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Abstract

A flexible family of mixture models known as cluster-weighted models (CWMs) arise

when the joint distribution of a response variable and a set of covariates can be

modelled by a weighted combination of several component distributions. We introduce

an extension to CWMs where changepoints are present. Similar to the finite mixture

of regressions (FMR) with changepoints, CWMs with changepoints are more flexible

than standard CWMs if we believe that changepoints are present within the data. We

consider changepoints within the linear Gaussian CWM, where both the marginal

and conditional densities are assumed to be Gaussian. Furthermore, we consider

changepoints within the Poisson and Binomial CWM. Model parameter estimation

and performance of some information criteria are investigated through simulation

studies and two real-world datasets.
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Chapter 1

Introduction

Changepoints, also known as breakpoints, refer to locations in the data where there

is a significant change in the relationship between the dependent and independent

variables. That is, changepoints denote the points at which the linear or non-linear

relationship between the variables undergoes a sudden shift. Identifying changepoints

in an ordinary regression framework is crucial as they indicate potential shifts in the

underlying process being studied.

In a regular regression setting, changepoints have been widely studied before, and

are commonly known as piecewise or segmented linear regression problems. Within a

model-based clustering framework, changepoints can also be applied for models that

assume one dependent and many independent variables. In this thesis, we introduce

changepoints within a general conditional mixture model called a cluster-weighted

model (CWM).

In Chapter 2, we give a brief summary of the history behind clustering and state

some finite mixture models, as well as the definitions for such models. We outline the

implementation and estimation of the CWM with changepoints in Chapter 3. Then,
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we perform some simulations to assess the performance of our models in Chapter 4.

In Chapter 5, we apply our model to a couple of real-world datasets. Lastly, we give

some concluding remarks and possible future work in Chapter 6.
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Chapter 2

Background

2.1 History of Clustering

For some context of clustering, we first state the formulation of clustering given

by Tiedeman (1955), which is summarized in McNicholas (2016). Suppose there are

𝐺 groups, where each group is generated by a Gaussian density function. Then,

remove the type identification of each group, and we have a mixture of unknown

densities. Finally, we want to reconstruct the 𝐺 Gaussian density functions of types.

The procedure given by Tiedeman (1955) is what we know as model-based clustering

today, and Wolfe (1965) developed one of the first computer programs for computing

the maximum likelihood estimates (for the means and covariances) from a mixture of

multivariate Gaussian distributions with a maximum of five variables and six compo-

nents. Wolfe (1963) gives another definition of clustering in terms of similarity:

A type is a set of objects which are more similar to each other than they

are to objects not members of the set.

3
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However, the criterion of a “similarity” measure is often difficult to define, which is

the reason a “cluster” in general cannot be precisely defined (Estivill-Castro, 2002).

Building upon the definitions given by Tiedeman (1955) and Wolfe (1963), McNicholas

(2016) defines a cluster in the context of model-based clustering as follows:

A cluster is a unimodal component within an appropriate finite mix-

ture model.

There are a couple of things to note about this definition. First, the component

should be unimodal. Otherwise, either the wrong mixture distribution is being used,

or not enough components are being estimated. Second, the mixture model should be

appropriate in the sense that the model has adequate “flexibility, or parameterization,

to fit the data” (McNicholas, 2016). We proceed with model-based clustering in light

of McNicholas (2016).

2.2 Varieties of Mixture Models

Finite mixture models are a powerful device for clustering and classification when

assuming that each mixture component represents a group (or cluster) in the original

data (Titterington et al., 1985). Broadly speaking, there are two classes of mixture

models: unconditional and conditional mixture models.

Unconditional mixture models, also known as finite mixture of distributions (FMD),

assume that there are no exogenous variables that explain the means and variances

of each group. A couple of examples of unconditional mixture models include: 𝑘-

means (MacQueen, 1967) and finite mixture models (McLachlan et al., 2019).

Conditional mixture models allow for simultaneous classification of observations

4
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as regressions, while also estimating the means and variances of the dependent vari-

able within each group. A couple of examples of conditional mixture models include:

finite mixture of regressions (FMR; DeSarbo and Cron, 1988) and finite mixtures

of generalized linear models (FGLM; Wedel and DeSarbo, 1995). Similar to regular

regression models, both the FMR and FGLM do not make any distributional as-

sumptions on the covariates for clustering; that is, both models assume “assignment

independence”, which may be inadequate for many applications (Punzo and McNi-

cholas, 2017). Hence, finite mixture of regressions with concomitant variables (FMRC)

were introduced to account for random covariates within a FMR framework (Dayton

and Macready, 1988; Wedel, 2002). Within a FMRC model, the weights of the mix-

ture model depend on the concomitant variables (i.e., random covariates), where the

weights are usually modelled by a multinomial logistic distribution. Young (2014)

introduced changepoints within the FMR framework (i.e., under the assumption that

the response is Gaussian and the covariates are non-random quantities), which is

implemented in the function segregmixEM from the mixtools package in the R soft-

ware (Benaglia et al., 2009; R Core Team, 2023).

Another conditional mixture model is the cluster-weighted model (CWM; Gershen-

feld, 1997). The original paper by Gershenfeld (1997) is formulated under Gaussian

and linearity assumptions. However, CWMs have been shown to be flexible and

can take on many distributional assumptions. For example, Ingrassia et al. (2012)

introduced a CWM under the assumption that the response follows a Student-𝑡 dis-

tribution, which was shown to provide a better fit for noisy data. Extending the

work from Ingrassia et al. (2012), Ingrassia et al. (2014) introduced a family of twelve

mixture models with random covariates that are nested within the Student-𝑡 CWM.

5
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Ingrassia et al. (2015) presented CWMs where the covariates have mixed data types

(e.g., both Gaussian and Poisson) assuming that the response belongs to the exponen-

tial family, which is implemented in the flexCWM package in R (Mazza et al., 2018).

Similar to the purpose of the Student-𝑡 CWM, Punzo and McNicholas (2017) pro-

vided a contaminated Gaussian CWM; that is, a CWM that assumes the data has

outliers. Furthermore, Punzo (2014) introduced a polynomial Gaussian CWM in the

case where the covariates are univariate. In our thesis, we introduce the segmented

CWM, henceforth abbreviated as sCWM (i.e., a cluster-weighted model with change-

points), under the assumption that our response follows either a Gaussian, Poisson,

or Binomial distribution.

2.3 Finite Mixture Model (FMM)

Suppose we have data of the form 𝒙1, … , 𝒙𝑁 , where each observation is a realization

of a 𝑝-dimensional random vector 𝑿 with joint probability function 𝑝(𝒙). The 𝐺-

component finite mixture model (FMM) is defined by

𝑓(𝒙; 𝝑) =
𝐺

∑
𝑔=1

𝑓𝑔(𝒙; 𝜽𝑔)𝜋𝑔, (2.1)

where 𝑓𝑔(𝒙; 𝜽𝑔) is the probability density of 𝒙 (parameterized by 𝜽𝑔), 𝜋𝑔 is the 𝑔th

mixing proportion (with constraints ∑𝐺
𝑔=1 𝜋𝑔 = 1 and 𝜋𝑔 > 0 for all 𝑔 = 1, … , 𝐺),

and 𝝑 = {𝜋𝑔, 𝜽𝑔 | 𝑔 = 1, … , 𝐺} is the set of all parameters in the model. In many

clustering applications, we set 𝑓𝑔(𝒙; 𝜽𝑔) = 𝑓(𝒙; 𝜽𝑔) for all 𝑔 = 1, … , 𝐺; that is, the

observations within each cluster arise from the same distribution.

6
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2.4 Finite Mixture of Regressions (FMR)

Let 𝑦𝑖 and 𝒙𝑖 denote the realizations of 𝑌𝑖 and 𝑿𝑖 for 𝑖 = 1, … , 𝑁 , respectively. The

𝐺-component finite mixture of regressions (FMR) model is defined by

𝑓(𝑦; 𝒙, 𝝑) =
𝐺

∑
𝑔=1

𝜑(𝑦; 𝒙′𝜷𝑔, 𝜎2
𝑔)𝜋𝑔, (2.2)

where 𝜑( ⋅ ; 𝒙′𝜷𝑔, 𝜎2
𝑔) is the Gaussian probability density function with mean 𝒙′𝜷𝑔

and variance 𝜎2
𝑔, 𝜋𝑔 is the 𝑔th mixing proportion, and 𝝑 = {𝜷𝑔, 𝜎2

𝑔, 𝜋𝑔 | 𝑔 = 1, … , 𝐺}
is the set of all parameters in the model.

