
Securing Digital Archiving Systems Against
Mass Breaches and Long-Term Security

Degradation

Securing Digital Archiving Systems Against Mass
Breaches and Long-Term Security Degradation

By Moe Sabry, M.Eng.

A Thesis Submitted to the Department of Computing & Software
in the Partial Fulfillment of the Requirements for the Degree of Doctor

of Philosophy

McMaster University © Copyright by Moe Sabry July 27, 2023

McMaster University

Doctor of Philosophy (2023)

Hamilton, Ontario (Computing and Software)

TITLE: Securing Digital Archiving Systems Against Mass Breaches and Long-Term

Security Degradation

AUTHOR: Moe Sabry (McMaster University)

SUPERVISORS: Dr. Reza Samavi Dr. Emil Sekerinski Dr. Douglas Stebila

NUMBER OF PAGES: xv, 145

ii

http://www.cas.mcmaster.ca/

Lay Abstract

In this thesis, we address three challenges faced in securing digital archives. The first

challenge is how to protect digital archives against security information leakage leading

to mass data breaches. We developed an anti mass-leakage archiving system that

eliminates the need for managing large sets of secret keys and preventing an adversary

from gaining immediate and unlimited access to all archives if a key is compromised.

The second challenge is how to keep these archives secure in the long-term despite the

advancement of computational powers and cryptanalysis techniques. We developed a

secure archiving framework guaranteeing secure long-term confidentiality and integrity

protection. The third challenge is to construct an efficient and simple way to protect

the integrity of the archives in the long-term. We developed the Hybrid Merkle Tree,

a succinct updatable data structure based on Merkle trees.

iii

Abstract
Every year the amount of digitally stored sensitive information increases significantly.

Due to the digitization of such information, adversarial attacks on digital archiving

systems have increased significantly as well. In this thesis, we address two areas of

digital archiving systems security, mass data breaches and long-term security. Mass

data breaches—mass leakage of stored information—are a major security concern.

Encryption can provide confidentiality, but encryption depends on a key which, if

compromised, allows the attacker to decrypt everything, effectively instantly. Security

of encrypted data thus becomes a question of protecting and managing the encryption

keys. For long-term security, cryptographic schemes based on single computational

assumptions are not guaranteed to stay secure for such long periods so they cannot

be used for this purpose. Current state-of-the-art systems providing long-term confi-

dentiality and integrity rely on information-theoretic techniques, such as multi-server

secret sharing and commitments. These systems achieve the desired results; however,

establishing private channels for secret sharing is costly and requires a complex setup.

This thesis provides solutions for both mass data breaches and long-term security.

First, we propose using keyless encryption to construct ArchiveSafe, a mass leakage

resistant archiving system, where decryption of a file is only possible after the requester,

whether an authorized user or an adversary, solves a cryptographic puzzle. This

proposal is geared towards protection of infrequently accessed archival data, where any

one file may not require too much work to decrypt but decryption of a large number

of files—mass leakage—becomes increasingly expensive for an attacker.

Secondly, we present ArchiveSafe LT, a framework for digital archiving systems

aiming to provide long-term confidentiality and integrity. The framework relies on

iv

using multiple computationally secure schemes to form robust combiners, with a

design that plans for agility and evolution of cryptographic schemes. ArchiveSafe LT

is efficient and suitable for practical adoption as it eliminates the need for private

channels compared to its counterparts.

Finally, we present the Hybrid Merkle Tree. An authenticated data structure based

on the Merkle tree. It supports evolving to a secure hashing function if its hashing

function becomes insecure, making it suitable for integrity schemes used by secure

long-term digital archiving systems. We show how it can be integrated in ArchiveSafe

LT as an example.

Due to the recent increase in digitally stored sensitive information, digital archiving

systems have become a crucial part in the information systems space, and we believe

their importance will continue to grow in the near future. This research contributes

towards the goal of improving the security of these systems in the short and long term.

v

Acknowledgements
I sincerely thank my supervisors, Dr. Reza Samavi, Dr. Emil Sekerinski and Dr.

Douglas Stebila for their support, patience, and guidance throughout my thesis. It

has been a pleasure and privilege to have the opportunity to learn from you.

I also thank the members of my thesis committee, Dr. Fei Chiang and Dr. Jelle

Hellings who supported my research.

I thank Dr. Ken Baker who appraised my work and provided valuable comments

that improved my thesis.

vi

Dedication. . .

In memory of my mother, whose love continues to sustain propelling me forward to

this day.

To my children, Salma, Layla and Hussein, thank you for your understanding when

I was distracted or not fully present for you while pursuing this dream. I hope the

sacrifices you have endured for me to pursue this dream will be reciprocated with

abundant opportunities for happiness and accomplishment in your own futures.

vii

Contents

Lay Abstract iii

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Challenges & Motivation . 2

1.2 Contributions & Thesis Outline . 4

2 Literature Review 8

2.1 Cryptographic Concepts and Building Blocks 8

2.1.1 Cryptographic Concepts . 9

2.1.2 Cryptographic Components 11

2.2 Mass Data Leakage . 16

2.2.1 Database and Filesystem Protection 17

2.2.2 Cryptographic Puzzles Systems 19

2.2.3 Cryptographic Puzzles Systems for Confidentiality 21

2.3 Long-Term Security . 22

2.4 Authenticated Data Structures & Merkle Trees 25

3 ArchiveSafe: Mass-Leakage-Resistant Storage from Client Puzzles 27

viii

3.1 ArchiveSafe Overview . 29

3.2 Requirements . 31

3.2.1 Design Criteria . 31

3.2.2 Choice of Puzzle . 33

3.2.3 Threat Model . 35

3.2.4 Limitations . 35

3.3 Difficulty-Based Keyless Encryption 36

3.3.1 Generic Construction of DBKE 37

3.3.2 Hash-Based Construction of Difficulty-Based Keyless Key Wrap 43

3.3.3 Security of Hash-Based Keyless Key Wrap Scheme P 44

3.3.4 Puzzle Degradation . 45

3.3.5 Additional Considerations . 47

3.4 Evaluation . 49

3.4.1 Prototype Implementation . 49

3.4.2 Experimental Setup . 50

3.4.3 Results . 51

3.4.4 Discussion . 52

3.5 Use Cases . 55

3.6 Summary . 56

4 ArchiveSafe LT: Secure Long-term Archiving System 58

4.1 Robust Combiners . 60

4.2 ArchiveSafe LT Framework . 61

4.2.1 Protocols . 62

4.2.2 ArchiveSafe LT Specifications 64

4.2.3 Threat Model . 67

ix

4.2.4 Limitations . 68

4.2.5 Security . 69

4.3 System Designs . 73

4.3.1 ASLT-D1 . 77

4.3.2 ASLT-D2 . 83

4.3.3 Security Analysis . 86

4.4 Evaluation . 89

4.4.1 Experiment Implementation 91

4.4.2 Experimental Setup . 92

4.4.3 Results . 95

4.4.4 Discussion . 96

4.5 Summary . 98

5 Hybrid Merkle Trees 99

5.1 sStruct: Succinct Updatable Proof Structure 101

5.1.1 Security Property . 103

5.1.2 Merkle Tree as an sStruct . 106

5.1.3 Security Analysis . 110

5.2 esStruct: Evolving Updatable Succinct Proof Structure 112

5.2.1 Threat Model . 118

5.2.2 Limitations . 118

5.2.3 Security Property . 118

5.2.4 Hybrid Merkle Tree as an esStruct 121

5.2.5 Security Analysis . 126

5.3 Discussion . 129

5.3.1 CT Logs . 131

x

5.3.2 Digital Archiving Systems . 131

5.3.3 ArchiveSafe LT: Case Study 133

6 Conclusion 136

6.1 Summary of Contributions . 136

6.1.1 Mass Data Leakage . 136

6.1.2 Long-Term Security . 137

6.1.3 Succinct Updatable Proof Structure 137

6.2 Future Work . 138

Bibliography 140

xi

List of Figures

2.1 Security experiment for a symmetric encryption scheme 12

2.2 Security experiment for an asymmetric encryption scheme 13

2.3 Collision resistance experiment for a hash function H 14

2.4 Security experiment for a MAC scheme 15

2.5 Security experiment for digital signing scheme 16

2.6 Merkle tree example . 26

3.1 High-level overview of ArchiveSafe . 31

3.2 Security experiments for DBKE . 37

3.3 DBKE scheme architecture . 37

3.4 Generic construction of a DBKE scheme 39

3.5 Sequence of games for proof of Theorem 1 40

3.6 Reductions for the proof of Theorem 1 41

3.7 Keyless key wrapping scheme construction 43

3.8 Degradation algorithm for DBKE . 47

4.1 ArchiveSafe LT confidentiality experiment 70

4.2 ArchiveSafe LT oracles . 71

4.3 ArchiveSafe LT Integrity Experiment 73

4.4 ASLT −D1 - Initialization Protocol 77

4.5 ASLT −D1 - Retrieve Protocol . 78

xii

4.6 ASLT −D1 - Update Protocol . 79

4.7 ASLT −D1 - Delete Protocol . 80

4.8 ASLT −D1 - Evolve Integrity Protocol 81

4.9 ASLT −D1 - Evolve Confidentiality Protocol 82

4.10 ASLT −D2 - Evolve Integrity Protocol 84

4.11 ASLT −D2 - Evolve Confidentiality Protocol 85

4.12 ASLT-D1 Confidentiality challenge 88

4.13 ASLT-D1 Integrity challenge . 89

4.14 ASLT-D1 Confidentiality lemma . 90

4.15 ASLT-D1 Integrity lemma . 90

4.16 The LockConf API . 92

4.17 The LockInt API . 92

4.18 The Unlock API . 92

5.1 Hybrid Merkle tree example . 100

5.2 sStruct Real security experiment . 105

5.3 sStruct Ideal security experiment . 106

5.4 Weighted Merkle tree example . 107

5.5 Weighted Merkle tree insertion example 107

5.6 The sStruct Add algorithm . 110

5.7 The sStruct InsertNode algorithm 111

5.8 The sStruct Update algorithm . 111

5.9 The sStruct UpdateIO algorithm . 112

5.10 The sStruct Verify algorithm . 113

5.11 The sStruct VerifyIO algorithm . 114

5.12 The B algorithm for sStruct . 114

xiii

5.13 The B OAdd oracle for sStruct . 115

5.14 The B OUpdate oracle for sStruct . 115

5.15 The B OVerify oracle for sStruct . 116

5.16 The F algorithm . 116

5.17 esStruct Real Security experiment . 121

5.18 esStruct Ideal Security experiment 121

5.19 esStruct Ideal Security experiment OAdd oracle 122

5.20 esStruct Ideal Security experiment OUpdate oracle 123

5.21 esStruct Ideal Security experiment OVerify oracle 123

5.22 esStruct Ideal Security experiment OEvolve oracle 124

5.23 The esStruct Add algorithm . 126

5.24 The esStruct InsertNode algorithm 127

5.25 The esStruct Update algorithm . 127

5.26 The esStruct UpdateIO algorithm . 128

5.27 The esStruct Verify algorithm . 129

5.28 The esStruct VerifyIO algorithm . 130

5.29 The esStruct Evolve algorithm . 130

5.30 The B algorithm for esStruct . 131

5.31 The B OAdd oracle for esStruct . 132

5.32 The B OEvolve oracle for esStruct 133

5.33 The B OVerify oracle for esStruct . 133

5.34 The B OUpdate oracle for esStruct 134

xiv

List of Tables

3.1 ArchiveSafe average read time comparison 52

3.2 ArchiveSafe average write time comparison 52

3.3 ArchiveSafe read sub-tasks average time 53

3.4 ArchiveSafe Puzzle solving time . 53

3.5 Dollar cost and computation time required to unlock ArchiveSafe files 55

4.1 ArchiveSafe LT archive creation time using DES + 3DES 95

4.2 ArchiveSafe LT archive retrieval time in seconds 95

4.3 ArchiveSafe LT confidentiality evolution time 96

4.4 ArchiveSafe LT integrity evolution time 96

4.5 Merkle trees update times for one node change 96

4.6 ArchiveSafe LT comparative analysis with other systems 97

5.1 Hybrid Merkle trees update time comparison 135

xv

Chapter 1

Introduction

Digital archiving systems are used to store information that is rarely accessed but

must be retained. If the information to be stored is sensitive, the archiving system

must be secure, that is, provide confidentiality and integrity protection.

