a longer period of time 

than has been presented in previous studies. Secondary objectives of the study include examining the 

use of identified methods across different geographic regions. 

3.  Methods 

A systematic search of the published oncology literature was conducted to identify economic 

evaluations of advanced or metastatic cancers published between 2010-2019 using PUBMED, Ovid 

MEDLINE, and EMBASE databases. The PICOS method was followed for determining literature search 

criteria: identified studies were limited to English-language economic evaluations of advanced or 

metastatic cancer among adult populations, both treatment(s) and comparator(s) had to be explicitly 

reported, and outcomes of interest included incremental cost-effectiveness ratios (ICERs) and/or cost-

utility effectiveness ratios (ICURs). The literature search was limited to economic evaluations, and 

duplicates and published abstracts were excluded. All eligibility criteria were defined a priori. 

The following keywords were used in the database search queries: “cost-effectiveness analysis” “cost-

benefit analysis”, “cost-utility analysis”, “quality-adjusted life-years”, “metastasis”, “advanced cancer”, 

“advanced neoplasm”, “metastatic neoplasm”, “economics”, “cost”, “health economics”, “budget”, 

“costing”, “price”, “pharmacoeconomic”, “expenditure”, “expenses”, “statistical model”, “economic 

model”, “probability”, “Markov”, “monte carlo method”, “Decision Theory”, and “Decision Tree”. See 

Appendix for specific search strategies for each database. 
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Initial screening of titles and abstracts for relevance to the study objectives was conducted according to 

the stated eligibility criteria by the primary author. Full-text articles meeting all of the inclusion criteria 

and none of the exclusion criteria were reviewed  by the primary author, and for each included study, 

data were extracted (see Supplementary Material for complete list of extracted studies) to describe 

study characteristics (i.e. disease area, patient population, type of cancer, source of clinical data, type of 

economic evaluation, study perspective, overall conclusions, funding source, validation methods, 

software used),  key assumptions and modeling techniques (model structure, number of modeled health 

states, time horizon, intervention, comparator, treatment line, discount rates, outcomes of interest, 

types of analyses, key study results, total costs, base case ICER, sensitivity analyses, WTP threshold, data 

sources) and  extrapolation methods (i.e. statistical techniques used for fitting curves, type of 

distribution, crossover adjustment, digitization method use).  

Analytical methods identified in each included study were extracted and documented in the extraction 

sheet, and similarities and differences were descriptively assessed. Economic evaluations sponsored by 

industry have been observed to utilize longer time horizons than those conducted by HTA agencies[14]. 

Previous observations have also suggested that industry-sponsored studies are more likely than 

academic-sponsored studies to report favourable conclusions of cost-effectiveness[15]. In addition, 

since novel approaches have been suggested to model immunotherapy (IO)[16,17], a comparison of the 

model structure between IO and non-IO drugs was conducted. Chi-squared tests were used to probe 

relationships between categorical variables in order to substantiate these previous observations. 

Identified studies were also grouped according to geography in order to capture potential variation 

across regions. Statistical testing was performed in Microsoft Excel 2019. 

A large number of studies was anticipated to be identified through the search strategies. Based on the 

number of studies reported in previous publications, it was determined that a sample size approximately 

equal to that reported in Benedict 2018[12], (n=58) and three times larger than the sample size of n=20 
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studies reported in Gorrod et al. 2019[11], would be an appropriate and representative snapshot of the 

large number of studies captured in the literature search. It was initially assumed that a 20% random 

sample of all eligible studies over the 2010-2019 timeframe, conducted in Microsoft Excel using a 

combination of RAND, INDEX, and MATCH functions, would yield at least 60 studies.  Prior to knowing 

the exact number of studies that would meet the inclusion criteria, the random sample size of 20% was 

to be increased to reach a total of 60 studies if necessary. This desired sample of 60 studies was a based 

on previous studies on methods (Benedict 2018 [N=58], and Gorrod et al. 2019 [N=20][11,12]). To 

validate the representativeness of our sample, we took another random sample of 20% of the studies 

and compared the two samples in terms of type of economic evaluation and model structure. 

4.  Results 

4.1 Results of systematic survey 

A total of 8481 abstracts were identified through the literature search and 1671 duplicates were 

removed (Figure 1). 5907 studies were excluded in level 1 screening (according to the PICOS criteria). 

The remaining 916 full-text studies were assessed using a pre-defined eligibility form. Of these studies, 

538 were removed through level 2 screening (according to the PICOS criteria) and a total of 378 met the 

eligibility criteria (Figure 1). The 20% random sampling of the 378 studies meeting the inclusion criteria 

resulted in 76 studies to be included in the abstraction set (see Supplementary Material for complete list 

of included studies).  
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Figure 1. PRISMA diagram  
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4.2 Study characteristics 

A detailed description of the study characteristics is presented in Table 1. Briefly, close to half of the 

included studies originated from North America (38%), and the most commonly assessed cancer types 

were lung (18%), colorectal (16%) and breast cancers (15%).  Approximately half of the studies were 

published within the last four years. A majority (82%) of identified papers were based on clinical data 

from phase III randomized controlled trials, while another 16% utilized observational data from real-

world evidence studies. The remaining 3% of studies were based on data from random effects network 

meta-analyses, including one study employing a network of 5 trials[18] and the other comprised of a 

network of 16 studies[19]. The real-world studies were overwhelmingly retrospective in nature (92%), 

comprised of predominantly database analyses (67%) or based on registry data (25%). Several of the 

real-world studies (17%) conducted propensity score matching to balance prognostic factors between 

treatment arms, and 33% utilized Cox models.  

Table 1. Characteristics of studies included in random sample (N=76) 

Characteristic 
Proportion of studies 

n (%) 

Regions/Country 

      North America 29 (38%) 

      East Asia (China, Japan, Korea, Singapore, 

Taiwan) 
16 (21%) 

      Europe 14 (18%) 

      United Kingdom 12 (16%) 

      South America 2 (3%) 

      Australia 2 (3%) 
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      Africa 1 (1%) 

Type of cancer studied 

      Lung cancer 14 (18%) 

      Colorectal cancer 12 (16%) 

      Breast cancer 10 (13%) 

      Diagnostics 8 (11%) 

      Prostate cancer 7 (9%) 

      Pancreatic cancer 5 (7%) 

      Other cancer types (n<5) 20 (26%) 

Main source of clinical data 

      Phase III RCT 62 (82%) 

      Real-world evidence 12 (16%) 

      Network meta-analysis 2 (3%) 

Funding source 

      Industry 25 (33%) 

      Public grant 23 (30%) 

      No funding 21 (28%) 

      Not reported 6 (8%) 

      Mix of public and private funding 1 (1%) 

Journal type 

      Open access 13 (17%) 

      Standard 63 (83%) 

Abbreviations: n number, RCT randomized controlled trial 
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Funding sources of the identified studies were relatively well-balanced between industry sponsorship 

(33%), public grants (32%), and no declaration of funding (28%). Cross-referencing the time horizon 

selected by study authors with the source of funding revealed that industry-sponsored studies were 

more likely to use longer time horizons. Of the 32 included studies that used a time horizon of 10+ years 

(including lifetime), 47% were industry-sponsored whereas 16% were funded through public grants. 

Conversely, for the studies using shorter time horizons of 5 years or less, funding sources were more 

evenly distributed with 39% sponsored by industry and 39% funded through public grants. However, no 

statistically significant relationship was identified between funding sources and time horizon (Chi-square 

test: p=0.2939). 

4.3 Key assumptions and modeling techniques from identified studies 

Over three-quarters of all included studies (82%) were cost-utility analyses and 83% were conducted 

from a public healthcare system perspective. The most common model structure was the Markov model 

(47%) followed by partitioned survival model (17%). More than half (57%) of all included studies 

concluded that the intervention under investigation was cost-effective and this proportion was higher 

for industry-sponsored studies (76%) (Chi-square test: p=0.0054).  Details are presented in Table 2.  

Table 2. Key assumptions and modeling techniques used in the studies included in the random sample 

(N=76) 

Characteristic 
Proportion of studies 

n (%) 

Analytical technique 

      CUA 62 (82%) 

      CEA 13 (17%) 
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      Other 1 (1%) 

Study perspective 

      Public healthcare system 63 (83%) 

      Societal 5 (7%) 

      Hospital 5 (7%) 

      Not reported 3 (4%) 

Model structure 

      Markov 37 (49%) 

      Partitioned survival 13 (17%) 

      Not reported 7 (9%) 

      Decision tree 5 (7%) 

      Combination (decision tree + Markov) 5 (7%) 

      Other 4 (5%) 

      Microsimulation 3 (4%) 

      Discrete event simulation 2 (3%) 

Time horizon 

      ≤1 year 1 (1%) 

      1-5 years 19 (25%) 

      6-10 years 18 (24%) 

      11+ years 9 (12%) 

      Lifetime 25 (33%) 

      Not reported 4 (5%) 

Crossover adjustment (N=76) 
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      Efficacy results adjusted for crossover 7 (9%) 

Reporting of results 

      Deterministic sensitivity analysis 60 (79%) 

      Probabilistic sensitivity analysis 64 (84%) 

      Cost-effectiveness acceptability curves 47 (62%) 

      Scenario analysis 24 (32%) 

Authors' primary conclusion 

      Intervention cost-effective 43 (57%) 

      Intervention not cost-effective 29 (38%) 

      Not reported 4 (5%) 

Modeling software used 

      TreeAge Pro 24 (32%) 

      Not reported 20 (26%) 

      Microsoft Excel 24 (32%) 

      SAS 4 (5%) 

      R 2 (3%) 

      Stata 1 (1%) 

      C++ 1 (1%) 

Some percentages may add up to more than 100% due to rounding 

Abbreviations: CEA cost-effectiveness analysis, CUA cost-utility analysis 

 

In approximately 9% of studies, methods for cross-over adjustments were reported to have been used. 

Of these 7 studies, some of which reported more than one crossover adjustment method, the most 

commonly cited methods were Cox regression with crossover as a time-dependent covariate (29%), rank 
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preserving structural failure time (29%), and inverse probability of censoring weights (29%). However, 3 

of the 7 studies (43%) did not report the specific crossover adjustment method used.  

4.4 Extrapolation methods 

Forty-nine percent of studies reported extrapolation of survival endpoints and 19% of these studies 

reconstructed Kaplan-Meier curves using digitization techniques (Table 3). When reported, the average 

number of months of extrapolation beyond the clinical study duration was approximately 90 months. 

Among the 49% of studies that extrapolated results, 89% reported extrapolation using fitted parametric 

curves.  Hybrid models combining both Kaplan-Meier trial data and extrapolated data was relatively rare 

(5%), and only 2 studies (5%) used solely the hazard ratio method to extrapolate over time (both based 

on patient-level observational data). Other non-common methods used for extrapolation included use 

of a simple average monthly transition probability applied across years (3%), and transition probabilities 

calibrated to minimize mean squared differences between trial survival endpoints and model-generated 

curves (3%). Less than 20% of the extrapolated studies reported testing the proportional hazards 

assumption to justify their extrapolation. Half of these used the log-cumulative hazards plot to assess 

proportional hazards, while the other half did not report the method of assessment used.  

Table 3. Extrapolation techniques and methods reported in the articles included in the random sample 

Characteristic 
Number of studies 

n (%) 

Extrapolation (N=37) 

      Kaplan-Meier curves included 2 (5%) 

      Fitted curves only 35 (95%) 

Extrapolation method (N=37) 
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      Fitted parametric curves 33 (89%) 

      Hazard ratio method 2 (5%) 

      Other methods (n=1) 2 (5%) 

Statistical fit (N=37) 

      Akaike Information Criterion (AIC) 12 (33%) 

      Bayesian Information Criterion (BIC) 7 (19%) 

Digitization of survival curves (N=37) 

      Yes 7 (19%) 

      No 19 (53%) 

      Not reported 10 (28%) 

Proportional hazards assumption (N=37) 

      Tested 6 (16%) 

Validation (N=76) 

      Study results validated (e.g. using RWE, etc.) 16 (21%) 

Distributions selected for extrapolation (N=28) 

Treatment PFS (N=21) OS (N=27) 

      Weibull 11 39% 18 64% 

      Log logistic 2 7% 4 14% 

      Log normal 5 18% 1 4% 

      Exponential 1 4% 1 4% 

      Generalized gamma 2 7% 3 11% 

Comparator PFS (N=21) OS (N=27) 

      Weibull 10 36% 17 61% 
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      Log logistic 1 4% 4 14% 

      Log normal 6 21% 1 4% 

      Exponential 2 7% 2 7% 

      Generalized gamma 2 7% 3 11% 

Abbreviations: N number, OS overall survival, PFS progression-free survival, RWE real-world evidence 

Overall, 28 studies (37%) reported which distributions were used for extrapolation, and among these 28 

studies the Weibull distribution was the most commonly used parametric distribution for both 

treatment and comparator arms in modeling PFS (39%, 36%) and OS (64%, 61%), followed by the log 

normal distribution for PFS (18%, 21%) and the log-logistic for OS (14%, 14%). Distribution selection for 

PFS was reported in 21 studies, 27 studies reported distribution selection for OS, and the Akaike 

Information Criterion (AIC) was the most commonly reported method for identifying best statistical fit 

(32%). The majority of identified studies did not validate the results of their analyses and extrapolations; 

only 21% of the identified studies performed a validation procedure, and validation was more commonly 

performed in studies published in later years compared with earlier years. The most common validation 

techniques reported were clinical experts (44%), comparison with previous studies (31%), comparison 

with RWE (13%), and creation of a separate validation model (13%).  

4.5 Additional analyses 

The greatest number of identified studies were from North American countries (38%), followed by 

countries in East Asia (21%), continental Europe (18%), and the UK (16%). A majority of the North 

American studies (59%), European studies (64%), and UK studies (58%) found the treatment under 

investigation to be cost-effective at the willingness-to-pay threshold cited by the authors, while this 

proportion was 50% for studies from East Asia. Among studies which reported conducting validation 

exercises, some small geographic variation was noted: 11% studies from North America reported 
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validation, compared with 6% of studies from East Asia, 5% of UK studies, 4% of studies from continental 

Europe. In addition, a much higher proportion of studies from the UK (100%) and North America (93%) 

reported use of probabilistic sensitivity analysis than studies from other geographic regions (continental 

Europe: 71%, East Asia: 69%). Comparable trends were observed for utilization of deterministic 

sensitivity analysis, scenario analyses, and use of cost-effectiveness acceptability curves. Sensitivity 

analyses were also reported in some studies from South America, Australia, and Africa, but the number 

of studies included for each of these regions was too low to draw clear inferences or conclusions. 

Some regional variation was also observed when analyzing survival extrapolation methods across 

jurisdictions. The use of fitted parametric curves for extrapolation was frequently reported in studies 

from the UK (83%), about twice as often as reported in studies from other geographic regions (East Asia: 

44%, North America: 38%, continental Europe: 29%). Additional variation between regions included the 

number of studies reporting adjustment for crossover, which was higher in the UK (25%) than in other 

regions (0-7%), and testing of the proportional hazards assumption which was consistently rare across 

most regions (between 7%-17%) but was not reported at all in studies from East Asia. Other methods 

were broadly similar across regions. Results of the analysis comparing IO (n=19) and non-IO (n=57) 

economic evaluations indicated that while approximately half of both IO (58%) and non-IO studies (46%) 

used Markov models, a greater proportion of IO-focused studies used partitioned survival models (32%) 

compared with non-IO studies (12%).  

Finally, to investigate the representativeness of the 20% random sample, a second 20% random sample 

was taken. Comparing types of models in the 2nd random sample with the original random sample, the 

proportion of studies reporting the primary analysis as cost-utility, cost-effectiveness, or “other” were 

84%, 13%, and 2% in the second random sample, and 82%, 17%, and 1% in the original random sample. 

A high degree of concordance between the two random samples was also observed for the proportions 

of studies reporting common model structures: Markov models (58% vs. 49%), partitioned survival (17% 
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vs. 17%), decision tree (8% vs. 7%), “other” (7% vs. 5%), and not reported (9% vs. 9%). A small degree of 

variation was seen for less commonly used model structures: combination (0% vs. 7%), discrete event 

simulation (0% vs. 3%), and microsimulation (1% vs. 4%). 

5.  Discussion 

5.1 Summary of main results 

This 20% random sample of published economic evaluations over the past decade has shown that many 

advances in economic evaluation methods have diffused into common usage. These methods included 

deterministic and probabilistic sensitivity analysis, extrapolation of outcomes beyond the duration of 

clinical trials, utilization of cost-effectiveness acceptability curves, both Markov and partitioned survival 

model structures, and the cost-utility analytical framework. Less frequently or inconsistently utilized 

methods included testing of the proportional hazards assumption (for those studies in which it would 

have been appropriate to do so), assessing statistical fit of survival extrapolations, and validating study 

results. Looking at the study sample across geographic regions, heterogeneity was observed in the use 

and reporting of procedures for validating results, statistical curve fitting techniques, testing of 

proportional hazards assumption, and adjustment for crossover. While new methods may be developed 

over time, uniform uptake across regions is not guaranteed, even when supported by the publication of 

economic evaluation guidelines.  

5.2 Explanation of findings and comparison with other studies 

Previously cited reviews of economic evaluations in oncology have examined data over a very limited 

period or have been focused on a specific jurisdiction[12, 11]. An additional study from late 2019 

examined modeling approaches in 100 NICE technology appraisals and 124 published studies, finding 

that the state transition model (41.0%, 82.3%) and partitioned-survival model (54.0%, 12.1%) were the 

most commonly utilized model structures in NICE submissions and published oncology literature, 
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respectively[20]. However, this study was limited to a 5-year period and investigated model structure 

exclusively and did not review for example the model assumptions regarding PFS or survival 

extrapolations. To the authors’ current knowledge, the present analysis provides the first examination of 

published English-language economic evaluations in oncology across a 10-year period, focused on 

multiple modeling methods across multiple jurisdictions, and cataloguing trends in methods uptake 

across geographies.  

Comparing the study characteristics observed in the present study based on published economic 

evaluations in oncology between 2010-2019 to the results of previously conducted studies reveals a 

number of similarities. First, Markov models and partitioned survival models appear to be the most 

commonly utilized model structures across most geographic regions, which suggests that these methods 

have been broadly accepted and integrated into economic evaluation processes. Comparisons between 

UK studies included in the present analysis and previous studies (also UK studies) demonstrates further 

similarities in terms of average model duration (time horizon), use of fitted parametric curves and 

extrapolation techniques, the use of procedures to validate results, and testing of the proportional 

hazards assumption. For example, use of fitted parametric survival curves were found to be similar 

between previous publications and the UK subset from the present study (76%[12], 91%[11], and 83%, 

respectively).  

