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ABSTRACT

The subject of this study is the development of software to provide for the 

computation of the slowness and effective permittivity functions for standard Surface 

Acoustic Wave (SAW) crystals. These two functions are very important in characterizing 

the physical properties of a substrate and their determination provides a foundation from 

which all further SAW device modelling can be undertaken. To achieve the goal, general 

wave propagation characteristics in the presence of boundaries are examined with 

particular emphasis on the case for piezoelectric crystals. The slowness and effective 

permittivity functions are presented only for the common SAW substrates supporting pure 

Rayleigh wave propagation. To affirm the validity of the software, the computed 

functions are compared with already published experimental data. Other parameters 

derived from the permittivity function are also compared to published results providing 

further justification for the validity of the software.
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CHAPTER 1

INTRODUCTION TO SAW DEVICES

1.1 INTRODUCTION

In recent years, the market for Surface Acoustic Wave (SAW) devices has 

increased significantly. With respect to signal processing applications, surface waves are 

attractive since they offer low velocity non-dispersive propagation, with low attenuation 

up to microwave frequencies. The resulting shorter wavelength and the accessibility of the 

propagation path at the surface of the material allow for the manipulation of the waves in 

ways that would otherwise require huge lengths of cable or complicated delay 

mechanisms. Furthermore, all this is achieved at a cost orders of magnitude smaller than 

for other methods, and the resulting devices are comparable, both in size and in fabrication 

technology, to integrated circuits.

This chapter will serve as a general introduction to SAW devices touching on 

history and development and various types of devices. Only a brief account will be 

presented to give the reader adequate knowledge to allow appreciation of the impact these 

devices are making in the communications industry. Finally, the chapter will conclude 

with a description of the scope of this Thesis .

1
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1.2 HISTORY

Since the early 1960’s when the use of surface waves in electronic devices was 

first considered, there has been a substantial growth of research into methods of 

generating and manipulating the waves, and in developing practical devices for use in a 

wide range of electronic applications. For these devices, the distinguishing trait is that the 

wave propagation velocity is about 3000 m/s or about 100 000 times slower than the 

propagation of electromagnetic waves through free space, and the relative ease by which 

these waves are generated and detected at frequencies between 40 and 2000 MHz. 

However, the significant advantage of these waves stems from the fact that the 

propagation path at the surface of the material is accessible. Because two dimensions are 

available rather than one, there is much more scope to exploit methods of generating and 

detecting waves, or of modifying them as they propagate, and considerable structural 

complexity is feasible.

The physics of propagation of surface waves on a crystalline solid have been 

known since the last century when they were first studied by Lord Rayleigh [1], On a 

solid, a surface acoustic wave may be viewed as a disturbance involving deformations of 

the substrate. These deformations, as shown in Figure 1.1, are caused by the motions and 

subsequent displacements of atoms. In an ideal elastic solid, internal restoring forces 

proportional to the amount of deformation will tend to return the solid to its equilibrium 

position. A surface acoustic wave can be resolved into two components : longitudinal 

waves, in which atoms vibrate in the propagation direction, and shear waves, where atoms 
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vibrate in the plane normal to the propagation direction. The displacement components of 

a Rayleigh wave propagating in the x! direction are [2]

u! =C(ekblX3(1.1a) 

u3 =-ifcb1C(ekblX3 -A1־?biX’)«il('l־v) (1.1b)

where

b! =71-(v« /v;)2

b2 =־Jl־(vfi /v,)2

A = 7b1b2

C is a constant

vR is the phase velocity of the surface wave on the substrate

v! is the velocity of the longitudinal bulk wave in the substrate

vt is the velocity of the transverse bulk wave in the substrate

The longitudinal and vertical displacement components, u! and U3 respectively, are in 

phase quadrature and the elastic displacement is elliptic, with the polarization procession 

at the free surface being retrograde.

Figure 1.2 shows the variation of the displacement components with substrate 

depth in a plane perpendicular to the propagation direction. It is apparent that the 

propagation is along the surface and the displacement amplitudes exist only in a region



Phase velocity vlt ־<■

Figure 1,1: Wave propagation on the surface of a crystal [2]
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Figure 1.2: Variation of Rayleigh wave components with substrate 
depth [2]
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that extends a few wavelengths from the surface of the crystal. The Poynting vector for 

this Rayleigh wave is parallel to the x! direction everywhere an decreases rapidly with 

depth indicating that the wave energy is concentrated near the surface.

If this wave is made to propagate along the surface of a piezoelectric crystal, an 

electric field will be induced in the vicinity of the surface due to the perturbations in the 

crystalline structure. This electric field can be tapped to convert the mechanical wave into 

an electric signal by means of an interdigital transducer (IDT). The interdigital transducer 

generates surface waves by exploiting the piezoelectric effect. The transducer has a set of 

identical electrodes connected alternately to two metal bus-bars . When an oscillatory 

voltage is applied, the transducer generates an electric field which is spatially periodic, 

with its period, L, equal to the spacing of the electrodes connected to one of the bus-bars. 

Owing to the piezoelectric effect, a corresponding pattern of mechanical displacements is 

also produced. Efficient coupling to surface waves occurs if the transducer period L is 

equal or close to the surface-wave wavelength, and this requires an appropriate frequency 

for the applied voltage.

Typically, the transducer will be designed for operation at, say, 100MHz, where 

the wavelength is about 32 microns. The width of each electrode, equal to one quarter of 

the wavelength, is then 8 microns. Owing to the symmetry, the transducer generates 

surface waves equally in two opposite directions, so that it is bi-directional. Usually, the 

waves in one direction are not required, and are eliminated by an absorber comprising a 

lossy material applied to the surface. This basic component constitutes the basis of 

operation of all SAW devices and is displayed in Figure 1.3 below.
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Figure 1.3 : Typical IDT

Over the last several decades, a wide variety of techniques have been developed 

for use in surface-wave devices. Methods have been developed for electrically generating 

and detecting the waves (i.e. for transduction), for reflecting, guiding, focusing and 

amplifying the waves, and for introducing controlled dispersion [3]. These methods 

employ a variety of physical principles. As in bulk wave devices, an important factor is the 

use of piezoelectric materials, though for surface waves the usage is somewhat different in 

that the propagation medium itself is piezoelectric.
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Through the efforts of many researchers in surface wave device technology, the 

field has now reached considerable technical maturity. In modem electronics, surface 

acoustic wave devices are now used in a considerable range of applications to carry out 

particular signal processing functions with great technical facility and cost-effectiveness. 

The important applications such as pass-band filters, pulse compressors and delay line 

oscillators now constitute a well-proven and reliable component technology for television, 

radar and communication systems of many kinds.

1.3 TYPES OF DEVICES

The simplest type of surface-wave device is a delay line. This structure employs 

two transducers, one to generate the waves and one to receive them, as shown in Figure 

1.4. The propagation medium, often called the substrate, is a piezoelectric crystal 

typically 1mm thick. If an electrical signal is applied to the input transducer, it will be 

converted to a corresponding surface wave by exploiting the piezoelectric effect [4], A 

voltage will then appear on the output transducer after a delay determined by the 

transducer separation and the surface wave velocity. Provided the input signal is confined 

to a frequency band in which the transducers are effective, there is little distortion because 

the wave is non-dispersive. Typical delays range from 1 to 50 /zs [5].
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input output

Most surface wave devices play significant roles in signal processing applications. 

In this respect, the versatility of the interdigital transducer is a crucial factor. The above 

description considers only the simplest form of the interdigital transducer. Processing 

applied electrical signals in a prescribed manner, for example, to reject unwanted 

frequency components can be achieved by modifying the transducer design in a variety of 

ways. The two commonest modifications to this component are to vary the electrode 

lengths and to vary the pitch [7].

The SAW convolver [8] is another type of common device that finds frequent 

application in signal processing. This device employs two input IDTs with a metal plate 

covering the space between them. This type of device is depicted in Figure 1.5. The 

signal to be analyzed is fed into one of the IDTs while a time inverted version of the 



reference signal is fed into the other IDT. The metal plate detects a signal which 

corresponds to the convolution [9] of the two signals.

Alternatively, a surface-wave resonator [10] may be used. In this structure, 

periodic arrays of either metal strips or grooves form reflectors, two of which form a 

surface wave cavity. The strips of the reflectors are set at half the desired wavelength in 

the crystal so that the wave reflections from each strip add constructively with the 

reflections from other strips. The resulting resonant cavity introduces poles into the 

response which are not otherwise achievable by other means. The SAW resonator is 

depicted in Figure 1.6.

In another application of piezoelectricity, a set of metal strips in the path of a 

surface wave can be used to generate a secondary surface wave, which may be displaced 

laterally with respect to the input wave, or may propagate in a different direction. This 

principle is used in the multi-strip coupler, which has a variety of forms with many 

different applications [11] . Another consequence of piezoelectricity is that a metal strip 

on the surface may be used as a waveguide for surface waves, enabling a narrow beam to 

propagate long distances without diffraction spreading.
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Surface wave technology can also be exploited to produce several types of stable 

oscillators [13]. In this case, quartz is usually used as the propagation medium because of 

its good temperature stability. One technique involves connecting an amplifier between 

the input and output of the interdigital delay line, creating a loop. Then, the small-signal 

gain of the amplifier will exceed the loss of the delay line, so that the loop oscillates at a 

frequency related to the surface wave velocity. The details of all the various types of SAW 

structures are not of particular interest in this thesis and will, therefore, not be discussed 

further.

The results achieved with the use of surface acoustic wave devices are well suited 

to a wide range of system requirements, particularly in radar and communication systems. 

Since they can often be implemented in small, rugged, light and power efficient modules, 

these devices are also finding ever-increasing application in mobile and space-borne 

communication systems. In terms of quantity, the most widely used SAW device is the 

bandpass filter used in the I.F. section of colour television receivers. Bandpass filters are 

also used extensively in radar and communication systems, and in television broadcasting 

equipment. Chirp filters (interdigital and reflective array compressors [14] ) are widely 

used in radar systems. Some radar systems make use of delay lines or PSK filters. In 

spread spectrum communication systems, PSK filters are used as matched filters, and 

surface wave non-linear convolvers are also having an impact on this area.

In all of the devices described, the structure is simply a piezoelectric medium with 

a metal film on the surface, etched to give an appropriate geometry. Owing to the 

simplicity of the structure, and the availability of convenient fabrication methods, nearly all 
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surface-wave devices use piezoelectric materials. Furthermore, crystalline materials are 

usually chosen in order to obtain low attenuation of the waves, and the commonest 

choices are quartz and lithium niobate.

It is obvious then that great consideration must be given as to the choice of 

substrate material. As noted, the field of SAW devices is mainly concerned with 

piezoelectric insulators (certain semiconductors, e.g. GaAs can however be used). The 

qualities required for good surface-wave material can be categorized as follows:

(a) availability at moderate cost;

(b) good temperature stability

(c) fair electromechanical coupling;

(d) good mechanical properties and resistance to environmental 

effects (e.g. humidity);

At present, availability at moderate cost is really achieved only for the most 

commonly used materials, e.g. quartz, lithium niobate (LiNbO3) and lithium tantalate 

(LiTaO3). With regards to piezoelectric properties and temperature stability an apparent 

tradeoff exists. For instance, there are good piezoelectric materials, i.e. those with strong 

electromechanical coupling, like lithium tantalate and, especially, lithium niobate, but their 

known cuts are very temperature sensitive which excludes them from certain functions. 

Quartz, on the other hand, exhibits only moderate coupling, but has the advantage of the 

ST cut whose temperature coefficient is zero to the first order [15, p.20], Likewise, 
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Berlinite (A1PO4) is a less commonly used material which also has an ST cut that is more 

sensitive to the second order than that of quartz, but offers slightly higher coupling. The 

double oxide of bismuth and germanium (Bi!2GeO20) is interesting for the realization of 

long delays because the corresponding velocity is lower by a factor of 2 as compared with 

other materials.

The primary criteria for substrate choice are the surface wave velocity v, the 

dimensionless number K2, which is defined as the coefficient of electromechanical 

coupling, the relative permittivity fir and the temperature behaviour. The velocity v defines 

the geometry of a device whereas the coefficient K2 limits its maximum bandwidth : strong 

coupling allows large relative bandwidths, high velocity allows higher central frequencies 

but shorter delays. Moreover, the characteristics of propagation (attenuation and 

anisotropy), diffraction and nonlinear effects can also influence the performance of signal- 

processing devices [6, pp.145147־].

1.4 Scope of Thesis

The purpose of this Thesis is to develop stand alone software that allows for the 

computation of two very important functions that characterize a standard SAW crystal 

substrate. The functions, namely the slowness and effective permittivity, provide a basis 

on which all further SAW device modelling can be based. The result is the ability for a 

non-specialist to choose from a select group of commonly used SAW crystals, to enter the 
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desired cut of the selected crystal and to subsequently obtain precise slowness and 

effective permittivity curves for evaluation purposes. Only substrates supporting 

piezoelectric Rayleigh waves are examined.

To provide the groundwork, physical properties of crystals are first discussed 

including an overview of their representations as tensors. Following this, a rigorous 

treatment of tensor transformations is given with reference to abbreviated subscript 

notation. This is followed by a brief description of wave propagation in bulk material 

placing particular emphasis on piezoelectric solids. Wave propagation in the presence of 

boundaries is described in detail as this forms the bulk of the underlying theory on which 

the software was developed. Following this, the slowness and effective permittivity 

curves for standard SAW crystals obtained using the developed software are presented for 

comparison with published data. Finally, conclusions and recommendations complete the

Thesis.



CHAPTER 2

PROPERTIES OF CRYSTALS

2.1 INTRODUCTION

Surface waves are almost always generated and detected by means of interdigital 

transducers (IDTs). These consist of metal electrodes deposited on a piezoelectric 

crystalline substrate by means of photolithographic techniques [4, p.216]. The physical 

properties of the substrate itself are fundamental in determining the performance of a 

particular device. Since this study involves the calculation of important functions that 

characterize particular crystal substrates, an examination of the physical properties of 

crystals is essential.

The physical properties of crystals are defined by relations between measurable 

quantities. Density, for example, is defined from a relation between mass and volume. 

Density is a property that does not depend on direction since mass and volume can be 

measured without reference to direction. On the other hand, a crystal property such as 

electrical conductivity is defined as a relation between electric field and the current 

density. These two measurable quantities must be specified in direction as well as 

magnitude. It is very possible then that a physical property will depend upon the direction

17
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in which it is measured. As an experimental fact, the electrical conductivity of many 

crystals does indeed vary with direction. In such cases, the crystals are said to be 

anisotropic for the property in question. Further examples of crystal properties that may 

depend upon the direction of measurement are : the polarization produced in a dielectric 

by an electric field (dielectric susceptibility) ; the polarization of a crystal that may be 

produced by mechanical stress (piezoelectricity) ; the deformation caused by a mechanical 

stress (elasticity); and the birefringence that can be set up by an electric field (electro- 

optical effect) [4, pp.290-293].

The dilemma then is how to specify the value of a crystal property that can depend 

on direction as clearly a single number cannot be sufficient. There is also the problem of 

how the specification, when given, is related to the symmetry of the crystal. For a few 

properties, such as density, all crystals are isotropic [16], Cubic crystals happen to be 

isotropic for certain other properties as well, such as conductivity and refractive index, 

and this sometimes leads to the misconception that they are isotropic for all properties. 

However, cubic crystals are in fact markedly anisotropic for elasticity, photoelasticity and 

certain other properties. All crystals should, therefore, be regarded as potentially 

anisotropic, and then one can go on to prove that, for certain properties, they are 

isotropic.

In this chapter, then, a method of specifying the physical properties of a crystal will 

be introduced. Only the pertinent properties required for the calculation of the slowness 

and effective permittivity functions will be of concern. These quantities are the elastic 

constants of the material (stiffness and compliance), the piezoelectric stress and strain 
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constants and the relative permittivity constants. It will be shown that the relevant crystal 

properties can be conveniently represented by mathematical quantities called tensors and 

that these standard tensors can be transformed to appropriate values, correctly reflecting 

different orientations dictated by the cut of the crystal. To begin then, a method of 

specifying crystal orientations is necessary and this is the subject of the next section.

2.2 CRYSTAL ORIENTATIONS

An ideal crystal is defined to be a body in which the atoms are arranged in a lattice. 

This implies that (a) when viewed from all the lattice points, the atomic arrangement 

appears the same, and in the same orientation and (b) the atomic arrangement viewed from 

a lattice point is different from the arrangement when viewed from any point that is not a 

lattice point. Crystals are conveniently divided into 32 crystal classes according to the 

point-group symmetry they possess. ,The 32 classes are conventionally grouped into seven 

crystal systems according to the symmetry of the class [16, p.280].

