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ABSTRACT

Several methods have been proposed and tested for calculating lower bounds on the 

objective function of facilities problems. These methods contribute to the efficiency of 

iterative solution methods by allowing the user to terminate the computation process when 

the objective function comes within a predetermined fraction of the optimal solution. Two of 

the existing bounding methods have been presented only for single facility location models 

with Euclidean (straight-line) distances. One of these methods uses the dual of the single 

facility location model to compute a lower bound. This thesis introduces a method for 

generating a feasible dual solution from any primal solution by means of a projection matrix. 

The projection matrix method is applied to single and multi-facility models. The second 

bounding method, which involves the solution of a rectilinear distance model to obtain a lower 

bound, is extended in this thesis to include a generalized distance function and the multi­

facility situation. Computation results for the two new bounding methods are compared with 

several existing bounding methods. These results should aid practitioners in selecting an 

appropriate bounding method for an iterative solution method to a facilties location problem
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CHAPTER 1

INTRODUCTION

1.1 Single and Multi-Facility Location Models

Facilities location problems are concerned with finding an optimal location for an 

object or objects which interact with other objects whose locations are known. The first known 

formulation of a location problem dates back to the early 17th century. Fermat posed the 

problem in terms of finding a fourth point in the plane such that the sum of the distances to 

three fixed points was a minimum. By 1640 Torricelli had solved the three point problem by 

means of a geometric construction. His procedure was to draw circles circumscribing the 

equilateral triangles constructed on the sides of the triangle formed by the three fixed points 

as vertices. The intersection point of the circles provided the location of the fourth point, 

called the Torricelli point. In 1647 Cavalieri showed that the angle formed by joining any of 

the two fixed points to the Torricelli point (as vertex) was 120°. In 1834, F. Heinen proved 

that if the triangle formed with the three fixed points as vertices had one angle greater than 

or equal to 120°, then the location of the fourth point was at the vertex of the greatest angle. 

The first generalization of the Fermat problem appeared as an exercise given by Simpson 

(1750), in which he asked for a minimum weighted sum of distances from three points. Weber 

(1909) used the three point problem to find the best location for a central facility to produce a 

single product for a market point while receiving raw materials from two given distinct 

points. Over the last three hundred years the Fermat problem has also been known as the 

"Steiner Problem" and "Weber Problem". A more detailed history of this problem is provided 

by Kuhn (1967).

1



2

In a Mathematical Appendix to Weber’s book, G. Pick suggested a solution method 

using weights and strings. This was the Varignon Frame, a mechanical analog for 

determining an optimal solution to the single facility straight-line weighted-distance 

problem. Using a board with holes drilled in it to represent the location of existing facilities, a 

string is passed through each hole and a weight corresponding to the transportation cost is 

attached to the lower end of each string. On the top of the board, all the strings are attached 

at a common knot. When the knot is released it will rest at the optimal location (assuming 

the absence of friction).

Each weight or demand in the location model can be used to represent a traffic flow 

or a monetary value for converting the distance travelled between a new and existing facility 

into a cost. The weight must be taken per unit distance per unit time, e.g. the number of trips 

per week from various departments to a central storage area or the daily cost of operating a 

truck per kilometer. An application of the single facilty model which includes detailed 

calculations of trucking costs from a truck terminal to various customers is given by Love, 

Truscott and Walker (1985).

Weiszfeld (1937) introduced an iterative method for solving the continuous space 

single facility weighted Euclidean (straight-line) distance location model. The Weiszfeld 

method remained in relative obscurity for many years until it was re-discovered 

independently by Miehle (1958), Kuhn and Kuenne (1962) and Cooper (1963). About this 

same time the single facility location model with rectilinear distances was formulated by 

Bindschedler and Moore (1961) and Francis (1963). The rectilinear (rectangular) distance 

measure occurs when travel is restricted to routes which are parallel or orthogonal to each 

other. Streets which form a rectangular grid and factory floor plans with aisles along 

rectangular bays may give rise to rectangular or rectilinear distances. If there are one-wav • 

streets in a city or obstacles on a rectilinear floor layout, the actual distances travelled in 
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moving from one point to another can be even greater than the rectangular distance between 

the two points. By having travel distance represented by a distance function rather than 

actual distances in the location model, the distance function can be fitted for the appropriate 

situation using distances ranging from Euclidean to rectangular. The multi-facility 

rectilinear distance problem was introduced by Francis (1964), but the proposed solution 

method was limited to describing a region where the new facilities could be located.

If two or more new facilities are to be located simultaneously among a set of 

existing facilities, then this is an example of a multi-facility problem. Each new facility can 

interact with the existing facilities and the other new facilities. If there is no interaction 

between pairs of new facilities then this is a special case of the multi-facility problem, which 

can be solved as a series of separate single facility models. A more complex multi-facility 

situation occurs when the interactions between new facilities and existing facilities are not 

specified. As an example of this location-allocation situation, consider the problem of locating 

several new warehouses to serve a set of retail outlets where the stores have not been pre­

assigned to a warehouse. The idea is to simultaneously locate the new facilities and to assign 

the outlets to the appropriate warehouse so that the total cost of serving the warehouses is 

minimized.

In the past 25 years there has been considerable effort expended on solving facility 

location problems. If rectilinear distances are used then exact solutions can be determined for 

the single and multi-facility models. Linear programming was applied to solve rectilinear 

distance models by Cabot, Francis and Stary (1970) and Wesolowsky and Love (1971a) but the 

number of constraints and variables increases considerably with the problem size. Linear 

programming is essentially confined to solving location problems when there are linear 

constraints on the sites for new facilities, provided that the constrained region for locating the 

new sites is convex. An example of this would be locating a new machine on a plant floor 
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where access to overhead cranes would require that certain regions be considered as 

unsuitable for the new location.

For single and multi-facility models there exists a corresponding dual problem 

which can be solved independently to obtain identical solutions to the original (primal) model. 

The dual is a maximization problem and the primal and dual problems are equalized at the 

optimal solution for either problem given there is no "duality gap". The dual for the single 

facility Euclidean distance model was formulated by Kuhn and Kuenne (1962) and Bellman 

(1965). A multi-facility dual has been developed by Francis and Cabot (1970), Love and 

Kraemer (1973) and Love (1974). Kuhn and Kuenne refer to the lengthy history of the single 

facility Euclidean distance dual, and Kuhn (1967) provides a more detailed description dating 

back to the 19th century. The special case for three fixed points and unit weights was 

published by Fasbender (1846). By constructing an equilateral triangle with maximum 

height which circumscribed the three fixed points, Fasbender showed that the altitude was 

equal to the minimum distance sum from the Torricelli point to the three fixed points. The 

dual models for the single and multi-facility problems do not contain any of the primal 

variables and can provide alternate computational possibilities in solving for the optimal 

locations.

1.2 User Decisions in Applying a Location Model

When a location model is used, a number of decisions must be made concerning the 

number of new facilities to be located, the choice of a distance function, the solution method 

used to solve for the optimal location or locations, and when to stop the solution procedure if 

an iterative computational technique is used.

If the number of new facilities has not been specified, the location and minimum 

cost for a single new facility can be determined. A multi-facility model can then be used to 
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solve for the optimal locations and minimum cost for two, three, four or more new facilities. 

By combining the fixed cost for new facilities with their respective variable (transportation) 

costs, the total cost for locating one or more new facilities is obtained. The lowest total cost 

will then identify the appropriate number of new facilities that are required.

When calculating the transportation cost, a distance function is used to estimate 

the travel distance between a new and existing facility. Various functions for modelling 

travel distances have been suggested by Love and Morris (1972, 1979), Ward and Wendell 

(1980, 1982), Berens and Korling (1984), Love and Dowling (1985) and Juel and Love (1985). 

The usual procedure is to take a random sample of actual distances travelled between fixed 

points and use these distances to estimate the parameters in the distance function chosen for 

that particular application. The distances between any two points can then be calculated as a 

function of the co-ordinates of the two points and the estimated parameters.

When the number of new facilities to be located, the distance model, and the 

demands or weights needed to convert distance into cost have been specified, then a solution 

method can be considered. A closed form solution to the single facility Euclidean distance 

problem has not been developed, but it is possible to solve the problem using an iterative 

method. Iterative techniques have been proposed by Weiszfeld (1937), Miehle (1958), Kuhn 

and Kuenne (1962), Cooper (1963), Katz (1969), Kuhn (1973), Cordelier and Fiorat (1978), 

Drezner and Wesolowsky (1978b), Ostresh (1978a), Calamai and Conn (1980) and Overton 

(1983). In contrast to this, an exact solution can easily be found for the single facility 

rectilinear model. The location-allocation models require the solution of a large number of 

individual location problems, so that a single computer run can take considerable time.

Iterative procedures which are guaranteed to converge still leave the practitioner 

with the decision as to when the computation process should be stopped. One of the arbitrary 

procedures utilized has been to stop when the reduction in the cost at some iteration reaches a
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”small” value. This could mean that the solution value is proceeding on a long shallow 

descent, and the process could be stopped when the current location is a considerable 

geographical distance from an optimal one. Another technique that has been used involves 

the derivatives (slope) of the cost function at the current solution point. The procedure is 

stopped when the derivatives are ”close" to zero. A method for determining a lower bound on 

the objective function for a stepwise location-allocation problem with Euclidean distances was 

given by Ostresh (1978a). Juel (1978, 1984) and Love and Yeong (1981) provided lower 

bounds to the optimal solution which could be used to terminate the computation procedure 

when the maximum percentage improvement that could be made in the current cost reached a 

preset value. Both of these bounds could be applied to single or multi-facility models with a 

generalized distance function. Drezner (1984) developed a bound for the single-facility 

Euclidean distance model, and Wendell and Peterson (1984) have outlined a dual approach for 

obtaining a lower bound to the single facility model with a generalized distance function.

1.3 The Importance of Bounding Methods for Location Models

The knowledge of how close the current location is to an optimal solution is one 

which is critical in stopping an iterative procedure. There are three reasons why it is advan­

tageous to compute a lower bound on the optimal cost of a location problem; considerable 

computer time savings may be achieved, consistency can be obtained in comparing costs when 

several different problems have to be solved, and user satisfaction can be increased knowing 

that a solution is as close to optimality as desired.

When using an iterative technique to solve a facility location model, a bounding 

method allows the user to stop the procedure when the current solution is within a preset 

percentage error difference of an optimal solution.
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Computation time can be considerable when solving a large location-allocation 

type problem. In some situations an exact solution can be determined. Love (1976) provides 

an efficient solution for the one dimensional location-allocation problem using dynamic 

programming where examples with 150 customers and seven new facilities can be solved in 

six or seven minutes on a Univac 1108. Kuenne and Soland (1972), and Love and Morris 

(1975b) provide solutions to the two dimensional location-allocation problems with 

rectangular distances. However, in many cases a heuristic algorithm is required to provide a 

solution for the location-allocation model, and these do not necessarily provide an optimal 

solution. Some of the heuristics given by Love and Juel (1982) involve a series of allocation 

changes, where each change requires the solution of a single facility location model for each 

new facility in order to determine the optimal locations with respect to a given set of 

allocations. Using rectangular distance measure in the single facility location model allows 

an exact solution to be calculated for each new facility location. Then, the total cost for the 

current set of allocations can be compared with the lowest total cost obtained from all 

previous allocation changes. If a cost reduction occurs, the best allocation and its cost are 

updated. A bounding method would allow the use of distance measures other than 

rectangular in the location model. Each facility location solution from an iterative procedure 

can be calculated within a preset tolerance of an optimal solution, allowing a consistent basis 

of comparison between total costs for two different sets of allocations.

If a single facility model with a generalized distance function is selected, the user 

has a choice of the Juel (1984), Love and Yeong (1981), or Wendell and Peterson (1984) bound 

in terminating an iterative solution technique. For the Euclidean distance model, the choice 

can be expanded to include the Ostresh (1978a) and Drezner (1984) bounding methods. When 

a multi-facility model is chosen, only the Juel, and Love and Yeong bounds are applicable. 

Since the Ostresh bound is a special case of the Love and Yeong bound, only the Juel, Love 
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and Yeong, Drezner, and the Wendell and Peterson bounding methods will be considered in 

this thesis. Both Juel (1984) and Elzinga and Hearn (1983) have proven that the Juel bound 

is always as good or better than the Love and Yeong bound. These have been the only 

theoretical comparisons that have been published to date. The dual lower bound for the single 

facility Euclidean distance model has been compared with the Juel, and the Love and Yeong 

bounds by Wendell and Peterson (1984) but only four small test problems with special 

structures were given. In order to use the dual as a lower bound, a feasible dual solution must 

be obtained from the current primal solution and a method for obtaining this dual feasible 

solution has not been published for the multi-facility case. No comparison has been made 

between the Drezner bound and the other three bounds, and the single facility Euclidean 

distance Drezner bound has not been extended to encompass multi-facility models or 

generalized distances. Some preliminary work by the author has indicated that the Love and 

Yeong bound may, in most cases, provide a better bound than the dual. This is the rationale 

for proceeding with a comprehensive comparison of the Love and Yeong bound and the dual, 

since the Juel bound is always as good or better than the Love and Yeong bound.

1.4 Objectives of the Thesis

The purposes of this thesis are as follows.

1. Given a single or multi-facility location model with a generalized distance 

function and the current location or locations for the new facilities as deter­

mined by some iterative procedure, develop a mathematical method to 

calculate a feasible solution to the dual so that the value of the dual objective 

function can be used as a lower bound to the optimal solution.
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2. Write computer programs to implement this technique and provide 

computational results for the single and multi-facility cases in order to 

provide a comprehensive comparison of the dual and Love-Yeong bounds.

3. Extend the Drezner bound for the single facility Euclidean distances model to 

include a generalized distance function and develop a bound for the multi­

facility model with a generalized distance function.

4. Provide computational and, where possible, theoretical comparisons of the 

four bounding methods for single and multi-facility location models.



CHAPTER 2

SIGNIFICANT PRIOR RESEARCH

In this chapter, mathematical models for the single facility location problem will be 

discussed along with properties and solution methods for these models. The dual problem will 

be given for the single facility Euclidean distance model. Four bounding methods will then be 

described that can be used with single facility location methods. Mathematical models for the 

multi-facility location problem will be introduced, and properties and solution methods dis­

cussed. The duals for the multi-facility models will be presented and the two bounding 

methods that are available for use with multi-facility iterative solution techniques will be 

described.

2.1 Single Facility Location Models

The single facility ℓp distance location problem is given as:

10

(2.1)

where n is the number of existing facilities (or "demand points"),

wj converts the distance between the new facility and existing facility j into cost,

x׳ = (x1,x2) is the location of the new facility on the plane,

aj׳ = (aj1,aj2) is the location of existing facility j,

ℓp(x,aj) is the distance between the new facility and existing facility j where

and the prime denotes transpose.

We will use the notation D(x,aj) to represent a generalized distance function, for which ℓp(x,aj) 

is a special case and d2(x,aj) or ℓ2(x,aj) will be used to denote Euclidean distances. This
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chapter will focus on models where the new and existing facilities are treated as points in the 

plane, demands and costs are known, and transportation costs are assumed to be proportional 

to distance travelled.

If p = 1, the rectilinear distance problem is given by:

(2.2)

Since W1(x) is separable, it can be written as the sum of two functions, W11(x1) and W12(x2) 

where 

for k = 1,2. Minimizing W1(x) is equivalent to minimizing W11(x1) and W12(x2) separately as:

(2.3)

Each problem involving 

can be easily solved, as shown by Francis (1963), to yield an exact optimal solution

x*׳ = (x1*,x2*). For p > 1, no such exact solution method for (2.1) has been found to date.

