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ABSTRACT

An algorithm is presented for the solution of mechanical contact 

problems using the displacement based Finite Element Method. The 

corrections are applied as forces at the global level, together with any 

corrections for other nonlinearities, without having to nominate either 

body as target or contactor. The technique requires statically reducing 

the global stiffness matrices to each degree of freedom involved in 

contact. Nodal concentrated force are redistributed as continuous 

tractions. These tractions are re-integrated over the element domains 

of the opposing body. This creates a set of virtual elements which are 

assembled to provide a convenient mesh of the properties of the opposing 

body no matter what its actual discretizaton into elements. Virtual 

nodal quantities are used to calculate corrective forces that are 

optimal to first order.

The work also presents a derivation of refereritial strain

tensors. This sheds new light on the updated Lagrangian formulation, 

gives a complete and correct incremental form for the Lagrangian strain 

tensor and illustrates the role of the reference configuration and what 

occurs when it is changed.
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CHAPTER ONE

INTRODUCTION

1.1 INTRODUCTION

This thesis presents an adaptation of the popular finite element 

method for the purpose of solving contact problems. This immediately 

requires three explanations. One is about what is novel about this. 

Another is about the finite element method, how and why it is used. The 

other is about contact. What is contact? Why is it interesting? Where 

does it occur? Why is it useful or interesting or difficult to solve 

contact problems? Contact problems are those in which physical bodies 

touch each other. These are so common that it is surprising that they 

are so little understood. Examples include stones resting.on another, 

every bolt, screw, nail or rivet holding parts together, the bearing of 

skeletal Joints, the cutting or grinding of tools on workpieces, and 

many more than can be listed.

For practical purposes it is often not necessary to know the 

details of motions and stresses in the region of contact. It suffices 

to have some basic description or to use some assumptions to provide 

enough information to allow the problem at hand to be solved. For many 
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cases it is easy enough to carry out some experiment to discover 

whatever information was needed. In either case there was no need to do 

detailed calculations. But this is not always true. There are many 

times when there are advantages to a calculational approach to finding 

needed information. These include situations where an experiment is not 

desirable. This could happen for reasons of expense. Perhaps the 

materials or facilities needed are too costly. This could happen for 

reasons of safety. The experiment could be so dangerous that it could 

not be attempted without prior analysis to explore possible outcomes. 

The experimental approach may simply not be possible. The facilities to 

do the experiment may not exist. Nonetheless detailed knowledge of 

conditions at a contact interface may be desired. Detailed knowledge of 

stress and motion in an arthritic hip may lead to better understanding 

of the condition. Detailed knowledge of stresses and bearing areas in a 

cutting tools may lead to better designs to improve cutting technique 

and extend tool life. Detailed knowledge of contact conditions could be 

used to numerically simulate crash conditions and so allow ’experiments’ 

to be done with complete safety. So, there is plenty of motivation to 

have a way to simulate contact. ‘

Is this so difficult? The answer depends on the quality of the 

results you desire. Results that are exact to the extent of the 

mathematical theories of deformable bodies are almost unknown for 

contact problems. For most situations this defeats the skill of even 

the best of mathematicians. Approximate results are all that we can 

currently provide. Even these can be found in more or less accuracy and 
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detail. For problems where the geometry of the bodies involved is not 

extremely simple the only success at approximation has been through 

numerical techniques. There are many of these in use. Different ones 

have been developed to suit different classes of problems. Here we 

consider only the contact of two or more solid bodies. For studying the 

displacements and stresses of solid bodies the displacement based finite 

element method has often been very effective. This thesis presents a 

way to extend this usefulness and release some restrictions that exist 

in earlier works on contact problems.

1.2 REVIEW OF CLASSICAL WORK OF HERTZ

Timoshenko and Goodler [1] and Johnson [2] review the classical 

studies of Heinrich Hertz. The work of Hertz in the nineteenth century 

remains one of the fundamental reference points in the study of contact 

problems. It provides some analytical solutions to the problem of 

linearized contact over very small regions without friction'for elastic 

materials. In particular, he approximated any surface by an ellipsoid 

with the same principal curvatures at the point of contact as shown in 

Figure 1.1. The case of contact at a concavity is represented by one or 

both radii of curvature being negative. For techniques to solve more 

complicated problems this is usually considered a simplified version and 

so later works attempt to demonstrate their validity and accuracy by
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presenting solutions to similar problems.

He showed that the contact region was an ellipse lying in a 

plane and that the pressure distribution was an ellipsoid. The total 

pressure integrated over the contact ellipse equilibrates the forces 

applied to the distant parts of the body that cause such motion as to 

result in contact. The peak pressure is 3/2 the average. The 

distribution of stresses can be described in closed form. The highest 

compressive stresses appear at the center of the contact. Maximum 

tensile stress appears at the edge of the contact ellipse in the outward 

direction. The maximum shear appears on the normal axis through the 

center of contact. The details of magnitudes and distribution of 

pressure and stress vary with the relative magnitudes of the radii of 

curvature and the angle between the normal planes containing the 

principal curvatures. Many tables have been constructed to provide 

calculational assistance to the analyst who would use this approach. 

Indeed this was almost the only approach until after the advent of the 

high speed digital computer.

This work is restricted in many ways. The semi-axes of the 

elliptical contact region must be small compared to the radii of 

curvature. The bodies must be linearly elastic. There can be no 

friction. Displacements as small and only in the direction normal to 

the plane in which the contact surface lies. All of these restrictions 

still leave a method that can be applied to a wide variety of practical 

problems where these conditions are satisfied. There are many other 

cases where these conditions are either not known to be satisfied or are
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known not to be satisfied. These include any problem involving 

friction, any problem involving nonlinear material characteristics, any 

problem where the displacements are not small enough and all those cases 

where the contact is not over a small elliptical area.

1.3 INTRODUCE THE FINITE ELEMENT METHOD

The finite element method was developed to solve problems where 

similar difficulties arise. There are many problems of the motions and 

loads of continua or structures that were so complicated by geometric or 

material considerations that workers required numerical techniques to 

find adequate approximations. This is the case for almost all contact 

problems. A quick scan of the literature showed that contact had been 

investigated by the finite element method for a long list of 

applications.

The obvious favourites are punch problems (Chen and Tsai [3], 

Haber and Harandria [4], Shyu et al. [5], Chang et al. [6], 

Simo et al. [7], Jing and Liao [8], Ostachowitz [9], Chen ahd Yeh [10], 

Zhong and Sun [11], Gallego and Anza [12], Sachdeva and 

Ramakrishnan [13], Tsai and Chen [14], Bohm [15], Tsiang and 

Mandrell [16] and Fredriksson et al. [17]). Rolling has also drawn 

attention (Wong [18], Kulkarni et al. [19], Bhargava et al. [20 and 

21]). There are problems of fasteners. Rivets (Torstenfelt [22] and 

Bertholf et al. [23]), pin joints (Rahman et al. [24] and 
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Mangalgiri et al. [25]), dove tail joints (Sachdeva et al. [26]) and 

similarly pin to piston rod problems (Hung and de Saxce [27]) have all 

been investigated. Tires are the subject of much work 

(Padovan et al. [28], Tabbador [29], Chen and Yeh [30], Nakajima and 

Padovan [31], Purushothaman et al. [32], Zeid and Padovan [33] and 

Rothert et al. [34]). Some workers have investigated contact with 

foundations. The contact of beams with rigid curved foundations 

(Gu [35]) and plates with elastic or rigid foundations or edge supports 

(Mohr [36], Heinisuo and Miettinen[37], Chandrasekaran et al. [38] and 

Talaslidis and Panagiotopoulos [39]) have been looked at several ways. 

The regular mechanical engineering interference problems have been tried 

too: bearings ( Cheng et al. [40] and Torstenfelt [22]), gears 

(Vijayakar et al. [41]), compound cylinders (Hsu and Bertels [42]) and 

the fitting of shafts to sleeves and hubs (Okamato and Nakazawa [43] 

Francis [44], and Wilson and Parsons [45]). Civil engineering problems 

of the behaviour of pilings (Herrmann [46]) and reinforcing steel in 

concrete (Mehlhorn et al. [47] and Hsu and Bertels [42]) have benefitted 

from numerical simulation of contact aspects. Military engineers have 

used such algorithms to simulate a wide variety of contact,‘ penetration 

and perforation problems (Chan and Tsai [3], Chen and Yeh [10], 

Asano [48 and 49], Doi and Naoki [50], Bertholf et al. [23], Garnet and 

Armen [51] and Johnson et al. [52 and 53]).

Various special examples appear in the literature: Wong [18] 

investigates paper handling, pipeline closures are the subject of Liu 

and Huston [54], Mazurkiewicz and Ostachowitz [55] study one disk 
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pressed flat face to flat face on another, agricultural produce handling 

is the application of Rumsey and Fridley [56], reflector assembly in a 

fast breeder reactor changing shape due to operating conditions is the 

special interest of Zolti [57], Stadter and Weiss [58] investigate a 

radioisotope thermoelectric generator , strength of brittle shells is 

examined in the work of Senyushenkov [59] and the flow of visco-plastic 

materials is elucidated by Bohatier and Chenot [60].

Sometimes the purpose in studying contact is to allow the study 

of something else. Tribology testing has been simulated by 

Ihara et al. [61 and 62] and several workers in the problems of fracture 

mechanics have used contact to simulate frictional load support across 

cracks (Mehlhorn et al. [47], Komvopoulos [63], Yagawa and 

Hirayama [64], Bastias et al. [65], Tsiang and Mandell [16] and 

Fredriksson et al. [17]). The validity and usefulness of proposed 

friction laws is another use (Oden and Pires [66], Klarbring [67], 

Plesha et al. [68], Tseng and Olsen [69] and Francis [70]). Finally, 

many such algorithms claim to be for ’general purposes’ and frequently 

use Hertzian contact to demonstrate their capabilities (Osmont [71], 

Oden and Pires [66], Pascoe and Mottershead [72], Chang et al. [6], Jing 

and Liao [8], Okamoto and Nakazawa [43], Endahl [73], 

Rahman et al. [24], Torstenfelt [22], Hung and de Sacxe [27], Stadter 

and Weiss [58], Rumsey and Fridley [56], Chen and Yeh [10], 

Chandrasekaran et al. [38], Bhargava et al. [20 and 21], 

Sachdeva et al. [26] and Gu [74]).
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1.4 INTRODUCE DIFFICULTIES

To explain the difficulties in solving this class of problems it 

is best to begin with a review of some aspects of finite elements as 

used to study solids and structures. Usually we pose the problem as the 

minimization of potential energy, IT, over some region. The information 

needed to do this is divided into two categories: interior and exterior.

The exterior information applies at all points on the boundary 

of the region and at any other points where it is known. Later we will 

see that a priori knowledge of exterior information about a point 

effectively makes that an exterior point. Exterior information is the a 

priori knowledge of the stress or the displacement. These are 

incompatible quantities. It is possible to predetermine only one or the 

other at any one point. In practice it is often the case that the 

majority of the exterior information is of the stress type. This is so 

for cases where it is known that there is no stress acting over much of 

the boundary. So the exterior information there is that the stress is 

predetermined to be zero and the displacements are unknowns to be 

determined. ‘

Nonetheless, we wish to find both kinds of exterior information, 

and possibly other quantities, at all points in the domain of our 

problem. For this we need the interior information. This allows us to 

relate the pointwise quantities all over the structure and to relate the 

two kinds of exterior information to each other. The interior 

information for the analysis of solids and structures is the
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constitutive properties of the material (including inertial properties 

for dynamic analysis). This gives a relation between the stresses, and 

so the loads, and strains, and so the displacements. This is allows us 

to solve for the exterior information that we sought but could not 

predetermine.

The minimization problem for potential energy is very difficult 

if we insist on solving it exactly. It involves integrals over the 

domain of derivatives of the exterior information. These integrals may 

be very difficult to evaluate because of the shape of the domain. In 

the case of analyses that involve large displacements the final shape of 

the domain may not even be known at the outset. The derivatives may 

also be difficult to evaluate given extremely complex behaviour of some 

materials. On the other hand, we are usually more interested in getting 

a solution at all than we are in insisting that the solution be exact. 

An adequate approximation will always serve engineering purposes since 

it is impossible to build anything exactly and no material is truly 

represented by the idealizations that our equations represent. Having 

acknowledged the need and acceptability of approximate solution methods, 

it is still necessary to design one. One of the most popular is the 

finite element method. This is because of the ease with which it can be 

used in analyses involving complex geometry and the straight forward way 

in which it handles most problems. One reason given for using the 

finite element method: If both the interior and exterior information 

are constants fixed throughout the analysis, then the usual displacement 

based finite element method converts the the minimization problem into a 
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linear algebraic one. An algebraic problem may still be large and 

difficult, but there are well developed numerical techniques for 

handling them. Thus the problem has been rendered tractable.

There were two conditions laid down for linearity. If the 

interior information changes during analysis, then we have a problem 

that we call materially nonlinear. The commonest and most important 

example of which is the analysis of plastic deformations. This can be 

illustrated by considering a bilinearly elasto-plastic material loaded 

cyclically past its elastic limit. Each time the stress at any point in 

the material passes the (current) elastic limit the constitutive 

behaviour in that neighbourhood changed. Each time the differential 

change in stress became negative the constitutive response changed 

again. These changes in the stress - strain relation cause changes in 

the linear equations that describe the converted minimization problem. 

So, the conversion has to be repeated to represent the actual conditions 

at that load. There is a rich literature dealing with materially 

nonlinear problems. It is not our purpose to do more than give a brief 

description here.

The other condition for the minimization problem to become a 

linear algebraic one is that the exterior information must not change 

during the analysis. There are several ways in which such changes can 

occur. It may happen in some analyses that the exterior information is 

a function of load or displacement or time. In that case it is usually 

not possible to make a linear analysis. In many cases it is possible to 

use a sequence of linear analyses, each of which represents some portion 
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of the problem to be analysed. In the case of large displacement 

problems the shape of the solution domain is one of the variables to be 

found. This requires a truly nonlinear analysis. Like many nonlinear 

problems this can often be handled by converting the differential form 

of the problem to an incremental form. This has received wide attention 

and is now commonly done with various Lagrangian formulations.

One of the cases where the external information changes is the 

contact problem. Here the exterior information can change abruptly part 

way through the analysis of a problem. This leads to strong non­

linearities in the solution. Further there is a change in the nature of 

the exterior information. We no longer necessarily have foreknowledge 

of either the stresses or the displacements. The style of information 

on which we have relied to establish our substitute algebraic problem is 

simply not available. Instead of having one or the other of the two 

kinds of information that we use outside the areas of contact, we have a 

combination of two pieces of information that are appropriate inside the 

region of contact. These are based on physical arguments: the 

Principle of Impenetrability. Any point in space may be outside of both 

bodies, in one body or the other, or on the contact surface where the 

bodies touch, but never in the interior of more than one body. The 

Principle of Equal and Opposite Reaction: At any point on the contact 

surface the stress exerted on the surface of one body is equal and 

opposite to the stress exerted on the surface of the touching body. 

Clearly these two principles are not independent. The first affects 

displacements and thereby the strains. This brings about change in the 
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stresses through the constitution of the material. So it interferes 

with the free operation of the second principal. A similar chain of 

logic shows how the principle of equal and opposite reaction Interferes 

with the free operation of the first principle. These two principles 

contain all of the information needed to solve the contact problem. It 

remains to find a way to express them mathematically and to put that to 

use.

1.5 INTRODUCE NUMERICAL APPROACHES

All attempts to express these principles and use them can be 

lumped into three main branches. These are those based on the use of 

Lagrange multipliers, those based on the penalty methods and the direct 

methods. The minimization problem can be stated as:

Find the value of the nodal displacement, U, such that the 

potential energy is minimized while not violating the Principles 

of Impenetrability or Equal and Opposite Reaction.

The first part is easily expressed as

Find Min TT(U) , IT = - U?KU - UTF (1.5.1)
2
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The second part is more difficult. How does one express the Principle 

of impenetrability? There are two common approaches to this. In one 

the separation of the bodies is measured at some time and it is required 

that the displacements not exceed this gap function. The gap function 

may be established at the outset or re-evaluated at every iteration. 

The other common approach is to detect penetration by inspection and 

then do something about it. The first approach is very commonly used in 

the solution attempts using Lagrange multipliers.

1.6 LAGRANGE MULTIPLIERS

To show the flavour of this approach consider first the case of 

frictionless contact between a linearly elastic deformable body and a 

fixed, rigid barrier. The initial distance between the elastic body and 

the barrier is described by a gap function, g. As any point in the body 

approaches the barrier the value of g for that point decreases and 

reaches zero as the body-point Just touches the barrier. ' If through 

some arithmetic violation of the laws of physics the body continued 

forward and penetrated the barrier, then the gap function would become 

negative. So, it is required that the gap function remain non-negative 

for all body-points in all displacements. That is,

g(x) a 0 (1.6.1)
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where g is defined only for x lying on the surface of the deformable 

body. To enforce this condition multiply g by a free variable, X, the 

Lagrange multiplier. Add this to the original potential. The modified 

potential, IT*, is

IT* = IT + IT (1.6.2)
L

where

Hl = gTX (1.6.3)

IT* = i UTK U - UTF + gTX (1.6.4)

It is also convenient to express g as a Taylor series in U, up to linear 

terms as shown in eqn(1.6.5).

