
DO WIDGET LIBRARIES NEED MUTABLE

DATA?

DO WIDGET LIBRARIES NEED MUTABLE DATA?

By AKSHAY KUMAR ARUMUGASAMY,

A Thesis Submitted to the School of Graduate Studies in Partial

Fulfillment of the Requirements for

the Degree Master of Science - Computer Science

McMaster University © Copyright by Akshay Kumar Arumugasamy,

July 2023

https://gs.mcmaster.ca/
http://www.mcmaster.ca/

McMaster University

MASTER OF SCIENCE - COMPUTER SCIENCE (2023)

Hamilton, Ontario, Canada (Dept of Computing and Software)

TITLE: Do widget libraries need mutable data?

AUTHOR: Akshay Kumar Arumugasamy

SUPERVISOR: Dr. Christopher K Anand

NUMBER OF PAGES: xiv, 154

ii

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Abstract

This thesis examines trends in the academic and professional literature around im-

mutable data and its relationship with declarative User Interfaces (UIs). Immutable

data types are preferred by academic authors due to their increased safety, and com-

mercial languages are increasing their support for them over time. More recently,

declarative UIs are an exploding topic in industry, and these are related, although

not as closely as one would expect. Declarative programming tries to focus on high-

level requirements, not low-level details. It is easier to do this if functions have no

side effects, and immutable data is a guaranteed way of achieving this. To highlight

this property, the declarative UI framework Flutter advertises “stateless widgets”,

but their existence puts in highlights the lack of this property in most widgets. Con-

sequently, we ask whether it is feasible to build a Graphical User Interface (GUI)

toolkit using purely immutable data structures. To accomplish this objective, a

purely immutable GUI toolkit is sketched and partially developed using Elm, a purely

functional language in which all data structures are immutable. To understand the

requirements of a GUI toolkit, we categorize and put in historical context, different

design paradigms for UIs and relate them to core software-design principles. Leading

toolkits allow developers to visualize and manage multiple views of their interfaces,

iii

including the view hierarchy, layout, interface to business logic and focus manage-

ment. By creating a concrete example, the research aims to provide insight into the

limitations of utilizing purely immutable data within a GUI framework and suggests

future work to mitigate these.

iv

To my esteemed supervisor, Dr. Christopher Anand, my gratitude is beyond bounds

to him. I extend my deepest gratitude to my cherished family members, baby

Yaash, Vijay, Padma, Appa, and Amma, your presence in my life has been a

constant source of strength and inspiration. Thank you for standing by me through

the challenges, celebrating my successes, and reminding me of the importance of

perseverance. Grateful to my uncle Dr. Thangamani Seenivasan for all his support

throughout my journey. Finally, I express my heartfelt gratitude to the divine for

gracing me with boundless blessings, guiding me through the ups and downs, and

instilling the determination to pursue knowledge within me.

v

Acknowledgements

I would like to express my sincere gratitude to the summer students of Dr. Christo-

pher Anand’s research group particularly Haley Johnson, Zonna Mir, Christopher

Schankula, Sheida Emdadi and Nasim Khoonkari for their invaluable assistance in

reviewing this paper. I am deeply thankful to Dr. Christopher Anand for his unwa-

vering patience, guidance, and confidence in my work throughout the past two years.

Additionally, I extend my appreciation to the dedicated members of McMaster Start

Coding and STaBL Foundation, who have tirelessly endeavored to enhance student

exposure and confidence in Computer Science topics over the course of several years.

Furthermore, I wish to extend my heartfelt thanks to the Department of Comput-

ing and Software for providing me with this exceptional opportunity, their generous

financial support and great lectures despite remote learning. Their contribution has

been instrumental in the successful completion of this thesis.

vi

Table of Contents

Abstract iii

Acknowledgements vi

Abbreviations xiii

1 Introduction 1

2 Design Background 4

2.1 Design Patterns . 6

2.2 Data flow and its significance . 9

2.3 Separation of user interface concerns 9

2.4 Understanding Mutability and Immutability 11

2.5 Declarative Approach Vs Imperative Approach: Unpacking the Contrast 15

2.6 Don Norman’s Principles and Their Relevance to Immutability and

Declarative Approaches . 17

3 Graphical User Interface Architectures 20

3.1 Forms and Control . 21

3.2 Model–View–Controller (MVC) . 21

vii

3.3 Model–View–Presenter (MVP) . 24

3.4 Model–View–ViewModel (MVVM) 25

3.5 Model–View–Update (MVU) . 28

3.6 Analysis of MVC, MVP, MVVM, and MVU 31

4 Is The Future Declarative? 34

4.1 Declarative UI: Exploring the Trend and Future Potential 35

4.2 How Does Declarative Programming Relate to Immutability? 40

5 GUI Toolkits 43

5.1 Short History . 43

5.2 Imperative Toolkits . 46

5.3 Web Development toolkits . 52

5.4 Functional Toolkits . 58

5.5 Declarative Toolkits . 64

5.6 Common Challenges and Solutions for Immutability Adoption 68

6 A User Interface Toolkit without Mutable Data 78

6.1 A High-Level Overview of the Toolkit 84

6.2 Building a SideBySideView . 102

6.3 Building a nested SideBySideView with Toggle, Label, and ButtonView106

7 Conclusion 112

7.1 Future Work . 113

A Android Code Examples 116

A.1 Architectural patterns in action . 116

viii

A.2 Android XML Layout vs Jetpack Compose 127

ix

List of Figures

2.1 Design pattern in action . 8

3.1 Model-view-controller (MVC) . 23

3.2 Model-view-presenter (MVP) . 25

3.3 Model - view - viewmodel (MVVM) 27

3.4 Model-view-update (MVU) . 30

4.1 Trend highlights of Flutter over React Native 38

4.2 Trend highlights of AndroidXML Layout over Jetpack Compose . . . 38

4.3 Trend highlights of UIKit over SwiftUI 38

4.4 Reflecting App State in the User Interface 39

5.1 Overview of Language Support for Immutability by Coblenz et al. [28] 73

5.2 Summary of Dimensions by Coblenz et al. [28] 73

6.1 The ShapeCreator illustrates the combinatorial construction 83

6.2 Module dependency . 84

6.3 MVW with Widgets . 85

6.4 ToogleView widget by default . 102

6.5 ToogleView widget when selected . 102

6.6 SideBySideView widget with Toggle and LabelView 106

6.7 Highlighting distinct subviews with added red boxes 106

x

6.8 Nested SideBySideView with Toggle, LabelView and ButtonViews . . 111

6.9 Highlighting distinct nested subviews with added color boxes 111

xi

List of Tables

3.1 Analysis of MVC, MVP, MVVM, and MVU 31

xii

Abbreviations

ADT Algebraic Data Types

CSS Cascading Style Sheets

DFD Data Flow Diagram

DOM Document Object Model

Fran Functional Reactive Animation

FRP Functional Reactive programming

GOF Gang of Four

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

MVC Model–view–controller

MVP Model–view–presenter

MVU Model–view–update

MVVM Model–view–viewmodel

OO Object-Oriented

xiii

SVG Scalable Vector Graphics

SoC Separation of Concerns

SQL Structured Query Language

TEA The Elm Architecture

UI User Interface

UX User Experience

WYSIWYG What you see is What you get

WWDC Worldwide Developer Conference

XML Extensible Markup Language

xiv

Chapter 1

Introduction

Software design principles have evolved to guide developers toward software that is

more reliable and easier to adapt to new situations. The main principle, separation

of concerns (SoC), leads to design patterns and frameworks. In Chapters 2 and 3, we

explain these principles, focusing on SoC, and explore how design principles relate to

the design patterns that almost all frameworks use. Each of the GUI architectures

aims to separate the business logic from the mechanics of the user interface, also called

the presentation logic. The most obvious realization of SoC is in the separation of

software into modules, but this is not the only way to view the separation of concerns.

We can also understand software in terms of its data flow and control flow, and

User Interface (UI) software in terms of the view hierarchy. After introducing these

concepts, we explain how the SoC principle is relevant to each of these views. These

views are helpful because they contain concrete information which can be extracted

automatically by development tools, making it easier for developers to apply SoC

principles, than with other design patterns.

Another set of principles about which designers must make independent judgments

1

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

are Norman’s Principles of interaction, which we define and relate to GUI frameworks

in Section 2.6.

The top risk with mutable data structures is that they allow changes from one

component to affect a data structure that another component is relying on to remain

unchanged. This often leads to unexpected behaviours (bugs, crashes, and security

vulnerabilities). To solve this vulnerability, we introduce immutable data and how it

can play a role in improving the design of our software. In section 2.5, we explain

the concept of declarative programming. We unpack the contrast between declarative

and imperative approaches.

Chapter 4 demonstrates that a declarative style of programming is possible even

in languages that are not fully declarative. This is especially important in the case

of UI programming, which commonly uses libraries designed to support declarative

UI written in a general-purpose programming language. We share the trends and

evidence from major tool vendors showing strong movement towards declarative UI

as their preferred graphical user interface development paradigm.

In Chapter 5, we summarise the evolution of GUI toolkits from the 1970s until

today and some common challenges and solutions for immutability adoption in pro-

gramming languages and frameworks. We explore the building blocks of the user

interface, often called widgets, and explain how they structure toolkits. It is surpris-

ing that the number of toolkits is increasing and not converging to a perceived best

practice. This can be explained by the introduction of web programming, in which the

paradigms evolved from Smalltalk’s Model-View-Controller were shoehorned into an

environment (HyperText Markup) which was not designed for interactive program-

ming. We are hopeful that a better GUI programming paradigm will evolve out of

2

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

this conflict.

It is in this context that we decided to attempt to create a purely declarative UI

framework. In Chapter 6, we explain that the easiest way to show that this framework

is feasible is to implement it in a language only supporting immutable data types,

namely Elm. Although we have not implemented all of the widgets required in a

useful GUI Toolkit, we have implemented enough to know that it is feasible, and to

identify the challenges from the point of view of the toolkit developer and the toolkit

user.

We can summarize the goals of this thesis in the following research questions:

RQ1 Is it practical to build a GUI Toolkit using purely immutable data (internally)?

RQ2 What are the advantages of Declarative UIs, from both academic and profes-

sional points of view?

RQ3 Are Declarative UIs the future?

3

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 2

Design Background

Have you ever been in a situation where, while working on a project, you have sud-

denly thought of adding a new feature to your application, but you had the following

questions:

1) How simple is it to modify the existing code?

2) How easily can it be done?

3) How much of the previous code structure or architecture can you utilize

before disrupting existing functionality that other components of your

system are using?

The best answer to these questions is the Separation of Concerns (SoC) principle.

Separating the code into blocks that each govern a specific behaviour of the application

limits the amount of code that needs to be modified when adding a new feature. This

means that only the code that directly relates to the new functionality will need to

be changed, overall resulting in a smaller number of code modifications. Dividing the

responsibilities of the code helps in preventing any disturbance in unrelated features

4

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

by eliminating the need to make changes in the code that these features might use.

It is less probable for code to malfunction if it does not require any unnecessary

modifications. If the behaviours that you want to focus on are isolated and distinct

from the other parts of the application, you will have a higher chance of being able

to replace them with a new version without having to comprehend or modify the rest

of the program. Moreover, it will be simpler to identify the code that needs to be

modified.

But what is separation of concerns?

Separation of concerns is a guiding principle in software design; the idea behind

this principle is to decompose a system into distinct, loosely-coupled parts, with

each part responsible for a specific aspect of functionality. The goal is to create a

modular and maintainable architecture by isolating different concerns and minimizing

dependencies between them.

This modularity allows independent development, easier testing, and the ability

to change one concern without accidentally affecting others. It enables the creation of

flexible, extensible, and comprehensible software systems. The concept of separation

of concerns played a significant role in the development of design patterns by the

Gang of Four (GOF).Gamma et al. [65] in their influential book “Design Patterns:

Elements of Reusable Object-Oriented Software,”emphasized the importance of mod-

ular design and separating concerns as a foundation for creating flexible and reusable

software systems. The GOF recognized that software systems often consist of multi-

ple concerns, such as handling user interfaces, managing data, or enforcing business

rules. They identified recurring design problems and proposed design patterns as

solutions to these problems.

5

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

2.1 Design Patterns

What is a design pattern, and how is it different from an architectural pattern or a

framework?

Buschmann et al. [22] says an architectural pattern expresses a fundamental struc-

tural organization schema for software systems. It provides a set of predefined subsys-

tems, specifies their responsibilities, and includes rules and guidelines for organizing

the relationships between them. The Model-view-controller discussed in the upcoming

chapter would be an example.

Gamma et al. [65] in the book says a design pattern provides a scheme for refining

the subsystems of a software system or the relationships between them. It describes

a commonly-recurring structure of communicating components that solves a general

design problem within a particular context. It is smaller in scale than architectural

patterns, independent of a particular programming language but dependent on a

programming paradigm. According to Buschmann et al. [22] the application of a

design pattern has no effect on the fundamental structure of a software system but

may have a strong influence on the architecture of a subsystem meaning it provides a

description or template for solving the problem within a specific context, rather than

being a ready-to-implement design that directly translates into source or machine

code [172].

Buschmann et al. [22], Yacoub and Ammar [177] say a framework is a partially

complete software system that is intended to be instantiated. It defines the architec-

ture for a family of systems and provides the basic building blocks to create them.

It includes a collection of libraries, tools, and conventions that help developers build

software systems more efficiently.

6

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Popular authors like Stokke et al. [158], Fowler [60], Fayad and Schmidt [53]

say, a library is a collection of pre-written code that provides specific functionalities,

and when using a library, the application developer writes the main body of the

application and incorporates elements from the library as needed. On the other hand,

a framework is a more comprehensive structure that provides the main body of an

application, including predefined rules and conventions. In the case of a framework,

the application developer focuses on implementing specific components or “hot spots”

while the framework takes care of the overall control and flow of the application, often

utilizing the principle of “inversion of control” to manage dependencies and provide

extensibility. Frameworks emphasize the separation of concerns, where the data layer

(referred to as the “model”) and the presentation layer (known as the “view”) are

kept distinct. Frameworks define the interaction between these layers, ensuring a

clear separation and organization of responsibilities.

Now, it is worth noting that there can be some overlap between design patterns

and architectural patterns, as design patterns can be used within an architectural

pattern to address more specific design problems within the context of a given archi-

tecture. They provide reusable solutions to common design issues at a lower level,

often focusing on individual classes, objects, or interactions within a component.

Frameworks, on the other hand, are typically larger in scope and provide a more

comprehensive set of tools and guidelines to develop applications based on specific

architectural patterns.

This image 2.1 illustrates the high-level concepts in software architecture:

Separation of concerns is closely tied to how data is handled and separated within

a software system.

7

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Figure 2.1: Design pattern in action

Data is an essential aspect that needs to be appropriately handled and separated

within the system. Proper encapsulation, modularity, abstraction, and data flow

management contribute to creating more modular, maintainable, and scalable sys-

tems.

Encapsulation refers to bundling related data and functionality together. By en-

capsulating data within the appropriate components, data is protected and only ac-

cessible to the relevant concerns. This helps maintain data integrity and ensures that

data is not mishandled or accessed inappropriately.

Modularity refers to the proper separation of data, which allows for modular de-

sign. Each component should have access to the data it needs to perform its specific

responsibilities, but it should not have access to data that is not relevant to its con-

cerns. This modular approach enables easier development, testing, and maintenance

of individual components.

Abstraction refers to creating abstractions and interfaces to define contracts be-

tween components. These abstractions often include data structures or data models

that represent the shared understanding of the data between different concerns. By

defining clear data abstractions, the concerns can interact with the data consistently

and reliably.

Data flow plays a key role here. First, let’s try to understand the 2W’s of data flow.

8

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

2.2 Data flow and its significance

What is a data flow and why is important to understand it? A data flow is a flow

or movement of information for a process or a system. It shows how data enters

and leaves the system, what data is updated, and where data is stored. Some design

patterns and architectural styles, like the “Pipes and Filters” pattern or the ”Data

Flow architecture”, specifically address data flow management as a central aspect of

their design as stated by Kumar [99].

Data flow can be visualized using dataflow diagrams. Using standardized symbols

and notations, data flow diagrams (DFDs) illustrate the data movement involved in

the operations of a business. Data flow diagrams are important in the design phase

of software development (i.e. even before the software is written) because it helps the

designer design the software and the developer understand the flow early in the design

and represent it explicitly. It will also be useful for finding and clearing the faults

of software in the early developing period. Properly separating and controlling the

flow of data, ensures that each concern receives the data it needs to perform its tasks

without unnecessary dependencies or coupling. This increases modularity, reduces

complexity, and makes the system more maintainable, as claimed by DeMarco [42].

2.3 Separation of user interface concerns

Separation of user interface concerns specifically focuses on dividing the user interface-

related functionality from other concerns in the system. It involves separating the

presentation layer (UI) from the business logic and data processing layers. While

separation of concerns is a more general principle applicable to various aspects of

9

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

software design, separation of user interface concerns is a specific application of that

principle focusing on the separation of UI-related functionality from the rest of the

system. In the field of software engineering, the importance of separating user in-

terface concerns from purely functional aspects is widely acknowledged as stated by

Browne et al. [20] in their book “Methods for Building Adaptive Systems” and also

stated,

“It is widely appreciated that the separation of user interface concerns

from purely functional concerns is good software engineering practice” -

Browne et al. [20].

We will delve into some of the most widely recognized graphical user interface (GUI)

architectures that have been in use by professionals for a considerable period in Chap-

ter 3. These architectures are continually evolving and being restructured as necessary

to meet the demands of modern software development. The main aim of these ar-

chitectural patterns is to help with the separation of concerns; the code should be

divided into modules that allow developers to easily understand the parts of the sys-

tem where a change is required. While separating it into modules, let’s consider how

each of the architectural patterns achieves it based on its data flow, control flow, view

hierarchy, and module decomposition. We have discussed data flow in section 2.2.

Control flow refers to the order in which instructions are executed in a program. It

determines the sequence in which statements are executed and how control is trans-

ferred between different parts of the program, as stated by Watt [164].

View hierarchy refers to the organization of views in a software system. Views are

the user interface components that allow users to interact with the system. The view

hierarchy determines how views are organized and how they interact with each other.

10

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Module decomposition is the process of breaking down a software system into

smaller, more manageable modules. Each module should have a well-defined inter-

face and be responsible for a specific set of tasks. This approach makes it easier to

develop, test, and maintain software systems.

2.4 Understanding Mutability and Immutability

Mutate means to ’change’. So mutable means ’able to change’. According toWikipedia

[171] Mutation allows for side effects . An operation, function, or expression is said

to have a side effect if it modifies some state variable value(s) outside its local envi-

ronment, which is to say if it has any observable effect other than its primary effect

of returning a value to the invoker of the operation. A system is described as stateful

if it is designed to remember preceding events or user interactions, the remembered

information is called the state of the system. Side effects play an important role in

the design and analysis of programming languages. The degree to which side effects

are used depends on the programming paradigm. For example, imperative program-

ming is commonly used to produce side effects and to update a system’s state. By

contrast, declarative programming is commonly used to report on the state of the

system, without side effects and is discussed more in section 2.5.

Based on the concepts and solutions suggested by these authors Fleury [54],

Hughes [89], Zub [180] we will take an example in order to explain the concept,

let’s break it down from a functional perspective. Imagine a user interface as a func-

tion that takes an initial state and produces a new state. When writing code that

mutates the state directly, there’s a problem that arises. If you modify the state in

the middle of implementing the user interface, other parts of the interface might not

11

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

be aware of this change and could be making false assumptions about the state. This

discrepancy in opinions about the state can lead to issues in the user interface. For

instance, you might see text appearing outside its designated area, multiple elements

moving together but not synchronously, or graphical glitches that appear briefly and

then disappear.

Let’s take a simple example to illustrate this issue. Consider a button in a user

interface meant for deleting an object. If the actual deletion of the object happens

immediately when the button is clicked, any code that still references that object

afterwards will either break or potentially crash the program. In essence, separating

user interface concerns from purely functional concerns is important to avoid these

types of problems and ensure a more reliable and consistent user experience. In some

functional programming languages, the lack of side effects is further strengthened by

the fact that there are no variables or assignments. Since no variables exist, there

is no possibility of side effects. The concept of ‘purity’ is also heavily explored in a

functional programming language. A pure function only accepts a value and returns

a value. Pure functions do not rely on any global states. As a direct consequence

of functions being side-effect free and pure, a repeated call to a function with the

same arguments returns the same value and this is known as referential transparency

[82]. A referentially transparent function is one which only depends on its input [144].

This is why it is hard to achieve in OO programming, because objects have a state, as

rightly pointed out by Kunasaikaran and Iqbal [100], Quine [141]. With mutations,

the reliability of the system is questionable because it is harder to verify soundness.

This would not be the case if we use immutable data.

12

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Immutable data

In the paper “A foundation for user interface construction” by Myers [123], Gansner

emphasizes the significance of adopting a side-effect-free programming style, particu-

larly in concurrent systems where issues of interference may arise. Gansner states,

“Side-effect-free programming style should be the norm. This is especially

important in concurrent systems, where issues of interference arise. Fur-

thermore, the use of ‘pure’ functions and immutable data greatly increases

the clarity and reliability of programs.” -Myers [123]

Imagine you have a permanent marker in your hand. Since the ink is permanent,

when you use this marker to write something on a whiteboard, it cannot be erased or

modified. Whatever you write remains unchanged, just as if it were carved in stone.

Now, let’s relate this concept of immutable data to programming. In software

development, immutable data refers to data that cannot be altered after it is created,

much like the markings made with a permanent marker. Once the data is initialized,

its value remains fixed and cannot be changed.

Just as the ink from a permanent marker cannot be erased, immutable data en-

sures that the state of an object remains consistent throughout its lifetime. This

predictability eliminates unexpected changes or side effects that could occur if the

data were mutable.

The use of immutable data offers several advantages. Firstly, it makes the be-

haviour of the code easier to reason about. Since the data cannot be modified, you

can confidently understand how it will be used and what effects it will have on the

program. There are no surprises due to unexpected modifications.

13

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Secondly, debugging becomes simpler with immutable data. If there is an issue,

you can trace it back to a specific point in the code where the immutable data was

created or used. Because the data remains unchanged, you can examine its values

and properties with certainty, making it easier to identify and resolve any bugs or

errors.

Hickey [86], the creator of Closure programming mentions “Immutable data also

plays a vital role in concurrency and parallelism.” Just as the markings made with

a permanent marker are resistant to smudging, immutable data is inherently thread-

safe. It can be accessed and read by multiple threads simultaneously without the risk

of race conditions or data corruption.

Furthermore, immutable data aligns well with functional programming principles.

Kaya [93] stated “Functional programming emphasizes the use of pure functions that

do not have side effects.” Immutable data facilitates the creation of pure functions

because they only rely on their inputs and produce deterministic outputs. This makes

the code easier to understand, test, and maintain.

Lastly, just as markings made with a permanent marker cannot be erased, im-

mutable data retains its value over time. This can be useful in scenarios such as

historical tracking or maintaining a log of changes. Each change creates a new im-

mutable instance, allowing you to track the history of data transformations and easily

access previous states.

In summary, the permanent marker analogy helps to illustrate the concept of

immutable data. Immutable data, like permanent ink, ensures that the state remains

unchanged once it is created. This predictability leads to easier reasoning, simpler

debugging, safe concurrent processing, alignment with functional programming, and

14

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

the ability to track data history. Of course, my analogy skims only the thinnest

surface of the deep waters of the concept of immutability. We will discuss more about

this in later chapters.

2.5 Declarative Approach Vs Imperative Approach:

Unpacking the Contrast

Imagine you are going out to eat at a restaurant. The menu is like a recipe book, list-

ing all the available dishes with their ingredients and instructions on how to prepare

them. In this case, the menu is akin to an imperative approach. With an imper-

ative approach (like following a recipe book), you must go through each step and

perform them in a specific order to achieve the desired outcome. It’s a detailed set of

instructions that guide you through the cooking process.

Now, let’s switch to a declarative approach. Instead of ordering from a menu or

following a recipe book, imagine you have the opportunity to describe your ideal

meal to the chef. You can specify your preferences, such as the type of cuisine, the

ingredients you like, and any dietary restrictions. Based on your description, the

chef will use their expertise to create a customized dish that suits your tastes and

requirements. In this scenario, the declarative approach is like describing your desired

outcome (the meal) without explicitly stating the steps to achieve it. You focus on

communicating your intentions and letting the chef (or the underlying system) figure

out the best way to deliver them. Similarly, in software development or problem-

solving, a declarative approach involves specifying the desired outcome or behaviour

without getting into the nitty-gritty details of how to achieve it. You define the goal

15

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

or state you want to achieve, and the system determines the most suitable approach

to accomplish it, leveraging its internal knowledge and capabilities. By embracing a

declarative approach, developers can focus more on expressing the desired outcomes,

which can lead to increased flexibility, modularity, and automation in building com-

plex systems. It allows for a higher level of abstraction and empowers the system to

make decisions based on the defined goals as mentioned by Cook [30], similar to how

a chef creates a dish based on your meal description.

A declarative approach is a programming paradigm or methodology that fo-

cuses on expressing the desired outcome or goal of a program, rather than explicitly

specifying the steps or procedures to achieve it. It emphasizes the “what” rather than

the “how” of the program, as described by Alpuente et al. [2]. Declarative pro-

gramming languages are languages specifically designed to facilitate this approach

by providing constructs and syntax that allow programmers to express programs

declaratively.

Skoczylas [153] explains Declarative programming paradigms include the

following :

• Functional programming focuses on writing programs by composing pure

functions, which do not have side effects and produce the same output for the

same input. It emphasizes immutability and the use of higher-order functions

to manipulate data. Functional programs contain no assignment statements.

This means that variables, once given a value, never change. More generally,

functional programs contain no side effects at all. A function call can have no

effect other than to compute its result. This eliminates a major source of bugs

and also makes the order of execution irrelevant since no side effect can change

16

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

an expression’s value, it can be evaluated at any time, as said by Hughes [89].

• Logic programming is based on formal logic and allows programs to be writ-

ten in terms of rules and logical relationships. It employs inference and logical

deduction to derive results from given facts and rules.

• Database query languages, such as SQL, are declarative in nature. They

allow users to express queries to retrieve or manipulate data from a database

without specifying the exact steps to achieve the desired results.

