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Abstract


	 Epitaxially grown quantum dots (QDs) make up a significant portion of nanoscale 

semiconductor research, yet precise solutions for their eigenstates in complex geometries 

are often unknown. Eigenstates are extremely relevant as they impact the emission 

wavelength, performance, and stability of many optoelectronic devices. In this thesis, 

atomic force microscopy, transmission electron microscopy, and atom probe tomography  

(APT) are used to assess and compare QD size and core concentration. APT by means of 

isosurface reconstruction provides the most accurate ensemble averaged quantum dot size 

and core concentration. High-angle annular dark-field imaging quantifies core 

concentration very well, but fails in comparison to precisely quantify QD size. Ensemble 

averaging is discarded in favour of using the raw APT data to devise a model that can 

solve the Schrödinger equation in 3-dimensional space and can be expanded upon to 

include non-trivial quantum dot geometries of any kind. The electron and hole eigenstates 

for an entire quantum dot ensemble are solved using this model. Hybridized eigenstates 

between neighbouring quantum dots are realized and found to experience both bonding 

and anti-bonding of the charge carriers. The existence of a degenerate state is also 

discovered. The simulated eigenenergies are compared to the photoluminescence 

emission spectrum and found to accurately represent the exciton recombination energy. 

This makes it possible to obtain very realistic 3-D eigenstate representations for a variety 

of complex structures. The modelling technique outlined in this thesis is not constrained 

to just QDs, but can also be applied to an array of many other nanoscale structures. 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Chapter 1		 Introduction


1.1 Laser Diode Overview


	 Within the resonant cavity of a laser, photons can interact with electrons in the 

conduction band or valence band of the material that composes the gain medium. 

Electrons in the valence band that absorb a photon will be excited to a state in the 

conduction band. As the electron vibrationally relaxes, it will exist in a state given by the 

Fermi-Dirac distribution. The excited electron could form a superposition state with the 

valence band hole, generating an oscillating dipole that creates an electromagnetic wave 

in the form of a photon. The direction and phase of the photon is random. This is known 

as spontaneous emission, though it takes a finite amount of time for this radiative process 

to occur. During this time, the excited electron could also interact with an incident 

photon. As the electron returns to the valence band, it releases a photon that is of the same 

direction and phase as the incident photon. This process is known as stimulated emission 

and allows for coherent waves to constructively interfere with one another. Many non-

radiative processes can also occur while the electron is in the conduction band, such as 

phonon generation and Auger recombination.


	 In an inverted system, the rate of stimulated emission exceeds the rate of 

absorption. This indicates the point at which it is more likely that a photon interacts with 

an electron in the conduction band than one in the valence band. An input of energy is 
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pumped into the system so that population inversion of the carriers can be maintained 

while the laser is operating. The magnitude of the electric current to achieve population 

inversion is termed the threshold current. This dictates the performance efficiency of the 

laser as lower threshold currents require less input power to the system.


	 Semiconductor laser diodes were first developed in 1962.1 The original design 

consisted of simple GaAs p-n homojunctions which required very low temperatures and 

high pump currents to reach population inversion.1 The advent of the double 

heterostructure greatly reduced the threshold current density by sandwiching the active 

region with a smaller bandgap between a larger bandgap material.1,2 This constrains the 

charge carriers to the active region by providing a barrier so that excitons cannot 

dissociate. This technique is still commonly in use today through the insertion of cladding 

layers which encapsulate the active region of the device.


	 Group III/V compounds are commonly used for the active region due to their 

direct bandgap properties. The local energy minimum of the conduction band and local 

energy maximum of the valence band are located at the centre of the Brillouin zone in the 

momentum space basis. In an indirect bandgap material, some energy must be transferred 

to the crystal lattice to generate phonons which would assist in providing momentum to 

the carriers. The momentum transfer allows for carrier transition between bands, but the 

necessity of phonons reduces the rate of radiative recombination. Direct bandgap 

materials are not affected by this limitation, making them the more ideal choice for laser 

diodes.


2
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1.2 Quantum Dot Lasers


	 Carrier confinement through the use of quantum wells, and later quantum dots, 

aided in reducing the threshold current density much further. By the year 2000, the 

threshold current density for a quantum dot laser was down to  from 

 since the first inception of the semiconductor laser diode in 1962.2 

Quantum confinement occurs when the carriers are restricted to a region that is smaller 

than their de Broglie wavelength.1,3 Confinement in all three spatial dimensions results in 

a density of states that is a Dirac delta function with peaks existing at distinct finite 

energy levels. Optical transitions occur between discrete states that have been Lorentzian 

broadened by polarization effects.1,4 The large separation between energetic states reduces 

the thermal distribution of charge carriers, leading to more temperature insensitive 

characteristics than in bulk or quantum well structures.5 Energetic states are spaced closer 

together toward the band edges and become spaced further apart for higher energies.6


	 Quantum dot lasers have become popular in the telecommunications industry due 

to their use alongside silica optical fibre. A wavelength of 1.3 m is the lowest signal 

dispersion in silica fibre,1 whereas the 1.55 m regime will have the lowest signal 

attenuation.7 The output signal must propagate through the optical fibres, thereby making 

these wavelengths a desirable choice for lasing. Quantum dots are highly tuneable in this 

regard as their emission wavelengths are based on their size and material composition. 

The discovery of the Stranski-Krastanow (SK) growth mode allowed for the high density 

formation of self-similar quantum dots that could contribute to the lasing regime.1 Though 

jth ≈ 19 A /cm2

jth ≈ 105 A /cm2

μ

μ

3



M.A.Sc. Thesis - Christopher Natale McMaster University - Engineering Physics

they are similar, there exists some degree of inhomogeneity between their sizes, shapes, 

and compositions which lead to broadening of their emission wavelength.8 This 

necessitates the use of frequency combs to create a distribution of equally spaced 

channels with peak gain centred around the wavelength of interest.9,10


	 Quantum dot lasers have low threshold currents that are insensitive to operating 

temperature, allowing them to provide large data rates even in ambient conditions.11 They 

experience less amplified spontaneous emission, thereby reducing timing jitters due to 

less random fluctuations in photon density.11 Less heat is dissipated by phonons from 

their improved quantum efficiencies,11 leading to drastically longer device lifetimes than 

other semiconductor laser diodes.1 Quantum dot lasers also have a very small linewidth 

enhancement factor and relative intensity noise, providing them with a strong tolerance 

for optical feedback.5 In a coherent feedback setup, spectral analysis is used to monitor 

the polarization of the incident and reflected waves, improving coherence by matching 

the polarization of the light before it reenters the laser cavity.12


4
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1.3 Dynamic Stability and Auger Recombination


	 Optical feedback is a form of external perturbation. The laser’s capability of 

resuming steady state operation is dictated by the dynamic stability of the system. 

Increasing pump power results in nonlinear intensity oscillations (relaxation oscillations) 

that are dampened until equilibrium is achieved.1 Lasers can be subdivided into classes 

based on how strongly they dampen these oscillations. This determines how well they 

will respond to forms of external perturbations such as optical feedback or injection.1 

Strong dampening is desired such that any external perturbation to the system would be 

immediately suppressed to reach equilibrium.


	 Quantum well lasers experience weak dampening toward relaxation oscillations, 

whereas quantum dot lasers are able to achieve greater dynamic stability.1 The stability is 

dictated by the comparison between carrier and photon lifetimes within the system.1 

Quantum well lasers experience photon lifetimes that are on a much shorter timescale 

than carrier lifetimes.1 Quantum dot lasers are unique in this regard as the carrier lifetimes 

are tuneable depending on the band structure of the active region.


	 Photon lifetimes are related to the geometry of the laser device.13 A decrease in the 

cavity length results in a reduction of the photon lifetime,13 whereas highly refractive 

mirrors prolong the photon lifetime.1 Most traditional semiconductor lasers have a photon 

lifetime of ~1 ps and carrier lifetime of ~1 ns.13 To create a dynamically stable device that 

experiences strong dampening of oscillations, these two lifetimes should be reversed such 

that the carrier lifetime is shorter than the photon lifetime.

5
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	 During SK growth, an intermediate wetting layer is formed during the 2-

dimensional growth regime prior to island nucleation. This surrounding matrix which 

encapsulates the QDs can be thought of as a well which serves as a carrier reservoir. 

Carriers are contained within the well due to the higher energy barriers of the cladding. 

The carriers are fed into the dot energy levels to replenish those that have been depleted 

through emission. Nonlocal Auger recombination is the dominant carrier exchange 

process between the well reservoir and the quantum dots.1 Carriers are scattered into 

discrete energy states of the quantum dots, but could also escape to the surrounding 

reservoir. The Auger in-and-out scattering rates are highly important for determining the 

carrier lifetimes as they are inversely proportional to one another.1 Shorter carrier 

lifetimes would correspond to a greater exchange between the reservoir and dots.


	 The carrier density in the reservoir can be controlled by manipulating the pump 

current.1 Higher carrier density would be achieved by increasing the current as more 

carriers are injected into the reservoir. This would increase the scatter rates between the 

reservoir and dots, thereby decreasing carrier lifetimes. The scatter ratio for electrons and 

holes can be expressed as1


	 	 (1.1)


	 	 (1.2)


Sout
e (we, wh)

Sin
e (we, wh)

=
e− ΔEe

kT

e
weπℏ2
m*ekT − 1

Sout
h (we, wh)

Sin
h (we, wh)

=
e− ΔEh

kT

e
whπℏ2

m*hkT − 1
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	 These are derived based on a system of five non-linear, coupled, differential rate 

equations for the number of photons within the laser cavity, the carrier occupational 

probabilities, and the reservoir carrier density.1 The Auger in-and-out scatter rates for the 

carriers are  and  respectively.  represents the rate at which carriers are 

escaping to the reservoir and  corresponds to the rate at which carriers are being 

scattered into discrete energy states within the quantum dots. The carrier density per unit 

area in the reservoir is represented by , and  is the energy difference between the 

reservoir band edges and the carrier eigenstates within the quantum dot.


	 The damping strength is dominated by the slower carrier (longer lifetime).1 

Generally,  due to electrons having deeper eigenstates than holes with respect to 

the reservoir band edges.1 The carrier lifetimes are1


	 	 (1.3)


	 	 (1.4)


	 The ratio  if  due to the exponential nature of the numerator. 

Carriers are trapped inside the dot if the eigenstates are too deep and there is not enough 

thermal energy to help them escape to the reservoir. This would prolong the carrier 

lifetime as the reservoir-dot exchange becomes one sided.  would approach zero, but 

 would not increase at a proportional rate due to relaxation and recombination time, 

thereby causing  to increase.


Sin
e/h Sout

e/h Sout
e/h

Sin
e/h

we/h ΔEe/h

τe > τh

τe = (Sin
e + Sout

e )−1

τh = (Sin
h + Sout

h )−1

Sout
e/h

Sin
e/h

→ 0 ΔEe/h ≫ kT

Sout
e/h

Sin
e/h

τe/h
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1.4 Significance of Energy Eigenstates


	 Quantum dot eigenstates are highly important as they determine both the emission 

wavelength and the performance of the device. Carrier dynamics introduces complexity 

that could be advantageously used if the correct principles are applied. Tunnelling 

injection quantum dot lasers are an example of this, showing either superior or inferior 

data rates and temperature sensitivity compared to traditional quantum dot lasers.14 There 

exists a discrepancy that can be fully understood by assessing the carrier dynamics of the 

band structure.


	 In traditional quantum dot lasers, there exists nonlinearity in gain as carriers are 

scattered into the higher energy states of the quantum dots from the surrounding reservoir. 

These energy states do not contribute to lasing, and the carriers would have to 

vibrationally relax to the lowest energy eigenstate by Kasha’s rule, provided they do not 

have enough thermal energy to escape the quantum dot. This would take a finite amount 

of time, with deeper states taking longer to reach. As the pump current is increased, the 

carrier density in the reservoir increases, but scatter into the quantum dot is bottlenecked 

by the relaxation time.


	 Tunnelling injection is achieved by placing a quantum well that serves as a carrier 

reservoir in close proximity to the quantum dot active region.14 Separated by an energy 

barrier, carriers can tunnel between the well and dots forming hybridized states. The well 

potential is an intermediate between the surrounding barrier potential and the dot 

potential. Additionally, the scattering cross section of the well region is greater than the 
8
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dot region due to more spatial overlap of the wave functions between the well and barrier 

states.14 This would lead to greater carrier exchange between the well and the surrounding 

barrier than in the case of the isolated dot. If the hybridized state is of greater energy than 

the isolated dot states, this would contribute to loss as there would be less confinement 

and the carriers would still have to vibrationally relax. Tunnelling injection can only 

outperform traditional quantum dot lasers if the lowest dot energy state is properly fed by 

the hybridized state without having to vibrationally relax.14


1.5 Molecular Beam Epitaxy


	 Molecular Beam Epitaxy (MBE) is a widely used growth technique for 

developing and researching semiconductor structures. Ultra-high vacuum conditions 

( ) are required for an MBE system. However, much lower pressures 

( ) are often necessary to achieve purity in the grown material.15 This is 

because the number of residual gas molecules in the chamber (  and ) may exceed 

 even at these pressures and can be incorporated into the structure.15 The growth 

and loading chambers are quickly evacuated with high speed pumps to ensure residual 

gas concentrations are kept as low as possible. The substrate chosen for the growth is 

radiatively heated by placement on a holder that is electrically driven with large currents 

to obtain a desired temperature. The substrate temperature is monitored using a pyrometer 

to assess infrared light intensities emitted from the substrate. The substrate is often at a 

< 10−7 Pa

< 10−9 Pa

O2 N2

105 cm−3

9
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different temperature than the holder since there are no gaseous molecules flowing over it 

to efficiently conduct heat as in other growth systems such as Metalorganic Vapour-Phase 

Epitaxy (MOVPE).15


	 Effusion cells containing solid or gas sources are also heated in a crucible so that a 

molecular flux of the source material is directed at the substrate. The intensity of the 

molecular beam can be controlled by altering the source temperature, or flow rate for gas 

sources, thereby affecting the rate of growth. Shutters are placed to block effusion cells 

and can be rapidly opened or closed to induce fine control of the growth with single 

atomic layer accuracy.15 The MBE system utilized in this thesis (SVTA-MBE35) contains 

a gas source for the group V elements, namely  and  dimers.


1.6 Research Incentive


	 The motivation for this thesis is to create a method for which any quantum dot 

eigenstate can be accurately resolved for both its energy and wave function. If this 

process is deemed to be successful, then any complex arrangement of dot structures can 

be solved at will regardless of their shape, concentration, or surrounding potential. It 

would have the possibility to be extended to include other forms of energy that would 

affect the Hamiltonian, as well as other nanostructures that may not even be quantum 

dots. All of these aspects together make it to be highly rewarding work, as it may become 

very useful for future research endeavours. 