For p = 2, the Euclidean distance model becomes

(2.4)

As mentioned previously in the introduction, Weiszfeld (1937) proposed an iterative solution 

to problem (2.4) and several others rediscovered it independently in the late 1950's and early 

 s. Weiszfeld (1937), Katz (1969), Kuhn (1963), Kuhn and Keunne (1962), Ostresh׳1960

(1978b) and others have discussed the convergence properties of the iterative method. While 

other iterative procedures exist for solving problem (2.4), the Weiszfeld technique is so well- 

known that a generalized version of it is used to provide solutions for all test problems used in
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this thesis. The iterative technique was developed by equating the two partial derivatives of 

W2(x) in (2.4) to zero, and isolating an x! or x2 term on one side of each equation to obtain an 

expression that could be used in a recursive manner. At iteration k, a point xk' = (x!k, x2k) is 

generated by

n w a., /n w
Xk= y  y —1— 

i1־ dA-1׳a?
for t = 1,2.

(2.5)

This procedure assumes that the optimal location for the new facility does not coincide with 

an existing location aj, j = Ι,.,.,η. It has been shown by Kuhn (1962) that each existing facility 

location can be checked to determine if it is the optimal location for the new facility. Kuhn

proved that the rth existing location (ar!, ar2) is optimal if and only if

Σ 

j=1 
j*r

w.(a , -a.,)J rl jl

d2(ar,ף)

n w.(a _ -a.J j r2 jZ 

j-1 d2(ar ·a? 

j*r

(2.6)

If none of the existing facility locations satisfies condition (2.6), then the iterative procedure 

can be used to determine the optimal location of the new facility.

An upper and lower bound for the Euclidean distance optimal solution was given by 

Pritsker and Ghare (1970, 1972), who discovered a relationship between the rectilinear and 

Euclidean distance solution values. If W2(xg*), Wh(x!r*) and W!2(x2r*) represent the objec­

tive function values for the optimal Euclidean distance and rectangular distance solution 

values, then

W (X j 2 W (x j 2 ((W (x‘ ))2 + (W (X2(( ־I172 . (2.7)
z it z s 11 lit 1z zK

When the optimal location for a new facility occurs at an existing facility location, discon­

tinuities occur in the derivatives of Wp(x), as noted by Love (1967, 1968). For 1 < p < 2, Love 

and Morris (1972) show that the fp distance function has convexity and derivative 

discontinuity properties similar to the Euclidean distance function.
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In order to solve the problem of discontinuities in the derivatives of Wp(x) in (2.1), a 

uniformly convergent fitted function with continuous derivatives was developed by Love 

(1969). A hyperbolic approximation was suggested by Wesolowsky and Love (1972) and 

Eyster, White and Wierville (1973). The hyperbolic approximation to problem (2.1), 

formulated by Eyster, White and Wierville for p = 2, was adapted by Love and Morris (1975a) 

by replacing the fp distance function with

This difference was given by Love and Yeong (1981) using a concept and property developed 

by Love (1969) in establishing the uniform convergence of his fitted function. Wph(x) has the 

properties that it is strictly convex and all orders of derivatives are continuous at all points. 

The practitioner can come very close to minimizing Wp(x) by choosing a small value for ε 

when minimizing Wph(x).

(2.9)

The approximation function Wph(x) always gives values greater than the true objective 

function Wp(x); the maximum difference is given by

(2.8)

where x and a are N-dimensional vectors, and show that Lpj is differentiable and strictly 

convex. Using the hyperbolic approximation suggested by Verdini and Morris (1979), 

problem (2.1) can be written as

where a and b are two points in N־dimension space. Verdini (1976) has shown that the 

hyperbolic approximation using ℓ ph is not appropriate when using the Weiszfeld procedure for 

the general situation of p 1. Morris and Verdini (1979) replace the ℓp distance function with
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where

(2.10)

Under certain conditions an iterative procedure is not required to solve for the 

optimal solution. The optimality condition (2.6) for a fixed point in the single facility 

Euclidean distance model has been extended to include generalized distances which include 

fp distances as a special case. Juel and Love (1981a) have proved that the rth existing facility 

ar = (ar1,ar2) is optimal if and only if

In the limiting case as p - 1+ , the rectilinear distance model is minimized at the point ar if 

and only if

Witzgall (1965) showed that if one weight, wt, was greater than or equal to the sum of the 

remaining weights, then x* = at was the optimal location. The Witzgall condition does not 

provide as strong a result as the condition given by (2.10). Juel and Love (1982) have provided 

conditions where an optimal location can be constructed.

In situations which do not fit the previously mentioned special cases, the practi­

tioner is faced with using an iterative procedure to determine the optimal solution. The 

Weiszfeld technique given by (2.5) can be extended to include the hyperbolic approximation 

(2.8). By setting the partial derivatives equal to zero and isolating x1 and x2 on one side, 

Verdini (1976) and Morris and Verdini (1979) showed that a recursive relationship can be 

obtained for the solution at the kth iteration as xk' = (x1k, x2k) with
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where

and

(2.11)

Setting ε to a very small number such as l.0x10-6 provides protection against the possibility 

of division by zero in a computer program when the optimal location converges quite closely to 

an existing facility. A convergence proof is given by Verdini (1976) for p= 1 and p = 2 and in 

general for 1 ≤ p ≤ 2 by Morris (1981).

The dual formulation of the single facility Euclidean distance model (2.4) was given 

by Kuhn (1962) and Witzgall (1965) and appears implicitly in a dynamic programming proce­

dure by Bellman (1965). Kuhn (1967) provides a history of the dual as well as a geometric and 

algebraic derivation of it. The dual for the single facility Euclidean distance problem (2,4) is

(2.12)

where

Uj' = (uj, vj) are dual variables.

Francis and Cabot (1972) have described properties for the single and multi-facility Euclidean 

distance duals. One of the properties of the single facility Euclidean distance dual is that the 

dual variables at optimality represent the direction vectors from the existing facilities to the 

optimal location, providing the optimal solution is not at an existing facility location. When 

the optimal location coincides with an existing facility, the dual variables are zero. This 

property can be expressed as
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and

(2.13)

(2.14)

where Ω is the convex hull of the aj,

VWp(x) is the gradient of Wp(x), and xk is the value of x at the kth iteration of the solution 

procedure. The bound given by Juel (1984) is
(2.15)

Bellman (1965) proposed a dual similar to (2.12) but it included the equalities |Uj| = wj for 

j = l,...,n, since the possible discontinuities in the derivatives of the primal problem were 

ignored. The single facility dual containing a mixture of ℓ1 and ℓ2 norms was given by 

Planchart and Hurter (1975), where the dual was solved by means of a decomposition method.

Given an optimal dual solution, the optimal primal solution can be calculated using 

x* = aj + kjUj* where kj  ≥ 0. If all |Uj*| = wj, then using any two of the aj and the corre- 

spending Uj*, four equations in four unknowns can be solved to obtain x*. If |Ut*| < wt, then 

x* = at.

2.2 Bounding Methods for Single Facility Location Models

The bound given by Love and Yeong (1981) for the single facility Euclidean 

distance model (2.4) is

where the prime denotes transpose. These two methods are applicable to both single and 

multi-facility location problems and can accommodate generalized ℓp distances. Juel (1984)
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and Elzinga and Hearn (1983) have proved that the Juel bound (2.15) must always be at least 

as good as the bound (2.14) given by Love and Yeong.

A third bound is given by Drezner (1984) for the single facility case with Euclidean 

distances. Drezner showed that

(2.16)

At each iteration of a solution process this bound is evaluated by solving the following 

rectilinear distance problem:

where the ”created" weights wj׳ and wj״ are defined as

and

A fourth bounding method proposed by Wendell and Peterson (1984) utilized the

dual of the location problem. The dual of (2.4) is given by

(2.17a)

(2.17b)

(2.17c)

where the Uj are vectors of dual variables. To evaluate the dual at each iteration of the 

solution procedure, a dual feasible solution must be generated using the current primal 

solution. When the dual feasible solution has been calculated, the corresponding dual 

objective function can then be used as a lower bound for the optimal primal solution. Wendell 

and Peterson construct a vector from the current primal solution which is then projected into
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the subspace (2.17b) where

and then the resulting projected vector is shrunk to satisfy the norm constraints (2.17c). 

Unfortunately no description was given of the projection method used and only four small 

examples were included in the paper comparing the Love and Yeong, Juel, and dual bounds.

2.3 Multi-Facility Location Models

The first multi-facility location model was the rectangular distance model 

developed by Francis (1964) to locate several new facilities where each new facility could 

interact with a group of existing facilities as well as the remaining new facilities. The 

transportation costs or interactions between two new facilities are assumed to be proportional 

to the distance between them. The multi-facility f p distance model is given by 

(2.18)

where

m is the number of new facilities,

n is the number of existing facilities,

w1ij is the nonnegative parameter which converts the distance between new 

facility i and existing facility j into cost,

w2ir is the nonnegative parameter which converts the distance between the ith 

and rth new facilities into cost (i ≠ r),

x1' = (xi1. xi2) are the location coordinates of new facility i,

aj׳ = (aj1,aj2) are the location coordinates of existing facility j, and p is the ℓp 

distance parameter.
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Substituting p = 1 yields the rectilinear distance model:

(2.19)

This rectilinear distance model has convexity and separability properties similar to the single 

facility rectangular distance model (2.2), and can be written as

(2.20)

Exact solutions to the multi-facility rectilinear distance problem were obtained by Cabot, 

Francis and Stary (1970) and Wesolowsky and Love (1971a) using linear programming. The 

Wesolowsky and Love linear programming formulation introduces an equality constraint and 

two new variables for every absolute value term in (2.19), which makes its use impractical for 

large multi-facility problems. The linear programming approach does allow the introduction 

of additional constraints when restrictions on the locations of new facilities are required. 

There are a great number of discontinuities in the partial derivatives of WM1(x); this makes 

the use of gradient search techniques infeasible. Discontinuities occur when a new facility 

coincides with an existing location or with another new facility as reported by Love (1967, 

1968, 1969). Several methods are available to solve large scale problems. Wesolowsky and 

Love (1972) used a hyperbolic approximation to the terms involving rectangular distances. 

Approximating WM1(x) by a non-linear convex function with continuous partial derivatives 

allowed an iterative gradient descent method to be used to determine an optimal solution to 

the approximation function. An algorithm was proposed by Juel and Love (1976) which uses a
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modified edge descent procedure and can solve large problems in short computational times (1 

second for m = 70 and n = 350 on a Univac 1110).

The Euclidean distance multi-facility problem is

(2.21)

Various approaches have been employed to solve this problem. Vergin and Rogers (1967) 

used a heuristic which located all the new facilities in a step-wise manner, and then took each 

new facility in turn and located it optimally, considering all other facilities as being fixed. 

This procedure was continued until no further improvement could be made to the objective 

function value. A three-dimensional formulation of (2.21) was solved by Love (1969) using a 

convex programming algorithm after first using the Method of Fitted Functions to overcome 

the discontinuities in the partial derivatives of the objective function.

Francis and Cabot (1972) described the dual for the unconstrained Euclidean 

distance problem but no solution method was given. Although the primal problem (2.21) has 

discontinuities in the partial derivatives, the dual does not have these differentiability 

problems. Love and Kraemer (1973) used a nonlinear decomposition technique to solve the 

multi-facility Euclidean dual with linear constraints. For the unconstrained rectangular 

distances problem, the dual was given by Cabot, Francis and Stary (1970) and Wesolowsky 

and Love (1971a) provided duals for the linearly constrained and unconstrained cases. The 

Euclidean distance multi-facility dual for the primal problem (2.21) has dual variables

The multi-facility dual problem is expressed as
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(2.22)

The inequalities arise in the situation where xl = aj, in which case |U1ij| = 0 (otherwise 

|U1ij| = w1ij), or when xi = xr, in which case |U2irl = 0 (otherwise |U2irl = w2ir). One of the 

properties given by Francis and Cabot (1972) for the multi-facility Euclidean distance dual 

provides a relationship between the dual and primal variables at optimality. The U*1ij dual 

variables satisfy the condition that the line through the existing facility aj which is parallel to 

U* 1ij passes through the optimal new facility location x*i, providing that the new facility does 

not coincide with the existing facility aj. Similarly, if new facilities x*i and x*r do not 

coincide, then the line through new facility x*r parallel to U*2ir passes through x*i. If a new 

facility coincides with an existing facility or if two new facilities coincide, the corresponding 

dual variables are zero and vice versa. This property can be expressed as

(2.23)

otherwise

The multi-facility Euclidean distances optimal solution can also be bounded by con­

dition (2.7), as shown by Pritsker and Ghare (1970, 1972). Sufficient conditions for optimal
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facility locations to coincide for some multi-facility problems are given by Juel and Love 

(1980). In some cases, by checking the interfacility weights to determine if they satisfy a few 

simple inequalities, it is possible to solve a multi-facility problem. Also, a multi-facility 

generalization of Witzgall's majority rule was given by Juel and Love, whereby if

then x*1 = a1 may be assumed without loss of generality.

To solve the ℓp distance multi-facility problem, an approximating function

WMph(x) can be used to overcome the problems of differentiability of (2.18), as proposed by 

Wesolowsky and Love (1972) and Eyster, White and Wierville (1973). The multi-facility 

hyperbolic approximation version of (2.8) as given by Morris and Verdini (1979) is:

(2.24)

where ε > 0. They show that the function WMph(x) is strictly convex and is differentiable to 

any order everywhere. It can easily be shown that WMph(x) is uniformly convergent to 

WMp(x) as ε -> 0, since

as given by Love and Yeong (1981). Morris and Verdini (1979) showed that the iterative

sequence given by (2.11) generalizes to the multi-facility case for r = 1.... m and s= 1,2 as:
(2.25)

where



23

and

Ostresh (1978b) has proved that for p = 2 this generalized Weiszfeld sequence is strictly 

decreasing and Morris (1981) has given a convergence proof for 1 ≤ p ≤ 2.

Dual formulations for the unconstrained and linearly constrained ℓp distance 

location model and the hyperbolic approximating function model were provided by Love 

(1974). The dual for the multi-facility location model was extended by Juel and Love (1981) to 

include generalized distances and linear constraints. For the fp distance primal (2.18), the 

corresponding dual, as given by Love (1974), is

(2.26)

Love (1974) also showed that the hyperbolic approximating function



24

(2.27)

(2.28)

has a corresponding dual

subject to

where Z׳ = (Z!!!,... Z!ln..... Z!mn) is a vector of additional variables and || ||q is the fq norm.