In the past few decades, efforts have been underway to digitize massive amounts of

documents containing sensitive information. One example is documents containing

personal information such as identification data, pictures, movies and music. Another

example is documents containing commercial information such as banking records,

invoices and various business transactions. Documents containing critical information

such as governmental and legal documents, healthcare, and tax records are examples of

documents that have been massively digitized recently and are required to be securely

archived for decades to comply with various laws and regulations.

The significant increase in digitally archived information types coincides with the

rise of policies and regulations requiring the security of such digital archives to be

maintained during their life cycles spanning from years to decades. For example,

digital information such as government documents, legal contracts, health, and tax

1

Ph.D. – Moe Sabry McMaster – Computing and Software

records are required to be stored securely for several years or decades in some cases

where the information is needed for the lifespan of the corresponding individuals or

organizations [19].

Since these documents are rarely accessed but must be securely retained for future

reference or regulatory compliance, they are stored and maintained by digital archiving

systems. As a result, attacks on digital archiving systems have become increasingly

common. Whatever the attack vector, a frequent outcome is a data breach, in which

sensitive information is stolen from the victim organization. Archival data has been

targeted in many data breaches [12, 14, 33], leading to loss of privacy, loss of reputation,

business setbacks, and costly remediation.

The two main reasons the attacks on digital archiving systems succeed are either

the leakage of security information, such as an encryption key or a password or the

compromising of a cryptographic scheme due to the advancement of computational

powers and cryptanalysis techniques.

1.1 Challenges & Motivation

Digital archiving systems face two major security challenges. The first challenge is the

mass information breaches due to a security information leakage, where the adversary

gets immediate and complete access to archived information. The second challenge is

the failure of traditional security schemes to stay secure in the long-term due to the

advancements in computational powers and cryptanalysis techniques.

The first challenge is a result of the current storage and archiving systems focus on

2

Ph.D. – Moe Sabry McMaster – Computing and Software

defense-in-depth only in encrypting the data at rest to support confidentiality. How-

ever, this approach, even when implemented using secure and carefully implemented

algorithms, is typically all-or-nothing: if the key is compromised, the attacker can

decrypt everything with minimal overhead. Hardware-assisted cryptography, such as

hardware security modules (HSMs), trusted computing, or secure enclaves like Intel

SGX1 or ARM TrustZone2 may prevent keys from leaking if decryption is only ever

done inside a trusted module, but many IT systems remain software-only without

the use of these technologies. Security of encrypted data in the current systems is a

question of protecting and managing the encryption key. Using a large pool of keys

to remediate this problem is problematic. The keys are either carried by the data

collector, which is impractical due to cost and complexity or, if a key management

system is used, access to this system becomes a single point of failure.

The first objective of this thesis is to find a solution that prevents mass data

breaches without the risk of depending on a master encryption key or having to

manage a large number of keys.

The second challenge is a result of the evolving nature of standard cryptographic

schemes. These schemes are insufficient to accommodate the security of long-term

archives since they could fail during the life cycle of the archived documents due

to advancements in both computational power and cryptanalysis methods. Current

state-of-the-art systems providing long-term confidentiality and integrity such as

LINCOS [8], PROPYLA [23], ELSA [35] and SAFE [10], rely on information-theoretic

techniques, such as multi-server secret sharing and commitments. These systems

achieve the desired results; however, establishing private channels for secret sharing
1https://software.intel.com/en-us/sgx
2https://developer.arm.com/ip-products/security-ip/trustzone

3

Ph.D. – Moe Sabry McMaster – Computing and Software

is costly and requires a complex setup. Additionally, this approach requires heavy

data processing, which slows down the archiving operations and by-design requires an

inflated storage space since each archive share is the same size as the whole archive.

The second objective of this thesis is to find a solution that guarantees long-term

security while decreasing the cost and complexity required by state-of-the-art systems

in addition to improved performance.

1.2 Contributions & Thesis Outline

In Chapter 2, we present a review of the literature related to the research work

presented in this thesis.

In Chapter 3, we address our first objective by presenting ArchiveSafe, a digital

archival system that utilizes cryptographic puzzles to slow down mass data leakages

and prevent the attacker from having immediate and unconditional access to all the

archived files by compromising a key. ArchiveSafe utilizes disposable keys that are used

once and never stored anywhere, so they cannot be leaked. We propose using keyless

encryption, where decryption of a file is only possible after the requester, whether an

authorized user or an adversary, solves a cryptographic puzzle to get the key. This

approach makes the decryption of a large number of files—mass leakage—increasingly

expensive for an attacker, but to a legitimate digital archiving system user, who rarely

accesses limited number of files, the processing needed to solve the puzzles is tolerable.

We present a prototype implementation of ArchiveSafe realized as a user-space file

system driver for Linux. We report experimental results of system behavior under

different file sizes and puzzle difficulty levels. The results show that ArchiveSafe adds

4

Ph.D. – Moe Sabry McMaster – Computing and Software

a slight overhead when writing a file, and a customizable overhead when reading a file

depending on the difficulty level chosen. Adding computational overhead at read time

is exactly our goal, so an adversary who obtained full access to the system cannot

extract all the stored information without paying a large processing price. Choosing

the difficulty level depends on the tolerable cost for honest users to access the data,

the perceived risk of a data breach, and the anticipated value of the information to an

adversary, is a calculation that is left to the adopter.

Our keyless encryption technique can be added as a layer on top of traditional

encryption: together, they provide strong security against adversaries.

In Chapter 4, we address our second objective by presenting ArchiveSafe LT,

a framework for archival systems providing long-term confidentiality and integrity.

ArchiveSafe LT addresses the challenge by utilizing evolving Robust Combiners instead

of the information-theoretic methods used by the current state-of-the-art systems. A

robust combiner combines multiple cryptographic schemes into one, so the resulting

scheme is robust to the failure of any of the combined ones. In the long term, any

individual computationally secure cryptographic scheme may be broken and deemed

insecure; ArchiveSafe LT relies on the combiners to continually be updated to mitigate

this risk. ArchiveSafe LT evolves the schemes used in the robust combiner in case any

of its schemes are deemed insecure by adding another secure scheme to the combiner.

This evolution capability allows ArchiveSafe LT based systems to stay secure in the

long term.

Using robust combiners eliminates the need for the costly and complex setup

required by these systems, but it comes at the cost of sacrificing information-theoretic

security for computational assumptions. We mitigate this risk by utilizing robust

5

Ph.D. – Moe Sabry McMaster – Computing and Software

combiners and the novel evolution protocol.

We present in this chapter two system designs based of the ArchiveSafe LT frame-

work. One design is geared towards trusted storage providers and the other is geared

towards untrusted ones.

In order to ensure the coverage of all scenarios and usage paths, we use an automatic

prover to prove the security of one of the ArchiveSafe LT designs. The second design

shares the same main structure as the first one and its security proof should follow

the same construction.

We develop an evaluation experiment for one of the designs to measure its perfor-

mance against state-of-the-art systems. The results show significant improvement in

performance and space utilization. ArchiveSafe LT requires only 14% to 33% of the

time needed by the current systems to process the same archives’ sizes and utilizes

less than one-third of the storage space required by these systems.

In Chapter 5, we introduce an improvement to the way ArchiveSafe LT manages

long-term integrity. Instead of utilizing multiple Merkle trees and building a new one

for every system evolution, we introduce the Hybrid Merkle Tree.

The Hybrid Merkle tree is an authenticated data structure based on the Merkle

tree. It supports evolving to a secure hashing function if its hashing function becomes

insecure, making it suitable for integrity schemes used by long-term secure digital

archiving systems. We start by presenting sStruct, a succinct updatable proof data

structure to model authenticated data structures we use in our archiving integrity

schemes. We study the Merkle tree as one instantiation of this structure and prove its

security. Next, we present esStruct, an evolving version of sStruct that is capable of

6

Ph.D. – Moe Sabry McMaster – Computing and Software

utilizing multiple compression functions at the same time. esStruct has the capability

of evolving when the compression function it uses becomes insecure. We study the

Hybrid Merkle tree as one instantiation of esStruct and prove its security.

Finally, we update the ArchiveSafe LT framework to utilize the Hybrid Merkle tree

in its long-term integrity scheme to improve its robustness and effectiveness. We rerun

one of the evaluation experiments we used to measure ArchiveSafe LT performance.

The results show the expected reduction in tree update time due to the use of a single

Hybrid Merkle tree instead of two Merkle trees.

Chapter 6 concludes this thesis by summarizing the results and discussing future

research opportunities.

The work presented in Chapter 3 [40] and Chapter 4 [39] is published. These

publications are made by the author of this thesis as the lead author in collaboration

with his supervisors. The work presented in Chapter 5 has only been published in

this thesis.

7

Chapter 2

Literature Review

In this chapter, we start by introducing the cryptographic concepts and components

used throughout this thesis in Section 2.1. Next, we present a literature review of

methods and systems providing protection against mass data leakage related to our

work in Chapter 3, followed by a literature review of systems providing long-term

security protection related to our work in Chapter 4, and finally, a literature review of

authenticated data structures used in data integrity protection related to our work in

Chapter 5.

2.1 Cryptographic Concepts and Building Blocks

Throughout the thesis, we rely on some cryptographic concepts and use some crypto-

graphic components to build the solutions we propose. In this section, we cover these

concepts and components along with some background on their security and attacks.

8

Ph.D. – Moe Sabry McMaster – Computing and Software

2.1.1 Cryptographic Concepts

For a cryptographic scheme to be usable, it must be secure. Cryptographic security

can have different forms; we introduce some of them here:

Indistinguishability: The definition of indistinguishability is based on an experiment

Expind
S (A), where a passive adversary is given a ciphertext and trying to guess which

of two possible messages corresponds to the ciphertext. The indistinguishability

experiment is defined as follows:

1. The adversary A generates two plaintexts m0 and m1.

2. A key k is generated and a uniform bit b is chosen.

3. The ciphertext of mb is computed and given to the adversary.

4. The adversary wins if they can guess b correctly and the experiment outputs 1.

Perfect Security: A perfectly secure scheme does not leak any information about

the plaintext or the keys to an eavesdropper. In other words, the advantage of any

adversary A in an indistinguishability experiment Expind
S () on a scheme S is the same

as flipping a fair coin:

Advind
S (A) = Pr

[
Expind

S (A)⇒ 1
]
− 1

2

The limitation of this notion according to Shannon’s theorem, is that it requires the

key space to be at least equal to the message space |K|≥ |M|, which is practically

infeasible. Under perfect security, the adversary is assumed to have unbounded

resources.