Insights beyond those presented in previous studies include results presented across more than a single 

geography. For example, while the use of partitioned survival models has been extensively observed by 

Benedict and colleagues (61%)[12], Bullement and colleagues (54%)[20], and UK studies included in the 

present analysis (42%), this model structure was seldomly observed in studies from North America 

(17%), continental Europe (7%) and East Asia (6%). Studies from jurisdictions outside the UK tended to 

favour the use of Markov models (24%, 43% and 56%, respectively). In contrast to the results from 

previous UK studies, fitted parametric survival curves were also much less frequently reported in studies 
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from East Asian countries (44%), North America (38%), and continental Europe (29%). These 

observations suggest that there may be important differences in uptake of economic evaluation 

methods across geographic regions, and these could potentially lead to differences in decision making.  

5.3 Limitations 

The present study is associated with a number of limitations. Search parameters were limited to articles 

published in English, exhibiting a bias towards studies from countries that have English as a first 

language. Second, not all economic evaluations in oncology require or report extrapolation of survival 

endpoints, and thus the total number of studies from which inferences may be drawn around survival 

outcomes may be limited. In addition, while the 20% random sample taken was assumed to be 

representative of the entire 378 identified studies that met the inclusion criteria, there is no guarantee 

that the studies not included in the random sample would provide similar or corroborative results, 

though this may be an intuitively plausible conjecture. To address this limitation, a second 20% random 

sample was taken in which the analysis type and model structure characteristics were found to be 

similar to the proportions observed in the original 20% random sample, providing some reassurance 

regarding its representativeness. It was also assumed that if study authors did not mention 

extrapolation, it was assumed that study results were not extrapolated. In some cases, absence of this 

evidence may not be evidence of its absence, though the number of studies to which this applies might 

be expected to be small. Comparisons between regions were also limited by the relatively small number 

of studies per group. 

This study was focused on published literature exclusively, and thus there is a potential for publication 

bias since oncology models built for reimbursement submissions were not included in the study. The 

study results also do not directly capture the impact of the evolution of methods on oncology models 

submitted to HTA agencies or the subsequent reimbursement recommendations made based on those 
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models. Conference abstracts, too, were excluded, implying the potential for not having captured some 

of the most up-to-date economic evaluation methods in use, and this may in turn affect the external 

validity of this study. However, since the content of conference abstracts is necessarily limited and may 

differ from the content included in full publications, excluding them in the present study may be 

justifiable for the purposes of comparison with published economic evaluations. 

5.4 Future directions 

As economic evaluation becomes increasingly embedded in decision making, a subsequent increase in 

the aggregate number of published studies can be expected. This increase will provide opportunities to 

re-evaluate the uptake of methods in light of development of new guidelines, survival analysis 

techniques, and other methods. While our study found that Markov and partitioned survival models 

were the most common structures used among our sample of studies published between 2010 and 

2019, future research could focus on the use of novel modeling techniques such as discrete event 

simulation[20-24], multi-state modeling[20, 25, 26], and mixture cure models[27, 28] which are more 

frequently used to overcome specific limitations inherent in more rudimentary analytical approaches. 

Discrete event simulation, for example, is typically used when the implementation of a defined model 

structure is not manageable as a cohort- based state transition model, or when baseline heterogeneity, 

continuous disease markers, time varying event rates, and the influence of prior events on subsequent 

event rates are of relevance to decision making[22]. Recent advances in the development of anti-cancer 

therapies have led to the advent of therapeutics that may be curative for certain patients, leading to 

recommendations of using mixture cure modeling [29]. Since we might expect to see more frequent use 

of newer modeling methods[20], and given that these novel methods have not (yet) been incorporated 

into current guidelines, it could be helpful and informative for future research efforts to track and 

document the diffusion of these newer methods into use over time, both in the published oncology 

literature and in technology appraisals from health technology assessment bodies.  
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6. Conclusion 

This review of published economic evaluations in oncology has shown that over the past decade a 

majority of the identified papers reported basic characteristics of study type, data source used, 

modeling techniques, and utilization of survival analysis methods. However, greater detail in reporting 

extrapolation methods, statistical analyses, and validation of results could be potential improvements. 

Regional variation observed in the use of these methods warrants further examination in order to 

support greater consistency in decision making. Future research efforts could be dedicated towards 

documenting the diffusion of novel modeling techniques into economic evaluation.  
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Chapter 2 supplementary materials 

Table A1. List of included studies 

Author Year Country Type of model 
Clinical 

data source 
Intervention(s) 

I/O therapy? 

(Y/N) 

Asukai, et al. 2010 Spain Markov trial pemetrexed N 

Sher, et al. 2010 USA Markov trial 
positron emission test/computed 

tomography 
N 

Retel, et al. 2010 Netherlands Markov trial 70-gene signature test N 

Marino, et al. 2010 France NR trial 
FEC-D (fluorouracil, epirubicin, 

cyclophosphamide, docetaxel) 
N 

Cunio et al. 2011 Brazil Markov trial clodronate N 

Iannazzo, et al. 2011 Italy Microsimulation RWE leuprorelin 22.5mg N 

Xie, et al. 2011 USA Markov trial denosumab Y 

De et al. 2012 Netherlands Other trial adjuvant systemic therapy N 

Casciano, et al. 2012 USA Markov trial everolimus N 

Hannouf, et al. 2012 Canada Markov trial cetuximab+platinum-based chemotherapy Y 

Dranitsaris, et al. 2012 Spain decision tree trial FOLFOX+new drug N 

Delea, et al. 2012 UK 
partitioned 

survival 
trial lapatinib+capecitabine Y 

Hornberger, et al. 2013 USA NR trial 
gene-expression profiling on tissue of 

origin 
N 
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Author Year Country Type of model 
Clinical 

data source 
Intervention(s) 

I/O therapy? 

(Y/N) 

Mihajlovic, et al. 2013 Serbia Markov trial everolimus N 

Brown, et al. 2013 UK Markov trial venorelbine N 

Vuong, et al. 2013 Germany decision tree RWE stereotactic radiosurgery N 

Alba, et al. 2013 Spain Markov trial nanoparticle albumin-bound paclitaxel N 

Zeng, et al. 2013 China Markov trial continuation maintenance pemetrexed N 

Lawrence, et al. 2013 Canada Markov trial bevacizumab+chemotherapy Y 

Hoyle, et al. 2013 UK 
partitioned 

survival 
trial cetuximab Y 

Kilonzo, et al. 2013 UK 
partitioned 

survival 
trial pazopanib N 

Amdahl, et al. 2014 UK combination trial pazopanib N 

Gong et al. 2014 USA Markov trial abiraterone N 

Bentley, et al. 2014 USA decision tree RWE 92-gene assay N 

Hannouf, et al. 2014 Canada combination RWE 21-gene recurrence score assay N 

Zheng, et al. 2014 USA Other RWE 1 line of treatment N 
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Author Year Country Type of model 
Clinical 

data source 
Intervention(s) 

I/O therapy? 

(Y/N) 

Lee, et al. 2014 UK Markov trial degarelix N 

Hong, et al. 2015 Canada NR trial 
positron emission test/computed 

tomography 
N 

Roberts, et al. 2015 UK Markov RWE operative cohort N 

Wen, et al. 2015 China Markov trial 
RAS testing+cetuximab+FOLFIRI 

RAS testing+bevacizumab+FOLFIRI 
Y 

Goldstein, et al. 2015 USA Markov trial bevacizumab + chemotherapy (FOLFOX) Y 

Li, et al. 2015 USA 
partitioned 

survival 
trial single-site mutation test N 

Kumar, et al. 2015 USA Other trial multiple Y 

Pennington et al. 2015 UK 
partitioned 

survival 
trial radiation N 

Lin, et al. 2016 Taiwan Other RWE chemoradiotherapy N 

Zhou, et al. 2016 China Markov trial 
FOLFOX+cetuximab 

FOLFOX+bevacizumab 
Y 

Balcik, et al. 2016 Turkey Markov trial pemetrexed/cisplatin N 

Zhou, et al. 2016 China Markov trial FOLFIRINOX N 

Nishie, et al. 2017 Japan Markov trial EOB magnetic resonance imaging N 

Raphael et al. 2017 Canada 
discrete event 

simulation 
trial palbociclib+letrozole N 
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Author Year Country Type of model 
Clinical 

data source 
Intervention(s) 

I/O therapy? 

(Y/N) 

Lu, et al. 2017 China combination NMA icotinib N 

Shiroiwa, et al. 2017 Japan NR trial S-1 N 

Bongers, et al. 2017 Netherlands microsimulation RWE sequential chemo-radiation  N 

Parikh, et al. 2017 USA 
discrete event 

simulation 
RWE 

oxaliplatin/irinotecan, then 

oxaliplatin/irotecan+bevacizumab  
Y 

Doble, et al. 2017 Australia combination trial mulitplex targeted sequencing  N 

Zheng, et al. 2017 China Markov trial docetaxel+androgen deprivation therapy N 

Huang, et al. 2017 USA 
partitioned 

survival 
trial pembrolizumab Y 
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Author Year Country Type of model 
Clinical 

data source 
Intervention(s) 

I/O therapy? 

(Y/N) 

Coyle, et al. 2017 Canada Markov NMA FOLFIRINOX N 

Gharaibeh, et al. 2017 USA 
partitioned 

survival 
trial FOLFIRINOX N 

Keller, et al. 2017 Australia Markov trial screening N 

Miguel, et al. 2017 Portugal 
partitioned 

survival 
trial Pembrolizumab Y 

Lertjanyakun, et al. 2018 Japan Markov trial exemestane N 

Wu, et al. 2018 China combination trial osimertinib N 

Lotan, et al. 2018 USA decision tree RWE 

biomarker-based approaches 

DNA-repair genes 

ERCC2 

RNA subtyping 

N 

Nixon, et al. 2018 Canada Markov trial 
PRO monitoring (web-based self-

monitoring of symptoms tool) 
N 

Gharaibeh, et al. 2018 UK 
partitioned 

survival 
trial FOLFIRINOX N 
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Author Year Country Type of model 
Clinical 

data source 
Intervention(s) 

I/O therapy? 

(Y/N) 

Kimura, et al. 2018 Japan NR trial afatinib N 

Ball, et al. 2018 Canada 
partitioned 

survival 
trial bevacizumab Y 

James, et al. 2018 UK microsimulation trial docetaxel+standard of care N 

Uyl-de et al. 2018 Netherlands Markov RWE cetuximab Y 

Li, et al. 2018 USA Markov trial diagnostic staging laparoscopy N 

Leung, et al. 2018 Taiwan Markov trial pertuzumab+trastuzumab+docetaxel Y 

Kimura, et al. 2018 Japan NR trial ramucirumab+paclitaxel Y 

Mujica-Mota, et al. 2018 UK Markov trial 

everolimus 

(lutetium-177 dotatate - identified, but 

study removed during screening) 

sunitinib 

N 

Harty, et al. 2018 UK Markov trial cetuximab+FOLFIRI Y 

Elsisi et al. 2018 Egypt Markov trial sorafenib N 

Bolagnos-Diaz et al. 2018 Peru Markov trial cetuximab+chemotherapy Y 

Li, et al. 2019 China Markov trial bevacizumab+chemotherapy Y 

Garrison, et al. 2019 USA Markov trial pertuzumab+trastuzumab+chemotherapy Y 

Redig et al. 2019 Sweden NR RWE targeted therapies (early) Y 
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Author Year Country Type of model 
Clinical 

data source 
Intervention(s) 

I/O therapy? 

(Y/N) 

Hamilton, et al. 2019 USA Markov trial 
cytoreductive surgery+hyperthermic 

intraperitoneal chemotherapy  
N 

Pruis, et al. 2019 Singapore 
partitioned 

survival 
trial sunitinib N 

Ondhia, et al. 2019 Canada 
partitioned 

survival 
trial atezolizumab Y 

Insinga, et al. 2019 USA 
partitioned 

survival 
trial pembrolizumab+chemo Y 

Quinn, et al. 2019 USA decision tree trial sentinel lymph node biopsy N 

Raldow et al. 2019 USA Markov trial short-course radiation N 

Abbreviations: I/O, immuno-oncology; N, no; NMA, network meta-analysis; RWE, real-world evidence, UK, United Kingdom; US, United States; Y, yes 

 

 

Table caption: list of all articles included in this study 
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Table A2. List of included studies CONT’D 

Author Comparator(s) 
Type of 

model 

Sensitivity 

analyses 
DSA? PSA? 

Scenario 

analyses 

Survival 

extrapolation 

method 

Asukai, et al. docetaxel CUA Y Y Y N 
fitted parametric 

curves 

Sher, et al. 
computed tomography 

no imaging 
CUA Y Y Y Y NR 

Retel, et al. 
Sankt Gallen guidelines 

Adjuvant Online Software 
CEA N N Y Y NR 

Marino, et al. 
FEC100 (fluorouracil, epirubicin, 

cyclophosphamide) 
CUA N N Y Y No extrapolation 

Cunio et al. zoledronate CUA Y Y Y N No extrapolation 

Iannazzo, et al. 

leuprorelin 11.25mg 

goserelin 

triptorelin 

buserelin 

CUA N N Y N HR method 

Xie, et al. zoledronic acid CEA Y Y Y Y No extrapolation 

De et al. No adjuvant systemic therapy CEA Y Y Y Y No extrapolation 

Casciano, et al. sunitinib CUA Y Y Y N 
fitted parametric 

curves 

Hannouf, et al. Platinum-based chemotherapy CUA Y Y Y N Other 

Dranitsaris, et al. FOLFOX Other N N N N NR 

Delea, et al. 
capecitabine 

trastuzumab+capecitabine 
CUA Y Y Y Y 

fitted parametric 

curves 

Hornberger, et al. "usual care" CUA Y Y Y N No extrapolation 

Mihajlovic, et al. best supportive care CUA Y Y Y N 
fitted parametric 

curves 
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Author Comparator(s) 
Type of 

model 

Sensitivity 

analyses 
DSA? PSA? 

Scenario 

analyses 

Survival 

extrapolation 

method 

Brown, et al. chemotherapy CUA Y Y Y   
fitted parametric 

curves 

Vuong, et al. surgical resection CEA N N Y N No extrapolation 

Alba, et al. paclitaxel CUA Y Y Y N 
fitted parametric 

curves 

Zeng, et al. placebo CUA Y Y Y N 
fitted parametric 

curves 

Lawrence, et al. 

chemotherapy 

panitumumab+chemotherapy 

cetuximab+chemotherapy 

CUA Y Y Y N Other 

Hoyle, et al. 

cetuximab+irotecan 

panitumumab 

best supportive care 

CUA Y Y Y N 
fitted parametric 

curves 

Kilonzo, et al. 

sunitinib  

interferon-α 

best supportive care 

CUA Y Y Y N 
fitted parametric 

curves 

Amdahl, et al. 

Direct comparison: best supportive care 

 

Indirect comparison: trabectedin, ifosfamide, 

gemcitabine, docetaxel, lenograstim, Mesna 

CUA Y Y Y N 
fitted parametric 

curves 

Gong et al. 
prednisone 

Sipuleucel-T 
CUA Y Y Y N NR 

Bentley, et al. standard of care CUA Y Y Y N NR 

Hannouf, et al. Canadian clinical practice CUA N N Y Y NR 

Zheng, et al. 2 lines of treatment CEA N N N Y NR 

Lee, et al. leuprorelin CUA Y Y Y Y 
fitted parametric 

curves 
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Author Comparator(s) 
Type of 

model 

Sensitivity 

analyses 
DSA? PSA? 

Scenario 

analyses 

Survival 

extrapolation 

method 

Hong, et al. 
chemotherapy 

physical exam/radiography 
CEA Y Y Y N No extrapolation 

Roberts, et al. non-operative cohort CUA Y Y Y Y No extrapolation 

Wen, et al. 
KRAS testing+cetuximab+FOLFIRI 

KRAS testing+bevacizumab+FOLFIRI 
CUA Y Y Y N NR 

Goldstein, et al. chemotherapy (FOLFIRI) CUA Y Y Y Y 
fitted parametric 

curves 

Li, et al. Next generatino gene-sequencing panel CEA Y Y Y N NR 

Kumar, et al. multiple CEA Y Y Y N 
fitted parametric 

curves 

Pennington et al. best supportive care CUA Y Y Y Y 
fitted parametric 

curves 

Lin, et al. esophagectomy CEA Y Y N N NR 

Zhou, et al. 
FOLFIRI+cetuximab 

FOLFIRI+bevacizumab 
CUA Y Y N N NR 

Balcik, et al. gemcitabine/cisplatin CUA Y Y N N NR 

Zhou, et al. gemcitabine+nab-paclitaxel CUA Y Y N N NR 

Nishie, et al. 
ECCM magnetic resonance imaging 

CE computed tomography 
CUA Y Y Y Y No extrapolation 

Raphael et al. letrozole CUA N N Y Y NR 

Lu, et al. 

pemetrexed+cisplatin 

pemetrexed 

gefitinib 

gefitinib+patient assistance program 

icotinib+patient assistance program 

CUA Y Y Y N 
fitted parametric 

curves 

Shiroiwa, et al. taxane CUA N N Y N No extrapolation 
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Author Comparator(s) 
Type of 

model 

Sensitivity 

analyses 
DSA? PSA? 

Scenario 

analyses 

Survival 

extrapolation 

method 

Bongers, et al. 

concurrent chemotherapy-radiation  

standard sequential radiation  

concurrent chemotherapy-radiation 

CUA N N N N HR method 

Parikh, et al. 

oxaliplatin/irinotecan+bevacizumab, then 

oxaliplatin/irotecan+bevacizumab  

oxaliplatin/irinotecan, then 

oxaliplatin/irotecan+bevacizumab, then targeted 

biologic  

oxaliplatin/irinotecan+bevacizumab, then 

oxaliplatin/irotecan+bevacizumab, then targeted 

biologic  

CUA N N Y N 
fitted parametric 

curves 

Doble, et al. chemotherapy, best supportive care  CUA Y Y N N NR 

Zheng, et al. androgen deprivation therapy CUA Y Y Y N NR 

Huang, et al. 

pemextred+carboplatin 

pemextred+cisplatin 

gemcitabine+cisplatin 

gemcitabine+carboplatin 

paclitaxel+carboplatin 

CUA Y Y Y Y 
fitted parametric 

curves 

Coyle, et al. 

gemcitabine, gemcitabine+5-fluorouracil, 

gemcitabine+capecitabine), 

gemcitabine+cisplatin, gemcitabine+oxaliplatin, 

gemcitabine+erlotinib, gemcitabine+nab-

paclitaxel 

CUA Y Y Y N 
fitted parametric 

curves 

Gharaibeh, et al. 
nab-paclitaxel+gemcitabine 

gemcitabine 
CUA Y Y Y Y 

fitted parametric 

curves 
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Author Comparator(s) 
Type of 

model 

Sensitivity 

analyses 
DSA? PSA? 