• Markup languages like HTML and XML are declarative in nature. They

describe the structure and presentation of documents or data, rather than pro-

viding explicit instructions for rendering or processing.

2.6 Don Norman’s Principles and Their Relevance

to Immutability and Declarative Approaches

“Good design is actually a lot harder to notice than poor design, in part

because good designs fit our needs so well that the design is invisible,” —

Donald A. Norman, The Design of Everyday Things[125]

Don Norman’s principles [125] of interaction design offer valuable insights into cre-

ating human-centered software. When exploring the connections between these prin-

ciples, immutability, and the declarative approach, we find a rich interplay that en-

hances usability and system comprehension.

1. Visibility: Visibility refers to the clarity and transparency of a system’s

state and behavior. Immutability, in the context of object-oriented programming,

17

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

contributes to visibility by ensuring that the state of an object remains constant and

hence the view only needs to be drawn once. On the programming level, immutability

allows developers to easily understand and reason about the system’s behaviour, as no

unexpected changes are occurring. It is hard for developers to communicate state with

users if they do not fully understand it. Similarly, the declarative approach fosters

visibility by explicitly defining the desired outcomes, making it easier to communicate

the intentions and goals of the system.

2. Feedback: The book says “Feedback is essential for users to understand

the consequences of their actions.” Norman [125]. Mutable data structures allow

for changes in data structures to occur in unexpected places in the code. When

unplanned pathways are used to update underlying data, mechanisms to reflect that

change in the interface can be bypassed, resulting in a failure to provide feedback for

user actions. Immutable data structures must be reconstructed when they change,

and it is much easier to ensure that this only happens in ways that lead to recreated

visible widgets.

3. Constraints: Constraints guide users toward appropriate actions and prevent

unintended errors. Immutability acts as a constraint by limiting the ability to modify

an object’s state after it is created, making it harder to accidentally create situations

in which user actions could destroy data or corrupt on-going computation.

4. Mapping: Mapping refers to the relationship between controls and their

actions or effects. Some declarative approaches create mappings in the source code.

For instance, Fudgets (to be discussed in 5.4) uses infix operators and data flow to

represent the flow of signals and data within GUI components demonstrating how the

visual representation and declarative nature of fudgets enhance the readability and

18

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

comprehension of the code like it follows a pipeline structure.

5. Consistency: Consistency ensures that elements and interactions have a uni-

form appearance and behaviour. Declarative approaches enhance consistency by spec-

ifying standardized behaviours and outcomes based on intent. By defining function-

ality at a higher level, the programming library translates it into actions consistently

across the system. This approach reduces the reliance on individual programmers

to enforce consistency manually, as the declarative nature of defining behaviours en-

sures uniformity. For instance, if all widgets are defined in terms of their functionality

rather than appearance, consistency is automatically achieved. This is similar to the

original idea of HTML, where tags defined the structure of a document, but CSS was

introduced to allow flexible layout changes. By focusing on functionality rather than

appearance, declarative approaches encourage consistency without relying solely on

the programmer to enforce it.

6. Signifiers: Signifiers, also known as affordances, refer to the use of visual

elements associated by users with their function. This is not directly related to

immutability.

By incorporating these principles into system design, immutability, and the declar-

ative approach contribute to user-friendly experiences, better system comprehension,

and more consistent and intuitive interactions. Understanding the relationship be-

tween these principles and their integration can inform the creation of systems that

align with human cognition and behaviour, ultimately leading to enhanced usability

and satisfaction.

19

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 3

Graphical User Interface

Architectures

“Architecture is the set of design decisions that must be made early in a

project.” - Ralph Johnson as quoted by Fowler [59] in his article.

“The highest-level concept of a system in its environment. The archi-

tecture of a software system (at a given point in time) is its organiza-

tion or structure of significant components interacting through interfaces,

those components being composed of successively smaller components and

interfaces.”- IEEE Std 1471-2000[154], Fowler [59]

This section will consist of popular GUI architectural patterns discussed by one of

the well known authors Fowler [61] in his article.

20

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

3.1 Forms and Control

In a GUI application, the form is responsible for the layout and behaviour of the

controls on the screen. The controls display data, which can come from a database

and exist in three copies:

• the record state in the database,

• the session state in memory, and

• the screen state is the data they see on the screen.

Data binding helps to keep the session state and screen state synchronized, but it

cannot manage all behaviour. Events allow the form to be notified of changes in

the controls and to carry out specific behaviour through routines. Data binding and

events together ensure the correct display and behaviour of the controls on the screen.

3.2 Model–View–Controller (MVC)

Model–view–controller (MVC) as shown in 3.1 is a design pattern for graphical user

interfaces that originated in the 1970s. Trygve Reenskaug created MVC while work-

ing on Smalltalk-79 as a visiting scientist at the Xerox Palo Alto Research Center

(PARC) [169]. It was one of the first attempts to build UI systems on a large scale.

Potel [138] states “The key idea behind MVC is textitSeparated Presentation, which

divides the system into two parts: the domain model and the presentation.”

The domain model consists of objects that model the real world, while the presen-

tation consists of the GUI elements on the screen. The presentation part of MVC is

made up of the view and controller. The controller takes the user’s input and decides

21

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

what to do with it, while the view represents the appearance of the GUI element on

the screen. The view and controller are generic components that can be reused.

• Model: The domain model is a representation of the real-world objects and rules

that govern a particular problem domain. It contains all the interesting data

and logic of an application, and it is completely ignorant of the user interface

(UI).

• View: The view is responsible for presenting the model’s data to the user in

a way that makes sense for their needs. It should be as passive as possible,

meaning it has no knowledge of the model or any other part of the system. The

data is provided by the controller through an interface.

• Controller: “The controller acts as an intermediary between the view and

model.” Kuzmenko [101]. It handles user input and updates both as neces-

sary. It is also responsible for managing control flow within an application.

The key thing to remember is that the data which the software application is pro-

cessing is known as the ‘model’ (a.k.a. Application State, Domain Model, or Business

Logic) of the application. The ‘view’ represents this data to the user in a concrete

manner and the user can interact with it. Here the controller determines the path a

program takes and which parts of the code are executed based on certain conditions.

Hence, the controller has access to both the model and the view; it queries the model

to apply the business logic based on the action requested, receives the updates of

the model, and updates the view with the current model. Once the view is updated,

the user can see what changes have been made. The important thing to note here is

that the developer is responsible for ensuring that every model update is reflected in

22

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

the view. According to Martin Fowler, a renowned software development expert, the

concept of Model-View-Controller (MVC) can be subject to varied interpretations by

different individuals, leading to divergent understandings of MVC. Fowler states,

“Different people reading about MVC in different places take different

ideas from it and describe these as ‘MVC’. If this doesn’t cause enough

confusion you then get the effect of misunderstandings of MVC.” [61]

Fowler says MVC is one of the most misunderstood patterns in the software world,

understandably since it is not well-documented[62].

Figure 3.1: Model-view-controller (MVC)

In alignment with the aforementioned statement, my research on Model-View-

Controller (MVC) resonates with the notion that diverse interpretations of MVC

exist within the software development community. This observation is substantiated

by the abundance of blog posts I encountered during my investigation, wherein var-

ious authors presented MVC from distinct application perspectives. For instance,

discussions ranged from the implementation of desktop application-based MVC to

web-based MVC inspired by Smalltalk 80 and Apple’s MVC architectural pattern.

23

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

In the Appendix A, we will explore a practical illustration of the discussed concepts

through an implementation example.

3.3 Model–View–Presenter (MVP)

MVP as shown in 3.2 is an architectural pattern that initially emerged at IBM and

gained more prominence during the 1990s, particularly at Taligent. The pattern was

later migrated by Taligent to Java and popularized in a paper by Taligent CTO Mike

Potel. The MVP pattern aims to bring together the best of both Forms and Controller

and MVC architectures.

According to Potel [138], the ‘view’ is a structure of widgets that correspond to

the controls of the Forms and Controls model (3.1) and removes any view/controller

separation. It does not contain any behaviour that describes how the widgets react

to user interaction. The presenter then decides how to react to the event. The idea

is to separate the presentation logic (i.e. how data is displayed to the user) from the

business logic (i.e. how data is processed and stored).

In MVP, there are two main variations of separated presentation: Passive View

and Supervising Controller. In Passive View, the view is as passive as possible,

with all UI-related logic handled by the presenter. The view has no knowledge of the

model or any other part of the system and simply exposes a set of properties that

can be read and written by the presenter. In Supervising Controller, on the other

hand, the presenter acts as a mediator between the view and model, handling user

input and updating both as necessary. This means that in supervising controller,

the presenter has some control over the view, and in passive view, the presenter has

complete control over the view.

24

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

The presentation layer does not depend on the UI as it does in MVC. Instead, the

presenter communicates with the model layer through interfaces and receives model

events back through interfaces as well. Therefore, the presenter will implement model

layer interfaces and will communicate with the model layer. As the presenter receives

model layer notifications, the user will create view data and directly pass it to the

view. The view is then rendered with the updated model on the screen.

Figure 3.2: Model-view-presenter (MVP)

3.4 Model–View–ViewModel (MVVM)

MVVM as shown in 3.3 is a variation of Martin Fowler’s [63] “presentation model de-

sign pattern”. Microsoft architects Ken Cooper and Ted Peters invented it specifically

to simplify event-driven programming of user interfaces. The pattern was incorpo-

rated into the Windows Presentation Foundation (WPF) [166].

The model is relatively similar to the one in both MVC and MVP, but here we have

viewmodels that are passed to the view. All the logic is in the viewmodel and hence

no controller/presenter is present.

25

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

• Model: The model represents the data and business logic of the application. It

can include classes or structures that define the data objects, as well as methods

for performing operations on that data, According to D. [39].

• View: The view is responsible for presenting the user interface to the user. The

view observes the viewmodel for changes and updates the UI accordingly.

• Viewmodel: “The viewmodel acts as a mediator between the model and the

view.” Muliyashiya [120]. The viewmodel handles user interaction. It exposes

the necessary data and methods required by the view to display and interact

with the data. It typically exposes properties and commands that the view can

bind to. In our case, the viewmodel would contain properties to hold the input

numbers, a method to perform addition using the model, and a property to hold

the result.

User events still come from the view and through a binding. User events are handled

by the viewmodel, and the viewmodel passes the messages through the model. When

the model changes, the viewmodel, through the observable properties, will notify the

view.

As you can see here, the significant difference is that the viewmodel does not have

a reference to the view directly. Earlier, the controller called the reference to the

view, and normally the view also does not hold a reference to the viewmodel. There

is something in-between these components allowing them to be connected, which is

called a binder. A binder is a component or tool that connects two or more software

components. The purpose of a binder is to enable communication and data exchange

between different parts of an application or system, as stated by Gaudioso [66].

26

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

When MVVM was created by Microsoft, they were simply attempting to eliminate

the boilerplate for connecting the presentable data to the view. At the time, they

used something called XAML in a binder framework to keep the view up-to-date with

the model without the developer having to write any code. MVVM was attempting

to solve the same problem as MVC, but with less boilerplate code, and introduced

an automated binder framework to show how the data within the viewmodel should

be displayed, according to Gaudioso [66].

In MVC, for example, data binding can be used to connect a form field (view)

with a corresponding property on an object (model). When the user enters data

into the form field, that data is automatically updated in the corresponding property

on the object[132]. Similarly, if the value of that property changes elsewhere in

the application (such as through a database update), that change is automatically

reflected in the form field.

Figure 3.3: Model - view - viewmodel (MVVM)

27

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

3.5 Model–View–Update (MVU)

MVU as shown in Figure 3.4 is less well-known than other mentioned GUI architec-

tures, and in fact, lacks a Wikipedia page. It was introduced in an update to the Elm

language and is also referred to as The Elm Architecture (TEA) [34].

Elm as initially designed by Evan Czaplicki as part of his Harvard University thesis

in 2012 used ’Functional Reactive Programming’ (FRP) [35]. Elm was positioned

as a gateway to functional programming for web developers—including self-taught

developers—and functional reactive programming concepts were perceived as a barrier

as per the paper Czaplicki and Chong [38]. Czaplick also introduced TEA as a simpler

pattern for architecting web apps and Elm is no longer a FRP as decleared by Czaplick

[36]:

• Model: The application state in Elm is represented by a data structure called

the ‘model’. It holds all the necessary information about the current state of

the application. The model is immutable (further explained in 2.4), meaning it

cannot be directly modified. Instead, when an update is needed, a new model

is created that represents the updated state.

• Update function: To update the model, the user provides an ‘update’ function.

This function takes the current model and an action (an instruction for the

update a.k.a messages) as input and returns a new model as output. The

update function is responsible for handling different actions and updating the

model accordingly.

• View function: The view function in Elm is responsible for describing the user

interface based on the current model. It takes the model as input and returns a

28

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

description of the UI. This description is essentially a pure function that maps

the model to UI components and their properties.

• Document Object Model (DOM): The DOM is an interface that represents web

documents as a structured collection of nodes and objects, corresponding to

a HyperText Markup Language (HTML) document. It allows programming

languages like JavaScript to interact with and modify the structure, style, and

content of web pages dynamically as inferred from Mozilla.org contributors [117,

116, 115]

• Virtual DOM diffing: Virtual DOM is a programming concept used in web

development frameworks that helps optimize the process of updating the user

interface. Instead of updating the actual DOM every time a change is made to

the user interface, the framework updates a virtual representation of the DOM

and then compares it with the previous version to determine which changes need

to be made to the actual DOM. This process is more efficient than updating

the entire DOM every time a change is made, which can lead to slow and

unresponsive user interfaces. In Elm, once the view function generates the UI

description, Elm uses a technique called “virtual DOM diffing” to efficiently

update the real DOM (the actual HTML elements rendered in the browser).

The virtual DOM is a lightweight representation of the actual DOM, and by

comparing the previous and current virtual DOMs, Elm identifies the minimal

set of changes required to update the UI.

According to the news released by the creator of Elm Czaplicki [37], as per the

2016 report their virtual DOM allowed the language to render HTML faster

than the popular JavaScript frameworks React, Ember, and Angular.

29

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Messages (Msgs) are the way an Elm program communicates with the world outside of

Elm. Msgs come from events, like user interaction such as clicks on HTML elements,

and IO events like HTTP requests and ports. The update is the central place to

interpret all incoming messages as changes to the model.

Elm could have picked an architecture with many callback functions being passed

to the runtime for it to call, but having a central place to deal with things that can

change the model makes it easier to see how and why the model can change and this

concept is discussed as one of the advantages of elm in this forum [91]. By following

this flow, Elm achieves a controlled and predictable update process for the user inter-

face. The functional and declarative nature of Elm helps to eliminate many common

sources of side effects and provides a clear separation between state management and

UI rendering. This approach leads to more maintainable, and reliable front-end code.

m1 : Model

screen

m2 : Model m3 : Model

msg1 :
Msg

view

update

msg2 :
Msg

update

screen

view

screen

view

Figure 3.4: Model-view-update (MVU)

30

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

3.6 Analysis of MVC, MVP, MVVM, and MVU

Table 3.1: Analysis of MVC, MVP, MVVM, and MVU

Concepts MVC MVP MVVM MVU

Data Flow

Bidirec-

tional. The

user interacts

with the View,

which sends

user input to

the Controller.

The Controller

updates the

Model. The

Model notifies

the View of

any changes.

Bidirec-

tional. The

user interacts

with the View,

which sends

user input to

the Presenter.

The Presenter

updates the

Model and

notifies the

View of any

changes.

Bidirectional.

User

interactions

update the

viewmodel,

which in turn

updates the

Model. Any

changes in the

Model are

propagated to

the View for

display. With

a Redux-like

approach, we

can make

MVVM

unidirectional

1.

Unidirec-

tional.

Update

function takes

the current

Model state

and user input

to produce an

updated

Model state.

Continued on next page

0In MVVM, we would still require calling some method on the ViewModel when the user interacts
with the View, but we can create an indirect link that does not directly interact with the ViewModel

31

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Table 3.1 – Continued from previous page

Concepts MVC MVP MVVM MVU

Control

Flow

Controller

handles user

input

Presenter

handles user

input

viewmodel

handles user

input

Update

function

handles user

input

View

Hierarchy

Views are

passive,

display-only

Views are

passive,

display-only

Views are

passive,

display-only

Views are

passive,

display-only

Module

decomposi-

tion

Model, View,

Controller are

separate

modules

Model, View,

Presenter are

separate

modules

Model, View,

viewmodel are

separate

modules

Model and

Msg are types,

View and

Update are

functions

We have analyzed the data flow, control flow, view hierarchy, and module decom-

position in each of these patterns as discussed in Chapter 2. The paradigms above

collectively underscore the significance placed on segregating business logic from pre-

sentation logic. Within the MVU pattern, the model is immutable, generating a new

model whenever updates occur. This unidirectional flow of data provides a height-

ened level of predictability. By enforcing changes to propagate solely from the model

to the view, the MVU pattern simplifies data flow, enhances comprehensibility, and

as described by Santos [148], Rambhia [142]

32

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

facilitates efficient data update management. As a result, this one-way flow engenders

a more controlled and dependable system.

33

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 4

Is The Future Declarative?

In declarative programming, programs focus on specifying what needs to be accom-

plished rather than explicitly defining how to achieve it. As a result, the program’s

behavior can be described in a more abstract and concise manner, as described by

Ghezzi and Jazayeri [67].

Declarative programming is a programming paradigm where, at its core, it gives

a set of declaration or declarative statements, each of which has a specific meaning

in the problem space (all information that defines the problem and constrains the

solution, the constraints being part of the problem). These can be understood inde-

pendently or in isolation. A declarative programming language allows the expression

of a program by breaking it down into multiple smaller statements, each representing

a fact, opinion, or belief about the program’s behavior. Instead of one large dec-

laration, a declarative language enables the programmer to express the program’s

logic through a collection of individual statements, each contributing to the overall

behavior of the program, according to Bmbarbour [18].

34

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

4.0.1 Declarative Approaches: Not Exclusive to Declarative

Programming Languages

A language does not necessarily need to be exclusively declarative to enable declara-

tive approaches. Many programming languages support a combination of declarative

and imperative programming styles. For example, libraries written in JavaScript,

Python, and Ruby allow programmers to write code in a declarative manner, even

though the languages use mostly or entirely imperative programming constructs.

The key aspect is the programming style and methodology employed by the pro-

grammer, rather than the language itself. However, using a dedicated declarative

programming language provides a focused and expressive environment for following

declarative approaches, and enforces some aspects of declarative programming.

4.1 Declarative UI: Exploring the Trend and Fu-

ture Potential

Imagine you are furnishing a room in your house. In a traditional, imperative ap-

proach, you would manually arrange and rearrange the furniture, constantly checking

and adjusting the position of each item to achieve the desired layout. Now, let’s con-

sider a declarative approach using a declarative UI. Imagine you have a magic interior

design tool that allows you to simply describe your required room functionality and

desired appearance, and the tool automatically arranges the furniture accordingly.

In this analogy, the furniture represents the different user interface components

like buttons, input fields, or images. The imperative approach would involve manually

specifying the position, size, and behavior of each component, much like manually

35

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

moving the furniture in the room. However, with a declarative UI approach, you

would describe the desired layout and appearance of the user interface using a high-

level description, similar to how you would describe the desired room layout to the

interior design tool. You might say things like, “I want a button at the top-right

corner,” or “I want a text input field in the center.”

The declarative UI framework or library then takes this high-level description and

automatically handles the rendering and positioning of the user interface components

accordingly, similar to how the magic interior design tool automatically arranges the

furniture based on your description. It simplifies the development process and allows

you to focus more on the desired outcome rather than the detailed steps of how the

UI should be constructed.

You can expand this concept to web app development. In a traditional imperative

approach to web app development, developers would manually manipulate the Doc-

ument Object Model (DOM) to create and update the user interface. They would

write code that explicitly adds, removes, or modifies DOM elements to reflect the de-

sired state of the UI. On the other hand, with a declarative UI approach like React,

developers describe the UI structure and behavior declaratively, and the framework

takes care of rendering and updating the DOM accordingly. Developers define com-

ponents that represent different parts of the UI and describe how they should look

and behave based on the application’s state.

Section A.2, shows an implementation made using Android’s XML layout and

Jetpack Compose to demonstrate that when using a declarative approach, there are

fewer lines of code. Also, it is easier to test, debug and maintain. It requires a

considerable amount of effort to learn the syntax initially, but once learned it results

36

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

in simple and easy-to-understand code. Unlike Android XML, Jetpack Compose is

written in Kotlin which can also be used to write the business logic. The UI elements

can be reused and composed together, also within the Kotlin code. Thereby we have

a single source of truth.

Similarly, Paul Hudson, in this video[88], states “In SwiftUI your data and the

view hierarchy displaying your data are much more loosely coupled than in UIKit.”

and also, illustrates this comparison.

4.1.1 Industry Trends

Apple [10] at WorldWide Developer Conference(WWDC) said “SwiftUI and Swift

are the future of development on Apple’s platforms”[5]. Also, survey conducted by

Siemens [152], shows a trend in organizations toward adopting low-code technologies

which goes well with the announcements made at Apple’s WWDC and echoes with

the blog post by Evans [52]. Other organizations have also invested in declarative

approaches, starting with Facebook’s React Native, Google’s native Android develop-

ment using Jetpack Compose, Google’s cross-platform development kit, Flutter, and

Microsoft’s Fluent UI.

In 2008, StackOverflow started collecting and analyzing post content [157], from

which we can see a significant increase in interest in a declarative style of program-

ming. We used their data to compare a more declarative framework with a less

declarative framework, each targeting the same platform. In Figure 4.1 we see that

Flutter has overtaken React Native. In Figure 4.2 we see that Jetpack Compose has

recently rocketed ahead of the Android XML layout. In Figure 4.3, we see the most

dramatic jump in interest in SwiftUI compared to the conventional UIKit. Google

37

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Figure 4.1: Trend highlights of Flutter over React Native

Figure 4.2: Trend highlights of AndroidXML Layout over Jetpack Compose

Figure 4.3: Trend highlights of UIKit over SwiftUI

38

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Trends [76] echoes these results.

4.1.2 Exploring the Advantages of Declarative UI Program-

ming with Prominent Platforms

“The declarative style of UI programming has many benefits. Remarkably, there is

only one code location for any widget” as stated in Google [74] you simply describe

what the UI should look like for any given state once, and nothing more the concept

to achieve this is explained in there documentation “Start thinking declaratively”.

In the context of user interface design in Flutter, the equation “UI = f(State)”

Figure 4.4: Reflecting App State in the User Interface [74]

means that the user interface (UI) is a function of the current state of the system or

application. In other words, the appearance and behavior of the UI are determined

by the state of the underlying system [74].

To explain this concept further, consider a web application with different screens

or pages. The UI of each screen can vary depending on the current state of the

application. For example, if a user is viewing their profile page, the UI may display

their profile picture, name, and relevant information. However, if the user switches

to a different page, such as a settings page, the UI will change to reflect the new state

and display different options and controls related to settings.

39

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

The equation UI = f(State) where f is a build method, says that the UI is not

static but dynamic. It implies that the UI elements, layout, and content are computed

based on the application state, allowing the developer to focus on the business logic,

and let the framework update the interface.

This concept is often utilized in user interface frameworks and design patterns to

make it easier to create responsive and context-aware interfaces that enhance the user

experience. By dynamically updating the UI based on the system’s state, designers

and developers can provide users with interfaces that are intuitive, efficient, and

closely aligned with their current needs and goals.

Apple [9] documentation states, “Declare the content and layout for any state of

your view. SwiftUI knows when that state changes, and updates your view’s rendering

to match.”

“FluentUI aims to support both models (imperative and declarative), but strongly

recommends describing user interfaces using the declarative approach.”—Microsoft

Fluent Wiki [113]

“Android Jetpack Compose, over the last several years, the entire industry

has started shifting to a declarative UI model, which greatly simplifies the engineering

associated with building and updating user interfaces.”—Google [68]

4.2 How Does Declarative Programming Relate to

Immutability?

By explicitly expressing the relationship between the application state and UI func-

tionally, declarative UI expresses concisely the idea that pure functional programming

40

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

should be used to connect business logic and GUI widgets. In declarative program-

ming, there is also an emphasis on immutability, which plays a crucial role in promot-

ing referential transparency (when given the same inputs, always produces the same

output) and mitigating unintended side effects. Declarative programming languages

encourage the use of immutable data structures. Immutable data facilitates reasoning

about programs because you can rely on the fact that data does not change during

program execution. Since declarative programming focuses on expressing the desired

outcome rather than the precise steps to achieve it, immutable data fits well with

this paradigm as it allows the program to be more predictable and less error-prone.

immutable approaches are quite analogous. Mutable data, on the other hand, can be

modified or changed after it is created. Mutable data can introduce complexity and

potential issues, such as unexpected modifications or race conditions. By expressing

the relationship between the application state and the visible interface as a functional

dependency, it makes sense that the visible interface would be recreated every time

the state changes and therefore does not require mutability. However, most GUI

programming is implemented in languages with mutable data structures, so devel-

oper effort is required to maintain declarative UI patterns. Vendors emphasize new

skills and new ways of programming, as seen in the case of Fluent UI. Although lan-

guages may support the optional use of immutable values, e.g., the final keyword in

Java, it is still up to developers to learn and adopt them, which we discuss in section

5.6. On the other hand, most functional programming GUI toolkits follow declara-

tive approaches such as Fudgets, introduced and developed by Carlsson and Hallgren

[25], wxHaskell by Leijen [104], Fruit by Sage [147], Frantk by Courtney and Elliott

[32], and many more, but they are generally thin layers on top of non-declarative

41

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

frameworks.

Given the main vendors recent intense focus on developing their own declarative

UI frameworks, and the dramatic increase in developer interest (as evidenced by

StackOverflow data), I believe that the future is declarative. I have confidence that

the ability for developers to simply describe their intentions and desired outcomes will

enable more adaptable and efficient ways of accomplishing GUI programming tasks.

42

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 5

GUI Toolkits

Are you familiar with the originator of graphical user interfaces? Have you considered

the fascinating lineage of GUIs and their associated toolkits? While we will not delve

into a comprehensive discussion of GUIs in this thesis, I have included highlights to

put this work into its historical context. This chapter will focus on exploring several

significant toolkits.

