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Abstract

The development of tools and techniques used in paleoenvironmental studies is
important for the advancement of geoarchaeological research. Geoarchaeological
studies of ancient harbours involve the integration of paleoenvironmental data
with archaeological findings, allowing for a more comprehensive understanding of
site development and regional maritime trade. This dissertation highlights and /or
explores novel applications of microfossils and micro-X-ray fluorescence (uXRF)
core scanning data in paleoenvironmental reconstructions within three ancient

harbour studies.

Foraminifera, diatom, pollen, uXRF, carbon stable isotope, and radiocarbon
dating results from underwater cave sediments on the eastern coast of the Yu-
catan Peninsula indicate that the region’s wetlands developed between 1157 BCE
and 312 CE. Continued sea-level rise after ~312 CE allowed canoe access through
a channel from the Caribbean Sea to Muyil, a Classic Maya maritime port site.
Development of the wetlands may have implications for increased maritime trade
on the Yucatén’s eastern coast during the Postclassic (925-1550 CE). This study
demonstrates the importance of karst cave systems for obtaining paleoenviron-
mental records and provides a first assessment of the diatom community that has

been transported into the sampled cave system.

The novel application of epiphytic foraminifera as biostratigraphic indicators
was investigated at Caesarea, Israel. Benthic foraminifera assemblages indicated
that the emplacement of hard harbour structures along the sandy coast between
21-10 BCE altered the environmental conditions and impacted the nearby ecologi-
cal communities. Epiphytic foraminifera, in particular Pararotalia calcariformata,
were found to be useful indicators for the timing of harbour construction at Cae-
sarea. uXRF and magnetic susceptibility results also supported the presence of in-
creased harbour material (i.e., kurkar and volcanic ash) in offshore sediments over
time. This study demonstrates that epiphytic foraminifera can be cost-effective
biostratigraphic indicators in geoarchaeological studies. Results also confirm that

P. calcariformata is endemic to Israel and is not a recent arrival following the

il



opening of the Suez Canal.

Foraminifera, testate amoebae, uXRF, and radiocarbon dating results from
sediment cores collected from two lagoons, Khor Al Balid and Khor Rori, on the
southern coast of Oman indicate that the lagoons closed off from the sea between
the 12th and 15th centuries CE. Prior to lagoon formation, these two sites formed
natural harbours that were the locations of major maritime trade ports. Progres-
sive siltation and sand accumulation along the coastline after the 15th century
likely impacted shipping activities, contributing to abandonment of the city near
Khor Al Balid. Evidence of a marine overwash event across most cores from both
sites dating to the 18th—19th century CE suggests that an extreme wave event
(e.g., tsunami or large tropical cyclone) may have also contributed to the decline
of the city. The results of this study provide an important paleoenvironmental

context for previous archaeological findings.
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Chapter 1
Introduction

Geoarchaeology has become a well-established field of research over the past several
decades (Goldberg & Macphail, 2006; Marriner et al., 2010; Marriner & Morhange,
2007; Rapp, 1987). Integrating paleoenvironmental data with archaeological find-
ings leads to a more comprehensive understanding of the interactions between
human populations and their environmental settings. Coastal environments are
particularly complex as shorelines shift relatively rapidly due to erosion, tecton-
ism, sea-level fluctuations, storms, etc. and often no longer resemble the settings
that were originally occupied (Goldberg & Macphail, 2006; Marriner & Morhange,
2007). Ancient harbour sites often contain long-term (e.g., Holocene) records of
both coastal morphological changes and human activity related to harbour con-
struction, use, and decline (Marriner et al., 2010; Marriner & Morhange, 2006,
2007; Morhange & Marriner, 2015; Salomon et al., 2016). Geoarchaeological re-
search is a constantly evolving field with respect to the methods and techniques
applied. Modern studies typically involve the collection of field data such as sed-
iment cores from harbour basins, geophysical measurements (e.g., magnetome-
try, ground penetrating radar), and site observations (e.g., the presence of raised
beaches, platforms, erosional notches, wetlands, estuaries, sand barriers, etc.) fol-
lowed by laboratory analyses of multiple environmental proxies (e.g., microfossils,
pollen, geochemistry, etc.; Goiran et al., 2022; Goldberg & Macphail, 2006).

Assessing the abundance of microfossils (e.g., foraminifera, ostracods, diatoms,
testate amoebae) throughout sediment records is especially useful in coastal re-

constructions, as these taxa are abundant in aquatic settings, preserve well in
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sediments over time, and have varying tolerances to environmental conditions
(salinity, water depth, substrate type, sunlight availability, etc.; Armstrong &
Brasier, 2005; Charman et al., 2010; Marriner & Morhange, 2007; Murray, 2006).
Changes in assemblages of microfossil species throughout a sediment record can
therefore be used to indicate how open or closed a body of water is to the ocean
over time, which is useful for reconstructing periods of harbour construction, use,
and/or demise (e.g.,Goiran et al., 2022; Reinhardt et al., 1994; Reinhardt & Ra-
ban, 1999). Foraminifera and ostracods have been applied in this manner dur-
ing coastal geoarchaeological studies in France (Morhange et al., 2003), Germany
(Daniel et al., 2019), Greece (Finkler et al., 2018; Riddick et al., 2021; Vott et
al., 2007), Israel (Giaime et al., 2021; Reinhardt et al., 1994), Italy (Aiello et al.,
2020; Amato et al., 2020; Di Bella et al., 2011; Goiran et al., 2014; Mazzini et al.,
2011), Lebanon (Marriner et al., 2005), Mexico (Jaijel et al., 2018), and Turkey
(Algan et al., 2011; Bony et al., 2012; Goodman et al., 2009; Kraft et al., 2003;
Pint et al., 2015; Riddick et al., 2022a, 2022b; Stock et al., 2013, 2016). Diatoms
and testate amoebae also have the potential to provide valuable paleoenviron-
mental data in geoarchaeological studies, but are less commonly used (possibly
due to taxonomic challenges and salinity requirements, respectively; Goiran et
al., 2022; Marriner & Morhange, 2007). Another unexplored application of mi-
crofossils in geoarchaeology relates to biostratigraphy. Microfossil biozones (e.g.,
the appearance and extinction of certain species over time) are typically used to
correlate rocks and sediments belonging to periods of geological time (Mcgowran,
2005). This concept has also been applied over shorter timescales, with various
fossil taxa. Ragweed pollen horizons, for instance, have been shown to be useful
sediment dating biomarkers of major deforestation events related to European set-
tlement (e.g., Brush, 2001). Microfossils may similarly be helpful for studying site
formation processes and dating of sediments related to the construction of harbour

structures, which can significantly alter coastal environments.

Microfossil results are often interpreted alongside lithology (e.g., changes in
colour, grain size, and other sediment characteristics) and geochemistry results
(Goldberg & Macphail, 2006; Marriner & Morhange, 2007). Organic content, car-
bonate content, and stable isotopes related to pollution levels (e.g., lead; Véron

et al., 2006) as well as water mass variability (e.g., carbon, oxygen; Riddick et
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al., 2021) are common geochemical analyses in coastal geoarchaeological studies.
Analysis of the elemental composition of sediments, however, is not yet widely
applied. Elemental analysis methods such as micro-X-ray fluorescence (uXRF,
through core scanning or portable methods) and inductively coupled plasma op-
tical emission spectroscopy (ICP-OES) have only been used in a few geoarchaeo-
logical harbour studies (Aiello et al., 2020; Finkler et al., 2018; Pint et al., 2015;
Riddick et al., 2021; Riddick et al., 2022a, 2022b; Seeliger et al., 2013, 2014; Stock
et al., 2013, 2016). pXRF analysis is non-destructive and can rapidly provide
high-resolution (200 pm) information on the relative abundance of elements from
Aluminum to Uranium (Rothwell & Croudace, 2015). Chemofacies results inter-
preted from pXRF data (i.e., lithologically and biologically derived elements from
terrestrial and marine sources) are a valuable addition to geoarchaeological studies
worldwide (Goiran et al., 2022).

1.1 Dissertation structure

This dissertation contributes to geoarchaeological and maritime trade research by
exploring the use of non-conventional sediment sources for environmental proxies
(i.e., underwater cave systems), applying a wider range of microfossil taxa includ-
ing diatoms and testate amoebae, and/or applying uXRF elemental chemofacies
methods in three coastal harbour studies. The following three chapters present
research projects that are individual advances in the field and involve the recon-

struction of paleoenvironmental landscapes of ancient port sites.

Chapter two investigates the timing of wetland development along the eastern
coast of the Yucatan Peninsula. Samples were collected from an underwater cave
system, an underutilized source of well-preserved environmental records common
along this coastal region. Environmental proxies including foraminifera, diatom,
pollen, elemental composition, and stable carbon isotopes were used to infer the
timing of coastal flooding and canal formation between Muyil, a Maya port site,
and the Caribbean Sea. Results may have important implications for maritime
trade patterns throughout the region. This study also incorporates the first as-

sessment of diatom species within the regional cave system providing initial data
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for future research in the area.

Chapter three investigates a novel geoarchaeological application of epiphytic
foraminifera as biostratigraphic indicators at Sebastos, an ancient, submerged,
Israeli harbour that has well-documented environmental and archaeological histo-
ries. Abundances of the foraminifer Pararotalia calcariformata, pXRF elemental
data, and magnetic susceptibility data obtained from sediment cores were useful
for correlating sediments associated with harbour construction and deterioration.
The study highlights previously unused applications of benthic foraminifera in
coastal geoarchaeological settings and confirms that P. calcariformata is an epi-
phytic foraminifer endemic to the Israeli coast and is not a Lessepsian arrival,
as mistakenly proposed in previous studies (Schmidt et al., 2015; Zenetos et al.,
2012).

Chapter four focuses on the formation of two lagoons, Khor Al Balid and Khor
Rori, at two ancient port sites along the southern coast of Oman. Archaeological
information is abundant in this region; however, paleoenvironmental information
is very limited, inhibiting a full understanding of maritime trade activity, and har-
bour development and decline at the sites (D’Andrea, 2021). Foraminifera, testate
amoebae, and uXRF elemental trends were analyzed to determine the timing of
lagoon siltation and sand barrier formation. Results indicate that natural shore-
line changes and/or an extreme wave event (a tsunami or large tropical cyclone)
are likely key contributing factors towards the decline and abandonment of the

two ancient harbour sites.
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Chapter 2

Evidence of recent sea-level rise
and the formation of a classic
Maya canal system inferred from
Boca Paila cave sediments, Sian
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Abstract

Cave sediments along the eastern coast of the Yucatdn Peninsula contain im-
portant records of paleoenvironmental change that have not been fully explored.
Reconstructing environmental changes in Boca Paila lagoon reveals details about
sea level, flooding of the Sian Ka’an Biosphere, and the timeline of occupation at
Muyil, an important Classic Maya maritime trading site. Three sediment cores
(BP1, BP2, and BP3) were collected from a cave system beneath Boca Paila
lagoon in the Sian Ka’an Biosphere. Radiocarbon dating, geochemical (X-Ray
Fluorescence Core Scanning, 6'3C, C/N), and microfossil (foraminifera, diatoms,
pollen) analyses were performed. The combined results show three distinct phases
of coastal evolution. Phase 1 (1157 BCE or earlier), an upland area with mangrove
associate Conocarpus erectus, grasses, and ferns, is characterised by: organic-rich
detrital peat; a relative absence of foraminifera and diatoms; organic geochemistry
results within terrestrial ranges (§'*C values of -28 %o to -26 %o); and low Sr/Ca,
Si/Ti, and Ti/K ratios. These indicate dry conditions at the karst surface. Phase
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2 (1157 BCE - 312 CE), a shallow wetland, is represented by: an increase in weath-
ering products (Ti/K) and diatom productivity (Si/Ti); more positive 6'3C values
(-27 %o to -22 %) and decreasing C/N ratios; and increased marine foraminifera
(e.g., Ammodiscus sp.). These indicate more open water conditions. Phase 3
(>312 CE), a wetland/lagoon environment, is characterized by: carbonate-rich
marl; a greater diversity of foraminifera (Ammonia spp., Elphidium spp., Rosalina
spp., and Bolivina spp.), diatoms (Cyclotella meneghiniana, Craticula spp., Am-
phora spp., Hyalosynedra laevigata, and Grammatophora spp.) and pollen (from
mangroves, ferns, grasses, palms, and pine); increased Si/Ti and Sr/Ca values;
and mixed marine and terrestrial organic geochemistry values (6'3C values of -22
%o to -20 %o). These indicate increased input of marine organic sediment during
sea-level rise. Sea-level and climate records support the interpretation of a dry
upper karst environment prior to ~1157 BCE, with sea-level rise forming shallow
(<50 cm) wetlands by ~312 CE. Previous archaeological analysis estimates that
the first settlers arrived at Muyil ~350 BCE, but that population expansion and
construction of most structures occurred during the Postclassic (925-1550 CE).
Sea-level rise would have been an important factor in the expansion of coastal
settlements and trade routes; continued sea-level rise after ~312 CE allowed for
the formation of deeper lagoons and channels connecting the coast to Muyil and
other inland sites which would likely not have been navigable prior to the Early
Classic period (250-600 CE) as they would be too shallow. This study highlights
the impacts of environment on society, as well as the importance of karst cave
systems for obtaining paleoenvironmental records.

Keywords: Holocene, Sea Level Changes, North America, Yucatin Peninsula,
Coastal geomorphology, Geoarchaeology, Cave sediments, Micropaleontology, uXRF

2.1 Introduction

Circum-peninsular maritime trade networks are thought to have been integral to
Maya economies across the Yucatan Peninsula, but only beginning during the
Terminal Classic period (800925 CE; Glover et al., 2011). Despite multiple lines
of evidence for long-distance trade from Veracruz to the Gulf of Honduras, there
remain questions surrounding Maya maritime trade activity and why it only devel-
oped and expanded in later periods (Andrews, 1993; Biar, 2017; Clark, 2016; Jaijel
et al., 2018; McKillop, 2010; Sabloff & Rathje, 1975; Thompson, 1949). Coastal

communities are thought to have developed a lifestyle less reliant on agriculture
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compared to inland communities, focusing more on available marine resources and
trade across Mesoamerica (Andrews, 1993; Glover et al., 2011, 2018). Although
inland populations declined and many major cities were abandoned during the
Terminal Classic period, many coastal communities continued to thrive up until
the Spanish conquest in the 16th century (Clark, 2016; Glover et al., 2011; Sabloff
& Rathje, 1975). Archaeological research has revealed remains of port settlements
along coasts of the entire Yucatan Peninsula (Clark, 2016), models and depictions
of dugout canoes (Biar, 2017), and a wooden oar from a Late Classic saltworks
site in Belize (McKillop, 2005). Most of the information gathered on Maya port
sites on the eastern coast relates to the Late Postclassic period (1000-1550 CE),
though there is evidence of sea trade activity as early as the Preclassic period in
the western and northern coasts of the Peninsula (2000 BCE — 250 CE; Andrews,
1993; Biar, 2017; Clark, 2016; Sabloff & Rathje, 1975; Witschey, 1988, 1993). The
Yucatan’s eastern coast has the highest concentration of Postclassic sites in the
Maya Lowlands (Andrews, 1993). Coastal sites are often spaced ~30-40 km apart
(ideal daily distances for canoe travel: Glover et al., 2018) and are located next
to natural harbours near lagoons, islands, or rivers that offer shelter from adverse
weather conditions (Andrews, 1993). The wetlands that currently extend along
the eastern coast, providing sheltered canoe routes for maritime trade, did not
always exist in their current form and their developmental history remains largely

undocumented.

Holocene sea-level rise (~2 m in the past 3000 years; Khan et al., 2017; Milne &
Peros, 2013; Toscano & Macintyre, 2003) would have caused progressive flooding
and encroachment of marine environments into the Yucatan’s interior, resulting
in the current groundwater-fed wetlands along the eastern coast (Platt & Wright,
2022). These changes in coastal landscapes likely had an impact on nearby hu-
man activity. Reconstructing coastal evolution with subrecent sea-level rise (i.e.,
the past 3000 yrs) provides important environmental context for understanding
cultural changes and is particularly relevant in low-relief karst terrains (epikarst)
where small changes in sea level may cause large shifts in the shoreline and coastal
habitats. The formation of wetlands and protected embayments would provide
navigable waterways for small craft (e.g., dugout canoes) and the extent of these

environments is largely determined by sea level and epikarst relief. Despite the
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importance of these environments for maritime trade in the Yucatan, there are
few studies that have purposefully examined coastal evolution from an archae-
ological context, with most of the research concentrating on north and western
portions of the peninsula (e.g., Vista Alegre, Jaijel et al., 2018; Celestun Lagoon,
Hardage et al., 2022). Lagoon/wetland sediment records are typically used for
coastal reconstructions; however, these sediments can present issues with strati-
graphic continuity in terms of physical and biological reworking (i.e., wave action
and currents, bioturbation). Cave sediments have not been studied extensively;
however, they typically have little or no bioturbation and may contain more co-
herent temporal records. Our results from the Boca Paila Cave System in the
Sian Ka’an Biosphere provide further context for understanding Terminal Classic
to Postclassic maritime trade further south on the peninsula and demonstrate the
potential of undisturbed cave sediments for studying sea-level change and coastal

evolution in karst terrains.

Paleoenvironmental proxies within the Yucatan’s submerged coastal cave sed-
iments have not yet been fully explored. These systems are often suboxic to
anoxic, typically have low groundwater flow, and contain few benthic taxa to dis-
turb the sediments (e.g., Collins et al., 2015a, 2015b). Geochemical data from
cave sediment records have been useful for inferring climate and weather events,
phytoplankton productivity, and water mass changes (Kovacs et al., 2017a, 2018;
McNeill-Jewer et al., 2019). Measuring the relative content of elements within sedi-
ment samples through scanning X-ray fluorescence (XRF) is advantageous because
it is non-destructive and provides high-resolution (200 pm) geochemical data com-
pared with other conventional methods. Lithologically derived and biologically
influenced elements from cave sediments have been useful indicators of climate
patterns in the Yucatan Peninsula (McNeill-Jewer et al., 2019) and have potential
for reconstructing coastal landscape changes. Organic matter geochemistry (6'3C,
C/N) can help to infer changes in the source of organic carbon in coastal settings
(Douglas et al., 2016; Lamb et al., 2006). In the Yucatédn Peninsula, analyses have
been useful for reconstructing sea-level changes and coastal cave flooding events
(Gabriel et al., 2009; van Hengstum et al., 2010). Because minimal organic matter
is generated in cave settings, the accumulation of organic matter that has been

transported into the cave system can be used to indicate environmental changes on
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the karst surface. Foraminifera and diatoms are useful environmental proxies for
inferring sea level and flooding histories (e.g., Gabriel et al., 2009; van Hengstum
et al., 2009, 2010, 2011). They are abundant in aquatic environments, preserve
well in sediment over time, and are sensitive to various environmental variables
(Armstrong & Brasier, 2005; Murray, 2006). Because diatoms are photosynthetic,
their presence in cave sediments can only be the result of taphonomic transport;
therefore, changes in assemblages will reflect conditions on the sunlit environments
of the epikarst. Both foraminifera and diatoms taxa display varying tolerances to
salinity (Armstrong & Brasier, 2005; Smol & Stoermer, 2010), making them useful
for inferring changes from marine to brackish mangrove habitats associated with
lagoon development. Pollen analysis is also a useful indicator of vegetation and
environmental change on the epikarst surface, which is often related to climate
or land-use (Douglas et al., 2016). Pollen assemblages have previously been used
in cave and cenote settings to help document vegetation changes due to sea-level
rise and flooding events, especially related to mangroves (i.e., Rhizophora man-
gle; Gabriel et al., 2009), and can help confirm the formation of wetlands on the

eastern coast of the Yucatan Peninsula.

Multiproxy sediment studies have provided information on past environmental
conditions for some areas of the eastern coastline including the northeastern tip
(Jaijel et al., 2018) and the region between Playa del Carmen and Tulum (Shaw,
2016). The modern northeastern tip near Vista Alegre, a Maya port site, is char-
acterized by mangrove islands, tidal flats, hypersaline ponds, and flooded forests
(Jaijel et al., 2018). A period of increased site occupation ~2000-1550 yr BP (50
BCE to 400 CE) corresponds to the flooding of nearby bays with sea-level rise
which would have created more open space for maritime activity and canoe access
(Glover et al., 2011; Jaijel et al., 2018). The northeastern coastline becomes rocky
headlands with bays and crescent shaped beaches between Playa del Carmen and
Tulum (Shaw, 2016). The rocky headlands are underlain by fossilized coral reefs
dating to the late Pleistocene (122,000-2000 yr BP), and the modern bays and
beaches occupy the low-elevation areas of the ancient coastline (Shaw, 2016). A
coastal berm stretches 50 km along this area of the coastline. Its features indicate
that an anomalously extreme event, such as a tsunami or mega-hurricane, struck
the coast around 1500 yr BP (450 CE; Shaw & Benson, 2015). Further south,

10
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the Yucatan’s eastern coastal terrain is close to sea level and transitions back into
shallow brackish and freshwater lagoons, mangroves, and flooded wetland envi-
ronments. These wetlands extend further south into the Belize coast (e.g., ~100
km; Luzzadder-Beach & Beach, 2009), preserve many ancient Maya port sites,
and contain underlying cave systems that can reveal past environmental records.
Previous studies on carbon accumulation (Adame et al., 2021), sedimentation in
caves (Collins et al., 2015c), and vegetation changes (Torrescano & Islebe, 2006)
in the Yucatan’s eastern coastal region provide estimates of 3040-3800 yr BP
(1850-1090 BCE) for the timing of initial mangrove peat accumulation related to

rising sea-level.

This study focusses on Muyil, a Maya port site within the wetlands on the
Yucatan’s southeastern coast. Previous archaeological studies have revealed in-
formation on the timing of human activity at this Classic-Postclassic port site
(Witschey, 1988, 1993). Past coastal reconstruction is a useful addition to this
archaeological study, providing a more comprehensive understanding of Muyil’s
history. The purpose of this study is to reconstruct around 3000 years of environ-
mental changes. Three sediment cores from within the cave passages beneath Boca
Paila lagoon were analyzed using geochemical and microfossil methods. The pale-
oenvironmental results will help to determine the timing of wetland development
and canoe accessibility to Muyil from the sea and elsewhere along the Yucatan’s
coast. This study contributes to geoarchaeological research by highlighting the
potential implications of environmental change on the increased maritime activ-
ity observed on the Yucatan’s eastern coast during the Postclassic. Results also
demonstrate the effectiveness of cave sediments as a source of paleoenvironmental

proxies.

2.2 Regional Setting

2.2.1 Yucatan Peninsula

The Yucatan Peninsula’s tropical climate has seasonal trends in temperature and
rainfall: a cool, dry season from December to April, and a warm, wet season

from May to November (Kovacs et al., 2017b). The average winter temperature
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is 25 °C and 28 °C in summer, with an average yearly precipitation of 1500 mm
in the northeast to 500 mm in the northwest (Beddows et al., 2016; Collins et
al.; 2015b). Variation in precipitation is largely controlled by the Intertropical
Convergence Zone (ITCZ; Hodell et al., 2007).

The Yucatan Peninsula is an extensive, partially emergent Cretaceous—Cenozoic
limestone/dolostone platform (Bauer-Gottwein et al., 2011; Smart et al., 2006;
Ward et al., 1985). The topography is relatively flat, with a maximum elevation
of ~250 m in the central area of the platform gradually decreasing towards the
margins and northeastern region (Bauer-Gottwein et al., 2011). The limestone
has been extensively eroded due to a combination of precipitation, mixing-zone
hydrology, glacio-eustatic sea-level change, and littoral processes (Smart et al.,
2006). Precipitation quickly infiltrates through the porous limestone, so there are
very few surface waterbodies (Beddows et al., 2016). There are, however, many
cenotes (sinkholes) that connect to the aquifer (Perry et al., 2003). The aquifer is
density stratified, with a Meteoric Water Mass (MeWM; <1-7 ppt, ~25 °C) over-
lying a warmer Marine Water Mass (MaWM; >30 ppt, ~27 °C) penetrating from
the coast (Beddows, 2004). The halocline is the transition between these water
masses and can be diffuse (i.e., a brackish layer) or sharp. It is undersaturated with
respect to calcite (CaCOj) resulting in limestone dissolution near coastal outlets
and the formation of subterranean cave systems throughout the region (Perry et
al., 2003; Smart et al., 2006). Many cave passages are hydrologically connected
to one another, as well as the ocean; they extend up to ~12 km inland and are

continuing to expand with exploration efforts (Smart et al., 2006).