Computational Security: This is the basis of modern cryptography. While perfect

9

Ph.D. – Moe Sabry McMaster – Computing and Software

security requires that absolutely no information about an encrypted message is leaked,

even to an eavesdropper with unlimited computational power, it is not required in

computational security. A cryptographic scheme is considered computationally secure

if it only leaked a negligible amount of information to an eavesdropper with bounded

computational power. Under the computational security definition, we have two

assumptions:

• The adversary’s resources are polynomially bounded.

• The adversary’s advantage to win is more than half by a negligible value.

The advantage of any adversary A in an indistinguishability experiment Expind
S () on

a computationally-secure scheme S is:

Advind
S (A) = Pr

[
Expind

S (A)⇒ 1
]
− 1

2 = ε

Provable Security: To prove a cryptographic scheme to be secure, we utilize

the Provable Security methodology. Using this methodology, the scheme’s security

requirements must be stated formally through an adversarial model. The assumptions

regarding the adversary powers must be clearly stated. The proof of the scheme’s

security is executed through reducing the problem of the scheme’s security to a certain

computational hard problem. This approach is also called Reductionist Security.

Attacks: Encryption schemes attacks fall into four main categories:

• Ciphertext-Only Attack: Where the adversary is able to obtain a set of cipher-

texts.

10

Ph.D. – Moe Sabry McMaster – Computing and Software

• Known-Plaintext Attack: Where the adversary is able to obtain a set of pairs of

ciphertext and corresponding plaintext.

• Chosen-Plaintext Attack (CPA): Where the adversary can choose a number of

messages and obtain their corresponding ciphertexts.

• Chosen-Ciphertext Attack (CCA): The adversary can choose a number of cipher-

texts and obtain their corresponding plaintexts.

Digital signing schemes attacks fall into three main categories:

• Key-Only Attack: Where the adversary is able to obtain the verification key.

• Known-Message Attack: Where the adversary is able to obtain a list of messages

and their corresponding signature.

• Chosen-Message Attack (CMA): The adversary can choose a number of messages

and obtain their corresponding signatures.

2.1.2 Cryptographic Components

We present here the definitions of the cryptographic components used throughout this

thesis.

Symmetric Encryption: A symmetric encryption scheme uses the same key for

both encryption and decryption of data. The key is considered a shared secret between

the parties involved in securing and sharing the data. The symmetric encryption key

size is usually small and the processes of encrypting and decrypting the data is faster

compared to asymmetric (public key) encryption.

A symmetric encryption scheme Π with secret key length λ, key space K = {0, 1}λ

and message spaceM consists of three algorithms:

11

Ph.D. – Moe Sabry McMaster – Computing and Software

• Π.Gen() $→ k: A (probabilistic) key generation algorithm that generates the key

used for encryption and decryption.

• Π.Enc(k,msg) $→ c: A (probabilistic) encryption algorithm that takes a key

k ∈ K and a message msg ∈M as input and outputs a ciphertext c.

• Π.Dec(k, c) → msg: A deterministic decryption algorithm that takes as input

a key k ∈ K and a ciphertext c and outputs a message msg ∈ M or an error

⊥ 6∈ M.

The desired security property for a symmetric encryption scheme is indistinguisha-

bility under chosen ciphertext attack (IND-CCA). Experiment Figure 2.1 represents

the indistinguishable security for a symmetric encryption scheme Π.

Expind-cca
Π (A):

1. k←$ Π.Gen()
2. (m0,m1, st)←$AΠ.Enc(k,·),Π.Dec(k,·)()
3. b←$ {0, 1}
4. c←$ Π.Enc(k,mb)
5. b′←$AΠ.Enc(k,·),Π.Dec(k,·6=c)(c, st)
6. return (b′ = b)

Figure 2.1: Security experiment for symmetric encryption scheme Π
under IND-CCA

There are two types of symmetric encryption algorithms, stream ciphers and block

ciphers. A stream cipher algorithm uses a pseudorandom stream of bits as the key.

Plaintext digits are encrypted one at a time using one bit of the stream. ChaCha20 is

an example of a stream cipher algorithm. A block cipher algorithm encrypts a block

of plaintext digits at once, each block is encrypted using the full key. DES, 3DES and

AES are examples of block cipher algorithms.

Asymmetric Encryption: An asymmetric encryption scheme uses two keys, a

public key to encrypt the data and a private key to decrypt it. An advantage of

12

Ph.D. – Moe Sabry McMaster – Computing and Software

this scheme is the elimination of the need for a shared secret between the parties.

However asymmetric encryption schemes are generally slower than symmetric schemes

in encrypting and decrypting data. An asymmetric encryption scheme Σ with secret

key length λ, key space K = {0, 1}λ and message spaceM consists of three algorithms:

• Σ.Gen() $→ (kpriv, kpub): A (probabilistic) key generation algorithm that gener-

ates a key pair (kpriv, kpub) used for decryption and encryption respectively.

• Σ.Enc(kpub,msg) $→ c: A (probabilistic) encryption algorithm that takes the

public key kpub ∈ K and a message msg ∈M as input and outputs a ciphertext

c.

• Σ.Dec(kpriv, c) → msg: A deterministic decryption algorithm that takes the

private key kpriv ∈ K and a ciphertext c as input and outputs a message

msg ∈M or an error ⊥ 6∈ M.

The desired security property for an asymmetric encryption scheme is indistinguisha-

bility under chosen ciphertext attack (IND-CCA). Experiment Figure 2.2 represents

the indistinguishable security for an asymmetric encryption scheme Σ.

Expind-cca
Σ (A):

1. (kpriv, kpub)←$ Σ.Gen()
2. (m0,m1, st)←$AΣ.Dec(kpriv ,·)(kpub)
3. b←$ {0, 1}
4. c←$ Σ.Enc(kpub,mb)
5. b′←$AΣ.Dec(kpriv ,·6=c)(c, st)
6. return (b′ = b)

Figure 2.2: Security experiment for asymmetric encryption scheme Σ
under IND-CCA

RSA, Diffie-Hellman and ElGamal are examples of asymmetric encryption algo-

rithms.

13

Ph.D. – Moe Sabry McMaster – Computing and Software

Hash Functions: A hash function H maps an input string of arbitrary length to an

output string of fixed length. A hash function H is represented as: H : 0, 1∗ → 0, 1n,

where n is the fixed hash value length.

A secure hash function must be:

• Collision Resistant: It is hard to find two input m0 and m1 such that H(m0) =

H(m1).

• Preimage Resistant: Given h ∈ {0, 1}n, it is hard to find a value m such that

H(m) = h.

• Second Preimage resistant: Given m0, it is hard to find a value m1 6= m0 such

that H(m0) = H(m1).

The collision resistance of a hash function H is defined by the experiment in

Figure 2.3.

Expcoll
H (A):

1. (m0,m1)←$A()
2. return (m0 6= m1) ∧ (H(m0) = H(m1))

Figure 2.3: Collision resistance experiment for a hash function H

Message Authentication Code (MAC): To verify the authenticity of data message,

a MAC could be used. A compression function is used to map the message to a

compressed data value, the MAC. The MAC, also called the tag sometimes, is used to

verify the message authenticity. A MAC scheme Γ with secret key space K = {0, 1}λ

and message spaceM consists of three algorithms:

• Γ.Gen() $→ k: A (probabilistic) key generation algorithm that generates the key

to be used in signing and verifying the data.

14

Ph.D. – Moe Sabry McMaster – Computing and Software

• Γ.Sign(k,msg) $→ tag: A (probabilistic) compression algorithm that takes as

input a key k and a message msg and outputs a tag.

• Γ.Verify(k,msg, tag)→ {0, 1}: A deterministic verification algorithm that takes

as input the key k, a message msg and a signature tag and outputs 1 if the

verification is successful and 0 otherwise.

The desired security property for a MAC scheme is existential unforgeability

against a chosen message attack (EUF-CMA). Experiment Figure 2.4 represents the

indistinguishable security for a MAC scheme Γ.

Expforge
Γ (A)

1 : I ← ∅
2 : k←$ Γ.Gen()
3 : (msg′, tag′)← AOSign,OVerify

4 : return ((tag′ = Γ.Verify(k, msg′)) ∧ (msg′ /∈ I))
OSign(msg)

1 : tag = Γ.Sign(msg)
2 : I ← I ∪msg
3 : return tag

OVerify(msg, tag)

1 : return (tag = Γ.Verify(msg, tag))

Figure 2.4: Security experiment for existential unforgeability under
chosen message attack for a MAC scheme Γ

Digital Signing: A digital signing scheme is the public-key equivalent to a MAC

scheme. Using a digital signing scheme, the owner party uses a private key to generate

a digital signature of the stored data, a value that is hard to forge. The signature

could be used to verify the authenticity of the stored data by any interested party

using a public key. A digital signing scheme ∆ with secret key space K = {0, 1}λ and

message spaceM consists of three algorithms:

15

Ph.D. – Moe Sabry McMaster – Computing and Software

• ∆.Gen() $→ (ksig, kver): A (probabilistic) key generation algorithm that generates

a pair of keys. ksig for signing the data and kver to verify the data.

• ∆.Sign(ksig,msg) $→ s: A (probabilistic) signing algorithm that takes as input

the signing key ksig and a message msg and outputs a signature s.

• ∆.Verify(kver,msg, s)→ {0, 1}: A deterministic verification algorithm that takes

as input the verification key kver and signature s and outputs 1 if the verification

is successful and 0 otherwise.

The desired security property for a digital signing scheme is existential unforgeability

against a chosen message attack (EUF-CMA). Experiment Figure 2.5 represents the

indistinguishable security for a digital signing scheme ∆.

Expforge
∆ (A):

1. (ksig, kver)←$ ∆.Gen()
2. (m, s)←$A∆.Sign(ksig ,·6=m)(kver)
3. return ∆.Verify(kver,m, s)

Figure 2.5: Security experiment for existential unforgeability under
chosen message attack for digital signing scheme ∆

2.2 Mass Data Leakage

In this section, we present a background and literature review related to our ArchiveSafe

system presented in Chapter 3. We review the related literature on systems providing

mass data leakage protection to databases and filesystem encryption in Section 2.2.1.

We present a literature review of cryptographic puzzles systems in Section 2.2.2 and

the application of cryptographic puzzles to support confidentiality in Section 2.2.3.

16

Ph.D. – Moe Sabry McMaster – Computing and Software

2.2.1 Database and Filesystem Protection

File and database systems have been encrypted traditionally by using one of two

methods: encrypting the entire system using a single master key or using multiple

keys to secure different parts of the system. The first method introduces the risk of

having the entire system unsecured if the single master key is compromised. The

second method introduces the complexity of managing keys and, in some cases, the

cumbersomeness of diminished usability of entering multiple keys by a user in order

to access the secured information.

There are several systems offering full or partial cryptographic services such as

encryption, decryption, signing and verification of files. Blaze [6] introduced the

Cryptographic File System (CFS), which provides a virtual filesystem as a layer between

the user and the operating system; cryptographic services are a basic functionality

of the virtual filesystem. CFS uses a different key for each directory, and the user

is required to enter the key for the directory in every session to access the directory

and its contents. The Transparent Cryptographic File System (TCFS) proposed by

Cattaneo et al. [13] tied directory encryption keys to a single master encryption key

(which could compromise the whole system) and implemented TCFS as a modified

kernel-mode version of Sun’s Network File System (NFS) client. Subsequent proposals

of operating systems providing sorts of cryptographic services include Cryptfs [47] and

Ncryptfs [46].