As2 P2

10
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Chapter 2		 Growth and Characterization


2.1 Growth Procedure


	 The sample studied in this thesis was grown by MBE using a GaAs (001) oriented 

substrate. It was first thermally annealed at 650°C under As2 flux to desorb native oxides 

prior to growth. The temperature was then lowered to 500°C and a V/III precursor ratio of 

2 was used for the remainder of the growth. On top of the substrate, a 100 nm GaAs 

buffer layer was grown followed by 25 nm of InGaP cladding and another 100 nm of 

GaAs. Three InAs layers were then grown with 25 nm of GaAs spacing between each of 

them. During the growth of the InAs quantum dot layers, the Ga source was closed and a 

double shutter sequence (open-close-open) was used for the In source. Shutter sequencing 

for InAs/GaAs QDs has been demonstrated to redshift the emission wavelength by 120 

nm and reduce the FWHM by ~30% through QD size modulation.16 A total of 1.7 ML 

[monolayer  3.0 (3.3)  unstrained (strained) InAs]17,18 of InAs was deposited for each 

of these three layers, with an equal amount of time for each open shutter period. This 

structure was capped with 100 nm of GaAs, 25 nm of InGaP cladding, and 100 nm of 

GaAs. To assess QD morphology, 1.7 ML of InAs was deposited on the surface using the 

same growth technique as the buried layers. The growth was terminated by closing the 

precursors and the sample was cooled to room temperature. All GaAs and InGaP regions 

were grown at 0.2 nm/s, whereas all InAs regions were grown at 0.06 nm/s.


≈ Å

11



M.A.Sc. Thesis - Christopher Natale McMaster University - Engineering Physics

2.2 Surface Morphology


	 Photonic applications of quantum dots require the nucleated clusters to be 

homogeneous in size such that each exciton will experience a similar degree of quantum 

confinement. This contributes to the sharpness of the photoluminescence (PL) spectra, as 

a variation in quantum dot sizes will cause broadening of the PL emission peak. Atomic 

force microscopy (AFM) is a valuable tool to initially quantify these size differences and 

assess the uniformity and density of the clusters. The clusters on the surface share many 

similar characteristics to those that were buried within the active region as they were 

grown using the same parameters. However, the capping procedure for the buried layers 

would induce more In-Ga intermixing than the surface QDs as they were left uncapped.


The QD sizes by AFM will be contrasted to other forms of microscopy (TEM and APT) 

to verify if features of the surface can be extrapolated to the buried quantum dot layers.


12
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2.3 Atomic Force Microscopy


	 The AFM was operated in tapping mode using a tip with a 10 nm radius. Post-

processing was performed in Gwyddion software. A 2.3 x 2.3  scan of the surface by 

AFM is shown in fig. 2.1; fig 2.2 is a height density distribution for this region calculated 

using the corresponding pixel intensity. Fig 2.2 uses density units  because the 

statistical calculation is performed using a line scan across each pixel along the 

microscope’s fast scanning direction. The distribution is positively skewed due to island 

nucleation occurring on a corrugated surface. The surface is not planar, leading to a height 

distribution on top of which QD nucleation may occur. Figure 2.3 demonstrates an 

example of a height line scan across a surface by excluding the quantum dots. The QDs 

have been excluded by capping the maximum evaluable greyscale intensity under the red 

masked region, such that the height line scan across it will be throttled by this threshold. 

Line scans have been taken across 50 different regions using this method, documenting 

the height of the upper surface.





μm

nm−1
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Figure 2.3 - Height line 
scan taken across surface 

(QDs excluded)
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	 Fig. 2.4 shows the resulting Gaussian distribution created as a result. The surface 

height is with respect to the lowest point of the scan (marked zero height), and not the 

difference in surface height between two separate regions. Through this method, the 

average upper surface height excluding the quantum dots was determined.


 


	 As a result of surface corrugation, the height distribution depicted in fig. 2.2 

cannot be used to assess the true height of the quantum dots. To accommodate for this 

shortcoming, a line scan taken across a single quantum dot to assess its height and width 

is demonstrated in fig. 2.6. The boundaries on the width are defined as the point at which 

the height begins to increase relative to the background, indicating that it is the edge of 

the quantum dot core. To assess the height, the maximum of the quantum dot is used for 

hsurface ≈ 1.2 ± 0.4 nm

14

Figure 2.4 - Gaussian extracted from surface height
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the upper bound. Whereas the lower bound can experience a height offset on either side of 

the QD, and in this case an average is used between the two lower bound heights. Figures 

2.5 and 2.6 show the process of extracting these bounds using a line scan across a QD.
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Figure 2.6 - Line scan 
across quantum dot 
shown in figure 2.5

Figure 2.5 - 0.25 x 
0.25   AFM scanμm
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	 The lateral and vertical dimensions of quantum dot ensembles are often modelled 

using Gaussians.19-21 Bimodal and multimodal distributions formed by sub-ensembles 

have also been demonstrated in literature.22,23 Using the method shown in fig. 2.6, line 

scans have been taken across 100 different quantum dots displayed in fig. 2.5. The 

existence of elongation along a particular axis for the lateral width has been neglected.
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Figure 2.7 - AFM QD height distribution

Figure 2.8 - AFM QD lateral width distribution
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The corresponding height and width obtained through AFM of the QD ensemble.








There are ~115 quantum dots in the scan shown in fig. 2.5. Using the area of the scan, the 

quantum dot density has been calculated. Only the largest quantum dots may be observed 

through AFM, therefore this would correspond to a lower bound on the dot density.





	 The island density saturates at a certain InAs coverage above the critical thickness 

for nucleation.15 Additional deposition results in larger islands and eventually 

dislocations.15 Quantum dot density must be high to ensure large optical gain. Increases to 

dot density are limited by spatial restrictions.15 If the dots were assumed to have a width 

of 20 nm and are closely packed together, their density would be limited to 

.15 Therefore, based on the calculated lateral width, the density obtained 

through AFM is very high. In literature, larger quantum dots with approximately 20 nm 

lateral width, 4 nm height, and  density have been demonstrated to have an 

emission wavelength of 1218 nm with FWHM of 120 nm during room temperature 

photoluminescence spectroscopy.23 Therefore, it would be expected that the quantum dots 

obtained during this growth will emit at shorter wavelengths, as they are smaller (less 

InAs coverage to chance dislocating) and more dense.


height = 1.2 ± 0.7 nm

width = 15.1 ± 4.7 nm

densit y =
number of QDs

scan area
≈

115

(2.5 × 10−5)2 ≈ 1.84 × 1011 dots
cm2

3 × 1011 cm−2

5 × 1010 cm−2
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2.4 Transmission Electron Microscopy


	 The HAADF (high-angle annular dark field) image in fig. 2.9. is used to visualize 

the entirety of the structure and all of the grown layers. The sample has been milled using 

a plasma focused ion beam (PFIB). This is a process that involves using an inert gas to 

form a focused beam on the sample to etch away material. Since the gas is inert it does 

not interact with the material to change its chemical composition. This step is crucial for 

TEM, as the cross section of the sample must be thin enough (~ less than 50 nm)24 to be 

electron transparent. If it is too thick, multiple diffraction events reduce the imaging 

spatial resolution. Additionally, electron beam channelling between atomic columns will 

lead to inaccurate EELS (electron energy loss spectroscopy) spectra. Sample preparation 

is a highly important aspect for TEM. For this experiment, the Thermo Scientific Talos 

200X was used with 0.1 nm spatial resolution and 0.65 eV energy resolution for EELS.
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Figure 2.9 - HAADF image 
of complete sample.

[110] beam direction
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	 HAADF imaging is a technique that captures the electrons that are scattered at 

high angles. Electrons which pass through the sample and are scattered at small angles are 

not collected by the detector. This is because they are blocked by the aperture, which is 

variable in size. Since indium is a heavier element than gallium, areas of higher 

concentration of indium will induce more scattering. The Rutherford scattering cross 

section, , describes elastic scattering of electrons with the nucleus of atoms.24  

where Z is the atomic number. However, it ignores interactions with the electron cloud, 

but is a good approximation for high scattering angles.24 At lower scattering angles, 

inelastic scattering and electron cloud interactions dominate such that the scattering cross 

section becomes .24 The screening parameter, , governs the approximate 

transition between low-to-high-angle scatter.24


	 	 (2.1)


 is the Bohr radius and  is the wavelength of the incident electron beam. The three 

indium rich layers will have a greater scattering cross section than the GaAs.


σR σR ∝ Z2

σ ∝ Z4/3 θ0

θ0 =
λZ1/3

2πa0

a0 λ

19
Figure 2.10 - HAADF image of indium rich layers
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	 Since SK growth involves 2-dimensional planar growth followed by 3-

dimensional island nucleation, it is possible to witness both these aspects in the HAADF 

image. All three quantum dot layers are composed of a wetting layer with thick clusters of 

indium throughout. Quantitative results for the sizes of these clusters is possible using 

HAADF images with single atom spatial resolution. The atomic columns of indium and 

gallium are visible by the projection of the zinblende unit cell on the family of {110} 

planes since the beam is oriented along the <110> zone axis.


	 The image was converted to an 8-bit greyscale map, where each pixel has a value 

ranging from 0 (black) to 255 (white). The pixels were averaged along both 

crystallographic directions to obtain a Gaussian distribution for the pixel intensity, 

normalized to the 8-bit maximum. The pixels were then converted to their real space 

value to asses the dimensionality of the cluster displayed in fig. 2.11. The cluster has a 

radial height of  along the growth axis and a radial width of .
7.2 ± 2.1 nm 8.5 ± 6.0 nm
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Figure 2.11 - HAADF image of QD core with atomic resolution
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Figure 2.12 - Greyscale intensity distribution for QD height (top) and width (bottom)
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	 The error in measurement for the height and width are due to the intensity FWHM 

of the distributions shown in figure 2.12. The double standard deviation has been 

calculated by assuming the distribution is Gaussian (example shown later in chapter 4.1). 

It should be emphasized that the values listed for the height and width are radial, meaning 

that they assess the distance to the QD core, not the entire cross sectional height/width. In 

contrast to AFM, the entire height of the quantum dot is visible. AFM only allows the 

height to be realized with respect to the surrounding wetting layer, whereas TEM is able 

to depict how deep the indium penetrates into the GaAs matrix. The radial height is 

approximately 6 times larger than the height observed through AFM. Similarly to AFM, 

the lateral resolution of the cluster is not ideal as the exact edges become blurred with the 

surrounding wetting layer, creating a large standard deviation for the cluster width. This 

particular cluster, assessed through TEM, has a radial width that is close to the ensemble 

radial width observed through the AFM lateral measurements ( ), and both 

agree within the large bounds of confidence of one another.


	 Even with atomic resolution, the contrast between indium and gallium atomic 

columns is not large enough to precisely determine the bounds of the quantum dot with 

small uncertainty. The uncertainties on both the height and width would have drastic 

implications on the confinement energy. As will be derived in section 3.1 for the energy 

eigenstates of the infinite spherical well of radius ,


	 	 (2.2)


7.6 ± 2.3 nm

a

E ∝
1
a2
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 is now translated to include 95% confidence uncertainty (double standard deviation).


	 	 (2.3)


	 	 (2.4)


Using the smaller uncertainty above for the height of the cluster, .


	 	 (2.5)


	 Therefore, if the well radius is on the upper bound of the uncertainty ( ), the 

confinement energy would decrease by almost half compared to the mean value. Whereas, 

if the well radius was on the lower bound of the uncertainty ( ) it would be increased 

by over double. The lower bound results in a larger change since


	 	 (2.6)


	 As  gets smaller, the change in confinement energy becomes larger since  

diverges to  as . This effect is important since it breaks down infinite spherical 

models as the size of the QD is decreased below a certain threshold. Experimental 

observations for transition energies in the strong confinement limit ( ) do not 

match these models.25 Finite barrier potentials and interfacial polarization effects from the 

connected dielectric media must be incorporated to correct this divergence.25


a

a′￼= a ± 2σ = (1 ± 2σ
a

)a

E′￼∝
1

a′￼2 =
1
a2 [1 ± 2σ

a ]
−2

2σ ≈
a
3

E′￼∝ [1 ± 1
3 ]

−2

E

+2σ

−2σ

dE
da

∝
1
a3

a
dE
da

+∞ a → 0

a < 2 nm
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	 As demonstrated in chapter 1, fine changes in energy to the eigenstates have major 

implications on many aspects of the device performance by altering the carrier dynamics. 

Any uncertainty on the size of the well will cause large changes to the confinement 

energy. Since the well radius can be anywhere within a range of , this creates a 

very broad region for which the true eigenenergy can reside. Additionally, this section 

encompassed a singular quantum dot. As more quantum dots are added to the ensemble, 

the distribution for the well radius would broaden due to cluster size inhomogeneity.


2.5 Stacking Fault Dislocation


	 The TEM data was able to capture one defect throughout the region of the FIB 

cut. This was the only dislocation that could be observed, however it is possible other 

dislocations exist that glide along the interfaces and do not thread throughout the 

structure. Low dislocation density provides the benefit of inhibiting charge carrier traps 

that would hinder exciton recombination and thereby decrease the intensity of the 

photoluminescence spectra. The dislocation did not penetrate completely into the 

uppermost buried quantum dot layer. The reason for this occurrence is apparent when the 

boundary of the dislocation is observed. A stacking fault forms at this location and growth 

continues on top of it. This dislocation type is typical for InAs quantum dots grown on 

GaAs (001) due to stacking faults along the {111} family of planes.26 This creates a plane 

of structural weakness that is easily dislocated. When the surface quantum dots are 

grown, strain relaxation mechanisms allow this fault line to be dislocated.


a ± 2σ
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	 Stacking faults create defects in the lattice such that threading could occur from 

misfit dislocations as strain accumulates during indium deposition. To achieve S-K 

growth, the coherent two dimensional growth regime is necessary before 3-dimensional 

island formation. This is because sufficient strain energy is needed to accomplish 

nucleation. However, as 2-dimensional growth occurs there is enough strain in the lattice 

to cause misfit dislocations.27 Interatomic potentials and surface energy calculations have 

been used in literature to demonstrate that the onset for misfit dislocations in the GaAs 

(001) system appears at 0.6 ML of deposited InAs.27 By using a double shutter sequence, 

half of the target number of monolayers (0.85 ML) were deposited before the shutter was 

closed and reopened following the short growth interruption. Though this enhances 

migration of indium adatoms to create larger islands,16,28 it would also cause sufficient 

strain energy in the lattice for misfit dislocations.27
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Figure 2.13 - Stacking Fault Dislocation
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2.6 Z-Contrast


	 The core of the quantum dot in fig. 2.11 appears bright and indicates a richness of 

indium. The plots in 2.12 were generated using greyscale pixel intensity maps. Refining 

the bounds such that the selection goes along the growth axis and exclusively through the 

centre of the core results in a maximum greyscale intensity of . This is 

different than the intensity observed in figure 2.12, since the analysis used a broader 

selection which included the surrounding non-core region.  has been normalized to 

the 8-bit greyscale maximum value of 255 (pure white). As there is presumably no indium 

in the surrounding GaAs matrix at this stage of the analysis (see section 3.9 if interested), 

the background intensity is . Subtracting the background intensity from 

the core, . Since the intensities have already been normalized,  represents 

a percentage change from the background. Therefore, the contrast is24


	 	 (2.7)


The contrast can be directly related to the concentration, , of the alloying element24


	 	 (2.8)


where  represents the fraction of the alloying element that substitutes for matrix atoms. 

