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Lay Abstract

I have investigated slowly moving black holes in a theory of modified gravity. The

goal was to see whether the theory breaks down in modelling these black holes and

if not, is it possible to test the theory using these predictions. I ultimately found

that this theory can model the slowly moving black holes and would appear almost

indistinguishable from classically moving black holes. This means that slowly moving

black holes on their own will not provide a sufficient test of the theory.
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Abstract

I have developed a technique to solve for the khronon field in a space-time containing

a slowly moving black hole in the khrono-metric regime of Hořava Gravity. To develop

these solutions I first revisited the khronon field around static spherically symmetric

black holes and perturbed them by a small velocity. The equations of motions of the

perturbed field were identified along with the linearly dependent series expansions

at the boundary points. Using the boundary conditions and equations of motion

the khronon field was numerically solved throughout the space-time. These solutions

were used to calculate a sensitivity parameter which defines how the black hole mass

appears to be modified due to its velocity. It was found that the sensitivity parameters

are highly suppressed and black holes should appear similar to their general relativity

counterpart.
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Chapter 1

Introduction

The common issue with attempting to quantize general relativity (GR) is that one

finds that to ensure renormalizability the theory requires terms of order 1/p4. These

factors lead to frequency terms of order p4 = (ω2 − k2)2 = O(ω)4, which will imply

that the wave equations of the theory will be fourth order in time O(ω)4 =⇒
....
ψ .

These higher time derivatives cause small fluctuations to have negative energy and

destabilize the vacuum, a scenario that contradicts our macroscopic observations,

where small quantum fluctuations don’t seem to give rise to large-scale variations.

In an attempt to develop a quantum theory of gravity (QG), Petr Hořava proposed

a model in 2009 [1] that allow for anisotropic scaling between space and time. This

anisotropic scaling takes the form of t→ b−zt, x→ b−1x.

For a scaling exponent z large enough the theory is power-counting renormalizable.

However, this modification creates changes to the large-scale, gravitational, structure

of the theory. Most notably, the theory breaks Lorentz invariance (LI), which allows

for the propagation of signals faster than light. Deviations from LI will mostly occur

at the highest energies, but also affects low-energy gravitational physics.
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The anisotropic scaling present in Hořava gravity will cause the propagation of

signals to be dependent on foliations of a scalar field, known as the khronon field. The

physical observable of this field is its normalized gradient, which depicts the preferred

time direction. This ensures that the khronon field is invariant under relabeling,

ϕkh → f(ϕkh). To lowest order, the khronon gradient enters the classic GR action at

second order.

Massive celestial bodies such as pulsars or black holes are natural subjects for

investigating these changes, and they have yielded numerous intriguing results. For

instance, at high energies, there can be infinitely fast propagation of modes. Yet, it

was discovered that black holes in the theory possess a universal horizon that entraps

even these superluminal modes [2]. Consequently, two causally disconnected regions

still persist.

Previous studies have uncovered khronon solutions for stationary black holes [3]

and rotating black holes [4]. However, a phenomenology of these solutions is required

to test the theory. For this need, we will turn to sensitivity parameters [5] which char-

acterize the dependence of a black hole’s mass on its velocity. Sensitivity parameters

have been regularly calculated in Einstein-Aether (AE) theory [6–9], a theory related

to HG. In this thesis, we will expand these findings by investigating and deriving a

set of solutions for moving black holes. These solutions will then be used to calculate

a sensitivity parameter to identify the theoretical regimes potentially accessible by

future gravitational wave experiments [10, 11].

While earlier work [12] has determined sensitivities for a specific choice of HG

model parameters, the paper suggested that a general set of solutions might be im-

possible. In this thesis we show that a general set of solutions can be found. To

2
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simplify the problem, we work in the limit where the khronon energy-momentum

tensor is small compared to the GR curvature term, known as the decoupling limit.

We will use the decoupling limit to determine the khronon field in a classical GR

solution, in our case we find solutions on a Schwarzschild black hole background. We

will begin by determining the field for stationary black holes and subsequently intro-

duce a perturbation to the background solution in terms of the small velocity. In the

perturbation limit the correction to the khronon field will then be solved. Lastly, we

will identify an observable of the theory known as a sensitivity parameter. We will

find that this parameter is strongly suppressed indicating that slowly moving black

holes behave like their GR counterpart.

3
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Chapter 2

Analysis

2.1 Khrono-Metric Model

The nature of breaking Lorentz invariance can be thought of as creating a foliation

in space-time. The gradient of this foliation defines the preferred flow of time. In

general relativity, this foliation would be viewed as spacelike surfaces, so that the

preferred flow is in the time direction Figure.1a. In Hořava gravity where space and

time are no longer on equal footing one can imagine the foliations as bending and

flexing so that the preferred time direction is no longer purely in the time coordinate

direction Figure.1b.

The foliation is described by the field ϕ, the khronon scalar field. We define a

vector uµ so that it points along the preferred time direction1:

uµ ≡ ∂µϕ√
∂νϕ∂νϕ

. (2.1.1)

1We use the metric signature (+,−,−,−).

4
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(b) Khronon field with perturbation

Figure 1: Hořava gravity foliations: Khronon field with and without perturbations.

This vector, which we will refer to as aether, is invariant under the re-parametrization

of the khronon ϕ → f(ϕ), which is imposed as the symmetry of the model. This

implementation is very similar to that of Einstein-Aether theory which involves just

the implementation of a unit norm vector field but does not require it to be derived

from some scalar field as we have done above. If we add the khronon to the classical

action for general relativity at the lowest order in derivatives we get:

S =
−M2

2

∫
d4x

√
−g
(
R + α(uµ∇µuν)

2 + β(∇µu
ν)(∇νu

µ) + λ(∇µu
µ)2
)

(2.1.2)

One might question why the lowest order terms don’t contain the vector uµ without

derivatives. This is because the vector uµ was constructed in such a way that its

norm uµuµ = 1. As a result, any terms that contain different orders of uµ without

derivatives produce a constant, which can be ignored in the action.

From this point, we wish to simplify the action and metric to aid in analyzing

the physics of the problem. The first step is to consider the limit where the coupling

parameters are small, α, β, λ≪ 1. In this limit, the Einstein field equations will have

a contribution by the khronon field of T
(ϕ)
µ,ν scaled by factors of α, β, λ. Since these

5
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coupling parameters are small the Einstein field equation, to leading order, looks like

what is obtained in standard general relativity. We are then able to choose the metric

to be those found in general relativity and to leading order ignore the back reaction

of the khronon field on the metric. This limit is referred to as the decoupling limit of

the theory.

