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3COPK AND COMTWTS:

The crystal structures of (NH^)2?eBrg and C^TeBrg have been 

reinvestigated using X-ray diffraction fros powders and single crystals. 

Three diDonsional single crystal intensity data obtained photographically 

have been used to refine these structures, which are of the cubic K„PtCXr2 b 
type, by a full matrix least squares analysis. The Te-Br bond is found 
to be 2.70^ in both crystal a after correction for the theraal notion of 

the atoss.
A phase transition in (NH. )_TeBrc has been observed at about 

1B3°K. Pros an examination of Weissenberg photographs taken at 16j°K, 

the low temperature phase is found to be tetragonal, space group ''k/^nc 
(D^) with a « 7.50140.005$ and c ■ 10.?65*O.005ft. The transforaation 

in this case is probably sinilar to that reported in other isomorphous 

crystals, e.g., K^nBrg.
A review of other crystals with sinilar structure is included 

in this thesis and the theory of X-ray diffraction as applicable to the 

present problem is discussed briefly.
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CHAPTER I

INTRODUCTION

The? crystal structures of a large number of compounds of the 
general formula A^H^Xg (whore A1 = K,NH^,Rb or Ca; HIV a Pt,Sn,Se,Te,Re 

etc., and X * C^, Br or I) have been determined by several workers 

(e.g. Ewing nnd Pauling, 1928; Engel, 1935; Hoard and Dickinson, 1933; Sieg, 1932; 

Bagnall et al., 1955, Templeton and Dauben, 1951) using X-ray diffraction.

Kost of the early investigations involved the measurement of only the 

jjowder photographs of these compounds and do not give accurate positional 

and thermal parameters of the atoms. The great majority of these compounds 
crystallize in the cubic potassium hexachloroplatinate (i^PtCZg) structure 
(Ewing and Pauling, 1928), space group F'm3»(0^). In the K^PtC^ structure 

(Fig. 1), which is basically an anti-fluorite structure, the regular octa- 
p_hedral anions (PtC^ ) are arranged on a face centered cubic lattice while 

each cation (K+) occupies the tetrahedral hole formed by four neighbouring 

anions. The Pt-CZ uonda lie along the principal axes of the cubic unit cell. 
Kach K* ion in this structure is surrounded by twelve chlorine □ toms at the 

same distance from it.

However, while moot of these compounds have the K^PtC^ structure, 

a few of them have been reported to possess distorted forma of this structure. 
Such distortions have been found at room temperature in K^SnBr^ (Markstein 

and Nowotny, 1938) and K^oBr^ (Brown, 1964). The former crystal has a 

tetragonal structure while the latter is monoclinic.

1
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FiS. 1 The unit cell of Potassium hexachloroplatinate, K PtC4$
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Sinilar dintortions have also been noted in many cr pounds from nuclear 

quadrupole resonance (N^H) Measurements, and the existence of specific 

heat enomalies in others suggnsts that these structures are also distorted* 

Nakamura and his co-workers (i960, 1962 a, b; 196?, 1964) have used the 

quadrupole resonance of halogens to examine the hemlmlogenate anions of 
a variety of metals* including Pt(IV), Sn(IV), Te(IV), 8e(IV) and He(IV). 

In many cases they have found phases whore the resonance signals are split, 

indicating the presence of non—equivalent halogen atoms in these structures* 

Such structures must therefore have symmetries lower than cubic.
Further, from the measurement of the heat capncities of (NH. ) JJnCZ> 

y 2 b 
and (NHj^SnBrg at low temperatures, Morfee et al* (i960) have suggested 

that some distortions might occur in these compounds, both of which have 
the K^PtC^ structure at room temperature, but exhibit specific heat 
anomalies between 100°K and 3OO°K. The anomaly in (NU^)^SnCi^ is small 

and occurs between 235° and 245°K, and it is unlikely that a change in the 

crystal structure is involved* hut in (NHj^SnBrg, the specific heat anomaly 

is large and it is quite possible that « change in the structure may occur 
at low temperature. Busey et al. (1962) h:s observed the specific heet 
anomalies in K >eCZ, at 76°, 103° and 1U°K which, they sug/.ent, are due 

2 o
to some distortions in the crystal structure of the compound. Furthermore, 
recent neutron diffraction measureaents on K^^eC^^ by Smith and Bacon (196.3) 

confirm a change in the symmetry from the space group Fm3m at room temperature 
to a space group of lower symmetry (Pn? or Pn3m)» although still cubic, 
below 77°K. Similar specific heat anomalies have been reported recently by 
Busey and his co-workers (196?) in K PeBrz at 225° and 245°K. This compound, 

wliich poasanses the K^PtCl^ structure at room temperature (Templeton and 

tauben, 1951), has been found from NQR measurements to undergo three close

See also Ito et al. (1961,1963) for similar works on compounds of Pd(lV), 
Ir(IV) and Os(lV),
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transitions below 270°K (Ikeda et al., 196}; 1965).

An explanation for these diatortiona has been proposed by Brown (1964), 

who augments that if the c tion is very much umaller than the cavity into which 

it fits, the anions will reorient theRselves in a way bo as to reduce the 

effective cavity wise and thus lock the cation in place. A similar idea has 
also been suggested by Korfee et al. (i960) to explain the specific heat 

anomaly in (NH^) SnBrg at low temperature. Further, Brown (1964) has proposed 

a criterion to decide whether any given structure ia expected to be distorted 
from the K^FtC-Eg type. This criterion is based on the radius ratio, defined 

as the ratio of the cation radius to the radius of the cavity formed by the 

twelve halogen atoms which surround it. He has noted that:
(1) crystals with a radius ratio of less than about O.89 are 

distorted from the cubic structure at room temperature;
(2) crystals with a radius ratio between about O.89 and 0.98 are 

cubic at room temperature but distort at lower temperature; and
(3) crystals with a radius ratio greater than O.98 are not distorted 

from the cubic structure at any temperature.

The structures of some A^MXg crystals arranged in order of radius ratio are 

listed in Table I.
The work described in this thesis deals with the studies of the crystal 

structures of (NH. ) JTeBra and Co_TeBrr at room temperature and an examination 

of the first phase transition in (NH^)gTeBrg below room temperature. This 

work was undertaken to examine the influence of the cation on the bonding 
within the TeBr|" ion and to study the nature of distortion in (NH^TeBrg
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cryntnl below the transition temperature of 221°K reported by Nakamura and 

his co-workers (1962a)■ Although both (NH^)gTeBrg and GsgTeBr^ were known 

to j»sues« the cubic K^PtC^ structure at room temperature (Hanojlovic, 
1957; Swanson et al.( 1957* 196O| Bagnall et al., 1955)* it was necessary to 

obtain more accurate information about their room temperature structures for 

the present investigation. In the present study, the accurate cell constants 

of both crystals have been determined from their powder photographs and the 

single crystal intensity data have been used to determine accurate positional 

and thermal parameters of atoms in each crystal. The first transition temp

erature in (NH. )„TeBr< has been redetermined and the space group and lattice •» 2 o
parameters of the low temperature phase are reported.
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TABLE I

Structures of none A^H X^ typo crystala

Compound Radius8 
ratio

V.
Structure Method

Specific 
heat

X-ray NQR

(1) Crystal® which 

K2T.Br6

ere distorted from cubic at room temperature:
0.8? Monoclinic at 293°K 1 2

K„SnBr, 2 o

nb2T.i6

KzTeC^

ow.2 o

0.86

0.86

0.89

0.91

Tetragonal at 293% 3,1* 5
Cubic above UOO°K
Tetragonal at 293% 7
Cubic above 328°*
Monoclinic at 29?°K 8 2

Monoclinic at 300*% 9
Cubic above 333°*

6

(2) Crystal** which

Rb^nlg 
(NH^TaBrg

are cubic
0.88

0.90

at room temperature but distorted at low
Cubic at 293°* 10

Cubic above 168°K 11,12 2

teBiperature:

0.91 Cubic above 2^5°K 13 »1^ 15*16 17

K SnC/6 0.92

0.9?

Cubic above 262°K 8

Cubic above 2^0°K 18 19
6

(Nl^y.nBr- 

(NH^T.CZj.
0.95
0.96

Cubic at 295°K 3 5

Cubic above 77°^ 20 2
6

k2h«cz6
(5) Cryatalo which

K,PtCA-2 o
CV“:6

Ca TeBr^2 o

0.97

are cubic
O.98

1.00

1.07

Cubic above 111°K 1^,21,22 15*16

at all temperatures: 
cubic & 25

cubic 26 2

cubic 12»27 2

23

(continued)
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“ For definition of the radius ratio, see ref. 1.

'Cubic' in this column and at other places in the table means the K^PtCZg 

structure.

0 The numbers in different columns indicate the respective references as 

mentioned below:
1. Brown (1964)

2. Nakamura et al. (1962a)

J. Markstein and Nowotny (1938)

4. Qalloni et al. (1962)

5. Nakamura et al. (1962b)

6. Horfee et al. (i960)

7. Nakamura snd Kubo (1964)

8. 0. Engel (1935)

9. Brown and Lia (1966)

10. Worker (1939)

11. Manojlovic (1957)

12. Present work
13. Templeton and Deuben (1951)

14. Schwochau (1964)

15. Ikeda et al. (1963)

16. Ikeda et al. (1965)

17. Busey et al. (1965)

18. Hoard and Dickinson (1933)

19. Nakamura et al. (1963)

20. Hasell (1966)

21. Aminoff (1936)
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22, Snith and Bacon (196?)• (neutron diffraction Heaeurenent)

23. Busey et al. (1962)

24. Swing and Pauling (1928)

25$. Nakamura at al. (i960)

26. Mnnojlovic (1956)

27. Bagnall et al. (1955)



CHAPTER 2

THEORY OF STRUCTURE DETERMINATION

In thin chapter a brief discusaion of the theory of structure deter

mination is given to provide a background to the present investigation*

2*1 Theory of X-ray Diffraction by a Crystal Lattice:

A crystal consists of a three dimensional array of identical groups 

of a tons. Alternatively, a crystal can be considered as nude up of identical

S]Mce filling blocks, called the unit cells, which nre repented through the 

whole body of the crystal and related to each other by translational oyniaetry. 

This network of unit cells constitute the direct or crystal lattice. Such an 

array of cells containing atons, when exposed to n benm of X-rays, gives rise 

to a diffraction pattern in which the positions of the peaks depend on dim

ensions of the unit cell and the intensities of the peaks depend on the dis
tribution of electrons (end hence atone) within the cell.

