
COMBINATORIAL OPTIMIZATION FOR DATA

CENTER OPERATIONAL COST REDUCTION

COMBINATORIAL OPTIMIZATION FOR DATA CENTER

OPERATIONAL COST REDUCTION

BY

SOMAYYE ROSTAMI, M. Sc. Electrical Engineering

a Thesis

submitted to the Department of Computing and Software

and the School of Graduate Studies

of McMaster University

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

© Copyright by Somayye Rostami, July 2023

All Rights Reserved

Doctor of Philosophy (2023) McMaster University

(Department of Computing and Software) Hamilton, Ontario, Canada

TITLE: Combinatorial Optimization for Data Center Operational

Cost Reduction

AUTHOR: Somayye Rostami

M. Sc. (Electrical Engineering/Telecommunication Sys-

tems),

Iran University of Science and Technology, Tehran, Iran

SUPERVISOR: Dr. Douglas Down, Dr. George Karakostas

NUMBER OF PAGES: xiv, 154

ii

Lay Abstract

Data centers, each hosting as many as tens of thousands of IT devices, contribute to a

considerable portion of energy usage worldwide (more than 1 percent of global power

consumption). They also encounter other operational costs mostly related to reliabil-

ity of devices and maintenance. One of the key places to reduce energy consumption is

through addressing the thermal heterogeneity in data centers by thermal-aware work-

load distribution for the servers. This prevents hot spot generation and addresses the

trade-off between IT and cooling power consumption, the two main power consump-

tion contributors. The corresponding optimization problem is challenging due to its

combinatorial nature and the complexity of thermal models. In this thesis, we present

a holistic approach for thermal-aware workload distribution in data centers, using lin-

earization to make the problem model-independent and simpler to study. Two quite

general nonlinear optimization problems are defined. The results confirm that the

proposed approach completed by a proposed heuristic solves the problems efficiently

and with high precision. Finally, we address a problem in inventory management

related to data center maintenance, where we develop an efficient algorithm to solve

a lot-sizing problem that has a goal of reducing data center operational costs.

iii

Abstract

This thesis considers two kinds of problems, motivated by practical applications in

data center operations and maintenance. Data centers are the brain of the internet,

each hosting as many as tens of thousands of IT devices, making them a consider-

able global energy consumption contributor (more than 1 percent of global power

consumption). There is a large body of work at different layers aimed at reducing

the total power consumption for data centers. One of the key places to save power

is addressing the thermal heterogeneity in data centers by thermal-aware workload

distribution. The corresponding optimization problem is challenging due to its com-

binatorial nature and the computational complexity of thermal models. In this thesis,

a holistic theoretical approach is proposed for thermal-aware workload distribution

which uses linearization to make the problem model-independent and easier to study.

Two general optimization problems are defined. In the first problem, several cooling

parameters and heat recirculation effects are considered, where two red-line temper-

atures are defined for idle and fully utilized servers to allow the cooling effort to be

reduced. The resulting problem is a mixed integer linear programming problem which

is solved approximately using a proposed heuristic. Numerical results confirm that

the proposed approach outperforms commonly considered baseline algorithms and

iv

commercial solvers (MATLAB) and can reduce the power consumption by more than

10 percent. In the next problem, additional operational costs related to reliability

of the servers are considered. The resulting problem is solved by a generalization of

the proposed heuristics integrated with a Model Predictive Control (MPC) approach,

where demand predictions are available. Finally, in the second type of problems,

we address a problem in inventory management related to data center maintenance,

where we develop an efficient dynamic programming algorithm to solve a lot-sizing

problem. The algorithm is based on a key structural property that may be of more

general interest, that of a just-in-time ordering policy.

v

To all the influential individuals in my life

vi

Acknowledgements

I would like to first express my gratitude to McMaster University for providing me

with a cooperative, dynamic, and responsive learning environment. I am thankful for

the support and attention given to my various needs and concerns during my time

there. Additionally, I am truly grateful for the opportunity to study under the guid-

ance of Dr. Douglas Down. Throughout the duration of my studies, I consistently felt

supported and understood by him. Working with him felt like an excellent fit, as he

exemplifies reasonableness, intelligence, supportiveness, patience and professionalism.

While I had the autonomy to work independently, I always received valuable advice

and feedback from him. I would also like to extend my appreciation to Dr. George

Karakostas, my co-supervisor, whose deep enthusiasm and guidance helped shape my

work. Under his supervision, I not only received support but also gained a deeper

understanding of discipline. Additionally, I appreciate the valuable insights I received

from the committee members, Dr. Ashtiani and Dr. Todd.

I am also grateful for the opportunities that my home country, Iran, has provided

me, which have led me to the position I am in today. Finally, I would like to express

my heartfelt appreciation to my family and all the important individuals in my life

vii

who have had a profound impact on me and have inspired me to persevere.

viii

Contents

Lay Abstract iii

Abstract iv

Acknowledgements vii

Declaration of Academic Achievement xv

1 Introduction 1

1.1 Background and Literature Review 7

1.1.1 Overview of Data Centers . 7

1.1.2 Models of Power, Temperature and Workload 10

1.1.3 Joint ICT and Cooling Power Optimization 16

1.1.4 Thermal-aware Workload Distribution 18

1.1.5 The Lot-Sizing Problem . 24

1.2 Research Summary . 31

2 Linearized Data Center Workload and Cooling Management 35

2.1 Introduction . 37

ix

2.2 System Model and Motivation . 43

2.3 Problem Definition . 47

2.4 Approximation of the Optimal Solution 50

2.4.1 NP-completeness . 50

2.4.2 Bad Cases for Simple Rounding 51

2.4.3 Proposed Approximation Schemes 55

2.5 Evaluation . 62

2.5.1 Evaluation of the Proposed Schemes for Linear Systems 63

2.5.2 Evaluation of Energy Savings for the Original System 70

2.6 Conclusion . 73

3 Thermal-aware Workload Distribution for Data Centers with De-

mand Variations 80

3.1 Introduction . 81

3.2 System Model . 85

3.3 Approximation Algorithm . 90

3.4 MPC Approach . 94

3.5 Evaluation . 95

3.6 Conclusion . 104

4 Single-item Lot-sizing with Quantity Discount and Bounded Inven-

tory 110

4.1 Introduction . 111

4.2 Problem Definition . 114

4.3 Structural Properties of an Optimal Solution 115

x

4.4 A Dynamic Programming Algorithm 120

4.5 The Case of Two Items . 127

5 Conclusion 136

xi

List of Figures

1.1 Typical data center power consumption breakdown [2] 2

1.2 Typical layout of a data center [7] . 8

1.3 The hot aisle/cold aisle configuration [3] 9

1.4 The heat recirculation effect [2] . 10

1.5 The coupling of IT and cooling power consumption [2] 13

1.6 Examples of piecewise concave cost functions 31

2.1 The data center’s top view according to [22][24] 47

2.2 a) The actual and linearized fan power consumption, b) The actual

and linearized chiller power consumption 68

3.1 a) The actual IT power consumption (Watts) b) The piecewise linear

approximation of IT power consumption 89

3.2 The data center’s top view according to [21] 96

4.1 Demands for the four times of interval Si, i ∈ [n]. 129

xii

List of Tables

2.1 Notations and Definitions . 46

2.2 Performance of the algorithms over 100 runs for the synthetic linear

models and over a selected range of demand D 65

2.3 Average running time (in seconds) of the algorithms over 100 runs for

the synthetic linear models and over a selected range of demand D . . 66

2.4 Performance of the algorithms over 100 runs for the linear data center

models and over a selected range of demand D 69

2.5 Performance of different algorithms over the whole range of demand

D, with results applied to the original 25-server system 72

3.1 Performance of the algorithms for different values of switching cost per

server w . 98

3.2 Performance of the algorithms in the presence of workload fluctuations

with different rates . 99

3.3 Average running time of the algorithms (in seconds) in the presence of

workload fluctuations with different rates 100

xiii

3.4 Performance of the integrated MPC approach with DCVS for different

window sizes W , where there is noise with the parameter η and there

are three cases for the next time slot demand range where the demand

is changed with probability p for the next time slot. 103

xiv

Declaration of Academic

Achievement

The author of this thesis is the main author and contributor of the three manuscripts

described in Chapters 2, 3 and 4. For the third manuscript, “Single-item Lot-sizing

with Quantity Discount and Bounded Inventory”, the author list is in alphabetical

order.

Her contributions to these works consist of writing the manuscript, formulating the

optimization problems, developing algorithms and approximation heuristics, design-

ing baseline algorithms, conducting the experiments, implementing the framework,

and generating the numerical results.

xv

Chapter 1

Introduction

This chapter starts with a discussion of data center operational costs followed by

motivations and an outline of this thesis. In Section 1.1, an overview of data centers

is presented, some popular models are introduced and related works are discussed.

Section 1.2 summarizes the remainder of this thesis.

Data centers play a crucial role in today’s internet and online services. They host

Information and Communication Technology (ICT) devices whose functions are pro-

cessing, storing and transmitting information. Whether small or large, data centers

operate in a complex and interactive environment with a variety of costs. According

to [1], the cost of ownership is divided into five main expenses: infrastructure, server,

power, network and maintenance costs. Infrastructure cost includes the capital costs

such as the cost of land acquisition and building construction. The server and network

costs encompass server acquisition and the cost of network hardware such as switches

and cables. Power cost is the main operational cost, covering the power consumed

1

PhD Thesis—S. Rostami McMaster University—Computer Science

Figure 1.1: Typical data center power consumption breakdown [2]

by electrical devices, including servers, network and cooling components. According

to Figure 1.1, servers and the cooling system are the main power consumers in a

data center. Power Usage Effectiveness (PUE), the ratio of total power consumption

to computing (IT) power consumption, is a popular metric for new developments as

it is a measure of operational efficiency. The main goal is reducing the total power

consumption, which may not be guaranteed by lowering PUE, but PUE is a generally

accepted metric. Maintenance costs are impacted by the reliability of the devices,

for example reduced equipment lifetimes may lead to more frequent replacements.

Reducing maintenance costs has begun to receive more attention in the literature.

With the increased demand for internet services such as search engines, online

banking and social media, and with the rapid development of cloud computing and

artificial intelligence, data center operational costs have increased dramatically [3].

In 2013, data center energy consumption in the United States was about 91 billion

kilowatt-hours, enough to supply all of the households in New York City for two

2

PhD Thesis—S. Rostami McMaster University—Computer Science

years. An estimate for 2020 was 140 billion kilowatt-hours [2]. In [4] two estimation

models are compared. The most authoritative bottom-up study estimated between

1 to 1.5 percent of global energy use for data centers in 2010. Extrapolating, a

rapid growth in demand would correspond to a rapid increase in energy consumption,

a phenomenon that has often been touted in the literature. However, the current

bottom-up models estimate only a 6 percent increase in energy consumption from

2010 to 2018 [4]. Three efficiency effects explain the fact that consumption is rising

more slowly than demand: the improved energy efficiency of new computing and

networking devices, virtual machine migration techniques which allow multiple tasks

to be run on a single physical machine, and the transition to cloud- and hyperscale-

class data centers that use ultra-efficient cooling systems. Having said that, due to

the huge energy consumption of data centers with many tens of thousands of IT

devices, decreasing the energy consumption even by a small percentage is important

from both the energy and climate policy perspectives [4].

Data centers operate in a very dynamic environment and there are several inter-

actions among their components. This makes power consumption management of a

data center a complicated task. The dynamics are related to fluctuating IT work-

load, thermal effects of servers and cooling equipment due to their locations, and a

time-varying ambient environment. Ignoring such dynamics in a data center can lead

to irregular air flows and hot spot generation, leading to a very poor PUE and high

operational costs [2].

To minimize operational costs, optimization and management of cooling and IT

power consumption (as the two main power consumers in data centers) should be

3

PhD Thesis—S. Rostami McMaster University—Computer Science

done jointly. Because the cooling system is a main power consumer in a data center,

over-provisioning of the cooling facilities leads to high operational costs, while under-

provisioning may lead to unsafe operational temperatures for the servers leading to

high failure rates and maintenance costs. There may also be a trade-off between

cooling and IT power consumption. Another important factor in the optimization

is Quality of Service (QoS). Workload distribution should guarantee QoS. The opti-

mization depends on the models that are used for inlet temperatures, IT workload,

and cooling and IT power consumption. Overall, joint optimization of cooling and IT

power consumption while satisfying QoS and inlet temperature constraints is a chal-

lenging problem [2]. In addition to unsafe ranges for the operational temperatures,

frequent temperature changes (due to workload fluctuations) are also correlated with

high failure rates [5]. In general, reliability of devices is a recent perspective consid-

ered in the literature. Frequent switching of the servers between on and off states can

also have adverse effects on QoS due to imposing delay [6].

There are several possibilities to reduce the energy consumption in a data center.

Energy consumption reduction can be performed at different levels including chip

level, server level, rack level and room level. At each level, IT and/or cooling power

consumption can be improved. At the chip level, for example, Dynamic Voltage and

Frequency Scaling (DVFS) can reduce the CPU’s power consumption. Liquid cooling

of CPUs is another technique at the chip level that is seeing greater levels of imple-

mentation. At the server level, server fans can help air circulation and intelligent

workload distribution can avoid hot spot generation. At the rack level, some tech-

niques such as holes in the rack front door and heat exchangers in the rack rear door

can influence the air flow around the servers. At the room level, as an example, a

4

PhD Thesis—S. Rostami McMaster University—Computer Science

technique named hot aisle and cold aisle containment can reduce hot air recirculation

in the room [7].

The power consumption optimization considered in this thesis is at the server and

the room levels for traditional air-cooled data centers. Several techniques are pro-

posed in the literature at both levels. A classification of the techniques is presented

in [2]. Three main techniques are introduced for the server level. The first technique

is workload dispatching (also known as job scheduling or task placement). It assigns

incoming load to the servers (computing nodes) such that performance and temper-

ature requirements are met, while preventing hot spots and minimizing the overall

power consumption. At a (different) lower layer, using virtual machines allows work-

load migration between the physical machines (servers). In this way, multiple tasks

can be run on a single machine and so with the increased number of idle servers, a

subset of servers can be powered down to save idle power consumption (which can

be more than 50% of the peak power consumption [6]). This is referred to as server

consolidation. Workload migration can also balance the load of servers for perfor-

mance requirements and thermal efficiency. Finally, server fan control can be used

to reduce the fan power consumption. Room-level techniques are mostly related to

cooling power consumption and include adaptive vent tile openings, Computer Room

Air Conditioner (CRAC) fan speed control, CRAC supplied temperature control, and

outside air cooling. System layout planning for server placement in racks to lever-

age the fact that servers have different characteristics is another possibility that can

reduce cooling power consumption.

5

PhD Thesis—S. Rostami McMaster University—Computer Science

This thesis has two parts. The focus of the first part is on thermal-aware work-

load distribution while considering thermal and performance constraints, along with

additional reliability aspects. There is a significant body of literature with similar

perspectives but with different power consumption, thermal or performance models.

The thermal model specifically is the main difference and challenge for optimiza-

tion problems in this area. Different techniques to solve the optimization problem

are proposed such as greedy heuristics or meta-heuristics, for example genetic algo-

rithms. Similar approaches in defining the power consumption optimization problems

motivated us to propose a general approach to solve them which can be applicable

in different settings. Our aim is to build a theoretical framework for some general

combinatorial optimization problems in this area and propose potential algorithmic

approaches to solve them. Most work in this area has appeared in the systems liter-

ature but there is a lack of theoretical analysis of these optimization problems. The

theoretical analysis becomes more important when one notices that the optimization

problems defined in the literature have similarities in terms of the cost function and

the constraints. We start with a general nonlinear problem proposed in a related

work where there is no accompanying discussion about the solution. Our approach

is to first linearize the problem. Depending on the type of decision variables (contin-

uous or integral), linearization leads to a linear programming problem or a (mixed)

integer linear programming problem. In the case of a mixed integer programming

problem a heuristic is proposed to approximate the solution. Linearization is per-

formed with different aims, first, studying the inherent difficulty of the problem and

second proposing a time-efficient approach to solve the problem. The latter is im-

portant for online operation especially when the thermal models are computationally

6

PhD Thesis—S. Rostami McMaster University—Computer Science

expensive to evaluate. For example these models may not be closed-form and may

involve solving a set of differential equations. Defining an optimization problem that

considers the key challenging aspects is helpful to design algorithms for solving the

original problem and its extended versions. We expect that this approach can help

build a theoretical framework for optimization problems in this area.

For the second part of the thesis, a combinatorial optimization problem related

to multi-period lot-sizing with quantity discount is studied. The application of this

problem is also related to reducing operational costs for a data center. Some items

used in a data center are purchased and stored in the inventory. The goal is to

minimize the summation of ordering and holding costs when a quantity discount is

available. We study the case of a single item with a quantity discount and bounded

inventory. We also show that the case of two items is an NP-hard problem.

1.1 Background and Literature Review

This section starts with a general review of the literature, including different cooling

strategies and data center related models. It ends with a review of the works most

closely related to this thesis.

1.1.1 Overview of Data Centers

A traditional data center consists of the components shown in Figure 1.2. The ICT

equipment includes server racks and networking components such as switches. The

main consumers of ICT power are the servers. The total power consumption of servers

depends on their technology, the amount of workload and the workload distribution.

7

PhD Thesis—S. Rostami McMaster University—Computer Science

The other main contributor to the power consumption in a data center is the cooling

system. According to [3], the main cooling methods are active cooling and passive

cooling.

Figure 1.2: Typical layout of a data center [7]

Active air cooling is based on using CRACs. Figure 1.3 shows a common active air

cooling approach in a data center. ASHRAE (American Society of Heating, Refrig-

erating and Air-Conditioning Engineers) and ETSI (European Telecommunications

Standards Institute) have defined some climatic norms including air temperature and

humidity ranges for a data center environment. A good circulation of air flow is the

core requirement for respecting the norms and having an efficient cooling system. Hot

aisle/cold aisle is a common technique in which the cold air comes through a raised

floor. The air flow is from the fronts of the racks to their rears; the air moving from

front to back absorbs heat from the servers. The heat is then extracted by the CRAC

8

PhD Thesis—S. Rostami McMaster University—Computer Science

units and finally rejected to the exterior environment [3]. This method reduces the

mixing of hot and cold air. However, a portion of hot air in the rear of racks will

return to the front of racks, instead of being extracted by the CRAC unit [2]. This

effect is called heat recirculation, and is shown in Figure 1.4. Heat recirculation has

a harmful effect, because it increases the server inlet temperatures. To compensate

for this effect the supplied temperature should be set to a lower level than if heat

recirculation were not present. Subsequently, the supply fans then work with higher

speeds due to the lower temperature [3]. This is because when air is colder, the air

flow rate becomes slower.

Figure 1.3: The hot aisle/cold aisle configuration [3]

To reduce the power consumption in the active cooling method and avoid heat

recirculation, passive cooling methods have been proposed. The main solutions in

the past few years are: free cooling, liquid cooling, immersion cooling, two-phase

cooling and improving the influence of the building envelope [3]. While examining

such techniques in the future may be helpful, the primary focus of this thesis will be

on active, air-cooled systems.

9

PhD Thesis—S. Rostami McMaster University—Computer Science

Figure 1.4: The heat recirculation effect [2]

1.1.2 Models of Power, Temperature and Workload

In this section several models considered for power consumption, temperature and

workload are provided. These models are used in the formulation of the corresponding

optimization problems.

IT Power Models

The most common IT power models are presented in [8]. The main consumer of

computing power in a server is the CPU. According to [8], there are two popular IT

power models:

1. In a DVFS-enabled processor the power consumption of a server, P (f), is a

cubic function of its processor’s working frequency, f :

P (f) = β1 + β2f
3 (1.1.1)

where β1 is the idle power consumption. When the server is in stand-by mode,

10

PhD Thesis—S. Rostami McMaster University—Computer Science

the power consumption is a constant that is much less than β1. The constant

β2 is related to the average switching activity and capacitance. It also includes

a linear relation between voltage and frequency of the CPU [9][10].

2. In a non-DVFS processor there is no voltage and frequency scaling and the

CPU’s frequency is equal to a constant, fmax. Given the server utilization, u,

the fraction of time that the CPU is busy, then from [8], the power consumption

is given by

P (u) = β1 + β3u. (1.1.2)

In [11] a more complex model is proposed, relating the performance state (P-state)

of a core and its power consumption. More accurate models have been proposed in

[12]. In this thesis, we use non-DVFS power models.

Cooling Power Models

Figure 1.5 shows the coupling of IT and cooling power consumption. According to

[13], each thermal node in a data center has an input and output temperature and

also a power consumption. In [6] the power consumption of a CRAC unit is given as

Pc =

Kl

Tin−Tout

COP (Tout) Tin ≥ Tout

0 Tin < Tout

(1.1.3)

where Tin and Tout are the input and output temperatures of the CRAC unit, re-

spectively. Kl is a positive coefficient related to the volume of air passing through

the CRAC unit (which depends on the air flow rate and the mass density of the

11

PhD Thesis—S. Rostami McMaster University—Computer Science

air) and the air heat capacity [8]. There is also an adjustable reference or supplied

temperature, Tref , for CRACs. Tout tends to the minimum of Tref and Tin [13].

The universal coefficient of performance for each CRAC unit is defined in [13] as

COP (Tout) = 0.0068T 2
out + 0.0008Tout + 0.458 (1.1.4)

When there is only one CRAC unit, its power consumption is related to the total

computing power consumption as [14]

Pc = PIT

COP (Tout)
(1.1.5)

There may also be other cooling facilities in a data center, for examples fans,

computer room air handlers, chiller plants and air-side economizers. Some models

are proposed in [15][16]. For example fan power consumption is a cubic function of

fan speed. In this thesis, we do not assume a particular cooling facility for a data

center, instead the model includes several cooling parameters on which the cooling

power consumption within the data center depend.

12

PhD Thesis—S. Rostami McMaster University—Computer Science

Figure 1.5: The coupling of IT and cooling power consumption [2]

Thermal Models

A thermal model determines the server (computing nodes) temperatures and is used

in the temperature constraints of power consumption optimization problems. The

thermal model can be considered as the main challenge for power consumption opti-

mization in a data center. Providing a precise model that can also quickly calculate

the temperatures is an important requirement for online optimization. There are

white, gray and black box approaches for temperature models, based on physics,

physics and learning (data-driven), and learning, respectively [2][17]. Computational

Fluid Dynamics (CFD) simulations can precisely estimate the temperature and air

flow distributions but are computationally expensive and may require many parame-

ters. They are useful for initial data center layouts but are infeasible for real-time tasks

[17]. Data-driven methods rely on data read from physical sensors. They are fast and

they also can adapt to updates in the data center layout. One data-driven method

is presented in [17][18]. According to [19], an appropriate method is a combination

13

PhD Thesis—S. Rostami McMaster University—Computer Science

of physical characteristics and learning from data. Such methods can be fast and

sufficiently precise to capture dependencies of temperatures on workload variations,

cooling parameters and the layout of the data center. Two simplified zonal-based

models are presented in [19][20] that assume uniform conditions within different ab-

stract zones in a data center, where each zone may contain several servers. However,

the time to simulate these models (they are based on solving a set of differential

equations) is still on the order of seconds even for a small data center with 25 zones

(this data center is the basis for our experiments described later in the thesis). This

makes using such models for online power consumption optimization problematic. A

deep learning approach is presented in [21] for temperature predictions.

On the other hand, some simplified parametric linear models are common in the

literature. A key differentiation between models is whether they are steady-state

models or transient models. A steady-state model that is frequently used is [22][23]

Tin,i = Tsup +
n∑

j=1
DijP

comp
j (1.1.6)

where there is one CRAC unit, Tsup is the supplied (reference) temperature of the

CRAC unit and D is the heat recirculation matrix. Tin,i is the inlet temperature for

server (computing node) i, n is the total number of servers and P comp
i is the power

consumption of server i. The term ∑n
j=1 DijP

comp
j represents the heat recirculation

effect.

14

PhD Thesis—S. Rostami McMaster University—Computer Science

A common transient model is [6]

Tout(k + 1|k) = AdTout(k|k) + BdU(k|k)

Tin(k + 1|k) = CdTout(k + 1|k)
(1.1.7)

where Tin and Tout are the input and output temperatures for the CRAC units or the

inlet and outlet temperatures for the racks, respectively. U is the input vector con-

sisting of the rack power consumptions and the CRAC units’ reference temperatures.

The notation (j|k) means the value at time step j based on the information up to

time step k.

In this thesis we use steady-state abstract thermal models, including several cool-

ing parameters and heat recirclation effect, where a zonal-based thermal model is

linearized for example.

Workload Models

Workload should be measured and predicted based on historical data. Two approaches

are time series prediction and machine learning [2][24][25][26][27][28]. In [14] a data

center system is modelled as a GI/G/n queue and the arrival rate is estimated by use

of a Kalman filter. The maximum arrival rate is estimated using regression. In [6] an

M/M/n queuing model is used. We use time series prediction. One possibility is to

use Auto-Regressive Integrated Moving Average (ARIMA) models. A non-seasonal

ARIMA model, AR(p, q, d), for forecasting the demand at time period k, y′
k, is as

follows:

15

PhD Thesis—S. Rostami McMaster University—Computer Science

y′
k = c + ϕ1y

′
k−1 + · · · + ϕpy′

k−p + θ1ϵk−1 + · · · + θqϵk−q + ϵk (1.1.8)

where p is the order of the auto-regressive part, q is the order of the moving average

part, d is the degree of differencing (differences between consecutive values) involved

in the calculation of y′
k, and ϵk is white noise [29].

1.1.3 Joint ICT and Cooling Power Optimization

There is a significant body of literature on optimization approaches to reduce the

power consumption in a data center. The proposed cost functions are directly or im-

plicitly related to the power consumption. As mentioned in several works, there is a

trade-off between IT power consumption and cooling power consumption. The strat-

egy to reduce the IT power consumption is to decrease the idle power consumption

by distributing the workload on the least possible number of servers and switching

the idle servers to stand-by mode or turning them off. However, this may increase the

temperature of the active servers and generate hot spots that require increased cool-

ing effort to reduce the temperature to the safe range. In other words, to reduce the

cooling power consumption the maximum temperature of servers must be reduced.

As mentioned previously, optimization is typically performed in different layers.

One possibility to reduce the power consumption is optimizing the placement of

servers in racks, known as layout planning [2]. As the servers may have different

power efficiencies and the locations in the racks are also different in terms of heat

recirculation, the placement of the servers affects the cooling power consumption. In

[30] power profiles are set using historical data and heuristics are proposed to map

16

PhD Thesis—S. Rostami McMaster University—Computer Science

the servers to the rack slots. In [31] varying workload is considered and an opti-

mization problem is formulated that minimizes the weighted summation of maximum

temperatures over a set of workload sizes.

Another possibility for optimization is to leverage virtualization of data centers.

Establishment of virtual machines is a technique used in data centers to control the

workload distribution. The arriving tasks have different system requirements such

as number of processors and the size of memory. The tasks are assigned to virtual

machines that are in turn assigned to physical machines (servers). As the workload

changes over time, virtual machines can be migrated between physical servers in order

to perform performance optimization. Virtualization with the aim of joint IT and

cooling power consumption optimization while respecting the QoS and temperature

constraints is performed to avoid under-loaded and over-loaded servers. Under-loaded

servers increase IT power consumption while over-loaded servers may generate hot

spots. Procedures typically consist of two parts: VM placements and VM migrations.

A comprehensive explanation is given in [32]. Optimization in the virtual machine

layer results in complicated optimization problems. The optimization problems are

variations on bin-packing problems that are commonly approximated with greedy

algorithms [32][33]. A multidimensional best-fit algorithm is proposed in [34]. An

ant colony algorithm is proposed in [35]. A mixed integer programming problem

is presented in [36] and approximated by a heuristic. A simulated annealing based

algorithm is presented in [37]. Some theoretical results are given in [38].

The other layer is workload distribution which focuses on the total size of the

workload and distributes it among the servers (computing nodes) while optimizing

17

PhD Thesis—S. Rostami McMaster University—Computer Science

the total power consumption. This is beneficial because it captures the effect of

workload distribution without considering the details of the virtualization layer. The

focus of this thesis is on thermal-aware workload distribution which is discussed in

the next section.

1.1.4 Thermal-aware Workload Distribution

A typical thermal-aware workload distribution problem has the form

min power consumption

s.t.

performance (QoS) constraints

server inlet temperature constraints

system dynamics representing transient thermal model (optional)

bounds on decision variables

(1.1.9)

With respect to the choice of the cost function, many previous works ([14][15][39]

for example) have considered the summation of IT and cooling power consumption.

While server consolidation (in which idle servers go to stand-by mode or are turned

off) is optimal for IT power consumption as it minimizes idle power consumption,

it may not be optimal for cooling power consumption because it may generate hot

spots. So, in general there is a trade-off between IT and cooling power consumption.

This is explained in detail in [14].

Depending on the IT power consumption model employed, the decision variables

18

PhD Thesis—S. Rostami McMaster University—Computer Science

are the server utilizations or their CPU’s working frequencies. If the workload dis-

tribution is performed at a higher level such as the chassis or rack level, the decision

variables are the workload assigned to each computing node. Regarding the cooling

configuration, the main decision variables are the CRAC units’ reference (or supplied)

temperatures. In some papers, there are other decision variables such as fan speeds

[15]. Server utilization has a continuous value upper bounded by 1. CPU frequency

or reference temperature can be continuous and bounded from below and above, or

may be chosen from a predefined set.