Love (1974) has shown that

so that the dual of the limiting case when ε -» 0 is given by
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2.4 Bounding Methods for Multi-Facility Location Models

Two of the bounding methods for single facility location models have been applied 

to multi-facility fp distance location models. The extension of the Love-Yeong bound (2.14) 

and Juel bound (2.15) to include the multi-facility case (2.18) was given by Love and Yeong 

(1981)as
k = k , k, (2.30jWM (χ♦) > WM (xk) - 0 (xk) VWM (xk) , 

P P P
and 

u u u min . (2.31]
WM (x♦) > WM (xk) - VWM (xk)׳xk + -{VWM (xk)׳y} , 

P p p y€ß P

where

Ω = {s = (s,,...,s ) |s. € Ω , i = 1,..., m}, Ω is the convex hull of the a, ί = 1,.... n 1 1 ’ ’ m 1 i ’ ' j J ’ ’

o (x) = max {d(x, y) | y € Ω } 
and xk׳ = (x! 1k, x!2k..... xm!k, xm2k) is a point generated by a computational procedure at the

kth iteration. When an approximation function WM^x), as in (2.24), is utilized then the 

bounds can be calculated using 
_ / m n m-1 m

WM (x♦) > WM (xk) - σ |VWM (xk)|- 21?ρευ2( Y Y w + Y Y w2ir
i = 1 j =1 i= 1 r = i + 1

and

WM (x*)> WM u(xk)+ m-{VWM_u(xk)׳[y-xk]} 
p ph y^ Ω Ρ*1

(2.32)

-2MΣΣ״J+Σ1Σ,1״4 ,2'33)
i = lj = l i = l r = i + l

No generalization of the single facility Drezner bound (2.16) to include an fp distance function

and/or the multi-facility problem has been published to date. Also, the dual has not been used 

to bound the multi-facility primal since a method for obtaining a feasible dual solution from 

the current primal solution is required.



CHAPTERS

A COMPARISON OF BOUNDING METHODS FOR SINGLE FACILITY

LOCATION MODELS

In this chapter, the dual and Drezner bounds will be developed for the single 

facility location model using fp distances. A projection matrix technique will be used to 

generate dual feasible solutions from a given primal solution, so that the dual can be used as a 

lower bound to the primal problem. Results will be given for a computational comparison of 

the Juel, Love and Yeong, Drezner and dual bounds, followed by conclusions regarding the 

use of these bounding methods.

3.1 A Lower Bound Obtained from the Dual

Recall that the single facility location problem with €p distances is given by 
n
Σ״ , x (3.1)w. f (x, a.)

J p J 
j=1

and the corresponding dual by
n

maximize -V a.'U. (3.2a)
— j J 
j1־

n
subject to V U. = 0 (32b)

j=1 J

|U.| s w. (3-2c)
1 j'q j

for j = 1,..., n and l/p + 1/q = 1.

A lower bound can be determined by obtaining a feasible solution to the dual in the 

following manner. Given an iterative computation procedure and the current solution 

xk׳ = (x!k,x9k) at iteration k, the direction vectors Uj are estimated using 

26
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Ujk׳ = (ujk, Vjk) = (x!k - aji, x2k-aj2) for j = Condition (2.13), which gives the relation­

ships between the dual and primal variables at optimality for the single facility Euclidean 

distance model, provided the motivation for this method of obtaining an initial estimate of the 

dual variables. The non-normalized Ujk direction vectors are used to obtain vector Uk׳ = 

(u!k,..., unk, v!k,..., vnk). This initial dual solution need not satisfy constraints (3.2b) and 

(3.2c). The Ujk vectors are adjusted so that constraints (3.2b) and (3.2c) are satisfied, thus 

generating a dual feasible solution at the kth iteration. Each Ujk is adjusted so that the 

equality holds true in (3.2c), using Cj = Wj/|Ujk|q to obtain the adjusted vectors Ujk = CjUjk, for 

j = 1,2,...,n. Although the norm constraint is satisfied, the adjusted Ujk vectors may not satisfy 

the linear equality constraints. In order to satisfy (3.2b), the vector Uk׳ = (c! u!k,..., cn vnk) is 

projected into the intersection of the two planes determined by (3.2b), using the projection 

matrix P as given by Rosen (1960).

P is defined as P = I - Ag׳(Ag Ag1־)׳ Ag, where Ag is the matrix whose rows are the 

coefficients of the variables in the dual using constraints (3.2b). The constraints in (3.2b) can

be expressed as

A U = 0 g
where Ag is a 2 X 2n matrix given by

1 1 .... 1 0 0 .... 0
A = 

g 0 0 .... 0 1 1 .... 1
In general, P will be of the form

[ R O I

(3.3)

where submatrix R is an nXn matrix with elements

(n—l)/n i=j
n i * j/ט — 1 i, j = l,2,...,n.

The derivation of this result can be found in Appendix A.
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The projected vector Uk = P Uk now satisfies (3.2b). However, some of the Ujk 

vectors may no longer satisfy (3.2c), or all of the Ujk may satisfy the strict inequality 

|Ujk|q < Wj, for j = Ι,.,.,η. A final adjustment can be made to Uk so that at least one equality 

condition in (3.2c) holds true. Calculate c. = w. / I Uk| and c = m.m {c^}; cUk will then provide 

a feasible solution to the dual at iteration k. For the case where all |Ujk| q< Wj, for j= l,...,n, 

Uk will provide a feasible solution but cUk provides a better objective function value since 

each Cj > 1, for j = Ι,.,.,η, and hence c > 1. A lower bound to the primal objective function can 

be calculated using the dual objective function value

- Y c a.׳ Uk . 
j J 

j=1
It would require less computation time to use the projection matrix on the 2n 

components of Uk to obtain Uk = PUk and then adjust the resulting vector by a constant 

c= mm{w /|Uk| }.
j J Jl(1

However, computational experience has shown that the solutions obtained are extremely 

poor. This occurs because any adjustment must be applied simultaneously to each of the 2n 

components of PUk so that constraint (3.2b) is still satisfied. Furthermore, the adjustment 

made is based on the worst violation of (3.2c).

3.2 The Drezner Bound for Single Facility f n Distance Problems

Drezner (1984) has shown that for Euclidean distance problems
n

W2<x’’ 2 ζζ Σ + lx2־aj2l|aj2-xx!l.
1 - j =1

where xk׳ = (x!k, x2k). At each iteration of a solution process this bound is evaluated by /

solving a rectilinear distance problem. The Drezner bound is obtained by solving the

following problem, given by (2.16):
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η η

ΤΣ^Χ-־π1 + ΐΣ״Λ-^ι
1 j=l י j =1

where the "created" weights w/ and wf are defined as

w ׳ = [w ZdJa., xk)l · I a. - xj | ,

and

w״ = [w /d (a xk)] |a -xk| forj =1......n. 
J J * J J * *

The single facility Drezner bound can be generalized to fp distances in the

following manner, using the Holder inequality which is given by:

N z N υΡ z N . 17«I
1Σ·׳Ι«ίΙί(Σ1'»ίΙρ) (ΣΙ^Ι*·) 

i = l i = l i=l

where ΦνΙ and {cn} are real sequences, p>l and 1/p + 1/q = 1. Let b! = |xi-aj!| and 

c! = |aji-Xik| for i = 1,2 and j = l,...,n. Then
2
Σ lxi־aiillaji-\ I 25 {0χ1-3ηΙΡΉχ2~3ί2ΙΡ]1/ΡΗΰΗΒ-^ + |a -xk|q]Vq} . 
i = l ·

This can be written as

ilXl-aillP + lx2־ai2^1/P- 

A JA X* J “

IXj-a^Ha^-xJl + lxj-a ||aj־-x‘| 

ΙΙ^-χ^ + ^-χ^Ι1׳’

or
η η n

W (X) = V w e (x,a )> y w^-a.^ y w.״|x2-aj2| 
j=1 j =1 j=1

where

wj' =wjlajl־xll + laj2־x2l<’]1/q

and

”j' = Wj‘aj2—X2‘ + laj2 ־נ t^l’11Λ, '

Since 
η n

Wp(x)2 Y w.’|x1-ajl|+ Y w.־|x2-aj2| , 
j=l j־l

then
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■ η η
W(x*) = minW(x)> Υ w.׳|x -a I + V w.״|x -a._| .

P x P Χ.Λ״ J 1 J I1 J 2 j2' '
j =1 

or 

η n
W (x♦) > y w.׳|x -a. I + m1n y w״|x -a.J .

1 = j 1־1 י j

This result can be used to generate the rectangular bound for the single facility lp 

distance model. At each iteration of the solution process, a single facility rectilinear problem 
η n

minimize R(x) = m1n y w.׳|x -a. | + mln w.’|x — a. J 
X — J 1 1 j 11 X — J 2 J 21
1 j=l j1־

is constructed, using the fixed facilities aj, weights Wj and current solution xk to calculate Wj׳ 

and Wj״ for j = Ι,.,.,η. The two optimization problems can be solved independently and an 

optimal solution xr* can be used to calculate R(xr♦), which is the lower bound on Wp(x*) at 

the kill iteration.

While it may appear that adding another optimization problem and solving it has 

increased the work required to find a lower bound, this procedure has several advantages. 

The rectilinear problem is separable and each part can be solved rapidly. Also, it is not 

necessary to find the hull points which are used in both the Love-Yeong and Juel bounds.

In order to test the effectiveness and efficiency of the four bounding methods, 

several single facility test problems were randomly generated. Comparisons and observations 

are presented in section 3.3 for these test runs.

3.3 Bound Comparisons for the Single Facility Distance Model

Four programs were written to incorporate the generalized Weiszfeld procedure 

with each of the lower bound methods. At each iteration of the solution procedure the bound 

was calculated and tested against the current solution. By entering a proportionate error 

difference e, a stopping rule calculated as
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I (bound value - objective function value) | /(objective function value) S e 

was used to terminate the process. In all sample runs e = 0.01, and the initial starting 

solution used in the Weiszfeld procedure was (0,0). Samples of size n = 6, 10, 15, 20 existing 

facilities locations were randomly generated. In the first set of runs a unit value was assigned 

to the Wj weights, and fp distances were calculated for p = 2,1.8,1.6,1.4,1.2.

For a given value of n and p, a series of test runs was made using each of the four 

programs. For each bounding method the iterations were terminated using the stopping rule 

with e = 0.01. The number of iterations required, the objective function value, the value of 

the bound, and the CPU compilation and execution times were recorded in each case. The 

bound values are displayed in Table 3.1, where Bl, B2, B3, B4 refer to the Love-Yeong, Juel, 

Drezner and dual bounds, respectively. The average computation times for various sample 

runs are in Tables 3.3 and 3.4.

From Table 3.1, it is quite evident that for p = 2 the Drezner bound provided 

superior results. However, it is also quite evident that for p<2 the Drezner and dual bounds 

may not converge. For example, with n = 6 and p = 1.6 the Drezner bound did not reach the 

1% error difference in 25 iterations. The closest it came was at iteration 9 when the error 

difference was 1.06%. At successive iterations after the ninth, the percentage error difference 

increased in value. To further study this phenomenon, a second set of test samples was 

created using weights randomly selected from the range [1,10]. For each n and p combination 

a series of four runs was made and the data were recorded. Then a new set of weights was 

generated for the next n and p combination. The results for these test runs are shown in Table 

3.2.

The second series of test runs provided data that supported the earlier observa­

tions. The instability of the Drezner bound makes its use impractical except for models with p 

equal to two. The apparent convergence of the Drezner bound for p=1.8 was due to the 
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magnitude of the error difference value (e = 0.01). If a smaller value had been used for e, say 

e = 0.00001, the Drezner bound would diverge before that error difference value could be 

attained. However, the test results show that for the Euclidean distance model the Drezner 

bound was always superior to the Juel bound. Also, the Drezner bound is computationally 

more efficient than the other three bounds. Average compilation and execution times for 

Euclidean distances are shown in Tables 3.3 and 3.4 for a CDC Cyber 170/730.
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n 6 10 15 20

P

No. 
of 
Iter

Obj 
Funct

Bound
No.
of Obj
Iter Funct

Bound
No. 
of 
Iter

Obj 
Funct

Bound
No. 
of 
Iter

Obj 
Funct

Bound

2 Bl 12 117.72 116.81 6 187.34 185.53 7 290.37 288.60 8 389.25 386.03

B2 7 117.74 116.86 6 187.34 186.11 7 290.37 288.83 8 389.25 386.64

B3 4 117.83 117.01 4 187.39 186.40 4 290.55 288.54 4 389.97 386.07

B4 6 117.76 116.93 6 187.34 186.34 6 290.38 287.96 7 389.27 385.50
1

1.8 Bl 11 120.94 119.91 7 193.48 191.59 8 297.86 295.31 9 399.11 395.58

B2 5 120.97 119.80 7 193.48 192.09 8 297.86 295.55 9 399.11 396 11

B3 4 121.00 120.02 4 193.59 191.80 6 297.92 295.62 6 399.32 395.68

B4 6 120.96 119.95 7 193.48 191.74 11 297.85 295.11 25· 399.10 393.18

1.6 Bl 7 125.36 124.35 9 201.69 200.03־ 10 308.02 305.27 11 412.40 409.10

B2 4 125.38 124.35 8 201.69 199.73 10 308.02 305.49 11 412.40 409.52

B3 25· 125.36 124.03 9 201.69 199.68 25· 308.01 304.36 25· 412.39 407.53

B4 25· 125.36 123.87 25· 201.69 198.14 25· 308.01 300.23 25· 412.39 397.89

1.4 Bl 19 131.64 130.41 12 213.10 211.29 13 322.26 319.61 16 431.13 427.22

B2 18 131.64 130.34 11 213.10 211.36 12 322.26 319.05 16 431.13 427.87

B3 25· 131.64 127.72 25· 213.09 207.90 25· 322.25 311.91 25· 431.12 419.71

B4 25· 131.64 127.21 25· 213.09 204.42 25· 322.25 303.07 25· 431.12 407.17

1.2 Bl 25· 141.01 139.50 20 229.78 227.74 13 343.08 340.89 25 459.07 454.99

B2 25 141.01 139.61 18 229.79 227.50 13 343.08 341.11 24 459.08 455.00

B3 25· 141.01 130.54 25* 229.77 216.18 25· 343.08 322.47 25· 459.07 431.07

B4 25· 141.01 128.30 25· 229.77 208.34 25· 343.08 306.76 25* 459.07 414.89

*did not converge to within 1% error difference in 25 iterations.

Table 3.1: Lower Bound Data for Single Facility Samples, Wj = 1
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n 6 10 15 20

No. No. No. No.
P of Obj Bound of Obj Bound of Obj Bound of Obj Bound

Iter Funct Iter Funct Iter Funct Iter Funct

2 Bl 18 728.52 721.48 9 1095.51 1086.70 9 1591.44 1579.82 10 2089.37 2071.77

B2 17 728.55 721.63 8 1095.57 1084.87 8 1591.51 1581.93 9 2089.47 2074.56

B3 6 730.19 722.95 6 1096.05 1086.91 7 1591.73 1582.03 6 2089.06 2078.33

B4 25· 728.44 718.42 12 1095.47 1087.42 11 1591.41 1579.65 12 2089.31 2069.41

1.8 Bl 21 745.67 738.86 10 1128.55 1117.71 10 1632.40 1616.50 12 2146.56 2130.53

B2 20 745.70 739.18 10 1128.55 1119.78 9 1632.50 1620.85 10 2146.79 2128.17

B3 10 747.01 739.60 13 1128.48 1117.31 8 1632.76 1622.70 7 2149.51 2133.78

B4 25· 745.61 698.18 25· 1128.46 1073.78 10 1632.40 1619.47 12 2146.56 2130.01

1.6 Bl 25 768.80 761.66 12 1171.53 1160.11 13 1687.84 1674.63 14 2223.67 2203.53

B2 24 768.84 762.15 12 1171.53 1162.09 10 1688.21 1671.76 12 2223.93 2203.68

B3 25· 768.80 757.98 25· 1171.40 1137.90 10 1688.21 1672.04 10 2224.91 2208.01

B4 25* 768.80 695.85 25· 1171.40 1043.85 25· 1687.79 1664.51 25* 2223.58 2196.76

1.4 Bl 25* 803.25 769.26 16 1228.62 1216.82 17 1766.00 1749.97 19 2331.54 2311.34

B2 25· 803.25 774.02 15 1228.70 1216.64 13 1766.50 1750.05 17 2331.72 2313.36

B3 25* 803.25 773.99 25· 1228.43 1151.36 25* 1765.90 1716.65 25* 2331.49 2278.06

B4 25· 803.25 657.98 25· 1228.43 1028.75 25* 1765.90 1702.23 25· 2331.49 2273.57

1.2 Bl 24 848.14 842.44 25 1308.03 1295.75 25* 1880.68 1855.33 24 2490.78 2468.99

B2 24 848.14 843.12 25 1308.03 1295.81 19 1881.73 1864.06 23 2490.81 2467.26

B3 25· 848.14 781.65 25· 1308.03 1187.83 25* 1180.68 1734.62 25· 2490.78 2357.87

B4 25♦ 848.14 718.70 25· 1308.03 1140.52 25* 1880.68 1710.66 25· 2490.78 2353.82

*did not converge to within 1% error difference in 25 iterations.