Great care must be taken in specifying the orientation (cut) of a particular 

crystalline solid. The internal structure for most crystalline materials is referenced to an 

orthogonal set of axes denoted by the upper case symbols X, Y, Z, with directions defined 

in relation to the crystal lattice. The standard material tensors are all specified in relation 

to the internal axes X, Y and Z, so for the analysis, depending on the cut of the crystal, 

they must be rotated into the frame defined by x! , X2, X3 ■ In surface wave analysis, the 

cut of a crystal is defined by the surface orientation and the wave propagation direction.
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These are most often defined in relation to the crystallographic axes. The convention 

usually adopted is to define the surface normal x3, followed by the propagation direction 

x!. For example, YZ lithium niobate indicates that x3 is parallel to the crystal Y-axis, and 

x! is parallel to the crystal Z-axis. The orientation of x3 is also referred to as the cut, so 

that for YZ lithium niobate the crystal is said to be Y-cut. Alternatively, crystal cuts are 

sometimes given with an angle preceding the propagation direction, e.g. Y-cut θ° X- 

propagating lithium niobate. Here, Θ is the angle between the X crystal axis and the 

propagating direction as depicted in Figure 2.1 below.

Figure 2.1 : Illustration of the surface wave orientation 
Y-cut 0° X-propagation. X, Y, Z are the crystal 
axes while x!, X2, x3 are coordinate axes.
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In experimental practice, several different notations are employed to specify 

rotations of crystallographic axes with respect to the coordinate axes. In essence, three 

independent parameters are required to specify the orientation of a crystal, and more 

generally, any rigid body. The IRE Standards on Piezoelectric Crystals, Proceedings of 

the IRE, 37, pp. 1378-1395 (1949) considers rotations of the coordinates about all three 

axes. The coordinates axes are labelled t, I, w to correspond with thickness, length and 

width of the usual plate sample geometry. A crystal rotation is described by first aligning 

the t, I, w coordinate axes along the crystal axes and then specifying one, two, or three 

rotations about particular coordinate axes. This system requires use of a z-rotation matrix, 

 rotation matrix, and, in addition, an x-rotation matrix where the rotation angle ξχ is־׳{

clockwise about the x coordinate axes.

However, the procedure employed in this work, is to consider that the crystal itself 

is rotated with respect to a fixed set of coordinate axes. One can carry out the 

transformation from a given Cartesian coordinate system to another by means of three 

successive rotations performed in a specific sequence. The Eulerian angles are then 

defined as the three successive angles of rotation [17, p.82]. A coordinate rotation 

described by ξ , η , ξ' thus corresponds to the crystal rotation angles

φ = - ξ about the z axis

θ = -n about they’ axis 

ψ = - ξ' about the z ’ axis 
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where the primes indicate an axis obtained as the result of a previous rotation. These three 

angles are termed the Euler angles of rotation.

For example, for Y־cut 128° X-propagating lithium niobate, from the discussion 

on crystal cut specification, the angle between the X axis and the direction of propagation 

is 128°. To obtain the Euler angles for this crystal cut, consider the coordinate axes 

initially coinciding with the crystal axes. With respect to φ, no rotation about z is required 

since the Y axis must remain as the outward normal to the surface. The crystal must be 

rotated -38° about the y' axis to give an angle of 128° between the X axis and the 

direction of propagation. ,Therefore, Θ = 38°. And finally, since no rotation about the z 

axis is needed, ψ = 0. Hence, the Euler angles are determined to be (0, 38, 0). Likewise, 

the Euler angles can be obtained for any specified cut of a particular crystal.

2.3 DEFINITION OF TENSORS

The physical properties of crystals can be conveniently represented in what is 

commonly referred to as tensor notation. Since this study is concerned only with the 

physical properties of crystals as they are related to the calculation of the slowness and 

effective permittivity functions, the explanation of particular properties in terms of crystal 

structure is not considered. Furthermore, the discussion will be only limited to the 

physical properties required for the calculations i.e. the stiffness and compliance tensors, 



23

the permittivity tensor and finally the piezoelectric stress and strain tensors. To begin then, 

the notion of a tensor must be clearly defined.

The equations of physics describe the relations between physical quantities. In the 

simplest case, if two quantities x and y are linearly related by a scalar quantity, the 

following relation can be written.

y = ax (2.1)

where a is called the proportionality factor. The impheation here is that the coefficient a 

is intrinsic and depends only on the physical system.

However if x and y are now considered to be vectors, a vector expression of the 

formy = ax is needed. In three dimensional space, this takes the form

3

(2.2)

where the vector equation can be resolved into three scalar equations (i = 1, 2, 3) and the 

coefficient a is now a matrix of nine coefficients (i, j = 1, 2, 3). It is obvious that the 

coefficients and y; are not independent of the coordinate axes even when the vectors x 

and y are themselves completely intrinsic. It follows that the matrix a,;, even though it is 

supposed to establish an intrinsic relation between intrinsic quantities, will change when 

the set of coordinates is changed. The intrinsic character of the matrix is indicated by the 
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fact that its law of variation must be such that the three equations in (2.2) remain valid 

when the vectors x and y are given in a new coordinate frame i.e. the coefficients in the 

matrix have to be modified accordingly. When the law of variation of a vector due to a 

change of the frame of reference is known, the corresponding law of variation of the two 

index matrix can be deduced from it. Restricting ourselves to orthonormal frames of 

reference for which

*i =Σ Rhxi (2.3)

where Rkl is an orthogonal matrix, one can verify that [18]

3 3

aij = Σ Σ RkiR1jaij (2-4)

An intrinsic matrix of this kind (in the sense that its parameters vary in accordance with 

those of a vector under a change of coordinates), is called a tensor.

Therefore, a tensor is an intrinsic entity that possesses a number of indices. A 

scalar can be considered to be a tensor of zero index or rank, and a vector to be a tensor 

with one index. An intrinsic proportionality between a vector and a two-index tensor can 

be described by a three-index tensor and so on. For example, the transformation law of a

three index tensor under a transformation of the frame of reference is
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eijk ־־* Elmn ~ ^li^mj^nkeijk (2-5)

where summation convention for the three indices (f, j, k) is implied. Note that tensors 

can represent physical fields (electric field, stress field etc.) as well as properties of the 

medium (permittivity tensor, elasticity tensor). The physical differences have no effect on 

the mathematical nature of a tensor whatsoever. Furthermore, any quantity that 

transforms in the manner described above is defined as a tensor.

2.4 TENSOR REPRESENTATIONS OF PHYSICAL PROPERTIES

The propagation of acoustic waves in a solid involve time-varying deformations, or 

vibrations, in material media. All material substances are composed of atoms, which may 

be forced into vibrational motion about their equilibrium positions. When the particles of 

a medium are displaced from their equilibrium positions, internal restoring forces arise. It 

is these elastic restoring forces between particles, combined with inertia of the particles, 

which lead to oscillatory motions of the medium. Assuming the solid to be homogenous, 

the forces will be expressed in terms of the stress, T, while the displacements are 

expressed in terms of the strain, S. In an equilibrium state, consider a particle in the 

material located at x = (x! , x2, X3). When the material is not in its equilibrium state, this 

particle is displaced by an amount u = (u! , U2, U3), where the components u! ,U2 and U3 

are in general functions of the coordinates x!, X2, X3- Hence, in non-equilibrium state, the
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particle is displaced to a new position x + u. In the present analysis, the displacement u is 

taken to be independent of time, t. If u is independent of x, there will be no internal forces 

since this simply denotes displacement of the material as a whole. Internal forces are also 

absent if the material is rotated. The strain at each point is defined by [6]

f λ 1 f du! dUj'
(,; = 1,2,3. (2.6)

With this definition, displacements and rotations of the material as a whole cause no strain, 

and the strain is related to internal forces. The strain is a second rank tensor and is clearly 

symmetrical. (5y = Sji), so that six of the nine components are independent [16].

Elasticity is concerned with the internal forces within a solid and the related 

displacement of the solid from its equilibrium configuration. Elastic deformation in a solid 

is governed by Hooke’s Law [19]. Essentially, this law states that the strain is linearly 

proportional to the stress, or conversely, that the stress is linearly proportional to the 

strain. The latter description is stated mathematically by writing each component of stress 

(elastic restoring force) as a linear function of all the strain components. For example, 

along the x axis

xx ~ Cχχχχ$XX χχχιβxz

+ Cxxyx$yx + xxyy^ yy ^־xtyz^yz 

£χχα$& CxiaySzy + ^־xtzz^'zz

(2.7)
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In general then,

= cijH^a (2.8)

i, j, k, I = x,y,z

where summation over the repeated subscripts k and I is implied. The constants Cijki in 

equation (2.8) are called the elastic stiffness constants. Since expansion of equation (2.8) 

yields nine equations (corresponding to all possible combinations of the subscripts if) and 

each equation contains nine strain variables, there are 81 elastic stiffness constants in total. 

However, many of these elements are related. The symmetry of Sy and Ty implies that 

the stiffness is unchanged if i and j are interchanged or if k and 1 are interchanged, so

Cijkl = Cjiti , Cijkl — Cijlk (2.9)

This constraint reduces the number of independent elements to 36. Thermodynamic 

considerations also show that the pair of indices can be interchanged without loss of 

generality [17, p. 144], That is,

Cklij — Cijkl (2.10)

This allows for further reduction of the number of independent elements to 21. In fact, this 

is the maximum number of constants for any medium. These elements represent physical 
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properties of the material under consideration, so that the number of independent 

components may well be further reduced by the microscopic nature of the medium. For 

example, a crystalline material with cubic symmetry has only 3 independent elements.

Alternatively, the strains may be expressed as general linear functions of all the 

stresses,

^ij = Siikl^kl (2.11)

i, j, k, I = x,y, z

where the constants Syu are called the compliance constants, and are measures of the 

deformability of the medium. Equations (2.8) and (2.11) are appropriately termed the 

elastic constitutive relations. Both the stiffness and compliance constants define fourth 

rank tensors since their components have four indices. Likewise, the stress and strain 

fields define second rank tensors.

With respect to electromagnetic properties, the electric displacement vector D and 

the electric field vector E in a crystalline medium are not always parallel. In such cases, 

the components of D are related to the components of E by three linear equations

Dx Jr£xyEy+£xzEz

E>y = tyxEx Jr£yyEy+£yzEz (2.12)

Dz = £aEx+£zyEy+ezzEz
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which can be written in summation convention as

Ζ>,·=Σ«״Ε; (2.13)

where £y is defined as the permittivity matrix. The permittivity matrix is a second rank 

tensor as it defines the relation between one vector and another, as in equation (2.2). The 

stiffness, compliance and permittivity tensors are the material properties of practical 

interest for the analysis of substrates in this study.

From the above discussion, it is abundantly clear that carrying out tensor 

transformations in the full subscript notation for stiffness and compliance is inconvenient 

and can be quite laborious. ,This difficulty can be avoided by using abbreviated subscript 

notation which is always possible when the stress components are symmetric (7); = 7},·). If 

this condition is satisfied, then terms like CxyxySxy and cyxxySxy are equal. Furthermore, since 

Sy =Sfi there is no way to distinguish experimentally between terms like c^Sxy and 

CxyyxSy*. Therefore, no purpose is served in distinguishing from c,j1k. Similar 

arguments reveal that Sijki = Sj״u and Sijki = djik- With these constraints on the stiffness 

and compliance constants, the four subscripts may be reduced to two by using an 

abbreviated subscript notation where [17, p.65]
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I ij

1 xx

2 yy

3 zz

4 yz, zy

5 xz, zx

6 xy, yx

Then, capitalized indices will refer to the abbreviated notation while lower case letters will 

refer to the full subscript form. Relationships between the stiffness with full subscripts and 

those with abbreviated subscripts can be established by considering individual terms in 

equation (2.8). For example,

= (2.14)

is replaced in abbreviated subscript notation by

T}=cx2S2 (2.15)

The general relationship is therefore,

ClJ ~ Cijkl (2.16)
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Similarly, it can be found that [17, p.66]

SIJ ~ SijU X '

1 for 7 and J = 1, 2, 3
2 for I and J = 4, 5, 6
4 for 1 and J = 4, 5, 6

(2.17)

where the multiplying factors (1, 2, 4) arise from the definition of strain in abbreviated 

notation [17, p.27]. Clearly then, abbreviated subscripts provide for economy of space 

and simple algebraic manipulation.

As discussed, the physical properties of crystals are conveniently expressed as 

tensors. Actual values for the elements comprising these material tensors are normally 

given with respect to the crystallographic axes. In this case, the tensors are commonly 

referred to as the standard material constants. However, the crystallographic axes may 

not always be the convenient choice of axes for analyzing specific problems, and it is 

therefore necessary to consider how these standard crystal constants may be transformed 

into other coordinate systems. Transformation of the standard material tensors is examined

in the next section.
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2.5 TENSOR TRANSFORMATIONS

The physical properties of crystalline materials are normally given in tensor 

notation with respect to the crystallographic axes. In this study particularly, various 

different crystal orientations are examined, so it is necessary to transform the standard 

crystal tensors to appropriate values reflecting the particular cut of crystal under 

investigation.

The preceding description clearly demonstrates the economy of space and the ease 

of algebraic manipulation provided by abbreviated subscript notation. As such, it is of 

considerable importance to have a method of performing coordinate transformations 

directly in this notation without the additional effort of converting to full subscripts, 

applying the transformation, and then reconverting to the abbreviated notation. A very 

efficient matrix technique has been developed specifically for this purpose by W. L. Bond 

[20], In essence, the technique involves the construction of 6 x 6 transformation matrices 

that may be used to transform the standard material tensors by means of a single matrix 

multiplication.

To obtain the transformation matrices, consider the stress field T. In full subscript 

notation this transforms according to

7^ = aikajlTa

i,j, k,l = x,y,z (2.18)
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where the a,; are elements of the standard coordinate rotation matrices [19, p. 109]. To 

convert to abbreviated subscripts, each stress component must be examined individually. 

For example, from equation (2.18), the transformed stress is

= α1χΤχχ + a^yTyy + UxzTzz + 2axyaxzTyz 2 ־*־«xx«xz7'xz + 2«xx«xy7'2-19) ״)

Converting to abbreviated subscript notation and repeating the same procedure for each

component of T’ yields the matrix transformation law

Τ'η=ΜηιΤ,

H,I= 1,2, 3,4, 5, 6

(2.20)

where the coefficients define the following 6 x 6 transformation matrix [17 p.74]

■«XX2
a,; a 2xz ^αχζ 2axz«xx 2«xx«xy

«yx2 ar,2 2.ayyUyZ 2a yz«yx 2ayxayy

M =
«ζχ2 2a zz«zx 2azxazy

«yx«Zx ayya^ Qyzd^Z ayyazz ayzazy ^yx^zz + ayzazx ayy^zx «yx«zy

«zx«xx &zyaxy ^zz^xz ^■xy^zz + «xz«zy βχζ&ζχ + axxazz «xx«zy Ί" «xy«jx

«xx« yx axyayy ^xz^yz «xy«yz + «xz«yy «xz«yx + «xx«yz
«xx«yy "י" «xy«yx

(2·2D
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The above matrix is referred to as the Bond stress transformation matrix. Similarly, 

following the same line of argument, the matrix transformation law for strain is

(2.22)

= 1,2, 3, 4,5,6

where [17, p.75]

~ ״2 2
“xx axy

״ 2 Λ 2a״. ayx ׳מ
Λ 2 2

zx zy

2a ^a^. la^a^
2 a '^‘^'zy^'xy

2^xt^yx ^,^xy^-yy

0« a a ^xy xz ^xz^xx ^xx^xy

a2״ a-η.α CL·-Cl.״ a ayz yy yz yz yx yx yy

azyazz “zzazx ^zx^zy

2a,,a ״ Ο,--.,CL·- + CL-,vd ״ 4־  Cl.,.Cl-v ad + a ayz zz yy zz yz zy yx zz yz zx yy zx yx^zy

^^ZZ^XZ &xy&zz + ^xz^zy ^ZX + ^,xx^zz ^,xx^zy ^xy^zx

^^xz^yz ^,xy^yz + ^,xz^yy &xz&yx + βχχβγζ ^xx^yy + &xy&yx

(2.23)

It is apparent that the Bond strain transformation matrix , [N], will be the same as [M], 

except for a shift of the factor 2 from the upper right-hand comer of the matrix, to the 

lower left-hand comer.