Consider a parallel

Let the rays be incident on

beam of X-rays propagating in the direction sq.

two scnttereru situated nt lattice points and

p2 (see Fig. 2a), and separated by a distance r. Consider that the rays are

diffracted along the direction s. Also lotI| = 1/X, where X is the

wavelength of the radiation. Now to find the resultant diffraction effect we

consider the path difference between these rays. From Fig. 2a the path dif

ference is given by
P,N - MP_ » X(r. s - r . s ) 1 — — — Q

« Xr . (s - b ) — -* p
a Xr •

where S = s-s . (See FiC. 2b)

(2.1)

(2.2)

9
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Fig. 2a Scattering of X-rays by scatterers situated at two lattice points

Fig. 2b Relationship between the vectors s, s^ and S.
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Hence for a diffraction maximum,

X r ■ S » n X
„ (2.3)or, r . b « n

where n is an integer. Let the angle between s end s be 2© . Then from o ~
Fig, 3b we find that

I s I = I s-s | x 2tjin© । — i | — o I ———— (2.4)

Suppose that the primitive translations of the lattice are denoted 

by a, b and c. Since we have considered the scatterers located at lattice 

pointe F^ and Fp vector r cnn be specified as

£ = + n2^ *

where Bp «2 and are integers. Thue fro® the relation (2.3),

r ■ S = n^a • S + • S + n^c • S = n (2.6)

Since Bp b^ and nu are independent, each terra in (2.6) must be equal to an 

integer. That is,

j * a = h

S • b = k (2.7)

s . c a

where htk and ^are integers. These e< untiona are known as the Laue eruptions 

and they oust be simultaneously satisfied by a diffracted bean in order that 

it may have Baximum intensity.

Again, from Fig. 2b it is apparent that the vector 5 lies along the 

direction perpendicular to the bisector of the angle between the incident and 

the diffracted rays. Hence S maybe identified as normal to the plane AD 

which makes equal angles with the incident end diffracted beam and it can be
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shown (Lipson and Cochran, 1953. p.5) that for the diffraction maximum to 

occur, S Is noraal to a lattice plane with Miller indices h,k andt.

Now, let the vector 8 be expressed by

S - n^a* ♦ n^* * n^c’ (2.8)

where , and c’ denote three non-coplanar vectors in the reciprocal 

siiace, and n^,n^ and n_ are coordinates. For a diffraction maximum, the vector 
8 oust satisfy the Laue conditions (2.?). If a’,b* and c* are chosen so that 

a", « = b". b » c*. c » 1 
and (2.8a)

a" . b - , £ = a*,c»c*o£sb’»£«c*.b«0
then, n^-h. n2»k and n^-£ represents the Laue conditions. Thus the values of 

3 corresponding to diffraction maxima are given by
8 = hy + kb’ (2.9)

That is the diffraction maxima are observed only for those values of 8 which 

lie on a lattice formed by the unit vectors a",b’ and c’ — the reciprocal 

lattice.
The Laue equations can also be expressed in the fornx

(fl/h) . £ - 1
(yk) .8-1 (2.10)
(s/t) • ^ = 1

The projection of either of the vectors yh, yk and y on S is equal to the 

perpendicular distance of the plane hk from the origin - which, in general, 
in the lattice spacing, d, of the set of planes (hkD.

Thus, s
d ® (jA^TFT

•nd using the firat Laue condition (2.10)
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d *15] (2.11)

Since |S| ■ Mqn, (a.4)), we get from (2.11)

2dhkl •ln® * X (2.12)

Tide is the well-known Bragg equation. The quantity n(called the order of 
reflection) which usually appears in Bragg equation la here included in 

spacing dj{ (H ■ h,k,t ) since the interplansr spacing corresponding to indices 
nH la regarded no ^th. of the spacing corresjxjnding to indices H.

Thus the conditions for the diffraction of X-rays from a eet of crystal 

planes are the followingi

(a) The angle of incidence in equal to the angle of diffraction
(Q) both being measured by the angles that the incident 
and diffracted rays mke with the (hk£) crystal plane.

(b) The incident ray, the diffracted ray and the normal to the crystal 
plane are coplanar.

(e) The Bragg equation (2.12) must be satisfied.

2.2 Keasurenent of Lattice Constanta i

In principle, both powder and single crystal diffraction can be used 

to determine the lattice parameters of any crystal. or cubic, tetragonal 

and hexagonal crystals, accurate cell paraaetera can be obtained relatively 

easily from their powder diagram. In fact, the powder diagrams are sonetimes 

sufficient for complete analysis of simple structures.
In the powder method developed by ^ebye and Scherrer, a monochromatic 

beam of X-rays is allowed to fall on the specimen in powdered form. Since 

the crystallites ere oriented randomly in the sample, it io quite probable 

that some of them are in a position to reflect the incident beam in such a 

way as to satisfy the Bragg condition (eqn. 2.12)t

2d . u sinO ■ Ank i
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Fig. J A schematic view of the powder method
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The diffracted rays lie on the surface of a cone centered on th© direction 

of the incident beam with the neml-vertical angle 2©, where 0 is the 

corresponding Bragg angle (Fig. 3).

In practice, a flat film is rarely used to obtain the powder diagrams. 

The normal Debye->cherrer camera consists of a cylindrical metal enclosure 

with holes provided for entrance and exit of the X-ray beam. A capillary 

tube containing the sample in powder form is fixed at the centre of the camera, 

and it is surrounded by a narrow strip of photographic film. While only a 

small portion of each cone of diffracted rays is recorded on the film, in 

principle, all possible reflections corresponding to high as well as low Bragg 

angles can be recorded if suitable exposure is allowed. To improve the quality 

of the powder diagram the sample is rotated bo as to ensure uni from dis

tribution of intenoity over the powder lines and to record all possible re

flections from the crystal planes.

Various systematic errors inherent in the camera and in the develop
ment of the film (e.g., those due to tccentricity of the specimen, lack of 
knowledge of the effective camera radius, film shrinkage in development) can 

bo reduced appreciably if high Bragg angle reflections (also called back 

reflections) are used in the calculation of the lattice parameters (Buerger, 

1^2; Ch. 20).

2.3 Measurement of Intensities:
The intensities of reflections are used to detertiine the positions 

of atoms within the unit cell. The structure factor, F(H), of a reflection 

H(=h,k,O in given by the Fourier transform of the electron density, ^(xya) 

within the coll (Lipson and Cochran, 1953» p.ll) as:



1
F(H) » V j j J p(xya) oxp 2xi(hx + ky ♦ a) dxdydz 

x y z
aO

16

(2.1J)

where J denotes the volume of the unit cell, and x,y and z are the fractional 

coordinnteo of the volume element 0/dxdyda) considered.
FQP (see section 2.4 for further details) in Eq.(2.13) is a complex 

quantity, representing not only the amplitude but aloo tho phase of the dif

fracted beam, and it is related to the observed intensity, I, of the dif

fracted beam by the expressions

I(n) rig) . F*(Ip . F(^) 2 (2.14)

Thus froa the aensureroont of intensities, the moduli of the 

structure factors can be evaluated and these cnn then be used in the doter- 
■ination of the crystal structure (Buerger, 196O| Ch.22), provided a trial 

eodel of the structure is known.

The diffmction pattens Is frequently recorded on fi 1ms on which 

the diffmction maxima appear as spots of varying intensity. However, 

the Masureaient of these intensities is encompHesed with several difficulties, 

for example, how should corrections be aede for variation in shape and 

size of the spots, non-uniform distribution of intensity over the spots, 

and the presence of different background around the spots located in dif

ferent areas on the film. In s real crystal, due to imperfection, adjacent 

Volume unite are not exactly parallel and so the crystal raw it be turned 

slightly to bring each such volume unit into the perfect Bragg condition 

for a reflection to occur. This causes tho reflection spots to bo drawn 

out over a snail range. The degree of imperfection may vary with direction 

in the crystal and differs for different reflections.
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Thus ths peak intensity of a reflection does not necessarily glvs 

a reliable measure of the structure amplitude, | F(H)j. A better measure 

of the reflecting power can be obtained by auming the energy reflected 

by the set of crystal planes as the crystal is rotated through the angles 

close to the ideal Bragg angle, that io, by integrating the intensities as 

the crystal is uniformly rotated through the region of a Bragg reflection* 

An expression for the integrated intensity has been deduced by 
James (1962; p.^1). For reflection from a crystal element of volume 

in which the absorption of X-rays maybe neglected, the integrated intensity 

is given by: 

.. 0 ♦ 6• 1° R(o)dc - q Av (2.15)
° 

where is the energy incident per unit nrea per unit time on the crystal 
and £ is th* energy reflected (or diffracted) by the crystal when it rotates 

with uniform angular velocity about an axis parallel to the sot of crystal 

plnneo which reflect the incident beam at the Bragg angle ©c . Here £ denotes 

a b stall deviation from the ideal Bragg position which includes the contri
bution of all the reflected radiation. H(G) is the reflecting power (at an 

angle 0) of the crystal element per unit incident intensity, Iq. The quantity 

Q can be expressed os
Q . (—4-) 2 A’ k(H)| 

' me '
where N is the number of unit cells per unit volume of the crystal, and F(g) 

is the structure factor (see eqn. (2.1J)).

The factor in Eqn. (2.16) is called the polarisation

factor (p) and is the amount by which the intensity of the diffracted bean
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la diminished due to partial polarization on diffraction. The factor, 

nPQ cnown R® Lor***tz factor (L), la proportional to the tine that the 

cxystal takes to pane through a reflecting position. In general, thia factor 

varies not only with the Bragg angle but also with the particular arronge- 

ment by which the diffraction pattern in recorded. Usually the correction

for the Lorentz and polarization effects le applied in the combined fors es
(Lp)"1 The observed structure amplitude F(ji) of a reflection can be
evaluated from its measured intercity (I) using the relationi

F(H) (2.17)

where K is a proportionality constant dependent on the wavelength and crystal-

size.

The visual estimation of intensities on photographic film is 

carried out by comparing the reflection spot with one of a series of spots 

prepared by photographing one particular reflection at different known exposure 

times. The peak intensity of a reflection Is measured by thia method and in 

the visual estimation of intensities it la commonly assumed that the peak 

intensity is proportional to the integrated intensity. In fact, this is 

frequently not so due to non-uniformity in size of the spots.
To integrate the intensities, the crons sections of the reflections 

should be taken into account, since the integration cells for summing the 

intensity from all parts of the spot. This io achieved by recording the re

flection on a film which is moved over a series of regular small intervals 

so thzit the density of blackening st the centre of the spot on the film attains 

a constant value which measures the integrated intensity of the reflection 

(Buerger, I960; p.105).
A mechanical device for recording the integrated intensitieo of the 
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reflections on the Weissenberg film has been described by Wiebenga and 
Suits (1950), end on the Buerger precession camera by Nordman et al. (1955). 

A microdensitoneter can be used to measure the integrated intensities of the 

reflections. The densitometer traces of the pots will show plateau like 
profiles whose heights (corrected for the background) are proportional to 

the integrated intensities.

2.U Structure Factor Calculation!

The structure factor Fiji) of reflection n(Lipaon end Cochran, 1955|

p.10) la given by eqn. (2«13) and can also be expressed in the form!