Assuming In replaces Ga at a 1:1 ratio in the alloy (for every 1 gallium atom lost, 1 

indium atom is gained at the lattice site), then . The scattering cross sections for 

gallium and indium is denoted by  and  respectively.24


Imax ≈ 0.97

Imax

Ibackground ≈ 0.2

Icore ≈ 0.77 Icore

C = Icore

cIn

C = (σGa

σIn
− FIn)cIn

FIn

FIn = 1

σGa σIn
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	 	 (2.9)


 is the incident energy,  is the incident wavelength,  is the electron rest mass,  is 

the angle of collection of the objective aperture (> 50 mrad for HAADF)24, and  is the 

characteristic screening angle defined in equation (2.1). Using a  incident 

beam, the relativistically corrected electron wavelength is


	 	 (2.10)


Using the bulk Bohr radius of 29 and .30


	 	 (2.11)


	 	 (2.12)


Solving for the relativistic energy and scattering cross sections


	 	 (2.13)


	 	 (2.14)


	 	 (2.15)


σ =
Z

4
3 λ2[1 +

E0

m0c2 ]
2

π[1 + ( β
θ0 )

2

]
E0 λ m0 β

θ0

V = 200 kV

λ =
1.5

V + 10−6V 2
= 2.5 × 10−12 m

a0,InAs = 34 nm a0,GaAs = 11.6 nm

θ0,GaAs =
λZ1/3

2πa0,GaAs
=

(2.5 × 10−12)(31)1/3

2π (1.16 × 10−8)
≈ 1.08 × 10−4 rad

θ0,InAs =
λZ1/3

2πa0,InAs
=

(2.5 × 10−12)(49)1/3

2π (3.4 × 10−8)
≈ 4.28 × 10−5 rad

E2
0 = (pc)2 + (m0c2)2

E0 = ( ℏ2πc
λ )

2

+ (m0c2)2

∴
E0

m0c2
= ( ℏ2π

λm0c )
2

+ 1 ≈ 1.39
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Rearranging equation (2.8)





Therefore, by Z-contrast HAADF, the core of the QD cluster depicted in figure 2.11 is 

made of In0.31Ga0.69As. It will be shown in the subsequent chapters by atom probe 

tomography that this is a very accurate measurement of the indium concentration in the 

quantum dot core. Other techniques such as Energy-Dispersive X-Ray Spectroscopy 

(EDS) and Electron Energy Loss Spectroscopy (EELS) have been employed to assess the 

remainder of the structure using TEM.


σGa =
Z

4
3
Gaλ2[1 +

E0

m0c2 ]
2

π[1 + ( β
θ0,Ga As )

2

]
=

(31)
4
3 (2.5 × 10−12)2[1 + 1.39]

2

π[1 + ( 50 × 10−3

1.08 × 10−4 )
2

]
≈ 5.16314 × 10−27 m2

σIn =
Z

4
3
Inλ2[1 +
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m0c2 ]
2

π[1 + ( β
θ0,In As )

2

]
=

(49)
4
3 (2.5 × 10−12)2[1 + 1.39]

2
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]
≈ 1.49303 × 10−27 m2

∴
σGa

σIn
≈ 3.458

cIn =
C

σGa
σIn

− FIn

=
0.77

3.458 − 1
≈ 0.31
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2.7 EDS and EELS


	 Energy-Dispersive X-Ray Spectroscopy (EDS) allows for the chemical 

composition to be assessed within the TEM. The process consists of exciting electrons 

from various shells which would then emit an X-ray as they return to the unexcited state. 

The energy of the X-ray is characterized by the electron shell that was ionized, with each 

chemical species having their own ionization energies for their various electron shells. 

This allows the X-ray spectra to be collected and the intensity determines the chemical 

composition based on the known transition energies.


	 Figure 2.14 shows an EDS line scan taken across a stacking fault. There exists a 

higher density of gallium along the fault plane. Fig. 2.15 demonstrates an EDS line scan 

across the entire structure to assess the chemical composition throughout all grown layers. 

There may exist biasing due to certain electron shells being ionized more readily than 

others or lack of counts from too short a measurement time.


29

Figure 2.14 - EDS of 
Stacking Fault 

Dislocation
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	 Electron Energy Loss Spectroscopy (EELS) is a useful tool to infer the chemical 

composition throughout the structure in conjunction with EDS. Inelastically scattered 

electrons are collected as they pass through the sample and the amount of energy loss 

determines the spectra. The intensity of the spectra is used to asses the chemical 

composition. The only disparity in the data that existed between EDS and EELS was the 

presence of an indium signal in the pure GaAs region. The EDS line scan in Fig. 2.15 

shows that these regions should contain less than 2% indium; likely as a result from 

statistical noise which is within the 2-4% precision indicated by Thermo Fisher.31 The 

presence of indium in the GaAs regions using EELS is either due to an imperfect 

background subtraction of the spectra or it may be present in low quantities (chapter 3.9).
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Figure 2.15 - EDS Line Scan of Entire Structure
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	 The TEM has reached scientific feats that are remarkable for microscopy, 

providing the ability to produce images that are accurate down to the atomic scale. The 

one downfall of the TEM is that it is only capable of extracting quantifiable data along a 

particular plane. Regardless of which plane is utilized as a cross section, only a recreation 

of a 2-dimensional projection of the atomic columns is possible. Any aspect of 3-

dimensional morphology becomes constrained to just two dimensions. As many 

nanostructures are inherently 3-dimensional objects, this becomes a large detriment 

toward both the visualization and physical simulation for any such structure. Atomic 

concentration becomes a planar representation of physical reality. This creates a need for 

an established technique which allows for the visualization of chemical composition in all 

3-dimensions with a spatial resolution that is on par with the transmission electron 

microscope. Any plane could be cut and visualized at will, whereas hours would be 

required for sample preparation on a TEM. However, transmission electron microscopes 

are still critical tools for determining crystal orientation as well as any defects, 

dislocations, or interfaces that cannot be resolved otherwise.
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2.8 Atom Probe Tomography


	 Atom probe tomography (APT) was used to assess the true size distribution and 

chemical composition of quantum dot cores buried deep within the structure such that 

they could be compared to AFM and TEM. Atoms were ionized using a laser pulse rate of 

250 kHz and laser pulse energy of 0.3 pJ at a temperature of 40K. APT experiments use a 

constant detection rate and the voltage of the applied electric field is altered to achieve 

this target.32 The detection rate was held constant at 0.5%, indicating that on average 5 

out of every 1000 laser pulses induces a detection event, which could be a single or 

multiple hit.33 The GaAs matrix requires low laser pulse energy for uniform field 

evaporation from the sample tip (figure 2.16), allowing for lower electric field voltages 

which ensure the tip is not destroyed. The system that was used is the Local Electrode 

Atom Probe (LEAP) 5000 XS from CAMECA Instruments Inc. The LEAP 5000 XS is a 

straight-flight-path APT with path length 100 mm and detection efficiency of ~80% of the 

total atoms.33 The spatial resolution is 0.1-0.3 nm in depth along the growth axis and 

0.3-0.5 nm laterally.34 A total of 24 million ions were collected for the experiment.
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Figure 2.16 - SEM of sample tip
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2.9 Evaporation Fields


	 A surface electric field is generated by ionizing many complexes at the tip. The 

electric field strongly impacts the specimen’s evaporation and changes locally depending 

on different crystallographic structures, atoms, or phases. Some ionized complexes are 

more straight forward than others, having fewer stable isotopes and charged states.


	 Each complex will have its own evaporation field associated with it, which 

determines the amount of biasing by making certain complexes more likely to induce a 

detection event. For example, As2+ has an evaporation field of 42 V/nm while As+ and 

As3+ have larger evaporation fields of 46 V/nm and 54 V/nm respectively.35 The spectra 

will also be determined by the laser pulse energy as this will dictate which complexes are 

detected.36 In the InGaAs material system As+ and As3+ are favoured when using a laser 

pulse energy of 5 pJ while As2+ is the dominant complex when using a lower laser pulse 

energy of 0.005 pJ.37 This has been hypothesized to be due to thermal irradiation by the 

laser as the surface temperature of the atoms substantially increase and the lower vapour 

pressure elements (arsenic and phosphorus) undergo sublimation.36 Surface migration can 

occur more easily for group V atoms due to their lower activation energy for diffusion in 

conjunction with laser heating effects and local field gradients.38 This causes group V 

atoms to migrate to the tip surface during field evaporation, forming clusters of neutral 

molecular ions that are undetected by the mass spectrometer.38 The impact of the field 

intensity may also drive this occurrence,38 leading to an overestimation or an 

underestimation of these group V complexes depending on the field strength.
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	 More importantly, the detection ratio between In+ and Ga+ ions was not observed 

to change under different laser pulse energies.36 This is likely due to their similar 

evaporation fields of 12 V/nm and 15 V/nm for In+ and Ga+ respectively.35 This is 

important for the purpose of this report since these will be the primary ions of interest 

used later to derive potential wells based on band theory. The evaporation fields for the 

double charged ions of In2+ and Ga2+ are 31 V/nm and 39 V/nm.35 These complexes were 

also observed in the collected atom probe data.


34

Figure 2.17 - Spectra of total detection events from APT experiment
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	 The evaporation fields for phosphorus complexes are unknown in literature36 An 

overall field of 15.2 V/nm was calculated using an InP system (0.25% detection rate, 3 nJ 

laser energy, 100 kHz pulse rate, and 50K temperature) acquiring only the In+ complex 

and many phosphorus complexes, namely  and  for .38 Typically, the species 

undergoes dissociation reactions for higher charged states to create more stable 

configurations conserving both mass and charge.38  complexes are also hidden in the 

spectra as they are superimposed with .38 Many of the phosphorus complex peaks are 

near other elemental peaks within the spectra. This is especially true with arsenic since 

they both form many different complexes. Peaks in the spectra that overlap or form 

thermal tails into other peaks contribute to broadening as the ions are distributed 

throughout the entire sample volume. APT mapping in figure 2.18 shows phosphorus 

incorporation in the GaAs, whereas EDS mapping showed none of statistical significance.


P+
k P2+

k k ≥ 1

P2+
2k

P+
k
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Figure 2.18 - APT chemical map
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Figure 2.19 - Line scan of QD layers in figure 2.18 (rectangular volume)

Figure 2.20 - Line scan of lower InGaP layer in figure 2.18 (rectangular volume)
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2.10 Spectra Overlap


	 One potential source of error for the analysis presented in this paper is due to the 

mass-to-charge ratio overlap between the -113 isotope and the  complex (~112.4 

Da). This would have consequences in the analysis since it becomes difficult to 

distinguish between them, whereas  and  have separation between any nearby 

arsenic complexes. This introduces either an under representation of indium if the isotope 

was neglected, or an over representation if the isotope is included. Fortunately, this 

problem can be set aside for several reasons. The utilized laser pulse energy and detection 

rate mitigates this issue as the group III elements are selectively biased over the group V 

elements due to the magnitude of the electric field. This can be seen in the line scans 

above which show a stoichiometry that is not 1:1 in the GaAs regions. Furthermore, the 

total detection event histogram represents the entire structure, which would overall 

contain more total arsenic atoms than indium atoms. Since there are more arsenic 

complexes that can be formed than indium complexes, it would become less probable that 

an event in the QD layers is due to that specific arsenic complex instead of the indium 

isotope. The arsenic complex, , also does not have any degeneracy associated with it 

which would increase the intensity of the peak, such as with the  peak. 

Similarly to the higher charged state phosphorus complexes, this is because  would 

dissociate into more stable configurations. For these reasons, the -113 isotope was 

included in the proceeding analysis with a limit at 112.75 Da to avoid .
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2.11 Interfacial Disparity


	 One noticeable difference between the atom probe chemical mapping versus 

EELS and EDS is that the interface between regions appears to be more rounded. This is 

an artefact that is due to the transition between material systems and the altering of the 

electric field.39 The effective radius of the hemispherical tip deviates and leads to 

distortion in the field of view since the depth coordinate is determined by the time-of-

flight from the apex.39


	 The interface is compressed when evaporating from a material with a higher 

evaporation field into one with a lower evaporation field, and it is broadened when the 

38

Figure 2.21 - Peak overlap between -113 and In+ As2+
3
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opposite takes place (lower-to-higher evaporation field).39,40 This is dependent on the 

sequence of evaporation which assumes a uniform layer-by-layer approach across the 

surface of the tip. Evaporation occurs parallel to the growth axis, beginning at the top, and 

penetrating lower into the structure. As an example, using the surrounding region of the 

lower InGaP cladding for analysis, first the upper GaAs is evaporated, then the InGaP, 

followed by the lower GaAs. Referencing the line scan, it can be seen that the bottom 

interface of the InGaP is broadened and the top interface is compressed. The depletion/

accumulation of ions spans more than double the width for the broadened (bottom) 

interface than the compressed (top) interface. This indicates that the evaporation field for 

InGaP is lower than GaAs, leading to preferential evaporation of phosphorus and 

retention of arsenic when transitioning between the heterogeneous materials.41


	 This effect is not noticeable in the quantum dot layers. InxGa1-xAs would have an 

overall lower evaporation field than GaAs based on the fields for indium and gallium 

complexes. Similar to the InGaP region, it would then be expected that the top interface is 

compressed while the bottom interface is broadened based on the evaporation sequence. 

However, the lower interface of the indium peaks appear sharper than the upper interface. 

This could be because there is not a significant composition of indium to drastically 

change the evaporation field. The geometry would also have an impact as the bottom 

interface should be more abrupt due to wetting layer accumulation. Surface nucleation 

would cause varying heights of the clusters so the indium content should taper more 

slowly toward the top interface.
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	 The broadening at the upper interface could also be an artifact of how the 

rectangular volume region of interest was positioned. If it is not perfectly perpendicular to 

the interface, then the profile will be artificially broadened. This is also more likely to 

occur at the upper interface due to the rounding of the nucleation clusters. A more detailed 

view of the InGaP interface is located in Appendix 1. This biasing has been removed by 

using isosurfaces and proximity histograms as described in sections 2.14 and 2.15.