2.5 Cluster-Weighted Model (CWM)

Suppose we have data of the form (𝒙1, 𝑦1), … , (𝒙𝑁 , 𝑦𝑁), where each observation is

a realization of (𝑿, 𝑌 ) defined on Ω with joint probability function 𝑝(𝒙, 𝑦). We say

that 𝑿 is the 𝑝-dimensional covariate vector and 𝑌 is the response variable. Now,

suppose that Ω can be partitioned into 𝐺 disjoint groups, Ω1, Ω2, … , Ω𝐺; that is,

Ω = ⋃𝐺
𝑔=1 Ω𝑔 where Ω𝑖 ∩ Ω𝑗 = ∅ for 𝑖 ≠ 𝑗. The 𝐺-component cluster-weighted model

(CWM) is defined by

𝑝(𝒙, 𝑦; 𝝑) =
𝐺

∑
𝑔=1

𝑝(𝑦 ∣ 𝒙, Ω𝑔)𝑝(𝒙 ∣ Ω𝑔)𝜋𝑔 =
𝐺

∑
𝑔=1

𝑝(𝑦 ∣ 𝒙; 𝝃𝑔)𝑝(𝒙; 𝜶𝑔)𝜋𝑔, (2.3)

where 𝑝(𝑦 ∣ 𝒙, Ω𝑔) = 𝑝(𝑦 ∣ 𝒙; 𝝃𝑔) is the conditional density of 𝑌 given 𝑿 = 𝒙 in Ω𝑔

(parameterized by 𝝃𝑔), 𝑝(𝒙 ∣ Ω𝑔) = 𝑝(𝒙; 𝜶𝑔) is the probability density of 𝑿 in Ω𝑔

(parameterized by 𝜶𝑔), 𝜋𝑔 = 𝑝(Ω𝑔) is the 𝑔th mixing proportion, and 𝝑 = {𝝃𝑔, 𝜶𝑔, 𝜋𝑔 |
𝑔 = 1, … , 𝐺} is the set of all parameters in the model.

For this thesis, we assume that the marginals are Gaussian, i.e., 𝑿 ∣ Ω𝑔 ∼

7
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𝒩𝑝(𝝁𝑔, 𝚺𝑔), so that 𝑝(𝒙 ∣ Ω𝑔) = 𝜑𝑝(𝒙; 𝝁𝑔, 𝚺𝑔), where 𝜑𝑝 is the probability den-

sity of a 𝑝-variate Gaussian distribution. Hence, we may write (2.3) as

𝑝(𝒙, 𝑦; 𝝑) =
𝐺

∑
𝑔=1

𝑝(𝑦 ∣ 𝒙; 𝝃𝑔)𝜑𝑝(𝒙; 𝝁𝑔, 𝚺𝑔)𝜋𝑔, (2.4)

and we refer to (2.4) as the generalized linear Gaussian CWM (GLGCWM). We will

now specify the types of CWMs we will use within this thesis.

2.5.1 Linear Gaussian CWM

If 𝑌 ∣ 𝒙, Ω𝑔 ∼ 𝒩(𝜂(𝒙; 𝜷𝑔), 𝜎2
𝑌𝑔

), then 𝑝(𝑦 ∣ 𝒙, Ω𝑔) = 𝜑(𝑦; 𝜂(𝒙; 𝜷𝑔), 𝜎2
𝑌𝑔

), where

𝜷𝑔 = (𝛽0𝑔, 𝜷′
1𝑔)′, and 𝜂(𝒙; 𝜷𝑔) = 𝛽0𝑔 + 𝜷′

1𝑔𝒙. Hence, we may write (2.4) as

𝑝(𝒙, 𝑦; 𝝑) =
𝐺

∑
𝑔=1

𝜑(𝑦; 𝜂(𝒙; 𝜷𝑔), 𝜎2
𝑌𝑔

)𝜑𝑝(𝒙; 𝝁𝑔, 𝚺𝑔)𝜋𝑔, (2.5)

where 𝜑 (𝜑𝑝) is the probability density of a univariate (𝑝-variate) Gaussian distribu-

tion. We refer to (2.5) as the linear Gaussian CWM. Here, 𝝃𝑔 = {𝜷𝑔, 𝜎2
𝑌𝑔

|𝑔 = 1, … , 𝐺}
and 𝜶𝑔 = {𝝁𝑔, 𝚺𝑔 | 𝑔 = 1, … , 𝐺}, so 𝝑 = {𝜷𝑔, 𝜎2

𝑌𝑔
, 𝝁𝑔, 𝚺𝑔, 𝜋𝑔 | 𝑔 = 1, … , 𝐺} is the set

of all parameters for the linear Gaussian CWM.

2.5.2 Poisson CWM

If 𝑌 takes values in {0, 1, 2, …} and 𝑌 ∣ 𝒙, Ω𝑔 ∼ Poisson(𝜂(𝒙; 𝜷𝑔)), then

𝑝(𝑦 ∣ 𝒙; 𝜷𝑔) = exp(−𝜂(𝒙; 𝜷𝑔))(𝜂(𝒙; 𝜷𝑔))𝑦

𝑦! , for 𝑦 = 0, 1, … , (2.6)

where 𝜂(𝒙; 𝜷𝑔) = exp(𝛽0𝑔 +𝜷′
1𝑔𝒙). If we assume (2.6) in our GLGCWM, we have the

Poisson CWM. Here, 𝝃𝑔 = {𝜷𝑔 | 𝑔 = 1, … , 𝐺} and 𝜶𝑔 = {𝝁𝑔, 𝚺𝑔 | 𝑔 = 1, … , 𝐺}, so

8
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𝝑 = {𝜷𝑔, 𝝁𝑔, 𝚺𝑔, 𝜋𝑔 | 𝑔 = 1, … , 𝐺} is the set of all parameters for the Poisson CWM.

2.5.3 Binomial CWM

If 𝑌 takes values in {0, 1, … , 𝑀}, where 𝑀 is a positive integer, and 𝑌 ∣ 𝒙, Ω𝑔 ∼
Binomial(𝑀, 𝜂(𝒙; 𝜷𝑔)), then

𝑝(𝑦 ∣ 𝒙; 𝜷𝑔) = (𝑀
𝑦 )(𝜂(𝒙; 𝜷𝑔))𝑦(1 − 𝜂(𝒙; 𝜷𝑔))𝑀−𝑦, for 𝑦 = 0, 1, … , 𝑀, (2.7)

where

𝜂(𝒙; 𝜷𝑔) = exp(𝛽0𝑔 + 𝜷′
1𝑔𝒙)

1 + exp(𝛽0𝑔 + 𝜷′
1𝑔𝒙) ≔ expit(𝛽0𝑔 + 𝜷′

1𝑔𝒙).

If we assume (2.7) in our GLGCWM, we have the Binomial CWM. Here, 𝝃𝑔 = {𝜷𝑔 |
𝑔 = 1, … , 𝐺} and 𝜶𝑔 = {𝝁𝑔, 𝚺𝑔 | 𝑔 = 1, … , 𝐺}, so 𝝑 = {𝜷𝑔, 𝝁𝑔, 𝚺𝑔, 𝜋𝑔 | 𝑔 = 1, … , 𝐺}
is the set of all parameters for the Binomial CWM.

2.6 Performance

2.6.1 Overall Model Performance

The Bayesian information criterion (BIC; Schwarz, 1978) has been shown to not

underestimate the number of components and consistently estimates the number of

components under certain regularity conditions in a mixture model setting (Leroux,

1992; Keribin, 2000). For a model with parameters 𝝑, the BIC is given by

BIC = 2ℓ( ̂𝝑) − 𝜈 log 𝑁, (2.8)

where ℓ( ̂𝝑) is the maximized observed-data log-likelihood, ̂𝝑 is the final estimate of

𝝑, 𝜈 is the number of free parameters, and 𝑁 is the number of observations. Note

9
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that we select our final model by maximizing (2.8). If we do not know the number

of changepoints beforehand, Muggeo (2008) also suggests using the BIC to select the

best model (in a non-mixture setting). The BIC can also be useful for comparing a

regular CWM to an sCWM to determine which model is best for the data. However,

we note that the BIC for a FMR and CWM cannot be compared in most cases (see

Ingrassia et al., 2012).