9^ - % • 4u-U (1-6-5)

or .

g(U) - go + GU (1.6.6)

where G is the derivative of the gap function with respect to the nodal 

displacements. Now minimization of IT* with respect to both the nodal 

displacements, U, and the Lagrange multipliers, X, gives two equations.
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Satisfaction of this equation will automatically impose the needed 

displacement constraints. That is the effect of the second line in the 

above equation. At the same time it will not disturb the energy of the 

actual solution, since such a term only need be added for those nodes 

which would actually make contact. For such a node the filial value of 

the gap is zero, so the satisfaction of these constraints adds zero to 

the original potential.

Clearly there are some disadvantages to this style of imposing 

constraints. Now for every node to be constrained there is an extra 

variable to find in passing through the linear equation solver. There 

is also a block of zeroes on the main diagonal, which will disturb many
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available programs.

What is to be gained by solving for all these extra variables? 

As is often the case in Lagrange multiplier techniques the multiplier is 

itself a quantity that can be interpreted physically. In this case it 

is the contact pressure. We have gained the value of the contact 

pressure at every node so constrained. This gives us further insight 

into how to reform the above for the case of two deformable bodies in 

contact. We can define a contact potential, TTc> which represents the 

work done by the contact pressures. The gap function is zero everywhere 

the surfaces mate. The contact pressure is zero everywhere that the 

surfaces are separate. Physically no work can be done by such loads, so 

the original potential remains numerically undisturbed.

Once again start with the gap function, g, to represent the

separation of the two bodies which will move into contact. Express g as 

a Taylor series to linear terms in the nodal displacements of each body 

in contact.

Post multiply g by X and call this the contact potential, TTc
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since the gap function is only zero where the surfaces mate. The 

potential to be minimized is the sum of the mechanical and contact 

potential. This gives

Equations (1.6.14), (1.6.15) and (1.6.16) can be combined as

There are many variations on this. As presented so far, this is 

only suitable for analyses involving small displacements and linear 

elastic materials. If the displacements become large, or if there are 

material nonlinearities or if there is friction involved it becomes
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necessary to change to an incremental approach. The basic idea is much 

the same. The subject of friction is a complex one and will be 

discussed later.

Incremental approaches are frequently required even if the 

displacements are small and the materials are linear. This is because 

of strong nonlinearity in the gap function. Especially for cases where 

there is little curvature of the surfaces in the contact region, the 

distribution of nodes free, sliding or sticking can vary dramatically 

even within iterative corrections to a small load step.

Among the Lagrange multiplier methods there can be a lumping 

into those which concentrate on the gap function and derive values for G 

by geometric arguments and those which concentrate on the contact 

potential and derive G as an integral over the contact area of 

derivatives of IT with respect to the nodal displacements.

Among those that use the geometric approach the discussions 

range mostly on the topic of the difficulties associated with sliding 

motion with friction. Ordinarily this leads to extra terms being added 

to the contact forces to represent the effects of friction. The result 

is that the system matrix becomes asymmetric. This is unfortunate since 

this doubles the computer storage requirements. Okamoto and 

Nakazawa [43] ameliorate this somewhat by a node matching scheme. Each 

node in contact in one body is explicitly identified with a node in the 

other body. In that case only one contact force needs to be calculated 

to guarantee impenetrability and equilibrium. The restriction that this 

imposes is that such a technique can only be used for situations where 
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relative motion of matched nodes is very small. If the matched nodes 

were to separate by a distance comparable to the size of the mesh then 

the whole problem would need to be rediscretized, reintegrated and the 

new nodes matched. The utility of this approach is restricted in much 

the same way as the Hertz solution. The advantages are that it is not 

necessary to restrict the contact to small ellipsoid shapes and that 

friction is included. Examples of punching at small displacement are 

provided. Pascoe and Mottershead [72] address the problem of asymmetry 

of storage. The advantage in reducing the requirement for computer 

storage would be important for many users. It is proposed that for 

small incremental steps it is acceptable to replace the displacement 

constraints with the transpose of the force constraints. Since the 

force constraints include extra terms for friction the contact forces 

are not normal to the contact surface. Likewise this attempts to make 

the nodes slide along a surface that is not tangent the to physical 

surface. The tangent of the angle between the two surfaces is the 

coefficient of friction. It is pointed out that for surfaces with 

little curvature this is easily corrected in later iterations and for 

surfaces with great curvature the steps have to be so small that the 

errors of this method are not a problem.

The group of techniques that integrate the contact potential 

explicitly have much the same experience. The integrals are usually 

taken over the faces of the elements in contact rather than over some 

independent discretization but may use different shape functions. These 

are often referred to as contact elements and often called mixed because
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of the explicit representation of stresses. The results tend to 

oscillate about the values found by calculation for Hertzian problems. 

For other examples where the contact stress distributions are not such 

simple shapes the oscillations grow worse as the curvature of the stress 

increases. Chen and Tsai [3 and 14] start from the beginning and form a 

Hamiltonian for dynamic problems with contact and friction. This is 

done with two sets of Lagrange multipliers: one for impenetrability and 

one for sliding friction. The resulting matrix equations are 

asymmetric. The examples provided are for very simple punch problems of 

small displacement.

1.7 PENALTY METHODS

The penalty methods take a different approach. Essentially 

these are attempts to change the problem from kinematically nonlinear to 

materially nonlinear. Instead of trying to build the equations so that 

only admissible solutions will appear, they attempt to• detect and 

correct errors as they occur. This is done by associating a large 

penalty of energy with committing the error. The penalty is set up in 

such a way that nodal motions toward an admissible solution decrease the 

penalty to be paid and so minimizing the energy of the problem tends to 

lead to acceptable results. Unlike the Lagrange multipliers the energy 

of the problem is disturbed. The more closely the approximate solution 
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matches the true constrained solution the less energy is caught in the 

penalty terms. Opposing this is the tendency of these methods to 

require large energy penalties to work, so some price in energy is paid 

even for small errors. For contact there are two main approaches to 

applying these penalties: the filled gap and the penetration 

approaches. They differ in where they allow compatibility errors to be 

committed. The filled gap techniques fill the space between the bodies 

with a fictitious material. After displacement a thin sheet of this 

material remains between the bodies. The penetration detection methods 

apply corrective forces proportional to the depth of penetration. After 

displacement only small penetrations are left because large forces 

prevent greater violation of the compatibility constraints.

The filled gap methods rely on a proximity potential which is 

modelled as the strain energy of fictitious material filling the space 

between bodies. Different version of the filled gap approach are based 

on different ways to discretize this material into elements or different 

choices for material properties. In the simplest version of the filled 

gap method, Osmont [71], watch is kept for pairs of nodes about to 

touch. When the nodes are very close together a short stiff spring is 

inserted between them. This changes the stiffness matrix of further 

iterations so it will have to be factored again to continue with the 

solution. Also, the pair of nodes are explicitly coupled. So it is no 

longer possible to keep the stiffness matrices of the two bodies 

separate. It is assumed that neither of these are too great a 

difficulty. In other versions the gap material can be quite
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sophisticated. Zolti [57] points out that while the mechanical 

properties are fictitious the chemical, thermal and other properties may 

represent real conditions in the gap.

The constitutive properties in the direction across the gap may 

be highly nonlinear. At a strain of -1 the element has collapsed and 

the real elements on either side are touching. The normal stress strain 

relation is such that until the strain approaches -1 the material offers 

essentially no resistance. At strains very close to -1 the modulus of 

the material suddenly becomes very large. The range of this property 

may be several orders of magnitude. The more sudden is the change the 

more closely the true kinematic constraints are modelled. On the other 

hand, a more gentle transition of normal modulus will require less 

iterations in the nonlinear equation solver. An acceptable stress 

strain curve is still a matter of trial and error.

Constitutive properties in the directions tangent to contact can 

be arranged to imposed sticking or sliding friction, or no friction at 

all. There are many ideas on how this should be done.

As an example consider the bodies in Figure 1.2. The gap 

between them is filled with a fictitious material that has no shear 

strength and the elastic modulus in across the gap direction is shown in 

Figure 1.3. The proximity potential, TTp, is added to the mechanical 

potential, TT, and the modified potential, IT*, is minimized to give the 

tangent incremental equations. Group the nodal displacements as free, 

marked with subscript f, or contact, marked with subscript c. The 

tangent incremental equations are
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This method of coupling is only suitable for small relative displacement 

without rediscretizing the gap material into new elements that reflect 

the current arrangement of the nodes and elements of the real bodies.

The very simple approach of Osmont [71] is perhaps the most 

basic version of such a method. The method has been improved by 

Wong [18] to allow different stiffnesses in the springs in compression 

and tension. This reflects the behaviour of paper handling in that 

some tensile forces can be supported once contact has been made. 

Padovan et al. [28] also use node to node springs in its simulation of 

steady state rolling contact. These springs have variable stiffness in 

the normal direction and a rule to allow them to simulate Coulomb 

friction in the tangential direction. This improves the dynamic 

behaviour of the solution. In the work of Zolti [57] there is a simple 

gap material that has two values for its normal modulus. The modulus in 

open conditions is negligible. The modulus in overlap conditions is 

enormous. In this it is different from most filled gap methods and 

resembles the penetration methods. The way in which overlap is detected
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is to check the Jacobian of the gap element. Where ever it is negative 

overlap has occurred. On the next iteration that integration point will 

use the closed values for material properties. A more sophisticated 

gap material is used by Stadter and Weiss [58] to simulate 2D contact 

problems. In this analysis the modulus in the normal direction was 

adjusted after each iteration. The normal strain is kept within a 

tolerance, 8, of -1 (complete collapse). For normal strains 

representing less compression than the allowed tolerance the modulus was 

decreased. For larger strains that represent unacceptable penetration 

the modulus was increased. When all contact strains were within the 

tolerance or essentially zero the step was considered to have converged. 

Numerical experiment showed that tighter tolerance on the allowed 

strains lead to improved performance in the simulation of Hertz 

problems. A value of 1% for 6 leads to quite acceptable results of much 

of the contact area. Unfortunately the strains and stresses tend to 

oscillate just at the edge of the contact region. This particular 

analysis represents an interesting variation in that penetration errors 

have been allowed as well as gap errors. The only commentary available 

on the accuracy, stability or other computational aspects is that 

smaller values of 6 require more iterations.

The penetration methods add a penetration potential, TTp, to the 

mechanical potential, IT. This penetration potential is proportional to 

the square of the penetration depth, P. The proportionality constant is 

the penalty factors, a. The penetration depth is treated similarly to 

the gap used in the Lagrange multipliers. It is useful to express it as
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a function of the nodal displacements. So

where R is the derivative of the penetration depth with respect to the 

nodal displacements. The penetration potential is TTp where

Now differentiation of the total modified potential gives
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The penalty matrix, a, is diagonal with each node’s penalty as the 

diagonal entry if the penetration is positive for that node. That is

So the system of equations to be solved is

The penalty terms get activated for any node in contact and are zero for
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the rest. Because the penalty terms are large the system matrix has 

similar mathematical difficulties as problems that involve nonlinear 

materials with rapidly varying constitutive relations. Such analyses 

also occasionally have problems of ill conditioning in the system matrix 

if the penalty terms are too large.

For the simpler schemes of Cheng et al. [40] the penetration 

function is found by a node matching method much like that used in the 
A Bsimple filled gap methods. So long as the matrices R and R can be 

found from the geometry of the bodies, there is no need to actually 

integrate the penetration potential. In the literature this is 

universally the case. Yagawa and Hirayama [64] fill the space between 

the bodies with eight noded brick elements. These are not filled with 

contact material, but are used to establish the value and derivatives of

P-
The contact forces acting in directions tangential to the 

surface can be treated by penetration methods too. Ostachowicz [9], 

Zhong and Sun [11] and Plesha et al. [68] each include tangential terms 

to represent friction. For Ostachowicz [9] the friction is simply 

another spring like relation between nodal forces. The nobmal springs 

are very stiff for penetration and zero for open gaps. The tangential 

springs are multipliers of the normals springs. Within the limits of 

sticking friction they are linear and they are constants beyond that. 

Plesha et al. [68] use micrography to determine frictional properties 

from empirical data. Zhong and Sun [11] use a friction material similar 

to the springs used in Padovan et al. [28].
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1.8 AUGMENTED LAGRANGE MULTIPLIER METHOD

There is another approach that is a combination of the Lagrange 

multipliers and the penalty method. These hybrids are called the 

augmented Lagrangian methods. Among the disadvantages of the penalty 

method is that satisfaction of the constraints is only guaranteed in the 

limit as the penalty numbers, a, approach infinity. In theory this 

could be approximated by repeated solutions with larger and larger 

penalty numbers. In practice there is a limit beyond which the modified 

stiffness matrix becomes so ill conditioned that no improvement can be 

achieved for an acceptable cost. Usually the distribution of energy in 

the problem has been badly disturbed at a much lower value for a. So 

the contact condition can only approximately be satisfied. One popular 

possibility is to try to restrict the possible solutions to acceptable 

solutions by including the Lagrange multipliers. This has the 

computational cost of having to solve for extra variables but converges 

for much lower (and more acceptable) values of the penalty function. 

So, the potentials included are the mechanical potential, TT, the 

penetration potential, TTp, and the the contact potential*, TTc- The 

modified potential is

H* = U + n + IT (1.8.1)
p c



32

This is differentiated and the derivatives set to zero to give the 

global system of equations.

The definitions of FA, F^, , K , K and K are the same as in the
ppp p P P



33

section on penalty methods. These three equations assembled are

(1.8.6)

Another mixture, also called the augmented Lagrangian method, 

attempts to improve on the shortcomings of the method of Lagrange 

multipliers. It is not always the case that the multipliers calculated 

represent compressive stresses. This may be due to calculational error 

or because the gap function has not been explicitly evaluated to make 

sure that only touching nodes have been given multipliers that are free 

to not be zero. The multipliers have their own inequality constraint. 

The contact stress must be negative. To enforce this one could use yet 

another set of multipliers but the new set would have the same 

restriction. So, an alternative that has seen good practical use is to 

use a penalty method on the Lagrange multipliers themselves. The 

penalty is applied whenever a multiplier goes positive. ' This helps 

overcome numerical imprecision in the Lagrange multiplier method and 

helps damp the oscillatory behaviour that often occurs when these 

methods are used for contact. Include a separation potential, 11$, and 

minimize as before.
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In assembled form this is



(1.8.13)

The augmented Lagrange penalty matrix, aL> is diagonal. Each entry is 

zero for those multipliers that are negative and a large number for 

those that are positive. This is the form most often used in the 

literature on contact. It is possible to combine both forms of 

augmented Lagrangian methods. This would improve the performance of the 

penalty method by restricting the solutions and tend to keep the 

Lagrange multipliers negative. No examples of such an approach were 

found in the literature for contact problems.

Friction laws have been as much the subject of study as the 

contact constraint for those that have used the augmented Lagrangian to 

improve the performance of the Lagrange multiplier method. Some are 

discussed in Shyu et al. [5], Simo et al. [7] and Gallego and Anza [12]. 

Various ’non-local’ laws are investigated. The distribution of Lagrange 

multipliers is also a point of interest. In Simo et al. [7] and Gallego 

and Anza [12] the Lagrange multipliers represent average pressure over 

an element face. This leaves the pressure discontinuous between 

elements. It also makes it impossible to enforce compatibility exactly 

at nodes. Instead, integral compatibility is offered in the sense that 

the gap averaged over an element is zero. As the discretization is 

refined the compatibility constraint is satisfied in the limit.

35
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Herrmann [46] uses the augmented Lagrangian is used to improve a penalty 

method. Here the subject of consideration is the bonding between 

concrete and reinforcing metal and the friction between to concrete 

surfaces due to roughness.

1.9 DIRECT OPTIMIZATION METHODS

There remains the possibility of looking at the contact 

constraint by concentrating on the contact forces instead of the 

compatibility problem. The method of Lagrange multipliers, the penalty 

method and the augmented Lagrangian method all concentrate on 

compatibility errors. There is a whole class of methods which work the 

other way. These are called various names such as quadratic programming 

methods, or parametric programming methods, or direct methods or 

flexibility methods. They attempt to solve the contact problem by 

finding appropriate increments to the forces acting on the contact 

surfaces. It is assumed that the modelling of forces has been 

inadequate because of errors in the terms for forces due to contact. 

Correction of these forces will give correction to displacements and 

reach the minimum potential energy.

In the simpler versions of Francavilla and Zienkiewicz [75], 

Sachdeva and Ramakrishnan [13] and Sachdeva et al. [26], the problem 

involves linear elastic materials, no friction and is restricted to 
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small displacements. It is assumed that the problem is linear except 

for the contact boundary conditions. The mechanical potential is 

minimized in the ordinary fashion.

IT = - UT KU - UT F (1.9.1)
2

-a -- = K UT - F = 0 (1.9.2)
a u

u = K-1 F (1.9.3)

Of course the stiffness matrix is not usually ever inverted. An error 

in the displacements is calculated as the depth of penetration. The 

error in forces due to missing contact terms is found as the force 

required to cause a displacement increment to correct the displacement 

error.

AF = K AU (1.9.4)
»•

In fact many of these have set the equations up in terms of the 

flexibility matrix, K-1. In that case the value of AF must be found by 

solving a set of linear equations.

K-1 AF = AU (1.9.5)
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The contact pressures are then explicitly available as a separate term 

for use by the analyst. It is assumed that at the node pair at the edge 

of the contact region the contact pressure will Just reach zero. If the 

pressure at the edge of contact is appreciably different from zero, then 

another displacement increment is added to allow the pressure to better 

approach zero.

