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Abstract

This thesis introduces a new bivariate cure rate model and develops an Expectation-

Maximization (EM) algorithm in R to fit the model. Within survival analysis, cure

rate models describe scenarios wherein part of the population is cured and therefore

would never experience the event of interest. Under this set-up, bivariate cure rate

models are needed when there is a pair of events of interest. Here, a Moran-Downton

bivariate Weibull distribution is used to model the paired event times of the sus-

ceptible individuals. An EM algorithm is developed here and implemented in R for

this parametric bivariate cure rate model. Simulation studies are then performed

to evaluate the performance of the developed model-fitting methods and finally the

algorithm is applied to a real life dataset on diabetic retinopathy.
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Chapter 1

Introduction

Survival analysis is the area of statistics concerned with the time until an event

happens, where traditionally it is assumed that the event will happen for certain to

every subject in the population. However, in some situations this assumption may

not hold and the event will not happen to every subject in the population. For

example, not everyone who is diagnosed with cancer will die of cancer and not all

prisoners will re-offend, and for this reason a model is needed that allows for part

of the population to not experience the event of interest. This is referred to as a

cure rate model and is usually modelled via a mixture model made up of subjects

that are susceptible to the event and subjects that are cured of the event. Data that

fits this scenario can be seen to have a survival function that plateaus substantially

above 0 on a Kaplan-Meier curve. More generally, there may be a pair of events of

interest for each subject having some dependency. For example, modelling blindness

in individuals where the two events of interest may correspond to going blind in each

eye. In this case, a bivariate cure rate model would be useful enabling the dependency

between the paired events to be modelled. Here an extension of the univariate mixture
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model with a Moran-Downton bivariate Weibull distribution as the joint distribution

for the subjects who are susceptible to both events, is developed. Due to the lack

of knowledge on which part of the population is cured and which part is susceptible,

the fitting of the considered model becomes a challenging task. An Expectation-

Maximization (EM) algorithm is developed here for the first time to the bivariate

cure rate model with the unobserved latent variable being taken as the cure status.

No previous attempts in published literature of an EM algorithm implementation

could be found. We have implemented the developed EM algorithm in R and have

applied it to simulated and real life datasets.

In Chapter 2, some introductory notions and results are provided. Chapter 3 details

the specifics of the Moran-Downton bivariate Weibull cure rate model. Chapter 4

develops the EM algorithm for fitting the model, while Chapter 5 presents the results

of an empirical study. In Chapter 6, the algorithm is applied to a real life dataset

on diabetic retinopathy. Finally, Chapter 7 provides some concluding remarks and

suggestions for future work.

2
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Chapter 2

Preliminaries

2.1 Survival Analysis

Survival analysis is the area of statistics in which we are interested in the time until

an event takes place [41]. It is also referred to as reliability theory in engineering

literature, where it has been utilized to study aeroplane engine failure [38], and as

duration modelling in economic literature [57]. The time to event is often referred to

as lifetime or failure time, although the event doesn’t have to correspond to failure

or death of a unit/individual. Events of interest can include death, a mechanical

failure, or even a positive such as time until hospital discharge following a treatment.

Traditionally, only one event will occur at a specific time and once that event has

occurred, no more data is collected on that subject. Survival analysis models these

times to event through various methods with the aim of interpreting the models,

comparing models between outcomes as well as for inferring relationships between

predictor variables and the outcomes.

3
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2.1.1 Univariate Lifetime Distributions

In survival analysis, there are some distributions that are particularly useful. Also,

there are many different ways of representing these distributions based on different

characteristics of the distributions [44].

A standard method of describing a distribution is through its probability density

function (pdf). The probability density function, f(x), is such that:

∫ b

a

f(x)dx = P (a < X < b), (2.1.1)

where X is the random variable representing the lifetime. In survival analysis, the

support of the lifetime will be [0,∞). This means that
∫∞

0
f(x)dx = 1 and f(x) ≥ 0

for all x ≥ 0.

Another key function of interest is the survival function, defined as the probability

that a subject has not experienced the event of interest before a given time. It is

given by

S(t) = P (X > t) =

∫ ∞
t

f(x)dx. (2.1.2)

The following relationship is known between the survival function and the cumulative

distribution function (cdf):

S(t) = 1− P (X ≤ t) = 1− F (t), (2.1.3)

4
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where F (t) denotes the cdf. Another characteristic of importance is the hazard rate.

The hazard rate is the instantaneous failure rate at time t, and is defined as:

h(t) = lim
∆t→0

[
P (t < X < t+ ∆t|X > t)

∆t

]
. (2.1.4)

If there are covariates present in the data, the hazard rate can be modified to incor-

porate the covariates to get the Cox proportional hazards model [15], with the hazard

rate function now being of the form:

h(t) = h0(t) exp(βz), t ∈ [0,∞), (2.1.5)

where h0(t) is the baseline hazard, z is the vector of covariates, and β is a vector of

coefficients.

If we assume a constant hazard rate irrespective of time, t, then this leads to the

exponential distribution. The exponential distribution has hazard rate:

h(t) = λ, (2.1.6)

with λ being the rate parameter. The corresponding pdf is

f(x) = λ exp(λx), x ∈ [0,∞), (2.1.7)

and the survival function is

S(x) = exp(−λx), x ∈ [0,∞). (2.1.8)

5
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Due to the constant hazard rate, the exponential distribution has the memoryless

property which means that, when waiting for an event to occur after some initial

time, the distribution of the remaining time until the event is the same as the original

distribution; that is P (X > x + y|X > x) = P (X > y), y > 0 [4]. This means the

exponential distribution will be a useful model when the risk does not change over

time, such as modelling death within an extremely ill population [53].

If we take Y as the sum of n independent lifetimes from an exponential distribution,

then Y is distributed as gamma.

The gamma distribution with shape parameter α and rate parameter β has its pdf

as

f(x) =
βα

Γ(α)
xα−1 exp(−βx), x ∈ [0,∞), (2.1.9)

where Γ(α) =
∫∞

0
xα−1 exp(−x)dx is the Gamma function [4]. It has its hazard rate

as

h(t) =
βαtα−1 exp(−βt)
Γ(α)− Γ(α, βt)

, t ∈ [0,∞) (2.1.10)

where Γ(α, βt) =
∫ βt

0
xα−1 exp(−x)dx is the incomplete Gamma function [4]. The

survival function is

S(x) = 1− Γ(α, xβ)

Γ(α)
, x ∈ [0,∞). (2.1.11)

The gamma distribution is a very popular model in survival analysis as the shape

parameter α allows for a variety of distributional shapes. In particular, it has been

used in modelling cancer occurence after several carcinogenic events [6].

Finally, another useful lifetime model is the Weibull distribution, which is the one we

focus on in this thesis. The Weibull distribution was introduced in 1939 by Weibull

6
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and has the following pdf [60]:

f(x) =
β

α
exp

(
−
(x
α

)β)(x
α

)β−1

, x ∈ [0,∞), (2.1.12)

where α is the scale parameter and β is the shape parameter, with α, β ∈ (0,∞).

The hazard rate is given by

h(t) =
β

α

(
t

α

)β−1

, t ∈ [0,∞) [33], (2.1.13)

and the survival function is given by

S(x) = exp

(
−
(x
α

)β)
, x ∈ [0,∞). (2.1.14)

The Weibull distribution is popular within the medical community and also exten-

sively used in reliability theory [43]. Furthermore, the Weibull distribution is an ex-

tension of the exponential distribution, and in fact exponential variables can be readily

transformed into Weibull variables through a power transformation: for Weibull ran-

dom variable W and standard exponential random variable, X, W = αX
1
β with α

the scale and β the shape parameter.

2.1.2 Bivariate Lifetime Modelling

As mentioned earlier, there are situations where there are two lifetimes which are

dependent on each other. In such a case, a bivariate distribution is needed to model

their lifetimes. Fréchet showed that for any two given marginal distributions, there

are infinitely many bivariate distributions [32]. There are a variety of methods for

7
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constructing such distributions with different interpretations and/or motivations.

One method we use is through frailty models [13]. Frailty models are an extension of

Cox proportional hazard models and they assume there are two causes that lead to

variability in lifetimes, one due to observed covariates and the other due to an unob-

served random effect [36]. The hazard function is therefore made up of the baseline

hazard, a covariate function if applicable and the frailty variable which is unobserved

and has a different value for each subject in the population. In the bivariate case,

in shared frailty models, the value of the frailty variable is shared by the two event

times [59]. In correlated frailty models, the paired events have separate frailty random

variables, but they have a joint distribution which allows for dependency [61]. The

frailty random variable comes from a given distribution and the gamma distribution

in particular is often used in the shared frailty model and various bivariate gamma

distributions are used in the correlated frailty model [59, 62].

Copulas offer another method. Copulas are multivariate cumulative distribution func-

tions with marginal uniform functions on [0,1] [23]. In the case of two lifetimes, one

has to consider bivariate copulas. If (x1, x2, ..., xn) is a sample of observations from

a distribution with pdf f(x) and cdf F (x), then by probability integral transform,

(F (x1), F (x2), ..., F (xn)) is uniformly distributed on [0,1] [23]. This means we can

apply a copula to any marginal distributions. Furthermore, Sklar’s Theorem states

that any multivariate distribution can be written in terms of a copula and univariate

marginal distributions [54]. There is a wide array of copulas which allow for a variety

of dependence structures while modelling two or more lifetimes [4].

Finally, there are other bivariate distributions that do not arise from either copulas or

frailty models. However, from Sklar’s Theorem, we know there must be a copula that

8
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describes them. Other methods include formulating from specific scenarios or using

transformation methods to change the marginals of an existing bivariate distribution

[4]. In particular, we are interested in the Moran-Downton bivariate distribution in

this thesis.

The Moran-Downton bivariate exponential distribution was first developed by Moran

[46] and applied in reliability analysis by Downton [24]. The distribution is con-

structed by assuming that “shocks” occur to each individual in a pair at independent

random exponential intervals and after a set number of shocks, that individual fails

and the time of failure is recorded as the lifetime. The number of shocks that is

required for failure has a bivariate geometric distribution with joint probability gen-

erating function [4]:

P (z1, z2) =
z1z2

1 + α + β + γ − αz1 − βz2 − γz1z2

. (2.1.15)

As the number of shocks until failure is correlated within a pair, the lifetimes will be

correlated as well which is supposed to explain the dependence between the individuals

in a pair. The marginal distributions of both individuals lifetimes are exponential.

The Moran-Downton bivariate exponential distribution thus devised has the following

joint pdf [47]:

f(x, y) =
1

α1α2(1− ρ)
exp

(
− x

α1(1− ρ)
− y

α2(1− ρ)

)
I0

(
2(xyρ)1/2

(1− ρ)(α1α2)1/2

)
,

x, y ∈ [0,∞),

(2.1.16)

9
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where

I0(z) =
∞∑
r=0

z2r

22r(r!)2
(2.1.17)

is the modified Bessel function. The parameters α1, α2 ∈ (0,∞) are the scale param-

eters from the two marginal exponential distributions. The correlation parameter, ρ,

has support [0, 1), meaning only a positive correlation between the outcomes can be

modelled. We would generally expect a positive correlation in the cure context we

are considering so this restriction seems quite reasonable [24]. The standard Moran-

Downton bivariate exponential distribution, when α1 = α2 = 1, has the following pdf:

f(x, y) =
1

(1− ρ)
exp

(
− x

(1− ρ)
− y

(1− ρ)

)
I0

(
2(xyρ)1/2

(1− ρ)

)
, x, y ∈ [0,∞),

(2.1.18)

and the corresponding joint cdf is given by [4]

F (x, y) = (1− exp(−x))(1− exp(−y)) +
∞∑
j=0

ρj+1

(j + 1)2
L

(1)
j (x)L

(1)
j (y)xy exp(−(x+ y)),

x, y ∈ [0,∞),

(2.1.19)

where Lαj (x) are Laguerre polynomials and are defined as

Lαj (x) =

j∑
k=0

(j+αj−k )
(−x)k

k!
. (2.1.20)

10
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Furthermore, they are orthogonal polynomials, meaning
∫
Lαj (x)Lαk (x)dx = 0 for

j 6= k with the following property [56]:

dLαn(x)

dx
= −Lα+1

n−1(x). (2.1.21)

2.1.3 Censoring

What makes survival analysis more complicated is that normally some kind of cen-

soring occurs in the lifetimes. This means two values are returned for each subject.