2.12 Quantifying Group III Preferential Evaporation by XRD


	 As the sample is evaporated, biasing can occur as a result of preferential 

evaporation between complexes. Different evaporation fields between atoms leads to 

certain ions being detected more readily. In the AlGaN system, biasing and correction 

techniques have been documented in literature to accommodate for this shortcoming.42 

Al+ and Al2+ have an evaporation field of 19 and 35 V/nm respectively.35 This is similar to 

the evaporation fields for Ga+ and Ga2+ (15 and 39 V/nm).35 Therefore, even if In+ and 

In2+ have similar evaporation fields compared to the gallium complexes, the effect of 

biasing must still be explored. The existence of biasing would be detrimental toward the 

optical simulation of the device as the inherent atom probe data would not be an accurate 

representation of the real structure. The biasing between group III and V elements was 

previously mentioned, however this would not change the results as the stoichiometry is 

assumed to be 1:1. Therefore, the primary interest was to explore if there exists any 

biasing between the group III elements in the atom probe data.

40



M.A.Sc. Thesis - Christopher Natale McMaster University - Engineering Physics

	 X-Ray Diffraction (XRD) was used to assess the InGaP cladding layers. Since the 

upper InGaP layer is closest to the surface, it will impact the X-Ray spectra more 

intensely than the lower layer. The atom probe data does not encompass the upper InGaP 

cladding layer, however they were both grown under the same conditions and can be used 

for a comparison. The line scan (fig. 2.20) of the layer shows that the indium and gallium 

concentrations are roughly split equally with a slight bias toward the gallium. The X-Ray 

spectra contains many small signal oscillations due to the complexity of the many layered 

structure. However, the InGaP layer can be successfully simulated based on matching to 

the GaAs substrate peak. It has been demonstrated in literature that In1-xGaxP is lattice 

matched to GaAs when .43-45 Deviations above or below this value 

would lead to tensile or compressive strain in the layer due to lattice mismatch. Variations 

of x around the concentration of interest are presented in the specimen’s XRD spectra 

(Appendix 2).


	 Elongated quantum dots that deviate away from a perfect spherical symmetry 

experience local lattice constant variations between planes46, and smaller objects will 

introduce broad features into the XRD spectra. This produces a complicated spectra, but 

the In1-xGaxAs quantum dot layers could be neglected when trying to match the In1-xGaxP 

region to the large GaAs substrate peak (see Appendix 2).


	 The In1-xGaxP was targeted to be lattice matched to GaAs such that cladding layers 

could be incorporated into the structure without inducing any strain field. This means that 

the peak would be absorbed into the substrate peak of the GaAs. Based on the 

x ≈ 0.51 − 0.516

41



M.A.Sc. Thesis - Christopher Natale McMaster University - Engineering Physics

surroundings of the major substrate peak (located at ), it is likely that the 

gallium concentration for the In1-xGaxP cladding layers is between 50-55%. If the gallium 

content is altered to be more or less than within this range, the intensity spectrum 

surrounding the GaAs peak becomes shifted to angles that would not correspond to the 

experimentally observed spectrum near the substrate peak. This is also within the standard 

uncertainty (2-4%) provided by EDS which demonstrated that the gallium content for this 

region was ~55%. Both of these measurements agree with the atom probe data that this 

region is on average more gallium rich by 1-2%. One caveat is that In1-xGaxP will not 

have an identical evaporation field to In1-xGaxAs and could potentially alter evaporation 

dynamics of indium and gallium. However, the atom probe line scan in fig. 2.19 for the 

In1-xGaxAs layers show  which is also within the uncertainty provided by EDS 

( ). For the purpose of this thesis, any correctional techniques for atom 

probe biasing have not been employed and the APT data has been left in its raw state.


2.13 Preliminary Indium Mapping


	 The bottom QD layer shown in the line scan of fig. 2.19 contains a broad indium 

peak of ~0.5 nm width and slight bimodal nature. This aspect could exemplify that 

indium was deposited at slightly different heights along the growth axis due to surface 

corrugation and terraces. There could also exist alloying within the quantum dot layers as 

it was shown through Z-Contrast HAADF that the cores themselves consist of alloys. 

This would induce local fluctuations of indium, broadening the line scan.


ω ≈ 33.05∘

x ≈ 0.78

x ≈ 0.82 ± 0.04
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	 According to the line scan in fig. 2.19, there exists significant gallium 

incorporation in the quantum dot layers (~ 78%, mentioned at the end of 2.12). This is 

very close to the amount obtained through Z-contrast HAADF of the quantum dot core, a 

value of ~69%. The spatial distribution of indium/gallium atoms is highly important 

throughout these layers, as it will indicate the degree of locality that the carrier wave 

functions will exhibit depending on the spatial distribution of ions within the layer. The 

following chapters will further delve into the quantum dot core concentrations and their 

size distribution. Figures 2.23-2.25 depict indium ion and concentration maps for each of 

the 3 QD layers. The view is aligned down the growth axis demonstrated in figure 2.22.
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Figure 2.22 - Section used for mapping

Figure 2.23 - Layer 1 Indium Maps
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	 The crystallographic directions are unknown as the atom probe scatter data exists 

in an  basis set. This ensures that the  axis is fixed to the growth axis, yet the  and 

 axes can be rotated. Transmission Kikuchi Diffraction (TKD) may be useful to provide 

crystal orientation at the end of specimen preparation,47 but this process induces structural 

damage as hydrogen and carbon surface species become implanted from the energetic 

electron beam.48 Without TKD, the original crystallographic directions become lost as the 

sample is milled into a fine tipped needle and evaporated. The crystal orientation becomes 

difficult to recover even by means of sophisticated reconstruction algorithms.


̂x, ̂y, ̂z ̂z ̂x

̂y
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Figure 2.24 - Layer 2 Indium Maps

Figure 2.25 - Layer 3 Indium Maps
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	 The difference between the evaporated atom position and its detected location are 

shown in fig. 2.26. Utilizing the lattice parameter of GaAs, .49 The spatial 

resolution orthogonal to the evaporation direction is ; parallel to the evaporation 

direction it is . Trajectory aberrations cause a deterioration in the spatial resolution 

as the specimen is evaporated.47 This means that even though an atom was evaporated 

from a particular plane, it could be detected on a different plane to which it does not 

belong. Since both the orthogonal and parallel spatial resolutions are significant compared 

to the size of the unit cell, a reconstruction of the planar arrangement of atoms is not 

possible. For this, TEM is needed during the experiment such that the  basis set can 

be related back to the crystallographic directions. The  basis set has been used for 

this thesis.


a ≈ 5.65 Å

3-5 Å

1-3 Å

̂x, ̂y, ̂z

̂x, ̂y, ̂z
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Figure 2.26 - APT Measurement 
Spatial Resolution



M.A.Sc. Thesis - Christopher Natale McMaster University - Engineering Physics

	 To assess the indium diffusion along the growth axis, , two 2 nm thick cross 

sections have been taken for the indium cluster displayed in layer 3, fig. 2.25. These are 

representative of the  and  planes, showing much more localization of indium than 

within the  plane. This cluster shows more elongation along the  axis than along the  

axis, indicating an ellipsoidal geometry with semi-major and semi-minor axes.


̂z

̂x- ̂z ̂y- ̂z

̂x- ̂y ̂y ̂x
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Figure 2.27 - Indium concentration of a single QD core by APT
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2.14 Indium Isosurface Reconstruction


	 Isosurfaces are created by decomposing 3-dimensional space into a discrete grid 

such that all adjacent blocks containing a specified indium concentration are connected 

and highlighted.50 The concentration is arbitrary and can be altered to any threshold. 

Additionally, a volumetric criteria must be established and realized for any isosurface to 

be included. The scatter plot in figure 2.28 depicts the point-cloud created by all detected 

ions encapsulated within the adjacent grid blocks composing 12% indium with volume > 

20 nm3 throughout all 3 quantum dot layers. The thresholds have been chosen to examine 

the 16 largest and most indium dense QDs, thereby avoiding any insignificant volumes.
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Figure 2.28 - 12% indium 
isosurfaces recreated using all 
detected ion positions (5 nm 

tick markings)
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2.15 Proximity Histogram


	 A proximity histogram (proxigram) is useful to determine the indium versus 

gallium concentration as a function of distance from the isosurfaces displayed in fig. 2.28. 

The histogram has been generated based on the fraction of collected counts from the point 

cloud scatter data containing all isosurfaces simultaneously. A positive distance 

corresponds to going into the indium core from the isosurface, while a negative distance 

represents going outward into the surrounding GaAs matrix. The proxigram can be 

thought of as a series of equidistant concentric shells that encapsulates the region 

surrounding each isosurface. There is no assumed geometry, and the shells are used to 

generate a histogram based on their concentrations and positions. The zero point does not 

correspond exactly to 12% as there are slight deviations in histogram binning between 

isosurfaces. However, the binned 12% surface falls within the spatial resolution provided 

by the atom probe (~ 0.3-0.5 nm).
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Figure 2.29 - Concentration as a function of distance from the 12% indium isosurfaces
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	 Proxigrams are valuable tools to build quantum dot models and simulate the 

exciton transition energies as demonstrated in literature.51 To simulate an exciton in a 3-

dimensional well requires knowing how the potential energy varies throughout space. For 

the InxGa1-xAs system, the potential energy is a function of the indium concentration. This 

method drastically simplifies the process for building a potential well by creating an 

average shape and concentration function that fits the proximity histogram.


2.16 Ensemble Averaging Dot Dimensionality and Concentration


	 In this subchapter, the 12% isosurfaces in fig. 2.28 are projected onto the , , 

and  planes. The cross sectional height for each isosurface is measured using the  

and  projections. In the  projection, the longest and shortest axes of each isosurface 

is measured to determine the semi-major and semi-minor cross sectional widths 

orthogonal to the growth axis. This is the point at which a physical representation of the 

ensemble begins to diverge from the true isosurfaces shown in fig. 2.28. This is because 

the isosurfaces themselves cannot be geometrically represented using traditional 

volumetric reconstructions. Albeit, it is a useful technique to compare to AFM and TEM.


̂x- ̂y ̂x- ̂z

̂y- ̂z ̂x- ̂z

̂y- ̂z ̂x- ̂y
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	 For the purpose of this study, the tail on the upper layer quantum dot in fig. 2.28 

has been excluded. The histograms in figures 2.30-2.32 demonstrate the cross-sectional 

height, semi-minor width, and semi-major width for all 12% indium isosurfaces after 

projection onto the , , and  planes. To obtain the complete cross-section with 

respect to the pure GaAs matrix, the negative distance shown in the proxigram (fig. 2.29) 

must be incorporated to accommodate for shells that are < 12% indium. Each shell that is 

added on top of the 12% indium isosurface will add twice the shell thickness to the cross 

section. The shells are of . There is ~  between the binned 

12% indium surface and the pure GaAs matrix based on the proxigram (fig. 2.29). 

Therefore, there must be an additional  added to the 12% isosurface cross-sectional 

distributions to obtain the entire QD core from the GaAs matrix. This value is added to 

the mean of each distribution, while the standard deviation remains unchanged.











̂x- ̂z ̂y- ̂z ̂x- ̂y

thick ness = 0.1 nm 1.5 nm

3 nm

cross-sect ional height ≈ 4.4 ± 0.8 nm

cross-sect ional semi-minor ≈ 6.8 ± 1.7 nm

cross-sect ional semi-ma jor ≈ 9.0 ± 3.4 nm
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Figure 2.30 - Histogram of 
isosurfaces height projection
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	 Comparing to TEM (  radial height and  radial width), 

the cross-sections obtained through APT isosurface reconstruction are generally smaller 

with less uncertainty. Though the entire height is visible along the growth axis for both 

APT and TEM, only one lateral cross section is obtainable with TEM. The reason for the 

smaller cross-sections and uncertainty with APT is that the exact edges of the quantum 

dot cores can be realized in all three spatial dimensions. This allows the boundaries to be 

firmly established with respect to the surrounding GaAs matrix. Even though an entire 

ensemble of 16 quantum dots has been used for the reconstruction, it provides a double 

7.2 ± 2.1 nm 8.5 ± 6.0 nm
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Figure 2.31 - Histogram of 
isosurfaces semi-minor 

projection

Figure 2.32 - Histogram of 
isosurfaces semi-major 

projection



M.A.Sc. Thesis - Christopher Natale McMaster University - Engineering Physics

standard deviation that is smaller than the measurement uncertainty obtained through 

TEM of a singular dot. The signal originating from the surrounding wetting layer in the 

TEM is no longer an issue for the lateral APT isosurface reconstruction. Atomic 

resolution HAADF was unable to determine the exact bounds of the QD height near the 

apex due to a lack of fineness in contrast between the atomic columns of indium and 

gallium. At the cluster edge, there are less indium atoms in the columns perpendicular to 

the growth axis when compared to the cluster core. This decreases the overall signal 

intensity near the bounds of the cluster. Since the TEM slice is typically much thicker 

than a quantum dot, there could exist multiple quantum dots in a small neighbourhood 

that cause distortion of the signal intensity. All of these aspects together make atom probe 

tomography the superior choice for assessing quantum dot size.


	 Comparing to AFM (  height and  lateral width), the 

cross-sectional height is larger (by ~ ) since the entire height along the growth axis 

is realized instead of being compared to the surrounding wetting layer. Additionally, as 

the surface quantum dots do not have a GaAs cap above, it would be expected that they 

are smaller in height compared to the buried QDs. The isosurface reconstruction provides 

a more similar measurement than the TEM when comparing to the AFM height. Though 

elongation was neglected for the AFM lateral width, the semi-major cross section falls 

within its bounds of uncertainty while the semi-minor cross section does not. Atom probe 

tomography through isosurface reconstruction is a valuable tool that is an agreement with 

the other forms of microscopy and may be used to accurately assess QD ensemble size.


1.2 ± 0.7 nm 15.1 ± 4.7 nm

3.5 ×
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	 Figure 2.33 represents the isosurface reconstruction using the mean cross sectional 

projections. The shells correspond to 0.1 nm thickness and have been assigned 

concentrations based on the means of the proximity histogram. The indium concentration 

could instead be fitted to obtain a more smoothly varying function from the core to the 

outer shell, but has not been further explored as other modelling methods have been 

employed in the subsequent chapter. Though HAADF struggled to quantify the size of 

clusters, it was able to very accurately assess the core concentration.
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Figure 2.33 - Mean isosurface reconstruction
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	 The exact shape and depth of the potential well, in combination with its 

surroundings, have profound implications on the transition energy of the exciton. This 

means that every aspect of a reconstruction must be precise for shape, size, concentration, 

and neighbouring potential landscape. Though the quantum dots have appeared highly 

homogeneous through means of AFM and TEM, the isosurface point cloud data shows 

that the clustering of indium atoms takes on a variety of shapes, some of which cannot be 

resolved using a simple geometric reconstruction. Furthermore, any dots that do not meet 

the isosurface criteria of volume and concentration are neglected, thereby limiting dot 

interactions with its surroundings. The beautiful 3-dimensional atom probe data opens the 

door to a realistic reconstruction that can accurately accomplish all of these aspects 

simultaneously.
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Chapter 3		 Model Creation


3.1 Modelling the Finite Spherical Well


	 In this subchapter, the bound energy eigenstates of a finite spherical well are 

calculated both analytically and using COMSOL software. This allows the validity of any 

eigenstate modelling to be established before transitioning to real-world quantum dot 

structures as measured with atom probe tomography. It is crucial to begin with a model 

that has a known analytical solution which can be referenced against using the results of 

the simulation to verify the accuracy of the built model. The same general principles can 

then be applied to the software as the transition to more complex systems takes place.