In the decoupling limit of the theory we will choose to solve the khronon field in

the Schwarzschild metric which has the form of:

ds2 =

(
1− 1

r

)
dt2 −

(
1− 1

r

)−1

dr2 − r2 dΩ2 , (2.1.3)

where we have chosen to set the Schwarzschild radius, rs = 2GM = 1 and dΩ2 is the

metric on a unit 2-sphere. For the metric to be non-singular at the Schwarzschild

radius we convert to Eddington-Finkelstein coordinates with v = t + r + log(r − 1)

so that the metric takes the form:

ds2 =

(
1− 1

r

)
dv2 − 2 dr dv − r2 dΩ2 . (2.1.4)

Lastly, it will be convenient to work in coordinates with inverse radius, ξ = 1/r,

which gives the final form of the metric as:

ds2 = (1− ξ) dv2 +
2

ξ2
dξ dv − 1

ξ2
dΩ2 (2.1.5)

Now, we will simplify the action of the khronon field to reduce the number of

6
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terms. First, we introduce the following definitions:

uµν ≡ ∂µuν − ∂νuµ (2.1.6)

cχ =

√
β + λ

α
, (2.1.7)

Then, the curl of the khronon vector field should be zero as it is a hypersurface

orthogonal vector:

Curl(u) = wµ = ϵµνρσu
ν∇ρuσ = 0. (2.1.8)

Using this, consider the inner product of the vector wµ with itself:

wµw
µ = (ϵµν

′ρ′σ′
uν′∇ρ′uσ′)(ϵµνρσu

ν∇ρuσ) = (uν∇νuµ)
2 − 1

2
uµνu

µν = 0. (2.1.9)

Equation (2.1.9) implies:

(uν∇νuµ)
2 =

1

2
uµνu

µν . (2.1.10)

Equation (2.1.10) is used to replace the term with the coefficient α. The term with

coefficient β is re-written by integrating by parts the covariant derivative, commuting

the two covariant derivatives, and integrating by parts again:

β

∫
d4x

√
−g∇µu

ν∇νu
µ = β

∫
d4x

√
−g(∇νu

ν)2 −Rµνu
µuν . (2.1.11)

In the Schwarzschild metric the Ricci tensor is zero, allowing us to combine the λ, β

terms to re-write the khronon contribution to the action as:

Sϕ = −αM2

∫
d4x

√
−g
(
1

4
uµνu

µν +
c2χ
2
(∇µu

µ)2
)
. (2.1.12)

7
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The coefficient cχ describes the speed of the khronon modes and is colloquially referred

to as the “sound speed” of the khronon field.

2.2 Background Solution

2.2.1 Khronon with Stationary Black Hole

In this section we find solutions for the khronon field in the presence of a static

black hole following the approach of [3]. To do so, we derive the equations of motion

from the khronon action, identify the boundary conditions, and numerically solve the

equations of motion to obtain solutions for the khronon.

Starting from the action for the khronon field as given in (2.1.12), we find its

variation with respect to the khronon field. First note:

δuµ =
1√
X
(∇νδϕ− uνuµ∇µδϕ), (2.2.1)

where X = ∇µϕ∇µϕ. The variation of the Lagrangian after integration by parts and

requiring that the variation at the boundary goes to zero gives:

δL ≈ δSϕ

δuν
δuν . (2.2.2)

Inserting the variation of the vector field and integrating by parts gives:

δL ≈
[
∇λ

(
δλν − uλuν√

X

δSϕ

δuν

)]
δϕ. (2.2.3)

Therefore, we can write the equations of motion for the khronon field as a current

8
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conservation:

∇λJ
λ = 0, (2.2.4)

where:

Jλ =
δλν − uλuν√

X

δSϕ

δuν
. (2.2.5)

Next, we notice two things. Firstly, we can expand (2.2.4) in Schwarzschild coordi-

nates to get:

∂tJ
t + ∂rJ

r = −2Jr

r
(2.2.6)

where we make use of the spherical symmetry of the problem to get Jθ = Jϕ = 0.

Since the field is static, we also have that J t = 0. Treating the component of Jr as

an independent variable we can integrate (2.2.6) to get:

Jr =
C1

r2
. (2.2.7)

Secondly, we expand the explicit form of Jr from the exact form derived in (2.2.5) to

get:

Jr =
1√
X

[
urut

(
∂2rut +

2

r
∂rut

)
− c2χu

2
t∂r

(
∂ru

r +
2

r
ur
)]

(2.2.8)

we can then equate both (2.2.7) and (2.2.8). Using the fact that u should have a unit

norm we can write:

u2t = (ur)2 − 1

r
+ 1 = (ur)2 − ξ + 1 (2.2.9)

to replace ut in terms of ur. The upper and lower indices of ut and u
r were chosen so

that in Eddington-Finkelstein coordinates the coordinates remain regular and coincide

9
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with the Schwarzschild coordinates:

ut|Sch = uv|EF, ur|Sch = ur|EF (2.2.10)

Then, by considering the field at large radius we compare the left and right hand side

of the equation and identify that ur has the form of:

ur =
C1

2c2χ
+
C2

r2
+ C3r. (2.2.11)

If we enforce that the radial component of the aether vanishes at infinity we get that

C1 = C3 = 0 and we can then see that Jr in fact satisfies a stronger condition Jr = 0.

Lastly, we will introduce the notation:

U ≡ ut, V ≡ ur (2.2.12)

which allows us to write the equations of motion in a compact form:

U ′′

U
− c2χ

(
V ′′

V
+

2

ξ2

)
= 0, (2.2.13)

where primes denote differentiation with respect to ξ. After substituting V for U

using the unit norm (2.2.9) gives:

U ′′ = −
c2χU

U2(1− c2χ)− 1 + ξ

[
−(U ′)2 +

(UU ′ + 1
2
)2

U2 − 1 + ξ
+

2(U2 − 1 + ξ)

ξ2

]
(2.2.14)

Let us now consider the boundary conditions for the function U . At spatial infinity

the effect of the black hole should become negligible, causing the vector field to look

10
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like it is purely time-like, uµ = (1, 0, 0, 0). In our new notation, we are expecting the

vector to be purely time-pointing, or U(ξ = 0) = 1. Since we wish to find solutions

that are stationary and spherically symmetric the above condition tells us that ϕ

should have no dependence on θ or ϕ, and only change with r and go to t at spatial

infinity. Putting these conditions together we get that ϕ will have the form of:

ϕ̄ = t+ f(r) (2.2.15)

where f(r) → 0 as r → ∞

Lastly, return to the equation of motion (2.2.14), the differential equation has two

singularities, one at ξ = 0, and another at ξ = ξc defined by:

(1− c2χ)U
2(ξc) = 1− ξc. (2.2.16)

This point represents the horizon for khronon perturbations, or the “sound horizon”.

Requiring the solution to be regular at these two singular points supplies us with

the additional boundary conditions. For instance at ξc the term inside of the square

brackets in (2.2.14) must vanish. This constraint defines the form of U ′(ξc):

U ′(ξc) =
1

2

(
− 1

1− ξc

√
1− ξc
1− c2χ

±

√
c4χ(8 + ξc(9ξc − 16))− c2χξ

2
c

(1− c2χ)
2(ξc − 1)ξ2c

)
(2.2.17)

The negative sign is chosen so that the expression is well defined for cχ → 1. Suppres-

sion of the singularity at ξ = 0 is then used as a condition in the numerical procedure

to obtain the correct solution of U . We now move to solving this differential equation

numerically.

11
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Figure 2: Background field solutions
Solutions of U for different values of cχ. The colored points represent the position of
the sound horizon for the corresponding colored line. The points where the curve
first crosses zero mark the position of the universal horizon ξ⋆. Note that ξ⋆ and ξc

both approach 4/3, as cχ → ∞.

2.2.2 Stationary Black Hole Solution

We now wish to find numerical solutions to the equation of motion for the khronon

field that satisfies the boundary conditions described above. We have the freedom to

choose which point to begin solving the differential equation. In this thesis, we choose

the point ξc so as to easily enforce a non-singular behaviour. However, for a given cχ

the value of U(ξc) depends on ξc which is not known ahead of time. To account for

this in an iterative manner a value of ξc is guessed which defines U(ξc), and U ′(ξc)

and the differential equation is solved towards ξ = 0. This solution is checked to see if

it satisfies the boundary condition at the origin and based on how well the condition

is satisfied a new value of ξc is guessed. The process of making better guesses of ξc

12
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to satisfy a boundary condition at another point is called a “shooting method”. The

process is repeated until a satisfactory precision is reached.