There is the observed time that will either be the lifetime or the censoring time and

a censoring indicator that indicates whether the observed time is in fact a lifetime or

a censored time. There are three main types of censoring that occur in practice.

Right Censoring

This is when we have a censoring time that is smaller than the lifetime, meaning the

actual lifetime will never be observed. This could be due to an individual leaving

the study early from unrelated causes, individuals being lost to follow-up after mov-

ing away and loss of contact, the study ending before the event has occurred, or a

preliminary analysis being undertaken whilst the study is still underway [41]. The

censoring time can be pre-fixed before the trial starts, or could be random. If we

denote xi for the lifetime, ci for the censoring time and ti for the observed lifetime

for observation i then in the case of right censoring, we have ti = min(ci, xi) with

ti ≤ xi. If the probability of being censored does not affect the failure rate, then the

censoring mechanism is said to be independent [39]. This is the most common type

of censoring seen in survival analysis. There are two particular mechanisms that can

11
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lead to right censoring.

Type-I Censoring: This is when all event times are recorded up to a specified time

and after that, they get censored. This is often due to a trial ending at a specific

timepoint [42];

Type-II Censoring: This is when the first r out of n event times are recorded and

the remaining subjects get censored. This is often due to time and financial con-

straints, and so the trial could end early. The uncensored values are the first r order

statistics out of n [2].

Left Censoring

This is when the lifetime must have occurred before a censoring time. In the case

when the time of becoming infected is the event of interest, left censoring can occur

when a subject tested positive at time ti for being infected. This means the subject

must have gotten infected before they tested positive with the exact time of being

infected unknown. Alternatively, the event could have occurred even before the trial

started [41].

Interval Censoring

This is when the event occurs within a specific time interval, but the true lifetime is

unknown. In the case when becoming infected is the event of interest with infection

status known by means of a test, this can occur when an individual is tested at regular

intervals. This means the true lifetime is between the last negative test and the first

positive test [41].

12
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2.2 Likelihood-Based Inference

Standard parametric methods for fitting models to datasets assume the data observed

is from a specific distribution and the parameter values that maximize the likelihood

of observing that dataset are calculated.

2.2.1 Maximum Likelihood Inference

In the simplest case, we assume that all observations are independent and identically

distributed (i.i.d.) from a distribution with parameters θ and pdf f(x|θ). The likeli-

hood function, denoted by L(θ|X), is the likelihood of observing that dataset, X. If

the data is complete, it is simply the joint pdf, and in this case it is given by

L(θ|X) =
n∏
i=1

f(xi|θ). (2.2.1)

Suppose we have observations that have been Type I censored on the right. Then,

we cannot use the pdf for the censored values, but must use the survival function

instead. This is because we do not know the exact time the event will occur but all

we know is that it occurs after the censoring time. The likelihood function becomes:

L(θ|X) =
n−m∏
i=1

f(xi|θ)
m∏
j=1

S(yj|θ), (2.2.2)

where the xi’s are the n − m uncensored values and the yj’s are the m censored

values. We can maximise (2.2.2) to find the estimates of the parameters. Due to

the product form and for ease of differentiation, it is common to take log and then

differentiate with respect to each parameter and solve the system of equations. The

13
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solutions found are referred to as the maximum likelihood estimates (MLE). In the

case when the observations are not i.i.d., such as when Type-II censoring occurs and

the observations are order statistics, the likelihood equation is still the joint pdf, but

it takes on a more complicated form. The technique still remains the same.

2.2.2 EM Algorithm

The Expectation-Maximization (EM) algorithm was introduced by Dempster et al

(1977) and is used to fit a model when there is an unobserved latent variable in the

dataset [22]. It still uses the principles of maximum likelihood, but is more adaptable

and can allow for greater inference about the unobserved variable. Some earlier works

have used the EM algorithm for mixture models [11] and also for bivariate interval

censored models [40].

The generic EM algorithm for a dataset, with unobserved latent variable z, can be

summarized as follows:

1. Choose starting values for the parameters;

2. E-step: Calculate the conditional distribution of z, given the dataset, and us-

ing current parameter estimates. Then calculate the expected complete (log)

likelihood function, termed as the Q-function;

3. M-step: Maximize the Q-function with respect to the parameters and update

the parameter estimates;

4. Repeat Steps 2 and 3 until convergence is achieved.

There is no specific convergence criteria, but most implementations require either

14
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subsequent parameter estimates to be sufficiently close or subsequent observed log-

likelihoods with parameter estimates to be sufficiently close [35]. There are noted

limitations in the EM algorithm. First, it is very sensitive to its starting values for

the parameters and can converge to a local, but not global, maximum [8]. It can also

be slow to converge [58]. Furthermore, it does not directly provide standard errors for

the estimates obtained, but there have been some suggestions as to how to calculate

the standard errors for the parameter estimates. Methods of calculating standard

errors are related to observed information matrix, expected information matrix, or

resampling methods [3]. One such resampling method is the well-known bootstrap

[45].

2.2.3 Standard Error and Confidence Interval Calculations:

Bootstrap

The bootstrap method to calculate the standard error of an estimate was first intro-

duced by Efron (1979) [26]. In 1981, it was applied to right censored data [27] and

in 1986 to bivariate data [29], but with the key principles of the method remaining

the same. The method works for any statistic calculated from the dataset, X. Let

us denoted the statistic of interest by d(X). In the bootstrap method there are two

main types, namely, non-parametric and parametric.

Non-parametric Bootstrap

Non-parametric bootstrap was introduced first and it uses the following steps:

1. Sample with replacement observations from the original dataset to create a new

dataset, a bootstrap sample Xi;

15
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2. Using Xi, calculate the statistic, d(Xi), called the bootstrap replication;

3. Repeat Steps 1 and 2 to generateB bootstrap replications d(X1), d(X2), ..., d(XB);

4. Calculate the standard deviation of the bootstrap replications.

The idea is that the variance of d(X1), d(X2), ..., d(XB) is approximately the variance

of the statistic d(X). This means calculating the standard deviation of the boot-

strap replications is an estimate for the standard error of the parameter estimate. In

general, suitable values for B are from 25 to 200 [30].

Parametric Bootstrap

Parametric bootstrap uses new datasets that are generated by sampling from the

assumed population distribution, instead of sampling from the original dataset [30].

Replications of the statistic are found for each dataset and then the standard deviation

of the replications are found as in the non-parametric case. This leads to results that

closely match analytical estimates of standard errors, but requires assumptions about

the population distribution [30].

Percentile Bootstrap Confidence Intervals

The bootstrap method can also be used to find confidence intervals. One method is

to use the empirical percentiles of the bootstrap replications for confidence intervals

[17]. For confidence intervals, more than 200 replications are required for an accurate

estimate, normally, at least 1000 [29]. For a percentile 100(1−α)% confidence interval

using the parametric bootstrap, the steps are as follows:

16
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1. Sample from the assumed distribution to create a new dataset, a bootstrap

sample Xi;

2. Calculate the statistic, d(Xi), using the bootstrap sample;

3. Repeat Steps 1 and 2 to generateB bootstrap replications d(X1), d(X2), ..., d(XB);

4. Order the values of d(Xi) and select the B × α
2
th and B × (1− α

2
)th values.

This means for a 90% confidence interval, with B = 1000, the 50th and the 950th

ordered replications would be used. The percentile interval is invariant under repara-

matrization, but may not always perform well [17].

BCa Bootstrap Confidence Intervals

The percentile method to find confidence intervals does not adapt to bias and skewness

in the bootstrap replications meaning it can be inaccurate. An improved version of

the percentile method that does adjusts for skewness and bias is the bias-corrected

and accelerated bootstrap, referred to as the BCa [28]. Here the interval is still defined

by percentiles but not necessarily the same percentiles as the percentile method. The

lower bound is the:

Φ

(
ẑ0 +

ẑ0 + z(α)

1− â(ẑ0 + z(α))

)
(2.2.3)

percentile and the upper bound is the:

Φ

(
ẑ0 +

ẑ0 + z(1−α)

1− â(ẑ0 + z(1−α))

)
(2.2.4)

17

http://www.mcmaster.ca/


M.Sc. Thesis – Matilda Pitt; McMaster University – Mathematics and Statistics

percentile. Here, ẑ0 is referred to as the bias-correction and is calculated by:

ẑ0 = Φ−1

(
#d(Xi) < d(X)

B

)
, (2.2.5)

with d(X) the parameter estimate from the original dataset and d(Xi) the bootstrap

replications. The acceleration parameter, â can be calculated by [30]:

â =

∑n
i=1(d̄(X)− d(X∗i ))

3

6(
∑n

i=1(d̄(X)− d(X∗i ))
2)3/2

, (2.2.6)

where d(X∗i ) are the jackknife values of the statistic of interest and d̄(X) is the mean

of the jackknife estimates. In the case where ẑ0 = â = 0, then we have the usual

percentile confidence intervals.

2.3 Cure Rate Models

2.3.1 Univariate Cure Rate Model

A cure rate model was first introduced by Boag (1949) [9] and is used extensively

in survival analysis when part of the population is considered cured or long term

survivors, and consequently would not experience the event of interest. Cure rate

models are seen in many fields, such as economics where it is often called the split-

population model [52]. There are two main types of cure rate models, namely, the

mixture model and the less studied non-mixture model [5]. Here, the mixture model

will be used meaning the population is considered to be made up of two types of

subjects: subjects who are cured and would not experience the event and subjects

who are susceptible and are likely to experience the event. Here, the time until the
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event occurs for the subjects who are susceptible will be referred to as the lifetime.

The survival function for a subject’s lifetime X from a cure rate mixture model is

therefore of the form

S(t) = P (X > t) = p+ (1− p)S0(t), (2.3.1)

where

• p is the probability of being cured, often known as the cure fraction;

• S0(t) is the survival function of the susceptible subjects.

As t→∞, S(t) does not go to 0, and it actually goes to p. So, S(t) is not a proper

survival function. In cure rate mixture models, there is competing risk scenarios [14]

wherein there are multiple causes for the event to occur and it is the first lifetime

from these causes that gives rise to the lifetime. A special case of this is the Bernoulli

cure model wherein there is only one cause of the event. This is the model that is

considered here.

As part of the population is cured, cured subjects have no lifetime and so will only

have a censored time. Furthermore, those in the susceptible part of the population

may also be right censored. This means it is not easy to identify those cured and those

not cured and therefore trying to fit a distribution to the dataset is an involved task

[7]. In the univariate case, maximum likelihood methods [51, 49], the EM algorithm

and adaptions of the EM algorithm [16] as well as Bayesian methods [18] have all

been discussed for fitting cure rate models to observed data.
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2.3.2 Bivariate Cure Rate Model

Chatterjee and Shih (2001) [12] introduced the bivariate mixture cure rate model for

which further work has been carried out by Wienke [63, 64]. The model discussed

here is the model described by de Oliveira Peres et. al. [21]. In bivariate cure rate

models, there are paired events of interest for each subject with dependence within

the pairs. For example, each observation could correspond to one person and the

paired events could correspond to going blind in each eye [19, 20]. In a different

setting, each subject could be a set of twins and the event of interest could be each

twin getting breast cancer [12, 21, 63, 64].

Previous research on the bivariate cure rate model has considered copulas to link

the two outcomes [12, 21] with some other research work using specific bivariate

distributions [20]. In addition, correlated frailty models have also been used in this

context [63, 64].

Let the random variable X be the lifetime of event 1 in the pair and the random

variable Y be the lifetime of event 2 in the pair. Furthermore, let I and J be random

indicator variables representing the cure status for each event:

I =


0 if cured from event 1,

1 if susceptible to event 1.

(2.3.2)

J =


0 if cured from event 2,

1 if susceptible to event 2.