2.2.2 The Sian Ka’an Biosphere, Boca Paila lagoon, and
Muyil

The Sian Ka’an Biosphere Reserve is a 4000 km2 UNESCO World Heritage Site
on the east coast of the Yucatan Peninsula (Figure 2.1; Arellano-Guillermo, 2003;
Claudino-Sales, 2019). The biosphere extends 40-50 km inland and ~120 km along
the coast. It protects the biodiversity of tropical forests, wetlands, and coastal and
marine ecosystems, each around one-third of the total area (Arellano-Guillermo,

2003). The tropical forests are dominated by evergreen trees, shrubs, palms, and
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other woody vegetation. The wetlands contain islands of mangroves (mainly Rhi-
zophora mangle) and tropical forest taxa, while the coastal dune vegetation often
includes low, non-woody plants (Islebe et al., 2015). The Sian Ka’an area il-
lustrates relatively early transgressive phase environments. Rising sea level has
resulted in the progressive encroachment of shallow marine environments into the
platform interior as well as the formation of groundwater-dependent freshwater
wetlands further inland (Platt & Wright, 2022). Due to faults and the interac-
tion between fresh and marine groundwater, the coastal region is characterized by

cenotes, caves, and crescent shaped beaches (Claudino-Sales, 2019).

Boca Paila is a large (~0.5-2 km x ~5.5 km) coastal lagoon ~20 km south of
Tulum, within Sian Ka’an. The lagoon is variable in depth but shallow with an av-
erage depth of 3 m. Sand and seagrass (Thalassia testudinum) cover the karstified
limestone bottom (Lara & Gonzalez, 1998). There are numerous vents discharg-
ing groundwater into the lagoon, and the Boca Paila Cave System is one of these
vents that has undergone extensive exploration and mapping by CINDAQ. Karst
elevation (sill height) at the entrance to the cave is very shallow at ~1-1.5 m water
depth. The lagoon water is brackish and turbulent due to incoming waves from
the Caribbean through a break in the offshore reef/dune barrier and groundwater
discharge into the lagoon. On the landward side, Boca Paila is bound by seasonally

flooding wetlands and mangrove forests (Claudino-Sales, 2019; Witschey, 1988).

Very little is known of the aquifer hydrology of the Sian Ka’an biosphere. The
Yax Chen Cave System, ~10 km north of Boca Paila, experiences low flow in the
MeWM (Coutino et al., 2017; Kovacs et al., 2017). Based on cave diver observa-
tions, Boca Paila experiences strong reversing flow in and out of the cave passage
close to the entrance of the lagoon. This has not been instrumentally measured but
is likely tidal in origin. Instrumental monitoring of Campechen Lagoon (adjacent
to Boca Paila) shows a semidiurnal to diurnal tidal cycle and overall (seasonal)
water level varied by ~30 cm over the 4-month period of measurement (August to
December, 2019; Coutino et al., 2021).

Cayo Venado, a channel ~3-6 m wide and 1-2 m deep, meanders westward
~10 km inland from Boca Paila to Chunyaxche lagoon (Matthews, 1995; Platt &
Wright, 2022). This freshwater lagoon is ~5 km long, 2.5 km wide, and contains
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multiple cenote areas (Platt & Wright, 2022). Muyil canal, a short (550 m) water-
way, leads from Chunyaxche lagoon to Muyil lagoon, a smaller (1.8 km diameter;
Platt & Wright, 2022) freshwater source. Located at the edge of Muyil lagoon,
12 km inland, is the ancient Maya port settlement of Muyil, one of several Maya
settlements found within Sian Ka’an (Arellano-Guillermo, 2003; Witschey, 1993).

Archaeological excavations of Muyil were conducted between 1987 and 1991
by Walter Witschey (Witschey, 1988, 1993). Ceramic and architectural evidence
suggests that the site was occupied as early as 350 BCE, during the Preclassic
(2000 BCE — 250 CE), and functioned as a coastal port until the Spanish conquest
in 1500 CE (Witschey, 1993). During early occupation, the site was relatively
small, as ceramics were the only evidence of inhabitants. The earliest evidence of
temples, pyramids, and sacbes (raised causeways) leading from the lagoon to the
structures of the site date to the Classic period (250-800 CE). Ceramic evidence
suggests increased trade with Belize and nearby island sites, and a more established
settlement during this time. Muyil continued to expand into the Postclassic period
(925-1550 CE); population grew by an estimated 25-75%, as evidenced by the
types and distribution of ceramics as well as by the construction of new temples,
pyramids, sacbes, and field walls (Witschey, 1993).

2.3 Materials and Methods

2.3.1 Sediment core retrieval

Three push cores were collected by SCUBA divers in the cave passage under the
Boca Paila lagoon (Figure 2.1; entrance: 20°0.480°N, 87°29.480°W). BP1 (length
58 cm) was collected ~186 m from the cave entrance at a water depth of 14 m
relative to sea level, and BP2 (length 73 cm) was collected ~212 m from the
entrance at a depth of 16 m. Both sample sites were collected from soft substrates
along the cavern bottom. BP3 (length 47 c¢cm) was retrieved ~148 m from the
entrance at a depth of 10 m, from an eroded bank of peat that outcropped (~50
cm high) on the side of the cave passage. After collection, cores were split in half
and stored at ~4 °C.
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FIGURE 2.1: (a, b) Location of Boca Paila within the Sian
Ka’an Biosphere Reserve, nearby archaeological sites, the sea-
route leading to the Maya port site Muyil, and (c) three
sediment cores collected from the Boca Paila Cave System.
Maps Data: (a) Google, Data SIO, NOAA, U.S. Navy, NGA,
GEBCO, Image Landsat/Copernicus; (b) Google, Image Land-
sat/Copernicus; (c) Google©2021 CNES/Airbus.

To provide an additional radiocarbon age for the timing of platform flooding
and mangrove development, a small grab sample of basal mangrove peat (fibrous)
on karstified limestone (1 m water depth) was collected at the southeastern side of
Yax Chen Cenote (YCP1; 20°7.874’N, 87°27.994°W; Figure 2.1). The landowners
had previously cut back the mangrove peat to expose a shallow limestone platform
for swimmers. The basal peat (YCP1) sample was collected from the innermost

portion of a core pressed into the exposed balk wall (~20 cm penetration).

2.3.2 Water column measurements

Water mass characteristics of the Boca Paila lagoon and cave were taken using a
Hydrolab MSbha multiparameter mini sonde on June 5th, 2009 by SCUBA divers
near the core collection sites for approximately two hours (2:00 PM-4:00 PM).
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Measurements of depth (£0.05 cm), temperature (£0.05 °C), conductivity (£0.05
mS/cm), salinity (£0.05 ppt), pH (£0.05), oxidation-reduction potential (ORP;
+0.5 mV), and dissolved oxygen (DO) content (£0.05%) were taken around every

30 seconds at various depths in the water column.

2.3.3 Radiocarbon dating

Nine subsamples from Boca Paila and one sample of basal (1 m depth; YCP1;
Table 2.1) mangrove peat from Cenote Yax Chen (~12 km north of Boca Paila
lagoon) were analyzed for radiocarbon by Direct AMS through Accelerated Mass
Spectrometry. Seven samples were selected from BP2 because it was the most com-
plete core in terms of lithology. The other two samples included bulk sediment and
a twig from BP3, targeting detrital peat deposits for estimated dates of platform
flooding and mangrove development. The depths of samples from BP3, which was
composed entirely of Detrital Peat (DP), were adjusted to the estimated depths
within the DP layer of BP2 (Table 2.1), assuming that the top of BP3 (0 cm)
represents the contact between DP and the Peat-Marl Transition (PMT) in PB2
(~23 cm). This was done so that all radiocarbon results could be incorporated
into a composite age-depth model to illustrate taphonomic processes (reworking)

during deposition of the DP.

Dates were calibrated using IntCal20 Northern Hemisphere Radiocarbon Age
Calibration Curve (Reimer et al., 2020). Ages were calibrated for two scenarios:
(i) no reservoir correction, and (ii) a brackish reservoir correction for the upper
laminated marl sediments (Table 2.1). Reservoir correction scenarios were con-
sidered because the bulk sediment samples may contain older or younger carbon
(through incorporation of dissolved COy or HCOj3™ from older limestone or shells,
or organic matter from younger mangrove roots) which can lead to inaccuracies
in the calibrated radiocarbon dates (Strunk et al., 2020). Kovacs et al. (2017a)
found an average hard water offset of ~1300 *C years BP (similar to other nearby
values of 1200-1300 yr BP; Curtis et al., 1996) between the raw radiocarbon ages
of terrestrial plant seeds and coeval calcite raft samples from the Sac Actun Cave
System, ~35 km north of Boca Paila. The average local marine reservoir correc-
tion is 135 +77 yr BP, based on the ten closest data points from Boca Paila in the
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Marine Reservoir Correction Database (http://calib.org/marine/). Using both the
average hard water (~1 ppt salinity) and the average local marine reservoir offset
values (~35 ppt), a reservoir correction ratio for brackish salinities based on the
~17 ppt salinity of Boca Paila was calculated to be ~736 yr BP!. This offset was
not applied to the terrestrial peat samples. Because the Organic Matter (OM)
from within the upper marl samples was derived from the brackish lagoon, these
samples were included in age calibration scenario (ii). Age-depth models were
constructed for the two age calibration scenarios using the R statistical software
package Bacon (Version 2.5.8; Blaauw & Christen, 2011).

2.3.4 uXRF elemental analysis

Elemental analysis of the sediment cores was conducted with a Cox Analyti-
cal ITRAX X-Ray Fluorescence Core Scanner (uXRF) at the McMaster Univer-
sity Core Scanning Laboratory (MUCS Lab). Each core was analyzed using the
Chromium heavy element (Cr-HE) X-Ray source with 30 kV, 29 mA, 200 pum
resolution, and 15 second exposure time. The elements of interest for this study
include strontium (Sr), calcium (Ca), titanium (Ti), potassium (K), and silicon
(Si), which are valuable proxies for records of past fluctuations in rainfall and sea
level (Kovacs et al., 2017a; Krywy-Janzen et al., 2019; McNeill-Jewer et al., 2019).
A common source of Sr is from the weathering of limestone which is found through-
out the Yucatan Peninsula and in groundwater (Kovacs et al., 2017a; Skougstad
& Horr, 1963). Sr is found in reef-forming corals and other taxa that build their
skeletons or shells with aragonite, which contains more Sr compared to calcite
(Marshall & McCulloch, 2002). Thus, elevated Sr/Ca acts as an indicator of reefal
sediment sources (Rothwell & Croudace, 2015). In the Yucatan, Ti and K origi-
nate from limestone weathering, and because Ti has a lower dissolution rate than
K, an increase in Ti/K corresponds to greater lithological weathering and rainfall
input (Lo et al., 2016). K is also biologically influenced by mangroves and primary

productivity in cenotes and has a delayed response to precipitation (McNeill-Jewer

IThis value was calculated by plotting the two known offset points according to their source
salinity values (-135 cal yr BP at 35 ppt and -1267 cal yr BP at 1.1 ppt). The resulting trendline
(y=33.392x-1303.7) was used to calculate an age offset at 17 ppt.
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et al., 2019). Si is also a product of weathering and a useful indicator of precipita-
tion patterns; however, Si is also related to biogenic silica (i.e., diatom abundance).
The contribution from biogenic silica can be isolated from terrigenous inputs using
a Si to Ti ratio. Because both Si and Ti are weathering products from limestone
at relatively the same rate, and siliciclastic are scarce in the region, a greater Si/Ti
ratio indicates greater diatom productivity (McNeill-Jewer et al., 2019; Peinerud,
2000).

Statistical identification of geochemically distinct zones across all three cores
were determined by constrained cluster analysis of the uXRF results. The ele-
mental data was standardized (column-centered with mean=0, sd=1), elemental
proxies of importance for the coastal geological setting were selected (Al, Si, S, Cl,
K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, As, Br, Rb, Sr, Zr, Sbh, Ba, and U; Rothwell &
Croudace, 2015), and samples were clustered using a Self-Organizing Map (SOM;
“SOMbrero” package, Olteanu & Villa-Vialaneix, 2015). This method assesses the
similarity of observations (each 0.2 mm of core), through Ward’s method of hierar-
chical clustering, using Euclidean distance as a measure of dissimilarity. Clusters
were then grouped into 6 higher order clusters (superclusters) to help identify
stratigraphic sequences of distinct elemental composition. The three cores were

then correlated based on lithology and chemofacies results.

2.3.5 Stable isotope organic geochemistry

Thirty-four bulk sediment samples were analyzed for carbon and nitrogen isotopes
and their elemental concentrations (§'*C £0.07 %o, 6N £0.17 %o, C +£0.2 %,
N £0.2 %; precision values are standard deviations from the standards used).
The samples were treated with a 10 % hydrochloric acid solution for 24 hours to
remove carbonate material, rinsed several times with deionized water, then dried
at room temperature. The remaining material was ground into a fine powder,
and approximately 2.5-mg subsamples were combusted using Costech Elemental
Combustion System ECS 4010, carried in a helium stream to a Thermo Finnigan
ConFlo III, and measured on a Thermo Finnigan DELTAplus XP continuous-flow

isotope ratio mass spectrometer. Results were compared against several standards
(USGS 24, USGS 40, TAEA 600, TAEA C-3, TAEA N-2, TAEA CH-7, and ANU
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Sucrose). Carbon isotopic ratios were expressed as standard delta notation (0)
in per mil (%o) with respect to Vienna PeeDee Belemnite (VPDB) and nitrogen
isotopic ratios were expressed similarly with respect to atmospheric nitrogen (Air-
Ny).

2.3.6 Microfossil analysis

Twelve samples (~1 c¢m intervals) from BP2 were collected for analysis of
foraminifera. Subsamples (~3.7 cm3) were wet sieved through 45 pm and 300 pm
mesh to remove both fine and coarse material. Samples were wet split if required,
and foraminifera were identified and enumerated wet in a petri dish using an
Olympus SZX12 binocular microscope (60-100X magnification). A least 300 spec-
imens per sample were counted when possible. For samples with <300 specimens,
the entire sample was analyzed, and the maximum number of foraminifera were
counted. Identification was completed with reference to well-illustrated publica-
tions (Gabriel et al., 2009; Poag, 2015; van Hengstum et al., 2008; van Hengstum &
Scott, 2011). Ostracods were enumerated, although not identified further. Where
the estimated standard error for the taxa identified was greater than the abundance
in all samples, the taxa was deemed statistically insignificant and omitted from
further analysis (Patterson & Fishbein, 1989). The Shannon-Weaver diversity in-
dex (SDI; Shannon, 1948) was used as a measure of foraminifera diversity for each
sample as outlined in van Hengstum et al. (2008). SDI values >2.5 indicate sta-
ble conditions for ecological assemblages, while values 1.5-2.5 suggest transitional
conditions and values ~<1.5-0.5 indicate unfavorable conditions (Magurran, 1988;
Patterson & Kumar, 2002).

Twenty-three samples (~1 cm intervals) from BP2 were collected for analy-
sis of diatoms. Subsamples (~0.5 g) were treated with a 10 % hydrochloric acid
solution for 24 hours to remove excess carbonate material and 35 % hydrogen per-
oxide for several weeks to remove excess organic material. Microspheres were then
added to each sample to allow for calculation of approximate diatom concentra-
tions. Samples were mounted on slides with Naphrax®, and diatoms were identified
and enumerated using Differential Interference Contrast microscopy (DIC; Nikon

Optiphot binocular microscope) and 100x oil immersion magnification. At least
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300 specimens per sample were counted where available. Identification was com-
pleted to genus, or species level, using well-illustrated references, databases, and
published lists of diatoms found in Mexico, the Gulf of Mexico, and the nearby
Caribbean region (Krayesky et al., 2009; Licea et al., 2016; Lopez-Fuerte et al.,
2010; Merino-Virgilio et al., 2013; Sanchez et al., 2002; Smol & Stoermer, 2010;
Spaulding et al., 2021; The Periphyton Group, 2022). Phytoliths were enumer-
ated but not identified. Statistically insignificant diatom taxa were omitted from
further analysis, and the SDI was used as a measure of diatom diversity for each

sample, as explained above for foraminifera.

Eleven subsamples (~1.25 cc) from BP2 were analyzed for fossil pollen us-
ing standard processing procedures (Faegri & Iversen, 1990). One tablet of Ly-
copodium was added to each subsample to calculate pollen concentration. Sub-
samples were treated with 10 % HCI to remove carbonate material, then boiled
in 10 % KOC for 15 minutes to break down humic acids. Subsamples were sieved
at 125 and 10 pm to concentrate the pollen and then boiled in hydrofluoric acid
for 10 minutes to remove silicate material. The subsamples were then washed in
glacial acetic acid (GAA) followed by acetolysis treatment to remove plant cellu-
lose. A second GAA wash was performed before washing the subsamples in water.
Subsamples were then treated with tert-Butyl alcohol and mixed with silicone oil
as a mounting medium, before being mounted on slides. Pollen was identified
and enumerated using a Zeiss Axio Lab A.1 microscope at 400X magnification.
The pollen counts per slide were low (<100 grains per sample) and were therefore
summarized semi-quantitatively. Although samples from the central portion of the
core (27-37 cm) were processed, the high mineral content of these samples meant
that little pollen was extracted and the residue itself was unable to be used to

make slides (i.e., it was highly sticky after processing).

2.4 Results

2.4.1 Hydrological conditions

Boca Paila groundwater is distinctly stratified, with a salinity of ~15-18 ppt in
the MeWM above the halocline (~16 m deep) and 35 ppt below the halocline
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in the MaWM (Figure 2.2). Water temperature and pH follow a similar trend:
temperatures were 26.25-26.50 °C with a pH of ~7.0 above 16 m and reached
27.40 °C with a pH of 7.6 at the halocline. Surficial water in the lagoon was
warmer (~26.5 — 27.3 °C) than the MeWM. DO saturation values in the lagoon
ranged from 12.5-43 % in the upper ~2.5 m and became anoxic in the cave entrance
and within the MeWM and MaWM (Figure 2.2). During measurement (June 5th,
2009), SCUBA divers noted (unmeasured) high flow in the cave passage proximal

to the entrance but lower flow in the distal upstream areas.

[ ] L "D L 3 CTAD o Lagoon

MeWM

Depth (m)

| Y B Halocline
‘ MaWM

FIGURE 2.2: Hydrological (salinity, temperature, pH, and dis-
solved oxygen) profiles of the Boca Paila Cave System, showing
the halocline, the Marine Water Mass (MaWM), the Meteoric
Water Mass (MeWM), and the lagoon surface.

2.4.2 Lithology and core chronology

The base of BP1 and BP2 and the entirety of BP3 consists of dark Detrital Peat
(DP) interval that tends to be structureless with some intervals of subtle bedding
(Figure 2.3). In BP1 and BP2, the DP is followed by a Peat-Marl Transition
(PMT) interval. The PMT is relatively lower in organic matter (OM) content, as
evidenced by the X-ray radiograph, and is finely laminated. The contact between
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the DP and PMT is sharp in BP2 (~23 c¢m) and more gradual in BP1 (32 cm).
Above the PMT in cores BP1 and BP2 lies finely Laminated Marl (LM).

The radiocarbon results (Table 2.1) and the age-depth models (Figure 2.4)
show that the DP sediments span a few thousand years (~3484-1157 BCE). In
BP2, these DP ages contain reversals likely related to the input of older carbon
sources from the surface and/or erosion and redeposition of sediment within the
cave passage. The two ages in BP3 are in chronological order and include the
youngest age (~1157 BCE) for the DP sediments. The lower section of the PMT
in BP2 dates to ~2462 BCE, while the upper PMT dates to ~682 BCE (Table
2.1). The lower PMT date is an outlier on age-depth curve which likely reflects
older carbon sources (Figure 2.4). The LM sediments are much younger than
the underlying units, dating to ~312 and ~480 CE with no reservoir correction
and to ~1070 CE and ~1206 CE with a brackish reservoir correction. The basal
mangrove peat from the shallow (~1 m) edge of Cenote Yax Chen dated to ~711
CE (Table 2.1).

2.4.3 Geochemistry results

Geochemical trends from the uXRF data (Figure 2.3) and the supercluster analysis
(Figure 2.5) show distinct zones that correspond to visual changes in lithology.
The DP units of BP2 and BP3 contain layers of shell fragments (visible as white
specs and as alternating light and dark banding in the radiograph) that correlate
with spikes in Sr and Ca. This pattern is most apparent in BP3 ~20-25 cm.
Concentrations of both Sr and Ca begin to increase in the PMT units of cores
BP1 and BP2. In the LM units of BP1 and BP2, Sr counts continue to increase
notably, while Ca counts decrease. Ti, K, and Si counts increase sharply at the
top of the DP units of all three cores and into the PMT of cores BP1 and BP2
(Figure 2.3). Both above and below this transition, Ti counts remain relatively
low (~<1000) in BP1 and BP2. K and Si counts continue to increase slightly up-
core in the LM sediments, especially in BP2. The inc/coh values, related to the
porosity /density of sediment and therefore OM content, due to its high porosity
relative to carbonate sediment. The inc/coh decreases in the PMT units in BP1

and BP2 and the radiograph also shows higher sediment density in this interval.
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TABLE 2.1: Radiocarbon results for BP2, BP3, and isolated
plant material from Yax Chen basal mangrove peat (YC),
showing estimates with no reservoir correction and a brack-
ish correction (736 yr BP, within dashed boxes) for LM sam-
ples. (S=bulk sediment, LM=Laminated Marl, PMT=Peat-
Marl Transition, DP=Detrital Peat, MP=Mangrove Peat).

Fraction of Radiocarbon

Core 1%;:31 ]‘)‘e‘:)jt“lf‘(ecﬁ) ?_;p?al; m"derfa age BCEICE  BOE/CE :bri‘]’].';; CE(/:I;ICE Error
(cm) Lithology pMC error BP 1oerror (S © Mid

BP2 105 105 S,LM 8194 024 1600 24 420 540 95% 480 60

1156 1255 95% 1206 S0 |
BP2 205 20.5 S,LM 8045 024 1747 24 242 382 os% 312 70

991 1148 95% 1070 79
BP2 315 315 S,PMT 7279 024 2551 26 -800 64 9% 682 118
BP2 355 35.5 S,PMT 6102 0.19 3968 25 2573 2351 95% 2462 111
BP2 545 54.5 S,DP 6452 022 3520 27 1929 <1751 95%  -1840 89
BP2 405 40.5 S,DP 5587 025 4676 36 -3601 3366 95%  -3484 118
BP2 695 69.5 S,DP 6661 023 3264 28 1613 <1454 95%  -1534 80
BP3 125 44 S,DP 6925 02 2952 23 1258 <1055  95%  -1157 102
BP3 36 57 Twig, DP 6779 0.19 3123 23 1448 1302 95%  -1375 73
YCPl Im Plant, MP  84.66 029 1338 28 647 774 95% 711 64

* Sample depths for BP3 adjusted to Peat-Marl Transition in BP2 for composite age model in Figure 4.
Dashed boxes = age estimates with brackish correction of 736 yr BP

BP3 has relatively high inc/coh ratio values throughout, reflecting the organic-rich

DP composition (Figure 2.3).

The correlation between cores and the trends in Sr/Ca, Si/Ti, and Ti/K ratios
are presented in Figure 2.6. The LM and the PMT facies are represented in cores
BP1 and BP2. The DP facies is found in all three cores and contains relatively
low Sr/Ca values with intermittent spikes. The Sr/Ca ratio values decrease in the
PMT, then steadily increase upwards throughout the LM units. Si/Ti ratio values
are low throughout the DP, then oscillate between high and low values in the PMT
and the LM sediments. The Ti/K ratio values increase in variability throughout
the PMT sediments and remain relatively low in the DP and LM units in all cores
(Figure 2.6).
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The 6'3C values from the DP unit of BP2 range from -28.2 %o to -26.2 %o
(mean= -27.2 %o). Values increase in range in the PMT unit (-26.3 %o to -23.0 %o,
mean= -25.3 %o), and further increase in the LM (-22.4 %o to -20.2 %o, mean=
-21.5 %o). The average 6'°N values increase slightly upcore, with 7.3 %o in the DP,
8.2 %o in the PMT, and 8.2 %o in the LM. The C/N ratios are variable throughout
the core, with mean values of 10.7 in the DP unit, 10.8 in the PMT unit, and 9.6
in the LM unit (Figure 2.7; Appendix Al).
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FiGURE 2.3: Optical and radiograph images of cores BP1,
BP2, and BP3, with uXRF results for elements of interest, ra-
diocarbon dates plotted in relation to core depth, and chemo-
facies divisions based on supercluster results (see Figure 2.5).
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BP3 (yellow) radiocarbon results for no reservoir correction
and a brackish reservoir correction using Bacon (R), with
chemofacies divisions based on the supercluster results (see
Figure 2.5).
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FIGURE 2.5: Chemofacies superclusters (DP= Detrital Peat,

PMT = Peat Marl Transition, LM = Laminated Marl) of

uXRF data from cores BP1, BP2, and BP3, with heatmap
of elemental trends.
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TABLE 2.2: Pollen counts in 8 samples from core BP2.