One of the main constraints in this type of optimization problem is related to the

QoS. A common criterion is average response time. The arriving workload must be

divided among the servers and their utilizations or their CPU working frequencies

must be set in a way that QoS will be guaranteed. The form of the performance

constraints depends on which model for QoS is considered. Some works propose a

queueing-theoretic model for performance [6][14][40]. In [14], the QoS requirement is

translated to the minimum number of servers required. In [6], it is translated to the

maximum racks’ blocking rate and in [39] it is used for setting an upper bound for

server utilizations. There are other works that perform job scheduling to satisfy QoS

constraints [41][42][43].

Another critical constraint is on the server temperatures. The server inlet temper-

ature should be maintained below a red-line temperature for safe operation. Ther-

mal models were explained in Section 1.1.2. The works [14][15][39][44] have used

steady-state models while transient models have been considered in [6][10][45]. Heat

19

PhD Thesis—S. Rostami McMaster University—Computer Science

recirculation is not taken into account in [15]. This reduces the complexity of the op-

timization problem because the server temperatures are not dependent on the power

consumption of neighbouring servers. All references except [39] consider the red-line

inlet temperature as a constant. In [39] this value is a function of a server’s utilization.

A linear steady-state thermal model is used in many works including [46] and [47].

The model is used to calculate the inlet temperatures of the racks that contain a set

of servers. The workload distribution is also performed at the rack level. In [46],

they consider homogeneous data centers while in [47], heterogeneous data centers are

also discussed. They propose a genetic algorithm and a genetic simulated annealing

algorithm to approximate the solution, however these approaches may not be suffi-

ciently fast. The combination of a genetic algorithm with simulated annealing is used

in order to prevent the solution from being trapped into a local optimum. In general,

the thermal model may not be at the server level. The thermal model might be zonal-

based, for example where each zone contains a set of servers. In this case, the size of

the problem reduces but the decision variables for workload distribution may not be

0-1 variables. A chassis consolidation approach is proposed in [48] and formulated as

an integer programming problem where the solution of the relaxed linear problem is

rounded.

In [14] a two-step optimization scheme is proposed. The first step uses coarse

time intervals, where the optimal set of servers that can accommodate the maximum

arrival rate during the interval is specified. The step of finding the set of active servers

is called server provisioning in the literature. For this step the server utilizations are

assumed to be identical. The decision variables are integral and determine which

20

PhD Thesis—S. Rostami McMaster University—Computer Science

servers are active. They show that in a homogeneous data center, the problem takes

the form of an integer programming problem provided that the number of working

servers is fixed. At the second step, solved for finer intervals, the utilization of servers

determined in the first step are calculated to satisfy the current arrival rate. They

show that the first homogeneous problem is NP-hard, while the second problem for

the homogeneous case has a linear form. They then propose heuristics to rank and

select the active servers. The second phase for the case of a heterogeneous data center

results in a nonlinear problem. To solve this, they could set the supplied temperature

of the CRAC and by using binary search and solving the resulting linear problem

find a near optimal solution. In general, the heterogeneous data center case (servers

have different capacities and power models) makes the optimization problem more

complicated. In [49], homogeneous data centers are considered as a practical scenario

due to the possibility of bulk purchase of servers in order to reduce maintenance costs.

In some other works such as [39][50] heterogeneous data centers are assumed to be

more common in practice.

In [39], the maximum allowable inlet temperature of a server is calculated as a

function of red-line temperature for the CPU and the server utilization, while in

[14] the bound on the server temperature is assumed to be a constant. However, the

heat recirculation effect has not been taken into account. The supplied temperature is

simply set as the minimum of the maximum allowable server inlet temperatures. They

then propose a heuristic to solve the problem. They also mention that the problem

can be solved by using sequential quadratic programming (SQP). The optimization

problem in [44] is close to the problem proposed in this thesis. There are n servers and

m CRAC units. Server inlet temperatures are a linear function of CRAC unit supplied

21

PhD Thesis—S. Rostami McMaster University—Computer Science

temperatures and server workloads. The cost function is the power consumption

of CRAC units. This is assumed to be a linear function of CRAC unit supplied

temperatures. There are discussions on how to estimate the coefficient matrices.

They then propose a heuristic to solve the optimization problem. However, this

method does not seem to work well when m < n, which is the case of interest for a

data center.

The works that have used steady-state models for temperature cannot address

the temporal dynamics of a data center. Because workload changes frequently and

server temperatures should always be in the safe range, transient models are a better

reflection of operational conditions. In [6][10][45], a transient model for temperature

is considered and the system dynamics are included in a Model Predictive Control

(MPC) optimization problem. The MPC approach is common in the presence of

transient models to increase the accuracy of the solution (and potentially decrease

the size of the problem). In this approach, the problem is solved for a fixed time

horizon and the solution for the first time slot is implemented. This procedure is

repeated continuously. To reduce the complexity of solving the problem online, in

[10] they break the solution into two steps. In the first step, frequency settings and

task assignment are optimized using the steady-state thermal model. The resulting

mixed integer programming problem is solved after relaxation and the solution is

rounded. In the second step, the supplied temperatures are optimized using the

transient thermal model. In [6] they also propose a method to reduce the problem’s

complexity. Instead of the main decision variables being the number of servers working

in each rack and the proportion of arrivals assigned to each rack, they use the rack

power consumptions as the decision variables. Then, they set the blocking rate (the

22

PhD Thesis—S. Rostami McMaster University—Computer Science

probability that an arriving job is forced to wait) equal to the maximum allowed value

and calculate the remaining decision variables in terms of rack power consumptions.

To this aim, they use look up tables and linearize some relations. In [45] they also

optimize IT power and cooling power separately.

The presented approaches in [40][49] are closer to control theory. In [49], some

theoretical results are presented about the proposed problem assuming that it is

convex. The problem for the case of homogeneous data centers seems to be linear. In

[40] instead of finding the set of active servers they propose an MPC approach to find

the number of active servers. They add two terms to the cost function that penalize

input fluctuations. The solution is then found by a particle-based algorithm. An MPC

approach considering input fluctuations is also presented in [51] and the nonlinear

problem is solved by an interior-point algorithm which appears to be sufficiently

fast for online calculations. The control interval is about 20 seconds. The cost of

switching the servers between on and off states is considered in [52] but the cooling

power consumption is not addressed.

In [50] a two-step approach is proposed. In the first step, the servers are classified

into four groups according to their CPU utilization. In the second step, a meta-

heuristic is proposed for thermal-aware workload distribution. A trichotomic search

is proposed in [53] where there is a multivariable cost function that is nonlinear

with respect to a single continuous variable. A tensor-based approach is proposed

in [54] to reduce the dimensionality of the optimization problem. In [55], failure of

equipment is considered while performing the workload distribution. A game-based

thermal-aware resource allocation strategy is presented in [56]. In [57] an optimization

23

PhD Thesis—S. Rostami McMaster University—Computer Science

problem for total power consumption with performance and temperature constraints

is formulated as a mixed integer nonlinear programming problem and is solved by a

greedy algorithm. Similar problems have been proposed in [48][58]. Multi-objective

cost functions are defined in [59][60]. They are optimized using Markov decision

processes and swarm optimization, respectively.

In [61] some challenges for traditional optimization approaches are discussed and a

deep learning approach is proposed for thermal-aware workload distribution. In [62]

two optimization problems are defined with a data-driven thermal model solved by the

fmincon function in MATLAB. The coupling of machine learning with optimization

theory is a challenge for learning-based holistic control of power consumption in a

data center [2].

As explained, the optimization problems defined in the literature have a number

of similarities and it would be valuable to perform a theoretical analysis of solution

techniques in this area.

1.1.5 The Lot-Sizing Problem

In this section, we present a brief background for Single-Item Lot-Sizing Problems

(SILSP). A comprehensive survey that explains several aspects in a clear way is

provided in [63]. We summarize the most important and related points presented in

this survey, followed by a brief literature review. The definition of an SILSP is as

follows. There is a horizon of T time periods where the demand for a single item

is known in each period. The goal is to determine the periods in which orders are

placed and order quantities to minimize the total cost while satisfying the demands

24

PhD Thesis—S. Rostami McMaster University—Computer Science

as they occur. The cost includes the cost of production and the cost of holding items

in the inventory. The production cost itself consists of the cost of producing the

items plus a constant setup cost for the periods in which an order is placed. SILSPs

are valuable from both theoretical and practical aspects. From the practical view,

they cover several interesting cases even in the simplest version. Even if they do

not directly correspond to practical scenarios, studying SILSPs helps analyse more

complicated problems if they can be decomposed into simpler problems. They are

also helpful to gain insight about the structural properties of the optimal solution for

more complicated problems, such as multi-item problems. The increasing importance

of SILSPs led to the creation of the annual International Workshop on Lot-Sizing

(IWLS) and the establishment of the EURO Working Group on Lot-Sizing (LOT).

The corresponding optimization problem is:

min
T∑

t=1
fp

t (Xt) + fh
t (It)

s.t. It−1 + Xt = dt + It ∀t = 1, ..., T

Xt, It ≥ 0 ∀t = 1, ..., T

(1.1.10)

where dt and Xt are the demand and order quantity at period t, respectively, It is

the inventory level at the end of period t, and fp
t (·) and fh

t (·) are the production

and holding cost functions at period t, respectively. The first constraint relates the

current inventory level to the previous inventory level and the current order and

demand quantities. The constraint It ≥ 0 means that demand cannot be backordered.

Without loss of generality, I0 = 0. This general formulation is referred to as an

uncapacitated SILSP, where there is no limit on production capacity.

25

PhD Thesis—S. Rostami McMaster University—Computer Science

When the cost functions are linear, which is discussed as the baseline problem in

this area in [64], the problem becomes

min
T∑

t=1
stYt + ptXt + htIt

s.t. It−1 + Xt = dt + It ∀t = 1, ..., T

Xt ≤ Ytdt,T ∀t = 1, ..., T

Yt ∈ {0, 1} ∀t = 1, ..., T

Xt, It ≥ 0 ∀t = 1, ..., T

(1.1.11)

where dt,k = ∑k
i=t di, st is the setup cost, Yt is the binary setup variable for period t,

and pt and ht are the production and holding costs per item for period t, respectively.

The problem is solved in O(T 2) time by a dynamic programming algorithm developed

in [64]. The algorithm is based on a structural property (zero inventory ordering

property) such that there is an optimal solution in which if Xt > 0 then Xt = dt,k

for some k ≥ t. By the end of the 1980s, the complexity was improved to O(T logT)

by three groups of researchers independently [65]. If the condition pt−1 + ht−1 ≥ pt

holds, which means it is always optimal to order as late as possible (known in the

literature as the case without speculative motives to hold inventory or the case with

Wagner–Whitin costs), the problem is then solvable in O(T) time [66].

Regarding the complexity of SILSPs, most extensions are NP-hard in the ordinary

sense which means there is a pseudo-polynomial algorithm to solve them. This is

the reason for not using advanced methods such as meta-heuristics to solve different

versions of SILSPs. Regarding solution techniques, the most common approach is

dynamic programming. Other approaches include polyhedral approaches, branch and

26

PhD Thesis—S. Rostami McMaster University—Computer Science

bound and branch and cut methods, and dual algorithms. There are also some works

proposing simple heuristics and approximation schemes even for the basic SILSP that

are useful for decomposing more complicated problems.

Extensions of the basic SILSP are defined based on several practical scenarios,

some of which are explained as follows.

• Backlogging: In the backlogging scenario the demand is allowed to be satisfied

later than it occurs. This may be because of profitability considerations or

capacity constraints. The uncapacitated SILSP can be easily generalized for

backlogging. If bt is the cost of backlogging an item from period t − 1 to period

t, by introducing new non-negative variables Zt, the accumulated backlog at

the end of period t, the term ∑T
t=1 btZt is added to the cost function and the

main constraint is converted to It−1 − Zt−1 + Xt = It − Zt + dt, where Z0 = 0.

The backlogging flow is the opposite of the inventory flow.

• Lost sales: Similar to the backlogging case, part of the demand may be lost due

to production capacity constraints or profitability considerations. Lost sales and

backlogging can be considered together or separately. The uncapacitated SILSP

can be generalized to consider lost sales. If lt is the cost of each unit of lost

sales at period t, and St ≥ 0 is the value of unmet demand at the end of period

t, then the inventory balance constraint is converted to It−1 + Xt + St = It + dt

and the term ∑T
t=1 ltSt is added to the cost function, where S0 = 0.

• Time windows: In these problems, there is a time window such that if the

demand is satisfied within that time window there is no penalty in terms of

inventory or backlogging costs.

27

PhD Thesis—S. Rostami McMaster University—Computer Science

• Stochastic and elastic demands: It is more realistic to consider the demand

as a stochastic variable that must be predicted (with an associated error). The

lot-sizing model including the cost parameters can also be stochastic. Elastic

demand happens when the demand is a function of production unit price. So,

the demand increases or decreases depending on the unit price.

• Production capacity constraints: The capacitated SILSP is considered in

many works. These problems are harder than uncapacitated versions. In [67],

the problem is characterized in terms of the structure of the unitary costs and

the capacity over time. Each case corresponds to a quadruple α/β/γ/δ that

represents the special structure of unitary setup cost st, unitary production

cost pt, unitary holding cost ht and capacity, respectively. The parameters

are denoted by G, C, NI, ND, and Z which correspond to General struc-

ture, Constant, Non-Increasing, Non-Decreasing, and Zero, respectively. The

case G/G/G/G is NP-hard in the weak sense and pseudo-polynomial time al-

gorithms have been designed to solve it. The polynomial cases include the

NI/G/NI/ND, NI/G/NI/C, C/Z/C/G, ND/Z/ND/NI, G/G/G/C mod-

els. The cases Z/G/G/G and NI/G/G/C have been solved by O(T logT) algo-

rithms.

• Inventory constraints: In these uncapacitated SILSPs, a lower bound and/or

an upper bound are set for the inventory level. In [68], they showed that the

problem can be solved by a O(T 3) dynamic programming algorithm where the

concept of regeneration intervals is used for decomposing the solution. The

production and holding costs are assumed to be concave. The complexity is

28

PhD Thesis—S. Rostami McMaster University—Computer Science

reduced to O(T 2) in [69]. When all costs are linear and production variables

are integer, the complexity has been further reduced to O(T logT).

• Perishable inventory: In these problems, there is a deterioration rate for

the products and the holding cost generally depends on the time duration the

product is stored in the inventory. Examples are storing food, pharmaceuticals,

chemicals, and blood.

• Cost structures: The structure of the functions fp
t (·) and fh

t (·) is a main

factor in the complexity of SILSPs. In [64] it is shown that problem (1.1.11)

can be solved in O(T 2) time. In [70], it is shown that if the cost functions are

generally concave the problem can still be solved with the same time complex-

ity, O(T 2). In [68], an O(T 3) algorithm is presented for the case of bounded

inventory and concave cost function which was subsequently improved in [69] to

O(T 2). A further generalization is considering a piecewise concave cost function

which covers several practical scenarios of interest such as quantity discounts,

minimum order quantity, capacitated production, and bounded inventory [71].

Figure 1.6 shows some examples of concave production and holding costs. A

concave production cost can be used to represent a different setup cost and quan-

tity discount for larger orders. Concavity can also represent different holding

costs corresponding to using a different warehouse for greater inventory levels,

for example. A valuable work that integrates capacitated production, bounded

inventory, and backlogging while considering piecewise concave cost functions

with several breakpoints for the production and holding costs is proposed in

[72]. The results about regeneration intervals presented in [68] are generalized,

29

PhD Thesis—S. Rostami McMaster University—Computer Science

proving that there is an optimal solution in which between two consecutive

breakpoint levels for the inventory values, there is at most one order which

is not equal to one of the production breakpoints. They use this property to

develop a pseudo-polynomial dynamic programming algorithm for solving the

general problem. Our work is a special case of their problem where there is one

fixed breakpoint for the production cost which represents a quantity discount,

the production and holding costs are linear (non-increasing in time), and there

is no setup cost. By defining special regeneration intervals and proving three

structural properties for the optimal solution, an O(T 2) algorithm is proposed

to solve the problem. It is also proved that the case of two items is NP-hard.

There is an extensive literature for extensions of SILSPs. The number of publi-

cations has doubled since 2007. We mention some of the most relevant and recent

works. In [73] the complexity of SILSPs with different cost structures is discussed.

An SILSP with quantity discount is presented in [74] and solved in O(T 3) and O(T 2)

time for the two cases of all-unit and incremental discount structures, respectively.

A fully polynomial time algorithm is designed in [75] for some quite general cost

structures. In [76] the problem considered has a concave holding cost and piecewise

concave production cost and it is proved that if the breakpoints are time-invariant

and the number of breakpoints is fixed, the problem is solvable in polynomial time

with a complexity of O(T 2m+3), where m is the number of breakpoints for the produc-

tion cost. The complexity is reduced to O(T m+2logT) in [77]. The production cost

is defined as a set of connected linear segments in [78] and with a concave holding

cost, they show that the capacitated problem is solvable in O(mT 3) time, where m is

the average number of breakpoints per period. Another work closely related to ours,

30

PhD Thesis—S. Rostami McMaster University—Computer Science

presented in [79], is the case with capacitated production, one fixed breakpoint for the

production cost, and linear holding cost, which is solved in O(T 4) time. A pseudo-

polynomial dynamic programming algorithm is developed in [80] for the case of two

items with capacitated production. A swarm optimization approach is proposed for

capacitated multi-item lot-sizing in [81].

Figure 1.6: Examples of piecewise concave cost functions

1.2 Research Summary

As explained, regarding the first part of the thesis, there are many works in different

layers to reduce the power consumption in a data center. They typically report a

considerable reduction in power consumption, for example, more than 20%. However,

due to the lack of a theoretical framework, the results are not guaranteed to be

reproducible for different system instances. The optimization problems also have

31

PhD Thesis—S. Rostami McMaster University—Computer Science

some assumptions and structure that may not be applicable to other scenarios. On the

other hand, because even a small reduction in power consumption is valuable from the

energy and climate perspectives, building a theoretical framework for exploring the

possible improvements is desirable. The other important aspect is time efficiency for

online operation which is also connected with finding efficient algorithms for thermal-

aware workload distribution. In addition, it is a challenge to tackle thermal models

in optimization problems, due to their complexity and the fact that they may not be

available as a closed-form function, for example, they might be data-driven models

or models based on solving differential equations. The problems are NP-complete

and usually take the form of mixed integer programming or integer programming

problems. Due to complicated trade-offs, a greedy heuristic may not guarantee a

near-optimal solution. Meta-heuristics such as genetic algorithms are also slow due

to their iterative nature, especially for constrained optimization. Insight about the

solution while designing and revising a meta-heuristic is also challenging and problem-

specific. All of the mentioned challenges and the similarity of the proposed problems

in the literature in terms of the type of cost function and the constraints motivated us

to build a bottom-up framework for the theoretical analysis of optimization problems

in this area.

In the first part of this thesis, we propose a general approach for tackling thermal-

aware workload distribution problems. We start with studying a general nonlinear

problem proposed in [51] where two general multivariable functions are considered

for the cooling power consumption and the thermal model. The problem includes

the effect of different cooling variables and heat circulation. According to [39] and to

investigate the effectiveness of our approach, two red-line temperatures are considered

32

PhD Thesis—S. Rostami McMaster University—Computer Science

for idle and fully-utilized servers which allows less cooling effort for the idle servers,

which in turn increases the cooling efficiency. This makes the problem a mixed integer

programming problem which is proven to be NP-complete. To simplify the problem,

there is the assumption that the servers are identical. This still allows the funda-

mental difficulty of the problem, the trade-off between the server temperatures, the

cooling effort and the role of workload distribution, to be considered. So, the problem

is general enough to consider several important effects and at the same time simple

enough to be seen as a basic optimization problem for this area. Our approach is

to first linearize the problem and then design a heuristic for approximation of the

solution of the mixed integer linear programming problem. The heuristics are based

on rounding the solution of the relaxed problem while considering the increase in the

dominant cooling variable (the cooling variable with highest cooling effect) for each

server. Linearization allows one to study the inherent difficulty of the problem while

also being a time-efficient approach. For evaluation of our approach, we use a data

center modeled in [20] where the thermal model is based on solving a set of differential

equations. We perform linear regression on the cooling power consumption and the

thermal model which was verified to be sufficiently precise and time efficient to gener-

ate near-optimal solutions. Two baseline algorithms are considered for comparisons,

simple rounding and a genetic algorithm for an efficient search around the simple

rounding solution. Two bad cases for simple rounding are also analyzed. The details

are presented in Chapter 2. In the next effort, we consider the effect of server work-

load fluctuations that may be harmful to the reliability of the servers (due to frequent

changes in temperature) and also for the QoS (due to imposing delay). To do this, we

generalize the problem to include the cost of workload fluctuations. In other words,

33

PhD Thesis—S. Rostami McMaster University—Computer Science

the first problem can be seen as a single time slot problem while the second problem

considers several time slots with added switching costs. We generalize the proposed

heuristic accordingly. An MPC approach is also proposed for the case when workload

(demand) predictions are available. The MPC approach helps to decrease the size of

the problem and adapt to the fact that predictions generally become more accurate

over time. The baseline algorithm is simple rounding. The evaluations verify the

effectiveness of the proposed heuristic and the ability of the MPC approach to find a

near-optimal solution. The details are explained in Chapter 3.

In the second part of the thesis (Chapter 4), an SILSP with bounded inventory

and quantity discount is defined and solved in O(T 2) time by a dynamic programming

algorithm. To receive the discount it is ideal to make bulk purchases but it may not

be possible because of the bounded inventory and a purchase in a given period may

also prevent some future bulk purchase possibilities (because of limited remaining

space in the inventory). We first define the problem with some structure for the

costs, there are two price levels for each time period, there is a quantity threshold

for the discount, the prices are non-increasing over time, there is a linear holding

cost and there is no setup cost. To solve the problem, we first show some structural

properties for an optimal solution while using the notion of regeneration intervals.

Three lemmas are given followed by an efficient dynamic programming algorithm to

solve the problem. The algorithm is based on a key structural property that may be

of more general interest, that of a just-in-time ordering policy. The case of two items

is also proved to be NP-hard by a reduction to a partitioning problem.

The concluding remarks for this thesis are presented in Chapter 5.

34

Chapter 2

Linearized Data Center Workload

and Cooling Management

The content of this chapter is reproduced from: “Linearized data center workload

and cooling management”, S. Rostami, D. G. Down, and G. Karakostas, submitted

to IEEE Transaction on Automation Science & Engineering, which is under the first

round of revision. The author of this thesis is the first author and the main contributor

of this manuscript.

35

PhD Thesis—S. Rostami McMaster University—Computer Science

Abstract

With the current high levels of energy consumption of data centers, reducing power

consumption by even a small percentage is beneficial. We propose a framework for

thermal-aware workload distribution in a data center to reduce cooling power con-

sumption. The framework includes linearization of the general optimization problem

and proposing a heuristic to approximate the solution for the resulting Mixed Integer

Linear Programming (MILP) problems. We first define a general nonlinear power

optimization problem including several cooling parameters, heat recirculation effects,

and constraints on server temperatures. We propose to study a linearized version

of the problem, which is easier to analyze. As an energy saving scenario and as a

proof of concept for our approach, we also consider the possibility that the red-line

temperature for idle servers is higher than that for busy servers. For the resulting

MILP problem, we propose a heuristic for intelligent rounding of the fractional solu-

tion. Through numerical simulations, we compare our heuristics with several existing

algorithms. In addition, we evaluate the performance of the solution of the linearized

system on the original system. Finally, the results show that the proposed approach

can reduce the cooling power consumption by more than 10 percent compared to the

case of continuous utilizations and a single red-line temperature.

Note to Practitioners

The approach proposed in this paper can be used as a baseline approach for tackling

different power optimization problems for data centers. It proposes a general and

efficient approach to solve the nonlinear problems especially when the closed-form

36

PhD Thesis—S. Rostami McMaster University—Computer Science

functions, for example for the thermal model, are not available. A general nonlinear

power optimization problem is defined. Linearization is then used to analyze the

general problems and to propose a corresponding heuristic for approximation of the

solution for ILP problems. The heuristic can be modified to solve similar problems.

Scalability is an important factor that has been addressed in this approach because

the linearized problem can be solved efficiently and calls to implicit functions are

eliminated. So, this approach can be efficiently used for time sensitive calculations.

The simulation results also show that the accuracy is maintained for larger problem

sizes. For use in practice, better linearization approaches than regressing on a single

linear function may be required. Our approach is adaptable to such settings.

Keywords: data center, thermal-aware workload distribution, integer program-

ming, linearization, power consumption, red-line temperatures

2.1 Introduction

Data centers have been deployed to perform a large volume of computing tasks at

considerable operational costs. With the increasing demand for cloud computing and

internet services, data center operational costs have increased dramatically [1]. To

reduce the power consumption of a data center, a number of techniques have been

proposed at different levels including chip, server, rack and room levels [2]. This work

focuses on thermal-aware workload distribution to reduce cooling power consumption,

a main contributor to overall power consumption in a data center [1]. Decreasing

the power consumption by even a small percentage may generate significant energy

37

PhD Thesis—S. Rostami McMaster University—Computer Science

savings. There have been a wide variety of optimization problems posed for such

problems. Often, strong theoretical support is lacking. A general framework for

systematic analysis in this area would be desirable.

In terms of solution techniques, a deep learning approach is used in [3] and [4].

A game-based strategy is presented in [5]. Proposing a heuristic (often a greedy

heuristic) is also common [6][7][8]. However, analysis of such heuristics is somewhat

lacking. Some theoretical results are given in [9]. Overall, we feel that a deeper anal-

ysis of the optimization approaches for such data center problems would be useful

to guarantee an acceptable power reduction in different system instances. One way

to do this is to adopt an approach that is standard in the area of control systems,

for example. We propose a holistic approach for solving thermal-aware work distri-

bution problems. This involves linearizing a nonlinear system, with the idea that

the linear system is model-independent and easier to reason about. We find that

this is the case in our setting, and we expect that this viewpoint can be of more

general applicability. We believe that developing approaches to solve the resulting

linear problem gives the promise of a single approach to solve a range of problems,

rather than having to develop different heuristics for different (nonlinear) problems.

If the decision variables are continuous, the linear problem can be solved by standard

algorithms, otherwise if there are integral variables due to some energy saving or

practical considerations, a single heuristic may address a range of similar problems.

The linearization approach is especially efficient when closed-form functions are not

available, for example evaluating the thermal model requires the numerical solution

of a set of differential equations, which can become computationally quite expensive.

Linear regression can then be used to estimate the functions. We also show that

38

PhD Thesis—S. Rostami McMaster University—Computer Science

the proposed heuristic is more time efficient compared to popular approaches such

as genetic algorithms and other meta-heuristics, for example presented in [10][11][12]

(which typically also require ad hoc customization to perform well).

There are similarities and differences between the power optimization problems

defined in the literature for thermal-aware workload distribution. The choices of

power consumption model, performance and temperature constraints, and thermal

models are the key points in the power optimization problems defined. Most of

the problems are aimed at minimizing the total power consumption, consisting of the

summation of IT (Information Technology) and cooling power consumption. Different

models for cooling power consumption are used, depending on which cooling facili-

ties are present, i.e., CRAC (Computer Room Air Conditioner) units, fans, chillers

[6][13][14]. IT power consumption is also a function of utilization of a computing

node. In some works, frequency scaling is considered so that IT power consumption

is also a function of the operating frequency of a server [14][15]. Performance and

temperature constraints are also commonly considered in the existing literature. In

terms of performance constraints, it is typical to require that the summation of work-

load assignments to the servers (computing nodes) reaches a target demand level.

There may also be a constraint on the maximum workload assigned to each server

[7][9][15]. For the temperature constraints, there is typically a red-line temperature

that the inlet temperature of each server must not exceed. Most of the literature

assumes that the red-line temperature is a constant. However, in [7] the red-line tem-

perature for each server is a function of its utilization. In terms of thermal models,

both steady-state and transient models are considered in the literature. Transient

models are useful for real-time control settings [12][16][17][18]. Steady-state models

39

PhD Thesis—S. Rostami McMaster University—Computer Science

are also common [6][7][8][14]. With respect to thermal models, most of the litera-

ture considers the effect of heat recirculation on the server temperatures [10]. In this

case, the inlet temperatures are a function of the servers’ power consumption and the

cooling parameters [6]. However, the models presented in [7] and [14] do not consider

recirculation effects which makes solving the optimization problem easier by removing

the thermal interactions among the servers. The effect of computing node failure on

heat recirculation patterns is also considered in [19]. In this work, we formulate a

thermal-aware workload distribution problem that can be seen as a basic problem,

integrating the main aspects of the problems defined in the literature. A steady-state

model with heat recirculation effects, several cooling parameters, and two red-line

temperatures corresponding to idle and fully-utilized servers is considered.

Server consolidation is another possibility that is considered in the literature

[6][8][14]. The goal is to reduce the total idle power consumption by turning idle

servers off. However, when turning idle servers off, the thermal model may change

because the heat recirculation pattern among the servers changes. In this case, linear

dependence of the temperatures on the servers’ power consumption may be problem-

atic. However, linear dependence is assumed in several papers, including [6] and [8].