Table 3.2: Lower Bound Data for Single Facility Samples, wj € [1,10]
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Table 3.3: Average Compilation Time (secs) for Program and Bound, p = 2

Love-Yeong Juel Drezner

1.961 2.028 1.992

Table 3.4: Average Execution Time (secs) for Solution and Bound, p = 2

n 6 10 15 20

Love-Yeong 0.545 0.699 0.587 0.524
Juel 0.542 0.487 0.628 0.544
Drezner 0.358 0.421 0.415 0.414

From Table 3.1 where all weights have a unit value, the Juel and Love-Yeong 

bounds provided better bound values than the dual as p decreased in value when n was fixed. 

Also, for p fixed, the Juel and Love-Yeong bounds provided better bound values than the dual 

as n increased, except for p = 2. In Table 3.2 where the weights are from the interval [1,10], 

the Juel and Love-Yeong bounding methods provided better bound values than the dual for 19 

out of 20 n and p combinations.

In the following section, it will be proven that the Drezner bound is superior to the

Juel bound for the single facility Euclidean distance model.
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3.4 Comparison of the Drezner and Juel Bounds for Euclidean Distances

The bound values in Tables 3.1 and 3.2 confirm the theoretical results given by 

Juel (1984) and Elizinga and Hearn (1984) which establish that the Juel bound gives as good 

or better results than the Love and Yeong bound. A comparison of the Drezner and Juel 

bounds will now be made for the Euclidean distances location model.

The Juel bound at iteration k is given by

J(xk) = W (xk) - VW.(xk)׳ xk + ““ (VW (xk)'y] . 
z z y < 46 z

For Euclidean distances,

W״(xk) = w.d_(xk,a.), where d_(xk,a.) = 2 — j 2 j 2 J
j =1

and

/ k \2 1 / k \2+(X2-aj2)
1/2

(η n
Y w (xk-a )/d (xk,a ), V w (xk-a )/d (xk,a )

J A JA Z J J Z J Z & J
j=1 j=1

Substituting in the Juel bound gives
η n

J(xk) = y w d9(xk,a.)- y w (xk —a. )xk/d2(xk,a ) ■6— J 2 J J 1 J 1 1 Z J
j=1 j1־

η n
ap׳ ap +(y.^ )€Ω Σ׳ x2/d2(x( aj 2 ־ x2) Σ wj ־

j =1 1 j =1

n
+ Σ wj(x2־aj2)y2/d2(xk׳aj) י

1=1 J *
The Drezner bound at the kill iteration is specified by minimizing 

η n
RW = V Y w.־|x2-aj2|

j=1 j=i

where

w.׳ - w.|a. — xk|/d.,(xk, a ) and w״ = w |a -xk|/d (xk,a ) . 
j j jl 1 ' z j J J J z z z j

Let x*Rk = (x*R1k, x*R2k) represent an optimal solution obtained by minimizing R(x). Define

Si = {a!!, a21,...»a״!} and S2 = {a!2, a22, ·״. an2} as the sets of first and second coordinates 
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respectively from the existing facility locations aj, for j = Ι,.,.,η. An optimal solution to the 

rectilinear distance problem must be an element from the set S!XS2· Wendell and Hurter 

(1973) have shown that x*Rk € (S! X S2)Π Ω for at least one optimal solution.

It will now be shown that at iteration k the Drezner bound is at least as good as the 

Juel bound.

THEOREM 1

For p = 2, R(x*Rk) ;״ J(xk).

Proof: 
2 n

 ·(ai־xk)ajti/d2־j1ajt-xt1ix’Rt״Σ Σ =<£·*>״

t=lj=l

2 n
= Σ Σ

t = 1 j = 1

2 n
2Σ^ w; aitM(xtk-a. ) - (xk - x k)] /d (xk,a ) 

J* J* * J v V <vl J

2 n 2 n
= Σ Σ w.(xk- a )2/d״(xk,a.)- V Σ w <x,k -a )xk/d (xk,a.) 4- 4- j t jt 2 ’ j 4- 4- j t jt t 2 ’ J

t =lj =1 t =lj = 1 J

2 n
+ w.(xk - a )x k/d (xk,a )

j t :» Kt i j 
t=lj=l J

= W2(xk) - VW2(xk)׳xk+ VW2(xk)׳xRk

Thus R(x*Rk) J(xk) if

2 n
Σ Σ w. (xk-a. )x k/d״(xk,a.) 

— j t j t Kt 2 J
t =lj =1

min
2 n
Σ Σ '״j(xi-ajt)yt׳d2(xk׳aj>

t = 1 j =1
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For x*Rk lying in Ω, the convex (Euclidean) hull, then R(x*Rk) J(xk) with equality holding 

only when x*Rk = y* € Ω. If multiple optimal solutions exist, at least one optimal solution 

must lie in Ω. Let x*Rk and z*Rk represent optimal solutions where x*Rk € Ω and z*Rk € Ω. 

Then, R(z*Rk) = R(x*Rk) S J(xk). Thus, therorem 1 holds true for p = 2 and any optimal 

solution.

This establishes that the rectangular bound can be used without any trepidation 

about its convergence with Euclidean distances since R(x*Rk) will converge to W2(x*). Con­

siderable computation time can be saved using this bound, as it required fewer iterations to 

reach the same level of percentage error difference as the other two bounds.

Theorem 1 in conjunction with the results of Juel (1984) and Elzinga and Hearn 

(1984) establishes that B3 S B2 Bl for the Euclidean distance single facility model. In 

section 3.3, Tables 3.1 and 3.2 revealed that the Juel and Love-Yeong bounding methods 

provided better results than the dual in a majority of the examples. For p = 2, the dual 

outperformed the Love-Yeong bound only when the weights had unit values. For p < 2, the 

Love-Yeong bound provided superior results to the dual in 29 out of 32 test problems. The 

nature of the dual makes it difficult to provide a theoretical comparison with the other three 

bounds. In the next section, the dual and the Love and Yeong bound will be compared using 

numerous examples for p = 2.

3.5 Comparison of the Dual (B4) and Love-Yeong Bound (Bl)

Several hundred test examples were constructed and run on a CDC Cyber 170/730 

computer in order to investigate the performance of bounds Bl and B4 with respect to the 

number of existing facilities, the locations of the existing facilities and the values for the 

positive weights. Computational experience has revealed that there are three factors which 

influence a comparison of bounds Bl and B4 for Euclidean distances: the number of existing 
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facilities, an outlier among the existing facilities, and the range of values for the weights. It 

is the difference between the maximum and minimum values of the weights rather than the 

actual values of the weights which affects the relative performance of bounds Bl and B4. For 

the numerical examples, the positive weights Wj were chosen from a range of values [r!, r21 

where r! S r2- The interval [r!, r2] could be mapped onto [l,w] where w = r2/r!. When w was 

unity, or very close to unity, the dual provided a better bound than Bl at each iteration. As 

the number of facilities increased, the dual’s performance was diminished, and as w 

increased, the dual no longer provided a better bound than Bl. Figure 3.1 illustrates the 

relationship between n and w that was observed from running sample problems with n = 5,10, 

20, 30, 40, 50, 75 and 100 for various values of w. For each value of n, a value of w was 

selected and the wj weights were randomly generated over the interval [l,wj. Twenty 

different values for w were used for each value of n, and the bounds Bl and B4 were compared 

for 25 iterations of the test problem. In most cases the dual provided a better bound for the 

first 3 or 4 iterations, then Bl provided a better bound. More than 160 test problems were 

used to plot the graph in Figure 3.1. Some test problems were run several times with the 

same weights and existing facility coordinates but with the weights assigned to different 

facilities on each run.

The effect of outliers was tested on many examples where each facility coordinate, 

except for the outlier, was generated randomly from the interval [0,50]. The weights were 

randomly generated from the interval [1,20]. Each example was run 9 times, using 3 outliers 

and 3 different outlier weights. The results are displayed in Table 3.5, which shows the better 

bound obtained at each iteration.
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Figure 3.1: Dual (B4) and Love-Yeong (Bl) Comparison

Table 3.5: Bl and B4 Comparison with 1 Outlier.

n Outlier
Better Bound Obtained 

Outlier weight
3 11 19

10 (78,93) B4 B4 B4
(126,112) B4 B4 B4
(163,186) B4 B4 B4

20 (78, 93) B4 B4 B4
(126,112) B4 B4 B4
(163,186) B4 B4 B4

30 (78, 93) Bl Bl Bl
(126,112) B4 Bl Bl
(163,186) B4 Bl Bl
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For a small number of facilities, when there is a single outlier with a small weight 

attached to it, the dual will usually provide a better bound than Bl. As the weight attached to 

the outlier increases and/or the number of facilities increases, the effect of the outlier is mini­

mized. An outlier has the effect on Bl of increasing σ which has a detrimental effect on the 

bound value. The dual receives preferential treatment since the direction vector from the out­

lier will have either two large negative components or a large negative component and a 

smaller positive component which increases the value of the dual objective function. As the 

number of facilities increases, the effect on the dual is diluted. Increasing the weight 

associated with the outlier has the tendency to shift the solution towards the outlier, 

decreasing 0 and the negative components of the outlier direction vector.

While the dual may provide a better bound than Bl in some special cases, this is 

attained at considerable cost in terms of CPU execution time. Table 3.6 gives the average 

CPU compile and execution times in seconds based on three runs for each example using 

weights randomly generated from the intervals [1,1], [1,2] and [1,10]. As the number of 

facilities increases, the proportion of CPU execution time required by the dual as compared 

with Bl increases. For n = 30, 50 and 100 the ratio of CPU execution time is 2.9, 3.6 and 4.3 

respectively.

Table 3.6: CPU Timings (seconds) for 20 Iterations on CDC CYBER 170/730

n

Weiszfeld Solution Weiszfeld Solution 
and Bound Bl

Weiszfeld Solution 
and Bound B4

Compile Execution Compile Execution Compile Execution

10 0.184 0.280 0.202 0.313 0.293 0.599

30 0.192 0.843 0.223 0.933 0.315 2.726

50 0.208 1.678 0.237 1.787 0.338 6.387
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If the dual could give a lower bound in fewer iterations than Bl, then it may be 

possible to overcome the difference in CPU execution times. In order to compare the timing 

and number of iterations required to obtain equivalent solutions, the program was run until 

the percentage difference between the total cost function and the lower bound was less than a 

prescribed constant. The weights selected were unity so that the examples were biased in 

favor of the dual bound. The CPU timings are displayed in Table 3.7. The execution time 

needed to obtain the same percentage difference is much less for Bl than B4. Usually, if the 

dual does provide a better bound at each iteration, Bl is never lagging more than 2 or 3 

iterations behind it.

Table 3.7: CPU Timings to Reach Equivalent Solutions

n
% difference No. of 

Iterations
Objective 
Function

Bound 
Value

Execution 
Time (secs)

50 Bl 0.1 11 900.906 900.247 1.37
B4 0.1 10 900.906 900.387 3.66

Bl 0.0001 23 900.906 900.906 1.93
B4 0.0001 21 900.906 900.905 6.69

100 Bl 0.001 13 12132.6 12132.5 4.43
B4 0.001 12 12132.6 12132.5 14.59

Both the dual and Bl can provide equivalent bounds for an iterative solution proce­

dure. The examples in Table 3.8, one favouring B4 and the other favouring Bl, illustrate that 

a wide discrepancy in bound values may exist over the first five iterations but very little 

difference is observable by the 25th iteration. However, when computation time is taken into 

consideration, Bl is generally superior to the dual bound.
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Table 3.8: Bound Comparisons at Selected Iterations

n Weights
Objective

Iteration Function Bound Bl Bound B4

20 [1,20] 
outlier with 

weight 3

1 15958.8 0 10517.0
5 15619.3 13694.6 15045.3

10 15617.6 15301.2 15551.9
15 15617.5 15550.4 15603.3
20 15617.5 15602.9 15614.4
25 15617.5 15614.2 15616.8

30 [1,80] 1 25364.9 20988.9 6144.0
5 24941.0 24190.2 20856.5

10 24932.4 24867.7 24524.7
15 24932.3 24926.9 24897.2
20 24932.3 24931.9 24929.4
25 24932.3 24932.3 24932.2

3.6 Conclusions

For p = 2, the Drezner method provides a better bound at each iteration than the 

other three methods. In some cases, the Juel, Love and Yeong, and dual bounds required 

twice as many iterations to reach the same value as the Drezner bound. The computational 

savings achieved by using the Drezner bound with an iterative solution technique could be 

considerable.

Another advantage of the Drezner bound was observed when a series of test 

problems with 30, 40 and 50 existing facilities were randomly generated with coordinates 

from the interval [1,50], an outlier at (30,78), and weights equal to 1. The bound results for 

Bl, B2, B3 and B4 are displayed in Table 3.9. For the situation in Table 3.9 with 40 existing 

facilities, the optimal solution was very close to an existing facility. This slowness of 

convergence of bounds Bl, B2 and B4 has always been observed in test problems where the 

optimal solution was very close to an existing facility. The Drezner bound has never been 

affected by this situation.
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* Did not converge to within e = 1% in 25 iterations

n Bl B2 B3 B4

Iter. No. 10 10 5 8
30 Bound 595.6 595.6 595.4 595.0

Obj. Fn. 600.0 600.0 600.6 600.1

Iter. No. 25* 25* 4 25♦
40 Bound 771.5 784.8 795.9 787.4

Obj. Fn. 797.1 797.1 799.0 797.1

Iter. No. 8 7 4 8
50 Bound 978.2 977.9 981.6 978.2

Obj. Fn. 984.8 984.8 988.0 984.8

Table 3.9: Comparison of Bounds for Weights = 1

A final comparison of Drezner’s bound (B3) and the dual bound (B4) using the four 

examples from Wendell and Peterson (1984) is given in Table 3.10. The solution procedure 

was terminated when e reached 1% or less. The Wendell and Peterson examples are of the 

type that favour the performance of the dual over Bl since they have small numbers of fixed 

points, an outlier, and uniform weights. However, as shown in Table 3.10, the Drezner bound 

is clearly superior to the dual bound in each case.

When 1 < p < 2, the Juel bound provides the best bound from among the four 

methods. Both the Drezner and dual bounds may experience convergence problems when 

p<2. The Juel bound is always as good or better than the Love and Yeong bound, but 

computational experience reveals that in most instances the Love and Yeong bound is never 

lagging any more than 1 or 2 iterations behind the Juel bound.
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Example

Drezner Bound B3 
Number of Iterations

Dual Bound B4 
Number of Iterations

1 3 7
2 1 6
3 4 10
4 1 25*

* Did not converge to within e = 1% in 25 iterations.