Depth (cm) 1 5 14 23 38 47 56 71
Individuals/cc 1784 2203 2970 1262 1918 4710 1379 2878
Sum 38 31 66 9 19 191 12 97
Mangroves

Rhizophora 6 12 25 2

Conocarpus
Ferns

Monolete spores 6 3 1 - - 3 - 1

Trilete spores - - - 1 -
Grass

Poacaea (monoporate)
Chenopodiaceae
Asteraceae
Anacardinaceae (Spondias-type)
Palms

Arecaceae - 5 16 - - - - -
Myrica 4 - - - - - - -
Fig family

Moraceae (2-pores) - 3 - - - 19 - -

Moraceae (3-pores) - - - - - - - 12

Moraceae (4-pores) - - - - - - - 4
Pine

Pinus 6 2 7 3 1 - - -
Solanaceae - - - - - - - 1
Unidentified pollen spores 9 1 7 - 3 19 1 1

40 - 20
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9 88 10 54
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]
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TN W
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2.4.4 Microfossil results

2.4.4.1 Foraminifera

Eighteen statistically significant foraminifera taxa were identified from the 12 BP2
samples, and results vary closely with lithology (Figure 2.7, Appendix A2). The
five samples from the DP section at the base of the core contain very few specimens
(9-80 per cc), including agglutinated taxa (~60-100 % relative abundance, with
proportions of ~85 % Trochammina inflata and ~15 % Jadammina macrescens)
with some Ammodiscus spp. (~7-37 %) and Patellina corrugata (~1-2 %). Diver-
sity is very low, with SDI values ranging from 0.25-0.67. The four samples from the
PMT show increasing concentrations of foraminifera (from 88 to 307 counts/cc)
with increasing diversity (0.37 to 2.15 SDI). Ammodiscus spp. (22-94 %), P. cor-
rugata (~1-5 %), and Siphonina reticulata (~1 %) characterize this unit, with
higher abundances of Elphidium spp. (~12 %) and Ammonia parkinsoniana (3—11
%) towards the upper half of the section. The three LM samples contain high
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abundances (497-1365/cc; mean = 870/cc) and diversity (SDI 1.70-3.29; mean =
2.47) of foraminifera. Major species include Rosalina spp. (~33-42 %), Elphidium
spp. (~3-20 %), A. parkinsoniana (~3-16 %), Bolivina variabilis (~6-13 %), and
Ammonia tepida (~2-9 %; Figure 2.7, Appendix A2).

2.4.4.2 Diatoms

Thirty-two statistically significant diatom taxa were identified from the 34 BP2
samples. There were no diatoms observed in the DP unit, and very few speci-
mens observed in the PMT unit (Figure 2.7, Appendix A3). The dominant taxa
in the transition include Cyclotella meneghiniana (~12-50 %), Grammatophora
spp. (~14-17 %), Amphora proteus (~12-17 %), Craticula spp. (~8 %), Am-
phora ostrearia (~5 %), and Diploneis suborbicularis (~4 %). Abundances are
low (5.7x10%-4.4x10*/cc; mean = 1.7x10*/cc) with extremely low diversity (SDI
0.02-0.92; mean = 0.22). The LM sediments contain higher diversity (SDI 2.77-
3.46, mean = 3.22) and increasing concentrations up core (from 4.1x10° to
3.1x107/cc; mean = 4.7x10°%/cc). Dominant diatom taxa in the LM unit include
C. meneghiniana (~3-24 %), Craticula spp. (~9-21 %), Amphora immarginata
(~2-11 %), A. proteus (~2-10 %), Hyalosynedra laevigata (~2-9 %), and Gram-
matophora spp. (~1-9 %; Figure 2.7, Appendix A3).

2.4.4.3 Pollen

Eight of the 11 samples collected for pollen analysis yielded results whereas the
three samples from the middle of the core (27-28, 32-33, and 36-37 cm inter-
vals from BP2) were not processable using standard methods as they produced
sticky, mineral-rich sediment that did not allow them to be counted. Pollen con-
centrations were low in each sample and thus are qualitative in terms of their
utility (<5000 grains/cc, compared to ~40,000 grains/cc found at Cenote Aktun
Ha; Gabriel et al., 2009). This is expected, due to the location of core samples
~212 m from the entrance of a submerged cave system, as opposed to a surface-
exposed location (e.g., Cenote Aktun Ha). Though the pollen analysis did not
produce key results, the data is still supportive of overall findings. The DP con-

tained relatively high abundances of buttonwood mangrove pollen (Conocarpus),
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red mangrove (Rhizophora), and fig family pollen (Moraceae). The upper LM
samples contained relatively lower counts, but a wider variety compared to the

DP, including Rhizophora, pine, ferns, grass, and palms (Table 2.2).
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2.5 Discussion

The combined results from lithology, radiocarbon dating, and analysis of elemental
and stable isotope geochemistry, foraminifera, diatoms, and pollen indicate three
distinct periods of sediment deposition. The observed trends were compared to
regional environmental records and sea-level curves, and a sequence of environ-
mental history was reconstructed for the Boca Paila area, spanning the past 3000
years. The inferred reconstruction includes three phases of coastal landscape evo-
lution: Phase 1, upland isolated mangroves and mangrove associates; Phase 2, a
shallow wetland environment; and Phase 3, flooded wetlands/mangroves with la-
goon development (Figure 2.8). The following discussion of environmental phases

will focus on core BP2, as it contains the most complete record.

2.5.1 Phase 1: Upland Mangrove Environment

The dark DP unit at the base of all three cores, containing age reversals in the
radiocarbon dates, is likely related to the transport of older OM (i.e., older plant
material) into the cave from the surface as well as transport and reworking of OM
from upstream locations in the cave passage itself. The down cutting and erosion
of the OM is evidenced by the exposed scarp of peat on the side of the cave passage
(i.e., the location of BP3). To account for this age uncertainty, the estimated age
of the DP units was approximated by the youngest age obtained, ~1157 BCE,
from BP3. Prior to this age, the upper karst environment was likely dry/moist,
which is reflected in the results from this study and is corroborated by climate and
sea level studies from the area (e.g., Carrillo-Bastos et al., 2010; Gischler & Storz,
2009; Khan et al., 2017; Metcalfe et al., 2000; Webster et al., 2007).

The elemental geochemistry results from the DP indicate high porosity and OM
content (high inc/coh), minimal input of weathering products (low Ti/K), and
low phytoplankton productivity (low Si/Ti; Figure 2.3, Figure 2.6; Lo et al., 2016;
McNeill-Jewer et al., 2019; Peinerud, 2000). Low terrigenous weathering product
input during this phase is expected because rainfall would percolate directly to
the aquifer through cracks and fissures in the limestone (McNeill-Jewer et al.,

2019). Relatively dry surface conditions and low phytoplankton productivity are
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also supported by the lack of diatoms observed in Phase 1 sediments (Figure 2.7).
Foraminifera observed here are largely T. inflata and J. macrescens, agglutinated
species that are often associated with coastal brackish to fresh water and high/mid
marsh conditions as well as mangrove peats (Khan et al., 2019; Appendix A2
and A4), suggesting moist conditions nearby. The organic carbon isotope results
mainly fall within terrestrial ranges (6'3C = -28.2 %o to -26.2 %o; Lamb et al.,
2006) and are similar to the §'*C value of mangrove roots in the region (-28 %y;
Adame et al., 2021). The pollen signal during this phase likely reflects the taxa
growing in the immediate vicinity. The presence of Conocarpus pollen supports
the hypothesis that the cave entrance was located in a relatively dry area further
inland from the coastline (DeYoe et al., 2020).

According to Adame et al. (2021), mangrove peat began to accumulate ~3220
+30 cal yr BP (1270 BCE) at the base (6 m) of Casa Cenote (30 km north of Boca
Paila, 50 m from the coast) and ~3040 +30 cal yr BP (1090 BCE) at the base (5 m)
of Cenote Yax Chen (~12 km north of Boca Paila, 350 m from the coast). Collins
et al. (2015¢)’s study of Cenote Yax Chen cave sediments suggested that flooding
of the upper karst terrain and initial mangrove development occurred ~3800 cal yr
BP (1850 BCE), which is similar to Torrescano and Islebe (2006)’s estimate from
El Palmar, ~200 km south of Boca Paila, 23km from the coast. Therefore, with the
water table ~3-4 m from the upper limestone, Rhizophora/Conocarpus mangroves
would have been localized in Boca Paila itself, but also in cenotes and depressions
in upstream areas which would have transported detrital OM into the cave dur-
ing this phase. Extant mangroves have been documented in inland areas of the
Yucatan, but also in sediment cores from Carwash Cenote (also known as Aktun
Ha) which showed mangroves inhabiting the base of the sinkhole when sea level
was lower (~7 ka; Aburto-Oropeza et al., 2021; Gabriel et al., 2009; Meacham,
2012). There appears to be an erosional event towards the end of Phase 1, observed
through the eroded peat outcrop at the location of BP3. Evidence of this event
is shown when comparing the elevation and depth of the DP facies of the three
cores as well as the spikes in the elemental counts (Ca, Ti, K, and Si) near the
top of the DP units (Figure 2.3 and 2.6). The western Caribbean basin is tectoni-
cally stable with no recorded historical earthquakes or tsunamis (Shaw & Benson,

2015), although the eastern portions do experience seismicity (Moreno & Calais,
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2021). Recently, on January 28, 2020 (2:10 p.m.; UTC-5), a M 7.7 earthquake
occurred in the Caribbean Sea to the south of Cuba and northwest of Jamaica
(https://earthquake.usgs.gov/earthquakes/eventpage /us60007idc/executive). Al-
though no tsunami was produced, unusually large currents were reported in Cenote
Akalche (Ox Bel Ha Cave System ~20 km north of Boca Paila) as well as other
nearby cenotes. During the event, cenote water level rose and fell (£1 m) sev-
eral times and currents became so strong that the divers had to hold on to rocks
(See Appendix Ab). The event was not instrumentally recorded and was not
widespread. It is possible that a similar seismic or unknown flow event caused the
observed erosion in Boca Paila sometime between ~1157 BCE and ~312 CE. The
berm described by Shaw and Benson (2015) ~50 km north of Boca Paila records
two or three large waves that struck the coast ~470 CE and more closely resembles
the deposits of a tsunami than a mega-hurricane. The estimated age of the berm
was based on the presence of Late Postclassic Maya structures built on top of the
deposits (1200-1517 CE), the formation of the modern coastline (~2000 BCE),
and two radiocarbon dated peat samples from a nearby underlying sediment unit
(~1500 cal yr BP or ~470 CE; Shaw & Benson, 2015). This nearby anomalous
storm event is estimated to have occurred later than the events recorded here in
Boca Paila; however, considering radiocarbon dating uncertainties, as well as the
constraints used to estimate the age of the berm, it is possible that both the berm
deposit and the cave sediment erosion were caused by the same extreme flow event.
A more probable process, however, is a hurricane, which is a regular occurrence
on the coast of the Yucatan Peninsula. A recent study on the hurricane record at
Cenote Muyil (Chunyaxche Lagoon) suggested a statistically significant period of
local major hurricane activity between around 250 BCE and 100 CE (Sullivan et
al., 2022). Anomalous hurricane activity during this time could have caused local
flooding, washing a mix of terrestrial and marine material into the cave systems,

and creating abnormal tides within some caverns including Boca Paila.

2.5.2 Phase 2: Shallow Wetland

The transition between DP and LM sediments occurs sometime between ~1157
BCE and ~312 CE or ~1070 CE, depending on whether reservoir corrections are
applied to the marl samples (see 5.4.2 and 5.4.3 for discussion on age-depth model
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selection). The radiocarbon age obtained from the lower section of this unit (2462
BCE) likely reflects the input of older OM that had accumulated on the karst sur-
face or from the underlying DP. During this phase, the cave opening had become
a flooded cenote with the nearby environment transitioning into shallow, flooded
wetlands (Figure 2.8). Increased input of weathering products from the previously
exposed epikarst (higher Ti/K, Ca, Si counts) into the cave during this period was
caused by precipitation, and overland flow with rainfall events into the cave (Lo
et al., 2016; McNeill-Jewer et al., 2019). Because the groundwater level was at or
slightly above the epikarst, large rainfalls would raise the water level and would en-
train weathering product into the cave as the water receded (McNeill-Jewer et al.,
2019). Shallow open-water conditions, which were increasing in area and depth,
are supported by an inferred increase in phytoplankton activity represented by in-
creased Si/Ti values and the presence of diatoms during the latter half of Phase 2
(Figures 2.6 and 2.7; McNeill-Jewer et al., 2019; Peinerud, 2000). The few diatom
taxa observed here are often associated with fresh to brackish water and man-
groves (C. meneghiniana and Craticula spp.) or nearshore marine environments
(Grammatophora spp., A. proteus, A. ostrearia, and D. suborbicularis), indicat-
ing increased marine sediment input into the cave environment (Appendix A4).
Foraminifera abundance and diversity increase throughout this phase and suggest
a “transitional” environment towards more optimal salinity conditions (Appendix
A2; Patterson & Kumar, 2002). The dominant foraminifera species observed dur-
ing this period are often associated with marine inner shelf and brackish lagoon
environments (Ammodiscus spp., Ammonia spp., and FElphidium spp.; Appendix
A4). The organic carbon isotope results overlap both terrestrial and marine ranges
(-26.3 %0 to -23.0 %0), suggesting mixed sources of sediment in the cave passage
during this period (Lamb et al., 2006).

2.5.3 Phase 3: Flooded wetlands with lagoon development

Carbonate-rich sediments began to accumulate in the cave system by ~312 CE
with no reservoir correction, or by 1070 CE with a brackish reservoir correction
(see further discussion in sections 2.5.4.2 and 2.5.4.3). By Phase 3, the region was
likely characterized by deeper wetlands and lagoons similar to the modern coast-

line, which occurred between 312-1070 CE based on the two dating scenarios.
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Elemental geochemistry results indicate increased water surface area and phyto-
plankton productivity (high Si/Ti) as well as input of shallow offshore marine
sediments (high Sr/Ca values; Figure 2.6; McNeill-Jewer et al., 2019; Rothwell
& Croudace, 2015). The decrease in Ti/K values during this phase is attributed
to the weathering products being preferentially deposited in the fringing wetlands
and mangroves surrounding the open water lagoon that was forming. This would
be a more diffuse input of weathering product into the cave versus the direct over-
land flow in Phase 2. Deeper water conditions and increased marine influence are
supported by the increase in abundance and diversity of foraminifera and diatoms
(Figure 2.7, Appendix A2 and A3). Dominant species include a wider variety of
more marine taxa compared to previous phases, with observations of foraminifera
Rosalina spp. and Bolivina spp., diatoms A. immarginata and H. laevigata, and
other taxa typically found in Caribbean lagoons (Gregory et al., 2015; Hardage et
al., 2022; Appendix A4). The §'3C values fall within marine range, while the C/N
values suggest mixed input from marine and terrestrial sources (Lamb et al., 2006).
The §'°N values (average 8.2 %o) could also reflect mixed input from terrestrial
(e.g., plants ~-7 to +7 %o, photosynthetic organisms ~0 %o, animals/excrement
~+5 to +20 %0) and marine (e.g., ocean POM ~+3 to +18 %o) sources (Samper-
Villarreal, 2020; Sharp, 2017). The presence of a more diverse assemblage of
pollen taxa observed in the laminated marl sediments, including grains of Rhi-
zophora, ferns, grasses, palms, and pine (Table 2.2), may indicate the rise in the
groundwater level closer to the surface, allowing root access for terrestrial plants.
The higher abundance of Rhizophora and the absence of Conocarpus pollen sup-
ports the interpretation of widespread mangrove development in the area during
this last phase (DeYoe et al., 2020). As water level increased with sea-level rise,
flooded wetlands and brackish lagoons dominated, with Rhizophora as the main

mangrove species growing around the fringes of Boca Paila as they are today.
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2.5.4 Age-depth scenarios and Muyil trade activity: An

archaeological perspective

2.5.4.1 Phase 1: <~1157 BCE

Rise in the sea level and regional groundwater level facilitated marine trade around
the Yucatan Peninsula. The proposed Maya route connecting Muyil with the
Caribbean Sea would only have been functional if water was deep enough to ac-
commodate a dugout canoe, a transport vessel widely believed to be used by
ancient Maya (Biar, 2017; McKillop, 2010). Regional sea-level curves suggest that
sea level was ~2 meters below present level by the end of Phase 1 (Khan et al.,
2017; Milne & Peros, 2013; Toscano & Macintyre, 2003). With modern lagoon
water depths of ~1-1.5 m near the Boca Paila cave opening, the upper karst sur-
face would have been dry, but groundwater level would have been near the upper
limestone surface (~1 m). Topographically depressed areas to the east would have
been flooded, as the current average depth of the lagoon is ~3 m. Prior to ~1157
BCE, the extensive wetlands that currently characterise the southeastern coast of
the Yucatan Peninsula may not have existed because groundwater levels were too
low; however, variations in limestone topography may have allowed more localized
wetlands to form. There was most likely little to no sea-route access to Muyil at
this time (Figure 2.8).

2.5.4.2 Phase 2: ~1157 BCE to ~312 CE

People are estimated to have arrived at Muyil by sea no later than 350-300 BCE
(Witschey, 1993). The estimated founding of Muyil corresponds well with the end
of Phase 2 under radiocarbon age correction scenario (i), no reservoir correction,
at ~312 CE (Table 2.1; Figure 2.4). According to regional estimates, sea level
would have been at or near the elevation (~1.5 m) of the Boca Paila cave open-
ing ~1000 BCE (Figure 2.9; Khan et al., 2017; Milne & Peros, 2013; Toscano &
Macintyre, 2003), which matches our ~700 BCE mid-date for this phase under
reservoir correction scenario (i). This supports the theory that the cave opening

was transitioning into a flooded, open-water cenote throughout this time and was
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occasionally connected to a larger water body during rainfalls, with the develop-
ment of mangroves and shallow wetlands on the nearby karst surface. Water depth
was still likely not sufficient for canal access to Muyil from the Caribbean Sea until
closer toward the end of Phase 2, as sea level continued to rise. Early versions of
the Cayo Venado and Muyil canals that connect Boca Paila to Muyil may have
existed, especially towards the end of Phase 2. During his excavation, Witschey
(1993) concluded that these canals are naturally formed outflow channels, but
that Muyil canal may have been dredged, reinforced, straightened, or otherwise
maintained for easier access. Human intervention may have been necessary due to

relatively lower water levels during early occupation of the site.

When considering the ages calibrated with a brackish reservoir correction (sce-
nario (ii); Table 2.1), deposition of the lagoonal Laminated Marl sediments would
have begun more recently ~1070 CE. In this scenario, the transition between
a shallow wetland environment and deeper wetlands with lagoons and flooded
canals would not have occurred until the Postclassic, when maritime trade routes
around the Peninsula are thought to have already been well established (Andrews,
1993; Glover et al., 2011). The corrected age also does not fit well with regional
sea-level curve estimates, which indicate that sea level would have been close to
present depths by ~1070 CE (Figure 2.9). Boca Paila, like most lagoons, receives
both freshwater and seawater, but is not continuously flushed. The most signif-
icant source of organic matter to lagoon sediments is likely autochthonous (e.g.,
in situ plankton, terrestrial plants; Lamb et al., 2006), and therefore may contain
atmosphere-related radiocarbon requiring minimal reservoir correction (Strunk et
al., 2020). The carbon isotope results from the LM sediments support this pos-
sibility, with §'3C values that fall within marine range but still within range of
terrestrial values (Lamb et al., 2006). Uncorrected ages of ~1157 BCE to ~312
CE for Phase 2 were deemed to be most reliable based on the balance of evidence
in this study; however, we cannot dismiss the range of ~1157 BCE to 1070 CE
for this phase. The uncorrected ages correspond better with previous archeologi-
cal and sea level data, and further research may better constrain the age for this

environmental transition.

40


http://www.mcmaster.ca/
https://computational.mcmaster.ca/

Ph.D.— R. Steele; McMaster University— School of Earth, Environment, & Society

Quintana Roo Location

Boca Paila Cave

Cenote Yax Chen

Pac Chen

Cenote Ich Balam

Cenote Oasis

Cenote Yax Chen

Cenote Casa

Torrescano & Islebe, 2006

®Pac Chen

Puerto Aventuras®

Akumal®
Cenote Ich Balam @
Cenote Oasis @
Cenote Carwash® @ Casa Cenote
®Balam Can Chee
Tulume
Chan Hole
Chumkopd' #Cenote Yax Chen

A
N

Laguna Chumkopo
Cenote Carwash
Aktun Ha Cave

Chan Hol Cave

Balam Can Chee Cave

Baca Paila®

+0@ceppomEcene

10 Km——

Depth (mwl)

-20 -

Age (kyr cal BP)

FIGURE 2.9: Relative mean sea level estimate (m +20) for the
Yucatan Peninsula based on Khan et al., (2017) and indicators
from locations in the inset list and map (Brown et al., 2014;
Collins et al., 2015a; Gabriel et al., 2009; Krywy-Janzen et al.,
2019; Moseley et al., 2015; Stinnesbeck et al., 2017; Torrescano
& Islebe, 2006; van Hengstum et al., 2010). Modified from
Krywy-Janzen et al. (2019).

2.5.4.3 Phase 3: >~312 CE

Site expansion and increased trade with Belize and nearby islands during the
Classic period (250-800 CE), as well as the significant estimated population growth
and construction of infrastructure during the Postclassic (925-1550 CE; Witschey,
1993), coincide well with a continued sea-level rise and flooding of the wetlands,
lagoons, and canal system throughout Phase 3 under radiocarbon age correction
scenario (i), no reservoir correction (>~312 CE). Radiocarbon age calibration
scenario (ii) does not fit well with the estimated timeline of activity at Muyil,
because major site expansion and growth would have had to occur in shallow

wetlands with minimal access to sea routes.
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According to regional estimates, sea level was likely within 1 m of modern
depths ~312 CE (Khan et al., 2017; Milne & Peros, 2013; Toscano & Macintyre,
2003) which is supported by estimated ages of mangrove growth from nearby Yax
Chen (Khan et al., 2017; Milne & Peros, 2013; Toscano & Macintyre, 2003) and the
age of the basal mangrove peat obtained in this study (711 CE) from the shallow
(~1 m peat depth) limestone of Cenote Yax Chen. Considering that average water
depths across the entire lagoon are ~3 m (Lara & Gonzalez, 1998), Boca Paila was
likely significantly flooded by this time. The current canal system, which rests on
the upper limestone and connects the Caribbean to Muyil through Cayo Venado
(currently ~1.8 m deep) and Muyil canal (currently 0.5-1.2 m deep), would have
also likely been partially flooded (~0-1 m deep) and canoe-navigable by the onset
of Phase 3 (Matthews, 1995; Witschey, 1993). By the Late Postclassic, Muyil
would have been well situated along circum-peninsular trade routes in a sheltered

area protected from the Caribbean Sea.

Nearby port sites along the coast (Figure 2.1) were likely experiencing similar
changes in coastal morphology, because the wetlands surrounding Boca Paila ex-
tend further into the Sian Ka’an Biosphere, as well as southwards into Belize at
comparable elevation (Luzzadder-Beach & Beach, 2009). The formation of flooded
wetlands throughout this geographical region may have facilitated maritime trade
during the Postclassic by providing sheltered canoe-accessible routes. Further re-
search along these coastal wetlands can provide more information on the timing
of wetland development and more evidence to confirm the possibility that wetland
formation provided increased opportunities for Maya circum-peninsular trade on
the eastern coast of the Yucatan Peninsula during the Early Postclassic—Late Post-

classic period.