(2.3.3)

The marginal distribution for each outcome is then the standard univariate cure rate

model presented in (2.3.1). This means the marginal survival functions can be written
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as:

SX(x) = pX + (1− pX)S10(x|I = 1), x ∈ [0,∞),

SY (y) = pY + (1− pY )S01(y|J = 1), y ∈ [0,∞),

(2.3.4)

where pX = P (I = 0) is the probability of being cured of event 1 and pY = P (J = 0)

is the probability of being cured of event 2. Then,

S10(x|I = 1) = P (X > x|I = 1), x ∈ [0,∞), (2.3.5)

is the marginal survival function when subjects are susceptible to event 1 and

S01(y|J = 1) = P (Y > y|J = 1), y ∈ [0,∞), (2.3.6)

is the marginal survival function when subjects are susceptible to event 2. There

is then a bivariate distribution for which S10(x|I = 1) and S01(y|J = 1) are the

marginals, and it models the dependence between the events within each pair of

subjects when the subject is susceptible to both events. We will denote this bivariate

survival function for subjects susceptible to both events by

S11(x, y|I = 1, J = 1) = P (X > x, Y > y|I = 1, J = 1), x, y ∈ [0,∞). (2.3.7)

We would not expect the probability of being susceptible to each event within a pair

to be independent, and so this dependence must be taken into consideration in the

construction of the joint overall survival function. The joint overall survival function
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is given by [63]:

S(x, y) =P (X > x, Y > y)

=φ11S11(x, y|I = 1, J = 1) + φ10S10(x|I = 1) + φ01S01(y|J = 1) + φ00,

x, y ∈ [0,∞),

(2.3.8)

where φ11, φ10, φ01, φ00 are defined as follows:

• φ11 = P (I = 1, J = 1) = (1 − pX)(1 − pY ) + ω, the probability of being

susceptible to both events.

• φ10 = P (I = 1, J = 0) = (1 − pX)pY − ω, the probability of being susceptible

to event 1 and cured of event 2.

• φ01 = P (I = 0, J = 1) = pX(1−pY )−ω, the probability of being cured of event

1 and susceptible to event 2.

• φ00 = P (I = 0, J = 0) = pXpY + ω, the probability of being cured of both

events,

where ω = Cov(I, J). We also have the following constraints:

1. φ11 + φ10 + φ01 + φ00 = 1 as they are the mixture probabilities and so have to

sum to one.

2. max{(1 − pX)pY − 1, pX(1 − pY ) − 1} ≤ ω ≤ min{(1 − pX)pY , pX(1 − pY )} to

ensure that φ00, φ01, φ10, φ11 ≥ 0 as they are all probabilities.

A value of ω = 0 suggests the event of an individual being susceptible to event 1

is independent of the event of being susceptible to event 2. A positive value of ω
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indicates a positive correlation between being susceptible to both and a negative ω

suggests a negative correlation.

We can rewrite the marginal survival functions, as seen in (2.3.4), using the parame-

ters φ00, φ01, φ10, φ11 as follows:

SX(x) = φ00 + φ01 + (φ11 + φ10)S10(x|I = 1), x ∈ [0,∞),

SY (y) = φ00 + φ10 + (φ11 + φ01)S01(y|J = 1), y ∈ [0,∞).

(2.3.9)

This means that pX = φ00 + φ01 and pY = φ00 + φ10.

As in the univariate case, there will be right censoring present in the data when

subjects have censored lifetimes before they experience one or both of the events.

In this thesis, we assume there is one censoring mechanism for both events within a

pair so that both events have the same censoring time. This can be seen when, for

example, each subject is a person and the event of interest is going blind in each eye

meaning that we would expect to loose contact with the subject or the trial to end for

both eyes at the same time. Furthermore, we assume Type 1 right censoring. This

means we do not have full data and do not know the cure status for all subjects. If

the censoring time is c for both events 1 and 2 and the true lifetimes are x and y,

respectively, then the observed lifetimes will be tx = min(x, c) and ty = min(y, c).

As there is a pair of events, we have four possible censoring cases, with each pair in

exactly one case:

• C1: Both uncensored;

• C2: Event 1 uncensored, event 2 censored;

• C3: Event 1 censored, event 2 uncensored;
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• C4: Both censored.

From these four cases and with the φ00, φ01, φ10, φ11 being as defined earlier, we can

write the joint observed likelihood function for the bivariate cure rate dataset as

follows:

L(θ|X) =
∏
i∈C1

φ11f11(txi, tyi|I = 1, J = 1)

×
∏
i∈C4

(φ11S11(txi, tyi|I = 1, J = 1) + φ10S10(txi|I = 1) + φ01S01(tyi|J = 1) + φ00)

×
∏
i∈C2

(−φ11S
′
11x(txi, tyi|I = 1, J = 1) + φ10f10(txi|I = 1)

×
∏
i∈C3

(−φ11S
′
11y(txi, tyi|I = 1, J = 1) + φ01f01(tyi|J = 1)).

(2.3.10)

We also have

f11(tx, ty|I = 1, J = 1) (2.3.11)

to be the pdf for subjects susceptible to both events. We then have

S ′11x(tx, ty|I = 1, J = 1) =
∂S11(x, y)

∂x

∣∣∣∣
x=tx,y=ty

(2.3.12)

as the joint survival function (of a subject susceptible to both events) differentiated

with respect to x. Similarly, we have

S ′11y(tx, ty|I = 1, J = 1) =
∂S11(x, y)

∂y

∣∣∣∣
x=tx,y=ty

(2.3.13)
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as the joint survival function (of a subject susceptible to both events) differentiated

with respect to y. Finally, we have

f10(tx|I = 1) (2.3.14)

as the marginal pdf for subjects susceptible to event 1 and

f01(ty|J = 1) (2.3.15)

as the marginal pdf for subjects susceptible to event 2. Moreover, S11(txi, tyi|I =

1, J = 1), S10(txi|I = 1) and S01(tyi|J = 1) are as defined in (2.3.7), (2.3.5) and

(2.3.6), respectively.

We can explain the contribution of each term present in (2.3.10):

• φ11f11(tx, ty|I = 1, J = 1) is for the subjects in C1 wherein both lifetimes

are uncensored. Since these lifetimes are uncensored, the subjects must be

susceptible to both events. Furthermore there is no censoring and so the joint

pdf for subjects susceptible to both events is used and then multiplied by the

overall probability of being susceptible to both events;

• φ11S11(tx, ty|I = 1, J = 1) is for the subjects in C4. These lifetimes for both

events are censored and this is the case for subjects who are susceptible to both

events. As only censored lifetimes are observed, the joint survival function is

used at the censoring times. It is then multiplied by the overall probability that

a subject is susceptible to both events;

• φ10S10(tx|I = 1) = P (x > tx|I = 1, J = 0) is for the subjects in C4. In this
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case, the subjects are susceptible to event 1, but cured of event 2. We therefore

multiply by φ10, the overall probability this occurs, the marginal survival func-

tion for subjects susceptible to event 1. As x is censored, we use the survival

function;

• φ01S01(ty|J = 1) is also for subjects in C4. This corresponds to subjects being

susceptible to event 2, but cured of event 1. We therefore multiply by φ01,

the overall probability this occurs, the marginal survival function for subjects

susceptible to event 2. As y is censored, we use the survival function;

• φ00 = P (I = 0, J = 0) is the final term for case C4 and is where we assume

the subjects are cured of both events. This is therefore just φ00, the overall

probability that a subject is cured of both events;

• −φ11S
′
11x(tx, ty|I = 1, J = 1) is a term in case C2, corresponding to event 1

being uncensored and event 2 being censored. This means the subjects must

be susceptible to event 1 as there is an uncensored lifetime. This first term is

wherein the subjects are also susceptible to event 2. As event 1 is uncensored

but event 2 is censored, the survival function is differentiated with respect to x,

but not y. This is then multiplied by the overall probability of a subject being

susceptible to both events;

• φ10f10(tx|I = 1) is the other term in case C2 corresponding to subjects being

susceptible to event 1, but cured of event 2. Event 1 is uncensored and so the

marginal pdf for subjects susceptible to event 1 is used and then multiplied by

the overall probability of being susceptible to event 1, but cured of event 2;

• −φ11S
′
11y(tx, ty|I = 1, J = 1) is a term in the final case C3 wherein subjects have
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a censored event 1 lifetime and an uncensored event 2 lifetime. This means the

subjects must be susceptible to event 2 as there is an uncensored lifetime. This

term corresponds to when the subjects are also susceptible to event 1. As event

2 is uncensored but event 1 is censored, the survival function is differentiated

with respect to y, but not x. This is then multiplied by the overall probability

of being susceptible to both events;

• φ01f01(t2|J = 1) is the other term in case C3 representing subjects being cured

of event 1, but being susceptible to event 2. Event 2 is uncensored and so the

marginal pdf for subjects susceptible to event 2 is used and then multiplied by

the overall probability of being cured of event 1, but susceptible to event 2.
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Chapter 3

Moran-Downton Bivariate Weibull

Cure Rate Model

3.1 Distributional Form

In this thesis, a transformed extension of the the Moran-Downton bivariate distri-

bution, as introduced earlier in Section 2.1.2, is used as the joint distribution of

lifetimes for subjects who are susceptible to both events in the population. The

Moran-Downton bivariate exponential distribution has exponential marginals, which

is restrictive in shape characteristics. The Weibull distribution would offer more

flexibility so is used instead for this thesis. Exponential random variables can be

transformed into Weibull random variables to give rise to the Moran-Downton bivari-

ate Weibull distribution. A standard bivariate exponential random variable, (X1, Y1),

is transformed into the standard bivariate Weibull random variable, (X2, Y2), with
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shape parameters β1, β2 by setting X2 = X
1
β1
1 and Y2 = Y

1
β2

1 . Upon using this trans-

formation, we obtain the standard Moran-Downton bivariate Weibull pdf as

f11(x, y) =
1

(1− ρ)
exp

(
− xβ1

(1− ρ)
− yβ2

(1− ρ)

)
I0

(
2(xβ1yβ2ρ)1/2

(1− ρ)

)
β1β2x

β1−1yβ2−1,

x, y ∈ [0,∞).

(3.1.1)

We can then readily transform it into a bivariate Weibull, (X, Y ), with scale param-

eters α1 and α2 by setting X = α1X2 and Y = α2Y2. This then gives the general

Moran-Downton bivariate Weibull pdf as

f11(x, y) =
1

α1α2(1− ρ)
exp

−
(
x
α1

)β1
−
(
y
α2

)β2
(1− ρ)

 I0


2

((
x
α1

)β1 (
y
α2

)β2
ρ

)1/2

(1− ρ)


× β1β2

(
x

α1

)β1−1(
y

α2

)β2−1

, x, y ∈ [0,∞).

(3.1.2)

The joint cdf of (X, Y ) can then be expressed as

F11(x, y) =

(
1− exp

(
−
(
x

α1

)β1))(
1− exp

(
−
(
y

α2

)β2))

+
∞∑
j=0

ρj+1

(j + 1)2
L

(1)
j

((
x

α1

)β1)
L

(1)
j

((
y

α2

)β2)( x

α1

)β1 ( y

α2

)β2
× exp

(
−
(
x

α1

)β1
−
(
y

α2

)β2)
, x, y ∈ [0,∞).

(3.1.3)
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The survival function of (X, Y ) is then given by

S11(x, y) =− 1 + exp

(
−
(
x

α1

)β1)
+ exp

(
−
(
y

α2

)β2)
+

(
1− exp

(
−
(
x

α1

)β1))

×

(
1− exp

(
−
(
y

α2

)β2))

+
∞∑
j=0

ρj+1

(j + 1)2
L

(1)
j

((
x

α1

)β1)
L

(1)
j

((
y

α2

)β2)( x

α1

)β1 ( y

α2

)β2
× exp

(
−
(
x

α1

)β1
−
(
y

α2

)β2)

= exp

(
−
(
x

α1

)β1)
exp

(
−
(
y

α2

)β2)
+

(
x

α1

)β1 ( y

α2

)β2
× exp

(
−
(
x

α1

)β1
−
(
y

α2

)β2) ∞∑
j=0

ρj+1

(j + 1)2
L

(1)
j

((
x

α1

)β1)
L

(1)
j

((
y

α2

)β2)
,

= exp

(
−
(
x

α1

)β1)
exp

(
−
(
y

α2

)β2)

×

(
1 +

(
x

α1

)β1 ( y

α2

)β2 ∞∑
j=0

ρj+1

(j + 1)2
L

(1)
j

((
x

α1

)β1)
L

(1)
j

((
y

α2

)β2))
,

x, y ∈ [0,∞),

(3.1.4)

where L
(1)
j are Laguerre polynomials. The marginal pdfs are given by

f10(x) =
β1

α1

exp

(
−
(
x

α1

)β1)( x

α1

)β1−1

, x ∈ [0,∞),

f01(y) =
β2

α2

exp

(
−
(
y

α2

)β2)( y

α2

)β2−1

, y ∈ [0,∞),

(3.1.5)
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which are both Weibull distributions. The marginal survival functions are given by

S10(x) = exp

(
−
(
x

α1

)β1)
, x ∈ [0,∞), (3.1.6)