Scenario 

analyses 

Survival 

extrapolation 

method 

Keller, et al. no screening CUA Y Y Y N NR 

Miguel, et al. ipilimumab CUA Y Y Y Y 
fitted parametric 

curves 

Lertjanyakun, et al. 

fulvestrant 250mg 

fulvestrant 500mg 

toremifene 

exemestane+everolimus 

CUA Y Y Y Y 
fitted parametric 

curves 

Wu, et al. standard chemotherapy CUA Y Y Y N 
fitted parametric 

curves 

Lotan, et al. 

traditional approaches 

radical cystectomy 

radical cystectomy+neoadjuvant chemotherapy 

CEA Y Y N N NR 

Nixon, et al. standard of care monitoring CUA Y Y Y N NR 

Gharaibeh, et al. 

gemcitabine, cisplatin+gemcitabine, 

oxaliplatin+gemcitabine, 

capecitabine+gemcitabine, nab-

paclitaxel+gemcitabine 

CUA Y Y Y N 
fitted parametric 

curves 

Kimura, et al. 
gefitinib 

erlotinib 
CEA N N N N NR 

Ball, et al. chemotherapy CUA Y Y Y N 
fitted parametric 

curves 

James, et al. standard of care CUA N N Y Y 
fitted parametric 

curves 

Uyl-de et al. best supportive care CUA N N Y N No extrapolation 

Li, et al. no diagnostic staging laparoscopy CUA Y Y Y N NR 
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Author Comparator(s) 
Type of 

model 

Sensitivity 

analyses 
DSA? PSA? 

Scenario 

analyses 

Survival 

extrapolation 

method 

Leung, et al. trastuzumab+docetaxel CUA Y Y Y N 
fitted parametric 

curves 

Kimura, et al. 
paclitaxel 

irinotecan 
CEA N N N N NR 

Mujica-Mota, et al. 

placebo 

(octreotide - identified as potential comparator, 

but study removed during screening) 

placebo 

CUA Y Y Y Y 
fitted parametric 

curves 

Harty, et al. FOLFIRI CUA Y Y Y N 
fitted parametric 

curves 

Elsisi et al. best supportive care CUA Y Y Y N NR 

Bolagnos-Diaz et al. chemotherapy CUA Y Y Y N No extrapolation 

Li, et al. chemotherapy CUA Y Y Y N 
fitted parametric 

curves 

Garrison, et al. trastuzumab+chemotherapy CUA Y Y Y N 
fitted parametric 

curves 

Redig et al. 
targeted therapies (medium) 

targeted therapies (late) 
CEA N N N N NR 

Hamilton, et al. systemic chemotherapy CUA Y Y Y N NR 

Pruis, et al. interferon-α CUA Y Y Y Y 
fitted parametric 

curves 

Ondhia, et al. 
docetaxel 

nivolumab 
CUA Y Y Y Y 

fitted parametric 

curves 



 

51 
 

Author Comparator(s) 
Type of 

model 

Sensitivity 

analyses 
DSA? PSA? 

Scenario 

analyses 

Survival 

extrapolation 

method 

Insinga, et al. 
chemotherapy 

pembrolizumab monotherapy 
CUA Y Y Y Y 

fitted parametric 

curves 

Quinn, et al. no biopsy CUA Y Y Y N NR 

Raldow et al. long-course chemoradiation CUA Y Y Y Y NR 

Abbreviations: CEA, cost-effectiveness analysis; CUA, cost-utility analysis; DSA, deterministic sensitivity analysis; HR, hazard ratio; N, no; NR, not reported; 

PSA, probabilistic sensitivity analysis; Y, yes 

 

 

Table caption: list of all articles included in this study 
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Table A3. List of included studies CONT’D 

Author 

Test of 

proportional 

hazards 

AIC BIC CEACs 
Crossover 

adjustment 

Funding 

source 

Modeling 

software 

Asukai, et al. N NR NR Y N Industry Excel 

Sher, et al. N NR NR Y N NR TreeAge 

Retel, et al. N NR NR Y N Public grant Excel 

Marino, et al. N NR NR Y N Public grant NR 

Cunio et al. N NA NA N N Industry NR 

Iannazzo, et al. Y NA NA Y N Industry TreeAge 

Xie, et al. N NR NR Y N Industry Excel 

De et al. N NA NA N N Public grant NR 

Casciano, et al. N NR NR N N Industry Excel 

Hannouf, et al. N NR NR Y N Public grant TreeAge 

Dranitsaris, et al. N NR NR N N No funding TreeAge 

Delea, et al. N NR NR Y Y Industry Excel 

Hornberger, et al. N NA NA Y N Industry NR 

Mihajlovic, et al. N Y NR Y Y NR R 

Brown, et al. N NR NR Y N Public grant Excel 

Vuong, et al. N NR NR N N NR SAS 

Alba, et al. N NR NR N N Industry NR 

Zeng, et al. N NR NR Y N Public grant TreeAge 

Lawrence, et al. N NR NR Y N Industry Excel 

Hoyle, et al. N NR NR Y Y Public grant Excel 
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Author 

Test of 

proportional 

hazards 

AIC BIC CEACs 
Crossover 

adjustment 

Funding 

source 

Modeling 

software 

Kilonzo, et al. N NR NR N Y Public grant NR 

Amdahl, et al. N NR NR Y N Industry Excel 

Gong et al. N NR NR Y N No funding NR 

Bentley, et al. N NA NA N N Industry TreeAge 

Hannouf, et al. N NR NR Y N Public grant TreeAge 

Zheng, et al. N NR NR N N Industry NR 

Lee, et al. N Y N N N Industry NR 

Hong, et al. N NA NA Y N NR TreeAge 

Roberts, et al. N NR NR Y N NR TreeAge 

Wen, et al. N NR NR Y N No funding TreeAge 

Goldstein, et al. N Y Y Y N No funding C++ 

Li, et al. N NR NR N N Industry Excel 

Kumar, et al. N Y N N N Industry SAS 

Pennington et al. N Y NR Y N Industry NR 

Lin, et al. N N N N N Public grant SAS 

Zhou, et al. N Nr NR N N No funding TreeAge 

Balcik, et al. N NR NR N N Public grant NR 

Zhou, et al. N NR NR N N No funding TreeAge 

Nishie, et al. N NR NR Y N Industry Excel 

Raphael et al. N NR NR Y N No funding TreeAge 
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Author 

Test of 

proportional 

hazards 

AIC BIC CEACs 
Crossover 

adjustment 

Funding 

source 

Modeling 

software 

Lu, et al. N NR NR Y N Public grant R 

Shiroiwa, et al. N NR NR Y N Public grant SAS 

Bongers, et al. N NR NR N N Public grant Excel 

Parikh, et al. N NR NR Y N Public grant TreeAge 

Doble, et al. N NR NR N N Public grant Excel 

Zheng, et al. N NR NR Y N No funding TreeAge 

Huang, et al. N NR NR Y Y Industry Excel 

Coyle, et al. N NR NR Y N No funding NR 

Gharaibeh, et al. N NR NR Y N No funding Excel 

Keller, et al. N NA NA Y N Public grant TreeAge 

Miguel, et al. N Y Y Y N Industry Excel 
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Author 

Test of 

proportional 

hazards 

AIC BIC CEACs 
Crossover 

adjustment 

Funding 

source 

Modeling 

software 

Lertjanyakun, et al. N Y Y Y N Public grant Excel 

Wu, et al. N N N Y N Public grant NR 

Lotan, et al. N NR NR N N Public grant TreeAge 

Nixon, et al. N NR NR Y N NR NR 

Gharaibeh, et al. Y NR NR Y N No funding Excel 

Kimura, et al. N NR NR N N No funding NR 

Ball, et al. N Y Y Y N No funding Excel 

James, et al. N NR NR N N Mix NR 

Uyl-de et al. N NR NR Y N Industry NR 

Li, et al. N NR NR Y N Public grant TreeAge 

Leung, et al. N NR NR Y N No funding TreeAge 

Kimura, et al. N NR NR N N No funding NR 

Mujica-Mota, et al. N NR NR N Y Public grant Excel 

Harty, et al. Y N N Y N Industry Excel 

Elsisi et al. N NR NR N N No funding Excel 

Bolagnos-Diaz et al. N NR NR Y N Industry TreeAge 

Li, et al. N N N Y N No funding TreeAge 
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Author 

Test of 

proportional 

hazards 

AIC BIC CEACs 
Crossover 

adjustment 

Funding 

source 

Modeling 

software 

Garrison, et al. Y Y Y Y N Industry NR 

Redig et al. N NR NR N N No funding Stata 

Hamilton, et al. N NR NR N N No funding TreeAge 

Pruis, et al. N Y N N N No funding Excel 

Ondhia, et al. Y Y Y Y Y Industry Excel 

Insinga, et al. Y Y Y Y N Industry NR 

Quinn, et al. N NR NR N N No funding TreeAge 

Raldow et al. N NR NR N N Public grant TreeAge 

Abbreviations: AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; CEACs, cost-effectiveness 

acceptability curves; N, no; NR, not reported; Y, yes 

 

 

Table caption: list of all articles included in this study 
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Chapter 3: Appraisals by Health Technology Assessment Agencies of Economic Evaluations Submitted 

as Part of Reimbursement Dossiers for Oncology Treatments: Evidence from Canada, the UK, and 

Australia 

1. Introduction 

Publicly funded healthcare systems in Canada, the United Kingdom (UK), and Australia use a health 

technology assessment (HTA) framework to inform drug reimbursement decision-making. In order for a 

new medication to be publicly reimbursed in these countries, pharmaceutical companies are required to 

submit a reimbursement dossier which includes, at minimum, the clinical data used for regulatory 

approval, as well as a model-based economic evaluation to demonstrate the value for money of this 

new therapy in a given therapeutic area. Following a critical review of the manufacturers’ clinical and 

economic evidence by the HTA agencies, the HTA appraisals and funding recommendations associated 

with these products are publicly posted on the HTA agency websites. 

It has been shown that drug funding recommendations by HTA agencies may differ, due to differences in 

political priorities [1], agency mandates [1], processes and procedures [2,3], or healthcare systems [2]. 

However, the level of reporting and appraisal by HTA agencies of economic models submitted by 

manufacturers for reimbursement appears to not have been previously investigated. This is important 

for several reasons. First, while the economic guidelines that manufacturers are required to follow for 

drug submissions to each HTA agency are relatively detailed [4–6], there are no explicit guidelines that 

HTA bodies are required to follow in the reporting of their economic appraisals of manufacturers’ 

reimbursement submissions. Secondly, physicians, patients, or patient associations, as well as the 

general public, rely on the public information provided by these HTA agencies to understand the 

rationale behind the funding recommendations made by the HTA agencies. Finally, in Canada and to a 

lesser extent, the UK, the appraisal of the economic evidence serves as a basis for price negotiations 
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between the manufacturers and public plans. To fill a gap in the literature, we sought to answer the 

question of whether HTA agencies in Canada, the UK, and Australia are consistent in their reporting and 

appraisal of the economic evaluations submitted by drug manufacturers for the reimbursement of 

oncology medications. Building on our previous work regarding economic evaluations in oncology in the 

published literature [7], we hypothesized that consistency would be observed for oncology medications 

evaluated by the three HTA agencies, due to the same product being assessed based on the same or 

similar clinical data. 

2. Materials and Methods 

2.1. Study Data 

Publicly posted funding recommendations and appraisal documents for all oncology drug indications 

issued by Canadian Agency for Drugs and Technologies in Health (CADTH) in 2019 and 2020 were 

identified. Second, the websites of the National Institute for Health and Care Excellence (NICE) in the UK 

and Pharmaceutical Benefits Advisory Committee (PBAC) in Australia were searched to identify publicly 

posted recommendations matching the same drug and indication as those identified from CADTH. Any 

documents published by NICE and PBAC before the end of 2021 were considered for inclusion. The final 

study sample comprised oncology drug submissions for which all three HTA agencies had issued a public 

reimbursement recommendation. 

2.2. Data Abstraction 

To facilitate comparison between the reporting and critical appraisal of the manufacturers’ economic 

models by the three HTA agencies, a set of commonly required attributes for economic evaluations 

submitted by drug manufacturers for reimbursement purposes was compiled from CADTH’s Guidelines 

for the Economic Evaluation of Health Technologies [4], the NICE Guide to the Methods of Technology 

Appraisals [5], and the Guidelines for Preparing a Submission to the PBAC [6]. Due to the focus of our 



 

59 
 

study on oncology products, recommendations from NICE Decision Support Unit technical support 

document 14 (NICE DSU 14) [8] for the conduct and reporting of survival analysis for economic 

evaluation were also reviewed, as the NICE DSU 14 is explicitly referenced in CADTH and PBAC 

guidelines for economic evaluations of oncology indications. Recommendations from these appraisal 

guidelines were cross-referenced with the Consolidated Health Economic Evaluation Reporting 

Standards (CHEERS) statement [9] and economic evaluation guidelines from the International Society for 

Pharmacoeconomics and Outcomes Research (ISPOR) [10,11], in order to determine a minimum set of 

common reporting measures expected to be included in economic models submitted by manufacturers 

to CADTH, NICE, and PBAC. Based on this review, 21 common data elements expected to be described in 

manufacturer submissions to CADTH, NICE, and PBAC were identified, as shown in Table S2 in the 

Supplementary Online Material. Based on these common elements expected to be included in the 

economic models and reports submitted for reimbursement by manufacturers, an abstraction sheet was 

developed to capture to what extent CADTH, NICE, and PBAC report on characteristics of the 

manufacturer economic submissions, in terms of the type of analysis (e.g., cost-utility), utility value 

method for cost-utility analyses, model structure, time horizon, indirect comparison, equity issues, 

treatment of uncertainty, and validation of results. For interested readers, a glossary of technical terms 

is provided in Table S6 in the Supplementary Materials. For survival analyses and extrapolations, HTA 

reports were reviewed to document whether the following information was reported: whether a 

parametric approach was used, parametric distributions used for extrapolations, goodness-of-fit testing, 

testing of the proportional hazards assumption, curve fitting assessment, validation of extrapolations, 

treatment effect scenario analyses, justification for any use of external data, whether distributions were 

fitted to the tail of Kaplan–Meier curves or entirety of the curves, and whether or not alternative curve-

fitting approaches were examined. A methodological element of interest was considered to be reported 

as long as it was mentioned in the HTA reports, irrespective of the quantity of information reported. If 
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one HTA agency published multiple paragraphs describing a given category, the equity considerations, 

for example, while another HTA agency published a single sentence, they would both be categorized as 

having reported on equity. The data was abstracted by one reviewer, and 20% of the abstracted data 

was checked by a second reviewer. 

HTA agencies’ methodological criticisms of the economic dossiers submitted by manufacturers were 

grouped into a set of seven categories: (1) time horizon; (2) treatment benefit; (3) utility values; (4) 

comparator; (5) subgroups; (6) progression-free survival estimates; (7) overall survival estimates; (8) 

costs; and (9) extrapolation of survival data. These common thematic categories were adapted from 

previous studies detailing nine methodological issues described in CADTH economic guidance reports 

[12] and ten common issues identified by CADTH’s economic guidance panel [13]. Incremental costs and 

QALYs reported in manufacturer submissions and re-calculated by the three HTA agencies were also 

documented. To facilitate appropriate comparison of incremental cost-effectiveness ratios (ICERs) 

between the three agencies, which use different currencies, ICERs reported by CADTH, NICE, and PBAC 

were converted to USD using 2021 purchasing power parity (PPP)-adjusted exchange rates published by 

the Organisation for Economic Co-operation and Development (OECD) [14]. Finally, the funding 

recommendation (list, do not list) was also abstracted for each oncology product evaluated by the three 

agencies in 2020 and 2021. Our initial expectation was that each of the elements described in each of 

the HTA agency submission guidelines would be summarized and reported in the published assessment 

reports, since they are required to be submitted by the manufacturer. 

2.3. Data Analyses 

In order to explore whether reporting of methodological approaches and sources of clinical evidence 

considered by each agency were similar, potential relationships between variables were assessed where 

appropriate. Dichotomous differences in the reporting of methods and recommendation outcomes were 
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assessed using Chi-squared tests. Where appropriate, potential relationships between categorical 

variables, which include several modeling characteristics and survival curve extrapolation techniques, 

were substantiated through Chi-squared tests. Dichotomous differences in methodological criticisms 

observed between the three agencies were assessed using Cochran’s Q tests. For statistically significant 

Cochran’s Q test results, post hoc pairwise McNemar tests were conducted to identify pairwise 

relationships. To support the generalizability of our results, we conducted similar analyses for HTAs, 

which had recommendations available from only two of the three HTA agencies. 

3. Results 

3.1. Number of HTA Submissions Reviewed by CADTH between 2019–2020 Matched with 

Corresponding HTAs from NICE and PBAC 

A total of 83 indications in oncology were identified from the CADTH website between 2019–2020. 

Matching these 83 indications with their corresponding public appraisal documents from NICE and the 

PBAC, 36 indications were found to have been reviewed by all three agencies, and these 36 indications 

(108 individual HTA appraisals) comprised our comparative study sample. Out of the 108 appraisals by 

NICE, CADTH, and PBAC, 14 recommendations were published by PBAC and NICE before the CADTH 

recommendations (i.e., before 2019), with 7 in 2021. 

Of note, we excluded 17 indications (51 individual submission appraisals) that were evaluated by two of 

the three agencies, 19 indications (57 individual submission appraisals) that were evaluated by only one 

of the agencies, and 11 indications that were listed on the CADTH website, but for which none of the 

three agencies (including CADTH) had published a recommendation. Table S1 in the Supplementary 

Materials presents the list of indications/products reviewed by the three agencies, two agencies, and 

one agency only, as well as those indications for which no recommendations were issued. 

 



 

62 
 

3.2. Manufacturer Economic Submissions’ Characteristics 

Table 1 presents the characteristics of the 108 economic evaluations, which were submitted to CADTH, 

NICE, and PBAC, as reported by these three HTA agencies in their public documents providing the 

rationale for the funding decision. Two thirds (67%) of the manufacturer economic submissions utilized 

a single phase 3 study as the main source of clinical data, and the most frequent therapeutic areas were 

lung cancer (25%) and leukemia (14%). Approximately two-thirds (64%) of the submissions were related 

to treatments for late-stage disease (stage IV or metastatic disease). 

Table 1. Characteristics of included studies. 