5.1 Short History

Douglas Engelbart[44], the father of graphical user interface (GUI), made signifi-

cant strides in GUI development through his creation of the On-Line System (NLS).

Implemented in the 1960s, NLS revolutionized computer interaction by introduc-

ing text-based hyperlinks and introducing an innovative device called the mouse.

Notably, Engelbart’s groundbreaking 1968 demonstration of NLS, famously dubbed

“The Mother of All Demos,” showcased the immense potential of GUI technology.

43

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

In the following decade, researchers at Xerox PARC expanded upon Engelbart’s con-

cepts, with notable contributions from Alan Kay. Kay took GUI advancements a

step further by integrating graphics into the interface of the Smalltalk programming

language. This breakthrough occurred on the Xerox Alto computer, which debuted

in 1973. The graphical user interface presented in Smalltalk went beyond text-based

hyperlinks, providing a rich and intuitive visual environment.

The Smalltalk-based GUI system developed at Xerox PARC became a pivotal

milestone, serving as the foundation for most modern general-purpose GUIs. This

pivotal shift was driven by the pressing need to enhance usability and efficiency, as

early text-based command-line interfaces proved to be less user-friendly for the av-

erage computer user. By embracing the graphical user interface paradigm, software

interfaces became more accessible, intuitive, and visually engaging for a wider audi-

ence.

5.1.1 An Overview of GUIs, Widgets, and GUI Toolkits

In the realm of computer systems, a GUI, commonly referred to as GUI (pronounced

“gooey”), serves as a computer program that facilitates human-computer interaction

through the utilization of graphical control elements, often known as widgets. These

widgets encompass various components like buttons, scroll bars, and more. Accord-

ing to Martinez [106], ‘the primary objective of a GUI is to enable users to swiftly

grasp the functionality and efficiently manipulate the underlying system through the

interface’.

As stated by Myers [122], “every widget serves a distinct purpose in facilitating

user-computer interaction, manifesting as a visible element within the application’s

44

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

GUI”. Certain widgets enable user interaction, such as labels, buttons, and check-

boxes, while others function as containers that group together added widgets, includ-

ing windows, panels, and tabs. In 1988, the term ’widget’ was attested in the context

of Project Athena and the X Window System. In an ’Overview of the X Toolkit’ by

Joel McCormack and Paul Asente, it says: “The toolkit provides a library of user-

interface components (‘widgets’) like text labels, scroll bars, command buttons, and

menus; enables programmers to write new widgets; and provides the glue to assem-

ble widgets into a complete user interface” [109]. The reasoning behind the term

is indicated by Swick and Ackerman [159] as follows: “We chose this term since all

other common terms were overloaded with inappropriate connotations. We offer the

observation to the skeptical, however, that the principal realization of a widget is its

associated X window and the common initial letter is not un-useful.” .

A widget toolkit, widget library, GUI toolkit, or UX library is a library or a

collection of libraries containing a set of graphical control elements (i.e., widgets)

used to construct the GUI of programs. A toolkit is a specialized library comprising

a collection of controls or widgets, including menus, buttons, and scroll bars, among

others. These toolkits are designed with a programmatic interface, intended to be

utilized by programmers to create user interfaces. Galitz [64] highlights this aspect by

stating, “A toolkit is a library of controls or widgets such as menus, buttons, and scroll

bars. Toolkits have a programmatic interface and must be used by programmers.”

When it comes to developing user interfaces, toolkits play a crucial role by offering

a comprehensive range of interactive components and an architectural framework. As

stated by Myers et al. [121], “Toolkits typically provide both a library of interactive

components, and an architectural framework to manage the operation of interfaces

45

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

made up of those components. Employing an established framework and a library

of reusable components makes user interface construction much easier than program-

ming interfaces from scratch.”

5.2 Imperative Toolkits

Smalltalk

Smalltalk is an object-oriented programming language that emerged in the 1970s

with the primary objective of teaching programming to children. Its design focused

on creating a language that is small and simple, making it accessible for complete

beginners as stated by Eng [51]. Smalltalk boasts a concise syntax and straight-

forward execution semantics, enabling users to grasp its concepts quickly. One of

Smalltalk’s distinctive features is its message-passing model, where objects collab-

orate by exchanging messages. “It was the first computer language based entirely

on the notions of objects and messages.” as stated by Kreutzer [98]. Unlike other

languages, Smalltalk does not incorporate constructors, type declarations, interfaces,

or primitive types. Instead, it emphasizes a pure object-oriented approach. What

sets Smalltalk apart is its unique self-reflective nature. The entire Smalltalk system,

including its compiler, debugger, and programming tools, is implemented in Smalltalk

code. This means that users have the ability to read and modify the system’s compo-

nents. This aspect not only promotes a sense of transparency but also empowers both

novice programmers, who can easily explore and understand the system, and expe-

rienced developers, who can engineer sophisticated solutions. Furthermore, Eng [49]

claimed “Smalltalk introduced the Model-View-Controller (MVC) architectural pat-

tern”, which has become synonymous with the traditional Smalltalk-80 user interface.

46

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

He also said [50], this groundbreaking pattern, characterized by its overlapping win-

dows, has been widely adopted and replicated by operating systems like Macintosh

and Windows. Smalltalk was instrumental in developing the graphical user inter-

face (or GUI) and the “what you see is what you get” (WYSIWYG) user interface

as mentioned by Porter III [137]. In summary, Smalltalk’s emphasis on simplicity,

object-oriented principles, and its pioneering MVC pattern has made it a significant

language in programming education and professional software development, enabling

users to start coding effortlessly while also fostering elegant and adaptable solutions.

Squeak and Pharo’s toolkits are a part of the Smalltalk programming ecosystem.

Squeak

Squeak, introduced in 1996, is an open-source Smalltalk programming system

designed to run efficiently on various platforms. It offers fast execution environments

for major operating systems. One of its key features is the Morphic framework, which

facilitates the development and maintenance of graphical and interactive applications

with minimal effort. Squeak has seen numerous successful projects built upon it,

demonstrating its effectiveness as a platform for software development. One notable

application of squeak is the original Scratch environment as described by ?]. Scratch

is the world’s largest free coding community for kids to program their own interactive

stories and games including ScratchJr accroding to Resnick [145], Scratch Foundation

[149], an iPad app. This was one of the motivations to create ElmJr, a projectional

editor for Elm focussed on our graphics library. Using ElmJr, children transform

programs through contextual menus iPad Elm editor.

Morphic is a user interface construction kit that enables direct manipulation of

47

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
(https://apps.apple.com/ca/app/elmjr/id1335011478)

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

graphical objects called Morphs. It is built on display trees and serves as a replace-

ment for the original Model View Controller graphics toolkit in Smalltalk-80. The

term “Morph” derives from the Greek words for “shape” or “form.” In Morphic, a

Morph represents the core abstraction. Essentially, a Morph is a Squeak object with

a visual representation that can be interactively picked up and moved.

Morphic offers various capabilities for Morphs. They can perform actions in re-

sponse to user inputs, trigger actions when dropped onto or by another Morph,

execute actions at regular intervals, and control the arrangement and size of their

submorphs. Additionally, Morphic includes the Morphic Designer, an application

designed to simplify the creation of Morphic user interfaces. The Morphic Designer

follows the principles of the QtDesigner found in the Nokia Qt Framework, providing

a user-friendly environment for designing and crafting Morphic-based interfaces as

inferred from Self Language Team [151].

Pharo

Black et al. [17] mentioned in the book that “Pharo is a modern open-source devel-

opment environment for the classic Smalltalk-80 programming language.” The stated

goal of Pharo is to revisit Smalltalk’s design and enhance it. Pharo originated as a fork

of Squeak. It is specifically designed to prioritize simplicity and provide immediate

feedback during development. Pharo enhances the capabilities of Squeak, providing

a powerful environment with features such as advanced reflection, software-as-objects

approach, closures with non-local returns, immediate objects identity swapping, fast

resumable exceptions, and easy call stack manipulation, making it versatile and effi-

cient programming [135].

AWT (Abstract Window Toolkit)

48

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Abstract Window Toolkit (AWT) serves as the foundational layer for Swing, Java’s

graphical user interface framework. Introduced by Sun Microsystems with the initial

release of Java in 1995, “AWT widgets provide a lightweight abstraction over the un-

derlying native user interface” as described by Oracle [130]. While AWT prioritizes

optimized performance, it may lack certain advanced features. Consequently, AWT

is well-suited for smaller Java UI applications that do not require intricate graphical

interfaces, making it a preferred choice for full-stack Java developers. AWT’s capa-

bilities encompass native user interface components, a robust event-handling model,

extensive graphics and imaging tools for shapes, colors, and fonts, versatile layout

managers facilitating adaptable window arrangements independent of specific sizes

or screen resolutions, as well as data transfer classes enabling seamless cut-and-paste

functionality through the native platform clipboard as innferred from Wikipedia con-

tributors [173].

Swing

According to Wikipedia contributors [175], Java Swing (Sun Windowing) is a

Graphical User Interface (GUI) toolkit for Java, introduced in 1997 and released in

1998 as part of the Java Foundation Classes (JFC). It offers a wide range of widgets

and packages to create sophisticated GUI components. Swing is built on the Java

AWT and provides a lightweight approach by rendering its controls using Java 2D

APIs instead of relying on native GUI toolkits. This enables Swing components to be

platform-independent and highly customizable. Key features of Swing include its flex-

ible and customizable nature, allowing developers to override default implementations

and create their own look and feel using the ’LookAndFeel’ mechanism. It supports a

strong set of widgets and offers built-in support for Undo/Redo functionality. Swing

49

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

follows the Model-View-Controller (MVC) design pattern, facilitating a decoupling of

data and user interface controls. It also utilizes multi-threading techniques to enhance

performance. Swing’s configurability and runtime adaptability enable hot-swapping

of user interfaces and uniform changes in the look and feel of applications without

modifying the code. It simplifies 2D graphics rendering, supports pluggable look and

feel, and provides a platform-independent environment. Swing’s model-centric ap-

proach allows programmers to work with default implementations or create their own

models. Overall, Swing provides a rich set of GUI components, extensibility, platform

independence, and flexibility, making it a powerful toolkit for Java GUI programming

as inferred from the documentation by Oracle [129].

SWT (Standard Widget Toolkit)

SWT, the Standard Widget Toolkit, is a powerful open-source widget toolkit for

Java that offers developers efficient and platform-specific access to the user-interface

capabilities of various operating systems, as mentioned by Kestermann [94]. It was

initially released in 2003 and has since provided developers with a versatile toolkit

for creating robust graphical user interfaces. One of the key advantages of SWT is its

ability to function independently of the Eclipse Platform, making it a flexible choice

for developers working on diverse Java projects as described by Guindon [79]. SWT

boasts several notable features that contribute to its appeal. SWT excels in perfor-

mance, offering faster loading components compared to Swing, another popular Java

widget toolkit [126]. Additionally, SWT is designed with optimal memory usage in

mind, resulting in smaller memory footprints for applications built with it. A stand-

out feature of SWT is its ability to provide different styles for different types of menus,

enhancing the customization options for developers. This allows for greater flexibility

50

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

in designing visually appealing and intuitive menus tailored to specific application re-

quirements. SWT and Swing are distinct tools with separate objectives. SWT aims to

offer a unified interface for accessing native widgets on various platforms, prioritizing

high performance, native appearance, and seamless integration with the underlying

platform. On the contrary, Swing is intended to provide a customizable look and

feel that is consistent across different platforms. SWT focuses on platform-specific

integration and performance, while Swing emphasizes a uniform visual style that can

be tailored to individual preferences across all supported platforms as inferred from

posts by Eclipsepedia [46], Wikipedia contributors [167].

JavaFX

JavaFX, released in 2008, is a modern GUI toolkit introduced as a successor to

Swing. As explained by Pawlan [133], JavaFX is a comprehensive set of graphics

and media packages that empowers developers to create cross-platform rich client

applications. It offers a range of key features that contribute to its versatility and

usability. JavaFX provides Java APIs, allowing developers to leverage the familiar

Java language and interact with classes and interfaces written in native Java code. It

offers FXML, an XML-based markup language, and Scene Builder for intuitive GUI

design. The WebView component enables seamless integration of web pages within

JavaFX applications, enabling bi-directional communication between JavaScript and

Java APIs as inferred from Oracle [131]. One notable capability is the interoperability

with Swing, allowing existing Swing applications to incorporate JavaFX features like

advanced graphics, media playback, and embedded web content. JavaFX offers a

variety of built-in UI controls, which can be customized using CSS. The Canvas API

facilitates direct drawing within the application’s scene. JavaFX supports multitouch

51

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

operations, follows the Model-View-Controller (MVC) design pattern, and benefits

from a hardware-accelerated graphics pipeline (Prism) for fast and smooth rendering.

It includes a high-performance media engine based on the GStreamer multimedia

framework. The self-contained application deployment model simplifies distribution

by packaging all resources and the Java and JavaFX runtimes. These applications

can be installed and launched like native applications on different operating systems

as inferred from Wikipedia contributors [174].

5.3 Web Development toolkits

UI Kit

This is Apple’s original UI framework for building iOS and macOS applications.

UIKit is part of CocoaTouch [6], which was released as part of the iOS SDK in

2008, and was available with the first public release of iOS, back then known as

iPhoneOS. As mentioned by Jeroen [90], Apple’s UI kit was developed based on the

Objective-C language, which brings Smalltalk-like object-oriented programming to

the C language. It inherited these features from NextStep, as explained by Larkin

et al. [102]. UIKit follows the imperative programming style but has introduced

more declarative features over time. Developers can define UI components using

Interface Builder or programmatically using Swift or Objective-C. UIKit follows the

Model-View-Controller (MVC) architectural pattern. UIKit delegates play a crucial

role in facilitating communication and data flow between different components of

an iOS app. “Delegates are a way for one object to communicate and send data to

another object or notify it of certain events” according to the Apple [8] documentation.

Delegation allows one object, known as the delegate, to handle specific tasks or provide

52

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

information for another object, known as the delegating object. The delegating object

typically has a delegate property or a delegate protocol, and it calls specific methods

on the delegate to notify or request information. The concept of delegates is not

unique to UIKit, it is commonly used in various frameworks and libraries across

different programming languages. For instance, in Java Swing, the ActionListener

interface is a delegate that responds to button clicks and menu selections. Delegates

in .NET allow objects to subscribe to and handle events raised by other objects. The

EventHandler delegate, for example, is commonly used to handle events in Windows

Forms applications. Cocoa extensively uses delegates for event handling and object

communication. For example, in macOS development, the NSApplicationDelegate

protocol is used to handle application-level events, such as launching and quitting

the application. JavaScript frameworks like React and Angular use a similar concept

called “props” and “inputs/outputs,” respectively, to achieve a similar effect of passing

information and behavior between components.

Angular

AngularJS, released in 2010, was the predecessor to Angular. AngularJS support

has officially ended as of January 2022 as reported by Hevery [84] and recommended

using Angular according to Hevery [85]. Angular is an application-design framework

and development platform for creating efficient, clean, and maintainable single-page

applications, two-way data binding, unit testability, reusable components, and sup-

port for dependency injection and separation of concerns. Angular 2.0 was a complete

rewrite aimed at optimizing the library’s compiler. The most recent Angular release

builds upon Angular 2.0’s foundation with a focus on compiler optimization and

speed. Angular follows a component-based architecture, which encourages splitting

53

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

code into components, each following the MVC or MVVC design patterns. Angu-

lar support for two-way data binding, enabling bidirectional data binding between

HTML tags and JavaScript components. Angular offers cross-platform development

capabilities, allowing the creation of web, mobile (Cordova, Ionic, NativeScript), and

desktop (Mac, Windows, Linux) applications. The framework utilizes a Component

Router for automatic code-splitting, optimizing speed and performance by loading

only relevant code. According to Mukherjee [119] Angular 2.0, released in 2014, in-

troduced a structured approach for projects consisting of modules, components, and

services. Each Angular component includes a template view, a class for application

logic, and decorators for locating the template view and class. Angular components

can form a nested relationship using loops to develop parent-child component rela-

tionships. Based on Vyas [163]’s and Manjunath [105]’s blogs, the template view

utilizes HTML with two-way data binding, enabling communication between parent

and child components through input data and output events.

React and React Native

React is a popular JavaScript UI library that simplifies front-end development

by providing support for one-way data binding and a virtual DOM [156]. The history

of React dates back to 2011 when it was initially developed as FaxJS by a software

engineer at Meta (formerly Facebook). After Meta recognized its potential, the li-

brary was rebranded as “React” and implemented in their newsfeed in 2011, followed

by Instagram in 2012. React was later open-sourced at JSConf US in May 2013,

allowing developers worldwide to benefit from its capabilities. The concept of React

Elements, embedded within the library, allows for efficient and real-time updates in

the virtual DOM, resulting in improved performance compared to the traditional real

54

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

DOM. React components facilitate one-way data binding using “props,” enabling the

transfer of data from parent to child components. In 2017, React introduced “React

Fiber”, a set of new algorithms designed to enhance rendering and component com-

pilation. This update focused on improving the speed and optimization of React’s

core functionalities. React has gained immense popularity due to its efficient render-

ing, modular component-based architecture, and thriving community that supports

it. Developers appreciate React’s focus on performance and optimization, making it a

go-to choice for building modern and responsive user interfaces, as it’s demonstrated

in Baer [12]’s book.

React Native is a framework based on React that was initially released by Meta

(formerly Facebook) in March 2015 [170]. It enables developers to build native mo-

bile applications for iOS and Android platforms using JavaScript and React concepts.

While React is primarily focused on web development, React Native extends React’s

capabilities to mobile app development. React Native follows a declarative approach,

similar to React, where developers describe the desired user interface and the frame-

work handles the underlying rendering and updates. Instead of building separate

UI components for each platform, React Native uses a set of pre-built, platform-

specific components that are rendered as native elements as shown in documentation

by Source [155]. This approach allows for the creation of mobile apps with a native

look and feel. By using React Native, developers can write a single codebase that is

shared between iOS and Android platforms, reducing development time and effort.

React Native also provides a bridge that allows JavaScript code to interact with native

components and APIs, enabling access to device features and capabilities. One of the

55

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

key advantages of React Native is its ability to achieve near-native performance by

leveraging the underlying platform’s rendering capabilities. This is accomplished by

translating the React Native components to their native equivalents during runtime

as described in Ubah [162].

Bootstrap

Bootstrap aims to provide developers with a comprehensive set of tools and com-

ponents for building responsive and visually appealing web interfaces, as stated by

Dykraf [45]. It focuses on simplifying the UI development process and ensuring con-

sistency across different devices and browsers. The first version of Bootstrap was

released in 2011. Bootstrap offers a responsive grid system for creating flexible lay-

outs, a collection of pre-styled CSS components (e.g., buttons, forms, navigation

bars), and JavaScript components (e.g., carousels, modals) for enhancing interactiv-

ity. Bootstrap follows a modular and component-based approach to UI development.

Developers can combine and customize Bootstrap’s CSS classes and JavaScript com-

ponents to create the desired UI elements and functionality. It’s worth noting that

while Bootstrap primarily focuses on UI design and presentation, it can be combined

with other frameworks or architectural patterns (such as MVC or MVVM) to achieve

a more structured and organized data flow within an application.

Vue.js

“Vue is a JavaScript framework for building user interfaces. It builds on top of

standard HTML, CSS, and JavaScript and provides a declarative and component-

based programming model that helps you efficiently develop user interfaces, be they

simple or complex” as descibed in [48] and You [178] websites. VueJS was introduced

56

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

in 2014 and aimed to create a frontend framework that incorporated the essential as-

pects of Angular. Notably, VueJS distinguishes itself by offering a beginner-friendly

environment and enabling rapid development of small-scale applications with minimal

maintenance overhead. Positioned as a progressive framework for single-page appli-

cations, VueJS primarily emphasizes the “View” layer in the MVVM design pattern,

albeit with some deviations. However, its functionality can be expanded through

the integration of third-party packages like Vue Router or Vuex, enabling the uti-

lization of a comprehensive framework’s capabilities. Notably, VueJS components

are self-contained and can be seamlessly integrated across the application. In recent

years, significant efforts have been made to optimize the compiler, resulting in faster

rendering and compilation of components, thereby enhancing performance and user

experience, as stated by Kofi Group [96].

Material UI

Material UI is a React-based UI framework that implements the Material Design

guidelines by Google [107]. The first beta version of Material UI was released in 2017.

Material UI aims to provide a set of reusable and customizable UI components that

adhere to the principles of Material Design. You can learn more about this from

Bernales [16]’s blog. Material UI follows the component-based architecture of React,

allowing developers to compose UI elements into a coherent interface. Material UI

components are designed to offer graphical indications consistent with the Material

Design principles. It provides a wide range of ready-to-use components for building

visually appealing and responsive UIs.

57

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

5.4 Functional Toolkits

The reactive programming paradigm is based on the synchronous dataflow program-

ming paradigm as indicated by Lee and Messerschmitt [103] but with relaxed real-time

constraints. It introduces the notion of behaviors for representing continuous time-

varying values and events for representing discrete values. In addition, it allows the

structure of the dataflow to be dynamic (i.e., the structure of the dataflow can change

over time at runtime) and supports higher-order dataflow (i.e., the reactive primitives

are first-class citizens) according to Cooper [31]’s and Sculthorpe [150]’s Ph.D. the-

ses. Most of the research on reactive programming descends from Fran[47, 87], a

functional domain-specific language developed in the late 1990s to “ease the con-

struction of graphics and interactive media applications using purely functional and

composable approaches”. Functional Reactive Programming (FRP), introduced by

Elliott and Hudak (1997) is a programming paradigm that combines the principles of

functional programming with reactive programming to address complex event-driven

systems. In FRP, programs are structured around the concept of time-varying val-

ues, represented as streams or signals, which can be transformed and combined using

higher-order functions. This allows developers to express and manipulate dynamic

behavior in a declarative and composable manner. FRP promotes a clear separation

of concerns by enabling the explicit modeling of both the occurrence of events and

the behavior of values over time. By providing a more concise and expressive way to

handle events and asynchronous data flow, FRP facilitates the development of reac-

tive systems, user interfaces, and interactive applications with increased modularity,

reusability, and maintainability as explained in the article written by Bainomugisha

et al. [13].

58

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Fudgets Haskell:

As determined by Carlsson and Hallgren [26], Fudgets is a small window-based

graphical user interface toolkit for X Windows written in the lazy functional lan-

guage Lazy ML(LML) between 1991 and 1996 and the work continued for several

years including the recent changes that was released in 2016 as reported by Hallgren

and Carlsson [81]. It is also one of the most well-known functional models for GUI

programming in Haskell. Its primary goal is to provide a ’purely functional’ (referring

to Okasaki [128]) and declarative approach to building graphical user interfaces. The

extensive Fudget library uses X windows and is supported by many Haskell compilers.

Fokker et al. [57]. Fudgets is the abbreviation of ’functional widget’, whereas widget is

an abbreviation of ’window gadget’. Fudgets are composable functional widgets that

can be combined to create complex UIs as claimed by Carlsson and Hallgren [25]. The

toolkit follows the FRP paradigm, where UI components react to changes in input

signals. The architecture used in Fudgets Haskell is typically based on a hierarchical

structure of fudgets. The Fudget combinators give a rigid structure to the data flow

in a program. In functional programming, a combinator is a higher-order function

that combines two or more functions to produce a new function. Combinators are

used to build more complex functions from simpler ones, and they are often used in

functional programming libraries to provide a concise and expressive way of defining

behavior. In Fudgets, combinators are used to define the appearance and behavior of

widgets in a Graphical User Interface (GUI). The visual representation of the data

flow through its infix operator. This operator creates a clear pipeline-like structure,

allowing developers to easily understand how signals and data are transformed and

59

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

propagated between GUI components. The visual nature of the infix operator en-

hances the readability and comprehension of the code. The fudget concept has been

implemented on top of a number of GUI toolkits on a popular GUI library called

Gadget, in accordance with Noble and Runciman [124]’s thesis, where Gadget stands

for ’generalized fudget’. The author says the motivation for this name is that “gad-

gets are processes that communicate via typed, asynchronous channels (called wires),

thus allowing a gadget to have an arbitrary number of input and output pins”.

WxHaskell

WxHaskell is a GUI toolkit for Haskell that provides bindings to the wxWidgets

library. Its main goal is to enable Haskell programmers to build native-looking and

platform-independent GUI applications. WxHaskell follows an imperative program-

ming style, similar to how GUI applications are typically built in languages like C++

with wxWidgets. WxWidgets provides a common interface to native widgets on all

major GUI platforms, including Windows, Gtk, and Mac OS X. It has been in de-

velopment since 1992 and has a very active development community and the last

updated version of wxHaskell is from 2021. The objective of wxHaskell, as presented

in the paper by Leijen [104], is to demonstrate the use of mutable variables for com-

munication between event handlers. The paper acknowledges the extensive research

focused on avoiding mutable states and promoting a declarative approach to GUI

programming. However, since this remains an active area of research, the authors

chose to prioritize the creation of a standard monadic interface for the library as their

initial goal.

Frantk

FranTk is a high-level library for programming Graphical User Interfaces (GUIs)

60

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

in Haskell released in the year 2000. It is based on Fran (Functional Reactive An-

imation), which was released in the year 1997. It uses the notions of Behaviors

and Events to structure code. FranTk allows a compositional, declarative style of

programming with both static and dynamic user interfaces. In order to provide a

powerful set of platform-independent set of widgets, FranTK uses binding to the

popular Tcl/Tk toolkit. It allows for building web applications with a functional and

type-safe approach. It provides a seamless integration of Haskell and web technolo-

gies. As specified by Elliott and Hudak [47], Fran (Functional Reactive Animation) is

a collection of data types and functions for composing richly interactive, multimedia

animations. The key ideas in Fran are its notions of behaviors and events. It uses

behaviors to represent the state of an application and events to represent user input.

They both are first-class values. Behaviors are time-varying, reactive values, while

events are streams of values that occur over time. Frantk follows a FRP paradigm and

leverages the power of type-level programming to ensure type safety and correctness

in web applications as described by Sage [147].

Reflex

Reflex is a fully-deterministic, higher-order FRP interface and an engine that effi-

ciently implements that interface in Haskell released in 2006, as mentioned by Trinkle

[161]. It aims to provide a high-level and composable approach to UI development.