The inclusion of friction and the manner of choosing AF lead to 

the differences in the various direct optimization methods. The 

majority of methods explicitly identify node pairs. This has the 

advantage of reducing the number of equations to solve and a built in 

guarantee of nodal equilibrium between bodies. However, such methods 

are inherently restricted to problems where relative displacement of the 

nodes is small. If two nodes identified as a pair slide apart by a 

distance comparable to the size of an element, then the problem must be 

halted and rediscretized. It also has the disadvantage that the bodies 

in contact must be kept in storage simultaneously.

The simplest way to choose the displacement increment is that of 

the analysis of static contact between deformable and rigid bodies. In 

that case the rigid body need only exist as displacement constraints. 

Rahman et al. [24] explored this for frictionless contact between 

elastic orthotropic materials with application to the analysis of joints 

between wooden structural members and steel pins. Gu [74] extended 

this, for isotropic materials, to the case of sticking friction in an 

investigation of the forces loading an automobile tire in steady state 

rolling. The case of sliding contact with Coulomb friction is presented 
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in the work of Zeid and Padovan [33].

For contact between two deformable bodies pioneering work was 

done by Francavilla and Zienkiewicz [75] for the case of small 

displacements and no friction. This approach is extended to sliding 

with Coulomb friction by Sachdeva and Ramakrishnan [13]. For them the 

friction law is applied as a function of nodal pressures. Jing and 

Liao [8] use Coulomb friction taken as a quantity distributed over the 

element, that is to be lumped to nodal values by integration. This is 

extended to a more general approach in the work by Torstenfelt [22] . 

Dynamic motions are considered by Chen and Yeh [10] who formulated the 

direct optimization approach without the numerical convenience of node 

matching. Appropriate surface quantities are integrated to lumped nodal 

averages or sums. The solution to dynamic problems of Smith [76] and 

Johnson [52 and 53] also do not require node matching. The contact 

conditions are imposed by finding a force to impose an impulse that will 

bring the incremental velocity to an acceptable value. In these 

analyses the materials used have constitutions that are sensitive to 

strain rates, so accurate determination of velocity is very important to 

their success. ‘



1.10 FRICTION LAWS

The effects of friction are of great importance in some contact 

calculations. The simplest friction law is none at all. This is also a 

common condition to use in the development of analyses that do use 

friction. It can be used to check the qualitative behaviour of such an 

analysis. It is also used for quantitative checks. The only closed 

form solution for contact problems is that due to Hertz (see Timoshenko 

and Goodier [1] or Johnson [2]). This is a case of contact without 

friction. So, demonstrations that an analysis tool works well by 

comparing the results to Hertzian contact requires the ability to 

simulate frictionless conditions.

The next simplest friction law is that no sliding should occur 

at all; all contact is sticking contact. Once bodies have touched they 

are not slip with respect to each other until they pull apart again. 

This can be easily implemented since under these conditions the nodal 

displacements of one body can be eliminated in terms of the nodal 

displacements of the other. For implementation by a Lagrange multiplier 

method these are both easily done. The matrices that arise are 

symmetric.

Sliding friction is a source of a great deal of effort in 

numerical simulation of contact. It raises a number of issues which 

have to be settled. It is assumed that sticking friction is still 

possible. So now there are two different friction regimes to consider. 

The stress conditions may be quite different in each. It is also 
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necessary to explicitly state what kind of friction law is to be used. 

Almost without exception the law proposed by de Coulomb is used 

throughout the literature. According to this law, for small enough 

tangential forces, F^., no slipping occurs. Should the tangential forces 

exceed some fraction, p, of the normal forces, F , then slipping will 

occur. This slippage is resisted by a force in the direction opposite 

to the relative motion and of magnitude p F . Actually two values are 

observed for p. The value at which motion is imminent, the static 

coefficient of friction, pg, is slightly higher than the maximum 

fraction of the normal force, the dynamic coefficient of friction, p^. 

This can be observed by the common occurrence of an object that is being 

pushed suddenly starting to move as the static friction is overcome and 

the resistance to motion decreases to the dynamic value. This was 

originally meant as a phenomenological description of the averaged 

properties of the sliding of blocks of material with macroscopically 

flat surfaces.

Coulomb friction has been used in many calculations as if it 

were an accurate description of the microscopic conditions at a point. 

Or, to use the words of the study of continuum mechanics, this is used 

as if it were true for every differentially small neighbourhood. This 

is fortunate in that some description of friction is needed and this is 

a relatively simple one. On the other hand, this has led to many 

efforts to overcome the mathematical inconveniences involved. It leads 

to the use of various terms at the contact surface that are not 

differentiable or continuous. For terms involving friction the
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mathematical inconvenience is similar to problems that involve phase 

change boundaries. The positions of the boundaries between sticking and 

sliding friction are not necessarily at the boundaries of the elements. 

This has lead to efforts by some workers to arrange that over any 

particular element only one friction regime is present. The most 

successful and elegant are those done with the moving finite element 

methods of Haber [77], of Haber and Harandria [4] and of Gu [35].

Others argue over the merits of local and non-local version of 

the Coulomb friction law. This arises in theory as an argument of the 

validity of trying to use a macroscopic average where the microscopic 

geometry of the surface may not be smooth and perhaps some law using a 

smoothing function is required. Oden and Pires [66] refer to such a 

function as a mollifier. In practice this arises in how the force terms 

tangential to the contact surface should be calculated. The proponents 

of ’local’ friction laws integrate the continuous frictional stresses 

over the elements. Proponents of ’non-local’ friction laws have several 

approaches. The simplest and commonest way is to concern themselves 

only with the resultant forces at the nodes. These forces are 

necessarily some kind of average of the frictional conditions between 

the nodes. Another way is used by Shyu et al. [5], Chang et al. [6] and 

Simo et al. [7]. These workers have used an augmented Lagrangian method 

based on the Lagrange multipliers to restrict the set of possible 

solutions to the set of admissible solutions. Instead of using nodal 

Lagrange multipliers they use elemental ones. This gives the averaged 

contact pressure over the entire element. It has interesting side
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effects on convergence and accuracy. Contact equilibrium and 

compatibility are satisfied exactly only in the limit of fine meshes. 

In practice it may not be necessary for the mesh to be extremely fine. 
Also the contact stress interpolation is only C 1 continuous. The 

stress is discontinuous between elements. This allows very easy and 

efficient integration of the stresses.

There are other inconveniences that arise in the modelling of 

sliding friction. Many models give rise to matrices that are not 

symmetric. The potential due to the friction forces must be added in 

with the other energies. Let the friction potential be TT^. Then

IT = UATFA + U®TF® = UATu FA + UBTp FB (1.10.1)
f t t r n r n

The total potential is (in a Lagrange multiplier technique)

IT* = IT + IT + IT (1.10.2)
C F

This is differentiated to give the equilibrium conditions

*
-AJ!— = KA UA - FA + GAT X + u FA = 0 (1.10.3)

a uA n

9 A - = K® U® - F® + GBT X + p F® = 0 (1.10.4)
a uB n



(1.10.5)

where p is diagonal and affects only appropriate entries in X. These 

may be put in matrix form as

(1.10.6)

There remains one of the most interesting versions of the

Coulomb friction law. It can be observed that in many ways this law 

behaves in a very much like the constitutive relation of an elastic - 

perfectly plastic material. The work done by slippage against friction 

cannot be recovered. The slippage only occurs if a certain criterion of 

stress is met. The frictional stresses never exceed a particular bound. 

Padovan et al. [28], Zhong and Sun [11] and Plesha et al. [68] use an 

elasto-plastic friction - slippage constitutive relation like the one 

outlined below. Define slippage as

(1.10.7)

Let quantities be resolved in three directions. The direction normal to 

the contact surface is denoted by subscript n. The two tangent 

directions are denoted by subscripts r and s. It is assumed that the
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slippage occurs in elastic and plastic parts. The stresses are 

supported by the elastic part. The constitutive relation is given by

a hn n
a = E h (1.10.8)r r
o’ s s .

Plesha et al. [68] claim that there is experimental evidence for E to be 

diagonal. It has also been noted that the normal direction component can 

be employed in a penalty fashion to prevent penetration. The additivity 

postulate is

hl r he [ h? 
n n n
h = he + hP (1.10.9)
r r r
h he hPs j l s j L s .

The consistency condition is
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a 
r 1 n r '

y = a Y 9 Y 9 L- = -AZ_ a = 0
8 a 8 a 8 ff deL n r s • (T

- s (1.10.10)

where Y is the ’yield function’. The slip rule is

3 g
hP dan n ■
hP = £ 9 = £ -M“ (1.10.11)
r de da
hP F

' S 9

a a>- s J

where £ is the slip potential and £ is the associative flow parameter. 

These may be combined in the same fashion as is used in perfect 

plasticity calculations to give an elasto-plastic slip constitutive 

relation, Eep. For instance when the stresses are on the yield surface 

and the differential stress is outward (slippage is occurring).



The matrix, Eep, is asymmetric. This must be since the 

direction of slippage is not affected by the pressure. So the slip 

potential cannot be the same as the yield function. This corresponds to 

non-associated plastic flow. The work done in a small neighbourhood by 

such slippage is

(1.10.13)

This may be integrated over an area to give an elasto-plastic friction 

element. The slippage is interpolated from nodal values, H, by the 

usual shape functions, S. So the work done over such an element during 

slip is

(1.10.14)

These nodal values must be rotated to the global coordinates and 

replaced by the nodal displacement degrees of freedom from which they 

47



48

come. The asymmetry can be removed by further manipulations. The 

explicit coupling between contacting bodies of nodal displacements 

remains.

1.11 OUTLINE OF THE PRESENT WORK

The method developed in this thesis is of the class of direct 

optimization methods. That is, the calculation of corrective force 

increments is based on the current displacements. It is not obviated by 

the use of Lagrange multipliers nor built into the stiffness matrix by 

penalty terms. The only nodal degrees of freedom are the displacements. 

The stiffness matrices are those that represent actual material 

characteristics. There are no extra terms to represent attempts to 

arithmetically coerce the behaviour of the solution. So, this can be 

added to any displacement based finite element program if the coding is 

adequately modular.

The method is symmetric in both senses. The matrices involved 

are symmetric. The treatment that each body receives is exactly the same 

as every other. There is no nomination of one body as target or 

contactor or master or slave. There is no explicit coupling between the 

displacement degrees of freedom of the bodies. This allows the 

information for each body to be stored separately, instead of all in one 

huge matrix. This alleviates the restrictions inherent in some node 
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pairing schemes and allows any amount of sliding of the touching 

surfaces without requiring rediscretization.

The algorithm is objective. All corrections are applied as 

force terms rather than displacement increments. These do not have to 

be applied before other nonlinearities but are applied at the global 

level. So, it does not have to be nested inside other nonlinear coding.

There are two kinds of errors that can occur in contact 

problems: compatibility errors and equilibrium errors. Each kind of 

error is treated separately. To the first order, the corrective force 

increment for compatibility errors does not affect equilibrium. 

Likewise, to the first order, the corrective force increment for 

equilibrium errors does not affect compatibility. This method is 

different from other techniques that require a single force increment to 

correct both kinds of errors.

To accomplish all this each body must be able to find, on the 

contact surface, the properties of the other body it is touching. The 

geometrical difficulties are alleviated by the use of virtual nodes and 

virtual elements. These map the properties of the opposing body onto 

the same discretization as the body which is touching it. These virtual 

nodes and elements have equivalent properties to the real nodes and 

elements. This allows a body, say body P, to have access to the nodal 

properties of the body it is touching, say body Q, and finding them 

apparently distributed with exactly the same pattern of elements and 

nodes as body P has itself. So, each node is effectively paired to a 

virtual node. The properties of the virtual node can be updated as
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often as necessary. The two properties of chief interest are stiffness 

and traction. The details of how these are mapped across the contact 

surface are discussed in Chapter 4. Exemplary results are presented in 

Chapter 5.

Any friction law can be implemented together with this 

algorithm. The technique is modular in that respect. Various different 

friction laws could be used in the different contact areas just as 

different material constitutions can be used in different parts of the 

volume of the bodies by telling the program that this is desired. This 

is a matter of programming rather than modelling. This algorithm 

requires only that certain information about friction resultants be 

available at the global level. In general, the topic of friction is one 

to which much effort could be devoted. Since contact per se, rather 

than friction, is the subject of this work, a simple approach has been 

taken. The surfaces of bodies used in the examples of Chapter 5 are 

frictionless.

In the course of this research much effort was spent on the 

subject of referential descriptions of motion. This exploration gave 

new insight into strain tensors in particular. Those ‘efforts are 

explicated in Chapter 2. In Chapter 3 they are used to illuminate the 

referential form of the Linear Momentum Principle and the Principle of 

Static Equilibrium.

Finally in Chapter 6 some conclusions are drawn.



CHAPTER TWO

REFERENTIAL MECHANICS

2.1 SUMMARY

This chapter describes some aspects of the theory involved in 

the current work. It treats the fundamental concepts: how quantities 

can be treated by reference configurations, some derivatives and 

integrals and the notation required to keep track of all of these and 

how to change reference configuration for gradients. All of this is an 

exact treatment for any body in any motion. So, it can be used to 

investigate motions that involve large displacements and large 

distortions. Both of these often occur in contact problems. The 

Lagrangian strain tensor is then derived with some care. This 

derivation includes incremental forms and how to change from one 

configuration of reference to another. This is ideally suited for use 

in the incremental calculations such as will be used to follow the 

details of motion during contact. This chapter ends with a review of 

the concepts involved in changing configuration of reference for 

physical principles in integral form.

51
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2.2 LAGRANGIAN MECHANICS

2.2.1 INTRODUCTION

In Lagrangian, or referential, mechanics attention is directed 

at the body as it moves through space. A body is represented as a gross 

distribution of mass over its configuration, where the configuration is 

the region of Euclidean space occupied by the body. Mass is considered 

an appropriate scalar-valued measure of matter. All quantities 

pertaining to the body and the body-points themselves are labelled by 

the position of the body-points when the body is in some reference 

configuration or placement. Commonly, but not necessarily, this is an 

initial position or an unstrained configuration. In most calculations 

it is chosen as having the useful property that any quantity of 

interest, such as stresses, strains or temperature, are known a priori. 

There is no restriction to use only one reference configuration. It is 

often useful or convenient to use several different placements as 

reference configurations. The configuration in which a quantity is 

measured has no inherent theoretical relationship to the cpnfiguration 

in which all body-points are labelled. So, the value of measured 

quantities is invariant with respect to choice of reference 

configuration. Throughout the changes and motions a body undergoes, it 

is always possible to identify a body-point by where it would be were 

the body in a reference configuration. For example, particles in a 

vibrating body are often labelled by their position in an undisturbed,
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equilibrium configuration. The choice of reference configuration is 

quite arbitrary. Any possible configuration would serve the theoretical 

purpose of having a way to label body-points. In incremental

calculations the choice of which configuration to use as a reference 

configuration is commonly a recently calculated one and the choice may 

be changed from time to time. Such a practice leads to the so-called 

Updated Lagrangian formulation. In theory, this is all equally well, 

but, in practice this can lead to complications.

It is necessary to consider some configurations of a body 

(consult Figure 2.1):

C Unstrained configuration. The only important feature of this

configuration is that it is unstrained. The body is relaxed and 

has no stresses or forces acting on it. The location and 

orientation of this configuration is unimportant. It may be an 

initial configuration from which other configurations are 

reached. The position of a body-point, X, in this configur­
ation is given by the Cartesian vector °x(X).

Initial configuration. This is the region of space occupied by

the body at the beginning of the period of consideration. All 

other configurations that the bodies actually occupies at any 

point in its motion form a sequence that starts with this 

configuration. The position of a body-point, X, in this
configuration is given by the Cartesian vector °x(X).



Present configuration. This configuration may be displaced 

and/or deformed from Cq. It may be any possible configuration 

for the body. The position of a body-point, X, in this 
configuration is given by the Cartesian vector 1x(X).

Next configuration. This is any possible configuration that the

body may occupy through motion (or transplacement). Ordinarily, 

this may be a configuration occupied by the body at some stage

in its motion later in sequence than possibly incrementally

close to C . The position of a body-point, X, in this
i 1

2— configuration is given by the Cartesian vector x(X).

Reference configurations. These represent any possible

configuration of the body in any location and having any 

orientation. They may be deformed. They are not necessarily in 

the sequence of configurations that the body actually occupies. 

The position of a body-point, X, in this configuration is given 

by the Cartesian vector x(X).

All calculations are always carried out in a reference confiteration.



Figure 2.1
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2.2.2 NOTATION

Overscores

Overscores indicate the tensor order of a quantity. A scalar 

has no overscores. A vector has one overscore. A dyad or dyadic, being 

a second order tensor, has two overscores and so on. An alternative 

notation may be used where a single overscore has a number written above 

it. In this case the number indicates the tensor order of the quantity 

underneath. This is mostly used for high order quantities, such as 

Hookean tensors (fourth order), where the use of a large number of 

overscores would be inconvenient.

Left superscripts

A single left superscript denotes the configuration in which a
2— .quantity is measured For example, x(X) is the position vector of 

body-point X when the body is in configuration C^.

Multiple left superscripts

For displacements and other quantities which require more than 

one configuration for their definition, there are more than one left 

superscripts. To define a displacement requires two configurations. 

So, the first (leftmost) superscript is used for the "to" configuration. 
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The second (rightmost) superscript is used for the "from" configuration. 

For example, the displacement of X from configuration to
* p_

configuration Cb is u(X) . Note that for displacements u = 0.