F(H) » (2.18)

where the summation extends over all atoms in the unit coll. x.,y. nnd * J J J 
thdenote the fractional coordinates of tho j atom in the unit cell. The 

atomic scattering factor f is the scattering power of tho atom and isJ
oqunl to tho Fourier transform of tho electron density of the atoa. Since

tho charge distribution in an atom in anaumod to have spherical symmetry.

the atomic scattering factor depends only on tho angle of diffraction

and tho wavelength A of the incident radiation. Tho scattering power of an 

atom is thus a function of (—r—) and it decreases as Q increason duo to

tho interference of tho scattered waves from different parts of tho atom.

For G ■ o, f is J
proportional tn tho number of electrons Z (atomic number)

of the atom. In general, the structure factor F(H) is a complex quantity

and can be expressed as
F(H) « A(H) ♦ i B(H) 

where

(2.19)
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ky ♦ 1 x) ♦ i sin 2«(hx ♦ ky ♦i z) ♦

♦ J a) - i sin 2x(hx ♦ ky ♦2z)j

♦ ky ♦ iz)

f. cos 2^Uix. + ky. xaJ (2.21)

(2.20) 
n

B(H) a V f. Bin 2*(hx. * ky ♦ lz,) 
1 J J J .1

In a oentro symmetric structure, for each atom at the point 
(x,y,z) in the unit cell there is an equivalent atom at (x,y,i). The 

contribution of thio pair (and nil pairs in the unit cell) to the structure 

factor ia given by 

f coo 2*(hx ♦ 

cos 2*(hx ♦ ky 

■ 2f coa 2n(hx 

Hence, n/2
F(H) « 2 7^ 

>1 

where the summation now is over half the atone in the unit cell. Thus 

for a centro ay roetrie structure

F(lp . A(JI) and B(£) o 0 (2.22)

2.UA Tenpernture Factor!

In a crystal at any temperature the atoms are undergoing thermal 

vibrations. It io assumed that the atoma enn be treated na uncoupled 

harmonic oscillators and their vibrations, in general, are anisotropic and 
th of different amplitudes. The effective scattering factor of the j atom 

thus is given by

tj . «P ♦av* (2,23>
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where f^ in the scattering factor of the jth atom being at rest, and the

P’e are the coefficients of the anisotropic tompernture factor* 

t/hen the thermal motion of the j atom is isotropic in nature, 

its effective scattering factor is givcm by

(2.2U)
where SasinQ/X and B is a constant.

2.5 Refinement:

The magnitudes of the structure amplitudes, |F(H)| , are derived

from observations of intensities. But the Fourier transform of these 
amplitudes (Lipson and Cochran, 1955* Ch. 7) which gives a direct image of 

the electron density, can be carried out only if the relative phases of the 
structure factors, F(H), are also known. Usually the phases are assumed 

to be the same as those calculated from a trial structur*.

In the present investigation a trial structure was available from 
the previous works (see text, Ch. 1), but could have been derived from the 

solution of a Patterson function (Lipson and Cochran, 1953} Ch. 6). With 

modem computing facilities the crystal structure can be refined by the 
method of Least Squares (see section 2.5A). By this method it is possible 

to refine simultaneously all the parameters of atoms in the asymmetric unit 

using three dimensional intensity data.

2.5 A The Method of Least Squares:
The method of least squares can be used to refine crystal structures 

by minimising a suitable function of the measured structure amplitudes (F°) 

and those (F^) calculated from the trial structure with respect to the 

structure parameters (P^). Since it is assumed that the errors in F^’s 

follow the normal or Gaussian distribution, the best atomic parameters are 

those which result in minimisation of the sum of weighted squares of the



residual, R.

- )2 <2-25)

where w „ is the weight of the Hth reflection nnd ia proportional to the 

inverse of the square of the standard error of F® . The parameters (P^) 

include positional coordinates, isotropic or anisotropic temperature factors 

of the atoms and the scale constants to be applied to the observed structure 

factors.

The quantities to be determined are the corrections p^ to the 

trial para net era such that the new set F parameters P^(»p^+Ap^)

minimizes R (see equation (2.25))* We can express by the Taylor

Sozd.ee expansion an

^pp . * 0<4Pi>2
(2.26)

where the necond and higher order terse in are neglected. Lot us 

define

W -(1^1 - I'EM ’
Now, the equation (2.25) can be expressed in the formi

8 - £ WH

To mini«ise R we set the derivatives of R with respect to each pt equal 

to zero. Thus

(2.29)(j B 1, 2, 3, ... n)

where it is aosumed that ^n^al*n^ent*
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Iqn. (2.29) gives n

parameters (p. ) con
normal equations from which corrections ( /\p ) to n 

be determined. Theoe normal equations (2.29) can be
expressed in mntrix form as

(2.J0)
where th® elements of matrix ] and th® components of vector B ar® r®-

ij
—A 
^P<H

X
H Tr

and (2.31)
b a

H

The solution of the matrix equation (2.30) is obtained by premultiplying
both sides with the inverae matrix A-^] such that

[a*1 J [a J Ajo = Ajj » [a"“ ] B (2.32)

Th® diagonal

squares, but

terms of the matrix [A ] , a.., will be large being cum of the 
■

the cross terns Involving the sum of products \ which

maybe or -ve will be small unless the parameters p. and p. are strongly
M

dependent
The standard errors in the variable parameters, Pj are computed

using the relation (Collett, 19$5l p.H>)

2

where n and n
I (m-n)

are the number of observations and the number

(2.33)

of variables

respectively, and the (a-1) 'a are the diagonal elenenta of the inverae 

matrix [A*1]



CHAPTER J

PREPARATION OF COMPOUNDS AND THEIR LATTICE CONSTANTS

3-1 Preparation of Compounds:

Ammonium hexabroraotellurate, (NH^TeBrg and Cesium hexabromote
llurate, Cs^eBrg were prepared using a method similar to that described 

for the preparation of ^TeBr^ and (NH^TeClg in Inorganic Syntheses 
(1946). Both preparations are based on the following chemical reactions:

ToO, ♦ 6HBr - H TeBr, ♦ 2H 0 « 2 o 2
H-TeBr, + 2MBr = MTeBrr ♦ 2HBr 2 o 2 o

where M « NH^,Cs .
(a) Preparation of (NH^)gTeBr^

5 gms of tellurium dioxide (TeO_) was dissolved in 50ml of 40?> 

hydrobromic acid (HBr). A saturated solution of two molal equivalent of 

ammonium bromide (NH^Br) was then added to it. The resulting solution was 

evaporated on a steam bath and stirred until an orange precipitate was 

obtained. The precipitate was carefully filtered and then recrystallised 
from boiling water containing about 5% HBr acid. The crystals of (NH^^TeBr^ 

obtained on cooling were later dried in a vacuum deneicator over silica gel 

and finally over concentrated sulfuric acid.

A similar procedure was followed for the preparation of Cs^TaBr^. 
In this case a saturated solution of cesium bromide (CsT^r) was used.

Bright red octahedral crystals of (MH^) TeBrg and C82TeBr6 thus 

obtained are quite stable in air at room temperature.

24
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3.2 Determination of Accurate Cell Constanta:

The powder photographs of these compounds were taken with Ni- 

filtered Cu radiation using a Philips Debye-Scherrer powder camera (diameter 
114.99mm) designed to the Straumanis method of film mounting (Buerger, 

19^2; p.395). The specimen in finely powder form was packed in a thin 

walled silica capillary tube, 0.3hhs in diameter, and carefully mounted 

and centered on the camera.

In the Straumanis method a single strip of film is wrapped round 

the circumference of the camera and as can be seen in Fig. 4, holes in the 

film provide mesne by which the X-ray beam enters and leaves the camera. 
The positions on the film corresponding to G=0° and Gs90° can be obtained 

from the mean position of the centers of pairs of powder lines around the 

exit and entrance holes respectively. The camera is ao designed that a 
spacing of 2mm on the film corresponds to 1° Bragg angle.

Systematic errors in powder diagrams are caused by eccentricity 

of the specimen, lack of knowledge of the effective camera radius, shrinkage 

of the film in the process of development and absorption of the specimen. 

Buerger (19^2? p. 399) discusses in detail these sources of errors and their 

effects on the positions of powder lines on the film. The errors vanish 
(or at least reduce appreciably) near to a Bragg angle G-90 , l.e., 20=180 

(the back-reflection region).
Differentiating the Bragg relation, dsA/CSsinO) we obtain (using A 

to denote the derivative),

Ad . -|S2S|. Ae

»«■ ah <5,X)
— « - cot G A0 d
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Fig. 4 The Straumanis method of film mounting
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Thus n small relative change in interplaner spacing produces a large 

variation in G when cotQ is omall^.e., when Q approaches 90°, and the 

limit of resolution in this case la theoretically infinite.

Powder lines at high Bragg angles were utilised in the present

work to determine the accurate lattice constants of (h’E^)_TeErg and
Ca^TeBrg. Powder photographs of each compound were taken with exposures 
of approximately kO hours to obtain sufficient lines on the film in the 

back-reflection region. Usually these lines are very weak. About ten 

lines close to and on either side of the exit hole were measured. From 

the differences in readings of each pair the corresponding Bragg angle G 
was calculated. This is illustrated in Fig. 4 where A and B denote the 

positions of intersections of a diffracted ray cone with the film. It is 
clear from Fig. 4 that

B - A = 4c (B>A)

Since 4q ♦ 4a . J6o° , G = 90° - a

The resultant values of 0 and hence sinQ for the reflections can 

be used to ci*.lcnlAt« the lattice parameters of a compound. For a cubic 

crystal, the lattice constant aQ can be determined easily from knowledge 

of the d-spacing and the Miller indices of each reflection as discussed 

below.
The d-spaclng for any set of planes H(=hk t) can be calculated 

(Section 2.1) using the relation

d* st ha* + kb* + £c* (3.2)
—Il — “

w ’ iir ’v<«v
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a l/(h a* *+k^b ‘C' +2hka*b’co8 %2k£b*c*cosu*+2hln*c*coaw*)*

(5.3) 
where a\P* and y ’ are angles between b’ and c* axen, c4 and a* axes, and 

a* and b* axes respectively.

For cubic crystals, a*wb’«rc" and Y* *90° and hence the

equation (3.3) reduces to

dH “ 2 2 4 f
a (h *k +i )

Since a . a" » 1 (see Section 2.1), lai » — (for the cubic crystal). 
l« I

Hence,
dH " —?—2—"“V

‘ (h+k+^2) N

where N » (h‘ *k2*Z2) = an integer.

The observed values of sin© for the powder lines can be uaed to 

calculate the d-spacings using the Brngg relations 2dj^sin&xA. Combining 
the equation (3.5) with the Bragg relation we obtain

flin2©. « AClAk2^2) = AN (3.6)
B 

p p 2where A a The common factor A can be evaluated from the oin ©j,
2 values for the first two powder lines and on dividing other sin 0^, values 

by A, the corresponding vnlueo of N are obtained.
Thun the cell constant a can be calculated using the relation: o
a. « dg J* = Ji

Further, it is seen from (3-7) that

da__o
% ta — COt ©dG (5.8)

Hence, as Q—* 90°, cot ©-+0, and the error in © produces vanishingly small

error in a . o
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Again, since the and components of a reflection are expected 

to be resolved at high Bragg angles, one should use the corresponding wave

lengths for these coraponentn separately in calculating the lattice parameter 

of the sample. But in the powder diagrams of (NH. )_TeBr- and C« TeBr taken ~ 4 2 o 2 b ----
with exposure times of 45 hours nnd 50 hours respectively, the high angle 

reflections were too weak to identify the u. and a, doublets diatinctly and 
so the weighted mean wavelength of CuKu radiation (Awl.541?8R) was used.