Application of the Bond stress transformation matrix to equation (2.8) yields

[c] [5־] (2.24)
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where, for convenience, the matrix form is now invoked to replacing the cumbersome

summation notation. The inverse of equation (2.22) is

[sHWl

and substituting this for [S] in equation (2.24) yields

(2.25)

Μμ][«*׳] (2.26)

Comparison with equation (2.8) reveals that the transformed stiffness matrix is simply

[σ׳] = [Μ]·Μ·[ΝΓ (2.27)

In a similar manner, the transformation law for the compliance matrix can be derived and 

is [17, p.76]

[/] = [ν]·[5]·[μΓ (2.28)

From equations (2.27) and (2.28), it is apparent that the stiffness and compliance 

transformation laws require the inversion of 6 x 6 matrices, [N] and [M], the prospect of 

which seems to be no easy task. This may lead one to question the usefulness of Bond’s 
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transformation method. However, a bit of thought reveals that these matrix inversions are 

unnecessary. Since the inverse of the coordinate rotation matrix [a] is simply its 

transpose, [a]', the matrix [N]'1 corresponding to [a]'1 = [a]' is obtained simply by 

transposing all the subscripts in equation (2.23). Comparison with equation (2.21) shows 

that the result is simply [M]'. That is,

[TV]1־ = [M] (2.29)

Making this substitution into equation (2.26) yields the easily applied 

transformation law

stiffness

[c׳] = [M][c][M]'

In a completely parallel way, the compliance transformation law is simplified to

(2.30)

(2.31)

Finally, since the permittivity matrix is a second rank tensor that relates the electric 

displacement vector to D to the electric field vector E, it must transform in the same way 

as strain and stress. In matrix notation, this is



37

[ε׳] = [α]·[ε]·[4 (2.32)

The calculation of the slowness and effective permittivity functions for various 

crystal substrates requires the use of the material tensors which must be transformed to the 

appropriate reference frame dictated by the cut of the crystal. The great advantage of the 

Bond method for transforming material constants is that it can be applied directly to the 

standard material tensors as they appear in published tables of crystal properties. It also 

involves shorter and less complicated algebra, and provides a more effective book-keeping 

system and guard against error. All coordinate transformations in this study are carried 

out using the Bond transformation method outlined above.

All surface wave devices ejnploy a piezoelectric substrate on which a metal film is 

deposited. For piezoelectric crystals, two additional material constants are needed in 

addition to the ones already presented to appropriately characterize the substrate. These 

constants, along with their respective transformation laws are the subject of the following 

section.

2.6 PIEZOELECTRIC CRYSTALS

In some cases, Hooke’s Law does not fully describe the response of a solid to 

acoustic strain. Certain materials become electrically polarized when they are strained. 

This phenomenon, known as piezoelectricity, occurs in many materials and couples elastic
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stresses and strains to electric fields and displacements. Because of the coupling between 

electric and acoustic fields in piezoelectric solids, measurements of the electrical properties 

depend upon the mechanical constraints imposed on the medium, and vice versa. As a 

result, the elastic constitutive equations must be modified to take adequately reflect this 

coupling phenomenon.

In a homogenous piezoelectric insulator, the stress components Tj at each point 

are dependent on the electric field E (or, equivalently, the electric displacement D) in 

addition to the strain components Sy. Assuming all these quantities are appropriately 

small, the relationship can be taken to be linear and Tij is, therefore, given by the relation 

[6, p. 17]

■ -ΣΣ'Α־Σ^ί, (2.33)

The superscript on cEiju identifies this as a tensor that relates changes of Tl} to changes of 

Ski if the electric field, E , is held constant. That is, it denotes the stiffness tensor for 

constant electric field. Similarly, the electric displacement is usually determined by the 

field E and the permittivity tensor so that [6, p. 17] 

Σ׳'ί;־ΣΣ■:*5■ (2.34)
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where denotes the permittivity tensor for constant strain. The forms of these 

equations can be justified from thermodynamic considerations, the details of which are not 

important here. Equations (2.33) and (2.34) are referred to as the piezoelectric 

constitutive relations. The tensor, 6■^ , relating elastic to electric fields, is called the 

piezoelectric stress tensor.

Alternatively, D can be related to the stress instead of strain, and this can be 

achieved by eliminating S,7 from equations (2.33) and (2.34). The result is

D,
j k

(2.35)

where the new tensors, ε7,; and άφ , are related in a rather complicated manner to the 

tensors in equations (2.33) and (2.34). The tensor e7y is the permittivity tensor for 

constant stress and dtjk is defined as the piezoelectric strain tensor. E can also be 

eliminated to obtain an equation giving T,j in terms of Ski and D; the coefficients of Ski 

then give a stiffness tensor for constant electric displacement. Therefore, the following 

relation is also valid :

^=ΣΣ4Γ«+Σ^Α
k

(2.36)
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The piezoelectric stress and strain constants define third rank tensors. From the

symmetry of Ty, the tensors themselves have the symmetry

&ijk = ^ikj and dijk = dikj (2.37)

The symmetry arguments for the stress and strain imply that abbreviated subscript notation 

can be introduced once again [17, p.271]. The piezoelectric constitutive relations then 

take the form

ϋ,.=ε^+^η (2.38)

T^c^-e^ (2.39)

where the matrices du and eu now define 3x6 matrices [16, p.l 16],

Transformation laws for the piezoelectric strain and stress constants can be derived 

by the Bond method considered in the previous section for the compliance and stiffness 

constants. In any case, the simplified transformation properties can be written in matrix 

formas [17, p.273]

(2.40)
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Μ = [«]■[.][a]·Η־Μ (2.41)

The discussion on the physical properties of crystals and their tensor 

representations given in this chapter provides a strong foundation from which all further 

surface wave analysis can be undertaken. An overview of wave propagation in bulk 

material is presented in the following chapter and this will provide an introduction to the 

mathematics involved in all substrate modelling.



CHAPTER 3

WAVE PROPAGATION IN BULK MATERIAL

3.1 INTRODUCTION

In a solid, an acoustic wave is a form of disturbance involving deformations of the 

material. Deformation occurs when the motions of individual atoms are such that the 

distances between them change, and this is accompanied by internal restoring forces which 

tend to return the material to its equilibrium state. If the deformation is time-variant, the 

motion of each atom is determined by these restoring forces and by inertial effects. This 

can give rise to propagating wave motion with each atom oscillating about its equilibrium 

position. In most materials, the restoring forces are proportional to the amount of 

deformation, provided the latter is small, and this can be assumed for most practical 

purposes. The material is then described as elastic, and the propagating waves are often 

referred to as elastic or acoustic waves. In an ideal elastic solid, acoustic waves propagate 

with no attenuation [21, p.23].

The simplest types of waves are the plane waves that can propagate in an infinite 

homogenous medium. The deformation is harmonic in space and time, and all the atoms 

on a particular plane, normal to the propagation direction, have the same motion. ,There 

42
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are two types of plane waves: longitudinal waves, in which atoms vibrate in the 

propagation direction, and shear waves, in which the atoms vibrate in the plane normal to 

the propagation direction. These are directly analogous to the longitudinal and transverse 

waves that can propagate on an elastic string. The waves are non-dispersive at the 

frequencies of interest here, with velocities usually between 1000 and 10 000 m/s.

This chapter provides an overview of wave propagation in isotropic solids, 

anisotropic solids and finally, in piezoelectric solids. Emphasis is placed on the latter since 

SAW devices primarily consist of metal electrodes deposited on piezoelectric substrates, 

which are necessarily anisotropic. For these cases, wave properties can usually only be 

found by employing numerical techniques due to the complexity of the elasticity equations. 

In contrast, wave solutions for isotropic materials are more readily obtainable, and since 

they have many features in common with the solutions for anisotropic materials, it wש be 

instructional to begin by considering wave propagation for this case.

3.2 EQUATION OF MOTION

In addition to the elasticity equations described in the previous chapter, wave 

motion will be subject to Newton’s laws if the stress and strain are functions of time as 

well as position. These constraints can be combined in the form of an equation of motion. 

Consider, for example, an elementary cube within the material with edges parallel to the 

X!, x2 and X3 axes and of length δ as shown in Figure 3.1.
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Figure 3.1 : Forces on an elementary cube 
within a solid

The cube is centered at x׳ = (x/, x2׳, X3'). Forces are exerted on all six faces by the 

material surrounding the cube. For the faces at x! = x! ± δ/2, the components of force in 

the X! direction are ± δ2Τ״(χ1 ± δ/2, x2׳, X3'). The forces on the faces normal to x2 and x3 

can be obtained in the same manner. Summing all these forces yields the total force on the 

cube. Assuming that δ is small, the total force will have an x, component

This must be equal to the mass ρδ3 multiplied by the acceleration 32u, (x3/(׳t2, where p is

the density. This equality must hold for all points x׳, so that



45

dzu■ ^dTlt
pT?^־dT' 3 >·׳=1׳2־

which is defined as the equation of motion.

3.3 WAVE PROPAGATION IN ISOTROPIC SOLIDS

(3.2)

In an isotropic material, the stiffness tensor Cijti has only two independent 

components which are known as the Lame constants and can be denoted by λ and μ .' 

From symmetry considerations, it can be shown [22] that the stiffness can be written as

-λδ^δ^ + μ(δΛδ·ι + δαδ^ (3.3)

where δ; = 1 for z=/ and = 0 for i * j. Substituting into equation (2.8), the stress can 

be written as

Τϋ=λδ^ + 2μδί} (3.4)

where Δ = Σ5«=1|;
(3.5)

Upon substituting equation (3.3), the equation of motion is modified to become
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where

(A + p)—

V2 =Υ — (3.7)

For an infinite medium supporting plane waves, with frequency co the 

displacement u takes the general form

u = u0 exp[j(mr-kx)] (3.8)

where uo is a constant vector, independent of x and t. Note that the actual displacement is 

the real part of equation (3.8). The direction of propagation is given by the wave vector 

k = (k!, k2, k3 ), The wavefronts are perpendicular to k and are solutions of kx = 

constant. The phase velocity of the wave is defined as V = co1׳k|. If u takes the form of 

equation (3.8), this implies that

t?u

dxJ

Substituting into equation (3.6) yields
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ω2ρ = (A + /1)(k· u)fe;+/i|k|2Up j = l, 2, 3 (3.10)

where

\k\2 =kt+k22+k> (3.11)

Then, using equation (3.8) for uj yields the following expression in vector form׳

m2pu0 = (A + p)(k-u0)k + p|k|2u0 (3.12)

Inspection of equation (3.10) reveals that there is one term parallel to k (which includes
_A_

the scalar product k· u0.) and two terms p^raHSl to uo. It is obvious, then, that two 

cases must be considered. In the first, if uo is not perpendicular to k the product k· u0 is 

non-zero. This implies that for non-trivial solutions uo must be parallel to k. Secondly, if 

uo is perpendicular to k the scalar product is zero, and the remaining terms in the equation 

are parallel. These two cases give longitudinal wave solutions and shear wave solutions, 

respectively.

For shear or transverse waves, u0 is perpendicular to k and the wave vector, kt , 

can be found from equation (3.10) yielding

2 0)2P

μ
(3.13)



48

The phase velocity for shear waves, Vt , is then equal to ωΙ lktl so that

Vt=Jj7p (3.14)

taking Vt to be positive. The fact that this is independent of frequency means the wave is 

non-dispersive.

For longitudinal waves, solutions to equation (3.10) with uo parallel to k must be 

considered. In this case, k is given by

(3.15)

from which we find

(3.16)

For longitudinal waves, the wave vector is denoted by k; and is obtained by substituting

equation (3.16) into equation (3.10). Therefore,

ω2ρ
(λ + 2μ)

(3.17)
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The phase velocity for longitudinal waves, V; , is then given by col lktl or

(3.18)

As shown, this wave is also nondispersive. Comparing equations (3.14) and (3.18) reveals 

that the velocity of longitudinal waves will always be greater than the velocity of shear 

waves since λ and μ are always positive. The velocities are typically in the region of 6000 

m/s for longitudinal waves and 3000 m/s for shear waves.

3.4 WAVE PROPAGATION IN ANISOTROPIC SOLIDS

For isotropic materials, there were two solutions, the shear wave and the 

longitudinal wave, with uo respectively perpendicular and parallel to k. Solutions for 

anisotropic materials are obtained in the same manner by again forming an equation of 

motion with solutions of the form

u = u0 exp[j(ct»-k x)] (3.19)

In this case, three solutions representing non-dispersive acoustic waves are obtained.

Usually, one solution has the displacement u0 almost parallel to k, and is called the quasi­
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longitudinal wave. The other two solutions with different velocities usually have u0 

almost perpendicular to k, and are called quasi-shear waves. For certain propagation 

directions, the longitudinal wave can have 110 parallel to k, in which case it is then called a 

pure longitudinal wave. Shear waves that are perpendicular to k are called pure shear 

waves. Owing to anisotropy, each of the three waves will have a phase velocity dependent 

on the propagation direction.

Piezoelectricity is the phenomenon which, in many materials, couples elastic 

stresses and strains to electric fields and displacements. It occurs only in anisotropic 

materials whose internal structure lacks a centre of symmetry. It occurs in many crystal 

classes but is often weak, thus having little effect on the elastic behaviour. However, 

SAW device technology is concerned with devices that make crucial use of 

piezoelectricity, so it is necessary to take account of the effect in the analysis. In the 

following discussion of wave propagation in piezoelectric solids, only insulating materials 

will be considered.

3.5 WAVE PROPAGATION IN PIEZOELECTRIC SOLIDS

In one way or another, piezoelectric crystals provide the physical basis for almost 

all practical applications of acoustic fields. This is because they provide ^nd' effective 

means for electrically generating and detecting acoustic vibrations. This section is 

concerned with acoustic wave propagation in piezoelectric materials, which must of 

course be anisotropic. Because of the complexity of the equations for this case, the 
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solutions can usually only be found using numerical techniques. Subsequently, the 

account here is mainly descriptive for the sake of simplicity. A more formal mathematical 

treatment is given in the next chapter.

The mechanical equation of motion given by equation (3.2) is valid for a 

piezoelectric material. It is convenient, however, to express this in terms of the 

displacements w; and the electric potential, Φ. Since elastic disturbances travel much 

more slowly than electromagnetic ones, the quasi-static approximation [6, pp.67-70] can 

be invoked. That is, the electric field is given by the gradient of the potential, so that

d Φ
(3־20)

Substituting this relation into equation (2.33), and using equation (2.6) for stress, the 

equation of motion is modified to yield

d2® 
dxjdxk

d2uk 
d xjx!

(3.21)

In addition, since the material is assumed to be an insulator, there are no free charges.

Therefore, div D = 0. Applying this to equation (2.34) gives
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<?2Φ 
d XiXj d XiXk

(3.22)

Four equations relating the four quantities u, and Φ can be derived from equations (3.21) 

and (3.22), and if appropriate boundary conditions are specified, the wave motion can be 

determined.

In all practical cases of interest, the wave propagates on a half-space of some 

material. The boundary conditions introduced can substantially alter the characteristics of 

the waves. The solution of primary interest in this study is the surface acoustic wave 

(SAW), whose existence was first shown by Lord Rayleigh in the 19th century. This type 

of wave can exist in a homogenous material with a plane surface. It is guided along the 

surface, with its amplitude decaying exponentially with depth. The wave is strongly 

confined, with typically 90% of the energy propagating within one wavelength of the 

surface. It is non-dispersive, with a velocity of typically 3000 m/s. In general, the surface 

wave velocity is less than the velocities of plane waves propagating in an infinite material. 

Of the three plane wave solutions, the slow shear wave has the lowest velocity, so the 

surface wave velocity must be less than this. In practice, the surface wave velocity is 

usually quite close to the slow shear velocity.

For some particular orientations the piezoelectric Rayleigh wave can have its 

displacement confined to the sagittal plane. This occurs if the sagittal plane is a plane of 

mirror symmetry for the crystal [16, p.278]. The wave is then called a pure mode, and
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the propagation direction is called a pure mode direction. For a given surface orientation, 

the wave velocity is symmetrical with respect to a pure mode direction.

A bounded medium also supports many other types of acoustic waves, and the 

boundary conditions can substantially affect the nature of the waves. For example, in a 

plate with two plane parallel boundaries, a series of dispersive modes with different 

velocities can propagate. On the other hand, a medium with dimensions much larger than 

the wavelength can support waves with characteristics similar to those of waves in an 

infinite medium. The term bulk waves is often used to describe waves which are not 

bound to a surface.



CHAPTER 4

WAVE PROPAGATION IN THE PRESENCE OF BOUNDARIES

4.1 INTRODUCTION

This thesis is primarily concerned with the propagation of acoustic Rayleigh waves 

in piezoelectric media which must, of course, be anisotropic. In the previous chapter, 

wave propagation in bulk material was considered with reference to isotropic, anisotropic 

and piezoelectric solids. For isotropic materials, we saw that there were two wave 

solutions, namely the shear wave and the longitudinal wave. For the shear wave, 110 is 

perpendicular to the wave vector k whereas for the longitudinal wave, it is parallel to k. 