In practice, there are some minor complications that need to be considered during

the shooting method. First, because of the singularity at ξc, shooting from this

point, even with defining U(ξc) to be finite the solution may diverge immediately

due to numerical inaccuracies. To account for this divergence the shooting method is

actually done at a point U(ξc − ϵ) as an initial condition. Secondly, the solution at

ξ = 0 is very sensitive to the initial guess and so the function generally diverges outside

of numerical precision before reaching a distance of ϵ. The approach to dealing with

this divergence was to use a nested iterative approach; the solution solved backward

from the point U(ξc) was matched with the ξ = 0 boundary condition evaluated at

point ϵ = 0.1 away. Then, using this final result as an initial guess the value of ϵ was

decreased until it reached a sufficient minimal size (for example matching at each step

of [0.1, 0.09, 0.08, · · · , 0.01]). Once a solution is found that sufficiently satisfies the

boundary condition towards spatial infinity (ξ = 0). The solution was analytically

continued by Taylor expansion to the point ξc + ϵ and the differential equation was

also solved for ξ > ξc.

We now have sufficient solutions for the spherically symmetric static black holes

and their results are shown in Figure.2. Notice that each solution of Figure.2 crosses

through 0. This point is often called the universal horizon and labelled ξ⋆. It is

critical as at this point the foliation sheets become sheets of constant radius, and so

the preferred time direction points inwards to the black hole. The point was critical to

realizing black hole singularities in Khrono-metric theory still remain hidden despite

the infinite speeds allowed.

13
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2.3 Moving Black Hole

Now having solutions for the static spherically symmetric black holes we can move to

creating a set of solutions of slowly moving black holes. To create moving black hole

solutions, we will take the khronon solutions from the static black holes and add a

perturbation:

ϕ = ϕ̄+ v Ξ(r, θ, φ). (2.3.1)

Where the perturbation parameter is in terms of v. To solve for Ξ we will move to

the frame where the black hole is static and the khronon field is tilted. We will use

this frame to determine the form of the tilt at spatial infinity. Then, after deriving

the equations of motion that describe the perturbed khronon field we will identify a

number of points that have singular behaviour. At these points we will enforce that

the normalized khronon field gradient (2.1.1) remains continuous and finite which

will provide a number of constraints on the allowed solutions. We will verify that

the number of constraints is just enough to uniquely define the solution. Numerical

methods will then be employed to solve the khronon field.

2.3.1 Boundary Conditions at Infinity

We now seek to determine the boundary condition for the perturbation of the scalar

field in the case of a slowly moving black hole. Consider first the case of a moving

black hole in the frame of the khronon. In this view, at spatial infinity, the vector

field should still look like uµ = (1, 0, 0, 0). However, it is easier to view the setup from

the perspective of the black hole being at rest with the khronon field being tilted

in the direction opposite to that of the velocity. Now, at spatial infinity, there will

14
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be a radial component to the vector uµ proportional to the velocity and the angle

made with the direction of the velocity. For an intuitive picture of this tilt consider

Figure.3.

Given the symmetries of the problem, it is natural to assume that the solution can

be decomposed into a radial function and an angular function. The angular function

is decomposed into spherical harmonics:

Ξ =
∑
m,ℓ

cY m
ℓ (θ, φ)χmℓ(ξ). (2.3.2)

The spatial components of the gradient of the khronon field at spatial infinity based

on our required boundary condition have the form of:

ui = −vi, (2.3.3)

which in terms of spherical coordinates would look like:

ur(r → ∞) = −v cos(θ). (2.3.4)

When these forms are compared to the spherical harmonic ansatz of χ we infer that

only the dipolar spherical harmonic aligns with the ansatz and that the radial com-

ponent must scale like r. Thus, χ should look like:

χ = vrY (θ) =
v

ξ
cos θ (2.3.5)

where we have taken the configuration independent of the azimuthal angle φ. The
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x

t

vi uµ

vµ

vi uµ

vµ

vi uµ

vµ

(a) Moving black hole with stationary
khronon

x

t

uµ

vµ

uµ

vµ

uµ

vµ

(b) Stationary black hole with tilted khronon
field

Figure 3: Moving black hole frames of reference.

2-sphere Laplacian acts on Ξ like:

∆S(2)χ =
v

ξ
∆S(2)Y

1
1 = −2

v

ξ
Y 1
1 = −2χ. (2.3.6)

2.3.2 Equations of Motion

We now establish the equations of motions that describe the perturbation on top

of the background solution. To develop these solutions, we simplify the action by

aligning the time coordinate with the background khronon field:

τ = ϕ̄ = v + f(ξ). (2.3.7)
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When taking the total derivative of the new time coordinate we isolate for dv:

dv = dτ − f ′(ξ) dξ (2.3.8)

dv2 = dτ 2 + (f ′(ξ))2 dξ2 − 2f ′(ξ) dξ dτ ,

however, we now need to identify f ′(ξ) in terms of U, V . To do so, notice the conve-

nient relationship because:

uξ =
∂ξϕ̄√
X

=
∂ξf(ξ)√

X
, (2.3.9)

and

uv =
∂vϕ̄√
X

=
1√
X
, (2.3.10)

we get that:

f ′(ξ) = ∂ξf(ξ) =
uξ
uv
. (2.3.11)

We can expand uξ and uv by coordinate transforms to get the following:

uξ = [∂ξx
r · ∂rϕ̄+ ∂ξx

t∂tϕ̄]/
√
X =

V + U

ξ2(1− ξ)
, (2.3.12)

and

uv = [∂vx
r · ∂rϕ̄+ ∂rx

t∂tϕ̄]/
√
X = U, (2.3.13)

so:

f ′(ξ) =
uξ
uv

=
−V − U

ξ2(ξ − 1)U
. (2.3.14)

17

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.A.Sc. Thesis – A. J. Kovachik; McMaster University – Physics and Astronomy

The new time coordinate is now explicitly defined in terms of U V and ξ, allowing

the metric to be written in the form of:

ds2 = (1− ξ) dτ 2 − 2V

ξ2U
dτ dξ − 1

ξ4U2
dξ2 − 1

ξ2
dΩ2 . (2.3.15)

It is now a somewhat long, but straightforward process to incorporate these ansatz

for the perturbed field (2.3.1). We focus on the first spherical harmonic (2.3.5) and

collect terms of quadratic order in χ(ξ) to get

S = 2πM2α

∫
dτdξ

(
A(ξ)(χ′′)2 +B(ξ)(χ′)2 + C(ξ)χ2

)
. (2.3.16)

The coefficients read:

A(ξ) =U4V 2ξ4 − c2χU
6ξ4 (2.3.17)

B(ξ) = 2ξ2U2V 2 − ξ4U4V V ′′ − ξ4U5U ′′ − 4ξ4U3V 2U ′′ − 2ξ4U2V 2U ′2

− 4ξ3U4V V ′ − 8ξ3U3V 2U ′ − 4ξ4U3V U ′V ′ − 2ξ2U4V 2

− c2χ(4ξ
2U4 − 3ξ4U4V V ′′ − 3ξ4U5U ′′ − 6ξ4U4U ′2 − 12ξ3U5U ′ + 6ξ2U4V 2)

(2.3.18)

C(ξ) = 2[−ξ2U3U ′′ − ξ2UV 2U ′′ − ξ2U2U ′2 − 2ξUV 2U ′ − 2ξ2UV U ′V ′

+ c2χ(ξ
2U2V V ′′ + ξ2U3U ′′ + 3ξ2U2U ′2 + 10ξU3U ′ + 2U4 − 2U2V 2 − 2U2)]

(2.3.19)

The action (2.3.16) gives equations of motion for the perturbation as:

(Aχ′′)′′ − (Bχ′)′ + Cχ = 0. (2.3.20)
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2.3.3 Singular Behaviour in Equations of Motion

With an equation of motion derived for χ it is pertinent to determine whether it

is well behaved, and if not, to identify where special care needs to be given. We

will consider points where the equations of motions become singular, and find the

conditions that need to be placed on χ so that the physical observable of the theory

uµ is non-singular.