Left Subscript

The left subscript denotes the configuration of reference. Lack 

of a left subscript indicates the use of a so-called material 

formulation. So,

ABu(X) = BBu(Rx) (2.2.1)

The configuration of reference can be any configuration and this has no 

effect on the value of the measured quantity. For a body property, T,
A A Awhen the body is in configuration , it must be that T, rT and $T all 

describe the same quantity and must have the same value, though the 

formulae may look different. Though not necessary, it is common 

practice to keep all terms on each side of an equation referred to a 

single configuration. .



2.2.3 LOCATION OF BODY-POINTS

In any configuration, it is required that a unique invertible 

relationship exist between body-points and Cartesian position vectors 

locating them. So,

Rx(X) (2.2.2)

and X(”x) (2.2.3)

Moreover a differentiable structure is assigned to the body manifold. 

Hence, if X and Y are two distinct body-points and Y is in a small 

neighbourhood of X, we can say

Rx(Y) Rx(X) + Rdx(Y,X) (2.2.4)

It is noted that position is a body function. The function that 

describes the position of body-points in referred to C^, . ^x, may be
„ . . ., . , ., R-any admissible vector-valued function. The function that describes rx 

is just the identity function.



2.3 SPATIAL DERIVATIVES

The meaning of the calculus is clear so long as we are 

differentiating with respect to a well understood scalar, say time. For 

differentiation with respect to position there are at least two quite 

different derivatives that can arise. Let us review the differential

calculus with respect to a tensor. Suppose that P, a tensor of order n

is a function of the m order tensor F. That is

P( F ) (2.3.1)

m
Then dF, a small change in F, produces dP, a small change in P. The 

function that relates these small changes satisfies

a PdP dF T (2.3.2)
a F

where ™ indicates that m dot products are to be taken. The small change 
n m

in P is a function of the parametric values of F. So we know that we
n

can express dP as '

dP
n m

dP( F ) ,„abc...maP dr -----r-----„ „abc...m (2.3.3)

where repeated indices are summed. The other quantity we know in 
m

eqn(2.3.2) is dF. It is
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d? . dFa'b'c--»- ja,Jb,Jo,...Jm, (2.3.4)

m
where j p = 1, 2, 3, are the local basis vectors of F and the primes 

indicate that the indices of eqn(2.3.4) are independent of those 

of eqn(2.3.3) 
* f* * Tn *It is possible to isolate dF as expressed in eqn(2.3.4) by

repetitively taking dot products with jr, the inverse vectors to the j . 

Let us illustrate this process by explicitly taking the first such 

product.

— — m „a'b'cz . . . I'm' — — — — — — m mo ciOF • J - OF ' J (2-3'5)

= dFa'b'c'••,J ,J , J (2.3.6)
da Jb Jc J1 m

, ,a be . . «1 m— — —~ —r / o o *v= dF 1 , ], . 1 , 1,, . (2.3.7)Ja Jb Jc Jl'

Notice in eqns (2.3.5), (2.3.6) and (2.3.7) that the tensor order has 
n

been reduced by one. Also, in eqn(2.3.7) the final index of dP, m, is 

not primed. This relates it to the indices in eqn(2.3.3). After m such 

products have been taken we find
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—m— 1 -rc-b^a , _abc. . .Im fo q oidF • J J •••J J J = dF (2.3.8)

This can be substituted in to eqn(2.3.3) to give

n
,5 „ —m—1 -rc-b-ra 8 P co t al

dP = dF-jj ...jjj abc...lm (2'3'9)
d r

n
Now two expressions are available for dP. These can be subtracted one 

from the other and with the resulting identity we can give meaning to 

the unknown derivative expression in eqn(2.3.2). So,

n n ndF - dF = 0 (2.3.10)

x m -m-1 -c-b^a a p map0 = dF « j j ...j j j ----- dF T --------------5—
a f a f

(2.3.11)

Take out the common factor

' n n ’
9 ,5 _ —m—1 -c-b^a a P 3 P0 = dF 1* J J---J J J ----- ---m~

a f a f

(2.3.12)
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m m
Since we have presumed only that dF is not 0 then we cannot rely on it 

lying in some convenient orientation such that the m dot products in 

eqn(2.3.12) all give zeroes. So, it must be that the quantity in 

parentheses is identically zero. This can only be if both terms are 

equal. Now we have the information that was missing in eqn(2.3.2), the 

meaning of the derivative. Notice that a derivative with respect to an 

order tensor is m tensor orders higher than the original quantity. 

Notice also that the added vector spaces are the reciprocals of those 

that defined the tensor with respect to which the derivative was taken 

and in the reverse order. So, we have 

n n
3 P —m—1 -rc-b^a a P ro q iqi---sr- = 1 1 ...1 1 1 -----r---- r~ (2.3.13)J J J J J „abc... Im 8 F o F

So far this has been developed completely without any restriction.

As a next step take the case of derivatives with respect to 

position. The independent tensor is position, x. A differential change 

in position is

dx = dxr g^ (2.3.14)

The parametric values are the spatial coordinates. The basis vectors 

are the local tangent basis of space. So, the derivative of some 

quantity with respect to position in space is



a p (2.3.15)
a x

So far we have defined what we mean by a derivative with respect

to position. We have not put this into the context of Lagrangian 

continuum mechanics. There are at least two different reasons why we 

might wish to examine values to be found at nearby points in space.

One possibility is that the two locations under consideration

are two distinct body-points within a single configuration. This is the 

gradient calculus. Another possibility is that we are considering the 

same body-point as the body occupies two distinct configurations. This 

is an entirely different comparison from the gradient calculus. Call 

this configurational calculus. This is frequently used in the calculus 

of variations. In an effort to avoid any possible confusion between the 

two types of derivatives we will use 

9 P
a x

for gradients and 

3 P
3 x

for configurational derivatives. Where there is any possible confusion
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the type of derivative will be specified.

There is still the matter of configurations of measurement and 

reference. First look at the gradient calculus. Since the above 

arguments are true for tensors of any order we will simplify the 

notation here by considering the example of the dependent tensor being 

always of second order. Any order can be used. There are several 

possible configurations of which to keep track. Let Q be the gradient 

of P. Then

_ 9 AP
ABCDQ = ---?---- (2.3.16)

R „ C-a x D

The material property, P, can be measured in any configuration, say C^. 
The configuration of reference of AP could be C^. That is, when 

measuring the value of AP we named the body-points by the position they 

would have, if the body were in configuration C^. The alternative, less 

formal, way to think of this is that when we measured the value of P, 

we wrote the value down on a fictional copy of the body in configuration 
C . In this case we have AP. This is a function of position in C . 

That is

AP = AP(Bx) (2.3.17)
B B

g—-So, it can be differentiated with respect to x. Differentiation is 

with respect to position measured in configuration . So, the
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configuration of measurement for position in the gradient must be the 

same as the configuration of reference for the property. Then CB and 

must be the same. This position may itself be referred to any 

configuration. The reference configuration for the position vector is 

the configuration of reference for the gradient. So in eqn(2.3.16) 

is the same as C . With this clearly understood we may now make a R
convention for the notation of gradients. Where Q is the gradient of P, 

Q has the same left superscripts as P plus one more left superscript. 

This extra left superscript is preceded by a comma and indicates the 

configuration of measurement for the position vector with respect to 

which P has been differentiated. The left subscript of Q denotes the 

reference configuration for the gradient, which is the reference 

configuration of the position vector with respect to which P has been 

differentiated. So, for gradients we have

= a AP
A ’ CQ = -------- (2.3.18)

R „ c-3 xR

In a similar examination of the configurational calculus, we 

start with five configurations. Let Q be the configurational derivative 

of P, then

= 3 AP
ABCDQ = ---?--- (2.3.19)

R o C-6 xD
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P is measured in C and referred to C . x is measured in C and A B
referred to C . This shows that what is being varied is C . Only one 

body-point is being watched as we make different choices of configur­

ation in which to measure position. We observe changes in the value of 

AP as various configurations near are chosen for x. Since this is 

the position with respect to which we wish to differentiate P, P must be 

a function of this position. That is P must be referred to the same 

configuration as the one in which position is measured. So must be 

the same configuration as . The choice of C^, the reference 

configuration for the position with respect to which we differentiate P, 

is independent. So, a notation like that of the gradient calculus can 

be used. That is

a Ap
A,CQ = ----— (2.3.20)

R c-8 x R

is also useful for the configurational calculus. There is a difference 

in that the punctuation among the left superscripts to denote the 

configuration of measurement of the position with respect to which P is 

differentiated is changed from a comma to a semicolon.
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2.4 CHANGE OF REFERENCE CONFIGURATION

At any time it may be convenient or necessary for an analyst to 

change the reference configuration. In principle this is a simple 

operation. The referring of a quantity to a configuration can be 

thought of as writing the measured value of the quantity on a fictional 

copy of the configuration chosen for reference. This allows calcul­

ations to be carried out in a consistent fashion. Access to all 

body-points and their properties is easily achieved through the location 

of that body-point in the reference configuration. However, in the case 

of spatial derivatives this is not always the most appropriate method. 

It is useful in many calculations to transform the derivative so that 

the differentiation is with respect to position in the reference 

configuration.

Consider the transformation for gradients. To do this use three 

configurations, C^, and Cc and two distinct but nearby body-points, X 

and Y. Then some material property, P, is measured in configuration C^. 

So it is P. The values of this property at body-points X and Y are:

CP(X) = CP(Cx) (2.4.1)
c

and

CP(X) = CP(Cx + Cdx) (2.4.2)
c

Eqn (2.4.2) can be expressed as
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_ _ 9CP
CP(Y) = CP(Cx) + Cdx • C (2.4.3)

C C 8x
c

Since body-points X and Y are very close to each other the difference in 
Q = Q =P, dP, can be expressed as

CP(Y) = CP(X) + CdP(X,Y) (2.4.4)

Through the rest of this argument differentials refer to differential 

changes in values of properties between X and Y. So further references 

to, for example, dP(X), are taken to mean dP(X,Y). Take advantage of 

the invariance of CP(Y) to compare eqns (2.4.3) and (2.4.4). The 

difference of these gives the usual form for a gradient

_ _ aCP
CdP = CdP = Cdx-- -— (2.4.5)

c c „c— a x c

The value of CP is invariant with respect to configuration of reference 

and can be referred to C . R

_ _ 3CP
CdP = CdP = Cdx-- -— (2.4.6)

R R acx 
R

C = . .As an alternative, we could refer P to C at the beginning of 
A
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the argument. We find

CP(X) = CP(Cx) = CP(Ax) (2.4.7)
C A

CP(y) = CP(Ax + Adx) (2.4.8)
A

_ _ acp

CP(Y) = CP + Adx -— (2.4.9)
A A aAx 

A

Using the same approach as for eqn (2.4.5) one finds

_ _ SCP
CdP = CdP = Adx • —-— (2.4.10)

A A aAx
A 

or 

_ 8CP
CdP = CdP = Adx • —(2.4.11) 

R R aAx .
R

a — A —The differential dx should be noted. As shown in Figure 2.2, dx 
R

locates body-point Y with respect to body-point X when the body occupies

C but not when the body occupies any other configuration.
A 

C sThis same process can be repeated to refer P to C^. The 

conclusion must be reached that
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or

cdP = cdP = Bdx 
B B

3CP 
B

aBx 
B

(2.4.12)

_ _ 3CP

CdP = CdP = Bdx • ——
R R _B-

8 X
R

(2.4.13)

B ~The differential position vector dx locates body-point Y with respect 

to body-point X, only when the body occupies configuration C . The
B 

C = A —argument so far can be applied immediately. Replace dP with dx. Then 

eqn(2.4.13) becomes

A,— a B— Bdx = dx = dx • ----
R R „b-3 x

R

(2.4.14)

This in turn may be substituted into eqn(2.4.11) to give

CdP = Bdx 
R R

aAx 
B

aBx 
R

acp 
A

aAx 
R

(2.4.15)

C = B _Now we have two expressions for dP involving dx. We may 

subtract these one from the other and extract the common factor of dx 
R 

to get 0 as



cdP - CdP = Bdx • 
R R R = 0 (2.4.16)

Since the relative positions of X and Y were never specified we cannot
B — . • »use any special orientation of dx to guarantee a normality condition.

So it must be that the term in brackets is identically 0. This can only 

be so if

(2.4.17)

Now we have a useful transformation. At our convenience we may leave 

the gradient untransformed and merely copy values during a change of 

configuration of reference or we may take the gradient with respect to 

the new reference configuration.

This is applied in several important cases. Among the most 

famous are the First and Second Piola-Kirchhoff pseudo-stress tensors. 

The term "pseudo-" is very descriptive. These tensors are not identical 

to the Cauchy stress except under special conditions. Instead some 

transformation has been applied and a different quantity, a pseudo­

stress, has been found. These can be very useful. Another very 

important "pseudo-" quantity is the Lagrange pseudo-strain tensor. The 

next section is a detailed treatment of the Lagrangian true and pseudo 

strains.
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2.5 STRAIN TENSORS

Strain tensors are key elements in the finite element equations. 

A careful derivation of the Lagrangian (referential) strain tensor and 

of incremental forms of the Lagrangian strain tensor is useful here. It 

will clarify the later use of these important measures of material 

distortion. This derivation follows from the classical argument 

concerning the separation of two distinct body-points in various 

configurations. The separation of two body-points may change from an 

unstrained configuration to a deformed configuration. Consider the 

quadratic form for deformation:

*D = 1dx • 1dx - Udx • Udx (2.5.1)

Note that *D as a symbol does not mention C^. This is because any 

unstrained configuration will serve. Now, refer this to the deformed 

configuration, C^. The differential Udx can be replaced by

5°x •
Udx = Xdx • —-— (2.5.2)
1 i „1-3 x i

We can maintain generality and facilitate the discussion of the use of 

an arbitrary reference configuration if we keep the differential dx in 

the form
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where is the true strain tensor of the body in configuration C , a 

colon represents the double dot product and right superscript T denotes 

the transpose of a tensor.
1D can be referred to any configuration, say C^, as

1 1 dx dxA A
2 1S(Ax) 

A (2.5.9)

dx dx :A A

(2.5.10)

In calculation the use of these differentials and gradients can be 

extremely inconvenient or impossible unless the chosen reference 

configuration is the present configuration. For any other case the 

analyst may prefer to transform the quantities so that the differentials 

are of, and derivatives are taken with respect to, the position in the 
reference configuration. To do this retrace the steps in deriving ^8 

starting with

(2.5.11)

and
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_ T
' a*x _ a^ _

—*— . *g . —A— = 1ae (2.5.30)
„A- OA- Ra x a x

R R

Now we can transform true strain to pseudo-strain and vice versa. This 

allows us to use either form in further development knowing that which 

ever form is more convenient can be obtained at need. This also shows 

the condition required for the pseudo-strain, E, to be the same as the 
true strain, 1S. The deformation gradient, 1,AF, must be an identity 

tensor which is satisfied only when C and C are differ by a rigid body 

translation. We also note here that this is the same transformation as 

is required for the First or Second Piola-Kirchhoff pseudo-stress 

tensors to be identical with the Cauchy true stress tensor.

2.6 DISPLACEMENT FORMS FOR THE STRAIN TENSOR

In most work it is the Lagrange pseudo-strain that i‘s used. So, 

further investigation of displacement-based forms is developed for that 

tensor. In practice it is usually the case that the transformation 

configuration, C^, is the same as the reference configuration, C^. 

However, for the sake of clarity we will assume that is not 

necessarily the same as C . J R







A—
is the displacement gradient. Notice that in eqn(2.6.4) ^x is a 

function of itself and is differentiated with respect to itself. 

Thus its gradient is the identity tensor, even though the gradient 

is referred to C . Similarly, R





The braces in eqn(2.6.15) are unnecessary but serve to emphasize a 

grouping of tensors in the final expression in terms of the original two 

gradients as their source. It can be seen that the first term in braces 

depends on C and on but not on C^. So a different choice of will 

not affect this term. The second term in braces depends on and on 

C . So a change in will not affect this term. This property 

reappears later. In general all six terms are nonzero and all six must 

be evaluated.

A few special cases should be considered.

If the transformation configuration is an unstrained configur­

ation, then

This shows the quadratic measure of deformation:

86
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1„ U U D = dx dx
R RR

1U,U= 1U,U=T 
U' u 

R R

(2.6.17)

1_ UJ- UJ_ . O 1U=,R-, D = dx dx : 2 E( x)
R R R R

(2.6.18)

where 1UE Is recognized as the Green - Lagrange (pseudo-) strain tensor.

If the transformation configuration is the present configur­

ation, then

A,— 1 ,— 1A,A — 11,1 , AU,A   1U, 1 zp c* *dx = dx, u = u = 0 and u - u iz.o.iaj RR RR

which yields

XD = 1dx *dx 
R RR

1U,U = 1U,U=T
u + u -

R R
1U,U= 1U,U=T 

u- u 
R R

(2.6.20)

XD = Xdx Xdx : 2 11E(Rx) (2.6.21)
R R R R

where 11E, the Lagrange pseudo-strain tensor, is identical to the 

Lagrange true strain tensor, 18. This must be since each time the 

configuration of transformation matches the configuration of measurement 

the transformation is pre- and post multiplication by the identity



tensor. X1E is recognized as being identical to the Euler strain

tensor, e.