Characteristic n % 

HTA agency (n = 108)   

   pCODR 36 33% 

   NICE 36 33% 

   PBAC 36 33% 

Data source type (n = 108)   

   Ph3 79 67% 

   Ph2 (single arm) 16 15% 

   Mix of Ph3 and Ph2 4 3% 

   RWE 0 0% 

   Mix of Ph2 and RWE 5 6% 

   Mix of Ph3 and RWE 4 7% 

   Ph4 0 1% 
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Characteristic n % 

Type of cancer studied (n = 108) 

   Leukemia 15 14% 

   Breast 12 11% 

   Lung 27 25% 

   Genitourinary 9 8% 

   Gastrointestinal 12 11% 

   Lymphoma 6 6% 

   Skin and melanoma 12 11% 

   Other 3 3% 

   Myeloma 3 3% 

   Gynecology 6 6% 

   Head and neck 3 3% 

   Neurological 0 0% 

Cancer stage (n = 108)   

   Early/stage I 12 11% 

   Stage II/III 27 25% 

   Stage IV/metastatic 69 64% 

Abbreviations: CADTH, Canada Agency for Drugs and Technologies in Health; HTA, health technology assessment; 
NICE, National Institute for Health and Care Excellence; PBAC, Pharmaceutical Benefits Advisory Committee; RWE, 
real-world evidence. 
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3.3. HTA Agency Reporting on Economic Model Characteristics Submitted by Manufacturers 

As shown in Table 2, all three HTA agencies were consistent in their reporting of the basic characteristics 

of the economic models submitted by the manufacturers, in terms of the type of economic analyses, 

model structure, time horizon, treatment of uncertainty, and use of indirect treatment comparison used 

by the manufacturers, as these items were reported almost all the time by the three HTA agencies. 

However, some differences were observed between HTA agencies in the model characteristics 

submitted by the manufacturer or HTA reporting on some elements. Briefly, all submissions to CADTH 

and NICE were based on cost-utility techniques, while 17% of PBAC submissions were based on cost-

minimization techniques (p = 0.013). Differences were observed between the HTA agencies in terms of 

reporting the instrument used to derive the utility values for CADTH (44%), NICE (92%), and PBAC (61%) 

(p = 0.001), reporting on equity issues (p < 0.001), and which types of analyses were conducted to deal 

with uncertainty (p < 0.001) with NICE reporting this information more frequently than the CADTH and 

PBAC. Partitioned survival models were used in approximately 70% of the models, and most models 

used three health states. Indirect comparisons were used in more than half of the submissions. 

Table 2. Common economic evaluation attributes reported by HTA agencies (N = 108). 

Reported Characteristic 

Number of Studies 

n (%) 

p-Value 

(χ2) 

CADTH NICE PBAC  

Type of analysis 

   CUA 36 (100%) 36 (100%) 30 (83%) 0.013 

   CEA 0 (0%) 0 (0%) 0 (0%)  

   Other (e.g., CMA) 0 (0%) 0 (0%) 6 (17%)  
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Reported Characteristic 

Number of Studies 

n (%) 

p-Value 

(χ2) 

CADTH NICE PBAC  

QALYs reported (Y/N) 

   Yes 34 (94%) 36 (100%) 30 (83%) 0.023 

   No 2 (6%) 0 (0%) 6 (17%)  

Utility value method     

   EQ5D 15 (42%) 33 (92%) 18 (50%) 0.001 

   SF36 0 (0%) 0 (0%) 0 (0%)  

   HUI 0 (0%) 0 (0%) 0 (0%)  

   Other 1 (3%) 1 (3%) 4 (11%)  

   Not reported 20 (56%) 2 (6%) 14 (39%)  

Model structure     

   Partitioned survival 25 (69%) 25 (69%) 24 (67%) 0.112 

   Markov 11 (31%) 10 (28%) 6 (17%)  

   Not reported 0 (0%) 0 (0%) 6 (17%)  

   Decision tree 0 (0%) 0 (0%) 0 (0%)  

   Combination (decision tree + Markov) 0 (0%) 1 (3%) 0 (0%)  

   Other 0 (0%) 0 (0%) 0 (0%)  

Number of modeled health states 

   Three 24 (67%) 29 (81%) 21 (58%) 0.516 
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Reported Characteristic 

Number of Studies 

n (%) 

p-Value 

(χ2) 

CADTH NICE PBAC  

   Four 2 (6%) 3 (8%) 4 (11%)  

   Five 4 (11%) 2 (6%) 1 (3%)  

   Six 1 (3%) 0 (0%) 3 (8%)  

   Seven or more 0 (0%) 2 (6%) 0 (0%)  

   Not reported 5 (14%) 0 (0%) 7 (19%)  

Time horizon (submitted by manufacturer) 

   1–5 years 4 (11%) 0 (0%) 3 (8%) <0.001 

   6–10 years 14 (39%) 4 (11%) 16 (44%)  

   11–20 years 7 (19%) 10 (28%) 3 (8%)  

   21–30 years 3 (8%) 7 (19%) 3 (8%)  

   31–40 years 2 (6%) 6 (17%) 3 (8%)  

   40+ years 6 (17%) 8 (22%) 1 (3%)  

   Not reported 0 (0%) 1 (3%) 7 (19%)  

Indirect treatment comparison (Y/N) 

   Yes 20 (56%) 24 (67%) 20 (56%) 0.541 

   No 16 (44%) 12 (33%) 16 (44%)  

Equity issues reported     

   Yes 0 (0%) 15 (42%) 0 (0%) <0.001 
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Reported Characteristic 

Number of Studies 

n (%) 

p-Value 

(χ2) 

CADTH NICE PBAC  

   No 36 (100%) 21 (58%) 36 (100%)  

Handling of uncertainty     

   Deterministic sensitivity analysis 12 (33%) 33 (92%) 9 (25%) <0.001 

   Probabilistic sensitivity analysis 11 (31%) 36 (100%) 4 (11%) <0.001 

   Scenario analysis 13 (36%) 36 (100%) 27 (75%) <0.001 

Validation (Y/N)     

   Yes 2 (6%) 35 (97%) 0 (0%) <0.001 

   No 34 (94%) 1 (3%) 36 (100%)  

Reimbursement recommendation 

   Reimburse 28 (78%) 34 (94%) 19 (53%) <0.001 

Abbreviations: CADTH, Canada Agency for Drugs and Technologies in Health; CEA, cost-effectiveness analysis; 
CMA, cost-minimization analysis; CUA, cost-utility analysis; EQ5D, European Quality of Life 5 dimensions; HUI, 
health utilities index; NICE, National Institute for Health and Care Excellence; PBAC, Pharmaceutical Benefits 
Advisory Committee; QALYs, quality-adjusted life-years; SF36, Short Form 36. 

 

3.4. HTA Agency Reporting on Methods Used to Extrapolate Survival Data in Manufacturers’ Cost-

Effectiveness Models 

Important numerical and statistical differences between the three HTA agencies were seen in the 

reporting of the methods used by manufacturers when analyzing and extrapolating survival data for 

cost-effectiveness modeling, with NICE reporting more often on the characteristics of the survival 

extrapolation methods used by manufacturers than CADTH and PBAC. For example, NICE consistently 
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reported on whether parametric distributions were used (100% of the time), which statistical tests (e.g., 

AIC, BIC) were used to select the best fitting curves (94% of the time), whether the PH assumption was 

tested (89%), whether survival curves were fitted jointly or separately (86%), or if the extrapolations 

were validated (97%). In comparison, CADTH and PBAC discussed whether parametric distributions were 

used 56% and 78% of the time and rarely reported on the PH assumption (CADTH: 10% and PBAC: 32%). 

Table 3 presents the details, while Table 4 presents the parametric distributions used for modeling PFS 

and OS, as reported by the HTA agencies. Compared to NICE, who provided information on which 

statistical distributions were used, CADTH rarely reported which statistical distribution was used. While 

the Weibull, exponential, log-logistic, log-normal, and generalized gamma were used by manufacturers 

to model PFS or OS, no single distribution was reported more than 25% of the time (Table 4). 

Table 3. Survival analysis attributes reported by HTA agencies. 

Reported Characteristic 

Number of Studies 

n (%) p-Value 

(χ2) 

CADTH NICE PBAC 

Parametric approach 

   Yes 20 (56%) 36 (100%) 28 (78%) 

<0.001 

   No 16 (44%) 0 (0%) 8 (22%) 

Standard parametric distributions tested N = 20 N = 36 N = 28  

   Yes 17 (85%) 36 (100%) 21 (75%) 

0.008 

   No 3 (15%) 0 (0%) 7 (25%) 

Curve fitting assessment N = 20 N = 36 N = 28  

   AIC 1 (5%) 2 (6%) 1 (4%) <0.001 
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Reported Characteristic 

Number of Studies 

n (%) p-Value 

(χ2) 

CADTH NICE PBAC 

   BIC 1 (5%) 0 (0%) 0 (0%) 

   Both AIC and BIC 6 (30%) 30 (83%) 8 (29%) 

   Other 0 (0%) 2 (6%) 1 (4%) 

   Not reported 28 (60%) 2 (6%) 26 (64%) 

PH assumption tested (if appropriate) N = 20 N = 36 N = 28  

   Yes 2 (10%) 32 (89%) 9 (32%) 

<0.001 

   No 18 (90%) 4 (11%) 19 (68%) 

Fitted parametric curves N = 20 N = 36 N = 28  

   Jointly fitted models 1 (5%) 20 (56%) 10 (36%) 

<0.001    Separately fitted models 0 (0%) 11 (31%) 4 (14%) 

   Not reported 19 (95%) 5 (14%) 14 (50%) 

Validation of extrapolations 

   Yes 1 (3%) 35 (97%) 6 (17%) 

<0.001 

   No 35 (97%) 1 (3%) 30 (83%) 

Scenario analyses of treatment effect 

   Yes 12 (33%) 19 (53%) 11 (31%) 

0.109 

   No 24 (67%) 17 (47%) 25 (69%) 

Use/source of external data justified 
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Reported Characteristic 

Number of Studies 

n (%) p-Value 

(χ2) 

CADTH NICE PBAC 

   Yes 1 (3%) 20 (56%) 4 (11%) 

<0.001 

   No 35 (97%) 16 (44%) 32 (89%) 

Curves fitted to tail of Kaplan–Meier curves only 

   Yes 1 (3%) 4 (11%) 3 (8%) 

0.389 

   No 35 (97%) 32 (89%) 33 (92%) 

Alternative curve-fitting approaches examined 

   Yes 3 (8%) 9 (25%) 1 (3%) 

0.011 

   No 33 (92%) 27 (75%) 35 (97%) 

Abbreviations: CADTH, Canada Agency for Drugs and Technologies in Health; HTA, health technology assessment; 
NICE, National Institute for Health and Care Excellence; OS, overall survival; PBAC, Pharmaceutical Benefits 
Advisory. Committee; PFS, progression-free survival. 

Table 4. Parametric distributions selected for survival curve extrapolations. 

Selected Parametric 

Curve Reported 

Treatment Comparator 

CADTH 

(n = 20) 

NICE 

(n = 36) 

PBAC 

(n = 28) 

CADTH 

(n = 20) 

NICE 

(n = 36) 

PBAC 

(n = 28) 

PFS OS PFS OS PFS OS PFS OS PFS OS PFS OS 

Weibull 5% 10% 22% 17% 11% 14% 0% 5% 22% 14% 11% 14% 

Exponential 0% 5% 8% 25% 25% 32% 0% 5% 8% 25% 25% 25% 

Log-logistic 0% 5% 17% 19% 7% 11% 0% 0% 17% 19% 11% 14% 
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Selected Parametric 

Curve Reported 

Treatment Comparator 

CADTH 

(n = 20) 

NICE 

(n = 36) 

PBAC 

(n = 28) 

CADTH 

(n = 20) 

NICE 

(n = 36) 

PBAC 

(n = 28) 

PFS OS PFS OS PFS OS PFS OS PFS OS PFS OS 

Log-normal 15% 5% 19% 17% 32% 14% 10% 5% 17% 17% 25% 18% 

Gamma 0% 0% 0% 0% 0% 0% 0% 0% 3% 0% 0% 0% 

Generalized gamma 0% 0% 14% 6% 11% 4% 0% 5% 11% 3% 11% 4% 

Gompertz 5% 0% 8% 6% 0% 7% 0% 0% 8% 6% 0% 7% 

Other 0% 0% 0% 3% 0% 0% 0% 0% 0% 3% 0% 0% 

Not reported 75% 75% 11% 8% 14% 18% 90% 80% 14% 14% 18% 18% 

Abbreviations: CADTH, Canada Agency for Drugs and Technologies in Health; HTA, health technology assessment; 
NICE, National Institute for Health and Care Excellence; OS, overall survival; PBAC, Pharmaceutical Benefits 
Advisory. Committee; PFS, progression-free survival. 

 

3.5. HTA Agency Reporting on Methodological Criticisms of Manufacturer Economic Submissions 

In general, the three HTA agencies tended to focus on broadly similar areas of criticism, regarding the 

cost-effectiveness models for a given drug/indication, most often relating to the extrapolation of 

treatment benefit beyond the trial duration (CADTH: 36%, NICE: 47%, and PBAC: 39%), estimation of PFS 

(CADTH: 36%, NICE: 61%, and PBAC: 47%), and estimation of OS (CADTH: 53%, NICE: 61%, and PBAC: 

44%). Notable differences between HTA agencies include NICE rarely criticizing manufacturers’ 

submitted time horizon (8%), while almost always criticizing extrapolations (69%), and CADTH usually 

criticizing both the manufacturers’ submitted time horizon (44%) and cost assumptions (64%) (Figure 1). 
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Figure 1. Methodological criticisms. Abbreviations: CADTH, Canada Agency for Drugs and Technologies 

in Health; PBAC, Pharmaceutical Benefits Advisory Committee; OS, overall survival; PFS, progression-free 

survival; NICE. National Institute for Health and Care Excellence. 

 

Abbreviations: CADTH, Canadian Agency for Drugs and Technologies in Health; NICE, National Institute for Health 
and Care Excellence; PBAC, Pharmaceutical Benefits Advisory Committee 

 

3.6. HTA Agency Reporting on Economic Results, HTA Economic Re-Analyses and Funding 

Recommendations 

Table 5 presents the incremental QALY and incremental cost per QALY gained submitted by the 

manufacturers and following the re-analyses conducted by the HTA agencies. While all three HTA 

agencies reported the economic results submitted by the manufacturers, PBAC (50% of the time) and 

NICE (42%) redacted the QALYs results more often that CADTH (22%). Among those HTAs that reported 

unredacted QALYs, average incremental QALYs were of broadly similar magnitude across the three 
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agencies, both for the manufacturer-submitted QALYs (CADTH: 1.30, NICE: 1.17, and PBAC: 1.52) and in 

the CADTH and NICE reanalyses of the model results (CADTH: 0.78 and NICE: 0.68) (Table 5). As the 

PBAC did not report the reanalysis of QALYs, no values were available for comparison. The average 

difference between the manufacturer-submitted and agency reanalyzed QALYs were also similar across 

agencies (CADTH: −60.3% and NICE: −58.5%). In terms of incremental cost-effectiveness ratios (ICERs), 

the ICERs expressed in the PPP were found to vary across the individual agencies, both in the 

manufacturer’s submitted estimates (CADTH: USD$110K/QALY, NICE: USD$66K/QALY, and PBAC: 

USD$49K/QALY) and agency reanalyses (CADTH: USD$201K/QALY and NICE: USD$113K/QALY). NICE and 

CADTH re-analyses almost doubled the ICER submitted by the manufacturer. In terms of 

recommendations, 94% of NICE recommendations were positive, 78% were positive for CADTH, and 

PBAC issued positive recommendations for 53% of the submissions. Statistical differences in 

recommendation status were seen between PBAC and NICE (p < 0.001) and PBAC and CADTH (p = 

0.029). The three agencies issued the same recommendation (either positive or negative) in 39% of the 

included HTAs. 

Table 5. Comparison of manufacturer and agency-reanalyzed incremental quality-adjusted life-years and 

incremental cost-effectiveness ratios (ICERs). 

HTA 

Agency 

Incremental QALYs 

Manufacturer: 

Base Case 
Range  

Agency Re-

Analysis: Base 

Case 

Range 
Average 

Change 

CADTH (n 

= 32) 
1.30 0.13 to 4.34 

CADTH (n 

= 28) 
0.78 0.08 to 2.25 −60.3% 
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HTA 

Agency 

Incremental QALYs 

Manufacturer: 

Base Case 
Range  

Agency Re-

Analysis: Base 

Case 

Range 
Average 

Change 

NICE (n = 

21) 
1.17 0.07 to 3.44 

NICE (n = 

15) 
0.68 0.07 to 2.75 −58.5% 

PBAC (n = 

18) 
1.52 0.13 to 6.84 N/A N/A N/A N/A 

HTA 

Agency 

ICER 

Manufacturer: 

Base Case 
Range  

Agency Re-

Analysis 
Range 

Average 

Change 

CADTH (n 

= 32) 
$109,581 

$12,242 

to $388,172 

CADTH (n 

= 32) 
$200,923 

$41,414 

to $983,977 
183.4% 

NICE (n = 

27) 
$65,778 

$6631 

to $137,200 

NICE (n = 

26) 
$112,891 

$23,744 

to $229,381 
171.6% 

PBAC (n = 

23) 
$48,665 

$18,910 

to $129,217 
N/A N/A N/A N/A 

Abbreviations: CADTH, Canada Agency for Drugs and Technologies in Health; HTA, health technology assessment; 
ICER, incremental cost-effectiveness ratio; NICE, National Institute for Health and Care Excellence; PBAC, 
Pharmaceutical Benefits Advisory Committee; PPP, purchasing power parity; QALY, quality-adjusted life-year. 

 

As a partial validation of the representativeness of our results, our supplementary analyses of economic 

appraisals, conducted by 2 of the 3 agencies (19 indications and 57 individual HTAs), confirmed the 

results of the main comparative study sample, as the observed frequencies of reporting among this 

alternative dataset (Tables S3, S4, and S5 in the Supplementary Materials) were broadly similar to those 

included in the main study. 
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4. Discussion 

We hypothesized that consistency would be observed for the oncology medications evaluated by the 

three HTA agencies, due to the same product being assessed for the same indication, based on the same 

or similar clinical data. 