Tables II and III list the d-spacings of the powder lines of (NH^gTeBr^ 

and CSgTeBrg respectively. The accurate cell constants of (NH^TeBr^ 
(Table IV A) and CSgTeBrg (Table IV B) determined by the method discussed 

above are in good agreement with the values of Swanson et al. (1957. I960) 

(see Table V). The density D of each comnound was measured by the pycnometer m
method (International Tables III, 1962; p.18) using carbon tetrachloride, 
CC|^, at 20°C. From the knowledge of the value of 3 (number of molecules 

per unit cell) was determined. The calculated density, 0* was estimated 
for each compound using the relation (Buerger, I960; p.243).

—24„ / z 2 x Formula Weight (r.buu.) x 1.660 x 10 _ /, Q%D (gm/cm) » 1 , . . -
Volume of unit cell (A ) x 10

The crystal data of (NB^)^TeBrz nnd Ca^TeRr^ are listed in Table V.
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The observed and calculated d-snncin^s for (NH. )
° . V2 6

The column headin-s refer to h,k,2, d(observed) 
relative intensity (visually estimated)

d(calculated) and

H K L DIS) 0(C) I NT

1 1 1 6.167 6. 194 702 0 0 5.354 5.364 95
3 1 1 3.2 39 3.2 35 5 0
2 2 2 3.09 6 3.C97 90

0 0 2.68 6 2.6H2 100
3 3 1 2.455 2.461 40
4 2 0 2.394 2.399 80
5 1 11 2.067 2.065 40
3 3 3J
4 4 0 1.899 1.896 95
5 3 1 1.809 1.813 4 0
6 0 01 1.785 1.788 55
4 4 2!
5 3 3 1.633 1.636 20
6 2 2 1.616 1.617 40
4 4 4 1.551 1.548 45
7 1 11 L.500 1.5C2 20
5 5 ir
6 4 0 1.488 1.488 20
7 3 11 1 . 396 1.397 20
5 5 3J
8 0 0 1.343 1.341 20
8 2 01 1.300 1.301 25
6 4 4J
6 6 07 1.266 1.264 5
8 2 2S
7 5 h 1.237 1.239 10
5 5 57
6 6 2 1.229 1.231 10
8 4 0 1 . 199 1.199 30
9 1 17 1.177 1.178 5
7 5 37
8 4 a 1.170 1.171 20
9 3 1 1.122 1.125 3
8 4 4 1.094 1.095 20
7 7 11 1.078 1.0 78 5
9 3
7 5 5'

10
8

2
6

2? 1.052 1.052 2

9 5 11 1.039 1.037 5
7 7 31

10 4 01 0.996 0.996 10
8 6 47

1 1 1 It 0.968 0.967 2
7 7 5J
8 8 0 0.949 0.948 5

1 1 3 11 0.937 0.937 5
9 7 if
9 5

1 I 3 31 0.910 0.910 2
9 7 3 r

1 2 0 01 0.894 0.894 5
8 8 4 7

1 1 5 3? 0.861 0.862 5
9 7 53

12 4 0 0.848 0.848 5
10 8 01

2 r
0.838 0.838 5

12 4
8 8 6>
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TABLE III

The observed and calculated d-spacings for Cs ^eB^

The column headings refer to h,k,2, d(observed), d(cnlculated) and 
relative intensity (visually estimated)

H K L 0(0) 0(C) IM

1 1 1 6.177 6. 304 30
2 2 C 3.8 39 3.860 30
3 1 1 3.269 5.2 92 10
2 2 2 3.132 3. 152 luo
4 0 0 2.698 2. 729 85
3 3 1 2.50 1 2.505 10
4 2 2 2.227 2.2 29 <0
5 1 n 2.098 2.101 15
3 3
4 4 0 1.924 1.930 75
5 3 1 1.843 1.845 15
6 2 0 1 . 7 2 i 1 . 726 15
6 2 2 1.643 1.646 50
4 4 4 1.574 1.576 50
7 1 11 1.526 1.529 10
5 5 it
6 4 2 1.457 1.459 20
7 3 11 1.4 19 1.421 10
5 5 31
8 0 0 1.365 1.365 2 5
8 2 2l 1.287 1.287 10
6 6 ot
6 6 2 1.252 1.252 30
8 4 0 1.221 1.221 40
9 1 11 1.199 1. 198 4
7 5 it
6 6 4 1.166 1.164 3
9 3 1 1.144 1 . 145 3
8 4 4 1.115 1.114 40

10 2 01 1.070 1.071 10
8 6 2J

10 2 1.050 1.051 15
6 6 6t

10 4 2 0.99 7 0.997 1
8 8 C 0.965 C .965 5

10 6 01 0.935 0.936 1
8 6 6>

10 6 2 0-923 0.923 10
12 0 Cl 0.910 0.9 10 10

8 8 43
12 4 0 0.86 3 0.863 5
10 8 2 0.842 0.842 1
10 6 6 0.833 0.832 2
12 4 4 0.823 0.823 2
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TABLE IVA

Accurate lattice constant of (NII, )_TeBrz-
4 2 O

H K L SING(OBS) LAT.CONST.
Go (A)

MEAN 
go (A)

10 4 0.77384 10.729
8 6 4 J

11 1 0.79600 10.740
7 7 5]’

8 8 0 0.81259 10.734

11 3 1'1 0.82363 10.713
9 7 1^
9 5 5J

1 1 3 31 0.84740 10.726 10.728±0.003
9 7 3 7

12 0 01 0.86251 10.726
8 8 4 7

11 5 31 0.89478 10.726
9 7 5j

12 4 0 0.90887 10.729

10 8 0 ) 0.91982 10.732
12 4 2 f

8 8 6-’



TABLE IVB

Accurate lattice constant of Cs TeBr
6

H K L SING(0BS) LAT.CONST.
OoCfy

MEAN 
__ CZoCa)

10
6

2
6

2]
6J

0.7341
1

10.913

10 4 2 0.7731 10.923

8 8 0 0.7986 10.921

10
8

6
6 O

' o 1 0.8241 10.909

10 6 2 0.8354 10.919 10.919±0.002

12
8

0
8

01
4J

k 0.8472 10.919

12 4 0 0.8932 10.917

10 8 2 0.9152 10.918

10 6 6 0.9258 10.921

12 4 4 0.9366 10.919



TABLE, V

Crystal data for (NH>) TeBr^ and Cs.TeBr^
*+ k o 2 6

(NH,) TeBr^
*♦2 0 Cs TeBrr d 0

System cubic cubic

F.W. 643.2 872.9

a 0
0 (1)

10.728 ± 0.003A 10.918 ± 0.002A
c (2)

10.7314 10.919A '5^

°(4)10.73 ± 0.02A 1 10.910 ± 0.005A (5)

V
ox

1234.7A^ 1301.5A9

D (pycnometric)T.
3.42 ± 0.02 g cm”5 4.43 ± 0.02 g cm”5

z 4 4

DX
3.46 g cm 5 4.45 g cm”5

(1) present work
(2) Swanson et al. (1957)
(^) Swanson et al. (i960)
(4) Manojlovic' (1957)
(5) Bagnall et al. (1955)

Absorption coefficient 
for MoK^ 2J0 cm
for CuKu. 453 cm.. -
Space group Fm3m(0^)

274 cm A
860 cm^ 
Fm3m(CT)

Systematic absences hk^: h+k, k+Z. h+^ = 2n+l 
(both crystals)



CHAPTER 4

MEASUREMENT OF INTENSITIES
4.1 Glee and Shape of Crystal:

For single crystal X-ray diffraction experiments the Major 

consideration which Units the size of the specimen is the absorption 

of X-rays by the sample. If the absorption coefficient is large, the 

intensities of reflections are weak unless a very small crystal is used. 

The intensity of the diffracted beam, I, is given by

I « Iq exp(-^t) (4.1)

where Iq is the intensity of the incident beam, t is the effective path 

length of the rays in the crystal and ^u is the linear absorption coefficient. 
The values of p for (HH^)-FeBr and Cs^TeBr^ crystals are calculated 

(Buerger, 1942। p.181) as listed below:

Cu u MoK^
(NHu)2TeBr6 455 cm*1 230 cm"1

Cs^TeBr, 860 cm”1 274 cm"1
2 O

using the mass absorption coefficient data from International Tables 

(Vol. Ill, 1?62| Table 5.2.2A).

Because of low absorption of MoKu radiation in these crystals 

as compared to CuKu radiation, the former radiation is preferred in 

single crystal diffraction work* However, if we consider the relative 

intensities of the diffracted KoKa and CuKu radiations from a crystal 

of effective thickness t, we find that

35
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(4.2)

where the subacripts Ho nnd Cu refer to MoKa and CuKa mdiationo res- 

jecti ”*ly.

Since 0.46 , the expression (4.2) becomes

Thus for T.Brc and C T.Br cry.tnls with t about 0.01 cm <md 
0.004 on respectively, the ratio of I„_ In la equal to unity. ^lle

RO / UU

Kith thin crystals Cu-rndistion Bayb. used to g.t a grootor intensity 

in th. diffroctsd b.M,for thicker crystals Mo-rndiation in a better 

choice. Also because of its omllor wavelength. MoKu radiation allows 

a greater number of reflections to be recorded. This la particularly 

injjortant when the data are being photographed on a preceaaion canern 
which only records the diffraction pattern out to a Bragg angle of 30°.

In precession geometry, for a plate shaped crystal of uniform 

thickness, t, oriented with the X-ray beam incident on the largest face 

of the crystal, the absorption factor, A, for the aero layer reflections 

Im given by (Buerger, 1964; p.P24):

A » y- » exp(-AtaecA) (4.4;
o 

where is the precession angle.
For small plate shaped crystal bathed in the incident beam the 

path lengths of the rays are nil eyual except for the ruye incident on 
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the uaall region close to the edges of the crystal for which the path 

lengths are shorter. Thun, if we neglect this edge effect (which other- 

vd.ee is difficult to estimate unless the profiles of the crystal edges 
are known), for all practical purposes, the absorption can be considered 

uniform for all reflections on the same layer and varies only from layer 

to layer. For thicker plate shaped crystal the edge effect is significant, 

since the path lengths of the r&ya are uniform only over a small region 

near the centre of the crystal. For a cube shaped crystal, whose shape 

can be approximated by a sphere, the edge effect is of great importance 

in estimating the absorption correction which can no longer be considered 

uniform over the crystal.