S01(y) = exp

(
−
(
y

α2

)β2)
, y ∈ [0,∞). (3.1.7)

3.1.1 Correlation ρw

Of interest in the model is the correlation between the event times when a subject is

susceptible to both events, and in the bivariate exponential Moran-Downton distri-

bution, it is the parameter ρ [24]. As the random variables have been transformed

from exponential to Weibull, the parameter ρ, which is the correlation between the

exponential random variables, is no longer the correlation between the Weibull ran-

dom variables. Denoting ρw as the correlation between the Weibull random variables

(X, Y ) in the Moran-Downton bivariate Weibull distribution, ρw can be calculated

as follows [34]:

ρw =
E(XY )− E(X)E(Y )

σXσY
, (3.1.8)

where σX and σY are the standard deviations of X and Y , and E(X) and E(Y ) are

the expectation of X and Y , given by [31]

E(X) = α1Γ

(
1 +

1

β1

)
, (3.1.9)

E(Y ) = α2Γ

(
1 +

1

β2

)
. (3.1.10)
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Also, σ2
X and σ2

Y are given by [31]

σ2
X = α2

1

[
Γ

(
1 +

2

β1

)
−
(

Γ

(
1 +

1

β1

))2
]
, (3.1.11)

and

σ2
Y = α2

2

[
Γ

(
1 +

2

β2

)
−
(

Γ

(
1 +

1

β2

))2
]
. (3.1.12)

As α1 and α2 are scale parameters, ρw will be free of them, and so for simplicity we

may take α1 = α2 = 1, to find E(XY ) as follows:

E(XY ) =

∫ ∞
0

∫ ∞
0

1

1− ρ
exp

(
−xβ1 − yβ2

1− ρ

)
I0

(
2(xβ1yβ2ρ)1/2

1− ρ

)
β1x

β1−1β2y
β2−1xydxdy

=

∫ ∞
0

∫ ∞
0

1

1− ρ
exp

(
−xβ1 − yβ2

1− ρ

) ∞∑
r=0

22r(xβ1yβ2ρ)r

(1− ρ)2r

(2)2r(r!)2
β1x

β1−1β2y
β2−1xydxdy

=
1

1− ρ

∞∑
r=0

22rρr

(2)2r(r!)2(1− ρ)2r

∫ ∞
0

exp

(
−yβ2
1− ρ

)
yrβ2β2y

β2−1y

×
∫ ∞

0

exp

(
−xβ1
1− ρ

)
xrβ1β1x

β1−1xdxdy.

By setting w = xβ1 , we get

E(XY ) =
1

1− ρ

∞∑
r=0

22rρr

(2)2r(r!)2(1− ρ)2r

∫ ∞
0

exp

(
−yβ2
1− ρ

)
yrβ2β2y

β2−1y

×
∫ ∞

0

exp

(
−w

1− ρ

)
wrw

1
β1

+1−1
dwdy

=
1

1− ρ

∞∑
r=0

22rρr

(2)2r(r!)2(1− ρ)2r
Γ

(
r +

1

β1

+ 1

)
(1− ρ)

r+ 1
β1

+1

×
∫ ∞

0

exp

(
−yβ2
1− ρ

)
yrβ2β2y

β2−1ydy.

Now, by setting w = yβ2 , we get
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E(XY ) =
1

1− ρ

∞∑
r=0

22rρr

(2)2r(r!)2(1− ρ)2r
Γ

(
r +

1

β1

+ 1

)
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+1
Γ

(
r +

1

β2
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)
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=(1− ρ)
1
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ρr

(r!)2
Γ

(
r +

1

β1
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)
Γ

(
r +

1
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(3.1.13)

Thus, we finally obtain

ρw =
(1− ρ)

1
β1

+ 1
β2

+1∑∞
r=0

ρr

(r!)2
Γ
(
r + 1

β1
+ 1
)

Γ
(
r + 1

β2
+ 1
)
− Γ

(
1 + 1

β1

)
Γ
(

1 + 1
β2

)
[
Γ
(

1 + 2
β1

)
−
(

Γ
(

1 + 1
β1

))2
] 1

2
[
Γ
(

1 + 2
β2

)
−
(

Γ
(

1 + 1
β2

))2
] 1

2

.

(3.1.14)

The support for ρw is [0, 1). For β1 = β2 = 1, the bivariate exponential case, this

formula simplifies to ρw = ρ, as expected. For values of β1, β2 6= 1, we have ρw < ρ,

as seen by Figure 3.1. Moreover, if ρ = 0, we have ρw = 0, as seen in (3.1.15).
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ρw =
(1− 0)
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(3.1.15)
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Figure 3.1: ρ− ρw for Various Combinations of β′s
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Chapter 4

EM Algorithm

Given a dataset, to find the MLE for the parameters in the Moran-Downton bivariate

Weibull cure rate model described in Chapter 3, an EM algorithm, like the one

described earlier in Section 2.2.2, is derived and implemented here in this chapter.

4.1 EM Implementation

Expectation Step

Here, we treat cure status as the latent variable as it is unobserved in the censored

cases. Assuming that we have a dataset with cure status included as well, we can

introduce four indicator random variables corresponding to the bivariate cure status:

• k1 =


1 if subject is cured of events 1 and 2,

0 otherwise;
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• k2 =


1 if subject is cured of event 1, but is susceptible to Event 2,

0 otherwise;

• k3 =


1 if subject is susceptible to event 1, but is cured of event 2,

0 otherwise;

• k4 =


1 if subject is susceptible to both events 1 and 2,

0 otherwise.

Then when we know the cure status, despite the censored values, the complete data

likelihood function can be expressed as

CL(θ|X) =
∏
i∈C1

(φ11f11(txi, tyi|I = 1, J = 1))k4i

×
∏
i∈C4

(φ11S11(txi, tyi|I = 1, J = 1))k4i(φ10S10(txi|I = 1))k3i(φ01S01(tyi|J = 1))k2iφk1i00

×
∏
i∈C2

(−φ11S
′
11x(txi, tyi|I = 1, J = 1))k4i(φ10f10(txi|I = 1))k3i

×
∏
i∈C3

(−φ11S
′
11y(txi, tyi|I = 1, J = 1))k4i(φ01f01(tyi|J = 1))k2i .

(4.1.1)

37

http://www.mcmaster.ca/


M.Sc. Thesis – Matilda Pitt; McMaster University – Mathematics and Statistics

Then the complete data log-likelihood follows readily from (4.1.1) as

Log(CL(θ|X)) =
∑
i∈C1

k4ilog(φ11f11(txi, tyi|I = 1, J = 1)

+
∑
i∈C4

k4ilog(φ11S11(txi, tyi|I = 1, J = 1)) + k3ilog(φ10S10(txi|I = 1)

+ k2ilog(φ01S01(tyi|J = 1)) + k1ilog(φ00))

+
∑
i∈C2

k4ilog(−φ11S
′
11x(txi, tyi|I = 1, J = 1)) + k3ilog(φ10f10(txi|I = 1))

+
∑
i∈C3

k4ilog(−φ11S
′
11y(txi, tyi|I = 1, J = 1)) + k2ilog(φ01f01(tyi|J = 1)).

(4.1.2)

This means the conditional expectation of the random variables (k1i, k2i, k3i, k4i), for

each observation i, need to be calculated in the Expectation step. These conditional

expectations will depend on the cases, C1, C2, C3, C4, as explained below.

As subjects in C1 have both lifetimes uncensored, the subject is susceptible to both

events, and so E(k4i|C1) = 1. Also, in this case, it is clear the subject cannot be

cured of either of the events and so other expectations are all 0; that is

E(k1i|C1) = 0,

E(k2i|C1) = 0,

E(k3i|C1) = 0,

E(k4i|C1) = 1.

(4.1.3)

In C2, the subjects have an uncensored lifetime for event 1 and a censored lifetime for

event 2. This means the subject must be susceptible to event 1 and cannot be cured
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leading to conditional probabilities of 0 for E(k1i|C2) and E(k2i|C2). The conditional

probability of being cured of event 2 while being susceptible to event 1 uses the

overall probability of being susceptible to event 1 and cured of event 2 multiplied by

the marginal pdf for the subjects susceptible to event 1. The conditional probability

of being susceptible to both uses the overall probability of being susceptible to both

multiplied by the survival function differentiated with respect to x as event 1 has

been observed while event 2 is censored. As the conditional probabilities must sum

to 1, the denominator is the sum of these conditional probabilities, and so we have

E(k1i|C2) = 0,

E(k2i|C2) = 0,

E(k3i|C2) =
φ10f10(txi)

−φ11S ′11x(txi, tyi) + φ10f10(txi)
,

E(k4i|C2) =
−φ11S

′
11x(txi, tyi)

−φ11S ′11x(txi, tyi) + φ10f10(txi)
.

(4.1.4)

In C3, the lifetime for event 1 is censored and the lifetime for event 2 is uncensored.

This means the subject must be susceptible to event 2 and cannot be cured leading to

conditional probabilities of 0 for E(k1i|C3) and E(k3i|C3). For the conditional prob-

ability of being susceptible to both events, the joint survival function differentiated

with respect to y is used as event 2 is observed while event 1 is censored. This is

multiplied by the overall probability of a subject being susceptible to both events.

For the conditional probability that the subject is cured of event 1 and susceptible to

event 2, the pdf for subjects susceptible to event 2 is used and is then multiplied by

the overall probability of being cured of event 1 and being susceptible to event 2. As

before, the denominator is the sum of the conditional probabilities, and thus we have
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E(k1i|C3) = 0,

E(k2i|C3) =
φ01f01(tyi)

−φ11S ′11y(txi, tyi) + φ01f01(tyi)
,

E(k3i|C3) = 0,

E(k4i|C3) =
−φ11S

′
11y(txi, tyi)

−φ11S ′11y(txi, tyi) + φ01S01(tyi)
.

(4.1.5)

If both lifetimes are censored, as in C4, then any scenario of being cured or susceptible

to either events is possible. The numerator for the conditional probability of being

cured of both events is the overall probability of being cured of both events, φ00. The

numerator for the conditional probability of being cured of event 1 and susceptible

to event 2 uses the overall probability of being cured of event 1 and susceptible to

event 2 multiplied by the marginal survival function for a subject susceptible to event

2. The numerator for the conditional probability of being susceptible to event 1 and

cured of event 2 uses the overall probability of being susceptible to event 1 and cured

of event 2 multiplied by the marginal survival function for being susceptible to event

1. The final conditional probability of being susceptible to both uses the joint survival

function at the censored values. As before, the denominator for all the conditional
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probabilities is the sum of all the conditional probabilities, and thus we have

E(k1i|C4) =
φ00

φ11S11(txi, tyi) + φ10S10(txi) + φ01S01(tyi) + φ00

,

E(k2i|C4) =
φ01S01(tyi)

φ11S11(txi, tyi) + φ10S10(txi) + φ01S01(tyi) + φ00

,

E(k3i|C4) =
φ10S10(txi)

φ11S11(txi, tyi) + φ10S10(txi) + φ01S01(tyi) + φ00

,

E(k4i|C4) =
φ11S11(txi, tyi)

φ11S11(txi, tyi) + φ10S10(txi) + φ01S01(tyi) + φ00

.

(4.1.6)

Maximization Step

We then maximize the Q-function with respect to the model parameters, which in

this case are α1, α2, β1, β2, ρ, φ00, φ01, φ10, φ11. Recall from Section 2.2.2 that the Q-

function is the expected complete log-likelihood function using the conditional distri-

bution of the cure status, given the current parameter estimates. From (4.1.2), the

Q-function is as follows:

Q(θ) =
∑
i∈C1

E(k4i|C1)log(φ11f11(txi, tyi))

+
∑
i∈C4

E(k4i|C4)log(φ11S11(txi, tyi)) + E(k3i|C4)log(φ10S10(txi))

+ E(k2i|C4)log(φ01S01(tyi)) + E(k1i|C4)log(φ00)

+
∑
i∈C2

E(k4i|C2)log(−φ11S
′
11x(txi, tyi)) + E(k3i|C2)log(φ10f10(txi))

+
∑
i∈C3

E(k4i|C3)log(−φ11S
′
11y(txi, tyi)) + E(k2i|C3)log(φ01f01(tyi)).