For piezoelectric materials, which are of primary interest in this study and in the 

fabrication of practical SAW devices, there are two shear wave solutions in addition to the 

longitudinal wave i.e. there are three plane wave solutions in total. This chapter extends 

the development in the previous chapter for wave propagation in piezoelectric solids to 

include the case for piezoelectric Rayleigh wave propagation in the presence of 

boundaries, a necessary condition for all SAW analysis . The analysis wffl culminate in the 

definition of an effective permittivity function for a piezoelectric half-space, a concise 

formulation of which is given in the next chapter.
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4.2 GENERAL WAVE EQUATIONS FOR A PIEZOELECTRIC HALF-SPACE

The potential and charge density at the surface of a non-piezoelectric half-space 

are related by a parameter known as the effective permittivity [6, pp.3942־]. However, 

the case of most interest for SAW device modelling is that of a piezoelectric half-space 

and, as such, a rigorous treatment for this case is imperative. The method of analysis 

invoked in this study was first proposed by Ingebrigtsen [23] and developed later by 

Greebe et al. [24] and by Milsom et al. [25,26]. Perturbation theory [27] and normal 

mode theory [28] are other approaches which give essentially the same results as the 

effective permittivity approach. However, they are not considered in this study.

For a piezoelectric material, the equation of motion takes on the same form as 

equations (3.14) given in the previous chapter, in terms of the displacement u and the 

potential Φ. Again, we shall consider plane wave solutions with frequency ω and wave 

vector k. As in Chapter 3, it is assumed that the potential and acoustic displacements are 

proportional to εχρ(/ωί), with frequency ω positive. The displacement and potential then 

take on the familiar form

u = u0 exp[j(ty r - k · x)] (4.1) 

Φ = O0exp[j(iWi-kx)] (4.2)
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where Uo and Φο are constants, independent of x and t, and k is real. Initially, we consider 

a harmonic solution with variables proportional to εχρ(/β*4)> with β real. Fourier 

synthesis will then be used later to generalize the solution. The procedure here is very 

similar to that described for calculating the bulk-wave velocities as discussed previously. 

However, the electric boundary conditions at the surface will not be specified initially. 

This enables a solution for any value of β to be obtained. Note that wave motion 

propagating in the -x! direction is denoted by positive values of β. This is done for 

convenience when using Fourier synthesis.

To begin the analysis, we assume a piezoelectric half-space as depicted in Figure

4.1 below:

Figure 4.1: Axes for surface wave analysis
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From the discussion in the previous chapter, an applied electrical force on a piezoelectric 

solid will result in an appropriate mechanical response in the form of acoustic vibrations 

and vice versa. Acoustic waves in a typical material are some five orders of magnitude 

slower than electromagnetic waves and, as such, the piezoelectrically coupled electric field 

can be assumed to be quasistatic. In fight of this, Maxwell’s equations reduce to [25]

£>.,,= Ps (4.3)

and

(4.4)

where D, E, φ and ps are electric flux density, field, electrostatic potential and free charge 

density. The comma here denotes differentiation in the usual tensor notation [29].

The above equations must be satisfied for the piezoelectric solid which occupies 

the half-space (x3 < 0) and for the free space region (x3 > 0)· In addition, the free charge 

density, ps, can be taken as zero since the solid is assumed to be a perfect insulator. 

Equation (4.3) reduces to Laplace’s equation in the free space region. That is,

O (4.5)=״,0

Newton’s stress equation of motion, equation (3.21), must also be satisfied by the elastic 

field quantities discussed previously. In the absence of internal body forces, this becomes
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Tijj-pUi=° (4.6)

where T is stress, u is elastic displacement and p is the density. In the discussion of 

tensors in Chapter 2, we saw that strain, 5, was defined by

(4-7)

The above equations are coupled through the piezoelectric equations of state (constitutive 

relations) given in chapter 3. For convenience, these are listed again below:

Ty = Cyasa — eUjEt (4.8)

+ sikEk (4.9)

where cE, e and es are, respectively , the elastic, piezoelectric and permittivity tensors of 

the solid. As before, the superscripts E and S simply imply that the constants describe 

elastic and dielectric properties measured under conditions of constant electric field and 

stress, respectively.

A few assumptions will be made in obtaining a solution. Firstly, the electrodes are 

assumed to be massless, in order that mass loading effects be neglected. The electrodes
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are also assumed to be perfectly conducting and of sufficient length in the x2 direction to 

make all differentials with respect to x2 negligible. In addition, the time dependence will 

be suppressed throughout the analysis, since all quantities will be assumed to vary as 

exp(jwi). Finally, the x2 dependence of the field variables for the region < 0 is assumed 

to take the form of exp (jaxf), where a is a dimensionless decay coefficient.

With these criteria, partial wave solutions with displacements u' and potential Φ' 

take on the general form

u' = u0 exp(Jax3)exp[j(iyi+ /?%;)] (4.10)

Φ' = Φ0 exp(jax3)exp[j(tui + βΧ1)] (4.11)

where u0׳ and Φο' are constants and a is the x! component of the wave vector which, by 

definition, has no x2 component. These equations are required to satisfy the homogenous 

second-order differential equations of motion for an infinite medium, which are rewritten

here in shorthand tensor notation [29] for ease of reference.

-p u. + cfjktukJi + ekij(j)ki - 0 (4.12)

eiklUk,li £ίΙίΦ,Η θ (4.13)



60

Note that the standard material tensors for a crystal are usually given with regards to the 

crystallographic frame of reference and, hence, must be rotated into the appropriate 

canonical frame of x!, x2, X3 , defined by the cut of the crystal.

Substitution of the elastic quantities into the equations of motion, equations (4.12) 

and (4.13), yields four linear homogenous equations in the four variables u0׳ , Φο'. In 

simplified matrix form, the transformed equations become

® «55 C15

pv2+״«־

a2c£-ja(c£+c£) «^«35 7«(^«13 י*" «55 ) (31» 15» ^)7 35»^»

«־11

«2

ΰ,

Φ

a2cf5-ja(Cu+4) a2c^-2jac^ 
-c^ + pv2

a2c£-ja(c£+c£)

־4

® «34 — J ^(«14 + «36 )

“«16

&· «35 ~ j^CY3 "*( 55» י 

־«1*5

a^-ja(c3£6+4)

~C56

oc2c33 — 2jac3s
-cf5+pv2

®2«33 ~ + «35 )

— «15

cc e35 —ja(ei5 + e31)

“«11

( 36» 14)» ®J 34 ־» ®

16»“

ja (e13 + e35) ־ 33» ®

־«15

-a2e^+2jae^
4

(4.14)

where v (= ω/ k) is the component of phase velocity in the x! direction corresponding to 

the wave number k and where the material constants cE , e and £> have been reduced to 

the standard matrix notation of abbreviated subscripts.

For a non-trivial solution to exist, the determinant of the left-hand matrix must be 

set to zero [30]. Inspection of equation (4.14) reveals that the determinant of this matrix 

will be an eighth order polynomial in a. Then, each of the eight roots will represent an
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elementary mode of the half-space. Furthermore, for each root, the equations also yield 

the relative values of u0' and Φ0'. However, since the solution will not in general be a 

surface wave solution, great care is needed in choosing acceptable roots. Four of the 

roots will not correspond to excitation at the surface and are, therefore, unacceptable. To 

ensure decay into the substrate for positive k (or v), those roots which are real or complex 

must have positive real parts while imaginary roots which represent nondecaying bulk 

modes must also be positive for propagation away from the surface. This is not always 

the case, however, because for an anisotropic material the power flow direction and the 

wave vector are not, in general, collinear with one another [17, p. 135]. This second order 

effect is commonly referred to as beam steering. Note that the power flow direction may 

be found by examining the variation of phase velocity with propagation direction [6, p.47].

The four acceptable elementary solutions to equation (4.14) corresponding to the 

selected roots a״, take on the general form

=“o״׳exp(ja״ x3)exp[j(mt + ^x1)] (4.15)

Φ״,(η) = exP(7 an x3)exPt{+βχ1 for zn, 4.16) 4 ,3 ,2 ,1 = מ)

where each solution has been normallized with respect to &m[n} which has been rewritten

as ΰ4Π) for convenience. A more general solution is given by a linear combination of the

elementary solutions. That is
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4

u, = Σ exp(a״k x3), i = 1, 2, 3, 4 (4.17)

Then, the total solution in the half-space has displacements ΰ and potential Φ, where the 

tilde indicates that the solution is harmonic, with variables proportional to exp(j β x!). 

The total solution is taken to be a linear combination of the partial waves, so that

4

m=l

and

(4.18)

4 

φ = Σα״φ״.
m=l

4.3 MECHANICAL BOUNDARY CONDITION

(4.19)

The exclusion of mass loading effects implies that there must be no force on the 

free surface (x3 = 0) of the solid. The homogenous mechanical boundary condition at the 

interface can be expressed as

(4.20)at x3 = 0,0 - 733 7*13 = 723 ־
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or in more compact form

N3Ti3=O, atx3=0 (4.21)

where Ni is the unit surface normal and the stresses are defined by equations (2.33). This 

stress-free boundary condition is used to determine the relative values of the coefficients 

Am in equations (4.17) and (4.18) above. The relative values of these constants can be 

found since there are three equations relating the four constants Am. Subsequently, the 

relative values of the displacements ΰ and potential Φ for the harmonic solution can 

then be obtained from equations (4.17) and (4.18) yielding a solution for any value of β.

4.4 ELECTRICAL BOUNDARY CONDITIONS

In addition to the mechanical boundary condition stated in the previous section, the 

solution for an interdigital array of electrodes on the surface of a piezoelectric solid must 

adhere to certain electrical boundary conditions. The normal component of electric 

displacement D3 in the piezoelectric may be denoted by D3 (0 ) at the surface while that 

above the surface may be denoted by D3 (0 ל. The electrical boundary conditions are as

follows :
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• The discontinuity in the normal component of flux is equal to the free charge 

density at the surface, cr(x!), which must be zero on free surfaces. Therefore,

Dj(0+)-D3(0־) = σ (metallized surface atx3 -0) (4.22)

D3(Q+)-D3(O~) = O (free surface atx3 =0) (4.23)

• At the free surface x! = 0, tangential electric field E! and hence potential φ, 

must be continuous. (Since all differentials with respect to x2 are negligible, 

note that E2 = 0.)

• Apart from time variation, potential φ must be constant over all electrodes that 

are connected.

It is obvious that the normal component of electric displacement D, and the 

potential φ are the variables of primary interest in problems concerning electrical excitation 

at the surface of a piezoelectric. These variables must satisfy the boundary conditions 

cited above. The electric displacement can be calculated from the potential, acoustic 

displacements and material tensors by using equation (4.9). The acoustic displacements, 

of course, define the stress tensor [ see equation (4.7) ] and the potential is obtained from 

the solution described in section 4.2. The potential at the surface can be denoted as 

φ(χ!), so that
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^(χ1) = φ(χ1, 0) (4.24)

The electric field can then be obtained using equation (4.4). The determination of these 

two variables allows for the definition of the ratio D3(0” )/φ (x3), which will, in general, 

be a function of β.

The potential Φ(χ15 x3) must also satisfy Laplace’s equation ν2φ = 0 [25] in the 

free space region, x3 > 0. Furthermore, the x3 dependence of potential must be of the 

form exp(-l/3l x3) since Φ must vanish at x3 = «־. Together with the fact that the potential 

is also proportional to exp(/ βχβ, the following general relation is valid forx3 > 0.

φ(χ!, x3) = 0(x!) exp(-|/J| x3) (4.25)

Ultimately, the goal is to derive an effective surface permittivity function for 

piezoelectric solids similar to that of Greebe et al [24], Basically, the permittivity function 

relates the Fourier transforms [9] of charge density and potential at the surface x3 = 0. 

However, the formulation given in this study will differ slightly from Greebe s definition in 

that contributions from both the internal and external field wש now be included in the

same function. For completeness, Fourier transforms and inverse transforms can be 

defined, respectively, as
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ψ(ϊ’χ3) = τ~\ 
ζ.π ׳־-“

^(jj,x3) = £ ψ(1ε,χ3)exp(-jkx^dk (4.26)

where Ψ can be any of the field variables presented .

The permittivity function is significant in that it embodies an exact solution to 

equations (4.12) and (4.13) satisfying the stress-free boundary condition. For a particular 

crystal orientation the effective permittivity, 8s , is a function only of the horizontal 

component of phase velocity v. Once it has been determined, the complete system of 

equations defining a particular transducer configuration reduces to the one-dimensional 

problem of satisfying the electrical boundary conditions. In addition, the function 

embraces all values of v including those for which bulk waves form part of the solution. A 

concise formulation of the effective permittivity function is treated in the following 

chapter.



CHAPTER 5

SLOWNESS AND EFFECTIVE PERMITTIVITY

5.1 INTRODUCTION

As described in chapter 1, surface acoustic wave devices consist of metal 

electrodes deposited on piezoelectric substrates. For the effective modelling of such 

devices, analysis of the substrate is critical in determining its suitability for the intended 

end use of the device. Two functions of great interest in substrate analysis are the 

slowness and the effective permittivity functions. These functions serve as the basis for 

the modelling of all SAW devices. Slowness is simply the inverse of phase velocity and is 

useful for depicting the three plane wave solutions travelling in a plane of propagation for 

the media in question. The form of the slowness curve will depend on the substrate 

material and the orientation of the surface normal. Similarly, the effective permittivity is a 

very robust tool for solving problems concerning a one-dimensional set of electrodes on 

the surface of a piezoelectric half-space. The evaluation of this function is crucial because, 

for a given substrate orientation, it effectively stores all the relevant mechanical 

information in a scalar electrical quantity. To begin then, a concise formulation of the 

slowness surface must be presented and this is the topic of the following section.
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5.2 SLOWNESS OR INVERSE PHASE VELOCITY

Differentiating the wave equation given in chapter 3 with respect to time, and 

making appropriate substitutions allow it to be rewritten in matrix form with abbreviated 

subscripts as

(5.1)

with vj being the particle velocity variable. The matrix-differential operators ViK and Vz_7

have also been introduced and they are defined by

0

d 
dy

0

dz
0 d d

dz dy
d

0
d

dz dx
d d

0
_dy dx

0 0 d 
dz

d 
dy

0 d
0 d

dz dx
d d d

0
dz dy dx

(5.2)
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A uniform plane wave propagating in a source-free region (F = 0) along the direction

\ = lxx + lyy + lzi

has fields proportional to expfj (ω t - k I · r)].

(5.3)

As such the matrix operators may be

replaced by matrices -j k,K and -jk^ where

X 0 0 0 lz ly
-jkiK=~jkliK = -jk 0 ly 0 lz 0 1x

0 0 k ly 1x 0

and

X 0 0־
0 ly 0
0 0 lz

-jkLj =-jklLj = -jk 0 lz ly
lz 0 1,
Λ 1, 0

For the determination of plane wave solutions, the wave equation given in equation (5.1)

with F = 0 (absence of internal body forces), reduces to [17, p. 165]

k (.liKcKiJ'Lj') vj ~ k ΓΙ;ν7· — pO) v, (5.6)



70

This is called the Christoffel equation and the matrix, Γ,,, is called the Christoffel matrix. 

This matrix is determined solely by the plane wave propagation direction and the stiffness 

constants of the medium. The formulation of the Christoffel equation applies to uniform 

plane waves in both isotropic and anisotropic media. However, the analysis for anisotropic 

media is of more significance since these are the materials used in the fabrication of all 

practical SAW devices.

In an anisotropic solid, the propagation characteristics of plane waves can be found 

by rewriting the Christoffel equation (5.6) in the form

[42Γ״-ρα>2«״][ν,]5.7) 0־)

By setting the characteristic determinant of equation (5.7) equal to zero, the following 

dispersion relation is obtained.

Ω(ω, kx, ky, ^) = |ΡΓ,.,.(ζχ, ly, ζ)-ρω2δ..| = 0 (5.8)

At fixed frequency, cu equation (5.8) defines a surface in fc-space that gives k as a 

function of its direction 1. ,This is termed the wave vector surface. However, 

examination of equation (5.8) reveals that the first term is proportional to k2 while the 

second term is proportional to a}. The dispersion relation can, therefore, always be 

expressed entirely in terms of the variable which has units of inverse of velocity and
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is termed the slowness. In other words, the wave vector k will always be proportional to 

a>. As such, it is more convenient to consider the slowness (or inverse velocity) surface. 

This surface gives the inverse of the phase velocity % = as a function of

propagation direction and is independent of a It is preferred over the wave vector 

surface, because it does not scale with ω A typical slowness curve and its relation to the 

wave vector is depicted in Figure 5.1 below. Note that for an isotropic material, k and v 

are independent of Θ, resulting in a slowness curve that is circular in nature [17, p.385].