In this work, we assume that idle servers are not turned off, which corresponds with

practice. However, our approach can also be applied to the case of server consolida-

tion.

Heterogeneous and homogeneous data centers are considered in the literature

[6][9][10][20]. Homogeneous data centers are a special case of heterogeneous data

centers, where the servers are identical. In this case, the power optimization problem

40

PhD Thesis—S. Rostami McMaster University—Computer Science

is simplified as can be seen in [6]. If the number of servers chosen to be working

is fixed, the total IT power consumption due to servers is a constant, leaving only

the cooling power consumption to be minimized. In [7], the data center model is

heterogeneous and differences among the servers are highlighted. However, in [9], a

homogeneous data center is considered as a practical case. In this work we focus on

homogeneous data centers as a first step towards tackling more complicated problems.

In this paper, we define a power optimization problem for a data center that is

general enough to consider nonlinear dependencies and take into account different

cooling parameters and heat recirculation effects. For our initial explorations, we

make some assumptions. We assume that servers are identical and they are either

idle or fully-utilized. According to the temperature model in [7], we study the effect

of considering different server red-line temperatures as a function of server utiliza-

tions to see if exploiting this difference can reduce the total power consumption. To

simplify these dependencies, we consider the case of having two red-line temperatures

corresponding to idle and fully-utilized servers. In this case the power optimization

problem becomes a mixed integer linear programming problem. A physical model of

a data center involves general nonlinear functions for the cooling power consumption

and server temperatures. We then linearize these functions. After showing that the

resulting linear optimization problem is NP-complete, we introduce simple rounding

as a baseline approximation algorithm. Next, we introduce two problematic instances

for simple rounding. An approximation scheme is then proposed to perform a more

intelligent rounding. For comparison, a generic genetic algorithm is also introduced.

In the last section, we evaluate the proposed schemes for synthetic systems (to test

the limits of our heuristics) and a model developed from a working, experimental data

41

PhD Thesis—S. Rostami McMaster University—Computer Science

center housed at McMaster University. We also evaluate the quality of the solution

of the linearized problem by substituting it into the original, nonlinear model for the

data center. Finally, as a concrete demonstration of our approach, we compare the

case of considering two different red-line temperatures with the case of continuous

utilizations but with one red-line temperature. Our contributions can be summarized

as follows:

• Proposing a time-efficient holistic approach for solving thermal-aware workload

distribution problems, including linearization of the problem and using the so-

lution for the original system

• Formulating a basic thermal-aware workload distribution problem, integrating

the main aspects of the problems introduced in the literature

• Demonstrating the effectiveness of solving the general problem through lineariz-

ing the underlying thermal and power consumption models and formulating a

corresponding optimization problem for the linearized system

• Theoretical analysis of the linear version including demonstrating that common

approaches have the potential to be problematic

• Evaluation of the proposed heuristic on synthetic and practical instances

• Evaluating the quality of the proposed solution approach by comparing with

solving the original nonlinear problem directly

• Using the proposed approach to evaluate the energy savings possible for different

red-line temperatures for idle and busy servers

42

PhD Thesis—S. Rostami McMaster University—Computer Science

The remainder of the paper is organized as follows. Section 2.2 gives the underlying

nonlinear system model and corresponding power optimization problem. Section 2.3

discusses the linearized version of the nonlinear problem. Section 2.4 is concerned with

the solution of the linearized problem. Section 2.5 provides experimental evaluation

of our approach, both in terms of the limits of our heuristics and the applicability to a

problem using a model from an operational data center. Finally, Section 2.6 provides

concluding remarks and future research directions.

2.2 System Model and Motivation

Our starting point is a general power optimization problem introduced in [21]. We

consider n servers located in racks and cooled with a cooling system parameterized

by m adjustable cooling parameters, i.e., CRAC units’ reference temperatures, air

flows, and chilled water setpoint temperature. The cooling parameters are denoted

by v1, v2, ..., vm. The aim is to minimize the total power consumption for the data

center consisting of the summation of cooling and IT power consumption. The cooling

power consumption is a function F of the values of cooling parameters. The IT

power consumption is a function of server utilizations, denoted by ρ1, ρ2, ..., ρn. So,

the decision variables are v1, ..., vm and ρ1, ..., ρn. We will also represent the decision

variables by the vectors v and ρ. We assume that the servers are identical.

The cooling variables are continuous and have a lower and upper bound given by

V
(j)

LB and V
(j)

UB for vj, j = 1, ..., m, i.e., input vectors VLB and VUB are of size m. For

the utilization, we assume that servers are either idle or fully-utilized, so that the

utilization of server i, denoted by ρi, is 0 or 1, i = 1, ..., n. To satisfy performance

43

PhD Thesis—S. Rostami McMaster University—Computer Science

constraints, the maximum utilization of each server may be required to be strictly

less than 1. However, a utilization of 0 is common in the literature because it also

allows server consolidation by turning the idle servers off. All these cases can be

easily transformed to a similar 0-1 optimization problem. Our focus is on the server

provisioning problem, where a set of working servers is chosen and load balancing is

performed, while there are two red-line temperatures.

While minimizing power consumption, thermal constraints must also be respected

to ensure reliable operation of servers. The inlet temperature of a server should not

exceed a red-line temperature. The vector of inlet temperatures is denoted by T with

size n. We consider a steady-state model for the inlet temperatures. In this case,

the inlet temperatures depend on the value of cooling parameters and the servers’ IT

power consumptions (which are a function of server utilizations). This dependence

is given by the function M(v, ρ). Referring to [7], the red-line temperature for a

server can also be a function of its utilization. In fact, more lightly utilized servers

can have higher red-line temperatures. As we have assumed that server utilizations

are either 0 or 1, we consider two red-line temperatures for each server, Tidle and

Tbusy, corresponding to the utilizations 0 and 1, respectively. According to the model

presented in [7], Tidle > Tbusy. This allows a lower cooling effort for idle servers, as

they can tolerate a higher temperature.

There is also a performance constraint, related to quality of service. Because the

servers are either idle or fully-utilized and have the same computational capacities,

the performance criterion is translated to a required number of servers working, de-

noted by D. This means at least D servers should be working (note that the value of

44

PhD Thesis—S. Rostami McMaster University—Computer Science

D may be higher than required to support desired throughput, for example to satisfy

latency requirements). As an increase in the number of busy servers tends to increase

the inlet temperatures resulting in higher cooling and IT power consumption, the per-

formance constraint is tight for the optimal power consumption, so exactly D servers

are working. In this case, the IT power consumption is fixed and minimizing the

cooling power consumption is equivalent to minimizing the total power consumption.

Based on the preceding discussion we can formulate the following optimization

problem:

min F (v) (P0)

s.t.
n∑

i=1
ρi ≥ D (2.2.1a)

M(v, ρ) ≤ Tidle1n×1 − (Tidle − Tbusy)ρ (2.2.1b)

v ≥ VLB (2.2.1c)

v ≤ VUB (2.2.1d)

ρi ∈ {0, 1} ∀i = 1, ..., n (2.2.1e)

where F (v) is the cooling power consumption corresponding to the cooling variable

vector v and M(v, ρ) is the vector-valued function corresponding to the thermal model

whose ith element is the inlet temperature of server i. Constraint (2.2.1a) is the

performance constraint, and constraint (2.2.1b) limits the inlet temperatures to be

less than the corresponding red-line temperatures. The right hand side of constraint

(2.2.1b) is the vector representation of red-line temperatures corresponding to server

45

PhD Thesis—S. Rostami McMaster University—Computer Science

Table 2.1: Notations and Definitions

Notation Definition
n total number of servers in the system
m total number of cooling variables
D the current demand in terms of required number of working servers
ρ the vector of server utilizations with size n

v the vector of cooling variables with size m

VLB the vector of lower bounds for the cooling variables with size m

VUB the vector of upper bounds for the cooling variables with size m

Tidle the red-line temperature for idle servers
Tbusy the red-line temperature for fully-utilized servers

utilization ρ, where depending on whether ρi is 0 or 1, the ith red-line temperature

is Tidle or Tbusy, respectively. The term 1n×1 represents a vector of size n with all

elements equal to 1. The notations and their description are summarized in Table

2.1.

As explained, the performance constraint is tight for an optimal solution and,

therefore, we need to decide which D servers should work to minimize the cooling

power consumption while satisfying the temperature constraints.

As an example, we consider the data center modeled in [22] [23], an experimental

data center housed at McMaster University. Similar to their model, there are five

racks. Each rack consists of five servers. So, there are 25 servers in total. The cooling

variables are the chilled water setpoint temperature and total air flow generated by

two fans located at both ends of the five racks (the air flow is divided equally between

the two fans). Thus, there are two cooling variables. Fig. 1 shows the top view for this

system. To calculate the server temperatures in terms of the two cooling variables

and the server utilizations, we use a model from [22][23]. This is the function M

in problem (P0). Because M is not explicitly given and its calculation is based on

46

PhD Thesis—S. Rostami McMaster University—Computer Science

Figure 2.1: The data center’s top view according to [22][24]

numerically solving a set of differential equations, it is expensive to evaluate. For

example, using the platform MATLAB R2021b running on a 64-bit system with an

i7-1185G7 processor and 8-GB RAM, each call takes about 2 seconds. So, we can infer

that for any solver, the bulk of the execution time is evaluation of the function M

at each iteration while searching the feasible space of the problem. For the function

F in problem (P0), we also use the models developed in [22][23] for fan and chiller

power consumption.

The explained inefficiency is the main motivation for our proposed approach, which

is described in the following sections. We will show that even the linearized version

of the problem is NP-complete.

2.3 Problem Definition

To find efficient heuristics to approximate the solution of problem (P0), we first

make some simplifying assumptions, which allow us to transform problem (P0) to

the version of the problem considered in this paper. The assumptions are used for

developing heuristics in Section 2.4.3.

47

PhD Thesis—S. Rostami McMaster University—Computer Science

• Our main assumption is that F and M are linear functions. This allows us to

achieve two goals. The first is to check the validity of the following procedure:

performing regression and linearizing the system, solving the linear optimization

problem and using the solution for the original system. A secondary goal is to

assess the difficulty of problem (P0) by first studying its simplest version.

• F is an increasing function of the cooling variables. This is without loss of

generality for two reasons. First, the cooling power consumption is monotone

with respect to cooling system parameters such as fan speeds and reference

temperatures of CRAC units. Second, for some variables such as reference tem-

peratures of CRAC units, the function F is decreasing, however by transforming

the corresponding cooling variables, we can convert F to an increasing function.

• M is a non-increasing function in terms of the cooling variables. This follows

from the fact that to decrease the inlet temperatures, the cooling power con-

sumption must be increased by increasing the value of cooling variables (recall

that F is an increasing function).

• M is a non-decreasing function in terms of the server utilizations. This means

when a server’s utilization increases (equivalent to an increase in the server

power consumption), the inlet temperatures also increase. This is also a rea-

sonable assumption in practice.

• The problem is feasible for every vector ρ, i.e., if we fix the vector ρ, the feasible

space for v is not empty. This is a result of the assumption that, in prac-

tice, maximizing the cooling effort is enough to prevent all of the servers from

exceeding their red-line temperatures.

48

PhD Thesis—S. Rostami McMaster University—Computer Science

Using our assumptions, the following notation will simplify our exposition:

• M = −Av + Bρ + E, where Ai,j, Bi,j ≥ 0 (all entries are non-negative). An×m

is the cooling matrix, Bn×n is the heat recirculation matrix and En×1 is the

constant part. Bi,j ≥ 0 allows the optimal solution to have exactly D servers

working. Ai,j ≥ 0 will allow us to determine the dominant cooling variables in

the proposed heuristic in Section 2.4.3.

• b = Tidle, and a = Tidle − Tbusy > 0

• The cooling power consumption is F = ∑m
j=1 cjvj, where the coefficients cj relate

the value of cooling parameters to the power consumption of the corresponding

cooling facilities. We normalize the cooling variables so that F = ∑m
j=1 vj. This

changes the values of A, VLB and VUB (the jth column of A is divided by cj and

the jth element in VLB and VUB is multiplied by cj) but for convenience we use

the same notation for the formulation.

As a result, our problem can be formulated in scalar form as follows:

min
m∑

j=1
vj

s.t.
n∑

i=1
ρi ≥ D

−
m∑

j=1
Al,jvj+

n∑
i=1

Bl,iρi + aρl ≤ b − El ∀l = 1, ..., n

vj ≥ V
(j)

LB ∀j = 1, ..., m

vj ≤ V
(j)

UB ∀j = 1, ..., m

ρi ∈ {0, 1} ∀i = 1, ..., n

(2.3.1)

49

PhD Thesis—S. Rostami McMaster University—Computer Science

The problem is a mixed integer programming problem. The first constraint can

be seen as a covering constraint, but considering that exactly D servers are working

in the optimal solution, it is better seen as an assignment constraint that assigns the

workload to a set of D servers. The second set of n constraints can be interpreted

as packing constraints in terms of ρ and covering constraints in terms of v. As we

will see in Sections 2.4 and 2.5, the problem is NP-complete and solving it does not

scale well using existing packages (in our case MATLAB). This is the motivation for

proposing approximation schemes in the next section.

2.4 Approximation of the Optimal Solution

We first show that problem (2.3.1) is NP-complete. We then introduce simple round-

ing as a base algorithm to approximate (2.3.1). We show that simple rounding may

be problematic by constructing two bad cases for the algorithm. Then we propose

an approximation scheme to perform more intelligent rounding. Finally, we present a

generic genetic algorithm as a standard approximation approach. The main purpose

of presenting simple rounding and a genetic algorithm is to better understand how

well the proposed scheme performs as compared to standard schemes.

2.4.1 NP-completeness

To show the NP-completeness of the problem, we assume a particular instance where

m = 1, A = 1n×1 and E = 0n×1. In this case, there is only one cooling variable,

denoted by v. We also set V
(1)

LB = 0 and V
(1)

UB = ∞. Then the problem becomes

50

PhD Thesis—S. Rostami McMaster University—Computer Science

min v

s.t.
n∑

i=1
ρi ≥ D

−v +
n∑

i=1
Bl,iρi + aρl ≤ b ∀l = 1, ..., n

ρi ∈ {0, 1} ∀i = 1, ..., n

v ≥ 0

(2.4.1)

An equivalent formulation of (2.4.1) is

min max B′ρ

s.t.
n∑

i=1
ρi = D

ρi ∈ {0, 1} ∀i = 1, ..., n

(2.4.2)

where B′ = B + aIn×n and I is the identity matrix. The problem is obviously in NP,

since, given an objective value V , a verifier can check in polynomial time whether a

provided solution achieves V . In [6], problem (2.4.2) is shown to be NP-complete by

a reduction to a partitioning problem.

2.4.2 Bad Cases for Simple Rounding

We first consider simple rounding as a baseline approach. In this scheme, we solve

the LP relaxation of (2.3.1) (by allowing the utilizations to be fractional, 0 ≤ ρi ≤ 1)

and round the D largest values to 1 and the remaining values to 0. We will see that

simple rounding may have unacceptable performance. To show this, let us consider

two special instances of (2.3.1):

51

PhD Thesis—S. Rostami McMaster University—Computer Science

• Case 1: There are p ≤ n entries equal to 1 for each row of B; the remaining

entries are 0. For each row of A one entry is equal to a constant q > 0 and the

others are 0. Also, V
(j)

LB = vL, ∀j = 1, ..., m, and E = 0n×1.

• Case 2: In B the entries are 0 or 1. If Aj ̸= Ai, where Ai is the ith row of A,

then Bi,j = Bj,i = 0 which means that servers i and j are isolated from each

other. Assume S is a set of non-isolated servers (those with equal corresponding

rows in A), then for BS (the sub-matrix of B corresponding to the servers in S)

the number of ones in each row and each column is p. Finally, E = 0n×1, VLB =

0, VUB = ∞.

Lemma 1 If in Case 1, D
n

(p + a) ≤ b + qvL, then there is an optimal solution for

the LP relaxation of (2.3.1) that distributes the load D uniformly among the servers

and satisfies v∗ = VLB. In this case, simple rounding does not guarantee a bounded

approximation factor (the ratio of the solution found by the algorithm to the optimal

solution).

Proof: The inequality D
n

(p + a) ≤ b + qvL shows that in Case 1 by distributing

the load D uniformly and setting v = VLB we can satisfy all the constraints in the

problem. So an optimal solution is v∗ = VLB, ρ∗ = D
n

1n×1 and c∗ = mvL, where c∗ is

the optimal fractional cost. With respect to the approximation factor, it is enough

to show that it is not bounded for one specific example of Case 1. We define B̂ as

follows. We set B̂i,i = 1, i = 1, ..., D, while the remaining entries that are set to one

(each row has a total of p ones according to the definition of Case 1) are chosen from

the columns D + 1 to n. We show that when B = B̂, the ratio of the cost for simple

rounding to the optimal integral cost can grow arbitrarily large.

52

PhD Thesis—S. Rostami McMaster University—Computer Science

Because of symmetry, for simple rounding it does not matter which ρ∗
i values are

rounded up to 1. Assume that the ρ∗
j values with Bi,j = 1 for some row i in B are

rounded. Depending on which of D or p is smaller, D or p ρ∗
j values are rounded,

respectively (potentially including ρ∗
i). Now suppose that

D

n
(p + a) ≤ b + qvL < min(D, p) + a, (2.4.3)

and define s = min(D,p)+a
b+qvL

(s > 1 because of the second inequality). To satisfy the

constraints in (2.3.1) for the rounded ρ∗, we must have b + qv′ ≥ (b + qvL)s =

b + (sq + (s−1)b
vL

)vL, where v′ is the value of the corresponding cooling variable needed

for cooling server i (that with non-zero entry in the ith row of A). So, v′

vL
≥ (s−1)b

qvL

and

ĉ

c∗ ≥ v′ + (m − 1)vL

mvL

≥ v′

mvL

≥ (s − 1)b
mqvL

(2.4.4)

where ĉ is the cost of the solution for simple rounding. By reducing vL or q in (s−1)b
mqvL

(while maintaining (2.4.3), for example by increasing n), ĉ
c∗ can grow unboundedly.

For example, set p = 3, a = 1, b = 2, q = 1, D > p, m = 1, then ĉ
c∗ is at least 2(2−vL)

(2+vL)vL
,

which can be made arbitrarily large by decreasing vL (and decreasing D
n

to maintain

(2.4.3)). We show that the optimal integral solution can also be equal to c∗. It is

possible to have a total load of at least D by choosing at most ⌊b+ qvL −a⌋ servers in

each row of B (the specific choice depends on the structure of B), hence the optimal

fractional and integral solutions are equal in terms of cooling variable values (setting

the cooling variables equal to VLB is enough to cool the servers). Let us set b − a = 1

(⌊b + qvL − a⌋ ≥ 1) and B = B̂. By choosing the servers 1, ..., D, at most one server

53

PhD Thesis—S. Rostami McMaster University—Computer Science

is chosen at each row of B. 2

Lemma 2 In Case 2, there is an optimal solution for the LP relaxation of (2.3.1)

that distributes the load uniformly among the servers that are not isolated. In this

case, simple rounding does not guarantee a bounded approximation factor.

Proof: In Case 2, assume that S with size n′ ≤ n is a set of non-isolated servers

with the corresponding row Ai in A. If the total load for S is D′, it is not difficult

to see that in this case distributing the load D′ uniformly among the servers in S

is an optimal workload distribution because based on the conditions for Case 2, the

average of the values in BS × ρS is fixed and equal to D′p
n′ (for the numerator, each

element of ρS is repeated p times in the summation because there are p ones in each

column of BS), and for optimality we want to minimize the maximum of the values in

BSρS. To be more precise, max(BSρS + aρS) − b determines the increase needed for

the cooling variables to cool the servers in S. Similar to Lemma 1, we show that the

approximation factor can be made arbitrarily large for B = B̂, where in the ith row

of B̂, the ith to (i + p − 1)th (mod n) entries are 1 (this is according to the definition

of Case 2). For the proof, we assume n′ = n and the rounding is similar to what was

done in the previous lemma. When n′ = n, the optimal cost for ρ is proportional

to max(Bρ + aρ) − b, i.e., c∗(ρ) = α(max(Bρ + aρ) − b) where α is a constant

(if max(Bρ + aρ) ≤ b then the optimal cooling variables are VLB = 0). We show

that the ratio of the approximate solution to the optimal integral solution can grow

unboundedly. Note that according to the rounding in Lemma 1 and proportionality

of the optimal cost to the max term we explained earlier, the optimal cost for the

rounded solution, ĉ, is proportional to min(D, p) + a − b. Let us set D
n

= 1
p
, p < D

54

PhD Thesis—S. Rostami McMaster University—Computer Science

and B = B̂. If we choose the 1st, (p + 1)th, (2p + 1)th, ..., ((D − 1)p + 1)th servers,

then in each row exactly one server is chosen and the optimal integral cost, c∗, is

proportional to 1 + a − b (assuming that 1 + a > b). So ĉ
c∗ = p+a−b

1+a−b
, which can be

made arbitrarily large by increasing p.

2

2.4.3 Proposed Approximation Schemes

We propose two variants of an approximation scheme for problem (2.3.1). The ap-

proximation schemes are based on assumptions that are appropriate for practical

systems. The other approach is a standard genetic algorithm which is used for com-

parison purposes.

Maxmin Scheme

In this section, we propose a more intelligent rounding than simple rounding. Let

us denote the optimal fractional solution for the LP relaxation of (2.3.1) by (ρ∗, v∗).

In the proposed scheme, instead of just rounding ρ∗, the values in B′ρ (recall that

B′ = B + In×n where I is the identity matrix) are also considered. Assume ρ̂ is an

integral workload distribution with total load D. If we replace ρ∗ with ρ̂, and set

the cooling variables equal to v∗, the temperature constraints for some servers are

violated. Thus, some values in v∗ must increase to compensate for these violations.

The sizes of the violations depend on the values in B′ρ̂. We compute the violations

for ρ̂ as follows:

55

PhD Thesis—S. Rostami McMaster University—Computer Science

(
n∑

i=1
B′

l,iρ̂i − (
m∑

j=1
Al,jv

∗
j + b − El))+ l = 1, ..., n (2.4.5)

For the power consumption optimization, the total increase in v∗ must be mini-

mized. Now, if the maximum violation is small for some vector ρ̂, the total increase

needed in v∗ to compensate should also be small. For the other violations corre-

sponding to ρ̂, there are two possibilities: they are much smaller than the maximum

violation or they are on the order of the maximum violation. The first case can be

fixed by a small increase. In the second case, due to correlations, we would expect

at least some of the violation to be corrected when the maximum violation is ad-

dressed. In this case fixing the maximum violation will partly fix the other correlated

violations. Two servers i and j are correlated if there are similarities between their

corresponding rows in A and B′ (servers that are near to each other may be corre-

lated). Thus, with a modification (considering weights wl defined below), the problem

we solve is:

min max
1≤l≤n

[∑n
i=1 B′

l,iρi − (∑m
j=1 Al,jv

∗
j + b − El)]

wl

s.t.
n∑

i=1
ρi = D

ρi ∈ {0, 1} ∀i = 1, ..., n

(2.4.6)

where wl is the maximum entry in the lth row of A. The index of wl in the lth row of

A determines the dominant cooling variable corresponding to server l. The wl values

translate the value of violations to the increases needed in the cooling variables. We

need this translation to compare the violations in terms of the increase needed to

56

PhD Thesis—S. Rostami McMaster University—Computer Science

compensate. To be more precise, we assume that a violation is mostly compensated

for by the dominant cooling variable for each server and the ratio in the cost function

measures the increase needed in this case.

However, the assumption that the violations that are on the order of the maxi-

mum violation are correlated may not be true in general. Problem (2.4.6) minimizes

the maximum increase needed among all dominant cooling variables. This means it

considers the maximum increase instead of the total increase in all dominant cooling

variables. If there are K ≤ m dominant cooling variables, denoted by dk, k = 1, ..., K,

and Sk is the set of servers with dominant cooling variable dk, the problem correspond-

ing to minimizing the total increase is the following:

min
K∑

k=1
max
l∈Sk

[∑n
i=1 B′

l,iρi − (∑m
j=1 Al,jv

∗
j + b − El)]+

wl

s.t.
n∑

i=1
ρi = D

ρi ∈ {0, 1} ∀i = 1, ..., n

(2.4.7)

The max term is for calculating the increase needed for the cooling variable dk.

So, the cost function is the total increase needed for all dominant cooling variables.

Problem (2.4.7) better captures the correlation between the servers.

We still need to present a heuristic for solving (2.4.6) and (2.4.7) because they are

also NP-complete (problem (2.4.1) is a special case for (2.4.6) and (2.4.7) in which

there is only one cooling variable and A is a constant matrix). The heuristic consists

of three different phases, specified as follows.

57

PhD Thesis—S. Rostami McMaster University—Computer Science

Phase 1 is for rounding ρ∗ and generating ρ̂. First note that ρ∗ is also the optimal

solution for the LP relaxation of (2.4.6) and (2.4.7), for which there is no need to

increase the cooling variables. The idea is to gradually round the values in ρ∗ by

considering the cost values for (2.4.6) and (2.4.7). We know that the total workload

for ρ∗ is D and we need to find an integral solution with total load D for (2.4.6) and

(2.4.7). Let us denote such a workload distribution by ρ̂. To go from ρ∗ to ρ̂, some

server workload modifications are required. We perform these modifications as fol-

lows. When a server that has positive load in ρ∗ has its load reduced to zero, its load

is distributed among the remaining servers proportional to their current load. This

way, the new distribution imitates the previous distribution. If the resulting loads

of some servers exceed 1, the extra load is again distributed among the remaining

loaded servers. This is the base step in the following greedy heuristic. The heuristic

selects the servers to be idle one by one. To select the next server to be idle, the

heuristic successively reduces one of the ρi > 0 to zero and by performing the same

redistribution process a new distribution ρ(i) results. The cost for ρ(i) is then cal-

culated. Finally, the server that is selected to be idle is the one that minimizes the

cost of (2.4.6) (or (2.4.7)). This process is repeated until there are exactly D servers

with ρi = 1. The procedure is shown in Algorithm 1. This gradual rounding can also

be performed for problem (2.3.1) directly. The issue is to calculate the cost function

for (2.3.1), where a linear programming problem must be solved for each step. This

increases the complexity of the heuristic as compared to problems (2.4.6) and (2.4.7).

In Algorithm 1, the servers that are idle in ρ∗ remain idle. However, they may be

working in the optimal integral solution. To allow these servers to work, in phase 2,

after calculation of ρ̂, there is another step that idles one of the working servers in

58

PhD Thesis—S. Rostami McMaster University—Computer Science

Algorithm 1 Calculation of ρ̂

1: Solve the relaxed form of (2.3.1) and call the solution (v∗, ρ∗)
2: S = {i ∈ ρ∗|0 < ρi ≤ 1}
3: l = |S| − D
4: ρ̂ = ρ∗

5: while l ̸= 0 do
6: for i ∈ S do
7: ρ(i) = ρ̂
8: S ′ = S − {i}
9: r = ρ

(i)
i

10: ρ
(i)
i = 0

11: for j ∈ S ′ do
12: ρ

(i)
j = ρ

(i)
j + ρ

(i)
j∑

k∈S′
ρ

(i)
k

r

13: end for
14: while ∃k ∈ S ′, ρ

(i)
k > 1 do

15: r = ρ
(i)
k − 1

16: ρ
(i)
k = 1

17: S ′ = S ′ − {k}
18: for j ∈ S ′ do
19: ρ

(i)
j = ρ

(i)
j + ρ

(i)
j∑

l∈S′
ρ

(i)
l

r

20: end for
21: end while
22: xi = value of the cost function of (2.4.6) (or (2.4.7)) for ρ(i)

23: end for
24: Remove i with the smallest xi from S and ρ̂ = ρ(i)

25: l = l − 1
26: end while
27: return ρ̂

59

PhD Thesis—S. Rostami McMaster University—Computer Science

ρ̂ and then switches it with each of the servers that are idle. It finally chooses the

server to work as the one that minimizes the cost of (2.4.6) (or (2.4.7)). For problem

(2.4.6) if more than one server minimizes the cost, then the server whose correspond-

ing ρ minimizes the summation of violations, ∑n
l=1

(
∑n

i=1 B′
l,iρi−(

∑m

j=1 Al,jv∗
j +b−El))+

wl
, is

chosen. This final ranking is not needed for problem (2.4.7), because there is already

a summation in the cost function.

Finally, in phase 3, the procedure explained so far is repeated for a specific number

of iterations. At each iteration, a small perturbation of A, B and E is applied and

the procedure is repeated. At the end, the solution that gives a lower cost for (2.3.1)

is chosen (by fixing ρ̂, (2.3.1) becomes a linear programming problem). The reason

for these perturbations is the optimal fractional solution ρ∗ is more sensitive to small

changes in A, B and E in comparison to the optimal integral solution. We assume

these small changes do not affect the optimal integral solution but when starting from

multiple initial ρ∗ values, we increase the chance of ρ̂ values being close to the optimal

integral solution by choosing the best solution (ρ̂) among the perturbations.