It should be noted that the entire formulation of the strain

tensor has been referential. So the use of C as a reference configur­

ation is an example of an updated Lagrangian formulation. Every time 

the transformation configuration is updated to coincide with the present 

configuration, there can be no instantaneous difference from the spatial 

(Eulerian) formulation. Therefore the last (nonlinear) term is not 

always added to strain tensors in referential (Lagrangian) formulations, 

but will always be subtracted unless

(2.6.22)

If the present configuration is an unstrained configuration, then

1 A , A— 
U

UA , A = AU, A = (2.6.23)

This choice yields

A A dx dx
R R

AU,A=T 
U

AU,A = zAU,A = AU,A=T U + ( U* U

AU,A=T AU, A = zAU,A = AU,A=T 
I U* U

(2.6.24)



Adx Adx : 2 uae (2.6.25)

Adx Adx : 2 0 = 0 (2.6.26)

The result that UD is zero is expected. This could have been arrived at 

more directly from the definition of UD without involving displacements, 

which gives that UAE, ^8 and °e are all zero for any unstrained 

configuration but sheds no light on the nature of being unstrained.

2.7 INCREMENTS OF STRAIN TENSORS

The same quadratic measure of deformation in is

2 - 2dx • dx (2.7.1)

which, when transformed to C and referred to C , is



It should be noted that the terms involving A”u (the second group in 

braces) have not changed.

It is possible to think of the displacement from C* to as a 

superposition of a displacement field from to and an incremental 

displacement from C to C^. That is

In that case, the displacement gradient can be expressed as

90
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If the body achieves configuration as a result of an incremental

change from then rE can be thought of as Incrementally changed from

1AE. It is recognized that

1_ A A „ (2A=1 , 2A=4
D = dx dx : 2 E + E R RR R R (2.7.16)

The effect of an increment of motion must appear in u in terms E and R R
2AE3. 2AE2 contains terms linear in 21u and may be called the linear part 
rr R J

of the increment to 1AE. 2AE3 contains the nonlinear (quadratic) term and 
R R

1 A= . .may be called the nonlinear part of the increment to rE. This is 

mentioned in Underhill et al. (1989), Gadala (1980), Gadala et al. 

(1982), Abo-Elkhier (1985) and Abo-Elkhier et al. (1985).

Now let some special cases be examined and some results found.

C is C . If C were also C , then a total Lagrangian A u R u ° °

formulation would be in use.

A,— u -dx = dx,
R R

21,A = 21,U =
u = u, 

R R

1A,A= 1U,U =
U = U,R R (2.7.17)

AU,A= UU,U= =
U = U = 0 

R R
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This shows the strain tensor changing by a linear increment plus a 
nonlinear increment from **£. As the body passes through 

configuration C the referential and spatial formulations coincide. As 

the body proceeds to deform an incremental change in strain occurs. The 

difference between ^E and yE , the linear parts of the increment, 

should be noticed. Compare the last two terms in each

2Ug2 = £ j 21,U= 21,U=T + 1U,U-.21,U^ 21,U-1U,U£T

U 2 U U U U + U U

(2.7.35)

21=2 1 21,1= , 21,1=T 11,1= 21,1=T 21,1- 11,1=T
E = — - u + u + u- u , u- u ■ 
12 1 1 11+11

(2.7.36)

Since 11,1u = 0, the last two terms of 21E2 vanish identically. This is 

a distinctive mark of the updated Lagrangian formulation.

2.8 IMPLEMENTATION OF CHANGE OF CONFIGURATION OF TRANSFORMATION

Updated Lagrangian calculations occasionally "update" the 

configuration of transformation to a recently calculated configuration. 

This is accomplished easily by the use of the deformation gradient.
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AQg 
R

AQ= _ 
E =

R

AQS _E = 
R

£ 
2

But, typically

conf i gurat ion.

transformat i on

apx 
Q

aQx 
R

apx 
Q

a x 
R

/ apx 
£ I ___q , 
2 I a°x

R

apx 
Q

aQx 
R

A Pg

the position

aAx 
p

apx 
R

aux 
p

apx 
R

8*x 
p

ax 
R

aux 
p

apx 
R

apx 
Q

aQx 
R

of a

C , is known as Q
configuration, Cp,

the deformation gradient

apx 
Q

aQx

T

aAx 
p 

apx 
R

aux 
p

apx 
R

aAx 
p

apx 
R

T

T

T

„U- T 
a x \

p I 
apx J

R

body-point

a function

rather than

„P- T 
a x 

Q_
aQx 

R

„P- T 
a x

Q_ I 
aQx J

R

apx 
Q

aQx 
R

(2.8.5)

(2.8.6)

T

(2.8.7)

in the new transformation

of position in the old

the other way around. So,

is not known explicitly. Fortunately, this

since all motions are required to be unique

position. It can be shown from the invariance

difficulty

invertible
p — 

of dx that

is avoidable

functions of
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apx aQx p
Q = __?__ (2.8.8)

a°x apx

The updated pseudo strain tensor becomes

aQx p aQx p
aqE = -P- -APE • -P— (2.8.9)
R aPx R 8Px

R R

As an example, let a calculation follow the motion of a body 

from an initial, unstrained configuration, Cq. As is common practice, 

in this example the same configuration will be used for both transform­

ation and the reference. The body moves and deforms and the pseudo 

strain in C is calculated, with C as the transformation and reference i o
configurations, to be ^E. The pseudo strain tensor is updated so that 

C is the transformation and reference configurations by the use of

_ a1* P _ a1* P •1XE = —— -10E • —5— (2.8.10)
1 a0- 0a X OX

0 ' 0

Let the calculation continue and the pseudo strain be required in a 

subsequent configuration, C2> where the displacement from to is 

known explicitly. Then the pseudo strain in configuration C2 can be 

found as incrementally changed from the pseudo strain in configuration 

C .
i
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2.9 INTEGRALS OF MATERIAL PROPERTIES

Many quantities of interest are not point functions but rather 

descriptive of a finite region. Such a quantity may be a scalar such as 

mass or volume, or it could be a tensor of any order. Many vectors in 

common use describe properties of extensive bodies rather than 

infinitesimal neighbourhoods. Such is the case when we speak of the 

weight of a body. However, we consider that properties of bodies are 

found from the properties of (sets of) infinitesimal neighbourhoods. 

These extensive properties are usually either averages of local 

properties, or integrals of local densities. In fact, average 

quantities are often found as the ratio of the integral of the property 

to be averaged to the integral of the space (length, area or volume) of 

the region for which the average is desired. Moreover, it is commonly 

the case that the extensive property is wanted for some configuration 

other than the reference configuration. Since, in Lagrangian mechanics, 

all calculations are carried out in the reference configuration, it is 

worth a moment to consider the integrals of material properties.

A key idea to keep in mind when considering integrals is that an

integral is really a sum. For example, to find the momentum of a body 

add up the momenta of every particle of the body. The way in which this 

is usually done is to query each small neighbourhood for the momentum 

density in that neighbourhood. Multiply this by the size of the 

neighbourhood. Add up all such contributions. The first way evaluates
n

an extensive property, say P, as
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P = J dP (2.9.1)

Where the Integral is taken over the body. The second way is

P = J p dV (2.9.2)
V

where V is the configuration occupied by the body and 
n n
p is the density of P. That is 

n 
n a P 
p = ------- (2.9.3)

a v

Since our access to the properties of the body is usually as a density 

in a neighbourhood, the second form is commonly more convenient. In the 

above no explicit mention has been made of the configurations of 
n n 

reference or of measurement. Let P, p and dV all be measured in 

configuration C . To begin, let the same configuration also be used as 

the reference configuration. That is, body-points are named by their 

position when the body occupies C^. Then we can write

AP = f Ap AdV (2.9.4)
A J Ar A 

AV

The same body-points could be named by the position that they would 

occupy were the body in configuration C^. This has no effect on the



104

measured values of P, p and dV, but the integral is now carried out 

over the volume of C . This is written as
B

AP = f Ap AdV (2.9.5)
B J Br B

Bv

One may think of Eqn(2.9.5) as taking all the values used in Eqn(2.9.4) 

and writing them on a fictitious copy of the body in C^. Each small 

neighbourhood of material has contributed exactly the same values: the 

same density and the same differential volume. So, the value of P is 

unchanged. All that was done was that the adding up was carried out in 

instead of in C^. It can be inconvenient, sometimes impossible, to 

evaluate AdV. This difficulty arises in calculations involving large 

displacement. One wishes to use an integral of quantities measured in 

the newest configuration of the body but does not yet know what that 

configuration is.

As an example, consider the simplest case: find the volume of 

the body in . The density is scalar unity. So,

AV = J A1 AdV (2.9.6)

It is not necessary to keep the scalar unity explicitly. Refer this to 

C to find
A

Av = f AdV (2.9.7)
A J Ay A
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We may consider that the volume has been built up by accumulating all 

the small neighbourhoods, AdV. Moreover, all these small neighbourhoods 

neatly fit together to give . However, if we referred this to we 

would get

AV = f AdV (2.9.8)
B J By B

Eqn(2.9.8) shows that the volume of C can be evaluated in C by putting 
together all the infinitesimal AdV. These are not necessarily the same 

volumes as the BdV and so do not "fit" together there. This idea of fit 

is clearer for surface integrals where one finds in different 

configurations that the differential elements of surface are of 

different sizes and in different orientations.
p

It would be very much more convenient to use the dV when 

integrating over V. A transformation can be used to allow this. Such 

a transformation, called a Jacobian, maintains the value of the original 

differential volume (or area or length). So, the required behaviour of 

the Jacobian for volumes is

AdV = ABJ BdV (2.9.9)

For volumes, the Jacobian is the third scalar invariant of the
AB =deformation gradient, F, where
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a Ax
abF = B (2.9.10)

a Bx

and the third scalar invariant is

ABj = abf * ABF : ABF (2.9.11)

For surfaces, where the Jacobian is the dyadic J, the requirement is

Ada = Bda • ABJ (2.9.12)

The Jacobian for surface elements is

ABj = abf x ABF (2.9.13)

_L_ AB = x AB= = _1_ AB= x ABf . ABp ABf”T (2.9.14)

One special case that is frequently important for calculation is where 

the local tangent basis of space is orthonormal. In that case, which 

is used through out the calculations presented in Chapter 5, we have
A — some simple relationships in the surface Jacobian. We factor da and

Bda as



where dA is the area of the differential surface and n is a normal unit
A B svector giving the orientation of the surface. Then we can factor J as
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2.10 TRANSFORMATION OF PRINCIPLES

We can now apply these forms to investigate the transformation 

of material principles in a weak form. A divergence term is included so 
aqthat explicit understanding will be available later. Let A be some 

function of material properties that represents some material principle. 

Let it be pointwise true that

These can all be referred to C . Once the principle is expressed in a 

referential formulation it can be integrated over the body. The 

integral of any function that is pointwise zero is also zero. So
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This appears now to be a very weak argument. It would satisfy 

eqn(2.10.5) if ^A were zero only on average. This is used to advantage 

in some numerical methods. For theoretical arguments there is no 

difficulty. The boundaries of the body under consideration are quite 

arbitrary. So eqn(2.10.5) must hold for any chosen body. For this to 
An

be true it must be that the integrand, aA, is indeed zero for all 

neighbourhoods. The integral can be split into two terms as

Now the argument appears even weaker. The two terms in eqn(2.10.6) 

could be such that neither of them are zero but rather are each others 

opposite. The arbitrary body argument is conjured to counter this 

possibility. The divergence law can be applied to the second term of 

eqn(2.9.18) to give

Now the enforcement of eqn(2.10.1) looks even weaker since the second
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integral is only over the surface rather than the entire domain. The 

Principle of Continuity gives the necessary assurance that this term 

serves as well as the second integral in eqn(2.10.6). The whole 

integral can be referred to another configuration, say . This is 

essentially a copying of information. The domains of integration are 

regions of space and so are changed completely in the changes of 

configuration of reference and have no connection to the previous 

reference configuration. All other quantities are still as measured in 

C . 
A

Let the differentials, AdV and Ada, be transformed to the new reference 
B B

configuration.

It is often useful to define "pseudo-" quantities

and



Ill 

. ™ n+i *□= a n+i „ „AB£“ = ABJ • \ (2.10.11)

These pseudo- quantities can be used to change eqn(2.10.9) to resemble 

eqn(2.10.7) as eqn(2.10.12).

* . _ n « r a t» »n n+1 nABn BdV + da - a = 0 (2.10.12)
B' B B B °JbQ Jb9Q

Now the process runs backwards. Use the divergence theorem to get

* . „n „ r a idD+i n nABn BdV + ------ • AB a BdV = 0 (2.10.13)
B' B _ B— B * B

B„ J B_ 5 XQ Q B

The two terms may be combined to give

. D n a inn+! 'in n
ABn + ------ • g dV = 0 (2.10.14)

B' „ B— B ® B .Jb„'' a xQ B

AB— AB —It is now possible to use the pseudo- quantities and h where

a 
abq _ ______ 

B— a x 
(2.10.15)

AB? AB— AB— 
A = p +
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Finally we invoke the arbitrary body argument. Since eqn(2.10.14) must 

be true for any arbitrarily chosen set of infinitesimal neighbourhoods, 

it must be true independently for each neighbourhood. So the integrand 

itself must be zero. That is

AB? ab— abq £ 1R'h = p + = 0 (2.10.16)

a d n ar— ar nil nA = n + ------ • a = 0 (2.10.17)
R Rr „ B— B «

a X 
R

A B ~ B —It is important to remember that A is not A.
. a—In this fashion we can transform the material principle A to a 

pseudo-principle. A, that may be more convenient for calculation. The 

particular utility of this is in incremental large displacement 

calculations where is a newly occupied configuration, as yet unknown, 

and C is a known configuration. Approximate C by a sequence of 

configurations starting with C^. Find all needed properties of C^, 

Including its position. Using this corrected approximation to repeat 

the calculation. Do this as many times as is necessary to find with 

sufficient accuracy. This discussion will not address the convergence 

of any such sequence of operations except to note that we assume that 

every such sequence is convergent if is close enough to and the 

body is stable.

Some commentary should be made about the differentials and the 

Jacobians of transformation. Remember that these are integrals of 

material properties.
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The integrals of sections 2.9 and 2.10 are of material functions 

over regions of space. dV is the size (volume) of a small part of this 

region. We make an association between material and the region it 

occupies. So, dV is also the volume of the region of space occupied by 

a small amount of material. As a material property dV can be measured 

in, or referred to, any configuration.

We use the mass as a scalar measure of the amount of material. 

So the mass of the small neighbourhood is dm. dm is not shown as 

measured in any configuration because it is invariant with respect to 

configuration. The same amount of matter is always there. When the
A body is referred to the differential of volume became ^dV. The

amount of matter in a small neighbourhood can then be expressed as

dm = Ap AdV (2.10.18)
Ar A

where p is the mass density. This can also be referred to C^. This 

changes the name of the differential volume to BdV from ^dY. This does 

not change the value (size) of dV nor with which material it is 

associated. '

dm = Ap AdV (2.10.19)
Br B

Since dm is invariant it can be measured in C as well as havingb ~
calculations referred there.
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dm = Bp BdV (2.10.20)
Br B

A BAs discussed above, dV can be transformed to dV. Use this to find 
B B

dm = Ap ABJ BdV (2.10.21)
Br B B

One may subtract eqn(2.10.21) from eqn(2.10.20) to obtain 0. From the 

remaining relation it may be concluded that

a AV Ap _ _ _
ABJ = ---?--- = -5— = abf * ABF : ABF (2.10.22)

R _ B,. B 3! R x R R
o V pR Rr

This expresses the dilation of each small neighbourhood between and

C .
B 

A — B —The transformation of the surface differential, da, to da is a 

little more complicated and interesting because it is a vector quantity. 

Whatever the integrand that follows the orientation and magnitude must 
An+i . 

be preserved. As an illustration consider the possibility- that $ is 

the dyad *2 and that the local tangent basis set is orthonormal. We 
A = express q as

A — A A^l A^2 Ao io oo)$=999 (2.10.23)

A —The invariant differential vector d$ is
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_ .. . ... AB =To find the still unknown factors of the pseudo- quantity $ we can use

We see that the effects of the Jacobian are: to scale the density as 

seen in eqn(2.10.33) and to compensate for the relative orientation of 

the two differential surfaces as seen in eqn(2.10.32)



CHAPTER THREE

EQUILIBRIUM PRINCIPLES

3.1 THE LINEAR MOMENTUM PRINCIPLE

The starting point for the 

Momentum Principle. This we present 

and accept as valid.

next discussion is the Linear

without further proof or testing

(3.1.1)

where p is the mass density,
a- . .. , .,v is the velocity,
A<r is the Cauchy (true) stress tensor and

A—f is the force density.

All quantities in eqn(3.1.1) are measured in C^, as the body passes 

through C^, and is referred to Cr. This principle we assume to reflect 

adequately one of the basic universal laws and to be capable of 

describing the actions within a small neighbourhood of material or any

set of small neighbourhoods (body). With this much accepted we may

117
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proceed to use this relationship to study the motions and deformations 

of bodies.

Unfortunately, the Linear Momentum Principle, eqnO.l.l), is not

always suitable for calculation. A scalar equation would be more 

convenient. Such is the motivation behind the popular energy methods. 

These start by forming some kind of scalar from eqnO.l.l) and work with 

that scalar. A rather beautiful way to do this is the Rate of Work 

Principle. This is found by taking the dot product of eqnO.l.l) with 

the velocity, Av. One of the advantages of this product is that it 

keeps all quantities measured in a single configuration, C^. Another is 

that we will be able to find principles to describe both dynamic and 

static displacements from it.

3.2 THE RATE OF WORK PRINCIPLE

Start by simplifying eqnO.l.l) by assuming that the configur­

ation of measurement is the same as the configuration of reference, so 

that only one configuration is involved. Then multiply both sides by 
A— the velocity, v. This gives

v = 0 • Av (3.2.1)
d t

Expand the product to get
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The terms of eqn(3.2.2) can be manipulated separately to yield familiar 

forms.