Reflex follows the FRP paradigm, where UI components are defined in terms of be-

havior and events. It leverages the concept of dynamic values that can change over

time. Reflex is a library that serves as the foundation for FRP, consisting of three

primary types: behavior, event, and dynamic. Behavior represents a value that can

change over time and can be sampled at any point but does not provide notifications

61

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

when it changes. It abstracts the concept of a value existing at all time points. Event

captures discrete occurrences or updates at specific time points. It is push-oriented,

informing you when the value changes, and can represent events such as button clicks

or key presses. Dynamic combines the characteristics of both event and behavior.

It holds a value at all time points and can notify you when its value is updated.

It can be seen as a step function over time, encompassing an event and a behav-

ior. Reactive programming in Reflex involves utilizing various sources of events to

provide responses. Instead of using explicit callbacks or function calls, responses are

expressed by firing another event or modifying a dynamic value. These event and

dynamic values propagate through widgets, allowing them to respond appropriately

to events. The propagation forms an event propagation graph, potentially creating

cyclic dependencies, based on the documentation written by Trinkle [160].

Fruit

Fruit is a Functional Reactive User Interface Toolkit, a graphical user interface

library for Haskell, based on a formal model of user interfaces. Its implementation

is in-progress and began in 2018. As inferred from the paper by Courtney and El-

liott [32], Fruit is based on a formal model of user interfaces that identify signals

(continuous time-varying values) and signal transformers (pure functions mapping

signals to signals) as core abstractions. The model defines GUIs compositionally as

signal transformers, which means that GUIs are built by combining simpler signal

transformers into more complex ones. This approach allows for a high degree of

modularity and reusability in GUI design. Signals are continuous time-varying val-

ues, and signal transformers are pure functions that map signals to signals. In other

words, a signal is a function that takes time as an input and produces a value as

62

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

an output, while a signal transformer is a function that takes one or more signals as

inputs and produces one or more signals as outputs. Signal transformers can be used

to modify or combine signals in various ways to create more complex behaviors in a

system. States in Fruit are based on Arrows-based Functional Reactive Programming

(AFRP), its FRP, based on Arrows i.e. is a generalization of Monads, is an adapta-

tion of ideas from Fran and FRP to the arrows framework proposed by Hughes. Both

Fran and FRP are known for their use of monads to model time-varying computa-

tions. This approach is similar to the Model-View-Controller (MVC) design pattern

in Fruit, signals represent data that changes over time, signal transformers represent

logic that transforms those signals into new signals, and GUIs are composed of signal

transformers that define their appearance and behavior. This approach allows for a

clear separation of concerns between different parts of the application and promotes

modularity and reusability.

Fruit Haskell follows a functional programming style and provides a minimal-

istic set of UI components. The authors of the paper, Courtney and Elliott [32],

acknowledge the challenge of balancing expressiveness and simplicity in the design

of the Fruit Library. They aim to provide a powerful and flexible library for GUI

programming while ensuring it remains accessible to developers unfamiliar with func-

tional programming concepts. Another challenge is optimizing performance while

maintaining modularity and composability in signal transformer composition. The

authors suggest future work should focus on developing techniques to optimize per-

formance without compromising functional purity. Additionally, they highlight the

need for further research in exploring the full potential of their approach, including

developing more sophisticated examples and applications and extending support for

63

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

advanced features like animation, layout management, and event handling.

The following have their own graphical builders: WxHaskell: WxHaskell pro-

vides a visual designer tool that allows developers to create and modify GUI compo-

nents visually. This graphical builder enables developers to design the user interface

by visually arranging and configuring widgets. Gtk: Gtk offers visual layout de-

signers that allow developers to visually design and arrange GUI components. These

graphical builders provide a user-friendly interface for creating and modifying the

application’s user interface.

5.5 Declarative Toolkits

Flutter

Flutter is a cross-platform UI toolkit developed by Google and released in 2017

[168]. As inferred from documentation by Google [71], Flutter uses the Dart program-

ming language and features a widget-based system, where widgets represent different

parts of the UI. Flutter is a reactive, pseudo-declarative UI framework as described

in [70], in which the developer provides a mapping from the application state to

the interface state, and the framework takes on the task of updating the interface at

runtime when the application state changes. Flutter aims to enable cross-platform de-

velopment with a single codebase, allowing developers to build visually appealing and

performant applications. It emphasizes declarative UI as discussed in 4.1.2. Flutter

categorizes all its user interface elements as ‘widgets,’ includes controls, containers,

and layout components. It offers both stateless and stateful widgets to support dif-

ferent programming needs. While the official documentation lists 206 widgets and

64

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

823 classes for multi-platform support, the exact number of widgets can vary as in-

ferred from Google [69]. Some sources, such as a YouTube video by FlutterMapp [56],

mention 215 widgets in Flutter.

Among these widgets, there are multiple variations of the same control, such as

buttons, designed to serve specific purposes or styles. Examples include Material But-

ton, Outlined Button, Text Button, Toggle Buttons, Icon Button, Dropdown Button,

or Elevated Button. While these variations are referred to as individual ’widgets,’

they possess different properties while belonging to the same widget category. Al-

though Flutter attempts to mimic native platform widgets, it may not provide an

exact match for every widget. For instance, the UIKit’s UIStepper and its counter-

part in Flutter, ’CupertinoStepper,’ have differences in functionality and purpose.

In UIKit, ’a stepper is a two-segment control primarily used to increase or decrease

an incremental value’. On the other hand, the ’Material Stepper in Flutter is a widget

designed to display progress through a sequence of steps’ as per documentation by

Pub.dev [140]. Steppers are particularly useful in scenarios where one step depends

on the completion of another or when multiple steps must be completed to submit a

form.

SwiftUI

Worldwide Developers Conference (WWDC) 2019, Apple announced a new frame-

work called SwiftUI for building user interfaces across all Apple platforms. It is Ap-

ple’s modern UI framework for building applications on iOS, macOS, watchOS, and

tvOS. SwiftUI introduces a declarative syntax that enables developers to describe

UI components and their behavior concisely. It follows the Model-View-ViewModel

(MVVM) architectural pattern and leverages Swift’s language features for seamless

65

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

integration with the underlying platform as inferred from the documentation by Ap-

ple [7]. In addition, Davis [41] reported that “Aiming to decrease the lines of code,

SwiftUI supports declarative syntax, design tools, and live editing”. SwiftUI aims to

simplify UI development for Apple platforms by providing a declarative and intuitive

approach, based on Barker [14]’s book. Destin mentions that “It allows developers to

build responsive and visually appealing user interfaces with less code.” and he also,

exhibits a practical example in this handbook [43].

Fluent UI

Fluent UI is a UI toolkit developed by Microsoft for creating web and desktop

applications [112]. Fluent UI provides a set of reusable components and styles that

follow Microsoft’s Fluent Design System a design language developed in 2017 by Mi-

crosoft, as explained by Clarke and Gusmorino [27]. Fluent UI is the 2020 new name

for UI Fabric[111] of Microsoft’s Fluent Design System. It supports declarative and

imperative programming paradigms, allowing developers to choose their preferred ap-

proach. It aims to provide a unified and customizable UI toolkit for developers, as

claimed by McLaughlin [110]. Fluent UI does not enforce a specific architectural pat-

tern and can be used with various frameworks and patterns, such as component-based

architectures or MVC. However, as discussed in this Microsoft Fluent Wiki [113], it

strongly recommends describing user interfaces using the declarative approach.

Android Jetpack Compose

Jetpack Compose [73] is a modern declarative UI Toolkit for Android [68]. It

leverages the power of Kotlin’s language features to provide a concise and expressive

way of defining UIs. It was launched in 2021 and is now stable and ready for adoption

in production, as claimed in Bellini and Butcher [15]’s blog post. Jetpack Compose

66

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

is built on top of the Android framework and follows the Model-View-ViewModel

(MVVM) architectural pattern. “Jetpack aims to simplify UI development for An-

droid apps by using a declarative approach. This UI Toolkit focuses on providing a

modern and efficient way to build user interfaces with less boilerplate code” as in-

ferred from Google [72]

Elm-UI

Czaplicki and Chong [38] in the section “Building GUIs with Elm” says “Elm’s

purely functional and declarative approach to graphical layout, allows a programmer

to say what they want to display, without specifying how this should be done.” Elm-

UI is a library for building user interfaces in Elm programming and was published

in 2020. It is designed to be a high-level design toolkit that draws inspiration from

the domains of design, layout, and typography, as opposed to drawing inspiration

from HTML and CSS like most other UI libraries. Elm-UI is purely functional and

emphasizes usability, performance, and robustness as inferred from Griffith [78]. Elm-

UI provides a declarative syntax for building user interfaces, which allows developers

to describe the layout of their applications in a clear and concise manner. It uses a

virtual DOM approach to make updates efficient [33]. Elm-UI is built on top of Elm’s

core architecture, which is a pattern for building interactive web applications. An

Elm program is always split into three parts: Model, View, and Update. The ’Model’

represents the state of the application, the ’View’ is a function that turns the Model

into HTML, and the ’Update’ function handles user input and updates the Model

accordingly as referred by Korban [97].

67

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

5.6 Common Challenges and Solutions for Immutabil-

ity Adoption

Why do we have so many toolkits? What is the common issue that all these toolkits

are trying to solve?

The existence of multiple GUI toolkits stems from the historical evolution of graph-

ical interfaces, as advancements in technology and the emergence of new platforms

necessitated the development of specialized toolkits. This historical context con-

tributes to the diverse range of GUI toolkits available today, empowering developers

to choose the most suitable toolkit for their specific project requirements and pref-

erences. The existence toolkits provide a standardized and platform-independent

approach to graphical interface development, allowing applications to run seamlessly

on different operating systems with distinct rendering mechanisms. The introduction

and creation of new programming languages, for instance, the Dart programming lan-

guage was indeed created as a part of the Flutter framework(4.1.2). Initially, it was

intended as a general-purpose programming language, but it gained significant promi-

nence as the primary language for building applications using the Flutter framework.

It helps to reduce the complexity of user interface design, and the desire to sepa-

rate business logic from interface concerns and its underlying complexity. Therefore,

various programming language offers language-specific bindings or APIs, enabling

developers to leverage the capabilities of their preferred programming languages and

ensuring compatibility with different language ecosystems. Moreover, these toolkits

often target specific use cases such as desktop applications, mobile app development,

or embedded systems, providing features, libraries, and performance optimizations

68

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

tailored to each domain. This led to the proliferation of multiple toolkits in the field

attributed to a variety of factors and considerations.

In “The Ultimate GUI Framework: Are We There Yet?” [158], Stokke et al discuss

the landscape of modern GUI frameworks and their different approaches to separating

the data layer from the presentation layer. “The common task of all these frameworks

is to keep an application’s view in sync with its model, and that framework that up-

dates the DOM automatically on model changes is called reactive.” It also describes

how these frameworks update views and track variable changes and provides a cross-

tabulation of the properties and frameworks. The properties include declarative view

specification, re-rendering mechanism, two-way bindings, stateful components, com-

ponent hierarchy, multi-way dataflow, and more. Furthermore, the authors of this

research paper say “despite the numerous advancements in GUI programming since

the inception of the Model-View-Controller pattern, there are still areas that

can be enhanced and improved upon to achieve an ambitious objective of “The

ultimate GUI framework,” although it may be a challenging goal”.

In imperative programming languages, there is a significant emphasis on state mu-

tation, where the values of data structures can be modified throughout the execution

of a program. However, to enhance program reasoning and maintainability, language

designers have introduced features that restrict the extent of such modifications to

data structures. These features aim to impose certain constraints on state mutation,

thereby promoting a more controlled and predictable program behavior. By limiting

the scope of mutations, developers can gain better insights into program execution

and facilitate more effective debugging and maintenance processes, as reported by

69

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Abelson and Sussman [1]. The authors of the research paper titled “Exploring Lan-

guage Support for Immutability”, Coblenz et al. [28], present the design of a novel

language extension aimed at facilitating the specification of immutability in Java.

In the context of Java programming, the use of constants in combination with the

final keyword is commonly employed to enforce immutability. The paper explores the

introduction of a language-level extension to further enhance the ability to declare

and manage immutable entities within Java programs. If the Java compiler isn’t

convinced that your final variable will only be assigned once at runtime, then it will

produce a compiler error. The ’final’ keyword gives you static checking for immutable

references, as marked by Max Goldman [108]. Immutable classes greatly simplify pro-

gramming, program maintenance, and reasoning about programs. As Bugayenko and

Zykov state, With compiler support, they argue that immutable classes can be freely

shared, even between concurrent threads and with untrusted code. Immutability is

a recommended coding practice for Java [21]. The paper also brilliantly explains the

immutability adapted by various programming languages. Although ‘final’ in Java

requires that a particular field cannot be reassigned to refer to a different object,

the contents of the referenced object may still change. Zibin et al [179] presents

Immutability Generic Java (IGJ), a java annotation that implements immutability.

For example, @Immutable Date d is a reference to an immutable date. No fields

can be modified on an @Immutable object; @Readonly in IGJ specifies a read-only

reference. Guava a set of core Java libraries from Google that includes new collec-

tion types (such as multimap and multiset), immutable collections says “When you

don’t expect to modify a collection, or expect a collection to remain constant, it’s a

good practice to defensively copy it into an immutable collection” as described in the

70

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

wiki of Google/Guava [77] and all immutable collection implementations are more

memory-efficient than their mutable siblings, as stated by Andreou [4].

There are indeed many researchers and authors who advocate for the use of im-

mutability in programming.

• Rich Hickey, the creator of the Clojure programming language, has empha-

sized the importance of immutability in his talks and writings. His “Effec-

tive Programs” series of talks, particularly the talk titled “Simple Made Easy,”

delves into the advantages of immutable data and its impact on program cor-

rectness and reasoning Rich [146].

• John Hughes, a prominent computer scientist known for his work on func-

tional programming and testing, has highlighted the benefits of immutability

in his research. His paper “Why Functional Programming Matters” discusses

the safety advantages of immutable data structures and how they can simplify

program understanding and debugging Hughes [89].

• Simon Peyton Jones, a co-creator of the Haskell programming language and

a researcher at Microsoft Research, has written extensively about functional

programming and immutability. His papers and talks often discuss the benefits

of immutable data and its impact on program correctness and reasoning. One

of his contribution in a journal by Hudak et al. [87].

• Martin Odersky, the creator of the Scala programming language, has also ac-

knowledged the advantages of immutability. His book “Programming in Scala”

and various talks on functional programming emphasize the safety and concur-

rency benefits of immutability Odersky et al. [127].

71

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

The research conducted by Philipp Haller and Ludvig Axelsson titled “Quantifying

and Explaining Immutability in Scala” highlights the significance of immutability as

a crucial characteristic of data types, particularly in concurrent and distributed pro-

gramming scenarios. The paper emphasizes how immutability enables the utilization

of efficient techniques to ensure fault tolerance in distributed systems. Furthermore,

the study delves into an empirical analysis of medium-to-large open-source Scala code

bases, aiming to quantify the prevalence of immutability in real-world Scala projects

[80].

In a language like JavaScript where immutability is not built into the language,

producing a new state from the previous one is a boring, boiler-platy task. Im-

mutable.js written by Lee Byron is a library embracing immutability and enables

Javascript’s future it provides immutable data structures to make working with com-

plex data easier and more efficient. It offers collections such as List, Map, and Set,

which are immutable, meaning they cannot be changed after creation. Instead of

modifying data directly, according to Byron [23], Immutable.js provides methods

that return new copies of the data with the desired changes applied [24]. Immer.js

is a tiny JavaScript library written by Michel Weststrate whose stated mission is to

allow you “to work with immutable state in a more convenient way” [165].

The below table (5.1,5.2) shows some existing systems and discusses the type of

restriction, scope, transitivity, initialization, abstract vs. concrete State, backward

compatibility, enforcement, and polymorphism. Keeping SoC in mind, various pro-

gramming languages and frameworks have introduced immutability to maintain the

application state and avoid unknown states resulting from side effects as it leads to

unknown states by this way we can understand the importance of it.

72

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Figure 5.1: Overview of Language Support for Immutability by Coblenz et al. [28]

Figure 5.2: Summary of Dimensions by Coblenz et al.
[28]

In the GUI programming context, the Flutter framework introduces ‘Stateless

Widgets’. The concept of a stateless widget in Flutter refers to a widget whose

properties are immutable, and any changes to those properties require creating a new

instance of the widget. This is evident from the structure of stateless widgets, as they

typically have only one class that extends the StatelessWidget class. Consequently,

the build() method of a stateless widget is not re-invoked once it is initially rendered.

73

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Stateless widgets are designed to have only final fields, without any exceptions.

This design choice stems from the fact that when the parent widget rebuilds, such

as during screen rotation, animations, or scrolling, the build method of the parent is

called, leading to the reconstruction of all widgets. Therefore, maintaining final fields

ensures that the appearance and properties of a stateless widget remain unchanged

throughout its lifetime as described by Woka [176].

According to the documentation Google, Inc. [75], Flutter Agency [55], in Flutter,

“a stateless widget cannot alter its state during the runtime of the application”. This

means that it remains static and cannot be redrawn or updated while the app is in

action. Once a stateless widget is initialized, its class is only called once. Even if

external factors exert influence, the widget will not be updated. Consequently, the

only way to modify a stateless widget is to delete it and create a new instance with

the desired changes.

In Dart, the ‘@immutable‘ annotation is used to enforce that every field within a

class, including its subclasses, must be declared as ‘final‘. If any field lacks the ‘final‘

keyword, the Dart compiler will issue a warning, but not an error. On the other

hand, using the ‘final‘ keyword explicitly denotes that a property cannot be assigned

a new value after its initialization, and the Dart compiler will emit an error if such

an attempt is made.

To create an unmodifiable list in Dart, you can utilize the ‘UnmodifiableListView‘

class. It acts as a wrapper around a list and prohibits modifications such as adding

or removing items. Although it exposes methods like ‘add()‘ or ‘addAll()‘, these

methods will throw exceptions at runtime if invoked.

While these approaches provide some level of immutability and protection against

74

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

modifications, they do not fulfill the requirements for compiler-time safety. Addi-

tionally, the lack of built-in methods for equality, hashing, and cloning in Dart’s

immutability mechanisms can be limited to creating robust data classes as described

by Muccinelli [118], Boformer [19],

Unlike object-oriented programming, instead of relying on inheritance, Elm en-

courages the use of composition and function composition to achieve code reuse and

modularity. Composition involves combining smaller functions or components to

build larger ones, promoting a more modular and maintainable codebase. By break-

ing down functionality into smaller, composable units, developers can create flexible

and reusable code that can be easily tested and reasoned about. Pierce [136] mentions

that In the context of Elm, addressing the capturing of component types involves

the use of parametric polymorphism [83], which enables the creation of generic func-

tions or data types that can operate on multiple types. By leveraging this feature,

the Elm framework can define components that are parameterized by types, allowing

for a more flexible and reusable design.

The capturing of component types becomes particularly crucial when dealing with

composite or complex user interfaces. When combining multiple components side

by side, it is essential to capture the types of individual components within the

overall structure. This ensures that the types align correctly and enforces constraints,

preventing runtime errors and enhancing the reliability of the interface.

Immutability plays a significant role in Elm and aids in reasoning about program

behavior. In Elm, all properties are declared as final, meaning they cannot be mod-

ified after being assigned a value. This emphasis on immutability promotes easier

comprehension of the code and ensures more predictable outcomes. Developers can

75

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

rely on the immutability of properties and avoid the need to check for mutable states,

resulting in a clearer understanding and more robust code. In the next chapter 6, we

will discuss our ideas and implementation about having a pure immutable UI toolkit.

5.6.1 Is state a problem?

State is often considered problematic in programming languages, especially when it

comes to functions that have side effects. Flutter offers stateless widgets. It is easy

to get the impression that state should be avoided. However, without state, there

would be no meaningful programs! For example, we are concerned about the state

of our bank accounts, and we expect accurate updates when we deposit or withdraw

money. Given the existence of state in the real world, programming languages need

to provide facilities to handle it. Different approaches have been taken by various

language paradigms:

OO Programming Languages (OOPLs) suggest “hiding the state from the program-

mer.” They achieve this by encapsulating state within objects and allowing access to

it only through defined methods. The state remains hidden from direct manipulation.

Imperative programming languages like C and Pascal control the visibility of state

variables through the scope rules of the language. This means that the availability

and visibility of state variables are determined by the specific rules governing the

scope in which they are defined.

Pure declarative languages take a different stance and claim that there is no state at

all. These languages focus on expressing computations through logical or functional

constructs without any notion of a mutable state.

In some functional programming and logic languages, mechanisms like monads and

76

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

definite clause grammars are used to hide state from the programmer. These mech-

anisms allow programming “as if state didn’t matter” while still providing limited

access to the system’s state when necessary.

However, the choice made by OOPLs to “hide the state from the programmer”

is often seen as the worst possible option. Instead of exposing the state and finding

ways to minimize its drawbacks, OOPLs opt to conceal it entirely, potentially leading

to more complexities and limitations in dealing with state-related issues. Although

similar criticisms do not exist for functional languages, the sheer volume of monad

tutorials indicates that this abstraction is a barrier to beginners.

By building a wrapper around a low-level toolkit that uses mutable data, main-

stream Elm programming avoids both of these issues, but is exposed to bugs in the

wrapped frameworks, which become impossible to understand in the high-level code.

We have experienced this with Elm+Bootstrap.

Can state be exposed in a safe way? This is the motivation for the next chapter.

77

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 6

A User Interface Toolkit without

Mutable Data

“A programming language is low level when its programs require attention

to the irrelevant.” –Alan Perlis [134]

“The last thing you wanted any programmer to do is to mess with in-

ternal state even if presented figuratively. It is unfortunate that much

of what is called ‘object-oriented programming’ today is simply old-style

programming with fancier constructs.” - Alan Kay [92]

Taken together, we interpret these quotes as saying two giants of the field be-

lieved that low-level programming, in which the programmer manipulates internal

state, was a problem, and that programmers were persisting in doing so even when

presented with tools created to help them with abstraction. Note that Alan Kay was

the creator of Smalltalk and a pioneer in object-oriented programming! Accepting

that programmers will do everything we don’t want them to do if we don’t make

78

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

it impossible, we can ask the question: how far can we get in implementing a GUI

toolkit using purely immutable data? Using immutable data does not guarantee the

programmer will not devote attention to the irrelevant, but that is because this is a

judgement call. Using immutable data does prevent external modules from accessing

the internal state of other modules through indirect means, such as indirect references

which are hard to track down.

On the other hand, we choose to ignore Daan Leijen, an expert in functional

programming and developer of wxHaskell, who said

“We have learned an important lesson from wxHaskell: do not write your

own GUI library!” -Daan Leijen [104]

While we agree that wrapping an existing toolkit is faster, and allows for experi-

mentation with the library interface, hiding a lot of the internal state in the toolkit

widgets, that state is still there, and it can still be mutated unintentionally, no matter

what paradigm the wrapper library exposes, thus opening up a hole through which

bugs can crawl.

We feel it is worth answering the question, can we build a GUI Toolkit entirely

without mutatable data, whether explicitly in the API, or hidden behind a façade?

It is even more urgent now than when wxHaskell was developed because all major

vendors and many developers are embracing declarative UIs. Are they fully benefiting

from declarative programming if they only use it at the interface to their libraries,

and not internally?

This chapter explores the barriers associated with constructing an entire GUI

Toolkit, encompassing not only the exposed interface but also the underlying com-

ponents, using immutable data structures. To achieve this, we sought to adapt the

79

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

model-view-update pattern to develop enough widgets, ranging from buttons to slid-

ers, to identify the difficulties which would arise in developing a complete library.

We theorized that the resulting library would greatly benefit from the enhanced soft-

ware quality attributed to immutable data types. We then examined whether this

approach would remain accessible to individuals familiar only with object-oriented

(OO) GUI toolkits.

This experiment can be conducted in multiple programming languages, particu-

larly those that support modern paradigms. In languages that allow multiple paradigms,

we would need to ensure that no mutable data structures are employed directly or

indirectly through object usage. However, by utilizing Elm as the implementation

language, such verification is unnecessary, as Elm does not incorporate monads or

any hidden mutable data structures. The absence of monadic constructs aligns with

Elm’s functional programming paradigm, emphasizing immutability and explicitness

throughout its design. By conducting this research, we aim to shed light on the fea-

sibility and potential benefits of employing immutable data structures for building

comprehensive GUI Toolkits.

6.0.1 Elm

Elm, a functional language that compiles JavaScript, was the first mainstream exam-

ple of an immutable architecture for front-end web programming. The fact that this

same architecture was transferred, via Redux, to the mainstream JavaScript commu-

nity is really fantastic [29]. Elm is a pure language by design, meaning that our code

does not have any side effects, instead, it has an explicit state (called the model) inputs

and outputs. Elm was originally built around functional reactive programming, but

80

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

as of version 0.17, functional reactive programming features were removed in favor

of model-view-update, also called The Elm Architecture (TEA), with subscriptions

[36]. We have discussed this architecture in-depth in section 3.5.

The Elm runtime system handles side effects for us. In our code, we simply request

these side effects to be performed and wait for the results. Side effects can include

actions like making HTTP requests and receiving responses.

Elm offers two approaches to incorporate what would be side effects in other

languages. Firstly, most side-effects in other systems are the main effect. The function

update: Msg -> Model -> (Model, Cmd msg) explicitly modifies the state. The inputs

are the Msg, a data type that encodes every event in an algebraic (union) data type1,

and the application state—the Model. Secondly, for tasks like HTTP requests, we

utilize commands (Cmd). In some languages, these would be function calls, or remote

procedure calls, rather than data.

There is a famous white paper about the ’Software Crisis’ by Moseley and Marks

[114] references “ ‘State’ as the number one contributor to software complexity”.

When working with immutable data, making a change to a specific piece of data

requires creating a copy of that data with the desired edit applied. However, the new

data can still reference the old data. The program can use both versions of the data,

and the old data will only be garbage collected when there are no references to it.