(4.1.7)
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The joint survival function, differentiated with respect to x, present in (4.1.7) has the

following expression:

S ′11x(x, y) =− β1

αβ11

xβ1−1 exp

(
−
(
x

α1

)β1)
exp

(
−
(
y

α2

)β2)

− β1x
β1−1

αβ11

∞∑
j=0

ρj+1

(j + 1)2
L

(1)
j

((
x

α1

)β1)
L

(1)
j

((
y

α2

)β2)( x

α1

)β1 ( y

α2

)β2
× exp

(
−
(
x

α1

)β1
−
(
y

α2

)β2)
+
β1

x
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j=0

ρj+1

(j + 1)2
L

(1)
j

((
x

α1

)β1)
L

(1)
j

((
y

α2

)β2)

×
(
x

α1

)β1 ( y

α2

)β2
exp

(
−
(
x

α1

)β1
−
(
y

α2

)β2)

− β1x
β1−1

xαβ11
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x

α1
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L

(1)
j
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y
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(
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(
x
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(
y
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(
x

α1

)β1)
exp

(
−
(
y

α2

)β2)

+

(
β1

x
− β1x

β1−1

αβ11

)(
x

α1

)β1 ( y

α2

)β2
exp

(
−
(
x

α1

)β1
−
(
y

α2

)β2)

×
∞∑
j=0

ρj+1

(j + 1)2
L

(1)
j

((
x

α1

)β1)
L

(1)
j

((
y

α2

)β2)

− β1x
β1−1

αβ11

(
x

α1

)β1 ( y

α2

)β2
exp

(
−
(
x

α1

)β1
−
(
y

α2

)β2)

×
∞∑
j=0

ρj+1

(j + 1)2
L

(2)
j−1

((
x

α1

)β1)
L

(1)
j

((
y

α2

)β2)
.

(4.1.8)
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By symmetry, the joint survival function differentiated with respect to y is simply

given by

S ′11y(x, y) =− β2

αβ22

yβ2−1 exp

(
−
(
x

α1

)β1)
exp

(
−
(
y

α2

)β2)

+

(
β2

y
− β2y

β2−1

αβ22

)(
x

α1

)β1 ( y

α2

)β2
exp

(
−
(
x

α1

)β1
−
(
y

α2

)β2)

×
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(j + 1)2
L

(1)
j
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x
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L

(1)
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(4.1.9)

The other terms in (4.1.7) are as given earlier in (3.1.7), (3.1.6), (3.1.4), (2.3.4) and

(2.3.9).

The Q-function can then be maximized with respect to each parameter, subject to

the following constraints:

1. α1, α2, β1, β2 ∈ (0,∞);

2. φ00, φ01, φ10, φ11 ∈ [0, 1] as they are probabilities;

3. ρ ∈ [0, 1) as dictated by the Moran-Downton bivariate exponential distribution;

4. φ00 + φ01 + φ10 + φ11 = 1 as the probabilities have to sum to 1 as the subjects

have to belong to one of the four cases.

Due to the complicated form of the Q-function, it is not practical to differentiate it

with respect to each parameter and then solve the obtained system of equations. So,
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numerical optimization is used. Here, optim in R with the L-BFGS-B method is used

with no gradient given, and hence the optim function also estimates the gradient

of the function via finite differences [50]. L-BFGS-B is a quasi-Newton algorithm

that does not require the second derivatives of the function and instead estimates

the Hessian [10]. However, the constraints still need to be satisfied and in particular,

constraints 2 and 4 on φ00, φ01, φ10, φ11 are the most complicated to satisfy. We cannot

just maximize the Q-function with respect to each parameter as it may not ensure

that the sum of φ00, φ01, φ10, φ11 is equal to 1. If we write φ11 as 1− φ00 − φ01 − φ10

it will satisfy constraint 4, but can cause φ11 < 0 and violate constraint 2. For the L-

BFGS-B numerical optimization, as well as other numerical optimization, we can only

specify bounds on individual parameters as opposed to combinations of parameters.

This means we cannot implement constraint 4 in its current form. However, we may

use new dummy parameters such that by placing bounds on them, it would enforce

the constraints on the real parameters. This procedure then proceeds as follows:

• Let a = φ00 with the support of a = (0, 1). This directly satisfies the constraint

that φ00 ∈ (0, 1);

• Let b = 1−φ00−φ01
1−φ00 with support of b = (0, 1). This means that 0 < 1 − φ00 −

φ01 =⇒ φ00 +φ01 < 1 and 1−φ00−φ01 < 1−φ00 =⇒ 0 < φ01. As φ00 ∈ (0, 1),

this means that φ01 ∈ (0, 1) as well;

• Let c = 1−φ00−φ01−φ10
1−φ00−φ01 with support of c = (0, 1). This means that 0 < 1−φ00−

φ01− φ10 =⇒ φ00 + φ01 + φ10 < 1 and 1− φ00− φ01− φ10 < 1− φ00− φ01 =⇒

0 < φ10. As we already have the previous constraint that φ00 + φ01 < 1, this

can be combined to give φ10 ∈ (0, 1) as well. As φ00, φ01, φ10 ∈ (0, 1) and

φ00 + φ01 + φ10 < 1, this means that by calculating φ11 = 1 − φ00 − φ01 − φ10,
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φ11 ∈ (0, 1) and φ00 + φ01 + φ10 + φ11 = 1 and so constraints 2 and 4 are both

satisfied.

To then estimate the original parameters, we invert the above equations to get

• φ00 = a,

• φ01 = 1− φ00 − b× (1− φ00),

• φ10 = 1− φ00 − φ01 × c× (1− φ00 − φ01),

• φ11 = 1− φ00 − φ01 − φ10.

The other constraints are trivial to apply.

If the optimization algorithm requires unconstrained optimization, then the logit

function can be used to convert a, b, c to new dummy parameters which instead have

support of (−∞,∞) whilst still maintaining the constraints on φ00, φ01, φ10 and φ11.

A logit transformation can also be used on ρ and log-transformation can be used on

α1, α2, β1, β2 as well to convert to functions with support (−∞,∞). The optimiza-

tion algorithm can then be implemented with these dummy parameters and then the

obtained results can be transformed back to the original parameters once the opti-

mization is complete. The parameter estimates for α1, α2, β1, β2, ρ, φ00, φ01, φ10, φ11

are then updated.

Using these new parameter estimates, new conditional probabilities of k1i, k2i, k3i, k4i

can be calculated for each subject. Then, the Expectation and Maximization Steps

are repeated until convergence is achieved.
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End point

Once two consecutive values of the observed log-likelihood function are within ε =

0.001, the algorithm terminates, and the final parameter estimates are returned. The

expression of the observed log-likelihood is

L(θ) =
∑
i∈c1

log(φ11f11(t1i, t2i)) +
∑
i∈c4

log(φ11S11(t1i, t2i) + φ10S10(t1i) + φ01S01(t2i) + φ00)

+
∑
i∈c2

log(−φ11S
′
11x(t1i, t2i) + φ10f10(t1i)) +

∑
i∈c3

log(−φ11S
′
11y(t1i, t2i) + φ01f01(t2i)).

(4.1.10)

The R code for this algorithm has been presented in the Appendix.

4.2 Starting Parameter Values

The EM algorithm can be sensitive to initial values as the algorithm can converge to

a local and not global maximum [8]. Here, to find the model parameter estimates, a

Weibull distribution can be fitted to the uncensored values for each event using the

traditional MLE method. This will give starting parameters for α1, α2, β1 and β2.

The observations can then be transformed into exponential variables and ρ can be

calculated as the correlation between these uncensored values. If there are no pairs

where both lifetimes are uncensored, then ρ is taken to be 0.5. There is not a clear

method to find starting parameters for φ00, φ10, φ01, φ11 from a dataset and so 0.25 is

used as the starting values of φ00, φ10, φ01, φ11; this ensures that the constraints are

met. Upon setting φ00 = φ01 = φ10 = φ11 = 0.25, we get a = 0.25, b = 2
3

and c = 1
2

as the starting values for the dummy parameters.
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Chapter 5

Empirical Study

In order to test the proposed algorithm, as well as to generate data replications

for the parametric bootstrap method, sampling from the desired cure rate model is

necessary. Once datasets have been simulated, the algorithm described in Chapter 4

can be implemented on each dataset and the parameter estimates can be obtained to

dertermine the performance measures such as Bias and Mean Squared Error (MSE).

5.1 Data Simulation

To simulate a dataset, first of all, a bivariate cure status is generated for each sub-

ject. Then, for subjects susceptible to both events lifetimes are randomly generated

from a Moran-Downton Bivariate Weibull distribution. For subjects susceptible to

just one event the lifetime for this event will be randomly generated from a Weibull

distribution. Next, the censoring times are randomly generated from an exponential

distribution with rate parameter λ, with the censoring mechanism being independent
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of lifetime. Finally, the lifetime will be compared to the censoring time and the small-

est value is selected as the observed time for the susceptible subjects. For subjects

who are cured, the observed time automatically will be set as the censored time.

To generate datasets when α1, α2, β1, β2, ρ, φ00, φ01, φ10, φ11 and λ are all specified the

following algorithm is used, and the corresponding R code is presented in the Ap-

pendix:

1. Generate u from a uniform(0,1) distribution;

2. If u < φ00, then generate the censoring time from an exponential distribution

with parameter λ for t1 and t2;

3. If φ00 < u < φ00 + φ01, then generate a lifetime, x, for event 1 from a marginal

Weibull distribution with parameters α1, β1, and censoring time from an ex-

ponential distribution with parameter λ. Set t1 as the smallest value out of

censoring time and lifetime x. Set t2 as the censoring time;

4. If φ00 + φ01 < u < φ00 + φ01 + φ10, then generate a lifetime, y, for event 2 from

a marginal Weibull distribution with parameters α2, β2, and a censoring time

from an exponential distribution with parameter λ. Set t2 as the smallest value

out of the censoring time and lifetime y and set t1 as the censoring time;

5. If φ00 + φ01 + φ10 < u, then generate two lifetimes, x1 and y1, from the Moran-

Downton standard bivariate exponential distribution, using the MDBED pack-

age in R [25] with parameters 1, 1, ρ. Then, transform to Weibull random vari-

ables by setting x = α1x
1
β1
1 and y = α2y

1
β2
1 . Generate a censoring time from

an exponential distribution with parameter λ. Now set t1 as the smallest value
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out of the censoring time and lifetime x, and set t2 as the smallest out of the

lifetime y and the censoring time;

6. Return t1 and t2 and the censoring indicators that indicate whether the returned

values are lifetimes or censored times;

7. Repeat Steps 1-6 until a sample of suitable size has been generated.

5.2 Censoring Rate Compared to Cure Rate

For each dataset there will be some proportion of the observations that are censored.

In the univariate/ marginal case the censoring proportion is the number of censored

observations divided by the total number of observations. In the bivariate case, here

censoring proportion will refer to the proportion of observations that have censored

lifetimes for both events. There is a relationship between the parameters and the

censoring proportion. For parametric bootstrap methods, the censoring proportion

of the dataset to be replicated will be known, but the exponential rate parameter that

would generate this censoring proportion will be unknown. For this reason, a suitable

parameter for the censoring distribution will need to be found so that a dataset with

the correct censoring proportion can be simulated. As the marginals of the cure rate

model are univariate cure models, the probability of each event being censored can

be seen as follows.

We let the random variable C ∼ fc(c), c > 0, with fc(c) = λexp(−λc), represent the

time of censoring for both events in a pair. For the random variable of lifetime for sub-

jects susceptible to event 1, we use X ∼ f10(x) with f10(x) = β
α

(
x
α

)β1−1
exp

(
−
(
x
α

)β)
,

x > 0. As X and C are independent, their joint pdf is f10(x)fc(c). If the subject is
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cured of event 1, then the lifetime must be censored for event 1. This yields:

P (event 1 censored) =P (C < observed)

=pX + (1− pX)P (C < X)

=φ00 + φ01 + (φ10 + φ11)P (C < X)

=φ00 + φ01 + (φ10 + φ11)

∫ ∞
0

∫ x

0

f10(x)fc(c)dcdx

=φ00 + φ01 + (φ10 + φ11)

×
∫ ∞

0

∫ x

0

λexp(−λc)β
α

(x
α

)β1−1

exp

(
−
(x
α

)β)
dcdx

=φ00 + φ01 + (φ10 + φ11)

[
1−

∫ ∞
0

β

α

(x
α

)β1−1

exp

(
−
(x
α

)β
− λx

)
dx

]
.

(5.2.1)

We cannot analytically compute the above integral for all values of α and β.