Table 3.10: Comparison of Drezner and Dual Bounds.



CHAPTER4

A COMPARISON OF BOUNDING METHODS FOR MULTI-FACILITY 

LOCATION MODELS

The format for this chapter will be similar to the one used in Chapter 3. The dual 

and Drezner bounds will be developed for the multi-facility fp distance models. Dual feasible 

solutions will be constructed from a given primal solution using a projection matrix 

technique. The proof that the Drezner bound is as good or better than the Juel bound for the 

single facility Euclidean distance problem will be extended to include the multi-facility 

Euclidean distance model. A computational comparison of the dual, and the Love and Yeong 

bounds will be given as well as conclusions regarding the usage of these bounding methods.

4.1 A Lower Bound Obtained from the Dual

The multi-facility f p distance location problem is given as 
m n

minimize W Μ (x) = Y w1iJlxi1“ai1l P + lxi2-ai2l
i = lj= 1

(3.1 
+ Σ W2>r(lXil־Xrll +Κ2־Χγ2^ ·

i < r

and the corresponding dual is given by

46
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m η
maximize ־ Σ Σ a/ uhj (4.2a)

i = lj = 1 j 1J

i —1 m n
subjectto ־ Σ u9 + Σ υ« + Σϋ.0=״, i=l,...,m (4.2b)

— 2n x— 21r lij
r = l r = i + l j=l

|U | i = 1,..., m; j = 1,..., n (4.2c)1 11J q 11J » > י J י »

|U I i=l......m—1; r = i + l,..., m (4.2d)—1Γ Q 41Γ

where 1/p + 1/q = 1, |U|q = [|u|q + | v|q]l/q for U' = (u,v), and U!ij and U2!r are vectors of dual 

variables. At optimality, U!y' = (u!!j, v!y) is the non-normalized direction vector from thejth 

existing facility to the ith new facility and U2!/ = (u2jr, v2!r) is the non-normalized direction 

vector from the rth new to the ith new facility.

Given a primal iterative computation procedure and the current solution x!k for 
1

i= 1... m at iteration k, vectors U!ij and U2ir are estimated by Uk1q' = (x,1k - an, x!2k - aj2) 

and Uk2ir׳ = (x!1k - xrik> xi2k - xr2k)· Each U!jjk and U2!rk vector is adjusted so that the 

equality condition holds true in (4.2c) and (4.2d), using c!y = w!y/|U!ijk|q for i = l,...,m; 

j = l,...,n and c2ir = w21r/ |U2irklq for i=l,״.,m-l and r = i+l,...,m. The adjusted vectors are 

U1ijk = c!ijU1ijk for i= l,...,m; j = l,...,n and U2irk = C21r U2irk for i= l,2,...,m-l; r = i+ l,...,m. 

Although the norm constraints in (4.2c) and (4.2d) are satisfied, the adjusted vectors may not 

satisfy the linear equality constraints in (4.2b). The constraints in (4.2b) can be written with 

the u2ir and u!y variables in the first m rows and the v2ir and v!y variables in the second set of 

m rows.
l ot »rk' / k k k k k k k k xU “ ^U212’ ’ ־ U2m-Dm’ Ulll ’ ־ ־ ־ ’ Ulmn ’ 2122 ׳(m-Dm ’ 111 ’ 7 ’ ־ ־ ־ !mn* ’

a vector with 2mn + m(m-l) components. Constraint (4.2b) can be expressed as AgUk = 0 

where Ag is a 2mX[m(m־l) 4-2mn] matrix and
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Β Ο

Ο Β
BisanmX[m(m-l)/2 + mn] matrix, defined asB = [Β! B2 ... Bm_! C! C2 — Cml where Bt is an 

mX(m-t) matrix with elements

’ 1 i=t
b.j= —1 i=j + t for t = l,..., m—1

0 otherwise
and Cr is an m X n matrix with elements

c.. = u
1 i=r

for r = 1, 
0 otherwise

m.

The vector Uk is projected into the intersection of the 2m planes determined by

(4.2b), using the projection matrix P as given by Rosen (1960). P is defined as

P = I-Ag׳(AgAg')1־Ag. In order to develop the form of the projection matrix for the given 

matrix Ag, the first step is the calculation of AgAg'.

BB0 ׳
A A g g 0 BB׳

A 0

0 A
where A is an mX m symmetric matrix with elements

a.. = 1J
m + n —1 i=j

-1 i*j
The derivation of this result can be found in Appendix B.

In Appendix C, it is shown that the 2mX2m symmetrix matrix (Ag Ag1-(׳ can be

calculated using

A0 1־

0 A1־

where A1־ is an m X m symmetric matrix with elements

(n + l)/n(n + m) i=j 
l/n(n + m) i*j

The final form of the projection matrix P is
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P = I - A ׳(A A 1־)׳A g g g g

and Ft, Gts, Ht, Ktr, L and N are defined as follows:

where R is an

= l/(n + m)

[m(m-l)/2 + mn] X [m(m-l)/2 + n

R 0
0 R

an] matrix given by

' F! G12 p 
’·· l(m-l) H1 K12 ־ ‘ JZ 

• l(m-l) K.m

G12 F2 p 
”· ^2( m-1) 0 «2 .. JZ 

(m-l)״ 2 «2»

• 
• 
•

*
•
•

•
•

•
•
•

•
9 

•

•
•

r

9

R =
p ,

l(m-D
p , ... F m-1 0 0 .. H , m— 1 K, ״(m— Dm

Hi 0 • . . 0 L N N

K12 H2־ . . . 0 N L • . . N
• • 9

9

0

• 9
9

κ ׳ Im m (m-1) *... ״ ׳ N • 4 * L

Ft is an (m — t) X (m — t) matrix with elements f
n + m —2 i=j

for t = 1
-1 ixj

,m— 1;

G isan(m —t) X (m — s) matrix with elements g.. = ts 1J -1
i=s—t

i=j + s—t for t<s = 2,...,m—1;
otherwise

Ht is an (m-t)X n constant matrix with hy = -1 for t— 1,m-1;

is an (m — t) X n matrix with elements k..
1 i=r—t 

for t<r = 2,...,m;
0 otherwise

i (n(n + m) —(n+l)]/n i=j
L is an η X n matrix with elements £.. = 1. . ןJ I - (n + l)/n 1*j

and N is an η X n constant matrix with elements ny = -1/n.

0
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This result is obtained in Appendix D. Applying the projection matrix P to Uk yields the 

vector Uk = P Uk, which satisfies the linear constraints in (4.2b). It is possible that some of 
3 =

the U2irk or U!ijk vectors may now violate (4.2d) or (4.2e) respectively or each vector may 

satisfy the strict inequality. Uk can be adjusted by a factor c so that at least one vector 

satisfies the equality in (4.2d) or (4.2c) and all remaining U2!rk and U!jjk vectors satisfy the 

strict inequality. Calculate C2ir = w2״·/|Ü2irk|q for 1 i < r < m; c!y = w^j/|Ü!ijk|q for 

i= l,...,m andj = Ι,.,.,η; and

c = min { min c_. , min c,.. }.21r ’ lij '
lSi<rSm i —1,... ,m

j=l...... n
Vector cUk will provide a feasible solution to the dual problem at iteration k and the dual 

objective function value
m n _

 Σ Σ־-
χ— —· j lij 
i=l j=l

can be used as a lower bound for the primal objective function.

While the projection matrix P appears to be quite complicated, it is not necessary to 

actually calculate and store it in a computer program. Any component of the projected vector 

PÜk can be expressed in terms of the elements of Uk and the submatrix elements from P, 

where the non-zero elements of P only take on the values 1, -1, n+m-2, -(n+l)/n or 

[n(n + m)-(n+ l)]/n.

4.2 The Drezner Bound for the Multi-Facility Distance Problem

The multi-facility fp distance location problem is to minimize 

tn n
WM(X)= Σ Σ Wlij^xil —ajl'P + lXi2—^2^^ 

i־l j־l

tn-1 m
+ Σ Σ 2״>Γ!ΙΧ·1-ΧηΙΡ+ΙΧ·2-Χρ2ΙΡ11/Ρ

i =1 r =i+l
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where

χϊ' = (xil >xi2) are the location coordinates of new facility i, 

aj' = (aj!,aj2) are the location coordinates of existing facility j,

and Xik׳ = (xki!,xki2) represents the current solution at the klh iteration of a solution 

procedure for the ith new facility location. Using the Holder inequality,

N / N \Up/ N \l/q
Σ btct s( Σ 1bJp) ( y Ict|q ] where p>l and 1/p + 1/q = 1, 
t =1 t =1 t =1

and substituting

b. = |χ . - aj and c. = |a^ - xk.l 
t ' it jv t 1 jt it1

for t= 1,2; then

l’il-ajJ'ajl-XiJ+ 'Xi2-aj2"aj2-Xi2' S ^xil-aj JP + 'xi2-aj2'P' P

This can be rewritten as

[|x״-aj1|p + |x.2-aj2lp)״p2

By multiplying both sides of the inequality by the nonnegative weights w!jj and summing, 

then
m n
Σ Σ WlijOX״-aillP+lXi2-aj2lP11/P 

i = lj = l

i1־j1־ [|a -x'‘P + |a--xx2Pl q 
JI 11 J L LX>

+ y y w1ij' xi2~ aj 2^1 aj 2־ χΐ2Ι

+ i =! j = l ί I aj J —Xq P + |aj 2—x^ P lVq

Let
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and

then
m n m n

«Π Σ w1״f (x ׳a.)^rmn y y w ׳|x -a.J 
x. ·^— a— lij p 1 j χ. 4. 4. lij 1 11 111 

1 i=lj=l 11 i=ij=i

For the terms representing the weighted distances between pairs of new facilities,

the Hölder inequality can be used in the same manner as before.

Substituting

b = |x - x J and c = |xk - xk| 
t 1 it rt' t 1 rt it1

for t= 1,2 in the Holder inequality, then

By multiplying both sides of the inequality by the non-negative weights w2ir and summing, 

then
m — 1 m m—1 m
Σ Σ W2j, lXj! —+ lXi2—Xr2!P Σ ״2״ ΊΧ״-X״l

1=1 r=i+l i=l r=i+l

m— 1 m
+ Σ Σ w2״'lxi2-xr2l · 

i = l r=i+l

where

and

Combining these two results gives
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m n m η
WMp(x)a Y Y wlij׳|xil-ajl|+ 2 Σ w1ij'lxi2-a I 

1 = 1 j =1 i=l j =1

m-1 m m-1 m
+ Σ Σ war'l\1-\1l+ Σ Σ wä>i2-xr2l

1=1 r=i+l i=l r=i+l

0Γ

tn n m— 1 m
™<Χ^Σ Σ Σ Σ w2ir’lXil-Xrll

i = l j =1 i = l r = i + l

tn n m— 1 m
+ Σ Σ + Σ Σ 2״Λ2-χλ1 =RM<x>-

i = l j = l i=l r=i+l

The solution at each iteration of a computation procedure for the multi-facility problem is 

used to construct RM(x), a multi-facility rectangular distance model. An optimal solution 

x*r, which minimizes RM(x), is used to calculate RM(x*r) which is the lower bound.

4.3 Bound Comparisons for the Multi-Facility f p Distance Model

Programs were written to incorporate the multi-facility hyperbolic approximation 

version of the Weiszfeld procedure (2.23) with the Love and Yeong, Juel and dual bounding 

methods. At each iteration of the solution procedure the bound was calculated and tested 

against the current solution. By entering a proportionate error difference, e, a stopping rule 

calculated as

|(bound value - objective function value)|/(objective function value ) e

was used to terminate the process. In all sample runs e = 0.01 and the initial starting 

solution used for each of the m new facilities in the Weizfeld procedure was (0,0). Samples of 

size n = 5 and 10 existing facilities were randomly generated for m = 2 and 3 new facilities. 

The w!jj weights were randomly generated from the interval [1,3], the interfacility weights 

w2ir were 1 and distances were calculated for p = 2 and 1.8. An interactive computer 

program was written to solve the multi-facility rectilinear distance problem. When the 
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current solution from the Weiszfeld procedure was entered, the new weights for the 

rectangular distance model used in the Drezner bound were calculated and an optimal 

solution x*r and lower bound value RM(x*r) were obtained. Then RM(x*r) was adjusted by 

subtracting the value of
/ m n 

2VpcU2

l1־ j1־'

Σ Σ
m-1 m 

wuj+ Σ Σ ״ar 

i»l r=i+l

since a hyperbolic approximation function, (2.24) and (2.32), was used to solve the multi­

facility distance problem. In all sample runs, ε = 0.001 was used in the approximating 

function.

For each bounding method, the number of iterations required to obtain e < 0.01,

the hyperbolic and true objective function values and the value of the bound were recorded. 

These results are displayed for 2 and 3 new facilities in Tables 4.1 and 4.2, where Bl, B2, B3, 

B4 refer to the Love-Yeong, Juel, Drezner and dual bounds respectively.

* did not converge to within 1% error difference in 25 iterations.

n 5 10

P No. 
of 
Iter.

Hyperbolic 
Objective 
Function

True
Objective 
Function

Bound
No. 
of 
Iter.

Hyperbolic 
Objective 
Function

True 
Objective 
F unction

Bound

2 Bl 13 495.34 495.34 490.61 12 679.20 679.11 673.12

B2 12 495.37 495.37 490.73 11 679.20 679.11 673.14

B3 10 495.48 495.48 491.18 6 679.63 679.60 673.79

B4 13 495.34 495.34 490.72 25♦ 679.19 679.10 636.18

1.8 Bl 16 509.66 509.66 505.09 16 699.35 699.25 693.36

B2 14 509.72 509.72 505.83 15 699.35 699.25 693.48

B3 25♦ 509.63 509.63 495.45 8 699.88 699.79 692.92

B4 25* 509.62 509.63 496.79 25♦ 699.34 699.24 653.05

Table 4.1: Lower Bound Data for Multi-Facility Samples, m = 2.
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n 5 10

P No. 
of 
Iter.

Hyperbolic 
Objective 
Function

True 
Objective 
Function

Bound
No. 
of 
Iter.

Hyperbolic 
Objective 
Function

True 
Objective 
Function

Bound

2 Bl 22 691.66 691.66 685.72 15 1024.72 1024.60 1015.79
B2 20 691.68 691.67 685.91 14 1024.73 1024.61 1015.87
B3 12 692.99 692.98 687.54 7 1025.88 1025.82 1015.63
B4 22 691.66 691.66 686.32 25* 1024.71 1024.59 943.14

1.8 Bl 25 705.62 705.61 699.36 18 1053.09 1052.95 1043.74

B2 23 705.63 705.63 700.23 17 1053.09 1052.95 1043.89

B3 15 706.46 706.45 701.73 11 1053.44 1053.30 1043.00

B4 25* 705.62 705.61 686.37 25* 1053.08 1052.94 960.67

* did not converge to within 1% error difference in 25 iterations.

Table 4.2: Lower Bound Data for Multi-Facility Samples, m = 3.