2.6 Conclusion

Three sediment cores were collected from a cave system beneath Boca Paila la-
goon, located on the eastern Yucatan Peninsula coast. Three distinct deposi-
tional phases were defined following radiocarbon dating, geochemical (uXRF, §'3C,

C/N), and microfossil (foraminifera, diatom, and pollen) analyses. Prior to ~1157
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BCE (Phase 1), the coast was likely characterised by an upland mangrove envi-
ronment. Organic-rich detrital peat sediments contain indicators (Ti/K, Si/Ti,
613, C/N) of relatively dry surface conditions with low terrestrial weathering, low
phytoplankton productivity, and terrestrial organic carbon sources. Regional sea-
level curves, along with the observed absence of diatoms, the presence of a few
brackish foraminifera (i.e., 7. inflata and J. macrescens), and the landward man-
grove taxa Conocarpus, suggest that the bottom of the Boca Paila cave passage
had flooded by this time, but that the upper karst environment was still relatively
dry. Between ~1157 BCE and ~312 CE (Phase 2), sea level had likely reached
the elevation of the Boca Paila cave opening, forming a flooded cenote surrounded
by shallow wetlands. Detrital peat-laminated marl transition sediments contain
geochemical and biotic indicators (Ti/K, Si/K, 6'3C, C/N, mangrove/nearshore
marine diatoms and foraminifera taxa) of increased surface weathering input and
phytoplankton productivity related to an inferred increased flooding, sunlit, and
open-water conditions. Deeper wetlands and lagoons appear to have formed after
~312 CE (Phase 3) with continued sea-level rise of ~1 m over the past 2000 years.
Geochemical indicators (Sr/Ca, 6'*, C/N) within the carbonate-rich laminated
marl sediments suggest increased input from marine sources. Notably higher con-
centrations of brackish and marine foraminifera (e.g., Ammonia spp., Elphidium
spp., Rosalina spp., and Bolivina spp.), diatoms (e.g., C. meneghiniana, Craticula
spp., A. immarginata, A. proteus, H. laevigata, and Grammatophora spp.), and a
wider variety of pollen taxa (from nearby mangroves, ferns, grasses, palms, and
pine) also indicate fully flooded conditions similar to the modern coastline. Our
results suggest that the sea-route to Muyil could have been navigable by canoe
toward the end of Phase 2, roughly corresponding with a previous estimate for the
time that settlers first appeared at the site. Archaeological evidence of the site’s
population expansion during the Postclassic coincides with the formation of deeper
lagoons and canal system during Phase 3. Deeper wetlands across the southeastern
coast of the Yucatan Peninsula may have provided more opportunities for canoe
travel and could have contributed to the observed increase in sea trade along the
eastern coast during the Postclassic period. Further research and spatial coverage
in the biosphere wetlands will better constrain the timing of paleoenvironmental

evolution and may elucidate further patterns and relationships with coastal Maya

43


http://www.mcmaster.ca/
https://computational.mcmaster.ca/

Ph.D.— R. Steele; McMaster University— School of Earth, Environment, & Society

trade. This study highlights the dynamics between human activity and changing
coastal morphology and shows the importance of karst cave systems for obtaining

paleoenvironmental records.
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Abstract

The construction of harbours along high energy nearshore environments, which
commonly include the emplacement of hard structures both as central features
(e.g., piers, jetties) as well as protective measures (e.g., wave breakers, coastal ar-
mouring), can alter coastlines in a multitude of ways. These include reconfiguring
the coast’s morphology, introducing or redistributing exogenous and endogenous
materials, and changing localized environmental substrate and structural condi-
tions, and, as a result, impact the associated ecological communities. With growing
coastal populations and associated coastal development, concerns over the long-
term consequences of such projects are of global interest. Caesarea Maritima, a
large-scale, artificially constructed ancient harbour built between 21-10 BCE, pro-
vides a rare opportunity to address these impacts and investigate its fingerprint on
the landscape over 2000 years. To approach this, representative sediment samples
were isolated and analyzed from two sediment cores (C1, C2), an excavated trench
(W), and a sample of ancient harbour construction material (aeolianite sandstone
and hydraulic concrete; COF). Geochemical (Itrax pXRF, magnetic susceptibil-
ity) and foraminifera analyses were conducted and results from both methods were
statistically grouped into significantly similar clusters. Results demonstrated the
increased presence of aeolianite-associated elemental contributions only after the

56


http://www.mcmaster.ca/
https://computational.mcmaster.ca/

Ph.D.— R. Steele; McMaster University— School of Earth, Environment, & Society

construction of Caesarea as well as in particularly high concentrations following
previously proposed tsunami events, during which shallower and deeper materials
would have been transported and redeposited. The foraminifera data shows the
appearance and eventual abundance dominance of Pararotalia calcariformata as
an indicator of coastal hardening. Results suggest that they are an especially well-
suited species to demonstrate changing environmental conditions existing today.
In previous studies, this species was mistakenly presented as a recent lessepsian
arrival from the Red Sea, when in fact it has had a long history of co-existence in
the Mediterranean with humans and their harbour buildings habits. Specimens of
P. calcariformata, therefore, are useful indicators for the timing of harbour con-
struction at Caesarea and may be used as rapid and cost-effective biostratigraphic
indicators on sandy nearshore coastline in future geoarchaeological studies. This
has implications for future studies along the Israeli coast, including both paleoen-
vironmental and modern ecological assessments.

Keywords: King Herod’s harbour, Caesarea, hydraulic concrete, epiphytic
foraminifera, Pararotalia calcariformata, pnXRF

3.1 Introduction

Ancient harbour sediments and stratigraphy are often studied because they con-
tain evidence of past environmental change including climate, sea-level, and an-
thropogenic activity (Blackman, 1982a, 1982b; Marriner & Morhange, 2007; Rein-
hardt et al., 1994; Riddick et al., 2021; Riddick et al., 2022a, 2022b; Salomon et al.,
2016). The analysis and interpretation of environmental proxies (e.g., microfos-
sils, geochemistry, lithology, etc.) can be more straightforward in cases of shoreline
progradation, where relative sea-level changes, siltation, and/or high input of river
sediments have resulted in landlocked marine structures (i.e., within lagoons or es-
tuaries). Sediments in these cases often record transitions from marine to more
brackish/freshwater conditions associated with construction of harbour structures
and/or natural barriers that are identifiable through changes in microfossil assem-
blages, sediment grain size and geochemistry, and other environmental indicators
(e.g., Amato et al., 2020; Finkler et al., 2018; Pint et al., 2015; Stock et al., 2013,
2016).
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The environmental evolution (i.e., site formation) of ancient harbour sites on
high-energy, sandy coasts is more challenging to assess. Sediments from within
a harbour basin can record geoarchaeological information (e.g., ancient harbour
parasequences, changes in microfossil assemblages, archaeological material, etc.;
Marriner & Morhange, 2006; Reinhardt et al., 1994; Riddick et al., 2021; Rid-
dick et al., 2022a, 2022b); however, correlating stratigraphy in a harbour region
can often be hindered by sediment reworking with waves and storms and by the
absence of significant lithological changes in the sandy stratigraphy, with the ex-
ception of tsunamis or other large storm events (Goodman-Tchernov et al., 2009).
The emplacement of ancient harbours (i.e., artificial hard substrates) on naturally
soft-bottomed, sandy shorelines, significantly alters the local seascape resulting in
sediment erosion and accumulation as well as the formation of a hard and stable
substrate (Leys & Mulligan, 2011).

Past research on ancient harbour sediments (e.g., Marriner et al., 2005; Rein-
hardt et al., 1994; Salomon et al., 2016) has focused on analysis of harbour muds,
recognizable by their muddy-appearance (finer particle size distribution; ‘muds’;
Hohlfelder, 2000), higher organic content, and increased concentrations of arti-
facts. In those studies, various bioindicator proxies, in particular gastropods, mol-
luscs, ostracods, and foraminifera, were used to recognize harbour stratigraphy
and related changing conditions connected to construction, destruction, and/or
functionality (Marriner et al., 2005; Reinhardt & Raban, 1999). Amongst marine
biomarkers, benthic foraminifera are especially popular as environmental proxies
due to their known ecological preferences and tolerances, their rapid response to
environmental change, and their durability in the sediment record over time (Hol-
bourn et al., 2013; Murray, 2014). Generally, research to date on ancient harbour
assemblage changes were linked to the increased presence of fine-grained sediment
preferring species (e.g., Bolivinids) as well as shifting relative abundances of the
more dominant Ammonia species (Goodman et al., 2009; Marriner et al., 2005;
Reinhardt et al., 1994; Reinhardt & Raban, 1999). This agrees with the more
general understanding that substrate is a major controlling factor in foraminifera
assemblages (Langer, 1993). We hypothesize here that while the harbour muds
introduce new conditions for a changing benthic foraminifera assemblage, so too

can the increased presence of hard materials related to harbour construction and
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coastal development. These hard surfaces are especially influential on attached,
epiphytic taxa. These taxa, therefore, will record a response to the introduction
of artificial hard substrates, even beyond the more protected sediments of the har-
bour muds, and can act as biostratigraphic indicators of pre- and post- harbour

sediments, a concept that has not previously been tested or applied.

Previously collected samples from a previously excavated trench area (W; Rein-
hardt et al., 2006), two sediment cores (C1, C2; Goodman-Tchernov et al., 2009),
and a piece of harbour mole material (COF; Reinhardt et al., 2001) were included
in this study (Figure 3.1). Seven samples (5-cm intervals) were available from
W (-11.4 to -13.4 meters below sea level (mbsl), ~0.60 km from the coast; Rein-
hardt et al., 2006). Nineteen samples (1-cm intervals) from the upper 126 cm were
available from C1 (233 cm in length, 15.5 mbsl, ~0.82 km from the coast) and
14 samples (1-cm intervals) were available from C2 (174 c¢m in length, 20.3 mbsl,
~1.25 km from the coast; Goodman-Tchernov et al., 2009). Radiocarbon and/or
pottery dating methods were previously conducted on W, C1, and C2 samples.
See Goodman-Tchernov et al. (2009) and Reinhardt et al. (2006) for further
details on dating methods used. Geochemical ((uXRF, magnetic susceptibility)
and foraminifera methods were applied here. The use of benthic foraminifera as
biostratigraphic indicators to help correlate sediments in archaeological contexts
is still a developing area of research (McGowran, 2009). The application of ben-
thic foraminifera in this manner will be useful for future geoarchaeological studies
as a rapid and cost-effective method for correlating sediments across an ancient
harbour site, especially in high energy sandy shoreface settings. Results also have
implications for understanding sediment transport in and around coastal struc-
tures, as well as for modern studies involving the monitoring and /or predicting of

ecological changes in response to coastal anthropogenic activity.

3.2 Background

3.2.0.1 Regional geology and geochemistry

The Israeli Mediterranean coastline (Figure 3.1) is mostly characterized by un-

consolidated sands and Pleistocene aeolian sandstone ridges (‘kurkar’). These

59


http://www.mcmaster.ca/
https://computational.mcmaster.ca/

Ph.D.— R. Steele; McMaster University— School of Earth, Environment, & Society

29°00'00"E 31°00'00"E

33°00'00"E

35°00'00"E

37°00°00"E

LS

Mediterranean Sea

Turkey

“-—_\_/’(
'@/

37°00°00"N

36°00°00"N

35°00'00"N

| i 34°00°00"N
B ‘30-'{ '20"; 10 |f / ! / /
; ) A
/ / f Crocodlle 33°00'00"N
| i | River T
Medir‘erranean Sea ;’ ) I
,'I 32°00°00"N
/
J';
I,f 31°00'00"N

30°00'00"N

/

29°00'00"N

FIGURE 3.1: A) Location of Caesarea along the Israeli coast-
line. B) Location of sediment samples (cores C1 and C2,
and excavated trench area W), and a harbour concrete sam-
ple (COF) offshore of Caesarea harbour (shaded in grey).
Bathymetry contours are shown in meters. See Goodman-
Tchernov et al., 2009, Reinhardt et al., 2006, and Reinhardt,
Raban, and Goodman, 2001 for detailed information on sam-
pling locations.

thick calcareous-cemented sand beds accumulated cyclically between thin layers of
iron-rich paleosols (‘hamra’) and currently run parallel to the coast, both on and
offshore (Almagor et al., 2000; Ronen, 2018). Located towards the northern extent
of the Nile Littoral Cell, offshore sediments near Caesarea are predominantly trans-
ported from the south through wave-induced long-shore currents (Emery & Neev,
1960; V. Goldsmith & Golik, 1980; Golik, 1993, 1997; Schattner et al., 2015; Zviely
et al., 2007). Prior to the construction of the Aswan Dam in the 1960s, approx-

imately 100,000 m3/yr of clastic sediments reach the coasts of Caesarea, largely
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sourced from Central Africa and the Ethiopian Highlands (Nir, 1984). These sed-
iments are dominated by silica (quartz), alumina, and trivalent iron oxides (e.g.,
aluminosilicates) with minor amounts of heavy minerals (Goldsmith et al., 2001;
Inman & Jenkins, 1984; Nir, 1984). The majority of heavy minerals include horn-
blende, augite, and epidotes, as well as minor amounts of resistant (e.g., zircon,
tourmaline, rutile) and metamorphic minerals (e.g., sillimanite, staurolite, kyan-
ite; Stanley, 1989). Local sources (i.e., eroded kurkar, onshore sediments, marine
productivity) contribute some calcareous sediment to the nearshore environment
(Goldsmith et al., 2001; Inman & Jenkins, 1984; Nir, 1984; see Appendix B1 for
more details on dominant minerals, compositions, and sources). Sand-sized sedi-
ment extends 3-5 km from the shore to water depths of ~25 m, while increasing
amounts of silt and clay (mainly smectite, with minor kaolinite and illite) are found
further offshore in slightly deeper water (30-50 m depths; Almagor et al., 2000;
Emery & Neev, 1960; Nir, 1984; Sandler & Herut, 2000). The siliclastic sands,
which characterize most of the nearshore, transition into more carbonate-rich sed-
iments with higher instances of rocky substrates north of Haifa Bay (Almagor et
al., 2000; Avnaim-Katav et al., 2015; Hyams-Kaphzan et al., 2014; Nir, 1984).

3.2.1 Historical and geological background on installations

at Caesarea

The historical site of Caesarea Maritima is located 40 km south of Haifa, on the
Israeli Mediterranean coast (34°53.5'E 32°30.5’N). Over six decades of research
have provided details on the construction and deterioration of its harbour, also
referred to as Sebastos, the largest artificial open-sea Mediterranean harbour of
its time (Brandon, 2008; Hohlfelder et al., 2007). The harbour was constructed
between 21 and 10 BCE using local kurkar and imported volcanic material (Vola
et al., 2011; Votruba, 2007). Local kurkar is characterized by well-sorted quartz
with calcite and minor amounts of feldspar, biotite, heavy minerals (e.g., horn-
blende, augite, zircon, rutile, tourmaline, magnetite, garnet, etc.), and allochems
(Wasserman, 2021). Volcanic material has been used in concrete by the Romans
since the 2nd century BCE (Oleson, 1988), often sourced from the Bay of Naples
Neopolitan Yellow Tuff (NYT) deposits. Pozzolanic tuff-ash from this region was

61


http://www.mcmaster.ca/
https://computational.mcmaster.ca/

Ph.D.— R. Steele; McMaster University— School of Earth, Environment, & Society

used in hydraulic concrete to form the breakwaters and foundations for harbour
moles at Sebastos (Vola et al., 2011; Votruba, 2007). The mixture of lime, poz-
zolana, and aggregate provided a strong concrete that could set underwater. At
Caesarea, the dominant coarse aggregates in the hydraulic concrete are kurkar
sandstone and limestone (4 mm—20 cm in size; Vola et al., 2011). The mortar con-
tains high proportions of pozzolanic material (yellow brown tuff ash/aggregates,
lava fragments) with dominant minerals identified as sanidine, clinopyroxene, anal-
cime, and phillipsite. The cementitious binding matrix contains similar material
(calcite, tobermorite, ettringite, Calcium—Aluminum-Silicate-Hydrate) and was
likely produced by the reaction between powdered pozzolanic material, lime, and
seawater. Non-pozzolanic portions include white lime clasts, kurkar sandstone
aggregates, ceramics, and wood fragments, with dominant minerals identified as
tobermorite, quartz, illite, anthophyllite, ettringite, halite, bassanite, and sjogren-
ite (Vola et al., 2011; Appendix B1).

The chronology of Sebastos has been well-studied, with detailed research into
the timing of deterioration and harbour use throughout antiquity (Boyce et al.,
2009; Galili et al., 2021; Goodman-Tchernov & Austin, 2015; Hohlfelder, 2000; Ra-
ban, 1992, 1996; Reinhardt et al., 2006; Reinhardt & Raban, 1999). The location
of Sebastos on a high-energy, mostly sandy coastline, as well as the previously es-
tablished chronology of harbour construction, makes this an ideal site to assess the
use of benthic foraminifera as biostratigraphic indicators of anthropogenic struc-
ture emplacement. The distribution of benthic foraminifera along the Israeli coast
has been well-documented, providing a strong basis for interpreting trends within

sediment samples offshore of Caesarea.

3.2.2 Benthic foraminifera of the Israeli Mediterranean

coastline

Studies of both living and dead benthic foraminifera assemblages along the Israeli
coast of the Mediterranean Sea indicate that substrate type (linked to bathymetry),
food availability, and seasonality are the main factors controlling the distribu-
tion of species (Arieli et al., 2011; Avnaim-Katav et al., 2013, 2015, 2016, 2020,
2021; Hyams-Kaphzan et al., 2008, 2009, 2014). Certain taxa such as Ammonia
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parkinsoniana and Buccella spp. are highly abundant in the shallow (3-20 m),
sandy nearshore settings. Others including Ammonia inflata, Ammonia tepida,
Elphidium spp., Porosononion spp., and Milliolids are often observed in slightly
deeper (20-40 m), silty to clayey environments further offshore on the inner Israeli
shelf (Avnaim-Katav et al., 2013, 2015, 2016a, 2016b, 2017, 2020, 2021; Hyams-
Kaphzan et al., 2008, 2009, 2014). Epiphytic taxa, which live on roots, stems,
and leaves of plants (Langer, 1993), are highly associated with the micro- and
macroalgal-covered hard substrates along the Israeli Mediterranean coast, espe-
cially the carbonate-rich rocky settings along the northern coast (Arieli et al.,
2011; Avnaim-Katav et al., 2013, 2015, 2021; Hyams-Kaphzan et al., 2008, 2014).
Coralline red algae (e.g., Galazuara rugosa and Jania rubens) are highly abundant
along the Israeli coast, along with other types of red (e.g., Centroceras sp., Ce-
ramium sp., Bangia sp., Halopteris scoparia, Laurencia sp., Neosiphonia sp., and
Polysiphonia sp.), brown (e.g., Dictyora sp., and Ectocarpus sp.), and green algae
(Codium sp. and Ulva sp.; Arieli et al., 2011; Bresler & Yanko, 1995a, 1995b;
Emery & Neev, 1960; Hyams-Kaphzan et al., 2014; Schmidt et al., 2015). Some
of the most common epiphytic foraminifera taxa observed here include Amphiste-
gina lobifera, Lachlanella spp., Heterostegina depressa, Pararotalia calcariformata,
Rosalina globularis, Textularia agglutinans, and Tretomphalus bulloides, (Arieli et
al., 2011; Hyams-Kaphzan et al., 2014). Many of these larger, symbiont bearing
foraminifera are widely assumed to be more recently introduced Lessepsian species,
a term used to describe Red Sea/Indian Ocean tropical species that have arrived
after the construction of the Suez Canal (1869 CE). While some have been linked
genetically and morphologically with their Red Sea communities, others, such as
P. calcariformata (Schmidt et al., 2015; Zenetos et al., 2012) still have not.

3.2.2.1 Pararotalia calcariformata

Specimens of P. calcariformata McCulloch, 1977 were originally identified as P.
spinigera (Le Calvez, 1949) on the Israeli coast, in particular within dated, strati-
graphically discreet underwater archaeological excavations and geological collec-
tions (e.g., in Reinhardt et al. (1994, 2003), Reinhardt & Raban (1999)). Schmidt
et al. (2015)’s initial error occurred when they mistook the date of the first publi-

cation that reported them on this coastline for the timing of their first observation
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(see reference to Reinhardt et al., 1994 in introduction of Schmidt et al., 2015).
In fact, the P. calcariformata in that study were firmly positioned in sediments

dating to at least 1500 years ago.

P. calcariformata is a well-documented epiphyte, found in highest abundances
near hard substrates (up to 96% in shallow rocky habitats) of the Israeli coast
(Hyams-Kaphzan et al., 2014; Reinhardt et al., 2003), usually living on calcareous
algae and other seaweeds (e.g., Jania rubens, Halimeda, Sargassum, Cystoseira;
Arieli et al., 2011; Bresler & Yanko, 1995a, 1995b; Emery & Neev, 1960; Schmidt
et al., 2015, 2018). It is observed less frequently (up to 20% relative abundances) in
shallow, soft-bottomed, sandy sediments (Avnaim-Katav et al., 2017, 2020; Hyams-
Kaphzan et al., 2008, 2009). Recent work on this species explores its microalgal
symbionts (Schmidt et al., 2015, 2018) and its high heat tolerance (Schmidt et
al., 2016; Titelboim et al., 2016, 2017). These studies predict that warming sea
temperatures will play a role in expanding populations of P. calcariformata along

the Mediterranean.

3.3 DMaterial and methods

3.3.1 Geochemical analyses

Forty samples from across W, C1, and C2 were analyzed in a sequential sample
reservoir (Gregory et al., 2017) using the Cox Analytical ITRAX energy-dispersive
micro-X-Ray Fluorescence Core Scanner (uXRF) at the McMaster University Core
Scanning Laboratory (MUCS Lab). The kurkar/hydraulic concrete sample (COF)
was also analyzed using the pXRF ITRAX machine. Analysis was conducted using
the Chromium X-Ray source at 40 kV, 10 mA, 200-500 gm sampling interval, and
15 second exposure time. Elements of interest include Ca, Si, Ti, Fe, and Sr, all
of which are likely to be found in relatively high abundance in the coastal Israeli
sands based on the various sources of sediment (i.e., the Nile, kurkar bedrock,
aeolian dust, marine productivity, and Sebastos harbour structures; Appendix
A1). Ratios of Sr/Ca were used as an indicator of aragonite, because many marine
taxa, including coralline algae, build their skeletons with aragonite which contains

higher proportions of strontium (Sr) compared to calcite (Marshall & McCulloch,
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2002; Rothwell & Croudace, 2015). Ratios of Zr+Ti/Ca and Zr+Ti/Si were used as
indicators of heavy minerals. Zirconium- and Ti- rich minerals (e.g., zircon, rutile)
are found as accessory minerals in many igneous rocks (Hasan et al., 2022; Rothwell
& Croudace, 2015). They are typically dense, highly resistant to weathering, and
have been used as indicators of volcanic sourced sediment (Konfirst et al., 2011;
Marsh et al., 2007; Rothwell & Croudace, 2015; Westerhold et al., 2009). Ti and Zr
are also found in the heavy mineral fraction of Israel’s coastal sands (Appendix B1);
however, the ratio of these elements against Ca or Si (the most dominant elements
in Israeli sands) is expected to provide a proxy for heavy minerals sourced from

the volcanic pozzolana material of Sebastos harbour.

Constrained cluster analysis of the nXRF results was used to identify statis-
tically distinct geochemical zones across the sediment sampling areas (W, C1,
C2) and COF. The data were row-centered (mean=0, sd=1), elements of inter-
est were selected (Zr, Ca, Si, Ti, Fe, and Sr), and samples were clustered using
a Self-Organizing Map (SOM; Kohonen, 2013) with the R “SOMbrero” package
(Olteanu & Villa-Vialaneix, 2015). The similarity of observations (each 0.2 or 0.5
mm of sediment) was assessed through Ward’s hierarchical clustering, using Eu-
clidean distance. Clusters were further grouped into higher order “superclusters”

to help identify zones with distinct elemental composition.

Volume magnetic susceptibility measurements (x) of available sediment samples
were obtained using a Barrington MS2E surface probe. Repeat surface measure-

ments were taken and average values were reported.

3.3.2 Foraminifera analysis

Thirty-five samples from across W, C1, and C2 were subsampled for analysis of
foraminifera in spring of 2006. Shelly/coarse grained layers and the interven-
ing sands directly above and below them were targeted for analysis. Subsamples
(0.9-15 cc) were wet sieved through 63 and 500 pum mesh to remove both fine and
coarse material. Subsamples were dried and added to tetrachloroethylene to sepa-
rate less dense foraminifera from terrigenous silicious and carbonate components.
Subsamples were dried and subdivided for analysis using a dry splitter (Scott et

al., 2001). Foraminifera were identified and enumerated (at least 300 specimens
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per sample) using an Olympus SX12 binocular microscope (100-400X magnifica-
tion). Where the estimated standard error for the taxa identified was greater than
the abundance in all samples, the taxa was deemed statistically insignificant and
omitted from further analysis (Patterson & Fishbein, 1989). Specimens of P. cal-
cariformata were imaged through Scanning Electron Microscopy at the Canadian
Centre for Electron Microscopy (CCEM).

Identification of samples with statistically similar foraminifera assemblage com-
positions, and the statistical significance of the groups, was performed using the R
statistical software package PVClust (Suzuki et al., 2022) with Ward’s Minimum
variance method (Ward, 1963) and Euclidean distances. Two types of p-values
are computed with this package; Approximately Unbiased (AU) p-values are com-
puted by multiscale bootstrap resampling and are more accurate than Bootstrap
Probability (BP) p-values (Suzuki et al., 2022). Clusters with high AU values (e.g.,
95%, equivalent to alpha=0.95 or 20 significance) were considered as distinct bio-
facies throughout W, C1, and C2. Non-Metric Multidimensional Scaling (NMDS;
Ramette, 2007), was used to analyse the spatial patterns of significant clusters in

two-dimensional ordination space, using Euclidean distances.