In recent years, encrypted filesystems have become widespread, and all major

operating systems (OS) provide cryptographic services implementations, often enabled

by default. Examples of OS providing cryptographic services are FileVault on Apple’s

17

Ph.D. – Moe Sabry McMaster – Computing and Software

macOS1 and BitLocker on Microsoft Windows2, in addition to a range of options

on Linux such as Linux Unified Key Setup (LUKS)3. The common practice in these

technologies is to use a single master key from which multiple keys are derived per-file,

per-directory, or per-sector; the master key is usually stored on the device itself and

encrypted under the user’s password. Once the user has logged in, the filesystem

transparently and automatically decrypts files for all applications.

In addition to filesystem encryption, a broad range of database encryption systems

exist. The general approach in database encryption systems is applying traditional

symmetric or asymmetric encryption algorithms to entire databases and tables, rows,

or even individual fields. Assuming key management is successful and usable, this

approach provides strong confidentiality against adversaries who obtain the encrypted

database, but legitimate users lose the ability to perform certain types of queries

without decrypting the entire table.

Over the past decade, there has been much research on encrypted databases that

retain some functionality for legitimate users, for example using order-preserving

encryption so that sorting a column of ciphertexts yields approximately the same

order as if the plaintexts were sorted. This increased functionality comes at the cost

of information leakage.

Some examples of such proposals are CryptDB [37], Arx [36] and PuzzleDB [34].

CryptDB works by executing SQL queries over encrypted data using a collection of

efficient SQL-aware encryption schemes. Arx, is another database encryption system
1https://support.apple.com/en-ca/HT204837
2https://docs.microsoft.com/en-us/windows/security/information-

protection/bitlocker/bitlocker-overview
3https://guardianproject.info/archive/luks/

18

Ph.D. – Moe Sabry McMaster – Computing and Software

which encrypts the data with semantically secure encryption schemes. In PuzzleDB,

the database records are protected by client puzzles.

Although our system, presented in Chapter 3, utilizes the same cryptographic

components as the aforementioned proposals such as symmetric encryption and key

wrapping, it targets a different goal. Our system’s goal is to protect the filesystems

from an adversary who has already obtained full access to the filesystems as opposed

to protecting the systems from an adversary who is trying to get access. Moreover,

our keyless wrapping approach eliminates the need for key management by using a

unique encryption key for each file in the system compared to using a master key for

encryption as presented in [13].

2.2.2 Cryptographic Puzzles Systems

Dwork and Naor [18] introduced client puzzles to control junk email: recipients would

only accept emails if the sender was able to solve a puzzle. It should be “moderately

hard” for the sender to solve the puzzle, but easy for the recipient to check whether

a solution is valid. This was the first example of a cryptographic puzzles system,

which in general grants access to a resource dependent on the requester being able

to demonstrate proof that they have performed some work, typically in the form of

solving a puzzle. Client puzzles were for many years suggested as a means to prevent

denial of service attacks in a range of contexts but have seen renewed interest as

a building block for cryptocurrencies and blockchains. Aura et al. [3] presented a

DOS-resistant authentication with client puzzles was presented. Juels and Brainard

[28] presented a cryptographic countermeasure against connection depletion attacks.

Dean and Stubblefield [15] presented a system where client puzzles were used to

protect Transport Layer Security (TLS).

19

Ph.D. – Moe Sabry McMaster – Computing and Software

There is a range of client puzzles in the literature based on different computational

problems, and having a range of characteristics. One classification of client puzzles

is whether the limiting factor in the ability to solve the puzzle quickly is the CPU

speed or memory access time, typically called CPU-bound versus memory-bound,

respectively. Another classification is whether solving the puzzle is a parallelizable

operation where the work needed could be split between parallel processes; or a

sequential operation where every step of the solution depends on the result of the

previous one, so the processing to solve the puzzle has to be carried out in order.

The simplest CPU-bound puzzles are based on cryptographic hash functions, such

as: finding a preimage of a hash given a hint (for example, a part of the preimage);

or finding an input whose hash starts with a certain number of zero bits. These

types of cryptographic hash functions are easily parallelizable. Additionally, there is

usually a high amount of variance in their solution time, since each guess is essentially

independent and equally likely to be correct.

Non-parallelizable CPU-bound puzzles often rely on theoretic approaches [38, 45].

For example, [38] uses repeated squaring modulo an RSA modulus, for which the best

known technique to compute the solution (without the factorization of the modulus)

is repeated squaring, but can be verified efficiently using a trapdoor (the factorization

of the modulus). Often these types of puzzles have low variance in their solution time,

making them more amenable to scenarios where it is desirable that the solving time

for puzzle instances be predictable.

Memory-bound puzzles [1, 17] use techniques for which the best known solving

algorithm involves a large number of memory accesses; it is argued that memory access

time varies less than CPU speed between small and large computing platforms, and

20

Ph.D. – Moe Sabry McMaster – Computing and Software

that building customized hardware is more expensive for memory-bound puzzles.

In our research, the goal is to enforce a set amount of computing on the requester

regardless of whether or not the computing could be parallelized. The idea is to make

the process of compromising the system highly expensive for mass leakage attempts

by adversaries but still within the acceptable user experience range for an honest

user. Additionally, an adversary targeting mass information leakage, could parallelize

solving puzzles for multiple files instead of parallelize solving a single file’s puzzle,

rendering using a sequential puzzle pointless. For these reasons and our need to

measure and compare the efforts needed to perform other tasks in the system such as

decryption, encryption and puzzle creation, we chose to use CPU bound puzzles to

implement our proof of concept.

2.2.3 Cryptographic Puzzles Systems for Confidentiality

Time-lock encryption was proposed by Rivest, Shamir, and Wagner [38] as a way of

“sending information into the future”, and focused specifically on hiding keys or data

in a cryptographic puzzles system that had a predictable wall-clock time for solving,

thus focusing on puzzles for which the best known solving algorithm is inherently

sequential. In 2018, Vargas et al. [44] described a database encryption system called

“Dragchute” based on time-lock encryption, aiming to provide both confidentiality

and the ability to demonstrate compliance with mandatory retention laws for data.

In their system, records in a database are encrypted using time-lock encryption, so

anyone who wants to access the data – legitimate user or attacker – must solve a

non-parallelizable task for a predictable amount of time. Each ciphertext in their

system is accompanied by an authentication tag which contains a non-interactive

zero-knowledge proof that the ciphertext properly escrows the data (that is, solving

21

Ph.D. – Moe Sabry McMaster – Computing and Software

the task will indeed yield a valid decryption key for the ciphertext); moreover, that

proof can be checked much more efficiently than the full work required to solve and

decrypt the ciphertext. A simpler database encryption scheme relying on hash-based

client puzzles, without any efficient verification of well-formedness, was proposed by

Moghimifar in a Master’s report [34].

In some sense, password hashing functions also use cryptographic puzzles to enhance

confidentiality. Best-practices for storing password data to verify logins involve storing

salted hashes generated using a slow hash function: a hash function is used many times

sequentially to hash the password (and salt) when it is stored, and the verifier must

repeat the same sequence of hashes to check a provided password against the hash

during login. Confidentiality of stored password data is enhanced in the sense that

an attacker who obtains the database of stored hashes can only obtain information

about a password by doing a fresh brute force search against each stored hash, and

each guess requires evaluating the slow hash function. One notable difference between

password hashing and client puzzles is that most client puzzles can be verified without

having to repeat the whole solving process. Quick verification of the hash is why client

puzzles are the best choice for our work. In our proposed system, the user must be

able to verify a solution for the puzzle with negligible effort leaving the main solving

effort to the puzzle guessing.

2.3 Long-Term Security

In this section, we present a background and literature review related to secure long-

term digital archiving systems and our system presented in Chapter 4. The current

state-of-the-art digital archiving systems providing long-term confidentiality utilize

22

Ph.D. – Moe Sabry McMaster – Computing and Software

secret sharing techniques [41] in conjunction with information-theoretic secure key

agreements such as Quantum Key Distribution (QKD), key agreements through noisy

channel models, the Bounded Storage Model and the limited access model [9]. For

integrity, these systems utilize variations of commitment schemes.

In 2017, Braun et al. presented a secure storage system, LINCOS [8], which

provides long-term protection of confidentiality and integrity. LINCOS uses proactive

secret sharing for confidential storage of secret data and information-theoretic hiding

commitments for confidentiality preserving integrity. Within the proactive secret

sharing protocol, LINCOS uses quantum key distribution and one-time pad encryption

for information-theoretic private channels. The system was implemented on the

Tokyo QKD network for experimental evaluation. LINCOS addresses a simplified

all-or-nothing storage scenario, where only the whole archive can be accessed and/or

verified. To overcome this problem, Geihs et al. introduced PROPYLA [23], a privacy-

preserving long-term secure storage, which was designed using the same concepts as

LINCOS but combined information-theoretic secret sharing, renewable timestamps,

and renewable commitments with an information-theoretic oblivious random-access

machine. PROPYLA is able to verify parts of the archive without accessing the whole

archive.

In 2018, Muth et al. presented ELSA: Efficient Long-Term Secure Storage of Large

Datasets [35]. ELSA provides long-term confidentiality and integrity protection of large

datasets by utilizing proactive secret sharing and renewable vector commitments in

combination with renewable timestamps. The new commitment approach is designed

to overcome the slow performance of LINCOS when working on datasets that hold a

large number of relatively small data items.

23

Ph.D. – Moe Sabry McMaster – Computing and Software

In 2020, Buchmann et al. introduced SAFE: Secure and Efficient Long-Term

Distributed Storage System [10], using a different approach for key distribution

and secret sharing. SAFE uses a secret sharing method similar to the previous

systems but utilizes a trusted execution environment (TEE) for secret calculation and

distribution. SAFE requires having a trusted TEE provider in addition to multiple

secure communication channels as in the previous systems.

All systems described above are similar in terms of using proactive secret sharing

for long-term confidentiality which increases the size of the archive significantly and

risks having the data kept in plain text during shares renewal. Key generation is

another challenge for these approaches. On average, the QKD key supply rate drops

significantly for distances more than 100 km [2]. The best rate LINCOS could achieve

was 40 Kb/s. Thus a 158 GB archive with secret sharing would require 2.3 days

for key generation and transmission. These systems also require secure channels for

one-time pads or QKD; both are challenging to be realized practically due to the

complicated logistics of sharing One Time Pads (OTP) or dedicated hardware for

QKD. Other limitations of these systems are the need for an information-theoretically

secure channel between any two nodes involved in the process of share renewal and

that long-term confidential commitment schemes are computationally impractical for

large files.

Among the systems described, only SAFE’s implementation eliminates the com-

plexity of the OTP and QKD channels and the risk of having the data in a plain state

during shares renewal. However, the rest of the challenges still persist in SAFE. Addi-

tionally, SAFE requires the involvement of a third-party TEE provider, which adds to

the complexity of the system setup and increases the risk of trusting an additional

party. Utilizing TEEs could implicitly introduce computational assumptions because

24

Ph.D. – Moe Sabry McMaster – Computing and Software

the use of computationally secure encryption schemes to encrypt the contents of its

memory.