From Tables 4.1 and 4.2, it is quite evident that for p = 2 the Drezner bound 

provided superior results. As before, when p decreases in value, the Drezner and dual bounds 

may not converge. The Juel and Love-Yeong bounding methods provided better bound values 

than the dual in most of the examples. In the following section it will be proven that the 

Drezner bound is superior to the Juel bound for the multi-facility Euclidean distance model.
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4.4 Comparison of Drezner and Juel Bounds for the Multi-Facility Euclidean Distance 

Model

The lower bound for the multi-facility model by Love and Yeong (1981) is given 

by

WM (x♦) > WM (xk) - o(xk)||VWM (xk)||, 
P P P

where

Ω = {s = (s, , so,..., s )1 s. € Ω , i=l,.... m}

o (x) = max{d(x, y) | y € Ω}, 
and xk׳ = (xku, xk12, ·״, xkmi> xkm2) is a point generated by any procedure at the kill 

iteration.

For the same model, the lower bound by Juel (1984) is

WM (x·) > WM (xk) - VWM (xk)׳ xk 4־ (xk)׳ y} .
p p p y€Q1 p

For p = 2, the gradient VWM2(x) has components aWM2(x)/dxit, where

8WM2(x) n m
-------- -— = w1..(x -a. J/d.(x.,a.) + > w (x -x )/dJx., x ) , οχ------------------ lij it jt 2 1’ j ■<— 21r it rt 2 1’ r ’

it j=l r = l
r *i

W2ir

w״ . r *i, r = 1,2,..., m2r1

0 r = i

fort = 1,2, and i = l,...,m.

By substituting for the gradient, the Juel bound for p = 2 can be expressed as
2

J(xk) = WM2(xk) - V

t=1

m n
V w (xk-a. )xk/d (xk,a.) Z- X- hj it j t it 2 1 j 

i=l j =1

m m
V V w (xk-xk )xk/d (xk,xk)

Z— 21r it rt it 2 1 r 
i=lr=l

ΥΓ j* £

Since the Juel bound is as good or better than the Love-Yeong bound at each

iteration, only the Juel bound need be compared to the multi-facility rectangular bound. It 
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will now be shown that the multi-facility rectangular bound will be at least as good as the

Juel bound. Before proceeding with this proof, the following Lemma is required.

Lemma 1
m— 1 m mm

Σ? w (x.-x )(x. - x ) = Y Y w (x.-x )x. 
— ar i r 1 r Z— 21r 1 r 1

i = l r=i+l i=l r = l
r*i

Proof:
m—1 m m—1 m

 xt(xi־xr)Σ Σ wac<xi-xr>xr = Σ Σ war ־

i=l r = i + l i=l r = i + l '

m m
= Σ w2lr(xr־x1>xr + Σ w22r<Xr־X2)xr

r=2 r=3

m
4 ־ ... 4־  Y W^ (x -x )x .2(m- Dr r m-1 r 

r = m

By grouping the ( )x2, ( )x3. ···. ( )xm terms together, and using the fact that w2ir = w2ri 

for i, r = l,...,m and i^r, then
m— 1 m m r-1

- Σ Σ Vr1,*, = Σ Σ

i = 1 r =i +1 r = 2 i — 1

m i —1
= / y w (x.-x )x.

21r 1 r 1
i = 2 r־l

m 1 — 1
= Σ Σ war<xi־xr>xi· 

i=l r=l
r *i

Therefore
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m— 1 m m i— 1
lhs = y y w (x -x )x. + y y w (x.-x )x. 

ar 1 r 1 21r 1 r 1
i=l r = i + l i = l r=l

mm m i— 1
= Σ Σ Σ Σ 2״ιΛ-’Γ>»ί

i=l r = i + l i = l r = l
r*i r*i

m m
= Σ Σ · 

i = l r=l 
r*i

This establishes that
m—1 m mm
Σ Σ '■2׳/χ>־ΧΓΧχί-ΧΓ)=Σ Σ ״ar(\-Xr)xi· 

i=l r=i + l i = l r = l
r *i

It also follows that
m— 1 m mm
Σ Σ wat<xi-xrXx[-\>= Σ Σ ״a, (xi ־ Xr )xi ' 

i=l r=i+l i = l r = l
r*i

Let x*Rk׳ = (x*R11k, x*R12k* ·״> x*Rmik> x*Rm2k). represent an optimal solution at the kth 

iteration obtained by solving the multi-facility rectangular distance model RM(x), where 

x*Rik is the optimal location of the ith new facility. Hansen, Perreur and Thisse (1980), 

Theorem 2, have proven that x*R!k € (S! X S2) Π Ω for at least one optimal solution. Using 

this result for x*R!k and the definition of Ω, it follows that x*Rk € Ω for at least one optimal 

solution.

Theorem 2

For p = 2,

Proof:

RM(x*Rk) > J(xk)

By substituting for w׳iij, w1״!j, w2׳ir and w2״ir.
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2
RM(X*k) = Σ 

t=1

tn η
Σ Σ w1ijlait־x‘tlK״-ajt|/d2(x^,a ) 

i = l j =1

tn — 1 m
+ Σ Σ 

i=l r = i+l

= Σ
t=1

tn n
Σ w |xk — a ||xk-xk 4- x k — a |/d (xk,a.) lij1 it j t" it it Rit j t1 2 t ’ j 

i=l j =1

m—1 m
+ y y wJ(xk-xk>||(xk-xkJ-(xk-xk) + x;k- x:k|/d,(xk^

*— 21r' it rt 11 it rt it rt Rit Rrt1 2 1 r
i = l r = i + l

2 r m n
“Σ Σ Σ ^3“^״Η^Η“3!? “ (xL“XR1^J/^ 

11] lv J v It j t It Kit Z 1 J
t=l i=l j =1

tn— 1 m
+ Σ Σ w9■ (χϊ־־χ\) 

— 21r it rt
i = l r=i+l

zk kx zk k ץ . z * k *k(x. —X J-(x.״ -X J + (xD. - XD .it rt it rt Rit Rrt
/d2(xk,xj)

2 r tn n tn—1 tn
= Σ Σ Σ wuXt-ajt,2/dX׳aj)+ Σ Σ 2״ir<x״-x2(״/dX׳xi) 

t=l 1 i = l j =1 i = l r = i + l

2

t=l

tn n tn— 1 m
V V w (xk -a )xk /d (xk,a.)+ V V w (xk -xk )(xk-xk )/d (xk, xk) Z_ a— 11J it j t it 2 i j — 21r it rt it rt 2 1 ’ r
i = lj =1 i = l r = i + l

2 r tn n
-V Σ w (xk — a )xRk /d (xk, a. )4 ־4

lij it j t Rit 2 i j
t=l i=lj =1

tn — 1 tn
Y w (xk-xk)(x k-x k)/d (xk,xk) 

21r it rt Rit Rrt 2 1 r 
i=lr=i+l

Applying Lemma 1 to
tn- 1 tn

w (xk-xk ) (xk -xk) 
21r it rt it rt

i = l = i + l

and
m-1 
Σ

m
Σ w2ir(xU־ X״)(XR־״XR ״)׳

then
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m η ■ן 2
Mlx'k)2WM(xk)-V V Y w (Xk a )xk/d,(xk,a.) 

K 2 ■4- lij it 11 it 2 1 ’ 1
t = l i = l j =1 

mm
+ Σ Σ ׳״aX^־ «/*<׳< י

i = l r = l 
rxi

2 r m n
+ V Σ Σ /d (xk,a )

—- lij it j t Rit 2 1 j 
t=l1i =1j= 1

m
+ Σ

i = l

m
y w (xk-xk )x k /d (xk,xk)
■— 21r it rt Rit 2 1 r
r = l

2 m
= WM2(xk) - Y Σ 

t=l i=l

3WM2(x) 

dx.it
k 

x X it

2 m
Σ Σ 

t=l 1 = 1

awM (x) z * k— X 
dx. Ritit

Therefore,

RM(x^k) >WM2(xk) - VWM2(xk)׳ xk + VWM2(xk)׳ x^k

This expression can be compared to the Juel bound,

J(xk) = WM(xk) - VWM (xk)׳ xk + {VWM (xk)׳ y} . 
z y t ל*

By choosing x*Rk € Ω, then

(VWM (xk)׳ y} VWM (xk)׳ x‘k , p p R
which means

RM(xlk) > J(xk) for x*k € Ω . 
K it

Multiple optimal solutions can occur when solving the multi-facility rectangular distance 

problem RM(x) at iteration k. An optimal solution may or may not be an element of Ω, but

Theorem 2 from Hansen, Perreur and Thisse (1980) guarantees that at least one optimal 

solution is an element of Ω. Let x*Rk and z*Rk represent optimal solutions to RM(x) where 

x*Rk € Ω and z*Rk € Ω. Then, RM(z*Rk) = RM(x*Rk) J(xk). Thus, for p = 2, Theorem 2 holds 

for any optimal solution to the multi-facility rectangular distance problem at iteration k.
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This establishes that the rectangular bound can be used without any doubts about 

its convergence with Euclidean distances. Considerable computation time can be saved using 

this bound, as it required fewer iterations to reach the same level of percentage error 

difference as the other two bounds.

Theorem 2 in conjunction with the results of Juel (1984) and Elzinga and Hearn 

(1984) establishes that B3 B2 > Bl for the Euclidean distance multi-facility model. The 

nature of the dual makes it difficult to provide a theoretical comparison with the other three 

bounds. In Tables 4.1 and 4.2 the Love-Yeong bounding method provided better bound values 

than the dual in a majority of the examples. The dual outperformed the Love-Yeong bound in 

only 2 of the 8 test problems, where the n and p values were 5 and 2 respectively. In the next 

section, the dual and the Love and Yeong bound will be compared using numerous examples 

for p = 2.

4.5 Comparison of the Dual (B4) and Love-Yeong Bound (Bl)

Several test examples were constructed for the multi-facility hyperbolic approxi­

mation model with Euclidean distances (2.22) and solved using the generalized Weiszfeld 

iterative technique (2.23). At each iteration, the Love-Yeong and dual bounds were recorded 

in order to investigate the performance of Bl and B4 with respect to the number of existing 

facilities, the number of new facilities, the locations of the existing facilities and the values 

for the non-negative weights.

Test problems were constructed with m = 2 and 3 new facilities and n = 5, 10, 20 

and 30 existing facilities. For each value of m and n, a value of w = 1, 2, 3, 4, 7, 8 and 10 was 

selected and the wHj weights were randomly generated over the interval [l,w]. For each of 

these test problems with n, m and w fixed, the bounds Bl and B4 were compared with the true 

objective function value for 25 iterations with w2ir = 1. Then each problem was run again 
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with the w2ir weights randomly generated over the interval [l,w]. The bound values for these 

sample runs are displayed in Tables 4.3 to 4.10.

When m is fixed and n increases, this situation usually favours the Love and Yeong 

bound. For example, in Tables 4.3 and 4.7 for m = 2 and 3 respectively, when w is small and n 

is small the dual provided a better bound over the first 25 iterations. However, as n increases 

as in Tables 4.6 and 4.10 with w small, the dual usually provided a better bound over the first 

few iterations and then the Love and Yeong bound was better at each iteration. When n and 

m are fixed and w increases in value, this usually has the tendency to favour the Love and 

Yeong bound. Also, when the w!y weights were selected from the interval [l,w] and the w2!r 

weights were changed from a unit value to a value from the range [l,wj, then this situation 

usually favoured the Love and Yeong bound. No definite patterns have really emerged for the 

Love-Yeong and dual bounds involving n, m and w. In Table 4.5 where m = 2, n = 20, 

w!jj € [1,4] and w2ir € [1,1], the dual provided a better bound over iterations 1-3 and 15-25 and 

the Love-Yeong bound was better over iterations 4-14. It is doubtful if any pattern occurs 

involving n, m and w where either bound can be declared to be superior to the other for all 

situations.

The effect of outliers was tested for m = 2 and 3 new facilities where each existing 

facility coordinate, except for the single outlier, was randomly generated from the interval 

[0,50]. The w!ij weights were randomly generated from the interval [1,4] and the w21r weights 

were assigned a value of 1, 4 or 8. Each multi-facility Euclidean distance model was solved 6 

times, using 2 outlier values and 3 different outlier weights. The Bl and B4 bound values and 

true objective function are shown in Table 4.11 for sample runs with 2 and 3 new facilities and 

5 and 10 existing facilities. In each test run, the solution procedure was terminated when an 

error difference of e Ä 0.01 was reached or when 25 iterations were completed.
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Interval for Interval for Iteration 25 Iteration Range
w!i, weights w2ir weights Obj. Fn. Bl B4 Bl > B4 B4 > Bl

[1,1] [1,1] 216.68 178.16 173.19 14-25 1-13

[1,2] [1,1] 391.73 353.90 357.44 1-25

[1,2] 397.21 307.96 312.70 1-25

[1,3] [1,1] 405.11 403.41 404.76 3-4 1-2

5-25

[1,3] 415.80 237.40 236.59 25 1-24

[1,4] [1,1] 462.62 460.39 461.27 6-18 1-5

19-25

[1,4] 477.11 400.08 408.46 1-25

[1,7] [1,1] 1097.18 1094.97 1096.92 6-17 1-5

18-25

[1,7] 1154.77 731.86 839.23 1-25

[1,8] [1,1] 879.82 877.35 878.40 4-21 1-3

22-25

[1,8] 1017.97 547.61 630.58 1-25

[1,10] [1,1] 1212.54 1203.24 1185.38 3-25 1-2

[1,10] 1269.16 843.11 866.77 1-25

Table 4.3: Love-Yeong and Dual Comparison for 2 New and 5 Existing Facilities
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Table 4.4: Love-Yeong and Dual Comparison for 2 New and 10 Existing Facilities

Interval for 
w!״ weights

Interval for 
w2ir weights Obj. Fn.

Iteration 25
Bl B4

Iteration Range
Bl > B4 B4 > Bl

[1,11 [1,1] 309.29 306.11 277.13 22-25 1-21

[1,2] [1,1] 489.30 425.78 438.77 1-25

[1,2] 513.77 373.48 394.93 1-25

[1,3] [1,1] 571.12 568.90 547.64 19-25 1-18

[1,3] 600.89 518.89 544.57 1-25

[1,4] [1,11 576.32 494.50 494.94 18-25 1-17

[1,4] 611.31 443.98 437.75 21-25 1-20

[1־7] [1,1] 934.20 930.41 727.76 12-25 1-11

[1,7] 1326.88 1193.57 1151.63 3-25 1-2

[1-8] [1,1] 1479.95 1469.58 1421.50 15-25 1-14

[1,8] 1532.61 1495.15 1472.98 22-25 1-21

[1,10] [1,11 2041.33 2036.10 1609.61 2-25 1

[1,10] 2140.41 2036.66 1876.98 2-25 1
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Table 4.5: Love-Yeong and Dual Comparison for 2 New and 20 Existing Facilities

Interval for 
w!ij weights

Interval for 
w21r weights Obj. Fn.

Iteration 25 
Bl B4

Iteration Range
Bl > B4 B4 > Bl

[1,11 [1,1] 776.77 740.81 727.27 24-25 1-23

[1,2] [1,1] 1188.34 1184.39 1187.24 6-9 1-5

10-25

[1,2] 1189.99 1185.15 1187.22 10-13 1-9

14-25

[1,31 [1,11 1473.61 1470.10 1472.51 1-25

[1,3] 1476.15 1414.44 1387.50 6-25 1-5

[1,4] [1,11 2056.15 2051.66 2051.99 4-14 1-3

15-25

[1,4] 2057.17 1967.25 1826.09 3-25 1-2

[1,7] [1,1] 2609.87 2602.19 2599.96 2-25 1

[1,7] 2622.17 2600.72 2562.38 3-25 1-2

[1,8] [1,11 3580.08 3571.33 3572.95 2-12 1

13-25

[1,8] 3590.35 3410.88 3352.38 8-25 1-7

[1,10] [1,1] 5020.56 5006.36 5007.63 2-10 1

11-25

[1,10] 5040.93 4879.46 4538.16 3-25 1-2
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Interval for 
w!ij weights

Interval for 
w2ir weights Obj. Fn.