3.4 Results

3.4.1 Core lithology and chronology

W is described in Reinhardt et al. (2006), while C1 and C2 are described in
Goodman-Tchernov et al. (2009). W (~2 m of excavated sediment) contains two
main shell layers: (i) a poorly sorted mix of Glycymeris spp. and pebbles from
~107-165 cm, with convex-up oriented fragments in the top portion, and (ii) a het-
erogeneous layer of shell fragments, ship ballast, and pottery shards from ~39-59
cm. The intervening units consist of massive, homogeneous, medium-grained sand
with isolated articulated and fragmented bivalve shells and /or pebbles. The upper
~0-39 cm also contains thin layers of shells and pebbles (Figure 3.2). The upper
126 cm of C1 contains two shell layers: (i) a poorly sorted mix of Glycymeris spp.
and pebbles, with fragments of worn pottery from 85-94 cm, and (ii) poorly sorted,

convex-up oriented Glycymeris spp. and pebbles from 2842 cm. The intervening
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units are massive, tan/grey, fine-grained sand, some with isolated bivalves and/or
pebbles. (Figure 3.2). C2 (174 cm) similarly contains two shell layers: (i) frame-
work supported, convex-up oriented Glycymeris spp. fragments from 132-138 cm,
and (ii) convex-up oriented Glycymeris spp. fragments from 29-43 cm. The inter-
vening units are massive, tan/gray, fine-grained sand with some silt and isolated

bivalves.

The chronology of W, C1, and C2 has been previously described (Goodman-
Tchernov et al., 2009; Reinhardt et al., 2006), and units have been correlated to
age ranges (radiocarbon and pottery; Table 3.1) and identified events (i.e., tsunami
deposits; Figure 3.2). W, C1, and C2 were found to capture similar event layers
dating to ~1492-100 BCE (pre-harbour), 92 BCE-418 CE (containing the 115 CE
Roman tsunami event), 327 BCE-408 CE, ~300-1280 CE (containing the 551/749
CE Late Byzantine/Early Islamic tsunami events), and ~1280 CE—present (Table
3.1, Figure 3.2).

TABLE 3.1: Radiocarbon and pottery dating results for W,
C1, and C2 based on previous studies.

Conventional

Core/Area  Depth (cm) Analysis Radiocarbon (BP) Cal BP BCE/CE Reference
1 30 cm AMS 1420 40 Cal BP 1152-670* 798-1280 CE* 1
1 ~35cm Pottery - - 4% _ gt ¢, CE 1
1 90 cm AMS 3610 40 Cal BP 3763-3177* 1814-1228 BCE* 1
2 130 cm AMS 3640 +40 Cal BP 3805-3224* 1856-1275 BCE* 1
W7 11.6m Pottery - - 6™ ¢. CE — present 2
W7 12.0 m Pottery - - 4th_ g6t ¢ CE 2
w7 123 m Radiocarbon 23304100 Cal BP 2276 — 1543* 327 BCE — 408 CE* 1,2
W7 12.6 m Radiocarbon 2310+80 Cal BP 2208 — 1533* 259 BCE —418 CE* 1,2
w7 129m Radiocarbon 2370+70 Cal BP 2281-1640* 332 BCE-311 CE* 2
W7 13.1m Pottery - - 1%/2™ ¢. CE 2
w7 134 m Radiocarbon 47404100 Cal BP 5298 —4538* 3349 — 2589 BCE* 2

1 Goodman-Tchemov, B.N., Dey, HW., Reinhardt, E.G., McCoy, F., & Mart, Y. (2009). Tsunami waves
generated by the Santorini eruption reached Eastern Mediterranean shores. Geology, 37(10), 943-946.

https://doi.org/10.1130/G25704A.1.

2 Reinhardt, E.G., Goodman, B.N., Boyce, J.1., Lopez, G., van Hengstum, P., Rink, W, J., Mart, Y., & Raban, A.
(2006). The tsunami of 13 December A.D., 115 and the destruction of Herod the Great’s harbour at Caesarea
Maritima, Israel. Geology, 34(12), 1061-1064. https://doi.org/10.1130/G22780A.1.

*Recalibrated using Marine20 at 95.4% with Delta R=-94+94 (average of 10 nearest Marine Reservoir

Correction data points to Caesarea; http://calib.org/marine/).
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F1GURE 3.3: puXRF results (mean counts and standard devia-
tions) for elements of interest in samples from W, C1, and C2,
showing estimated interval for the time of harbour construc-
tion. See Figure 3.2 for dates and events.

3.4.2 Geochemical results

Elemental (uXRF) results are shown in Figure 3.3 and Appendix B2. Average
counts of Zr increase upcore in each sampling area, with uppermost values ~2-3
times higher than those at the base (~700-1000 compared to 200-400; Figure 3.3,
Appendix B2). Ca is highly variable throughout all sampling areas, with some
peaks up to 1.7x higher (~300,000) in shell layers than in sandy samples. Counts
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of Si remain relatively high (~17,000) throughout time, with some decreases up to
1.5-2.5x lower in shell layers. Average Ti values are variable through time (~6000)
with some spikes up to 2x higher at the top and bottom of C1 and surrounding the
bottom shell layer of C2. Fe follows similar trends to Ti, with values ~2x higher
near the top and bottom of C1 and the darker sandy sediments of C2 (161-123
cm) compared to the intervening sandy samples (counts of ~6000-7000). Counts
of Sr remain quite constant throughout all sampling areas over time (~2000), with
a slight increasing trend in the upper portions of C1 and C2 (values up to ~1.3x;
Figure 3.3, Appendix B2).

Ratio results of Zr+Ti/Ca and Zr+Ti/Si are variable throughout time in W
(values 0.02-0.04 and 0.20-0.34) and C2 (0.03-0.08 and 0.4-1.4), especially within
tsunami event layers, though results show no clear increasing/decreasing trends
over time. In C1, these ratios show a distinct increasing trend through the upper
half of the core (Zr+Ti/Ca: from 0.02 up to 0.06; Zr+Ti/Si: 0.3 up to 0.7). Sr/Ca
values remain relatively consistent in all coring areas (~0.10), with minor variation

surrounding shell layers (Figure 3.3, Appendix B2).

Sample COF shows distinct variation in elemental composition between kurkar
and hydraulic concrete (Figure 3.4). On average, counts of Zr and Ti are over 10x
higher in the hydraulic concrete than the kurkar. Counts of Fe are also higher in
the hydraulic concrete by a factor of ~8. Ca shows the opposite trend, with counts
5x higher in the kurkar than the hydraulic concrete. Counts of Si were variable
throughout both materials but were slightly higher in the hydraulic concrete. Sr
peaked in the kurkar and decreased moving into the hydraulic concrete, with some
variability associated with the aggregate material (Figure 3.4). Ratio results for
Zr+Ti/Ca are ~94x higher in the hydraulic concrete than in the kurkar, while
Zr+Ti/Si values are almost 2x higher. Sr/Ca are ~4x higher in the hydraulic
concrete than in the kurkar (Figure 3.4).

The cluster analysis of W, C1, C2, and COF results displayed seven superclus-
ters (SC1-SCT; Figure 3.5). SC1 and SC2 are highly similar, though SC1 contains
relatively higher counts of Si and lower counts of Ti and Fe than SC2. SC2 appears
more frequently in samples from the upper halves of the cores, while SC1 appears

more frequently in deeper and older contexts (Figure 3.5). SC3 and SC4 appear
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FIGURE 3.4: uXRF results (counts) for elements of interest in
sample COF with chemofacies results (see Figure 3.5).

only in the ash-rich portion of COF. SC5 is highly similar to SC1, with some peaks
in Zr and Sr compared to SC1, appears mainly in the sandy units of cores, and
reflects the general sedimentary background of the coast. SC6 contains very few
samples and is analogous to SC5. SC7 is characterized by relatively high counts of
Ca and Si and is predominantly associated with the kurkar portion of COF, with
some samples from tsunami layers of W and C1, and with the uppermost sand
layers of C2 (Figure 3.5).

The magnetic susceptibility of sediments remains relatively low throughout all
samples (Table 3.2). Aside from a peak (27.8x10-6 SI) at the top of C1, values
range between 5.2-10.4x10-6 SI in C1, 8.9-13.5x10-6 SI in C2, and 2.6-7.1x10-6
ST in W, with no distinct trends over time (Table 3.2).
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TABLE 3.2: Magnetic susceptibility for W, C1, and C2 sedi-

ment samples.

Depth Mean Susc. Standard Dev.

Sample " ') ™ x(106SD)  (10SI)
05 4 52 0.47
70-75 4 3.5 0.19
110-115 4 48 0.17

W 130-135 7 44 1.48
150-155 4 43 0.39
152-157 4 7.1 043
180-185 6 2.6 0.66

01 4 278 0.72
12-13 4 93 0.49
2627 4 8.1 037
2829 4 99 0.05
30-31 4 73 0.08
3839 4 8.1 0.17
4243 4 52 0.22
4445 4 6.9 0.57
46-47 4 9.8 051

Cl1 7071 4 104 0.58
80-81 4 6.7 0.29
82-83 4 6.9 0.13
84-85 4 9.0 0.15
86-87 4 76 0.49
88-89 4 74 0.39
9495 4 8.1 0.25
9697 4 6.9 0.14
9898 4 75 0.67
126-127 4 99 0.13
23 - - R
223 4 100 0.20
2425 4 135 0.14
2627 4 123 0.14
4344 4 9.8 0.26
63-64 4 8.9 0.16

o 828 4 105 0.24
123-124 4 134 1.13
126-127 4 109 0.51
129-130 4 115 0.54
137-138 4 103 0.05
139-140 4  10.6 0.34
141-142 4 105 0.22
161-162 4 11.9 0.14

- insufficient sample for analysis
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3.4.3 Foraminifera results

Thirteen statistically significant foraminifera taxa were identified across W, C1,
and C2, and the cluster analysis revealed four significant (au >95%) assemblages
(A1, A2, A3, A4; Figure 3.6 and 3.7, Appendix B3). The NMDS showed that the
four assemblages overlapped, especially A2, A3, and A4, suggesting that samples
within these assemblages were quite similar despite grouping distinctly (Figure
3.6). Al contains only samples from the tops of W and C1. This assemblage
is dominated by A. parkinsoniana (~3-21%), P. calcariformata (~43-74%), and
Miliolids (~13-20%; Figure 3.7; Appendix B3). A2 contains samples from the
sand and lower shell layers of W, as well as the lower shell layer of C2. As-
semblage A2 is dominated by A. parkinsoniana (~46-70%), Porosononion spp.
(~0-19%), and Miliolids (~12-22%). Assemblage A3 contains samples from the
top and middle shell layers of C1, as well as the top sand, middle sand and shell
layers of C2. Dominant specimens within this assemblage include A. parkinsoni-
ana (~4-23%), P. calcariformata (~0-19%), Porosononion spp. (~2-11%), and
Miliolids (~42-69%). A4 contains samples from the middle sand layers of Cl1,
as well as the middle sand, and bottom shell and sand layers of C2 (Figure 3.7).
This assemblage is dominated by A. parkinsoniana (~20-44%), P. calcariformata
(~0-21%), Porosononion spp. (~1-17%), Miliolids (~21-46%), and planktics
(~0-15%; Figure 3.7; Appendix B3).

Increasing abundances of P. calcariformata (Appendix B4) over time were ob-
served in all three sampling locations. In W, this species was relatively abundant
(0.38-51.74%) and was observed in all samples except for 150155 cm. P. calcar-
iformata was observed at highest abundances (0.91-73.68%) in the top 0-71 cm
of C1, and at lowest abundances (6.25-20.79%) in the top 0-42 cm of C2. This
species was also observed at relatively low abundances towards the bottom of C2
(1.19% at 126-127 ¢cm and 0.71% at 131-137 cm).
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3.5 Discussion

3.5.1 Pre-harbour nearshore sediment composition and

distribution

Prior to the construction of Sebastos, the shoreline at Caesarea was characterised
by a soft-bottomed, unconsolidated sandy beach overlying regional kurkar ridges
(Figure 3.8; Almagor et al., 2000; Reinhardt et al., 1994; Ronen, 2018). This
is reflected in both foraminifera and geochemistry results in C2 and the lower
two thirds of C1 and W (Figure 3.3, Figure 3.7). Biofacies A2, A3, and A4
(pre-harbour), characterized by relatively higher proportions of A. parkinsoniana,
Milliolids, and Porsononion spp., are consistent with Reinhardt et al. (1994)’s
pre-harbour foraminiferal faunal results (Figure 3.7). These taxa are typically
associated with shallow and mid-depth (3-20 m, and 20-40 m) Nilotic sands and
silty—clayey sediments of the Israeli inner shelf (Avnaim-Katav et al., 2013, 2015,
2016, 2017, 2019, 2020, 2021; Hyams-Kaphzan et al., 2008, 2009, 2014). The minor
presence of P. calcariformata at the bottom of C2 and in pre-harbour sediments is
associated with the coarse shell unit of the Santorini tsunami (Goodman-Tchernov
et al., 2009). This event transported shallow marine sediment offshore including
the epiphytic P. calcariformata, likely from the kurkar hard grounds (Reinhardt
et al., 2003).
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The relative consistency in average counts of Ca, Si, Ti, and Fe through time
within the sandy units of each of the three sampling areas suggests that there
is virtually no difference in abundance of these elements in pre-and post-harbour
sediments (Figure 3.3; Appendix B2). This reflects the pre-harbour (and post-
harbour) regional geology (local carbonate-rich kurkar), marine productivity (e.g.,
shells), and Nile sediment sources (aluminosilicate minerals within the shoreline’s
sands, silts, and clays, as well as the minor amounts of heavy minerals; Appendix
B1 and B2). In pre-harbour sediments, slight variations in counts for Ca, Si, Ti,
and Fe (increases or decreases in average counts by factors of ~1.1-1.8) predomi-
nantly surround the Santorini event (Figure 3.3). This is expected, as high-energy
events typically result in abnormal deposition (e.g., shell material, rip-up clasts,
archaeological material, beach-derived pebbles) that would be reflected in geo-

chemical results (Goodman-Tchernov et al., 2009).

The cluster analysis of elemental data shows very slight variation in sediment
composition based on sample location, especially between W and C2 (Figure 3.5),
which could be the result of natural nearshore sediment transport patterns (Al-
magor et al., 2000; Emery & Neev, 1960; Quick, 1991). Onshore-offshore sedi-
ment transport is mainly wind-driven and is controlled by several forces related
to incoming waves, sediment size, and beach slope (Quick, 1991). During sum-
mer months on the Israeli coast, relatively calm northwesterly winds generate
waves and currents that cause sands to move shoreward (Almagor et al., 2000;
Emery & Neev, 1960; Quick, 1991). During winter months, strong southwest-
erly storm winds result in offshore sand transport. Since waves break at an angle
to the Israeli shoreline, onshore-offshore sediment movement occurs in a slightly
oblique direction, with net transport northwards (Almagor et al., 2000; Emery
& Neev, 1960). Because the amount of sediment carried through longshore cur-
rents decreases northward, and beach accretion along the coasts largely does not
take place, researchers have concluded that sediment must be lost (e.g., moved
seawards or blown landwards) along the way (Almagor et al., 2000; Emery &
Neev, 1960). Through a study on sand balance, Almagor et al. (2000) estimated
that roughly 450,000 m? per year of sediment is lost to seaward escape between

Gaza and Haifa. Sands are actively deposited within a gently sloping (0.5-0.8°)
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nearshore zone extending 3-5 km offshore (~40 m water depth), near the eastern-
most drowned kurkar ridge (Almagor et al., 2000). Sands that escape past this
point are mixed with increasing amounts of silts and clays that accumulate on a
relatively flat seabed (Almagor et al., 2000; Nir, 1984; Sandler & Herut, 2000). All
sampled areas in this study are within this zone of active sedimentation, though
each site was sampled at different depths and distances from shore, so we would

expect to see some natural variation in composition.

3.5.2 Post-harbour nearshore sediment composition and

distribution

3.5.2.1 Geochemical indicators of harbour deterioration

The chemofacies results reflect coastal development, mainly through SC1, SC2,
and SC7. SC1 is a coarser grain version of sediments that cluster with SC2.
SC1 replaces SC2 in the upper portion of all three cores. The reduction in clays
(indicated by Ti) and increase in silica within this shift in chemofacies suggests
slight grain coarsening over time, while the increase in Ba indicates an increase
in productivity. This slight shift over time may represent natural changes in sedi-
ment sources (e.g., variations in White and Blue Nile sediments, terrestrial inputs,
etc.) and/or anthropogenic influence (Kalman et al., 2022). SC7, which relates
to the kurkar component of sediments (Figure 3.4 and 3.5), appears much more
frequently post-harbour and with tsunami influence. Kurkar was heavily used in
the construction of the harbour (Vola et al., 2011; Votruba, 2007), and tsunamis
transported and deposited this material further offshore. The slight presence of
SCT in the Santorini event layer (C1, Figure 3.5) reflects this process occurring

pre-harbour, with natural kurkar deposits along the coast.

Heavy minerals including zircon and rutile exist in Israeli sands in minor abun-
dances (Lin et al., 1974; Pomerancblum, 1966; Stanley, 1989), as demonstrated by
the presence of Zr (~300) and Ti (~5,000) throughout the pre-harbour sediment
samples. These minerals come from several sources including Nile sediments, local

onshore terrains, aeolian dust, and reworked sedimentary bedrock (Appendix B1).
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On the Israeli coast and other high-energy, sandy shorelines, heavy minerals be-
come naturally concentrated due to mechanical sorting (Stanley, 1989). Through
waves and currents, denser mineral grains typically settle out of suspension and
accumulate at the bottom of the swash zone while lighter grains are carried back
towards shore to the wave zone (Dinis & Soares, 2007; Hou et al., 2017). Abun-
dances along the Israeli coast are still relatively low (~0.1-0.5%; Lin et al., 1974).
Differences along the coast due to varying local sources of sediment (e.g., nearby
wadis/rivers) are minor, and any significant changes in heavy mineral abundances
would require vast amounts of sand inputs (Boenigk & Neber, 2005). The in-
crease in Zr+Ti/Ca and Zr+Ti/Si values from pre- to post-harbour sediments
(by factors of 3 and 2.3, respectively), and the observed increasing trend within
post-harbour sediments is therefore not likely to be caused by natural sources and
is most likely related to harbour deterioration. Although Zr was not reported in
Vola et al. (2011)’s bulk chemical and petrographic analysis of Sebastos concrete
and TiOs was only a minor component of the mortar (0.2-0.3%), we observed
distinctly higher values of Zr and Ti throughout the hydraulic concrete portion of
COF (avg Zr+Ti/Ca: 0.187; avg Zr+Ti/Si: 2.02) compared to the kurkar por-
tion (avg Zr+Ti/Ca: 0.002; avg Zr+Ti/Si: 1.27). This suggests the presence of
trace amounts of (or mineral impurities including) Zr and Ti within the aggregate
material and the fine-grained matrix of the concrete. Our results suggest that
the foreign volcanic material contains a much larger proportion of heavy minerals

compared to local kurkar sources of sediment.

Magnetic susceptibility results are comparable to previous studies of Caesarea.
Boyce et al. (2004, 2009) found a range of 0.1 to 8.7 x10° SI for harbour bottom
sands and muds, which is similar to most sediments in this study (2.6 to 13.5
x10® SI; Table 3.2). The relatively extreme value observed at the top of C1
(27.8 x10™° SI) more closely aligns with values of pozzolana (22.7 to 175.2x10°
SI; Boyce et al., 2004) than the quartz sands and harbour muds. The presence
of eroded hamra material (x = 88.0x10 SI; Boyce et al., 2004), eroded igneous
or metamorphic ballast stones (k = >90 to >200x10° SI; Boyce et al., 2009)
or eroded clay fragments (k = 133.7x10 SI; Boyce et al., 2004) could also be
influencing the higher value at the top of C1. Any of these sources could indicate

increased presence of harbour material in recent offshore sediments (Figure 3.8).
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Additional sediment samples, especially throughout the top portion of W and C1

would help to confirm the observed trends in magnetic susceptibility.

Observable changes in heavy minerals following harbour construction occur
within sediments between the Santorini event (1630-1550 BCE) and the Late
Byzantine/Early Islamic tsunami events (551/749 CE); however, correlating a
more precise estimated depth for the timing of harbour construction remains a
challenge solely with the XRF results (Figure 3.3). The benthic foraminifera re-

sults, however, can be used to further refine these estimates.
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F1GURE 3.9: Total and relative proportions of the three epi-
phytic species (Pararotalia calcariformata, Textularia bocki,
and Tretomphalus bulloides) observed in W, C1, and C2.
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3.5.2.2 Epiphytic foraminifera as biostratigraphic indicators of artifi-

cial substrate change

The effect of harbour emplacement on benthic foraminifera populations is evident
in Al, at the tops of W and C1 (Figure 3.7). This assemblage contains distinctly
higher abundances of P. calcariformata (Figure 3.9; Appendix B4), a common
epiphytic species usually found in association with calcareous algae in rocky areas
of the Israeli inner shelf (Arieli et al., 2011; Bresler & Yanko, 1995a, 1995b; Emery
& Neev, 1960; Hyams-Kaphzan et al., 2014; Reinhardt et al., 2003; Schmidt et al.,
2015, 2018). As harbour structures progressively deteriorated over time, increas-
ing amounts of cryptic spaces would have formed, providing increasing amounts
of surface area for algal growth. Ratio values for Sr/Ca do not seem to vary
significantly over time, suggesting a continuous presence of aragonitic organisms
(shells, calcareous algae, etc.). In C1, values slightly increase over time follow-
ing a drop during the Late Byzantine tsunami event (Figure 3.3) which may be
related to an increase in calcareous algal growth on harbour ruins. Increased sam-
ple resolution would help to confirm this trend. Hard substrates (i.e., submerged
harbour structures) with algal growth are optimal settings for P. calcariformata,
and increased populations of this species after harbour construction are recorded
in all three sampling areas. After death, these specimens would have detached
from the algal-covered harbour and been transported to the nearby sediments by
onshore-offshore transport mechanisms discussed above (section 5.1), especially by
strong storm waves during winter months (Figure 3.8; Almagor et al., 2000; Quick,
1991). Higher abundances are recorded in deposits close to the site (i.e., W and
C1), though their presence is still observed 800 m from the harbour structures
(C2; Figure 3.7).

Other epiphytic species are present in low abundances throughout the sampling
areas (Figure 3.9) but do not show significant trends over time, likely due to their
preferred habitats. T. bocki and T. bulloides are more often associated with the
northern coast of Israel beyond the Nile littoral cell; T. bocki is usually found in
deeper (30-100 m), silty-clayey sediments (Avnaim-Katav et al., 2013, 2015, 2020,
2021), while T. bulloides has been observed in shallow rocky areas surrounding
Haifa (Arieli et al., 2011; Hyams-Kaphzan et al., 2014). These foraminifera results
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demonstrate the importance of understanding the distribution and habitat prefer-
ences for the taxa of a specific region when considering using epiphytic species as

indicators of substrate changes.

The benthic foraminifera result here, especially P. calcariformata, provide in-
formation to help further correlate the timing of harbour construction within C1
and C2 (Figure 3.7). Results also show that P. calcariformata is not a recent
invasive species as previously thought (Schmidt et al., 2015; Zenetos et al., 2012).
In all three cores, P. calcariformata was observed in sediments follow construction
of Sebastos harbor, and in C2, specimens were observed in two samples dating to
the Santorini event bed (1630-1550 BCE; Figure 3.7; Appendix B3). This sup-
ports Reinhardt et al. (1994)’s observations of this species in historical sediments
and suggests that this species has been living on the eastern Mediterranean coast
since around the Late Bronze Age. Recent studies involving P. calcariformata
discuss possible future range expansions of this species along the Mediterranean,
especially northwards through longshore current transport (Schmidt et al., 2015,
2016, 2018; Titelboim et al., 2016, 2017). The samples of P. calcariformata used in
these previous studies were collected from algae and sediments on hard substrates.
Although Schmidt et al. (2015) briefly mention that there is some substrate con-
trol on this species, estimations of range expansions were based on solar radiance,
turbidity, and temperature. These variables are proven to be important controls
on this species; however, substrate conditions are equally important habitat con-
trols on P. calcariformata populations as shown in this study. While studying the
foraminiferal response to pollution sources, (Yanko et al., 1994) found distinctly
higher abundances of P. calcariformata (identified as Eponides repandus; Schmidt
et al., 2015) in proximity to the coal-contaminated site of Hadera compared to
the control site, which had similar water depth and substrate conditions (0-15.1%
compared to 0-0.3%). Although increased sea temperatures from the cooling wa-
ter discharge at the power plant is a key factor, this trend could be due to the
presence of extensive hardgrounds at the power station (harbour structures and
numerous pilings) and algal coverage on the long pier that extends 2 km from
the shoreline. Nearby substrates, including artificial structures such as harbours
or pilings, should be considered in future research involving the distribution of

benthic foraminifera along the eastern Mediterranean (e.g., studies monitoring the
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effects of anthropogenic activity or climate change on coastal ecosystem health).