2.4 Authenticated Data Structures & Merkle Trees

In this section, we present a background and literature review related to authenticated

data structures and our structures presented in Chapter 5. Authenticated Data

Structures (ADS) are used in many areas of computer science [11] [22] [30]. They

are used to verify if a data object belongs to an ordered list D without revealing

or exchanging the data object itself. An ADS model consists of two main actors, a

data collector who owns the original data objects in D and a requester who sends

verification requests to the data collector. In many cases, a third party verifier is

involved to handle the verification requests. The verifier owns the ADS and uses it to

answer the verification requests but does not have access to the data objects. An ADS

implementation using skip lists was introduced [24] and a hash tree implementation

called Merkle trees was introduced by RC Merkle [32].

Merkle trees are binary trees where the leaves are the hash values of the data

objects. Each internal node is the hash of its two child nodes. In the tree shown in

Figure 2.6, in order to verify d4, the verification process requires the following nodes

to be provided: h3, h4, h3,4 and the root along with the data item to be verified, d4.

The tree root and the nodes connecting it to the leaf to be verified are used to verify

whether a data object belongs to the ordered list represented by the tree or not. The

verification process follows the path from the leaf to the root by recalculating the

hashes of the internal nodes up to the root, then comparing the result to the stored

tree root. If the two values match, then the data object is verified. Otherwise, the

25

Ph.D. – Moe Sabry McMaster – Computing and Software

verification fails.

root = H(h1,2|h3,4)

h1,2 = H(h1|h2)

h1 = H(d1)

d1

h2 = H(d2)

d2

h3,4 = H(h3|h4)

h3 = H(d3)

d3

h4 = H(d4)

d4

Figure 2.6: Merkle tree example

26

Chapter 3

ArchiveSafe:

Mass-Leakage-Resistant Storage

from Client Puzzles

In this chapter we present ArchiveSafe, a mass leakage resistant archiving system with

the goal of enhancing defense-in-depth for encryption. We aim to preserve confiden-

tiality even in the presence of an adversary with full access to the system, including

ciphertexts and decryption keys. While no system can provide full cryptographic

security in the face of such a well-informed adversary, our goal is to increase the

economic cost of mass leakage, which for our purposes is defined as an adversary

obtaining the plaintexts of a large number of files or database records, not just one.

Unlike most applications of cryptography, we do not aim to achieve a difference in

work factor between honest parties and adversaries. Rather, we assume that honest

parties and adversaries have different goals, and we aim to change the economics of

data breaches by achieving a difference in the cost of honest parties and adversaries

27

Ph.D. – Moe Sabry McMaster – Computing and Software

achieving their goals. In our scenario, honest parties need to store a large number

of files, but only access a small number of them. Consider for example a tax agency:

after processing millions of citizens’ tax returns each year, those files must be stored

for several years in case an audit or further analysis is required, but only a small

fraction of those records will end up actually being pulled for analysis. In contrast, an

adversary breaching the tax agency’s records may want to read a large number of files

to identify good candidates for identity theft or other criminal actions.

We highlight that ArchiveSafe is meant to add defense-in-depth to confidentiality;

one would typically not rely on ArchiveSafe alone, but combine it with traditional

encrypted file system or database encryption. ArchiveSafe main component is a

difficulty-based keyless encryption scheme DBKE which is similar to a symmetric

encryption scheme, except that no secret key is kept for use between the encryption

and decryption algorithm.

In this combination, traditional encryption using strong algorithms and keys

provides a high level of security if the keys are not compromised, but we still have

the difficulty-based keyless encryption of ArchiveSafe as a bulwark if the keys are

compromised. To succeed under this setup, the adversary must compromise the

traditional encryption keys in addition to solving a large number of DBKE puzzles

corresponding to the files in the archive.

In this research, we build a prototype implementation showing the use of ArchiveSafe

on a local computer. Our prototype is implemented as a filesystem-in-userspace (FUSE)

driver on Linux. A FUSE driver can be used to intercept I/O operations in certain

directories (mount points) before reading/writing to disk. This allows us to implement

ArchiveSafe in a manner that is transparent to the application, as well as transparent

28

Ph.D. – Moe Sabry McMaster – Computing and Software

to the underlying storage mechanism, which could be a local disk (with normal disk

encryption enabled or not), or a network share mounted locally. We validate the

performance of our prototype implementation, focusing primarily on ensuring that write

operations incur minimal overhead. Since system administrators can set policies with

puzzle difficulties requiring seconds or minutes of computational effort to solve, slow

read performance is intended, and there is little sense in performance measurements

on reads, beyond checking that they scale as intended with no unexpected overhead.

We envision that, when used on a local computer, ArchiveSafe would be applied only

to a subset of the directories on the computer. One might use ArchiveSafe to protect

documents created by the user more than a certain number of days ago, but would

not use it on system libraries and executables.

We start by presenting an overview of ArchiveSafe in the next section followed by the

system’s requirements in Section 3.2. Next, we introduce our Difficulty-Based Keyless

Encryption scheme used in ArchiveSafe in Section 3.3, the experimental evaluation of

the system in Section 3.4 and finally a summary of the work in Section 3.6.

3.1 ArchiveSafe Overview

We design ArchiveSafe, where access to a resource is only possible after the requester—

whether an honest user or an adversary—has expended sufficient computational effort,

in the form of solving a “moderately hard” cryptographic puzzle [18]. Since we will not

rely on the access control system nor any keys to be uncompromised, the decryption

operation itself must be tied to the cryptographic puzzle. In our approach, while a

proper cryptographic key is used to encrypt a file, the encryption key is not stored, even

for legitimate users. Instead, the key is wrapped in a client puzzle based encryption

29

Ph.D. – Moe Sabry McMaster – Computing and Software

scheme with a desired difficulty level, and all users—adversarial or honest—must solve

the puzzle to recover the key and then decrypt the file.

Our main technical tool for building of ArchiveSafe is a new cryptographic primitive

that we call difficulty-based keyless encryption (DBKE), which is an encryption scheme

that does not make use of a stored key. We give a generic construction for DBKE

from a standard symmetric encryption scheme and a new tool called difficulty-based

keyless key wrap, which wraps the symmetric encryption key in an encapsulation that

can only be unwrapped by performing a sufficiently high number of operations, as

in a client puzzle based scheme. Difficulty-based keyless key wrap can be achieved

from many types of cryptographic puzzles, and we show one example based on hash

function partial pre-image finding [28, 27]. One interesting feature of using this form

of hash-based puzzle, which to our knowledge is a novel observation on hash-based

puzzles, is that the puzzle and ciphertext can be degraded—that is, turned into a

harder one—essentially for free. We use the reductionist security methodology to

formalize the syntax and security properties of difficulty-based keyless encryption and

keyless key wrap and show that our hash-based construction achieves these properties.

Figure 3.1 gives a high-level overview of how an application interacts with the

ArchiveSafe system. The two main operations performed by the ArchiveSafe system

are (i) creating a puzzle and encrypting during writes, and (ii) solving the puzzle

and decrypting during reads. ArchiveSafe could be used in a variety of data storage

architectures: on a local computer; on a file server; or in a cloud architecture. In a file

server or cloud scenario, an IT system may be set up so the file server enforces that

all files are protected by ArchiveSafe during writes by centralizing puzzle creation

and encryption, but leaves puzzle solving and decryption to clients. Since puzzle

creation and encryption in our system is cheap, this avoids bottlenecks on the file

30

Ph.D. – Moe Sabry McMaster – Computing and Software

Application ArchiveSafe Underlying Storage

write msg

generate puzzle, key
c← Enc(k,msg)

write puz, c

read
read
puz, c

k← Solve(puz)
msg← Dec(k, c)

msg

Figure 3.1: High-level overview of ArchiveSafe, showing a write
followed by a read

server. Individual client applications occasionally reading a small number of files have

to do a moderate, but not prohibitive, amount of work to solve the puzzle to obtain

the key to decrypt.

3.2 Requirements

In this section, we discuss the functionality and security requirements for a mass

leakage resistant archiving system, which informs our construction and evaluation in

subsequent sections.

3.2.1 Design Criteria

Confidentiality in the face of compromised keys. The system should achieve some level

of confidentiality even if all stored keys are compromised. This means we assume

that an adversary can learn a symmetric key or a private key corresponding to a

public key stored for later use in decrypting a ciphertext, even if the key is stored in a

31

Ph.D. – Moe Sabry McMaster – Computing and Software

separate key management service, trusted computing or secure enclave environment,

or separate tamper-resistant device.

Cooperation with traditional encryption. It should be possible to use the system in

conjunction with the traditional encryption mechanisms applied to storage systems

(folder/disk encryption, database encryption, etc.), so that strong confidentiality is

achieved if keys are not compromised, but some confidentiality is retained in the face

of compromised keys.

Reliance on industry standard cryptographic algorithms. Deployed IT systems should

rely only on well-vetted, standardized cryptographic algorithms. But all such algo-

rithms for achieving confidentiality—public key or symmetric—require a secret key,

seemingly conflicting with the first design criteria of confidentiality in the face of

compromised keys. Our construction builds a mechanism for confidentiality without

keys while still relying on standard cryptographic algorithms like AES for symmetric

encryption: while a proper cryptographic key is used to encrypt data, that key is not

kept, even by authorized users. Instead, the key is wrapped in a client puzzle based

encryption scheme with a desired difficulty level, and users must solve the puzzle

to recover the key and then decrypt the data. We introduce difficulty-based keyless

encryption in Section 3.3 which formalizes this idea and generically construct it from

standard cryptographic algorithms such as AES and Argon2.

Imposing a significant cost to access a large number of files while maintaining acceptable

cost to access one file. Since we do not have a key that gives honest users an advantage

over the adversary, we should look at things from the viewpoint of typical honest

behaviour—periodically accessing a small number of files—versus adversary behaviour—

accessing a large number of files in a data breach. Proof-of-work and related techniques

32

Ph.D. – Moe Sabry McMaster – Computing and Software

have long been used to achieve security goals from that viewpoint, whether in password

hardening or client puzzles for denial of service resistance.

Customizing file access cost. It should be possible for a system administrator or user

to control the cost incurred by the adversary or honest user for accessing a file. This

may be set as a system-wide policy or a file-by-file basis, depending on the desired

access control paradigm. This is achieved in our system by varying the difficulty level

of the puzzle wrapping the decryption key.

A related design criteria is the ability to customize file access cost over time.

Demand for access to records may change over time; for example, records older than 5

years may be accessed much less frequently than more recent records. Our system

allows the file access cost to be increased with minimal effort, through a process we

call puzzle degradation, that could be performed as part of regular system maintenance.

This is a novel feature available from some types of puzzle constructions but not others,

and in particular not from the number-theoretic repeated squaring non-parallelizable

constructions used in time-lock puzzles [38] and the Dragchute database encryption

system [44].

3.2.2 Choice of Puzzle

One of the major design decisions for our system is which type of puzzles to use:

sequential versus parallelizable, and CPU-bound versus memory-bound.