3.2.1 KINETIC POWER TERM

A common manipulation improves the symmetry of this term.
A— A~sConsider the rate of ( v v)

Use this in the first term of eqn(3.2.2) to get
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3.2.2 INTERNAL POWER TERM

For this term another re-arrangement is convenient. Here 
consider the divergence of the product (A<r • *v). Again we examine a 

combination of a derivative and a product. An underscore indicates that 

the derivative is not acting.

(3.2.6)

The last term can be rearranged by the use of parentheses.

_____ • a • v = ----- • v • V (3.2.7)
A— A- A „ A- I A A— J

a x ax'- '
A A

So, 

a a Av _ ■
 . Aa . AV = —— : V (3.2.8)

a Ax A A a Ax A 
A A

Since Aa is symmetric the transpose mark can be dropped. Also, only the 

symmetric part of the velocity gradient participates in eqn(3.2.8).

because it is in a double dot product with a symmetric dyadic. Any

antisymmetric part will contribute zero after a double dot product with 

a symmetric dyadic. We now restate eqn(3.2.6) and recognize the first
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term on the right hand side as the internal power term of eqn(3.2.2).

3.2.3 EXTERNAL POWER TERM

This does not require any modification.
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3.3 TRANSFORMATION OF RATE OF WORK PRINCIPLE

Here we follow the steps laid out in section 2.10. First the 

principle is put into the weak (integral) form.

Separate the second term and apply the divergence principle.
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Change the differentials, *dV and *da, to those measured in Cb . This 

introduces the Jacobian.

Distribute ABJ in the volume integral; apply the divergence theorem to 
B

the surface integral and then recombine.
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Invoke the arbitrary body argument to change from weak (integral) back 

to strong (differential) form. Finally, we have the Rate of Work 

Principle transformed and referred to .

It is appropriate to perform some manipulations on the terms of 

eqn(3.3.6) separately which will put the individual terms into more 

useful forms.
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3.4 KINETIC POWER TERM

First we recognize that Jacobian for volume differentials is the 

ratio of densities. So, we combine factors.

AWe may define the kinetic energy density, X, as

So, the rate of kinetic energy density is

There are two terms: one for changes in the mass density and one for 

changes in the velocity.

The kinetic energy of a small neighbourhood of material is RdK.
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Find the rate of the kinetic energy of a small neighbourhood to be

The term for the time derivative of dm has been omitted because it is 

identically zero. If we expand dm it is possible to see the behaviour 

of the rates of the Jacobian and the density.

Eqns(3.4.7) and (3.4.10) represent the same quantity and differ only in 

that in the presence of the final two terms of eqn(3.4.10). So, the 

last two terms of eqn(3.4.10) must either be equal and opposite or
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independently zero. Since the size of a neighbourhood and the density 

of the material may be changing as the body moves through it cannot 

be assumed that both of the last two terms are identically zero 

independently. Therefore, the sum of the last two terms must be zero. 

That is, the term for the rate of change of the density is equal in 

magnitude and opposite in sign to the term for the rate of change of the 

size of the neighbourhood.

In the change of differential from AdV to BdV there is an 
B B

apparent change in the behaviour of rates. The material density and the 

volume of a small neighbourhood are both functions of time in 

eqn(3.4.10). When the body occupies the reference configuration both 

are constant. Nevertheless, neither the value of the rate of density in 

C nor the value of the rate of kinetic energy density are changed by A
referring to C^. The difference is in the transformation of 

differentials rather than in the change of reference configuration. To 

see this, look again at eqn(3.4.7). Let the mass of a small neighbour­

hood be represented as J p instead of as dm. We find

d AdK 
R (3.4.11)

d t d t
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d AdK ( d *v
---5- = - ARJ Ap dV ---— . Av (3.4.12)

, . R Rr R I . t Rd t v d t

, AR T ■ Ad J dp1 RA R ... A- A- 1 AR . Rr R ... A- A—+-------p dV v • v + - J ---- dV v • v
2 . . Rr R R R 2 R , . R R Rd t d t

d RdV '
1 AR . A R A- A—+ — J p ----- v • V •
2 R Rr , . R R 

d t

The last term on the right hand side is the derivative of a constant and 

so vanishes. Now eqn(3.4.12) may be compared with eqn(3.4.10). 

Clearly, the last two terms of eqn(3.4.12) must again be equal and 

opposite. The rate of change of AdV is included by the term with the 

rate of change of ARJ.

So now we understand the absence of a rate term for the density 

in eqn(3.4.1). Here is one of the peculiarities of Lagrangian 

calculation. It must be remembered that material quantities in a 

Lagrangian calculation refer to a constant neighbourhood of material. 

The size, shape orientation and placement of these neighbourhoods change 

with time but not their identities. Eqn(3.4.1) contains material 

quantities and so represents material functions of any predecided small 

quantity of material. serves here as a reference configuration. The 

density in the reference configuration is a constant and has no time 

derivatives. The density in configuration C^, as the body passes 

through C^, is a dynamic quantity and may have non-zero time
AB .derivatives. These are exactly compensated by the rate of J. So, in
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a Lagrangian calculation, the rate of density in the reference 

configuration will never contribute.

In an Eulerian calculation the size of a neighbourhood is 

concerned only with the description of space. As the material moves and 

density changes the amount of material involved changes. So, for an 

Eulerian calculation of the rate of kinetic energy density, terms would 

arise that account for the changing density of material.

The discussion above may be used to define a pseudo kinetic
_ . . . ar^.energy density, rK,

ar
r'

1 AR (3.4.13)
d t

This gives a concise form for the kinetic power term

(3.4.14)
d t
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3.5 STRESS DIVERGENCE TERM

Originally we had one term for internal power and one for 

external power. After some manipulation the internal power term was 

divided into two terms. The stress divergence term is one of these. 

The manipulations to be applied to this terms are particularly simple at 

this stage. Later, the divergence theorem will be used to effectively 

change this to an expression for the power of tractions distributed over 

the surface of the body. For now all that is needed is to recognise the 

First Piola-Kirchhoff Pseudo-stress tensor in the middle two factors. 

So, we can write

where ABT is the First Piola-Kirchhoff Pseudo-stress tensor of C 
b *

transformed to C and referred to C and

AB = 
R

(3.5.2)
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3.6 VELOCITY GRADIENT TERM

There is sufficient manipulation involved in converting this

term to the desired form that it is worth providing a description of 

what follows:

o Three lemmata will be needed so they are presented first

o The velocity gradient is replaced by a product of deformation 

gradients and the rate of pseudo-strain

o Arithmetic manipulations re-associate the deformation 

gradients with the stress tensor

3.6.1 LEMMATA

Lemma 1
Where C and D are any two second order tensors

C : D D : C
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Proof
Let the vector spaces of C be P and Q. Let the vector spaces of

D be R and S. Then

As required
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Lemma 2
Where C and D are any two second order tensors and 1 is the 

second order identity tensor

Proof
Let the vector spaces of C be P and Q. Let the vector spaces of

D be R and S. Then
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a t
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Now it is possible to subtract the two expressions for the difference in 

velocity

5 Adx 3 Av _
  _ Adx . ---*--- = o (3.6.37) 
at-------A d Ax

A

Since there are no geometric presuppositions that the vectors on the 

left hand side of eqn(3.6.37) are themselves zero it must be that the 

two terms are equal and so the lemma must be true. That is

d Adx d kv
---5— = Adx • ------- (3.6.38) 
at a x

R

As required

3.6.2 INTRODUCE RATE OF PSEUDO-STRAIN

In the second part we replace the velocity gradient'itself with 

a product of the deformation gradient and the rate of pseudo-strain. To 

do this we take four steps:

o Find an expression relating the rate of the quadratic measure 

of deformation to the rate of pseudo-strain,

o Find an expression for the rate of the quadratic measure of 

deformation involving the velocity gradient,
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o Use the first and second parts to identify and expression for 

the rate of pseudo-strain and

o Isolate the velocity gradient in the expression for the rate 

of pseudo-strain and replace.

So, we begin. The quadratic measure of deformation measured in

C and transformed and referred to C can be expressed using the
A R

pseudo-strain as

The differential position vector in the reference configuration is a 

constant, so it has a rate of zero. The first two terms on the right 

hand side vanish. We are left with
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We can also start from the definition of AD and differentiate with 

respect to time.

The unstrained configuration is a fixed chosen one. Therefore the rate 

of any properties of this configuration vanishes. So, the terms 

involving the rate of the differential position vector in the unstrained 

configuration vanish. So
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An effect of the double dot product with the same vector is that any 

antisymmetric part of the velocity gradient makes no contribution. So,

Now change the differential position vectors so that they are measured
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in Cr. Eqn(3.6.50) becomes

As before the symmetry marked on the velocity gradient is optional since 

any antisymmetric part vanishes in the double dot product.

The two expressions, eqn(3.6.42) and eqn(3.6.53), for the rate 

of rD can be compared and it must be concluded that

This we will put to use by isolating the velocity gradient factor as
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3.6.3 REASSOCIATE FACTORS

The third stage of the conversion of the velocity gradient term 

can begin. To simplify the notation a little the rate of pseudo-strain 

will be represented by bA. Then we have

Further notational simplification will be introduced as convenient for 

the immediate purpose of the following arithmetic. Let





145

Note that both the Cauchy (true) stress and the (pseudo-)strain are 

symmetric second order tensors. Since the (pseudo-)strain is a 

symmetric tensor the rate of the (pseudo-)strain must also be symmetric. 

So the transpose markers on the stress and strain factors may be 

dropped.
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before the double dot product. Taken together these are the Second
AB =Piola-Kirchhoff Pseudo-stress tensor, S. So B

ABS : 
B

ABj 
B

(3.6.72)
d t

This is the form sought.

3.7 BODY FORCE TERM

AB . A-; A—
J f • V 

B B B

It is practical to lump the first two factors together to form a 

pseudo body force, ABf.

ABf 
R

ABJAf 
R R

(3.7.1)

Af is a force density. It is sometimes convenient: to express

this as acting through some agent property of the material. Examples of 

this are gravity acting through the mass density and electric forces 

acting through the charge density. Then we would write

A — A A—f = p b (3.7.2)
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where Ap is the agent property of the material and 

Ab is field that acts through Ap.

Exactly the same kind of argument as was used in section(2.10) for mass 

density may be applied to the agent density here. The conclusion may be 

drawn that

For such forces it may be preferred to keep the transformed equations in 

terms of an pseudo agent density and an active field. The term pseudo 

agent density is used since there is no general guaranteed constancy to 

the agent quantity as there is with mass. The body force term would 

appear as

Alternatively, it may be preferred to keep the agent density unchanged 

and use a pseudo active field. This second approach is less popular.
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3.8 TRANSFORMED RATE OF WORK PRINCIPLE

All terms may now be combined to give the strong form of the 

Rate of Work Principle transformed to C^.

For calculation this is often kept in weak form with the divergence term 

expressed as a surface integral.

The differential surface vector, Bda, can be expanded so that only the 
B

area is in differential form.



Then the unit outward normal is taken in a dot product with the First

Piola-Kirchhoff Pseudo-stress tensor to give the (pseudo-) traction on
. AB—the surface, scaled and rotated to suit C , T. B B
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3.9 INCREMENTAL FORM

For the purpose of incremental investigations one could take the 

velocity based form, eqn(3.8.5), and multiply it by a small time, dt. 

dt may be very small but must not actually collapse to zero. This gives

ABf • 
B

ABs 
B

(3.9.1)
d t

dt BdV 
B

AB^ 
B

The left hand side is still zero. In examining the right hand side it 

is convenient to distribute the integral as a linear operator and 

inspect each term separately.
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3.9.1 INCREMENT OF KINETIC ENERGY DENSITY

This increment may be expressed as
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The two terms on the right hand side are indistinguishable because the 

dot product is commutative and so they must be equal.

Now we take the product on either side. In the left hand side, we 

recognise the rate of velocity as the acceleration and substitute the 

rate of displacement for velocity to get

as required. So eqn(3.9.4) may be rewritten as
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3.9.2 INCREMENT OF STRAIN ENERGY DENSITY

Express the third term of eqn(3.9.1) as

(3.9.11)
d t

Where eqn(3.9.11) defines an incremental change in an energy density. 
A BThis density is called the strain energy density, &IL Combine the rate 

with the time increment to find

ABS • 
b '

(3.9.12)

3.9.3 INCREMENT OF VOLUME WORK DENSITY

Express the second term in eqn(3.9.1) as

(3.9.13)

where eqn(3.9.13) defines an incremental change in an energy density. 
ABThis energy density is called the volume work density, V. Replace the 

velocity by the rate of displacement and combine it with the time 

increment to get



ABf 
B

(3.9.14)

3.9.4 INCREMENT OF SURFACE WORK DENSITY

Express the last term in eqn(3.9.1) as

Where eqn(3.9.15) defines an incremental change in a surface energy

density. This surface energy density is called the surface work 

density, . Substitute the rate of displacement for the velocity and

combine with the time increment to get

(3.9.16)
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3.9.5 COMBINED INCREMENTS

These four energy density increments may be combined to express 

the incremental form of the Rate of Work Principle as

0 = f J-ABdX + ABdV - ABdtA BdV + f da ABdT (3.9.17) 

JbqI aQ

It is common practice to modify this by lumping all terms. The two 

work densities are often combined as a single term defining the 

incremental work, ABdl/, as
B

A BdW = f ABdV BdV + f Bda ABd^ (3.9.18)
B B B B BJbQ Jb3Q

Eqn(3.9.17) may be expressed as

0 = - [ ABdK BdV - f ABdtl BdV + ABdW (3.9.19)
B B B B BJ bq J Bn

ABThe first two terms define the increment to the kinetic energy, K, and13
A B the increment to the strain energy, U, respectively. So use B

ABdK = ABdX BdV (3.9.20)
B B B

bq

to define the increment to the kinetic energy and
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to define the increment to the strain energy. Then the Rate of Work

Principle can be stated as

Another popular contraction is to lump together the increments to strain 

energy and work under the name potential energy. Define this potential 
AB— energy, IT, as

So, the Principle becomes

This is a famous form and the starting off point for many analyses.
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3.10 STATIC ANALYSES

For static analyses some special conditions should be noted.

First the kinetic energy should be examined. The incremental form of 

the kinetic energy density is

(3.10.1)

In a static analysis the structure involved is not in active motion. So 

the displacement is fixed and has no time derivatives of any order and 

the acceleration vector in eqn(3.10.1) is identically zero. So the 

kinetic energy density and the kinetic energy are identically zero. 

Therefore, the Rate of Work Principle becomes

(3.10.2)

It is also important to ask at this point what the meaning of

the increment of potential energy can be if all is static. Clearly this 

cannot represent an incremental change as the body moves along some 

path. Instead the possible changes are choices of configuration. This 

then allows us to express a principle for static displacements in 

meaningful terms. That is eqn(3.10.2) should be

(3.10.3)

This is the condition that will allow a choice for C among neighbouring
A
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configurations. Eqn(3.10.3) can also be written as

(3.10.4)

This shows the choice of C affecting the value of IT. The position of 

can also be expressed as a displacement from some other 

configuration. Common choices for this other configuration are the 

initial configuration and a nearby configuration. The nearby

configuration is one that has already been calculated and that would be 

occupied were the loading slightly different. The position of a
A—body-point in C^is x and we can write

x = x + u (3.10.5)

where Cx is the other configuration mentioned above. A differential
A—change in x would give a new position

(3.10.6)

where dAu is the differential change in displacement. In a vectorial 

sense dAu is the displacement from the previously supposed position of 

X to a putative new position. Two things are clear: (1) d u is not a
function of C , and (2) dAu is identical to dAx. This leads us to the 

c
realization that eqn(3.10.4) can be written as



159

There are three possibilities for the fulfillment of eqn(3.10.7):

The first possibility can be discarded because we clearly are 

considering variations. The configurational derivative of is a 
vector in a particular direction; whereas d*u could be in any direction. 

So we cannot rely on a normality condition and must reject the second 

possibility. This leaves the third possibility. So, the equilibrium 

condition can be stated as



CHAPTER FOUR

CONTACT ALGORITHM

4.1 INTRODUCTION

The proposed algorithm for contact is for an incremental style 

of solution. Any incremental solver can also solve single step analyses 

simply by declaring that all boundary conditions are to be met in the 

first increment. The advantage of incremental solvers is in 

evolutionary problems where directions and magnitudes of boundary 

conditions or material behaviour change as the analysis proceeds. Such 

problems are usually beyond the capabilities of single step solvers.

The first step in discussion of the new algorithm is a brief

review of incremental finite element algorithms. Pseudo ' code for a 

typical nonlinear algorithm (materially nonlinear, geometrically 

nonlinear or both) is shown in Figure 4.1. It is assumed that the 

solution is known up to a certain point. This assumption is safe in 

that the initial conditions at least are known. A small increment of 

the known external information is applied and the corresponding 

increment in the unknown external information is found. Since the 

internal information may be dependent on external conditions it is

160
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necessary to check whether the internal information has changed. If it 

is found that it is necessary to update the internal information, that 

is done. This implies that the external information may no longer be 

correct, or at least not sufficiently close. Typically, the external 

information is checked by a balance where the current estimate of one 

type of external information (usually displacement) is used together 

with the internal information to generate an estimate of the other type 

of external information. If it is found that this second estimate is 

close enough to the values already available, then it is assumed that no 

correction is necessary and the solution returns to the beginning of the 

algorithm to start applying another increment of external information. 