Genetic Algorithm

Genetic algorithms are meta-heuristics that try to search the solution space of a

problem efficiently. They have been previously used in works closely related to our

problem. A genetic algorithm is used in [10] for thermal-aware task scheduling. An

enhanced genetic algorithm is proposed in [11] for reducing cooling power consump-

tion.

We also implement a genetic algorithm to see how such standard approaches work

for this problem. The steps are similar to the algorithms presented in [25] and [26]

60

PhD Thesis—S. Rostami McMaster University—Computer Science

for multiple knapsack and set covering problems, respectively. Each solution is rep-

resented by the 0-1 vector of workload distribution with size n. The costs are the

value of the objective function for problem (2.3.1). There is intensification around

the simple rounding solution when generating the initial population. The algorithm’s

phases are as follows.

• Population generation: The initial population includes the simple rounding

solution and the solutions where 10 percent of their ones (or zeros if the number

of zeros is smaller, i.e., when n−D < D) are different from the simple rounding

solutions. The perturbed utilizations are chosen uniformly at random. As

assumed in Section 2.3, the cooling effort can always be increased enough to

cool all the servers, so as long as there are D ones in a solution, it is feasible.

• Parent selection: This is similar to [25]. It is a tournament with size two.

Two sets of members with size two are chosen randomly from the population

and the member with smaller cost from each set is chosen.

• Child generation (cross over): This is similar to [26]. In the places that

both parents have 1 or 0, the child imitates them. If f1 and f2 are the cost values

for parent1 and parent2, respectively, a proportion f2
f1+f2

of the remaining ones

(there are D ones) are chosen from parent1 and a proportion f1
f1+f2

are chosen

from parent2. In this way, the child is also a feasible solution with D ones.

• Mutation: According to [25], one of the ones is randomly switched with one

of the zeros.

• Replacement: This is similar to [26]. The algorithm rates the solutions in

61

PhD Thesis—S. Rostami McMaster University—Computer Science

terms of cost values. It then selects a solution uniformly from the second half

of the rating and compares its cost with the cost of the child. If the child has

a lower cost, it will replace the selected solution.

The parameters of the algorithm are the population size and the number of itera-

tions for the last four phases in the algorithm. In Section 2.5, we will specify these

parameters.

2.5 Evaluation

In this section, there are two main parts. In the first part, the performance of the

proposed schemes will be evaluated for linear systems, in comparison to simple round-

ing, the proposed genetic algorithm and the Least Recirculated Heat (LRH) algorithm

proposed in [6], which we will explain in greater detail later. We evaluate performance

while considering scalability and running time of the schemes. The performance is the

ratio of calculated cost of problem (2.3.1) for the algorithms to the optimal cost calcu-

lated with MATLAB. In the second part, the performance of our proposed approach

is evaluated for the real nonlinear system and energy savings are calculated. All the

calculations were performed in MATLAB. As explained in Section 2.2, the platform

was MATLAB R2021b running on a 64-bit system with an i7-1185G7 processor and

8-GB RAM. We specify the functions used below.

In the first part, the first set of systems is artificial, corresponding to the bad

cases for simple rounding as explained in Section 2.4. These cases may be challenging

for the algorithms, and so this set of experiments is designed to test the limits of

the proposed heuristics. The second set of results corresponds to the model of the

62

PhD Thesis—S. Rostami McMaster University—Computer Science

operational data center with 25 servers as described in Section 2.2. This is a five-rack

air-cooled DC equipped with two in-row cooling units. The thermal model presented

and validated for this system is zonal-based which is a standard alternative for full-

CFD (Computational Fluid Dynamics) simulations [22][23]. We perform a linear

regression on samples generated from the model of the operational data center to

generate the linear system described by problem (2.3.1). To explore scalability, we

generate two systems with sizes of 50 and 75 servers by scaling the matrices for the

system with 25 servers.

In the second part, for the model of the operational data center (the 25 server

model), we evaluate using the approximate and exact solution of the linear system

in the original system described by problem (P0). The energy saving is evaluated by

performing a comparison with the solution of the nonlinear system. We also compare

these results with the case of continuous server utilizations and a single upper bound

for the server temperatures, as an example of how our proposed approach can be used

to generate useful operational insights.

2.5.1 Evaluation of the Proposed Schemes for Linear Sys-

tems

The first two systems correspond to the two bad cases for simple rounding as explained

in Section 2.3. For Case 1, there are 25 servers and three cooling variables. For

the cooling matrix A, for each row the entries are 0, except for one that is chosen

randomly, and its value is also uniformly distributed on the interval [0,1]. For the heat

recirculation matrix B, each server is affected by five servers including itself. Thus

63

PhD Thesis—S. Rostami McMaster University—Computer Science

there are five non-zero entries for each row of B, corresponding to the assumptions

of Case 1. We set these five entries equal to 1. In this example, for the first row, the

first five entries are equal to 1. For the second row we shift the ones to the right by

one place. We continue in a similar manner for the remaining rows. To be precise:

Bi,j = 1 ⇔ j = (k + i − 2 mod 25) + 1, k ∈ {1, 2, 3, 4, 5} (2.5.1)

So, there are five ones in each row and each column of B. We also set Tidle = 2,

Tbusy = 1, VLB = (10−3 10−3 10−3), VUB = (108 108 108). With these settings,

when D ≤ 5 the optimal cooling values are VLB, which is a condition for Lemma

1. VLB has small values to generate large approximation factors, as explained in the

proof of Lemma 1. VUB has large values to guarantee the feasibility of the problem.

In Case 2, we only change A to correspond to the assumptions for Case 2. So, A

has equal rows whose entries are randomly chosen on the interval [0,1]. In this case,

when D ≤ 5, VLB is also the optimal cooling setting. Next, we generate Case 3 based

on the previous cases to generate settings that may better reflect practice. Case 3

can be seen as a combination of Case 1 and Case 2 with smoother behaviour for A

and B. For A, the entries are randomly chosen to be 0, 1, 2 or 3 with the constraint

that the summation of the values in each row is 3. For B, we assume each server

is affected mostly by itself, which is a reasonable assumption in practice. We also

assume that four other servers have higher effects on a specific server. So, we consider

three uniform distributions. For each row, the entry in the main diagonal is chosen

from the interval [2,5], there are four other entries randomly chosen from [1,2], and

the other entries are selected from [0,0.5].

64

PhD Thesis—S. Rostami McMaster University—Computer Science

Table 2.2: Performance of the algorithms over 100 runs for the synthetic linear
models and over a selected range of demand D

Case 1
SR GA H1 H2

D avg wrc pop avg wrc pop avg wrc pop avg wrc pop
4 560 5688 0.20 36 375 0.90 51 792 0.87 1 1 1
5 901 5218 0.02 334 546 0.13 408 1480 0.17 108 549 0.71
6 4.60 27.89 0 1.68 3.30 0.05 2.09 4.44 0.10 1.25 2.33 0.20
7 5.48 34.91 0 1.95 3.73 0.05 2.07 5.09 0.05 1.41 3.05 0.17
8 12.84 248 0 1.97 4.10 0 1.78 4.12 0.03 1.27 2.38 0.29

Case 2
4 514 2015 0 64 553 0.84 1 1 1 1 1 1
5 509 1779 0 496 1779 0.02 472 1779 0.06 184 1121 0.62
9 2.16 3 0.02 1.55 2 0.45 1 .01 2 0.99 1 1 1
10 2.25 3 0 1.99 2 0.01 1.79 2 0.21 1.36 2 0.64
11 1.21 2 0.60 1 1 1 1 1 1 1 1 1

Case 3
1 1.61 3.56 0.17 1.17 2.04 0.47 1 1 1 1 1 1
2 1.79 3.66 0.04 1.26 2.37 0.24 1.31 2.75 0.31 1.12 2.04 0.47
3 1.60 3.03 0.02 1.24 2.06 0.13 1.35 2.79 0.12 1.11 1.64 0.36
4 1.34 2.47 0.11 1.15 1.60 0.18 1.21 1.70 0.14 1.10 1.43 0.27
5 1.28 2.50 0.06 1.12 1.46 0.18 1.16 1.49 0.15 1.09 1.45 0.25

Table 2.2 and Table 2.3 report the performance and running times of four algo-

rithms for these different cases. The algorithms are simple rounding (SR), genetic

algorithm (GA), proposed scheme based on solving problem (2.4.6) (H1) and proposed

scheme based on solving problem (2.4.7) (H2). The results are the average over 100

runs of the algorithms for randomly generated systems. For GA, the population size

and the number of iterations are set to 5 × min(D, n − D) and 10 × min(D, n − D),

respectively. Theses choices are based on trial and error while trying to balance the

performance and the running time of GA. For H1 and H2, the number of perturba-

tions, as explained in the last part of Section 2.4, is min(5, D, n − D). In Table 2.2,

there are three metrics, averaging the ratio of the calculated cost by the algorithm to

the optimal cost, avg, the worst case ratio of the calculated cost to the optimal cost,

wrc, and the proportion of times generating the optimal cost, pop, over a total of 100

runs. Due to lack of space we only report the results for five values of D to highlight

the performance differences between the algorithms. H2 has the best performance

65

PhD Thesis—S. Rostami McMaster University—Computer Science

Table 2.3: Average running time (in seconds) of the algorithms over 100 runs for the
synthetic linear models and over a selected range of demand D

Case 1
D SR GA H1 H2 OPT
10 0.018 1.221 0.115 0.149 0.165
11 0.018 1.420 0.119 0.156 0.168
12 0.020 1.643 0.128 0.159 0.160
13 0.020 1.676 0.128 0.163 0.136
14 0.019 1.538 0.122 0.153 0.101

Case 2
11 0.016 1.553 0.132 0.212 2.555
12 0.020 1.691 0.127 0.203 1.119
13 0.020 1.707 0.130 0.203 0.552
16 0.021 1.278 0.130 0.194 1.842
17 0.021 1.126 0.129 0.195 0.464

Case 3
10 0.017 1.160 0.108 0.133 0.131
11 0.018 1.348 0.112 0.139 0.146
12 0.018 1.513 0.114 0.144 0.152
13 0.018 1.469 0.115 0.147 0.156
14 0.018 1.337 0.111 0.144 0.142

Case 3 with 50 servers
14 0.022 1.933 0.195 0.464 6.000
15 0.024 2.165 0.209 0.508 8.183
16 0.024 2.319 0.213 0.506 10.363
17 0.022 2.331 0.206 0.486 11.744
18 0.023 2.534 0.213 0.508 15.560

for the entire range of D. The performance for the middle range of D (5 ≤ D ≤ 15)

is more important because the search space for the solution is larger (and hence the

decisions for how to reduce power consumption are more challenging).

Table 2.3 reports the running times. Table 2.3 has an extra column, OPT, which

reports the running time of solving the problem exactly (using the intlinprog function).

According to Tables 2.2 and 2.3, H2 has the best performance and a reasonable

running time. For Case 1, as expected from Lemma 1, when D ≤ 5 the approximation

factor is large for SR. This is also true for Case 2, as expected from Lemma 2. In

these two cases, the other algorithms work better and the best results are clearly for

H2 throughout. For Case 3, H2 still has the best performance but with less of an

advantage over the other algorithms. The results in Table 2.3 show the best running

66

PhD Thesis—S. Rostami McMaster University—Computer Science

times are for SR and the worst are for GA. H1 and H2 have reasonable running

times. The running times for H2 are more than for H1 and H1’s running times scale

more smoothly. The reason is H2 performs some calculations for determining the

dominant cooling variables, along with the differences in the cost functions of (2.4.6)

and (2.4.7). Finally, from the results for Case 3 with 50 servers we can see that the

MATLAB function cannot solve the problem efficiently.

The other set of inputs comes from the linear regression of a model for the

data center described in Section 2.2. We also set Tidle = 35, Tbusy = 27, VLB =

(1300 10), VUB = (2300 20). We performed linear regressions on the functions M

and F (using the regress function). F is a closed-form function but evaluating M

requires the solution of a set of differential equations [22][23]. The data points are

chosen uniformly at random from the defined ranges for the cooling variables and

server untilizations (utilizations are used for regression of M and they are continuous

in this case). We checked the value of R2 statistics for the both functions M and F

and it was at least equal to 0.95 in all cases. The results for regression of two compo-

nents of F , the fan and the chiller power consumption, are shown in Fig. 2.2. After

performing the modifications explained in Section 2.3, the standard form of problem

(2.3.1) is generated. For evaluation of scalability, we consider three systems with 25,

50 and 75 servers. For 25 servers we use the regression results (omitting the constant

biases for F) but for 50 and 75 servers we change the cooling and heat recirculation

matrices as follows. To extend the model to more cascading units, we first change the

cooling matrix for the case of 25 servers. Instead of one cooling variable corresponding

to the total air flow of the fans, we assume that each fan has a separate air flow that

affects closer servers more. For example, the leftmost servers are affected 90 percent

67

PhD Thesis—S. Rostami McMaster University—Computer Science

1400 1600 1800 2000 2200

Volume flowrate

0

200

400

600

800

1000

1200

F
a

n
 p

o
w

e
r

c
o

n
s
u

m
p

ti
o

n
 (

W
)

(a)

Real function

Regression result

10 12 14 16 18 20

Chilled water setpoint temperature

3.1

3.2

3.3

3.4

3.5

3.6

3.7

C
h

ill
e

r
p
o

w
e

r
c
o

n
s
u

m
p

ti
o

n
 (

k
W

)

(b)

Real function

Regression result

Figure 2.2: a) The actual and linearized fan power consumption, b) The actual and
linearized chiller power consumption

by the left fan and 10 percent by the right fan. By considering these changes, we

obtain a new cooling matrix with size 25 × 3 (two fans and one chiller). For the case

of 50 and 75 servers both the cooling and heat recirculation matrices are extended.

The details of how these changes are made are provided in the next paragraph.

For scaling from 25 servers to 50 servers, we consider two sets of five racks (each

consisting of 25 servers) adjacent to each other. Instead of two fans, there are three

fans, one between the two sets of racks, with two more at either end. We assume the

airflow of the middle fan is spread equally between the two sets of racks and each

set is affected by the fans at each of its ends. This way we can construct the cooling

matrix (we did not change the coefficients for the chiller). For the heat recirculation

matrix, the effects of servers in the two sets of racks on each other are considered as

follows. The leftmost rack in the left set of racks is affected the least by the right set

of racks. We assume the effects are 15 percent of the effects of the servers in the same

set of racks. For the next rack (the second rack from the left) the effects are similar

but larger due to the shorter distance. So, we assume the effects are twice the effects

68

PhD Thesis—S. Rostami McMaster University—Computer Science

Table 2.4: Performance of the algorithms over 100 runs for the linear data center
models and over a selected range of demand D

Data center with 25 servers
SR GA H1 H2 LRH

D avg wrc avg wrc avg wrc avg wrc avg wrc
2 1.22 1.50 1 1.03 1.02 1.45 1.01 1.31 1 1.03
4 1.28 1.45 1.01 1.33 1.01 1.32 1.01 1.33 1.02 1.05
6 1.33 1.53 1.08 1.35 1.03 1.31 1.02 1.38 1.03 1.07
8 1.35 1.50 1.14 1.37 1.08 1.40 1.08 1.43 1.34 1.55
10 1.32 1.42 1.24 1.37 1.14 1.39 1.13 1.39 1.35 1.48
12 1.03 1.14 1.02 1.09 1.01 1.03 1.01 1.09 1.06 1.17
14 1.02 1.09 1.01 1.04 1 1.03 1.01 1.05 1.04 1.13
16 1.02 1.06 1.01 1.04 1 1.02 1.01 1.04 1.11 1.22
18 1.02 1.07 1.01 1.03 1 1.03 1 1.04 1.09 1.17
20 1.01 1.11 1.01 1.04 1 1.02 1 1.03 1.06 1.15
22 1.03 1.08 1.01 1.04 1 1.03 1 1.04 1.04 1.13
24 1.01 1.05 1.01 1.05 1 1 1 1 1.03 1.14

Data center with 50 servers
15 1 1.02 1 1.02 1 1.19 1 1.01 1.02 1.06
20 1.01 1.02 1.01 1.02 1.01 1.04 1 1.02 1.03 1.06
25 1.01 1.04 1.01 1.02 1 1.02 1 1.02 1.02 1.06
30 1 1.02 1 1.01 1 1.03 1 1.01 1.20 1.24

Data center with 75 servers
40 1.05 1.09 1.05 1.07 1.04 1.07 1.03 1.05 1.10 1.13
50 1.02 1.05 1.02 1.04 1.01 1.03 1.01 1.03 1.10 1.12

calculated for the leftmost rack. For the next racks, the effects are three, four and

five times the effects calculated for the leftmost rack, respectively. Finally, for the

case of 75 servers, we assume the racks that are not adjacent are isolated from each

other in terms of heat recirculation.

Table 2.4 reports the results. There are additional results for the LRH algorithm

[6]. LRH tries to minimize the heat recirculation by choosing the servers with lowest

values for summation of columns in the heat recirculation matrix B. The problem is

solved 100 times. Each time the matrices A, B and E are perturbed by multiplying

each of their entries with a random value drawn from a uniform distribution on

the interval [0.98, 1.02]. The results show that H1 and especially H2 have the best

performance in terms of avg. In the case of 25 servers and smaller D values, GA and

especially SR clearly perform worse than the other algorithms. For some D values,

69

PhD Thesis—S. Rostami McMaster University—Computer Science

LRH also reports the worst performance for all three systems. Similarly to the results

in Table 2.3, we also checked the running times in this case and scalibility was also

confirmed in terms of running times.

2.5.2 Evaluation of Energy Savings for the Original System

We now evaluate the effectiveness of our proposed approach versus attempting to

compute the optimal solution directly for the original system. The system considered

corresponds to the operational data center of 25 servers and two cooling variables as

described in the previous sections. We solve problem (P0) (using the surrogateopt

function) with the actual nonlinear functions M and F and then compare the results

with the results obtained by using the solution of the linearized system. We also

implement three algorithms from the literature, UniD, minTemp, and LRH. UniD

and minTemp are similar to the UniformWorkload and CoolestInlets algorithms pre-

sented in [27]. In UniD the workload is distributed uniformly among the servers. In

minTemp, the next server to be chosen is the server with minimum inlet temperature

(we set the cooling variables to their lower bounds). However, knowing the workload

distribution is not enough to compute the cooling power consumption. We also need

to calculate the cooling parameters. This step is performed by solving the linearized

problem for the specific workloads, which is a standard linear programming problem

(this is also the case for LRH). In Table 2.5, there are four extra columns, OPTL,

OPT27, OPTi100, and OPTi1000. OPTL, OPTi100, and OPTi1000 correspond to

solve the linear problem and solve problem (P0) with 100 and 1000 number of it-

erations, respectively (using the intlinprog and surrogateopt functions). We explain

OPT27 below. All the solutions are evaluated for the original system. The results

70

PhD Thesis—S. Rostami McMaster University—Computer Science

reported in Table 2.5 are the ratio of the calculated cost to the best cost value found

among all the columns for each value of D. According to Fig. 2.2, the maximum pos-

sible improvement for this system is 3700+1200
3100+200 = 1.48, which means an algorithm can

reduce the power consumption by at most 48% when compared to another algorithm.

We also checked the feasibility of the solution for the original system. For OPTL and

the proposed algorithms, the initial solutions were not feasible for some values of D.

To solve this issue, we reduced Tidle and Tbusy for the linearized problem to 33.5 and

25.5, respectively.

As reported in columns OPTi100 and OPTi1000, the MATLAB function cannot

return the optimal solution in most of the cases. At some cases, the difference with

the best solution is about 14% even for OPTi1000. It is also very time consuming due

to evaluation of the function M at each iteration (each call takes about 2 seconds) as

explained in Section 2.2.

The results show that the linear regression and the corresponding approximation

schemes, H1 and H2, have close to the best performance for the whole range of D,

emphasizing also their time efficiency. The performance of UniD is also not acceptable

for the whole range, particularly for the smaller values of D. While LHR reports the

best solution for some values of D, its performance is not acceptable for some other

values. Finally, minTemp reports the best solution for the whole range of D but

there were some challenges. First, as explained, evaluation of inlet temperatures is

time consuming. Second, for minTemp and LHR the initial solution was not feasible

for some values of D. To solve this issue, we gradually increased the fan’s flow rate

by 5% until a feasible solution was reached. This step is also time consuming and

71

PhD Thesis—S. Rostami McMaster University—Computer Science

Table 2.5: Performance of different algorithms over the whole range of demand D,
with results applied to the original 25-server system

Original 25-server system
D SR GA H1 H2 OPTL OPT27 OPTi100 OPTi1000 UniD minTemp LRH
1 1.02 1.02 1.02 1.02 1.02 1.15 1.13 1.05 1.11 1 1
2 1.02 1.02 1.02 1.02 1.02 1.15 1.13 1.06 1.11 1 1
3 1.02 1.02 1.02 1.02 1.02 1.15 1.12 1.06 1.11 1 1
4 1.08 1.02 1.02 1.02 1.02 1.15 1.12 1.10 1.12 1 1
5 1.02 1.02 1.02 1.02 1.02 1.14 1.17 1.10 1.12 1 1
6 1.02 1.02 1.03 1.03 1.02 1.14 1.18 1.12 1.13 1 1
7 1.02 1.02 1.03 1.03 1.02 1.14 1.18 1.11 1.13 1 1
8 1.02 1.02 1.03 1.03 1.02 1.14 1.18 1.12 1.14 1 1.09
9 1.03 1.03 1.03 1.03 1.03 1.14 1.17 1.11 1.14 1 1.09
10 1.03 1.03 1.03 1.03 1.03 1.14 1.16 1.14 1.14 1 1.09
11 1 1 1 1 1 1.04 1.06 1.06 1.05 1 1
12 1.01 1 1.01 1.01 1 1.07 1.06 1.06 1.05 1 1
13 1.01 1 1 1 1 1.03 1.06 1.05 1.06 1 1
14 1.02 1.01 1 1 1 1.03 1.05 1.05 1.06 1 1
15 1.01 1 1 1 1 1.03 1.05 1.05 1.06 1 1
16 1.01 1 1 1 1 1.02 1.05 1.04 1.06 1.01 1.05
17 1.01 1 1 1 1 1.01 1.04 1.04 1.06 1.01 1.04
18 1.03 1.03 1.02 1.02 1.02 1.03 1.06 1.05 1.09 1 1.06
19 1 1 1 1 1 1 1.02 1.02 1.07 1 1.03
20 1 1 1.01 1.01 1 1 1.03 1.02 1.07 1 1.09
21 1.04 1.02 1.02 1.02 1.02 1 1.02 1.01 1.07 1.02 1.09
22 1.04 1.03 1.03 1.03 1.02 1 1.01 1.01 1.08 1.02 1.10
23 1.04 1.03 1.03 1.03 1.02 1 1.02 1.01 1.08 1.02 1.10
24 1.04 1.03 1.03 1.03 1.03 1 1.02 1.01 1.09 1.01 1.01

not straightforward. In addition, as we explained, the linearized system was used to

compute the initial cooling parameters after determining the workload distribution

by these algorithms. So, they are also dependent on an efficient method to compute

the cooling parameters.

Finally, to investigate the effect of considering two different upper bounds for the

temperatures of idle and busy servers, we report the results for the case of continuous

utilizations but with one upper bound for the server temperatures equal to Tbusy (we

have to choose the smallest upper bound, Tbusy, because it should work for all utiliza-

tions). In Table 2.5, column OPT27 corresponds to this case by setting Tbusy = 27

and solving the problem (using the fmincon function that is also slow due to the need

to repeatedly evaluate the function M). As shown, the case of continuous utilizations

72

PhD Thesis—S. Rostami McMaster University—Computer Science

does not yield acceptable performance for small to medium values of D. The results

also show that we can take advantage of the two different red-line temperatures to

reduce the total power consumption compared to the solution calculated for the case

of a single red-line temperature (by up to 14 percent for the middle range of D).

2.6 Conclusion

In this paper, a time-efficient holistic approach for solving thermal-aware workload

distribution problems was proposed, including linearization of the problem and us-

ing the solution for the original system. We introduced a problem considering several

cooling parameters, heat recirculation effects and two red-line temperatures for servers

with a goal of minimizing the cooling power consumption for a data center. We pro-

posed a framework including some assumptions, linearization of the problem and a

heuristic for intelligent rounding of the fractional solution for the linearized model.

We provided an analysis of the optimization problem for the linearized problem, by

introducing simple rounding and genetic algorithms as the baseline algorithms and

extracting two bad cases for simple rounding that are also used for evaluation of the

proposed schemes. The proposed framework showed acceptable performance and run-

ning times for the cases of synthetic and real world systems. In some cases, the power

consumption for the real system is reduced by 10 percent when compared with the

solutions returned by the MATLAB function, which requires a much longer running

time (due to the complexity of the thermal model). The results also confirm that

considering two red-line temperatures is beneficial to reduce the cooling power con-

sumption by up to 14 percent (which also has much greater running time as compared

to the proposed heuristics). This was demonstrated by comparison with the case of

73

PhD Thesis—S. Rostami McMaster University—Computer Science

one red-line temperature and continuous utilizations. As for future work, modifica-

tion of the proposed algorithms for similar problems such as set covering problems

and facility location problems can be studied. The applicability of linearization for

the case of server consolidation can also be investigated. This work may also be a

good starting point for considering deeper analysis of the underlying optimization

problems. For example, the cases of heterogeneous data centers and transient ther-

mal models are more complicated problems that can be investigated. In contrast to

our real system, the linearized model may not represent a real system well enough.

Other representations such as piece-wise linear functions or general convex functions

can be explored. Additional costs such as migration cost (moving workload between

servers) can also be considered, when one considers a problem where the workload

varies over time.

74

Bibliography

[1] W. Zhang, Y. Wen, Y. Wah Wong, K. Chuan Toh, and C. H. Chen, “Towards

Joint Optimization Over ICT and Cooling Systems in Data Centre: A Survey,"

IEEE Communications Surveys and Tutorials, vol. 18, no. 3, pp. 1596-1616, 2016.

[2] A. Habibi Khalaj, S. K. Halgamuge, “A Review on Efficient Thermal Management

of Air and Liquid-cooled Data Centers: From Chip to the Cooling System," Applied

Energy, vol. 205, pp. 1165-1188, 2017.

[3] Y. Ran, H. Hu, X. Zhou, and Y. Wen, “DeepEE: Joint Optimization of Job

Scheduling and Cooling Control for Data Center Energy Efficiency Using Deep Re-

inforcement Learning," 2019 IEEE 39th International Conference on Distributed

Computing Systems (ICDCS), pp. 645-655, 2019.

[4] Y. Li, Y. Wen, D. Tao, and K. Guan, “Transforming Cooling Optimization for

Green Data Center via Deep Reinforcement Learning," IEEE Transactions on

Cybernetics, vol. 50, no. 5, pp. 2002-2013, 2020.

[5] S. Akbar, S. U. R. Malik, K. -K. R. Choo, S. U. Khan, N. Ahmad and A. Anjum,

"A Game-based Thermal-Aware Resource Allocation Strategy for Data Centers,"

75

PhD Thesis—S. Rostami McMaster University—Computer Science

in IEEE Transactions on Cloud Computing, vol. 9, no. 3, pp. 845-853, July-Sept.

2021.

[6] Z. Abbasi, G. Varsamopoulos, and S. K. S. Gupta. 2012. “TACOMA: Server and

Workload Management in Internet Data Centers Considering Cooling-computing

Power Trade-off and Energy Proportionality," ACM Transactions on Architecture

and Code Optimization, vol. 9, no. 2, pp. 1-37, 2012.

[7] S. MirhoseiniNejad, G. Badawy, and D. G. Down, “EAWA: Energy-aware Work-

load Assignment in Data Centers,” 2018 International Conference on High Per-

formance Computing & Simulation (HPCS), pp. 260–267, 2018.

[8] M. Nakamura, “Learning and Optimization Models for Energy Efficient Cool-

ing Control in Data Center," Proceedings of the SICE Annual Conference, 2016,

Tsukuba, Japan.

[9] T. Van Damme, C. De Persis, and P. Tesi, “Optimized Thermal-Aware Job

Scheduling and Control of Data Centers," IEEE Transactions on Control Systems

Technology, vol. 27, no. 2, pp. 760-771, 2019.

[10] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, “Energy-Efficient Thermal-

Aware Task Scheduling for Homogeneous High-Performance Computing Data

Centers: A Cyber-Physical Approach,"IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 19, no. 11, pp. 1458-1472, 2008.

[11] L. Yang, Y. Deng, L. T. Yang. and R. Lin, “Reducing the Cooling Power of Data

Centers by Intelligently Assigning Tasks," IEEE Internet of Things Journal, vol.

5, no. 3, pp. 1667-1678, 2018.

76

PhD Thesis—S. Rostami McMaster University—Computer Science

[12] A. D. Carnerero, D. R. Ramirez, T. Alamo and D. Limon, "Probabilistically Cer-

tified Management of Data Centers Using Predictive Control," in IEEE Transac-

tions on Automation Science and Engineering, vol. 19, no. 4, pp. 2849-2861, Oct.

2022.

[13] Z. Wang, C. Bash, N. Tolia, N. Marwah, X. Zhu, and P. Ranganathan, “Optimal

Fan Speed Control for Thermal Management of Servers," ASME 2009 InterPACK

Conference, vol. 2, pp. 709-719, 2009, San Francisco, California, USA.