For a spherical crystal the absorption correction varies with the 
Bragg angle (International Tables, Vol. XI, 1962; p.3O2). For crystals 

with ^<2t R being the radius of the sphere, the ratio of the absorption 
factor, A, for G = 0° to t)iat for G = 30° io 1 so than 1.5.

The crystals of (NE^XjTeBrg and Ca^eBrg of approximate dimensions: 

0.039 x 0.015 x 0.008 cm and 0.023 x 0.015 x 0.006 cm respectively were 

selected for single crystal diffraction. These crystals cannot be treated 

an infinite thin plates wh^re the absorption is constant for all reflections. 

Iff the crystal shape is approximated by a sphere the abeorption correction 
o for Q = 0° differs by n factor of about 1.6 from the correction for 0=30 

for both crystals. Since the crystals were neither plate-shaped nor 

spherical, but had a shape somewhere between these two extremes, the max
imum variation of A for the reflections recorded will be less than 1.6.
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Th. absolute value of th. absorption correction la not important, 

since only the relative intensities of the reflections are measured.

The neglect of the absorption correction to the reflections, 

however, affects the atomic parameters, especially the thermal parameters 

of atoms, since the temperature factors (section 2.4a) vary with sin© 

in a way similar to the absorption factor (a).

In the present investigation the absorption correction was 

neglected and justification for neglecting this correction is discussed 
in Chapter 6.

4.2 Measurement of Intensities!

The single crystal of (NH^)^TeBr^ was Mounted on a glace fibre 

attached to a goniometer head and the intensity photographs wore taken 
on a precession camera with the largest face (001) of the crystal per

pendicular to the direction of the incident beam. Photographs were taken 
in five layers each with five different exposures: 1/3, 1, 3, 9 and 27 

hours respectively, and the intensities were measured visually using a 

calibrated wedge. A different procedure whs followed for collection of 

the intensity data from the Ge.,TeBrg crystal. Integrated intensity 

photographs were taken on a Supper Integrated Precession camera for four 

layers parallel to the largest face (Oil) of the crystal} each layer was 
photographed with three different exposures: 3x, 6x, and 9x 2 hours 2^» 

minutes.
To measure the integrated intensities of the reflections, a
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Leeds and Northrop microdenaitometer was used. From the densitometer 

traces of tho spots, the integrated intensities (section 2.5) of the 

reflections were estimated. The background of the spots lying on white 

radiation streaks was measured on the streak. Although the measurements 

of intensities by Microdensitometer is superior to visual estimation, it 

is not as easy to measure the intensities of relatively weak reflections 

for which the eye is more sensitive.

^.3 Intensity Corrections and Relative Scaling of Layers:

The observed intensities of the reflections were corrected for 
the Lorentz and polarization effects (section 2.3). An IBM 70^0 program, 

PRELP, written for this purpose was used to obtain the observed structure 
amplitudes, |'O(H)| , of the reflections from different layers from their 

measured intensities, I(U), using the relation jequation (2.17)J

|Fo(H)| 2 - I(H)/(Lp)

where l/(Lp) is Lorentz-polarization correction factor as given by Jaser 
(1951) £see also Burbank (19*>2)] •

The standard errors in |FOQP| *« were calculated from an estimate 

which had been made of the standard errors of the intensities, 1(H). In 

visual estimation of intensities (used only for the reflections recorded

from (NH^) TeBrg crystal), (i) those reflections which are measured from

two or more films had their standard errors estimated from the spread of

their intensity values (which were usually of the-ortirr of 10% to 15-■ of 
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the respective intensities); (ii) those reflections, especially some very 

strong reflections, which were measured from only one film had standard 
errors of 20% to 25% assigned to them; and (iii) some very weak reflections 

whose measurement was not very accurate due to large background, ir

regularity in spot shape etc., had standard errors of up to 50% assigned 

to them.

For reflections from the CsgTeBr^ crystal, where the integrated 

intensities were measured from microdensitometer traces, standard errors 
of the order of 5% to 10% were estimated from measurement of the intensities 

from three films. However, to some very strong reflections which could 

only be measured from one film with the shortest exposure, a standard error 
of 15% was assigned.

For the unobserved reflections* in both methods of estimation of 

the intensities, a scheme similar to that proposed by Hamilton (1955) 

was used. The intensity of an unobserved reflection was considered equal 

to I , /}, where I . denotes the background intensity at the location of min ’ mln
the spot on the film, and a standard error of 2/3 w was assigned to it. 

Scaling of layers: Because of the cubic symmetry of the crystals, some 

reflections in higher layers were equivalent to those in lower layers, and 

thus tho intensity data from different layers could be scaled to each other. 
However, it was not possible with the layers measured for the (NH^)^feBr^ 

crystal to scale the intensity data from layers In which h, k and £ were 

all odd with those in which h, k andfwere all even.

Unobserved on the film, because the intensities of the reflections are 
very weak compared to the background at the respective spot location.



CHAPTER 5

STRUCTURE ANALYSIS AND RFFINEHEN?

Previous work on (NH^TeBr^ ^nd Ce^TeBr, by Honojlovlc (1957) 

and Bagnall at al. (1955) rwsp-ctively show that both crystals are iso- 

morphous with ^PtO^ (Swing and Pauling. 1928), in which the atone lie 

in special position® in the unit cell an noted below (International 
Tables, Vol. I, 1958; p.538):

Space group Pb’h (Cr) n
It in 4(a): (0,0,0); etc.

Ct in 2<»(eh (x,0,0); etc. with xX).2*» 

K in 8(c): (1/4.1/4, V1*); etc.

In (NH^)^TeBr^ and Ce^TeUr^, the poeitions of To, Br and N or Co at owe 

are bob* so that of Pt, C/ and K respectively in the F^PtCZ^ structure. 

The scattering of X-rays by the hydrogen atone ia very asall since they 

each contain only one electron, and oo in the structure factor calculation 

for (Nil. J.ToBr, their contribution* wore neglected.H 2 b

5*1 Structure Factor Calculation:
Since (NH^TeBr^ nnd Ca^eBr^ both have sinilar structures, only 

the structure factor expression for the (HH^J^TeBr^ crystal is derived 

below. The aaae expression nleo applies for the Cs^eBr^ crystal.

In general, the structure factor (Eqn. (2.18)) of a reflection with 

indices jK«h,k,/) is given by
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where Tj io the temperature factor of the jth atom in the unit cell and 

can be expressed as

7j " exp L" (Pllh‘ * * 2P23^ * 2»j/o]

(5.2) 
where th. value, of P will d.p.nd „ th. ?h .to..

Let us now consider the contributions of the Te, Br and N atoms 

to the structure factor F (H) separately. A molecule of (NH. )„TeBrr is 
" w 2 o

located around a lattice point such that the Te atom is at (0,0,0) and

the whole molecule io centrosymmetric about thia position. Thus we will 

consider here only the atoms present in half of the molecule i.e.,

of the Te atom aunt be invariant

of each of the indices h, k and <
$11 ’ $22 ’ $33 “ }

and
$12 ’ $2? “ 13 °

NTe^Br^, for the present calculation.
The site symmetry of the Te atom is octahedral (»3a), which is 

a subgroup of the cubic synroatry. Hence the structure factor contribution 

under the reversal of sign and pomutation 

, and the conditions are

(5.3)

to the Te ntoa. The tenpemture factor 

of the Te atom, T^ is given by
T,..xp [.p.^h2^2)] <5-M
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■nd the Btructur. factor contribution cun be calculated uuing tho ro lot ion:

F1 ’ * flTl (Trt« 15

Th. T. .ton being at (0,0,0),

Tri# 1 » cob 2x(h.O ♦ k.O ♦ .0) ■ 1 .

and

where

where 

and

Hence

Thus,
rl ” * f 1T1

- * fl [-41’ (5.5)

The nitrogen atom is at (1/4,1/^ ,1/h) and tho site synuaetry is 
tetrahedral (53a), which is a subgroup of the cubic aywnetry. Again, 

aknee the structure factor contribution of the N atou should be invariant 

under the reversal of the sign and permutation of each index, tlie following 

conditions aunt be satisfied.

51 ’ >22'55 - 5?’

(5.6)
P12 “ P23 * ^13 ” °

the subscript (3) denotes the nitrogen atom. Thus,

r = (Trig 3)

Trig 3 • cos 2w(hlA* X1A+/1A) « cos ^(h+k+Z)

T . exp f

can be expressed by 
r 3 ? ?1

\ cob ~(b+k+£) exp +k ^'*7,

The broatne atom, located at (x,0,0), has a tetragonfkl Guan) site 



syremetry where, of the three orthogonal directions, two directions are 

equivalent but the third is different from there* So the structure factor 

contribution of the Br atom should be invariant under the reversal of 

the sign of each of the indices and the permutation of one pair of indices. 

Hence, we have in thio case

$11 Z $22 * $33
and (5.8)

$12 = $23 “ $13 “ °

There are three Br atoms in half of the molecule and these are 
related by the three-fold rotation symmetry about the cubic [ill] direction. 

Thus the positions of the Br atoms are (x,0,0), (0,x,0) and (0,0,x), and 

the correaponding temperature fnctore are given b;:
Br(l): = exp O^W+t2)}]

Br(2): = exp [- + P^^h2^^

Br(3h % - «P [- * P^’c^k2)}]
(5.9)

where the superscripts (2a), (2b) and (2c) represent the three bromine 

atoms considered above.
Since all bromine atoms are equivalent in the structure, the

P*e can be equated as

and

R “11 RS3
(2)

11 (5.10)

(2a) 0P11
(2b) & (2c) , B (2c) (2)5J * *11 *22 *22

p

A

where the superscript (2) represent the bromine atom.
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The contribution of the Br atoms to the structure factor. F .
2*

la given by

F2= £ f2 ?2 <Trt« *’} 1

a f2^2& 008 * T2b co° 2nkx * T2c 008 (5.11)

Hence the structure factor expression for all atoms in the chosen unit 

can be expressed as

F = F ♦ F + F C X ti j

= * *2*^2* 008 coe 2wkx + T^c cos 2n{x)
* f^T, cos 5(h+k+^) (5.12)

5.2 Refinement:

A trial structure of (NH^^TeBr^ was considered with the position 

of Br stow at (0.250>0»0) and the Te and N atoms at (0,0,0) and (l/ktl/ktl/k) 

respectively. A rough estimate of the values of P's was made in the 

following way. We assume that the T *s are all equal and can be expressedJ 
as exp(-BS ) where B is the isotropic temperature factor coefficient and

S stands for (SinG/A). Then T. can be taken outside the summatioi sign J
in equation (5.1) as it in common for all atoms. The rest of the structure 

factor
’ ’ S f< co® ^(h*. + ? ♦
c j j j J J

can be calculated and this, when multiplied by Tj, should be equal to the 

observed structure factor, F , multiplied by some appropriate scale factor, K.
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Hence,
K|Fo(H)| . I - H I eXp (-BS2) 

or, 
|F/H)| 

|F»(Ity| * ”^n K " B; (5.14)

Thue if hi( |FOI/|F*1 ) is plotted against for various reflections 

(hkl), the points should lie on a straight line, and from the intercept 

and slope of the line the values of K and B respectively can be obtained. 
The value of B(ta2.oR ) so obtained in the present work was used to estimate 

the P’s from the relation (Cruickshank, 1956):

B (5.15)

where i,J « 1,2,3, nnd a. = a*, a‘ a b* and a* a c 2 3
The trial parameters were refined by a full matrix least squares

analysis (section 2.5) of the three dimensional intensity data using the 
IBM 7O4O program MACLS^n\ This program makes use of a special sub

routine, CALC, which calculates the structure factors and their derivatives 

for the particular space group or problem for which it is being used.