If it is decided that the generated estimate is not close enough to the 

actual increment, then a corrective iteration is begun. This can take 

many many forms. A simple and popular method is just to substitute the 

difference between the generated estimate and the actual increment for 

the increment of external information and solve again in a recursive 

fashion. At each recursion the internal information is checked and 

possibly updated and the external information checked for convergence. 

It is assumed that such a process will eventually converge. After 

convergence is achieved the algorithm is started again with a new 

increment of external information.

For problems of solid mechanics and structures this translates 

to applying an increment of imposed forces and displacements. Solve for 

the unknowns. Build a new stiffness matrix to satisfy the new 

displacement conditions. Multiply the stiffness by the displacements to 

get the reactions. Check the reactions against the forces. If the
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difference is small, then go on to the next increment. If not, then the 

difference between forces and reactions is applied as a force correction 

and zeroes are applied as corrections to the imposed displacements. For 

mechanically stable structures this process will always converge.

The key point is the test for equilibrium. This is done after

the imposition of current conditions on all known quantities, usually 

stiffness, displacement and forces.

Figure 4.2 shows a prototype in pseudo code for a contact 

algorithm. The key difference between Figure 4.2 and Figure 4.1 is in 

the nature of the test which triggers another iteration. In the contact 

algorithm the test is for two possible triggers: compatibility and 

equilibrium. Different algorithms distinguish themselves in how they 

detect and generate corrections.

4.2 ONE DIMENSIONAL ANALOGY

In a one dimensional setting the measure of a penetration error

is simple; it is the length of overlap. Forces are to be applied to 

both bodies to correct this situation. So, the compatibility condition 

on corrective displacements is

-AUA + AU® (4.2.1)

where P is the penetration error and AU is a corrective displacement
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If the displacements are small, then to first order the change in the 

end reactions must be

AF* = kaaua
(4.2.2)

AFB = kbau®

where AF is a change in end reaction and K is a stiffness. These 

displacements are to correct compatibility without disturbing 

equilibrium. So, the condition is put on the reactions that

AF* + AF® = 0 (4.2.3)

These conditions can be combined to give the required increments of 

force to correct a compatibility error without disturbing equilibrium.

AU* = - K®P / (KA + K®)

AUB = K*P / (KA + K®)
(4.2.4)

AF* = - KAKBP / (KA + K®)

AF® = KAKBP / (KA + K®)

An error in equilibrium is simply defined as well. It is just 

the difference between the net force on the end nodes of each body. The 

force increments to be applied to correct an equilibrium error are 

required not to upset compatibility. This requires that

AU* = AU® (4.2.5)



166

The effect of the condition in eqn(4.2.5) is that the end reactions are 

tied as well through eqn(4.2.2). These force increments are to correct 

an equilibrium error. So we require of them that

AFA + AF® = -E (4.2.6)
F

where is the equilibrium violation. These conditions may be combined 

to give

AF* = -KAE / (KA + K®)
F (4.2.7)

AF® = -K®E / (K* + K®) 
F

These are applied at the global level along with whatever other force 

correction terms may be used for the sake of other nonlinearities.

4.2.1 EXAMPLE OF ONE DIMENSIONAL ANALOGY

An example is included here to illustrate the workings in one 

dimension, where it is easy to see how each term behaves. There are two 

elements as shown in Figure 4.3. The element on the left, body A, is a 

nonlinear spring whose stiffness is

KA = 1000(1 + 10c ) Ib/in (4.3.1)

where c is the fractional compression of the spring. It is initially
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positioned with its left end at the origin. It is 10 inches long. The 

second body is a different nonlinear spring, with stiffness

p2000(1 + 20c ) Ib/in (4.3.2)

It is initially positioned with its right end at 22 inches to the right. 

This leaves a two inch gap between springs. The external conditions to 

be imposed are that the right end of spring B is encastred and the left 

end of spring A is to move three inches to the right. This will cause 

the springs to come into contact after spring A has moved two inches. 

Contact corrections will be necessary for the last inch of motion. Let 

the motion be applied as half inch increments of the left end of 

spring A. Calculations are carried out so that forces are found to the 

nearest pound, stiffnesses to the nearest Ib/in and distances to the 

nearest 0.001 in.

The first three steps bring the right end of spring A to 

positions 10.5 in, 11.0 in and 11.5 in and no contact is made. The 

fourth step brings the left spring to just touch the right spring. 

Since the springs sire just touching there is no compatibility error. 

Since neither spring is compressed the end reaction of each is 0 lb. 

So, there is no equilibrium error.

In the fifth step the right end of spring A is brought to

12.5 in. There is still no compression of either spring so the 

equilibrium test does not trigger contact iterations. There is a 

penetration error of 0.5 in. So, the compatibility condition starts the 

corrections. The detection of 0.5 in overlap caused a 333 lb force to 
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be applied to the left on spring A and to the right on spring B. These 

forces are equal and opposite so as not to upset the equilibrium that is 

already present. As a result spring A is compressed by 0.333 in and 

spring B is compressed by 0.167 in. This establishes compatibility, but 

a check of the end reactions of the springs shows that equilibrium has 

been lost in the new configuration. This is because the springs are 

nonlinear and have stiffened when compressed. The end reactions are 

higher than anticipated by the simple, first order approximation used to 

attain compatibility. This demonstrates that, in the presence of 

nonlinearity, there is no guarantee that compatibility or equilibrium 

will actually be achieved or maintained in any one iteration. These 

must be checked explicitly. The force that must appear on spring A to 

maintain this position is 444 lb, while that provided by spring B is 

only 335 lb. So there is a 109 lb right equilibrium error. This 

triggers another Iteration.

This time only equilibrium corrections are nonzero. The 

corrective force that must be applied to spring A is 43 lb right and the 

force on spring B is 66 lb right. In their new positions compatibility 

is maintained as was the intent in the method of finding force 

corrections for equilibrium. Equilibrium is still not quite satisfied. 

However, the error has been reduced to only 8 lb left. This causes the 

application of 3 lb left to spring A and 5 lb left to spring B. After 

these forces are applied compatibility is still satisfied and the 

equilibrium error is only 2 lb. This is close to the precision being 

used, so we say that the method has converged. The position where the 

springs are calculated to meet after 2.5 in of motion is at 12.297 in 
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and the forces on the ends of the springs are 395 lb left and 

397 lb right.

The final step has an iteration history similar to the step Just 

completed. It introduces a new 0.5 in compatibility error. The process 

starts again. A compatibility correction appears in the first 

iteration, but leaves an equilibrium error of 165 lb right. The second 

iteration leaves compatibility satisfied but there is still a force 

imbalance of 33 lb left. The third iteration leaves an equilibrium 

error of 7 lb right. Finally only a 1 lb left equilibrium error remains 

after the fourth iteration. Since this is within roundoff errors the 

process is assumed to have converged.

After the entire 3 inches of motion have been imposed on 

spring A the two springs are pressed together at 12.431 in with a 

contact force of 893 ± 1 lb. Spring A is at a stiffness of 1569 Ib/in 

being compressed by 0.569 in. Spring B is at a stiffness of 2074 Ib/in 

being compressed 0.431 in.

In this example, compatibility was established in the first 

iteration in each case. In the presence of further nonlinearities this 

may not have happened, nor would compatibility necessarily have been 

maintained. It is possible to excite both compatibility and equilibrium 

corrections in a single iteration.
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4.3 COMPLICATIONS OF TWO OR THREE DIMENSIONAL CONTACT

There are complications that arise in contact in two or three 

dimensions. They include:

1) There is more than one direction for compatibility and 

equilibrium considerations

2) There may be more than one node of each body in each contact 

area

3) Stiffness is now a matrix quantity rather than a scalar

4) The nodes in contact may not be touching nodes in the other 

body

Each of these requires some elaboration.

4.3.1 MORE THAN ONE DIRECTION

In two dimensional problems one has to consider equilibrium in 

directions normal and tangent to the contact surface. _ In three 

dimensional contact there are two tangent directions. The chief 

difficulty is in deciding which is the normal direction to the surface. 

This is affected by the assumptions which are made on where the true 

contact surface lies. In this work the difficulty is handled by the 

simple assumption that the normal to the exterior of the elements in the 

current configuration is an adequate approximation to the normal to the 

contact surface. As the elements are deformed during iterations for 
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contact or any other cause, the estimate of the normal direction is 

updated. As the iterations converge the element normals improve as 

estimates of the normal to the contact surface.

It is also necessary to use a depth of penetration. This is 

simple in one dimension but must be defined in some way for spaces that 

have more than one dimension. This choice of definition alone could be 

the subject of much argument. Here a simple choice is made. The depth 

of penetration is measured in the same direction as the normal forces in 

the equilibrium check.

4.3.2 MORE THAN ONE NODE IN CONTACT

In the one dimensional case there was no doubt as to which nodes 

were involved in contact. Only the nodes at the end of a body were ever 

considered. In two or three dimensions the exterior of a body is no 

longer just one node at either end. Each node on the exterior is a 

possible contact node. Of necessity each one must be .checked for 

contact. A node is considered to participate in contact if

1) it is an exterior node AND

2) is embedded in any other body OR

3) has compressive contact forces acting on it.

For purposes of computation there are many approaches to determining 

which nodes are in contact and which are not. An important feature of 

calculation that is implicit in the one dimensional case becomes 
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explicit in the two and three dimensional cases. Any node that is not 

in contact (all interior nodes and some exterior nodes) may be 

eliminated statically from the calculation of contact forces. This 

greatly reduces the number of degrees of freedom involved and so reduces 

the computational difficulty. The important conceptual step gained is 

that the entire body has been represented by only the contact surfaces. 

All deformations due to contact will exhibit the correct amount of 

strain energy and work.

4.3.3 STIFFNESS IS A MATRIX

In the one dimensional case the stiffness is a scalar. This is 

coincidental. One may correctly claim that the stiffness is a lxl 

matrix, rather that something that is inherently a scalar. In two and 

three dimensional problems the stiffness that remains after eliminating 

the non-contact nodes is a matrix. The number of degrees of freedom is 

the number of degrees of freedom per node times the. number of 

participating nodes. The stiffness is treated in two stages:

1) Degrees of freedom not associated with contact nodes are 

statically eliminated.

2) The remaining stiffness matrix is reduced statically to each 

contact degree of freedom. In this stage of reduction all 

remaining degrees of freedom are considered as free 

variables. Any displacement prescriptions are ignored. The 
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remaining stiffness is a measure of the strain energy 

required throughout the body for a motion to occur in that 

dof. The actual calculation of the individual reduced 

stiffnesses is done recursively to minimize the computational 

effort.

4.3.4 NODES DO NOT ALIGN

This is an especial problem that many workers have tried to 

handle by many different techniques. In realistic problems the meshes 

of opposing bodies will not necessarily match over the region of 

contact. So each node does not always find an opposing node, the forces 

and stiffnesses of which can be used to estimate the corrective forces 

for compatibility and equilibrium. Different quantities are mapped 

across the contact surface different ways. Stiffness is among those 

found by interpolation between opposing nodal values. Forces are among 

the quantities that are redistributed and reintegrated over-the mesh of 

node’s own body. This is elucidated in the following sections.
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4.4 REDISTRIBUTION OF NODAL QUANTITIES

Some nodal quantities are found as the integrals of distributed 

quantities. For example, nodal forces can be found as the integral of 

stress over the surface of the element. In more detail, there are 

several steps in calculating a nodal force from surface traction. First 

the traction is weighted by the shape functions. Then the product is 

integrated over the element to give elemental contributions to the nodal 

forces. Finally, in the assembly of elements, the individual elemental 

contributions are accumulated to give the nodal force.

This process may be illustrated here for an unspecified 

distributed quantity q. q is shown as a scalar. The argument is more 

long winded if q is of higher tensor order, but is essentially the same. 

It is necessary in that case to expand the calculation to treat each 

component of q separately. First form q as

4> <1 (4.4.1)

where 4> is a column of shape functions

q is the unspecified scalar field

q is a column of the same length as <j>

We define a global equivalent quantity, Q, concentrated at the nodes

The contribution from an element is calculated as

I M dV (4.4.2)
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where Q is the elemental contribution to the concentrated nodal 
el

quantity and

£2 is the elemental domain 
e 1

Finally the global concentrated nodal quantity, Q, corresponding to the

distributed quantity, q, is found by assembly. That is

(4.4.3)

where is the assembly operator.

There is a certain amount of information lost in this process.

The exact details of the distribution of <j are not important to the 

result, Q. Any other distribution, say qz , which has the same integral 

after weighting by the shape functions will produce the same result. In 

particular, one may imagine replacing q by some distribution, qz , of form

,T /I q (4.4.4)

where q' is an approximation for q and 

q' is a column of pseudo-nodal values

Let Q' be the concentrated nodal value found by using q' instead of q. 

Q' is then an approximation for Q. If the values of q' are chosen 

correctly then it may be possible to match Qz to Q exactly.

For the purposes of eqn(4.4.2) it would be allowable for each 

element to maintain its own vector, qz , of pseudo nodal values. Many 

finite element codes use this form for the input for distributed 

quantities such as pressures and thicknesses. But, to ease our
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calculation, let us make the assumption that every element that involves 

any given node uses the same value for qz at that node. This also gives 

that the approximation, q/ , is continuous even though there was no 

requirement that the original function, ■$, is continuous. We can now 

express Q' as

J <!> <bT q'el dV (4.4.5)

Where are those entries of qz for this element. Since the qz are

constants, rather than functions of position they may be taken outside 

the integral

(4.4.6)

We may define the elemental distribution matrix, N , for each element 

as the integral in eqn(4.4.6).

So eqn(4.4.6) may be written as

(4.4.8)

The assembly operation may be applied to the Q' to give Qz
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Q' - I = I (N.l <>) l4-4'9’
The assembly of the q' is just the global q' . This leads to a 

definition of a global distribution matrix, N, as the assembly of 

elemental distribution matrices, N . So 
e 1

N = N i (4.4.10)

This allows the global approximation to the concentrated nodal quantity 

to be expressed concisely as

Q' = N q' (4.4.11)

The approximation can be said to adequately represent the original 

function if both give the same global concentrated nodal quantity. 

Since the only degrees of freedom in q' are the q' , all adequacy 

conditions rest on them. The condition put above can be fulfilled by 

choosing q for the q', where q is the solution of

N q = Q (4.4.12)

This requires that the global distribution matrix, N, not be singular. 

For many situations this will be true. It may be noted that N has the 

same form as the consistent mass matrix for many classes of elements. 

For any such class that has a nonsingular consistent mass matrix the 

global distribution matrix is also nonsingular.
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This manner of approximating q not only loses the local detail 

of the distribution, but also may lose larger features. For example, 

suppose that some region (element or set of elements) had q of exactly 

zero over it. q' would not necessarily also show this but would tend to 

average the value among those elements and their neighbours. In the 

interior of such a region the value of q' may be quite close to zero or 

even exactly zero but near the periphery the results would change 

smoothly to the surrounding nonzero conditions. Care can be taken to 

allow for different results. In the above example it would be possible 

to suppress q' over an element by imposing values of zero for q' for all 

nodes in the unaffected elements before solving eqn(4.4.12). This would 

have the effect of forcing the distribution to zero at the edges of 

adjacent elements as well. An alternative possibility would be to 

introduce a deliberate discontinuity. This is done by omitting the 

unaffected elements from the assembly stage to give a modified global 

distribution matrix N*. Substitute N* into eqn(4.4.12) for N. The 

pseudo nodal values q' so obtained are not restricted to be zero around 

the edges of the unaffected elements. It must be remembered in such an 

approximation that a separate approximation of zero has been made for 

the omitted region.

In the example above any function that is known a priori can be 

used. The part of the distribution that is already known need not be 

zero. The point to be made is that in some circumstances care may be 

needed to achieve desired results or else a greater than minimal 

magnitude of approximation may occur.
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4.5 VIRTUAL ELEMENTS

The equations for the corrective force increments described in 

the one dimensional explanation assume that each node in contact is 

touching a node of the opposing body. This is achieved in a trivial 

fashion for one dimensional problems. This was achieved in early two 

dimensional finite element codes by restricting the allowed mesh of 

nodes and elements so that each node in one body was paired with a node 

in the touching body. Only very small misalignments of these nodes 

could be tolerated.

In the present scheme this difficulty is removed by the 

definition of a mesh of virtual nodes and virtual elements that exactly 

oppose the actual mesh of either body. Thus each contact node, or 

element, of body A will find a virtual node, or element, of body B 

touching it. Likewise the mesh of body B will find the virtual mesh of 

body A touching it. These virtual nodes provide the comparison for the 

definition of p, the penetration error, E^, the equilibrium error, and 

K, the opposing nodal stiffness. The use of the properties of these 

virtual nodes and elements gives the analyst freedom in the design of 

meshes and lifts the restriction that actual nodes must stay close 

together in pairs. The properties of a virtual node can be calculated 

at need, including its location.

The needed properties are found in a simple way. For sake of 

discussion, assume that a node of body A has penetrated into the bulk of 

body B. For a node embedded in another body the virtual node is located 

on the surface of the opposing body at a point where an inward normal 
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would point to the embedded node. Penetration depth is measured as the 

separation of the real (embedded) node of A and the virtual (surface) 

node of B as shown in Figure 4.4.

4.5.1 EQUILIBRIUM CORRECTIONS

For this we must find the stiffness and forces of each pair of a 

node and its opposing virtual node. The forces and stiffness of the 

actual node are available directly.