Structural sharing refers to a technique used in immutable data structures. When

a change is made to a specific part of an immutable data structure, instead of modi-

fying the data in place, a new copy of the structure is created with the desired change

applied. However, the new copy still shares most of its memory with the original

1When we want to create our own custom types in Elm we use algebraic data types (ADTs). An
ADT is a type that is composed of other types. This allows us to define a type and specify all the
instances the type can assume.

81

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

structure, as only the modified parts are duplicated. This sharing of memory be-

tween the old and new structures allows them to coexist and be used simultaneously,

facilitating features like easy undos, rollbacks, and efficient memory usage. If the old

structure is no longer needed, it can be garbage collected. Modern JavaScript engines

have efficient garbage collectors, making the process fast. Structural sharing ensures

immutability while minimizing the need for excessive memory allocation and copying

of data as inferred from Okasaki [128], ReactEurope [143].

Today, even ostensibly declarative toolkits are often built by encapsulating a lower-

level toolkit that employs mutable data structures. Also, in Elm libraries, the presence

of mutable data is primarily observed within HTML widgets and the utilization of

CSS. To address this concern, an alternative approach involving GraphicsSVG and

immutable data is advocated, aiming to avoid mutable states and promote immutable

states.

6.0.2 GraphicsSVG

Anand and Schankula [3] were inspired by the original Elm Graphics module, which

targeted HTML canvas elements, to create GraphicSVG, which is partially backwards

compatible. GraphicSVG’s principal types are Stencil, Shape, and Collage, which

model real-world concepts, the Collage type represents the drawable surface of the

window which contains a (x, y) pair of horizontal and vertical dimensions (arbitrary

units, not necessarily in pixels) to which the drawing surface will be scaled, and

the List of Shapes to be drawn on the drawing surface. Stencil describes a stencil

which must be filled or outlined to create a Shape. In Figure 6.1, the combinatorial

choices are illustrated by the position of a line of highlighting. The architecture of

82

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Figure 6.1: The ShapeCreator [58] illustrates the combinatorial structure involved
in constructing Shapes.

83

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

GraphicSVG is designed in such a way that it limits the number of parameters each

function takes, by using function composition (|>), making them easier to use. This

means that you typically pass fewer parameters compared to other graphics libraries

or frameworks, and wherever possible the functions are composable. For example, a

Stencil can be filled or outlined. The goal is to simplify the process of creating and

manipulating vector graphics, especially for beginners and students. GraphicSVG is

a powerful tool to construct vector graphics, animations, and interactive programs as

described by d’Alves et al. [40].

6.1 A High-Level Overview of the Toolkit

The module hierarchy in Figure 6.2 demonstrates the structured organization of views

and their corresponding types. Each of the widgets imports its Widget types from

the Types module thereby it is built around a central type. In order to enhance the

clarity of the subsequent explanations we will commence with an illustrative example

of a ToggleView before delving into a composite view, namely the SideBySideView.

This approach aims to enhance the understanding of the subsequent discussion and

facilitate comprehension of the hierarchical relationships within the system.

Figure 6.2: Module dependency

84

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

6.1.1 MVU with Composability

In Figure 6.3 we expand on the simple MVU dataflow diagram of Figure 3.4 seen

previously with an exploded view of the update function for an app using our widget

library. In the exploded view, we see that the state component of the “business

logic” is contained in the top-level model as field of type :AppState (a type defined

in each application), as is the “widget-tree” state as a field of type :wState. But the

widget-tree state is contained inside a record of type Widget wMsg wState msgToApp

msgToWidget as defined in sub-section 6.1.2.

m1 : Model
as1 : AppState

 w1 : Widget wMsg wState msgToApp msgToWidget

wView : Point ! wState ! Shape wMsg
wUpdate : wMsg ! wState ! (wState, Maybe msgToApp)
updateFromApp : msgToWidget ! wState ! wState

ws1 : wState

screen

view

msg1 : Msg

update

wUpdate

m2 : Model
as2 : AppState

 w2 : Widget wMsg wState msgToApp msgToWidget

wView : Point ! wState ! Shape wMsg
wUpdate : wMsg ! wState ! (wState, Maybe msgToApp)
updateFromApp : msgToWidget ! wState ! wState

ws2 : wState

screen

view

as1

ws1 ws2

wm1 :
wMsg

updateFromApp

as3

ws3

am1 :
msgToApp

aUpdate

mtw1 :
msgToWidget

app state for
“business logic”

widget state for
“interface logic”

Figure 6.3: Exploded view of the update function from Figure 3.4 in an app using
our widget library.

This record seems to break the separation of model, view and update, since it

contains all three aspects of the widget tree. This is necessary for a dynamic user

interface, because at run-time, the location of subwidgets could change, requiring the

85

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

view functions to be updated. Whether the interface should change dynamically is a

design decision which will depend on the context. Norman’s principle of consistency

demands that widgets be found in consistent places, but in an “editor” app capable

of editing different types of data, it may be necessary to present different controls

dependent on the actual data loaded.

Figure 6.3 shows how the model-view-update (top) separation is partially main-

tained, in the detailed view. In the middle, details of the state show that the model

contains the root widget, w1, which contains a state, but also its view and two update

functions. The Widget type constructor takes several type components, including:

Widget Message (wMsg): Messages generated by widgets in response to user inter-

actions, such as clicks or drags. Widget State (wState): The internal state of the

widget, which can change based on user actions and messages received. Message to

App (msgToApp): Messages from widgets to the main application logic (business logic),

indicating changes or events. Message to Widget (msgToWidget): Messages from the

main application logic to widgets, instructing them to update or change state.

At the bottom, we show how the two state components influence each other.

Similar to the overall pattern, changes in state only happen in response to messages,

and all state changes are localized in the update functions. Starting on the left, we

see a message wm1:wMsg encoding a user action such as a button click is received by

the run-time system, wrapped in a type wrapper for widget messages. The main

update function unwraps it and calls the widget update function, wUpdate, with the

extracted message. When we examine the type for wUpdate, we notice that it resembles

the type for update, except for having a Maybe msgToApp. This implies a similarity

to the “command,” which enables updates of an Elm app to generate asynchronous

86

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

functions or messages that the runtime system interprets as external function calls or

actions, like sending an http request. If an am1:msgToApp message is generated, the

top-level update function will call the aUpdate function defined at the application level

to handle app/business-logic state transitions triggered by user interactions within the

widget. This update again as a similar form, and can optionally generate a message to

update the widget. The top-level update now calls updateFromApp with the Message

to Widget(mtw1) and the Widget State (ws1) as input and updates the Widget State

(ws2) based on the received message. Thus the widget state is updated in two stages.

For example, an action which requires sychronization with a database or peer client

apps could initially change widget state to indicate that the request has been received,

following Norman’s principle of Feedback, signal to the business logic that the action

should be performed, and upon receiving the mtw1 change the widget to indicate

success or failure of the action.

Finally, the Widget also contains a wView. This function takes a Point and a

wState as input and produces a Shape with a corresponding Widget MessagewMsg.

The wView function is responsible for rendering the widget’s visual representation

based on the model’s current state and the user’s interactions.

One crucial design principle discussed was the separation of concerns between the

business logic and interface logic. The “app state” (as1) is the overall state of the

entire application, representing the business logic. It’s not a type variable because it

likely refers to a specific, well-defined data structure. “widget state” (ws1) is a type

variable that represents the state of a single widget. It is part of the Widget type

and allows different widget types to have distinct state representations. The use of

a type variable allows flexibility in defining the specific state representation for each

87

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

widget type.

The main way for the “app state” (as1) and “widget state” (ws1) to communi-

cate is through messages. Messages flow from widgets to the main application logic

msgToApp and from the main application logic to widgets msgToWidget. These mes-

sages trigger updates and state changes in both components. “app state” and wState

serve different purposes and have different levels of generality. The “app state” cap-

tures the application’s high-level state, while “widget state” deals with the specific

state of individual widgets within the application.

We draw a line between “app state” and “widget state” to represent the divi-

sion. The states are stored immutably and are updated through update functions.

Communication between the two components occurs through two types of messages:

msgToApp and msgToWidget.

For example, we have a toggle with a view function. When the toggle is clicked,

a message is generated and received by the main update function. The message is

wrapped in the widget type and sent to the widget update function for the widget tree.

The widget update function modifies the widget state and may produce a message of

its own. This new message is then interpreted by the app update function to modify

the app state, potentially producing another message for the widget. The process

continues as needed.

For simple interactions, this flow is seamless and not noticeable to the user. How-

ever, if the interaction involves synchronization with a server or other client applica-

tions, the widget’s state might be changed by the widget update function to indicate

that the click was received, but the visual indication may not confirm the acceptance

of the action yet. The update function in such cases may cause a message to be sent to

88

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

the server or other clients for synchronization. Only when the state is synchronized,

the message to the widget will be generated, allowing the updateFromApp function to

change the state of the widget to indicate the updated live state.

In a distributed application scenario, multiple users may be interacting with the

same system simultaneously. For example, when typing, a spinning beach ball might

appear to indicate ongoing changes. Once the text is synchronized with the server,

the spinning beach ball disappears, and the updated text is displayed. Meanwhile,

other users may also be typing, leading to additional text updates.

6.1.2 Defining the Widget type

The Widget type alias provides a structured way to define and manipulate wid-

gets in the application, encapsulating their properties, rendering behaviour, and

event-handling logic. The type alias has multiple type parameters (wMsg, wState,

msgToApp, msgToWidget), allowing flexibility in the types of messages and models that

a widget can work with.

Listing 6.1: Widget’s Type definition

type alias Widget wMsg wState msgToApp msgToWidget =

{ width : Float

, height : Float

, pos : (Float, Float)

-- Function to transform the Shape (eg, add an outline)

, outline : Maybe (Shape wMsg -> Shape wMsg)

-- Inital model value

, model : wState

89

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

-- Function to render the widget

, wView : Point -> wState -> Shape wMsg

, wUpdate : wMsg -> wState -> (wState, Maybe msgToApp)

, updateFromApp : msgToWidget -> wState -> wState

}

Recall that Elm records are similar to structures in C and can be used to group

related data together, making it easier to pass and manipulate that information as a

whole. One of the advantages of using records is that they allow us to organize and

encapsulate related instance properties and methods. If this were an OO framework,

these would be properties and methods of an abstract class. However, in Elm, they are

simply fields. Instead of inheritance, we use parametric polymorphism to differentiate

the different types of widgets, with a stronger level of type safety, and potentially lower

overhead since all information needed for code specialization is encoded in compile-

time type variables. For example, in our case the wView field inside our type alias is

parametrized by wState and wMsg—remember that lower-case initial letters indicate

type variables. By using a record, we can keep all the relevant information together,

making it convenient to work with during the GUI construction. They provide a

convenient and structured approach to handling data, enhancing code readability

and maintainability. This is similar to the role of objects in OO programming, but

unlike objects, our use of records does not add additional overhead once the GUI is

constructed.

Within the presented code snippet, a collection of variables and functions is uti-

lized to establish and manipulate a widget. This section endeavors to provide hands-

on view of these elements, shedding light on their composition and functionality.

90

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

The width and height variables represent the dimensions of the widget. The

outline function is optional and can be used to apply an outline to the widget by

taking a Shape and message as input and returning a modified shape [40]. The

pos variable is a tuple that represents the position of the widget. The model field

represents the data associated with the widget and is initialized as required to render

and interact with the view. The wView function takes a Point, and a model as input,

and returns a Shapemessage. A Point type is represented as a tuple with two elements

used to specify the position of the rendered shape within the two-dimensional space

of the parent widget. By passing different Point values, you can control the position

of the view in relation to other elements on the screen. This function defines how

the view should be rendered based on the provided information. The wUpdate and

updateFromApp functions update the widget state, as described above.

The purpose of msgToApp is defined by the high-level code. The Widget is a

component that represents a user interface element, such as a button or a toggle

switch. It is responsible for processing user events, such as clicks, and generating

low-level events or messages based on those interactions. For example, in the code

with nested side-by-side widgets, the widget generates messages of type

SideBySideView.Msg (SideBySideView.Msg (ToggleView.Msg) (LabelView.Msg))

or

SideBySideView.Msg ButtonView.Msg ButtonView.Msg

based on the user interactions.

The msgToApp concept helps to separate the low-level event processing within the

widget from the higher-level business logic of the application. The widget is focused on

91

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

processing events and making low-level changes to its state or behavior. It shouldn’t

directly handle complex business logic or perform high-level actions. Actions are

defined by the widgets, and the high-level code can assign msgToApp messages to

them or Nothing.

To perform higher-level business logic or trigger actions, the programmer defines

custom messages that encapsulate the necessary information or instructions for the

business logic to handle.

The application programmer is responsible for defining the types msgToApp (with

constructors for each message the business logic requires) and msgToWidget (whose

nested type mirrors the nesting of the widgets). When the widget is created, one or

more actions can be set up to send these custom messages to the business logic. This

allows the widget to be connected to but independent of the business logic.

6.1.3 Building a ToggleView

The build function in the given context can be compared to an initializer or construc-

tor in object-oriented programming. In our case, the build function doesn’t directly

create objects, the build function is responsible for constructing a record that serves

as a data structure to organize and manage the necessary information for building the

view hierarchy. It is particularly helpful while constructing composite views, which

are views composed of multiple smaller views. The build function takes input pa-

rameters, such as the dimensions and properties of the sub-views, and uses them to

assemble the record that represents the composite view. The record is not retained

once the view hierarchy is built. It serves as a temporary data structure during the

construction process unlike an object in object-oriented programming approaches.

92

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Now let’s see the type annotation of our build function,

build : Float -> String -> Actions msgToApp

-> Widget ToggleView.Types.Msg State msgToApp ToTree

The function takes a Float (representing the width of the toggle view), a String

(representing the label text of the toggle view), and an Actions value specific to

the toggle view. It returns a view of type (Widget ToggleView.Types.Msg State

msgToApp ToTree), which is a specialized type based on the Widget type defined in

the Types module.

In the ToggleView.Types module we define alias Msg which represents the type of

messages that the toggle view can receive. In this case, it is a Bool, indicating that

the toggle view can receive messages that represent Boolean values.

We define an alias State which represents the internal state of the toggle view. It

has Boolean fields on and active, and a string field label.

We have an abstract data type ToTree which represents messages that can be trans-

formed into a tree structure. It includes constructors SetLabel, SetOn, SetActive,

each with its own associated data types. These constructors are used to wrap the Msg

type and provide a structured representation of the messages that can be sent to the

toggle view1.

1When we want to create our own custom types in Elm we use an Algebraic Data Type (ADT)
For instance, in
type ToTree = SetLabel (Shape Never)

the SetLabel is called a data constructor. This is because they can be considered as a constructor
with parameters. But constructors can construct values without associated data. In
type msgToApp = MoreToggles | LessToggles

the MoreToggles, LessToggles are values by themselves. They are called called a nullary data
constructors, that is, a constructor that takes no arguments. The ToTree and msgToApp types
are both ADTs. Custom types used to be referred to as “union types” in Elm. Names from other
communities include tagged unions and ADTs. [95, 33].

93

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Finally, we have an alias Actions which represents the actions that can be per-

formed on the toggle view. It has fields switchOn, switchOff, both of type

Maybe2 msgToApp. These fields allow you to specify optional actions to be performed

(by sending messages from the tree to the application code) when the toggle view is

switched on or off. The Maybe type indicates that the actions can be Just a message

or Nothing if no action is needed.

Now back to the build function, it takes arguments for the width, label text, and

actions associated with the toggle view. Inside the build function, it uses the types

defined in ToggleView.Types that we have seen above to configure and initialize the

toggle view.

Listing 6.2: Example of build function

build : Float -> String -> Actions msgToApp

-> Widget ToggleView.Types.Msg State msgToApp ToTree

build w txt actions =

{ width = w

, height = buttonHeight

, pos = (0,0)

, outline = Nothing

, model = { on = False, active = True, label = txt }

-- draws the toggle view

, wView = \ _ model

2type Maybe a = Just a | Nothing represents values that may or may not exist. It can
be useful if you have a record field that is only filled in sometimes. Maybe is a core type in Elm
that allows you to model the idea of optional values. Sometimes, we are not sure whether a value
is returned. To create a value of type Maybe, we could either use the Just data constructor or the
Nothing constant [95].

94

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

-> [roundedRect (w-0.25) (buttonHeight-0.25)

(0.5*(buttonHeight - 0.25))

|> filled activeClr

|> addOutline (solid 0.25)

, text model.label |> fixedwidth |> size 6 |> filled black

|> move (-0.5*w + buttonHeight, -0.125*buttonHeight)

, circle (0.3*buttonHeight)

|> filled (if model.on then rgb 0 0 255 else

activeClr)

|> addOutline (solid 0.25) black

|> move (-0.5*w + 0.5*buttonHeight, 0)

]

|> group

|> move (0.5*w, 0.5*buttonHeight)

|> notifyTap (not model.on)

, wUpdate = \ msg model -> ({ model | on = msg }

, case msg of

True -> actions.switchOn

False -> actions.switchOff

)

, updateFromApp = \ tmsg model -> case tmsg of

SetOn isOn -> ({ model | on = isOn },

Nothing)

SetLabel label -> ({ model | label = label

}, Nothing)

95

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

SetActive isActive -> ({ model | active =

isActive }, Nothing)

}

The wView function within the build defines the appearance of the toggle view. It

creates a list of graphical elements using SVG functions provided by the GraphicSVG

module. These elements include a rounded rectangle, text, and a circle. The appear-

ance of these elements depends on the state of the toggle view model.

The wUpdate function specifies how the toggle view model should be updated based

on the received messages. It also defines the corresponding actions to be performed

based on the updated model.

The updateFromApp function specifies how the toggle view model should be trans-

formed into the tree structure based on the received messages.

updateFromApp : msgToWidget -> wState -> wState

This function takes two arguments: msgToWidget, representing the message to be

received, and msgToWidget, representing the widget state to be transformed. The

function then performs pattern matching1 on the msgToWidget argument to determine

the specific transformation to apply. If the msgToWidget belongs to the alternative

SetOn, it updates the on field of the widget state to the provided isOn value. The

updated widget state is returned along with Nothing, indicating that no additional

message needs to be sent, similarly for SetLabel, SetActive. The updateFromApp

1Pattern matching is the act of checking one or more inputs against a pre-defined pattern and
seeing if they match. In Elm, there’s only a fixed set of patterns we can match against, so pattern
matching can be checked by the compiler. The case expression works by matching an expression
to a pattern. When a match is found, it evaluates the expression to the right of -> and returns
whatever value is produced [139].

96

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

function performs the appropriate updates on the toggle view’s state and returns the

updated state.

Listing 6.3: Creating a toggle view

type alias MsgToApp = ()

type alias AppState = ()

type alias MsgToWidget = ToggleView.ToTree

notToggleAction = {switchOn = Nothing , switchOff = Nothing}

type alias Model = { ...

, appState : AppState

, theView : Widget (ToggleView.Msg) (ToggleView.State)

MsgToApp

MsgToWidget

}

init : Model

init = { ...

, appState = ()

, theView = ToggleView.build 40 "Blue" notToggleAction |>

moveView(90,30)

}

view: Model -> Browser.Document Msg

view model =

97

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

{ body = [createCollage collageWidth collageHeight <|

[drawIn 192 128 model.theView Nothing

|> GraphicSVG.map Widget

]

]

, title = appTitle }

type Msg = Tick Float

|

| Widget (ToggleView.Msg)

| SendToTree MsgToWidget

update: Msg -> Model -> (Model, Cmd Msg)

update msg model =

let

...

in

case msg of

...

Widget wMsg ->

let

thisView = model.theView

newModel = thisView.update wMsg thisView.model

newAppState = model.appState

newView = { thisView | model = newModel }

in

98

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

({ model | theView = newView , appState = newAppState }, Cmd.none)

SendToTree msgToWidget ->

let

thisView = model.theView

newModel = thisView.updateFromApp msgToWidget thisView.model

newView = { thisView | model = newModel}

in

({ model | theView = newView }, Cmd.none)

We have a type alias for the Model, which represents the overall model for your

application. It contains various fields such as appState, and theView. The theView

field is of type View and represents the view component of our application. We

initialize our model with some initial values.

The theView field is created by calling ToggleView.build with the width of the

toggle view, label, and action to be performed, basically to update the state based

on the action message. The result is then passed to moveView (90,30) to adjust the

position of the view.

The Msg1 type includes message constructors such as Widget, SendToTree, etc.

These constructors represent different types of events that can occur in the applica-

tion, like interactions with the ToggleView component, and more. When a message

is received in the update function, it is pattern matched to determine how to handle

that specific message. Based on the type of message received, appropriate actions can

1Messages (represented by the Msg type) serve as a way for different parts of the application to
communicate and trigger updates according to the Elm Architecture. Messages are used to represent
user interactions, events, or actions that occur within the application.

99

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

be taken, such as updating the model, triggering side effects, or sending messages to

other components. In our example, type alias msgToApp = () This defines an alias

msgToApp for the unit type1 (). It indicates that the msgToApp type carries no infor-

mation, because in this example there is no business logic yet. Similar to msgToApp,

type alias AppState = (), this defines an alias AppState indicates that there is no

information in AppState. This would never happen in a real app.

The definition notToggleAction = {switchOn = Nothing, switchOff = Nothing}

creates a record notToggleAction with fields switchOn and switchOff, based on the

action the turning switch is set to On or Off.

The update function handles different message variants and updates the model

accordingly:

• The Widget message constructor is used to handle messages related to a specific

widget in the application. It wraps a message of type ToggleView.Msg in this

case.

• When a Widgetmessage is received, update function extracts the ToggleView.Msg

and passes it to the update function of the topView (the root widget) using the

thisView.update function call.

• The update function of the app returns a new model and a set of commands.

• The SendToTree message constructor is used to send a message to the widget

tree (ToggleView) directly, without going through a specific widget.

1Tuples are types but they are dependent on their length as well as the types of their components,
so there is theoretically an infinite number of tuple types. The empty tuple () is also a type which
can only have a single value: (). This value is read as ”unit” and is the common way to denote an
empty value with no specific meaning.

100

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

• When a SendToTreemessage is received, the update function extracts the msgToWidget

message and passes it to the updateFromApp function of the topView using the

thisView.updateFromApp function call.

• The updateFromApp function of the widget tree processes the message and re-

turns a new model, which are used to update the application state and the

widget tree accordingly.

These message constructors allow communication with specific widgets or the wid-

get tree as a whole, enabling updates and interactions within the application’s view

hierarchy.

In the view function, with the drawIn function that prepares the necessary pa-

rameters and transformations to render a view based on its position, dimensions,

and model. This applies clipping and positioning operations to ensure the view is

displayed correctly on the canvas or screen. We use GraphicSVG.map Widget to wrap

messages of the top-level widget type with the constructor Widget so they have the

application-level Msg type. Functions called map are commonly used to transform the

contents of a container while preserving the container structure. We can think of

this as preserving the innermost message contents, but wrapping it in types to make

the application type safe. This introduces overhead similar to the overhead of object

composition in OO languages, but because it is all determined statically, it might be

possible for a compiler to optimize it away. Although it does introduce overhead, the

use of the higher-order map function keeps the notation compact.

101

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Figure 6.4: ToogleView widget by
default

Figure 6.5: ToogleView widget when
selected

6.2 Building a SideBySideView

A SideBySide view is a widget that can be used to create a composite view that is

an aggregate of multiple subviews horizontally.

We use the build function to create this widget, the build function takes the gap

between the two subviews and the subviews themselves as arguments. It constructs

and returns a Widget with the combined SideBySideView. The Widget is discussed

in (6.1.2). To the view function we are passing the width and height to specify the

dimensions. The SideBySideView.outline is an optional outline around the view, and

pos represents the position of the view. The app-level model contains the state of the

SideBySideView, which includes the states of the two subviews.

The wView is a function that renders the view based on the current state, while

wUpdate handles messages and updates the state accordingly. It delegates the mes-

sages to the corresponding subview based on whether the message is (wrapped in)

Left or Right. Here Left or Right means either the subview on the left or right.

The updateFromApp handles messages sent to the subviews’ update functions and

102

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

returns the updated state and any resulting tree command. The function takes two

arguments: msgToWidget and model. The msgToWidget is a value of type ToTree toA

toB. It represents the message to be sent to one of the subviews. It can be either

ToA subMsg or ToB subMsg, indicating which subview should receive the message. The

model is a tuple representing the current state of the SideBySideView. It contains the

states of the two subviews, (subModelA, subModelB).

If msgToWidget is ToA subMsg, this means that the message should be sent to

subA. The function delegates the update to subA’s updateFromApp function by passing

subMsg and the first element of the model tuple (Tuple.first model). It captures the

updated state newA and any resulting tree command msgToApp. Similarly for the case

that msgToWidget is ToB subMsg. Based on which subview received the message, the

function returns a new tuple with the updated state of the corresponding subview and

the unchanged state of the other subview, along with any resulting tree command.

Listing 6.4: Creating a SideBySideView

type alias Model = {

...

...

,theView : View (SideBySideView.Msg ToggleView.Msg LabelView.Msg)

(SideBySideView.State ToggleView.State LabelView.State)

...

}

init : Model

init = {

...

...

103

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

theView = (SideBySideView.build

20

(ToggleView.build 40 "Blue" notToggleAction)

(LabelView.build 40 displayText)

) |>moveView (50,50)

}

type Msg = Tick Float

...

...

| Widget (SideBySideView.Msg (ToggleView.Msg)(LabelView.Msg))

displayText = text "Elm"

|> filled darkGreen

|> scale 0.5

The code would be similar to the previous example 6.3, except we need to al-

ter the view with the SideBySideView. The SideBySideView is given two subviews,

ToggleView and LabelView. LabelView is a widget that can display any Shape and

clip it to the allowed rectangle. In this case, we display text.

LabelView build is a function that constructs a Widget for the label widget. It

takes a Float value for the width, a Shape Never1 representing the visual shape of the

label (for example, text), and returns a LabelView. We construct the widgets using

SideBySideView.build, ToggleView.build, and LabelView.build functions.

The Model record type alias encapsulates the different fields that store the state

1The Shape produces messages of type Never, which has zero cardinality and therefore has
no values. In turn, this means that the shape cannot have any event listener/message producers
associated with it

104

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

of the application, including the theView field that represents the current view in the

GUI and its associated messages and state.