[14] J. Wan, X. Gui, R. Zhang, and L. Fu, “Joint Cooling and Server Control in

Data Centers: A Cross-Layer Framework for Holistic Energy Minimization," IEEE

Systems Journal, vol. 12, no. 3, pp. 2461-2472, 2018.

[15] E. Pakbaznia, M. Pedram, “Minimizing Data Center Cooling and Server Power

Costs," Proceedings of the 2009 ACM/IEEE international symposium on Low

power electronics and design, pp. 145–50, 2009.

[16] Q. Fang, J. Wang, Q. Gong, and M. Song, “Thermal-Aware Energy Management

of an HPC Data Center via Two-Time-Scale Control," IEEE Transactions on

Industrial Informatics, vol. 13, no. 5, pp. 2260-2269, 2017.

[17] Q. Fang, J. Wang and Q. Gong, “QoS-Driven Power Management of Data Centres

via Model Predictive Control," IEEE Transactions on Automation Science and

Engineering, vol. 13, no. 4, pp. 1557-1566, 2016.

[18] L. Parolini, B. Sinopoli, B. H. Krogh, and Z. Wang, “A Cyber–Physical Systems

Approach to Data Center Modeling and Control for Energy Efficiency," Proceed-

ings of the IEEE, vol. 100, no. 1, pp. 254-268, 2012.

77

PhD Thesis—S. Rostami McMaster University—Computer Science

[19] J. Li, Y. Deng, Y. Zhou, Z. Zhang, G. Min and X. Qin, "Towards Thermal-Aware

Workload Distribution in Cloud Data Centers Based on Failure Models," in IEEE

Transactions on Computers, vol. 72, no. 2, pp. 586-599, Feb. 2023.

[20] A. M. Al-Qawasmeh, S. Pasricha, A. A. Maciejewski, and H. J. Siegel, “Power

and Thermal-Aware Workload Allocation in Heterogeneous Data Centers," IEEE

Transactions on Computers, vol. 64, no. 2, pp. 477-491, 2015.

[21] S. Mirhoseininejad, G. Badawy, and D. G. Down, “A Data-driven, Multi-setpoint

Model Predictive Thermal Control System for Data Centers," Journal of Networks

and Systems Management, vol. 29, no. 7, 2021.

[22] R. Gupta, S. Asgari, H. Moazamigoodarzi, D. G. Down, and I. K. Puri, “En-

ergy, Exergy and Computing Efficiency Based Data Center Workload and Cooling

Management," Applied Energy, vol. 299, 117050, 2021.

[23] H. Moazamigoodarzi, R. Gupta, S. Pal, P. J. Tsai, S. Ghosh, and I. K. Puri,

“Modeling temperature distribution and power consumption in IT server enclo-

sures with row-based cooling architectures," Applied Energy, Vo. 261, 114355 2020.

[24] S. MirhoseiniNejad, H. Moazamigoodarzi, G. Badawy, and D. G. Down, “Joint

Data Center Cooling and Workload Management: A Thermal-aware Approach,"

Future Generation Computer Systems, Vol. 104, 2020.

[25] P. C. Chu, and J. E. Beasley, “A Genetic Algorithm for the Multidimensional

Knapsack Problem," Journal of Heuristics, vol. 4, pp. 63–86, 1998.

[26] J.E. Beasley, and P. C. Chu, “A Genetic Algorithm for the Set Covering Prob-

lem," European Journal of Operational Research, vol. 94, no. 2, pp. 392-404, 1996.

78

PhD Thesis—S. Rostami McMaster University—Computer Science

[27] J. D. Moore, J. S. Chase, P. Ranganathan, and R. K. Sharma, “Making schedul-

ing “cool”: Temperature-aware workload placement in data centers," in Proc.

USENIX Annual Technology Conference, 2005, pp. 1-75.

79

Chapter 3

Thermal-aware Workload

Distribution for Data Centers with

Demand Variations

The content of this chapter is reproduced from: “Thermal-aware workload distri-

bution for data centers with demand variations”, S. Rostami, D. G. Down, and G.

Karakostas. An abridged version has been submitted to the 14th International Green

and Sustainable Computing Conference - IGSC 2023, Toronto, ON, Canada, October

2023. The author of this thesis is the first author and the main contributor of this

manuscript.

80

PhD Thesis—S. Rostami McMaster University—Computer Science

Abstract

Thermal-aware workload distribution is a common approach in the literature for

power consumption optimization in data centers. However, data centers also have

other operational costs such as the cost of equipment maintenance and replacement.

It has been shown that server reliability depends on frequency of their temperature

variations, arising from workload transitions due to dynamic demands. In this work,

we formulate a nonlinear optimization problem that considers the cost of workload

transitions in addition to IT and cooling power consumption. To approximate the

solution, we first linearize the problem; the result is a mixed integer programming

problem. A modified heuristic is then proposed to approximate the solution of the

linear problem. Finally, a Model Predictive Control (MPC) approach is integrated

with the proposed heuristics for automatic workload reconfiguration when future de-

mand is not known exactly, but predictions are available. Numerical results show

that the proposed schemes are attractive in different settings.

Keywords: switching cost, model predictive control, integer programming, thermal-

aware workload distribution, data center

3.1 Introduction

Energy consumption of data centers is increasing rapidly, due to growth in demand for

internet services and cloud computing tasks. IT and cooling equipment are the main

power consumers in a data center [1][2]. Due to heat recirculation effects, thermal-

aware workload distribution is necessary to minimize the power consumption while

81

PhD Thesis—S. Rostami McMaster University—Computer Science

respecting operational temperature constraints [3].

Data centers also have operational costs such as the cost of equipment maintenance

and replacement. The reliability of servers depends on several factors such as their in-

let temperature and frequency of temperature variations. In thermal-aware workload

distribution, the inlet temperatures are typically bounded by a red-line temperature

[4]. However, when the workload distribution is changed due to dynamic demands,

the cost of varying the workload on a server (which we will call switching costs) has

not been addressed in the literature. The varying workload leads to temperature

variations that can impact the reliability of servers [5]. To be more precise, most

of the approaches solve the thermal-aware workload distribution problem for a fixed

demand. Considering time varying demand is beneficial for reducing the switching

costs [6]. In this case, it would be desirable to incorporate demand predictions into

the problem. So, we are interested in a thermal-aware workload distribution problem

where demand is time varying and the effects of varying the utilizations of servers are

taken into account when (re)distributing workload.

While dynamic workload allocation may have costs associated with decreased

server lifetimes, workload migration may also be required. This mainly affects the

quality of service by imposing a delay on processing when virtual machines migrate

between different physical machines [7][8]. In this work, we do not address the virtual

machine migration problem directly, however, the problem we plan to solve can also

consider the migration cost indirectly by adding a penalty for workload transitions.

This penalty can lead to decrease the number of migrations.

There are a few works that consider switching costs in the workload distribution

82

PhD Thesis—S. Rostami McMaster University—Computer Science

policy. Most of the literature addresses thermal-aware workload distribution for a

constant demand (steady- state) [9][10][11][12][13][14]. In [6], switching costs are con-

sidered but cooling power consumption is not considered. In [15], switching costs are

considered in the thermal-aware workload distribution policy, where a transient ther-

mal model is used. A particle-based optimization algorithm is then used to solve the

problem. In this work, we formulate a thermal-aware workload distribution problem

in discrete time that considers switching costs in addition to IT and cooling power

consumption. The proposed problem is a generalized form of the problem introduced

in [16][17].

The problem proposed in [17] is a general power optimization problem with nonlin-

ear cooling power consumption and steady-state thermal model. As a power reduction

scenario, they also consider two different red-line temperatures corresponding to idle

and fully-utilized servers, respectively. However, the demand value is fixed. The ap-

proach proposed to solve nonlinear power optimization problems is to linearize the

problem. Depending on the type of variables (continuous or integral) the resulting

problem is a linear programming problem or an (mixed) integer linear programming

problem. This approach is especially beneficial because the nonlinear problem is gen-

eral enough to represent a range of similar problems in this area. The approach is also

time efficient because the thermal models may be computationally expensive when

they are used to calculate the temperatures, for example if they are based on solving

differential equations. Using linear regression to construct a linear model helps reduce

the time complexity. Finally, a heuristic is proposed to approximate the solution of

the linear problem that is then applied to the original problem.

83

PhD Thesis—S. Rostami McMaster University—Computer Science

In this work, we also linearize the problem and generalize the heuristic to approxi-

mate the solution of the resulting mixed integer programming problem. The solution

is then used for the original problem. When demand predictions are available, we

integrate a Model Predictive Control (MPC) approach with the proposed heuristic.

Using MPC is common in the literature in the presence of transient thermal models

[15][16][18][19][20]. In this work, we show that an MPC approach is useful for reduc-

ing the size of the problem and for incorporating updates to the predicted demand.

Our contributions can be listed as follows:

• Generalization of the constant demand problem to a discrete-time, time-varying

problem which also considers switching costs

• Generalization of the heuristic proposed in [17] for the resulting mixed inte-

ger linear programming problem and proving its applicability for the proposed

problem

• Integration of an MPC approach with demand predictions for the proposed

heuristic

• Evaluation of the proposed schemes that suggest the potential for significant

cost reductions, e.g. when compared to separating the problem into independent

instances at each time step

In the remainder of the paper, we first describe the system model and introduce

the optimization problem, in Section 3.2. We also linearize the problem. An ap-

proximation algorithm to solve the problem is proposed in Section 3.3. An MPC

84

PhD Thesis—S. Rostami McMaster University—Computer Science

approach is introduced in Section 3.4. Section 3.5 covers the evaluation of the pro-

posed schemes for the introduced integer linear programming problem. Concluding

remarks are provided in Section 3.6.

3.2 System Model

The problem introduced in this paper is a thermal-aware workload distribution prob-

lem that considers both power consumption and switching costs in the presence of

demand variations. We consider a discrete time demand model in which there are

K time slots and the demand at time slot k is denoted by Dk, the number of re-

quired servers at time slot k. The problem is a generalized form of the problem

introduced in [16][17]. For the case of one time slot or fixed demand, presented in

[17], a general nonlinear optimization problem is considered for minimizing the total

power consumption in a data center. The system considered in this paper includes

m cooling facilities and n servers. The decision variables are the cooling parameters

and the server utilizations at time slot k, k = 1, ..., K, denoted by the vectors v
(k)
m×1

and ρ
(k)
n×1, respectively. As a power reduction scenario, two red-line temperatures are

considered corresponding to idle or fully utilized servers, so the server utilizations

are 0 or 1. This helps reduce the cooling effort because the lightly loaded servers

have a higher red-line temperature. The servers are assumed to be identical. The

power consumption and thermal models are generally nonlinear. The cost function

is the summation of cooling and IT power consumption along with the cost of work-

load migration and switching the servers between idle or fully utilized (or on and off

states in the case of server consolidation) in consecutive time slots. Addition of the

switching cost controls the utilization variation of the servers (and the temperature

85

PhD Thesis—S. Rostami McMaster University—Computer Science

variations) which as discussed in Section 3.1, can lead to increased server lifetimes.

So, the trade-off of power consumption and the impact on server reliability due to

the frequency of varying server utilizations is considered. There are performance and

temperature constraints for each time slot.

We assume that the initial workload distribution is denoted by ρ(0). Thus, the

problem that we wish to solve is:

min
K∑

k=1
F (v(k)) +

K∑
k=1

wk

n∑
i=1

|ρ(k)
i − ρ

(k−1)
i | +

K∑
k=1

n∑
i=1

P (ρ(k)
i , t

(k)
i)

s.t.
n∑

i=1
ρ

(k)
i ≥ Dk ∀k = 1, ..., K

M(v(k), ρ(k)) ≤ Tidle1n×1 − (Tidle − Tbusy)ρ(k) ∀k = 1, ..., K

v(k) ≥ VLB ∀k = 1, ..., K

v(k) ≤ VUB ∀k = 1, ..., K

ρ
(k)
i ∈ {0, 1} ∀k = 1, ..., K ∀i = 1, ..., n

(3.2.1)

where F (v(k)) is the cooling power consumption corresponding to the cooling variable

vector v
(k)
m×1 at time slot k, ρ

(k)
n×1 is the vector of workload distribution at time slot k,

and M(v(k), ρ(k)) is the function corresponding to the thermal model. Within each

time slot, a steady-state thermal model is considered. In other words, we assume the

time slots are long enough (in the range of minutes) so that a steady-state thermal

model is appropriate. The first constraint is a performance constraint with the target

demand Dk, and the second constraint limits the inlet temperatures to be less than the

corresponding red-line temperatures, Tidle and Tbusy (according to [4], Tidle > Tbusy).

86

PhD Thesis—S. Rostami McMaster University—Computer Science

The cost of switching (and migration) per server for the kth time slot is denoted by

wk. The computing (IT) power consumption of server i in the kth time slot is denoted

by P (ρ(k)
i , t

(k)
i), where t

(k)
n×1 = M(v(k), ρ(k)) is the vector of server inlet temperatures at

time slot k. The vectors of lower bounds and upper bounds for the cooling variables

are VLB and VUB, respectively.

There are many possible models that could be used for IT power consumption,

but we focus on one choice. We ignore the dependence of IT power consumption on

the inlet server temperature. The model is P (ρ(k)
i) = c + dρ

(k)
i , where c and d are

constants, but we assume that there is server consolidation, so that idle servers are

turned off and P (ρ(k)
i) = 0 when ρ

(k)
i = 0. In general, server consolidation may change

the thermal model but we leave that as a topic for future work. Server consolidation

requires an extra step of linearizing the IT power consumption.

The approach proposed in [17] to solve nonlinear power optimization problems

is to linearize the problem and in NP-complete cases (when there are integral vari-

ables) propose heuristics developed for approximating the solution of the resulting

integer programming problems. The linearized version of the single time slot prob-

lem extracted in [17] (with some modifications, assumptions and normalization) is

problem (3.2.2), where a = Tidle − Tbusy > 0, b = Tidle, An×m, Bn×n and En×1 are

the cooling matrix, the heat-recirculation matrix and the constant part, respectively

and Ai,j, Bi,j ≥ 0 (nonnegative entries). In [17], we showed that problem (3.2.2) is

NP-complete and proposed a heuristic to construct an approximate solution.

Similarly, we first linearize problem (3.2.1) and then generalize the heuristic pro-

posed in [17] to approximate the solution of the linear problem. Linearizing the

87

PhD Thesis—S. Rostami McMaster University—Computer Science

switching cost is straightforward and leads to introducing the new variables sk,i.

When the server utilizations are 0 or 1, linearizing the IT power consumption is also

straightforward. In this case P (ρ(k)
i) = (c+d)ρ(k)

i . So, the integer linear programming

problem is problem (3.2.3).

min
m∑

j=1
vj

s.t.
n∑

i=1
ρi ≥ D

−
m∑

j=1
Al,jvj+

n∑
i=1

Bl,iρi + aρl ≤ b − El ∀l = 1, ..., n

vj ≥ V
(j)

LB ∀j = 1, ..., m

vj ≤ V
(j)

UB ∀j = 1, ..., m

ρi ∈ {0, 1} ∀i = 1, ..., n

(3.2.2)

min
K∑

k=1

m∑
j=1

v
(k)
j +

K∑
k=1

wk

n∑
i=1

sk,i + (c + d)
K∑

k=1

n∑
i=1

ρ
(k)
i

s.t.
n∑

i=1
ρ

(k)
i ≥ Dk ∀k = 1, ..., K

−
m∑

j=1
Al,jvk,j +

n∑
i=1

Bl,iρ
(k)
i + aρ

(k)
l ≤ b − El ∀k = 1, ..., K ∀l = 1, ..., n

sk,i − ρ
(k)
i + ρ

(k−1)
i ≥ 0 ∀k = 1, ..., K ∀i = 1, ..., n

sk,i + ρ
(k)
i − ρ

(k−1)
i ≥ 0 ∀k = 1, ..., K ∀i = 1, ..., n

v
(k)
j ≥ V

(j)
LB ∀k = 1, ..., K ∀j = 1, ..., m

v
(k)
j ≤ V

(j)
UB ∀k = 1, ..., K ∀j = 1, ..., m

ρ
(k)
i ∈ {0, 1} ∀k = 1, ..., K ∀i = 1, ..., n

(3.2.3)

88

PhD Thesis—S. Rostami McMaster University—Computer Science

0 0.2 0.4 0.6 0.8 1

Server Utilization

0

50

100

150

200

250

300

350

400

IT
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n

(a)

0 0.2 0.4 0.6 0.8 1

Server Utilization

0

50

100

150

200

250

300

350

400

IT
 P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n

(b)

Figure 3.1: a) The actual IT power consumption (Watts) b) The piecewise linear
approximation of IT power consumption

However, with the relaxation of server utilizations that is needed for the approx-

imation algorithm, more work is needed to linearize the IT power consumption in

problem (3.2.1). According to the IT power consumption model, in the case of con-

solidation there is a jump in P (ρ(k)
i) when ρ

(k)
i = 0. We approximate P (ρ(k)

i) with a

piecewise linear function as is shown in Figure 3.1 For a small value ϵ, the IT power

consumption is Pϵ = cϵ + d. If ρ
(k)
i ≤ ϵ, then the IT power consumption is approx-

imated as P (ρ(k)
i) = Pϵ

ϵ
ρ

(k)
i , and if ρ

(k)
i > ϵ, then P (ρ(k)

i) = cρ
(k)
i + d. To linearize

these conditions, we divide ρ
(k)
i into two parts, ρ

(k)
i = ρ

−(k)
i + ρ

+(k)
i , where one of the

following cases is true, depending on the value of the new 0-1 variable y
(k)
i . If y

(k)
i = 1,

then ρ
−(k)
i ≤ ϵ and ρ

+(k)
i = 0, otherwise ρ

−(k)
i = 0 and ρ

+(k)
i ≥ ϵ. This procedure leads

to extra constraints being added to problem (3.2.3). Finally the relaxed form of the

problem (0 ≤ y
(k)
i ≤ 1) is problem (3.2.4).

89

PhD Thesis—S. Rostami McMaster University—Computer Science

min
K∑

k=1

m∑
j=1

v
(k)
j +

K∑
k=1

wk

n∑
i=1

sk,i +
K∑

k=1

n∑
i=1

(Pϵ

ϵ
ρ

−(k)
i + cρ

+(k)
i + d(1 − y

(k)
i))

s.t.
n∑

i=1
(ρ+(k)

i + ρ
−(k)
i) ≥ Dk ∀k = 1, ..., K

−
m∑

j=1
Al,jvk,j +

n∑
i=1

Bl,i(ρ+(k)
i + ρ

−(k)
i) + a(ρ+(k)

l + ρ
−(k)
l) ≤ b − El ∀k = 1, ..., K ∀l = 1, ..., n

sk,i − (ρ+(k)
i + ρ

−(k)
i) + (ρ+(k−1)

i + ρ
−(k−1)
i) ≥ 0 ∀k = 1, ..., K ∀i = 1, ..., n

sk,i + (ρ+(k)
i + ρ

−(k)
i) − (ρ+(k−1)

i + ρ
−(k−1)
i) ≥ 0 ∀k = 1, ..., K ∀i = 1, ..., n

ρ
+(k)
i + y

(k)
i ≤ 1 ∀k = 1, ..., K ∀i = 1, ..., n

ϵy
(k)
i + ρ

+(k)
i ≥ ϵ ∀k = 1, ..., K ∀i = 1, ..., n

ϵy
(k)
i − ρ

−(k)
i ≥ 0 ∀k = 1, ..., K ∀i = 1, ..., n

v
(k)
j ≥ V

(j)
LB ∀k = 1, ..., K ∀j = 1, ..., m

v
(k)
j ≤ V

(j)
UB ∀k = 1, ..., K ∀j = 1, ..., m

ρ
+(k)
i ≥ 0 ∀k = 1, ..., K ∀i = 1, ..., n

ρ
−(k)
i ≥ 0 ∀k = 1, ..., K ∀i = 1, ..., n

y
(k)
i ≤ 1 ∀k = 1, ..., K ∀i = 1, ..., n

y
(k)
i ≥ 0 ∀k = 1, ..., K ∀i = 1, ..., n

(3.2.4)

3.3 Approximation Algorithm

Our aim is to approximate the solution of problem (3.2.3) and use it for the original

problem (3.2.1). We generalize the H2 heuristic in [17] to approximate the solution of

problem (3.2.3). The proposed heuristic is based on gradual rounding of the fractional

solution of the relaxed linear problem (3.2.4). Let us denote the solution of problem

(3.2.4) by (v∗(k), ρ∗(k)), ∀k = 1, ..., K. In H2, the main idea for approximating the

90

PhD Thesis—S. Rostami McMaster University—Computer Science

solution of problem (3.2.2) efficiently is to link the original problem to a problem

that can be approximated more efficiently. The efficiency comes from reducing the

number of constraints and decision variables. The main variables in problem (3.2.2)

are the server utilizations, because by knowing them, the cooling parameters can be

found by solving a standard linear programming problem. In the problem that H2

approximates, the decision variables are only the server utilizations and there is only

one constraint, on the number of working servers. In the gradual rounding of the

server utilizations, at each step, the decision of which server to be turned off (or keep

idle) is made by redistribution of the load of each server to the other servers and

calculation of the cost for a new optimization problem that aims at minimizing the

total increase (as compared to the fractional cost) in the dominant cooling variables

(the dominant cooling variable for server i is the variable with the largest entry in

the ith row of cooling matrix A). That is because the total increase in the dominant

cooling variables is assumed to be a good approximation for the total increase in

the cooling variables for the original problem (3.2.2). For our problem, the proposed

heuristic, called DCVS (Dominant Cooling Variable with Switching cost), is similarly

based on gradual rounding of the fractional server utilizations. However, instead

of one problem, K problems are approximated. The values of ρ̂(k) are computed

consecutively, as the greatest correlation between demands will typically be between

consecutive time slots. The problem for time slot k is:

91

PhD Thesis—S. Rostami McMaster University—Computer Science

min
R∑

r=1
max
l∈Sr

[
∑n

i=1 B′
l,iρ

(k)
i − (

∑m
j=1 Al,jv

∗(k)
j + b − El)]+

zl
+ wk

n∑
i=1

|ρ(k)
i − ρ̂i

(k−1)| + wk+1

n∑
i=1

|ρ∗(k+1)
i − ρ

(k)
i |

s.t.
n∑

i=1
ρ

(k)
i = D∗

k

ρ
(k)
i ∈ {0, 1} ∀i = 1, ..., n

(3.3.1)

where B′ = B + In×n (I is the identity matrix) and there are R dominant cooling

variables (the variables with the largest corresponding coefficient for at least one row

of A). Sr is the set of servers with corresponding dominant cooling variable r, zl is the

corresponding coefficient of the cooling variable r (in the lth row of A) for the server

l ∈ Sr and D∗
k = ⌊∑n

i=1 ρ
∗(k)
i ⌋ (⌊⌋ is the floor function). The cost function for (3.3.1)

is an approximation of the component of the cost function of problem (3.2.3) that is

affected by the value of ρ̂(k). There is no IT power consumption term because it is

a constant when the number of working servers is fixed (equal to D∗
k). The problem

for k = K does not include the last term in the cost function.

Similarly to H2, DCVS is greedy and includes three phases. The first (main)

phase is modified to approximate the solution of problem (3.2.1) in terms of server

utilizations, as described in Algorithm 2. At each step, the algorithm redistributes the

load of each server to other servers (proportional to their current load) and chooses

the server to be turned off, based on the cost for problem (3.3.1). The other two

phases can be found in [17]. In phase 2, servers that are turned off in the fractional

solution are also considered to be turned on in the integral solution. In phase 3, there

are small perturbations of A, B and E, which lead to multiple fractional solutions

where the best solution among them is chosen.

92

PhD Thesis—S. Rostami McMaster University—Computer Science

Algorithm 2 Calculation of ρ̂(k), ∀k = 1, ..., K

1: Solve problem (3.2.4) and let the solution be (v∗(k), ρ∗(k)), ∀k = 1, ..., K
2: ρ̂(0) = ρ(0)

3: for k = 1 : K do
4: S = {i ∈ ρ∗(k)|0 < ρ

∗(k)
i ≤ 1}

5: l = |S| − D∗
k

6: ρ̂ = ρ∗(k)

7: while l ̸= 0 do
8: for i ∈ S do ▷ distributing the load of server i to the other servers,

proportional to their current load
9: ρ[i] = ρ̂

10: S ′ = S − {i}
11: r = ρ

[i]
i

12: ρ
[i]
i = 0

13: for j ∈ S ′ do
14: ρ

[i]
j = ρ

[i]
j + ρ

[i]
j∑

k∈S′
ρ

[i]
k

r

15: end for
16: while ∃s ∈ S ′, ρ[i]

s > 1 do ▷ fixing the loads that are greater than 1
17: r = ρ[i]

s − 1
18: ρ[i]

s = 1
19: S ′ = S ′ − {s}
20: for j ∈ S ′ do
21: ρ

[i]
j = ρ

[i]
j + ρ

[i]
j∑

l∈S′
ρ

[i]
l

r

22: end for
23: end while
24: xi = value of the cost function of problem (3.3.1) for ρ[i]

25: end for
26: Remove i with the smallest xi from S and ρ̂ = ρ[i]

27: l = l − 1
28: end while
29: ρ̂(k) = ρ̂
30: end for
31: return ρ̂(k), ∀k = 1, ..., K

93

PhD Thesis—S. Rostami McMaster University—Computer Science

3.4 MPC Approach

An MPC approach is useful in the presence of demand predictions, although it can

also be used when demands are known exactly to reduce the size of the problem. We

assume that instead of actual demands, we have a noisy version of demands coming

from a prediction scheme. In the presence of demand predictions, the weights wk

should be chosen to depend on k as it is reasonable to assume that knowledge about

the future demands is more accurate for closer time slots. In general, it is reasonable

to assume that wk ≤ wk′ when k ≥ k′.

In problem (3.2.3), it may not be efficient or sufficiently precise to solve the problem

for the whole time interval of size K. This is both due to the size of the problem

and the fact that distant demand predictions may not be sufficiently accurate. One

possibility to address these issues is using an MPC approach. The main idea of MPC

is considering a window of size W and using the predictions for the next W time

slots to compute the workload distribution in the next time slot. This reduces the

greediness of the algorithm by using the information for several time slots. It also

allows for updates to predicted demand values to be considered, each time the solution

for the next time slot is calculated. We use the MPC scheme which is described in

Algorithm 3. Each time, a problem of size W is solved and the solution for the first

time slot is kept and used as the initial workload distribution for the next round.

94

PhD Thesis—S. Rostami McMaster University—Computer Science

Algorithm 3 Calculation of ρ̂(s), v̂(s) using MPC approach with window size W

1: update the (predicted) demand values

2: solve problem (3.2.3) for k = s, ..., s+W −1 and call the solution (v′(k), ρ′(k)), ∀k =

s, ..., s + W − 1

3: ρ̂(s) = ρ′(s), v̂(s) = v′(s)

4: return ρ̂(s) and v̂(s)

3.5 Evaluation

The system we use for evaluation comes from an experimental data center at McMas-

ter University that is modeled in [21]. The data center has 25 servers located in 5

racks and two cooling facilities. The cooling variables are the chilled water tempera-

ture and total air flow generated by two fans at either end of the racks. The top view

of the data center is shown in Figure 3.2. The functions M and F in problem (3.2.1)

are simulated based on the model in [21] for inlet temperatures and cooling power

consumption. The platform we used was MATLAB R2021b running on a 64-bit sys-

tem with an i7-1185G7 processor and 8-GB RAM. The function M is not explicitly

given and the inlet temperatures are calculated based on solving a set of differential

equations, an operation that is computationally intensive (each call takes around 1.4

seconds). The next step is regression on the functions F and M to linearize the prob-

lem. The function regress in MATLAB is used and the data points are uniformly at

random chosen from the defined ranges for cooling variables and server utilizations

(the server utilizations are continuous). We set Tidle = 35 and Tbusy = 27 (degrees

Celsius), VLB = [1300, 10] and VUB = [2300, 20]. Additional details are provided

95

PhD Thesis—S. Rostami McMaster University—Computer Science

Figure 3.2: The data center’s top view according to [21]

in [17]. So, the matrices A, B and E in problem (3.2.3) are known. We perform

a (small) random perturbation of the matrices, each time that the algorithms are

run. We assume the IT power consumption model is according to server consolida-

tion with coefficients also coming from the model in [21]. In the simulation results

presented in [17], we have shown that the solution of the linear system approximated

by the proposed heuristic works well for the original nonlinear system. So, here we

focus on the evaluation of the heuristics for the linearized system. We also assume

wk = w, ∀k = 1, ..., K.

We use simple rounding (SR) as the baseline algorithm. In simple rounding for

each time slot k, the D∗
k largest values in ρ∗(k) are rounded to one. We also solve

the single time slot problem for each of the K time slots (without switching cost)

using the intlinprog function in MATLAB and calculate the cost of the solution for

the multiple time slot problem (with switching cost). This scheme is called Sep in

the results. For this data center example, we show that although the performance

of SR and H2 are very close for the one time slot problem according to [17], for the

multiple time slot problem DCVS clearly works better.