In the present work a special subroutine was prepared for crystals 
with the K PtCfr structure (space group Fm3»). The variable parameters 

included in this program wei’e the scale constants applied to the observed 

structure factors from layers photographed separately, the positional co

ordinate of the Br atom and the anisotropic temperature factors of all atoms 

in the unit cell.
^l\he program, MACLS, was written in this laboratory by Mr. J. S. Stephens.
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and

y(scale) c Pc

The derivative. of F^) (B,b. 5.^) wlth to

variable parameters are calculated as noted below.

Hn ■ (5.16)
P11

F
'"■fe 3 ” f2 + kT^sinSxkx + T^sinaxZx)
’ (5.17)

^Fe 2 2_
(2) 8 - f2 (h ^cosSxhx ♦ k^coa^kx 4. Z^COB 2n^) 

(5.18)

k2+^2)T cobMx 4- (h^-E2)? cos2nkx 
ca 20

* (h2tk2)T2(jcoe2KfxJ (5.19)

(h^k^Z2)!* eoe’(h-k^) (5.20)

(5.21)

The atomic scattering factors for all atoms except hydrogen, which was 

not included at any stage, were taken from the International Tables 
(Vol III, 1962}*. The least squares refinement of the three dimensional 

intensity data of the (NH^^TeBr^ crystal was carried out for six cycles 

after which no significant changes in the variable parameters were observed. 

The agreement between the observed and calculated structure factors was 

checked after each cycle of refinement from the value of the residual index 

(commonly called the R-factor) of the fnrc:

See International Tables (1962), Vol III, Tables 5.J.1A and J.J.1B



where the summation extends over all reflectionn.
The weight, w, uned in the eqn. (5.22) io given by wJ^ , where CT 

(T
io the standard error of the observed structure factor, F (see section o
U.2). The R-factor after the final cycle of refinement was 0.079. The 
atonic parameters of (NH^}_Te’}i derived from the final cycle of refinement 

are listed in Table VI, and the observed and calculated structure factors 

are given in Table VII.

In the refinement of the crystal structure of CSgTsBrg the above 

procedure wns also followed. In this case, the atomic pammoters of 

(NH^-TeBr^ obtained after the final cycle of refinement were used ns 

trial parameters and the R-factor after the final refinement of the para

meters was G.0&2. The positional and thermal parameters of atoms in 

C«„TeBr, are given in Table VI and the observed and calculated structure 2 b 
factors are listed in Table VIII,



TABUE VI

Atomic parameters derived from the final least-squares refinement

Crystal Atom Positional Coordinates Temperature factor

(NH4)2TeBr6 Te in Ma)a

Br in 2^(e)

N in 8(c)

(0.0,0;

(x,0,0;

,111
W’v

etc. )

x = 0.2/499 ± 0.0002

P11

P11 

I’ll

^"P22

= 37 ±

(=p22

= 0 ) = *42 ± 1

2 J P22( = P3^) = 15l+ f 1

= p„) = 118 ± 22
23

etc.)

etc.)

with

Cs_TeBrr 
t o Te in ^(a) (0,0,0; etc. ) P11 ( = p22 = = 69 ± 4

Br in Me) (x,0,0; etc.) with x = 0.2^68 ± 0.000*4C P11 = 53 ± 7 ; P22(=P^ = 106 ± 1

Cs in 8(c) ,1 1 1 etc. ) B11 ^=p22 := p^) = 9^ ± 3

a See International Tables for X-ray Crystallography Vol. I, 1962. p.358.

b The anisotropic temperature factors appear in the structure factor calculation as

exp (-10"'l(p11h2 + p22k2 + p^Z2))

c The value of x given by Bagnall et al. (1955) is 0.24.
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TABLE VII

* Unobservable on the precession films due to beam stop*

The observed nnd calculated structure factors for (NH. ) 7^
A ? • *6

H K L F ( 0 ) F(C) H K L |F 1 2 ' F ( C )

2 0 0 376 38 1 6 2 2 255 -2614 0 0 714 772 a 2 2 9 3 UH6 0 0 2 1 1 1 8 I 10 2 2 9 8 -998 0 0 4 5 6 39 3 12 2 2 89 9010 .0 0 38 45 14 2 2 3 1 -2912 0 0 1 80 1 77 16 2 2 59 5 72 2 0 < 20 - 19 4 4 2 278 2674 2 0 344 3 1 3 6 4 2 < 13 106 2 0 2 9 -23 8 4 2 193 • 1838 2 0 2 13 213 10 4 2 < 15 -310 2 0 26 -22 12 4 2 '107 10/12 2 0 124 126 14 4 2 < 17 -414 2 0 < 18 - 14 16 4 2 4 9 5 516 2 0 59 65 6 6 2 137 -149
4 4 0 540 5 90 8 6 2 64 56
6 4 0 178 1 66 10 6 2 41 -52
8 4 0 330 321 12 6 2 69 62

10 4 0 5 1 49 8 8 2 135 122
12 4 0 141 147 10 8 2 30 26
14 4 0 < 17 5 12 8 2 77 68
16 4 0 63 64 3 3 3 • 140

6 6 0 < 29 -15 5 3 3 118 120
8 6 0 132 129 7 3 3 107 97

10 6 0 < 16 -6 9 3 3 76 77
12 6 0 73 33 1 1 3 3 62 57

8 8 0 174 186 13 3 3 43 4 3
10 8 0 40 5 1' 5 5 3 113 105
12 8 0 98 88 7 5 3 83 86

1 1 1 • 196 9 5 3 66 69
3 1 1 167 171 11 5 3 48 52
5 1 1 14C 141 13 5 3 35 39
7 1 1 117 111 7 7 3 60 72
9 1 1 101 87 9 7 3 57 58

11 1 1 62 64 1 1 7 3 35 45
13 1 1 46 48 13 7 3 35 34

3 3 1 152 154 9 9 3 49 48
5 3 1 129 130 1 1 9 3 43 37
7 3 1 100 104 4 4 ■4 612 469
9 3 1 86 81 6 4 4 149 151

1 1 3 1 59 61 8 4 4 272 2 63
13 3 1 40 45 10 4 4 44 50

5 5 1 103 113 12 4 4 136 123
7 5 1 95 92 14 4 4 < 17 10
9 5 1 69 73 16 4 4 54 54

1 1 5 1 52 55 6 6 4 < 12 8
13 5 1 38 41 8 6 4 108 114

7 7 1 82 76 10 6 4 < 15 6
9 7 1 57 61 12 6 4 69 72

11 7 1 38 4 7 14 6 4 17 4
13 7 1 26 36 8 8 4 133 155

9 9 1 65 50 10 8 4 48 47
11
13

2
4

9
9
2
2

1
1
2
2

47
33

378
39

39
29

-496
31

12 8 4 71 74
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TABLE VIII

The observed and calculated structure factors for Cs TeBr

H K L |F<q F ( C ) H K 1 *- |F<e)| F (C)

2 C 0 < 35 37 4 4 2 < 59 43
4 C C 92C 1C62 6 4 2 , 166 154
6 0 0 < 54 -5 8 4 2 4 72 45
8 c 0 526 540 6 6 2 308 -313

10 0 0 < 58 -24 8 6 2 ICC 109
12 c 0 2 16 2 18 10 6 2 149 -143

2 2 0 328 305 8 8 2 4 60 37
4 2 0 77 40 3 3 3 143 103
6 2 c 168 174 5 3 3 116 1C7
a 2 0 52 48 7 3 3 61 57
4 4 0 822 9 3 3 51 67
6 4 0 < 56 7 5 5 3 106
8 4 c 449 443 7 7 3 4 42 34

10 4 0 < 80 — 1 4 4 4 4 z 703 659
12 4 0 183 182 6 4 4 4 53 14

6 6 0 115 108 8 4 4 342 365
8 8 c 263 254 10 4 4 4 6C -7
1 1 1 234 209 12 4 4 154 153
3 1 1 184 162 6 6 4 , ICO 98
5 1 1 152 156 8 6 4 4 86 24
7 i 1 73 84 10 6 4 < 94 42
9 i 1 76 91 8 8 4 2C 7 211
3 3 1 128 128 5 5 5 107 101
5 3 1 133 129 7 5 5 Z 58 62
7 3 1 66 69 7 7 5 < 42 37
5 5 1 125 125 6 6 6 225 -208 ■
7 5 1 . 63 72 8 6 6 73 73
7 7 1 4 59 4 1 10 6 6 ICO -96
2 2 2 800 -815. 8 8 6 < 59 21
4 2 2 264 255 7 7 7 4 42 22
6 2 2 435 -482 8 8 8 138 125
8 2 2 139 168

10 2 2 191 -2 13
12 2 2 87 91



CHAPTER 6

DESCRIPTION OF THE STRUCTURl^

The results of the refinement described in section 5. J confirm 

that the *eBrg ion has the configuration of a regular octahedron in 
both (NH^TeBr^ and Cs2TeBr6, and the mean Te-Sr bond distances are 
2.681*0.002X and 2.695*0*0042 respectively. Cruickshank (1956b) has 

pointed out that the measured bond lengths are usually shorter than their 

correct lengths. Since the ntoms constituting the bonds are always in 

thermal notion, the positions of maxima in the electron density distribution 

donot represent the correct positions of atoms and so the measured bond 

lengths should be corrected for the thermal motion of atoms constituting 

the bonds.
Recently Busing and Levy (1964) have proposed a method for 

correcting the bond distances based on one of the following assumptions 

regarding the joint electron density distribution of two atoms forming 

the bond.
(1) The motions of the atoms are either in phase or out of 

phase with one another.
(2) The motion of the heavier atom is completely independent 

of the motion of the lighter one, but the lighter atom 

is supposed to ‘ride’ on the heavier atom.
(J) There is no correlation between the motions of the atoms.

52
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Th« first assumption gives the two extreme limits of the bond 

length; but the other two represent more physlcnlly likely situations. 