From (2.3.17) we see that A(ξ) vanishes at ξ = 0, ξc, ξ⋆. If B(ξ) and C(ξ) had

zeroes of order larger than A(ξ) then there would be no issue. However, a Taylor

series analysis of these terms at these points leads to the orders of zeroes of various

functions shown in Table.1.

(ξ − ξ0)
αX αA αB αC

ξ0 = 0 4 2 1
ξ0 = ξc 1 0 0
ξ0 = ξ⋆ 4 2 1

Table 1: The power of the zeroes for each coefficient at each singular point. Here,
αX represents the lowest order power appearing in the expansion of the X coefficient
around the point ξ0. We see that the zeroes of A are always stronger than those of

B or C indicating they are true singularities of the equation of motion.

The conclusion is that the points ξ = 0, ξc, ξ⋆ represent true singularities of the

equation (2.3.20). To account for this we will have to consider the form of χ at each

of these singular points. For instance at ξ = 0 we have already determined that

the solution should behave like 1
ξ
in (2.3.5). At ξc and ξ⋆ the gradient vector of the

perturbation δuµ should be non-singular.

To find the conditions on the vector we first find the variation of the vector uµ then

insert a series expansion of χ around the singular points and find the minimal power
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acceptable for χ so that the vector components do not diverge. We now consider the

variation of the foliation leaves in the Eddington-Finkelstein coordinates:

δuµ = δ

(
∂µϕ√
∂λϕ∂λϕ

)

=
∂µδϕ√
∂λϕ∂λϕ

− ∂νδϕ∂νϕ
∂µϕ

(∂λϕ∂λϕ)
3
2

(2.3.21)

here we take the perturbation of ϕ to be the scalar field Ξ and group terms of the

original uµ:

δuµ =
∂νΞ(ξ, θ)√
∂λϕ̄∂λϕ̄

(δµν − ūν ū
µ). (2.3.22)

Where overbars indicate they represent the background field solutions. The square

root term can be expanded explicitly in Eddington-Finkelstein coordinates using the

same trick as (2.3.9) and (2.3.10):

√
∂λϕ̄∂λϕ̄ =

1

U
. (2.3.23)

Next, we specify for the cases of µ = ξ, v, θ, φ:

δuξ = −U3ξ4∂ξΞ(ξ, θ) = −U3ξ4∂ξχ(ξ) cos θ (2.3.24)

δuv = V U2ξ2∂ξΞ(ξ, θ) = V U2ξ2∂ξχ(ξ) cos θ,

δuθ = U∂θΞ(ξ, θ) = U∂θχ(ξ) cos θ,

δuϕ = U∂ϕΞ(ξ, θ) = 0.
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χ(ξ − ξ0) Minimal power

ξ0 = 0 ξ−1

ξ0 = ξc (ξ − ξc)
0

ξ0 = ξ⋆ (ξ − ξ⋆)
−1

Table 2: Minimal power expansion of perturbed khronon field so that the
normalized gradient of the foliation remains non-singular.

Then, we can write the radial component of χ as a Taylor series:

χ(ξ) = (ξ − ξ0)
q

∞∑
k=0

ck(ξ − ξ0)
k. (2.3.25)

This has a partial derivative with respect to ξ of:

∂ξχ(ξ) =
∞∑
k=0

ck(k + q)(ξ − ξ0)
k+q−1 (2.3.26)

Let us first consider ξ0 = ξ⋆. If we insert this series expansion of χ into equation

(2.3.24) and taking into account that U is proportional to ξ − ξ⋆ around ξ⋆ we get

that around χ near ξ⋆ the perturbation χ can diverge at most at order (ξ − ξ⋆)
−1

At spatial infinity, we only permit powers greater than ξ−1 as this corresponds

to an order of r which fits with the model of a moving black hole when viewed at

infinity:

χ(r) ≈ vr cos θ (2.3.27)

Finally, at ξ = ξc the perturbation χ must diverge no faster that (ξ − ξc)
0.

The results of the minimal allowed power of χ such that the solutions remain finite

are summarized in Table.2.

21

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.A.Sc. Thesis – A. J. Kovachik; McMaster University – Physics and Astronomy

It is also prudent to consider the behaviour of the khronon stress-energy tensor

through the regime we are interested in. Particularly we would expect that the stress

energy tensor through this regime should be finite down to the universal horizon. If

the stress energy tensor was singular at any point then we should also reject any

solutions which give this behaviour. This analysis is performed in Appendix.A.1 but

does not yield any extra constraints. In fact, we find that once the conditions listed

in Table.2 are satisfied, the stress-energy tensor is regular everywhere at ξ < ξ⋆ and

vanishes at ξ = ξ⋆.

2.3.4 Frobenius Analysis

We have just determined the forms of χ that are allowed so that the physical ob-

servable of the theory uµ remains finite. The goal now turns to finding solutions of

χ. Still, we will not be able to analytically solve the equations of motions and will

need to solve them numerically. However, this requires having boundary conditions.

To find the boundary conditions, we will consider the forms of χ via the Frobenius

around the points 0, ξc, ξ⋆. The Frobenius method will provide us with the linearly

independent series expansions of χ that satisfy the equations of motion.

We shall see that each expansion point will provide 4 unique solutions as would

be expected from a 4th order equation. However, at each point, one solution will be

rejected by not having a power incompatible with Table.2. This provides us with three

conditions which together with normalization at infinity are sufficient to uniquely fix

the solution of the linear fourth-order equation (2.3.20).

Applying general theorems to equation (2.3.20) we see that if A(ξ) has zeroes then

the solution may have poles or a branch cut. At every zero of A, ξ = 0, ξc, ξ⋆, we
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substitute the solution in the form of χ ∝ (ξ − ξ0)
λ and expand the equation into

Taylor series. Requiring the leading zeroes to vanish provides an equation for λ. We

will explicitly show the calculation for ξ = 0; the calculations for ξ = ξc, ξ = ξ⋆ are

analogous. We take a series expansion of various coefficients in (2.3.20) around ξ = 0

and obtain:

0 =λ(λ− 1)(λ− 2)(λ− 3)ξλ−4 +R1λ(λ− 1)(λ− 2)ξλ−3

+(R2 +R3)λ(λ− 1)ξλ−2 +R4λξ
λ−1 +R5ξ

λ,

where

R1 = lim
ξ→0

2A′

A
ξ = 8 (2.3.28)

R2 = lim
ξ→0

A′′

A
ξ2 = 12 (2.3.29)

R3 = lim
ξ→0

−B
A
ξ2 = −4 (2.3.30)

R4 = lim
ξ→0

−B′

A
ξ3 = −8 (2.3.31)

R5 = lim
ξ→0

C

A
ξ4 = 0. (2.3.32)

This gives rise to the set of solutions:

λ
(0)
1 = −3, λ

(0)
2 = −1, λ

(0)
3 = 0, λ

(0)
4 = 2. (2.3.33)

We reject the solution of λ
(0)
4 as its power is less than the minimum power we found

23

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.A.Sc. Thesis – A. J. Kovachik; McMaster University – Physics and Astronomy

previously. Next, we can consider the case of ξ → ξc which has solutions of:

λ
(c)
1 = 0, λ

(c)
2 = 1, λ

(c)
3 = 1, λ

(c)
4 = 2. (2.3.34)

The repeated solution of λ = 1 would suggest a logarithmic term, however, as the

solution needs to be analytic through the sound horizon this term is rejected. Lastly,

in the case of ξ → ξ⋆ we get:

λ
(⋆)
1 = −1, λ

(⋆)
2 = 0, λ

(⋆)
3 = −1

2
+

√
2

ξ2⋆U
′(ξ⋆)2

+
1

4
, λ

(⋆)
4 = −1

2
−

√
2

ξ2⋆U
′(ξ⋆)2

+
1

4
.