4.1. Summary of Findings 

We undertook a review of 36 oncology-based economic evaluations submitted by drug manufacturers 

for reimbursement purposes in Canada over the 2-year period, 2019–2020, which matched with 

corresponding submissions to the UK and Australia, for which an appraisal and funding recommendation 

report was publicly available from each HTA agency. Although we hypothesized that consistency of 

reporting would be observed due to the same product being assessed for the same indication, based on 

the same or similar clinical data, we found important differences in reporting. While the three HTA 

agencies consistently reported the baseline characteristics of these economic evaluations, NICE 

provided more information than CADTH or PBAC when describing the methods used for the 

extrapolations of survival data, despite the similar requirements for drug manufacturers to follow the 

same DSU guidelines [8]. Differences were also observed in the HTA agency criticisms of manufacturers’ 

submitted models and extent of the reanalysis undertaken. The level of detail provided by each HTA 

agency, as a rationale for their appraisal and funding recommendations, was also found to vary 

substantially. In general, NICE provided extensive documents that comprehensively detailed the clinical, 

economic, and technical aspects of manufacturer submissions, as well as in-depth assessment notes 

from the evidence review group (ERG). The appraisals by PBAC and CADTH, while providing relatively 

extensive review documents, nevertheless did not provide the same level of detail and transparency as 

NICE. Both NICE and the PBAC, in contrast to CADTH, often redacted key outcomes in their HTAs (e.g., 

QALYs and ICERs). This discrepancy seems notable, given that all three agencies are publicly funded and 
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assess the same drug products and indications using the same or very similar economic model. While 

each agency may approach their respective HTA process with a similar degree of rigor, it seems that the 

agencies have pursued different approaches in the quantity of reporting that they make available to the 

public. 

This situation could be explained by different levels of resources assigned to the review of the economic 

evidence submitted by the manufacturers. For example, CADTH assigns a panel of external reviewers to 

critically appraise the information submitted by the manufacturer, while NICE utilizes a number of 

academic centers of excellence, the individual members of which may differ for each reimbursement 

submission. The PBAC is comprised of an independent statutory body of clinical and economic experts 

appointed by the Australian government. While criticisms of model assumptions varied across HTA 

agencies, the re-analyses conducted by CADTH and NICE to address model limitations nearly doubled 

the ICERs on average. It was difficult to assess ICERs re-analyzed by the PBAC, as these ICERs were 

presented as ranges with no point estimate, and often the range was quite wide for both manufacturer-

submitted and PBAC re-analyzed ICERs. However, the percentage of positive recommendations were 

lower for PBAC than CADTH and NICE, which might be at least partially explained through different 

approaches to reimbursement (drug reimbursement in Australia does not include price negotiation, and 

the PBAC is instead a yes/no decision-making body). 

4.2. Previous Studies 

It is difficult to compare our study with the previous literature for several reasons. First, previous studies 

have examined jurisdictional differences across the published HTAs, focusing on the factors that 

influence HTA reimbursement recommendations from HTA agencies in Australia, Canada, England, and 

Scotland [1], differences in rates of positive and negative recommendations between Canada and the UK 

[15], and the impact of differing clinical evidence bases on the HTA recommendations from Australia, 
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Canada, and the UK [16]. Each of these previous studies has been limited in scope, focusing 

predominantly on recommendation status across jurisdictions utilizing data that are now considerably 

dated (2014 or older [1]). Other studies have sought to identify relationships between HTA 

recommendations across jurisdictions, though most have been published more than 5 years ago [15,17–

23], and are focused exclusively on one specific component of HTA submissions (e.g., surrogate 

endpoints) or one single disease area (e.g., schizophrenia) [18,24,25]. While a large majority of the 

previous studies have been focused on areas outside of oncology, we previously examined the published 

oncology literature regarding economic evaluation methods [7]. We showed that greater detail in 

reporting of survival analysis methods, including extrapolation, statistical analyses, and validation of 

results, is needed, in order to support greater consistency in decision making. To the authors’ 

knowledge, at the time of writing, no previous studies [1,17,19,21,26–28] have specifically examined 

how HTA agencies evaluate and report on economic evaluations submitted by manufacturers for 

reimbursement. 

Our current study offers insights into the reporting by three HTA agencies across a broad spectrum of 

economic evaluation methods, including study characteristics, common economic evaluation attributes, 

survival analysis, recommendation status, and methodological criticisms. The differences in 

recommendation status we observed across 36 oncology indications, assessed by CADTH between 

2019–2020, matched with corresponding HTAs from NICE and the PBAC, might be at least partially 

explained through different approaches to reimbursement. Nonetheless, our study does corroborate 

recent work [12,13], which showed that the time horizon and cost estimates were the most frequently 

criticized elements of manufacturer submissions to CADTH in the periods 2011–2014 and 2012–2018, 

respectively. However, our results also suggest that these criticisms may be unique to CADTH, as both 

NICE and PBAC were found to rarely criticize manufacturer-submitted time horizons (NICE: 8%, PBAC: 

19%) or cost estimates (NICE: 36%, PBAC: 36%). 
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4.3. Limitations 

This analysis provides useful insights into methods reporting in HTA appraisal documents, but there are 

a number of important limitations that should be recognized. First, we conducted our study over a 

limited time period of 2 years (2019–2020); thus, publication bias may affect our results and 

conclusions. A different level of detail may have been reported in HTAs before 2019, and recent 

guideline updates or changes in the HTA review process at CADTH, NICE, and PBAC may impact what 

and how the HTA results are reported. For example, NICE announced, in 2021, an overhaul of methods 

to optimize evidence generation and global HTA strategy [29], while the Australian government has 

recently announced a new strategic agreement and the first independent review of Australia’s HTA 

system [30]. In addition, the Canadian study data included in our analyses was produced through the 

pCODR assessment pathway, which was specifically designed for review of cancer medications. In late 

2020, CADTH announced a new review pathway, in which all submitted drugs, oncology or otherwise, 

would be reviewed under a single CADTH review procedure that would commence in 2021 [31]. Second, 

as we focused exclusively on oncology HTAs, caution should be exercised in generalizing our results to 

other therapeutic areas. Third, as long as an element of interest was mentioned in the HTA reports from 

CADTH, NICE, and PBAC, irrespective of the quantity of information reported, we considered it as 

reported. While not a specific objective of our study, the differences we observed in the quantity of 

information reported from agencies highlights the need for greater consistency in reporting for HTA 

bodies. We also converted the ICERs reported in the published HTAs across the three agencies, using 

purchasing power parity (PPP); however, it is difficult to directly compare the ICERs between regions, 

due to the differences in treatment costs or other relative prices. In addition, the PBAC reports only 

ranges of ICERs, rather than point estimates, which further inhibits the ability to compare PBAC ICERs 

with those from other HTA agencies. Finally, we assumed that the reimbursement submissions sent by 

manufacturers to CADTH, NICE, and the PBAC were similar, which may or may not be true. However, as 
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demonstrated in our results, the main characteristics of the submissions to these three HTA agencies 

were observed to be similar. 

It should be noted that our sample set included 36 indications in total (108 individual HTAs) that were 

available from all three HTA agencies out of an overall set of 83 indications (249 individual HTAs). In 

order to ensure that our comparative sample was representative, we analyzed public recommendations 

made by two agencies (e.g., N = 19 indications), and the results were consistent with the main analysis 

(N = 36 indications). From our research, it does appear that CADTH received a slightly higher number of 

HTA submissions than either NICE or PBAC. One speculative explanation could be that NICE and PBAC 

are known to be more restrictive in their assessments of submitted dossiers, and this may or may not 

have prompted a number of pharmaceutical manufacturers to not submit a reimbursement dossier to 

NICE and/or PBAC for some indications, due to a comparatively lower probability of success. 

Unfortunately, we cannot demonstrate or substantiate this point using our current research and 

dataset. 

4.4. Future Directions 

This study focused on recent recommendations published by three HTA agencies over a 2-year period 

and is therefore limited in both time horizon and scope. While 2 years was judged to be adequate for 

assessing the reporting of methods, and previous studies have used similar time scales and/or smaller 

sample sizes [12,13,32], future studies could be expanded to encompass HTA recommendations from 

additional years, in order to account for recent changes. Efforts could also be put into expanding 

comparisons beyond CADTH, NICE, and PBAC, in order to include other countries that have adopted HTA 

processes, such as South Korea, Taiwan, and more recently, Japan. Our study data from 2019–2020 may 

provide a useful dataset for future comparisons with oncology drug submissions assessed under 

CADTH’s new procedures. 
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5. Conclusions 

Based on our 2-year sample of oncology HTAs published by CADTH, NICE, and PBAC, the variations in the 

reporting we observed, especially for technical aspects such as survival analysis, suggest that in addition 

to the guidelines for HTA submissions, the community of HTA agencies should also have common 

standards for reporting the results of their assessments, though the information and opinions reported 

may differ. 
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Chapter 3 supplementary materials 

Table S1. 83 publicly available therapeutic indications and availability of corresponding HTA documents from CADTH, NICE, and the PBAC 

Drug (trade 
name) 

Drug (generic 
name) 

Product / indication assessed by: 

Disease area 
0 

agencies 
1 

agency 
2 

agencies 
3 

agencies 

(n=11) (n=19) (n=17) (n=36) 

Adcetris 
brentuximab 
vedotin 

      *** Peripheral t-cell lymphoma 

Kisqali ribociclib   *     Advanced or metastatic breast cancer 

Tecentriq & 
Avastin 

atezolizumab & 
bevacizumab 

      *** Hepatocellular Carcinoma 

Zejula niraparib       *** Ovarian Cancer 

Keytruda pembrolizumab       *** Head and Neck Squamous cell Carcinoma 

Tecentriq & 
Avastin 

atezolizumab & 
bevacizumab 

      *** Non-Squamous Non-Small Cell Lung Cancer 

Xospata gilteritinib     **   Acute Myeloid Leukemia 

Calquence acalabrutinib     **   Chronic Lymphocytic Leukemia 

Odomzo sonidegib     **   Basal Cell Carcinoma 

Venclexta venetoclax       *** Chronic Lymphocytic Leukemia 

Cabometyx cabozantinib   *     Hepatocellular Carcinoma 

Erleada apalutamide   *     Metastatic Castration-Sensitive Prostate Cancer 
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Kisqali 
ribociclib with 
fulvestrant 

      *** advanced or metastatic breast cancer 

Nubeqa darolutamide       *** Non-Metastatic Castration Resistant Prostate Cancer 

Daurismo glasdegib   *     Acute Myeloid Leukemia 

Blincyto blinatumomab       *** 
Minimal Residual Disease-Positive B-Cell Precursor Acute 
Lymphoblastic Leukemia 

Calquence acalabrutinib       *** Chronic Lymphocytic Leukemia (previously untreated) 

Xtandi enzalutamide     **   Metastatic Castration-Sensitive Prostate Cancer 

Adcetris 
brentuximab 
vedotin 

  *     Stage IV Hodgkin lymphoma 

Keytruda pembrolizumab     **   Renal Cell Carcinoma 

Mylotarg 
gemtuzumab 
ozogamicin 

      *** Acute Myeloid Leukemia 

Rydapt midostaurin   *     Systemic Mastocytosis 

Adcetris 
brentuximab 
vedotin 

      *** 
Primary Cutaneous Anaplastic Large Cell Lymphoma or CD30-
Expressing Mycosis Fungoides 

Rozlytrek entrectinib       *** ROS1-positive Non-Small Cell Lung Cancer 

Lonsurf 
trifluridine-
tipiracil 

      *** Gastric Cancer 

Darzalex daratumumab   *     Myeloma 

Lynparza olaparib         BRCA-mutated HER2-negative metastatic breast cancer 
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Keytruda pembrolizumab         
Metastatic microsatellite instability high or mismatch repair 
deficient endometrial cancer 

Keytruda pembrolizumab         
Metastatic microsatellite instability high or mismatch repair 
deficient colorectal cancer 

Lorbrena lorlatinib       *** Non-Small Cell Lung Cancer 

Inrebic fedratinib   *     Myelofibrosis 

Tecentriq atezolizumab       *** Small Cell Lung Cancer 

TBD entrectinib   *     
Neurotrophic Tyrosine Receptor Kinase Fusion-Positive Solid 
Tumours 

Tecentriq atezolizumab     **   Advanced or Metastatic Triple-Negative Breast Cancer 

Kadcyla 
trastuzumab 
emtansine 

      *** Early Breast Cancer 

Libtayo cemiplimab       *** Cutaneous Squamous Cell Carcinoma 

Keytruda pembrolizumab     **   Squamous Non-Small Cell Lung Cancer 

Lynparza olaparib       *** Ovarian Cancer 

Nerlynx neratinib       *** Hormone Receptor-Positive Breast Cancer 

Lonsurf 
trifluridine-
tipiracil 

      *** Metastatic Colorectal Cancer 

Idhifa enasidenib   *     Acute Myeloid Leukemia 

Vitrakvi larotrectinib       *** 
Neurotrophic Tyrosine Receptor Kinase Locally Advanced or 
Metastatic Solid Tumours 

Zytiga abiraterone         Prostate Cancer 

Atriance nelarabine         Acute Lymphoblastic Leukemia 
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Keytruda pembrolizumab   *     Metastatic Urothelial Carcinoma 

Pomalyst pomalidomide     **   Multiple Myelom 

Darzalex daratumumab   *     Multiple Myeloma 

Alunbrig brigatinib       *** Non-Small Cell Lung Cance 

Keytruda pembrolizumab       *** Melanoma Adjuvant Treatment 

Lutathera 
lutetium Lu 177 
dotatate 

    **   Gastroenteropancreatic neuroendocrine tumors 

Lenvima lenvatinib       *** Hepatocellular Carcinoma 

Bosulif bosutinib   *     Chronic Myeloid Leukemia 

Ninlaro ixazomib     **   Multiple Myeloma 

Verzenio abemaciclib       *** Advanced or metastatic breast cancer 

Imbruvica ibrutinib   *     Chronic Lymphocytic Leukemia/Small Lymphocytic Leukemia 

Imbruvica ibrutinib         Waldenstrom's Macroglobulinemia 

Revlimid lenalidomide       *** Multiple Myeloma 

Keytruda pembrolizumab       *** Non-Squamous Non-Small Cell Lung Cancer 

Oncaspar pegaspargase         Adult Acute Lymphocytic Leukemia 

Zirabev 
bevacizumab 
(biosimilar) 

  *     Metastatic Colorectal Cancer; Non-Small Cell Lung Cancer 

Venclexta venetoclax       *** Chronic Lymphocytic Leukemia 

Vizimpro dacomitinib     **   Non-Small Cell Lung Cancer 

Zevalin ibritumomab         Non-Hodgkin's Lymphoma 
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Trazimera 
trastuzumab 
(biosimilar) 

  *     Breast and Gastric Cancer Biosimilar 

Truxima 
rituximab 
(biosimilar) 

  *     
Non-Hodgkin’s Lymphoma and Chronic Lymphocytic 
Leukemia 

Xalkori crizotinib       *** ROS1-positive Non-Small Cell Lung Cancer 

Ogivri 
trastuzumab 
(biosimilar) 

  *     
Early Breast Cancer / Metastatic Breast Cancer / Metastatic 
Gastric Cancer 

Demylocan decitabine         Myelodysplastic Syndromes 

Ibrance palbociclib     **   Advanced or Metastatic Breast Cancer 

Imfinzi durvalumab       *** Non-Small Cell Lung Cancer 

Tafinlar & 
Mekinist 

dabrafenib & 
trametinib 

      *** Melanoma Adjuvant Treatment 

Zytiga abiraterone         Prostate Cancer 

Not reported 
rituximab 
(biosimilar) 

        
Non-Hodgkin's Lymphoma and Chronic Lymphocytic 
Leukemia 

Lenvima lenvatinib       *** Renal Cell Carcinoma 

Blincyto blinatumomab     **   
Philadelphia chromosome positive B-cell precursor acute 
lymphoblastic leukemia 

Folotyn pralatrexate     **   Peripheral t-cell lymphoma 

Unituxin dinutuximab     **   Neuroblastoma 

Xtandi enzalutamide     **   Non-metastatic castration-resistant prostate cancer 

Adcetris 
brentuximab 
Vedotin 

    **   Hodgkin Lymphoma 
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Opdivo nivolumab       *** Melanoma Adjuvant Therapy 

Cabometyx cabozantinib       *** Renal Cell Carcinoma 

Tagrisso osimertinib       *** Non-Small Cell Lung Cancer 

Mvasi 
bevacizumab 
(biosimilar) 

  *     Metastatic Colorectal Cancer / Non-Small Cell Lung Cancer 

Abbreviations: CADTH, Canada Agency for Drugs and Technologies in Health; NICE, National Institute for Health and Care Excellence; PBAC, Pharmaceutical Benefits Advisory 

Committee 

 

Table S2: Common economic evaluation attributes from existing guidelines 

Extraction 

element 

Synthesis of common 

categories 

CADTH 

Guidelines 

NICE 

Guidelines 

PBAC 

Guidelines 

AMCP 

Guidelines 

CHEERS 

Checklist 

ISPOR 

Guidelines I 

ISPOR 

Guidelines II 

Perspective Perspective               

Indication Indication               

Target 

population 
Target population               

Subgroups Subgroup analysis               

Comparator(s) Choice of comparator               

Time horizon Time horizon               

Type of 

analysis 

Preferred analytical 

technique 
              

Types of costs Costs to be included               
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Model 

structure 
Modeling               

SLR (Y/N) 
Systematic review of 

evidences 
              

QALYs (Y/N) 

Preference for 

effectiveness over 

efficacy 

              

Preferred outcome 

measure stated 
              

Utility value 

method 

Preferred method for 

deriving utility values 
              

Equity Equity issues stated               

Discount rate Discounting costs               

Discount rate Discounting outcomes               

PSA, DSA, 

scenarios 

Sensitivity analysis-

methods 
              

Incremental 

(Y/N) 
Incremental analysis               

ICERs/ICURs 
Total costs vs 

effectiveness 
              

Validation 

(Y/N) 

Portability of results 

(Generalizability) 
              

BIA (Y/N) 
Financial impact 

analysis 
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Survival 

analysis 

methods 

Survival analysis               

  Included               

 
Not included in published academic 

guidelines  
            

Abbreviations: CADTH, Canada Agency for Drugs and Technologies in Health; DSA, deterministic sensitivity analysis; ICER, incremental cost-effectiveness ratio; ICUR, incremental 

cost-utility ratio; N, No; N/A, Not applicable; NICE, National Institute for Health and Care Excellence; PBAC, Pharmaceutical Benefits Advisory Committee; PSA, probabilistic 

sensitivity analysis; QALY, quality-adjusted life-year; SLR, systematic literature review; Y, Yes. 
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Table S3. Selected results from alternative dataset: main source of clinical data 

Characteristic N % 
Number 

of studies 
n (%) 

Data source type 

      Phase 3 trial 29 55% 29 (55%) 

      Phase 2 trial (single arm) 8 15% 8 (15%) 

      Mix (Phase 2 and 3 trials) 1 4% 1 (4%) 

      RWE 0 15% 0 (15%) 

      Mix (Phase 2 trial and RWE) 5 9% 5 (9%) 

      Mix (Phase 3 trial and RWE) 8 2% 8 (2%) 