	 The finite spherical well is an excellent starting point. Traditional models which 

utilize an infinite spherical well to calculate the quantum confinement energy of the 

exciton are often not ideal. This is because the well is finite with variable potential 

barriers depending on the compositions of the quantum dot and the surrounding matrix. 

Any geometric shape for the finite potential well may be chosen for this step, however the 

choice is not imperative for the outcome of this subchapter. The only two critical aspects 

are (i) the existence of an exact analytical solution; and (ii) the ability to utilize principles 

which can be applied to larger, more complex systems.
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Beginning with the derivation of the spherical finite well in Townsend52 and Griffiths,53 

defining a particle with effective mass  in a potential well of radius a.


	 	 (3.1)


Since the potential is only dependent on r and there is no time-dependence, the time-

independent Schrödinger equation in spherical coordinates is


	 	 (3.2)


where  represents the spherical Laplacian,  is the wave function, and E is the energy 

eigenvalue. Separation of variables is used by assuming that the solution is of the form


	 	 (3.3)	 


The function  is the radial component of the wave function and  is the 

spherical harmonic where  and  represent the polar and azimuthal angles respectively. 

Substituting equation (3.3) into (3.2)53





	 	 (3.4)


Dividing equation (3.4) by YR and multiplying by 


	

	 	 (3.5)
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Since the first set of curly braces only has r dependence and the second only has  and  

dependence, each must be equal to a constant.53 A separation constant can be chosen of 

the form , where no loss of generality occurs as l can be any complex number.53


	 	 (3.6)


	 	 (3.7)


Another separation of variables is used to solve (3.7).


	 	 (3.8)


Multiplying both sides of equation (3.7) by , plugging (3.8) into (3.7), and 

dividing by  leads to


	 	 (3.9)


As before, the first set of curly braces is dependent on only  and the second only has  

dependence. Similarly, a separation constant of  can be introduced.


	 	 (3.10)


	 	 (3.11)
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1
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57



M.A.Sc. Thesis - Christopher Natale McMaster University - Engineering Physics

Equation (3.11) has two solutions of the form  and , however only one 

exponential is necessary by allowing m to be negative and any coefficient out front can be 

absorbed into  because of equation (3.8).


	 	 (3.12)


Since  is the azimuthal angle, any  rotation is the same spatial position.


	 	 (3.13)


	 	 (3.14)


This means that m must be an integer ( ), commonly known as the magnetic 

quantum number. Equation (3.10) has the solution


	 	 (3.15)


where  are the Legendre functions defined by


	 	 (3.16)


From equation (3.16) it follows that  and . For any value of l there exists 

 possible values of m. The angular component of the wave function, , is the 

same for all spherically symmetric potentials. Furthermore, the shape of the potential, 

, affects only the the radial part of the wave function, .53 Using the substitution 

defined in (3.17) with equation (3.6) and carrying through with the differentiation leads to 

the radial equation.


	 	 (3.17)
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	 	 (3.18)


This is identical to the one-dimensional time-independent Schrödinger equation with an 

effective potential


	 	 (3.19)


Solving equation (3.18) with  and substituting the potential defined in equation (3.1)


	 	 (3.20)


	 	 (3.21)


which can be rearranged to


	 	 (3.22)


	 	 (3.23)


where
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for which  and  are both real in the energy range . Following through 

with the solutions to these differential equations and imposing the boundary constraints 

on the wave function such that  and the first derivative are continuous, leads to the 

transcendental equation.52


	 	 (3.26)


Introducing another change of variables


	 	 (3.27)


	 	 (3.28)


Substituting (3.27) and (3.28) into the transcendental equation (3.26) leads to


	 	 (3.29)


Squaring both sides of equation (3.27) and (3.28), then adding them together


	 	 (3.30)


Substituting equations (3.24) and (3.25) into (3.30)


	 	 (3.31)


 is independent of the energy eigenvalue and is only dependent on the parameters of the 

problem such as the well radius, potential barrier, and the effective mass. Rearranging 

equations (3.31) and (3.29) leads to a solvable analytic expression for  given by


	 	 (3.32)
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Using equation (3.29),  can be solved for as well. Substituting equation (3.28) into (3.25) 

leads to the energy eigenvalue.


	 	 (3.33)


The energy eigenvalue is negative since it is with respect to the zero energy surface, 

which is the outside of the well. The problem is now shifted upward such that the inside 

of the well is the zero energy surface and the outside is a positive finite potential, the 

energy eigenstate becomes


	 	 (3.34)


To approximate higher order eigenstates for , the case of the potential well with 

barrier height  is useful for comparing the energy levels to the  state.


	 	 (3.35)


Using equation (3.6) for the radial component of the wave function,


	 	 (3.36)


where  is given in equation (3.24) with . Using the substitution ,


	 	 (3.37)


(3.37) is known as the spherical Bessel equation. Solutions that do not diverge to infinity 

at the origin are the spherical Bessel functions.52
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	 	 (3.38)


The first four spherical Bessel functions are


	 	 (3.39)


	 	 (3.40)


	 	 (3.41)


	 	 (3.42)


The zeroth order Bessel function, , corresponds to the  eigenstate and has its 

first zero located at . The  eigenstate, given by the first order Bessel function, 

, has its first zero located at . Eigenstates can be found by utilizing the 

square of the ratio between the zeros of the spherical Bessel functions. For example, the 

 eigenstate can be approximated by . More generally, for any 

principal and azimuthal quantum number,  and , the energy eigenvalue 

can be expressed as , corresponding to the  zero of .
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As an example, utilizing a finite well of radius  nm, potential barrier  eV, 

and effective mass  leads to the energy eigenstates


0.15 eV


0.31 eV


0.51 eV


0.61 eV


0.75 eV


	 Since the wave function extends into the boundaries for the finite well, there will 

be less confinement than in the infinite well case. Therefore, for any state other than 

, the actual energy eigenvalues should be lower than the derived values as there 

is less confinement. Each energy eigenstate has  degeneracy due to the conditions 

imposed on the magnetic quantum number, m, in equation (3.16). This degeneracy 

represents the different spatial orientations that the wave function can exhibit in 3-

dimensional space.


	 To simulate these results in COMSOL, a model was built using an inner sphere of 

radius 10 nm and an outer sphere of radius 20 nm. Only the size of the inner sphere 

impacts the resulting eigenstates; the size of the outer sphere is not important. However, it 

is necessary to include the outer region as the wave function will extend into this 

boundary for the finite well. The wave function cannot be simulated without a modelling 

domain, hence the importance of the two sphere model.


a = 10 V0 = 5

μ = 0.023m0

En=1,l=0 ≈

En=1,l=1 ≈

En=1,l=2 ≈

En=2,l=0 ≈

En=1,l=3 ≈

n , l = 1,0

2l + 1
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	 Since finite element method requires boundary conditions to solve partial 

differential equations, this is a critical aspect for solving the Schrödinger equation in the 

case of the finite well. Boundary constraints are only imposed on the surface of the outer 

sphere. This is where modelling diverges from traditional physical boundary constraints, 

as typically the condition would be imposed on the interface between the inner and outer 

sphere and the outer sphere is assumed to be infinitely large. However in this case, the 

boundary constraint is imposed on the surface of the modelling domain. The solution has 

to adhere to this constraint as it would interact with the region outside of the model in the 

physical world. The boundary condition which was chosen is that the wave function is 

allowed to exit the modelling domain with no reflection of the outgoing waves at the 

boundary. This condition works well if the wave vector is orthogonal to the boundary 

surface, otherwise some reflection will occur.54 For the finite spherical model, wave 

vectors are calculated for each finite element at the boundary surface of the outer sphere, 

based on their position with respect to the origin (centre of the spherical wave).


	 The geometry is composed of several domains which are automatically numbered 

based on the software’s algorithm. It begins by enumerating the domain with the 

minimum set of coordinates. It then increments each domain with priority given to those 

first along the  direction, then followed by the  direction, and lastly followed by the 

direction. The outer sphere is subdivided into octants, while the inner sphere contains one 

domain, marked 5, for a total of 9 domains overall. Domains 4 (bottom hemisphere) and 6 

(top hemisphere) cannot be seen for the visual representation in figure 3.1.


̂z ̂y ̂x

64



M.A.Sc. Thesis - Christopher Natale McMaster University - Engineering Physics







	 Each domain is addressed through this method when assigning physical properties 

for the system. For example, a potential energy and effective mass is appended to the 

Hamiltonian for every domain. To compare the eigenenergies listed above, every domain, 

except the inner sphere (domain address 5), is assigned a potential energy of 5 eV, and all 

domains are assigned an effective mass of . The  eigenstate is 

shown below in figure 3.2.


μ = 0.023m0 n = 1, l = 0
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Figure 3.1 - Domain enumeration in spherical COMSOL model
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	 The other eigenstates are included in Appendix 3. The degeneracy of eigenstates, 

number of nodes, and orbital shapes match the analytical expectations of the finite 

spherical well. The simulated eigenenergies are 2-4% lower than their analytical 

solutions, possibly as a result of utilizing the zeros of the spherical Bessel functions. 

However, differences in eigenenergies between analytical solutions and those obtained 

through finite element method have been documented.55 Though infinite spherical models 

were used, the authors experienced a similar amount of error (1-4%), and a clear trend 

was observed indicating that higher order eigenstates by FEM experience more deviation 

from their analytical solutions than lower energy states.55 This confirms that the 

modelling methods utilized by COMSOL are functioning correctly to solve eigenstates.
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Figure 3.2 - Ground State Probability Density ( )n , l = 1,0
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3.2 Finite Element Method


	 As seen in 3.1, COMSOL requires geometric entities to enclose any arbitrary 

region of 3-dimensional space, including the outside of the finite spherical well. This 

enclosure is known as a domain which encompasses the subset of space within its 

volume. Similar to other geometric entities, domains have boundaries, faces, edges, and 

vertices. The subset of space within the domain becomes further subdivided into a set of 

finite elements that are connected at nodal points and fill the entire volume of the system 

(every domain becomes interconnected through finite elements).55 A set of partial 

differential equations are formed by the boundary value problem for each finite element 

which is then combined into a larger system of equations that governs the entire problem 

by minimizing the associated error.55 Finite element discretization leads to the generalized 

eigenvalue system56


	 	 (3.43)


	 	 (3.44)


	 The solver evaluates  and  for the solution vector, , with 

eigenvalue  and linearization point .56  dictates whether the eigenvalue problem is 

linear ( ) or quadratic ( ). Quadratic eigenvalue problems are reformulated to 

linear eigenvalue problems using constraint handling to rewrite the system in the form56


	 	 (3.45)


(λ − λ0)2EU − (λ − λ0)DU + KU + NFΛ = 0

NU = 0

E, D, K, N NF U0

λ λ0 E

E = 0 E ≠ 0

A x = λBx
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	 The Schrödinger equation is a second order partial differential equation with linear 

dependence on the eigenvalue as depicted in equation (3.45). If the problem contains any 

general nonlinear dependence on the eigenvalue, such as through boundary conditions or 

material properties, a quadratic approximation around the eigenvalue linearization point, 

, is formed.56 Linearization is useful to determine the local stability of the system as any 

small perturbation around the linearization point will determine if it is a stable 

equilibrium solution. Iteratively updating the linearization point leads to rapid 

convergence of the solution.56


3.3 Geometric Reconstruction


	 A spherical or ellipsoidal geometry, similar to the one used in section 3.1, would 

be helpful if trying to devise a simplified model depicting an average quantum dot within 

the ensemble. The proximity histogram would then be useful for this purpose, as it creates 

a statistical representation of the concentration going into the core of the quantum dot, as 

seen in section 2.16. Using this representation and assigning energy barriers, as 

demonstrated later in section 3.8, results in unbound states with . Utilizing a 

simplified approach leads to inaccuracy as the sizes, shapes, and concentrations of the 

entire ensemble is averaged. Even if the quantum dots appear to be homogeneous by 

means of AFM and TEM, in reality they are all very unique. Indium atoms cluster 

differently in each quantum dot, leading to a range of energy eigenstates.


λ0

E > V0
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	 The goal of this thesis is to harness the full detail from the APT 3-dimensional 

composition profile to explore more realistic quantum dot bound states. It becomes 

justifiable to create a model that utilizes every aspect of the raw data itself, allowing for 

any imperfections to be incorporated as well. This helps to establish the validity of the 

representation, as there is no custom tailoring to obtain a desired outcome. Instead, 

outcomes are based solely on the raw data with no influence from the user. Using a 

representation of that nature also provides many interesting benefits. For example, the 

interaction of neighbouring quantum dots would be resolved as hybridized states are 

formed between them. Elongated quantum dots in a stacked structure would exhibit 

carrier delocalization between layers. Moreover, any complex 3-dimensional geometric 

arrangement is easily formed at will. In nontrivial quantum dot geometries, eigenstate 

wave functions and energies are sometimes deemed impossible to attain.55


	 The raw APT data itself resembles a list of 3-dimensional scatter points. As 

discussed in 3.2, a volumetric domain representation is necessary for the finite element 

method. Since scatter data is essentially a point with zero-dimensional width, it would 

enclose no subset of space within its bounds. This subchapter focuses on devising a 

strategy that connects the scatter point data to its required volumetric enclosures.


	 An arbitrary 3-dimensional space can be decomposed into infinitesimally small 

subvolumes. As the scatter data is in cartesian coordinates, it is helpful to create these 

subvolumes using the same basis set. For any region of , , and 

, let and  represent the respective edges of the subvolumes.


width = W length = L

height = H d x, dy, dz
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	 Therefore, the total region that will be modelled is a rectangular prism with 

dimensions . The modelling volume is decomposed into many subvolumes of 

rectangular prisms with dimensions . Each individual subvolume will be 

referenced using the terms domain, voxel, or cell in the subsequent chapters. For the 

purpose of this thesis, , but each component will still be referenced 

explicitly to prevent loss of generality. This is because it is not necessary to use the cubic 

subvolume case, as each individual edge length could be altered if desired. The number of 

voxels that fit into each dimension are


	 	 (3.46)


	 	 (3.47)


	 	 (3.48)


	 Domain enumeration was a key aspect toward modelling the finite spherical well 

in COMSOL. Therefore, each subvolume must be addressed using the same algorithm 

discussed in 3.1. Domain enumeration begins with the voxel containing the minimum 

coordinate set (circled green in fig 3.3). The assignment continues by incrementing along 

the z direction until the column is completed (circled orange in fig 3.3). The process is 

repeated for each column of the first y-z plane until reaching the end (circled blue in fig 

3.3). Sequentially, each y-z plane along the x-direction follows the same numbering 

scheme, until the final domain is enumerated (circled red in fig 3.3).