As our design criteria focus on mass leakage adversaries trying to decrypt many

files, and since we think of cost in a general economic sense, we do not have to restrict

to client puzzles that are sequential/non-parallelizable. Concerned with an adversary

trying to decrypt many files who has parallel computing resources available to them, it

33

Ph.D. – Moe Sabry McMaster – Computing and Software

does not matter whether they choose to deploy their parallel resources to sequentially

decrypt each file quickly or in parallel decrypt many files more slowly. Overall, they

will decrypt the same number of files with the same resources. Additionally, using a

sequential puzzles does not prevent the adversary from decrypting large number of

files in parallel, which void the point of using sequential puzzles. We also need not

worry about the variability of puzzle solving time for individual instances, only the

expected puzzle solving time for many instances. These design choices are, for example,

significantly different from those of the Dragchute system for database confidentiality

and integrity from proof-of-work. Moreover, parallelization permits honest users to

reduce the latency in occasional access of files by taking advantage of short, on-demand

use of cloud servers (see Table 3.5).

Whereas sequential versus parallelizable puzzles is a qualitative choice for our

scenario, CPU-bound versus memory-bound is a quantitative choice with respect

to the economic cost. To achieve a given dollar-cost-for-adversary, it is possible to

pick appropriate parameters for both CPU-bound and memory-bound puzzles under

appropriate cost and puzzle-solving assumptions. So, a priori, either can be used in

our constructions. For our prototype we choose simple hash-based CPU-bound puzzles

because puzzle creation is cheaper (thereby achieving extremely low overhead on write

operations) and because they allow us to obtain novel useful functionality such as

puzzle degradation (Section 3.3.4), but with the hash function being Argon2 which is

designed to be resistant to GPU and ASIC optimization. Picking appropriate difficulty

levels for puzzles is something an adopter must do as a function of the tolerable cost

for honest users to access data, the perceived risk of a data breach, and the anticipated

value of the information to an adversary. We do not aim to study such economic

calculations exhaustively, but we provide one worked example in Section 3.4.4 and

34

Ph.D. – Moe Sabry McMaster – Computing and Software

Table 3.5.

3.2.3 Threat Model

ArchiveSafe is a software system with one target asset, the data files. The security

goal for the target asset is confidentiality. As shown in Figure 3.1, information flows

from the user application through the ArchiveSafe driver to the underlying storage

during writes, and in the reverse direction during reads.

An adversary could access the system either via the same mechanism as an honest

user application (that is, mediated by the ArchiveSafe driver), or may have direct

access to the underlying storage. We aim to achieve confidentiality against a strong

adversary that can bypass the ArchiveSafe driver during read operations (e.g., because

they are untrusted server administrators, or because they have compromised the kernel

using privilege escalation), or who can directly read from the underlying storage (e.g.,

an untrusted cloud storage provider, or physical theft of a hard drive). We do not

consider in our threat model an adversary who undermines the write operation to

intercept data during a write operation or who prevents the ArchiveSafe technique

from being applied when saving files. We assume operations by honest parties are

performed on a trusted and uncompromised system that faithfully deletes keys from

memory once an operation is completed.

3.2.4 Limitations

ArchiveSafe does not manage interrelationships between files. Related files such

as spousal tax or medical records, payroll records for employees with similar roles

are treated independently by the system. The responsibility of setting their puzzle

difficulty levels based on their relationship is left to the system administrator.

35

Ph.D. – Moe Sabry McMaster – Computing and Software

Protecting archive and files metadata and files access patterns is outside of the

scope of this work.

3.3 Difficulty-Based Keyless Encryption

A difficulty-based keyless encryption scheme is similar to a symmetric encryption

scheme, except that no secret key is kept for use between the encryption and decryption

algorithm.

Definition 1 (Difficulty-Based Keyless Encryption). A difficulty-based keyless en-

cryption (DBKE) scheme ∆ for a message spaceM with maximum difficulty D ∈ N

consists of two algorithms:

• ∆.Enc(d,msg) $→ c: A (probabilistic) encryption algorithm that takes as input

difficulty level d ≤ D and message msg and outputs ciphertext c.

• ∆.Dec(c) → msg′: A deterministic decryption algorithm that takes as input

ciphertext c and outputs message msg′ or an error ⊥ 6∈ M.

A DBKE scheme ∆ is correct if, for all messages m ∈M and all difficulty levels

d ≤ D, we have that Pr [∆.Dec(∆.Enc(d,msg)) = msg] = 1, where the probability is

taken over the randomness of ∆.Enc.

The desired security property for a DBKE is semantic security in the form of

ciphertext indistinguishability. Since there is no persistent secret key, there is no need

to consider security notions incorporating chosen plaintext or chosen ciphertext attacks:

each plaintext is protected by independent randomness. The security experiment

Expdb-ind
∆,d (A) for an adversary A trying to break indistinguishability of DBKE scheme

∆ at difficulty level d is shown in Figure 3.2. The difficulty level d ranges between 0

36

Ph.D. – Moe Sabry McMaster – Computing and Software

Expdb-ind
∆,d (A):

1. (m0,m1, st)←$A(1d)
2. b←$ {0, 1}
3. c←$ ∆.Enc(d,mb)
4. b′←$A(c, st)
5. return (b′ = b)

Expkey-ind
Σ,d (A):

1. (k0, w)←$ Σ.Wrap()
2. k1←$K
3. b←$ {0, 1}
4. b′←$A(w, k0, k1)
5. return (b′ = b)

Figure 3.2: Security experiments for (left) indistinguishability of
difficulty-based keyless encryption scheme ∆ at difficulty level d; and
(right) indistinguishability of difficulty-based keyless key wrap scheme
Σ with keyspace K and difficulty level d

where A does not have to solve a puzzle and the maximum difficulty D ∈ N where A

has to guess the whole key.

We define the advantage of such an adversary in the security experiment as

Advdb-ind
∆,d (A) =

∣∣∣∣2 · Pr
[
Expdb-ind

∆,d (A)⇒ true
]
− 1

∣∣∣∣.
Useful forms of Advdb-ind

∆,d (A) will relate the amount of work done by the adversary,

the difficulty level, and the adversary’s success probability.

3.3.1 Generic Construction of DBKE

Symmetric
Encryption

Π.Enc

Keyless
Key Wrap
Σ.Wrap

k

msg

d

DBKE encryption

File
System

c

w

Symmetric
Decryption

Π.Dec

Keyless
Key

Unwrap
Σ.Unwrap

c

w

k

msg

DBKE decryption

Figure 3.3: Architectural diagram for generic construction of a
difficulty-based keyless encryption scheme Γ = Γ[Π, Σ] from a difficulty-
based keyless key wrap scheme Σ and a symmetric encryption scheme
Π

37

Ph.D. – Moe Sabry McMaster – Computing and Software

Our main construction of DBKE, as shown in Figure 3.3, generically combines a

traditional symmetric encryption scheme with a keyless key wrap which is a difficulty-

based form of key wrapping: there is no master key wrapping the session key, instead

the session key is recovered via some difficulty-based operation. In this section we

present the generic building blocks we use to construct DBKE. In Section 3.3.2 we

show how to instantiate the keyless key wrap.

Definition 2 (Keyless key wrap scheme). A keyless key wrap scheme Σ for a key

space K = {0, 1}λ with maximum difficulty level D ∈ N consists of two algorithms:

• Σ.Wrap(d) $→ (k, w): A (probabilistic) key wrapping algorithm that takes as

input difficulty level d ≤ D and outputs key k ∈ K and wrapped key w.

• Σ.Unwrap(w) → k: A deterministic key unwrapping algorithm that takes as

input wrapped key w and outputs key k ∈ K or an error ⊥ 6∈ K.

Correctness, again, is defined in the natural way: applying Unwrap to a wrapped

key w output by Wrap should yield, with certainty, the same key k as originally output

by Wrap.

The desirable security property for a keyless key wrap scheme will be indistin-

guishability of keys: given the wrapped key, can the adversary learn anything about

the key within it? The key indistinguishability security experiment Expkey-ind
Σ,d for an

adversary A trying to break key indistinguishability of a keyless key wrap scheme at

difficulty level d is shown in Figure 3.2. We define the advantage of such an adversary

in the security experiment as

Advkey-ind
Σ,d (A) =

∣∣∣∣2 · Pr
[
Expkey-ind

Σ,d (A)⇒ true
]
− 1

∣∣∣∣.

38

Ph.D. – Moe Sabry McMaster – Computing and Software

Γ.Enc(d,msg):
1. (k, w)←$ Σ.Wrap(d)
2. c←$ Π.Enc(k,msg)
3. return (c, w)

Γ.Dec((c, w)):
1. k′ ← Σ.Unwrap(w)
2. msg′ ← Π.Dec(k′, c′)
3. return msg′

Figure 3.4: Generic construction of a difficulty-based keyless encryp-
tion scheme Γ = Γ[Π, Σ] from a difficulty-based keyless key wrap scheme
Σ and a symmetric encryption scheme Π

As with DBKE security, useful forms of Advkey-ind
Σ,d (A) will relate the amount of work

done by the adversary, the difficulty level, and the adversary’s success probability.

As noted above, we generically construct a difficulty-based keyless encryption

scheme by combining a traditional symmetric encryption scheme with a keyless key

wrap scheme, as outlined in Figure 3.3. Let Π be a symmetric encryption scheme with

key space K = {0, 1}λ, and let Σ be a keyless key wrap scheme for key space K with

maximum difficulty level D. Construct the difficulty-based keyless encryption scheme

Γ[Π,Σ] from Π and Σ as outlined in Figure 3.3 and specified in Figure 3.4.

The security proof for DBKE proceeds as a sequence of games. For Game Gi, let Si

denote the event that game Gi outputs true. Let K be the key space of the symmetric

encryption scheme Π, which is also the key space of the keyless key wrap scheme Σ.

First we show in Claim 1 that Game 0 and Game 1 are indistinguishable under the

assumption that the key wrapping scheme is secure. Then we argue in Claim 2 that

breaking Game 1 corresponds to breaking the indistinguishability of the symmetric

key encryption scheme.

39

Ph.D. – Moe Sabry McMaster – Computing and Software

Game 0. Denoted G0, Game 0 as shown in the left side of Figure 3.5 is the db-ind

experiment from Figure 3.2 with construction Γ = Γ[Π,Σ] inline. Thus,

Pr
[
Expdb-ind

Γ,d (A)⇒ true
]

= Pr[S0] . (3.1)

Game 1. In this game, the challenger generates two symmetric encryption keys k

and k′; it uses k in the key wrapping scheme, but k′ in the symmetric encryption

scheme. This is shown in Game G1 in the right side of Figure 3.5.

Game G0:
1. (m0,m1, st)←$A(1d)
2. b←$ {0, 1}
3. (k, w)←$ Σ.Wrap(d)
4. c←$ Π.Enc(k,mb)
5. b′←$A((c, w), st)
6. return (b′ = b)

Game G1:
1. (m0,m1, st)←$A(1d)
2. b←$ {0, 1}
3. (k, w)←$ Σ.Wrap(d)
4. k′←$K
5. c←$ Π.Enc(k′,mb)
6. b′←$A((c, w), st)
7. return (b′ = b)

Figure 3.5: Sequence of games for proof of Theorem 1. Changes
between games are highlighted

Claim 1. Let B1 be the algorithm shown in Figure 3.6, which is an adversary against

the key indistinguishability of keyless key wrap scheme Σ. Then

|Pr[S0]− Pr[S1]| ≤ Advkey-ind
Σ,d (BA1) . (3.2)

Proof:

B1’s input is a challenge (w, k0, k1) from a challenger for the key indistinguishability

of difficulty-based keyless key wrap scheme Σ. This means that w is the wrapping

of either k0 or k1, chosen by a random hidden bit b in Expkey-ind
Σ,d . When the hidden

bit b = 0, and hence when w is the wrapping of k0, then, in the ciphertext (c, w)

that B1 gives to A, the key used in the key wrapping is the same as the key used in

40

Ph.D. – Moe Sabry McMaster – Computing and Software

the symmetric encryption scheme, so B1 exactly simulates Game 0 to A. When the

hidden bit b = 1, and hence when w is the wrapping of k1, then, in the ciphertext

(c, w) that B1 gives to A, the key used in the key wrapping is different from the key

used in the symmetric encryption scheme, so B1 exactly simulates Game 1 to A. Thus,

if A outputs b̂′ with different probabilities in Game 0 compared to Game 1, then BA1

outputs b̂′ with different probabilities when the hidden bit b is 0 or 1. This shows that

eq. (3.2) holds.