(2.3.35)

In these solutions, we find that λ
(⋆)
4 ≤ −1 so it also must be rejected according to

Table.2.

These results represent the starting power of a series expansion which makes up

linearly independent solutions at their expansion points. A summary of these powers

are in Table.3.

Soln 1 begins Soln 2 begins Soln 3 begins Soln 4 begins

ξ = 0 �
�ξ−3 ξ−1 1 ξ2

ξ = ξc 1 (ξ − ξc) (ξ − ξc)
2

������log(ξ − ξc)

ξ = ξ⋆ (ξ − ξ⋆)
−1 1 (ξ − ξ⋆)

λ
(⋆)
3 ������

(ξ − ξ⋆)
λ
(⋆)
4

Table 3: Behaviour of linearly independent solutions of the perturbed khronon field
at the 3 singular points of the equation. The powers striked-out are those which are

rejected to maintain finite vector components uµ.
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2.3.5 Numerical solutions

Having worked out the behaviour of various solutions of the singular points, we now

describe our strategy for solving equation (2.3.20) numerically. At every boundary

point, we pick up solutions allowed by the regularity conditions. This gives us 9

linearly independent solutions in total.

We integrate the solutions from the boundary points and match up to 3rd deriva-

tives of the mid-points of the intervals [0, ξc] and [ξc, ξ⋆]. This gives 8 equations for

9 unknowns. We are then left with a single free parameter which we determine by

setting the coefficient of the ξ−1 solutions at ξ = 0 to be 1. This normalization choice

corresponds to the choice of black hole velocity.

For numerical integration, we need to step away from the boundary points by a

small ϵ ≈ 10−3. For this purpose, we find the Taylor series of the solutions at these

points up to 3rd order from the Taylor expansion of the equation (2.3.20). We note

that since the leading powers of some solutions listed in Table.3 differ by integers, we

have to include logarithms in the Taylor expansion. For example at ξ = 0 we get:

χ(0)
α1,α2,α3

=
α1

ξ
+ α2 + h1(α1, α2, α3)ξ + α3ξ

2 + h2(α1, α2, α3)ξ
3 + · · ·

+ log(ξ)(g1(α1, α2, α3) + g2(α1, α2, α3)ξ + · · · ). (2.3.36)

Where αi corresponds to the contribution of each of the 3 linearly independent solu-

tions. It is easy to imagine the form of χ at ξc and ξ⋆ with the same setup. Using these

expansions at each boundary point we solve the differential equation 3 times. Each

time we set all but 1 of the primary coefficients to zero and the remaining coefficient
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we set to 1. For example, around 0 we would solve with the initial condition that:

χ
(0)
1,0,0(ϵ) =

1

ϵ
+ h1(1, 0, 0)ϵ+ h2(1, 0, 0)ϵ

3 + · · ·

+ log(ϵ)(g1(1, 0, 0) + g2(1, 0, 0)ϵ+ · · · ). (2.3.37)

χ
(0)
0,1,0 =1 + h1(0, 1, 0)ϵ+ h2(0, 1, 0)ϵ

3 · · ·

+ log(ϵ)(g1(0, 1, 0) + g2(0, 1, 0)ϵ). (2.3.38)

χ
(0)
0,0,1 =h1(0, 0, 1)ϵ+ ϵ2 + h2(0, 0, 1)ϵ

3 · · ·

+ log(ϵ)(g1(0, 0, 1) + g2(0, 0, 1)ϵ). (2.3.39)

The equations are solved up to the midpoints between the boundaries. The true

solution is taken to be a linear combination of these various numerical solutions. To

find the contribution of each solution we require that the final solution be continuous

up to the 3rd derivative of χ. If the midpoint between ξ = 0 and ξ = ξc is m1 then

the set of constraints are:

α1χ
(0)
1,0,0(m1) + α2χ

(0)
0,1,0(m1) + α3χ

(0)
0,0,1(m1) = α4χ

(c)
1,0,0(m1) + α5χ

(c)
0,1,0(m1) + α6χ

(c)
0,0,1(m1)

α1χ̇
(0)
1,0,0(m1) + α2χ̇

(0)
0,2,0(m1) + α3χ̇

(0)
0,0,1(m1) = α4χ̇

(c)
1,0,0(m1) + α5χ̇

(c)
0,1,0(m1) + α6χ̇

(c)
0,0,1(m1)

α1χ̈
(0)
1,0,0(m1) + α2χ̈

(0)
0,1,0(m1) + α3χ̈

(0)
0,0,1(m1) = α4χ̈

(c)
1,0,0(m1) + α5χ̈

(c)
0,1,0(m1) + α6χ̈

(c)
0,0,1(m1)

α1
...
χ

(0)
1,0,0(m1) + α2

...
χ

(0)
0,1,0(m1) + α3

...
χ

(0)
0,0,1(m1) = α4

...
χ

(c)
1,0,0(m1) + α5

...
χ

(c)
0,1,0(m1) + α6

...
χ

(c)
0,0,1(m1)

(2.3.40)
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and similarly, if the middle point between ξc and ξ⋆ is labeled m2 then we get 4 more

equations of the form:

α7χ
(⋆)
1,0,0(m2) + α8χ

(⋆)
0,1,0(m2) + α9χ

(⋆)
0,0,1(m2) = α4χ

(c)
1,0,0(m2) + α5χ

(c)
0,1,0(m2) + α6χ

(c)
0,0,1(m2)

α7χ̇
(⋆)
1,0,0(m2) + α8χ̇

(⋆)
0,1,0(m2) + α9χ̇

(⋆)
0,0,1(m2) = α4χ̇

(c)
1,0,0(m2) + α5χ̇

(c)
0,1,0(m2) + α6χ̇

(c)
0,0,1(m2)

α7χ̈
(⋆)
1,0,0(m2) + α8χ̈

(⋆)
0,1,0(m2) + α9χ̈

(⋆)
0,0,1(m3) = α4χ̈

(c)
1,0,0(m2) + α5χ̈

(c)
0,1,0(m2) + α6χ̈

(c)
0,0,1(m2)

α7
...
χ

(⋆)
1,0,0(m2) + α8

...
χ

(⋆)
0,1,0(m2) + α9

...
χ

(⋆)
0,0,1(m2) = α4

...
χ

(c)
1,0,0(m2) + α5

...
χ

(c)
0,1,0(m2) + α6

...
χ

(c)
0,0,1(m2)

(2.3.41)

These 8 equations will reduce the 9 free parameters (α1, · · · , α9) to a single free

parameter. This final parameter is constrained by normalizing all of the solutions to

having the same velocity at spatial infinity, which corresponds to normalizing α1 = 1

as this corresponds to the spatial asymptotic (2.3.5).