W × L × H

d x × dy × dz

d x = dy = dz

nx =
W
d x

ny =
L

dy

nz =
H
dz
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	 By creating a geometry of this structure, the enumeration of subvolumes into 

domains becomes straight forward such that the physical properties of the entire system 

can be decomposed for each voxel. Voxels are uniquely defined by a certain set of 

minimum and maximum coordinates, . The spacing between these 

coordinates is known based on the chosen subvolume size and .


x0, xi, y0, yi, z0, zi

d x, dy, dz
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Figure 3.3 - Domain enumeration expanded
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3.4 Mesh Analysis


	 The domains must be further subdivided into a discrete set of finite elements as 

discussed in 3.2, a process known as meshing. The individual voxels become composed 

of a set of tetrahedra using Delaunay triangulation to encompass the entire volume of 

space within the domain. The finite elements are connected together such that there is 

unity within the entirety of the structure. As a result, transitions of the physical boundary 

constraints between interconnected voxels becomes smoother and more precise.


	 Ultimately, the size of the mesh, or the number of tetrahedra that compose each 

voxel, did not dictate convergence to a solution. This is likely because the voxel size is 

already sufficiently small. Since a finite number of tetrahedra are required to fill a cubic 

subvolume, shrinking the voxel must also decrease the size of the tetrahedra within it. 

This means that using a coarser mesh results in a faster, less memory intensive solution 

by decreasing the number of degrees of freedom while also having negligible impact on 

the outcome. Meshing must be executed sequentially as the model contains too many 

domains to be completed altogether. The number of domains that can be meshed at once 

is dependent on the constraints of the computing system, dictated by the amount of 

physical and virtual memory.


72



M.A.Sc. Thesis - Christopher Natale McMaster University - Engineering Physics

3.5 Atom Probe Data Processing in Matlab


	 The raw atom probe data is in the form of a large text file containing a list of 

comma-separated values. Each entry in the list contains a mass-to-charge ratio that has 

been evaluated by the mass spectrometer, the x and y coordinates determined by the 

location where the signal is read on the mass spectrometer plane, along with the z 

coordinate which is determined by the time-of-flight from the laser pulse to the moment 

the ion reaches the spectrometer. The mass-to-charge ratio is then used to deduce which 

ions are present at a particular location in the 3-dimensional space within the sample.


	 The entire data set is sorted to include only a particular subset from a region of 

interest (ROI), while also neglecting any entry that does not contain an ion of interest. 

This improves the data processing efficiency as anything not needed to build the model is 

discarded. The ions of interest for the purpose of this study are indium and gallium, while 

the arsenic is neglected. To match the COMSOL geometry discussed in section 3.3, the 

ROI is decomposed into a 3-dimensional grid containing cubic volumetric elements, 

voxels, that span the entirety of the modelling domain. Each detected ion of interest is 

assigned to their corresponding voxel based on their position. Due to the ~80% detection 

efficiency of the atom probe coupled with the finite spacing of the Bravais lattice, some 

of the voxels may contain no ions of interest, especially if each voxel is made sufficiently 

small. Every voxel in the modelling region must have physical properties assigned to it as 

the energy barrier or effective mass associated with a null voxel is undefined.
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3.6 Neighbour Searching and Spatial Resolution


	 Removing null voxels from the modelling domain would exclude those regions 

entirely from the finite element method process. As the wave function is still able to exist 

in those regions, this would cause a divergence between physical reality and the model. 

To accommodate for this shortcoming, the model instructs every voxel (including the 

non-null voxels) to assess its nearest neighbours and determine all nearby ions of interest.


	 The current voxel contains the set of coordinates ( ) where the 

subscripts represent the voxel’s minimum and maximum bounds respectively. A nearest 

neighbour search would expand to all voxels in the region





, , and  represent the voxel edge length and  is the number of nearest neighbours 

for the search. This method forms a rectangular prism (or cube since ), that 

can expand if necessary and contains the current voxel at its centre. This search method 

encompasses all neighbouring voxels laterally, vertically, and diagonally.


	 If any of the voxels cannot find at least one ion of interest within a single nearest 

neighbour, it expands the search radius to include two nearest neighbours. This process 

repeats itself until at least one ion of interest is found. If multiple ions are found during 

the same search, they all are used to determine the current voxels concentration. The 

current search can then be stopped and the entire process is repeated for the next voxel. If 

a voxel is located on the border of the ROI, as for the faces or edges of the modelling 

domain, it can still search its neighbours outside the ROI utilizing the original dataset.


x0, xi, y0, yi, z0, zi

x0 − n * d x, xi + n * d x, y0 − n * dy, yi + n * dy, z0 − n * dz, zi + n * dz

d x dy dz n

d x = dy = dz
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	 The aim of the following section is to obtain the highest and most uniform spatial 

resolution possible throughout the entire modelling domain. Spatial resolution 

corresponds to the smallest possible region that each voxel can resolve the APT data. 

Since the voxels are cubes with edge length , the body-diagonal of the 

voxel is the longest axis. The voxel size itself can be altered and made smaller or larger 

depending on the , , and  parameters. The following discussion begins with a very 

large voxel size and slowly decreases it to analyze the associated benefits and 

disadvantages. The voxel size used in this thesis was determined through this process.


	 A very large voxel size can be used without any neighbour searching, as each 

voxel would contain at least one ion of interest. However, this would induce a coarse 

grain for the model as the transition between different domains becomes very abrupt. 

Since the quantum dot structures are less than 10 nm in all spatial dimensions (as 

described in 2.16), they would be composed of very few voxels. For example, if the voxel 

size was 1 nm (a reasonable size to rectify all the data with no neighbour searching), at 

most they would be composed of ~10 voxels laterally and ~5 voxels along the growth 

axis. This means that minute composition fluctuations within the quantum dot itself 

would be neglected. Section 2.16 only describes the 16 largest dots that were obtained 

through APT, therefore even smaller 12% indium isosurfaces exist in the sample region. 

These smaller volumes would be completely blurred by the surrounding matrix. 

Neighbour searching with a smaller voxel size would create a much smoother and slowly 

varying depiction of how the ions of interest fluctuate throughout space.


d x = dy = dz

d x dy dz

75



M.A.Sc. Thesis - Christopher Natale McMaster University - Engineering Physics

	 If the voxel is made to be slightly less large than just described, neighbour 

searching would be required as all the voxels cannot be rectified without it. If only the 

null voxels are chosen for neighbour searching, and since the voxel size is still relatively 

large, there will be a great discrepancy in spatial resolution between the null and non-null 

voxels. For example, a voxel size of 0.4 nm would resolve ~80% of the total number of 

voxels utilizing no neighbours. The remaining 20% would require a single neighbour 

search, thereby making the spatial resolution for the null voxels 3x worse than the non-

null voxels. Assessing the ratio between the null and non-null voxels demonstrates the 

difference in spatial resolution, .


	 	 (3.49)


	 	 (3.50)


	 	 (3.51)


Using  nm,  nm and  nm. Therefore, ~20% of the 

voxels will have much worse spatial resolution than the APT measurement itself.


δ

δnon−null = (d x)2 + ( 2d x)2 = 3d x

δnull = (3d x)2 + (3 2d x)2 = 3 3d x

∴
δnull

δnon−null
= 3

d x = 0.4 δnon−null ≈ 0.7 δnull ≈ 2.1
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	 Let  be the percentage of null voxels that get found with a single nearest 

neighbour search and  be their spatial resolution. There exists a maximum of 

 as there’s competitive behaviour between voxels seeking to use either 0, 1, 2, … 

neighbours by variation of . As every voxel is constrained to have at least one 

neighbour search, the percentage of voxels that get found using 0 neighbours, 

, is integrated with the  curve.


	 	 (3.52)


	 	 (3.53)


 and  correspond to the overall spatial resolution and percentage of total voxels using a 

single neighbour search. The value that was chosen for this model is . This 

means that a certain  will rectify 99.5% of the atom probe data using a single search. 

Any  above this maximum results in negligible increase to , but  would deteriorate 

by equation (3.53). Since utilizing a voxel edge length of a certain size resolves vast 

majority of the data within a single neighbour, there becomes no added benefit (besides 

runtime efficiency) of using a broader size as it will only reduce the spatial resolution.


	 If  was decreased below the associated maximum for  , more voxels would 

require two nearest neighbours. For example, the edge length used in this thesis was 

 nm. If the edge length were decreased to  nm,  would drop from 

~99.5% to ~90% as those voxels would now require an expanded neighbour search. The 

spatial resolution can be generalized to any voxel using n neighbours.


ηnull(d x)

δnull(d x)

ηnull(d x)

d x

ηnon−null(d x) ηnull(d x)

η(d x) = ηnon−null + ηnull

δ(d x) = δnull

η δ

η ≈ 99.5 %

d x

d x η δ

d x ηnull

d x = 0.2 d x = 0.15 η
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	 	 (3.54)


From the example above and using equation (3.54), it can be seen that the voxels using a 

single neighbour with  have a better spatial resolution than the ~10% of 

voxels using two neighbours with . However, the remaining 90% of voxels 

would have a better spatial resolution.











Further lowering  would result in better spatial resolution of the single neighbour 

family, but the overall amount of voxels in that family would become smaller as more 

voxels transition to the two neighbour family. The two-neighbour family becomes better 

spatial resolution than  when . However, at that size, the 

disparity in resolution between  and  is


. 


This amount is significant compared to the value  as well as 

the overall dot sizes. As a result, there would be random fluctuations in spatial resolution 

inside and surrounding the quantum dots. Though the effect this would have on the results 

has not been studied, it has been avoided in favour of using a  that does not induce this 

behaviour. Additionally, a certain number of voxels would transition to the 3 neighbour 

family at this size, having worse spatial resolution than .


δn(d x) = (2n + 1) 3d x

d x = 0.2 nm

d x = 0.15 nm

δ1(d x = 0.2 nm) ≈ 1.0 nm

δ1(d x = 0.15 nm) ≈ 0.8 nm

δ2(d x = 0.15 nm) ≈ 1.3 nm

d x

δ1(d x = 0.2 nm) d x ≈ 0.12 nm

δ1(d x = 0.12 nm) δ2(d x = 0.12 nm)

δ2(d x = 0.12 nm) − δ1(d x = 0.12 nm) ≈ 0.4 nm

δ1(d x = 0.12 nm) ≈ 0.6 nm

d x

δ1(d x = 0.2 nm)
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Another reason against using a smaller voxel size is due to runtime complexity. If the 

modelling domain is of a certain size with dimensions W, L, and H, the number of voxels 

that compose it can be found using equations (3.46-3.48).


	 	 (3.55)


Letting , and if  is now used to subdivide the region such that 

, then


	 	 (3.56)


Making the substitution into equation (3.55) results in





	 	 (3.57)


For  voxels, each voxel would require searching at least  others (since it also 

searches itself). This is a best case scenario, as the algorithm is instructed to start the 

search using a single neighbour. If all voxels utilize just a single neighbour, the algorithm 

complexity for neighbour searching is . As the radius expands to include more 

nearest neighbours, the search is repeated. Therefore, the more neighbours that are 

required for the voxel, the more times it will have to search the others. This can be 

generalized to a worst-case complexity time if every voxel uses at most n neighbours.


	 	 (3.58)


ntotal = nxnynz =
W
d x

L
dy

H
dz

d x = dy = dz d x′￼

0 < d x′￼< d x

d x′￼=
d x
α

α > 1

n′￼total = α3 WL H
(d x)3

∴
n′￼total

ntotal
= α3

ntotal ntotal

𝒪(n2
total)

𝒪(nn+1
total)
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The runtime complexity for  can be determined by substituting (3.57) into (3.58).





The term  cannot be discarded as the maximum number of neighbours, n, is dependent 

on  since they are both functions of . The complexity simplifies to


	 	 (3.59)


Although this particular algorithm could be made more efficient for neighbour searching, 

parallel computing allows this process to be done much faster by analyzing all  

voxels simultaneously on multiple computer cores. Other aspects of model generation are 

more drastically prolonged by increasing the total number of voxels. Though COMSOL 

uses parallel computing for meshing the system, partitioning interconnected domains 

creates boundaries that imposes constraints on the mesh and increases complexity.57





n′￼total

𝒪(n′￼n+1
total) = 𝒪([α3ntotal]

n+1) = 𝒪(α3(n+1)nn+1
total)

α3n

ntotal d x

𝒪(n′￼n+1
total) = 𝒪(α3nnn+1

total)

ntotal
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Figure 3.4 - Unit cell with 
centre voxel highlighted
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	 The total number of voxels used in the subsequent chapter is  

with size . This resolves  of the voxels with a single 

nearest neighbour search and has  spatial resolution. This corresponds to a cube 

with edge length 0.6 nm, which is very similar to the lattice constant of InxGa1-xAs.


	 The lattice parameter will dictate the most reasonably attainable spatial resolution. 

One possible explanation for this occurrence is best depicted using the zincblende cubic 

cell in figure 3.4 where only the ions of interest have been illustrated. If a voxel is located 

near the centre of the unit cell, and if the voxel size is less than one-third the lattice 

parameter, it would be highly unlikely to find any ions of interest using a single 

neighbour. However, this is not limited to the centre of the unit cell, as the centre of the 

edges will also present the same issue as the unit cell repeats itself in all spatial 

dimensions. Combining this result with the APT detection efficiency of ~80%, it becomes 

increasingly probable that a voxel will contain no ions of interest using a single neighbour 

with , where a is the lattice parameter.


	 If the search radius expands to include more neighbours, it would degrade the 

spatial resolution of those voxels since overshoot will occur. This was depicted in the 

example with  and . Though, the spatial resolution 

would be on average better because of the  family, large fluctuations in 

spatial resolution and immense increases to runtime complexity make the minor average 

improvement to spatial resolution not worthwhile.


ntotal = 1.44 × 106

d x = dy = dz = 0.2 nm η ≈ 99.5 %

δ ≈ 1 nm

d x <
a
3

δ1(d x = 0.2 nm) δ2(d x = 0.15 nm)

δ1(d x = 0.15 nm)
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3.7 Voxel Concentration


	 One major benefit of using COMSOL for finite element analysis is that it can be 

easily integrated alongside Matlab. This serves the advantage of being able to perform 

data processing in Matlab as a means of extracting from the raw APT data, and to then 

also generate a complex system that requires the manipulation of ~1.44 million domains. 

To build a model of such magnitude would be impossible without additional software to 

aid in its generation. Furthermore, it allows the ROI to easily be shifted to different areas 

within the sample without having to rebuild the model by hand. Every voxel is addressed 

based on their position within the ROI using the same algorithm discussed in section 3.3 

to prioritize the enumeration of geometric domains. The assigned addresses and 

concentrations for every voxel are used to automatically generate the COMSOL model.


	 Each voxel determines the concentration of indium based on the fraction of 

indium counts compared to the total number of ions of interest (both indium and gallium). 

The counts are unique to each voxel, as they are based on the voxel itself as well as its 

surrounding neighbours. The concentration for each voxel can only be determined after it 

has been populated with at least one ion of interest.