3.5.3 Implications for sediment transport and site forma-
tion

Based on the distribution pattern of P. calcariformata observed here, alternative
applications of epiphytic foraminifera along high energy sandy shoreface settings
could include long-term studies on sediment dynamics (e.g., tracking sediment
transport in and around coastal structures, the extent of onshore-offshore sand
movement, tracking the extent of the storm weather wave base over time, etc.). Un-
derstanding sediment dynamics is important for coast engineering projects (Leys
& Mulligan, 2011). Fluorescent tracers are often used to assess onshore-offshore
sediment transport and sediment accumulation patterns around marinas; however,
these methods only provide data spanning several months (Klein et al., 2007). Be-
cause the main source of P. calcariformata in high energy sandy shoreface settings
is the submerged surface of harbour structures (anthropogenic hard grounds), these
microfossils can provide long-term data on onshore-offshore transport trends, sed-
iment accumulation patterns around the harbor itself, and on longshore transport
patterns along the coast. This could enhance studies using fluorescent tracers as

it provides more long-term information.

Sediment reworking (vertical movement) during storms and tsunamis plays a
major role in the stratigraphic distribution of P. calcariformata. As discussed
in Reinhardt & Raban (2016), the sands within the active sediment layer are
regularly reworked. Storms and tsunami waves often cause scour and erosion of the
seabed as well as removal of fine sand particles from around larger, heavier, rubble
material. This results in vertical transport of the rubble material downwards,
producing an “armoured” layer that resists further erosion (Reinhardt & Raban,
2016). Foraminifera and larger sand particles within the active sediment layer
would be reworked through this winnowing action as well, with larger storms
having a greater effect on transport, especially closer to shore. This mechanism
of sediment reworking would occur offshore up to the storm weather wave base,
though to a lesser extent. Significant abundances of P. calcariformata would likely

not be transported much further offshore and therefore provide recognition of
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the storm wave base through time. Our three cores show this trend with P.
calcariformata, found at ~0-30 cm at 20 m water depth (C2, ~0-60 cm at 15 m
(C1), and ~0-150 cm at 10 m (W). This shows that shallow marine sands are being
transported at least ~2 km offshore with larger storms. The presence/absence of
P. calcariformata provides an efficient low-cost method for determining pre- and
post-harbour sediment which can be difficult to identify in these sandy high-energy

settings, especially if the sands contain no material culture (e.g., pottery).

3.6 Conclusion

This study shows that anthropogenically altered coastlines, in particular hard
coastal structures, leave a fingerprint on their environment not only through
changed elemental composition but also biomarkers such as epiphytic foraminifera.
These changes are present and recognizable in the ancient harbour context at
Caesarea Maritima. There, an excavated trench area (W), two sediment cores
(C1, C2), and a piece of harbour material (COF) were analyzed through el-
emental (uXRF, magnetic susceptibility) and/or foraminifera analyses. Heavy
mineral proxies (Zr+Ti/Ca, Zr+Ti/Si, magnetic susceptibility) indicate that par-
ticulate matter offshore, originating as part of or due to the harbour structures
have increased since the construction of the harbour ~2000 years ago. Benthic
foraminifera assemblages A3, and A4 reflect the shallow and mid-depth (3-40 m)
sandy to sandy silt substrates that characterised much of the nearshore Israeli
coast prior to harbour construction. Post-construction assemblages (e.g., A1, A2)
include increasing abundances of epiphytic species, especially P. calcariformata.
This species was successfully used as a biostratigraphic indicator for the timing
of harbour construction as it is present in significant abundances only after the
harbour and city are established around 2000 years ago. P. calcariformata was
recently erroneously assumed to be a recent invasive species, increasing in pop-
ulation along the Israeli coast following the opening of the Suez Canal in 1869.
Results from this study suggest that this species is endemic to the Israeli coast,
observed here in coastal sediments pre-dating the canal opening by thousands of
years. The recent attention on this species as a marker of changing environments

and climate, suggested due to its current proliferation along the coastline and
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heat tolerance, is not an error and is worthy of continued study. We add here,
in agreement, that it is a harbinger of anthropogenic change and thrives on the
increased coarsening and hardening of the coastline and shallow shelf, outcomes of
post-Aswan Dam decreases in the delivery of fine sediments (Kalman et al., 2022),

coastal armouring, and general development.

This study demonstrates that the analysis of epiphytic foraminifera, such as
P. calcariformata, can be implemented as rapid and cost-effective biostratigraphic
indicators in future geoarchaeological studies at Caesarea or in similar settings
elsewhere. The results have implications for the role of P. calcariformata in modern
studies of benthic foraminifera on the eastern Mediterranean, mainly that it is not
a recent invader, but rather a species that has thrived on the changing substrate

conditions created by human activity for millennia.
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Chapter 4

Closure of Khor Al Balid and
Khor Rori with coastal uplift and
aridity in the 12th — 15th c. CE
and evidence for an extreme
overwash event in 18th — 19th c.
CE: implications for ancient port

sites in southern Oman

This chapter is a manuscript that has been prepared for submission to a peer-
reviewed journal:

Steele, R.E., Reinhardt, E.G., Boyce, J., Gabriel, J.J., Vosmer, T. (to be
submitted) Closure of Khor Al Balid and Khor Rori with coastal uplift and
aridity in the 12th — 15th ¢. CE and evidence for an extreme overwash event
in 18th — 19th c¢. CE: implications for ancient port sites in southern Oman. In
preparation for submission to a peer-reviewed journal.
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Abstract

Ancient maritime trading ports along the southern coast of Oman have been
the target of archaeological excavations for several decades. Though historical
chronologies are well-researched, information from a paleoenvironmental perspec-
tive is lacking and can provide a more complete understanding of site development.
This study investigates the timing of coastal sand barrier accumulation in the nat-
ural harbours at Khor Al Balid and Khor Rori, which had considerable effects on
the populations at the ancient cities of al-Balid and Sumhuram. Six cores from
Khor Al Balid and four cores from Khor Rori were analyzed using sedimento-
logical, microfossil (foraminifera and testate amoebae), geochemical (uXRF), and
radiocarbon dating methods. Marine proxies (e.g., Amphistegina spp., C. pseu-
dolobatulus, E. lebatum, Sr, Ca/Si) and lagoon proxies (e.g., T. macrescens, T.
inflata, C. constricta and C. aculeata, Ti/Ca, Fe/Ca) were used to identify Marine
Sand, Brackish Lagoon/Marsh, and Freshwater facies. Results indicate that the
eastern arm of Khor Al Balid closed off from the sea around the 12th century
CE and that the western arm closed around the 15th century CE. Siltation of
harbours and the formation of sand barriers may have contributed towards site
abandonment. Previous archaeological findings suggest that al-Balid was able to
continue with maritime trade activities along the southern seaside edge of the city
for several centuries after siltation of Khor Al Balid, possibly with the help of
dredging. An extreme overwash event was recorded in almost all cores across both
sampling sites, suggesting that a very large cyclone or a tsunami hit the southern
Oman coast sometime around the 18th-19th century CE. This event, as well as
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continuous coastal sand accumulation, may have contributed to the decline and
abandonment of Khor Al Balid and highlights the impacts that large storm/wave
events have on archaeological site preservation.

Keywords: Khor Al Balid, al-Balid, Khor Rori, foraminifera, testate amoebae,
uXRF, Coastal geomorphology, Lagoon development, Geoarchaeology

4.1 Introduction

Over seven decades of archaeological work on the ancient port sites at Khor Al
Balid and Khor Rori have revealed information on major periods of site occupation
and aspects on international trade in the region; however, there remain questions
about the foundation, development, and decline of the settlements (D’Andrea et
al., 2021). The ancient port city at Khor Rori, known as Sumhuram, is located
~1 km inland at the edge of the Wadi Darbat-fed estuary and was an impor-
tant trade outpost for frankincense (Cremaschi & Negrino, 2002; Degli Esposti &
Pavan, 2020). The city was first occupied during the 3rd century BCE and was
abandoned during the 5th century CE. Archeological investigations have revealed
information on site layout and activities including two “Monumental Buildings”,
several smaller buildings, and areas for metalworking, dyeing, storage, and resi-
dences (Degli Esposti & Pavan, 2020; Ribechini et al., 2016). The abandonment of
the city is thought to be linked to environmental factors, specifically the accumu-
lation of a sand barrier at the mouth of the estuary (Hoorn & Cremaschi, 2004),
first proposed by Reinhardt (2000).

Following the abandonment of Sumhuram, a nearby port city at Khor Al Balid
was established during the 10th century CE (or as early as the 6th century CE;
Newton & Zarins, 2014). The ancient city, known as Zafar during early occupation,
became an important center for international trade and export of horses, incense,
and sardines (Costa, 1979; D’Andrea, 2021; Fusaro, 2020; Zarins, 2007). The site, a
roughly rectangular shape spanning ~64 ha, reached peak maritime trade activity
between the 13th to 15th centuries and was abandoned during the 18th century
(D’Andrea, 2021; Pavan & Visconti, 2023). Archaeological excavations at Al Balid

since the 1950’s have involved several different teams of researchers focused on
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specific areas and landmarks over the years (e.g., the citadel, great mosque, city-
wall, gates, towers, etc.; see D’Andrea (2021) for a detailed summary). The western
side of the city contains important buildings (i.e., the citadel or husn, the Grand
Mosque) as well as evidence of a bridge or causeway, suggesting that the northern
arm of the lagoon was extended into an artificial channel on the western side of
the city and that the city was surrounded on all sides by water (Costa, 1979;
D’Andrea, 2021; Pavan & Visconti, 2023). The central area of the city contains
evidence of houses and mosques, while the eastern side of the city was likely used
for stocking, loading, and unloading trade items (Connan et al., 2023; Pavan &
Visconti, 2023). The main city was fortified by a wall, with several towers, and
excavation along the seaside (southern) wall indicate the presence of 17 towers,
five gates, and four jetties that were part of early construction phases (D’Andrea,
2021). Five main phases of construction in the city between 450 CE and 1700 CE
have been proposed, based on building materials, masonry techniques, pottery,
and other small finds (D’Andrea, 2021; Fusaro, 2019; Lischi et al., 2020; Newton
& Zarins, 2014; Pavan & Al Kathiri, 2021; Zarins, 2007). The documented decline
of the city during the 16th and 17th centuries is thought to have been caused
by combination of political, economic, military, and environmental factors (Costa,
1979; Hoorn & Cremaschi, 2004; Newton & Zarins, 2019; Pavan & Visconti, 2023;
Zarins, 2007). Invasions by the Portuguese and Turks, as well as bans on horse,
incense, and sardine trading, had a major impact on harbor activity (Newton &
Zarins, 2019). Climate and weather events, and siltation of the lagoon are thought
to have contributed to the city’s decline (D’Andrea, 2021; Hoorn & Cremaschi,
2004), but the paleoenvironmental setting of the site has not been extensively

documented.

The site’s chronology has been well studied through a historical perspective;
however, information from a paleoenvironmental perspective is limited and hiders
a full understanding of the site’s history (D’Andrea, 2021; Newton & Zarins, 2019).
A paleoenvironmental study focusing on pollen changes at Khor Al Balid and Khor
Rori indicate that the estuaries were open to the Arabian Sea between ~750-390
BCE and 270-420 CE, when wetter climate conditions may have resulted in in-

creased runoff of freshwater from the Oman mountains into the khors (Hoorn &
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Cremaschi, 2004). After ~270-420 CE, the authors suggest that more arid condi-
tions prevailed, and that the estuaries became increasingly blocked by sand barriers
due to lower input of freshwater runoff (Hoorn & Cremaschi, 2004). Another pollen
study at Khor Rori indicates that the shift to reduced freshwater habitats was not
continuous (i.e., conditions alternated between wet/dry during a general trend of
increasing aridity; Lippi et al., 2011). Paleoenvironmental data for the region is
limited, and there is no available date associated with the accumulation of sand
barriers and the closure of estuaries at Khor Al Balid and Khor Rori, which may
have important implications for the development and decline of the regions’ ancient
port sites. Here we present new results which indicate that changing morphology

of the coastline may have contributed to or caused the abandonment of the sites.

4.1.1 Regional sea-level and climate trends

Changes in sea-level throughout the Holocene have influenced the coastal land-
scapes of the Arabian Peninsula (Zerboni et al., 2020). Sea level data for Oman
is relatively scarce, in part due to limited reference water levels and to differential
movement of the lithosphere (Decker et al., 2020). The current global rate of eu-
static sea level rise is 3.1 mm/year (Cazenave, 2018; Dieng et al., 2017), though
differential uplift /subsidence rates due to glacial isostatic adjustment and tecton-
ics affect Regional Sea Level (RSL) along the Oman coast (Khanna et al., 2021).
Khanna et al. (2021) constructed RSL curves for several zones around the Arabian
Peninsula spanning the mid-Holocene to the present, taking into account eustatic,
isostatic, and tectonic factors within each coastal zone. Their study suggests that
transgression occurred along the majority of the Arabian Peninsula shorelines dur-
ing the mid-Holocene (7.5 and 6.5 ka BP). In the southeastern zone, including the
Dhofar region, there was a continuous sea level highstand until a few hundred
years ago, with levels ~3 m above present ~3-5 ka BP and levels ~1 m above
present ~1 ka PB (Khanna et al., 2021). This zone is currently affected by eustacy
and glacial isostatic adjustment (Milne & Mitrovica, 2008) and has shown little
to no signs of tectonic uplift or subsidence since the mid-Holocene (Hoffmann et
al., 2013c). This contrasts with most other zones, which are affected by tectonic
uplift (e.g., 0.15 mm/year and 0.68 mm /year near the Gulf of Aqaba and the Red
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Sea, up to 1 mm/year along the eastern coasts of Oman; (Khanna et al., 2021;
Lambeck et al., 2011; Moraetis et al., 2018).

Landscape changes along the southern coast of Oman have also been driven by
changes in climate. The climate of the Dhofar region is predominantly affected by
the Indian Ocean monsoon, the African summer monsoon, and the location of the
Intertropical Convergence Zone (ITCZ; (Woor et al., 2022; Zerboni et al., 2020).
Because paleoclimate data for southwestern Oman is limited, records from the
wider Arabian Peninsula region as well as East and North Africa have been used
to help infer changing conditions in Dhofar throughout the Holocene (Decker et
al., 2020; Hoorn & Cremaschi, 2004; Zerboni et al., 2020). Generally, records from
the early to middle Holocene (~8000-6000 BCE) indicate a period of increased
humidity /rainfall in the Arabian region related to monsoon strength and/or a
northward displacement of the ITCZ (Cremaschi et al., 2015; Cremaschi & Ne-
grino, 2005; Fleitmann et al., 2003, 2007; Lézine et al., 2010; Zerboni et al., 2020).
From the Middle to Late Holocene (i.e., ~6000 BCE to present), there is evidence
of increasing aridity and a continuous decrease in monsoon precipitation associ-
ated with a southward migration of the ITCZ and decreased summer insolation
(Burns et al., 1998; Cremaschi et al., 2015; Fleitmann et al., 2003, 2007). During
the general trend of declining precipitation throughout the late Holocene, climate
records indicate fluctuating conditions. The northeastern Arabian Sea records
high summer monsoon activity between 3050-1950 BCE transitioning into more
arid conditions until ~50-250 BCE and back to increased monsoon precipitation
between 50 BCE-450 CE (Liickge et al., 2001). Wet conditions between 2050-1550
BCE, 550 BCE-450 CE and 950-990 CE were also recorded in Ethiopia (Gasse
& Van Campo, 1994; Machado et al., 1998) and Mount Kenya (~350 BCE-450
CE; (Rietti-shati et al., 1998). Wider global trends of wetter conditions during
the Medieval Warm Period that transition into a drier environment throughout
the Little Ice Age (~1310-1660 CE) were also recorded in Southern Oman (Fleit-
mann et al., 2004). Following these time periods, relatively higher rainfall periods
were recorded between 1660-1760 CE and 1800-1950 CE, with drier intervening
periods (Fleitmann et al., 2004). Recent reduction of precipitation has been ob-

served through the increased erosion, reduced vegetation cover (e.g., mangrove

104


http://www.mcmaster.ca/
https://computational.mcmaster.ca/

Ph.D.— R. Steele; McMaster University— School of Earth, Environment, & Society

forests; Lézine et al., 2002), and inactive speleothems within the Jebel Qara (Cre-
maschi & Negrino, 2005). These trends in climate are also thought to have led
to increased sediment accumulation in estuaries along the southern coast, through

reduced outflow from wadi systems (Hoorn & Cremaschi, 2004).

4.1.2 The use of testate amoebae and foraminifera in har-

bour studies

Testate amoebae and foraminifera are well-established paleoenvironmental prox-
ies, as they are abundant in aquatic environments, preserve well in the sediment
record over time, and respond rapidly to environmental change (Charman et al.,
2010; Gehrels, 2006; Marriner & Morhange, 2007). Different groups of taxa have
specific ecological preferences (e.g., salinity, substrate, temperature) and modes of
life (e.g., epifaunal, infaunal, free living) that make them important indicators of
coastal change (Murray, 2014; Poag, 2015). Certain benthic foraminifera species,
for instance, live in association with reefs and sediments of shallow (0-130 m) ma-
rine shelf habitats (e.g., large, symbiont-bearing species such as Amphistegina spp.;
Langer & Mouanga, 2016; Murray, 2014; Uthicke & Nobes, 2008; Weinmann et al.,
2013). Other taxa prefer more brackish settings in the muddy sands of inner shelves
and lagoons (e.g., Ammonia spp., Trochammina inflata, Trochammina macrescens;
Murray, 2014; Poag, 2015). Though testate amoebae are freshwater protozoans,
certain species (e.g., Centropyzis aculeata and Centropyzis constricta) are slightly
brackish-tolerant and can be useful indicators in coastal lagoons/marshes (Gehrels,
2006; Vazquez Riveiros et al., 2007). Assemblages of microfossils have been used in
previous harbour studies to identify transitions from high energy marine settings
to lower energy and more brackish/fresh conditions associated with the construc-
tion of harbour structures and/or the formation of natural barriers (e.g., Amato et
al., 2020; Finkler et al., 2018; Goodman et al., 2009; Pint et al., 2015; Reinhardt
et al., 1994; Riddick et al., 2021; Riddick et al., 2022a, 2022b; Stock et al., 2013,
2016). The aim of this study is to reconstruct the environmental history of Khor
Al Balid and Khor Rori through the analysis of microfossils (testate amoebae and
foraminifera) and geochemistry within ten sediment cores collected from across

the two sites. Results will be compared to the previous environmental findings as
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well as climate and sea-level data from the region. The geomorphological history
constructed in this study will provide a paleoenvironmental perspective to help
improve the understanding of lagoon development and harbour decline at Khor Al
Balid and Khor Rori.

4.2 Regional setting

4.2.1 The Dhofar Governate

The Dhofar region, located along the southwestern coast of Oman, includes the
Salalah Coastal Plain ( 55 km long, 15 km wide) and the Jebel Qara mountains
which range 65 km east-west (up to 2000 meters high; Hoorn & Cremaschi, 2004;
Shammas & Jacks, 2007; Zerboni et al., 2020). This area has a semi-arid cli-
mate with mean annual temperatures ~18-29 °C and average precipitation of 110
mm/yr in the plain and 230-450 mm/yr near the Jebel Qara (Al-Kindi et al.,
2023; Kwarteng et al., 2009; Shammas & Jacks, 2007). Precipitation (a drizzle
known as khareef, as well as rain, mist, and fog) occurs predominantly (>80%)
between July and September due to the Indian summer monsoon (southwesterly
winds; (Fleitmann et al., 2004; Shammas & Jacks, 2007). Yearly rainfall onto the
Jebel Qara and the plain penetrates into permeable bedrock. This replenishes the
groundwater supply which lies within an underground karst aquifer system and
often emerges from the bedrock in permanent pools, sinkholes, and small springs
(Costa, 1979; Zerboni et al., 2020). The fresh groundwater supports nearby popu-
lations and agriculture, as well as the region’s forests, grasslands, and shrublands
(Al-Kindi et al., 2023; Galletti et al., 2016; Zerboni et al., 2020).

A Late Cretaceous to Neogene limestone plateau underlies the Dhofar region
(Shammas & Jacks, 2007). The plateau slopes slightly towards the north and
contains several fault systems and escarpments related to tectonic activity (Cre-
maschi & Negrino, 2005; Hoffmann et al., 2013c; Zerboni et al., 2020). Rifting
of the African and Arabian plates after formation of the Hadramhaut group, for
instance, resulted in down faulting of the Salalah plain (Shammas & Jacks, 2007),
while tectonism during the Neogene resulted in uplift of ~300-400 m asl in the
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south (Zerboni et al., 2020). The fault systems and the karst formations in-
fluence the draining processes in the region. The plateau has been extensively
eroded over time, with many bare outcropping and dendritic valleys cut into the
limestone bedrock. The convergence of several alluvial fans descending from the
plateau through dry valleys or wadis form the relatively uniform surface of the
Salalah plain, which contains predominantly Pleistocene-age gravel-sized sediment
(Zerboni et al., 2020). Many Pleistocene marine terraces up to ~10 m high are ob-
served in the western area along with a narrower coastal plain. All along the coast
are sandy beaches, often with coastal dunes (up to a few meters high; Zerboni
et al., 2020). The composition of coastal sands depends largely on the regional
geology and are therefore predominantly carbonate with little quartz and few dark
mineral fragments along the southern coast (McLachlan et al., 1998). Research
on a similar site on the southeastern coast of Oman revealed sediment composi-
tion dominated by terrigenous minerals including quartz (25-65%) and feldspars
(10-40%), as well as calcite (10-30%), halite (0-15%), dolomite (0-5%) that likely
had lacustrine origin (e.g., shells, increased evaporation and concentration, in-
fluenced by seawater). Trace amounts of clay minerals (chlorite, illite, smectite,
kaolinite, and palygorskite) were present and were likely eroded and transported
from the regional soils and sediments (Lézine et al., 2010). Beachrock outcrops
up to 3-4 m asl are common along the coastal environments, as well as estuar-
ies or lagoons with mangroves (qurms) and without mangroves (khors). These
often form where major wadis drain into the Arabian Sea (Hoorn & Cremaschi,
2004; Zerboni et al., 2020). Openings of estuaries change frequently, mainly due to
the Indian Ocean monsoon (Hoorn & Cremaschi, 2004). The SW summer winds
cause erosion of the beach and sand barriers, while the NE winter winds strike
the coast from an oblique direction resulting in longshore sediment transport and

sand barrier accumulation (Hoorn & Cremaschi, 2004).

4.2.2 Khor Al Balid and Khor Rori

Khor Al Balid is a T-shaped coastal lagoon located at a central point along the
coast plains of southern Oman (Figure 4.1). The lagoon has low salinity, receiving
fresh groundwater from the Wadi Garziz drainage system and minimal marine

water due to the large sand barrier along the coast (Pavan & Visconti, 2023).
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Though the lagoon is thought to have once surrounded the city of al-Balid on three
sides, forming a rectangular island with the Arabian Sea (Costa, 1979; Pavan &

Visconti, 2023), the lagoon is currently largely silted in.

Khor Rori, ~32 km east of Khor Al Balid (Figure 4.1), is a coastal estuary
deeply cut into a marine erosive terrace (~40 m amsl; (Cremaschi & Negrino,
2002). It is fed by Wadi Darbat and local karst springs. Wadi Darbat is currently
blocked by a travertine dam (~70 m high). The lower/coastal side of Wadi Darbat
is often dry; however, the upper part is a perennial lake that can form a water fall
during the higher precipitation monsoon seasons (Hoorn & Cremaschi, 2004). The
entrance of Khor Rori is characterised by beachrock on both sides (5 m asl) and is
often closed by a sand barrier, resulting in low salinity of the estuary (2.5 km long,
up to 400 m wide, and 2.5-5 m deep; Hoorn & Cremaschi, 2004). Fine coastal
sediments and gravel have accumulated in the estuary throughout the Holocene.
Vegetation currently surrounding the estuary consists of coastal plain taxa, though
there is evidence that khor vegetation was present between ~250 BCE and ~270
CE when higher rainfall and lake levels provided increased water supply to the
khor (Cremaschi & Negrino, 2002).

4.3 Materials and methods

4.3.1 Sample collection & radiocarbon dating

In 1995, six sediment cores (ALB1-ABLG6) were collected from both land and
underwater sites throughout the coastal lagoons at Al Balid and four sediment
cores (ROR1, ROR2, ROR3, and ROR5) were collected from Khor Rori lagoon
(Figure 4.1). Material was collected using a piston corer or a vibracorer (Smith,
1987, 1998) and underwater samples were collected via SCUBA. Cores were split,

described, and subsampled at 1- to 5-cm intervals.