It is hard to distinguish between them unless detailed information 

about the motion of the atoms is known. The root mean square (r.m.a) 
•x ■ amplitude of thermal vibration of an atom, (u*)', normal to the reflecting 

plane can be calculated (Cruickshank, 1956a) from the relation

- o 2 1B - 8* « (6.1)

where B is the isotropic temperature coefficient. For ania tropic 

motion of the atom the following relation is used to replace B by P’s 
(see equation (5«15))

Bu ■
In the present work it is observed that the Br atoms have large 

thermal anisotropy with the r.m.a. amplitude of vibration perpendicular 
to the Te-Br bond significantly larger than that along the bond (see 

Table IX). A rigid TeBr^” ion librating about the central Te atom would 

give rise to an anisotropy of this sort and if this were the case, the 

true Te-Br bond distance corrected for the temperature effects would be 
2.708 in both crystals. However, the Te-Br bond length can also be 

corrected for the thermal effects considering that there is no correlation 

l>etween the motions of the Te nnd Br atoms. The thermal anisotropy of 

the Br atoms can be explained in this case, if we consider that the 

bending modes of vibration of the Te-Br bond have larger amplitudes 
than the stretching modes. The corrected Te-Br bonds are then 2.728
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and 2,7# In (NH^^TeBrg and Ca^eBr^ respectively. However, it ia 

not possible to distinguish between the two cases discussed above and 

the true situation probably lies somewhere between the two extremes.
Further, it is intereating to see that the size of the TeBr£” 

o 
ion is the same in both the crystals in the present study, and is not 

significantly different from that observed in K^TeBr^ (Brown, 1964). 

Hence it can be presumed that changing the cntion does not have a large 
influence on the structure of the anion in M^TeBr^ crystals.

Corrections have been made to other interatomic distances for 

thermal effects on the assumption that there is no correlation between 

their motions. But the uncorrected and corrected values of these distances 

are listed in Table IX. Owing to the uncertainty in the absolute value 

of the amplitudes of thermal motions and the proper way to correct for 

for them, the standard error in these distances ia estimated to be about 
0.018 . The effects of neglecting absorption correction to the intensity 

data of these crystals are not significant. The r.m.s. amplitudes of 
vibration of the atoms change by about O.OO58 if the absorption effect 

is included, which is less than standard error ir. the intemtomic 

distances.
The observed M-Br (MbNH^.Cs) distances can be compared with those 

predicted from the sum of the ionic rndii. The ionic radii of Co and Br 

listed below have been obtained by correcting Pauling’s values (Pauling, 

I960; p.511) for twelve coordination.
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Xpp Radius (R)

MH* l.%

Cs* 1.80

Br* 2.10

The ionic radiuo of NH^ (1.%A) has been estimated by reducing the 

corrected value of Pauling's ionic radius of i«b* (l.fiOA) in accordance 

with the observation that crystals of (NH^-MX^XxC^Br) all have 

slightly smaller cells tian the corresponding Rb-compounds (Engel, 1935).
The observed (NU^J-llr distance (j.SsS) is considerably longer 

than that predicted (3*662) but the Ce-Br distance (3.89R) is the same 

as that expected from the sum of their ionic radii (3*9O2). Likewise, 

the distance between Br atoms in different anions are different in the 
two crystals (3.842 in (NH^)^TeBrg and 3*942 in Ca^eBr^) whereas they 

tsight be expected to be the same. The probable explanation is that in 

Ca.TeBr.- the Br-Br distances are determined by the fact that the cesium * b
and bromine atoms are in contact (Fig. 5>) co that the anions are just 

separated, where as in (NH^)^TeBr^ it is the bromine atoms in the neigh
bouring anions that are in contact (Fig* 5b) end the NH^ ion (1.56A) Is 

appreciably smaller than the size of the cavity (1.74A) formed by twelve 

bromine atoms which surround it. Buch a situation, as discussed by 

Brown (1964), should lead to distortion in the structure at low temperature. 

A preliminary study of the distortion in (NH^^TeBr^ is discussed in the 

next chapter.



Fig. 5 Sections through the cation perpendicular to (ill) direction 
in (a) Cs^TeBr^ and (b) (NH^^TeBr^
Cation (striped circle). Bromine (open circle)



57
table IX

Interatomic distances and thermal motions in M TeBr,
2 o crystals

:(W^ToBr, C62TeBr6

o 
Interatomic distances before correction for thermal motion (A):

Te-Br 2.692 ± 0.006b 2.681 + 0.002b 2.695 + 0.004°

M-Br 3.793 + 0.001b 3.860 + 0.001°

Br-Br (between anions) 3.794 ± 0.005b 3.909 ± 0.003°

Interatomic distances after correction for thermal motion (see text)
0

(A):

Te-Br 2.71 ± o.oic 2.70 ± 0.01C 2.70 + o.oic

M-Br 3.82 ± o.oic 3.89 ± o.oic

Br-Br (between anions) 3.84 ± 0.01C 3.94 ± 0.01c

0
Boot mean square amplitudes of thermal vibration (A):

Te 0.15d 0.16 0.20

Br (i) along TeBr bond 0.14d 0.15 0.18

(ii) perpendicular to a
Te-Br bond 0.25“ 0.28 0.25

M O.28d
• 0.26 0.23

Ratio of perpendicular :
parallel motion of the
bromine atom 1.8 1.9 1.4

a See ref. Brown (1964).

b The error quoted is that calculated from the standard errors indicated 
for the cell constants and the least-squares refinement ana does not in
clude possible systematic errors.

c Estimated standard errors, including an allowance for possible systematic 

errors.

d Average values.



CHAPTER 7

PHASE TRANSITION IN (NIL ) TeBrr

7.1 Introduction!

(NH^^TeBr^ crystals «r« cubic at room temperature| but, as 

reported by Nakamura and his co-workers (19&?a), they undergo a phase 
transition at 221^K probably to a phase of tetragonal symmetry. It 

can be expected that the trans formation in this case is similar to that 
securing in K^anBrg (Karkstein and Nowotny, 19)8), which io tetragonal 

(with c/a>l) at room temperature but transforms to cubic At ^00°K 

(uallonl et al., 1962). Moreover, the phase transition In K_SnBr£ is 

reversible and the unit cell volume does not change at the transition 

temperature. Thin transition is probably of tho ’displacive’ type in 

the sense defined by Buerger (1951). <9ome characteristics of the diaplacive 

transition are that the transformation is usually very rapid, since it 

doesnot involve any disruption of atonic linkages! the network of atoms 

is only distorted, and the symmetry of the low temperature fom is a 

subgroup of that of the high temperature form.
A mechanism for this type of structural distortion has been pro

posed by Morfee et al. (i960) for the analogous (Nfl^SnBrg crystal. 
Hera the Anions are postulated to rotate about the|_001J direction with 

the alternate (001) layers of anions rotating in the opposite sense. 

Buerger (1951) has also shown that in displacivo tr nsforwitionu, where

s8
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the low temperature structure is formed from the high temperature fora 

by loss of symmetry, a down temperature trans formation almost invariably 

results in twins and this is particularly common if the low temperature 

form has more than one orientation with respect to the high temperature 
fora. Thus in (NH^^TeBrg crystals twins are likely to be formed from 

the parent single crystal since there are three possible ways by which 

the cubic structure can be distorted to a tetragonal form. Unfortunately, 

a twinned cryatal cannot be used easily for complete structure analysis.

The phase transition can be observed in a polarizing microscope 
(Wahlatrom, I960; p.l27)« The theory of this is discussed below. A 

crystal is placed on the polarizing microscope stage with the polarizer 

in a crossed position with respect to the analyser. The light emerging

from the polarizer is plane polarized with its vibration directions in 

the plane of vibration of the polarizer, and on entering the crystal it 
is resolved into two groups of raya - the ordinary (0) ray and the ex

traordinary (E) ray, both plane polarized at right angles to each other. 

In general, they travel with different velocities inside the crystal and 

on emergence the two sets of rays interfere in a manner depending on the 

Magnitude of the path difference and the orientation of the vibration 

planes of the crystal relative to the vibration plane of the pol »rizer. 

The rny emerging from the crystal will have a different direction of 

polarization from the direction of polarization of the ray incident on 
the crystal and thus the crystal will appear bright when viewed through 

an analyser set at right angles to the polarizer. But in come particular 
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orientations when one of the vibration directions of the crystal is 

parallel to the plane of vibration of the polarizer, the crystal will 

appear dark. If the crystal is rotated with respect to the polarizer, 
such positions will occur 90° apart.

In a cubic crystal, being isotropic, the two sets of rays travel 

with the sane velocity inside the crystal and on emergence no path dif

ference is introduced between these rays. The direction of polarization 

of the emergent ray does not change with respect to that of the incident 

ray and thus a cubic crystal will always appear dark when placed between 

crossed nicols. This fact can be used to observe the phase change between 

a cubic and a non-cubic phase.

A twinned crystal of the non-cubic ph^se cun also be easily 

detected, since on examining it between crossed nicols each twin in

dividual will generally be found to extinguish independently, and thus 

a complete extinction of the whole crystal can not be observed.

7.2 Low Temperature Polarizing Microscope:
A simple low temperature polarizing microscope was designed in 

this laboratory to serve two purposes: (1) to observe the phase trans

formation in (NIL ) TeBrz at low temperature, and (2) to help select a 
*♦2 o 

single (untwinned) crystal of (NH^J^TeBrg.
The schematic diagram of the apparatus is shown in Fig. 6.

A pyrex beaker C(150 ml capacity) was placed on the glass base plate B 

of the microscope. Another smaller beaker D was put inside the beaker C



A schematic view of the low temperature polarizing microscope
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with its base glued to that of the latter. A narrow beam of light was 

used to illuminate the field of view of the microscope from below the 

base plate B. Two pieces of polaroid sheet were used to serve as the 
polarizer (P) and the analyser (P») respectively. One of the pieces P 

was fixed to the bottom surface of the base plate with scotch tape and 

the other P' was placed in the crossed orientation between the beaker C 

and the microscope objective M. A small quantity of liquid air was 

placed in the annular space L between the two beakers and a microscope 

slide Q carrying the sample was placed over the inner beaker D.

So long as the temperature of (NH^) TeBr^ crystals was above the 

transition temperature they appeared dark between the crossed pol^roids, 

but as soon as the crystals had transformed to a lower syrjinetry phase 

on cooling they began to transmit light and, on rotating the beaker C 

(and hence the sample 8), the extinctions could be clearly observed. 

Although moat of the crystals were found to have regions which extinguished 

independently indicating twins, it was possible to find some single 

crystals which didnot show twinning below the transition temperature and 

they were collected for X-ray diffraction studies.
Precautions were taken against the condensation of moisture over 

the crystals which would otherwise spoil them from further use. So 

long the sample was inside the beaker C, the air above it was cold and 

hence dry; but on removing the sample from the beaker moisture rapidly 

began to condense on the sample, and it was necessary to place the sample 

in a slow stream of dry and warm air. Moreover, during the experiment 

the base plate whs also kept in a stream of dry air to prevent any ice



63

formation on the base of the benkur C and the poln riser.

The following obee^vutions were also noted during the experiment

in connection with the phnae transformation of (NH. ) TeBr, 
H 2 6

(1) The phase transformation is very rapid.

( he bright red colour of (NH^^TeBr^ crystals changes 

to yellow at low temperature.
(J) On winning up the crystals above the transition temperature, 

the colour again changes back to red and the crystals 

revert to the cubic symmetry indicating that the 

trans formation is reversible in nature.