	 To locate a region of interest, a concentration map of the  plane was created 

where  represents the growth axis. The maximum indium concentration of all voxels for 

a particular column along  is displayed on the  plane for every column. This results in 

a 2-dimensional projection for the location of indium clusters. The same could be done 

for the  and  planes to assess the cluster height.


̂x- ̂y

̂z

̂z ̂x- ̂y

̂x- ̂z ̂y- ̂z
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	 Figure 3.5 depicts a concentration map of the  plane for a 40 x 40 nm wide and 

10 nm thick section containing the isolated middle quantum dot layer. The streaking close 

to the border symbolizes regions where data is not available. Since atom probe 

tomography ionizes atoms along a cone aligned with the growth direction, the  cross 

section is circular. The streaking is an artifact of the chosen algorithm for filling null 

voxels, as they converge to the same nearest neighbour along the border of the available 

data set. A subset of this region ( ) is used in subsequent 

chapters to minimize the incorporation of null voxels on the border. Figure 3.6 is useful as 

a comparison for the concentration map.


̂x- ̂y

̂x- ̂y

x ∈ [−16,16] ∪ y ∈ [−18,18]
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Figure 3.5 -  plane concentration map̂x- ̂y
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	 A value of 1 symbolizes that there exists a voxel along the column that only 

contains indium within its vicinity (single nearest neighbour). Therefore, some voxels are 

entirely composed of pure InAs or pure GaAs as the voxel size (and its search radius) has 

been made sufficiently small. A larger size (or search radius) would cause those voxels to 

smooth out into an InxGa1-xAs alloy.


	 The different nature of these two affects is realized when examining the energy 

band structure.  represents the growth axis, passing straight through the core of a 

quantum dot with the GaAs matrix on either side. For large voxels, the band structure 

forms a graded index where the area between the core and the surrounding matrix is an 

InxGa1-xAs alloy. Furthermore, the core would also be an alloy for sufficiently large 

voxels. This would affect the depth of the potential well as it would be more shallow than 

pure InAs. Shallow potential wells allow the carriers to tunnel further into the barriers 

than in a deep potential well, resulting in less confinement energy.


̂z
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Figure 3.6 - 
Middle layer 12% 

indium 
isosurfaces with 

volume threshold 
lowered to  
(5 nm tick marks)
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	 As the voxel size becomes smaller, there is an increasing probability that only one 

indium or gallium ion will be detected. If every voxel exhibits this binary nature, then the 

band structure no longer becomes a graded index as no InxGa1-xAs alloys are formed. The 

frequency of pure indium voxels increases toward the core, causing a periodic nature in 

the band structure, albeit with indiscernible periodicity. Though the energy barriers are 

tall, they are not wide since they would be of the same order as the voxel size. Carriers 

would easily be able to tunnel through them as their Bohr radius is 2 orders of magnitude 

larger than the barrier width. This would cause the carriers to become delocalized as they 

hop between wells.


	 Similar results have been demonstrated in literature through the use of digital 

alloys.58 A quantum well can be sandwiched between very-short period multi-quantum 

wells whereby confinement is enhanced.58 If the width of the main quantum well is larger 

than the width of the surrounding wells, a delocalized mini-band is formed that efficiently 

transports carriers to the main well.58 Therefore, as long as there are a sufficient number 

of indium containing voxels that compose the main well, the eigenstate energy will be 

increased. Figure 3.8a and 3.8b represent two different scenarios with variation in the 
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Figure 3.7 - Theoretical 
band structure for large 

voxel size
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main quantum well width. The width of the surrounding wells represent the width of one 

single voxel.


	 Though a truly digital quantum dot was never simulated, this would agree with 

what was experimentally observed through means of decreasing the size of all voxels. 

Utilizing a single quantum dot, the ground state eigenenergy decreased by only ~3% even 

though the voxel size increased by 150%. This result has two important conclusions. The 

more “digital” alloy with reduced voxel size had higher eigenstate energy than the graded 

index alloy with larger voxel size. It also proved that voxel size refinements had small 

overall impact on the eigenstate solutions. The model utilized in this thesis lies between 

these two limiting cases, as some voxels are able to form alloys and other voxels form 

binary compounds.
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Figure 3.8a - Very small voxel band structure with small main well

Figure 3.8b - Very small voxel band structure with large main well
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3.8 Computation of Material Properties


	 The concentration of indium versus gallium within each voxel determines the 

optical properties such as the band structure, relative permittivity and the effective mass 

of both electrons and holes. Electron and hole barrier heights can then be assigned to each 

voxel based on the computed concentration of indium. The bandgap and relative band 

offsets as a function of concentration for InxGa1-xAs at low temperature can be referenced 

from literature.59 For example, the fundamental gap obeys a quadratic relationship 

dependent on the concentration of indium.


	 	 (3.60)


This function has a minimum when the concentration is unity, indicating that pure InAs 

has the smallest bandgap. It will become helpful to define the bottom of the conduction 

band and the top of the valence band as the zero energy surface, both corresponding to 

pure InAs. Any concentration of Ga will induce a potential barrier with a magnitude that 

is dependent on x.


	 	 (3.61)


Similarly, the valence band edge as a function of concentration.


	 	 (3.62)


This function has been shifted such that the zero point is at the pure GaAs concentration. 

The maximum is when the concentration is unity, corresponding to pure InAs.


	 	 (3.63)


Eg(x) = 1518 − 1580x + 475x2 meV 0 ≤ x ≤ 1

Egmin = 413 meV

Ev(x) = 231x − 58x2 meV 0 ≤ x ≤ 1

Evmax = 173 meV
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The hole barrier height with respect to the pure InAs valence band edge.


	 	 (3.64)


The electron barrier height with respect to the pure InAs conduction band edge.


	 	 (3.65)




The electron effective mass can also be derived based on the concentration,59 where  is 

the free electron mass.


	 	 (3.66)


Since the heavy hole has a much larger effective density of states than the light hole, the 

heavy hole effective mass is utilized by the model. There may be some coupling between 

the light hole and heavy hole states,59 however this has been neglected for the purpose of 

Eh(x) = Evmax − Ev(x)

Ec(x) = Eg(x) − Egmin − Eh(x)

m0

me(x) = [0.0667 − 0.0419x − 0.00254x2]m0
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Figure 3.9 - Band diagram for determining energy barriers
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the simulation. The heavy hole effective mass as a function of the indium concentration is 

given by,60


	 	 (3.67)


The static relative permittivity as a function of the indium concentration is,60


	 	 (3.68)


All of these values correspond to the physical parameters of the material system at a 

temperature below 10K. Strain has been neglected for this model.


3.9 Potential Energy Landscape


	 The same middle quantum dot layer is shown in figure 3.10 after assigning 

electron barrier heights to each voxel. A cross section has been taken along the planes that 

intersect one of the indium clusters. The emphasized blue region depicts the same cluster 

that is located at  in figure 3.5.


	 These visualization techniques aid in the understanding of various composition 

fluctuations and sizes of quantum dots within the layer and their surrounding. The indium 

signal in the GaAs matrix could either be due to  incorporation (as described in 2.10) 

or indium diffusion along the growth axis as no indium flushing step was performed 

during growth. This process consists of raising the substrate temperature to above ~540°C 

as the sticking coefficient for indium falls rapidly to zero;61 a useful technique for 

preventing indium incorporation in the GaAs spacer between quantum dot layers.


mhh(x) = [0.34 + 0.0013x]m0

ϵr(x) = 12.4 + 2.15x

(x, y) ≈ (−5, 5) nm

As2+
3
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	 Appendix 4 contains plots that are similar to figure 3.5, however now the electron 

barrier heights have been assigned to each voxel based on the indium concentration.  


Additionally, figure 3.5 utilized the maximum voxel value along each  column, whereas 

the exact voxel value is displayed in Appendix 4. These plots show the entire  plane 

that is used for the modelling domain (32 x 36 nm), with a thickness of 0.2 nm (1 voxel). 

Utilizing these sizes for the sections, the z-coordinate is swept over the span of 4 nm from 

above the quantum dot layer to just below it. The step size is 0.4 nm (2 voxels) to show 

how the electron barrier heights change with depth into the QD layer. Indium clusters are 

not situated at the exact same height along the growth axis, but are roughly separated by 

1-2 nm. This could either be a result of quantum dot nucleation on separate terraces or 

sample misalignment during the growth or atom probe evaporation. 

̂z

̂x- ̂y
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Figure 3.10 - Middle QD layer potential energy
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Chapter 4		 Eigenstate Solutions


4.1 Photoluminescence Spectra


	 This chapter begins by assessing the photoluminescence emission spectra of the 

quantum dot ensemble at 7.7 K. This value becomes very useful to compare to the 

calculated eigenstate energies in the subsequent sections, as the emission is representative 

of the true transition energy of the exciton. The sample has been excited with an Argon 

ion laser at 488 nm wavelength. The main peak in figure 4.1 corresponds to the quantum 

dot emission, while the smaller peak is from the surrounding GaAs matrix.
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Figure 4.1 - PL emission spectra at 7.7 K
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	 The smaller peak has been magnified in figure 4.2. The FWHM has been used to 

calculate the standard deviation assuming a Gaussian distribution.62


	 	 (4.1)


Therefore, the emission peak is at a wavelength of . The direct bandgap of 

GaAs as a function of temperature is63


	 	 (4.2)


	 	 


The energy is related to the photon wavelength by


	 	 (4.3)


Substituting the appropriate values for the speed of light and Planck’s constant results in a 

wavelength that is within the uncertainty provided by the measurement.








σ =
FWHM

2 2 ln 2

820 ± 10 nm

Eg(T ) = 1.522 − 5.8 × 10−4( T 2

T + 300 ) eV

Eg(T = 7.7 K ) ≈ 1.52 eV

E =
hc
λ

λ ≈ 816 nm

92

Figure 4.2 - PL emission 
spectrum of GaAs at 7.7 K
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	 The larger peak of the quantum dot emission is magnified in figure 4.3. Using the 

same method of assessing the FWHM to calculate the standard deviation in equation 

(4.1), the emission wavelength is .





Converting this wavelength to energy using equation (4.3), the transition energy of the 

exciton is





940 ± 30 nm

Eexciton ≈ 1.32 ± 0.04 eV
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Figure 4.3 - PL emission 
spectrum of QDs at 7.7 K
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4.2 Eigenenergies of the Ensemble


	 A total of 10 bound eigenstates ( ) were found in the isolated middle layer 

using the APT model devised in this thesis. The subsequent subchapters will examine the 

eigenenergies and wave functions of these bound states. Some of the wave functions exist 

near the boundary of the available data set, indicating that they may become unbound if 

the potential energy landscape outside the available data set allows them to leave the 

modelling domain. This is because many of the quantum dots obtained in the APT sample 

region exist near the boundary since the quantum dot density is high and the sample 

region is comparatively small. In figure 3.6, all of the isosurfaces furthest away from the 

origin represent quantum dots that exist on the boundary of the modelling domain. 

However, their eigenenergies are very similar to eigenstates that are fully encapsulated 

within the modelling domain. As such, all 10 eigenstates have been used to determine the 

band-band transition energy of the exciton.


	 The plots in this chapter reference the eigenenergy in relation to the zero energy 

surface, which would be the pure InAs conduction/valence band edge. To obtain the 

transition energy, the eigenstates must be added to the bandgap minimum discussed in 

equation (3.61).  and  represent the mean eigenstate energy of the electron and hole. 

Therefore, the simulated transition energy is


	 	 (4.4)





E < V0

Ee Eh

Esimulated = Ee + Eh + Egmin

Esimulated = 1.45 ± 0.04 eV
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	 The mean and standard deviation have been calculated using the entire ensemble 

of eigenstates. Interestingly, the standard deviation is the same as observed through 

photoluminescence spectroscopy. Therefore, this is a very useful technique in order to 

assess the distribution of eigenenergies that would cause the emission spectrum to 

broaden. The mean energy is blue shifted from the PL data for reasons that will be 

discussed in section 4.4. At room and cold temperatures, the thermal energy is 








The deepest electron and hole state with the lowest eigenenergies are








The largest energy barriers for the electron and hole are when  in equations (3.64) 

and (3.65), representing the pure GaAs band edge. The difference in energy between these 

states and the GaAs band edge is


	 	 (4.5)


	 	 (4.6)


Ethermal(T = 300 K ) = kT ≈ 26 meV

Ethermal(T = 7.7 K ) = kT ≈ 1 meV

E′￼e ≈ 848 meV

E′￼h ≈ 158 meV

x = 0

ΔEe = Ec(x = 0) − E′￼e = 84 meV

ΔEh = Eh(x = 0) − E′￼h = 15 meV
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	 The sample had no photoluminescence emission at room temperature, which is 

uncommon for sufficiently small and dense InAs/GaAs quantum dots that are not 

drastically dislocated. Dislocations in this system typically occur as a result of excessive 

strain in the lattice due to over deposition of indium. Normally InAs/GaAs quantum dots 

are made larger by raising indium deposition or increasing growth temperature, thereby 

decreasing the QD density and redshifting the emission wavelength closer toward 

. Reaching a  wavelength emission generally cannot be accomplished 

without additional use of strain reduction layers to further redshift the transition energy of 

the exciton. This would increase  and  as the lowest energy states become deeper 

with respect to the surrounding GaAs band edge since the transition energy is lowered. 

However, in the grown sample , this allows holes to effectively 

escape the quantum dots through nonlocal Auger recombination (see section 1.3). 

Electron eigenstates are deeper than hole eigenstates and are not as affected by thermal 

energy since . At cold temperatures, neither carrier is affected by 

the thermal energy and the exciton can effectively recombine without carrier escape into 

the surrounding reservoir as they are contained within the quantum dot energy states.


1.3 μm 1.3 μm

ΔEe ΔEh

ΔEh < Ethermal(300 K )

ΔEe > Ethermal(300 K )
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4.3 Eigenstate Wave Functions


	 The wave functions form a complex and intriguing arrangement of hybridized 

states. There exists bonding and anti-bonding between neighbouring quantum dot 

molecular orbitals. The bonding states have lower energy than the anti-bonding states and 

the anti-bonding states contain node lines between orbitals. There also exists a near 

degenerate state with eigenenergies that are within 2 meV of one another, experiencing 

very similar orbital patterns.


	 The location of quantum dots given by the isosurfaces in figure 3.6 is very helpful 

for interpreting the probability density solutions that were obtained through the 

simulation. Refer to figure 3.6 to assess the orbitals of the eigenstate solutions against the 

location of indium clusters. The indium clusters can also be seen in Appendix 4, 

presenting the same orientation and layout as the eigenstate solutions shown in this 

chapter. Though the solutions are inherently three-dimensional and can be visualized in 

any means, a 2-dimensional  cross-section is used for clarity and comparison. In 

figures 4.8 and 4.9, the entire wave function cannot be shown altogether since the orbitals 

exist at slightly different elevations along .