2.6.2 Clustering Performance

The adjusted Rand index (ARI; Hubert and Arabie, 1985) can be used to assess

clustering performance for a simulation setting as we know the true classifications.

Let 𝒫 be the predicted partition and 𝒯 be the true partition of classifications. Define

𝑎 as the number of pairs of observations that are in the same clusters in both 𝒫 and

𝒯, 𝑏 as the number of pairs of observations that are in different clusters in both 𝒫
and 𝒯, 𝑐 as the number of pairs of observations that are in the same clusters in 𝒫 and

different clusters in 𝒯, 𝑑 as the number of pairs of observations that are in different

clusters in 𝒫 and the same clusters in 𝒯. The original Rand index (RI; Rand, 1971)

is given by

RI = 𝑎 + 𝑏
𝑎 + 𝑏 + 𝑐 + 𝑑.

In non-mathematical terms, the RI quantifies the proportion of agreement between

the predicted and true classifications. The RI takes values between 0 and 1 (perfect

assignment).

One issue with the RI is that under random assignment the RI has a positive

expected value, so the ARI was introduced to account for this issue. The ARI is

10
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given by

ARI = RI − 𝔼[RI]
max(RI) − 𝔼[RI] . (2.9)

Hence, the ARI has an expected value of 0 under random assignment, a value of

1 under perfect assignment, and a value of less than 0 under worse than random

assignment. For further details about the ARI, see Steinley (2004). In R, we calculate

the ARI with the adjustedRandIndex function from the mclust package. Note that

we classify each group after the algorithm converges into 𝐺 groups via the maximum

a posteriori (MAP) rule, which assumes a value of 1 if max𝑔=1,…,𝐺{𝑧(𝑘)
𝑖𝑔 } occurs at

component 𝑔, and 0 otherwise.

11



Chapter 3

Methodology

3.1 CWM with Changepoints

To account for changepoints in a GLGCWM, we employ a simple data augmentation

technique. Assume that there are 𝑐𝑗𝑔 changepoints for covariate 𝑗 = 1, … , 𝑝 in group

𝑔 = 1, … , 𝐺. We define the augmented covariate vector for observation 𝑖 = 1, … , 𝑁
and covariate 𝑗 = 1, … , 𝑝 by

𝒙𝑖𝑗(𝝍𝑗𝑔) = (𝑥𝑖𝑗, (𝑥𝑖𝑗 − 𝜓𝑗1𝑔)+, … , (𝑥𝑖𝑗 − 𝜓𝑗𝑐𝑗𝑔𝑔)+)′,

where (𝑧 − 𝜓)+ = (𝑧 − 𝜓) 𝕀{𝑧 > 𝜓} and 𝕀{ ⋅ } is the indicator function, and 𝝍𝑗𝑔 =
(𝜓𝑗1𝑔, … , 𝜓𝑗𝑐𝑗𝑔𝑔)′ is the vector of 𝑐𝑗𝑔 distinct changepoints for covariate 𝑗 in group

𝑔. It is worth noting that when there are no changepoints for a given group 𝑔, the

augmented covariate vector is equivalent to 𝑥𝑖𝑗. We can then define the augmented

vector of all covariates for observation 𝑖 = 1, … , 𝑁 by

𝒙𝑖(𝝍𝑔) = (1, 𝒙𝑖1(𝝍1𝑔)′, … , 𝒙𝑖𝑝(𝝍𝑝𝑔)′)′, (3.10)

12
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where 𝝍𝑔 = (𝝍′
1𝑔, … , 𝝍′

𝑝𝑔)′ is the vector of all changepoints in group 𝑔, and 1 is

added at the beginning of 𝒙𝑖(𝝍𝑔) to account for the intercept regression coefficient.

Let 𝑘 = 1, … , 𝑐𝑗𝑔 be the index for the known number of changepoints, 𝑘⋆ = {0} ∪ 𝑘,

and 𝑗⋆ = {0} ∪ 𝑗. Now, the regression coefficients become

𝜷𝑔 = (𝛽00𝑔, 𝛽10𝑔, … , 𝛽1𝑐1𝑔, … , 𝛽𝑝0𝑔, … , 𝛽𝑝𝑐𝑝𝑔)′,

where 𝛽𝑗⋆𝑘⋆𝑔 is the 𝑘⋆th regression coefficient for the 𝑗⋆th covariate in group 𝑔, where

𝑘⋆ = 0 are the regression coefficients for the regular 𝑥𝑖𝑗’s and 𝑗⋆ = 0 are the regression

coefficients for the intercepts. If we combine all these vectors, we can define the

augmented design matrix for group 𝑔 = 1, … , 𝐺 by

𝐗(𝝍𝑔) = (𝒙1(𝝍𝑔), … , 𝒙𝑁(𝝍𝑔)). (3.11)

Using this formulation, we can see that the changepoints are accounted for within

the link function of a given CWM. Dropping subscripts 𝑖 for 𝒙𝑖(𝝍𝑔), for the linear

Gaussian CWM, we have 𝜂(𝒙; 𝜷𝑔) = 𝒙(𝝍𝑔)′𝜷𝑔; for the Binomial CWM, we have

𝜂(𝒙; 𝜷𝑔) = exp(𝒙(𝝍𝑔)′𝜷𝑔)
1 + exp(𝒙(𝝍𝑔)′𝜷𝑔);

for the Poisson CWM, we have 𝜂(𝒙; 𝜷𝑔) = exp(𝒙(𝝍𝑔)′𝜷𝑔). Now, 𝝑 ≔ 𝝑 ∪ {𝝍𝑔 |
𝑔 = 1, … , 𝐺} and 𝜷𝑔 will have additional terms corresponding to 𝜓𝑗𝑐𝑗𝑔𝑔 for 𝑗 = 1, … , 𝑝
and 𝑔 = 1, … , 𝐺 for all the CWMs defined earlier. Furthermore, the regular CWM

is nested within the sCWM since 𝛽𝑗𝑘𝑔 = 0 for all 𝑘 = 1, … , 𝑐𝑗𝑔 in an sCWM yields a

regular CWM.

13
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3.2 Identifiability

Before estimating the parameters of an sCWM, it is important to discuss its identifi-

ability. It is known that finite mixture models of the same family are invariant under

𝐺! permutations, which is also known as the “label-switching” problem (McLachlan

and Peel, 2000, pp. 26–28). The sCWM also suffers the same issue since the joint prob-

ability distribution (2.4) is invariant under 𝐺! permutations. Furthermore, since we

specify the number of changepoints 𝑐𝑗𝑔 for covariate 𝑗 = 1, … , 𝑝 in group 𝑔 = 1, … , 𝐺,

we see that we are specifying which component the changepoint occurs at; that is, we

have an identifiability issue whenever 𝑐𝑗𝑔 ≠ 𝑐𝑗𝑔′ for all 𝑔 = 𝑔′ since we do not know

which group the changepoint will occur at. Hence, to address both of these issues, we

follow a similar approach to Aitkin and Rubin (1985):

𝜋1 ≤ 𝜋2 ≤ ⋯ ≤ 𝜋𝐺.

Therefore, if we specify 𝑐𝑗1 = 2, 𝑐𝑗2 = 1, and 𝑐𝑗3 = 0 for a CWM with three

groups, we can identify that the smallest component will have two changepoints, the

second-smallest component will have one changepoint, and the largest component will

have zero changepoints. The drawbacks of this approach is that we will have many

permutations to test for 𝑐𝑗𝑔. It is important to note that if at least two of the mixing

proportions are equal, the segmented CWM will still be unidentifiable. To address

this issue, it is possible to also order other parameters. For this thesis, we will not

focus on cases where at least two of the mixing proportions are equal, as the models

can become quite cumbersome to test.