Figure 5.1 : Typical slowness curve and its relation to the wave vector.
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However, the scope of this study is concerned with acoustic wave propagation in 

piezoelectric media. As such, a stiffened Christofell equation which takes piezoelectricity 

into account must be employed in the analysis. The stiffened equation takes the exact same 

form as equation (5.6) above, but with ckl replaced by a piezoelectrically stiffened 

constant defined by the expression below [17, p.300].

In order to generalize the analysis for all possible cases, we assume anisotropic 

solids of the type represented by the classes 1 and 1 in the triclinic crystal system [16, 

p.280]. Since these crystals have no effective symmetries whatsoever, the compliance and 

stiffness matrices have the full complement of 21 elastic constants. In substituting the 

piezoelectrically stiffened constant into equation (5.6) and performing the matrix 

multiplications, the Christoffel equation appears in the form

(5.10)

-sn2 Gc| -c^ cos2G -sin2 9c^ -cf6 cos2G -sin2 Gc^ -c^ cos2G : -sin2 G^-e^ cos2G V Λ

-2cySin0ccs0 -(4+c«)sinGcosG -(c^+c£)sinGcosG . ~(e£ +e^)sinGcosG
-sin2 de# -cf6 cos2G -sin2 0c£-c£ cos2G -sin2 Gc£-c* oos2G ; -sin2 Ge£-ef6 cos2G v> v>

2 -(c!4 +c£)sinGoosG -2c^sinGcosG -(c%+4)snGcosG; -(i£+e£)sinG006G ר

-sin2 -Ctf oos2G -sin2 Gc£ 4־־ cos2G -sin2 Gc£ -Cg cos2G ; -sin2 Ge£ 4־ cos2G Vz —fXO Vz
-(4 +c^)snGoos0 -(c£+c£)sinGcosG -2c£sinGc08G : -(4 +4)sinG00sG

-sn2 0e£ -efj ccs2G -sin2 Ge£ -ef6 cos2G -sin2G4-4oo820^ sin2 G4 2®» 4־θ jcaf)
-(e^ +4!)sinGcosG -(ef4+e^)smGcosG -(4+4)sin0c080 +24sinGcosG
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Setting the characteristic determinant of the Christoffel equation to zero and 

solving for the roots yields three values for (k I cd)1 from which the slownesses are readily 

obtained. It is seen that there will be three uniform plane wave solutions for each 

propagation direction. Each have particle velocity polarizations oriented at right angles 

to one other [17, p.219] and are pure transverse (shear) or pure longitudinal for certain 

propagation directions only. Plane wave solutions for v are found by the method outlined 

above. Once v has been found, the electric potential is easily calculated. Furthermore, 

once the characteristic equation has been solved, the particle velocity polarization can be 

obtained from equation (5.5). Note that the general Christoffel equations given by 

equations (5.6) and (5.10) are not restricted to any particular coordinate system. It is only 

necessary that the propagation direction 1 and the stiffness constants c; j be referred to 

the same coordinate system.

5.3 EFFECTIVE PERMITTIVITY

A basic concept used in the analysis and modelling of SAW devices is the effective 

permittivity, which gives a description of the electrical behaviour of the surface taking 

account of the acoustic behaviour of the material. This function is a powerful tool for 

solving problems concerning a one-dimensional set of electrodes on the surface of a 

piezoelectric half-space. As such, it provides an effective means of SAW transducer 

analysis. For variables proportional to εχρ(/ω t), the surface potential φ (x!) and charge 
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density σ (x!) are related by the effective permittivity, and the solution is then determined 

if appropriate boundary conditions are applied. Usually, φ (x!) is specified at the electrode 

locations, while σ (x!) must be zero on all unmetallized regions. It should be noted that 

acoustic wave excitation is allowed for implicitly by the definition of effective permittivity. 

This includes all forms of acoustic wave that can be excited. Therefore, in addition to the 

usual excitation of piezoelectric Rayleigh waves, the effective permittivity will, when 

appropriate, include the effects of Bleustein-Gulyaev waves [31, pp.4142־], pseudo- 

surface waves [32, pp.29-31] and bulk waves. In fact, many of the properties of these 

waves may be deduced by examining the effective permittivity function. However, the 

effective permittivity does not show the effect of any waves which are not piezoelectrically 

coupled at the surface. Such waves, which may occur in a piezoelectric material, cannot 

of course be excited by electrodes on the surface; nevertheless, they may be present in a 

practical device owing to mode conversion at a discontinuity, for example an edge of the 

substrate.

At the surface x3 = 0 of a piezoelectric half-space, the normal displacement in the 

vacuum is denoted D3 (0+), and is given by

D3(+) = ε0\β\ φ (xf) (5.11)

The electrical boundary conditions stipulate that the surface potential φ(χ}) must be the

same on both sides of the boundary. However, the normal component of electric 
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displacement can be different. This discontinuity be related to the potential by the

effective permittivity function, es (β), defined as [6, p.44]

zs (β) =
P3 (0+) - P3 (0־) 

\β\ Φ )
(5.12)

where β is the wavenumber of the surface wave, £>3 (0+) is the electric flux density on the 

free-space side of the surface and D3(0) denotes the electric flux density on the 

piezoelectric side. In addition, the x! dependence cancels on the right side, so that 8S (β) is 

not dependent on x!. In essence, the effective permittivity gives the electrical behaviour of 

the interface between the vacuum and the piezoelectric half-space.

If D3 (0+) and D3 (0 ) differ, there must obviously be free charges present at the 

surface, implying the presence of electrodes. Thus, if the total charge density at x! , 

including both sides, is denoted cffxj), equation (5.12) becomes

ε, W =
σ(χ!)

(5.13)

where σ(χ3) and 0(xj are both proportional to exp[ j (cot+βχι)]. If 0ל־)א3 = D3(0) 

no electrodes are present, and hence no free charges, giving σ(χ,) = 0.
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In the above equations, the potential φ(χ!) and charge density O’CxJare 

proportional to exp(/wf), and the frequency tuwas taken to be constant throughout. If <ns 

changed, the value of changes, so ε$ (β) is a function of ω as well as β. However, 

since ε$(β) is essentially the ratio of Dz to Ex as shown by equation (5.10), it it will 

remain unchanged if ω and β are changed in proportion. Thus, £s (β) is a function of the 

normalized variable s = β / ω This has dimensions the same as the reciprocal of velocity, 

as discussed in the last section is termed the slowness. In this study, the analysis applies 

for constant frequency, and for brevity the effective permittivity is written as es(j3), 

without showing the frequency dependence explicitly.

A more general solution, with surface potential φ (x!) and charge density σ (xi) can 

be obtained by Fourier synthesis [6, pp. 39-42], In any case , the general solution 

obtained from equation (5.13) is [6, p.44]

σ(β)

\β\ We5(0) = (5.14)

where σ(β) and φ(β) are the Fourier transforms of σ (x!) and φ (x!). Thus, given some 

general potential function φ (x!) in the x! domain, the corresponding charge density may be 

determined by transforming to obtain φ(β), and then using εςίβ) to obtain σ(β). A 

transformation back to the x! domain then yields σ(χ1). In solving a particular problem it 

is usually found that the potential and the charge density are functions of frequency, so 
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their transforms φ(β) and σ(/?) will also be functions of frequency. In the Fourier 

transform, the frequency tyis held constant during the integration. The relationship given 

by the effective permittivity, equation (5.14) applies for all values of ω

The form of £s(ft) depends markedly on the type of acoustic wave involved. This 

study is concerned primarily with the excitation of piezoelectric Rayleigh waves. 

However, bulk wave excitation has been investigated quite extensively by others because 

it occurs in most surface-wave devices to some extent. Some devices, in fact, use bulk 

waves as the main form of acoustic propagation. For the excitation of Bleustein-Gulyaev 

waves, the effective permittivity can be expressed as an analytical formula [24, 33].

Since the effective permittivity is, generally, a complicated function of β, it must 

be found numerically. A number of important properties of this function, however, can be 

readily deduced. Firstly, the function is symmetrical, so that

es (-β) = ε5 (/?) (5.15)

This follows directly from the general reciprocity relation [6, p.348]. The effective 

permittivity is usually complex for some values of β and real for other values. Complex 

values of £s(fi) indicate that energy is being radiated away from the surface into the bulk of 

the material, in the form of acoustic waves. This can be seen from the definition involving 

the harmonic solution, equation (5.11). Figures 5.2 and 5.3 below depict the permittivity

functions for YZ lithium niobate and 128° lithium niobate as found in [34],
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Figure 5.2 : Effective permittivity function for YZ LiNbO3 [34] .

Figure 5,3 : Effective permittivity function for 128° LiNbO3 [34],



CHAPTER 6

COMPUTED RESULTS

6.1 INTRODUCTION

The slowness and effective pern ttivity functions are two very important 

parameters that form the basis of all further SAW device modelling. The accurate 

characterization of substrate performance that these two parameters provide allow for the 

determination of other properties that are significant in device modelling. The ability to 

accurately compute these two functions for a given substrate is, therefore, of great merit. 

Using the underlying analysis present in the previous chapter, subroutines were developed 

to predict the slowness and effective permittivity functions for various crystal substrates. 

Since this thesis concerns piezoelectric Rayleigh waves in crystal media, only the most 

common substrates supporting the propagation of such waves are considered. These

standard crystals are listed below.

(i) 128° LiNbO3

(ii) YZ LiNbO3

(iff) YZ LiTaO3
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(iv) 112° LiTaO3

(v) ST Quartz

Additional parameters defining suitable choices of substrate for practical SAW devices 

were outlined in Chapter 1. It should be noted that the substrates chosen for analysis in 

this study find considerable application in the fabrication of most SAW devices.

6.2 SLOWNESS CURVES FOR STANDARD BULK CRYSTALS

A typical slowness surface for propagation in the YZ plane of lithium niobate is 

depicted in Figure 6.1. As seen from the figure, three uniform plane wave solutions exist 

for each propagation direction. The three solutions will have mutually orthogonal particle 

velocity polarizations. This orthogonality condition must always be satisfied and details of 

the proof are available in [17, p.22], Two of the waves have the particle displacement 

velocity polarized transverse to the propagation direction and are termed quasishear 

waves. The third wave has particle displacement velocity along the direction of 

propagation and is termed the quasilongitudinal wave. The prefix “quasi” refers to the 

notion that, in general, the wave is not polarized strictly along a coordinate axes but is 

composed of two vector components. If, however, the wave propagates strictly along a 

coordinate axes it is termed 1־pure”. Special directions for which the wave solutions 

become pure transverse and pure longitudinal are called pure mode directions and can

often be deduced from symmetry conditions.
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Λγ/ω

Figure 6.1 : Slowness surface for propagation in the YZ plane of lithium 
niobate [17. p.308].
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In this study, the wave components are restricted to the sagittal plane since we are 

concerned with pure SAW or Rayleigh wave type propagation only. The wave with 

greatest velocity (or with smallest “slowness”) is defined as the longitudinal wave while 

the one with lowest velocity (greatest “slowness”) is termed the slow shear wave. The 

wave with intermediate velocity is defined as the fast shear wave.

A number of subroutines were written in MATLAB to calculate the slowness 

surfaces for the selected crystal substrates mentioned at the beginning of the chapter. A 

preliminary program allows the user to choose the desired crystal and to also specify the 

cut (orientation) by entering the appropriate Euler angles. Another subroutine then 

transforms the standard material tensors [see Appendix C] to the appropriate coordinate 

system using the Bond transformation method outlined in Chapter 2. Finally, a separate 

subroutine calculates and plots the slowness surfaces for the selected crystal substrates 

using the Christoffel equation method described in the previous chapter. All these 

subroutines can be found in Appendix C at the conclusion of the Thesis.

Using the developed software presented in Appendix C, results for the selected 

substrates are presented in Figures 6.2 through 6.6 on the following pages. The 

longitudinal wave for each case is represented by the inner “dashed” line while the two 

shear waves are denoted by the “solid” lines.
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Figure 6.2 : Inverse velocity (or slowness) curves for propagation in the
sagittal plane of YZ lithium niobate.
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Figure 6.3 : Inverse velocity (or slowness) curves for propagation in the
sagittal plane of 128° lithium niobate.
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Figure 6.4 : Inverse velocity (or slowness) curves for propagation in the
sagittal plane of YZ lithium tantalate.



86

Sx
1 -

 sl
ow

ne
ss

 (s
/m

)

Figure 6.5 : Inverse velocity (or slowness) curves for propagation in the
sagittal plane of 112° lithium tantalate.
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Figure 6.6 : Inverse velocity (or slowness) curves for propagation in the
sagittal plane of ST quartz.
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As seen from the plots, the wave solutions will, in general, be nondegenerate i.e. 

for each propagation direction they will each have three different values of phase velocity 

and hence slowness. Cases can exist, however, when shear wave solutions become 

degenerate i.e. propagate along the same direction with the same velocity. This can be 

seen from the plots where we see that, for some substrates, the two shear wave solutions 

become degenerate for certain propagation directions.

The slowness surface predicted by the software for YZ lithium niobate (Figure 6.2) 

compares favourably with the one cited in [17] which was depicted in Figure 6.1. Since 

not all the slowness surfaces for the common SAW crystal substrates have been published, 

the fact that the two results compare above gives justification that the remaining computed 

slowness functions provide an accurate model for the other selected substrates.
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6.3 EFFECTIVE PERMITTIVITY FOR STANDARD SAW CRYSTALS

A program was written to compute the effective permittivity functions for the 

crystal substrates of concern and is given in Appendix C. Again, the preliminary program 

for rotating the standard material tensors into the appropriate coordinate system must be 

run prior to the effective permittivity subroutine. After the transformation is carried out, 

the program takes the characteristic determinant of equation (4.14) yielding an eighth 

order polynomial from which the eight decay coefficients are obtained. The program then 

selects the appropriate roots according to the criteria given in chapter 5, and then solves 

for the relative values of acoustic displacement and potential. The effective permittivity is 

then obtained by forming the ratio defined at the conclusion of chapter 5. The effective 

permittivity functions obtained via the programs are depicted in Figures 6.7 through 6.11 

on the following pages.

An important limitation of the method used throughout the analysis for this thesis 

follows from the assumption, used in the derivation, that there are no mechanical forces on 

the surface of the substrate. This implies that any electrodes on the surface must be 

sufficiently thin that mechanical perturbations can be assumed to be negligible i.e.

mechanical loading effects are neglected. In practice, this is usually a valid approximation.
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Figure 6.7 : Effective Permittivity for YZ LiNbO;.
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Figure 6.8 : Effective Permittivity for 128° LiNbO;.



92

Pe
rm

itt
vi

ty
 / 

Fr
ee

 S
pa

ce
 P

er
m

itt
iv

ity

----- Imaginary part— Real part

Figure 6.9 : Effective Permittivity for YZ LiTaO;.
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Figure 6.10 : Effective Permittivity for 112° LiTaO;.
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Figure 6.11 : Effective Permittivity for ST quartz.
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Figure 5.2 in the previous chapter depicted typical forms of the effective 

permittivity function for YZ lithium niobate and 128° lithium niobate. These functions 

were reproduced in Figures 6.7 and 6.8 using the designed simulation programs and 

compare favourably with those of Figure 5.2. Since not all the effective permittivity 

curves for the most commonly used SAW substrates have been published in literature, it 

can be assumed that because the correct function was obtained for a select few of them, 

the remaining computed functions provide for an accurate characterization of the other 

crystal substrates. Further justification for this is cited later.

As in Figure 5.2, only positive values of slowness are shown in the plots since the 

function is even. Examination of all the plots reveals the existence of both zeros and poles 

in the respective functions. The zero of a particular permittivity function corresponds to a 

surface wave solution for the free surface since, by definition, the charge density must be 

zero. The wavenumber here can be denoted by ko , which is taken to be positive, so that 

the zeros of ε5(β) occur at β = ± ko. On the other hand, a pole of £$(/?) indicates a 

surface wave solution for a metallized surface, since it defines a finite charge density 

potential approaching zero. In this case, the wavenumber is k^ > 0, so that the poles 

occur at β = ± k^ . The surface wave velocities for these two cases are v0 and vm , 

respectively, so that ko = ω/ν0 and = (0/vm. In general, these velocities are functions of 

the propagation direction. Figure 6.12 below depicts the variation of the free-surface and 

metallized velocities with propagation direction for Y־cut lithium niobate. Note that vm is 

less than v0, which is always the case for a piezoelectrically coupled wave.
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Figure 6.12; Rayleigh-wave velocities for Y-cut lithium niobate [6, p.33].

The marked difference between the two velocities for Y-cut lithium niobate implies that 

piezoelectric coupling is strong for this case. From Figure 6.12, the coupling is strongest 

for propagation in the Z direction (0 = 0°), and this orientation, denoted YZ, is often used 

for SAW device fabrication.