Iteration 25
Bl B4

Iteration Range
Bl > B4 B4 > Bl

[1,11 [1,1] 1122.52 1102.42 1080.34 11-25 1-10

[1,21 [1,11 1692.81 1681.63 1669.66 7-25 1-6

[1,2] 1692.97 1646.66 1605.33 9-25 1-8

[1,31 [1,11 2138.26 2125.50 2126.39 3-21 1-2

22-25

[1,3] 2139.07 2047.53 1938.76 3-25 1-2

[1,41 [1,1] 3206.94 3201.18 3202.79 4-11 1-3

12-25

[1,41 3213.29 3064.33 2954.72 3-25 1-2

[1,71 [1,1] 3591.73 3583.10 3585.39 1-12 1

13-25

[1,7] 3602.53 3582.50 3574.40 3-25 1-2

[1,8] [1,1] 5046.98 5035.21 5033.80 3-25 1-2

[1,8] 5072.44 5054.96 5057.89 3-23 1-2

24-25

[1,10] [1,1] 6902.27 6881.76 6872.66 2-25 1

[1,101 6903.02 6764.80 5624.59 2-25 1

Table 4.6: Love-Yeong and Dual Comparison for 2 New and 30 Existing Facilities
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Table 4.7: Love-Yeong and Dual Comparison for 3 New and 5 Existing Facilities

Interval for Interval for Iteration 25 Iteration Range
w!ij weights w2,r weights Obj. Fn. Bl B4 Bl > B4 B4 > Bl

[1,1] [1,1] 353.01 160.22 194.95 1-25

[1,2] [1,1] 512.17 363.38 383.86 1-25

[1,2] 539.24 261.38 333.48 1-25

[1,3] [1,1] 599.28 435.24 497.44 1-25

[1,3] 687.34 223.69 343.99 1-25

[1,4] [1,1] 613.31 505.04 488.99 4-25 1-3

[1,4] 626.73 626.81 324.23 17-25 1-16

[1,7] [1,1] 1313.56 1309.01 1311.39 2-18 1

19-25

[1,7] 1357.12 846.70 718.92 3-25 1-2

[1,8] [1,1] 1350.70 1346.22 1346.11 3-25 1-2

[1,8] 1384.78 1194.00 947.12 5-25 1-4

[1,10] [1,1] 1740.62 1733.44 1725.36 3-25 1-2

[1,10] 1774.73 1260.71 1376.29 1-25
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Table 4.8: Love-Yeong and Dual Comparison for 3 New and 10 Existing Facilities

Interval for 
w!i, weights

Interval for 
w2ir weights Obj. Fn.

Iteration 25
Bl B4

Iteration Range 
Bl > B4 B4 > Bl

[1,11 [1,1] 491.46 302.19 363.38 1-25

[1,2] [1,1] 778.99 600.45 626.60 1-25

[1,2] 792.34 447.86 565.37 1-25

[1,3] [1,1] 933.60 930.91 880.84 15-25 1-14

[1,3] 947.91 523.18 704.22 1-25

[1,4] [1,11 1030.59 1023.30 917.90 8-25 1-7

[1,4] 1046.84 662.28 629.30 16-25 1-15

[1,7] [1,1] 1937.70 1904.03 1467.34 2-25 1

[1,7] 1940.93 1583.47 1474.89 4-25 1-3

[1,8] [1,1] 2018.00 1 1982.73 1881.98 8-25 1-7

[1,8] 2046.70 1440.66 1558.69 1-25

[1,10] [1,11 2823.75 2816.38 2288.97 2-25 1

[1,101 2896.86 2210.08 2307.16 3-5 1-2

6-25
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Interval for 
w!i, weights

Interval for 
w2ir weights Obj. Fn.

Iteration 25 
Bl B4

Iteration Range
Bl > B4 B4 > Bl

[1,1] [1,1] 1167.35 1039.14 1017.73 17-25 1-16

[1,2] [1,1] 1807.27 1802.64 1806.88 5-12 1-4

13-25

[1,2] 1811.23 1667.74 1626.62 6-25 1-5

[1,3] [1,11 2155.69 2128.11 2097.12 5-25 1-4

[1,3] 2162.26 1921.21 1832.69 3-25 1-2

[1,4] [1,11 2952.19 2951.71 2951.70 4-25 1-3

[1,41 2973.58 2391.74 2077.12 4-25 1-3

[1,7] [1,11 4118.07 4108.43 4177.99 2-11 1

12-25

[1,7] 4131.37 3997.00 3867.86 4-25 1-3

[1,8] [1,1] 5114.04 5102.10 5114.04 3-10 1-2

11-25

[1,8] 5126.90 5113.95 5125.82 3-11 1-2

12-25

[1,101 [1,11 7107.97 7091.62 7107.59 2-14 1

15-25

[1,101 7131.53 6594.70 4798.83 2-25 1

Table 4.9: Love-Yeong and Dual Comparison for 3 New and 20 Existing Facilities
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Interval for 
W|!j weights

Interval for 
w2ir weights Obj. Fn.

Iteration 25 
Bl B4

Iteration Range
Bl > B4 B4 > Bl

[1,1] [1,11 1684.63 1581.42 1540.40 14-25 1-13

[1,2] [1,1] 2537.95 2475.43 2441.66 9-25 1-8

[1,2] 2538.43 2433.85 2403.78 8-25 1-7

[1,3] [1,1] 3123.25 3058.57 3039.69 3-25 1-2

[1,3] 3124.73 2938.04 2723.76 3-25 1-2

[1,4] [1,1] 4423.13 4412.43 4422.96 4-12 1-3

13-25

[1,4] 4434.12 4247.04 4040.40 4-25 1-3

[1,7] [1,1] 6536.95 6517.34 6475.04 2-25 1

[1,7] 6547.70 6418.68 6211.72 2-25 1

[1,8] [1,1] 7410.06 7492.02 7509.80 3-13 1-2

14-25

[1,8] 7519.32 7499.81 7515.89 3-18 1-2

19-25

[1,10] [1,1] 9924.45 9900.98 9920.50 2-16 1

17-25

[1,10] 9955.71 9776.32 8030.32 2-25 1

Table 4.10: Love-Yeong and Dual Comparison for 3 New and 30 Existing Facilities



71

m 2 3

n Outlier
Outlier 
Weight

No.
Iter.

Obj. 
Fn. Bl B4

No.
Iter.

Obj. 
Fn. Bl B4

5 (78,93) 1 25♦ 540.3 524.7 534.8 25♦ 894.8 372.5 651.1
4 9 1002.5 993.5 996.0 25♦ 1468.5 1253.8 1338.3
8 25* 1441.8 1366.5 1344.3 25♦ 2199.4 1980.9 1773.1

(126,112) 1 16 614.1 604.4 611.5 25♦ 987.8 562.4 855.0
4 25* 1323.0 1187.4 1160.4 25♦ 1955.3 1369.3 1445.3
8 25* 2112.2 2023.8 1923.4 25* 3259.7 3029.8 2648.8

10 (78,93) 1 25* 712.4 667.8 687.5 25* 1194.9 846.1 971.0
4 24 1258.3 1247.9 1228.0 25* 2009.0 1879.0 1896.2
8 14 1973.8 1957.7 1953.6 25 3079.7 3048.9 3031.2

(126,112) 1 25♦ 826.5 815.2 718.2 25* 1302.5 793.5 1045.2
4 14 1635.1 1626.1 1564.0 23 2435.4 2413.1 2356.0

8 12 2727.4 2710.5 2553.4 12 3933.0 3899.2 3616.0

* did not converge to within 1% error difference in 25 iterations.

Table 4.11: Outlier Data for 2 and 3 New Facilities with w2!r = 1.
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As in the single facility situation, the presence of an outlier among the existing 

facilities favours the dual. However, as the outlier weight is increased, the dual loses its 

advantage and the Love-Yeong bound is better. As the number of existing facilities increases, 

this also favours the Love and Yeong bound.

4.6 Conclusions

For p = 2, the Drezner bound is superior to the Love and Yeong, Juel, and dual 

bounds. In some cases the Juel, Love and Yeong, and dual bounds required twice as many 

iterations to reach the same value as the Drezner bound. Considerable computational savings 

can be achieved by using the Drezner bound with an iterative solution technique. The dual 

has, in most instances, been the poorest bound. In situations where the dual has been better 

than the Love-Yeong bound, this has been achieved by sacrificing computation time. The 

computation time required when calculating the Juel or Love-Yeong bound is increased, on 

average, by a factor of 3.2 when the dual bound is used.

When 1 < p < 2, the Juel method provides the best bound from among the four 

methods. As in the single facility case, the multi-facility Drezner and dual bounds may 

experience convergence problems when p < 2.



CHAPTER 5

CONCLUSION

5.1 User Criteria for Selecting a Bounding Method

This thesis has shown that the practitioner, when considering a bounding method to 

terminate an iterative computational procedure for a single or multi-facility €p distance 

location model, can make a choice based upon the value of the parameter p.

For 1 < p < 2, the best bound value was obtained by using the Juel method. The Juel 

bound is computationally efficient and has been proven to be as good or better than the Love 

and Yeong bound. Since the Drezner and dual bounds may experience convergence problems 

for 1 < p < 2, the useage of these two bounds should be confined to models with Euclidean 

distances.

When p = 2, the best bound was obtained by using Drezner’s method which requires 

the solution of a location model with rectangular distances. The single facility rectilinear 

model can easily be solved, which gives the Drezner bound a computational advantage over 

the other three bounds. This thesis has established the effectiveness of the single and multi­

facility Drezner bounds over the Love-Yeong and Juel bounds by proving that the Drezner 

bound is always as good or better than the Juel bound for p = 2. The superiority of the 

Drezner bound over the dual has been shown using many examples. Since an interactive 

program was used to solve the multi-facility rectilinear problem to obtain the Drezner bound 

value, no computation times are available for the multi-facility bound. Procedures for solving 

the multi-facility rectilinear model have been given by Juel and Love (1976), and Drezner and 

Wesolowsky (1978b). One of these techniques for solving the multi-facility rectilinear model 

could be incorporated in the Drezner bounding method and then computation times could be 
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obtained to compare all four methods. Even if the Drezner bound required double or triple the 

computation time of the Juel bound, this disadvantage could be offset by calculating the 

Drezner bound after every second or third iteration.

The statement made by Wendell and Peterson (1984) that the dual is often much 

better than the Juel or Love-Yeong bound for the single facility Euclidean distance model has 

been shown to have little validity. The dual requires more computation time than the other 

three methods and, in general, yields bound values which do not compare favourably with the 

other three methods.

5.2 Future Research

This thesis has extended the Drezner and dual bounds to include the multi-facility 

model with fp distances, and shown the superiority of the Drezner bound for the Euclidean 

distance situations. One problem which has emerged is that for p < 2 both the dual and 

Drezner bounds may experience convergence problems. An area for future research would 

entail investigating the reasons for this lack of convergence.



APPENDIX A

PROJECTION MATRIX FOR THE SINGLE FACILITY fp DISTANCE MODEL

Given the 2 X 2n matrix

/ 1... 1 0...0 \
A =

8 \ 0...0 1...1 /
the projection matrix P = I-Ag'(AgAg1־)׳Ai can be derived as follows. AgAg' is a 2x2 matrix 

where any element x!j € AgAg׳ can be written as
2n

xij = Σ aikaki 
k = l

2n
= Σ aikajk .

k = l

n 2□
= Y a., a.. + Y a ..a.. forij = l,2.

1k jk 1k jk
k=l k=n+l

Since ait = a2(n + k) = 1 fork=l..... n and a!t — a2(k-n) = θ for k = n+1,..., 2n;
n 2n

fori=j, xu=Zaikaik+ Σ aikaik = n

k = l k=n+l

n 2n
andfori*j, x^ = Σ aikajk + Σ alkajk = 0

k=l k = n + l

, / n 0
A A = 1g g \ 0 n /

and (AgAg)’1 =
1/n 0
0 1/n

so that Ag׳(AgAg־)׳i = (l/n)Ag׳ and Ag׳(AgAg1־)׳Ag = (l/n)Ag׳Ag. Now, (l/n)Ag׳Ag is a 

2nX2n matrix where any element x!j € (l/n)Ag Ag can be written as
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2
x . = (1/n) Y a . a..

IJ 1k kj
k = l 

2
= (1/n) £ akiakj 

k = l

= (l/n)[a a + a a ].11 1] Λ Z)

Therefore

x.. =
(l/n)[(l)(l) + 0]
(l/n)(O+ (1)(1)1 

0

i,j = l,...,n 
i»j = n + 1,... 
otherwise

1J
, 2n

or

x.. =
1/n

0
i,j=l,...,n; ij = n + 1,.. 

otherwise
.,2n

1J

The 2nX 2n projection matrix P can be written as

P = I - A׳(A AJ-1A 
g g g g

R O
= I O R

where R is an η X n matrix with elements

1 - 1/n i=j
Μ , -1/n i*j



APPENDIX B

CALCULATION OF Ag Ag׳ FOR THE MULTI-FACILITY PROJECTION MATRIX

Given the 2m X [m(m-l) + 2mn] matrix

B O
Ο B

A^A^' can be determined using

O ׳BB ,
A A = 

g g Ο BB׳
The elements in matrix B only take on the values 1, 0 or -1, so that row i can be described in 

terms of row index sets containing the column indices of the elements in row i which have 

values of 1 or -1. Then, using properties of these index sets, matrix BB׳ can be calculated.

The m X [m(m-l)/2 + mn] matrix B has elements q, where

jU/ilUl^i)

j € I (i) □
otherwise

with

I/i)
i-1

€ + (m —k)
k = l
i>l

m —i; i < mf = 1,

I (i) = [M + n(i— 1)] + 1, .... [Μ + n(i-1)] + nA

and
f i-1

I3(i) = i -f + (m-k)

t>1

f=l..... i-1; i>2 forM = m(m —1)/2.

The following properties are evident from the definitions of q.. and the index sets.
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Property 1 Let n(S) denote the number of elements in set S.

(i) ndji)) = m-i

(ii) n(I2(i)) = n

(iii) n(I3(i)) = i-1

Property 2 (i) For r € I/O, t € IJj) if i < j then r < t.

(ii) For r € I/O, t € I3(i) then t < r.

Property 3 (i) 1/i) 1/0 ה = ψ

(ii) I/O 0)13 ח = Φ

(iii) 12(i) 1/0 ח = φ

Property 4 For i * j

(i) 1/i) 1 ח/j) = φ

(ii) iji) 12 ח(j) = φ

(iii) 1/i) ה ι3φ * φ for i < j, so that nd^i) n I3(j)) = 1

(iv) Ui) ח I (j) = φ for i > j

(v) 12(i) n 13(j) = φ

(vi) Φ = (j)ח 12 0)12

(vii) i3(0 13 ח(j) = φ

The preceding properties can be used to determine the elements x of the mXm

matrix BB', where



<Πτ13Ί 
ρ

(!) Ι9ί
x-=״Xt-) = *b*b £ ״־X

(!)ßm 

(’)1ΒΊ
l-=(I-)I=’lrb”b 2 ־"«

(Γ)εΒ^

*13?’)