96

PhD Thesis—S. Rostami McMaster University—Computer Science

The evaluation includes three parts. In the first part, the sensitivity of the ap-

proaches to the value of w is evaluated. In the second part, the performance is

evaluated in the presence of demand fluctuations with different patterns. Finally, the

performance of the integrated MPC approach is evaluated for the actual and noisy de-

mand values. We present the average and the worst case ratios (avg and wrc columns

in the results) when the solution is compared with the solution of the relaxed problem

(3.2.4).

The first results correspond to sensitivity to w. As w increases, the switching

cost becomes more dominant. Starting from w = 1, the value of w doubles. The

number of intervals K is equal to 3. The pair of demands (D1, D3) covers all possible

combinations, where the values for the demand are chosen from D = {1, 2,, 24}.

For each combination, D2 is randomly chosen from D. The results are reported in

Table 3.1, with an extra column OPTi corresponding to solving the problem using

the intlinprog function in MATLAB. Although OPTi has the best performance, in

[17] we showed that the running time does not scale well for larger problem sizes.

The results show that the performance of DCVS is more resilient to changes in w and

for larger values of w, SR has poor performance with respect to the worst case ratio.

The reason is that for the fractional optimal solution, the largest D∗
k utilizations in

time slot k are not necessarily a subset of the largest D∗
k+1 in time slot k + 1 or vice

versa. So, when the switching cost is very large, SR leads to large costs due to the

switching cost component. For example, we saw this effect for the input [7, 9, 9] and

w = 1000, when we used SR for several systems that are perturbed versions of the

main system introduced in this section. This effect was seen for roughly one out of

10 of these systems. The utilizations for one of the servers were the same for the first

97

PhD Thesis—S. Rostami McMaster University—Computer Science

Table 3.1: Performance of the algorithms for different values of switching cost per
server w

OPTi Sep SR DCVS
w avg wrc avg wrc avg wrc avg wrc
1 1.01 1.02 1.01 1.10 1.02 1.05 1.01 1.05
2 1.01 1.02 1.01 1.06 1.02 1.06 1.01 1.06
4 1.01 1.02 1.01 1.10 1.02 1.04 1.01 1.07
8 1.01 1.02 1.02 1.06 1.02 1.05 1.01 1.07
16 1.01 1.02 1.01 1.08 1.02 1.05 1.01 1.06
32 1.01 1.02 1.01 1.07 1.01 1.05 1.01 1.08
64 1.01 1.02 1.02 1.13 1.01 1.04 1.01 1.05
128 1.01 1.01 1.02 1.13 1.01 1.05 1.01 1.05
512 1.01 1.01 1.04 1.24 1.01 1.04 1.01 1.04
1024 1.00 1.01 1.11 1.55 1.01 1.15 1.00 1.04
2048 1.00 1.01 1.21 1.87 1.01 1.16 1.01 1.02
4096 1.00 1.01 1.36 2.04 1.01 1.09 1.00 1.03
8192 1.00 1.00 1.49 2.63 1.01 1.16 1.00 1.02
16384 1.00 1.00 1.56 2.81 1.00 1.18 1.00 1.01
32768 1.00 1.00 1.63 2.96 1.01 1.23 1.00 1.00

and second time slots but SR rounded the first to 1 and the second to 0.

Another observation from Table 3.1 is that although the average ratio is better for

DCVS, for smaller values of w, the worst case ratio is more for DCVS as compared

to SR. When DCVS redistributes the load, it considers both the cooling power con-

sumption and the switching cost, so in the process of rounding, some redistributions

that generate lower switching cost may be chosen although they have greater cooling

power consumption. This may be problematic because when the rounding is com-

plete, the switching cost may be the same for other redistributions with lower cooling

power consumption, although the switching cost was greater in the process. We saw

this effect for the demand sequence [1, 3, 1] and w = 4. So, the greediness of DCVS

may be problematic in some cases. The results also show the performance of the Sep

98

PhD Thesis—S. Rostami McMaster University—Computer Science

Table 3.2: Performance of the algorithms in the presence of workload fluctuations
with different rates

Sep SR DCVS
avg wcr avg wcr avg wrc
1.49 2.26 1.01 1.06 1.01 1.02
1.50 2.43 1.01 1.05 1.01 1.01
1.71 2.51 1.00 1.07 1.00 1.02
1.46 2.33 1.01 1.03 1.01 1.01
1.45 1.99 1.01 1.03 1.01 1.02
1.61 2.25 1.01 1.04 1.01 1.02
1.42 2.23 1.01 1.03 1.01 1.02
1.34 1.84 1.01 1.03 1.01 1.01
1.51 2.09 1.01 1.06 1.01 1.02
1.60 2.24 1.01 1.04 1.01 1.02
1.40 2.03 1.01 1.05 1.01 1.02
1.64 2.13 1.01 1.05 1.01 1.01
1.48 2.26 1.01 1.08 1.01 1.02
1.44 1.92 1.01 1.05 1.01 1.02
1.47 2.22 1.01 1.04 1.01 1.01
1.32 1.71 1.01 1.03 1.01 1.01
1.44 2.01 1.01 1.05 1.01 1.01
1.48 2.48 1.01 1.03 1.01 1.03
1.35 1.75 1.01 1.03 1.01 1.02
1.58 2.31 1.01 1.03 1.01 1.03

scheme is not as good as the others, specially for larger values of w, as a result of

Sep ignoring correlations between consecutive time slots providing opportunities to

reduce switching costs.

In the second part, we evaluate the performance of the algorithms in the presence

of workload fluctuations with different rates. The number of time slots is K = 9.

For each round of simulations, three values are chosen from D. So, there are three

possibilities for the demand values. The rate of fluctuations is then controlled by a

probability p ∈ {0.1, 0.5, 0.9}. D1 is chosen randomly from the set of three demand

99

PhD Thesis—S. Rostami McMaster University—Computer Science

Table 3.3: Average running time of the algorithms (in seconds) in the presence of
workload fluctuations with different rates

OPTi SR DCVS
17.53 0.56 0.71
3.08 0.68 0.78
8.7 0.68 0.87

10.55 0.61 0.79
6.58 0.70 0.87
10.14 0.65 0.81
15.42 0.73 0.98
10.68 0.61 0.80
8.83 0.60 0.77
3.10 0.61 0.80

values. For the next demand values D2 to D9, we pick the previous demand value with

probability 1−p or pick a different value randomly with probability p. This procedure

is repeated 100 times for each value of p in each round of simulations. We also set

w = 1000. There are 20 round of simulations as reported in Table 3.2. According to

the results in Table 3.2, DCVS has the best performance and is more resilient to the

workload fluctuations with different rates. In addition, Table 3.3 reports the running

times for K = 20, where at each round of simulations (each row in Table 3.3) the

demand sequences are generated as explained for the previous results in Table 3.2.

The results show that the running times for DCVS and SR are close and both are

clearly faster than the intlinprog function in MATLAB.

The final results correspond to the integrated MPC approach. The number of time

slots is K = 50 and the size of the planning window W is varied between 1 and 10.

To calculate the solution over K = 50 time slots, the MPC approach uses a total of

K + W − 1 demand values. So with Wmax = 10, the length of the required demand

sequence is 50 + 10 − 1 = 59. We consider six scenarios for generation of demand

100

PhD Thesis—S. Rostami McMaster University—Computer Science

sequences. There are three cases for the range of demand values. Case 1 corresponds

to choosing the demand values from D = {1, ..., 24} uniformly at random. In Case 2,

the next demand Dk+1 is chosen from the range [max(Dk − 5, 1), min(Dk + 5, 24)].

In Case 3, the range for choosing Dk+1 is [max(Dk − 2, 1), min(Dk + 2, 24)]. There

is also a probability p that is the probability of changing the demand value for the

next time slot. We chose two values of 0.2 and 0.8 for p. For example, in Case 3

and p = 0.2, with probability 0.2, the next demand value Dk+1 is different from Dk

and it is chosen from the range [max(Dk − 2, 1), min(Dk + 2, 24)]/{Dk}. We also set

w = 1000. The total optimal cooling power consumption for each time slot ranges

between 1500 and 2000. The IT power consumption for each working server is also

around 375 Watts (223.4 + 154.5). The simulation is repeated 10 times for each

scenario. For each round, the values in ρ(0) are chosen randomly from {0, 1}.

In addition to using the actual demands, we assume that we have a noisy version of

demands coming from demand predictions. For a window of size W , starting from the

time slot s, we assume that Ds is the actual value. However for Ds+1, ..., Ds+W −1, noise

is added to the actual demand. The value of noise for the time slot s+k−1, k = 2, ...W,

is randomly chosen from the interval [−η × k, η × k], where η is the basic noise value.

So, when the window shifts to the next time slot, the added noise is resampled with

an updated distribution because k changes to k − 1 for the same time slot (s changes

to s + 1). We apply the floor function to the noise value and add it to the actual

demand. If the predicted demand is less than 1 or greater than 24, we choose the

values 1 or 24, respectively. We consider three cases of η = 0, η = 1, η = 3, where

η = 0 corresponds to the actual values without noise. For each value of η > 0 we

repeat the procedure five times. The values reported in Table 3.4 are the ratios to

101

PhD Thesis—S. Rostami McMaster University—Computer Science

the cost calculated for the whole interval with actual demand values by using DCVS.

The reference cost is very close to optimal.

When w is very small, the correlation between time slots is small, so using the MPC

approach is not necessary. In this case, the problem can be solved by examining a

single time slot problem. When w is larger, it becomes more important that the

working servers in consecutive time slots are correlated. First, the load for each time

slot is equal to the corresponding demand and in consecutive time slots, the set of

servers with the smaller demand is a subset of the set of servers with larger demand.

However, for larger values of w, to decrease the switching cost, the number of working

servers may also be greater than the corresponding demand. Finally, as w becomes

very large, the working servers for all time slots are the same. In this case, it is only

necessary to focus on the time slot with the largest demand and use that solution

for all other time slots. We expect that using the MPC approach is beneficial when

there is an actual trade-off between the switching costs and the other components of

the cost function.

The results for w = 1000 are shown in Table 3.4. We focused on w = 1000 because

it clearly shows the trade-off between the costs and the performance of the MPC

approach. The results for η = 0, show that for smaller window sizes (in particular

W = 1), the performance is poor for all scenarios, with good performance achieved

when W = 4. We can infer that in the short term the switching cost may be dominant.

However, when the size of W increases the IT (and cooling) power consumption

does not allow extra servers to be working in several time slots. As an example, for

demand [15, 5, 5], to decrease the switching cost, it may be beneficial to increase the

102

PhD Thesis—S. Rostami McMaster University—Computer Science

Table 3.4: Performance of the integrated MPC approach with DCVS for different
window sizes W , where there is noise with the parameter η and there are three cases
for the next time slot demand range where the demand is changed with probability

p for the next time slot.

Case 1 with p = 0.2
η=0 η=1 η=3

W avg wrc avg wrc avg wrc
1 1.27 1.60 1.27 1.60 1.27 1.60
2 1.09 1.18 1.09 1.18 1.09 1.18
3 1.00 1.02 1.01 1.02 1.02 1.07
4 1.00 1.01 1.01 1.02 1.03 1.07
5 1.00 1.01 1.01 1.03 1.04 1.11
8 1.00 1.01 1.01 1.03 1.04 1.12
10 1.00 1.01 1.01 1.03 1.04 1.11

Case 1 with p = 0.8
1 1.10 1.19 1.10 1.19 1.10 1.19
2 1.05 1.06 1.05 1.07 1.05 1.07
3 1.04 1.07 1.05 1.09 1.08 1.14
4 1.02 1.04 1.04 1.06 1.06 1.09
5 1.02 1.03 1.03 1.06 1.05 1.08
8 1.02 1.02 1.03 1.04 1.05 1.09
10 1.02 1.03 1.03 1.04 1.05 1.08

Case 2 with p = 0.2
1 1.51 2.45 1.51 2.45 1.51 2.45
2 1.09 1.46 1.09 1.46 1.09 1.47
3 1.01 1.02 1.01 1.02 1.02 1.05
4 1.00 1.01 1.01 1.02 1.02 1.11
5 1.00 1.01 1.01 1.03 1.03 1.12
8 1.00 1.01 1.01 1.06 1.04 1.21
10 1.00 1.01 1.01 1.04 1.04 1.26

Case 2 with p = 0.8
1 1.25 1.69 1.25 1.69 1.25 1.69
2 1.06 1.15 1.06 1.15 1.07 1.15
3 1.02 1.04 1.03 1.06 1.05 1.09
4 1.02 1.03 1.03 1.04 1.04 1.07
5 1.02 1.04 1.03 1.05 1.04 1.08
8 1.02 1.03 1.03 1.05 1.04 1.09
10 1.02 1.04 1.03 1.05 1.04 1.07

Case 3 with p = 0.2
1 1.41 1.98 1.41 1.98 1.41 1.98
2 1.04 1.14 1.04 1.18 1.05 1.25
3 1.00 1.01 1.01 1.02 1.01 1.04
4 1.00 1.01 1.01 1.03 1.02 1.07
5 1.00 1.01 1.01 1.02 1.02 1.08
8 1.00 1.01 1.01 1.04 1.02 1.09
10 1.00 1.01 1.01 1.02 1.03 1.12

Case 3 with p = 0.8
1 1.31 1.52 1.31 1.52 1.31 1.52
2 1.04 1.08 1.05 1.10 1.05 1.10
3 1.00 1.02 1.03 1.06 1.04 1.08
4 1.01 1.03 1.03 1.06 1.04 1.08
5 1.01 1.03 1.02 1.05 1.04 1.09
8 1.01 1.03 1.02 1.05 1.03 1.07
10 1.01 1.03 1.03 1.05 1.04 1.06

103

PhD Thesis—S. Rostami McMaster University—Computer Science

number of working servers at the second and third time slots above 5, however for

the demand [15, 5, 5, 5, 5, 5, 15], it might not be beneficial to increase the load in all

time slots with demand equal to 5, because of the increase in IT (and cooling) power

consumption. In general, the long term and short term solutions may be different. It

can be inferred that as long as the window size is not too short, the MPC approach

is beneficial as is shown for the case of W = 3 or W = 4. Using a window size of

4 (or 3) is also acceptable in the presence of noise. Using larger window sizes may

not be helpful, in particular in the presence of noise when it might even degrade the

performance, since the predicted demand is far from the actual demand. We also see

how the performance degrades when the noise increases. So, updating information in

the MPC approach is also helpful to improve the performance.

3.6 Conclusion

In this work, we formulated a nonlinear optimization problem for data centers that

considers the switching costs in addition to cooling and IT power consumption. Work-

load transitions among the servers due to dynamic demands are not beneficial in terms

of the switching costs, however they may decrease the power consumption. Next, we

used a linearization approach proposed in [17] to approximate the solution. The steps

were linearization of the problem and the development of a heuristic to approximate

the solution of the linear problem. Finally, we proposed an integrated MPC approach

with our proposed heuristics which is helpful to decrease the size of the problem and

to incorporate demand predictions. The simulation results show that the proposed

schemes are helpful to find a near-optimal solution efficiently. We showed that using

an appropriate window size in the MPC approach is important and beneficial. As

104

PhD Thesis—S. Rostami McMaster University—Computer Science

future work, integrating transient thermal models with dynamic demands would be

of interest. Modifying the proposed heuristic to address more problems, for example

the case of heterogeneous data centers, is also a possibility. A procedure should also

be defined for determining appropriate weights for switching costs. Finding a suitable

window size for the MPC approach also needs more investigation.

105

Bibliography

[1] E. Masanet, N. Lei, “How Much Energy Do Data Centers Really Use?," Aspen

Global Change Institute, Mar. 2020.

[2] W. Zhang, Y. Wen, Y. W. Wong, K. C. Toh, and C. H. Chen, “Towards Joint

Optimization Over ICT and Cooling Systems in Data Centre: a Survey," in

IEEE Communications Surveys and Tutorials, vol. 18, no. 3, pp. 1596-1616,

thirdquarter 2016.

[3] Q. Tang, S. K. Gupta, and G. Varsamopoulos, “Thermal-aware Task Scheduling

for Data Centers Through Minimizing Heat Recirculation," IEEE International

Conference on Cluster Computing, Austin, TX, USA, 2007, pp. 129-138.

[4] S. MirhoseiniNejad, G. Badawy, and D. G. Down, “EAWA: Energy-aware Work-

load Assignment in Data Centers," 2018 International Conference on High Per-

formance Computing & Simulation (HPCS), Orleans, France, 2018, pp. 260–267.

[5] N. EI-Sayed, I. A. Stefanovici, G. Amvrosiadis, and A. A. Hwang, “Temperature

Management in Data Centers: Why Some (Might) Like It Hot," SIGMETRICS

106

PhD Thesis—S. Rostami McMaster University—Computer Science

’12: Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint In-

ternational Conference on Measurement and Modeling of Computer Systems, pp.

163-174, Jun. 2012.

[6] Z. Xiong, M. Zhao, Z. Yuan, J. Xu, and L. Cai, “Energy-saving Optimization

of Application Server Clusters Based on Mixed Integer Linear Programming," in

Journal of Parallel and Distributed Computing, vol. 171, pp. 111-129, Jan. 2023.

[7] S. Shahryari, F. Tashtarian, and S. Hosseini-Seno, “CoPaM: Cost-aware VM

Placement and Migration for Mobile Services in Multi-Cloudlet Environment:

An SDN-based Approach," in Computer Communications, vol. 191, pp. 257-273,

Jul. 2022.

[8] R. W. Ahmad, A. Gani, S. H. Ab. Hamid, M. Shiraz, A. Yousafzai, and F. Xia,

“A Survey on Virtual Machine Migration and Server Consolidation Frameworks

for Cloud Data Centers," in Journal of Network and Computer Applications, vol.

52, pp. 11-25, Jun. 2015.

[9] Z. Abbasi, G. Varsamopoulos, and S. K. S. Gupta, “TACOMA: Server and Work-

load Management in Internet Data Centers Considering Cooling-Computing

Power Trade-off and Energy Proportionality," in ACM Transactions on Architec-

ture and Code Optimization, vol. 9, no. 2, pp. 1-37, Jun. 2012.

[10] E. Pakbaznia, M. Pedram, “Minimizing Data Center Cooling and Server Power

Costs," Proceedings of the 2009 ACM/IEEE international symposium on Low

power electronics and design, pp. 145–50, Aug. 2009.

[11] T. Van Damme, C. De Persis, and P. Tesi, “Optimized Thermal-Aware Job

107

PhD Thesis—S. Rostami McMaster University—Computer Science

Scheduling and Control of Data Centers," inIEEE Transactions on Control Sys-

tems Technology, vol. 27, no. 2, pp. 760-771, Mar. 2019.

[12] M. Nakamura, “Learning and Optimization Models for Energy Efficient Cooling

Control in Data Center," Proceedings of the SICE Annual Conference, 2016.

[13] A. M. Al-Qawasmeh, S. Pasricha, A. A. Maciejewski, and H. J. Siegel, “Power

and Thermal-aware Workload Allocation in Heterogeneous Data Centers," in

IEEE Transactions on Computers, vol. 64, no. 2, pp. 477-491, Feb. 2015.

[14] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, “Energy-efficient Thermal-

aware Task Scheduling for Homogeneous High-performance Computing Data

Centres: a Cyber-physical Approach," in IEEE Transactions on Parallel and

Distribution Systems, vol. 19, no. 11, pp. 1458-1472, Nov. 2008.

[15] A. D. Carnerero, D. R. Ramirez, T. Alamo and D. Limon, "Probabilistically Cer-

tified Management of Data Centers Using Predictive Control," in IEEE Trans-

actions on Automation Science and Engineering, vol. 19, no. 4, pp. 2849-2861,

Oct. 2022.

[16] S. Mirhoseininejad, G. Badawy, and D. G. Down, “A Data-driven, Multi-set

Point Model Predictive Thermal Control System for Data Centers," in Journal

of Networks and Systems Management, vol. 29, no. 7, 2021.

[17] S. Rostami, D. G. Down, and G. Karakostas, “Linearized Data Center Workload

and Cooling Management," arXiv:2304.04731 [eess.SY].

[18] Q. Fang, J. Wang, Q. Gong, and M. Song, “Thermal-aware Energy Management

108

PhD Thesis—S. Rostami McMaster University—Computer Science

of an HPC Data Center via Two-time-scale Control," in IEEE Transactions on

Industrial Informatics, vol. 13, no. 5, pp. 2260-2269, Oct. 2017.

[19] Q. Fang, J. Wang, and Q. Gong, “QoS-driven Power Management of Data Cen-

tres via Model Predictive Control," in IEEE Transactions on Automation Science

and Engineering, vol. 13, no. 4, pp. 1557-1566, Oct. 2016.

[20] L. Parolini, B. Sinopoli, B. H. Krogh, and Z. Wang, “A cyber–physical Sys-

tems Approach to Data Center Modeling and Control for Energy Efficiency," in

Proceedings of the IEEE, vol. 100, no. 1, pp. 254-268, Jan. 2012.

[21] R. Gupta, S. Asgari, H. Moazamigoodarzi, D. G. Down, and I. K. Puri, “Energy,

Exergy and Computing Efficiency Based Data Center Workload and Cooling

Management," in Applied Energy, vol. 299, 117050, Oct. 2021.

109

Chapter 4

Single-item Lot-sizing with

Quantity Discount and Bounded

Inventory

The content of this chapter is a publication under the following citation:

D. G. Down, G. Karakostas, S. G. Kolliopoulos, and S. Rostami, “Single-item

lot-sizing with quantity discount and bounded inventory,” Operations Research

Letters, vol. 49, no. 6, pp. 877-882, 2021.

The author of this thesis is the main author and contributor of this publication.

The author list is in alphabetical order.

110

PhD Thesis—S. Rostami McMaster University—Computer Science

Abstract

In this paper, an efficient O(n2) algorithm is proposed to solve a special case of single-

item lot-sizing problems (SILSP) in which both the production and holding costs are

piecewise linear, there is an all-unit discount with one breakpoint for the production

cost, and the inventory is bounded. The algorithm is based on a key structural

property that may be of more general interest, that of a just-in-time ordering policy.

Finally, we show that when the problem is extended to two items, it is NP-complete.

Keywords: lot-sizing, quantity discount, bounded inventory

4.1 Introduction

Lot-sizing problems have seen continued research interest for the past six decades.

Our focus is on single-item lot-sizing problems (SILSP), for which an extensive sur-

vey is provided in [1]. In the basic SILSP, there is a time-varying, but known in

advance, demand for a single product over a time horizon of n periods. One wishes

to determine the periods in which production (or purchase) of the product will take

place, and the quantities that will be produced. The cost function is the summation

of production and holding costs, where the production cost may include a fixed setup-

cost component. The goal is to find a sequence of orders that satisfies the demands

and minimizes the total cost. Several variations of the main problem can be defined,

by including constraints such as production capacities, bounded inventory, stochastic

demands, backlogging, and lost sales [1]. A typical assumption in the literature is

that the cost function is piecewise concave, which provides the flexibility to model

111

PhD Thesis—S. Rostami McMaster University—Computer Science

scenarios such as discounts, minimum quantity requirements, and capacities [2]. A

function with m breakpoints is piecewise concave if it is concave over each interval

between two adjacent breakpoints. The case of capacitated production or bounded

inventory can be modelled by adding a breakpoint to the production or holding cost

function, and defining an infinite cost for the last interval [4].

In this paper, we study the very basic scenario where in every period one can buy

the item at two price levels: expensively or cheaply depending on the quantity of units

purchased. Demands have to be satisfied on time, without backlogging, and there are

no order capacities, or set-up costs. In order to anticipate future demand, one may

stock units bought cheaply, but this is curbed in two ways: hoarding incurs a holding

cost and is limited by the hard constraint of a bound on the size of the inventory. In

SILSP terminology, this is an all-unit discount pricing scheme with one breakpoint

for the production cost and bounded inventory. All-unit means that the discount

is applied to the entire volume of a purchase if this volume falls within a specified

range. In our case, the range is any quantity at least equal to the single production

breakpoint Q. To our knowledge this basic setting has not been considered separately

in the literature. We show that an optimal solution can be found in polynomial time,

and how exploiting a just-in-time ordering policy achieves significant running-time

improvements. We assume that the production cost is a piecewise linear (and, hence,

concave) function with two segments. The holding cost function is linear.

Solutions for SILSP problems are typically found using dynamic programming.

There are several results in the literature, based on characterizations of the structure

of an optimal solution that can be leveraged to develop efficient algorithms [3],[5],[6].

112

PhD Thesis—S. Rostami McMaster University—Computer Science

A seminal work of this nature (and for lot sizing in general) is [3]. They consider a

problem with fixed unit production cost (the final inventory value is zero and only the

setup cost changes) and linear holding cost, for which they derive an algorithm with

time complexity O(n2). In [6], constraints on the production and inventory quantities

are studied. For the case of bounded inventory and concave cost function, they pro-

pose an algorithm with complexity O(n3). In [7], an O(mn3) algorithm is presented

for the problem with capacitated production and piecewise linear cost functions with

an average of m breakpoints in each time period. In [8], an O(nm+2 log n) algorithm

is constructed for the uncapacitated version of the problem in [7]. In [4], a model

with an all-unit discount with one breakpoint and capacitated production is studied.

The complexity of their algorithm is O(n4). In [9], a cost function with one break-

point is considered and algorithms for the cases of all-unit and incremental discount

with complexity of O(n2) and O(n3) respectively, are constructed. The production

and holding costs considered in [10] are linear for the case of capacitated production.

They study the NP-completeness of the problem based on five cases of general, nonin-

creasing, nondecreasing, constant and zero-value functions for the setup, production

and holding costs, and production capacity. An O(n3) algorithm is constructed in

[11] for the case of concave production cost and linear holding cost with constant

capacities. An O(n2) algorithm is presented in [12] and fixed by [13] for the case of

linear costs with a lower and upper-bounded inventory. A fully polynomial approx-

imation scheme is proposed in [14] for an NP-hard case of SILSP. A more efficient

approximation algorithm is proposed in [15]. In [16] a fixed cost and variable cost per

unit for a change in the inventory size at each time period are also considered.

Our proposed problem is a special case of the general problem with piecewise

113

PhD Thesis—S. Rostami McMaster University—Computer Science

concave production and holding costs defined by Swoveland in [5]. Swoveland showed

that there is an optimal solution which is a sequence of time intervals with starting

and ending inventories either 0 or equal to the inventory bound, such that within

each interval there is at most one order not equal to a production breakpoint level.

In [5] the author used this to propose a pseudo-polynomial algorithm for capacitated

production, bounded inventory and piecewise concave production and holding costs,

which also works for our problem. In order to reduce the running time to polynomial,

we essentially prove in Section 4.3 that there is an optimal solution which is a sequence

of regeneration intervals with 0 starting and ending inventories, each comprised by at

most two intervals of the type defined in [5]. In fact the structure of our regeneration

interval is more specific than that, cf. Lemmas 3-5 for the exact description. We

use this property to design in Section 4.4 an efficient O(n2) Dynamic Programming

(DP) algorithm for the case of bounded inventory, piecewise linear production cost

function with one breakpoint, and linear holding cost. We show that by adopting a

just-in-time policy. Finally, we show in Section 4.5 that when the problem is extended

to two items with separate budgets, it becomes NP-complete.

4.2 Problem Definition

A buyer has to order a number of units of a product, in order to satisfy n consecutive

demand requests d1, d2, . . . , dn. At time period t, the buyer orders xt units, so that,

together with the remaining inventory It−1 at the end of time t − 1, demand dt is

satisfied, i.e., xt + It−1 ≥ dt. The new remaining inventory is It = xt + It−1 − dt.

Initially, the available inventory of the product is I0. The buyer has an inventory

capacity B(t) at time t, which cannot be exceeded at any time, i.e., It ≤ B(t), t =

114

PhD Thesis—S. Rostami McMaster University—Computer Science

1, . . . , n.

The product pricing is as follows: Given threshold Q, if xt < Q then the buyer

pays a price p1(t) per unit, otherwise the buyer pays a price p2(t) per unit, where

p1(t) ≥ p2(t). We assume that unit prices are non-increasing as a function of time, i.e.,

p1(t) ≥ p1(t′), p2(t) ≥ p2(t′), t < t′. There is also a holding cost h(t) per inventory

unit for time t. Given Q, I0, and p1(t), p2(t), B(t), dt, h(t), t = 1, 2, . . . , n, we

would like to compute orders xt, t = 1, 2, . . . , n that respect the inventory capacity

constraint, and minimize the buyer’s total cost.

In what follows, an expensive order at time t is an order priced at p1(t), and a

cheap order is an order priced at p2(t). For i ≤ j, di,j denotes ∑j
k=i dk.

4.3 Structural Properties of an Optimal Solution

Let OPT be an optimal solution. In this section we show that there is an optimal

solution of a special structure, which will allow its fast computation. Similarly to

[2], we define a regeneration interval (i, j) of OPT (with i ≤ j) to be a sequence of

consecutive time periods [i, i + 1, . . . , j] with inventories Ik > 0 for all i ≤ k ≤ j − 1,

and Ii−1 = 0 or i = 1, and Ij = 0 or j = n. In other words, a regeneration interval is

the time between two times i and j which starts and ends with 0 inventory (except

for the interval with i = 1, or j = n), and maintains a non-zero inventory everywhere

in between. Note that if Ik > 0, ∀1 ≤ k < n, then there is only one interval (1, n).