Claim 2. Let B2 be the algorithm shown in Figure 3.6, which is an adversary against

the one-time indistinguishability of symmetric encryption scheme Π. Then

Pr[S1] ≤ Pr
[
Expind

Π (BA2)⇒ true
]
. (3.3)

Proof:

BA2 is an adversary in the security experiment Expind
Π (BA2) for the one-time indistin-

guishability of symmetric encryption scheme Π. When we inline the code of BA2 in

Expind
Π (BA2), we see that it performs the same tasks as Game 1, except some lines

are reordered, and some variables are named differently. In particular, A is run with

a ciphertext c that is the encryption of either m0 or m1 under the key k from the

symmetric encryption experiment, but this key is different from the key k̂ that is in

the wrapped key w that A is provided with. Thus, eq. (3.3) holds.

BA1 (w, k0, k1):
1. (m0,m1, st)←$A(1d)
2. b̂←$ {0, 1}
3. c←$ Π.Enc(k0,mb̂)
4. b̂′←$A((c, w), st)
5. if (b̂′ = b̂) return 0
6. else return 1

BA2 ():
1. (m0,m1, st)←$A(1d)
2. return (m0,m1, st)

BA2 (c, st):
1. (k̂, w)←$ Σ.Wrap(d)
2. b̂′←$A((c, w), st)
3. return b̂′

Figure 3.6: Reductions for the proof of Theorem 1

41

Ph.D. – Moe Sabry McMaster – Computing and Software

Theorem 1 proves that our DBKE scheme Γ is secure in the sense of difficulty-based

indistinguishability as shown in Figure 3.2, under the assumption that the building

blocks are secure. The proof follows from a straightforward game-hopping argument.

Theorem 1. If Σ is a key-indistinguishable difficulty-based keyless key wrap scheme,

and Π is a one-time indistinguishable symmetric encryption scheme, then Γ[Π,Σ] is

a secure difficulty-based keyless encryption scheme. More precisely, let d ≤ D and

let A be a probabilistic algorithm. Then there exists algorithms B1 and B2, such that

Advdb-ind
Γ,d (A) ≤ 2 ·Advkey-ind

Σ,d (BA1) + Advind
Π (BA2). Moreover, BA1 and BA2 have about

the same runtime as A.

Proof of Theorem 1:

By substitution from equations (3.1), (3.2), and (3.3), we get

Advdb-ind
Γ,d (A) =

∣∣∣∣2 · Pr
[
Expdb-ind

Γ,d (A)⇒ true
]
− 1

∣∣∣∣
= |2 · Pr[S0]− 1| (by (3.1))

= |2 · (Pr[S0]− Pr[S1] + Pr[S1])− 1|

≤ 2 |Pr[S0]− Pr[S1]|+ |2 · Pr[S1]− 1|

≤ 2Advkey-ind
Σ,d (BA1) + |2 · Pr[S1]− 1| (by (3.2))

≤ 2Advkey-ind
Σ,d (BA1) +

∣∣∣∣2 · Pr[Expind
Π (BA2)⇒ true]− 1

∣∣∣∣ (by (3.3))

= 2 · Advkey-ind
Σ,d (BA1) + Advind

Π (BA2)

which is the desired result.

The BA1 and BA2 algorithms consists of the A’s algorithm plus a minimal cost of

either encryption or wrapping. Thus, BA1 and BA2 runtimes is the runtime of A.

42

Ph.D. – Moe Sabry McMaster – Computing and Software

3.3.2 Hash-Based Construction of Difficulty-Based Keyless

Key Wrap

We now show how to construct our difficulty-based keyless key wrap using a hash-based

puzzle. The idea is simple: a random seed r is chosen, and the key and a checksum of

the seed are derived from the seed using hash functions. The wrapped key consists

of the checksum of the seed and the seed with some of its bits removed; the number

of bits removed corresponds to the difficulty of the puzzle. This is similar to the

sub-puzzle construction of Juels and Brainard [28] or partial inversion proof of work

by Jakobsson and Juels [27]. Such a puzzle is solved by trying all possibilities for the

missing bits, in any order and with or without using parallelization.

In particular, let λ ∈ N, and let H1, H2 : {0, 1}λ → {0, 1}λ be independent

hash functions. Define keyless key wrap scheme P = P [H1, H2] as in Figure 3.7.

The notation r[λ − d : λ] on line 2 of P.Wrap denotes taking the substring of r

corresponding to indices λ− d up to λ, removing the first d bits of r.

P.Wrap(d):
1. r←$ {0, 1}λ
2. r ← r[λ− d : λ]
3. h← H1(r)
4. k← H2(r)
5. w ← (h, r)
6. return (k, w)

P.Unwrap(w = (h, r)):
1. d← λ− |r|
2. for i ∈ {0, 1}d:
3. r′ ← i‖r
4. h′ ← H1(r′)
5. if h′ = h:
6. k← H2(r′)
7. return k
8. return ⊥

Figure 3.7: Keyless key wrapping scheme construction from hash
functions H1, H2

43

Ph.D. – Moe Sabry McMaster – Computing and Software

3.3.3 Security of Hash-Based Keyless Key Wrap Scheme P

The following theorem shows the key indistinguishability security of our hash-based

keyless key wrap scheme P in the random oracle model. The proof consists of a query

counting argument in the random oracle model.

Theorem 2. Let H1 and H2 be random oracles. Let λ ∈ N and let d ≤ λ. Let P =

P [H1, H2] be the keyless key wrap scheme from Figure 3.7 (left). Let A be an adversary

in key indistinguishability experiment against P which makes q1 and q2 distinct queries

to its H1 and H2 random oracles, respectively. Then Advkey-ind
P,d (A) ≤ q1

2d−1 + 2
2d−q1

.

Proof of Theorem 2:

Let k0, k1, and w be as in Expkey-ind
P,d in Figure 3.2 for keyless key wrap scheme P , so

that r is the seed behind k0 and w.

Let W be the event that Expkey-ind
P,d (A) outputs true. Let Ei be the event that A

queries r to random oracle Hi, for i = 1, 2. Our task is to bound Pr[W], which we do

using the following application of the law of total probability:

Pr[W] = Pr[W |¬E2] · Pr[¬E2]

+ Pr[W |E2 ∧ E1] · Pr[E2 ∧ E1] + Pr[W |E2 ∧ ¬E1] · Pr[E2 ∧ ¬E1]

If E2 does not occur, then, since k0 = H2(r), A has no information about k0 and

thus has no advantage in distinguishing k0 from k1, so Pr[W |¬E2] = 1
2 .

Next, we observe that Pr[E2∧E1] ≤ Pr[E1]. The only way A can learn information

about r (and hence k) is by querying values to H1, and since H1 is a random oracle,

44

Ph.D. – Moe Sabry McMaster – Computing and Software

the adversary can rule out at most one guess for the missing d bits of r with each

query to H1. Thus Pr[E1] ≤ q1
2d .

Now we observe that Pr[E2 ∧¬E1] = Pr[E2|¬E1] Pr[¬E1] ≤ Pr[E2|¬E1]. Since the

q1 queries to H1 could have ruled out q1 candidate values for the missing bits of r, we

have that Pr[E2|¬E1] ≤ q2
2d−q1

. Additionally, we note that, when E2 ∧ ¬E1 occurs, A

has no information to help it determine which of its q2 queries to H2 caused E2 to

occur, so Pr[W |E2 ∧ ¬E1] = 1
q2
.

Substituting the above observations into the expression for Pr[W], and bounding

all other probabilities by 1, we get

Pr[W] ≤
(1

2 · 1
)

+
(

1 · q1

2d
)

+
(

1
q2
· q2

2d − q1

)
= 1

2 + q1

2d + 1
2d − q1

;

substituting into the advantage expression yields the desired result.

Puzzle granularity. The partial pre-image puzzle construction used in Figure 3.7

does not allow for fine-grained control of difficulty: removing each additional bit

increases the expected computational cost by a factor of 2. Higher granularity can be

achieved similar to how the puzzle difficulty in Bitcoin is set, by giving a hint that

narrows the range of data from 2d to some smaller subset.

3.3.4 Puzzle Degradation

We now introduce an additional feature of difficulty-based keyless encryption that

emerges naturally from our hash-based keyless key wrap construction: puzzle degrada-

tion. Abstractly, puzzle degradation is a process that takes a DBKE ciphertext and

45

Ph.D. – Moe Sabry McMaster – Computing and Software

increases the difficulty of decrypting it, preferably without needing to decrypt and

then re-encrypt at a higher difficulty level.

In the context of the ArchiveSafe long-term archiving system, this may be used to

gradually increase the difficulty of accessing the files that have not been accessed for

a certain period of time. For example, a monthly maintenance process could apply

degradation to stored files to gradually increase the cost (to both an attacker and an

honest party) of accessing increasingly older files.

The DBKE system ∆ from Definition 1 is augmented with the algorithm:

• ∆.Degrade(c, d′) $→ c′: A (possibly probabilistic) algorithm that takes as input

ciphertext c and target difficulty level d′ ≤ D, and outputs updated ciphertext

c′.

Correctness is extended to demand that a ciphertext output by ∆.Enc then degraded

any number of times is still correctly decrypted by ∆.Dec (although decryption may

take longer).

Security with the degraded algorithm included should mean, intuitively, that a

ciphertext degraded any number of times can be decrypted only using the required

amount of work at the new difficulty level.

We capture both correctness and security of degradation formally by demand-

ing that, for all d ≤ d′ ≤ D and all msg ∈ M, we have that ∆.Enc(d′,msg) ≡

∆.Degrade(d′,∆.Enc(d,msg)); in other words: the distribution of ciphertexts pro-

duced by encrypting at difficulty d′ is identical to the distribution of ciphertexts

produced by encrypting at difficulty d and then degrading to difficulty d′.

46

Ph.D. – Moe Sabry McMaster – Computing and Software

Γ[Π, P].Degrade(ĉ, d′):
1. parse ĉ as (c, w = (h, r))
2. d← λ− |r|
3. abort if d′ < d
4. r′ ← r[d′ − d : |r|]
5. w′ ← (h, r′)
6. return (c, w′)

Figure 3.8: Degradation algorithm for DBKE Γ = Γ[Π, P]

We can achieve degradation in DBKE Γ = Γ[Π, P] constructed from our hash-based

keyless key wrap P in a trivial way: by removing (d′ − d) more bits from the puzzle

hint r. This clearly requires no decryption and re-encryption, only a constant-time

edit to the metadata stored containing the wrapped key. The procedure Γ.Degrade is

stated in Figure 3.8. Degraded ciphertexts are identically distributed to ciphertexts

freshly generated at the target difficulty level, as removing additional bits of the

partial seed r is associative. An adversary who possess a copy of the metadata from

an earlier version of the archive prior to degradation can solve puzzles and decrypt at

the earlier, non-degraded difficulty level.