14
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3.3 Estimation

For a regular CWM without changepoints, maximum likelihood estimation is usu-

ally performed using the expectation-maximization (EM) algorithm from Dempster

et al. (1977). However, in the case of a CWM with changepoints, we cannot directly

maximize both the changepoints and the other parameters in one maximization step

of the algorithm. Therefore, we perform parameter estimation using an expectation-

conditional maximization (ECM) algorithm from Meng and Rubin (1993). The ECM

algorithm iterates between three steps, including one E-step (expectation) and two

CM-steps (conditional maximization), until convergence is achieved.

Given a random sample (𝒙1, 𝑦1), … , (𝒙𝑁 , 𝑦𝑁) of (𝑿, 𝑌 ), the observed-data likeli-

hood function is given by

ℒ(𝝑) =
𝑁

∏
𝑖=1

𝑝(𝒙𝑖, 𝑦𝑖; 𝝑) =
𝑁

∏
𝑖=1

𝐺
∑
𝑔=1

𝑝(𝑦𝑖 ∣ 𝒙𝑖; 𝝃𝑔)𝑝(𝒙𝑖; 𝜶𝑔)𝜋𝑔,

and the observed-data log-likelihood function is given by

ℓ(𝝑) =
𝑁

∑
𝑖=1

log(
𝐺

∑
𝑔=1

𝑝(𝑦𝑖 ∣ 𝒙𝑖; 𝝃𝑔)𝑝(𝒙𝑖; 𝜶𝑔)𝜋𝑔).

Let 𝑧𝑖𝑔 be an indicator variable to denote component membership, i.e.,

𝑧𝑖𝑔 =
⎧{
⎨{⎩

1, if (𝒙𝑖, 𝑦𝑖) belongs to component 𝑔,

0, otherwise,
for 𝑖 = 1, … , 𝑁; 𝑔 = 1, … , 𝐺.

Hence, the complete-data likelihood is given by

ℒc(𝝑) =
𝑁

∏
𝑖=1

𝐺
∏
𝑔=1

(𝑝(𝑦𝑖 ∣ 𝒙𝑖; 𝝃𝑔)𝑝(𝒙𝑖; 𝜶𝑔)𝜋𝑔)𝑧𝑖𝑔,

15
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and the complete-data log-likelihood is given by

ℓc(𝝑) = log(
𝑁

∏
𝑖=1

𝐺
∏
𝑔=1

(𝑝(𝑦𝑖 ∣ 𝒙𝑖; 𝝃𝑔)𝑝(𝒙𝑖; 𝜶𝑔)𝜋𝑔)𝑧𝑖𝑔)

=
𝑁

∑
𝑖=1

𝐺
∑
𝑔=1

𝑧𝑖𝑔 log 𝜋𝑔 +
𝑁

∑
𝑖=1

𝐺
∑
𝑔=1

𝑧𝑖𝑔 log(𝑝(𝑦𝑖 ∣ 𝒙𝑖; 𝝃𝑔))

+
𝑁

∑
𝑖=1

𝐺
∑
𝑔=1

𝑧𝑖𝑔 log(𝑝(𝒙𝑖; 𝜶𝑔)). (3.12)

Our objective is to maximize ℒ(𝝑) using ℒc(𝝑) using our ECM algorithm.

3.3.1 E-step

The E-step on the (𝑘+1)th iteration, 𝑘 = 0, 1, …, requires calculating the expectation

of the complete-data log-likelihood given the observed data and the current estimate

of 𝝑 at the (𝑘 + 1)th iteration, denoted by 𝝑(𝑘). Since ℓc(𝝑) is linear with respect

to 𝑧𝑖𝑔, we can simply calculate the current conditional expectation of 𝑍𝑖𝑔 given the

observed data, where 𝑍𝑖𝑔 is the random variable corresponding to 𝑧𝑖𝑔. Therefore, for

𝑖 = 1, … , 𝑁 and 𝑔 = 1, … , 𝐺, we have

𝔼𝝑(𝑘)[𝑍𝑖𝑔 ∣ (𝒙𝑖, 𝑦𝑖)] ≔ 𝑧(𝑘)
𝑖𝑔 (3.13)

= 𝜋(𝑘)
𝑔 𝑝(𝑦𝑖 ∣ 𝒙𝑖; 𝝃(𝑘)

𝑔 )𝑝(𝒙𝑖; 𝜶(𝑘)
𝑔 )

𝑝(𝒙𝑖, 𝑦𝑖; 𝝑(𝑘)) ,

which is the posterior probability that (𝒙𝑖, 𝑦𝑖) belongs to group 𝑔 using the current

estimate 𝝑(𝑘) for 𝝑. For the CM-steps, on the (𝑘+1)th iteration, 𝑘 = 0, 1, …, we want

to maximize the conditional expectation of the complete-data log-likelihood given the

observed data. Hence, we replace each 𝑧𝑖𝑔 in (3.12) by their expectations, i.e., 𝑧(𝑘)
𝑖𝑔 ,
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to get

𝒬(𝝑; 𝝑(𝑘)) = 𝔼𝝑(𝑘)[ℓc(𝝑) ∣ (𝒙𝑖, 𝑦𝑖)]

=
𝑁

∑
𝑖=1

𝐺
∑
𝑔=1

𝑧(𝑘)
𝑖𝑔 log 𝜋𝑔 +

𝑁
∑
𝑖=1

𝐺
∑
𝑔=1

𝑧(𝑘)
𝑖𝑔 log(𝑝(𝑦𝑖 ∣ 𝒙𝑖; 𝝃𝑔))

+
𝑁

∑
𝑖=1

𝐺
∑
𝑔=1

𝑧(𝑘)
𝑖𝑔 log(𝑝(𝒙𝑖; 𝜶𝑔)).

To perform our CM-steps, we partition 𝝑 as {𝝑1, 𝝑2}, where

𝝑1 = {𝝍𝑔 | 𝑔 = 1, … , 𝐺},

𝝑2 = {𝝃𝑔, 𝜶𝑔, 𝜋𝑔 | 𝑔 = 1, … , 𝐺}.

3.3.2 CM-step 1

In the first CM-step, we estimate the changepoints; that is, calculate

𝝑(𝑘+1)
1 = arg max

𝝑1

𝒬(𝝑; 𝝑(𝑘)), (3.14)

where 𝝑2 is fixed at 𝝑(𝑘)
2 . There is no closed-form expression for (3.14), but using

a first-order Taylor expansion around pre-specified values of changepoints, we can

obtain an approximation, which is implemented in the R package segmented (Muggeo,

2008).

For the sake of simplicity, consider a simple linear regression with one covariate

𝑥𝑖 and one changepoint 𝜓 for observation 𝑖 = 1, … , 𝑁 :

𝑓(𝑥𝑖; 𝜓) = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2(𝑥𝑖 − 𝜓)+.
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Now, the linear approximation to 𝑓(𝑥𝑖; 𝜓) at 𝜓 = ̃𝜓(0) is given by

𝑓(𝑥𝑖; 𝜓) ≈ 𝑓( ̃𝜓) + 𝑓 ′( ̃𝜓(0))(𝑥𝑖 − ̃𝜓(0))

= 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2(𝑥𝑖 − ̃𝜓(0))+ − 𝛽2(𝜓 − ̃𝜓(0)) 𝕀{𝑥𝑖 > ̃𝜓(0)}

= 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2(𝑥𝑖 − ̃𝜓(0))+ − 𝛼 𝕀{𝑥𝑖 > ̃𝜓(0)},

where 𝛼 = 𝛽2(𝜓 − ̃𝜓(0)) is described as a re-parameterization of 𝜓, which accounts

for the changepoint estimation (Muggeo, 2003). Note that − 𝕀{𝑥𝑖 > ̃𝜓(0)} is the

first derivative of (𝑥𝑖 − 𝜓)+ with respect to 𝜓 evaluated at 𝜓 = ̃𝜓(0). Therefore, we

iteratively fit

𝛽0 + 𝛽1𝑥𝑖 + 𝛽2(𝑥𝑖 − ̃𝜓(𝑡))+ − 𝛼 𝕀{𝑥𝑖 > ̃𝜓(𝑡)}, for 𝑡 = 0, 1, … .

The initial changepoint ̃𝜓(0) is the 0.5 quantile of 𝒙 = (𝑥1, … , 𝑥𝑁)′. Then, update

the changepoint via
̃𝜓(𝑡+1) = ̃𝜓(𝑡) + ̂𝛼

̂𝛽2
, for 𝑡 = 0, 1, … .