Starting from OPT , we derive an optimal solution with the following structural

properties:

115

PhD Thesis—S. Rostami McMaster University—Computer Science

Lemma 3 There is an optimal solution where, for any regeneration interval (i, j),

an expensive order can only occur at time j. If xj is expensive, then xj = dj − Ij−1.

Proof: Let (i, j) be an interval of OPT with an expensive order xk at time i ≤ k < j.

Since there are leftover inventories Ik > 0, Ik+1 > 0, . . . , Ij−1 > 0, we can reduce order

xk by 1, reduce all these inventories by 1, and increase order xj by 1, without harming

the cost or the feasibility of OPT (xk was already an expensive order below Q, xj

is increased, prices are non-increasing, and the intermediate inventories are reduced,

thus not increasing the holding costs). We continue this process of reducing xk by 1,

until either xk = 0 or Il = 0 for some k ≤ l < j. In the second case, interval (i, j) is

now split into two or more smaller intervals, and we can repeat the process with the

new set of intervals, until we obtain the optimal solution claimed by the lemma.

If xj is expensive, then if j < n, by the definition of an interval, we have Ij =

xj + Ij−1 − dj = 0; if j = n, then OPT uses the available inventory In−1 and if

dn > In−1 orders an additional xn = dn − In−1 or Q units (whichever is cheaper). 2

Lemma 4 There is an optimal solution satisfying the property of Lemma 3, which

satisfies the following: For any regeneration interval (i, j), let k be the total number

of cheap orders occurring in it. Then the first k − 1 orders are for exactly Q units,

and the k-th order is for at least Q units.

Proof: Let OPT be an optimal solution satisfying the property of Lemma 3, and let

(i, j) be any of its intervals.

116

PhD Thesis—S. Rostami McMaster University—Computer Science

Lemma 3 implies that the only expensive order can occur at time j, so the pre-

vious k orders are all cheap. Let xl1 , xl2 , . . . , xlk be these orders lk ≤ j, occur-

ring at times l1, l2, . . . , lk, respectively. Let lm < lk be the last of these times be-

fore the last, for which xlm > Q (i.e., xlm+1 = · · · = xlk−1 = Q). Then, since

Ilm > 0, Ilm+1 > 0, . . . , Ilk−1 > 0, we can reduce xlm by 1 without changing its pricing,

reduce inventories Ilm , Ilm+1, . . . , Ilk−1 by 1, and increase xlk by 1, without violating

the feasibility of the solution or increasing its cost (both xlm and xlk remain cheap, the

prices are non-increasing, and the holding cost is always non-increasing when post-

poning orders for later). We continue repeating this process, until either xlm = Q,

or at least one of the inventories Ilm , Ilm+1, . . . , Ilk−1 becomes 0. In the first case, we

repeat this process, but now concentrating on a cheap order bigger than Q that is

earlier than lm; in the second case, interval (i, j) is split into two or more (smaller)

intervals, and we can repeat the process with the new set of intervals. 2

In order to show that there is an optimal solution making cheap orders just-in-time,

we will need the following definition.

Definition 1 Let (i, j) be a regeneration interval of an optimal solution adhering to

the structure of Lemma 4, with its last cheap order at time i ≤ t < j. A feasible

time t′ is any time t < t′ ≤ j where a cheap just-in-time order can be placed, without

increasing Ij, and without violating inventory bounds, after setting xt := Q. More

specifically, given inventory It−1 and xt := Q, let t < k ≤ j be the time when both

It−1 + Q ≥ dt,k−1 and It−1 + Q < dt,k

hold. Then, if a cheap order can be placed at k without increasing Ij, and all inventory

117

PhD Thesis—S. Rostami McMaster University—Computer Science

bounds B(l), k ≤ l ≤ j, are respected, we set t′ := k.

Note that in Definition 1, it may be the case that the latest possible time k one can

afford to wait until forced to place a cheap order just-in-time, may not be a feasible

time, e.g., if Q − dk > B(k) and, therefore, there is not enough inventory space to

accommodate a cheap order at k. If this is the case, then placing a cheap order for

Q units earlier than k will still violate the inventory constraint at k, i.e., if k cannot

be a feasible time, no time t < t′ < k can be a feasible time.

Lemma 5 There is an optimal solution satisfying the properties of Lemmas 3 and

4, which, for any regeneration interval (i, j), also satisfies the following: If there are

cheap orders, then every cheap order occurs at the furthest possible time from the

previous one (or from time i, for the first cheap order); also, for j < n, there is no

feasible time for a new cheap order between the last cheap order and j.

Proof: Let OPT be an optimal solution complying with Lemmas 3 and 4.

First we prove the lemma for intervals (i, j) with i > 1. For simplicity, we assume

that di > 0. Since Ii−1 = 0, xi > 0 in OPT . If this order is the expensive one, or the

only cheap one, then there is nothing more to prove. Otherwise, since there is more

than one cheap order, so xi = Q (Lemma 4). Let k > i be the latest time when there

must be a cheap order, otherwise some demands will not be satisfiable, i.e., k is the

latest possible time in the sense of Definition 1 (since there is more than one cheap

order, k is well-defined). If there are no other cheap orders by OPT in the times

between i and k, then notice that OPT has to order cheaply at k, and we repeat our

arguments here with k playing the role of i. Otherwise, let xl1 = xl2 = . . . = xlm ≥ Q

be these cheap orders with i < l1 < . . . < lm < k. Then we can place all these orders

118

PhD Thesis—S. Rostami McMaster University—Computer Science

(together with any preexisting order xk > 0 in OPT) cheaply at time k, since the

inventory Ik−1 is now reduced by ∑m
g=1 xlg , and the other intermediate inventories can

only decrease. By the definition of k, no demand is left uncovered by this transfer

of orders. If after the transfer inventory It drops to zero for some i < t ≤ k − 1 we

split (i, j) into smaller regeneration intervals, like in Lemma 3. Moreover, similarly

to the previous lemma the cost does not increase. By this process, we get another

optimal solution OPT ′, with its first two cheap orders at times i, k, with xi = Q and

xk ≥ Q, and which can be brought into the format of Lemma 4. Then we repeat

the argument above (with k now playing the role of i) repeatedly, until we obtain an

optimal solution satisfying the property of the lemma.

For the first interval (1, j), we can define time k exactly as before, while it may

be the case x1 = 0 in OPT (OPT uses the initial inventory I0 to satisfy the initial

demands). Then the argument proceeds exactly as before.

For the second property, assume that (i, j) (with j < n) is a regeneration interval

of an optimal solution that satisfies the first property of the lemma. Note that if there

is a feasible time t′ after the last cheap order xt at time t < t′, then we can set x′
t := Q

and x′
t′ := xt − Q, without increasing the cost of the solution; this is because x′

t′ is

cheap (by the feasibility of t′), and the inventories It, It+1, . . . , It′−1 can only decrease,

ensuring that holding costs do not increase. If there is more than one feasible time,

let t′ be the feasible time furthest from t. Then the new optimal solution also satisfies

the first property of the lemma. As before, if the new inventory I ′
l = 0 for some

t ≤ l ≤ t′ − 1, then we split (i, j) into two new intervals (i, l), (l + 1, j) and repeat

the process with the new set of intervals. Otherwise, we can repeat this process until

119

PhD Thesis—S. Rostami McMaster University—Computer Science

there is no feasible time after the last cheap order in our final optimal solution. 2

4.4 A Dynamic Programming Algorithm

We use the properties of Lemmas 3-5 to compute an optimal solution, using Dynamic

Programming (DP). Let OPT (i) be the optimal cost for interval (i, n). Then

OPT (i) =
mini≤k≤n{cost(i, k) + OPT (k + 1)}, i ≤ n

0, i = n + 1
(4.4.1)

where cost(i, j) is the minimum feasible cost in a regeneration interval (i, j).

The crucial idea for the algorithm is to notice that the cheap orders at level exactly

Q made to achieve cost(i, j) remain valid for the sequence of orders that achieve

cost(i, j + 1), due to Lemma 5. This means that the addition of dj affects only the

last cheap order of cost(i, j) in two possible ways: (i) either it also remains the last

cheap order for cost(i, j), but with a different number of units (and with a potential

corresponding expensive order xj+1), or (ii) there are new feasible time(s) created, so

it breaks into one or more Q just-in-time cheap orders, according again to Lemma 5.

In what follows, we denote by x(i,j)(t) the order placed at time t for the solution

that achieves cost(i, j). A sequence of orders is feasible for (i, j) if it respects the

inventory bounds, Ij = 0 and Ik > 0, i ≤ k ≤ j − 1, and moreover complies with

Lemma 5.

Preprocessing: The algorithm starts by calculating the following quantities:

120

PhD Thesis—S. Rostami McMaster University—Computer Science

• di,j = ∑j
k=i dk, hi,j = ∑j

k=i h(k), and H(i, j) = ∑j
k=i h(k)di,k for all 1 ≤ i ≤ j ≤

n. These quantities are needed in calculations performed by the algorithm, and

they are done in O(n2) time.

• For all 1 ≤ i ≤ j ≤ n, let A(i, j) be the maximum order size at time i, that

does not violate any inventory bounds B(l), i ≤ l ≤ j when we assume that

Ii−1 = 0 and no other orders happen between i + 1 and j (inclusive). Then

A(i, i) = B(i) + di

A(i, j + 1) =

A(i, j), if A(i, j) − di,j+1 ≤ B(j + 1)

di,j+1 + B(j + 1), otherwise.

Note that if there is inventory Ii−1 > 0 coming into i, the value A(i, j) − Ii−1

gives an upper bound for order xi, which ensures that xi will not violate any

inventory bounds in time interval (i, j). All values A(i, j) can be calculated in

total O(n2) time.

• For every i, the algorithm calculates a sequence T i = {t1, t2, . . . , tl} of poten-

tial just-in-time order times, as well as inventory values Ît1−1, Ît2−1, . . . , Îtl−1

as follows: The initial condition is that t1 = i and Ît1−1 = 0. If xi = Q is

infeasible, the sequence T i is empty. To calculate ts, s ≥ 2 given inventory

Îts−1−1, we set xts−1 := Q and scan times ts−1 + 1, ts−1 + 2, . . . until we reach

the furthest time ts when a cheap order can be placed with no demand being

unsatisfied, and no inventory bound violated. The former can be checked by

checking that Q + Îts−1−1 ≥ dts−1,f , and the latter can be checked by checking

that Q ≤ A(ts−1, f) − Îts−1−1, for all times f = ts−1 + 1, ts−1 + 2, . . . we scan. If

121

PhD Thesis—S. Rostami McMaster University—Computer Science

there can be no cheap order at ts, then ts−1 is the last element of sequence T i.

Otherwise, we also calculate inventory value Îts−1 = Îts−1−1 + Q − dts−1,ts−1, and

continue to discover the next sequence element ts+1. Clearly sequence T i and

values Î can be calculated in O(n − i) time, or O(n2) for all i. Inventory values

Î will be used in the calculation of functions f1, f2 below. In what follows i is

fixed so we use T in place of T i.

Remark: The sequence T i is the sequence of possible cheap order times that

is promised by Lemma 5, i.e., for period (i, j + 1) all cheap orders happen at

times that are a prefix of T i, all of them except possibly the last are exactly Q,

and there is potentially one more order at j + 1.

• For each s’th element of sequence T i, we calculate the following cost

Ci(ts) = ∑s−1
w=1

(
Qp2(tw) + ∑tw+1−1

k=tw
h(k)(Îtw−1 + Q − dtw,k)

)
. This is the order-

ing and holding cost incurred in time period (t1, ts − 1) when all orders at times

t1, t2, . . . , ts−1 ∈ T i are exactly Q.

In the special case of i = j with no capability of placing a cheap order at time i

(di < Q), we set x
(i,i)
i = di, cost(i, i) = p1(i)·di, and cost(i, i+k) = ∞, ∀1 ≤ k ≤ n−i;

otherwise we set x
(i,i)
i = di, cost(i, i) = p2(i) · di.

Assuming that cost(i, j) ̸= ∞ has been calculated, cost(i, j + 1) is calculated as

follows: Let ts−1, ts ∈ T be the last two times in T before j + 1 in (i, j + 1) (since

t1 = i, there is always at least one such time; if there is only t1, then what follows

is adjusted accordingly). There are orders of exactly Q units up to time ts−2, and

there are two possibilities for ordering after ts−2: (i) Set xts−1 := Q and order at ts

and at j + 1, or (ii) order at ts−1 and at j + 1. We can calculate (in constant time)

122

PhD Thesis—S. Rostami McMaster University—Computer Science

the optimal orders x
(i,j+1)
ts

, x
(i,j+1)
j+1 and cost for (i) as follows (the calculation for (ii)

is exactly the same):

We define the following functions

f1(xts , xj+1) =

= p2(ts)xts + p1(j + 1)xj+1 +
j∑

k=ts

h(k)(Îts−1 + xts − dts,k)

= (p2(ts) + hts,j)xts + p1(j + 1)xj+1 + Îts−1hts,j − H(ts, j) (4.4.2)

and

f2(xts , xj+1) =

= p2(ts)xts + p2(j + 1)xj+1 +
j∑

k=ts

h(k)(Îts−1 + xts − dts,k)

= (p2(ts) + hts,j)xts + p2(j + 1)xj+1 + Îts−1hts,j − H(ts, j). (4.4.3)

Given orders xts and xj+1, the functions f1, f2 give the cost incurred when xts is

cheap and xj+1 is cheap or expensive, respectively. Note that these functions can be

computed in O(1) time, since values hts,j, H(ts, j), and Îts−1 have been precomputed.

123

PhD Thesis—S. Rostami McMaster University—Computer Science

We solve the following two linear integer programs:

c1 = min f1(xts , xj+1) + h(j + 1)Ij+1 + Ci(ts) s.t.

xts + Îts−1 − dts,j ≥ 1

xts + Îts−1 + xj+1 − Ij+1 = dts,j+1

Ij+1

= 0, if j ≤ n − 2

≤ B(j + 1), if j = n − 1

xts ≤ A(ts, j) − Îts−1

xts ≥ Q

0 ≤ xj+1 ≤ Q − 1

and

c2 = min f2(xts , xj+1) + h(j + 1)Ij+1 + Ci(ts) s.t.

xts + Îts−1 − dts,j ≥ 1

xts + Îts−1 + xj+1 − Ij+1 = dts,j+1

Ij+1

= 0, if j ≤ n − 2

≤ B(j + 1), if j = n − 1

xts ≤ A(ts, j) − Îts−1

xts = Q

xj+1 ≥ Q

The objective is the cost f1 or f2, plus the holding cost for time j + 1 and the costs

124

PhD Thesis—S. Rostami McMaster University—Computer Science

incurred before ts. The first constraint ensures that xts satisfies all demands until

time j + 1 while always leaving an inventory (otherwise this cannot be a feasible

regeneration period), the second that the order values as well as inventory Ij+1 are

consistent and satisfy all demands, and the remaining constraints ensure that the

final inventory and the order values satisfy their inventory restrictions, as well as

the cheap/expensive definitions. Note that both integer programs have variables

xts , xj+1, Ij+1, and can be solved in O(1) time. If c1 is infeasible, then we set c1 = ∞,

and the same for c2. Let cost1 = min{c1, c2}.

We repeat the same process for x
(i,j+1)
ts−1 and x

(i,j+1)
j+1 , and let cost2 = min{c′

1, c′
2},

where c′
1, c′

2 are the analogues of c1 and c2. If cost1 < cost2, then we return the

calculated x
(i,j+1)
ts

, x
(i,j+1)
j+1 , and cost(i, j + 1) = cost1. Otherwise, if cost2 = ∞ return

cost(i, j+1) = ∞, else return the calculated x
(i,j+1)
ts−1 , x

(i,j+1)
j+1 , and cost(i, j+1) = cost2.

Correctness: We show the following

Theorem 1 The DP algorithm above computes an optimal solution.

Proof: To prove that the algorithm is correct, it is enough to prove that it produces

an optimal solution of the structure guaranteed by Lemma 5, i.e., it is enough to

show that the cost(i, j + 1) calculated for regeneration period (i, j + 1) (and has the

structure of Lemma 5) is optimal.

Lemma 5 implies that all cheap orders (except possibly xj+1) in (i, j + 1) are done

on the times of sequence T i, by the definition of the latter as the just-in-time sequence

of potential cheap order times. Let ts−2, ts−1, ts be the last members of T i before

j + 1. We observe that, in (i, j + 1), the cheap orders up to time ts−2 ∈ T i (inclusive)

125

PhD Thesis—S. Rostami McMaster University—Computer Science

are orders of exactly Q units. This is due to the fact that if ts−2 were the last cheap

order time for (i, j + 1), then xts−2 ≥ 2Q to cover dts−2,ts , since orders of size Q had

to be placed at ts−2, ts−1 to cover these demands by just-in-time sequence T i. As a

result, we can set xts−2 := Q and move the rest of the units to a cheap order at ts−1,

without increasing the cost. Hence, it is enough for the algorithm to check the pairs

of times ts−1, j + 1 and ts, j + 1 for the calculation of the best last two orders, which

will also result in the optimal cost(i, j + 1). 2

Complexity: First observe that the calculation of sequence T i can be done in

time O(n−i), since all its orders can all be calculated by scanning interval (i, n) once.

In every interval (i, j) we need to calculate orders for 3 times, namely j and the last

2 times of T i contained in (i, j), and this can be done in O(1) time. All other times

of T i before j get an order of exactly Q. Also note that there is no need to record

separately all orders placed in all intervals (i, j), i ≤ j ≤ n, since all we need to record

for each one is the last time of T i utilized by (i, j), the last cheap order time and

size, and x(i,j)(j). With this information, we can reconstruct the orders that incur

cost(i, j). Hence, the overall running time and space needed for all i is O(n2).

Collecting all running times and space needed by the different algorithm compo-

nents we get

Theorem 2 The DP algorithm takes O(n2) time and space.

126

PhD Thesis—S. Rostami McMaster University—Computer Science

4.5 The Case of Two Items

The two-items decision problem we examine is defined as follows: We have two items,

black and red, which can be stored in an inventory of total capacity I. The pricing

scheme for black is given by fixed unit prices b1 > b2, and threshold QB above which

price b2 applies. The pricing scheme for red is given by fixed unit prices r1 > r2, and

threshold QR. Given budget targets CB, CR for black and red, as well as a sequence

of n black and red demands, the question is whether they can be fulfilled, within the

corresponding budgets, and without ever exceeding the inventory capacity I. There

can also be initial inventories of the two items, but here we prove the NP-completeness

of the problem, even in the case where these initial inventories are 0. More formally,

the problem is defined as follows:

2-Bulk Ordering

Input: Sets F = {f1, . . . , fn} ⊆ Z+ of black demand values and G = {g1, . . . , gn} ⊆ Z+

of red demand values. Pricing schemes (b1, b2, QB) and (r1, r2, QR) for the black and

red item respectively. Inventory size I. Nonnegative target costs CB and CR.

Question: Are there two n-vectors of orders for the black and the red item so that

all demands are satisfied, the inventory capacity is never exceeded, the cost of black

orders is at most CB and the cost of red orders is at most CR?

A pair of n-vectors of black and red orders is an admissible sequence for a 2-Bulk

Ordering instance if the units purchased can be consumed at the time they were

bought or stored so that all the demands at each time are covered and the inventory

127

PhD Thesis—S. Rostami McMaster University—Computer Science

capacity I is never exceeded. We reduce from the Equipartition problem.

Equipartition

Input: Set A = {a1, . . . , an} ⊆ Z+ with ∑n
i=1 ai = 2B.

Question: Is there an index set A′ ⊆ [n], |A′| = n
2 , such that ∑

i∈A′ ai = B?

It is well-known that Equipartition is NP-complete [17]. Given an Equiparti-

tion instance A, we construct an instance ϕ(A) of the 2-Bulk Ordering problem,

that has an affirmative answer iff the Equipartition instance does. We now proceed

to define ϕ(A). We set b1 = r1 = p1 and b2 = r2 = p2 for two positive values satisfying

p1 > p2, i.e., both items have the same prices p1 > p2 (whose exact values will not

matter in the reduction). We set

I = 5 max
i∈[n]

ai (4.5.1)

QB = QR = Q = 2I + 3B + 1 (4.5.2)

CB = CR = p1(
n

2 Q + 2B) + p2(
n

2 Q + 2B). (4.5.3)

The time horizon of ϕ(A) consists of n consecutive intervals S1, . . . , Sn, with each

interval consisting of four time periods with respective demands Q − (I − 2ai), 0, I, 0

for black, and 0, Q − (I − 2ai), 0, I for red (cf. Figure 4.1). When a specific interval

is implied from the context its time periods are numbered from 1 to 4.

128

PhD Thesis—S. Rostami McMaster University—Computer Science

I

Q − (I − 2ai) Q − (I − 2ai)

4321

I

Figure 4.1: Demands for the four times of interval Si, i ∈ [n].

Lemma 6 In any admissible sequence for the instance ϕ(A) at most one of black,

red makes a cheap purchase in interval Si, i ∈ [n]. This purchase happens at time 1

for black or at time 2 for red.

Proof: Because of (4.5.2) a cheap purchase is possible only at time 1 or 2. In

interval Si, i ∈ [n], each of the items requires I − 2ai space in the inventory for a

cheap purchase at time 1 (for black) or 2 (for red). By (4.5.1) 2ai < I − 2ai, hence

there is not enough free inventory space for cheap purchases in both times 1 and 2.

2

Lemma 7 In any admissible sequence for ϕ(A) where the cost of black orders is at

most CB at least n/2 cheap orders for the black item are placed.

Proof: Assume that in the admissible sequence n/2−x cheap orders have been placed

for black for some x ≥ 1. Let N0 be the set of indices of the intervals in which there

are no cheap black purchases, and N1 = [n] \ N0. Lemma 6 implies that |N1| = n
2 − x,

and, therefore, |N0| = n
2 + x. Let ℓi be the total net amount of black item that can

be fetched from the inventory to cover demand during interval Si. This amount must

have been purchased at some previous time, and at a unit price of at least p2. Hence,

129

PhD Thesis—S. Rostami McMaster University—Computer Science

the total cost costB incurred for the black item is lower-bounded as follows:

costB ≥ p1[(
n

2 + x)Q +
∑

i∈N0

2ai] − p1
∑

i∈N0

ℓi+

+ p2[(
n

2 − x)Q +
∑

i∈N1

2ai] + p2
∑

i∈N0

ℓi

≥ p1(
n

2 + x)Q − p1
∑

i∈N0

ℓi + p2[(
n

2 − x)Q]+

+ 4Bp2 + p2
∑

i∈N0

ℓi

= CB + (p1 − p2)(xQ − 2B −
∑

i∈N0

ℓi). (4.5.4)

Note that, for any admissible sequence, we can assume that items are never pur-

chased expensively, in order to be stored in the inventory. Let the excess of a cheap

purchase xt ≥ dt at some time t be the amount xt − dt which will be stored in the in-

ventory. Given an admissible sequence the associated red and black costs are uniquely

determined by the order vectors and do not depend on when a stored unit is actually

consumed. For the purposes of cost accounting we may allocate the excess units to

satisfy demand at any time of our choice as long as all demand has been satisfied by the

end of the time horizon and all the excess has been consumed. The maximum amount

of a cheap purchase at time 1 of interval Si, i ∈ N1, is Q − (I − 2ai) + I = Q + 2ai,

i.e., the excess is at most 2ai. The calculation in (4.5.4) allocated Q + 2ai units to

cover the black demand in interval i ∈ N1. This way all potential excess has been

consumed and it follows that ∑
i∈N0 ℓi = 0. But in that case, (4.5.2) and (4.5.4) imply

that costB > CB, a contradiction to the assumption that the black cost is at most

CB. Therefore x = 0. 2

130

PhD Thesis—S. Rostami McMaster University—Computer Science

Similarly we can prove:

Lemma 8 In any admissible sequence for ϕ(A) where the cost of red orders is at

most CR at least n/2 cheap orders for the red item are placed.

Lemma 9 The Equipartition instance A is a Yes-instance iff the 2-Bulk Or-

dering instance ϕ(A) is a Yes-instance.

Proof: Let the Equipartition instance have a solution given by A′ ⊆ [n], |A′| = n/2

such that ∑
i∈A′ ai = B. There is a corresponding admissible sequence for the 2-Bulk

Ordering instance, in which a cheap red purchase of Q + 2ai units takes place at

every interval Si, i ∈ A′, and a cheap black purchase at the amount of Q + 2ai takes

place for every Si, i ∈ [n] \ A′. The sequence meets the cost targets for both items.

Conversely, assume that the 2-Bulk Ordering instance is a Yes-instance. Let

TB (TR) be the indices of the intervals in which a black (red) cheap purchase occurs.

By Lemmas 6, 7 and 8 |TB| = |TR| = n/2. The excess of a cheap purchase (either

black at time 1 or red at time 2) is at most I. We can lower bound the cost by

assuming that it is always I.

We allocate all potential excess of a cheap purchase at interval Si ∈ TB (Si ∈ TR)

to cover the demand at time 3 (resp. 4). Therefore the total black item amount

bought expensively is at least n
2 Q + ∑

i∈TR
2ai, and the total red item amount bought

expensively is at least n
2 Q + ∑

i∈TB
2ai. It holds that ∑

i∈TR∪TB
2ai = ∑

i∈[n] 2ai =

4B. If ∑
i∈TR

2ai = 2B + y for some positive y, the cost paid for the black item

is CB + (p1 − p2)y > CB, a contradiction, and similarly for the red. Therefore∑
i∈TR

2ai ≤ 2B and ∑
i∈TB

2ai ≤ 2B, which imply that ∑
i∈TR

2ai = ∑
i∈TB

2ai = 2B,

131

PhD Thesis—S. Rostami McMaster University—Computer Science

i.e., the Equipartition instance has a feasible solution. 2

Lemma 9, together with the easy fact that 2-Bulk Ordering is in NP, imply

the following

Theorem 3 The 2-Bulk Ordering problem is NP-complete even when both items

have the same pricing scheme (p1, p2, Q).

A pair of values (x1, x2) dominates another pair (y1, y2) if x1 ≤ y1 and x2 ≤ y2.

The cost pair of an admissible sequence σ for a 2-Bulk Ordering instance is the

pair of black and red costs incurred by σ. The trade-off or Pareto curve for 2-Bulk

Ordering is the set of all admissible sequences for which the corresponding cost pair

is not dominated by the cost pair of any other (admissible) sequence. Observe that

in the proof of Lemma 9 we actually established that the Equipartition instance

is a Yes-instance iff there is an admissible sequence for the corresponding 2-Bulk

Ordering instance where the cost for black is exactly CB and for red is exactly CR.

The following corollary is immediate and suggests the intractability of identifying

points on the Pareto curve.

Corollary 1 Given an instance of 2-Bulk Ordering and a pair of cost targets

(C1, C2) it is NP-complete to determine whether (i) there is an admissible sequence

whose cost pair dominates (C1, C2) and (ii) there is an admissible sequence on the

Pareto curve with cost pair (C1, C2).

Acknowledgement The authors thank an anonymous reviewer for comments that

helped to substantially improve the paper.

132

Bibliography

[1] N. Brahimi, N. Absi, S. Dauzére-Pérés, A. Nordli, Single-item dynamic lot-sizing

problems: An updated survey, European Journal of Operational Research, 263

(3) (2017) pp. 838-863.

[2] E. Koca, H. Yaman, M. Selim Aktürk, Lot sizing with piecewise concave produc-

tion costs, INFORMS Journal on Computing 26 (4) (2014) pp. 767-779.

[3] H. M. Wagner, T. M. Whitin, Dynamic version of the economic lot size model,

Management Science, 5 (1) (1958) pp. 1007-1013.

[4] Y. Malekian, S. Hamid Mirmohammadi, M. Bijari, Polynomial-time algorithms to

solve the single-item capacitated lot sizing problem with a 1-breakpoint all-units

quantity discount, Computers & Operations Research, 134 (2021).

[5] C. Swoveland, A deterministic multi-period production planning model with piece-

wise concave production and holding-backorder costs, Management Science, 21

(9) (1975) pp. 89-96.

[6] S. F. Love, Bounded production and inventory models with piecewise concave

costs, Management Science, 20 (3) (1973) pp. 313-318.

133

PhD Thesis—S. Rostami McMaster University—Computer Science

[7] J. Ou, A polynomial time algorithm to the economic lot sizing problem with

constant capacity and piecewise linear concave costs, Operations Research Letters,

45 (5) (2017) pp. 493-497.

[8] J. Ou, Improved exact algorithms to economic lot-sizing with piecewise linear

production costs, European Journal of Operational Research, 256 (3) (2017) pp.

777-784.

[9] A. Federgruen, C. Lee, The dynamic lot size model with quantity discount, Naval

Research Logistics (NRL), 37 (5) (1990) pp. 707-713.

[10] G. R. Bitran, H. H. Yanasse, Computational complexity of the capacitated lot

size problem, Management Science, 28 (10) (1982) pp. 1174-1186.

[11] C. P. M. van Hoesel, A. P. M. Wagelmans, An O(T 3) algorithm for the economic

lot-sizing problem with constant capacities, Management Science, 42 (1) (1996)

pp. 142-150.

[12] T. Liu, Economic lot sizing problem with inventory bounds, European Journal

of Operational Research, 185 (1) (2008) pp. 204-215.