For YZ lithium niobate, the poles at ± km and zeros at ± ko conesponding to zero 

φ and σ are, respectively, the metallized and free surface Rayleigh wave slownesses as 

found by Campbell et al. [35] using the same analysis. Certain discontinuities are also 

present in the plot. A discontinuity will arise when one decay coefficient a״ changes from 

purely imaginary below cutoff to either real or complex above. The discontinuities in 
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des /dsat ± k\ and ± k! are the cutoff slownesses of bulk-longitudinal and vertically 

polarized bulk-shear waves (slow shear waves). The type of bulk wave associated with 

each imaginary an is determined by the direction of the corresponding particle 

displacement vector m/b). For YZ lithium niobate, the third type of bulk wave (namely, 

horizontally polarized or fast shear) decouples from the electric field and therefore does 

not enter into es (β) . Figure 6.7 shows that £5 (/3) is purely real above the shear wave 

cutoff slowness k2 . In addition, at lower values of β , denoted by kb in Figure 6.7, the 

permittivity becomes complex, and it remains complex for all smaller values of β. In this 

region, bulk wave excitation is occurring. For most practical purposes including this study, 

it is not necessary to consider bulk wave excitation in any detail.

The effective permittivity function for a given substrate also allows for the 

determination of a very important parameter used in modelling of SAW devices. The 

electromechanical coupling coefficient, K1 , is a measure of the efficiency of a given 

piezoelectric in converting an applied electrical signal into mechanical energy associated 

with a surface acoustic wave. This parameter along with the SAW velocity, v , represent 

the two most important practical material parameters used in SAW filter design. The 

values of the coupling coefficient usually tend to be very small and, as such, they are 

usually expressed as percentages.

As cited, the parameter K2 may be obtained theoretically i.e. from the effective

permittivity curves. In this case, the parameter is defined as [31, p.31]
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(6.1)

Here, v0 is the unperturbed free-surface SAW velocity as defined before. However, I Δν I 

is the magnitude of the SAW velocity change that occurs when the free surface of the 

piezoelectric is shorted by a thin highly conducting metal film. That is,

Δν = ν0-νιη (6.2)

Therefore, in order to determine the respective values of v0 and vm , and hence X2 , for the 

substrates in question, it is necessary to accurately determine the free-surface and 

metallized Rayleigh wave slownesses. Accurate determination of these is not possible by 

inspection of the plots alone. A separate subroutine was written to precisely evaluate the 

zeros and poles of each of the permittivity functions plotted. The subroutine isolates the 

region of interest containing the poles and zeros and then recalculates the effective 

permittivity in that region for a greater number of points. Thus, the location of zeros and 

poles can be accurately determined. The reciprocal of the respective slowness values then 

yield the free surface and metallized velocities. For example, for YZ lithium niobate, the 

program determined the free surface velocity to be 3487.4 m/s and the metallized velocity 

to be 3411.1 m/s. These values indeed corroborate the marked difference shown in Figure 

6.12 for a propagation angle of zero (i.e. YZ lithium niobate) . The electromechanical 

coupling coefficient was then calculated using equation (6.1), and for YZ lithium niobate, 
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this value was determined to be approximately 4.4 % . The same procedure was carried 

out for the remaining crystal substrates, the results of which are tabulated in Table 6.1. 

Results reported in other literature are tabulated in Table 6.2 for ease of comparison. In 

all cases, the values obtained via the developed software agree favourably with values 

cited in other works.

For SAW propagation in piezoelectrics, crystal properties can also be used to 

determine the electromechanical coupling coefficient, K2 . In this case , the relation is 

can be expressed as follows [15, p.17]

(63) 

where e is the piezoelectric coefficient , c is the elastic coefficient and ε is the dielectric 

permittivity as defined in Chapter 2. Note that in equation (6.3), the tensor subscripts 

have been dropped. The appropriate constants depend on both the crystal cut and the 

propagation direction of the surface acoustic wave.
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Table 6.1 : Principle characteristics of selected crystals as 
determined from the poles and zeros of the computed 
effective permittivity functions.

Substrate Euler Angles
(Φ,θ,φ}

Vo 
(m/s)

Vm 
(m/s)

K2
(%)

YZ LiNbOa (0, 90, 90) 3487.4 3411.1 4.4

128° LiNbOa (0, 38, 0) 3979.3 3870.9 5.5

YZ LiTaO3 (0, 90, 90) 3237.3 3224.6 0.8

112° LiTaOa (90, 90, 112.2) 3301.0 3285.9 0.9

ST Quartz (0, 132.75, 0) 3158.0 3156.2 0.1
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Table 6.2 : Principle characteristics of selected crystals as 
reported in other literature.

Substrate Euler 
Angles 

( Φ, θ, φ)

ס׳י

(m/s) (m/s)

K2

(%)

YZ LiNbO3 
[34]

(0, 90, 90) 3494.0 3415.0 4.5

128° LiNbO3 
[36]

(0, 38, 0) 3979.5 3871.3 5.4

YZ LiTaO3 
[34]

(0, 90, 90) 3272.0 3254.0 1.1

112° LiTaO3 
[34]

(90, 90, 112.2) 3328.0 3310.0 1.1

ST Quartz 
[36]

(0, 132.75, 0) 3159.7 3157.9 0.1

J
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published data used to define the standard crystal tensors and to roundoff error. 

Nonetheless, the results obtained via the software are very comparable with those cited in 

other literature. Examining the electromechanical coupling coefficients, the values 

determined using the computed permittivity functions compare very well with the values 

cited in other literature as can be seen by examining Tables 6.1 and 6.2 . Since the 

calculation of X2 involved determining the poles and zeros of the computed permittivity 

functions, and since these compared with values cited in other work, this reinforces the 

validity of the designed simulation programs in correctly modelling the selected substrates.

From Tables 6.1, it is observed that the YZ lithium niobate substrate possesses a 

relatively high electromechanical coupling coefficient of approximately 4.4 %. This is one 

of the highest values attainable in a substrate suitable for high frequency surface wave 

devices. The 128° lithium niobate substrate, however, was found to have the highest 

value for this parameter, at about 5.4%. These relatively high values for the 

electromechanical coupling coefficients indicate that these substrates are used frequently in 

the production of SAW devices . YZ lithium niobate generally finds application in 

wideband SAW filters as well as in radar pulse compression filters with very large time- 

bandwidth products. ST-X quartz has a value of K2 that is about 40 times less than for 

lithium niobate. It finds application in narrow-band filters and delay lines. Moreover, it is 

widely employed in SAW oscillator designs because of its zero temperature coefficient of 

delay about room temperature. Lithium tantalate with a higher K2 than ST-X quartz (but 

poorer temperature stability), has also found application in oscillator design.
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The usefulness of the effective permittivity function stems from the fact that the 

input admittance of a transducer can be calculated from this function including the effects 

of radiation of all possible surface and bulk modes. It , therefore, provides and effective 

basis for further modelling of SAW devices. In most cases, we are concerned with 

problems in which the boundary conditions are expressed in the x! domain. The 

relationship in this domain can be expressed using a Green’s function [36, 37]. The 

Green’s function can be derived from the effective permittivity and can be used to find a 

numerical solution for the surface charge and field distribution on an interdigital array of 

electrodes.



CHAPTER 7

CONCLUSIONS

This study was concerned with the acoustic propagation of piezoelectric Rayleigh 

waves in crystalline media, commonly referred to as surface acoustic waves. Devices 

based on the propagation of such waves (SAW devices) have for a long time been a key 

technology in the communications industry. Two functions of great interest when 

concerned with which substrate is practical for the intended use of a device are the 

slowness and the effective permittivity. Slowness is simply the inverse of phase velocity 

and is useful for depicting the three plane wave solutions travelling in any plane of the 

media in question. Generally, the form of the slowness curve will depend on the substrate 

material and the orientation of the surface normal. The permittivity function is significant 

because, for a given substrate orientation, it effectively stores all the relevant mechanical 

information in a scalar electrical quantity. In addition, the function embraces all values of 

v including those for which bulk waves form part of the solution.

To compute these two important functions, various programs were designed. 

Initially, a subroutine was designed to transform the standard tensor properties of a crystal 

into the appropriate coordinate system based on the prescribed cut of the crystal. 

Another program was designed to calculate and plot the slowness curves in the sagittal 

104



105

plane for the various cuts of lithium niobate, lithium tantalate and quartz. Finally, a 

program was written to compute the effective permittivity functions for the substrates in 

question.

The slowness and effective permittivity curves determined for the selected pure 

SAW crystals have been shown to compare favourably with the experimental results cited 

by other authors. From the permittivity function, it is possible to determine the two most 

important practical parameters used in SAW filter design. i.e. the electromechanical 

coupling coefficient (K2) and the SAW velocity (v) . The zero in the permittivity function 

denotes the free surface velocity while poles denote the metallized velocity. From these 

two velocities, the electromechanical coupling coefficients were determined for the 

selected crystal substrates and these were also comparable to values cited by others. 

Slight discrepancies in the velocities and coupling coefficients can be attributed to the use 

of slightly different material constants in the calculations.

The development in this thesis showed how the effective permittivity may be used 

to relate the surface charge density and potential for a piezoelectric half-space, with the 

region above the piezoelectric assumed to be a vacuum. This method can be extended to 

the analysis of surface-wave transducers on a half-space by Green’s function methods [25, 

37] allowing for the prediction of surface charge and field distribution. The concept may 

also be generalized to analyze a number of other problems such as the coupling between a 

piezoelectric half-space and a plane above the surface or the coupling to a semiconductor 

above the piezoelectric surface [6, p.52].
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Finally, a number of different types of surface and bulk waves couple to the 

electric field produced by an interdigital array. These depend on the crystallographic 

symmetry of the substrate and the orientation of the surface plane and fingers of the array. 

This study analyzed the case for the most commonly employed surface wave, the Rayleigh 

wave, which has elliptical particle motion with components normal and parallel to the 

surface in the direction of propagation. Future work could involve the extension of the 

programs to allow for the analysis of other modes of propagation prevalent in many SAW 

devices, namely Bleustein-Guylaev waves and Pseudo SAW or leaky waves.



APPENDIX A

SYMMETRY CHARACTERISTICS FOR CRYSTAL CLASSES

* Labelled by symmetry, then class.

A.1  : Symmetry Characteristics of Stiffness Constants

Triclinic Monoclinic Orthorhombic

01 02 C\3 04 05 06

02 02 C23 04 05 06

03 03 03 04 05 06

04 0TA 04 04 05 06

05 C15 05 05 05 06

.06 CTb 06 06 06 C6b

01 02 03 0 05 0

02 02 03 0 05 0

03 03 03 0 05 0

0 0 0 04 0 C46

05 05 05 0 05 0

0 0 0 06 0 06

Cll CI2 CI3 0 0 0־

CI2 C22 C23 0 0 0

CI3 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 06.

Tetragonal 4, 4,4/m

01 02 03

02 01 CI3

03 03 03

0 0 0

0 0 0

.06 “06 0

0 0 C16

0 0 ־־06

0 0 0

C44 0 0

0 C44 0

0 0 C66 _
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Trigonal 3, 3 Trigonal 32,3m, 3 m

Al CI2 «13 «14 A3 0־ Al «12 A3 «14 0 0 ־

C12 Al «13 ~«14 «25 0 «12 Al «13 ­­«ט 0 0

A3 C13 «33 0 0 0 cn «13 «33 ס 0 0

A4־ 0 «44 0 Cg A4 ~«14 0 «44 0 0

«־25 % 0 0 «44 «14

«u 2(c״ ~C'2)

0 0 0 0 «44 «14

«14 2(C״ _C|2)0 0 0 «25 0 0 0 0

Hexagonal

'«11 «12 «13 0 0 0

«12 Al «13 0 0 0

«13 «13 «33 0 0 0

0 0 0 «44 0 0

0 0 0 0 «44 0

0 0 0 0 0 «(^11 «־12

Cubic

«1 1 «12 CI2 0 0 0 ’

«12 A1 CI2 0 0 0

«12 «12 CH 0 0 0

0 0 0 c 44 0 0

0 0 0 0 C44 0

0 0 0 0 0 «44.

A.2 ; Symmetry Characteristics of Piezoelectric Constants

Triclinic 1

II «12 «13 ^14 As «16

21 «22 «23 e24 «25 «26

31 «32 e33 ^34 «35 «36.

Monoclinic 2 Monoclinic m

'0 0 0 «14 0 «16

«21 «22 «23 0 «25 0

0 0 0 «34 0 «36.

«11 «12 «13 0 «15 0'
0 0 0 «24 0 «26

_A1 «32 «33 0 «35 0
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Orthorhombic 222 Orthorhombic 2mm

'0 0 0 ei4 0 0 '

0 0 0 0 e25 0

_0 0 0 0 0 e36 .

0 0 0 0 e15 0

0 0 0 e24 0 0

_e31 ^32 ^33 0 0 0

Tetragonal 4 Tetragonal 4

'0 0 0 e14 e!5 0'
0 0 0 ~^15 ?14 0

_e3l -®31 0 0 0 *36.

■ 0 0 0 Cl4 ei5
0'

0 0 0 ^־־14 0

_e3l e3l e33 0 0 0

Tetragonal 42m Tetragonal 422

0 0 0 el4 0 0 ‘ "0 0 0 e14 0 0"

0 0 0 0 e14 0 0 0 0 0 -el4 0

0 0 0 0 0 e36_ 0 0 0 0 0 0_

Tetragonal 4mm Trigonal 3

' 0 0 0 0 e15 0' e1l ־*Il θ e14 e15 ~en

0 0 0 e15 0 0 ~^72 % θ e15 ־14 ־* *Il

_e31 <?3I e33 0 0 0 _ β3Ι e31 e33 θ θ θ

Trigonal 32 Trigonal 3m

e״ -e0 ״ e14 0 0 0 0 0 0 e15 -βΏ

e14- 0 0 0 0 ־־ ~*22 ^22 θ ^15 0 0

0 0 0 0 0 0 _ β31 e3l β33 0 0 0
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Hexagonal 6 Hexagonal 622

­ס 0 0 *14 0 0'

ס 0 0 0 ~*I4 0

_0 0 0 0 0 0

­ס 0 0 *14 e15
0"

ס 0 0 *15 —*14 0

.*31 *31 *33 0 0 0

Hexagonal 6mm Hexagonal 6

■ 0 0 0 0 *15 o’ ’ *II
*11 0 0 0 ^22

0 0 0 *15 0 0 —*22 *22 0 0 0

.*31 *31 *33 0 0 0, 0 0 0 0 0 0

Hexagonal 6m2 Cubic 23 and 43m

*II *11 0 0 0 0

0 0 0 0 0 -*I 1

0 0 0 0 0 0

0 0 0 *14 0 0

0 0 0 0 *14 0

0 0 0 0 0 *14

A.3 : Symmetry Characteristics of Dielectric Constants

Triclinic

*11 *B

εη *?2 *23

*13 *23 *33

Monoclinic

*II 0

0 ε32 0

ε 13 θ *33

Orthorhombic

0 0 '

0 4 0

0 0 ε*3

Hexagonal, Trigonal, Tetragonal Cubic, Isotropic

0

0

0

 ■>־·.=
!1'

0

0

0

*H 0

0 *..

0 0

0

0

I



APPENDIX Β

PHYSICAL CONSTANTS OF SELECTED CRYSTALS

Table B.l : Summary of the Material Constants for Common SAW Crystals.

Ill

Lithium niobate 
(LiNbO3)

Lithium tantalate 
(LiTaOJ

Quartz 
(SiO2)

Mass density
(kg/m3)

4628 7454 2651

Elastic

Constants

(1O10 N/m2)

4 = 19.839
4 = 5.472
4 =6.513
4 =0.788
4 = 22.79
(& = 5.965

4 = 23.28
4 = 4.65 

= 8.36
4 = -1.05
4 = 27.59
4 = 9.49

4 = 8.674
4 = 0.699
4 = 1-191
4 = -1.791 
c110.72 = ״
4 = 5.794

Piezoelectric 
Constants

(C/m2)

el5= 3.69
€?22 2.42
e31 = 0.30 
e33 = 1.77

e15 = 2.64 
en = 1.86 
e31 = -0.22 
e33= 1.71

e,,= 0.171 
et4 = -0.0436

Dielectric

Constants

(in *b)

4 = 45.6
= 26.3

4 = 40.9
4 = 42.5

4 =4.5
4 =4.6



APPENDIX C : SIMULATION SOFTWARE

main.m

% This is the main program that controls the entire software.
% It allows the user to choose from a select list of substrates
% and will display the standard material tensors. The user is then
% prompted to enter the cut of the crystal using the Euler angle convention.
% A subroutine is then called that transforms the standard material tensors
% and displays the results. The user is then prompted to choose from
% three desired tasks (i) to simulate the slowness surface, (ii) to simulate
% the effective permittivity function or (iii) to precisely determine the
% free and metallized velocities. In each case, the appropriate function 
% is invoked and the results are displayed.