This summarizes the bulk of the procedure in solving solutions to χ, what follows

will be some subtleties that are encountered when numerically solving and the steps

taken to avoid numerical errors.

The first issue was that despite choosing only the solutions we wanted when start-

ing the shooting method, as numerical errors add up when moving towards the middle

points m1 and m2 the solution can begin to diverge in an undesirable way. To account

for this, a new variable was introduced:

χ̃ = χ(ξ − ξ⋆)ξ, (2.3.42)

so that χ̃ would not be divergent at the boundaries. This requires modifying the

differential equation and redefining the coefficients A, B, and C so that they absorb
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the factors of (ξ − ξ⋆) and ξ. Then, after these solutions are solved we convert back

to the regular expression for χ.

Secondly, note that B(ξ) appears in in the action (2.3.20) as B′(ξ), which already

contains order of U (3). As we will need to take a Taylor series at an ϵ away for the

boundary conditions in χ we will need at least 1 more order in derivative, i.e. U (4).

However, when numerically solving the background solutions at the boundary only

the third-order derivative is calculated, so the fourth-order derivative at boundaries

may be inaccurate or discontinuous as they are calculated from discrete values. In

Appendix.B (Figure.7) up to 4th order in U derivatives are displayed to assure the

reader that the extra derivative is well defined and is behaving in a smooth and

continuous manner.

Lastly, to save on computation time the functions A, B, C are evaluated and

interpolated on a grid of points and used as a value look-up function when solving

the differential equation. Again, to show that these functions are behaving properly

some solutions to A, B, C are in Appendix.B (Figure.9) are shown.

2.3.6 Numerical Results

With the technical details out of the way, we are now able to appreciate the resulting

solutions of χ which are displayed in Figure.4. We notice that the trend of the lines is

smooth and well-behaved. Secondly, recall that although the values of χ are divergent

the values coordinates of uµ are not. In fact, we desired that χ would diverge at spatial

infinity like 1/ξ which we can see in the figure. As well, we can see that the divergence

at ξ⋆ becomes suppressed for larger values of cχ.

From χ the perturbations on the aether field can also be calculated and are shown
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Figure 4: Perturbed field solutions
Solutions of χ for different values of cχ.

in Figure.5; at spatial infinity, δur is growing linearly and δuv goes to zero. This

matches with the intuition developed earlier that the observer at spatial infinity would

see the aether field tilted in the radial direction of the black hole. There is also a point

where the perturbation of the aether is maximized for both the v and θ components.

Lastly, we note that there is uncertainty about the continuation of the solutions

inside of the universal horizon. As the solutions at the universal horizon are non-

integer powers. In fact, this behaviour was predicted by [3]. Perhaps it is the case

that the solution must be solved internally and matched by boundary conditions at

the universal horizon.

2.3.7 Limiting Case of Infinite Khronon Sound Speed

It is instructive to consider the limit cχ = ∞. As we will see in this case the differential

equation for χ greatly simplifies. Comparing the solution in this limit with our general

29

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.A.Sc. Thesis – A. J. Kovachik; McMaster University – Physics and Astronomy

Figure 5: An example of the Aether components perturbation for the solution of
cχ = 2, θ = π/8. To make the scales comparable δur was scaled by a factor of 1.5,

δuv by a factor of 10, and δuθ by a factor of 5.

numerical solutions allows us to cross-check our results.

Reading off of (2.2.2) it is easy to show that in the limit of the khronon sound

speed going to infinity the equations of motion take the form of:

∇λ

(
P λ
ν√
X
∇ν∇µu

µ

)
= 0, (2.3.43)

where P λ
ν is a projection operator:

P λ
ν = δλν − uλuν . (2.3.44)

The left two most operators look like a Laplacian projected on the foliation surfaces:

∆̃ = ∇λ
P λ
ν√
X
∇ν , (2.3.45)
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acting on a scalar:

Y = ∇µu
µ. (2.3.46)

Therefore, we can re-write the equations of motion as:

∆̃Y = 0. (2.3.47)

It is natural to assume that ∆̃, like the normal flat-space Laplacian, does not have

any zero modes. Then the previous equation implies that Y = 0:

∇µu
µ = 0. (2.3.48)

This can be solved for the unperturbed aether field to get a solution of:

U =

√
1− ξ +

27

256
ξ4. (2.3.49)

By perturbing equation (2.3.48) we get a 2nd order differential equation for the per-

turbed field χ:

(
−ξ4 + ξ5 − 27

256
ξ8
)
χ′′(ξ) +

(
3

2
ξ4 − 81

128
ξ7
)
χ′(ξ) + 2ξ2χ = 0. (2.3.50)

We again apply the Frobenius analysis to equation (2.3.50) and obtain a power-law

relationship displayed in Table.4. Now notice that in the limit cχ = ∞ we see that

ξc → ξ⋆ and the two singularities merge. Thus, we only get 2 boundary points each

with an order of 2. As earlier, since all of these roots are integer steps apart we must

also include logarithmic terms in case the solutions are degenerate. We find that the
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cχ → ∞ Soln 1 begins Soln 2 begins

ξ = 0 ξ−1 ξ2

ξ = ξ⋆ ��������
(ξ − ξ⋆)

−1−
√
2 (ξ − ξ⋆)

−1+
√
2

Table 4: Linearly independent solutions of the perturbed khronon field at the 2
singular points of the equation. The power striked-out are those which are rejected

to maintain finite vector components.

logarithmic term persists for both boundaries. Next, an identical matching procedure

is completed as before, however, now we only have 3 independent solutions. Matching

is still done at the midpoint boundary giving 2 constraints and the final parameter

is determined by normalization at a boundary condition. The limiting solution with

cχ → ∞ is easily included as we can normalize with the same condition as the general

solutions.

The solution with cχ = ∞ is shown in Figure.4 as the red line. We have checked

that it indeed represents the limit of solutions with finite cχ as the parameter increases.

2.4 Sensitivities

Now that we have a set of solutions to the khronon field for a moving black hole we

would like to find their observational signatures. To this end we turn to “sensitivities.”

These describe how the mass of a point object depends on its velocity with respect

to the preferred frame. We now develop the point particle view of the black hole and

determine how the sensitivity parameter matches solutions we previously found. The

action for a point particle may be written as:

Spp = −
∫

dτ m(uµv
µ), (2.4.1)
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where:

m = m0(1 + σ(1− uµvµ)). (2.4.2)

Here, σ describes the dependence of the mass on its velocity. Notice that in the case

where σ is zero, we obtain the classical description of a point particle.

In the point mass picture we assume that the khronon field is sourced by a point

mass very far away in its rest frame, then find perturbations of the khronon field to

leading order in coupling parameters:

ϕ = t+ |v||x| cos(θ) + δϕ. (2.4.3)

We will work with our original Lagrangian for the khronon field to derive the equations

of motion. However, we must now include a term sourced by the Ricci tensor which

was previously set to 0 when we were working the Schwarzschild metric (2.1.11). Now

we get a non-zero contribution localized on the point mass. Additionally, we must

consider the Lagrangian terms sourced by the sensitivity parameter.