The first parameterized type (SideBySideView.Msg ToggleView.Msg LabelView.Msg)

represents the type of messages that can be sent to the view. It combines the mes-

sage types specific to the subviews ToggleView, and LabelView using the type com-

binator SideBySideView. The second parameterized type (SideBySideView.State

ToggleView.State LabelView.State) represents the state of the view. It combines

the state types specific to the subviews ToggleView, and LabelView using the type

combinator SideBySideView. Each of these views defines its own set of messages

(ToggleView.ToTree and LabelView.ToTree) that can be sent to the corresponding

view’s internal tree structure. By combining these different message types with

SideBySideView.ToTree, the msgToWidget type alias represents a message that can

be sent by the main app logic to the view hierarchy. It incorporates the specific mes-

sages for each view within it. This strong typing ensures type safety. It is impossible

to send an message the the wrong type of subwidget. This comes at the expense of

requiring the messages to be wrapped in constructors corresponding to the path from

the root of the view hierarchy to the target widget.

Widget (SideBySideView.Msg (ToggleView.Msg)(LabelView.Msg)) is the type of a

message generated by a widget in the view hierarchy. It combines the messages specific

to the subcomponents, following the familiar pattern. This allows the application

to handle messages from different widgets in a unified way. This serves as a way

to propagate messages received from the operating system by the top-level update

function, where they can be recursively piped to the appropriate subwidget by pattern

matching on the different variants of messages in the update function, allowing for

105

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

modular and extensible message-handling logic.

Figure 6.6: SideBySideView widget
with Toggle and LabelView

Figure 6.7: Highlighting distinct
subviews with added red boxes

6.3 Building a nested SideBySideView with Toggle,

Label, and ButtonView

The theView is constructed using various view builders (ToggleView.build, LabelView.build,

ButtonView.build) and organized using SideBySideView.build, which creates a tree-

like structure. It follows the same basic pattern as the previous examples.

This example introduces state at the app level, albeit very simple state. It shows

how messages to and from the widget tree can be used, with the example of getting

messages when buttons are clicked, updating app state and reflecting that change in

a label. To facilitate communication between the tree structure and the application,

the code defines an abstract data type called msgToApp, which has two possible values:

Increase and Decrease. The AppState alias represents the application state, which

in this case is a simple integer.

The updateFromTree function is a helper function that updates the application

106

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

state (AppState) based on the message received from the tree structure (msgToApp).

It uses pattern matching to handle different cases: if the message is Just Increase,

the AppState integer value is incremented by 1; if the message is Just Decrease, the

AppState integer value is decremented by 1. If the message is anything else (), the

AppState remains unchanged. The updated AppState is returned.

The update function handles different message types using pattern matching. If

a Widget wMsg message is received, it means a widget-related message is being pro-

cessed. The function retrieves the current theView from the model and updates it

using the corresponding update function for that widget. It then updates the appli-

cation state based on the received tree commands using the updateFromTree function.

Using the SendToTree message is being sent to the tree structure the corresponding

updateFromApp function is used to update the model. The view is updated with the

new model.

Listing 6.5: Creating a nested SideBySide View with Toggle, Label, and Button

Views

type MsgToApp = Increase | Decrease

type alias AppState = Int

type alias MsgToWidget = SideBySideView.ToTree

(

SideBySideView.ToTree

(ToggleView.ToTree)

(LabelView.ToTree)

)

(SideBySideView.ToTree ButtonView.ToTree ButtonView.ToTree)

setLabel : String -> MsgToWidget

107

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

setLabel str =

SideBySideView.ToA <|

SideBySideView.ToB <|

LabelView.SetLabel (text str |> filled black |> scale 0.5)

notToggleAction = {switchOn = Nothing , switchOff = Nothing}

type alias Model = { ...

, theView : View

(SideBySideView.Msg (SideBySideView.Msg (ToggleView.Msg)

(LabelView.Msg)) ButtonView.Msg ButtonView.Msg))

(SideBySideView.State (SideBySideView.State

(ToggleView.State) (LabelView.State))(SideBySideView.State

ButtonView.State ButtonView.State))

MsgToApp

MsgToWidget

...

}

initalDisplayText = text "1"

|> filled black

|> scale 0.5

init : Model

init = { ...

, theView = SideBySideView.build 2

108

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

(SideBySideView.build 20

((ToggleView.build 40 "Blue" notToggleAction))

(LabelView.build 30 initalDisplayText)

)

(SideBySideView.build 5

(ButtonView.build 20 "+" {click=Just Increase})

(ButtonView.build 20 "-" {click=Just Decrease})

) |> moveView (0,50)

}

type Msg = ...

| Widget (SideBySideView.Msg (SideBySideView.Msg

(ToggleView.Msg) (LabelView.Msg))

(SideBySideView.Msg ButtonView.Msg ButtonView.Msg))

| SendToTree MsgToWidget

update : Msg -> Model -> (Model, Cmd Msg)

update msg model =

let

...

in

case msg of

...

Widget wMsg ->

let

thisView = model.theView

newModel = thisView.update wMsg thisView.model

109

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

newAppState = updateFromTree model.AppState

newView = { thisView | model = newModel}

in

({ model | theView = newView , AppState = newAppState }, newMsg

<| SendToTree <| setLabel <| String.fromInt newAppState)

SendToTree MsgToWidget ->

let

thisView = model.theView

newModel = thisView.updateFromApp MsgToWidget thisView.model

newView = { thisView | model = newModel}

in

({ model | theView = newView }, Cmd.none)

updateFromTree : Maybe MsgToApp -> AppState -> AppState

updateFromTree MsgToApp MppState =

AppState + case MsgToApp of

Just Decrease -> -1

Just Increase -> 1

_ -> 0

newMsg : msg -> Cmd msg

newMsg = Task.perform identity << Task.succeed

The provided figures, Figure 6.8 and Figure 6.9 give visual representations of

key components within the application’s user interface. Figure 6.8 showcases the

110

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

Figure 6.8: Nested SideBySideView with Toggle, LabelView and ButtonViews

Figure 6.9: Highlighting distinct nested subviews with added color boxes

SideBySideView, featuring the inclusion of the Toggle, LabelView, and ButtonView

elements. This depiction allows for an understanding of the layout and arrangement

of these specific subviews within the top-level SideBySideView. In Figure 6.9, the

emphasis is on highlighting distinct nested subviews, accentuated by the addition

of green and blue boxes that represents the subviews. This aids in illustrating the

hierarchical structure and relationship between the nested subviews, offering insights

into the composition.

111

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Chapter 7

Conclusion

We have answered all the research questions:

RQ1 Is it practical to build a GUI Toolkit using purely immutable data (internally)?

Based on the work reported in Chapter 6, it has been established that building

a toolkit using purely immutable data is indeed practical. It is worth noting

that strong typing plays a crucial role in identifying type-related errors early

in the development process. In Elm, almost all run-time errors including all

typing errors are eliminated. Strong typing encourages developers to provide

explicit type annotations, resulting in a codebase that is easier to understand,

maintain, and debug but in our current code, including explicit types increases

the amount of boilerplate code we must have.

RQ2 What are the advantages of Declarative UIs, from both academic and profession

points of view? From an academic perspective, there are several advantages to

using declarative approaches. Academics have long favoured declarative pro-

gramming because it allows developers to work at a higher level of abstraction,

112

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

which can reduce the number of errors caused by low-level implementation de-

tails. In the professional realm, there has been a growing recognition of this

benefits offered by declarative UIs. Professionals are increasingly aligning with

the views of academics in this regard. The adoption of declarative UIs has been

driven by the realization that traditional UI programming approaches can be

time-consuming, expensive, and yield limited value.

RQ3 Are Declarative UIs the future? It is worth noting that while declarative pro-

gramming has been embraced in certain domains, such as database program-

ming with SQL, it has not been as prevalent in UI programming until recently.

A shift is evident in trends observed on platforms like Stack Overflow, where dis-

cussions and questions related to declarative UI frameworks have seen significant

growth and engagement as seen in section 4.1.1. Furthermore, major vendors

in the software industry are now actively promoting the adoption of declarative

UIs, emphasizing the productivity gains and improved user experiences that

can be achieved. Given that vendors have committed to the transition, and

developers are showing strong interest, it seems very likely that declarative UI

is the future of GUI development.

7.1 Future Work

Chapter 6 establishes that most aspects of a practical GUI toolkit can be implemented

using purely immutable data, but one feature which still needs to be demonstrated

is keyboard, focus-based navigation. This is often omitted in UI experiments, and

is often a confusing aspect of vendor-supplied toolkits, e.g., requiring the concept of

113

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

“delegate” objects in UIKit. It is, however, required by users with visual impairments,

and much appreciated by “power users” who can more efficiently perform many tasks

using their keyboard than with a mouse.

But even in the simple examples contained in Chapter 6, it is clear that construct-

ing the types for messages, state, etc., would be unacceptably burdensome to many

front-end developers. Fortunately, these types can be constructed from the view hi-

erarchy, and we have tested this by adding a type construction function to the View

record. UI developers are used to working with drag-and-drop GUI builders, and we

propose, in the near future, to develop such a builder which would generate all the

required types as well as the calls to the build functions.

In order to investigate the current and potential knowledge transfer from academic

discussions of immutable data to the developer community, we propose adopting a

structured research approach. In this formative study, we did find evidence that

declarative UIs are being rapidly, and non-linearly adopted, but since we didn’t start

with a hypothesis and a methodology for examining sources, we cannot make any con-

clusions. In the future, hypotheses should be developed, and systematic cataloging

of the numerous forums and blog posts, and contributions to open-source software

could support or refute these hypotheses. Additionally, developers should be surveyed

about their sources of information, decision processes behind architectural decisions,

and differences they have seen in development practices over time, particularly in

the context of framework adoption. This would provide an opportunity to assess the

perceived importance of specific features, including immutable data types, declarative

approaches, and interface design, within the framework selection process. To enhance

114

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

the reliability and validity of the findings, it is essential to design the survey in a man-

ner that encompasses a diverse range of developers, considering various programming

domains, industries, and experience levels. Alternatively, the research can focus on a

specific subset of developers initially, while acknowledging that the findings may not

fully represent the entire developer population. By utilizing well-crafted questions

and employing appropriate sampling strategies, the collected data can be analyzed

using statistical techniques to quantify the significance attributed to the aforemen-

tioned features by developers. Additionally, measuring the prevalence of discussions

surrounding these concepts within the developer community can offer insights into

their practical implications and real-world adoption.

Another direction of research would be to evaluate the use of this framework as a

teaching tool for students just learning design. For example, at McMaster, students

are introduced to design in the first-year course “Introduction to Software Design

using Web Programming (CS 1XD3)”, and interviews could be used to determine

the depth of understanding which results from using a purely immutable framework

versus a Declarative UI framework versus a more conventional framework.

115

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Appendix A

Android Code Examples

A.1 Architectural patterns in action

Let’s see a few android examples implementing the concepts explained in the Chapter

3, this is an example where the user wants to add two numbers and is presented with

a view that has two editable fields, a text view to view the result, and a button to

perform an action after entering the numbers.

A.1.1 Model - View - Controller (MVC)

The below code shows the implementation of MVC,

public class MainActivity extends AppCompatActivity {

private EditText mNumberOneEditText;

private EditText mNumberTwoEditText;

private TextView mResultTextView;

116

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

/* Setting the view */

setContentView(R.layout.activity_main);

mNumberOneEditText = findViewById(R.id.number_one_edit_text);

mNumberTwoEditText = findViewById(R.id.number_two_edit_text);

mResultTextView = findViewById(R.id.result_text_view);

Button addButton = findViewById(R.id.add_button);

/* Controller Logic */

addButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

int numberOne =

Integer.parseInt(mNumberOneEditText.getText().toString());

int numberTwo =

Integer.parseInt(mNumberTwoEditText.getText().toString());

CalculatorModel calculatorModel = new

CalculatorModel(numberOne, numberTwo);

int result = calculatorModel.addNumbers();

mResultTextView.setText(String.valueOf(result));

}

117

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

});

}

}

/* Business Logic / Application State */

class CalculatorModel {

private int mNumberOne;

private int mNumberTwo;

public CalculatorModel(int numberOne, int numberTwo) {

mNumberOne = numberOne;

mNumberTwo = numberTwo;

}

public int addNumbers() {

return mNumberOne + mNumberTwo;

}

}

In this example, the MainActivity class represents the View, responsible for handling

user interactions and displaying the results. The CalculatorModel class represents the

Model, and encapsulates the data and logic for the application. The Controller logic

is implemented by the button click listener in the MainActivity class, which takes the

user input, updates the Model with the new data, and updates the View with the

result. Checkout the full code here [11] : MVC Example

118

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://github.com/FondationSTaBLFoundation/Widgets/tree/akshay_widgets/Design%20Patterns%20Examples/MVCExample

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

A.1.2 Model - View - Presenter (MVP/ Passive View)

/* MainActivity would be quite as same as MVC but with the below

changes.It presents the view, also you can notice we have implemented

the MainView */

public class MainActivity extends AppCompatActivity implements MainView {

mMainPresenter = new MainPresenter(this, new CalculatorModel());

//Inside the onclick listener

mMainPresenter.addNumbers(numberOne, numberTwo);

}

//Updates the view with the current state

@Override

public void updateResult(int result) {

mResultTextView.setText(String.valueOf(result));

}

}

/* Presenter logic*/

class MainPresenter {

private MainView mMainView;

private CalculatorModel mCalculatorModel;

public MainPresenter(MainView mainView, CalculatorModel

calculatorModel) {

mMainView = mainView;

119

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

mCalculatorModel = calculatorModel;

}

public void addNumbers(int numberOne, int numberTwo) {

int result = mCalculatorModel.addNumbers(numberOne, numberTwo);

mMainView.updateResult(result);

}

}

/*Used by Presenter to update the View with the result*/

interface MainView {

void updateResult(int result);

}

/* Business Logic / Application State */

class CalculatorModel {

public int addNumbers(int numberOne, int numberTwo) {

return numberOne + numberTwo;

}

}

In this example, the MainActivity class represents the View, responsible for handling

user interactions and displaying the results. The MainPresenter class represents

the Presenter, responsible for handling user interactions, updating the Model, and

updating the View with the result. The CalculatorModel class represents the Model,

responsible for encapsulating the data and logic for the application. The MainView

120

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

interface provides the communication between the View and the Presenter. The

updateResult method of the MainView interface is used by the Presenter to update

the View with the result.

The presentation layer does not depend on the UI as it does in MVC and the pre-

senter talks to the model layer through interfaces and gets model events back through

interfaces as well. Therefore, the presenter will implement model layer interfaces and

will communicate with model layer as the presenter gets model layer notifications you

will create view data and pass it to the view. The view is rendered with the update

model on the screen. Checkout the full code here [11] : MVP Example

A.1.3 Model - View - ViewModel (MVVM)

/* MainActivity would be quite as same as MVC but with the below changes */

mMainViewModel = new ViewModelProvider(this).get(MainViewModel.class);

//Inside the onclick listener

mMainViewModel.addNumbers(numberOne, numberTwo);

//Setting up an observer to sync the most updated state

mMainViewModel.getResult().observe(this, new Observer<Integer>() {

@Override

public void onChanged(Integer result) {

mResultTextView.setText(String.valueOf(result));

}

});

/* Business Logic / Application State */

121

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://github.com/FondationSTaBLFoundation/Widgets/tree/akshay_widgets/Design%20Patterns%20Examples/MVPExample

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

public class CalculatorModel {

public int addNumbers(int numberOne, int numberTwo) {

return numberOne + numberTwo;

}

}

/* ViewModel:Communicates with Model, Updates Result, Displays in View.*/

public class MainViewModel extends ViewModel {

private MutableLiveData<Integer> mResult = new MutableLiveData<>();

private CalculatorModel mCalculatorModel;

public MainViewModel() {

mCalculatorModel = new CalculatorModel();

}

public LiveData<Integer> getResult() {

return mResult;

}

public void addNumbers(int numberOne, int numberTwo) {

int result = mCalculatorModel.addNumbers(numberOne, numberTwo);

mResult.setValue(result);

}

/* In the above code, the MainViewModel class represents the ViewModel

while the CalculatorModel class represents the Model.

122

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

The ViewModel is responsible for holding and managing UI-related data

in a lifecycle-conscious way, which means that the data survives

configuration changes such as screen rotations. The ViewModel acts

as a bridge between the View (in this case, the MainActivity) and

the Model (in this case, the CalculatorModel), providing data to

the View and serving as a handler for UI actions initiated from the

View.

*/

}

In this example, the MainActivity class represents the View, responsible for handling

user interactions and displaying the results. The MainViewModel class represents

the ViewModel, responsible for encapsulating the data and logic for the application,

and providing the results to the View. The CalculatorModel class represents the

Model, responsible for encapsulating the data and logic for the application. The

MutableLiveData<Integer> object mResult represents the data that is displayed

in the View. The Observer in the MainActivity class listens for changes in the mRe-

sult object and updates the View with the result. The addNumbers method in the

MainViewModel class is called when the user interacts with the add button, and up-

dates the mResult object with the result. Checkout the full code here [11] : MVVM

Example

A.1.4 Model - View - Update (MVU)

/* MainActivity would be quite as same as MVC but with the below changes */

123

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://github.com/FondationSTaBLFoundation/Widgets/tree/akshay_widgets/Design%20Patterns%20Examples/MVVMExample
https://github.com/FondationSTaBLFoundation/Widgets/tree/akshay_widgets/Design%20Patterns%20Examples/MVVMExample

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

mMainViewModel = new ViewModelProvider(this).get(MainViewModel.class);

//Inside the onclick listener

mModel.update(new Message.AddNumbers(numberOne, numberTwo));

// Initialize the view by sending an initial message to the model.

mModel.update(new Message.Initialize(this));

// The View receives messages from the model and updates the UI

accordingly.

private void updateView(Model.State state) {

mResultTextView.setText(String.valueOf(state.result));

}

// The Model represents the current state of the app and updates the

view by sending messages.

private static class Model {

private State mState = new State();

// The update() method receives messages and updates the state

accordingly.

public void update(Message message) {

mState = updateState(mState, message);

updateView(mState);

}

// The updateState() method applies the message to the current

state to produce a new state.

private State updateState(State state, Message message) {

if (message instanceof Message.Initialize) {

124

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

state.result = 0;

state.view = ((Message.Initialize) message).view;

} else if (message instanceof Message.AddNumbers) {

Message.AddNumbers addNumbers = (Message.AddNumbers) message;

state.result = addNumbers.numberOne + addNumbers.numberTwo;

}

return state;

}

// The updateView() method sends a message to the View to update

the UI.

private void updateView(State state) {

state.view.updateView(state);

}

// The State class represents the current state of the app.

private static class State {

public int result;

public MainActivity view = null; //If I kept View instead on

MainActivity is gave me a casting error on compile time

}

}

// The Message class defines the different types of messages that can

be sent from the View to the Model.

private static abstract class Message {

public static class Initialize extends Message {

public final MainActivity view;

125

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

public Initialize(MainActivity view) {

this.view = view;

}

}

public static class AddNumbers extends Message {

public final int numberOne;

public final int numberTwo;

public AddNumbers(int numberOne, int numberTwo) {

this.numberOne = numberOne;

this.numberTwo = numberTwo;

}

}

}

}

In this example, the app has a single activity (MainActivity) that implements the

View component of the MVU architecture. The Model component is represented by

the Model class, which maintains the current state of the app and updates the view

by sending messages. The Update function is split between the Model.update()

andModel.updateState()methods. Messages are defined using the Message class,

which defines the different types of messages that can be sent from the View to the

Model. Each message can have different data associated with it. In this example,

there are two types of messages: Initialize, which is sent when the app starts up,

and AddNumbers, which is sent when the user clicks the “Add” button.The same

126

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

implementation is way easier and readable in Elm Programming. Checkout the full

code here [11] : MVU Example

A.2 Android XML Layout vs Jetpack Compose

In the native Android code, we use an XML Layout file in which we design the

components and the widgets to be shown to the user and they can interact with it.

In this example, we will create a simple list view that consists of one text view and

one button, when the user clicks on the button, it modifies the text to a new text.

/*Create a base adapter and inside the get view, you will see this inflate

method*/

if (convertView == null) {

convertView =

LayoutInflater.from(MainActivity.this).inflate(R.layout.list_item,

parent, false);

viewHolder = new ViewHolder();

viewHolder.textView = convertView.findViewById(R.id.item_text);

viewHolder.button = convertView.findViewById(R.id.item_button);

convertView.setTag(viewHolder);

} else {

viewHolder = (ViewHolder) convertView.getTag();

}

/*Set the adapter to the listview*/

listView.setAdapter(adapter);

127

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://github.com/FondationSTaBLFoundation/Widgets/tree/akshay_widgets/Design%20Patterns%20Examples/MVUExample

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

/*list_item.xml*/

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="horizontal"

android:layout_width="match_parent"

android:layout_height="wrap_content">

<TextView

android:id="@+id/item_text"

android:layout_width="0dp"

android:layout_height="wrap_content"

android:layout_weight="1"/>

<Button

android:id="@+id/item_button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Modify"/>

</LinearLayout>

In getView(), the method checks if convertView is null (indicating a new view needs

to be inflated) or not null (indicating an existing view can be reused). If con-

vertView is null, the layout listitem.xml is inflated using LayoutInflater.from(), and

128

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

the ViewHolder is created and attached to the converted view using setTag(). If

convertView is not null, the existing ViewHolder is retrieved using getTag().The

getView() method then sets the appropriate data (item text) and click listeners (for

the “Modify” button) on the views within the ViewHolder.

We would manually create instances of each UI element in the imperative approach,

and then make modifications to them directly thereby we must search for the views

using their IDs and set the appropriate data on them repeatedly.

In Jetpack Compose, we use Compose’s declarative UI approach to build the UI and

manage the state. Assuming we have created the blueprint of the view that what we

want to show to the user.

/*We use ’LazyColumn’, a composable to display the list of items and

’mutableStateListOf’ to hold the list items*/

val items = remember { mutableStateListOf<String>() }

if (items.isNotEmpty()) {

LazyColumn {

items(items) { item ->

ListItem(item) {

val modifiedItem = item + ‘‘ Modified"

items[items.indexOf(item)] = modifiedItem

}

}

}

} else ...

Instantly you would have noticed something, No XML layout file!

129

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

The App composable is the main entry point that manages the UI. It defines a

mutableStateListOf to hold the items.

Inside the App composable, a Column composable is used to arrange the UI elements

vertically. The “Add Item” button is displayed using the Button composable. When

the button is clicked, a new item is added to the items list using the add() function.

If the items list is not empty, a LazyColumn composable is used to display the list

of items. The items list is iterated using the items() function, and for each item, the

ListItem composable is invoked.

In the ListItem composable, when the “Modify” button is clicked, the onItemClick

lambda is invoked. Inside the lambda, the item is modified by appending “Modified”

to it, and the updated item is stored back in the items list at the appropriate index

using the index obtained from items.indexOf(item).

By using Jetpack Compose, we can define the UI hierarchy and state management

in a more concise and declarative manner. The code is simpler, more readable, and

focuses on describing what the UI should look like and how it should behave rather

than manually manipulating views and adapters.

130

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/

Bibliography

[1] H. Abelson and G. J. Sussman. Structure and interpretation of computer pro-

grams. The MIT Press, 1996.

[2] M. Alpuente, R. Barbuti, and I. Ramos, editors. 1994 Joint Conference on

Declarative Programming, GULP-PRODE 94 Peñiscola, Spain, September 19-

22, 1994, Volume 2, 1994.

[3] C. Anand and C. Schankula. GraphicSVG 7.2.0, 2017. URL https:

//package.elm-lang.org/packages/MacCASOutreach/graphicsvg/latest/.

(Accessed on 06/26/2023).

[4] D. Andreou. Element Cost In Data Structures. URL https:

//github.com/DimitrisAndreou/memory-measurer/blob/master/

ElementCostInDataStructures.txt. (Accessed on 07/08/2023).

[5] Apple. What’s new in SwiftUI. URL https://developer.apple.com/videos/

play/wwdc2021/10018/. (Accessed on 2023-06-14).

[6] Apple. Cocoa (Touch), April 2018. URL https://developer.apple.com/

library/archive/documentation/General/Conceptual/DevPedia-

CocoaCore/Cocoa.html. (Accessed on 06/12/2023).

131

https://package.elm-lang.org/packages/MacCASOutreach/graphicsvg/latest/
https://package.elm-lang.org/packages/MacCASOutreach/graphicsvg/latest/
https://github.com/DimitrisAndreou/memory-measurer/blob/master/ElementCostInDataStructures.txt
https://github.com/DimitrisAndreou/memory-measurer/blob/master/ElementCostInDataStructures.txt
https://github.com/DimitrisAndreou/memory-measurer/blob/master/ElementCostInDataStructures.txt
https://developer.apple.com/videos/play/wwdc2021/10018/
https://developer.apple.com/videos/play/wwdc2021/10018/
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/Cocoa.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/Cocoa.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/Cocoa.html

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[7] Apple. SwiftUI Overview, 2023. URL https://developer.apple.com/xcode/

swiftui/. (Accessed on 06/12/2023).

[8] Apple. UIKit, 2023. URL https://developer.apple.com/documentation/

uikit. (Accessed on 06/12/2023).

[9] Apple. Driving changes in your UI with state and bindings, 2023. URL

https://developer.apple.com/tutorials/swiftui-concepts/driving-

changes-in-your-ui-with-state-and-bindings. (Accessed on 06/11/2023).

[10] Apple. WWDC23, 2023. URL https://developer.apple.com/wwdc23/. (Ac-

cessed on 2023-06-14).

[11] A. Arumugasamy. Design Patterns Examples, 2023. URL https:

//github.com/FondationSTaBLFoundation/Widgets/tree/akshay widgets/

Design%20Patterns%20Examples. (Accessed on 07/15/2023).

[12] E. Baer. What React Is and Why It Matters. O’Reilly Media, Inc., August

2018. ISBN 9781491996737. URL https://www.oreilly.com/library/view/

what-react-is/9781491996744/ch01.html. (Accessed on 06/15/2023).

[13] E. Bainomugisha, A. L. Carreton, T. V. Cutsem, S. Mostinckx, and W. D.

Meuter. A Survey on Reactive Programming. ACM Comput. Surv., 45(4),

August 2013. doi: 10.1145/2501654.2501666.