% declaration of global variables

global subs phi theta ci c pes perm crot pesrot permrot dens cO permO

% multiplication factors for material constants

perm0=8.854e12־; %(F/m)
c0=10A10; %(N/mA2)

0/0-----------------------------------------------------------------------------------------------
% choosing a substrate
%
subs = menufChoose a substrate', 'Lithium Niobate','Lithium tantalate','Quartz', 'Gallium 
Arsenide');

0/0-----------------------------------------------------------------------------------------------

% intialize the standard material tensors

stastiff(subs); stapes(subs); staperm(subs);

]12
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% display standard material tensors

disp('STANDARD stiffness, piezoelectric stress and permittivity tensors:');

c=c*cO
x=input('prompt');
pes
x=input('prompt');
perm=perm* permO
x=input('prompt');

%----------------------------------------------------------------------------------
%
% enter the desired cut of the crystal using the Euler Angle Method

disp('Please enter the cut of the cut of the crystal using Euler angles;'); 
disp('**************** Enter the Euler angles in degrees**************'

phi = input('enter phi :');
theta = input('enter theta:');
ci = input('enter ci :');

0/0---------------------------------------------------------------------------------------

% convert Euler angles to radians 

phi=phi*pi/180;
theta=theta*pi/180;
ci=ci*pi/180;

0/0---------------------------------------------------------------------------------------
% transform standard material tensors to appropriate values for particular 
% crystal cut defined by Euler angles using Bond transformation method [ ]

tracon(c,pes,perm); % calls transformation function 

% display rotated material tensors 

disp('TRANSFORMED stiffness, piezoelectric stress and permittivity tensors:');

crot 
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x=input('prompt');
pesrot
x=input('prompt');
permrot
x=input('prompt’);

0/0---------------------------------------------------------------------------------------------------------

% allows user to choose from three tasks

choice = menu('Choose a function','Slowness Curve','Effective Permittivity Function',...
,Precise Determination of vo and vm');

if choice = 1

invel(crot,pesrot,permrot); % call function to calculate slowness surface

elseif choice —2

epcalc(crot,pesrot,permrot); % call function to calculate eff. perm.

else

detvel(crot,pesrot,permrot); % call function to determine free and
% metallized velocities, vo and vm.

end;
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stastiff.m

function c = stastiff(subs)

% this subroutine initiallizes the ‘standard’ elastic constants for the selected substrates 

global subs c dens

for m = 1:6;
fori = 1:6;

c(m,l) = 0;
end;

end;

if subs = 1

dens = 4628; % density in (kg/mA3)

% stiffness constants matrix, for lithium niobate [38]

c(l,l) = 19.839; %(10A10 N/mA2);
c(l,2) = 5.472;
c(l,3) = 6.513;
c(l,4) = 0.788;
c(3,3) = 22.79;
c(4,4) = 5.965;
c(2,2) = c(l,l);
c(2,3) = c(l,3);
c(2,4) =-c(l,4);
c(5,6) = c(l,4);
c(5,5) = c(4,4);
c(6,6) = (c(l,l)-c(l,2))/2;
c(2,l) = c(l,2);
c(3,l) = c(l,3);
c(4,l)־c(l,4);
c(3,2) = c(l,3);
c(4,2) =-c(l ,4);
C(6,5) = c(l,4);



116

elseif subs =2

dens = 7454; % density in (kg/mA3)

% stiffness constants matrix, for lithium tantalate [38]

c(l,l) = 23.28; %(10A10N/mA2);
c(l,2) = 4.65;
c(l,3) = 8.36;
c(l,4) = •1.05;
c(3,3) = 27.59;
c(4,4) = 9.49;
c(2,2) = c(l,l);
c(2,3)־c(l,3);
c(2,4) = «c(l,4);
c(5,6) = c(l,4);
c(5,5) = c(4,4);
c(6,6) = (c(l,l)-c(l,2))/2;
c(2,l) = c(l,2);
c(3,l) = c(l,3);
c(4,l) = c(l,4);
c(3,2) = 0(1,3);
c(4,2) = -c(l,4);
c(6,5) = 0(1,4);

%--------------------------------------------------------------------------------

elseif subs = 3;
dens = 2651; % density in (kg/mA3)

% stiffness constants matrix, for quartz [17]

c(l,l) = 8.674; 
c(l,2) = 0.699; 
c(l,3)= 1.191;
c(l,4) = 1.791־;
c(3,3) = 10.72;
c(4,4) = 5.794;

%(10A10N/mA2);
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0(2,2) = c(l,l);
0(2,3) ־0(1,3;)

0(2,4) =-c(l,4);
0(5,6) = 0(1,4);

0(5,5) ־0(4,4;)
0(6,6) = (c(l,l)-c(l,2))/2;
0(2,1) = 0(1,2);
0(3,1) = 0(1,3);
0(4,1) = 0(1,4);

0(3,2) ־0(1,3;)
c(4,2) = -c(l,4);
0(6,5) = 0(1,4);

%-----------------------------------------------------------------------------

else

dens = 5307; % density in (kg/mA3);

% stiffness constants matrix, for GaAs [17]

0(1,1)= 11.88; %(10A10 N/mA2);
0(1,2) = 5.38;
0(1,3) = c(l,2);
0(2,2) = 0(1,1);
0(3,3) = 0(1,1);
0(4,4) = 5.94;
0(2,3) = 0(1,2);

0(5,5) ־0(4,4;)
(;4,4)0 = (6,6)0
(;1,2)0 = (2,1)0
(;1,3)0 = (3,1)0
(;2,3)0 = (3,2)0

end
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stapes, m

function pes = stapes( subs)

% this subroutine initiallizes the ‘standard’ piezoelectric constants for the substrates 

global subs pes

for m = 1 :3;
for 1 = 1 :6;

pes(m,l)=0;
end;

end;

if subs = 1

% piezoelectric constants matrix, for lithium niobate [38] 

pes( 1,5) = 3.69; %(C/mA2);
pes(2,2) = 2.42;
pes(3,l) = 0.30;
pes(3,3) = 1.77;
pes(l,6) =-pes(2,2);
pes(2,l) = -pes(2,2);
pes(2,4) = pes(l,5);
pes(3,2) = pes(3,l);

%-----------------------------------------------------------------------------  

elseif subs =2

% piezoelectric constants matrix, for lithium tantalate [38]

pes(l,5) = 2.64; %(C/mA2);
pes(2,2) = 1.86;
pes(3,l) = -0.22;
pes(3,3)= 1.71;
pes(l,6) = -pes(2,2);
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pes(2,l) = ־pes(2,2); 
pes(2,4) = pes(l,5); 
pes(3,2) =pes(3,l);

%--------------------------------------------------------------------------------

elseif subs = 3;

% piezoelectric constants matrix, for quartz [17]

pes(l,l) = 0.171; % (C/mA2);
pes( 1,4) = -0.0436;
pes( 1,2) =-pes( 1,1);
pes(2,5) = -pes(l,4);
pes(2,6) = ־pes(l,l);

0/0 -----------------------------------------------------------------------------

else

% piezoelectric constants matrix, for gallium arsenide [17]

pes( 1,4) = 0.154; % (C/mA2);
pes(2,5) = 0.154;
pes(3,6) = 0.154;

end
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staperm.m

function perm = staperm(subs)

% this subroutine initiallizes the ‘standard’ permittivity constants for the substrates 

global subs perm

for m = 1 :3;
for 1 = 1 :3;

perm(m,l) = 0;
end;

end;

if subs = 1

% permittivity constants matrix for lithium niobate [38] 

perm(l,l) = 45.6; %(inperm0);
perm(3,3) = 26.3;
perm(2,2) = perm( 1,1);

%------------------------------------------------------------------------------

elseif subs =2

% permittivity constants matrix, for lithium tantalate [38] 

perm( 1,1) = 40.9; %(inperm0);
perm(3,3) = 42.5; 
perm(2,2) = perm( 1,1);

%--------------------------------------------------------------------------------

elseif subs = 3;

% permittivity constants matrix, for quartz [17]

perm(l,l) = 4.5; % (in permO);
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perm(3,3) = 4.6;
perm(2,2) = perm(l,l);

%-----------------------------------------------------------------------------  

else

% permittivity constants matrix, for GaAs [17]

perm(l,l) = 12.5;
perm(2,2) = perm( 1,1); % (in permO);
perm(3,3) = perm( 1,1);
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tracon.m

function [crot,pesrot,permrot] = tracon(cl,pesl,perml)

% this subroutine transforms the standard material tensors to
% to the appropriate frame of reference defined by the cut of the
% crystal (note that cut is defined by the Euler Angles)

global phi theta ci crot pesrot permrot cO permO

% calculate the standard ‘coordinate rotation matrix’, a, for each Euler angle 

for n=l :3; % must repeat for each Euler angle

if n=l;

a(l,l) = cos(phi);
a( 1,2) = sin(phi);
a(l,3) = 0;
a(2,l) = -sin(phi);
a(2,2) = cos(phi);
a(2,3) = 0;
a(3,l) = 0;
a(3,2) = 0;
a(3,3)=l.O;

elseif n=2;

a(l,l) = 1;
a(l,2) = 0;
a(l,3) = 0;
a(2,l) = 0;
a(2,2) = cos(theta);
a(2,3) = sin(theta);
a(3,l) = 0;
a(3,2) = -sin(theta);
a(3,3) = cos(theta);

else;
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a(l,l) = cos(ci);
a(l,2) = sin(ci);
a(l,3) = 0;
a(2,l) = ־sin(ci);
a(2,2) = cos(ci);
a(2,3) = 0;
a(3,l)-0;
a(3,2) = 0;
a(3,3)=l.O;

end;

%--------------------------------------------------

% Calculate the Bond stress transformation matrix, Μ [17]

for m = 1 : 3;
for 1= 1 :3;

M(m,l) = a(m,l)A2; 
end;

end;

M(l,4)-2*a(l,2)*a(l,3);
M(l,5) = 2*a(l,3)*a(l,l);
M(l,6) = 2*a(l,l)*a(l,2);

M(2,4) = 2*a(2,2)*a(2,3);
M(2,5) = 2*a(2,3)*a(2,l);
M(2,6) = 2*a(2,l)*a(2,2);

M(3,4) = 2*a(3,2)*a(3,3);
M(3,5) = 2*a(3,3)*a(3,l);
M(3,6) = 2*a(3,l)*a(3,2);

M(4,l) = a(2,l)*a(3,l);
M(4,2) = a(2,2)*a(3,2);
M(4,3) = a(2,3)*a(3,3);
M(4,4) = a(2,2)*a(3,3) + a(2,3)*a(3,2);
M(4,5) ־ a(2,l)*a(3,3) + a(2,3)*a(3,l);
M(4,6) = a(2,2)*a(3,l)+a(2,l)*a(3,2);
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M(5,l)־a(3,l)*a(l,l);
M(5,2) = a(3,2)*a(l,2);
M(5,3) = a(3,3)*a(l,3);
M(5,4) = a(l,2)*a(3,3)+a(l,3)*a(3,2);
M(5,5) = a(l,3)*a(3,l)+a(l,l)*a(3,3);
M(5,6) = a(l,l)*a(3,2)+a(l,2)*a(3,l);

M(6,l) = a(l,l)*a(2,l);
M(6,2) = a(l,2)*a(2,2);
M(6,3) = a(l,3)*a(2,3);
M(6,4) = a(l,2)*a(2,3)+a(l,3)*a(2,2);
M(6,5) = a(l,3)*a(2,l)+a(l,l)*a(2,3);
M(6,6) = a(l,l)*a(2,2)+a(l,2)*a(2,l);

% Calculate the rotated stiffness matrix

cl = M*cl*(M');

% Calculate the rotated piezoelectric stress matrix 

pesl = a*pesl*(M');

% Calculate the rotated permittivity matrix

perml = a*perml*(a');

end;

crot=cl; 
permrot=perml; 
pesrot=pesl;

M=0;
a=U;

end
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invel.m

function [xl comp,x3 comp] = invel(crot,pesrot,permrot)

% This subroutine calculates the slowness curves in the sagittal plane 
% for the selected crystal substrate using the Christoffel Equation 
% outlined in Chapter 5.

global dens

% density used in Christoffel Matrix

P0=dens*[l 0 0 0
0 100
001 0
0 0 00];

I0=le-8*[l 0 00
0 100
00 10
0 0 0 1];

% range for plot including interval
ang = 0:0.01:2*pi;

% determines number of points for plot
ns = fix(2*pi/0.01);

for n=l :ns;

% form Christoffel matrix to get the solution of'slowness' in dispersion
% relation - see equation (5.10) in Chapter 5.

CM(l,l)=-(sin(ang(n)))A2*crot(5,5)2־*sin(ang(n))*cos(ang(n))*crot(l,5)...
-crot( 1,1 )*(cos(ang(n)))A2;

CM(l,2)—(sin(ang(n)))A2*crot(4,5)-sin(ang(n))*cos(ang(n))*(crot(l,4)4-crot(5,6))...
-crot( 1,6)*(cos(ang(n)))A2;
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CM(l,3)=-(sin(ang(n)))A2*crot(3,5)־sin(ang(n))*cos(ang(n))*(crot(l,3)+crot(5,5))... 
-crot( 1,5)* (cos(ang(n)))A2;

CM( 1,4)=-(sin(ang(n)))A2*pesrot(3,5)־pesrot(l, 1 )*(cos(ang(n)))A2... 
-sin(ang(n))*cos(ang(n))*(pesrot(l,5)+pesrot(3,l));

CM(2,l)=-(sin(ang(n)))A2*crot(4,5)־sin(ang(n))*cos(ang(n))*(crot(l,4)+crot(5,6))... 
­ ס­ס  t( 1,6)* (cos(ang(n)))A2;

CM(2,2)=־(sin(ang(n)))A2* crot(4,4)2־ * sin(ang(n))* cos(ang(n))* crot(4,6).. . 
-crot(6,6)*(cos(ang(n)))A2;

CM(2,3 )=-(sin(ang(n)))A2 * crot(3,4)־sin(ang(n)) * cos(ang(n))* (crot(3,6)+crot(4,5))... 
-crot(5,6) * (cos(ang(n))) A2;

CM(2,4)=־(sin(ang(n)))A2*pesrot(3,4)־pesrot(l,6)*(cos(ang(n)))A2... 
-sin(ang(n))*cos(ang(n))*(pesrot(l,4)+pesrot(3,6));

CM(3,l)=־(sin(ang(n)))A2*crot(3,5)־sin(ang(n))*cos(ang(n))*(crot(l,3)+crot(5,5))... 
-crot( 1,5)* (cos(ang(n)))A2;

CM(3,2)=-(sin(ang(n)))A2*crot(3,4)-sin(ang(n))*cos(ang(n))*(crot(3,6)+crot(4,5))... 
-crot(5,6)*(cos(ang(n)))A2;

CM(3,3)=-(sin(ang(n)))A2*crot(3,3)-2*sin(ang(n))*cos(ang(n))*crot(3,5)...
-crot( 5,5)* (cos(ang(n)))A2;

CM(3,4)=-(sin(ang(n)))A2 * pesrot(3,3)־pesrot( 1,5)* (cos(ang(n)))  A2... 
-sin(ang(n))* cos(ang(n))* (pesrot( 1,3 )+pesrot(3,5));

CM(4,1)—(sin(ang(n)))A2*pesrot(3,5 )־pesrot( 1,1 )* (cos(ang(n)))A2... 
-sin(ang(n))*cos(ang(n))*(pesrot(l,5)+pesrot(3,l));

CM(4,2)=-(sin(ang(n)))A2*pesrot(3,4)־pesrot(l,6)*(cos(ang(n)))A2... 
-sin(ang(n))*cos(ang(n))*(pesrot( 1,4)+pesrot(3,6));

CM(4,3)—(sin(ang(n)))A2* pesrot( 3,3 )-pesrot( 1,5 )* (cos(ang(n)))A2... 
-sin(ang(n))*cos(ang(n))*(pesrot(l,3)+pesrot(3,5));
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CM(4,4)-(sin(ang(n)))A2*permrot(3,3)+2*sin(ang(n))*cos(ang(n))*permrot(l,3)... 
-permrot( 1,1)* (cos(ang(n)))A2;

°/0 intiallize matrices that will store roots of Christoffel Equation

slrtOO = []; slrt= [];

% get the eigenvalues of matrix equation; these will correspond to (k/w)A2

slrt00(n,:) = eig(-P0/(CM+I0))׳;