[13] M. Önal, W. van den Heuvel, T. Liu, A note on “The economic lot sizing

problem with inventory bounds,” European Journal of Operational Research, 223

(1) (2012) pp. 290-294.

[14] C. P. M. van Hoesel, A. P. M. Wagelmans, Fully polynomial approximation

schemes for single-item capacitated economic lot-sizing problems, Mathematics

of Operations Research, 26 (2) (2001) pp. 339-357.

134

PhD Thesis—S. Rostami McMaster University—Computer Science

[15] C. T. Ng, Mikhail Y. Kovalyov, T. C .E. Cheng, A simple FPTAS for a single-

item capacitated economic lot-sizing problem with a monotone cost structure,

European Journal of Operational Research, 200 (2) (2010) pp. 621-624.

[16] J. Fan, G. Wang, Joint optimization of dynamic lot and warehouse sizing prob-

lems, European Journal of Operational Research, 267 (3) (2018) pp. 849-854.

[17] M. R. Garey, D. S. Johnson, Computers and Intractability: A guide to the theory

of NP-completeness, W. H. Freeman and Company, (1979).

135

Chapter 5

Conclusion

In this thesis, techniques from combinatorial optimization were leveraged to minimize

different operational costs for data centers. In Chapter 2, a linearization technique

was used to define and study a baseline thermal-aware workload distribution prob-

lem, in the form of a mixed integer linear programming problem, which considers

different cooling parameters and heat recirculation effects while two different red-

line temperatures are defined for idle and fully-utilized servers to reduce the cooling

effort. Linearization is a time-efficient approach that also helps develop more accu-

rate heuristics by gaining insights about the structure of the problem. The results

confirmed that linearization and the proposed heuristic to solve the resulting prob-

lem form an effective approach compared to baseline algorithms (simple rounding

and a genetic algorithm) and commercial solvers (MATLAB). In the big picture, the

proposed approach can be used to build a theoretical framework for thermal-aware

workload distribution in data centers. In Chapter 3, a more practical scenario was

136

PhD Thesis—S. Rostami McMaster University—Computer Science

defined where additional operational costs, the cost of workload fluctuations that im-

pact the reliability of servers (due to temperature changes) and QoS (due to imposing

delay), were also considered. We generalized the proposed heuristic for the previous

problem to solve this new problem. An MPC approach was also integrated to help

reduce the size of the problem and use more precise demand predictions. The results

confirmed that integrating the proposed heuristic with the MPC approach while using

an appropriate window size efficiently solves the problem. The proposed problem in

Chapter 4 is completely different but can also be related to operational costs in data

centers. It is a single-item multi-period lot sizing problem with quantity discounts

and bounded inventory. Three structural properties for an optimal solution were ex-

tracted and used to develop an efficient O(T 2) dynamic programming algorithm to

solve the problem, where T is the number of periods. The case of two items was

proved to be NP-hard.

As explained, the thermal-aware workload distribution problem for data centers

is not a trivial problem to solve. The thermal models are one of the most impor-

tant challenges in solving such problems because they are not explicitly given and for

models that use physical equations, they are also computationally expensive. When

the trade-off between IT and cooling power consumption is considered, the decision

variables include integral variables corresponding to the selection of thermal-efficient

servers (computing nodes). The problem becomes more complicated for the case of

heterogeneous data centers in which the servers have different characteristics in terms

of power consumption and computational capacity. There are two possible holistic

approaches to tackling such problems. Simplification of the problem and defining a

model-independent problem through standard techniques such as linearization has

137

PhD Thesis—S. Rostami McMaster University—Computer Science

been discussed in this thesis. The other possibility is the definition of a general prob-

lem considering all the complexities and then finding a holistic approach to solve

the problem. For data-driven thermal models, a potential holistic approach is the

combination of machine learning with modern optimization approaches such as meta-

heuristics. Because the optimization should be performed for online applications, the

simplification approach may be more practical in terms of implementation and com-

putational complexity. However, linearization may not be precise enough to represent

more complicated models.

With this introduction we list some points, challenges and possible future works

as follows:

• The proposed mixed integer linear programming problem defined in Chapter 2

is an interesting problem from both practical and theoretical views. There are

interactions between cooling power consumption and workload distribution that

should be investigated. In our efforts to approximate the solution, we tried to

link the problem to well-known problems such as multi-dimensional knapsack

problems and partial set-covering problems, and modify proposed algorithms in

the literature that use a variety of methods such as classic methods and mod-

ern meta-heuristic methods (we used a related genetic algorithm in Chapter

2). However, there were some challenges. Specifically we tried to apply the

method presented in [82] to our problem, which guarantees an approximation

factor. Their problem is a partial set covering problem, where in contrast to

our problem, all the variables are integral and the linear matrices are fixed (not

138

PhD Thesis—S. Rostami McMaster University—Computer Science

parametric). The approach has two parts. For the first part, a related La-

grangian relaxation problem should be solved. We planned to use a randomized

rounding algorithm developed in [83] for this part. In the second part, there is a

ranking procedure that turned out to be challenging for our problem. Another

possible approach to approximate the solution is a primal-dual scheme. We

defined the complementary slackness conditions to help decide which servers to

choose. This was also challenging due to several complicated conditions. De-

signing an approximation algorithm for the defined mixed integer programming

problem is still open to more efforts, in particular, we suggest the investigation

of the Lagrangian relaxation method.

• Another approach to find an efficient algorithm is to define specific structures

(that correspond to practice) for the cooling and/or heat-recirculation matrices

which may make solving the problem easier. We did this in Chapter 2 by defin-

ing dominant cooling variables for each server. Additional helpful structures

may be found.

• The basic problem defined in Chapter 2 (or Chapter 3) can be generalized

to consider scenarios such as heterogeneous data centers and transient thermal

models. Both scenarios may make the problem more complicated. For transient

thermal models, the current temperature typically depends on the temperature

in the previous state. These models are commonly linear, so they appear to be

consistent with the linearization approach.

• We defined an inlet temperature for each server in the proposed problem. How-

ever in the literature the temperatures are commonly defined for abstract zones

139

PhD Thesis—S. Rostami McMaster University—Computer Science

or at the rack level. In this case the workload distribution problem is not a

0-1 optimization problem because each thermal node consists of several servers.

The defined problems and proposed heuristics can be modified correspondingly.

• As we explained, the proposed problems in the literature are similar but are

defined and solved differently. There is a lack of a holistic model-independent

approach that can be used for different scenarios. We proposed a bottom-up

approach which helps build a theoretical framework for thermal-aware workload

distribution problems. We think holistic approaches should be considered as

future perspectives. They can integrate the efforts in the literature to solve

thermal-aware workload distribution problems.

• As explained, linearization may not represent the complicated models precisely

(this was not the case in Chapter 2). More general structures such as convex

functions or piecewise-linear functions may be valuable to study. For these

cases, the relaxation of the problem can still be solved in polynomial time but

for the rounding of the solution efficient algorithms should be developed.

• In the proposed problem the servers can be kept idle but server consolidation

is also consistent with the proposed approach if the thermal model can still be

represented by linear models. The challenge is that when some of the servers are

turned off, the heat recirculation pattern changes accordingly. One possibility

to minimize the changes is to keep the server fans on. Addressing this challenge

is one of the more important future directions.

• For the lot-sizing problem, one possibility for future work is to consider other

structures for the costs, for example a non-decreasing pattern in the prices

140

PhD Thesis—S. Rostami McMaster University—Computer Science

(which may correspond well with practice) instead of a non-increasing pattern.

Another important possibility is to develop approximation algorithms for the

case of multiple items, two items for example.

141

Bibliography (Chapters 1 and 5)

[1] Y. Cui, C. Ingalz, T. Gao, and A. Heydari, “Total cost of ownership model for data

center technology evaluation,” 16th IEEE Intersociety Conference on Thermal

and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando,

FL, USA, 2017, pp. 936-942.

[2] W. Zhang, Y. Wen, Y. Wah Wong, K. Chuan Toh, and C. Chen, “Towards joint

optimization over ICT and cooling systems in data center: A survey,” IEEE Com-

munications Surveys & Tutorials, vol. 18, no. 3, pp. 1596-1616, third quarter 2016.

[3] C. Nadjahi, H. Louahlia, and S. Lemasson, “A review of thermal management and

innovative cooling strategies for data center,” Sustainable Computing: Informatics

and Systems, vol. 19, pp. 14-28, 2018.

[4] E. Masanet, and N. Lei, “How much energy do data centers really use?,” Aspen

global change Institute, Mar. 2020.

[5] N. EI-Sayed, I. A. Stefanovici, G. Amvrosiadis, and A. A. Hwang, “Tempera-

ture management in data centers: Why some (might) like it hot,” SIGMETRICS

142

PhD Thesis—S. Rostami McMaster University—Computer Science

’12: Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint Inter-

national Conference on Measurement and Modeling of Computer Systems, Jun.

2012, pp. 163-174.

[6] Q. Fang, J. Wang, and Q. Gong, “QoS-driven power management of data centers

via model predictive control,” IEEE Transactions on Automation Science and

Engineering, vol. 13, no. 4, pp. 1557-1566, Oct. 2016.

[7] A. H. Khalaj, and S. K. Halgamuge, “A Review on efficient thermal management

of air- and liquid-cooled data centers: From chip to the cooling system,” Applied

Energy, vol. 205, pp. 1165-1188, 2017.

[8] D. Han, and T. Shu, “Thermal-aware energy-efficient task scheduling for DVFS-

enabled data centers,” International Conference on Computing, Networking and

Communications (ICNC), Garden Grove, CA, 2015, pp. 536-540.

[9] R. Ge, X. Feng, and K. W. Cameron, “Performance-constrained distributed DVS

scheduling for scientific applications on power-aware clusters,” SC ’05: Proceed-

ings of the 2005 ACM/IEEE Conference on Supercomputing, Seattle, WA, USA,

2005, pp. 34-34.

[10] Q. Fang, J. Wang, Q. Gong, and M. Song, “Thermal-aware energy management

of an HPC data center via two-time-scale control,” IEEE Transactions on Indus-

trial Informatics, vol. 13, no. 5, pp. 2260-2269, Oct. 2017.

[11] A. M. Al-Qawasmeh, S. Pasricha, A. A. Maciejewski, and H. J. Siegel, “Power and

thermal-aware workload allocation in heterogeneous data centers,” IEEE Trans-

actions on Computers, vol. 64, no. 2, pp. 477-491, Feb. 2015.

143

PhD Thesis—S. Rostami McMaster University—Computer Science

[12] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption modeling:

A survey,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 732-794,

First quarter 2016.

[13] L. Parolini, B. Sinopoli, and B. H. Krogh, “Reducing data center energy con-

sumption via coordinated cooling and load management,” Proceedings of the 5th

USENIX Symposium on Networked Systems Design & Implementations, San Fran-

cisco, CA, April 2008, pp. 14-14.

[14] Z. Abbasi, G. Varsamopoulos, and S. K. S. Gupta, “TACOMA: Server and work-

load management in internet data centers considering cooling-computing power

trade-off and energy proportionality,” ACM Transactions on Architecture and

Code Optimization, vol. 9, no. 2, pp. 1-37, Jun. 2012.

[15] J. Wan, X. Gui, R. Zhang, and L. Fu, “Joint cooling and server control in data

denters: a cross-layer framework for holistic energy minimization,” IEEE Systems

Journal, vol. 12, no. 3, pp. 2461-2472, Sep. 2018.

[16] Z. Wang, C. Bash, N. Tolia, N. Marwah, X. Zhu, and P. Ranganathan, “Optimal

fan speed control for thermal management of servers,” Proceedings of the ASME

2009 InterPACK Conference, San Francisco, California, USA, Jul. 2009, vol. 2,

pp. 709-719.

[17] S. Ilager, K. Ramamohanarao, and R. Buyya, “Thermal prediction for efficient

energy management of clouds using machine learning,” IEEE Transactions on

Parallel and Distributed Systems, vol. 32, no. 5, pp. 1044-1056, May 2021.

144

PhD Thesis—S. Rostami McMaster University—Computer Science

[18] S. MirhoseiniNejad, F. M. García, G. Badawy, and D. G. Down, “ALTM: Adap-

tive learning-based thermal model for temperature predictions in data centers,”

IEEE Sustainability through ICT Summit (StICT), Montréal, Canada, 2019, pp.

1-6.

[19] S. Asgari, H. Moazamigoodarzi, P. J. Tsai, S. Pal, R. Zheng, G. Badawy, and I. K.

Puri, “Hybrid surrogate model for online temperature and pressure predictions in

data centers,” Future Generation Computer Systems, vol. 114, pp. 531-547, 2021.

[20] R. Gupta, S. Asgari, H. Moazamigoodarzi, D. G. Down, and I. K. Puri, “En-

ergy, exergy and computing efficiency based data center workload and cooling

management,”Applied Energy, vol. 299, 117050, Oct. 2021.

[21] S. Akbar, R. Li, M. Waqas, and A. Jan, “Server temperature prediction using

deep neural networks to assist thermal-aware scheduling,” Sustainable Computing:

Informatics and Systems, vol. 36, 100809, 2022.

[22] Q. Tang, S. K. Gupta, and G. Varsamopoulos, “Thermal-aware task schedul-

ing for data centers through minimizing heat recirculation,” IEEE International

Conference on Cluster Computing, Austin, TX, USA, 2007, pp. 129–138.

[23] Q. Tang, S. K. Gupta, and G. Varsamopoulos, “Energy-efficient thermal-aware

task scheduling for homogeneous high-performance computing data centers: A

cyber-physical approach,” IEEE Transactions on Parallel and Distributed Sys-

tems, vol. 19, no. 11, pp. 1458–1472, 2008.

[24] T. Khan, W. Tian, G. Zhou, S. Ilager, M. Gong, and R. Buyya, “Machine learn-

ing (ML)-centric resource management in cloud computing: A review and future

145

PhD Thesis—S. Rostami McMaster University—Computer Science

directions,” Journal of Network and Computer Applications, vol. 204, 103405,

2022.

[25] Z. Liu et al., “Renewable and cooling aware workload management for sustainable

data centers,” Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE

joint international conference on Measurement and Modeling of Computer Sys-

tems, 2012, pp. 175–186.

[26] E. Pakbaznia, M. Ghasemazar, and M. Pedram, “Temperature-aware dynamic

resource provisioning in a power-optimized datacenter,” Design, Automation &

Test in Europe Conference & Exhibition (DATE 2010) Dresden, Germany, 2010,

pp. 124–129.

[27] A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload characterization and pre-

diction in the cloud: A multiple time series approach,” IEEE Network Operations

and Management Symposium, 2012, pp. 1287–1294.

[28] P. Bodık, R. Griffith, C. Sutton, A. Fox, M. Jordan, and D. Patterson, “Statisti-

cal machine learning makes automatic control practical for internet data centers,”

HotCloud ’09: Workshop on Hot Topics in Cloud Computing, 2009, pp. 12–12.

[29] R. J. Hyndman, and G. Athanasopoulos, “Forecasting: Principles and practice

(2nd ed),” OTexts, 2018.

[30] H. Sun, P. Stolf, J. Pierson, and G. D. Costa, “Energy-efficient and thermal-aware

resource management for heterogeneous data centers,” Sustainable Computing:

Informatics and Systems, Vol. 4, no. 4, 2014, pp. 292-306.

146

PhD Thesis—S. Rostami McMaster University—Computer Science

[31] R. Azimi, X. Zhan, and S. Reda, “Thermal-aware layout planning for hetero-

geneous data centers,” Proceedings of the 2014 International Symposium on Low

Power Electronics and Design, 2014, pp. 245–250.

[32] X. Li, P. Garraghan, X. Jiang, Z. Wu, and J. Xu, “Holistic virtual machine

scheduling in cloud data centers towards minimizing total energy,” IEEE Trans-

actions on Parallel and Distributed Systems, vol. 29, no. 6, pp. 1317-1331, Jun.

2018.

[33] S. Ilager, K. Ramamohanarao, and R. Buyya, “Thermal prediction for efficient

energy management of clouds using machine learning,” IEEE Transactions on

Parallel and Distributed Systems, vol. 32, no. 5, pp. 1044-1056, May 2021.

[34] E. K. Lee, H. Viswanathan, and D. Pompili, “Proactive thermal-aware resource

management in virtualized HPC cloud data centers,” IEEE Transactions on Cloud

Computing, vol. 5, no. 2, pp. 234-248, Jun. 2017.

[35] R. Chen, B. Liu, W. Lin, J. Lin, H. Cheng, and K. Li, “Power and thermal-aware

virtual machine scheduling optimization in cloud data center,” Future Generation

Computer Systems, Vol. 145, pp. 578-589, 2023.

[36] C. Guo, K. Xu, G. Shen, and M. Zukerman, “Temperature-aware virtual data

center embedding to avoid hot spots in data centers,” IEEE Transactions on Green

Communications and Networking, vol. 5, no. 1, pp. 497-511, 2021.

[37] H. Feng, Y. Deng, and Y. Zhou, “A heat-recirculation-aware VM placement

strategy for data centers,” Design, Automation & Test in Europe Conference &

Exhibition (DATE), Grenoble, France, 2020, pp. 626-629.

147

PhD Thesis—S. Rostami McMaster University—Computer Science

[38] H. Liu, W. K. Wong, S. Ye, and C. Yu Tak Ma, “Joint energy optimization

of cooling systems and virtual machine consolidation in data centers,” 29th In-

ternational Conference on Computer Communications and Networks (ICCCN),

Honolulu, HI, USA, 2020, pp. 1-8.

[39] S. MirhoseiniNejad, G. Badawy, and D. G. Down, “EAWA: Energy-aware work-

load assignment in data centers,” 2018 International Conference on High Perfor-

mance Computing & Simulation (HPCS), pp. 260–267, 2018.

[40] A. D. Carnerero, D. R. Ramirez, T. Alamo, and D. Limon, “Probabilistically

certified management of data centers using predictive control,” IEEE Transactions

on Automation Science and Engineering, vol. 19, no. 4, pp. 2849-2861, Oct. 2022.

[41] Y. Cho, and N. Chang, “Energy-aware clock-frequency assignment in micropro-

cessors and memory devices for dynamic voltage scaling,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 6, pp.

1030– 1040, Jun. 2007.

[42] T. Mukherjee, A. Banerjee, G. Varsamopoulos, S. K. Gupta, and S. Rungta,

“Spatio-temporal thermal-aware job scheduling to minimize energy consumption

in virtualized heterogeneous data centers,” Computer Networks, vol. 53, no. 17,

pp. 2888–2904, 2009.

[43] B. Shi, and A. Srivastava, “Thermal and power-aware task scheduling for hadoop

based storage centric data centers,” International Conference on Green Comput-

ing, Chicago, IL, 2010, pp. 73–83.

[44] M. Nakamura, “Learning and optimization models for energy efficient cooling

148

PhD Thesis—S. Rostami McMaster University—Computer Science

control in data center,” Proceedings of the SICE Annual Conference, Tsukuba,

Japan, Sep. 2016.

[45] L. Parolini, B. Sinopoli, B. H. Krogh, and Z. Wang, “A Cyber–physical systems

approach to data center modeling and control for energy efficiency,” Proceedings

of the IEEE, vol. 100, no. 1, pp. 254-268, Jan. 2012.

[46] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, “Energy-efficient thermal-

aware task scheduling for homogeneous high-performance computing data cen-

ters: A cyber-physical approach,” IEEE Transactions on Parallel and Distributed

Systems, vol. 19, no. 11, pp. 1458-1472, Nov. 2008.

[47] L. Yang, Y. Deng, L. T. Yang, and R. Lin, “Reducing the cooling power of data

centers by intelligently assigning tasks,” IEEE Internet of Things Journal, vol. 5,

no. 3, pp. 1667-1678, June 2018.

[48] E. Pakbaznia, and M. Pedram, “Minimizing data center cooling and server power

costs,” In Proceedings of the 2009 ACM/IEEE international symposium on Low

power electronics and design (ISLPED ’09). Association for Computing Machin-

ery, New York, USA, 2009, pp. 145–150.

[49] T. Van Damme, C. De Persis, and P. Tesi, “Optimized thermal-aware job schedul-

ing and control of data centers,” IEEE Transactions on Control Systems Technol-

ogy, vol. 27, no. 2, pp. 760-771, Mar. 2019.

[50] W. Zhang, R. Yadav, Y. C. Tian, S. K. S. Tyagi, I. A. Elgendy, and O. Kaiwartya,

“Two-phase industrial manufacturing service management for energy efficiency of

149

PhD Thesis—S. Rostami McMaster University—Computer Science

data centers,” IEEE Transactions on Industrial Informatics, vol. 18, no. 11, pp.

7525-7536, Nov. 2022.

[51] S. Mirhoseininejad, G. Badawy, and D. G. Down, “A data-driven, multi-setpoint

model predictive thermal control system for data centers,” Journal of Network

and Systems Management, vol. 29, no. 7, 2021.

[52] Z. Xiong, M Zhao, Z. Yuan, J. Xu, and L. Cai, “Energy-saving optimization of

application server clusters based on mixed integer linear programming,” Journal

of Parallel and Distributed Computing, vol. 171, pp. 111-129, 2023.

[53] I. Castiñeiras, D. S. Chisca, D. Mehta, and B. O’Sullivan, “Trichotomic search for

thermal-aware data centre workload optimisation,” IEEE/ACM 8th International

Conference on Utility and Cloud Computing (UCC), Limassol, Cyprus, 2015, pp.

528-533.

[54] Q. Wang, Y. Yu, B. Li, and Y. Zhu, “Tensor-based optimal temperature control

of CRACs in multi-data centers,” IEEE Access, vol. 7, pp. 41445-41453, 2019.

[55] J. Li, Y. Deng, Y. Zhou, Z. Zhang, G. Min, and X. Qin, “Towards thermal-

aware workload distribution in cloud data centers based on failure models,” IEEE

Transactions on Computers, vol. 72, no. 2, pp. 586-599, Feb. 2023.

[56] S. Akbar, S. U. R. Malik, K. K. R. Choo, S. U. Khan, N. Ahmad, and A. An-

jum, “A Game-based thermal-aware resource allocation strategy for data centers,”

IEEE Transactions on Cloud Computing, vol. 9, no. 3, pp. 845-853, Sep. 2021.

150

PhD Thesis—S. Rostami McMaster University—Computer Science

[57] A. Sansottera, and P. Cremonesi, “Cooling-aware workload placement with per-

formance constraints,” Performance Evaluation, vol. 68, no. 11, pp. 1232-1246,

2011.

[58] B. Shi, and A. Srivastava, “Unified data center power management considering

on-chip and air temperature constraints,” Sustainable Computing: Informatics

and Systems, vol. 1, no. 2, pp. 91–98, 2011.

[59] L. Parolini, B. Sinopoli, and B.H. Krogh, “Reducing data center energy con-

sumption via coordinated cooling and load management,” Proceedings of the 2008

conference on power aware computing and systems, HotPower, vol. 8, pp. 14, 2008.

[60] A.H. Khalaj, T. Scherer, J. Siriwardana, and S.K. Halgamuge, “Multi-objective

efficiency enhancement using workload spreading in an operational data center,”

Applied Energy, vol. 138, pp. 432–44, 2015.

[61] Y. Ran, H. Hu, X. Zhou, and Y. Wen, “DeepEE: Joint optimization of job

scheduling and cooling control for data center energy efficiency using deep rein-

forcement learning,” IEEE 39th International Conference on Distributed Comput-

ing Systems (ICDCS), Dallas, TX, USA, 2019, pp. 645-655.

[62] S. MirhoseiniNejad, G. Badawy, and D. G. Down, “Holistic thermal-aware work-

load management and infrastructure control for heterogeneous data centers using

machine learning,” Future Generation Computer Systems, vol. 118, pp. 208-218,

2021.

151

PhD Thesis—S. Rostami McMaster University—Computer Science

[63] N. Brahimi, N. Absi, S. Dauzère-Pérès, and A. Nordli, “Single-item dynamic lot-

sizing problems: An updated survey,” European Journal of Operational Research,

vol. 263, no. 3, pp. 838-863, 2017.

[64] H. M. Wagner, and T. M. Whitin, “Dynamic version of the economic lot size

model,” Management Science, vol. 5, no. 1, pp. 89-96, 1958.

[65] N. Brahimi, N. Absi, S. Dauzère-Pérès, and A. Nordli, “Single item lot sizing

problems,” European Journal of Operational Research, vol. 168, no. 1, pp. 1–16,

2006.

[66] Nusrat T. Chowdhury, M.F. Baki, and A. Azab, “Dynamic economic lot-sizing

problem: A new O(T) algorithm for the Wagner-Whitin model,” Computers &

Industrial Engineering, vol. 117, pp. 6-18, 2018.

[67] G. R. Bitran, and H. H. Yanasse, “Computational complexity of the capacitated

lot size problem,” Management Science , vol. 28, no. 10, pp. 1174-1186, 1982.

[68] S. F. Love, “Bounded production and inventory models with piecewise concave

costs,” Management Science, vol. 20, no. 3, pp. 313-318, 1973.

[69] M. Önal, W. Van den Heuvel, and T. Liu, “A note on “The economic lot sizing

problem with inventory bounds”,” European Journal of Operational Research, vol.

223, no. 1, pp. 290–294, 2012.

[70] A. Aggarwal, and J. K. Park, “Improved algorithms for economic lot size prob-

lems,” Operations Research, vol. 41, no. 3, pp. 549-571, 1993.

[71] W. I. Zangwill, “The piecewise concave function,” Management Science, vol. 13,

no. 11, pp. 900-912, 1967.

152

PhD Thesis—S. Rostami McMaster University—Computer Science

[72] C. Swoveland, “A deterministic multi-period production planning model with

piecewise concave production and holding-backorder costs,” Management Science,

vol. 21, no. 9, pp. 1007-1013, 1975.

[73] M. Florian, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Deterministic production

planning: algorithms and complexity,” Management Science, vol. 26, no. 7, pp.

669-679, 1980.

[74] A. Federgruen, and C. Y. Lee, “The dynamic lot size model with quantity dis-

count,” Naval Research Logistics, vol. 37, no. 5, pp. 707-713, 1980.

[75] C. P. M. van Hoesel, and A. P. M. Wagelmans, “Fully polynomial approximation

schemes for single-item capacitated economic lot-sizing problems,” Mathematics

of Operations Research, vol. 26, no. 2, pp. 339-357, 2001.

[76] E. Koca, H. Yaman, and M. S. Aktürk, “Lot sizing with piecewise concave pro-

duction costs,” INFORMS Journal on Computing, vol. 26, no. 4, pp. 767-779,

2014.

[77] J. Ou, “Improved exact algorithms to economic lot-sizing with piecewise linear

production costs,” European Journal of Operational Research, vol. 256, no. 3, pp.

777-784, 2017.

[78] J. Ou, “A polynomial time algorithm to the economic lot sizing problem with

constant capacity and piecewise linear concave costs,” Operations Research Let-

ters, vol. 45, no. 5, pp. 493-497, 2017.

[79] Y. Malekian, S. H. Mirmohammadi, and M. Bijari, “Polynomial-time algorithms

153

PhD Thesis—S. Rostami McMaster University—Computer Science

to solve the single-item capacitated lot sizing problem with a 1-breakpoint all-

units quantity discount”, Computers & Operations Research, vol. 134, 105373,

2021.

[80] K. A. Bunn, and J. A. Ventura, “A dynamic programming approach for the two-

product capacitated lot-sizing problem with concave costs,” European Journal of

Operational Research, vol. 307, no. 1, pp. 116-129, 2023.

[81] H. B. Ammar, O. Ayadi, and F. Masmoudi, “An effective multi-objective particle

swarm optimization for the multi-item capacitated lot-sizing problem with set-up

times and backlogging,” Engineering Optimization, vol. 52, no. 7, pp. 1198-1224,

2020.

[82] J. Könemann, O. Parekh, and D. Segev, “A unified approach to approximating

partial covering problems,” Algorithmica, vol. 59, pp. 489–509, 2011.

[83] S. G. Kolliopoulos, and N. E. Young, “Tight approximation results for general

covering integer programs,” Proceedings 42nd IEEE Symposium on Foundations

of Computer Science, Newport Beach, CA, USA, 2001, pp. 522-528.

154

	Lay Abstract
	Abstract
	Acknowledgements
	Declaration of Academic Achievement
	Introduction
	Background and Literature Review
	Overview of Data Centers
	Models of Power, Temperature and Workload
	Joint ICT and Cooling Power Optimization
	Thermal-aware Workload Distribution
	The Lot-Sizing Problem

	Research Summary

	Linearized Data Center Workload and Cooling Management
	Introduction
	System Model and Motivation
	Problem Definition
	Approximation of the Optimal Solution
	NP-completeness
	Bad Cases for Simple Rounding
	Proposed Approximation Schemes

	Evaluation
	Evaluation of the Proposed Schemes for Linear Systems
	Evaluation of Energy Savings for the Original System

	Conclusion

	Thermal-aware Workload Distribution for Data Centers with Demand Variations
	Introduction
	System Model
	Approximation Algorithm
	MPC Approach
	Evaluation
	Conclusion

	Single-item Lot-sizing with Quantity Discount and Bounded Inventory
	Introduction
	Problem Definition
	Structural Properties of an Optimal Solution
	A Dynamic Programming Algorithm
	The Case of Two Items

	Conclusion