Radiocarbon (14C) dating on organic matter and mollusk shell samples was
performed at Beta-Analytical (Miami FL, USA) and IsoTrace Laboratories (Uni-
versity of Toronto ON, CA) through Accelerated Mass Spectrometry. Radiocarbon

ages of organic matter samples were calibrated with IntCal20 (Reimer et al., 2020).
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FIGURE 4.1: (A) The location of Khor Al Balid and Khor Rori
within The Sultanate of Oman. (B) The location of Khor Rori
cores ROR1, ROR2, ROR3, and ROR5, and (C) the Khor Al
Balid cores ALB1-6. The map of Khor Al-Balid is based on
Costa (1979).

Ages of shell samples were calibrated with Marine20 (Heaton et al., 2020) using a
local marine reservoir correction of 45+67 (the average of 10 nearest data points

to the Oman coast; http://calib.org/marine/).

4.3.2 Microfossils analysis

Subsamples of Khor Al Balid and Khor Rori cores ALB1 (n=10), ALB2 (n=13),
ALB3 (n=6), ALB4 (n=13), ALB5 (n=14), ROR3 (n=8), ROR5 (n=9) were ana-
lyzed for foraminifera and testate amoebae content using standard methodologies

as described by (Scott et al., 2001). Specimens were identified using well-illustrated

109


http://www.mcmaster.ca/
https://computational.mcmaster.ca/

Ph.D.— R. Steele; McMaster University— School of Earth, Environment, & Society

references including Hottinger et al. (1993). Results from Khor Al Balid and Khor
Rori were separately statistically grouped using Ward’s minimum variance clus-
tering method (Ward, 1963).

4.3.3 Geochemical analysis

Subsamples from the Khor Al Balid cores ALB1 (n=5), ALB2 (n=21), ALB3
(n=6), ALB4 (n=15), ALB5 (n=18), and ALB6 (n=8) and the Khor Rori cores
ROR1 (n=29), ROR2 (n=20), ROR3 (n=36), and ROR5 (n=40) were analyzed
by the Cox Analytical ITRAX X-Ray Fluorescence Core Scanner (uXRF) at the
McMaster University Core Scanning Laboratory (MUSC Lab) using a sequential
sample reservoir (Gregory et al., 2017). Analysis was performed with the Molybde-
num X-Ray source, 30 kV, 30 mA, 15 second exposure time at 500 pum resolution.
Elements of interest for this study include calcium (Ca), iron (Fe), potassium
(K), silica (Si), strontium (Sr), and titanium (Ti), which are useful environmen-
tal proxies for past fluctuations in sea level and rainfall (Krywy-Janzen et al.,
2019; McNeill-Jewer et al., 2019). A major source of Sr is from marine organisms
with aragonitic skeletons, as well as from limestone weathering (Marshall & Mec-
Culloch, 2002; Wood & Macpherson, 2005). Sources of Ca in the Dhofar region
include weathering of the limestone platform and the marine carbonate sands and
shells (McLachlan et al., 1998). Si is mainly sourced from terrestrial weather-
ing, with some from biogenic silica and from coastal quartz sands (Lézine et al.,
2010; Peinerud, 2000). Values of Ca/Si were therefore used to indicate relative
proportions of marine carbonate sands and shells compared to fluvial/terrestrial
and marine silica sands. Ti, Fe, and K are also products of terrestrial weathering,
particularly mud-sized grains; thus, Ti+Fe+K/Ca values can be used an indica-
tor for variations in fluvial /terrestrial input compared to marine sands and shells
(e.g., Adegbie et al., 2003; Bahr et al., 2005; Rothwell & Croudace, 2015; Tjallingii
et al., 2010). The Incoherent/Coherent scatter (Inc/Coh) values obtained during
uXRF analysis can provide an indication of organic matter content throughout
a sedimentary sequence, with higher values relating to lower density, increased
porosity, and/or increased water content, as well as lower average atomic mass
within sediments (Chawchai et al., 2016; Rothwell & Croudace, 2015).
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Samples with statistically similar geochemical composition were identified by
constrained cluster analysis of the uXRF results. Geochemical clustering was con-
ducted separately for Khor Al Balid and Khor Rori samples due to the variability
in geological settings. In addition to the main elements of interest (Ca, Fe, K, Si,
Sr, and T1i), additional elements (Cr, Pb, Cu, S, Zn, Ba, Zr, Rb, Ni, and Mn; Huang
et al., 2016; Rothwell & Croudace, 2015) were included in the chemofacies analyses
to help distinguish between geochemically distinct periods of deposition. Data was
row-centered (mean = 0, sd = 1) and then grouped using a Self-Organizing Map
(SOM; “SOMbrero” package, Olteanu & Villa-Vialaneix, 2015). Ward’s hierarchi-
cal clustering was used to group samples, which were then further grouped into

higher order superclusters.

4.4 Results

4.4.1 Core lithology and chronology results

The cores collected from Khor Al Balid record a transition from sandy sediments
to grey mud. Within the grey mud, some cores contain a peat/OM layer (in ALB1
between 37-39 cm, ALB2 between 27-30 cm, ALB4 between 23-26 cm, 21-22 cm,
and 11.5-20 cm, and ALB5 between 15-21 c¢cm) and/or an upper sand layer (in
ALBI1 between 39-55 cm, ALB3 between 10-12 cm, ALB4 between 6-9 cm, and
ALBS5 between 8-9.5 cm and 57 cm. ALBG is entirely composed of sand. Pebbles
were observed within the lower sand units of ALB1 (100-127 cm) and ALB3 (15-20
cm). Cores collected from Khor Rori mainly consist of grey mud with lower sand
units in ROR1 (59.5-68 cm, and 14.5-56.5 cm) and ROR3 (65-72 cm, 61-64 cm,
and 55-60 cm) and upper sand units in ROR1 (14.5-56.5 cm) and ROR5 (30.5-37
cm). Sediments at Khor Rori were relatively poorly sorted, with sandy mud at
the top of ROR1 (7.5-14.5 cm) and silty /muddy sand throughout the bottom of
ROR1 (92-107 cm) and the bottom (37-105 cm) and top (0-30.5 cm) of RORS.
Pebbles were observed throughout the bottom portions of all four cores, and large

boulders with barnacle were present at the bottom of ROR2.

Based on radiocarbon results (Table 4.1), the basal sandy sediments across
Khor Al Balid span several thousand years (5634-5204 BCE to 20 BCE-471 CE).
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These sands transition to grey mud around 1229-1430 CE at the western side of
the lagoon and around 774-1169 CE at the eastern side of the lagoon. The upper
sandy sediments that were observed in almost all cores were dated to the 18th—19th
century, based on the date obtained from ROR3 (1525-1950 CE), as well as the
upper age range for the underlying sediments in ALB5 (1299-1632 CE; Table 4.1).

TABLE 4.1: Radiocarbon results for Khor Al Balid (ALB) and
Khor Rori (ROR) samples.

Depth Cl4 Age Error Modelled Modelled

Core Description Calibrated Calibrated
P (em)  (rBP) £ \ue(yr BP) Age (BCE/CE)
ALB1 Gastropods 31 1710 50 1274 — 841* 677 —1110%
ALB1 Organic material 71 1290 60 1301 — 969 649 — 982
ALB2 Organic material 27 —30 690 40 722 - 521 1229 — 1430
ALB2 Bivalve fragment 32-35 2330 50 1969 — 1480* -20 —471*
ALB4 Organic material 24 1100 50 1177 -782 774 — 1169
ALBS5 Organic material 18 530 50 652 -319 1299 — 1632
ALBS Bivalve 30-31 7120 70 7586 — 7155*%  -5635 —-5204*
ROR2 Oyster 41 130 60 -2 —-17*0 1953 — 1968*()
ROR2 Barnacle 41 210 40 109 —-2*O 1841 — 1953*®)
ROR2 Barnacle 41 270 40 116 —-2*O 1835 —1953*1)
ROR3  Organic material 60 220 40 425 -10 1525 - 1950
ROR3 Wood 20 Modern - Modern Modern

* Calibrated with Marine20, local marine reservoir correction = 45+67 (http://calib.org/marine/)
() Date probably out of range
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4.4.2 Microfossil results

Twenty-one foraminifera taxa and three testate amoebae taxa were identified in
Khor Al Balid, while eleven foraminifera taxa and six testate amoebae taxa were
observed in Khor Rori samples (Appendix C1, C2, and C3). Microfossil concen-
trations were relatively low in Khor Rori cores (ROR3 avg = 100, range = 2-238;
RORS5 avg = 299, range = 184-415) compared to Khor Al Balid (Appendix C1
and C2). Concentrations were slightly higher in the western arm of Khor Al Balid
(ALB2 avg = 585, range = 154-1926; ALB3 avg = 598, range = 114-1519) com-
pared to the eastern arm (ALB1 avg = 551; range = 178-977; ALB4 avg = 332,
range = 9-4291; ALB5 avg = 373, range = 118-892). Average SDI (Shannon
Diversity Index) values are relatively consistent across Khor Al Balid (ALB1 avg
= 1.6; ALB2 avg = 1.3; ALB3 avg = 1.5; ALB4 avg = 1.7; ALB5 avg = 1.0;
Appendix C1).

Clustering results revealed three assemblages at Khor Al Balid (ALB-A1, ALB-
A2 and ALB-A3) and two assemblages at Khor Rori (ROR-A1 and ROR-A2;
Figure 4.2 and 4.3). These assemblages were identified as belonging to three main
biofacies based on relative abundances of marine and fresh/brackish microfossil
species: Marine Sand (MS), Brackish and Lagoon/Marsh (BLM), and Freshwater
Lagoon (F).

4.4.2.1 Marine Sand (MS) biofacies

MS biofacies make up the bottom sandy sediments of all analyzed Khor Al Balid
cores as well as a thin upper layer within ALB1, ALB2, ALB4, and ALB5 (Figure
4.3). The dominant microfossils within assemblage ALB-A2 (MS biofacies) include
the foraminifera taxa Amphistegina spp. (4.7-77.1 %), C. pseudolobatulus (0-18.3
%), Elphidium lebatum (0.5-11.3 %), and H. andersoni (0-15.0 %). Planktic
foraminifera were observed in ALB4, with highest abundances (18.2-32.9 %).

4.4.2.2 Brackish Lagoon/Marsh (BLM) biofacies

In the western arm of Khor Al Balid, the top half of cores ALB2 and ALB3 be-
long to BLM biofacies, with the exception of the thin MS unit in ALB2 (Figure

115


http://www.mcmaster.ca/
https://computational.mcmaster.ca/

Ph.D.— R. Steele; McMaster University— School of Earth, Environment, & Society

4.3). In the eastern arm, the top third of ALBI, the middle of ALB4, and a
very thin unit in the middle of ALB5 belong to BLM biofacies. RORD5 is pre-
dominantly BLM with the exception of a relatively thin F biofacies unit at the
top of the core (Figure 4.3). Assemblage ALB-A1 (BLM biofacies) is dominated
by foraminifera taxa Amphistegina spp. (0.2-12.9 %), Cibicides pseudolobatulus
(0-15.2 %), Discorinopsis aquayoi (0-20.0 %), Elphidium transluscens (0-19.8 %),
Helenina andersoni (0-70.4 %), Quinqueloculina seminulum (0-24.6 %), Trocham-
mina macrescens (0-35.2 %), and Trochammina inflata (0-83.1 %; Appendix
C1). ROR-A2 (BLM biofacies) is dominated by the foraminifera Ammonia be-
carri “parkinsoniana” (9.9-21.1 %), Ammonia bercarri “tepida” (13.3-36.4 %),
FElphidium excavatum (1.6-22.8 %), H. andersoni (13.6-34.9 %), and the testate
amobae C. aculeata (0-20.2 %).

4.4.2.3 Freshwater Lagoon (F) biofacies

F biofacies directly following the basal MS units in ALB1, ALB5, and ALB3. In
ALB4, only the topmost sediments belong to F biofacies. The majority of ALB5 is
belongs to F', with the exception of the basal and upper MS and the thin BLM unit
mid-core. At Khor Rori, the samples from ROR3 belong entirely to F, as well as a
relatively thin unit at the very top of the core. Assemblage ALB-A3 (F biofacies)
is dominated by testate amoebae taxa Arcella vulgaris (0-10.2 %), Centropyzis
constricta (1.5-68.5 %) and Centropyzis aculeata (14.4-93.6 %), with some obser-
vations of the foraminifer H. andersoni (0-13.5 %). The dominant species within
ROR-A1 (F biofacies) include the testate amoebae A. vulgaris (0-72.2 %), C. con-
stricta (0-54.4 %) and C. aculeata (22.8-68.5 %), as well as the foraminfera H.
andersoni (1.7-14.1 %; Appendix C2).

4.4.3 Geochemistry results

The elemental data from Khor Al Balid was grouped into seven superclusters (MS-
1, and LM-2 to LM-7; Figure 4.4 and 4.5; Appendix C4 and C5) that correspond
well with lithology and with the biofacies results. The samples analyzed from
the basal sand units of Al Balid cores all belong to MS-1. ALB1, ALB4, and

ALB?5 also contain an upper MS-1 chemofacies that corresponds to the upper sand
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units within the cores. This chemofacies was identified as Marine Sand due to
the highest Ca/Si values (avg = 1349+403) and the lowest Ti+Fe+K/Ca (avg =
0.031£0.031) and Inc/Coh values (avg = 3.93+0.24; Table 4.2). The six other
superclusters (LM-2 to LM-7) mostly correspond to grey mud and peat/OM units
within the Al Balid cores (Figure 4.5). Though these superclusters vary slightly in
composition (Figure 4.4), they were all identified as Lagoon/Marsh chemofacies in
order to more clearly define/identify the transition from open estuary (i.e., marine
sand) to lagoon settings across the study sites. All six of the LM chemofacies
contain distinctly lower Ca/Si (avg = 663+433), higher Ti+Fe+K/Ca (avg =
0.679+0.654), and higher Inc/Coh (avg = 4.96+0.55) values compared to the MS
chemofacies (Figure 4.5, Table 4.2).

The elemental data from Khor Rori was grouped into seven superclusters (LM-1
to LM-6, and MS-7; Figure 4.6 and 4.7). Similarly to Khor Al Balid, LM-1 to LM-
6 at Khor Rori were identified as Lagoon/Marsh chemofacies because of distinctly
lower Ca/Si values (avg = 425+393) and higher Ti+Fe+K/Ca (avg = 1.848+3.859)
and Inc/Coh values (avg = 4.49+0.48) compared to the Marine Sand chemofacies
(MS-7; Ca/Si avg = 11274428; Ti+Fe+K/Ca avg=0.094+0.105; Inc/Coh avg =
3.9040.18; Table 4.2). In ROR2 and ROR3, LM chemofacies correspond well with
the grey mud and peat/OM units while the MS chemofacies corresponds with sand
(Figure 4.7). These trends are also apparent in ROR1 and ROR5, except for the
upper sand unit in ROR1 which belonged to LM. The units with mixed grain sizes
(e.g., the top of ROR5) show some alternating between chemofacies (Figure 4.7).

TABLE 4.2: Average Ca/Si, Ti+Fe+K/Ca, and Inc/Coh val-
ues, with standard deviations (sd), for Marine Sand and La-

goon/Marsh chemofacies in Khor Al Balid and Khor Rori sam-

ples.
Location Chemofacies Ca/Si +sd TitFe+K/Ca +sd Inc/Coh +sd
.. Marine Sand (MS-1) 1349 403 0.031 0.031 393 024
Khor AlBalid ' 00/ Marsh (LM2-7) 663 433 0.679 0.654 496 055
Khor Rori Marine Sand (MS-7) 1127 428 0.094 0.105 390 0.18
Lagoon/Marsh (LM-1-6) 425 393 1.848  3.859 449 048
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4.5 Discussion

4.5.1 Changes in coastal geomorphology

The transition from open estuary to lagoon conditions is recorded in the lithol-
ogy, biofacies, and chemofacies of cores ALB1-ALB5 collected from Khor Al Balid
(Figure 4.8). The shift from sands to mud or peat/OM in all five cores suggests
a decrease in depositional energy that took place by around 1169 CE (ALB4:
774-1169 CE) in the eastern arm and by around 1430 CE (ALB2: 1229-1430 CE)
in the western arm. Benthic foraminifera assemblages indicate that conditions
within the Khor were saline prior to this shift, with increased presence of shallow
marine shelf taxa (Amphistegina spp., C. pseudolobatulus, and FElphidium spp.;
Figure 4.3; Murray, 2014). Following this shift in conditions, the khor was dom-
inated by more brackish tolerant foraminifera species that are typical of lagoons,
salt marshes, and/or intertidal environments (e.g., A. becarri ‘parkinsoniana’, A.
becarri ‘tepida’, H. andersoni, T. macrescens, and T. inflata; Debenay et al., 2002;
Gennari et al., 2011; Horton & Edwards, 2006; Murray, 2014; Verlaak & Collins,
2021). The high abundance of testate amoebae (~60-90 % C. constricta and/or
C. aculeata) in sediments immediately following the shift from sand to mud and
peat/OM indicates that salinity was low enough to support these fresh to brackish
tolerant species (Figure 4.3; Vazquez Riveiros et al., 2007). The transition from
high-energy marine to low-energy fresh/brackish conditions was recorded quite
abruptly in all of the Khor Al Balid cores suggesting that the sand barriers at the
eastern and western mouths the of estuary had formed completely at that point
in time. Dredging activities were likely not taking place after this transition as
conditions remain fresh /brackish throughout time, with the exception of one upper
MS facies in all five cores (see Discussion 5.2). Following sand barrier formation,
sedimentation, shoaling, and evaporation would have occurred over time, leading
to the brackish conditions reflected in the biofacies of all the three shallowest cores
(ALB1, ALB2, and ALB3). The freshwater conditions reflected in the uppermost
biofacies of ALB4 and ALB5 reflect the input of freshwater from Wadi Garziz
drainage system into the khor (Pavan & Visconti, 2023). The chemofacies show

variable conditions in lagoon deposits over time (LM1-LM7), which may represent
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changes in sediment sources and/or reworking of deposits (e.g., through erosion,
storms, human activity, etc). Higher Ca/Si values, for instance, correspond with
sandy sediments, reflecting increased shell content and/or marine sand compared
to fluvial sands; however, values also peak and/or increase in sediments over time
(e.g., ALB2, ALB4, and ALBS5; Figure 4.5), which may indicate relatively lower
fluvial input over time due to increasingly arid conditions and/or an increase in
site degradation and wind-blown carbonate sands from the nearby coast. Despite
these complex variations, the LM chemofacies clearly demonstrates changing con-
ditions following the closure of the estuary to the sea and supports the biofacies
and lithological results; thus, LM-1 to LM-7 were dealt with as one group for the
purposes of this study.

The cores collected from Khor Rori seem to contain sediments deposited after
the formation of the coastal sand barrier (Figure 4.9). The records, however, ap-
pear to have undergone multiple erosive events through wave erosion and through
wadi flow. Because the elevation of Khor Rori is higher than the flat coastal plain
at Khor Al Balid, the amount of erosion and reworking is higher, and the sediment
records are slightly less coherent. The sand units at the base of ROR1, ROR3, and
RO5 may represent the same depositional event as the upper sand units observed
in Khor Al Balid (see Discussion 5.2), due to the relatively young ages obtained
from the sediments (1525-1950 CE to modern; Table 4.1). The biofacies suggest
that conditions at Khor Rori have been fresh to brackish since around the 16th
century CE but were maybe more marine for short periods with partial breaching
of the sand barrier. The presence of sand units and/or MS chemofacies at the
top of ROR5 and RORI1, which are in closest proximity to the coast, may indi-
cate a breach in, or redeposition of, the coastal sand barrier. Breaching of the
coastal sand barriers along this region of the coast are known to occur (Hoorn
& Cremaschi, 2004), usually in association with large storm events such as trop-
ical cyclones. Cyclone Mekuno in 2018, for instance, caused coastal flooding and
the formation of a channel through the barrier at the mouth of Khor Al Balid
(Andreou et al., 2022).

123


http://www.mcmaster.ca/
https://computational.mcmaster.ca/

Ph.D.— R. Steele; McMaster University— School of Earth, Environment, & Society

Previous research on palynological changes at Khor Al Balid and Khor Rori sug-
gests that the estuaries were surrounded by khor taxa, received abundant freshwa-
ter from the wadis, and were open to the sea prior to at least 270-420 CE (Hoorn
& Cremaschi, 2004; Lippi et al., 2011). Results from our study further constrain
the timing to the 12th to 15th century CE at Khor Al Balid (Figure 4.10). The
closure of the wadi mouths likely resulted from a combination of longshore drift, a
slight drop in sea-level, and reduced storm/flooding events. Khor Rori appears to
have alternated between open and closed at least until the 19th-20th century and
appears to be largely closed until the present. Seasonal accumulation and erosion
of sand barriers occurs naturally along the southeast Oman coast, due to mon-
soonal wind directions and longshore drift (Hoorn & Cremaschi, 2004; Shammas
& Jacks, 2007). Land levels have been relatively stable since the mid-Holocene
(i.e., no tectonic uplift /subsidence; Hoffmann et al., 2013c); however, the possible
~1 m drop in sea-level in the past 1000 years along the southeast coast of the
Arabian Peninsula (Khanna et al., 2021) has likely contributed to reduced ero-
sion of sand barriers and increased accumulation of coastal sands. The regional
climate has become increasingly arid since the mid-Holocene (Burns et al., 1998;
Cremaschi et al., 2015; Cremaschi & Negrino, 2005; Fleitmann et al., 2003, 2007).
Decreased precipitation, along with relatively lower wadi water levels and fewer
flooding events compared to more humid climate periods means that the sand bar-
riers were not being eroded/removed from the mouths of estuaries as frequently

as they may have been in the past.
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KHOR AL BALID KHOR RORI

Phase 1: Open estuary - Inundation of previously downcut wadis with lower Holocene sea-level
formed natural harbor settings
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FIGURE 4.10: Model of environmental changes at Khor Al
Balid and Khor Rori spanning the past ~2000 years.

4.5.2 Large overwash event

Cores from both Khor Al Balid and Kohr Rori record a large overwash event that
took place relatively recently (Figure 4.8 and 4.9). Marine proxies including the
presence of sand units, MS biofacies, and/or MS chemofacies in the upper portions
of ALB1-5 suggest that coastal conditions became more saline for a period of time
(i.e., the lagoon barriers were breached) or that an extreme wave event occurred

across the entire coastal region. The peaks in relative abundance of Amphistegina
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spp. in these layers within ALB1, ALB2, ALB4, and ALB5 is especially indica-
tive of marine intrusion, as this large, robust taxon is typical of reefs and other
marine shelf habitats (Langer & Mouanga, 2016; Murray, 2014; Uthicke & Nobes,
2008; Weinmann et al., 2013). The increase in Ca/Si and distinct decrease in
Ti+Fe+K/Ca and Inc/Coh values in cores ALB1, ALB4, and ALBS5 in the upper
sand units also provide strong evidence for the event. Though the deposits from
Khor Rori are somewhat less coherent, they also provide supportive evidence for
the event. The barnacles and oyster fragments on the rock at the bottom of ROR2
date from 1835-1968, suggesting that estuary conditions were open again for a pe-
riod of time around the 19th-20th century. The grey mud and Lagoon facies
(freshwater microfossils, relatively low Ca/Si values, etc.) that characterize most
of the sediments at Khor Rori were likely deposited following this extreme wave
event, when the sand barrier remained largely closed. Considering the date ob-
tained from the bottom alternating sand/peat of ROR3 (1525-1950 CE) assumed
to be deposited around this event and the age of the underlying lagoon deposits
from ALB5 (~1632 CE), a reasonable estimate for the extreme wave event is the
18th-19th century CE.

A flooding event was observed in the palynological study by (Hoorn & Cre-
maschi (2004), within the top 40 cm of a core from the eastern arm of Khor Al
Balid. Though their event was not dated, it may represent the same extreme wave
event observed in our cores. Extreme wave events in the Arabian sea have occurred
throughout the Holocene, generated by Indian Ocean cyclones and tsunamis (Fritz
et al., 2010; Hoffmann et al., 2015; Hoffmann et al., 2013a; Hoffmann et al., 2013b;
Shah-hosseini et al., 2011). Catastrophic storms are rare in the Arabian Sea (three
in the past 1200 years; Blount et al., 2010). Most storms are small and dissipate
quickly (Fritz et al., 2010), though even cyclonic storms can cause significant wa-
tershed inundation and wadi flooding along the Dhofar coast (Al Ruheili et al.,
2019). The Dhofar coast is highly vulnerable to tropical cyclones, which strike the
region every five to seven years (Al Ruheili & Radke, 2020; Andreou et al., 2022;
Mansour, 2019). The most recent cyclone, Mekunu in 2018, had a 5-8 m storm
surge and caused high precipitation (~600 mm), coastal flooding, and erosion (Al
Rubheili et al., 2019; Andreou et al., 2022). The storm highly impacted the site
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at Khor Al Balid, causing a breach in the sand barrier at the mouth of the east-
ern estuary and patches of flooding approximately 100 m inland (Andreou et al.,
2022). During the overwash event observed in our cores, marine material (e.g.,
sand and Amphistegina spp.) was transported at least 250 m inland (ALB3) and
at least 550 m upstream into Khor Al Balid (ALB5). Because marine material
was deposited much further inland and in both eastern and western arms of the
lagoon, it is possible that the sand barriers on both sides were breached and that
the event was of much larger magnitude than the recent storm Mekunu. Detailed
instrumental and historical records of tropical cyclones prior to the 1900s are lim-
ited (Dibajnia et al., 2010; Membery, 2001, 2002). Written accounts and reviews
of historical cyclone tracks provide information on past events, including a rare
cyclone in the Gulf of Aden in 1885 (Membery, 2002) and a severe tropical storm
that hit the southern Oman coast in 1898 (Dibajnia et al., 2010). Even relatively
distant tropical cyclones (e.g., 370 away) can bring in tropical air over the Dhofar
mountains, resulting in extreme rainfall and flooding of the Salalah plain (Mem-
bery, 2002). These nearby events, or more likely an unrecorded tropical cyclone
during the 18th-19th centuries CE, could potentially have been large enough to
cause the observed impacts at Khor Al Balid and Khor Rori.