These additions to the action give it the form of:

Sϕ = −M2

∫
d4x

√
−g
(
α

4
uµνu

µν +
β + λ

2
(∇µu

µ)2 − 1

2
βRµνu

µuν
)

−
∫

dτ m0(1 + σ(1− vµuµ))
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Within this action, we identify 3 separate Lagrangians:

Lorig = −
√
−gM2

(
α
1

4
uµνu

µν +
β + λ

2
(∇µu

µ)2
)
, (2.4.4)

Lricci =
√
−gM

2

2
βRµνu

µuν , (2.4.5)

Lsens = −mσδ(x)(1− v · u), (2.4.6)

In our case the point mass is in its own rest frame where the aether is tilted and so

v · u is just:

v · u = u0 =
√

1− u2i ≈
(
1− u2i

2

)
(2.4.7)

Lorig and Lricci need to be perturbed up to second-order, however since σ is already

small we only expand Lsens up to first order. These perturbation terms still containing

power of δϕ appears as:

δL(2)
orig = −M

2

2

[
− αvk∂kh00∆δϕ+ (β + λ)

(
(∆δϕ)2 + 2vk∂kh00∆δϕ

− vk∂khii∆δϕ+ 2vk∂ihki∆δϕ
)]

(2.4.8)

δL(2)
ricci =

M2

2
β
[
−vk∂khjj∆δϕ+ vk∂k∂i∂jhijδϕ

]
(2.4.9)

δL(1)
sens = −mσδ(x)vi∂iδϕ (2.4.10)

If we take the equations of motion from just δL(2)
orig and δL(2)

ricci we get

∆2δϕ(xi) =

(
α− λ− 3β

β + λ

)
vk∂k∆ϕnewt (2.4.11)
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where ϕnewt = − 2m
M2r

is the Newtonian potential which appears in the metric as:

h00 = 2ϕnewt, hij = 2δijϕnewt. (2.4.12)

The addition of sensitivity appears in the equations of motion as:

∆2δϕ(xi) =

(
α− λ− 3β

β + λ

)
vk∂k∆ϕnewt −

mσ

M2(β + λ)
vk∂kδ(x). (2.4.13)

We use the relationship for the inverse Laplacian acting on a delta function and

express the Newtonian potential in terms of radius:

∆−1δ(x) = − 1

4π

1

r
, ϕnewt = −Gm

r
, G =

1

8πM2
p

, (2.4.14)

So that the equation for the perturbed field becomes:

∆δϕ(xi) = − Gm

β + λ
(α− λ− 3β − 2σ) vk∂k

(
1

r

)
= Avk∂k

(
1

r

)
. (2.4.15)

Let:

R(xi) =
1

r
, R̃(ki) =

4π

k2
, (2.4.16)

then take the Fourier transform of both sides:

δ̃ϕ(ki) = −4πiAvkkk
1

k4
r. (2.4.17)

Return to spatial δϕ by:

δϕ(xi) = −4πiAvk

(2π)3

∫
d3k

kk
k4
eik⃗⃗̇r. (2.4.18)
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The integral evaluates to iπ2xk/|x|, so the expression of δϕ becomes:

δϕ(xi) =
1

2
A|v| cos θ, (2.4.19)

or

δϕ(xi) = − Gm

2(β + λ)
(α− λ− 3β − 2σ) |v| cos θ. (2.4.20)

Now, recall we previously worked with the ansatz that the khronon field existed

in a Schwarzschild background and perturbed it with the field χ which we solved

numerically:

φ = t+ f(r) + χ(r)|v| cos(θ). (2.4.21)

Comparing the two expressions for the field at asymptotic infinity (2.4.21)-(2.4.3) we

should find that the terms linear with velocity and constant in radius should match.

Before we can compare we have to make sure that to the leading order in Gm/r,

the metrics are the same. From this condition we identify that the perturbed field

needs to be changed into a metric with spherical coordinates, this change results in a

constant term added to the radius |x|cart → r|schw −Gm so we can just consider the

terms with velocity and a dipole. This gives:

− Gm

2(β + λ)
(α− λ− 3β − 2σ) + (r −Gm) = χ(r)near r → ∞, (2.4.22)

we now enforce the same normalization that was used earlier:

rs = 2Gm = 1. (2.4.23)

We saw earlier that the Taylor series of χ around spatial infinity will have the form
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of:

χ(r)near r → ∞ =
1

ξ
+ χ0 +O (ξ) = δ0r + χ0 +O

(
1

r

)
. (2.4.24)

So the sensitivity is:

σ = 2χ0(β + λ) +
α + λ− β

2
, (2.4.25)

Note that up to linear order, this agrees with a separate derivation from [12]. In

Figure.6 we list the values of χ0 for a wide range of numerical solutions plotted

against their cχ value. We see that the fit seems to be converging to:

χ0 = −1

4
+
C

c2χ
, (2.4.26)

for large values of cχ. The numerical value of C = 0.0248 ≪ 1. Although the fit

was only calculated using χ0 values from cχ > 1 we see in Figure.6 that the fit works

even for small cχ. However, as can be seen in Figure.5 for sufficiently small cχ this

relationship does break down. When this is put back into the sensitivity equation we

now get:

σ =
α− 2β

2
+ 2αC. (2.4.27)

Note, that if the fit is correct, then the parameter λ has dropped from this expression.

There are a few takeaways from this final form of the sensitivity parameter. Firstly,

the parameters α and β are the most constrained parameters with |β| ≤ 10−15 and

|α| ≤ 10−7 [13]. This means that for most choices of cχ the sensitivity parameter is

tiny. A small sensitivity means that it will be difficult to make observations of the

theory by considering mass measurements of moving versus stationary black holes.

This could be seen in both a positive and negative light. The optimistic view is that
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Figure 6: χ0 parameter fit
χ0 parameter from numerical solutions plotted against their corresponding cχ value.

The solid orange line depicts the line of best fit for the data.

this is another case where the gravitational regime of the theory matches general rel-

ativity while allowing for changes to the quantum theory. The pessimistic view would

be that the sensitivity parameter of a black hole will not give a testable prediction

of the theory. However, there is one potential benefit to having a small sensitivity

parameter: that the sensitivity appears in the calculation of gravitational waves of

orbiting binaries. Particularly, it appears as the difference between the sensitivity

parameters of the two objects. This would allow a black hole neutron star binary

could be a possible test of the theory. Indeed, the neutron star sensitivities are in

general non-zero and depend on their compactness [14]. There the black hole sen-

sitivity effectively being zero could maximise the difference. This calculation would

make a productive area of future research.
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cχ χ0

.1 1.3479
0.5 -0.1511
0.9 -0.2193
1.5 -0.2390
2.0 -0.2438
6.0 -0.2493
10.0 -0.2498

Table 5: Values of χ0 to show divergence of the coefficient towards small cχ.
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Chapter 3

Results

In this thesis the results of static spherically symmetric black holes in the decoupling

limit of Hořava gravity were briefly revisited. In doing so, we verified the results

claimed in earlier numerical calculations. These static black holes were used as the

basis for a perturbation approach to finding the moving black hole solutions.

Then, a physical picture for a slowly moving black hole were built. The black

hole would be given a small velocity v, but instead of sitting in the aether frame, the

equations are solved from the black holes rest frame. Then, the boundary conditions

were considered at spatial infinity where we expect a small change to flat space-time.

These boundary condition were matched with the perturbed khronon field can only

have a dipolar effect that at most scales like r.

The equations of motion were then developed giving a 4th order differential equa-

tion in terms of the perturbed khronon field and the background field. However,

we noticed that the differential equation was singular at various points. Analysis of

these singular points gave a set of conditions on the leading order of solutions al-

lowed. Then, using a series expansion at each of the singular points gave 4 possible
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solutions, and those that did not obey the conditions were rejected. Ultimately, three

solutions were rejected, which provided 3 constraints, leaving a single undefined coef-

ficient. Thus, normalization of these solutions at spatial infinity uniquely defined the

solutions.