7*3 Measurement of Transition Temperature!
The transition temperature of (NH^^TeBrg was measured in a 

Nonius Weinaenberg camera designed for X-ray diffraction studies at 
temperatures between 12J°K and 573°K. This equipment was particularly 

suitable for the present investigation since it was possible to cool 

the crystal, mounted in the camera by passing cold nitrogen gas over it 

and the temperature of the gas in the vicinity of the crystal could be 

measured by a thermocouple.
Two pieces of polnroid were fixed in the crossed position on 

either aide of the layer line screen and connected so that they could 

both be rotated together. The crystal was viewed through the telescope 

attached to the Weissenberg camera opposite the collimator, through 

which a beam of light was passed. Thus when the upocimen wis cooled 
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below the transition temperature, the extinction pattern characteristic 

of non-cubic crystals could be observed. The temperature at which

JUst begins to transmit light during cooling or 

just stops transmitting on warming was measured using a copper-con- 

jstantan thermocouple calibrated at three standard temperatures e.g., 
melting ice (273°K). dry ice-acetone mixture (196°K) and the liquid 

nitrogen (77°K) temperatures. The transition temperature was found to 

be 183±5°K.

7.4 Weissenberg Photographs and their Interpretations

To study the symmetry and cell constants of (NH^J.TeBrg below 

the transition temperature the compound Weissenberg photographs 
(Figs, 7a and 7b) were taken with two specimens in different orientations. 
In each case, a low temperature photograph was first taken at about 163°K 

and then shifting the film to the right by a small amount another photo

graph was taken at room temperature with the same exposure time.
Fig. 7a shows the compound photograph of a (NH^J^TeBr^ crystal 

of nearly cylindrical shape, radius about 0.008 cm. This photograph 

was taken with the 110 direction as the rotation axis of the goniometer. 

The crystal was realigned at low temperature viewing it against the 

incident beam direction first by rotating it clockwise about the incident 

beam by 10’ and then about an axis normal to the incident beam clockwi.se 

by 20* as viewed from above. In this photograph three principal cubic 

lattice directions 001 , 111 and 110 are seen. The split spots

clockw.se
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Fig. 7 Compound Weissenberg photographs of (NH^TeBr^ taken at 

165°K and 298°K about (a) [llo] as rotation axis,and 

(b) [loo] as rotation axis
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along the 001 direction in the low temperature phase Indicate that 

twinning in this owns is such thet and A* axis of two twins 

of the low temperature structure lie along tho same direotion. The 
low temperature refloctionn along the [ Hi] direction donot show any 

vortical splitting, although their shape suggests that they are probably 

split horizontally, but are so close that, due to overlapping, their 

individual identity cannot be distinguished. However, the absence of 
any obvious splitting of the (ill) reflections indicates that the angles 
u*, P" nnd Y* are atill 90° in the low temperature fora, since from the 

equation (3.3)

d’ChkO ■ (h2a’2>ku’b,2*t2c‘2 ♦ 2hka‘b“ cos Y* ♦ 2kZb*c’ cos a* 

♦ 2(hc*a* cos 
nnd hence

d*(m) « d’(llT) » d’(lll) - d-(In)

only if the cross terms are aero i.e.,

cos a* » cos P* ■ cob Y* » 0 
or

a* » V . Y* » 90°

It is possible to index the low temperature spots on the film 

assuming that the crystal is tetra gonial with “ * 1 an<i the photographs

'^Capital letters are used hero to differentiate the fact? conterrd 
tetragonal cell from tho primitive cell for which 1 ver case le~ ere 
are used.
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of the twins correspond to th® (llo) and (oil) projection®.

Fig. 7b shows a compound photograph of another specimen of 
cube shape (edge l®ngth about 0.008 cm) in the (001) and (100) pro

jection® of the low temperature phase. Thia photograph wns taken with 

the rotation axis of th® goniometer along th® cubic 100 direction 

and no realignment of th® crystal whs made at low temperature. Each 

pair of spot® on the low temperature photograph is seen not only to 

split vertically, but th® lower component of each puir is also displaced 

horizontally. Further, the reflection® along the 010 direction are 

all single indicating that 010 i® the twin axis. It can also be seen 
that the (0K0) reflections are located at th® same Bragg angle on the 

fila as the corresponding (HOO) reflections. Hence the A and B axes 

of the low temperature phaae are equal in length and this is consistent 

with the hypothesis that th® low temperature phase is tetragonal.

In Fig. 7b sone extra spots are also seen at the lower and of 

the 010 direction on the film. These can not be indexed on any simple 

cell and their presence is probably due to none crystallite attached 

to the specimen. All other spots on the film can be indexed as either 

(HKO) or (OKL) reflections on the basis of a C-foc® centred pseudo- 

cubic tetragonal cell. However, it is normal to index such reflections 

on the basis of th® primitive cell obtained from the paeudo-cubic cell 
by setting the $ axis alorg the cubic [lio] direction, b along the cubic 

[llo] direction and £ along the cubic [001] direction (cee Fig. 8«).
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Fig. 8b Reciprocal lattice: 
cell indexings.
The indices for the

C-face centered and primitive tetragonal

C-centred cell are given in parentheses.



69

The axial transformation in thia case is:

a » iXA^B)

b a i(B-A) (7.2)

c = C

and the indices (HKL) of a plane in C-centred paeudo-cubic cell can be 

expressed in terms of the primitive lattice Indices h, k, and £, where 

they are related by the transformation:

h « i(H+K)

k o i(K-H) (7.3)

2 = L

Since H+K=c>n, an even number, all (HKO) reflections with H+K«2n+1 
(odd) are absent whereas there is no auch condition for the corresponding 

(hkO) reflections (see Fig. 8b). The additional reflections which 

appear in Fig* 7b in the low temperature phase can be indexed satisfactorily 
as (HKO) reflections.

Thus from the interpretation of the compound Weissenberg
photographs (Figs. 7e and 7b) it appears that the twinning in the low

temperature phase of (NH^)^TeBr^ corresponds to a rotation of the pseudo**

oubic cell by 90° about the B—axis so that the ^-axis falls along the

A-axis and vice versa. The splittings of the spots due to such twinning

as seen in Figs. 7a and 7b are illustrated in Figs. 9a and 9b respectively.

The lattice parameters of the tetragonal cell were calculated

using the low temperature splittings corresponding to the five reflections



Fip;. 9 Twinning in (MIIj ) _,TeBr^: 
tetragonal (a) PPG andtetragonal (a) pTs 
(n.b. [ooil 
pap»*r at 0).

and pooj direction

Composite reciprocal 
jollj directions, and

lattice nernend>cvlar to the C-centered pseudo-cubic 
(b) p j and pcfl directions.

in (b) do not rake same anr;le with normal to the plane of the
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(400), (SOO), (800), (1200) and (440) of the room temperature cubic

phase. The tetragonal C-centred cell hue the dimenaionai AalO.6o6lO.OO5X 
end C.10.76540.005^. The ratio of C/A in thia cane in 1.015, which

is similar to 1.010 in K^nBr^ st room temperature (Marksteln and 
Howotny, 1938)• The dimensions of the corresponding primitive cell of 

the low temperature form of (NH^TeBr^ are a«7.501*0.0058 and 
CwlO.765itO.OO58.

The following conditions for reflections to occur are noted

from the X-ray photographs:

Pseudo cubic cell (C-centred) Primitive tetragonal cell
(^-b, b>a, c) (a, b, 0)

HKO: H>K « 2n hkO: no conditionn

HUO: H * 2n hOO: h » 2n

OKL: K,L « 2n hhh X w 2n

HIIL: H*L ■ 2n hOh h+C « 2n

The possible space groups for the primitive cell are P4/mnc(l^)

and P4nc(C$v). The atoms in the unit cell can be arranged in the 

following positions:
, 6 ,(I) Space group: P4nc(C^)

Te in 2(a)» 0,0,a; M.i**

N in 4(b): 0,i,s; i»0,»l etc.

Br(l) in 8(a): x,y,nj etc.

Br(2) in 2(a) J 0,0,etc.

Br(3) in 2(a): 0,0,»2l etc.
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(II) Space group: PV«nc(nf )

Te in 2(a): 0,0,0; { J J

H in Md): OJ,1/^I eta.

Br(l) in 8(h): x,y,0; etc.

Br(2) in Me): 0,0,2; etc.

r^/anc is probably the space group of tho low tanpernturo phase since 

in thia apace group the TeBr^- ion is required to possess a centre of 

syraetry. In the alternative apace group PUnc the bromine atoms are 

not required to lie centrosymmetrlcally about the tellurium atom.

On the basis of the work performed on this and other related cry a tala 

there is no reason for supposing that the TeBr^ ion does not have a 

centre of symmetry.

Table X lists the lattice pnmmetora, space groups and the 
transition temperatures of (NH^^TeBr^ and K^SnBr^ crystals. It ie 

interacting to see that although both the crystals have ainilnr cell 

constants in the high and low temperature phaueo and the proposed 

structures are also very similar, their apace groups in the tetragonal 

phase are different, ^e can expect that a detailed study of the 

tetragonal structures of both crystals will throw further light to 

this point.
The project of collecting single crystal intensity data of 

(NH^TeBrg for complete structure analysis of the low temperature 
phase wns not successful, Several attempts were made to mount crystals 
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which were found to bo untwinned during inspection in the low temperature 

polarising microscope; but by the tine they were aounted on the 

goniometer head, these crystals were found to be twinned below the 

transition temperature.

It la also surprising that the first transition temperature 
observed in the present study (18j°K) is quite different from the value 

(221°K) reported by Nnknraum and his co-workers (1962a). From the 

observations reported by them it seems that the phase trans formation 

observed in the present work is not different from the one reported. 
Moreover« no distinct phase transition was observed above 18j°K by 

visual examination or from delssenberg photographs of the sample. 
Thus a careful investigation of the phase transition(s) in (NM^J^TeBrg 

should be undertaken to gather further information for this point.



table X 7^

Th* Unit Cells and Space Groups of (NH^TeBrg and K^nBr^ Crystals

(1) Sys tea i 
Spnoe group:
Cell constant, a i

(NIL) TeBr, 
* d o

cubic (298°K)
Faja (0^) 

n
10.728*0.OOJA

K SnBr, d o
cubic'*1 (40J°K)

(G^> 
n10.61$?

Phase transition: tetragonal^ cubic

Transition tenpernture: 18515°K

tetragonal^ cubic
4oo°r<B)

(2) System
(i) Paeudocubic coll: 

Space group:
Tetragonal (16j°K) 
CU/^n (D^)

Cell constants: A
C
C/A

10.606 * O.OO58
10.%5 * 0.0058
1.015

Tetra gonal'b \ 298°K)
CU22 (D?) 

1 *
10.518
10.618
1.010

(ii) Primitive cell: 
Space group: <4’
Cell constants: a

c
7.501 * O.OO58
10.765 * O.OO58

7.^8
10.618

(a) See Gallon! et al» (1962).

(b) See Markfftein and Howotny (1938).
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