% take square root to obtain (k/w)

for m=l:3;
slrt(m)=sqrt(slrtOO(n,m));

end;

for m=l:3;
[smax,pos]=max(slrt); % arranges slownesses in descending
x3comp(n,m)=-cos(ang(n))*smax; % order for plotting purposes.
x 1 comp(n,m)=sin(ang(n))* smax;
slrt(pos)=slrt(pos)/100;

end;

end;

% plot the slowness surface

figure('position',[640 550 650 650]);

plot(x 1 comp( 1 :ns, 1 ),x3comp( 1 :ns, 1 ),'w-׳,x 1 comp( 1 :ns,2),x3comp( 1 :ns,2),.״ 
'w-',xlcomp(l :ns,3),x3comp(l :ns,3),'w—')

xlabel('Sx3 - slowness (s/m)');
ylabel('Sxl - slowness (s/m)');

end
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epcalc.m

function [rep,iep] = epcalc(crot,pesrot,pennrot)

% This subroutine calculates and plots the effective permittivity function
% for the selected crystal substrates using the method outlined
% in chapter 6 of the Thesis.

global dens rep iep

% choose suitable range for surface wave velocities

sl=le6־; % vl=le+006 m/s;
s2=500e-6; % v2=2000 m/s;

ns=input('Input the number of points desired for the analysis:'); 

ep(sl,s2,ns); % call ‘general’ function to calculate effective permittivity 

% this section specifies the range of interest on the y-axis
% for the effective permittivity.

for n=l:ns+l;

if rep(n) > 100;
rep(n) =100;

end;

if rep(n) < -100;
rep(n) = -100;

end;

if iep(n) > 400;
iep(n) = 400;

end;

if iep(n) < -400;
iep(n) = -400;

end;
end;
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% plot the real and imaginary parts of the effective permittivity

ds=(s2-sl)/ns; % determine distance between each step
s=sl :ds:s2; % range of plot

figure;

plot(s(l 0:ns),rep( 10:ns),'w',s( 10:ns),iep( 10:ns),'y—')

% label the axis

xlabel('Slowness (s/m)'); 
ylabel('Effective permittivity / free space permittivity');

%-------------------------------------------------------------------------
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detvel.m

function [vO,vm,ECC] = detvel(crot,pesrot,permrot)

% The following subroutine calculates the free and metallized velocities 
% by determining the accurate locations of zeros and poles in the
% effective permittivity function. The program chooses a predetermined 
% range of the effective permittivity function containing the poles and 
% zeros and then recalculates the function in this range using a great 
% many number points to obtain a high level of accuracy. The location of 
% the poles and zeros are then used to calculate the respective
% velocities. The electromechanical coupling coeefficient (KA2) is then 
% computed using these velocities.

global phi theta ci dens effperm ieffperm rep iep

% determine range for analysis by examining Euler angles

if ci — 0;
si = 1/4050; 
s2 = 1/3100;
ns = 4000;

% Regular SAW;
% establish range of analysis as
% determined by inspection from plots. 
% number of points in range (accuracy)

elseif abs(theta) == abs(ci); % Pure Rayleigh Wave type(YZ cut of LiNbO3 
% and LiTaO3);

si = 1/3500; 
s2 = 1/3100; 
ns = 2000;

else

si = 1/3450; 
s2= 1/3100; 
ns = 2000;

end;



ep(sl ,s2,ns); % determine eff. perm, in prescribed range
% using many more steps (ns) for greater accuracy

ds=(s2-sl)/ns;
s=sl:ds:s2;

[pvO,mvO]=max(abs(ieffperm)); % find location of zero (sO) 
vO=l/s(mvO); % free surface velocity (=l/sO)

[pvm,mvm]=max(rep+i*iep); % find location of pole (sm)
vm=l/s(mvm); % metallized velocity (=l/sm)

% calculate ΚΛ2 (coupling coefficient)

ECC=2*(vO-vm)/vO;

% display the results

disp('free surface velocity :'); vO 
dispfmetallized velocity : ’); vm 
disp('electromechanical coupling coefficient: ’); ECC

%



132

ep.m

function [effperm,ieffperm,rep,iep] = ep(ssl,ss2,nss)

% This is a general subroutine that calculates the effective permittivity 
% function for the selected crystal substrates using the method outlined 
% in chapter 6 of the Thesis. It is invoked to calculate and plot the
% permittivity as well as to determine the free and metallized velocities.

global dens crot pesrot permrot permO rep iep ieffperm

TD0=[0 0 01]; % vector specifying stress-free boundary condition and 
% condition that total electric displacement must equal 
% charge density (assumed to be 1 in this case).

Ds = (s2־sl)/nss; 
s = sll: ds: ss2;

for nsl:ns+l;

% determine the increment between points
% range for analysis with increment(determined by calling
% program)

% form the matrix of polynomial coefficients as in equation (4.14)

pnl 1 = [crot(5,5) -2*i*crot(l,5) -crot(l,l)+dens/s(n)A2]; 
pnl2 = [crot(4,5) -i*(crot(l,4)+crot(5,6)) -crot(l,6)]; 
pnl3 = [crot(3,5) ■i*(crot(l,3)+crot(5,5)) -crot(l,5)];
pnl4 = (pesrot(3,5) -i*(pesrot(l,5)+pesrot(3,l)) -pesrot( 1,1)];

pn21 = [crot(4,5) -i*(crot(l,4)+crot(5,6)) -crot(l,6)];
pn22 = [crot(4,4) -2*i*crot(4,6) -crot(6,6)+dens/s(n)A2];
pn23 = [crot(3,4) ·i*(crot(3,6)+crot(4,5)) -crot(5,6)];
pn24 = [pesrot(3,4) -i* (pesrot( l,4)+pesrot(3,6)) -pesrot( 1,6)];

pn31 = [crot(3,5) -i*(crot(l,3)+crot(5,5)) -crot(l,5)];
pn32 = [crot(3,4) -i*(crot(3,6)+crot(4,5)) -crot(5,6)];
pn33 = [crot(3,3) -2*i*crot(3,5) -crot(5,5)+dens/s(n)A2];
pn34 = (pesrot(3,3) -!*(pesrot( l,3)+pesrot(3,5))-pesrot( 1,5)];

pn41 = (pesrot(3,5)־i*(pesrot(l,5)+pesrot(3,l))-pesrot(l,l)]; 
pn42 = (pesrot(3,4) -i*(pesrot(l,4)+pesrot(3,6)) -pesrot( 1,6)];
pn43 = [pesrot(3,3) -i*(pesrot(l,3)+pesrot(3,5)) -pesrot(! ,5)];
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pn44 = [-permrot(3,3) 2*i*permrot(l,3) permrot( 1,1)];

%----------------------------------------------------------------

% takes the determinant of the 4x4 matrix of polynomials using
% standard algebraic techniques (cofactor expansion)

% eliminate first row and first column
% in matrix to form 3x3 matrix

pnOl 1 = pn22; pn012 = pn23; pn013 = pn24;
pn021 = pn32; pn022 = pn33; pn023 = pn34;
pn031 = pn42; pn032 = pn43; pn033 = pn44;

% take determinant of 3x3 matrix using 'conv' function to multiply 
% polynomials.

aa = conv(pn011, pn022);
pnOl = conv(aa, pn033);
aa = conv(pn021, pn032);
pn02 = conv(aa, pn013);
aa = conv(pn031, pn023);
pn03 = conv(aa, pn012);
aa = conv(pn013, pn022);
pn04 = conv(aa, pn031);
aa = conv(pn032, pn023);
pn05 = conv(aa, pnOl 1);
aa = conv(pn033, pn012);
pn06 = conv(aa, pn021);
pnsuml = pn01+pn02+pn03-pn04-pn05-pn06;

% eliminate second row and second column
% in matrix to form 3x3 matrix

pnOll = pn21; pn012 = pn23; pn013 = pn24;
pn021 = pn31; pn022 = pn33; pn023 = pn34;
pn031 = pn41; pn032 = pn43; pn033 = pn44;

% take determinant of 3x3 matrix using 'conv' function to multiply 
% polynomials.
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aa = conv(pn011, pn022);
pnOl = conv(aa, pn033);
aa = conv(pn021, pn032);
pn02 = conv(aa, pn013);
aa = conv(pn031, pn023);
pnO3 = conv(aa, pn012);
aa = conv(pn013, pn022);
pn04 = conv(aa, pnO31);
aa = conv(pn032, pn023);
pn05 = conv(aa, pnOl 1);
aa = conv(pn033, pn012);
pn06 = conv(aa, pn021);
pnsum2 = pn01+pn02+pn03-pn04-pn05-pn06;

% eliminate first row and third column
% in matrix to form 3x3 matrix

pnOll = pn21; pn012 = pn22; pn013 = pn24;
pn021 = pn31; pn022 = pn32; pn023 = pn34; 
pn031 = pn41; pn032 = pn42; pn033 = pn44;

% take determinant of 3x3 matrix using 'conv' function to multiply 
% polynomials.

aa = conv(pn011, pn022);
pnOl =conv(aa, pn033);
aa = conv(pn021, pn032);
pn02 = conv(aa, pnOl3);
aa = conv(pn031, pn023);
pn03 =conv(aa, pn012);
aa = conv(pn013, pn022);
pn04 = conv(aa, pn031);
aa = conv(pn032, pn023);
pn05 = conv(aa, pnOl 1);
aa = conv(pn033, pn012);
pn06 = conv(aa, pn021);
pnsum3 — pnOl+pnO2+pnO3-pnO4-pnO5-pnO6;

% eliminate first row and fourth column
% in matrix to form 3x3 matrix

pnOl 1 = pn21; pn012 = pn22; pn013 =pn23; 
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pn021 = pn31; pnO22 = pn3 2; pn023 = pn3 3;
pnO3 l=pn41 ;pn032=pn42;pn033=pn43;

% take determinant of 3x3 matrix using ,conv' function to multiply
% polynomials.

aa = conv(pn011, pn022);
pnOl = conv(aa, pn033);
aa = conv(pn021, pn032);
pn02 = conv(aa, pn013);
aa = conv(pn031, pn023);
pn03 = conv(aa, pn012);
aa = conv(pn013, pn022);
pn04 = conv(aa, pn031);
aa = conv(pn032, pn023);
pn05 = conv(aa, pnOl 1);
aa = conv(pn033, pn012);
pn06 = conv(aa, pn021);
pnsum4 = pn01+pn02+pn03-pn04־pn05־pn06;

% multiply individual 3x3 determinants by cofactors of first row

pnl = conv(pnl l,pnsuml);
pn2 = -conv(pnl2,pnsum2);
pn3 = conv(pnl3,pnsum3);
pn4 = -conv(pnl4,pnsum4);

0/0 ********** ca1cuiate total determinant of 4x4 matrix ***********

pnsum = pnl+pn2+pn3+pn4;

% initiallize matrices used in selecting and storing acceptable roots

rt = []; rtO = []; rtOO = []; rtOOO = []; mrt = [];

rtOOO = roots(pnsum); % finds the roots of the characteristic equation 

rtOO = rtOOO;
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%------------- the following section chooses the acceptable roots----------------- 

% this sections cuts the pure image conjugate roots

form = 2:8;
if abs(imag(rtOO(m))-imag(rtOO(m-l)')) < le-10;

if abs(real(rtOO(m))) <le15־;
rtOO(m) = rt00(m)־lel0;
rtOO(m-l) = real(rtOO(m-l))+abs(imag(rtOO(m-l)))*i; 

end;
end;

end;

1 = 1;

for m = 1 :8;
if real(rt00(m)) > -le10־;

if imag(rt00(m)) > 6.8־;
rtO(l) = rtOO(m);
1 = 1+1;

end;
end;

end;

if 1 = 5;
rt = rtO;

elseif 1 > 5 ; % this section eliminates surplus pure imaginary roots
k=l;
for m = 1 :1-1;

if real(rtO(m)) > le-10;
rt(k) = rtO(m);
rtO(m) = rtO(m)-1 e 10*( 1 +i);
k = k+l;

end;
end;
kO = 5-k;
for m = 1 :kO;

[kmax,m0] = max(imag(rtO));
rt(k) = rtO(mO);
rtO(mO) = rtO(mO)־lelO*(l+i);
k = k+1;
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end;
end;

%----------------------------------------------------------------------------------------

% this section evaluates the coefficient matrix for 'each' of
% the four acceptable roots, alpha, of the characteristic equation

for m=l:4;

yy(l ,1) = polyval(pnl 1 ,rt(m));
yy(l ,2) = polyval(pnl2,rt(m));
yy(l,3) = polyval(pnl3,rt(m));
yy(l 4י) = polyval(pnl4,rt(m));

yy(2,l) = poly val(pn21 ,rt(m));
yy(2,2) = polyval(pn22,rt(m));
yy(2,3) = polyval(pn23,rt(m));
yy(2,4) = polyval(pn24,rt(m));

yy(3,l) = polyval(pn31,rt(m));
yy(3,2) ־ polyval(pn32,rt(m));
yy(3,3) = polyval(pn33,rt(m));
yy(3,4) = polyval(pn34,rt(m));

yy(4,1) = poly val(pn41 ,rt(m));
yy(4,2) = polyval(pn42,rt(m));
yy(4,3) = polyval(pn43,rt(m));
yy(4,4) = polyval(pn44,rt(m));

% find ul, u2, u3 for each root that satisfies matrix equation
% Normalize with respect to potential which is assumed to be 1 
% for convenience

vectorl = yy(l :3,1:3)\(-yy( 1:3,4));

% The matrix U stores the displacement components for each root 
% in respective columns.

U(l:3,m) = vectorl; U(4,m) = 1;
end;
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% This section calculates the normal components of stress
% T13, T23, T33 and displacement D3 in the substrate and stores 
% the information in a coefficient matrix, B. Each element of B is 
% a coefficient of one of three displacement components or potential

for m = 1 : 4;

B(l,l) = crot(5,5)*rt(m)־crot(l,5)*i;
B(l,2) = crot(4,5)*rt(m)-crot(5,6)*i;
B(l,3) = crot(3,5)*rt(m)-crot(5,5)*i;
B(l,4) = pesrot(3,5)*rt(m)-pesrot(l,5)*i;

B(2,l) = crot(4,5)*rt(m)-crot(l,4)*i;
B(2,2) = crot(4,4)*rt(m)-crot(4,6)*i;
B(2,3) = crot(3,4)*rt(m)-crot(4,5)*i;
B(2,4) = pesrot(3,4)*rt(m)-pesrot(l,4)*i;

B(3,l) = crot(3,5)*rt(m)-crot(l,3)*i;
B(3,2) = crot(3,4)*rt(m)-crot(3,6)*i;
B(3,3) = crot(3,3)*rt(m)-crot(3,5)*i;
B(3,4) = pesrot(3,3)*rt(m)-pesrot(l,3)*i;

B(4,l) = pesrot(3,5)*rt(m)-pesrot(3,l)*i;
B(4,2)= pesrot(3,4)*rt(m)-pesrot(3,6)*i;
B(4,3) = pesrot(3,3)*rt(m)-pesrot(3,5)*i;
B(4,4) = -permrot(3,3)*rt(m)+permrot(l,3)*i;

% t is a 4x1 column vector storing the normal stresses and
% displacement (T13,T23,T33,D3) for each root. It is calculated 
% by taking the product of the coefficient matrix B and columns 
% in U representing displacement components for each respective 
% root.

t=B*U(:,m);

% T4 is a 4x4 matrix that stores the normal stress and displacement 
% components for each respective root in columns vectors

T4(:,m)־t;

end;
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TT4(4,1:4) = permO*[l 1 1 1];

% the matrix TD4 stores the normal components of stress and total normal 
% component of electric displacement for each root in respective columns

TD4(1:3,1:4)־-T4(1:3,1:4);

% calculate the 'total' normal electric displacement component 
% at surface by summing contributions from both sides.

TD4(4,1:4) = (TT4(4,1:4)־T4(4,1:4));
TD4 = TD4;

% find the coefficients A required to satisfy the boundary conditions 
% defined by TDO where the normal components of stress dissappear 
% (stress-free bounadary condition) and the total electric
% displacement D3 is equal to the charge density which is assumed
% to be 1 for simplicity.

coeff = TD4( 1:4,1:4)\TD0';

A(1:4) = coeff; % store the coefficients in row vector A

% determine effective permittivity by forming ratio of charge density
% to potential where the general potential is a linear combination
% of the potentials determined for each respective root. Note that
% it is only necessary to add the coefficients A since the solutions 
% were normaliized with respect to potential (assumed to be 1).

effperm(n) = 1/(U(4,1)*A(1)+U(4,2)*A(2)+U(4,3)*A(3)+U(4,4)*A(4));

ieffperm(n) = l/effperm(n);

rep(n) = real(effperm(n))/permO; % find the real part of the eff. perm.
iep(n) = imag(effperm(n))/permO; % find the imaginary part of the eff. perm.

end
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