The full solutions were created for the wide range of the models free parameter cχ,

and from these the perturbations in the aether vector field were also calculated. From

the perturbed khronon solutions a novel technique for developing sensitivity parame-

ters for slowly moving black holes were developed. Sensitivity parameters identify the

deviation of a point mass particle due to its velocity compared to classical expecta-

tions. The order of this sensitivity parameter is primarily controlled by the parameter

α. Within the physical constraints of the theory |α| ≤ 10−7. Thus, the sensitivity

parameters were found to be highly suppressed indicating that the deviations from

general relativity would be tiny and black holes would appear very similar to their

general relativity equivalents.

It is possible that these result may be useful in black hole neutron star binaries

where changes to gravitational wave signals appear as the difference between the

sensitivities of orbiting bodies. If the neutron star sensitivity is larger than the black

hole sensitivity small black hole sensitivity may maximize this difference
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Appendix A

Additional Calculations

A.1 Stress Energy Deviation

It is important to consider as well if the choice of allowed non-analytic solutions near

the universal horizon makes the stress-energy tensor singular. This would carry with

it significant consequences as the metric back reaction would also be singular, and

thus the perturbation expansion would not be properly expanded. To this end first

notice the perturbed khronon gradients uµ, u
ν were designed so that their behaviour

was non-singular, but χ(ξ) could be singular. However, the inclusion of non-analytic

solutions at the universal horizon means that with sufficient derivatives their be-

haviour could become singular. To make this point clear, consider the problematic

term of χ ∝ A(ξ − ξ⋆)
λ4 cos θ, and that near the horizon U ≈ (ξ − ξ⋆). Then, the
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perturbed khronon gradients (2.3.24) can be expressed as:

δ
(
uξ
)
= −A cos θξ4(ξ − ξ⋆)

λ4+2, (A.1.1)

δ(uv) = A cos θV ξ2(ξ − ξ⋆)
λ4+1, (A.1.2)

δ(uθ) = −A sin θ(ξ − ξ⋆)
λ4+1, (A.1.3)

δ(uϕ) = 0. (A.1.4)

As well, as it will make the rest of the calculation easier it is best to also include:

δ(uξ) = A cos θU2 (U + V )

1− ξ
∂ξχ(ξ, θ) = A cos θ

(U + V )

1− ξ
(ξ − ξ⋆)

λ4+1. (A.1.5)

Additionally, λ4 ∈ [0, 1] so we need to be concerned when we see 2 spatial derivatives

acting on uv, uθ, uξ. For inspecting the stress-energy tensor we follow the notation

used in [12]:

Jρ
µ ≡ λ(∇σu

σ)δρµ + β∇µu
ρ + αaµu

ρ, (A.1.6)

Æ ≡ γµν(∇ρJ
ρν − αaρ∇νuρ), (A.1.7)

γµν ≡ gµν − uµuν , (A.1.8)

Lkh ≡ λ(∇µu
µ)2 + β∇µu

ν∇ν∇νu
µ + αaµa

µ, (A.1.9)

aµ ≡ uν∇νu
µ. (A.1.10)

So the stress-energy takes the form of:

Tµν = ∇ρ[J
ρ

(µ uν)−J
ρ
(µuν)−J(µν)u

ρ]+αaµaν+(uσ∇ρJ
ρσ−αaρaρ)uµuν+

1

2
Lkhgµν+2Æ(µuν),

(A.1.11)
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A nice identity to notice is that for our concerns ∇ρJ
ρ
ν ≈ 0 as the only derivative

contraction we care about is when ρ = ξ but that means that we will end up with ξ

which is safe up to 3rd derivatives in ξ, not found in the stress energy. However, from

our previous inspections, we also see that we only need to consider terms that contain

at least 2 derivatives acting on uv,θ,ξ. Then, for further clarity, we also break down

the stress energy into Tα
µν , T

β
µν , T

λ
µν which each contain terms only of their respective

coupling constant. We start with the α terms that contain at least a second derivative

on uµ:

Tα
µν = −3uµuνu

ξuξ(uv∂ξ∂ξuv + uξ∂ξ∂ξuξ). (A.1.12)

From the definitions of uξ, uξ, uv, u
ξ it can be shown that:

uv∂ξ∂ξuv + uξ∂ξ∂ξuξ = 0. (A.1.13)

Next, we focus on the terms containing β in the expression:

T β
µν =

1

2
uν∂ξ∂ξuµg

ξξ +
1

2
uµ∂ξ∂ξuνg

ξξ − 1

2
uξ∂ξ∂νu

σgσµ −
1

2
uξ∂ξ∂µu

σgσν , (A.1.14)

here we had to solve on a term-by-term basis and find that at worst the terms behave

as ∝ U∂ξ∂ξuv which goes to zero at the universal horizon and is finite outside of it.

The case for λ should be trivial as J
(λ)ρ

µ = 0 for our purposes as the trace over

∇σu
σ which means to have a derivative over ξ would require having uξ which is safe

up to 3 derivatives. For this reason, it’s quick to identify that:

T λ
µν = 0. (A.1.15)
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Since Tα
µν , T

β
µν , T

λ
µν = 0 we conclude that the stress energy tensor up to the first order

in perturbation is zero at the universal horizon. Thus, we expect no back reaction on

the metric at the universal horizon and therefore the perturbation theory should be

valid.

A.2 Metric Perturbation corrections

If we take the next order perturbations of (2.4.8) & (2.4.9) and solve for the variational

derivative of h
(1)
µν = δhµν without considering the sensitivity backreaction on the

metric then up to linear order in velocity we get:

∆h
(1)
00 = α∆ϕnewt (A.2.1)

∆h
(1)
i0 = 2(α− 2β)vi∆ϕnewt − 2(α− 2β)vj∂j∂iϕnewt (A.2.2)

∆h
(1)
ij = αδij∆ϕnewt. (A.2.3)

The feedback of the sensitivity can not play into h
(2)
00 or h

(2)
ij as they appear at to low

of a power of v. However, we do see a minimization of h
(2)
i0 components.

∆h
(1)
00 = α∆ϕnewt (A.2.4)

∆h
(1)
k0 = 8αϵvk∆ϕnewt + 8αϵvj∂j∂kϕnewt (A.2.5)

∆h
(1)
ij = αδij∆ϕnewt. (A.2.6)

This means that as a whole the next order correction to the metric is of order α

suppressed.
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Appendix B

Additional Figures

B.1 Additional Figures
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(a) U ′(ξ) (b) U ′′(ξ)

(c) U (3)(ξ) (d) U (4)(ξ)

Figure 7: Background field high derivatives
High numerical derivatives of the solution obtained by the shooting method. The first

coloured dot represents the ξc point for each curve and the second coloured dot represents

the ξ⋆ point for each curve.
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(a) A(ξ) (b) B(ξ)

(c) C(ξ)

Figure 8: Numerical values of the coefficients A B C for various parameters of cχ greater
than 1. The two ranges were split as it made the curves hard to distinguish otherwise.
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(a) A(ξ) (b) B(ξ)

(c) C(ξ)

Figure 9: Numerical values of the coefficients A B C for various parameters of cχ less
than 1. By eye, the numerics of A and B may look similar but there is a key distinction in

the expansion around ξc, note that A begins at O(ξ)1 whereas B begins atO(ξ)0.

Figure 10: Non divergent perturbed field solutions
Solutions of χ̃ for different values of cχ. The coloured data represents the point of ξc

for the corresponding coloured line.
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