To find the stiffness of the virtual B node, first find the 

coordinates of the virtual B node in the actual B element. Then 

interpolate between the nodal stiffnesses of the actual B nodes. Since 

the nodal stiffnesses sire available as Castigliano style total 

stiffness, they represent the resistance of a body to motion in the 

degrees of freedom. Interpolation serves well to find an estimate of 

the resistance to motion at a location (virtual node of body B) between 

these known points (actual nodes in body B). ’

To find the forces acting on the virtual B node, first the 

actual forces on the actual B nodes are redistributed. This gives an 

approximate description of the contact tractions acting on body B. The 

virtual B element is chosen to occupy the same region and uses the same 

shape functions as the actual A element, but it is on the surface of 

body B. The B tractions are integrated over the virtual B element, 

weighted by the shape functions in the ordinary manner of finding nodal
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Figure 4.4 Determination of penetration depth
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forces from tractions. Each virtual elemental force vector is 

accumulated so that the complete virtual nodal forces are available when 

all of the virtual elements have been assembled.

The forces and stiffnesses are re-expressed in a coordinate set 

with the first coordinate in the normal direction. Equilibrium checks 

are made in the normal and tangential directions. If a node is found to 

be in tension in the normal direction it is released. Otherwise 

corrections are applied to distribute the force imbalance as in 

eqn(4.2.7).

4.5.2 COMPATIBILITY CORRECTIONS

This is accomplished for each body in two stages. In the first 

stage the position of the contact surface is estimated and corrective 

displacements proposed. The penetration depth of an node is the 

distance between the real node and the virtual node. In the case of a 

node that has penetrated, there is a region where overlapping volumes 

must be resolved. In the case of a node that is outside of the opposing 

body, but has not been released (still has compressive contact forces 

acting on it), this reveals that the current estimate of contact forces 

is too high. These forces must be reduced to allow the node to approach 

the contact surface. In either case, the direction of approach to the 

contact surface is always along the normal. The distance to approach is 

given in eqn(4.2.4). The forces given in eqn(4.2.4) could be used, but
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these ignore interactions between nodes. It is more effective to use 

the displacements and convert them to forces by multiplication by the 

stiffness matrix. That way all the interactions between nodes are 

preserved in the force increments that correct compatibility errors. 

The second stage accomplishes this multiplication by using the linear 

solver routines. The required displacements are given as prescribed 

displacements. The reactions to these prescribed displacements are the 

forces needed. Since the stiffness matrix is already factored and 

available from the linear prediction stage, there is very little cost 

for this way of converting the compatibility correcting displacements to 

forces.



CHAPTER FIVE

EXAMPLES

5.1 INTRODUCTION

In this chapter four examples are shown to illustrate the 

success of the contact algorithm. The first example is a Hertz problem. 

This is to demonstrate that the results are realistic and accurate. The 

calculated results are compared to the theoretical solution. The second 

example is a punch problem. A shallow V shaped wedge is pushed onto a 

flat plate. The elastic properties of the wedge and the plate are 

varied to explore the effects of the relative stiffness of the bodies in 

contact. The third example is two rectangular blocks of different 

sizes. This shows the behaviour in the presence of sharp corners. The 

results are robust even in the presence of such challenging geometry. 

The last example is a weak gasket pushed against a stiff gasket and then 

retracted. The displacement history shows that the method is 

reversible.
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5.2 HERTZ EXAMPLE

This is a plane strain example. An infinitely long right 

circular cylinder of isotropic linearly elastic material is pushed 

against a rigid flat frictionless surface. The cylinder has unit 
g

radius; the elastic material has a modulus of 10 and a Poisson’s ratio 

of 0.2. The "rigid" surface is modelled as a line of elements, 
. . 9completely fixed on the lower surface, with an elastic modulus of 3x10 . 

3That is, the material is 3x10 times as stiff as that of the cylinder. 

Together with the support conditions, the lower body is effectively 

rigid. The mesh is shown in the original configuration in Figure 5.1. 

Since the problem is symmetric about the central plane, only half of it 

is modelled. At the end of motion a force of 1530 has been applied to 

the half model. The final configuration of elements near the contact 

region is shown in Figure 5.2. The normal contact stress is plotted 

against distance from the central plane in Figure 5.3. The solid 

quarter circle shows the theoretical results. The horizontal lines show 

the range of the calculated results. The vertical scale is normal 

contact stress divided by the maximum normal contact stress. The 

uncertainties in the data on this scale are negligible. The horizontal 

axis is horizontal position divided by the radius of contact. As the 

calculated results can only say that the radius of contact is somewhere 

in element 207 a range is shown. The left end of each datum (shown with 

a hollow square) uses the extreme outer edge of element 207 (node 208) 

as the upper limit of the radius of contact. The right end of each
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datum (shown with a filled square) uses the extreme inner edge of 

element 207 (node 207) as the lower limit of the radius of contact.

The data follow the theoretical results quite well. This shows 

that the method is adequate and accurate for classical problems. This 

suggests that it should perform well in analyses of practical interest. 

To decide whether the method is indeed generally useful some further 

investigation is needed. It is necessary to probe some of the possible 

conditions that may place demands on the performance of a useful contact 

algorithm. Each of the other three example look at some particular 

aspect.

5.3 WEDGE EXAMPLE

In this example a wide shallow wedge is driven slightly into a 

flat plate. The flat plate is of unit thickness and is rigidly fixed on 

its lower surface. The wedge varies from unit thickness at the outer 

edges to a thickness of 1.3 at the center. Initially the point of the 

wedge is Just touching the plate. The central portion of the wedge has 

an imposed downward motion of 0.3. The problem is symmetric with 

respect to the central plane, so only the right half is modelled. In 

five runs the geometry and fixed displacements stay the same while the 

elastic modulus of the materials is varied. This will show whether 

there is any practical limit on the relative stiffness of the two 

materials. The five cases examined are:
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1) The wedge is 1000 times stiffer than the plate

2) The wedge is twice as stiff as the plate

3) The wedge and the plate are of equal stiffness

4) The plate is twice as stiff as the wedge

5) The plate is 1000 times as stiff as the wedge

The initial configuration and mesh is shown in Figure 5.4. The linear 

prediction results in the wedge moving downwards 0.3. This results in 

overlap as shown in Figure 5.5.

For the case where the wedge material is one thousand times 

stiffer than the plate material, the final configuration is shown in 

Figures 5.6, 5.11 and 5.12. This took three iterations. As expected, 

all of the deflection is in the plate.

For the case where the plate material is one thousand time 

stiffer than the wedge material, exactly the opposite occurs. The final 

configuration, shown in Figures 5.7, 5.11 and 5.13 was reached after 

only two iterations. This time all of the deflection is in the wedge.

For the case where the wedge and the plate are made of identical 

materials, the final configuration is shown in Figures 5.8 and 

5.11 to 5.13. The contact surface is nearly at the center of the 

overlap produced by the linear prediction. It is actually a little 

above the center between the two extreme cases. It is expected that the 

position of the contact surface will be slightly above the middle of the 

linearly predicted overlap because the plate, being rigidly supported 

from beneath and thinner than the wedge, is structurally stiffer than 

the wedge. This case took four iterations to converge.

For the case where material of the wedge is twice as stiff as
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that of the plate, the final configuration is shown in 

Figures 5.9 and 5.12. The contact surface lies between that for the 

case where the two materials Eire of equal stiffness and the case where 

the upper material is much stiffer than the lower material. This took 

six iterations to converge.

For the case where the plate material is twice the stiffness of

the wedge material, the final configuration is shown in Figure 5.10 and 

5.13. This shows the final contact surface located between that where 

the materials are equally stiff and where the plate is rigid by 

comparison to the wedge. This took four iterations to converge.

For the sake of visual comparison. Figures 5.11 - 5.13 show

more than one final position in individual drawings. Figure 5.11 shows 

the cases 1, 3 and 5. This allows comparison of the extreme cases and 

the equal stiffness case. Figure 5.12 shows cases 1, 2 and 3. This 

compares cases where the wedge is as stiff or stiffer than the plate. 

Figure 5.13 shows cases 3, 4 and 5. These are the cases where the 

plate is at least as stiff as the wedge.

The cases shown in this example' show sensible results. From

them it may be inferred that the algorithm behaves well in the presence 

of a wide range of stiffness ratios.
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5.4 BLOCK EXAMPLE

In the third example a larger block is forced against a smaller, 

fixed block. The materials in the blocks are identical. The challenge 

to a contact calculation that this example presents is the sharp corners 

of the smaller block. How well are the contact conditions met near such 

an irregular boundary? The initial configuration is shown in 

Figure 5.14, the linear prediction in Figure 5.15 and the final in 

Figure 5.16. The model used is very crude. Even so it can be seen that 

reasonable results are produced in the presence of sudden angular 

changes in the boundary.
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Figure 5.16
Block example: Final configuration
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5.5 GASKET EXAMPLE

This example demonstrates that the method behaves reversibly in

the absence of other nonlinearities. The bodies in contact are a soft 

gasket of semicircular section and a similar stiff gasket against which

the soft one is pushed. See Figure 5.17. The back side of each gasket

has all of its displacements prescribed. Both gaskets have unit radius

and a thickness of 0.1. There is a vertical offset of 0.25 between the

centers and a horizontal separation of 0.2. They are forced together by

a prescribed horizontal motion of their backs such that each moves 0.25.

This would cause considerable overlap if contact were ignored. The

initial and final positions, ignoring contact, are shown in

Figure 5.18. The calculation, including contact, is advanced by small

steps. At step 5 overlap occurs for the first time as shown in

Figure 5.19. After iterating contact is resolved as shown in

Figure 5.20. The maximum deflection occurs in the tenth step. The

linear prediction is shown in Figure 5.21 and the resolved positions in

Figure 5.22. Then the gaskets start to retreat from each other. The 

final and initial positions are shown in Figure 5.23. They overlay 

very closely. This is a good demonstration of the reversibility of the 

method.
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Figure S.21 Gasket example: Linear prediction for step 10
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5.6 DISCUSSION

There are a few aspects of the method that should be discussed.

This is still a nonlinear problem of some severity. There are certain 

aspects of nonlinear finite element calculations that should be 

mentioned: step size, mesh refinement, tolerances, convergence and 

relaxation.

The first let us look at step size. For nonlinear calculations 

to converge the step size must usually be small. For accurate results, 

the step size is often strictly limited; otherwise the calculated 

history of loads and displacements may diverge from the intended problem 

to an unacceptable extent. Further, there are cost penalties as well as 

accuracy disadvantages to the use of large steps. It is common for the 

use of larger steps to require disproportionately more iterations. Given 

that the method is stable, there is a certain problem dependent limit, 

within which any step will converge quickly. It is not clear a priori 

how big this limit is. There is a necessary conceptual limit in these 

contact calculations in particular. One of the requisites is that the 

penetration or emergence of nodes must be shallow. This is necessary 

both to keep the step size small and to keep the direction of the 

surface normal well defined. The limitation that has been used in the 

calculations presented here is that no node may penetrate all the way 

through the layer of elements that form the outer rind of the body. If 

a node is found embedded in an element that is in the bulk of the body’s 

volume, then an error is declared and calculations are stopped. This 

puts a limit on the size of step that can be undertaken in the linear 
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prediction. If the elements on the surface are thin, then the steps 

must be kept very small. This is of practical importance. For such an 

analysis, it is possible that the requirement that nodes not penetrate 

past the surface layer of elements may place a more restrictive upper 

bound on the size of a step than the limitations imposed by the need to 

define the outward normal or the desire for rapid convergence.

Mesh refinement is a matter for thought in designing a finite 

element model. How well any algorithm can follow the details of contact 

in a small region is limited by the fineness of the mesh. Also, the 

relative refinement of the mesh on either side of the contact surface is 

important to this method. If on one side the mesh were very fine and on 

the other side the mesh were very crude, then there would be 

implications for the numerical integrations of the virtual elements. 

According to the smaller elements, there would be very slow variation in 

the opposing contact traction as compared to the internal coordinates 

and low order integration would suffice. For the larger elements, the 

opposing contact tractions may seem to vary very rapidly as compared to 

their internal coordinate systems. For the large elements, it may be 

necessary to use an integration scheme of quite high order. Good 

results are observed to occur when the elements on either side of 

contact are similar in size. A size ratio of 3:1 is easily tolerated. 

For larger ratios it is suggested that care be taken that the surface 

integrals are of sufficiently high order. This is not an important 

calculational burden, but it does affect performance.

The method uses two tolerances. If a node has penetrated, or 

emerged, only a very small distance, then this is considered a 
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negligible error. No compatibility correction is found for it. Instead 

its displacements are considered free variables in the backsubstitution 

pass that calculates the forces needed move the body to the contact 

surface. The other tolerance is on the equilibrium errors at pairs of 

real and virtual nodes. If this error is sufficiently small, then 

further corrections are not attempted. Clearly the choices made for 

these tolerances limit the accuracy that it is possible to achieve. 

They also limit the cost of an analysis. The engineer who wishes to 

find the solution to a contact problem must decide how much accuracy can 

afforded. The behaviour of the method is insensitive to the equilibrium 

tolerance so long as it is small compared to the nodal loads. The 

penetration tolerance has more effect on the behaviour of the method. 

There is an interaction between element size and penetration tolerance. 

This tolerance must always be small compared to the thickness of an 

element or else the linear prediction stage will tend to cause nodes to 

penetrate past the surface layer of elements. If very detailed results 

are needed, then this tolerance can be set so low as to enforce near 

perfect compatibility. This may lead to using many iterations.

The criterion for convergence is another matter that affects 

nonlinear calculations strongly. As used in these calculations, a step 

is considered to have converged when either of two criteria is met. The 

first possibility is that the corrective forces for an iteration are 

less than some specified fraction of the largest for the step. 

Magnitude is compared by the Euclidean norm of sum of the incremental 

equilibrium and compatibility forces. The other possibility is that the 

displacements that resulted from applying the corrective forces are 



218

small when compared to the largest incremental displacement for the 

step. This means that at least two iterations are required for each 

step where contact is detected. One to establish initial values for the 

magnitudes of corrective forces and resultant displacements and one or 

more further iterations until one of the criteria are met. If the force 

criterion causes iterations to cease, then that increment of force is 

not applied. How many iterations are required and how well the contact 

conditions are met depends on what fraction is specified for 

convergence. Experience so far suggests that 1% gives good results. It 

is possible to get results with a less stringent convergence limit, but 

it is not guaranteed that the contact conditions will be well met. This 

is particularly true where the bodies involved have greatly different 

elastic moduli and the stiffer body has sharp irregularities on a scale 

similar to the size of the elements of the body with the more flexible 

material. In that case, it is possible that the sharp points of the 

stiff material will not be completely ejected from the flexible 

material. For a very approximate analysis this may not matter. For an 

investigation that requires accuracy in the fine details, it is better 

to set the limits of convergence to be very fine and to reduce the size 

of the elements in the flexible material.

Another consideration is the use of relaxation factors. These 

will accelerate or retard convergence depending on how they are used. 

The best values to use seem to be problem dependent. Experiments show 

that for many analyses it is effective to under relax the first few 

iterations. It is sometimes effective to over relax later iterations.

The most useful application of this arises in the release of 
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nodes that are found to have tensile contact forces. Recall that the 

algorithm works by allowing a physical error to occur and then 

correcting it. It is possible when step sizes are large for the 

compatibility corrections of the first iteration to apply tensile forces 

to nodes near the edge of the contact region. For physical reasons 

these must be released. However, in many cases, if all of the tension 

is released at once, then there is an unwonted disturbance to the 

calculations. If, instead, the release of this excess traction is done 

over two (or more) iterations, then the magnitude of subsequent 

corrections is much less and the overall convergence is greatly 

accelerated. Trials to date suggest that releasing half of the force 

over each of two iterations results in disturbances which are easily 

tolerated by the calculation.

The final discussion is to assess the utility of this new 

algorithm. Here the evidence of the examples is helpful. It has been 

shown the method is accurate, that it behaves well under a wide variety 

of conditions of relative stiffness, that geometric irregularities do 

not disturb it unduly and that it is reversible. This is a strong 

argument that this algorithm is sufficiently robust and rapidly 

convergent to be very suitable for practical applications.



CHAPTER SIX

CONCLUSIONS

6.1 CONCERNING REFERENTIAL MECHANICS

In Chapter Two a careful study was presented of several basic 

quantities used in referential mechanics. Care was used to keep track 

of the use of configurations for various purposes, especially for 

gradients and for reference. For this work a detailed notation was 

developed from earlier similar notations. The result was that correct 

forms were found for incremental displacement-based pseudo strains. In 

particular, the form of the linear part of the increment of pseudo 

strain for the updated Lagrangian formulation was corrected from earlier 

works. '

In Chapter Three the repercussions of the forms developed in

Chapter 2 are investigated. The detailed form of the Rate of Work 

Principle for static and dynamic problems is presented.
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6.2 CONCERNING VIRTUAL FINITE ELEMENTS FOR CONTACT PROBLEMS

In Chapter Four a new algorithmic procedure is presented for 

approximate solutions to contact problems using the finite element 

method. In Chapter Five some examples are presented which demonstrate 

certain features of this new procedure.

This contact algorithm has two salient new features. It allows 

independence of the meshes of the bodies involved in contact. It 

introduces a new concept, the virtual mesh, which facilitates the 

translation of quantities across the contact surface. Other uses for 

virtual meshes may be found. It is noted that the algorithm used 

converges very rapidly. This is attributed to the manner in which the 

corrections are undertaken. That is, there are separate corrective 

forces applied for kind of error and these corrections do not interfere 

with each other to the first order.
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