Muggeo (2003) refers to ̂𝛼 as the “gap” measurement since it measures the difference

between two regressions (i.e., before and after the estimate of ̃𝜓(𝑡)). The algorithm

converges when ̂𝛼 ≈ 0.

For the general case, given initial changepoints ̃𝜓(0)
𝑗1𝑔, … , ̃𝜓(0)

𝑗𝑐𝑗𝑔𝑔, we iteratively fit

𝛽𝑗0𝑔𝑥𝑖𝑗 +
𝑐𝑗𝑔

∑
𝑘=1

(𝛽𝑗𝑘𝑔(𝑥𝑖𝑗 − ̃𝜓(𝑡)
𝑗𝑘𝑔)+ − 𝛼𝑗𝑘𝑔 𝕀{𝑥𝑖𝑗 > ̃𝜓(𝑡)

𝑗𝑘𝑔}), (3.15)

for 𝑖 = 1, … , 𝑁 , 𝑗 = 1, … , 𝑝, 𝑡 = 0, 1, …, and 𝑔 = 1, … , 𝐺. We partition the data into

𝐺 groups via the MAP, and then we iteratively fit linear models in (3.15) for each
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group 𝑔. Finally, we update the changepoints via

̃𝜓(𝑡+1)
𝑗𝑘𝑔 = ̃𝜓(𝑡)

𝑗𝑘𝑔 + ̂𝛼𝑗𝑘𝑔
̂𝛽𝑗𝑘𝑔

,

and stop when | ̂𝛼𝑗𝑘𝑔| < 1 × 10−5 for all 𝑗, 𝑘, 𝑔, which is the default convergence

criterion in segmented. While it is possible to iteratively fit linear models in (3.15)

for each group 𝑔 with weights 𝑧(𝑘)
𝑖𝑔 , we instead partitioned the data as above since it

yielded more sensible results.

We note that segmented estimates the changepoints within the quantiles 𝛼 and

1−𝛼 of a given covariate, with a default value of 𝛼 = max(0.5, 1/𝑁). Also, the initial

breakpoints at 𝑡 = 0 are the

1
𝑐𝑗𝑔 + 1, 2

𝑐𝑗𝑔 + 1 … , 𝑐𝑗𝑔
𝑐𝑗𝑔 + 1

quantiles of a given covariate (in a given group), which is the default starting values

in segmented. To obtain the estimates of the coefficients, we utilize R’s functions

lm (for a Gaussian response) and glm (for a Poisson and Binomial response). It is

worth noting that the algorithm depends on the existence of a changepoint and the

initial value ̃𝜓(0). It is possible that even if a changepoint exists, the algorithm will

fail due to the nature of the data (Muggeo, 2003). For example, the algorithm can

fail when the coefficient is small for the intercept in a Poisson model or the data’s

sample size is small (Muggeo, 2003). Also, the segmented package states that they

implemented a bootstrap restarting algorithm given in Wood (2001) to escape possible

local optima of the objective function. If the estimation of the changepoints fails, we

simply set 𝝑(𝑘+1)
1 = 𝝑(𝑘)

1 (assuming changepoints were estimated in the previous

iteration) and proceed with the next CM-step. If no changepoints were estimated
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in the previous iteration, we proceed without the data augmentation (i.e., the next

CM-step is equivalent to the maximization step of a regular CWM).

3.3.3 CM-step 2

In the second CM-step, we calculate

𝝑(𝑘+1)
2 = arg max

𝝑2

𝒬(𝝑; 𝝑(𝑘)),

where 𝝑1 is fixed at 𝝑(𝑘)
1 . We can write

𝒬(𝝑; 𝝑(𝑘)) = 𝒬1(𝝅; 𝝑(𝑘)) + 𝒬2(𝝃; 𝝑(𝑘)) + 𝒬3(𝜶; 𝝑(𝑘)), (3.16)

Note that we can maximize each term of (3.16) separately since the cross-derivatives

are zero. The second CM-step is similar to the existing literature for estimating

regular CWMs (see e.g., Dang et al., 2017; Ingrassia et al., 2015; Mazza et al., 2018).

The major difference is that the calculation of the parameters related to 𝑌 have a

different link function.

Mixing proportions

Maximizing 𝒬1 with respect to 𝝅 = (𝜋1, … , 𝜋𝐺)′ subject to the constraints on these

parameters, yields

𝜋(𝑘+1)
𝑔 = 1

𝑁
𝑁

∑
𝑖=1

𝑧(𝑘)
𝑖𝑔 , for 𝑔 = 1, … , 𝐺.
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Parameters related to 𝑌

Maximizing 𝒬2 with respect to 𝝃 is equivalent to maximizing

𝒬2𝑔(𝝃𝑔; 𝝑(𝑘)) =
𝑁

∑
𝑖=1

𝑧(𝑘)
𝑖𝑔 log(𝑝(𝑦𝑖 ∣ 𝒙𝑖; 𝝃𝑔)) (3.17)

with respect to 𝝃𝑔 for 𝑔 = 1, … , 𝐺. For a CWM with a response variable being a mem-

ber of the exponential family, maximizing (3.17) is equivalent to the maximization

problem of a generalized linear model (GLM) using the complete data with weights

𝑧(𝑘)
𝑖𝑔 for each observation (𝒙𝑖, 𝑦𝑖). More details can be found in Wedel and DeSarbo

(1995) and McLachlan and Peel (2000, pp. 147–148). Note that for the estimation of

𝝃𝑔, the link function utilizes the augmented covariate vector 𝒙(𝝍𝑔), which leads to

different estimates for 𝜷𝑔 compared to a regular CWM. For example, consider the

linear case: instead of regressing 𝑦 on 𝒙, we regress 𝑦 on 𝒙(𝝍𝑔).

Parameters related to 𝑿

Maximizing 𝒬3 with respect to 𝜶 depends on the specification of 𝚺𝑔, where many par-

simonious structures for 𝚺𝑔 can be found in Table A.9. Assuming an unconstrained

(VVV) model, the updates for 𝝁𝑔 and 𝚺𝑔 for 𝑔 = 1, … , 𝐺 are

𝝁(𝑘+1)
𝑔 =

∑𝑁
𝑖=1 𝑧(𝑘)

𝑖𝑔 𝒙𝑖

∑𝑁
𝑖=1 𝑧(𝑘)

𝑖𝑔
,

𝚺(𝑘+1)
𝑔 =

∑𝑁
𝑖=1 𝑧(𝑘)

𝑖𝑔 (𝒙𝑖 − 𝝁(𝑘+1)
𝑔 )(𝒙𝑖 − 𝝁(𝑘+1)

𝑔 )′

∑𝑁
𝑖=1 𝑧(𝑘)

𝑖𝑔
.

For the constrained models, the M-step varies based on the decomposition of the

covariance matrix 𝚺𝑔; the updates are given in Punzo and McNicholas (2016), which

were derived from Celeux and Govaert (1995). The focus on this thesis will be on
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low-dimensional datasets, so we will not perform any estimation with the constrained

model. In R, the updates are calculated via the mstep function from the mclust

package (Scrucca et al., 2016).

3.4 Initialization

The EM algorithm (and its variants) are known to depend heavily on the starting val-

ues (Baudry and Celeux, 2015). The most common way to start an EM algorithm is to

provide the initial values of 𝑧𝑖𝑔 in (3.13) for the first E-step of the algorithm (McLach-

lan and Peel, 2000). We proceed with a multiple random soft initialization strategy;

that is, we generate 𝐺 positive values in 𝒛(0)
𝑖 = (𝑧(0)

𝑖1 , … , 𝑧(0)
𝑖𝐺)′ such that ∑𝐺

𝑔=1 𝑧(0)
𝑖𝑔 = 1

for all 𝑖 = 1, … , 𝑁 and run our ECM algorithm 𝑟 = 1, … , 𝑅 times. Then, we select the

model that maximizes the observed-data likelihood among the 𝑅 runs. To generate

these values, we utilize the z_ig_random_soft function from the mixture package

in R (Pocuca et al., 2022). Also, we must specify the number of changepoints 𝑐𝑗𝑔 for

covariate 𝑗 = 1, … , 𝑝 in group 𝑔 = 1, … , 𝐺, which also implies that the number of

groups 𝐺 must be specified. Note that we assume that number of changepoints are

known, so they are not parameters; however, the changepoints 𝝍𝑔 are unknown for

group 𝑔 = 1, … , 𝐺, so they are parameters. After the ECM estimates are obtained,

we compute the MAP classification to plot the results.