	 At the boundaries of the exterior modelling domain, a wave vector is calculated 

for each finite element using its potential energy, effective mass, and energy eigenvalue. 

Continuity is assumed such that the wave function only contains a normal component to 

the exterior boundary surface. This determines the rate of decay for the exiting plane 

wave at each exterior boundary finite element. 

̂x- ̂y

̂z
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Figure 4.4 - Electron Bonding and Anti-Bonding States
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Figure 4.5 - Hole Bonding and Anti-Bonding States
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Figure 4.6 - Electron Bonding and Anti-Bonding States
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Figure 4.7 - Hole Bonding and Anti-Bonding States
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Figure 4.8 - Electron Bonding and Anti-Bonding States

(lower cross section shown)
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Figure 4.9 - Hole Bonding and Anti-Bonding States

(lower cross section shown)
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Figure 4.10 - Degenerate Electron States
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Figure 4.11 - Degenerate Hole States 
(order reversed from electron states)
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Figure 4.12 - Electron and Hole State
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4.4 Coulomb Interaction and Polarization


	 The observed emission spectrum of the quantum dot ensemble through PL 

spectroscopy is at lower energies than the simulated transition energy. Additional terms 

representing strain energy, piezoelectric effects, and other external fields (such as 

Coulomb interaction and interfacial polarization)25 are necessary to obtain the most 

accurate results of the ensemble.55 This appears in many quantum dot models as 

confinement is not the only influence on the transition energy of the exciton. Coulombic 

forces between the oppositely charged (quasi)particles introduce additional energy factors 

during recombination. Since electrons and holes are attracted to one another, the overall 

band-band transition energy of the exciton is lowered.


	 To obtain an estimate for how much Coulomb forces would impact the ensemble 

energy, it is helpful to use the Brus model which assumes an infinite spherical potential. 

The magnitude of the Coulomb energy is not significantly affected by the existence of a 

finite potential.25 This is because the Coulomb force is proportional to  and decreases 

slowly for large R,64 such as in the case where the wave function extends into the 

boundary. In the original Brus model, the energy decrease due to Coulomb interaction is65


	 	 (4.7)


where  is the elementary charge and  is the radius of quantum dot. This is a model that 

many authors still use to this day,25,66 in spite of its initial inception 40 years ago.


1
R2

ECoulomb = − 1.786
e2

ϵ0ϵr R

e R
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	 Shortly after Brus released his model, it was refined by Kayanuma to account for 

the electron-hole spatial correlation effect.67,68 As a result, a factor of  was introduced 

into the denominator, and the Coulomb energy can be approximated as69


	 	 (4.8)


	 The Coulomb energy would be most impacted by the smallest spatial dimension 

of the quantum dot since it is proportional to . This would correspond to height of the 

ensemble. It is helpful to use the model built in section 2.16 to assess the dielectric 

permittivity of the core as well as the ensemble height. Recall the cross-sectional height is 

. None of the observed eigenstates had a probability density greater than 

this cross-section along the growth axis. Converting this to a radius, . 

The indium concentration of the core was found to be ~30.5% by isosurface 

reconstruction for this particular ensemble (in agreement with 31% by Z-contrast 

HAADF). Using equation (3.68),





Solving equation (4.8) with these values results in





	 The binding energy is large as the carriers are confined to a region much smaller 

than their Bohr radius. The Brus model also indicates that there is a surface charge created 

on the interface between the two connected dielectric media.65 Differences between 

4π

E′￼Coulomb = − 1.786
e2

4πϵ0ϵr R

1
R

4.4 nm ± 18 %

R = 2.2 nm ± 18 %

ϵr(x = 0.305) ≈ 13.06

E′￼Coulomb ≈ 90 ± 16 meV
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dielectric constants create charge at the interface, generate an electric field, and thereby 

shift the band structure to lower the recombination energy. In the limit of an infinite 

confining potential, the polarization energy will reduce the exciton transition energy by25


	 	 (4.9)


	 	 (4.10)


	 	 (4.11)	 


In order to ensure convergence of ,  .25 Solving for  in Matlab with 





Using the same values for  and  in equation (4.9)





Neglecting strain, the transition energy will redshift by approximately


	 	 (4.12)


	 	 (4.13)


Which is in agreement with the transition energy obtained through PL spectroscopy.





	 This chapter concludes with assessing the validity of the Brus approach, by 

assuming an infinite spherical potential and comparing to the obtained eigenstate 

EPolarization = β
e2

ϵ0ϵr R

β = − 2
∞

∑
n=1

(ϵ − 1)(n + 1)
(nϵ + n + 1) ∫

1

0
x2nsin2(π x)d x

ϵ =
ϵcore

ϵmatrix
=

ϵr(x = 0.305)
ϵr(x = 0)

≈
13.06
12.4

β n > 14000 β n = 106

β ≈ − 0.018

ϵr = ϵcore R = 2.2 nm ± 18 %

EPolarization = 11 ± 2 meV

Eredshif t = E′￼Coulomb + EPolarization ≈ 101 ± 18 meV

∴ E′￼simulated = Esimulated − Eredshif t = 1.35 ± 0.06 eV

Eexciton ≈ 1.32 ± 0.04 eV
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solutions. The quantum confinement energies of the electron and hole in an infinite 

spherical well in the ground state are


	 	 (4.14)


	 	 (4.15)


As before, using  for the radius of the quantum dot and equations 

(3.66) and (3.67) for the electron and heavy hole mass.














	 These states are unbound since  in reference to the GaAs band edge. This 

is because the wave function is much more confined along the growth axis than along the 

lateral axis, and the Brus model begins to break down for such small volumes as quantum 

confinement begins to dominate.25 Using the semi-minor cross sectional width instead, 

, solves for much too small confinement energies.








Therefore, neither of these approaches result in the true eigenenergies of the ensemble. 

E∞
e =

ℏ2π2

2meR2

E∞
h =

ℏ2π2

2mhR2

R = 2.2 nm ± 18 %

me(x = 0.305) ≈ 0.0538m0 ≈ 4.9 × 10−32 kg

mh(x = 0.305) ≈ 0.3404m0 ≈ 3.1 × 10−31 kg

E∞
e (R = 2.2 nm) ≈ 1.44 ± 0.52 eV

E∞
h (R = 2.2 nm) ≈ 0.23 ± 0.08 eV

E > V0

R = 6.8 nm ± 25 %

E∞
e (R = 6.8 nm) ≈ 0.15 ± 0.08 eV

E∞
h (R = 6.8 nm) ≈ 0.02 ± 0.01 eV
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Chapter 5		 Future Considerations


5.1 Appending to the Hamiltonian


	 In the last chapter, it was discussed that quantum confinement is not the only 

energy that influences the exciton transition. Approximations were made based on the 

isosurface reconstruction. Although the comparison to photoluminescence spectroscopy 

indicate that these approximations are reasonable, this is not the main scope of this thesis. 

The motivation behind this thesis is to provide an accurate means of resolving eigenstates 

within any general system, whereas in section 4.4 it was limited to the spherical well.


	 The influence of Coulomb interaction can be generalized using the initial 

eigenstate solutions. The wave function of each carrier creates a spatial distribution of 

charge, also known as the space charge density. The space charge density for each carrier 

is related to the probability density by70


	 	 (5.1)


	 	 (5.2)


In the devised model, each finite element has an associated probability density for the 

eigenstates. Therefore, each element will have a space charge density as well. The space 

charge density can be used to solve Poisson’s equation independently for each carrier with 

the relative permittivity given by the concentration of the voxel.


ρe = − e |Ψe |2

ρh = + e |Ψh |2
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	 	 (5.3)


	 	 (5.4)


 and  can be determined in COMSOL for each of the finite elements by solving the 

differential equations. The Hamiltonian can then be appended to include51


	 	 (5.5)


	 	 (5.6)


Where the spatial charge distribution will affect the opposite carrier. H is the single 

particle Hamiltonian that was used to find the initial set of solutions in chapter 4 without 

Coulomb interaction.  and  represent the new set of wave functions and 

eigenenergies that are obtained through resolving the system with the included 

electrostatic potential using the Poisson correction. This process can be repeated until the 

wave functions and eigenenergies stop changing with each successive iteration. This is 

termed a self-consistent solution as there is convergence to the system of equations.51 The 

exciton transition energy can then be determined51


	 	 (5.7)


Where the matrix elements represent energy corrections to account for Coulomb energy 

being included twice, for both charge carriers simultaneously.51 

∇2Ve = −
ρe

ϵ0ϵr
=

e |Ψe |2

ϵ0ϵr

∇2Vh = −
ρh

ϵ0ϵr
= −

e |Ψh |2

ϵ0ϵr

Ve Vh

(H + Vh)Ψ′￼e = E′￼eΨ′￼e

(H + Ve)Ψ′￼h = E′￼hΨ′￼h

Ψ′￼e/h E′￼e/h

Eexciton = E′￼e − E′￼h +
1
2 [ < Ψ′￼h |Ve |Ψ′￼h > − < Ψ′￼e |Vh |Ψ′￼e > ]
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If it is known how an external field (magnetic, strain, electrostatic, etc) influences the 

potential of the Hamiltonian, any correctional technique can be applied throughout the 

entire modelling domain.


5.2 Improving Reconstruction Geometry


	 During atom probe tomography, data is acquired along a cone aligned with the 

growth axis. One downfall of the model created in this thesis is that it is unable to use the 

complete data set and uses a small subset of space that contains no data. It fills the null 

space with the closest available region, which would be on the border of the available 

data set. This creates an artificial extension of the band structure into the null region. The 

problem stems from utilizing a cubic reconstruction of the conically shaped data.


	 The plot in figure 5.1 depicts the minimum nearest neighbour used for each of the 

columns in the modelling domain. The corner maximum of 11 nearest neighbours is 

different than the spatial resolution provided in chapter 3, as it only accounts for half of 

the search to the boundary. However, it is ~ 4x worse than the spatial resolution in the 

centre. Using equation (3.54) and dividing by 2,





	 There exists more data along the centre of the  and  axes that cannot be used as 

it is outside the modelling domain. If the modelling domain was expanded, the corners 

would encompass more null space and would not be an accurate reconstruction of the 

δ11 =
1
2 (2(11) + 1) 3(0.2 nm) ≈ 4 nm

̂x ̂y
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available data set. A greater number neighbours would be needed for the corners, thereby 

further deteriorating the corner spatial resolution. Similarly, if the modelling domain was 

contracted to completely remove all null space, some of the large indium clusters would 

be missed in the model. A simple way around this is to box the clusters individually. This 

has the benefit of a utilizing a much faster build and solve time, but would not depict any 

of the interesting hybridized dot-dot states that were observed.


	 The best method to remedy this issue is to remove all the null voxels from the 

modelling domain altogether. This would be different than resolving null voxels in the 

central component of the data, as now obtaining a wave function in the corners would be 

undesirable from lack of data. The entire data set could then be used and all the null 
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regions outside would be completely neglected. This solution is viable, but isn’t very 

straightforward to implement due to the complexity of domain enumeration. Similar to an 

address, each voxel has its own numerical value assigned to it based on its position in the 

modelling domain. This is a key aspect toward determining the voxel material properties 

(effective mass, potential energy, and relative permittivity) as well as systematically 

meshing the model. Domain enumeration no longer becomes a simple process like the 

method demonstrated in chapter 3. Instead, different planes will contain a variable 

number of domains that would require more sophisticated mapping algorithms.


	 Moving toward a Voronoi tessellation would also be interesting and provide many 

benefits. Instead of a cubic voxel, each grid component becomes a polyhedron consisting 

of the subset of space that is the shortest Euclidean distance to any one of the points in the 

data set (one singular ion of interest). Since Delaunay triangulation is the dual graph of 

Voronoi tessellation, meshing may become quicker to resolve than triangulating a cube. 

This is the current bottle-neck in building and solving models, taking up vast majority of 

the time and imposing the most demanding memory requirements. Furthermore, this 

would be the only method to accomplish building a truly digital alloy QD without 

utilizing any neighbour searching. The only downfall is that voxel reconstruction and 

domain enumeration would become much more complex than a simple cubic grid.
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Chapter 6		 Conclusion


	 The model presented in this paper represents a good starting point for realistic 3-

dimensional eigenstate solutions of the Schrödinger equation within a quantum dot 

ensemble. More work is necessary to obtain the most accurate results possible by 

including other forms of potential energy within the system. However, in its current state, 

the model is still very promising and useful for its purpose, making it encouraging to 

assess its validity in a variety of differently shaped ensembles or other lattice systems.


	 Multiple forms of microscopy (TEM, AFM, and APT) were used to assess the size 

distribution and concentration of indium cores within the quantum dot ensemble. It was 

found that each had their own set of associated benefits and disadvantages, with APT 

isosurface reconstruction being the most reasonably accurate method of depicting an 

ensemble average. Even so, it was still unable to accurately provide the eigenstate 

solutions of the ensemble without devising a more sophisticated model based on the raw 

atom probe data itself. This is because small changes to the structure result in large 

changes to the eigenenergies, especially for relatively very small sized quantum dots.


	 Both Comsol and Matlab had to be used concurrently to be able to devise a model 

of such magnitude. Several considerations had to be accounted for as well during this 

process, namely transitioning 0-dimensional scatter data into 3-dimensional volumes, 

filling empty space to provide the most reasonable spatial resolution, and imposing the 

proper boundary constraints on the wave function.


116



M.A.Sc. Thesis - Christopher Natale McMaster University - Engineering Physics

	 Though the simulated transition energy of the exciton was blue shifted from the 

photoluminescence spectroscopy data, it was still possible to bring these two results 

closer together by considering other effects such as polarization and Coulomb interaction. 

For this purpose, isosurface reconstruction was extremely useful in conjunction with the 

devised model to obtain an accurate representation of the transition energy. It was found 

that the standard deviation between the photoluminescence emission data and the 

simulated quantum dot eigenenergies were the same. This was an unexpected result, 

possibly indicating that the emission inhomogeneity of dots can be quantified through this 

model. However, further testing would be necessary to confirm this result.


	 Hybrid states were discovered that consist of both bonding and anti-bonding 

between neighbouring quantum dots. To the best of my knowledge, the simulation of 

eigenstates for an entire quantum dot ensemble simultaneously through means of 

experimental data has not been documented in literature. This model would be able to 

successfully transition to the simulation of other structures, such as delocalized stacked 

quantum dot layers, quantum well digital alloys, quantum dots embedded within 

nanowires, and many other exciting opportunities. This opens up the door to be able to 

use these modelling techniques for a variety of research endeavours, including other band 

and lattice structures. Overall, the atom probe was an extremely excellent tool to quantify 

quantum dots for their size, composition, and emission energy.
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Appendix 1: InGaP Interface Proxigrams
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Appendix 2: In1-xGaxP HRXRD
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Appendix 3: Finite Spherical Well
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n = 1, l = 2
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n = 2, l = 0
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n = 1, l = 3
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Appendix 4: Potential Energy (Middle QD Layer - 0.2 nm Slice)
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