      Phase 4 2 0% 2 (0%) 
Abbreviations: RWE, real-world evidence 

 

Table S4. Selected results from alternative dataset: economic evaluation attributes 

Reported characteristic 

Number of studies 
n (%) 

CADTH NICE PBAC 

Type of analysis 

      CUA 19 (66%) 11 (100%) 8 (62%) 

      CEA 8 (28%) 0 (0%) 0 (0%) 

      Other (e.g. CMA) 2 (3%) 0 (0%) 5 (31%) 

Model structure       

      Partitioned survival 21 (75%) 9 (82%) 3 (23%) 

      Markov 4 (14%) 2 (18%) 1 (8%) 

      Decision tree 0 (0%) 0 (0%) 0 (0%) 

      Combination (decision tree + 
Markov) 

2 (7%) 0 (0%) 1 (8%) 

      Other 1 (4%) 0 (0%) 0 (0%) 

      Not reported 1 (4%) 0 (0%) 8 (62%) 

Reimbursement recommendation 

      Reimburse 22 (76%) 9 (82%) 12 (0%) 

      Do not reimburse 7 (24%) 2 (18%) 1 (100%) 
Abbreviations: CADTH, Canada Agency for Drugs and Technologies in Health; CEA, cost-effectiveness analysis; CMA, cost 

minimization analysis; CUA, cost-utility analysis; NICE, National Institute for Health and Care Excellence; PBAC, Pharmaceutical 

Benefits Advisory Committee 
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Table S5. Selected results from alternative dataset: survival analysis 

Reported characteristic 

Number of studies 
n (%) 

CADTH 
(N=29) 

NICE 
N=11 

PBAC 
(N=13) 

Parametric approach 

      Yes 16 (55%) 11 (100%) 4 (31%) 

      No 13 (45%) 0 (0%) 9 (69%) 

Curve fitting assessment N=16 N=11 N=4 

      AIC 1 (3%) 0 (0%) 0 (0%) 

      BIC 1 (3%) 0 (0%) 0 (0%) 

      Both AIC and BIC 6 (21%) 10 (91%) 2 (50%) 

      Other 0 (0%) 1 (9%) 0 (0%) 

      Not reported 8 (72%) 0 (0%) 2 (50%) 
Abbreviations: CADTH, Canada Agency for Drugs and Technologies in Health; NICE, National Institute for Health and Care 

Excellence; PBAC, Pharmaceutical Benefits Advisory Committee 

 

Table S6. Glossary of technical terms 

Term Abbreviation Description 

cost-
effectiveness 
acceptability 

curve 

CEAC 

A graphical representation of the uncertainty associated with the results 
of an economic evaluation. It plots for a range of cost effectiveness 
thresholds against the probability that the new technology /intervention 
will be cost effective at that threshold. This helps decision-makers 
understand the uncertainty surrounding the optimal treatment strategy. 

cost-
effectiveness 

analysis 
CEA 

A form of economic evaluation that is best suited to addressing questions 
of technical efficiency. Comparisons are limited to services or treatment 
options that produce the same type of benefit, which is valued strictly in 
one-dimensional, natural units.  

cost-
minimization 

analysis 
CMA 

A special type of cost-effectiveness analysis, which is possible only if it 
has been determined (or more often assumed) that there are no 
differences in benefits between the alternate interventions compared 
and thus the evaluation is based on only the costs of the interventions. 

cost-utility 
analysis 

CUA 

A variant of cost-effectiveness analysis where the health outcome 
measure of interest is usually expressed as a quality adjusted life year, a 
single index that combines length of life and a quality adjustment for less 
than perfect health (i.e. the utility score). 

health 
technology 
assessment 

HTA 

A multidisciplinary process that uses explicit methods to determine the 
value of a health technology at different points in its lifecycle. The 
purpose is to inform decision making in order to promote an equitable, 
efficient, and high-quality health system. 
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incremental 
cost-

effectiveness 
ratio 

ICER 

The ratio of the difference in costs between an intervention and a 
specified comparator to the difference in effectiveness between that 
intervention and the specified comparator. From the results of a cost-
effectiveness analysis, an incremental cost-effectiveness ratio can be 
calculated that depicts the extra cost per unit of outcome obtained, in 
comparing one treatment option to another. 

network 
meta-

analysis 
NMA 

A technique used in systematic reviews to compare the relative 
effectiveness of three or more interventions simultaneously that have 
not been compared in a single randomised trial or a single analysis by 
combining both direct and indirect effectiveness across a network of 
studies. 

probabilistic 
sensitivity 
analysis 

PSA Probabilistic sensitivity analysis represents parameters (inputs) as 
distributions of possible mean values instead of single point estimates. 

quality-
adjusted life-

year 
QALY 

A measure of health outcome, which captures both length of life and the 
quality of life. QALYs are calculated by multiplying the total time (years) 
in a specific health state (or the number of life years remaining) by the 
“utility” of those years (measured from zero, representing the worst 
imaginable health (values less than zero represents health states worse 
than death), to one, representing perfect health). 
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Chapter 4: Health Technology Reassessment: Addressing Uncertainty in Economic Evaluations of 

Oncology Drugs at Time of Reimbursement Using Long-Term Clinical Trial Data 

1. Introduction 

Drug reimbursement decision making often employs health technology assessments (HTAs) to detail the 

comparative value for money of one treatment versus another. HTA appraisals and funding 

recommendations are typically made on the basis of evidence from a single point in time when 

treatments enter the healthcare system. To enhance early access to novel health technologies, 

reimbursement decisions are increasingly made when the evidence base to support these decisions is 

lacking or far from mature [1], and HTA recommendations based on immature data or extrapolated 

short-term data often include the suggestion to collect additional data [2,3]. In recent years, HTA 

agencies have been advocating for a lifecycle management approach to health technology adoption and 

reimbursement decisions. In the United Kingdom, the National Institute for Health and Care Excellence 

(NICE) recently launched a 5 year strategy to adapt to a rapidly changing health and care landscape, 

which involves a more dynamic approach to health technology management [4]. The Canadian Agency 

for Drugs and Technologies in Health (CADTH) has also been messaging the purported benefits of health 

technology management in which longer-term trial data and real-world evidence (RWE) could be used 

to re-assess already reimbursed drugs to ensure continued clinical and/or economic benefits are 

continuing to be realized by patients and in the marketplace. However, reimbursement decisions are 

rarely reconsidered, even once additional data have been collected. Publication of long-term follow-up 

data from clinical trials provides the opportunity to reassess decision making under substantially 

reduced clinical and economic uncertainty. 

We present an economic evaluation of pembrolizumab for treatment of patients with advanced 

melanoma, which was studied in the KEYNOTE-006 phase 3 randomized controlled trial [5–7]. 
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Pembrolizumab was approved by the Food and Drug Administration (FDA) [8] and recommended for 

reimbursement by HTA agencies including NICE [9] and CADTH [10] using data from the first interim 

analysis (median duration of follow-up: 7.9 months) [5]. The CADTH recommendation [10] noted 

uncertainty in the modeling of long-term survival, stating “the original ipilimumab data demonstrated a 

sustained separation in the tail of the survival curve, a benefit that is yet to be confirmed in the 

pembrolizumab study”. Similarly, the appraisal from NICE [9] noted that “the long-term benefits of 

pembrolizumab are highly uncertain”. The evidence base for the approvals and reimbursement 

recommendations was based on short-term follow-up data with noted uncertainty, yet attempts to 

address this uncertainty do not seem to have been undertaken once the initial reimbursement decision 

was made. Despite the fact that an increasing number of HTAs published by national agencies are based 

on evidence that is assessed to be “uncertain”, there is a paucity of available evidence for addressing 

this uncertainty in the context of reimbursement decision making. 

Following publication of the FDA approval and several HTA agency recommendations [9,10], 5 year 

results from KEYNOTE-006 (median duration of follow-up: 57.7 months) [7] were published in a post hoc 

analysis of long-term follow-up data. The availability of this long-term follow-up data provided the 

opportunity to investigate the degree to which the results from a cost-effectiveness analysis based on 

interim data, where uncertainty is high, can accurately predict cost-effectiveness results based on 

longer-term data, where uncertainty is substantially reduced. To address this gap in the existing 

literature, we sought to determine the impact of using trial data of different maturity (long term versus 

short term) on survival curve extrapolations, and the impact of these different data on the results of a 

cost-effectiveness analysis, using the example of a pembrolizumab, which was reimbursed in several 

jurisdictions based on interim data. 
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2. Materials and Methods 

A partitioned survival model was used to assess the cost-effectiveness of pembrolizumab versus 

ipilimumab for treatment of advanced melanoma from a US payer perspective over a 20 year time 

horizon. The results of 20 year survival extrapolations and cost-effectiveness based on interim data 

(median 7.9 months follow-up) were compared with the cost-effectiveness model based on the long-

term follow-up data (median 57.7 months follow-up). Model inputs are presented in Table S1 in the 

Supplementary Materials. 

2.1. Modeling Approach 

We developed a three-health-state partitioned survival model (Figure 1) in Microsoft Excel® populated 

with two sets of data based on the published Kaplan–Meier (KM) curves for progression-free survival 

(PFS) and overall survival (OS) from the KEYNOTE-006 trial [5,7]. 

Figure 1. Model structure and health states. 

 

Progression-free survival (Figure 2) and OS (Figure 3) were extrapolated beyond the follow-up period of 

the trial using standard parametric curve fitting methods over a 20 year time horizon (a description of 

the extrapolation procedure is provided in Section 2.7). 
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(A) 

 

Abbreviation: KM, Kaplan–Meier; PFS, progression-free survival 

(B) 

 

Abbreviation: KM, Kaplan–Meier; PFS, progression-free survival 
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Figure 2. Survival curve extrapolations based on interim data from KEYNOTE-006. (A)—Progression-free 

survival based on interim data from KEYNOTE-006; (B)—Progression-free survival based on long-term 

follow-up data from KEYNOTE-006. 

(A) 

 

Abbreviations: KM, Kaplan–Meier; OS, overall survival; PFS, progression-free survival 

(B) 

 

Abbreviations: KM, Kaplan–Meier; OS, overall survival; PFS, progression-free survival 
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Figure 3. Survival curve extrapolations based on long-term follow-up data from KEYNOTE-006. (A)—

Overall survival based on interim data from KEYNOTE-006; (B)—Overall survival based on long-term 

follow-up data from KEYNOTE-006. 

The starting age of the cohort was 63 years [5], and the cycle length was set as monthly. All patients 

entered the model through the pre-progression health state and could stay in this health state or 

transition either to the post-progression health state or to death according to transition probabilities 

calculated from reconstructed KM curves from KEYNOTE-006 [5]. Survival data for PFS and OS were used 

to determine the distribution of patients in the ‘pre-progression’ health state over time and the 

proportion of patients that transition to the ‘death’ health state for each treatment arm, respectively. 

The difference between the OS curve and the PFS curve yielded the proportion of patients experiencing 

progressive disease. The external validity of the modeling approach and survival analysis results were 

assessed through comparisons with pooled long-term ipilimumab data from patients with advanced 

melanoma reported by Schadendorf and colleagues [11] and through comparisons with a previously 

published cost-effectiveness analysis by Wang and colleagues [12] based on the interim data. 

2.2. Clinical Inputs 

The population modeled in our analyses included adult patients with advanced melanoma who were 

treated with either pembrolizumab or ipilimumab as depicted in the open-label, multicenter, 

randomized, controlled phase 3 KEYNOTE-006 trial. KEYNOTE-006 enrolled 834 patients, 556 of which 

were randomized to pembrolizumab and 278 to ipilimumab. The efficacy was analyzed in the trial 

according to the intention-to-treat population with OS and PFS as co-primary endpoints. 

Adverse event rates of grade 3 or higher were modeled and sourced from the published clinical trial 

results based on interim data [5] and long-term follow-up data [7] from each of the KEYNOTE-006 

treatment arms. 
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2.3. Regimen and Dosing 

Dosing for ipilimumab was 3 mg/kg every 3 weeks up to a maximum of 4 doses, as per the FDA label. For 

pembrolizumab, the FDA-approved dosing of 2 mg/kg every 3 weeks was implemented in the model for 

a maximum of 2 years. In accordance with the KEYNOTE-006 trial protocol, a second course of 

pembrolizumab of up to 12 months was modeled for the proportion of patients who had not progressed 

by the end of 24 months of pembrolizumab treatment. The dose intensity was assumed to be 100%, and 

vial sharing was allowed in the base case (medication wastage was not explicitly accounted for). 

2.4. Utility Values 

Utility values were applied to each health state based on the EuroQoL five-dimension (EQ-5D) 

preference instrument values collected in KEYNOTE-006 and reported by Wang and colleagues [12]. 

Disutility adjustments were not made for adverse events, as these events were considered transitory 

and not anticipated to impact model results. 

2.5. Healthcare Resource Utilization 

Estimates of healthcare resource utilization associated with patient management in the pre-progression 

and post-progression health states were derived from the results of a US chart review study [13]. These 

estimates included oncologist visits, laboratory tests, and scans. Hospitalization costs for management 

of adverse events (grade 3 or higher) were estimated based on the proportions of patients experiencing 

grade 3 or higher adverse events reported in KEYNOTE-006 using Drug-Related Group (DRG) codes for 

gastrointestinal disorders, metabolism and nutrition disorders, and general disorders and administration 

site condition from the Centers for Medicare and Medicaid Services (CMS) final rule tables [14]. 
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2.6. Costs 

Unit costs for pembrolizumab and ipilimumab were based on the average sale price indicated in the 

2023 Payment Allowance Limits for Medicare Part B Drugs sourced from CMS [15]. The average patient 

body weight used to model drug costs was back-calculated from the average dose of each drug reported 

in a previous cost-effectiveness analysis (98.7 kg for patients receiving ipilimumab, 112.0 kg for patients 

receiving pembrolizumab) [12]. Drug administration costs (per infusion) were derived from the CMS 

costs for hospital outpatient services list, and each drug infusion was assumed to incur a single 

administration cost [16]. The costs associated with patient management in the pre-progression and 

post-progression health states were estimated based on the results of a US chart review study, as were 

the costs associated with end of life [13]. The costs for subsequent therapies administered after 

progression were assumed to be the best supportive care in order to focus on comparative assessments 

between ipilimumab and pembrolizumab exclusively. No additional drug costs were modeled post-

progression. 

All costs were reported in 2023 USD, and where necessary, costs derived from previous studies were 

inflated to 2023 USD using the US consumer price index [17]. 

2.7. Statistical Analyses 

To populate the model, transition probabilities were estimated based on KM curves from KEYNOTE-006 

which were digitized using Webplotdigitizer software (Version 4.6), and individual patient-level data 

were reconstructed according to the Guyot algorithm [18] using the statistical package R Studio. 

Standard parametric distributions (exponential, log-normal, log-logistic, gamma, Weibull, and Gompertz) 

were fitted to the reconstructed patient-level data and the statistical fit was assessed based on 

maximum likelihood estimation. Curve selection was based on the Akaike information criterion (AIC) as 

well as a visual inspection of the curves to assess the face validity of the fit (Table 1). 
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Table 1. Akaike information criterion values for parametric curve fitting. 

A—interim analysis data 

Parametric Curve Fits Weibull Exponential Log-Normal Log-Logistic Gamma Gompertz 

Ipilimumab OS-AIC 933.1 932.7 921.7 927.6 932.0 934.6 

Ipilimumab PFS-AIC 969.0 989.9 949.3 940.6 960.0 988.8 

Pembrolizumab OS-AIC 818.4 821.0 813.6 816.1 817.6 822.2 

Pembrolizumab PFS-AIC 964.9 965.1 947.8 947.4 962.4 965.6 

B—long-term follow-up data 

Parametric Curve Fits Weibull Exponential Log-Normal Log-logistic Gamma Gompertz 

Ipilimumab OS-AIC 1583.2 1603.6 1542.8 1554.2 1591.6 1542.1 

Ipilimumab PFS-AIC 1460.1 1471.7 1374.6 1370.4 1471.0 1404.0 

Pembrolizumab OS-AIC 3189.3 3205.0 3140.5 3158.8 3196.2 3150.1 

Pembrolizumab PFS-AIC 3277.5 3355.7 3178.0 3202.0 3304.0 3193.9 

Abbreviations: AIC, Akaike information criterion; OS, overall survival; PFS, progression-free survival. 

Validation of the extrapolated survival curves was undertaken through comparing estimated the life 

expectancy, hazard ratios, and the number of clinical events with the KEYNOTE-006 data (Table 2). 

Table 2. Comparison of reconstructed Kaplan–Meier data versus KEYNOTE-006 data. 

A—interim analysis data 

Data Source 

Ipilimumab Pembrolizumab 

HR 

(95% CI) 
Median 

Survival 

Events 

(N) 

Median 

Survival 

Events 

(N) 
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KEYNOTE-006 trial (OS) 2nd 

interim analysis 
not reached NR not reached NR 

0.69 

(0.52–0.90) 

Reconstructed (OS) 15.7 112 24.0 90 
0.67 

(0.50–0.88) 

KEYNOTE-006 trial (PFS) 

2nd interim analysis 
2.8 NR 4.1 NR 

0.58 

(0.47–0.72) 

Reconstructed (PFS) 3.3 190 5.3 154 
0.58 

(0.47–0.72) 

B—long-term follow-up data 

Data Source 

Ipilimumab Pembrolizumab 

HR 

(95% CI) 
Median 

Survival 

Events 

(N) 

Median 

Survival 

Events 

(N) 

KEYNOTE-006 trial (OS) 

long-term follow-up 
15.9 172 32.7 324 

0.73 

(0.61–0.88) 

Reconstructed (OS) 22.1 171 35.2 171 
0.73 

(0.59–0.90) 

KEYNOTE-006 trial (PFS) 

long-term follow-up 
3.4 217 8.4 411 

0.57 

(0.48–0.67) 

Reconstructed (PFS) 4.8 222 10.9 402 
0.55 

(0.47–0.65) 

Abbreviations: CI, confidence interval; HR, hazard ratio; N, number; OS, overall survival; PFS, progression-free 
survival; NR, not reported. 

 

For the cost-effectiveness analysis, the primary outcome of the analysis was calculated as the 

incremental cost per quality-adjusted life-year (QALY) gained, and both costs and outcomes were 

discounted at 3% annually as recommended by the Institute for Clinical and Economic Review (I.C.E.R.) 
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[19]. Probabilistic sensitivity analyses were conducted using 1000 Monte Carlo simulations to account 

for parameter uncertainty. Cost-effectiveness acceptability curves [20] were generated to assess the 

probability of being cost-effective at varying willingness-to-pay (WTP) thresholds. Scenario analyses 

were also conducted to address structural uncertainty in the model. These scenario analyses included 

using the best fitting parametric functions identified in a previous cost-effectiveness analysis, a scenario 

in which all PFS and OS curves across both treatment arms were fitted with the Gompertz distribution, 

as was done in the pembrolizumab reimbursement submission to NICE. In addition, to address the 

difference in the average patient weight between the ipilimumab and pembrolizumab trial arms, an 

additional scenario analysis was run using the equal average patient weight across both treatment arms. 