3.5 Convergence Criteria

Let ℓ(𝑘+1) denote the observed-data log-likelihood on the (𝑘 + 1)th iteration, 𝑘 =
0, 1, …. The stopping criterion associated with an EM algorithm is usually in terms
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of size of the relative change in the parameter estimates or the log-likelihood, i.e.,

ℓ(𝑘) − ℓ(𝑘−1) < 𝜖, (3.18)

for some small positive real-valued 𝜖. However, this is a “measure of lack of progress,

but not of actual convergence” (Lindstrom and Bates, 1988). The stopping criterion

in (3.18) has been shown to underestimate the correct value of the log-likelihood (Mc-

Nicholas et al., 2010). Böhning et al. (1994) applied the Aitken’s acceleration proce-

dure to a sequence of log-likelihood values to give an estimate of the limiting value

for the log-likelihood. The Aitken’s acceleration (Aitken, 1926) at iteration 𝑘 is given

by

𝑎(𝑘) = ℓ(𝑘+1) − ℓ(𝑘)

ℓ(𝑘) − ℓ(𝑘−1) ,

which leads to the asymptotic estimate of the log-likelihood at iteration 𝑘 + 1, given

by

ℓ(𝑘+1)
∞ = ℓ(𝑘) + ℓ(𝑘+1) − ℓ(𝑘)

1 − 𝑎(𝑘) . (3.19)

From (3.19), Lindsay (1995) proposed that the algorithm can be stopped when

ℓ(𝑘+1)
∞ − ℓ(𝑘+1) < 𝜖, (3.20)

for some small positive real-valued 𝜖. McNicholas et al. (2010) proposed a similar

stopping criterion that is no less strict than (3.20); that is, the algorithm can be

stopped when

ℓ(𝑘+1)
∞ − ℓ(𝑘) ∈ (0, 𝜖), (3.21)

for some small positive real-valued 𝜖. We will use (3.21) with 𝜖 = 1×10−4 to determine

when the algorithm should be stopped. It is worth noting that the cwm function from

the flexCWM package uses the stopping criterion in (3.20) with 𝜖 = 1 × 10−4 and
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the segregmixEM function from the mixtools package uses the stopping criterion

in (3.18) with 𝜖 = 1 × 10−8 by default.
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Chapter 4

Simulations

4.1 Linear Gaussian CWM

For our first simulation study, we consider 𝐺 = 3 groups and one covariate (i.e.,

𝑝 = 1) for a linear Gaussian CWM with three changepoints. The purpose of this

study is to demonstrate that when we have random covariates (generated via the

Gaussian distribution) with changepoints under a moderately complex setting, the

sCWM will outperform both the regular CWM and the FMR with changepoints

models on average. Define 𝑿𝑔 = (𝑋𝑔1, 𝑋𝑔2, … , 𝑋𝑔𝑁𝑔
)′ and 𝒀𝑔 = (𝑌𝑔1, 𝑌𝑔2, … , 𝑌𝑔𝑁𝑔

)′

for 𝑔 = 1, 2, 3. First, we generate our covariate vector with respect to each group by

𝑿1 ∼ 𝒩(8, 22),

𝑿2 ∼ 𝒩(0, 52),

𝑿3 ∼ 𝒩(−5, 32),
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where 𝑁1 = 100, 𝑁2 = 175, and 𝑁3 = 200. Next, define regression coefficients

𝜷1 = (2, 3, 12)′, 𝜷2 = (4, −6, 10, −10)′, 𝜷3 = (3, −2)′, and changepoints 𝜓1 = 8,

𝝍2 = (−7, 0)′. Finally, we generate our response vector with respect to each group

by

𝒀1 ∼ 𝒩(𝐗(𝜓1)𝜷1, 32),

𝒀2 ∼ 𝒩(𝐗(𝝍2)𝜷2, 52),

𝒀3 ∼ 𝒩(𝐗𝜷3, 42).

Note that 𝐗(𝝍𝑔) is the augmented design matrix given in (3.11) with respect to the 𝑔th

group, 𝑔 = 1, 2, 3. Therefore, for this simulation study we have 𝑿 = (𝑿′
1, 𝑿′

2, 𝑿′
3)′

and 𝒀 = (𝒀 ′
1 , 𝒀 ′

2 , 𝒀 ′
3 )′, which implies that our sample size is 𝑁 = 475.

Also, define the number of changepoints for each covariate in each group by 𝑐11 =
1, 𝑐21 = 2, and 𝑐31 = 0. For this simulation study, our set of parameters is given by

𝝑 = {𝜷1, 𝜷2, 𝜷3, 𝜎𝑌1
, 𝜎𝑌2

, 𝜎𝑌3
, 𝜇1, 𝜇2, 𝜇3, 𝜎1, 𝜎2, 𝜎3, 𝜋1, 𝜋2, 𝜋3, 𝜓1, 𝝍2},

where 𝜷1 = (𝛽001, 𝛽101, 𝛽111)′, 𝜷2 = (𝛽002, 𝛽102, 𝛽112, 𝛽122)′, and 𝜷3 = (𝛽003, 𝛽103)′.

Note that the mixing proportions are positive and sum to one, so we only count

two free parameters for the mixing proportions. Therefore, we have 𝜈 = 23 free

parameters for the CWM with changepoints, and also note that there are 𝜈 = 17 free

parameters for the regular CWM for this simulation study.

The results for one simulation can be visualized in Figure 4.1, where Figure 4.1a

shows the true clusters, Figure 4.1b shows the clusters given by a finite mixture of

regressions with changepoints model, Figure 4.1c shows the clusters given by a regular

CWM, and Figure 4.1d shows the clusters given by a CWM with changepoints. For
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each plot in Figure 4.1, we colour the MAP estimates for each observation, and the

dashed lines given in Figures 4.1a, 4.1c and 4.1d indicate the locations where the

changepoints occur. Also, the solid lines given in Figures 4.1a, 4.1c and 4.1d are

simply the fitted regression lines on each group. Note that we did not indicate the

dashed/solid lines in Figure 4.1b since the locations of changepoints and regression

coefficients were estimated poorly with respect to the true values.

It is clear that the FMR with changepoints model (which was estimated assum-

ing 𝐺 = 3 groups) does not estimate the true number of clusters correctly under

this simulation study due to the fact that we have random covariates. Furthermore,

the regular CWM estimates one cluster correctly (the cluster with no changepoints),

but the other two clusters are not correctly estimated due to the fact that we have

changepoints. Lastly, the CWM with changepoints model estimates the true number

of clusters correctly and the regression segments look similar to the true values for

this simulation.

For a more detailed comparison, we generated 100 datasets under this framework,

where both the CWM and CWM with changepoints were estimated with 𝑅 = 5
random soft initializations. For segregmixEM, we only performed one estimation for

each dataset as there is no mention of a multiple random initialization strategy for

this package.

A histogram of the ARIs can be visualized in Figure 4.2a for the FMR with

changepoints, CWM, and sCWM, noting that the sCWM has a higher ARI in gen-

eral. Furthermore, a histogram of the BICs can be visualized in Figure 4.2b, and

we note that the sCWM always yielded a higher BIC. Note that we cannot compare

the BIC for a FMR to an sCWM under this setting as mentioned earlier. The major
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(b) FMR with changepoints.

−15 −10 −5 0 5 10

0
20

40
60

80

data[[1]]

y

(c) Regular CWM.

−15 −10 −5 0 5 10

0
20

40
60

80

x1

y

(d) CWM with changepoints.

Figure 4.1: Linear Gaussian CWM with changepoints simulation.
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downside of using an sCWM is the computation time, which can be seen in Table 4.1;

however, the mean computation time is faster on average compared to a FMR with

changepoints. In terms of raw estimation performance, we can view the true pa-

rameter values along with their mean and standard deviations in Table 4.2. We see

that the mean parameter estimates are close to the true values, but the standard

deviations are large for the regression coefficients (especially the intercepts for the

groups with changepoints), most likely due to the complicated structure of the simu-

lation. Overall, our model performs well under this setting, but it is computationally

expensive.
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Figure 4.2: Histograms of ARIs and BICs for the Gaussian simulation.