[14] C. Barker. Learn SwiftUI: An introductory guide to creating intuitive cross-

platform user interfaces using Swift 5. Packt Publishing Ltd, 2020.

[15] A.-C. Bellini and N. Butcher. Jetpack Compose is now 1.0, 2021. URL

132

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/documentation/uikit
https://developer.apple.com/documentation/uikit
https://developer.apple.com/tutorials/swiftui-concepts/driving-changes-in-your-ui-with-state-and-bindings
https://developer.apple.com/tutorials/swiftui-concepts/driving-changes-in-your-ui-with-state-and-bindings
https://developer.apple.com/wwdc23/
https://github.com/FondationSTaBLFoundation/Widgets/tree/akshay_widgets/Design%20Patterns%20Examples
https://github.com/FondationSTaBLFoundation/Widgets/tree/akshay_widgets/Design%20Patterns%20Examples
https://github.com/FondationSTaBLFoundation/Widgets/tree/akshay_widgets/Design%20Patterns%20Examples
https://www.oreilly.com/library/view/what-react-is/9781491996744/ch01.html
https://www.oreilly.com/library/view/what-react-is/9781491996744/ch01.html

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

https://android-developers.googleblog.com/2021/07/jetpack-compose-

announcement.html. (Accessed on 06/12/2023).

[16] K. Bernales. 12 Absolute Principles of Material Design, April 2016.

URL https://www.creative-tim.com/blog/web-design/12-absolute-

principles-material-design/. (Accessed on 06/15/2023).

[17] A. P. Black, O. Nierstrasz, S. Ducasse, and D. Pollet. Pharo by example.

Lulu.com, 2010. ISBN 9783952334140.

[18] Bmbarbour. Defining ‘Declarative’, January 2012. URL https://

awelonblue.wordpress.com/2012/01/12/defining-declarative/. (Accessed

on 2023-06-06).

[19] Boformer. Answer to “Flutter: Mutable Fields in Stateless Widgets”. URL

https://stackoverflow.com/a/53192845. (Accessed on 2023-06-20).

[20] D. Browne, M. Norman, and E. Adhami. Methods for Building Adaptive

Systems. In D. BROWNE, P. TOTTERDELL, and M. NORMAN, edi-

tors, Adaptive User Interfaces, pages 85–130. Academic Press. doi: https:

//doi.org/10.1016/B978-0-12-137755-7.50009-1.

[21] Y. Bugayenko and S. Zykov. The Impact of Object Immutability on the Java

Class Size. Procedia Computer Science, 176:1868–1872, 2020.

[22] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-

Oriented Software Architecture - Volume 1: A System of Patterns. Wiley Pub-

lishing, 1996. ISBN 0471958697.

133

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://android-developers.googleblog.com/2021/07/jetpack-compose-announcement.html
https://android-developers.googleblog.com/2021/07/jetpack-compose-announcement.html
https://www.creative-tim.com/blog/web-design/12-absolute-principles-material-design/
https://www.creative-tim.com/blog/web-design/12-absolute-principles-material-design/
https://awelonblue.wordpress.com/2012/01/12/defining-declarative/
https://awelonblue.wordpress.com/2012/01/12/defining-declarative/
https://stackoverflow.com/a/53192845

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[23] L. Byron. Immutable Data and React, 2015. URL https://

www.youtube.com/watch?v=I7IdS-PbEgI&ab channel=MetaDevelopers. (Ac-

cessed on 07/11/2023).

[24] L. Byron. Immutable.js, 2015. URL https://immutable-js.com/

#introduction. (Accessed on 07/09/2023).

[25] M. Carlsson and T. Hallgren. Fudgets: purely functional processes with applica-

tions to graphical user interfaces. Number N.S., 1366 in Doktorsavhandlingar

vid Chalmers Tekniska Högskola. Chalmers Univ. of Technology. ISBN 978-91-

7197-611-6.

[26] M. Carlsson and T. Hallgren. Fudgets: A graphical user interface in a lazy

functional language. In Proceedings of the Conference on Functional Pro-

gramming Languages and Computer Architecture, FPCA ’93, page 321–330,

New York, NY, USA, 1993. Association for Computing Machinery. doi:

10.1145/165180.165228.

[27] J. Clarke and P. Gusmorino. Building amazing applications with the Fluent

Design System, 2017. URL https://learn.microsoft.com/en-us/events/

connect-2017/b107. (Accessed on 06/12/2023).

[28] M. Coblenz, J. Sunshine, J. Aldrich, B. Myers, S. Weber, and F. Shull. Ex-

ploring Language Support for Immutability. In Proceedings of the 38th In-

ternational Conference on Software Engineering, ICSE ’16, page 736–747,

New York, NY, USA, 2016. Association for Computing Machinery. doi:

10.1145/2884781.2884798.

134

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.youtube.com/watch?v=I7IdS-PbEgI&ab_channel=MetaDevelopers
https://www.youtube.com/watch?v=I7IdS-PbEgI&ab_channel=MetaDevelopers
https://immutable-js.com/#introduction
https://immutable-js.com/#introduction
https://learn.microsoft.com/en-us/events/connect-2017/b107
https://learn.microsoft.com/en-us/events/connect-2017/b107

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[29] R. C. Collins. Embracing Immutable Architecture, Sep 2016. URL

https://medium.com/react-weekly/embracing-immutable-architecture-

dc04e3f08543. (Accessed on 06/26/2023).

[30] W. Cook. Declarative versus Imperative. URL http://wcook.blogspot.com/

2013/05/declarative-versus-imperative.html. (Accessed on 2023-06-06).

[31] G. H. Cooper. Integrating Dataflow Evaluation into a Practical Higher-

Order Call-by-Value Language. PhD thesis, Brown University, USA, 2008.

AAI3335643.

[32] A. Courtney and C. Elliott. Genuinely functional user interfaces. In Haskell

workshop, pages 41–69, 2001.

[33] E. Czaplicki. Custom Types · An Introduction to Elm, . URL https:

//guide.elm-lang.org/types/custom types.html. (Accessed on 06/22/2023).

[34] E. Czaplicki. The Elm Architecture · An Introduction to Elm, . URL https://

guide.elm-lang.org/architecture/index.html. (Accessed on 06/21/2023).

[35] E. Czaplicki. Elm: Concurrent FRP for Functional GUIs. Senior thesis, Har-

vard University, 30, 2012.

[36] E. Czaplicki. A Farewell to FRP, 2016. URL https://elm-lang.org/news/

farewell-to-frp. (Accessed on 06/21/2023).

[37] E. Czaplicki. Blazing Fast HTML, 2016. URL https://elm-lang.org/news/

blazing-fast-html-round-two. [Accessed 11-Jun-2023].

135

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://medium.com/react-weekly/embracing-immutable-architecture-dc04e3f08543
https://medium.com/react-weekly/embracing-immutable-architecture-dc04e3f08543
http://wcook.blogspot.com/2013/05/declarative-versus-imperative.html
http://wcook.blogspot.com/2013/05/declarative-versus-imperative.html
https://guide.elm-lang.org/types/custom_types.html
https://guide.elm-lang.org/types/custom_types.html
https://guide.elm-lang.org/architecture/index.html
https://guide.elm-lang.org/architecture/index.html
https://elm-lang.org/news/farewell-to-frp
https://elm-lang.org/news/farewell-to-frp
https://elm-lang.org/news/blazing-fast-html-round-two
https://elm-lang.org/news/blazing-fast-html-round-two

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[38] E. Czaplicki and S. Chong. Asynchronous functional reactive programming for

guis. ACM SIGPLAN Notices, 48(6):411–422, 2013.

[39] N. D. A Complete Guide And Comparison Of MVC and MVVM, October

2021. URL https://www.intuz.com/blog/guide-on-mvc-vs-mvvm. (Accessed

on 06/15/2023).

[40] C. d’Alves, T. Bouman, C. Schankula, J. Hogg, L. Noronha, E. Horsman, R. Sid-

diqui, and C. K. Anand. Using Elm to Introduce Algebraic Thinking to K-8

Students. 270:18–36. doi: 10.4204/EPTCS.270.2.

[41] V. Davis. Apple releases native SwiftUI framework with declarative syn-

tax, live editing, and support of Xcode 11 beta Packt Hub. URL https:

//hub.packtpub.com/apple-releases-native-swiftui-framework-with-

declarative-syntax-live-editing-and-support-of-xcode-11-beta/.

(Accessed on 06/12/2023).

[42] T. DeMarco. Structured Analysis and System Specification, page 409–424. Your-

don Press, USA, 1979. ISBN 0917072146.

[43] K. Destin. iOS Architecture Patterns. URL https://sites.tufts.edu/

eeseniordesignhandbook/files/2020/05/Destin Maximum-Blue-Green-

Tech-Note.pdf.

[44] Doug Engelbart Institute. Firsts: The Demo, 2023. URL https://

dougengelbart.org/content/view/209/. (Accessed on 06/12/2023).

[45] Dykraf. How to use Bootstrap UI Library in React.js Ecosystem, Dec

136

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.intuz.com/blog/guide-on-mvc-vs-mvvm
https://hub.packtpub.com/apple-releases-native-swiftui-framework-with-declarative-syntax-live-editing-and-support-of-xcode-11-beta/
https://hub.packtpub.com/apple-releases-native-swiftui-framework-with-declarative-syntax-live-editing-and-support-of-xcode-11-beta/
https://hub.packtpub.com/apple-releases-native-swiftui-framework-with-declarative-syntax-live-editing-and-support-of-xcode-11-beta/
https://sites.tufts.edu/eeseniordesignhandbook/files/2020/05/Destin_Maximum-Blue-Green-Tech-Note.pdf
https://sites.tufts.edu/eeseniordesignhandbook/files/2020/05/Destin_Maximum-Blue-Green-Tech-Note.pdf
https://sites.tufts.edu/eeseniordesignhandbook/files/2020/05/Destin_Maximum-Blue-Green-Tech-Note.pdf
https://dougengelbart.org/content/view/209/
https://dougengelbart.org/content/view/209/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

2022. URL https://dykraf.com/blog/bootstrap-with-reactstrap-and-

react-bootstrap. (Accessed on 06/15/2023).

[46] Eclipsepedia. Is SWT better than Swing? URL https://wiki.eclipse.org/

FAQ Is SWT better than Swing%3F. (Accessed on 2023-06-15).

[47] C. Elliott and P. Hudak. Functional Reactive Animation. In Proceedings of the

second ACM SIGPLAN international conference on Functional Programming,

ICFP ’97, pages 263–273. Association for Computing Machinery. doi: 10.1145/

258948.258973.

[48] Endoflife.date. Vue.js, June 2023. URL https://endoflife.date/vue. (Ac-

cessed on 06/15/2023).

[49] R. K. Eng. How learning Smalltalk can improve your skills as a program-

mer? URL https://techbeacon.com/app-dev-testing/how-learning-

smalltalk-can-make-you-better-developer. (Accessed on 06/15/2023).

[50] R. K. Eng. Who uses Smalltalk?, December 2015. URL https://

medium.com/smalltalk-talk/who-uses-smalltalk-c6fdaa6319a. (Accessed

on 06/15/2023).

[51] R. K. Eng. The best way to teach children how to program is with a good

teaching language, January 2017. URL https://richardeng.medium.com/i-

believe-the-best-way-to-teach-children-how-to-program-is-with-a-

good-teaching-language-e62ace56fa06. (Accessed on 06/15/2023).

[52] J. Evans. WWDC: Apple’s call to code and the no-code future. URL

137

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://dykraf.com/blog/bootstrap-with-reactstrap-and-react-bootstrap
https://dykraf.com/blog/bootstrap-with-reactstrap-and-react-bootstrap
https://wiki.eclipse.org/FAQ_Is_SWT_better_than_Swing%3F
https://wiki.eclipse.org/FAQ_Is_SWT_better_than_Swing%3F
https://endoflife.date/vue
https://techbeacon.com/app-dev-testing/how-learning-smalltalk-can-make-you-better-developer
https://techbeacon.com/app-dev-testing/how-learning-smalltalk-can-make-you-better-developer
https://medium.com/smalltalk-talk/who-uses-smalltalk-c6fdaa6319a
https://medium.com/smalltalk-talk/who-uses-smalltalk-c6fdaa6319a
https://richardeng.medium.com/i-believe-the-best-way-to-teach-children-how-to-program-is-with-a-good-teaching-language-e62ace56fa06
https://richardeng.medium.com/i-believe-the-best-way-to-teach-children-how-to-program-is-with-a-good-teaching-language-e62ace56fa06
https://richardeng.medium.com/i-believe-the-best-way-to-teach-children-how-to-program-is-with-a-good-teaching-language-e62ace56fa06

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

https://www.computerworld.com/article/3656908/wwdc-apples-call-

to-code-and-the-no-code-future.html. (Accessed on 2023-06-14).

[53] M. Fayad and D. C. Schmidt. Object-Oriented Application Frameworks. Com-

mun. ACM, 40(10):32–38, oct 1997. doi: 10.1145/262793.262798.

[54] R. Fleury. UI, State Mutation, Jank, and Hotkeys. URL https://

www.rfleury.com/p/ui-part-8-state-mutation-jank-and. (Accessed on

06/23/2023).

[55] Flutter Agency. Stateful And Stateless Widget In Flutter, February

2022. URL https://flutteragency.com/relation-between-stateful-and-

stateless-widgets-in-flutter/. (Accessed on 2023-06-20).

[56] FlutterMapp. Every Flutter Widget Explained!, Jan. 2023. URL https:

//www.youtube.com/watch?v=kj tldMmu4w&ab channel=FlutterMapp. (Ac-

cessed on 06/27/2023).

[57] J. D. Fokker, S. Holdermans, A. Löh, and S. Swierstra. Functional Pro-

gramming, Sep 2011. URL https://docplayer.nl/10678104-Functional-

programming.html. (Accessed on 06/15/2023).

[58] Fondation STaBL Foundation. ShapeCreator, 2023. URL https://

macoutreach.rocks/SC3.html. (Accessed on 08/04/2023).

[59] M. Fowler. Design - Who needs an architect? IEEE Software, 20(5):11–13, Sep.

2003. ISSN 1937-4194. doi: 10.1109/MS.2003.1231144.

[60] M. Fowler. Inversion Of Control, June 2005. URL https://martinfowler.com/

bliki/InversionOfControl.html. (Accessed on 06/20/2023).

138

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.computerworld.com/article/3656908/wwdc-apples-call-to-code-and-the-no-code-future.html
https://www.computerworld.com/article/3656908/wwdc-apples-call-to-code-and-the-no-code-future.html
https://www.rfleury.com/p/ui-part-8-state-mutation-jank-and
https://www.rfleury.com/p/ui-part-8-state-mutation-jank-and
https://flutteragency.com/relation-between-stateful-and-stateless-widgets-in-flutter/
https://flutteragency.com/relation-between-stateful-and-stateless-widgets-in-flutter/
https://www.youtube.com/watch?v=kj_tldMmu4w&ab_channel=FlutterMapp
https://www.youtube.com/watch?v=kj_tldMmu4w&ab_channel=FlutterMapp
https://docplayer.nl/10678104-Functional-programming.html
https://docplayer.nl/10678104-Functional-programming.html
https://macoutreach.rocks/SC3.html
https://macoutreach.rocks/SC3.html
https://martinfowler.com/bliki/InversionOfControl.html
https://martinfowler.com/bliki/InversionOfControl.html

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[61] M. Fowler. GUI Architectures, July 2006. URL https://martinfowler.com/

eaaDev/uiArchs.html. (Accessed on 2023-02-02).

[62] M. Fowler. Software Architecture Guide, August 2019. URL https://

www.martinfowler.com/architecture/. (Accessed on 06/22/2023).

[63] M. Fowler’s. Presentation Model, July 2004. URL https://martinfowler.com/

eaaDev/PresentationModel.html. (Accessed on 06/22/2023).

[64] W. O. Galitz. The essential guide to user interface design: an introduction

to GUI design principles and techniques. Wiley Pub, 3rd ed edition. ISBN

978-0-470-05342-3. OCLC: ocm76792111.

[65] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns: El-

ements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA,

1995. ISBN 978-0-201-63361-0.

[66] V. Gaudioso. MVVM: Model-View-ViewModel. In T. Brown, B. Renow-

Clarke, C. Collins, C. Andres, S. Anglin, M. Beckner, E. Buckingham, G. Cor-

nell, J. Gennick, J. Hassell, M. Lowman, M. Moodie, D. Parkes, J. Pepper,

F. Pohlmann, D. Pundick, D. Shakeshaft, M. Wade, and T. Welsh, editors,

Foundation Expression Blend 4 with Silverlight, pages 341–367. Apress. doi:

10.1007/978-1-4302-2974-2 15.

[67] C. Ghezzi and M. Jazayeri. Programming language concepts, Third edition.

John Wiley & Sons, 1996.

[68] Google. Thinking in Compose-Jetpack Compose. URL https://

139

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://martinfowler.com/eaaDev/uiArchs.html
https://martinfowler.com/eaaDev/uiArchs.html
https://www.martinfowler.com/architecture/
https://www.martinfowler.com/architecture/
https://martinfowler.com/eaaDev/PresentationModel.html
https://martinfowler.com/eaaDev/PresentationModel.html
https://developer.android.com/jetpack/compose/mental-model
https://developer.android.com/jetpack/compose/mental-model

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

developer.android.com/jetpack/compose/mental-model. (Accessed on

06/12/2023).

[69] Google. Widgets library - Dart API. URL https://api.flutter.dev/flutter/

widgets/widgets-library.html. (Accessed on 06/27/2023).

[70] Google. FAQ (Flutter), 2023. URL https://docs.flutter.dev/resources/

faq#what-programming-paradigm-does-flutters-framework-use. (Ac-

cessed on 06/12/2023).

[71] Google. Flutter architectural overview, 2023. URL https:

//docs.flutter.dev/resources/architectural-overview. (Accessed

on 06/12/2023).

[72] Google. Guide to app architecture Android Developers, 2023. URL https:

//developer.android.com/topic/architecture#single-source-of-truth.

(Accessed on 06/12/2023).

[73] Google. Jetpack Compose UI App Development Toolkit - Android Developers,

2023. URL https://developer.android.com/jetpack/compose. (Accessed on

06/12/2023).

[74] Google. Start thinking declaratively, 2023. URL https://docs.flutter.dev/

data-and-backend/state-mgmt/declarative. (Accessed on 06/11/2023).

[75] Google, Inc. StatelessWidget class. URL https://api.flutter.dev/flutter/

widgets/StatelessWidget-class.html. (Accessed on 2023-05-09).

[76] Google Trends. Flutter, React Native, 2023. URL

140

https://developer.android.com/jetpack/compose/mental-model
http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://developer.android.com/jetpack/compose/mental-model
https://api.flutter.dev/flutter/widgets/widgets-library.html
https://api.flutter.dev/flutter/widgets/widgets-library.html
https://docs.flutter.dev/resources/faq#what-programming-paradigm-does-flutters-framework-use
https://docs.flutter.dev/resources/faq#what-programming-paradigm-does-flutters-framework-use
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/resources/architectural-overview
https://developer.android.com/topic/architecture#single-source-of-truth
https://developer.android.com/topic/architecture#single-source-of-truth
https://developer.android.com/jetpack/compose
https://docs.flutter.dev/data-and-backend/state-mgmt/declarative
https://docs.flutter.dev/data-and-backend/state-mgmt/declarative
https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

https://trends.google.com/trends/explore?date=all&q=%2Fg%

2F11f03 rzbg,%2Fg%2F11h03gfxy9. (Accessed on 06/15/2023).

[77] Google/Guava. ImmutableCollectionsExplained·. URL https:

//github.com/google/guava/wiki/ImmutableCollectionsExplained.

(Accessed on 07/08/2023).

[78] M. D. Griffith. Elm-ui 1.1.8. URL https://package.elm-lang.org/packages/

mdgriffith/elm-ui/latest/. (Accessed on 2023-06-15).

[79] C. Guindon. SWT: The Standard Widget Toolkit. URL https://

www.eclipse.org/swt/. (Accessed on 2023-06-15).

[80] P. Haller and L. Axelsson. Quantifying and Explaining Immutability in Scala.

Electronic Proceedings in Theoretical Computer Science, 246:21–27, April 2017.

doi: 10.4204/eptcs.246.5.

[81] T. Hallgren and M. Carlsson. Fudgets. URL http://www.altocumulus.org/

Fudgets/. (Accessed on 06/14/2023).

[82] HaskellWiki Community Contributors. Referential transparency. URL

https://wiki.haskell.org/Referential transparency#notes. (Accessed on

06/23/2023).

[83] HaskellWiki Community Contributors. Parametric Polymor-

phism, January 2015. URL https://wiki.haskell.org/

Polymorphism#Parametric polymorphism. (Accessed on 06/26/2023).

[84] M. Hevery. AngularJS — Superheroic JavaScript MVW Framework, 2021. URL

https://angularjs.org/. (Accessed on 06/15/2023).

141

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://trends.google.com/trends/explore?date=all&q=%2Fg%2F11f03_rzbg,%2Fg%2F11h03gfxy9
https://trends.google.com/trends/explore?date=all&q=%2Fg%2F11f03_rzbg,%2Fg%2F11h03gfxy9
https://github.com/google/guava/wiki/ImmutableCollectionsExplained
https://github.com/google/guava/wiki/ImmutableCollectionsExplained
https://package.elm-lang.org/packages/mdgriffith/elm-ui/latest/
https://package.elm-lang.org/packages/mdgriffith/elm-ui/latest/
https://www.eclipse.org/swt/
https://www.eclipse.org/swt/
http://www.altocumulus.org/Fudgets/
http://www.altocumulus.org/Fudgets/
https://wiki.haskell.org/Referential_transparency#notes
https://wiki.haskell.org/Polymorphism#Parametric_polymorphism
https://wiki.haskell.org/Polymorphism#Parametric_polymorphism
https://angularjs.org/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[85] M. Hevery. Angular - Introduction to the Angular docs, 2023. URL https:

//angular.io/docs. (Accessed on 06/15/2023).

[86] R. Hickey. Clojure - Concurrent Programming, 2008-2022. URL https://

clojure.org/about/concurrent programming. (Accessed on 06/23/2023).

[87] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, Robots, and

Functional Reactive Programming. In J. Jeuring and S. L. P. Jones, editors,

Advanced Functional Programming: 4th International School, AFP 2002, Ox-

ford, UK, August 19-24, 2002. Revised Lectures, pages 159–187. Springer Berlin

Heidelberg. doi: 10.1007/978-3-540-44833-4 6.

[88] P. Hudson. SwiftUI vs UIKit – comparison of building the same app in

each framework. URL https://www.youtube.com/watch?v=qk2y-TiLDZo. (Ac-

cessed on 2023-06-12).

[89] J. Hughes. Why Functional Programming Matters. The Computer Journal, 32

(2):98—107, 1989. doi: 10.1093/comjnl/32.2.98.

[90] L. Jeroen. UIKit vs. SwiftUI - Choosing the Right Framework!, Jan

2022. URL https://getstream.io/blog/uikit-vs-swiftui/. (Accessed on

06/12/2023).

[91] Jessta. Messages purpose - Learn - Elm, 2021. URL https://discourse.elm-

lang.org/t/messages-purpose/6778/3. (Accessed on 06/15/2023).

[92] A. C. Kay. The Early History Of Smalltalk. URL http://worrydream.com/

EarlyHistoryOfSmalltalk/. (Accessed on 2023-06-08).

142

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://angular.io/docs
https://angular.io/docs
https://clojure.org/about/concurrent_programming
https://clojure.org/about/concurrent_programming
https://www.youtube.com/watch?v=qk2y-TiLDZo
https://getstream.io/blog/uikit-vs-swiftui/
https://discourse.elm-lang.org/t/messages-purpose/6778/3
https://discourse.elm-lang.org/t/messages-purpose/6778/3
http://worrydream.com/EarlyHistoryOfSmalltalk/
http://worrydream.com/EarlyHistoryOfSmalltalk/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[93] B. Kaya. What are the reasons why object oriented programming is

not used by JavaScript? What are the alternatives that can be used in-

stead of it (for example functional, procedural)?, February 2022. URL

https://www.quora.com/What-are-the-reasons-why-object-oriented-

programming-is-not-used-by-JavaScript-What-are-the-alternatives-

that-can-be-used-instead-of-it-for-example-functional-procedural.

(Accessed on 06/15/2023).

[94] T. Kestermann. The Standard Widget Toolkit (SWT) — Java UI at

its Best. URL https://medium.com/@TorstenKestermann/the-standard-

widget-toolkit-swt-java-ui-at-its-best-part-1-444f7f15b74. (Ac-

cessed on 2023-06-15).

[95] Kindsonthegenius. Elm – Custom Types (Algebraic Data Types), 2022.

URL https://kindsonthegenius.com/elm/elm-custom-types-algebraic-

data-types/. (Accessed on 06/22/2023).

[96] Kofi Group. 7 reasons why VueJS is so popular. URL https://www.kofi-

group.com/7-reasons-why-vuejs-is-so-popular/. (Accessed on 2023-06-

15).

[97] A. S. Korban. Elm-ui: The CSS Escape Plan. URL https://korban.net/elm/

elm-ui-guide/. (Accessed on 2023-06-15).

[98] W. Kreutzer. Basic Aspects of Squeak and the Smalltalk-80 Programing Lan-

guage, 1998.

143

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.quora.com/What-are-the-reasons-why-object-oriented-programming-is-not-used-by-JavaScript-What-are-the-alternatives-that-can-be-used-instead-of-it-for-example-functional-procedural
https://www.quora.com/What-are-the-reasons-why-object-oriented-programming-is-not-used-by-JavaScript-What-are-the-alternatives-that-can-be-used-instead-of-it-for-example-functional-procedural
https://www.quora.com/What-are-the-reasons-why-object-oriented-programming-is-not-used-by-JavaScript-What-are-the-alternatives-that-can-be-used-instead-of-it-for-example-functional-procedural
https://medium.com/@TorstenKestermann/the-standard-widget-toolkit-swt-java-ui-at-its-best-part-1-444f7f15b74
https://medium.com/@TorstenKestermann/the-standard-widget-toolkit-swt-java-ui-at-its-best-part-1-444f7f15b74
https://kindsonthegenius.com/elm/elm-custom-types-algebraic-data-types/
https://kindsonthegenius.com/elm/elm-custom-types-algebraic-data-types/
https://www.kofi-group.com/7-reasons-why-vuejs-is-so-popular/
https://www.kofi-group.com/7-reasons-why-vuejs-is-so-popular/
https://korban.net/elm/elm-ui-guide/
https://korban.net/elm/elm-ui-guide/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[99] S. Kumar. Data Flow Diagrams and Data Dictionaries. URL https://

www.scaler.com/topics/data-flow-diagrams/. (Accessed on 06/28/2023).