Finally, we varied the proportion of patients remaining progression free who would receive 

pembrolizumab re-challenge after 2 years according to values cited in HTA agency recommendations. 

3. Results 

3.1. Survival Analysis of Interim Data [5] versus Long-Term Follow-Up Data [7] 

Compared to the KEYNOTE-006 data, the number of events, hazard ratios, and median OS for 

pembrolizumab from the reconstructed data were found to closely replicate the trial results. However, 

the reconstructed data of the interim data overestimated the median PFS for both treatment arms and 

the median OS for ipilimumab (Table 3A). For the 5 year data, hazard ratios and the number of clinical 

events were consistent with the trial data. However, median survival outcomes were over-estimated in 

the long-term reconstructed data (Table 3B). 

To extrapolate the PFS and OS data over the 20 year time horizon using the interim data, the best-fitting 

curves for pembrolizumab and ipilimumab PFS and OS were the log-logistic and log normal distributions 

for both treatment groups, respectively, and log-normal for both treatment arms in the interim data 

(Table 2A). For KEYNOTE-006 long-term follow-up data, the best-fitting parametric survival curves were 
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found to be log-logistic for pembrolizumab PFS, log-normal for pembrolizumab OS, Gompertz for 

ipilimumab PFS, and log-normal for ipilimumab OS (Table 2B). 

3.2. Cost-Effectiveness Analysis of Interim Data [5] versus Long-Term Follow-Up Data [7] 

Using the interim data, pembrolizumab generated a total of 3.99 undiscounted life-years (LYs) compared 

to 2.85 undiscounted LYs for ipilimumab. The probabilistic ICUR was USD 100,293 per QALY gained 

(deterministic ICUR: USD 111,861). Pembrolizumab was found to be cost-effective in 97% of the 

simulations at a commonly cited WTP threshold of USD 150,000/QALY gained and 51% of simulations at 

a WTP threshold of USD 100,000/QALY gained (Figure 4A). The model was most sensitive to cost-related 

inputs, including the discount factor, cost of pembrolizumab, and average patient weight (Figure S1 in 

the Supplemental Materials). The results of the scenario analyses are presented in Table S2 in the 

Supplemental Materials. 

Figure 4. Cost-effectiveness acceptability curves. (A)—cost-effectiveness acceptability curves based on 

interim data from KEYNOTE-006; (B)—cost-effectiveness acceptability curves based on long-term follow-

up data from KEYNOTE-006. 

(A) 
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(B) 

 

 

Incorporating the reconstructed long-term follow-up data into the model generated 5.91 undiscounted 

LYs for pembrolizumab, and 4.31 undiscounted LYs for ipilimumab. The probabilistic ICUR was estimated 

to be USD 139,583 per QALY gained (deterministic ICUR: USD 156,829/QALY gained). At a WTP of USD 

150,000/QALY gained, pembrolizumab was cost-effective in 66% of the simulations and was cost-

effective in 3% of simulations at a WTP threshold of USD 100,000/QALY gained (Figure 4B). The ICUR 

was found to be sensitive to the clinical inputs, including the shape parameter for both pembrolizumab 

and ipilimumab, but was also sensitive to the discount factor (Figure S1 in the Supplemental Materials). 

The scenario analysis results are presented in Table S2 in the Supplemental Materials. 

4. Discussion 

To our knowledge, this is the first reassessment of a drug reimbursed based on interim data and for 

which long-term data have been published thereafter. Here, we conducted an economic evaluation of 

pembrolizumab versus ipilimumab for advanced melanoma using two reconstructed datasets generated 

from the KEYNOTE-006 trial interim analysis and a post hoc long-term follow-up analysis. We used 

commonly reported modeling approaches and standard parametric curve fitting techniques to 
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extrapolate the clinical trial results over a 20 year time horizon and to estimate the cost-effectiveness of 

pembrolizumab versus ipilimumab from a US payer perspective. Our re-analysis using the long-term 

follow-up data generated an ICUR that was 42% higher than the ICUR based on the interim trial data. 

There are a number of reasons that may explain this result. First, the shapes of the KM survival curves 

are only partially known with interim data, and the shape of the survival curves used for long-term 

extrapolated outcomes may change as more data are collected, as shown in KEYNOTE-006. This 

additional data could explain why different best-fitting parametric curves were observed in our analysis 

based on long-term data compared with the analysis based on interim data and why the long-term 

survival extrapolations vary between our two models. 

As clinicians gain experience with new drug indications, such as pembrolizumab for advanced 

melanoma, clinical management is likely to incrementally improve, and such improvements might not 

be fully reflected in KM survival curves based on interim trial data. In KEYNOTE-006, a notable shift 

outward in the KM PFS curves was reported in the long-term follow-up data (mPFS 8.4 months) 

compared with the published interim data (mPFS 4.1 months) (Figure 2). This outward shift also 

impacted our scenario analyses for pembrolizumab as treat-to-progression, showing a much larger 

percent change from the base case in the analysis based on long-term follow-up data (Table S2 in the 

Supplementary Materials). While the exact reasons for this outward shift may not be clear, 

improvements in clinical management could be an explanatory factor. The long-term OS data for 

ipilimumab presented in KEYNOTE-006 (31% patients alive at 5 years) were also notably higher than the 

OS data (22% patients alive at 5 years) from a long-term pooled analysis [11] based on 10 previous 

ipilimumab phase 2 and phase 3 trials (Figure S2 in the Supplementary Materials). Data from the pooled 

analysis were based on trials published between 2010 and 2013, whereas the interim data from 

KEYNOTE-006 were published in 2015. The outward-shifted PFS curves presented in the long-term 
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KEYNOTE-006 data could be at least partially explained by improvements in the clinical management of 

advanced melanoma patients. 

The differences we observed in our interim data- and long-term data-based cost-effectiveness analyses 

suggest a tradeoff between the need to make recommendations for patient access based on uncertain 

clinical benefits from shorter term (immature) data, and the delay that would be required to make 

decisions based on longer-term clinical data in which uncertainty is substantially reduced. While 

coverage with evidence development has been considered by some HTA bodies as a means of 

addressing this inherent tradeoff, the availability of long-term data may be sufficiently impactful to 

warrant an HTA reassessment. 

4.1. Previous Studies 

A previous cost-effectiveness analysis [12] used the KM curves from the trial for the first 60 weeks, then 

used parametric extrapolations based on a previous study by Schadendorf and colleagues [11] from 20 

to 260 weeks for the ipilimumab arm. For the pembrolizumab arm, the authors used trial data for the 

first 60 days, then applied a time-varying hazard ratio versus ipilimumab between week 60 and 260 

based on a previous study [11], and then used data from a US melanoma registry by Balch and 

colleagues [21] thereafter. In the pembrolizumab recommendation from NICE for treatment of 

advanced melanoma, the Evidence Review Group stated that there was a risk of selection bias in using 

data from the Schadendorf study for extrapolation, as well as limitations in the algorithm used to adjust 

for patient characteristics and the long-term survival data from Balch and colleagues [21] used to project 

long-term survival. In contrast, we used trial data only to perform survival curve extrapolations, a 

simplified approach which nevertheless closely replicated the incremental LY estimates reported in the 

previous cost-effectiveness study [12] over a 20 year time horizon. Our estimate of an undiscounted 

incremental gain of 1.15 LYs for treatment of pembrolizumab over ipilimumab was very close to the 
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number reported in a previous cost-effectiveness study (1.14 LYs). These findings suggest that our 

survival curve extrapolation approach may be appropriate. 

However, our base case probabilistic ICUR estimate based on interim data from KEYNOTE-006 (USD 

111,861/QALY gained) was higher than in the previous CEA based on the same interim data (USD 

81,091/QALY gained). The most likely explanation for this discrepancy may be found in the differences in 

how utility values were applied. We applied EQ-5D utility values to the progression-free (0.83) and 

progressed (0.78) health states, whereas the authors of the previous analysis calculated utility scores 

based on multiple time-to-death categories: 360 days or more (0.85), 270–360 days (0.78), 180–270 

days (0.74), 90–180 days (0.75), 30–90 days (0.69), and under 30 days (0.48) to death. Given that our 

estimates of incremental undiscounted LYs (1.15 vs. 1.14) and incremental discounted total costs (USD 

59,023 vs. USD 63,680) were nearly identical to those of Wang et al. (2015), we conclude that the 

differences in our results can be largely accounted for by the differences in how utility values were 

applied in the models. 

4.2. Strengths 

A number of strengths can be identified in our approach and results. First, the modeling approach and 

non-clinical input parameters were identical for both the analyses based on interim data and analyses 

based on long-term data, allowing us to isolate the impact of survival data on the model results. Second, 

we utilized the same partitioned survival modeling approach reported in HTA agency appraisals that 

have reviewed KEYNOTE-006 data for advanced melanoma, which helps to support the external validity 

of our results. We also derived relevant cost inputs from published real-world data [13] and up-to-date 

CMS costing databases [14–16], as well as a previously published economic evaluation [12] in order to 

enhance external validity and comparability with previously conducted studies and HTAs. These inputs 

and methods allowed us to produce an updated estimate of the cost-effectiveness of pembrolizumab 
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versus ipilimumab for advanced melanoma based on more recent clinical and economic evidence than 

has been previously published. 

Another advantage of our analysis concerns the use of long-term follow-up data in which a large number 

of patients at risk was retained throughout the vast majority of the long-term follow-up period. In 

general, it is more challenging to validate results based on small sample sizes, and our use of long-term 

follow-up data provided a sufficient sample size to have confidence in the results despite a high degree 

of censoring in the tail of the survival curves. 

When modeling chronic conditions (such as cancer), or when treatments have differential effects on 

mortality, a lifetime horizon is most appropriate. Our survival extrapolations, based on published clinical 

data from the KEYNOTE-006 trial, indicate that approximately 10% of patients are expected to be alive 

at the 20-year timepoint (Figure 3B). Using a shorter time horizon would result in important clinical 

events (e.g. disease progression and death) being missed, and the full costs and clinical benefits would 

not be captured. While a time horizon of 20 years may seem long, it is consistent with the published 

literature [12] and health technology appraisal documents from NICE [9] and CADTH [10]. A shorter time 

horizon would therefore not be appropriate. 

In addition, we based our extrapolation approach on the NICE DSU TECHNICAL SUPPORT DOCUMENT 

21: Flexible Methods for Survival Analysis [22]. The long-term hazards are expected to follow a simple 

shape in KEYNOTE-006, exemplified in the simple shape (no kinks and no inflection points) of the long-

term OS curve reported by Robert 2019 [7] (5 years follow-up), indicating that the standard parametric 

curve-fitting approach is appropriate. In addition, although other approaches could be used to model 

outcomes from KEYNOTE-006, our model follows methodological recommendations from the NICE DSU 

21 and is aligned with models from the UK [9], Canada [10], and the US [12]. 
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4.3. Limitations 

Our study is not without limitations. First, we did not have access to the trial patient level data and we 

relied on reconstructing KM curves using digitization techniques. However, our reconstructed survival 

data closely replicated the hazard ratios and number of clinical events reported in the interim and long-

term data from KEYNOTE-006. While the reconstructed data consistently over-estimated median 

survival outcomes, the survival over-estimation was consistent when using either the interim or long-

term data (Table 2), and therefore it should not affect our primary conclusions. Second, several of our 

model input parameters, including healthcare resource utilization and utility values, were derived from 

model parameters presented in work by Wang et al. [12]. However, we did not have access to their 

model, which could explain why the base case ICUR in our cost-effectiveness analysis based on interim 

data was higher than what has been reported in previous research [12]. In addition, we based our 

analyses on clinical trial data, and health technology reassessments using RWE could be used as an 

additional confirmatory source of evidence. 

Another limitation of our approach is that during the time period between publication of interim trial 

data and the subsequent availability of long-term follow-up data, new comparators may have arisen in 

the clinical environment which may render the results of a re-assessment using the same comparison 

less clinically relevant. Finally, two different doses of pembrolizumab were studied in the interim 

analysis of KEYNOTE-006, whereas we modeled only the 2 mg/kg every 3 weeks dose in order to align 

with the FDA-approved dose. Outcomes from both doses were reported in a combined KM curve for PFS 

and OS in the long-term pembrolizumab data, but since the two doses studied in the interim analysis 

had overlapping PFS and OS curves, the impact of this discrepancy is expected to be minimal. 

Although HTAs are not commonly used in the US for decision making compared to countries with well-

established HTA systems such as the UK or Canada, we replicated a US cost-effectiveness model in the 
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absence of published cost-effectiveness studies of pembrolizumab for treatment of patients with 

advanced melanoma in Canada and the UK. Using this US study as a foundation for model inputs, we 

replicated the US model as closely as possible and therefore we also used a US payer perspective. While 

the US publication provided a lot of information on the methods and model inputs (e.g., OS 

extrapolation), some details regarding some model parameters (e.g., utility data) were not available in 

the US publication, which explains why we were not able to replicate the exact results of the US study. 

Nonetheless, our primary aim was to replicate the survival reported in the previous study, which is a 

critical validation step before conducting our re-assessment using long-term data, and we achieved this 

aim very closely; the number of incremental LYs estimated in our study (1.15) was nearly identical to the 

value reported in the Wang 2017 study (1.14). Our incremental cost estimate (USD 59,023) also closely 

matched the previous study (USD 63,680), providing additional validation for our replication approach. 

4.4. Future Research 

We have demonstrated the impact of long-term clinical trial data on the results of a cost-effectiveness 

analysis for a single drug in a single therapeutic indication. While the interim analysis from KEYNOTE-006 

provided promising preliminary data, the latter half of the KM curves were heavily censored, leading to 

clinical uncertainty and rendering validation difficult. We addressed this uncertainty by conducting a re-

assessment based on long-term follow-up data. However, since the clinical environment of phase 3 trials 

is highly controlled, our trial-data-based results could be validated in future studies through 

incorporation of real-world clinical evidence. 

Standard parametric curve fitting and extrapolation were used in our analyses. However, a plateau was 

observed in the long-term follow-up data from both arms of KEYNOTE-006, as well as from long-term 

pooled data from previous ipilimumab studies [11], implying a potentially curative effect for a small but 

defined proportion of the advanced melanoma patient population treated with either pembrolizumab 
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or ipilimumab. To account for these observed survival plateaus in the long-term data, a mixture–cure 

modeling approach [23], in which the patient populations are stratified into ‘cured’ and ‘non-cured’ 

groups to better capture their respective outcomes, could be more methodologically appropriate than 

standard parametric curve fitting. Future research is encouraged to investigate the impact of using this 

approach. In addition, our reconstructed data, while very accurately replicating the hazard ratios and 

number of events reported in KEYNOTE-006, nevertheless overestimated the median PFS and the 

median OS for the ipilimumab treatment arm (Table 2). This may be at least in part due to the shape of 

the KM curves which had a steep drop around month 3, resulting in an “s”-shaped curve that is 

challenging to fit with a single parametric distribution. As a result, fitting spline models with several 

knots to the reconstructed trial data could potentially be a reasonable alternative methodology to 

consider in future research. 

5. Conclusions 

While clinical and economic uncertainty may be reduced with longer-term follow-up data, the results of 

our analysis suggest that this reduction may come at a cost: decreased cost-effectiveness. Our findings 

suggest that there may be good reason to consider conducting health technology re-assessments of 

certain oncology products on the basis of longer-term data availability, especially for those health 

technology adoption decisions made based on immature clinical data. A lifecycle or health technology 

management approach could be a practical solution for decision makers to ensure that decision making 

remains informed by the most appropriate, relevant, and up-to-date evidence. Future research 

comparing cost-effectiveness models based on interim and final data would be required to generalize 

the results of our study to other settings. 
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Chapter 4 supplementary materials 

Table S1. Model input parameter values 

Input parameter Base case value Source 

Modeling approach 

Discount Factor (costs) 3% I.C.E.R. 
guidelines Discount Factor (outcomes) 3% 

Starting age of cohort (years) 63 Robert 2015 

Average body weight (kg), pembrolizumab 112.0 Wang 2017 

Average body weight (kg), ipilimumab 98.7 Wang 2017 

Time Horizon (months) 240 Wang 2017 

Fitted parametric curve selections 

Pembrolizumab PFS Log-logistic Calculated 

Pembrolizumab OS Log-normal Calculated 

Ipilimumab PFS Loglogistic Calculated 

Ipilimumab OS Log-normal Calculated 

Unit costs 

Pembrolizumab (per mg) $55.42 CMS 2023 

Ipilimumab (per mg) $165.45 CMS 2023 

Chair time unit cost $144.39 CMS 2023 

Pre-progression patient management (monthly) 
$873.37 

Tarhini 2015, 
CPI-adjusted 

Post-progression patient management 
(monthly) 

$2,722.63 
Tarhini 2015, 
CPI-adjusted 

End of life costs 
$6,484.45 

Tarhini 2015, 
CPI-adjusted 

Adverse event management costs (grade 3+) 

Fatigue $4,350.38 CMS 2023 

Diarrhea $7,159.38 CMS 2023 

Rash $4,350.38 CMS 2023 

Pruritus $4,350.38 CMS 2023 
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Nausea $7,159.38 CMS 2023 

Asthenia $0.00 Assumption 

Arthralgia $4,350.38 CMS 2023 

Vitiligo $0.00 Assumption 

Colitis $7,159.38 CMS 2023 

Hepatitis $4,350.38 CMS 2023 

Hypophysitis $7,159.38 CMS 2023 

Pneumonitis $4,350.38 CMS 2023 

Adverse event rates 
Pembrolizumab 

arm 
Ipilimumab 

arm 
  

Fatigue 0.4% 1.2% Robert 2015 

Diarrhea 1.1% 3.1% Robert 2015 

Rash 0.0% 0.8% Robert 2015 

Pruritus 0.0% 0.4% Robert 2015 

Nausea 0.0% 0.8% Robert 2015 

Asthenia 0.4% 0.4% Robert 2015 

Arthralgia 0.4% 0.8% Robert 2015 

Vitiligo 0.0% 0.0% Robert 2015 

Colitis 2.5% 7.0% Robert 2015 

Hepatitis 1.8% 0.4% Robert 2015 

Hypophysitis 0.4% 1.6% Robert 2015 

Pneumonitis 0.4% 0.4% Robert 2015 

Utility values 

Progression-free health state 0.83 Wang 2017 

Post-progression health state 0.78 Wang 2017 

Abbreviations: CMS, Centers for Medicare and Medicaid Services; CPI, consumer price index; I.C.E.R., Institute for Clinical and 
Economic Review; kg, kilogram; mg, milligram 
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Table S2. Scenario analyses 