*^b ץ =
ρ 

(!Π?}

(*!^Γ) ?0ז1ןנ)
Ρ Ρ Βί )!( 13ןג )!(

Ζ ζ +,Mb

+V’b ץ +^b ץ

(02ι3ί (0^13ץ (DßI3i (Γ)ε13Ί
(!)ΖΒΊ (?)31?1(!) ןרm (’)1m

^’b ץ +^b

= u + m - ז

= i + u + T — m—ן

‘.r=!J0J

[(1-)(ί-)]((1)εϋ״ +[(n(1)K(y)zD״ ♦[(!)(DKa)1!)״ =

<’>ει^^ י()213ץ י()113ץ
5”b^b +Vb + ^י = ז \

(’)εΒΊ (3!1(!) ז)213ןנ M
·^b +*b*b +*b”b =

I = M 
^b^b ץ =

UW+

, ז = ני
f,b”b =\

UU1+

6L
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Therefore

Im + n — 1 i = j
— 1 otherwise i, j — 1,m.

Thus,

A A'
g g

BB׳ O
0 BB׳

A O
O A

where A is an m X m symmetric matrix with elements

m + n — 1
-1

i = j 
j *J·



APPENDIX C

CALCULATION OF (Ag Ag1־)׳ FOR THE MULTI-FACILITY PROJECTION MATRIX

From Appendix B,

A 0
0 A

A Ag g

where A is an nX n symmetric matrix with elements

m 4־ n — 1 i = j 
a.. =

y -1 i*j.
The 2mX2m symmetric matrix (A^A^)1־ can be calculated using

A1־ O

O A1־

where A'1 is an m X m symmetric matrix with elements

a־.1־
u

Since A-A-1 = 1, take x € I, then u
m

C

d
i = j

For i = i, x = 1 andu ’״־

x = yIJ — 
k = l

a., a, 1 
1k kj i,j = 1....n.

m
1 = Σ 

k = l

a-A1·״ 
1k ki

m
= a..a.-1 4־ a.,a.-1 

11 11 1k ki
k = l 
kxi

= (n + m- lk + (m- l)(-l)d.

This provides one of the equations required to solve for c and d,

(n4־m-l)c-(m-l)d = 1. (1)
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Fori*j, xu = Oand
tn
Σ= ״
k = l

a ,a. 1 1k kj

m
a-.a.T1 + a.A.71 + V a., aS1

n 1J 1j 1 עk kj
k = l 
k *i j

= (n + m - l)d + (-l)c + (m - 2)(-l)d.
This provides a second equation,

(n + l)d-c = 0. (2)

By substituting c = (n + l)d into equation (1) and solving for d, the elements of A1־ are 

obtained as d = l/n(n + m) and c = (n + l)/n(n + m).

Thus A1־ is an m X m symmetric matrix with elements

a.-1 =
IJ

(n+ lVn(n + m) 
l/n(n + m)

i = j
i *j.



APPENDIX D

PROJECTION MATRIX FOR THE MULTI-FACILITY fp DISTANCE MODEL

The calculation of the projection matrix P = I - Ag׳(AgAg׳)-l Ag will be accom­

plished in three stages, beginning with the calculation of Ag׳(AgAg׳)-l, then Ag׳(AgAg־)׳l Ag 

and ending with the final form for P.

1. Calculation of Ag’(AgAg’)1־

Recall that A ׳(A A T1 = 
g g g

B0 ׳
0 B׳

A0 1־

0 A1־
with A 1defined

as in Appendix B. A1־ can be written as A1־ = (l/n(n + m)) A where A is an m X m symmetric 

matrix with elements

(n +1) i=j
a.. = . .

‘J 1 i*j
Then,

0 ΒΆ .
1 = l/n(n + m) -־ל A A׳) A

8 8g 10 B'A

Using B = [B!... Bm_! C!... Cm], B'A will contain the submatrices B!׳A..... Bm_!׳A,

C!׳A..... Cm׳. From the definitions of Bt and Cr, the elements b!/ € Bt׳ and c!/ € Cr׳ can be 

expressed as

,m ; t = 1.........m-1
j = t
j = i + t i = 1........  m- t;j = 1,
otherwise

and c..1 = ׳J
1 j = r
0 otherwise

i = 1........ ,n;j= 1.........m; r=l,... .,m.

Take any element x!j € Bt'A for t= 1,..., m-1;
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x״ = Y b..' a..
1J 1J kj

k = 1 

m
= y b ' a,. 4- b..׳ a . + b... ’ a . 

k kj it tj 1(1+t) (1 + t)j״ 1■—

kxt4 + t

= a^ — a(i + t)j fori = l,...,m —t and j = l,...,m.

Forj = t, x!t = att-a(i+t)t = n + 1-1 = n.

Forj = i + t, Xi(i+t) = aui+t)-a<i+txi+t) = l-(n+l) = -n.

Forjxt, i + t; x,j = 1-1 = 0.

Thus, Dt = Bt׳ A is an (m-t) X m matrix with elements 

n j = t

d״ = —n j = i+t for t = 1,״., m —1.

0 otherwise
Take any element xy from the η X m matrix product Cr׳ A, 

m
x.. = y c..׳ a..

IJ — IJ kj
k = l

na
= J c. ׳ a.. + c. ׳ a . 

— 1k kj 1r rj
k = l 
k xr

= c. ׳ a . forr = l,...m.1r rj

Forj = r, x!r = c!/arr = 1 (n+1) = n +1.

Forjxr, x = c!/ a^ = 1 (1) = 1.

Thus Er = C/A is an η X m matrix with elements

n +1

1
e.. =

ט

j = r
for r = 1,..., m. 

otherwise
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2. Calculation of A ׳(A A 1־)׳A IKS s

A ׳(A A 1 (׳A = l/n(n + m) ο ο o 0
B'A

0

0

B'A

B 0

0 B

where

D1

B’A B
1!-»י
E!

= l/n(n + m)
B'AB

0

0

B'AB

[B.... B , C.... C 1 m— 1 1 m

E m

D B. ... D B , 11 1 m-1
• ·
• ·

D B, ... D B , m-1 1 m-1 m —1

DC ... DC 11 Im
* »

D ,C, ... D C m—1 1 m—1 m

E. B, ... E B , 11 1 m-1

• ·

E B, ... E B ml m m - 1

E,C, ... E, C11 1 m

E C, ... E Cml mm

It is necessary now to derive the elements from the various matrix products in B'AB.
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2(a) Calculation of Dt Bs

For Xjj from the (m-t) X (m-s) matrix Dt Bs and s, t = 1,........m-1 ,
m

x..= Y d b,.
Ij 1k kj

k = l

If k * t, i 4-1, s or s 4־ j then either dik or b^j is zero.

By writing x,j in terms of these values for k and imposing restriction on the indices to prevent

duplication of terms, then

d b +d״. b . 
is sj 1(j+s) (j+s)j

d... . ..b.. .... + d.,.. .b,.. .. 4־ d..b..
1(1 + t) (1+t)j 1(j + 3) (j + s)j it tj

it tj 1(14■ t) (l+t)j 13 SJ

d. b . 4־ d... , ..b.. , ... 4־ d.,., .b.. ..IS SJ 1(1 + t) (1 + t)j 1(j+s) (j + s)j

^is^sj + ^i(i + t)^(i + t)j ^it^tj +^i(j + s)^(j + s)j

S=t

s*t, i4-t = s,j4-s*t, i4-t*j4-s

s*t, i4-t*s, j4־s*t, i4־t=j4־s

s*t, i4-t*s, j4-s=t, i4־t*j4־s

s^t, i4־t3ts,j4־s*t, i4-t*j4-s.

Case 1 s = tandxjj = d!t(1) 4- d^+tji-l) = n-dj(j+t)·

For i = j, x!i = n-di(i+t) = n-(-n) = 2n

For i * j, Xy = η - 0 = n

DtBt is an (m-t) X (m-t) matrix with elements

2n i=j 
n otherwise 

for t = 1,... ,m-1.
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Case 2 s<t. If i +1 — s then i = s-t which is impossible since s<t. Thus i*s-t

For i + t=j + s, xy = ditbtj + d^uby♦^ +

— n^Ui + t-a) + (-n)(-D + diad)

Since s<t, then s<t + i and hence di3 = 0

Sincesxtand tx( i + t-s) + s, then byi+t-g) = 0, and 

xy = n forj = i + t-s

Forj + s = t, xy = d[g bgj + di(i+t)b(i+t)j + ditbyt_sj

= dia(l) + (-n)b(j+t)j + n(-l)

Since s<t, then s<i + t and d^ =0. Also i + t *j + s and so b(j+t)j = 0 and xy = -n 

forj= t-s.

Forj + s*t, i + txj + s and i + t*s, thendi(j+s) = O andb(,+t)j = 0.

Then xy — djgbSj 4־ d!t by

= di3 + nby

Since s < t and s * t + i then d^ = 0. Since j +1 s + j, then by = 0 and xy = 0 

fors<tandj* t-sorjx i+ t-s.

Therefore DtBs is an (m-t) X (m-s) matrix for s < t = 2.......... m-1:

-n j = t-s

with elements x.. = IJ n j =i+t-s

0 otherwise
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Case 3 s>t. Ifj + s = tthen j = t-s which contradicts s>t.

Fori4־ t =s, Xj = disbSj + di(j+8)by+Sjj + ditby

= Φν-8)8(1) + di(j+s)(-D + n btj

= -n-di(j+S)+ n btj

Since j + s * tandj + s * i + t, thendiy + s) = 0

Since s > t and j + s > t, then btj = 0 and xy = -n for i = s -1.

Fori + t = j + s, xy = dit btj + di(i+t)by+e) + d1rbn

= nbtj + (-n)(-l) + dir.

Since t x j + s and t<s, then by = 0. Since s>t and s* i + t then dia = 0 and 

x!j = n for i = j + s -1.

For i + t s, i + t * j + s amd j + 9 x t, then djy+t) = 0, by + sjj = 0, d1s = 0, 

btj = 0, and xy = 0.

Thus, Dt B. is an (m-t) X (m-s) matris for t < s = 2........m-1.

-n i=s-t

with elements x. = n i=j + s-t

DtBs is the transpose of Ds Bt
0 otherwise

2(b) Calculation of DtCu

The calculation of DtCu proceeds as follows; for xy € DtCu, t = l,...,m-l and u = 1.... m
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m
\ = Σ 

k = l

m 
Σ 

k=l
 d. c . + d... c ־4

it tj i(i+t) (i + t)j

k*t,i+t

= n% ־ nc(i+t)j 1 = 1״׳·,m-t; j = Ι,.,.,η.

Case 1: t=u

Then x!j = ncuj - nc(i+uij = n~O = n and DtCt is an (m-t)Xn constant matrix for 

t=l,...,m-l with elements Xy = n.

Case 2: t<u

Fori + t=u, x,j = nc(u_i)i-ncUj = n(0)-n(l) = -n.

For i +1 x u, Xy = n(0) - n(0) = 0, and Dt Cu is an (m-t) X n matrix with elements

x
ij

— n i=u —t
0 otherwise

Case 3:

for t<u = 2,...,m.

t>u

If i +1 = u, then i = u-t which is impossible since t > u. If i +1 * u, then Xy = 0. Thus

DtCu = Ofor u<t = 2,..., m-1.

2(c) Calculation of ErBs

For Xy from the η X (m-s) matrix Er Bg and s — 1.........m-1; r — 1.........m ,
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tn
\ = Σ 

k = l

tn

6.. b,. + e· b . + β-ζ. b .1k kj 13 8J l(j + 3) (j + 8)j
k = 1

p — p
is i(j+3) ‘

Case 1: s = r

Then xy = e!r- e!(j+r) = n+ l- l = n.

Er Br is an nX(m-r) matrix for r= l,״.,m-l with elements Xij = n.

Case 2: r<s.

Since r < s, then sir, s+j^r and x,j = 1 - 1 = 0 .

Er Bs = 0 for r <s = 2,.... m-1

Case 3: r>s

If j + s = r, xy = e« - e!r = 1 - (n + 1) = -n .

Ifj + s*r, xy= 1-1 = 0.

Er Bs is an nX(m-s) matrix for s<r = 2,...,m, with elements

— n j = r—s
0 otherwise

2(d) Calculation of ErCu

For xy from the η X n matrix Er Cu and u,r = 1,.......m ;
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m

m
= Σ 

k = l 
kXu

Case 1: u = r

Then xy = e״ = n + 1.

Er Cr is an ηX n matrix with elements Xy = n +1 forr = l,...,m.

Case 2: rxu.

Then x,j = e,u = 1.

Er Cu is an nXn matrix for r, u = 1,.... m with elements Xy = 1 for rxu.

3. Projection Matrix

Using the properties that

DtBg is the transpose of DgBt and ErBg is the transpose of DgCr,

ErCr is an nX n constant matrix with elements Xy = n +1 for r = 1..... m and

ErCu is an nXn unit matrix with elements x!j = 1 for r, u== 1, ... m and r x u, the final form

for (-l/n(n 4- m))B'AB can be written as
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l/n(n + m)

... A -D!B2״־

 ,_W -DA ... -OA־>

t ·

. D B- ... ,(׳ D B)- 1 m —1 m—1 m —1

-DA-DA--0!C0 !.״ ־ A

0 -D2C2... -D^ -D2Cm

9
9

9
9

0-™A0 0 - ־0!.,״0־!-״

(-0,0/ 0 ... 0

C-D^/ (-DA0 ״.׳
••
9•

-(DC ׳) ... (—D .C ׳) Im m— 1 m

-E1C1־E1C2 ··· ־“A

-ΕΑ־ΕΑ ■־ ־·BA
. · ׳ • * ״

-ΕΑ־ΕΑ ·״ ־E1c1

P = I - A (A A 1־)׳A g g g g

I —(l/n(n + m)) B A B 0
. 0 I-(l/n(n + m))B AB

R 0
0 R

= l/(n + m)

where R is an [(m(m-l )/2 + mn] X [m(m-l)/2 + mn] matrix given by
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F1 % - p 
l(m-l) H1 K12 IZ 

l(m-l) ··־ K, Im

G, ׳ Fo ... G, 0 H • K12.״ 2 2(m — 1) 2 2(m-1) 2m
9 • • • 9 9 9

• • • • 9 9 9

• • » • 9 9 9

G, ' G~ ... F 0 0 H Kl(m-l)
R = -----------

H.׳

2(m— 1)

0 ...

m— 1

0 L N

m— 1 (m — Dm

N

K12 h; ... 0 N L • · · N
•
•
•

K ׳ • •9

*
9

•

K . ׳

9

9

9

N

9

9

9

LIm (m-l)m

and Ft, Gts, Htf K^, L and N are defined as follows:

F is an (m — t) X (m — t) matrix with elements f =
n + m-

-1
-2 J for t = 1,... 

i^j
,m — 1;

G is an (m — t) X (m — s) matrix with elements g.. = ts U

1 i=s—t
— 1 i=j + s—t fort<s=2 m —1;

0 otherwise
Ht is an (m-t) X n constant matrix with hy = -1 for t= 1,.... m-1;

is an (m — t) X n matrix with elements k..
1 i=r-t 

for t<r = 2,...,m;
0 otherwise

L isan η X n matrix with elements €.. —
(n(n + m) —(n + l)]/n i=j 

— (n + l)/n i*j

and N is an nX n constant matrix with elements n,j----1/n.
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