Table 4.1: Summary of computation time (in seconds).

Model Min. 1st Qu. Median Mean 3rd Qu. Max.
Regular CWM 0.740 1.021 1.166 1.230 1.373 2.324
CWM with Changepoints 23.720 30.170 36.940 40.550 48.700 91.070
FMR with Changepoints 1.137 27.057 84.069 94.650 126.399 459.751
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Table 4.2: True parameter values along with mean and standard deviations of the
parameter estimates for the Gaussian simulation.

Parameter True values Mean estimates Standard deviations
𝜷1 (2, 3, 12)′ (2.061, 2.983, 11.980)′ (4.382, 0.748, 0.735)′

𝜷2 (4, −6, 10, −10)′ (5.859, −5.771, 9.844, −10.062)′ (9.875, 1.169, 1.160)′

𝜷3 (3, −2)′ (3.030, −1.993)′ (0.584, 0.096)′

𝜎𝑌1
3 2.962 0.253

𝜎𝑌2
5 4.917 0.297

𝜎𝑌3
4 4.009 0.219

𝜇1 8 7.983 0.194
𝜇2 0 −0.020 0.416
𝜇3 −5 −5.015 0.206
𝜎1 2 1.997 0.251
𝜎2 5 4.972 0.254
𝜎3 3 3.009 0.154
𝜋1 0.211 0.211 0.005
𝜋2 0.368 0.368 0.005
𝜋3 0.421 0.421 0.001
𝜓1 8 7.994 0.142
𝝍2 (−7, 0)′ (−6.915, −0.023)′ (0.391, 0.158)′
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4.2 Poisson CWM

For our second simulation study, we consider 𝐺 = 2 groups and one covariate (i.e.,

𝑝 = 1) for a Poisson CWM with one changepoint. The purpose of this study is to

illustrate that the CWM with changepoints can be applied to a response which follows

a Poisson distribution under a basic changepoint setting.

First, we generate our covariate vector with respect to each group by

𝑿1 ∼ 𝒩(1, 1.252),

𝑿2 ∼ 𝒩(2, 0.82),

where 𝑁1 = 100 and 𝑁2 = 175. Next, define regression coefficients 𝜷1 = (2.75, 0.5)′,

𝜷2 = (1, 1, −2)′, and one changepoint 𝜓2 = 2. Finally, we generate our response

vector with respect to each group by

𝒀1 ∼ Poisson(exp(𝐗𝜷1)),

𝒀2 ∼ Poisson(exp(𝐗(𝜓2)𝜷2)).

Therefore, for this simulation study we have 𝑿 = (𝑿′
1, 𝑿′

2)′ and 𝒀 = (𝒀 ′
1 , 𝒀 ′

2 )′,

which implies that our sample size is 𝑁 = 275. We can visualize this dataset in Fig-

ure 4.3, which also shows the estimation of the CWM and the sCWM under this

setting.

Similar to the linear Gaussian study, we generated 100 datasets under this frame-

work, where both the CWM and sCWM were estimated with 𝑅 = 10 random soft

initializations. The results for the ARIs and BICs can be visualized in Figure 4.4,

where we note that the sCWM yielded higher BIC values for all the simulations, and

the sCWM’s ARIs were higher on average. Furthermore, Table 4.3 demonstrates that
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the parameters’ true values and mean estimates for this study are fairly close with a

low standard deviation, which implies that the sCWM is recovering the parameters

well in this setting.
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(c) CWM with one changepoint.

Figure 4.3: Poisson CWM with one changepoint simulation.
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Figure 4.4: Histograms of ARIs and BICs for the Poisson simulation.

Table 4.3: True parameter values along with mean and standard deviations of the
parameter estimates for the Poisson simulation.

Parameter True values Mean estimates Standard deviations
𝜷1 (2.75, 0.5)′ (2.754, 0.498)′ (0.034, 0.016)′

𝜷2 (1, 1, −2)′ (0.982, 1.012, −2.018)′ (0.168, 0.107, 0.137)′

𝜇1 1 0.997 0.120
𝜇2 2 1.997 0.069
𝜎1 1.25 1.233 0.092
𝜎2 0.8 0.797 0.044
𝜋1 0.4 0.401 0.005
𝜋2 0.6 0.599 0.005
𝜓2 2 1.995 0.050
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4.3 Binomial CWM

For our last simulation study, we consider 𝐺 = 2 groups and one covariate (i.e.,

𝑝 = 1) for a Binomial CWM with one changepoint. The purpose of this study is

to illustrate that the CWM with changepoints can be applied to a response which

follows a Binomial distribution under a basic changepoint setting.

First, we generate our covariate vector with respect to each group by

𝑿1 ∼ 𝒩(2, 22),

𝑿2 ∼ 𝒩(−2, 1.52),

where 𝑁1 = 100 and 𝑁2 = 200. Next, define regression coefficients 𝜷1 = (0, 0.75)′,

𝜷2 = (1, 0.75, 1)′, and one changepoint 𝜓2 = −2. Finally, we generate our response

vector with respect to each group by

𝒀1 ∼ Binomial(expit(𝐗𝜷1)),

𝒀2 ∼ Binomial(expit(𝐗(𝜓2)𝜷2)).

Therefore, for this simulation study we have 𝑿 = (𝑿′
1, 𝑿′

2)′ and 𝒀 = (𝒀 ′
1 , 𝒀 ′

2 )′,

which implies that our sample size is 𝑁 = 300. We can visualize this dataset in Fig-

ure 4.5, which also shows the estimation of the CWM and the sCWM under this

setting.

Furthermore, we generated 100 datasets under this framework, where both the

CWM and sCWM were estimated with 𝑅 = 10 random soft initializations. The

results for the ARIs and BICs can be visualized in Figure 4.6, where we note that the

sCWM yielded higher BIC and ARI values on average compared to the CWM. The

parameter’s true values and mean estimates are in Table 4.4, which shows that the
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model is recovering the parameters adequately.
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(c) CWM with one changepoint.

Figure 4.5: Binomial CWM with one changepoint simulation.
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Figure 4.6: Histograms of ARIs and BICs for the Binomial simulation.

Table 4.4: True parameter values along with mean and standard deviations of the
parameter estimates for the Binomial simulation.

Parameter True values Mean estimates Standard deviations
𝜷1 (0, 0.75)′ (0.215, 0.811)′ (0.752, 0.199)′

𝜷2 (1, 0.75, 1)′ (0.933, 0.730, 0.941)′ (0.342, 0.110, 0.210)′

𝜇1 2 1.704 0.964
𝜇2 −2 −1.835 0.580
𝜎1 2 1.926 0.256
𝜎2 1.5 1.621 0.437
𝜋1 0.333 0.345 0.039
𝜋2 0.667 0.655 0.039
𝜓2 −2 −1.838 0.579
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Chapter 5

Applications

5.1 Nitrogen Oxide

The nitrogen oxide data from Brinkman (1981) has 𝑁 = 88 observations for the

concentration of nitrogen oxide and the equivalence ratio (a measure of the air-ethanol

mixture for burning ethanol in a single-cylinder car engine). This dataset has been

previously analyzed in numerous finite mixture of regressions literature (e.g., Henry

et al., 2010; Berrettini et al., 2022; Xiang et al., 2019; Young, 2014). From the previous

studies listed, and from the obvious two-component structure visualized in Figure 5.7,

we focus on CWMs with two groups. The response variable is equivalence ratio, and

the concomitant covariate is nitrogen oxide. From Figure 5.7, we see that the upper

component has a slight change from the nitrogen oxide amounts about 1–2. Hence,

we want to determine if a Gaussian CWM with changepoints model would fit the

data better than a regular Gaussian CWM for this dataset.