A – Scenario analyses based on interim data from KEYNOTE-006 

Scenario analysis (based on interim data) 
ICUR 

($/QALY) 
% change from 

base case 

BASE CASE (deterministic) $111,861 - 

Best-fitting parametric functions from Wang et al $109,715 -2% 

Parametric distributions from NICE (all Gompertz) survival curves cross 

Average patient weight set equal $101,914 -10% 

Proportion of progression-free pembrolizumab patients receiving re-
challenge (CADTH: 25%) 

$107,792 -4% 

Proportion of progression-free pembrolizumab patients receiving re-
challenge (Robert 2019: 19%) 

$106,731 -5% 

Pembrolizumab as treat-to-progression $175,300 36% 

Abbreviations: CADTH, Canadian Agency for Drugs and Technologies in Health; ICUR, incremental cost-utility ratio; NICE, 

National Institute for Health and Care Excellence; QALY, quality-adjusted life-year 

 

 

B – Scenario analyses based on long-term follow-up data from KEYNOTE-006 

Scenario analysis (based on long-term data) 
ICUR 

($/QALY) 
Percent change 
from base case 

BASE CASE (deterministic) $156,829 - 

Best-fitting parametric functions from Wang et al survival curves cross 

Parametric distributions from NICE (all Gompertz) $157,932 1% 

Average patient weight set equal $147,272 -6% 

Proportion of progression-free pembrolizumab patients receiving re-
challenge (CADTH: 25%) 

$146,604 -7% 

Proportion of progression-free pembrolizumab patients receiving re-
challenge (Robert 2019: 19%) 

$143,936 -8% 

Pembrolizumab as treat-to-progression $425,298 171% 

Abbreviations: CADTH, Canadian Agency for Drugs and Technologies in Health; ICUR, incremental cost-utility ratio; NICE, 

National Institute for Health and Care Excellence; QALY, quality-adjusted life-year 
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Figure S1. Deterministic sensitivity analyses 

A – One-way sensitivity analyses based on interim data from KEYNOTE-006 

 

Abbreviations: kg, kilogram; OS, overall survival; PFS, progression-free survival 

 

B – One-way sensitivity analyses based on long-term follow-up data from KEYNOTE-006 

 

Abbreviations: kg, kilogram; OS, overall survival; PFS, progression-free survival  
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Figure S2. Overall survival based on long-term follow-up data from KEYNOTE-006 and pooled long-term 
ipilimumab data from Schadendorf et al. 2015 

 

Abbreviations: KM, Kaplan-Meier; OS, overall survival; PFS, progression-free survival 
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Chapter 5: Conclusion/Discussion 

This thesis explored economic evaluation methods in oncology, both in published literature and HTA 

agency reports, as well as in a novel model-based application using longer-term follow-up data to 

investigate the impact and importance of length of follow-up in clinical data and transparency of 

reporting methods. Broadly, the findings from this thesis suggest that there is a need to improve 

transparency through better documentation of methods used in economic evaluation, both in the 

published oncology literature and in HTA agency appraisal documents. Discrepancies observed in 

published studies and HTA agency reports also suggest the need for reporting guidelines for economic 

evaluation, in addition to currently existing conduct guidelines. This concluding chapter highlights the 

key findings and methodological contributions of this thesis, suggests potentially fruitful avenues for 

future research, and makes a number of concluding statements.  

Key conclusions  

The past decade has seen many advances in economic evaluation methods diffuse into common usage, 

including deterministic and probabilistic sensitivity analysis, extrapolation of clinical outcomes, cost-

effectiveness acceptability curves, modeling techniques (Markov models, partitioned survival models, 

mixture-cure models), survival analysis techniques, and the cost-utility analytical structure. However, 

despite the continuing evolution and methodological advancement of economic evaluation techniques 

and associated guidelines, little research has been dedicated to investigating uptake of methods over 

time and across geographies. The objective of this thesis research was to fill these gaps in the literature 

through investigating published oncology literature, reimbursement submissions to HTA agencies, and 

adapting existing HTA frameworks to include a life-cycle approach using long-term clinical trial data.  

The primary objectives of chapter 2 were to identify, examine, and describe the methods used in 

economic evaluations in oncology over a 10-year period, while secondary objectives included examining 
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the use of identified methods across different geographic regions. The research conducted in chapter 2 

demonstrated that based on a review of 76 papers (20% random sample of 378 studies included for 

extraction), some methodological techniques, including testing of the proportional hazards assumption, 

assessments of statistical fit for extrapolated survival curves, statistical curve-fitting techniques, and 

validation procedures are inconsistently utilized and reported across different regions, despite economic 

evaluation guidelines recommending and supporting their use. On the basis of the findings reported in 

chapter 2, it was suggested that greater detail in reporting of extrapolation methods, statistical analyses, 

and validation is warranted.  

Chapter 3 investigated the question of whether HTA agencies in Canada, the UK, and Australia are 

consistent in their reporting and appraisal of the economic evaluations submitted by drug 

manufacturers for reimbursement of oncology medications. Publicly available HTA recommendations 

and reports for oncology drugs issued by CADTH over a 2-year period, 2019–2020, were identified and 

compared with the corresponding HTA documents from NICE and the PBAC. Baseline characteristics of 

the HTAs from CADTH, NICE, and the PBAC were found to be consistently reported, though NICE 

provided more comprehensive and detailed reports, especially in terms of extrapolation methods, 

despite the requirements of drug manufacturers to follow the same survival analysis guidelines. The 

reported criticisms of manufacturer-submitted cost-effectiveness models and the extent of reanalysis 

undertaken was observed to be different across the 3 HTA agencies, including substantial variation in 

the level of detail provided to support funding recommendations. In addition, the reanalyzed ICER 

values reported by the HTA agencies were observed to be double, on average, compared with the ICER 

values submitted by manufacturers. Given the discrepancies across the HTA agencies as reported in 

chapter 3, it was suggested that in addition to guidelines for HTA submissions for manufacturers, 

common reporting standards should be established for the results of HTA agency appraisals. 
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Standardized reporting is particularly important to consider in the context of time-limited health 

technology decision making where there is urgency to make funding decisions based on clinical data that 

are not yet mature. In the absence of common reporting requirements it may be difficult to assess 

consistency of decision making across multiple appraisals, whereas implementation of common 

reporting standards can provide a way to enhance transparency and credibility of analyses. Common 

reporting standards would also allow analyses that incorporate new techniques and methods to be 

compared with previous analyses in a transparent way, further enhancing credibility.  

Since there is no guarantee that the clinical and economic benefits identified at a given moment will 

persist over time, health technology re-assessment forms a critical component of a life-cycle approach 

which can be used to improve both patient care and system efficiency. The objectives of Chapter 4 were 

to determine the impact of using trial data of different maturity (long term versus short term) on 

survival curve extrapolations, and then assess the impact of these different data on the results of a cost-

effectiveness analysis using the example of a pembrolizumab (which was reimbursed based on interim 

trial data). In this chapter, a partitioned survival model was used to assess the cost-effectiveness of 

pembrolizumab versus ipilimumab for treatment of advanced melanoma from a US payer perspective 

over a 20 year time horizon.  

This chapter presented a health technology re-assessment using longer-term clinical follow-up data of 

an oncology drug in the context of economic evaluation. Drawing from a previously published cost-

effectiveness analysis from the US1 which utilized interim clinical data, the health technology re-

assessment presented in chapter 4 used long-term clinical data to generate an incremental cost-utility 

ratio (ICUR) that was 42% higher than the ICUR value from the previous US study. These results also 

demonstrated that while clinical and economic uncertainty may be reduced in long-term follow-up data, 

a tradeoff exists between the need to make coverage decisions based on short-term data (with 

substantial clinical and economic uncertainty), and the delay that would be required to make coverage 
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decisions based on the longer-term data (with substantially reduced uncertainty). Chapter 4 concludes 

that adoption of a life-cycle approach to HTA, in at least some cases where long-term follow-up data 

from clinical trials are available, is needed.  

Overall impact of results 

This thesis explored economic evaluation methods in oncology, and in doing so has filled several existing 

gaps in the literature. The research conducted in chapters 2, 3, and 4 demonstrates that non-

standardized use of economic evaluation methods in oncology can result in differing assessments of 

cost-effectiveness, and ultimately, reimbursement decisions being made based on inconsistent 

information despite a similar or identical clinical evidence base. The impact of these inconsistencies may 

be especially pronounced in cases where survival analysis and extrapolation methods differ, as small 

methodological differences can result in large divergences in results. 

In the published oncology literature over a 10-year period, basic characteristics of economic evaluation 

methods have been reported with reasonable consistency, demonstrating that many methodological 

advancements in economic evaluation have diffused into common usage. However, extrapolation 

methods and validation of results have been inconsistently utilized or reported. The impact of these 

inconsistencies in the utilization and reporting of methods may indicate different rates of diffusion of 

new techniques across geographies, entrenched ways of conducting economic evaluation in particular 

regions, but may also lead readers/stakeholders to form differing opinions of the value-for-money for 

identical medications. Greater emphasis on reporting the details of extrapolation procedures, testing 

statistical fit, and validation of results is needed in order to provide transparency into how these 

procedures have been carried out, as well as to avoid misinterpretation due to omission of details.  

In HTAs recently published by Canadian, UK, and Australian HTA agencies between 2019-2020 (which 

was the most available data at the time of analysis) the reporting of methods was generally well-



 

126 
 

documented for common economic evaluation attributes, but significant differences were observed in 

the reporting of methodological criticisms and survival analysis methods. These discrepancies suggest 

that HTA agencies emphasize different methodological areas for critique in their appraisals, and while 

some degree of difference in reporting should not be surprising, greater consistency and transparency of 

reporting would assist the public and other stakeholders to better understand the rationale behind 

funding recommendations.  

To address the reporting shortcomings demonstrated in chapters 2 and 3, standardized way of reporting 

is needed. HTA agency guidelines and good practice guidelines should provide, at minimum, an appendix 

or ideally fully integrated guidance for what and how methods should be reported in economic 

evaluation. For example, CADTH should provide specific methods reporting guidance for manufacturers, 

rather than deferring to existing NICE DSU documents.  

In addition, survival analysis techniques continue to evolve over time, and despite the impact that 

extrapolation can have on results, insufficient attention has been allocated to ensuring consistency in 

describing and reporting how extrapolation techniques and statistical curve-fitting procedures are used 

in practice, both in the published oncology literature (as shown in chapter 2) and in appraisals from HTA 

agencies (as shown in chapter 3). The observed inconsistencies in the reporting of the technical aspects 

of economic evaluation methods suggest that greater attention should be focused on ensuring 

transparent reporting of methods based on common reporting standards, both in the literature and in 

reports published by HTA agencies. Prior to the publication of chapters 2 and 3, very little effort has 

been applied to comprehensively describe and assess the consistency of methods used and reported. 

An example of the potential impact of inconsistency is presented in chapter 4, based on a comparison of 

interim RCT data with long-term follow-up data, and incorporating commonly used methodological 

frameworks and analytical techniques detailed in chapters 2 and 3. The duration of follow-up in clinical 
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data may have sizable impacts on the results of cost-effectiveness analysis due to early clinical trial data 

being subject to transient effects that may not be representative of the long-term hazards. As a result, 

the differences in the shapes of the survival curves based on interim and long-term data can lead to 

outsized differences when the clinical data is extrapolated for use in economic evaluation. This chapter 

applies the learnings from chapters 2 and 3, focusing on transparency of the methods used including 

details and discussion of extrapolation techniques, statistical curve-fitting procedures, and multiple 

assessments of validity to support the main results and conclusions. This example of transparent 

reporting of economic evaluation methods also serves to quantify the impact of length of follow-up data 

on the results of cost-effectiveness analysis, highlighting the importance of detailed and transparent 

reporting of the methods used.  

Methodological contributions  

Through examinations of published oncology studies, HTA agency reports, and a model-based health 

technology re-assessment of a drug for treating advanced melanoma, the results of this thesis made 

several important methodological contributions to the literature. 

Using a systematic literature review approach, the results of chapter 2 indicate that while economic 

evaluation methods are routinely reported in the literature, the degree of detail reported is often 

insufficient to meet guideline recommendations, especially in terms of survival analysis methods which 

are often critical to the conclusion of the analysis. In addition to documenting which methods are most 

commonly used, chapter 2 also suggests what is missing which has rarely been done. As shown by our 

findings, researchers need to report details of how survival analysis was carried out, and must also seek 

to validate the results they publish, which will improve the transparency and generalizability of the 

results.  Appropriately detailed reporting and validation are important methodological steps for 

establishing credibility of the results of economic evaluations.  
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Similarly, the results of chapter 3 demonstrated varying degrees of transparency and 

comprehensiveness in published HTA agency reports, signifying that there is room for HTA agencies to 

better ensure that the rigorous methodological requirements for drug reimbursement submissions are 

reflected in equally rigorous reporting requirements. While several papers have compared the funding 

recommendations of HTA agencies, no studies have taken a methodological lens when comparing HTA 

recommendations. Given the discrepancies in reporting observed between CADTH, NICE, and PBAC, 

submission guidelines alone appear insufficient for this task: reporting guidelines are also needed in 

order to harmonize the structure and content of HTAs issued by publicly funded HTA agencies. 

Chapter 4 provides what may be the first concrete example of the impact that health technology re-

assessment using long-term clinical trial data can have on the results of economic evaluation, potentially 

expanding the scope of HTA towards incorporation of a lifecycle approach. Through examining the 

impact of using short-term versus long-term clinical data in economic evaluations, the results of chapter 

4 signal that methods, and the transparent reporting of these methods, are critically important for 

inspiring confidence in the results: even small omissions or unclear reporting of methods can make it 

impossible to replicate the results of a given economic evaluation. Methodologically, there may also be 

an inherent tradeoff between uncertainty and the value of the ICER, and HTM may be a useful approach 

for reducing the inherent uncertainty in the results of economic evaluation.  

Limitations 

There are a number of limitations identified in chapters 2, 3, and 4 that merit attention. For the 

systematic literature survey conducted in chapter 2, there are several sources of potential selection bias. 

These potential biases may be due to limiting searches to English language only, and also due to the 20% 

random sample taken for analysis which may not be fully reflective or generalizable to the full dataset. It 

should also be noted that not all published economic evaluations in oncology include survival curve 
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extrapolation, and the number of studies included in cross-regional comparisons was small. Finally, 

there may be potential for publication bias as oncology models submitted to HTA agencies for 

reimbursement were not included in the analysis (this is remedied through the investigations conducted 

in chapter 3).  

In chapter 3, a key limitation was the limited scope of analysis: 2 years. There is potential for publication 

bias due to this limited timeframe of analysis, and different conclusions could result if conducting a 

similar analysis using data over a longer timeframe. There is also a potential lack of generalizability to 

other therapeutic areas due to the exclusive focus on oncology. In addition, reporting of study 

characteristics of interest was coded as binary (either “yes” or “no”) regardless of the quantity of 

information reported. It was also assumed that manufacturer reimbursement submissions to the HTA 

agencies studied were similar in structure and content since they were based on the same clinical 

studies conducted by the same company, but since direct access to the submission documents 

themselves is not possible this assumption can be neither confirmed nor denied. 

Limitations encountered in chapter 4 include that fact that patient-level clinical trial data was not 

available and instead Kaplan-Meier curve reconstruction techniques2 were utilized for modeling clinical 

outcomes in the cost-effectiveness model. The previously published cost-effectiveness model1 upon 

which chapter 4 was based also could not be directly procured and therefore it was not possible to 

identically replicate the median survival values and the approach taken to model utility values. In part 

due to the rapid evolution of cost-effectiveness modeling methods and constant barrage of new 

innovative therapies being constantly introduced, the clinical relevance of chapter 4 could also be 

potentially diminished due to diffusion of new therapeutic comparators during period between 

publication of interim data and long-term follow-up data used in the analyses.  
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Considered together, the limitations associated with chapters 2, 3, and 4 present several interesting 

avenues of potential inquiry for future studies, both to corroborate and further validate the findings as 

well as to potentially extend the study of economic evaluation methods to therapeutic areas outside of 

oncology. 

Future research 

The key findings and conclusions of this thesis were focused on oncology. Future research could be 

conducted to expand the findings of this thesis through explorations outside of oncology, in other 

geographic jurisdictions, and over additional time points in order to establish generalizability beyond 

economic evaluation in oncology. 

Expanding from the results presented in chapter 2, additional research into the use of novel modeling 

techniques such as discrete event simulation, multistate modeling, and mixture cure models, which are 

more frequently used to overcome specific limitations inherent in more rudimentary analytical 

approaches, would be useful in order to build on the findings from the 2010-2019 data from published 

literature used in this chapter.  

The results from chapter 3, based on data from 2019-2020, suggest that future studies could seek to 

conduct similar analyses for HTA recommendations from additional years in order to account for any 

recent changes in HTA processes or turnover of HTA agency personnel. Efforts could also be put into 

expanding comparisons beyond CADTH, NICE, and PBAC, in order to include other countries that have 

adopted HTA processes such as Sweden, the Netherlands, South Korea, Taiwan, and, more recently, 

Japan.  

The preliminary results presented in chapter 4 could be extended using similar methodology applied to 

therapeutic areas outside of melanoma in order to establish generalizability. In addition, these trial-

data-based results could and should be validated by future studies incorporating real-world clinical 



 

131 
 

evidence to account for the highly controlled environment inherent in clinical trials. In addition, for 

clinical data associated with observed survival plateaus in the long-term data, a mixture–cure modeling 

approach could be more methodologically appropriate than standard parametric curve fitting, and 

future studies could assess the impact long-term versus short-term data in those patient populations. 

Investigating the robustness of the results by fitting spline models with several knots to the 

reconstructed trial data, rather than conventional parametric curves, could potentially also be an 

interesting alternative methodology to consider in future research. 

Conclusions 

The research conducted for this thesis addresses several important knowledge gaps. First, methods used 

in economic evaluation, especially for the extrapolation of survival curves, can have profound impacts 

on the results of cost-effectiveness analysis (chapter 4). Second, the technical aspects of economic 

evaluation, including extrapolation and statistical curve-fitting, are inconsistently reported in appraisal 

documents from HTA agencies (chapter 3) and in the published oncology literature (chapter 2). 

Considered together, these chapters suggest a clear need for greater transparency and common 

standards for the reporting of economic evaluation methods in order to enhance consistency and avoid 

misleading conclusions or misinterpretations due to insufficient or omitted details on methods. 
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