For β = 1, i.e., in the exponential case, we have

P (event 1 censored) = φ00 + φ01 + (φ10 + φ11)P (c < X)

= φ00 + φ01 + (φ10 + φ11)[1−
∫ ∞

0

1

α
exp

(
−
(x
α

)
− λx

)
dx]

= φ00 + φ01 + (φ10 + φ11)[1−
∫ ∞

0

1

α
exp

(
−
(

1

α
+ λ

)
x

)
dx]

= φ00 + φ01 + (φ10 + φ11)

(
1 +

[
1

1
α

+ λ
exp

(
−
(

1

α
+ λ

)
x

)]x=∞

x=0

)

= φ00 + φ01 + (φ10 + φ11)

(
1− 1

1
α

+ λ

)
.

(5.2.2)
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Rearranging for λ, we get

λ =
1− P (event 1 censored)− α + (φ00 + φ01)× α

α× (P (event 1 censored)− 1)
(5.2.3)

This is the relationship between the censoring proportion and the parameters in the

marginal distributions. For the censoring proportion of event 2, by symmetry, there

is the following relationship:

P (event 2 censored) = φ00 + φ10 + (φ01 + φ11)

∫ ∞
0

∫ ∞
c

fc(c)f01(y)dydc

= φ00 + φ10 + (φ01 + φ11)

∫ ∞
0

fc(c)S01(c)dc.

(5.2.4)

In the bivariate case, there is also the probability that both lifetimes can be censored.

If the subject is cured of both events, then the observed times will automatically be

the censoring times, and the probability of this is φ00. If the subject is susceptible

to event 1 but cured of event 2, then the subject will be censored if the lifetime of

event 1 is greater than the censoring time, which is given by P (X > C|I = 1). If

the subject is cured of event 1 but susceptible to event 2, then the subject will be

censored if the lifetime of event 2 is greater than the censoring time, which is given

by P (Y > C|J = 1). If the subject is susceptible to both events, then the probability

of being censored is P (X > C, Y > C|I = 1, J = 1). Combining all these cases
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together, we obtain

P (both events censored) =φ00 + φ10P (X > C|I = 1) + φ01P (Y > C|J = 1)

+ φ11P (X > C, Y > C|I = 1, J = 1)

=φ00 + φ10

∫ ∞
0

∫ ∞
c

fc(c)f10(x)dxdc+ φ01

∫ ∞
0

∫ ∞
c

fc(c)f01(y)dydc

+ φ11

∫ ∞
0

∫ ∞
c

∫ ∞
c

fc(c)f11(x, y)dxdydc

=φ00 + φ10

∫ ∞
0

fc(c)S10(c)dc+ φ01

∫ ∞
0

fc(c)S01(c)dc

+ φ11

∫ ∞
0

fc(c)S11(c, c)dc.

(5.2.5)

The functions S10(c), S01(c) and S11(c, c) are as given in (3.1.6), (3.1.7) and (3.1.4),

respectively. If a specific censoring proportion, Cp, is required, then we need to find

λ such that:

P (both events censored)− Cp = 0. (5.2.6)

Using (5.2.5) a root finding algorithm can been used to find λ from (5.2.6).

5.3 Results

Four different sets of parameters with three different samples sizes, n = 100, n = 50

and n = 25, were used in the simulation study, with a total of 500 datasets generated

for each parameter setting. Low (ρ = 0.3) and high (ρ = 0.7) correlation as well as

low (λ = 0.2) and high (λ = 0.7) censoring levels were used to simulate data with

censoring proportions and correlation for each of the parameter settings as presented

in Table 5.1. The mean was calculated by taking the mean of the parameter estimates.
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The bias was then calculated by taking the mean of the parameter estimates and

subtracting the true value of the parameter. The MSE was calculated by subtracting

the true value from each parameter estimate, squaring and then taking the mean of

all these values. The obtained results are presented in Tables 5.3-5.5.

Events censored
Parameter

(α1, α2, β1, β2, ρ)
λ 1 and 2 Marginally 1 Marginally 2 Neither

(1, 1.5, 1.5, 2, 0.3) 0.2 0.3246 0.5628 0.5976 0.1642
(1, 1.5, 1.5, 2, 0.7) 0.2 0.3758 0.5628 0.5976 0.2154
(1, 1.5, 1.5, 2, 0.3) 0.7 0.5054 0.7007 0.7718 0.0329
(1, 1.5, 1.5, 2, 0.7) 0.7 0.6549 0.7007 0.7718 0.1824

Table 5.1: The censoring proportions and correlation for the four different
parameter settings

Furthermore, Table 5.2 presents the mean number of iterations to achieve convergence

and the mean observed log-likelihood value for the final parameter estimates for each

parameter setting in the simulation study.

In general, the algorithm performed well at predicting the true parameter values, with

larger sample sizes having slightly better estimates. Notably the algorithm accurately

estimates φ00, φ01, φ10, φ11 in all 12 considered settings. Unusually, high censoring

leads to lower MSE and bias than low censoring. However, with high censoring, from

Table 5.2, it can be seen that more iterations are needed for convergence with the

algorithm finding parameter estimates that on an average gave a smaller observed log-

likelihood value. This suggests that as the algorithm takes many more iterations, it is

more likely to converge to a global maximum as opposed to a local maximum, which

would explain why high censoring performs better than low censoring. A solution
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Parameter
(α1, α2, β1, β2, ρ)

Sample size Censoring Mean iterations Mean ObsLL

(1, 1.5, 1.5, 2, 0.3) 100 low 4.47 -188.29
(1, 1.5, 1.5, 2, 0.7) 100 low 9.72 -147.40
(1, 1.5, 1.5, 2, 0.7) 100 high 14.36 -108.02
(1, 1.5, 1.5, 2, 0.3) 100 high 15.61 -110.98
(1, 1.5, 1.5, 2, 0.3) 50 low 4.01 -190.23
(1, 1.5, 1.5, 2, 0.7) 50 low 4.37 -182.68
(1, 1.5, 1.5, 2, 0.7) 50 high 15.26 -107.25
(1, 1.5, 1.5, 2, 0.3) 50 high 15.62 -110.42
(1, 1.5, 1.5, 2, 0.3) 25 low 3.74 -188.69
(1, 1.5, 1.5, 2, 0.7) 25 low 5.30 -181.74
(1, 1.5, 1.5, 2, 0.7) 25 high 14.71 -108.05
(1, 1.5, 1.5, 2, 0.3) 25 high 15.17 -110.33

Table 5.2: Mean observed log-likelihood (ObsLL) and mean number of iterations
until convergence for each of the parameter settings

to the bad performance of low censoring could be to have multiple sets of starting

parameters to ensure convergence to a global maximum, but this would come at

the cost of higher computational complexity. Correlation does not appear to have a

discernible impact on the parameter estimates either in terms of bias or MSE. Overall,

the algorithm performs particularly well when there is a high censoring proportion

present in the dataset, which makes it very applicable for real-life datasets.
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Parameter
α1 α2 β1 β2 ρ φ00 φ01 φ10 φ11

True value 1.00 1.50 1.50 2.00 0.30 0.21 0.27 0.23 0.29
Mean 1.15 1.88 1.47 1.78 0.36 0.21 0.27 0.23 0.29
Bias 0.15 0.38 -0.03 -0.22 0.06 0.00 0.00 0.00 0.00
MSE 0.55 1.83 0.05 0.16 0.05 0.00 0.00 0.00 0.00

(a) Simulation results for low correlation and low censoring

Parameter
α1 α2 β1 β2 ρ φ00 φ01 φ10 φ11

True value 1.00 1.50 1.50 2.00 0.70 0.21 0.27 0.23 0.29
Mean 1.19 1.69 1.48 1.91 0.50 0.23 0.25 0.22 0.30
Bias 0.19 0.19 -0.02 -0.09 -0.20 0.02 -0.02 -0.01 0.01
MSE 3.70 0.91 0.07 0.15 0.13 0.00 0.00 0.00 0.01

(b) Simulation results for high correlation and low censoring

Parameter
α1 α2 β1 β2 ρ φ00 φ01 φ10 φ11

True value 1.00 1.50 1.50 2.00 0.70 0.21 0.27 0.23 0.29
Mean 1.01 1.49 1.57 2.06 0.69 0.24 0.25 0.21 0.30
Bias 0.01 -0.01 0.07 0.06 -0.01 0.03 -0.02 -0.02 0.01
MSE 0.03 0.04 0.06 0.11 0.04 0.01 0.00 0.01 0.01

(c) Simulation results for high correlation and high censoring

Parameter
α1 α2 β1 β2 ρ φ00 φ01 φ10 φ11

True value 1.00 1.50 1.50 2.00 0.30 0.21 0.27 0.23 0.29
Mean 1.01 1.50 1.54 2.08 0.34 0.24 0.24 0.21 0.31
Bias 0.01 0.00 0.04 0.08 0.04 0.03 -0.03 -0.02 0.02
MSE 0.03 0.04 0.05 0.11 0.08 0.01 0.01 0.01 0.01

(d) Simulation results for low correlation and high censoring

Table 5.3: Simulation results for sample size n = 100
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Parameter
α1 α2 β1 β2 ρ φ00 φ01 φ10 φ11

True value 1.00 1.50 1.50 2.00 0.30 0.21 0.27 0.23 0.29
Mean 1.15 1.87 1.46 1.78 0.36 0.21 0.26 0.23 0.29
Bias 0.15 0.37 -0.04 -0.22 0.06 0.00 -0.01 0.00 0.00
MSE 0.23 1.66 0.05 0.34 0.06 0.00 0.00 0.00 0.00

(a) Simulation results for low correlation and low censoring

Parameter
α1 α2 β1 β2 ρ φ00 φ01 φ10 φ11

True value 1.00 1.50 1.50 2.00 0.70 0.21 0.27 0.23 0.29
Mean 1.18 1.75 1.45 1.80 0.66 0.21 0.27 0.23 0.30
Bias 0.18 0.25 -0.05 -0.20 -0.04 0.00 0.00 0.00 0.01
MSE 1.31 0.77 0.05 0.15 0.04 0.00 0.00 0.00 0.00

(b) Simulation results for high correlation and low censoring

Parameter
α1 α2 β1 β2 ρ φ00 φ01 φ10 φ11

True value 1.00 1.50 1.50 2.00 0.70 0.21 0.27 0.23 0.29
Mean 1.02 1.50 1.56 2.09 0.68 0.24 0.25 0.20 0.31
Bias 0.02 0.00 0.06 0.09 -0.02 0.03 -0.02 -0.03 0.02
MSE 0.03 0.04 0.06 0.13 0.05 0.01 0.00 0.01 0.01

(c) Simulation results for high correlation and high censoring

Parameter
α1 α2 β1 β2 ρ φ00 φ01 φ10 φ11

True value 1.00 1.50 1.50 2.00 0.30 0.21 0.27 0.23 0.29
Mean 1.03 1.49 1.57 2.08 0.35 0.24 0.25 0.21 0.31
Bias 0.03 -0.01 0.07 0.08 0.05 0.03 -0.02 -0.02 0.02
MSE 0.04 0.05 0.07 0.12 0.08 0.01 0.01 0.01 0.01

(d) Simulation results for low correlation and high censoring

Table 5.4: Simulation results for sample size n = 50

56

http://www.mcmaster.ca/


M.Sc. Thesis – Matilda Pitt; McMaster University – Mathematics and Statistics

Parameter
α1 α2 β1 β2 ρ φ00 φ01 φ10 φ11

True value 1.00 1.50 1.50 2.00 0.30 0.21 0.27 0.23 0.29
Mean 1.16 1.96 1.48 1.78 0.34 0.21 0.27 0.23 0.30
Bias 0.16 0.46 -0.02 -0.22 0.04 0.00 0.00 0.00 0.01
MSE 0.37 2.46 0.06 0.19 0.06 0.00 0.00 0.00 0.00

(a) Simulation results for low correlation and low censoring

Parameter
α1 α2 β1 β2 ρ φ00 φ01 φ10 φ11

True value 1.00 1.50 1.50 2.00 0.70 0.21 0.27 0.23 0.29
Mean 1.29 1.82 1.44 1.81 0.67 0.20 0.27 0.23 0.30
Bias 0.29 0.32 -0.06 -0.19 -0.03 -0.01 0.00 0.00 0.01
MSE 6.36 1.83 0.06 0.17 0.04 0.00 0.00 0.00 0.00

(b) Simulation results for high correlation and low censoring

Parameter
α1 α2 β1 β2 ρ φ00 φ01 φ10 φ11

True value 1.00 1.50 1.50 2.00 0.70 0.21 0.27 0.23 0.29
Mean 1.01 1.50 1.57 2.11 0.66 0.24 0.25 0.20 0.31
Bias 0.01 0.00 0.07 0.11 -0.04 0.03 -0.02 -0.03 0.02
MSE 0.04 0.04 0.06 0.13 0.05 0.01 0.00 0.01 0.01

(c) Simulation results for high correlation and high censoring

Parameter
α1 α2 β1 β2 ρ φ00 φ01 φ10 φ11

True value 1.00 1.50 1.50 2.00 0.30 0.21 0.27 0.23 0.29
Mean 1.02 1.48 1.58 2.09 0.35 0.24 0.25 0.21 0.30
Bias 0.02 -0.02 0.08 0.09 0.05 0.03 -0.02 -0.02 0.01
MSE 0.03 0.05 0.06 0.12 0.08 0.01 0.00 0.01 0.01

(d) Simulation results for low correlation and high censoring

Table 5.5: Simulation results for sample size n = 25
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Chapter 6

Application to Retinopathy Data

6.1 The Dataset

Diabetic retinopathy is when, due to diabetes, the retina in the eye is damaged causing

blindness. In 1971, a clinical trial was set up to investigate the effectiveness of using

laser treatment, with each person in the trial being given the treatment to one eye

and the other eye left untreated [48]. The time until blindness or until censoring was

recorded, with blindness defined as when visual acurity drops below 5/200 two visits

in a row. A dataset from this trial of a random sample of 197 patients is available

in the survival package in R and is used for the analysis; see [55] . Each person was

taken as a subject with going blind in each eye as the paired event. Many previous

works have analyzed this dataset; some did not use a cure rate model [37] while other

more recent papers did use cure rate models [20, 19, 21].