We performed 𝑅 = 10 random soft initializations, where we vary the changepoint

structure such that a maximum of two changepoints can occur within the concomitant
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Figure 5.7: Nitrogen oxide data.

covariate. From Table 5.5, the BIC is maximized when we have a (1, 0) changepoint

structure, which corresponds to one changepoint in the smallest group only, and we

also note that the (0, 0) model (i.e., the regular CWM) has a smaller value. Therefore,

it is clear that the sCWM model outperforms the regular CWM model with respect

to the BIC for this dataset. The plots of the nitrogen oxide data for the best regular

CWM and sCWM are given in Figure 5.8a and Figure 5.8b, respectively, and the

parameter estimates for the best sCWM are given in Table 5.6. These results are

fairly close to the results presented by Young (2014) under a FMR with changepoints

model.

5.2 Fishing Data

We analyze fishing data from Bailey et al. (2009), which was adapted from Zuur

et al. (2013). The goal of the study from Bailey et al. (2009) was to determine

how deep-water fish communities were impacted before and after commercial fishing

began. There are 𝑁 = 147 fishing sites, where the response variable is the total fish
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Table 5.5: BIC values for nitrogen oxide data.

Changepoint Structure BIC 𝜈
(0, 0) −70.874 11
(0, 1) −77.454 13
(0, 2) −85.667 15
(1, 0) −51.392 13
(1, 1) −56.694 15
(1, 2) −65.465 17
(2, 0) −57.447 15
(2, 1) −62.759 17
(2, 2) −72.619 19

Table 5.6: Parameter estimates for best sCWM fitted to the nitrogen oxide data.

Parameter Estimates
𝜷1 (1.295, −0.134, 0.084)′

𝜷2 (0.563, 0.086)′

𝜎𝑌1
0.016

𝜎𝑌2
0.043

𝜇1 1.685
𝜇2 2.214
𝜎1 0.997
𝜎2 1.180
𝜋1 0.485
𝜋2 0.515
𝜓1 1.592
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(a) Best regular CWM for nitrogen oxide data.
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(b) Best sCWM for nitrogen oxide data.

Figure 5.8: Comparison of CWM and sCWM for nitrogen oxide data.
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counted per site (totabund) and the concomitant covariate is the trawl depth per site

in metres (meandepth). We note that the data has been previously studied in the

context of clustering in Hilbe (2014, pp. 232–235), where their goal was to determine

if the data was generated from more than one mechanism. That is, Hilbe (2014) fit a

negative-binomial mixture with two and three components, with response totabund

and covariate meandepth. It is worth noting that when they fit a negative-binomial

mixture with three components, their third component was not significant (in the

context of their mixture model). If we visualize the data in Figure 5.9, we see that

there is a large change with respect to the meandepth covariate for the amounts 1000–

2000. Hence, our goal is to determine if the segmented Poisson CWM would fit the

data better than an ordinary Poisson CWM.

1000 2000 3000 4000 5000

0
20

0
40

0
60

0
80

0
12

00

Mean Water Depth

To
ta

l F
is

h

Figure 5.9: Fishing data.

For this study, we performed 𝑅 = 10 random soft initializations for 𝐺 = 1, 2, 3
groups varying the changepoint structure such that a maximum of two changepoints

were tested within each model. The BICs for this study are in Table 5.7 (where the

best BIC is bolded for each group), and it is clear that the BICs for the changepoints

model are always larger than without changepoints, so the sCWM is performing better
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than the regular CWM with respect to the BIC. We have abbreviated the changepoint

structure as (𝑐11, 𝑐12, 𝑐13), with 𝑐11 and 𝑐13 being the number of changepoints in the

smallest and largest components, respectively. From Table 5.7, it is worth noting that

the model with two changepoints in one group was not estimated, hence the values

are NA. Furthermore, the best model for 𝐺 = 2 groups is the (𝑐11, 𝑐12) = (2, 0)
model, which corresponds to two changepoints in the smallest component and zero

changepoints in the largest component. Lastly, the best model for 𝐺 = 3 groups is

the (𝑐11, 𝑐12, 𝑐13) = (1, 0, 1), which corresponds to one changepoint within both the

smallest and largest components.

The plots of the fishing data for the best CWM and sCWM are given in Fig-

ure 5.10a and Figure 5.10b, respectively, and the parameter estimates for the best

sCWM are given in Table 5.8. Although the coefficients appear to be small, we note

that we are working on the exponential scale. Not shown here, we note that the

coefficients for the best regular CWM are also small with respect to the covariate in

each group. It is important to see that the mixing proportions appear to be highly

similar, which may cause issues with identifiability.

It is worth noting that the BIC values were increasing as we increased the number

of groups for a regular CWM; however, it is computationally expensive to test all

possible changepoint structures within an sCWM, and our goal was to determine

whether an sCWM is warranted for this particular study. Therefore, we conclude

that a Poisson CWM with changepoints fits the data better than a regular Poisson

CWM for this study under a few groups.
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Table 5.7: BIC values for fishing data.

𝐺 Changepoint Structure BIC 𝜈

1
(0) −19 284.100 4
(1) −18 008.250 6
(2) NA NA

2

(0, 0) −8874.100 9
(1, 0) −8386.777 11
(0, 1) −8639.808 11
(1, 1) −8477.997 13
(2, 0) −8295.186 13
(0, 2) −8556.663 13

3

(0, 0, 0) −6724.700 14
(1, 0, 0) −6442.377 16
(0, 1, 0) −6606.770 16
(0, 0, 1) −6498.248 16
(1, 1, 0) −6383.981 18
(0, 1, 1) −6425.173 18
(1, 0, 1) −6357.125 18
(2, 0, 0) −6412.389 18
(0, 2, 0) −6546.916 18
(0, 0, 2) −6535.993 18
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(a) Best regular CWM for fishing data for three groups.
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(b) Best sCWM for fishing data for three groups.

Figure 5.10: Comparison of CWM and sCWM for fishing data.
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Table 5.8: Parameter estimates for best sCWM fitted to the fishing data.

Parameter Estimates
𝜷1 (6.270, 0.000 250, −0.001 25)′

𝜷2 (6.178, −0.000 411)′

𝜷3 (4.945, −0.000 273, −0.000 911)
𝜇1 2660.126
𝜇2 1923.409
𝜇3 2656.064
𝜎1 1304.176
𝜎2 843.863
𝜎3 1384.549
𝜋1 0.332 57
𝜋2 0.333 48
𝜋3 0.333 95
𝜓1 1447.999
𝜓3 3138.000
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Chapter 6

Conclusions and Future Work

We demonstrated that Gaussian, Poisson, and Binomial CWMs with changepoints

can be seen as an improvement to regular CWMs when we believe that changepoints

are present within the data. From our simulation studies with changepoints, the

sCWM usually outperformed the regular CWM in terms of the ARI and BIC values.

For real-world datasets, we used a Gaussian and Poisson changepoint CWM for the

nitrogen oxide and fishing data, respectively. Within both datasets, the best Gaussian

and Poisson CWM with changepoint model outperformed the best regular CWM with

respect to the BIC.

Furthermore, we note that there are major weaknesses of the CWM with change-

points model. First, due to our formulation of the model, we needed to test multiple

permutations of the changepoint structure. Also, fitting the changepoint model takes

a much longer time compared to a regular model. Due to these two major issues,

the model will not scale well in higher dimensions with many covariates and groups,

which is the reason we did not present results for such data. However, the methodol-

ogy/estimation is presented for the multivariate case.
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To address these two issues, we propose two solutions, but these solutions may

cause more issues. For the first issue, we could ignore the identifiability “label-

switching” problem and run the algorithm as usual; this would reduce the number

of permutations to be estimated. However, the changepoints may not be estimated

within the right component. For the second issue, Muggeo (2020) implemented a way

to select the number of breakpoints within a segmented regression framework. It may

be possible to replace the first CM-step in our algorithm with their algorithm for

selecting the number of breakpoints, and then we would not need to test any permu-

tations for the changepoint structure. If it is possible to implement their algorithm,

then the segmented CWM may also scale well in higher dimensions. However, by

selecting the number of breakpoints at each iteration, the log-likelihood may not be

non-decreasing as the number of parameters may decrease at each iteration. We also

note that all code was written in R. For model estimation, a faster language such as

C or C++ can be used, but this would also imply rewriting the segmented package as

used in the first CM-step. Future work can also attempt to assume different distri-

butional assumptions on both the response and covariates. For example, a Student’s

𝑡-distribution and a contaminated CWM can be explored for a segmented CWM to

give a more robust inference for data with many outliers.
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Appendix A

Additional Tables and Figures
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