Extreme waves generated by a tsunami is another probable cause for the ob-
served overwash event. Three main sources for tsunamis in southern Oman include
the Makran Subduction Zone (MSZ; between the Arabian/Eurasian Plates), the
Sunda-Sumatra subduction zone (between the Indian/Australian Plates), and the
Owen Fracture Zone (OFZ; a strike-slip boundary between the Arabian/Indian
Plates; (Browning & Thomas, 2016; Hoffmann et al., 2020; Sieh, 2007). The
MSZ can generate very large earthquakes (e.g., Mw>8.5; Hoffmann et al., 2020),
generating tsunamis that directly impact the northern coast of Oman (Donato et
al., 2008; Hoffmann et al., 2013b; Pilarczyk & Reinhardt, 2012). Large histor-
ical earthquakes from the MSZ have been documented in 1765, 1851, and 1945
(Mokhtari et al., 2019; Okal & Synolakis, 2008). The 1765 or the 1851 event
could have caused the overwash observed in our cores; however, the southern coast
of Oman is not in a direct path of impact from the MSZ, and the risk to the
Dhofar coast from this source has been deemed very low (Rashidi et al., 2020).

A tsunami generated from the Sunda-Sumatra subduction zone near Indoneasia,
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however, could highly impact this area of the coast (Browning & Thomas, 2016).
Underwater earthquakes generated from the Sunda megathrust fault have been
documented in 1797, 1833, 1861, 1907, 1935, 2000, 2002, 2004 and 2005 (Sieh,
2007). The 2004 tsunami generating event was well-recorded and caused a maxi-
mum runup (altitude of inland penetration) of only 3.3 m in Salalah (Okal et al.,
2006). Historical tsunami events, however, are more difficult to track and estimate
the magnitude of, including the 1797 and 1833 events which are recorded in corals
(Sieh, 2007). Other evidence suggests that the last giant tsunami before the 2004
Indian Ocean tsunami occurred ~2900 BP (Rubin et al., 2017) or were confined
to the northeast Indian Ocean (Malik et al., 2019). Though the Indonesian sub-
duction zone is relatively far from the southern Oman coast, it is possible that the
1797 or the 1833 earthquake events were large enough to cause our observed event
on southern coast of Oman. Closest in proximity to the Dhofar coast, the 800
km long OFZ system, is theoretically possible of producing significant tsunamis of
unknown potential, through strike slip or vertical block motions (Fournier et al.,
2011; Tanioka & Satake, 1996). The Owen Ridge, a submarine feature ~300-400
km from the southern Oman coast near the OFZ, contains evidence of several
mass failure events (Rodriguez et al., 2013). These events could have triggered a
tsunami; however, they likely date back to the Miocene or Pleistocene (Bache et
al., 2011). Though there is no evidence (historical accounts, sediment deposits) of
a OFZ tsunami (Rodriguez et al., 2013), the OFZ is a likely source if our event

was the result of a tsunami.

The settlement at Khor Rori is thought to be abandoned well in advance of the
18th century CE (Degli Esposti & Pavan, 2020), therefore this event does not have
much bearing on the history of the site. The port city at Khor Al Balid, however,
may still have been occupied when this potential large cyclone or tsunami struck
the coast. Along with the political, economic, and military issues towards the end
of the 16th and 17th centuries CE (Fusaro, 2020; Pavan, 2021), this extreme wave
event may have contributed to the decline and abandonment of the city at Khor
Al Balid. Whether the sites were abandoned or not, this event, as well as other
similarly destructive large storms and wave events, has archeological implications
for site conservation. This is demonstrated by the damage observed to the site at
Khor Al Balid following Mekunu in 2018 (D’Andrea, 2021; Pavan, 2021).
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4.5.3 Implications for harbour activity

Changes in coastal morphology due to increased aridity and a decrease in sea level
were likely occurring at both Khor Rori and Khor Al Balid simultaneously, though
the slightly upstream location of Sumhuram likely lead to its decline earlier than
al-Balid. The progressive accumulation of coastal sediments and decreased input
from the wadi ~270-420 CE (Hoorn & Cremaschi, 2004) would have made it dif-
ficult for ships to enter to Khor Rori and conduct maritime trade activities at the
port city ~1 km upstream, even if the barrier was often open or partially open un-
til very recently. As previously speculated, this likely contributed to abandonment
of Sumhuram by the 5th century CE (Degli Esposti & Pavan, 2020; Hoorn & Cre-
maschi, 2004). Environmental changes may not have affected maritime activity at
al-Balid until several centuries later due to its location adjacent to the coast. Ar-
chaeological evidence and documented descriptions have provided information on
the original harbour layout at al-Balid. The presence of marine sand and aquatic
organisms (testate amoebae and foraminifera) in ALB2 and ALB3 supports previ-
ous evidence that the site was surrounded on all four sides by water (Costa, 1979;
D’Andrea, 2021). Our cores suggest that the eastern arm of Khor Al Balid closed
off from the sea during the 12th century, but the western side was open until the
15th ¢. CE. The estimated founding of al-Balid is around the 10th century CE,
when harbour structures including jetties, breakwaters, and gates were built along
the southern (seaside) city wall (Newton & Zarins, 2014). Additional harbour
structures that would have supported horse exporting activities (paddocks, check
dam and sluices for water supply, canopies, a stone quay, jetties, dry dock struc-
tures, and loading platforms on the eastern side of the lagoon) have been linked to
the height of horse trade in the region (mid 14th to mid 16th centuries; Newton &
Zarins, 2014). The coastal sand barriers were likely fully established by this time,
suggesting that maritime trade activities were able to proceed without sea access
into the eastern or western arms of the estuary. Recent archaeological excavations
have suggested that the city did not have a substantial harbor (Ghidoni & Pavan,
2022; Pavan & Visconti, 2023). Instead, small boats (sambugs or kambaris) used
large stone anchors in a roadstead (sheltered body of water) to transport trade

goods to and from larger ships anchored offshore (Newton & Zarins, 2019; Pavan
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& Visconti, 2023). The recent discovery of sand-covered blocks south of the break-
water that extend ~50 m offshore (D’Andrea et al., 2022) also provide evidence
for anchoring structures and a potential wooden pier used load/unload goods such
as horses (Ghidoni & Pavan, 2022). These archaeological findings agree with our
results. Shipping activities were likely able to proceed for several centuries until
significant amounts of sand had accumulated along the coast, increasing the width
of the shoreline (i.e., beach is currently at least 120 m wide) and decreasing the

feasibility of transporting goods.

Another possibility is that the dates of sediments obtained here are slightly
older than estimated due to the incorporation of older, reworked organic matter
into sediments (through erosion and redeposition; Strunk et al., 2020). If this is the
case, the formation of sand barriers at Khor Al Balid may have occurred closer
towards the founding of al-Balid. In any case, the estuary entrances that once
formed natural harbours were likely becoming choked with sand, and may have
been frequently dredged to keep the openings clear (Newton & Zarins, 2019). The
eventual formation of sand barriers along the shore of Khor Al Balid through a
drop in sea level and an increasingly arid climate greatly changed the morphology
of the coast. These environmental changes, alongside political /military pressures
and bans on major exports (D’Andrea, 2021; Fusaro, 2020) likely had a significant

impact on harbor activity and the nearby population.

4.6 Conclusion

Accumulations of sands have naturally built up along the southern coast of Oman
over the past ~1500 years as a result of decreased sea level (~1 m in the past 1
ka) and an increasingly arid climate, allowing longshore drift to choke and close
the wadi entrances (Decker et al., 2020; Hoorn & Cremaschi, 2004; Khanna et al.,
2021). Lithological, microfossil (foraminifera and testate amoebae), and geochemi-
cal (uXRF) records within sediment cores from Khor Rori and Khor Al Balid were
analyzed here. Results indicate that the eastern arm of Khor Al Balid closed off
from the sea around the 12th century CE, while the western arm closed around the

15th century CE. Results align well with previous archaeological findings of site
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chronology and maritime trade structures at the site’s ancient port city of al-Balid.
Our results suggest that the sand barriers had accumulated and formed the lagoon
at Khor Al Balid by the time maritime trade activity reached its peak at the site.
Harbour activity at al-Balid is thought to have mainly involved jetties, breakwa-
ters, and the transport of goods between smaller boats and larger ships anchored
offshore instead of substantial harbour structures (Ghidoni & Pavan, 2022; Pavan
& Visconti, 2023). This would mean that maritime trade was possible even after
closure of the natural harbours of the estuary. Over time, however, shipping activ-
ities were likely increasingly difficult as sand continued to accumulate and widen
the beach along the coastline. Evidence of a large overwash event dating around
the 18th—19th century is recorded in almost all cores across Khor Al Balid and
Khor Rori. This event may have been the result of a very large tropical cyclone or
tsunami, though further research is required to determine the cause. This event,
and the progressive environmental changes along the coast likely had a significant
impact on the population near Khor Al Balid and may have contributed towards
abandonment of the city. Results from this study provide an important paleoenvi-
ronmental perspective towards the overall understanding of site development and

decline at Khor Rori and Khor Al Balid.
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Chapter 5
Summary and Conclusions

Microfossils and pXRF core scanning results are important additions to multi-
proxy geoarchaeological studies, and their uses and applications in this field are
still being developed. Diatoms and testate amoebae, as well as elemental results
obtained through pXRF core scanning, have rarely been applied as proxies in
coastal geoarchaeological studies. This research advances the use of these proxies
while investigating paleoenvironmental changes in regions with well-known mar-

itime trade histories.

In the first of the three studies, a multiproxy approach was used to investigate
the formation of wetlands surrounding Muyil, a Classic Maya maritime trading
port. Microfossil (foraminifera, diatoms), uXRF, pollen, carbon stable isotope,
and radiocarbon dating methods were applied to sediments collected from Boca
Paila cave. This study included the first assessment of diatom species found within
the sampled cave system and demonstrated the advantage of underwater cave
systems as a source of undisturbed environmental proxies. Results indicate that
shallow wetlands began to form with sea-level rise between ~1157 BCE and 312
CE, which corresponds well with the estimated founding of Muyil ~350 BCE
(Witschey, 1993). The canoe-accessible channel connecting the port site to the
coast would not have been navigable prior to wetland development. The formation
of deeper lagoons after ~312 CE (facilitating access to the port site) corresponds
with a population increase and the construction of additional structures built at
the site, as well as an increase in maritime trade activity along the eastern coast
of the Yucatdn Peninsula (Andrews, 1993; Witschey, 1993). Further research on
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maritime port sites along the coast can confirm the link between changes in coastal

morphology and an increase in maritime trade activity in the region.

The research conducted at the coast of Caesarea was the first study to inves-
tigate the use of epiphytic foraminifera as biostratigraphic indicators in geoar-
chaeological studies. The foraminifera assemblages demonstrated that Pararotalia
calcariformata was an especially abundant epiphytic foraminifer that proved to
be a useful biomarker of anthropogenic hard structure emplacement on the sandy
coastline. The significant increase of this species only occurred as a result of the al-
tered substrate conditions following construction of Sebastos harbour around 2000
years ago. The presence of P. calcariformata in sediments dating to the Santorini
event bed (1630-1550 BCE) confirms that it did not arrive in the Mediterranean
following the opening of the Suez Canal in 1869 as previously thought (Schmidt et
al., 2015; Zenetos et al., 2012), which has implications for future ecological assess-
ments in the region. pXRF and magnetic susceptibility results showed that har-
bour material (e.g., heavy minerals from within the volcanic ash component, kurkar
particles) was transported offshore over time, especially during erosive events re-
lated to tsunamis. The findings of this study demonstrate novel applications of
foraminifera in sandy, nearshore harbour settings, highlight long-term impacts of
anthropogenic coastal development on ecological communities, and may provide a

tracer for sand transport on clastic shelves.

The third study revealed information on the development of sand barriers and
lagoons at two archaeological sites with a previously limited paleoenvironmental
perspective. Palynological work conducted in 2004 suggested that the lagoons
were open estuaries prior to ~420 CE (Hoorn & Cremaschi, 2004). The authors
speculated that an increasingly arid climate resulted in decreased fluvial output
and progressive siltation of the estuaries. Foraminifera, testate amoebae, uXRF,
and radiocarbon dating results from this third study indicated that sand barriers
accumulated and closed off the eastern arm of Khor Al Balid from the Arabian
Sea during the 12th century CE, while the western arm closed during the 15th
century CE. Previous archaeological results indicate that shipping involved the
transport of goods on smaller boats to and from larger ships anchored offshore
(Ghidoni & Pavan, 2022; Pavan & Visconti, 2023), meaning that maritime trade
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was still possible after lagoon formation. Continuous accumulation of sands along
the coast would have progressively widened the beach (currently at least 120 m)
likely making it increasingly difficult to conduct shipping. Evidence of an ex-
treme wave event (e.g., a tsunami or large tropical cyclone) occurring around the
18th—19th century is observed in most cores across Khor Al Balid and Khor Rori.
This extreme wave event and the progressive coastal morphological changes were
likely major contributing factors towards the decline and eventual abandonment
of the city. The extreme wave event also has implications for the preservation of

archaeological sites along the coast.

This dissertation provides important new coastal morphological data in three
archaeological settings, allowing for a more comprehensive understanding of site
development in each case. The results contribute to the advancement of geoar-
chaeological research through the use of under-utilized sources of sediment records
(i.e., underwater cave systems) and a new application of benthic foraminifera data,

which can be applied in future studies.
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APPENDIX A1l: Chapter 2 Supplementary Data 1 -

Table of organic geochemistry results for 34 samples from BP2.

Depth
(cm)

0 -22.366 9.191 293 32 92

o13C 9N %C %N C/N

2 -21.784 9.049278 3 92
4 -21.963 9.38529.2 32 9.1
6 -21.842 8.857239 26 92
8 -20.767 7.994 28 3.1 9.2
11 -20.996 7.655294 3.1 9.6

13 -20.166 7.329289 3.1 93
15 -21.35 7267298 29 102
17 -22.069 7.728 31.1 32 98
19 -21.086 7.32531.2 32 99
22 -22.338 8291 25 24 105
24 -26.12 8.605 84 0.8 10

26 -25.129 9.007 3.8 04 8.6
28 -22989 8842 14 14 97
31 -26.221 8.444 30.1 25 121
33 -25.075 6498 6.2 05 126
35 -26.288 7.52516.7 1.4 11.8
37 -26.246 6.402 132 1 128
39 -27.889 7.539 127 1.2 10.2
42 -26.985 7.124 339 34 10.1
44 -26.983 7.26940.1 4 10.1
46 -26.917 6.95741.6 4.1 10.2
48 -27.191 7.03843.8 43 10.1
50 -26.909 7.072 45 43 104
52 -26.848 7.078 47.7 4.5 10.7
55 -26.673 7.186 45.6 43 10.6
57 -27.3857.783 432 45 96
59 -27.6 748 444 44 102
61 -27.211 6.944 433 41 105
63 -27474 7.64446.5 45 104
65 -27.697 7.664 44 43 103
67 -27.294 6.973 46.7 42 11

70 -28.232 8.116 48 4.5 107
72 -26.222 8.35944.6 33 133
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APPENDIX A5: Chapter 2 Supplementary Data 5 -
Correspondance regarding an abnormal flow event near Cenote
Akalche (Ox Bel Ha Cave System ~20 km north of Boca Paila).

On Jan 29, 2020, at 9:19 AM, Cameron Russo <cameron_russo@icloud.com> wrote:

Hey Ed, let me know if this is what you need, and if you have any questions or want
further info?

Yesterday, 28-Jan-2020, Laszlo Cseh and I did a dive in Akalche. The dive finished at 2:09pm. Within a couple mins of
surfacing, when we were still in the water on the surface just floating, de-kitting our tanks - the water level suddenly went up by
approx. 1m in about 3 seconds. Stayed there for about 3 seconds. Dropped by about 1 or 2m, then continued with waves up and
down about that height and gradually getting smaller for 15mins!!

The surface water of Akalche is always brown and bad viz, but as a result of the waves, there was much more jungle matter
(leaves, mud, branches) in the cenote after, and the visibility was even worse than usual.

In the confusion and mild panic when the waves started Laszlo dropped and lost a side mount tank. I held on to the edge of the
cenote for dear life and I would estimate we waited in the water for 15mins before we thought it safe enough to let go of the side,
remove the rest of our equipment and exit the water.

After we finished packing up everything and were ready to head home, we had a last look at the cenote, there was mud and debris
approx. Sm away (sideways, not up and down) from the edge of the pool of water (I would guess this would equate to the 1m
rise).

‘We then went to look at the Coco Ha cenote (500m or 1km down the road), and there were no signs whatsoever of the water
rising there. The ground was completely dry and ‘clean’ where it normally is, and the water was as clear as it usually is.

Thanks,
Cameron

Email: cameron_russo@yahoo.com.au
Mobile: +64 21 301 402
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APPENDIX B3: Chapter 3 Supplementary Data 3 -
Relative abundances (%) of foraminifera taxa observed in W,

C1, and C2.
E
) i~
| = S 1S ; =2
: 3% § s . g 3

-~ & #:% § § & B S § & 3 2
E 85 3.5 5 5 % g € % 8 % . & 3
2 EE 4§ %z %3 f§ £ & § § 53 3+ &2 & =2 &
@ € 8§ &: 8 § § § & & g ¥ § & % 8 s
& g gg =i § g § 2 & 3§ 3 5 02 Z | = 5
o a wd A < < A 08 & o ST S = ~ & O
05 229 Al | - 1977 - - 523 5174 407 058 - 1512 349 - -
70-75 273 Al (098 2146 049 049 244 4390 683 049 049 1512 244 244 244
w 10115 165 A2 (323 6210 - L6l 484 403 - - 081 2016 081 161 081
130-135 875 A2 i 091 5168 488 137 473 122 1204 - - 1875 320 - 122
150-155 224 A2 | 119 4583 7.4 060 893 - 893 060 - 2202 119 060 298
152-157 701 A2 209 6825 057 - 133 038 190 - 038 1825 342 247 095
0°177200 A1 0067 467 133 133 133 5533 533 - 0.67 18.00 200 333 6.00
12213 231 Al - 1387 116 173 058 4277 405 058 - 2023 1040 116 347
2627 1900 Al ;038 263 075 038 038 7368 075 113 - 1278 263 113 338
3031 2722 Al (041 1224 082 041 082 6041 204 041 - 1714 082 204 245
3037 611 Al :043 991 086 - - 5690 259 216 043 1595 388 3.88 3.02
3839 354 A3 (051 1515 051 051 455 1919 152 051 202 4192 606 505 2.53
c1 4647 147 A4 091 2318 091 364 409 091 773 - 364 4545 136 409 409
70-71 363 A4 (145 2536 217 072 - 1594 1159 - - 2826 10.14 072 3.62
80-81 360 A4 (148 3407 074 185 18 - 1259 - - 4148 333 - 259
84-85 273 A4 146 4341 098 098 - - 1317 - - 3707 049 - 244
85-93 385 A4 (138 3391 069 069 277 - 1142 - - 3910 796 - 208
9495 480 A4 (056 4361 083 - 333 - 750 - - 3139 917 - 36l
96-97 383 A3 (105 1916 105 - 348 - 1080 - - 5575 627 - 244
126-127 235 A4 284 2841 114 227 170 - 1534 - - 3182 739 511 398
27377124 A3 215 430 323 0215 1828 323 323 108 5054 215 645 323
2223 155 A3 - 905 - 259 - 690 216 - 474 6853 086 216 3.02
2425 199 A4 (201 3557 134 - 369 638 101 101 - 3960 7.05 235 -
2627 341 A4 195 3125 195 039 078 625 234 117 547 4648 156 039 -
2835 333 A4 1320 3120 080 - 400 1080 200 040 - 3920 680 160 -
3538 186 A4 (179 2975 072 0.72 215 2079 143 072 - 3799 143 215 036
3842 139 A3 (192 2308 048 048 529 673 337 048 - 5721 096 - -
o 434 88 A4 1076 3864 152 076 530 - 303 - - 4318 379 303 -
6364 157 A3 ;339 1610 339 085 339 - 847 - - 5847 508 - 085
82-83 231 A3 ! 1.16 1503 462 058 578 - 347 116 - 6185 636 - -
126-127 336 A4 | - 3294 437 - 476 119 1270 079 - 2937 675 3.17 397
129-130 413 A4 i 065 3613 355 - 871 - 1194 - - 3226 323 097 258
131-137 600 A4 i - 3333 284 284 390 071 17.02 106 - 2057 1454 106 213
139-140 1103 A2 ; 024 5163 459 109 339 - 1850 024 - 1790 121 - 121
141-142 1655 A2 (016 6995 079 079 079 - 1161 - - 1161 429 - -
161-162 296 A4 | 135 2027 090 135 3.60 - 1441 - - 4144 1216 1.80 270

168


http://www.mcmaster.ca/
https://computational.mcmaster.ca/

Ph.D.— R. Steele; McMaster University— School of Earth, Environment, & Society

APPENDIX B4: Chapter 3 Supplementary Data 4 -
SEM images of Pararotalia calcariformata from C1 (12-13 cm)
a—j: spiral view. k—t: umbilical view. Scale bars represent 100

pam.
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APPENDIX C1: Chapter 4 Supplementary Data 1 -

Continued.
Core ALB3 ALB3 ALB3 ALB3 ALB3 ALB3
Sample depth (cm) 0-2 5-7 10-12 13-15 20-22 25-26
Specimens/cc 1519 255 115 114 866 719
SDI 1.3 0.7 1.9 1.8 1.8 1.5
Biofacies ALB-Al ALB-Al ALB-A2 ALB-A2 ALB-A2 ALB-A2
Foraminifera taxa
Ammonia beccarii "parkinsoniana” 0.2 21 25 4.7 33
Amphistegina spp. 0.2 0.4 243 30.3 28.3 534
Assilina ammonoides - - 3.5 1.8 2.2 0.3
Borelis schlumbergeri - - 3.9 1.1 2.7 1.0
Brebina sp. - 0.4 0.9 3.9 2.7 1.3
Cibicides pseudolobatulus 0.2 0.8 5.6 49 5.2 5.6
Discorinopsis aquayoi 0.6 - - - -
Elphidium craticulatum - - 2.1 14 33 3.0
Elphidium excavatum 8.0 - - - - 0.7
Elphidium limbatum - - 6.1 6.4 5.2 6.0
Elphidium translucens 19.8 0.2 1.3 04 - 1.7
Helenina andersoni - 1.9 0.4 04 - 0.3
Miliolinella semicostata - - - 1.8 4.4 1.0
Nonion subturgidum - - - - - -
Pararotalia spinigera - - 3.5 0.7 3.0 0.3
Quinqueloculina seminulum 24.6 7.7 1.7 2.1 0.5 0.3
Rosalina columbiensis - - - - - -
Trochammina inflata 29.7 83.1 4.8 2.1 - -
Trochammina macrescens - 1.4 - 0.4 - -
Eroded specs. - 39 334 29.9 23.1 19.8

Planktic taxa
Testate amoebae taxa

Arcella vulgaris
Centropyxis constricta
Centropyxis aculeata
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APPENDIX C3: Chapter 4 Supplementary Data 3 -
SEM images of selected microfossils within Khor Al Balid and
Khor Rori. Note: scales unavailable. Testate amoebae: a.
Centropyzis aculeata, b. Centropyzis constricta. Foraminifera:
c. Ammonia beccarii, d. Discorinopsis aquayoi, e. FElphidium
translucens — dorsal view, f. Elphidium translucens — ventral
view, g. FElphidium sp., h. Helenina andersoni, i. Nonionella
depressula, j. Quinqueloculina seminulum, k. Trochammina
inflata, 1. Trochammina macrescens.
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