Within the treatment eye, 73% of lifetimes are censored and within the untreated

eye, 49% of lifetimes are censored with 41% of observations having both lifetimes

censored. Figure 6.1 is a scatterplot of the observed times from the dataset. The

58



M.Sc. Thesis – Matilda Pitt; McMaster University – Mathematics and Statistics

0

2

4

6

0 2 4 6
Treated observed time

U
nt

re
at

ed
 o

bs
er

ve
d 

tim
e

Untreated censoring indicator Censored Uncensored

Treated censoring indicator Censored Uncensored

Scatterplot for Diabetic Retinopathy dataset

Figure 6.1: Scatterplot of Diabetic Retionopathy dataset showing a small positive
correlation within uncensored observations

diagonal line represents when both observations are censored at the same time. This

might be due to a person leaving the trial or the trial ending, so that both eyes are

censored at the same time. Looking at the uncensored observations, a slight positive

correlation may be observed.
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6.2 Implementation of the Algorithm and Results

The EM algorithm described in Chapter 4 was implemented on the dataset and it

converged in 14 iterations. To find the standard errors and confidence intervals,

a parametric bootstrap algorithm was implemented, as described in Section 2.2.3.

This meant that using the estimated parameters and censoring proportion of the

data, the censoring parameter, λ, could be calculated using (5.2.5). Then, using the

simulation method as outlined in Section 5.1, 1500 datasets were generated from the

assumed model. The EM algorithm described in Chapter 4 was then implemented

on each of the datasets to generate bootstrap replications. The standard deviation of

these bootstrap replications was used as the standard error. To find 90% confidence

intervals, the BCa percentiles of the bootstrap replications were used.

The parameter estimates, standard error and confidence intervals obtained from the

algorithm are presented in Table 6.1, with the confidence intervals being relatively

wide suggesting uncertainty in the model.

Parameter Estimate SE CI

α1 2.5848 0.56 [1.92, 3.72]
α2 2.4368 0.45 [1.86, 3.36]
β1 1.0755 0.18 [0.81, 1.34]
β2 0.9893 0.13 [0.79, 1.17]
ρ 0.4729 0.21 [0.00, 0.72]
φ00 0.2797 0.06 [0.19, 0.37]
φ01 0.3549 0.06 [0.26,0.46]
φ10 0.0685 0.04 [0.02, 0.14]
φ11 0.2968 0.06 [0.21, 0.40]

Table 6.1: Results from the EM algorithm applied to the Diabetic Retionpathy
dataset
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The observed log-likelihood value, based on this set of parameter values, was

computed to be -440.7872 with the corresponding AIC as 899.5745. From the re-

sults presented in Table 6.1 and from (2.3.9) the cure rate for the treated eyes is

pX = φ00 + φ01 = 0.28 + 0.35 = 0.63 and for untreated eyes it is pY = φ00 + φ10 =

0.28 + 0.07 = 0.35. This suggests that the laser treatment drastically increased the

probability that an eye would be cured from blindness. Using (3.1.14) the estimate

for the correlation of the Weibull variables, ρw, is 0.4725. This suggests a medium

positive correlation exists between the time to blindness in each eye in a patient. The

covariance between the probability of a subject being susceptible to both events, ω,

can then be calculated as φ00−pXpY = 0.2797− (0.63)(0.35) = 0.0592 which suggests

a small positive correlation. Both the treated eyes and untreated eyes have similar pa-

rameter estimates for α and β, but different probabilities of being susceptible to going

blind. This suggests that the treatment reduces the probability of being susceptible,

but does not slow down blindness for the eyes that are susceptible. Furthermore, both

β values are close to 1, with the confidence intervals containing 1, which suggests that

exponential marginals may also be appropriate. The Kaplan-Meier plot and Weibull

survival curves for the treated and untreated eyes can be seen in Figure 6.2 which

shows a very close agreement between the Kaplan-Meier survival function and the

marginal weibull distribution survival functions fitted in the model. This suggests

the Weibull distribution provides a good fit.
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Figure 6.2: Marginal Survival Plots for Treated and Untreated Eyes
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6.3 Comparison with Other Models

The estimates from this model can be compared to those from some other models that

have been fitted to the dataset. Table 6.2 compares the results from this model, the

Moran-Downton bivariate Weibull (MDBW), with the Basu–Dhar bivariate geometric

(BDBG) cure rate model [19], a Bivariate Weibull with Generalized Farlie-Gumbel-

Morgenstern (GFGM) copula cure rate model [21], and a Bivariate Weibull with

Clayton-Oakes distribution, but not including cure fraction [37]. The log-likelihood

values, AIC values and correlation estimates were also calculated for all the models

[1]. It can be seen that the GFGM model fitted the data the best, closely followed

by the Moran-Downton bivariate Weibull model. The non-cure rate model performed

the worst suggesting that a cure rate model is essential for this dataset. The Weibull

parameter estimates and the cure proportion estimates were very similar between the

GFGM and Moran-Downton bivariate Weibull models, but their estimates for the

correlation between susceptible subject lifetimes differed. The Weibull estimates for

the cure rate models differed from those of the non-cured model, but that is to be

expected as they are based on different assumptions. The BDBG model estimated

a much smaller correlation between the event times of susceptible subjects, but this

model had the largest AIC, and so did not provide a good fit. The MDWB model

found very similar estimates for φ00, φ01, φ10 and φ11 compared to the BDBG model.

Overall, the Moran-Downton bivariate Weibull model fits the Diabetic Retinopathy

dataset reasonably well, and also provides clear evidence that a cure rate model is

necessary for this dataset.
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BDBG [19] GFGM copula [21] Weibull not cured [37] MDBW

α1 2.5913 15.53 2.5848
α2 3.0413 5.81 2.4368
β1 0.9454 0.79 1.0755
β2 1.0340 0.82 0.9893
ρw 0.0986 0.2080 0.63 0.4725
φ00 0.2862 0.2482 0 0.2797
φ01 0.3383 0.3226 0 0.3549
φ10 0.0601 0.0624 0 0.0685
φ11 0.3154 0.3668 1 0.2968

LogLikelihood -590.99 -401.82 -829.58 -440.79
AIC 1187.98 827.63 1677.16 899.58

Table 6.2: Comparison of parameter estimates for the Diabetic Retinopathy dataset
based on different models
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Chapter 7

Conclusions

This thesis has successfully developed and fitted a new bivariate cure rate model based

on the Moran-Downton bivariate Weibull distribution. Weibull marginals within cure

rate models had been studied before due to their wide range of applications, but this

is the first time when the Moran-Downton bivariate Weibull distribution is used in

cure rate modelling.

Furthermore, this thesis has developed and applied an EM algorithm to the bivariate

cure rate model for the first time. An empirical study, with various settings, has

been performed showing that the proposed algorithm performs well. The algorithm

is slow, most likely due to the high computational complexity of the Moran-Downton

bivariate Weibull distribution and did not perform as well on datasets with low cen-

soring rates. The algorithm appeared to perform particularly well at predicting the

cure fractions across all the settings considered.

The algorithm has been used on a dataset on Diabetic Retinopathy; the parameter

estimates were in line with previously published research analyzing the same data.

The parameter estimates suggest that exponential marginals may also be appropriate
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for modelling this dataset. The bootstrap method has been used to find the stan-

dard errors and confidence intervals for the parameters, with the confidence intervals

being relatively wide suggesting uncertainty within the model fitted to the Diabetic

Retinopathy dataset.

Further problems to consider could include looking at other bivariate lifetime models

fitted via EM algorithms, adaptations to the algorithm that improve the speed and

accuracy, other censoring mechanisms and also incorporation of covariates into the

model.
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Appendix A

R code

A.1 EM Algorithm

For calculating the conditional expectations as seen in (4.1.3) - (4.1.6):

opifun<-function(x,y,a1,a2,b1,b2,rho, c1,c2, phi00, phi01, phi10, lg, lg2){

phi11<-1-phi00-phi10-phi01

probs=matrix(data=NA, nrow=length(x), ncol=4)

for(i in 1:length(x)){

if(c1[i]==0 & c2[i]==0){

probs[i,1]<-0

probs[i,2]<-0

probs[i,3]<-0

probs[i,4]<-1}

if(c1[i]==0 & c2[i]==1){

probs[i,1]<-0
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probs[i,2]<-0

probs[i,3]<-phi10*(dweibull(x[i],b1,a1))/(phi10*(dweibull(x[i],b1,a1))

-phi11*omdbwsdashx(x[i],y[i],a1,a2,b1,b2, rho, lg, lg2))

probs[i,4]<-1-probs[i,3]}

if(c1[i]==1 & c2[i]==0){

probs[i,1]<-0

probs[i,2]<-phi01*(dweibull(y[i],b2,a2))/(phi01*(dweibull(y[i],b2,a2))

-phi11*omdbwsdashx(y[i],x[i],a2,a1,b2,b1, rho, lg ,lg2))

probs[i,3]<-0

probs[i,4]<-1-probs[i,2]}

if(c1[i]==1 & c2[i]==1){

bottom<-phi11*omdbwsurv(x[i],y[i],a1,a2,b1,b2, rho, lg, lg2)

+ phi10*(1-pweibull(x[i],b1,a1)) +phi01*(1-pweibull(y[i],b2,a2))+phi00

probs[i,1]<-phi00/bottom

probs[i,2]<-phi01*(1-pweibull(y[i],b2,a2))/bottom

probs[i,3]<-phi10*(1-pweibull(x[i],b1,a1))/bottom

probs[i,4]<-1- probs[i,1]- probs[i,2]- probs[i,3]}}

return(probs)

}

For a single observation the Q-function, as seen in (4.1.7) is:

olikelihoodfun<-function(x,y,a1,a2,b1,b2,rho,phi00,phi01,phi10, pi1, pi2,

pi3, pi4, c1, c2, lg, lg2){

phi11<-1-phi00-phi10-phi01
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if(c1==0 & c2==0){ ##both observed

ans<-log(phi11*omdbwpdf(x,y,a1,a2,b1,b2, rho))}

if(c1==0 & c2==1){

ans<-pi4*log(-phi11*omdbwsdashx(x,y,a1,a2,b1,b2, rho, lg, lg2))

+pi3*log(phi10*dweibull(x,b1,a1))}

if(c1==1 & c2==0){

ans<-pi4*log(-phi11*omdbwsdashx(y,x,a2,a1,b2,b1, rho, lg, lg2))

+pi2*log(phi01*dweibull(y,b2,a2))}

if(c1==1 & c2==1){

ans<-pi4*log(phi11*omdbwsurv(x,y,a1,a2,b1,b2, rho, lg, lg2))

+pi3*log(phi10*(1-pweibull(x,b1,a1)))