[100] J. Kunasaikaran and A. Iqbal. A brief overview of functional programming lan-

guages. Electronic Journal of Computer Science and Information Technology,

6(1), 2016.

[101] E. Kuzmenko. Model-View-Controller Architecture Pattern: Usage, Advan-

tages, Examples, June 2022. URL https://hackernoon.com/model-view-

controller-architecture-pattern-usage-advantages-examples. (Ac-

cessed on 06/15/2023).

[102] D. Larkin, M. Morse, J. Neider, and C. Rose. NeXTstep Concepts, pp.

4.36—4.45, NeXT Computer. Inc., Redwood City, CA, 1990.

[103] E. Lee and D. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,

75(9):1235–1245, Sep. 1987. ISSN 1558-2256. doi: 10.1109/PROC.1987.13876.

[104] D. Leijen. WxHaskell: a portable and concise GUI library for haskell. In

Proceedings of the 2004 ACM SIGPLAN workshop on Haskell, Haskell ’04, pages

57–68. Association for Computing Machinery. doi: 10.1145/1017472.1017483.

[105] M. Manjunath. AngularJS and Angular 2+: A Detailed Comparison, April

2018. URL https://www.sitepoint.com/angularjs-vs-angular/. (Accessed

on 06/15/2023).

[106] W. L. Martinez. Graphical User Interfaces. WIREs Computational Statistics,

3(2):119–133, 2011. doi: https://doi.org/10.1002/wics.150.

144

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.scaler.com/topics/data-flow-diagrams/
https://www.scaler.com/topics/data-flow-diagrams/
https://hackernoon.com/model-view-controller-architecture-pattern-usage-advantages-examples
https://hackernoon.com/model-view-controller-architecture-pattern-usage-advantages-examples
https://www.sitepoint.com/angularjs-vs-angular/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[107] Material-UI Contributors. Material-UI: A popular React UI framework, 2023.

URL https://v4.mui.com/. (Accessed on 06/15/2023).

[108] R. M. Max Goldman. Mutability & Immutability, Fall 2015. URL https:

//web.mit.edu/6.005/www/fa15/classes/09-immutability/. (Accessed on

06/26/2023).

[109] J. McCormack and P. Asente. An Overview of the X Toolkit. In Proceedings

of the 1st Annual ACM SIGGRAPH Symposium on User Interface Software,

UIST ’88, page 46–55, New York, NY, USA, 1988. Association for Computing

Machinery. doi: 10.1145/62402.62407.

[110] J. McLaughlin. Fluent: Design Behind the Design. How our Fluent De-

sign System focuses, May 2019. URL https://medium.com/microsoft-

design/fluent-design-behind-the-design-973028062fcc. (Accessed on

06/12/2023).

[111] Microsoft. Office UI Fabric JS. URL https://developer.microsoft.com/en-

us/fabric-js. (Accessed on 06/12/2023).

[112] Microsoft. Get started - Fluent UI, 2023. URL https://

developer.microsoft.com/en-us/fluentui#/. (Accessed on 06/12/2023).

[113] Microsoft Fluent Wiki. Integrating Fluent — Overview, June 2020. URL

https://github.com/projectfluent/fluent/wiki/Integrating-Fluent-

%E2%80%94-Overview. (Accessed on 06/11/2023).

[114] B. Moseley and P. Marks. Out of the tar pit. Software Practice Advancement

(SPA), 2006.

145

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://v4.mui.com/
https://web.mit.edu/6.005/www/fa15/classes/09-immutability/
https://web.mit.edu/6.005/www/fa15/classes/09-immutability/
https://medium.com/microsoft-design/fluent-design-behind-the-design-973028062fcc
https://medium.com/microsoft-design/fluent-design-behind-the-design-973028062fcc
https://developer.microsoft.com/en-us/fabric-js
https://developer.microsoft.com/en-us/fabric-js
https://developer.microsoft.com/en-us/fluentui#/
https://developer.microsoft.com/en-us/fluentui#/
https://github.com/projectfluent/fluent/wiki/Integrating-Fluent-%E2%80%94-Overview
https://github.com/projectfluent/fluent/wiki/Integrating-Fluent-%E2%80%94-Overview

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[115] Mozilla.org contributors. Element - MDN Web Docs, 2023. URL https:

//developer.mozilla.org/en-US/docs/Glossary/Element. (Accessed on

06/22/2023).

[116] Mozilla.org contributors. HTML - MDN Web Docs, 2023. URL

https://developer.mozilla.org/en-US/docs/Glossary/HTML. (Accessed on

06/22/2023).

[117] Mozilla.org contributors. Introduction to the DOM, 2023. URL https:

//developer.mozilla.org/en-US/docs/Web/API/Document Object Model/

Introduction. (Accessed on 06/22/2023).

[118] M. Muccinelli. Flutter: Dart Immutable Objects and Values. URL

https://levelup.gitconnected.com/flutter-dart-immutable-objects-

and-values-5e321c4c654e. (Accessed on 2023-05-12).

[119] A. Mukherjee. Component Communication in Angular (Parent to

Child & Child to Parent) - DEV Community, Jan 2022. URL

https://dev.to/this-is-angular/component-communication-parent-

to-child-child-to-parent-5800. (Accessed on 07/05/2023).

[120] R. Muliyashiya. Android MVVM Patterns with LiveData, April 2023.

URL https://devblog.link/android-architecture-patterns-mvvm-and-

live-data/. (Accessed on 06/15/2023).

[121] B. Myers, S. E. Hudson, and R. Pausch. Past, present, and future of user

interface software tools. ACM Transactions on Computer-Human Interaction

(TOCHI), 7(1):3–28, 2000.

146

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://developer.mozilla.org/en-US/docs/Glossary/Element
https://developer.mozilla.org/en-US/docs/Glossary/Element
https://developer.mozilla.org/en-US/docs/Glossary/HTML
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://levelup.gitconnected.com/flutter-dart-immutable-objects-and-values-5e321c4c654e
https://levelup.gitconnected.com/flutter-dart-immutable-objects-and-values-5e321c4c654e
https://dev.to/this-is-angular/component-communication-parent-to-child-child-to-parent-5800
https://dev.to/this-is-angular/component-communication-parent-to-child-child-to-parent-5800
https://devblog.link/android-architecture-patterns-mvvm-and-live-data/
https://devblog.link/android-architecture-patterns-mvvm-and-live-data/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[122] B. A. Myers. User interface software tools. 2(1):64–103. doi: 10.1145/

200968.200971. (Accessed on 2023-06-07).

[123] B. A. Myers. A foundation for user interface construction. CRC Press, 1992.

[124] R. Noble and C. Runciman. Lazy functional components for graphical user

interfaces. PhD thesis, Citeseer, 1995.

[125] D. A. Norman. The Design of Everyday Things. Basic Books, Inc., USA, 2002.

ISBN 9780465067107.

[126] S. Northover and C. MacLeod. Writing your own widget, March

2001. URL https://www.eclipse.org/articles/Article-Writing%20Your%

20Own%20Widget/Writing%20Your%20Own%20Widget.htm. (Accessed on 2023-

06-15).

[127] M. Odersky, L. Spoon, and B. Venners. Programming in Scala: Updated for

Scala 2.12. Artima Incorporation, Sunnyvale, CA, USA, 3rd edition, 2016.

ISBN 0981531687.

[128] C. Okasaki. Purely functional data structures. Cambridge University Press,

1999.

[129] Oracle. Lesson: Getting Started with Swing. URL https://docs.oracle.com/

javase/tutorial/uiswing/start/index.html. (Accessed on 2023-06-15).

[130] Oracle. Abstract Window Toolkit (AWT), 2023. URL https://

docs.oracle.com/javase/8/docs/technotes/guides/awt/. (Accessed on

06/15/2023).

147

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.eclipse.org/articles/Article-Writing%20Your%20Own%20Widget/Writing%20Your%20Own%20Widget.htm
https://www.eclipse.org/articles/Article-Writing%20Your%20Own%20Widget/Writing%20Your%20Own%20Widget.htm
https://docs.oracle.com/javase/tutorial/uiswing/start/index.html
https://docs.oracle.com/javase/tutorial/uiswing/start/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/awt/
https://docs.oracle.com/javase/8/docs/technotes/guides/awt/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[131] Oracle. Open JavaFX, 2023. URL https://openjfx.io/index.html. (Accessed

on 2023-06-15).

[132] oTree Contributors. Forms, 2023. URL https://otree.readthedocs.io/en/

latest/forms.html. (Accessed on 06/15/2023).

[133] M. Pawlan. What Is JavaFX?, April 2013. URL https://docs.oracle.com/

javafx/2/overview/jfxpub-overview.htm. (Accessed on 06/15/2023).

[134] A. J. Perlis. Special Feature: Epigrams on Programming. SIGPLAN Not., 17

(9):7–13, sep 1982. doi: 10.1145/947955.1083808.

[135] Pharo community. Pharo-Flyer-cheat-sheet. URL https://files.pharo.org/

media/flyer-cheat-sheet.pdf. (Accessed on 06/15/2023).

[136] B. C. Pierce. Types and programming languages. MIT press, 2002.

[137] H. H. Porter III. Smalltalk: A white paper overview, 2003.

[138] M. Potel. MVP: Model-View-Presenter The Taligent Programming Model for

C++ and Java. 1996. URL https://www.wildcrest.com/Potel/Portfolio/

mvp.pdf.

[139] P. Poudel. Beginning Elm, 2018. URL https://elmprogramming.com/

pattern-matching.html. (Accessed on 06/29/2023).

[140] Pub.dev. Cupertino stepper (Flutter Package). URL https://pub.dev/

packages/cupertino stepper. (Accessed on 06/27/2023).

[141] W. V. O. Quine. Word and Object. The MIT Press. doi: 10.7551/mitpress/

9636.001.0001.

148

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://openjfx.io/index.html
https://otree.readthedocs.io/en/latest/forms.html
https://otree.readthedocs.io/en/latest/forms.html
https://docs.oracle.com/javafx/2/overview/jfxpub-overview.htm
https://docs.oracle.com/javafx/2/overview/jfxpub-overview.htm
https://files.pharo.org/media/flyer-cheat-sheet.pdf
https://files.pharo.org/media/flyer-cheat-sheet.pdf
https://www.wildcrest.com/Potel/Portfolio/mvp.pdf
https://www.wildcrest.com/Potel/Portfolio/mvp.pdf
https://elmprogramming.com/pattern-matching.html
https://elmprogramming.com/pattern-matching.html
https://pub.dev/packages/cupertino_stepper
https://pub.dev/packages/cupertino_stepper

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[142] J. Rambhia. Introduction to MVVM architecture in Android, July 2019.

URL https://jayrambhia.com/blog/android-mvvm-intro. (Accessed on

07/07/2023).

[143] ReactEurope. Immutable application architecture - lee byron,

2018. URL https://www.youtube.com/watch?v=oTcDmnAXZ4E&list=

PLCC436JpVnK1X7atG6EIz467Evs4TMX 5&index=12&ab channel=

ReactEurope. (Accessed on 06/26/2023).

[144] U. Reddy and J. Chen. Functional programming - What is referential trans-

parency?, 2019. URL https://stackoverflow.com/questions/210835/what-

is-referential-transparency/9859966. (Accessed on 07/31/2023).

[145] M. Resnick. ScratchJr. URL http://www.scratchjr.org/. (Accessed on

06/15/2023).

[146] H. Rich. Simple Made Easy. URL https://github.com/matthiasn/talk-

transcripts/blob/master/Hickey Rich/SimpleMadeEasy.md. (Accessed on

07/07/2023).

[147] M. Sage. FranTk - a declarative GUI language for Haskell. In Proceedings of

the fifth ACM SIGPLAN international conference on Functional programming,

ICFP ’00, pages 106–117. Association for Computing Machinery. doi: 10.1145/

351240.351250.

[148] D. Santos. Evolve Unidirectional Data Flow a.k.a MVI into MVVM + Jetpack

Compose, Dec 5 2021. URL https://medium.com/eureka-engineering/

149

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://jayrambhia.com/blog/android-mvvm-intro
https://www.youtube.com/watch?v=oTcDmnAXZ4E&list=PLCC436JpVnK1X7atG6EIz467Evs4TMX_5&index=12&ab_channel=ReactEurope
https://www.youtube.com/watch?v=oTcDmnAXZ4E&list=PLCC436JpVnK1X7atG6EIz467Evs4TMX_5&index=12&ab_channel=ReactEurope
https://www.youtube.com/watch?v=oTcDmnAXZ4E&list=PLCC436JpVnK1X7atG6EIz467Evs4TMX_5&index=12&ab_channel=ReactEurope
https://stackoverflow.com/questions/210835/what-is-referential-transparency/9859966
https://stackoverflow.com/questions/210835/what-is-referential-transparency/9859966
http://www.scratchjr.org/
https://github.com/matthiasn/talk-transcripts/blob/master/Hickey_Rich/SimpleMadeEasy.md
https://github.com/matthiasn/talk-transcripts/blob/master/Hickey_Rich/SimpleMadeEasy.md
https://medium.com/eureka-engineering/evolve-unidirectional-data-flow-a-k-a-mvi-into-mvvm-jetpack-compose-e6858a767290
https://medium.com/eureka-engineering/evolve-unidirectional-data-flow-a-k-a-mvi-into-mvvm-jetpack-compose-e6858a767290

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

evolve-unidirectional-data-flow-a-k-a-mvi-into-mvvm-jetpack-

compose-e6858a767290. (Accessed on 07/07/2023).

[149] Scratch Foundation. Scratch - Imagine, Program, Share. URL https:

//scratch.mit.edu/. (Accessed on 06/15/2023).

[150] N. Sculthorpe. Towards safe and efficient functional reactive programming. PhD

thesis, University of Nottingham, 2011.

[151] Self Language Team. Morphic, 2018. URL https://wiki.squeak.org/squeak/

30. (Accessed on 2023-06-16).

[152] Siemens. Low-Code Achieves Mainstream Status According to New

Ground-Breaking Research. URL https://www.mendix.com/press/low-

code-achieves-mainstream-statusaccording-to-new-ground-breaking-

research/. (Accessed on 2023-06-14).

[153] M. Skoczylas. The idea behind functional programming. URL https://

pragmaticreview.com/the-idea-behind-functional-programming/. (Ac-

cessed on 2023-06-06).

[154] Software Engineering Standards Committee of the IEEE Computer So-

ciety. IEEE Recommended practice for architectural description of

software-intensive systems - IEEE Std 1471-2000. IEEE, 2000. URL

http://cabibbo.dia.uniroma3.it/ids/altrui/ieee1471.pdf. (Accessed on

06/15/2023).

[155] M. O. Source. Introduction to React Native, 2023. URL https://

reactnative.dev/docs/getting-started. (Accessed on 06/15/2023).

150

https://medium.com/eureka-engineering/evolve-unidirectional-data-flow-a-k-a-mvi-into-mvvm-jetpack-compose-e6858a767290
http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://medium.com/eureka-engineering/evolve-unidirectional-data-flow-a-k-a-mvi-into-mvvm-jetpack-compose-e6858a767290
https://medium.com/eureka-engineering/evolve-unidirectional-data-flow-a-k-a-mvi-into-mvvm-jetpack-compose-e6858a767290
https://scratch.mit.edu/
https://scratch.mit.edu/
https://wiki.squeak.org/squeak/30
https://wiki.squeak.org/squeak/30
https://www.mendix.com/press/low-code-achieves-mainstream-status according-to-new-ground-breaking-research/
https://www.mendix.com/press/low-code-achieves-mainstream-status according-to-new-ground-breaking-research/
https://www.mendix.com/press/low-code-achieves-mainstream-status according-to-new-ground-breaking-research/
https://pragmaticreview.com/the-idea-behind-functional-programming/
https://pragmaticreview.com/the-idea-behind-functional-programming/
http://cabibbo.dia.uniroma3.it/ids/altrui/ieee1471.pdf
https://reactnative.dev/docs/getting-started
https://reactnative.dev/docs/getting-started

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[156] M. O. Source. Quick Start – React, 2023. URL https://react.dev/learn.

(Accessed on 06/15/2023).

[157] Stack Overflow. Stack Overflow Trends, 2023. URL https://

insights.stackoverflow.com/trends?tags=r%2Cstatistics. (Accessed on

06/14/2023).

[158] K. A. Stokke, M. Barash, and J. Järvi. The Ultimate GUI Framework:

Are We There Yet? In R. Lämmel, P. D. Mosses, and F. Steimann, ed-

itors, Eelco Visser Commemorative Symposium (EVCS 2023), volume 109

of Open Access Series in Informatics (OASIcs), pages 25:1–25:9, Dagstuhl,

Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:

10.4230/OASIcs.EVCS.2023.25.

[159] R. R. Swick and M. S. Ackerman. The X Toolkit: More Bricks for Building

User-Interfaces or Widgets for Hire. In Usenix Winter, volume 88, pages 221–

228. Citeseer, 1988.

[160] R. Trinkle. Overview — Reflex 0.5 documentation, 2018. URL https://

docs.reflex-frp.org/en/latest/overview.html. (Accessed on 06/14/2023).

[161] R. Trinkle. Reflex: Higher-order Functional Reactive Programming, July

2023. URL https://hackage.haskell.org/package/reflex. (Accessed on

08/01/2023).

[162] K. Ubah. React.js vs React Native – What’s the Difference?, Feb

2023. URL https://www.freecodecamp.org/news/react-js-vs-react-

native-whats-the-difference/. (Accessed on 06/15/2023).

151

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://react.dev/learn
https://insights.stackoverflow.com/trends?tags=r%2Cstatistics
https://insights.stackoverflow.com/trends?tags=r%2Cstatistics
https://docs.reflex-frp.org/en/latest/overview.html
https://docs.reflex-frp.org/en/latest/overview.html
https://hackage.haskell.org/package/reflex
https://www.freecodecamp.org/news/react-js-vs-react-native-whats-the-difference/
https://www.freecodecamp.org/news/react-js-vs-react-native-whats-the-difference/

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[163] B. Vyas. What’s New in Angular 15? New Features and Updates,

2023. URL https://www.clariontech.com/blog/angular-15-with-new-

features-and-updates. (Accessed on 06/15/2023).

[164] D. A. Watt. Programming Language Design Concepts. John Wiley Sons, Inc.,

Hoboken, NJ, USA, 2004.

[165] M. Weststrate. Introducing Immer: Immutability the easy way, January

2018. URL https://hackernoon.com/introducing-immer-immutability-

the-easy-way-9d73d8f71cb3. (Accessed on 07/09/2023).

[166] Wikipedia contributors. Model–view–viewmodel, . URL https:

//en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%

93viewmodel&oldid=1157628301. (Accessed 22-June-2023).

[167] Wikipedia contributors. Standard Widget Toolkit, . URL https:

//en.wikipedia.org/w/index.php?title=Standard Widget Toolkit&oldid=

1158028697. (Accessed on 2023-06-15).

[168] Wikipedia contributors. Flutter (software), 2023. URL https://

en.wikipedia.org/wiki/Flutter (software). (Accessed on 06/12/2023).

[169] Wikipedia contributors. Model–view–controller, 2023. URL https://

en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. (Ac-

cessed on 06/15/2023).

[170] Wikipedia contributors. React Native, 2023. URL https://en.wikipedia.org/

wiki/React Native. (Accessed on 06/15/2023).

152

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://www.clariontech.com/blog/angular-15-with-new-features-and-updates
https://www.clariontech.com/blog/angular-15-with-new-features-and-updates
https://hackernoon.com/introducing-immer-immutability-the-easy-way-9d73d8f71cb3
https://hackernoon.com/introducing-immer-immutability-the-easy-way-9d73d8f71cb3
https://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%93viewmodel&oldid=1157628301
https://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%93viewmodel&oldid=1157628301
https://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%93viewmodel&oldid=1157628301
https://en.wikipedia.org/w/index.php?title=Standard_Widget_Toolkit&oldid=1158028697
https://en.wikipedia.org/w/index.php?title=Standard_Widget_Toolkit&oldid=1158028697
https://en.wikipedia.org/w/index.php?title=Standard_Widget_Toolkit&oldid=1158028697
https://en.wikipedia.org/wiki/Flutter_(software)
https://en.wikipedia.org/wiki/Flutter_(software)
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/React_Native
https://en.wikipedia.org/wiki/React_Native

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[171] Wikipedia contributors. Side effect (computer science),

2023. URL https://en.wikipedia.org/w/index.php?title=

Side effect (computer science)&oldid=1142347657. (Accessed 23-

June-2023).

[172] Wikipedia contributors. Software design pattern, 2023. URL https:

//en.wikipedia.org/w/index.php?title=Software design pattern&oldid=

1161260019. (Accessed 21-June-2023).

[173] Wikipedia contributors. Abstract Window Toolkit, 2023. URL https:

//en.wikipedia.org/w/index.php?title=Abstract Window Toolkit&oldid=

1158027564. (Accessed on 2023-06-15).

[174] Wikipedia contributors. JavaFX, 2023. URL https://en.wikipedia.org/w/

index.php?title=JavaFX&oldid=1150518918. (Accessed on 2023-06-15).

[175] Wikipedia contributors. Swing (Java), 2023. URL https://en.wikipedia.org/

w/index.php?title=Swing (Java)&oldid=1148203815. (Accessed on 2023-06-

15).

[176] F. V. Woka. The Difference between Stateless and Stateful Widgets in Flut-

ter. URL https://blog.logrocket.com/difference-between-stateless-

stateful-widgets-flutter/. (Accessed on 2023-06-20).

[177] S. M. Yacoub and H. H. Ammar. Toward Pattern-Oriented Frameworks. URL

https://adtmag.com/articles/2001/07/16/toward-patternoriented-

frameworks.aspx. (Accessed on 07/25/2023).

153

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://en.wikipedia.org/w/index.php?title=Side_effect_(computer_science)&oldid=1142347657
https://en.wikipedia.org/w/index.php?title=Side_effect_(computer_science)&oldid=1142347657
https://en.wikipedia.org/w/index.php?title=Software_design_pattern&oldid=1161260019
https://en.wikipedia.org/w/index.php?title=Software_design_pattern&oldid=1161260019
https://en.wikipedia.org/w/index.php?title=Software_design_pattern&oldid=1161260019
https://en.wikipedia.org/w/index.php?title=Abstract_Window_Toolkit&oldid=1158027564
https://en.wikipedia.org/w/index.php?title=Abstract_Window_Toolkit&oldid=1158027564
https://en.wikipedia.org/w/index.php?title=Abstract_Window_Toolkit&oldid=1158027564
https://en.wikipedia.org/w/index.php?title=JavaFX&oldid=1150518918
https://en.wikipedia.org/w/index.php?title=JavaFX&oldid=1150518918
https://en.wikipedia.org/w/index.php?title=Swing_(Java)&oldid=1148203815
https://en.wikipedia.org/w/index.php?title=Swing_(Java)&oldid=1148203815
https://blog.logrocket.com/difference-between-stateless-stateful-widgets-flutter/
https://blog.logrocket.com/difference-between-stateless-stateful-widgets-flutter/
https://adtmag.com/articles/2001/07/16/toward-patternoriented-frameworks.aspx
https://adtmag.com/articles/2001/07/16/toward-patternoriented-frameworks.aspx

M.Sc. Thesis – A. Akshay; McMaster University – Dept of Computing and Software

[178] E. You. Introduction to Vue.js, 2023. URL https://vuejs.org/guide/

introduction.html#what-is-vue. (Accessed on 06/15/2023).

[179] Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kieżun, and M. D. Ernst. Object and

reference immutability using Java generics. In ESEC/FSE 2007: Proceedings

of the 11th European Software Engineering Conference and the 15th ACM SIG-

SOFT Symposium on the Foundations of Software Engineering, pages 75–84,

Dubrovnik, Croatia, Sept. 2007.

[180] H. Zub. Why concept of immutability is so awfully important for a be-

ginner front-end developer? URL https://itnext.io/why-concept-

of-immutability-is-so-damn-important-for-a-beginner-front-end-

developer-8da85b565c8e. (Accessed on 2023-04-17).

154

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas/
https://vuejs.org/guide/introduction.html#what-is-vue
https://vuejs.org/guide/introduction.html#what-is-vue
https://itnext.io/why-concept-of-immutability-is-so-damn-important-for-a-beginner-front-end-developer-8da85b565c8e
https://itnext.io/why-concept-of-immutability-is-so-damn-important-for-a-beginner-front-end-developer-8da85b565c8e
https://itnext.io/why-concept-of-immutability-is-so-damn-important-for-a-beginner-front-end-developer-8da85b565c8e

	Abstract
	Acknowledgements
	Abbreviations
	Introduction
	Design Background
	Design Patterns
	Data flow and its significance
	Separation of user interface concerns
	Understanding Mutability and Immutability
	Declarative Approach Vs Imperative Approach: Unpacking the Contrast
	Don Norman's Principles and Their Relevance to Immutability and Declarative Approaches

	Graphical User Interface Architectures
	Forms and Control
	Model–View–Controller (MVC)
	Model–View–Presenter (MVP)
	Model–View–ViewModel (MVVM)
	Model–View–Update (MVU)
	Analysis of MVC, MVP, MVVM, and MVU

	Is The Future Declarative?
	Declarative UI: Exploring the Trend and Future Potential
	How Does Declarative Programming Relate to Immutability?

	GUI Toolkits
	Short History
	Imperative Toolkits
	Web Development toolkits
	Functional Toolkits
	Declarative Toolkits
	Common Challenges and Solutions for Immutability Adoption

	A User Interface Toolkit without Mutable Data
	A High-Level Overview of the Toolkit
	Building a SideBySideView
	Building a nested SideBySideView with Toggle, Label, and ButtonView

	Conclusion
	Future Work

	Android Code Examples
	Architectural patterns in action
	 Android XML Layout vs Jetpack Compose