+pi2*log(phi01*(1-pweibull(y,b2,a2)))+pi1*log(phi00)}

return(ans)

}

The value of the Q-function for an entire dataset

onegloglikefun2<-function(paraest, piest, dataset, lg, lg2){

a1<-paraest[1]

a2<-paraest[2]

b1<-paraest[3]

b2<-paraest[4]

rho<-paraest[5]

phi00<-exp(paraest[6])/(1+exp(paraest[6]))

phi01<-1-phi00-exp(paraest[7])*(1-phi00)/(1+exp(paraest[7]))

phi10<-1-phi00-phi01-exp(paraest[8])*(1-phi00-phi01)/(1+exp(paraest[8]))
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x<-dataset[,1]

y<-dataset[,2]

c1<-dataset[,3]

c2<-dataset[,4]

pi1<-piest[,1]

pi2<-piest[,2]

pi3<-piest[,3]

pi4<-piest[,4]

ans<-0

for (i in 1:length(x)){

b<-olikelihoodfun(x[i],y[i],a1,a2,b1,b2,rho,phi00,phi01,phi10,

pi1[i], pi2[i], pi3[i], pi4[i], c1[i], c2[i], lg, lg2)

ans<-ans+b}

return(-ans)

}

For the joint pdf of the Moran Downton Bivariate Weibull distribution as seen in

(3.1.2).

omdbwpdf<-function(x,y,a1,a2,b1,b2, rho){

x1<-(x/a1)^b1

y1<-(y/a2)^b2

ans<-b1*b2*x1*y1/((1-rho)*x*y)*exp(-(x1+y1)/(1-rho))*

besselI(2*sqrt(rho*x1*y1)/(1-rho),0)

return(ans)
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}

For the joint survival function of the Moran Downton Bivariate Weibull distribution

as seen in (3.1.4)

omdbwsurv<-function(x,y,a1,a2,b1,b2, rho, lg, lg2){

Term<-rep(0,n)

x1<-(x/a1)^b1

y1<-(y/a2)^b2

for(j in 1:n){

lgj<-as.function(lg[[j]])

k<-j-1

Term[j]<-((rho^(k+1))/(k+1)^2)*lgj(x1)*lgj(y1)}

ans<-exp(-x1-y1)+x1*y1*exp(-x1-y1)*sum(Term)

return(ans)

}

For the joint survival function differentiated with respect to x of the Moran Downton

Bivariate Weibull distribution as seen in (4.1.8). Due to symmetry this function was

also used for Equation (4.1.9) with the input order changing to (y, x, a2, a1, b2, b1, ρ).

omdbwsdashx<-function(x,y,a1,a2,b1,b2, rho, lg, lg2){

Term<-rep(0,n)

x1<-(x/a1)^b1

y1<-(y/a2)^b2

for(j in 1:n){

lgj<-as.function(lg[[j]])
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k<-j-1

Term[j]<-((rho^(k+1))/(k+1)^2)*lgj(x1)*lgj(y1)

}

ans<- -b1/x*x1*exp(-x1-y1)+(b1/x-b1*x1/x

-2*b1*x1/(x^2))*x1*y1*exp(-x1-y1)*sum(Term)

return(ans)

}

For the observed loglikelihood of the dataset, as needed to test for convergence,

from (4.1.10):

obsloglike<-function(x,y,a1,a2,b1,b2,rho,phi00,phi01,phi10, c1, c2, lg, lg2){

phi11<-1-phi00-phi10-phi01

if(c1==0 & c2==0){

ans<-log(phi11*omdbwpdf(x,y,a1,a2,b1,b2,rho))

}

if(c1==0 & c2==1){

ans<-log(-phi11*omdbwsdashx(x,y,a1,a2,b1,b2,rho, lg, lg2)

+phi10*dweibull(x,b1,a1))

}

if(c1==1 & c2==0){

ans<-log(-phi11*omdbwsdashx(y,x,a2,a1,b2,b1,rho, lg, lg2)

+phi01*dweibull(y,b2,a2))

}

if(c1==1 & c2==1){

ans<-log(phi11*omdbwsurv(x,y,a1,a2,b1,b2,rho, lg, lg2)
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+phi10*(1-pweibull(x,b1,a1))+phi01*(1-pweibull(y,b2,a2))+phi00)

}

return(ans)

}

compobslikefun<-function(x,y,a1,a2,b1,b2,rho,phi00,phi01,phi10, c1,c2,

lg, lg2){

ans<-0

for (i in 1:length(x)){

ans<-ans+obsloglike(x[i],y[i],a1,a2,b1,b2,rho,phi00,phi01,phi10,

c1[i], c2[i], lg, lg2)}

return(ans)

}

To find the starting parameters:

startingparafun<-function(dataset){

xnocen<-dataset[which(dataset$cenx==0), 1]

ynocen<-dataset[which(dataset$ceny==0), 2]

bothnocen<-dataset[which(dataset$cenx==0 & dataset$ceny==0), 1:2]

wf<-fitdist(xnocen, "weibull")

a1<-wf$estimate[2]

b1<-wf$estimate[1]

wf<-fitdist(ynocen, "weibull")

a2<-wf$estimate[2]
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b2<-wf$estimate[1]

ifelse(length(bothnocen[,1])==0,

rho<-0.5, {bothnocen<-cbind(bothnocen$xobs^(1/b1),

bothnocen$yobs^(1/b2)); rho<-cor(bothnocen[,1], bothnocen[,2])})

if(rho< 0){

rho<-0.001}

if(rho>0.99){

rho<-0.99}

return(c(a1,a2,b1,b2,rho))

}

The overall function that implements the full EM algorithm:

emfun<-function(dataset, it, paraest,lg, lg2){

k=0

x<-dataset[,1]

y<-dataset[,2]

c1<-dataset[,3]

c2<-dataset[,4]

comp<-0

a1<-paraest[1]

a2<-paraest[2]

b1<-paraest[3]

b2<-paraest[4]

rho<-paraest[5]
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phi00<-exp(paraest[6])/(1+exp(paraest[6]))

phi01<-1-phi00-exp(paraest[7])*(1-phi00)/(1+exp(paraest[7]))

phi10<-1-phi00-phi01-exp(paraest[8])*(1-phi00-phi01)/(1+exp(paraest[8]))

comp1<-compobslikefun(x,y,a1,a2,b1,b2,rho,phi00,phi01,phi10, c1, c2, lg, lg2)

while (k<it & abs(comp-comp1)> 0.0001 ){

k=k+1

piest<- opifun(x,y,a1,a2,b1,b2,rho, c1,c2, phi00, phi01, phi10, lg, lg2)

a<-optim(paraest, fn=onegloglikefun2, piest=piest, dataset=dataset,

method="L-BFGS-B", lower=c(0.001,0.001,0.001,0.001,0,-Inf,-Inf,-Inf),

upper=c(100,100,100,100, 0.99, Inf, Inf, Inf), lg=lg, lg2=lg2)

paraest<-a$par

a1<-paraest[1]

a2<-paraest[2]

b1<-paraest[3]

b2<-paraest[4]

rho<-paraest[5]

phi00<-exp(paraest[6])/(1+exp(paraest[6]))

phi01<-1-phi00-exp(paraest[7])*(1-phi00)/(1+exp(paraest[7]))

phi10<-1-phi00-phi01-exp(paraest[8])*(1-phi00-phi01)/(1+exp(paraest[8]))

phi11<-1-phi00-phi01-phi10

comp<-comp1

comp1<-compobslikefun(x,y,a1,a2,b1,b2,rho,phi00,phi01,phi10, c1, c2,

lg, lg2)}

return(c(a1,a2,b1,b2,rho,phi00,phi01, phi10, phi11, comp1,k))
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}

A.2 Empirical Study

This code generates a Dataset using the algorithm outlined in Section 5.1.

newdatagen1<-function(a1,a2,b1,b2,n, rho, phi00, phi10, phi01, xrate, yrate){

xobs<-c()

yobs<-c()

cenx<-c()

ceny<-c()

expdata<-rBED(rho=rho, 1,1,n)

for(i in 1:n){

u<-runif(1)

if(u< phi00){

cenx[i]<-1

ceny[i]<-1

xobs[i]<-rexp(1, xrate)

yobs[i]<-rexp(1, yrate)

}

if(phi00<u & u< (phi00+phi01)){

xobs[i]<-a1*expdata[i,1]^(1/b1)

centimex<-rexp(1, xrate)

ifelse(centimex<xobs[i], {xobs[i]<-centimex; cenx[i]<-1}, cenx[i]<-0)

yobs[i]<-rexp(1, yrate)

ceny[i]<-1
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}

if(phi00+phi10<u & u<phi00+phi01+phi10){

yobs[i]<-a2*expdata[i,2]^(1/b2)

centimey<-rexp(1, yrate)

ifelse(centimey<yobs[i], {yobs[i]<-centimey; ceny[i]<-1}, ceny[i]<-0)

xobs[i]<-rexp(1, xrate)

cenx[i]<-1

}

if(phi00+phi10+phi01<u){

xobs[i]<-a1*expdata[i,1]^(1/b1)

yobs[i]<-a2*expdata[i,2]^(1/b2)

centimex<-rexp(1, xrate)

centimey<-rexp(1, yrate)

ifelse(centimex<xobs[i], {xobs[i]<-centimex; cenx[i]<-1}, cenx[i]<-0)

ifelse(centimey<yobs[i], {yobs[i]<-centimex; ceny[i]<-1}, ceny[i]<-0)}}

return(data.frame(xobs,yobs, cenx, ceny))

}

A.2.1 Calculation of ρw

This calculates ρw according to (3.1.14).

b1<-1

b2<-1

rho<-0.7

lst<-seq(from=0, to=150, by=1)
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infsum<-sum(rho^lst/factorial(lst)^2*gamma(lst+1/b1+1)*gamma(lst+1/b2+1))

top<-(1-rho)^(1/b1+1/b2+1)*infsum-gamma(1+1/b1)*gamma(1+1/b2)

bottom<-(gamma(1+2/b1)-gamma(1+1/b1)^2)^(1/2)*(gamma(1+2/b2)

-gamma(1+1/b2)^2)^(1/2)

ans<-top/bottom

A.2.2 Expected censoring proportion

This calculates the censoring proportion for completely censored observations using

(5.2.5):

fun1 <- function(c,cenrate, a, b){

(1-pweibull(c,shape=b,scale=a))*cenrate*exp(-cenrate*c)

}

funstar<-function(c, a1,a2,b1,b2,cenrate, rho){

n=50

lg<-orthopolynom::glaguerre.polynomials(n=n, alpha=1, normalized=FALSE)

Term<-rep(0,n)

x1<-(c/a1)^b1

y1<-(c/a2)^b2

for(j in 1:n){

lgj<-as.function(lg[[j]])

k<-j-1

Term[j]<-((rho^(k+1))/(k+1)^2)*lgj(x1)*lgj(y1)}

ans<-exp(-x1-y1)+x1*y1*exp(-x1-y1)*sum(Term)

cenrate*exp(-cenrate*c)*(exp(-x1-y1)+x1*y1*exp(-x1-y1))*sum(Term)
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}

compcenprob<-function(a1,a2,b1,b2,cenrate, phi00, phi01, phi10, rho){

phi11=1-phi00-phi01-phi10

ans<-phi00+phi10*integrate(f=fun1, lower=0, upper= Inf, cenrate=cenrate,

a=a1, b=b1)$value+phi01*integrate(f=fun1, lower=0, upper= Inf,

cenrate=cenrate, a=a2, b=b2)$value+phi11*integrate(Vectorize(funstar),

lower=0, upper= Inf, cenrate=cenrate,

a1=a1, a2=a2, b1=b1,b2=b2, rho=rho)$value

return(ans)

}

For marginal censoring proportion within each outcome, using Equation 5.2.1:

partialcenprob<-function(a,b,cenrate, phi00, phi01, phi10, rho){

phi11=1-phi00-phi10-phi01

ans<-phi00+phi01+(phi10+phi11)*integrate(f=fun1,

lower=0, upper= Inf, cenrate=cenrate, a=a1, b=b1)$value

+phi01*integrate(f=fun1, lower=0, upper= Inf, cenrate=cenrate, a=a2,

b=b2)$value+phi11*integrate(Vectorize(funstar), lower=0,

upper= Inf, cenrate=cenrate, a1=a1, a2=a2, b1=b1,b2=b2, rho=rho)$value

return(ans)

}
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