3.3.5 Additional Considerations

Outsourcing Puzzle Solving. The generic DBKE construction Γ of Figure 3.4 allows

the key unwrapping and ciphertext decryption to be done separately, so the expensive

key unwrapping could be outsourced to a cloud server. In the example of the hash-

based keyless key wrap scheme P of Figure 3.7, the user could give the wrapped key

w = (h, r) to the cloud server who unwraps and returns the key k, which the user

then locally uses to decrypt the ciphertext c.

This does mean that the cloud server learns the encryption key k. However, this can

be avoided with the following adaption to the construction P of Figure 3.7. During

47

Ph.D. – Moe Sabry McMaster – Computing and Software

wrapping, the algorithm generates an additional salt value s←$ {0, 1}λ and computes

k← H2(r‖s); s is stored in the wrapped key w. When outsourcing the unwrapping

to the cloud server, the user only sends h and r, but not s. The cloud server is still

able to use the checksum h with the partial seed r to recover the full seed r, but

lacks the salt s and thus the cloud server alone cannot compute the decryption key k.

Theorem 2 still applies to this adaptation.

Combining Keyless and Keyed Encryption. As previously mentioned, our keyless

encryption approach can (and should) be used in conjunction with traditional keyed

encryption mechanisms using a different set of keys. Traditional keyed encryption gives

honest parties a (conjecturally exponential) work factor advantage over adversaries if

keys remain uncompromised, while keyless encryption slows adversaries if the tradi-

tional encryption keys are compromised. The two schemes can be layered in one of two

ways: first applying keyless encryption DBKE and encrypting the result using keyed

symmetric encryption Sym, that is, c← Sym.Enc(k,DBKE.Enc(d,m)) or in the order,

with keyless encryption on the outer layer, that is, c← DBKE.Enc(d, Sym.Enc(k,m))).

Either approach yields robust confidentiality, but we recommend the latter method as

it facilitates the puzzle degradation process described in Section 3.3.4.

Hash Function Long-Term Security. Due to the continuous advancement in compu-

tation power and cryptanalysis techniques, the hash functions used in ArchiveSafe

could become insecure in the future rendering the system vulnerable to security attacks.

One way of mitigating this risk is to implement an evolution process where the system

adopts a new secure hash function to replace the one deemed insecure. The evolution

process could be implemented in different ways, either by replacing all the puzzles

affected by the insecure hash function at once, or gradually replacing the puzzles

48

Ph.D. – Moe Sabry McMaster – Computing and Software

starting with the files containing more sensitive information. The process could also

implemented by adopting the new secure hash function for any new file creation or

update operations and gradually replace the rest of the files over a preset period of

time.

3.4 Evaluation

We evaluate ArchiveSafe by measuring its performance against other systems through

real life experiment. The goals of the experiment are to: (1) measure the overhead

ArchiveSafe introduces on adversaries and honest users, and (2) verify that puzzle

solving difficulty scales according to the theoretical system design.

3.4.1 Prototype Implementation

To run the evaluation experiment, we implemented a prototype of ArchiveSafe. In terms

of instantiating the difficulty-based keyless encryption using the generic construction

from Section 3.3.1, our proof-of-concept uses AES-128 in CBC mode for the symmetric

encryption scheme. The hash functions H1 and H2 in the hash-based keyless key wrap

scheme are both instantiated with Argon2id [5] with a prefix byte acting as a domain

separator between H1 and H2, with the following parameters: parallelism level: 8;

memory: 102,400KiB; iterations: 2; output length: 128 bits. We did not parallelize

puzzle solving in Unwrap to avoid locking other system operations, but it is easily

parallelized.

The ArchiveSafe prototype is implemented as a Linux Filesystem in Userspace

(FUSE) using a Python toolkit1 to simplify implementation. Our Python FUSE driver
1https://github.com/skorokithakis/python-fuse-sample

49

https://github.com/skorokithakis/python-fuse-sample

Ph.D. – Moe Sabry McMaster – Computing and Software

relies on the OpenSSL library for encryption and decryption, and Ubuntu’s argon2

package. In a real deployment in the context of a filesystem, ArchiveSafe would be

implemented as a kernel module, likely written in C, for improved performance and

reliability.

Our prototype has a tuneable difficulty level, which we label in this section as D1,

D2, D3, etc. Difficulty Dx corresponds to hash-based keyless key wrap scheme P of

Figure 3.7 with difficulty parameter d = 4x; in other words, D1 removes 4 bits of the

seed, D2 removes 8 bits of the seed, etc. We chose a 4-bit step between difficulty levels

to focus on how system behaviour scales across difficulty levels; finer gradations could

be chosen by users.

3.4.2 Experimental Setup

The experiment measures ArchiveSafe’s performance at three difficulty levels (D1, D2,

D3) compared to an unencrypted file system (denoted UN) and Linux’s built-in folder

encryption using eCryptfs2 (denoted FE) and disk encryption (denoted DE) on read

and write tasks at different file sizes. When running the ArchiveSafe experiments, the

ArchiveSafe FUSE driver was writing its files to an unencrypted file system.

Measurements. For each storage system being evaluated, we measure read and

write times for files of sizes 1KB, 100KB, 1MB, 10MB, and 100MB. Performance is

measured at the application level, from the time the file is opened until the time the

read/write operation is completed. For folder and disk encryption, this includes the

filesystem’s encryption operations. For ArchiveSafe, we instrumented the driver to
2https://www.ecryptfs.org/

50

Ph.D. – Moe Sabry McMaster – Computing and Software

record the total time as well as the times for different sub-tasks (encryption, puzzle

solving, decryption, file system I/O).

Test environment. Measurements were performed on a single-user Linux machine

with no other processes running. The computer was a MacBook Pro running Ubuntu

Linux 18.04 LTS with an 4-core Intel Core i7-4770HQ processor with base frequency

2.2GHz, bursting to 3.4GHz. The computer had 16GiB of RAM. The hard drive

was a 256GiB solid state drive with 512-byte logical sectors and 4096-byte physical

sectors. The disk encryption was done using Linux Unified Key Setup system version

2.0, and folder encryption was done using the Enterprise Cryptographic Filesystem

(eCryptfs) version 5.3.

Execution. For each storage system and file size, we performed many repetitions

of the following tasks. A file was created with randomly generated alphanumeric

characters using a non-cryptographic random number generator, the time for this step

is discarded. Read and write operations were measured as indicated above. For file

sizes of 1KB, 100KB, 1MB, and 10MB, we collected data for 1000 writes and reads;

for 100MB files, we ran 200 writes and reads, due to extensive time of operations at

this size.

3.4.3 Results

Table 3.1 and Table 3.2 show average read and write times respectively for the

file systems under consideration at different file sizes. Since read operations in the

ArchiveSafe system become increasingly expensive with difficulty, we show in Table 3.3

the average time of sub-tasks of ArchiveSafe read operations at different file sizes and

difficulties: the puzzle solving time (which should scale with puzzle difficulty), the

51

Ph.D. – Moe Sabry McMaster – Computing and Software

File system File Size
1KB 100KB 1MB 10MB 100MB

Unencrypted (UN) 0.526 0.550 1.70 10.1 110
Disk Encryption (DE) 0.737 0.924 3.15 10.5 160
Folder Encryption (FE) 0.737 0.961 3.42 10.9 190
ArchiveSafe D1 630 630 630 650 860
ArchiveSafe D2 7070 7080 7310 7180 7290
ArchiveSafe D3 112140 111760 107390 114530 107630

Table 3.1: Average read time comparison in milliseconds

File system File Size
1KB 100KB 1MB 10MB 100MB

Unencrypted (UN) 0.07 0.25 0.83 6.76 97.82
Disk Encryption (DE) 0.08 0.25 0.85 6.63 97.97
Folder Encryption (FE) 0.12 0.50 3.31 29.07 319.88
ArchiveSafe D1 114.05 141.67 146.09 221.73 848.30
ArchiveSafe D2 114.25 141.43 145.08 223.50 847.02
ArchiveSafe D3 114.01 140.98 145.74 222.40 846.06

Table 3.2: Average write time comparison in milliseconds

system file read time plus decryption time (which should scale with file size), and the

overhead from other file system driver operations (which includes puzzle read and

system file open times). As the partial pre-image puzzle used in ArchiveSafe leads to

highly variable solving times, Table 3.4 shows the average time and standard deviation

for puzzle solving at difficulties D1, D2, and D3.

3.4.4 Discussion

The results show consistent behavior across different file sizes. The larger files consumed

more time in decrypting and reading. We also observed that the time consumed is

52

Ph.D. – Moe Sabry McMaster – Computing and Software

Diff. 1KB 100KB 1MB 10MB 100MB
D1 Puzzle Solve 510 510 510 510 500

Decryption 5.42 5.71 7.25 20 150
Other 0.387 0.373 0.378 0.384 0.363

D2 Puzzle Solve 6960 6980 7210 7050 6930
Decryption 5.58 6.12 7.89 20 140
Other 0.357 0.373 0.376 0.374 0.335

D3 Puzzle Solve 112040 111730 107280 114410 107270
Decryption 5.56 5.94 7.96 20 140
Other 1.075 1.216 0.971 1.195 1.045

Table 3.3: ArchiveSafe read sub-tasks average time
Read sub-tasks average time in milliseconds

D1 D2 D3

103

104

105

T
im

e
in

m
s

Table 3.4: ArchiveSafe Puzzle solving time
Puzzle solving time in milliseconds (average, standard deviation)

roughly the same for smaller file sizes (1KB and 100KB) where operation cost is

dominated by overhead.

As expected, the read speeds decrease with the difficulty level because the system

must solve the puzzle before reading the file and the puzzle solving effort scales with

the difficulty level. As per Table 3.3, puzzle solve times on average scale by a factor

of 13.6–14.1× between D1 and D2 and a factor of 14.9–16.2× between D2 and D3,

roughly in line with the theoretical scaling factor of 16×.

Evaluating the overhead added by ArchiveSafe for write operations, we see in

Table 3.1 that ArchiveSafe incurs a baseline overhead related to setting up the puzzle

53

Ph.D. – Moe Sabry McMaster – Computing and Software

(which involves 2 Argon2 calls), then scales with the file size due to the cost of

AES encryption and writing. Note that ArchiveSafe uses a different encryption

library (user-space calls to OpenSSL) compared with disk and file encryption (kernel

encryption via dm-crypt), so symmetric encryption/decryption performance is not

directly comparable, but we see similar scaling.

The short summary of performance is that ArchiveSafe adds a 140–520ms overhead

when writing a file, and a customizable overhead when reading a file, ranging from

510ms at difficulty D1, 7 seconds at D2, or 110 seconds at D3. But recall that adding

computational overhead at read time is exactly the purpose of ArchiveSafe! What an

acceptable difficulty level—and hence acceptable computational overhead at read time

for honest users—is a policy choice by the system administrator. As noted earlier,

choosing the difficulty level depends on the tolerable cost for honest users to access

data, the perceived risk of a data breach, and the anticipated value of the information

to an adversary, and is a calculation that must be left to the adopter. Note that

honest users need not solely rely on sequential operations on their own computer:

as described in Section 3.3.5 an ArchiveSafe installation could be configured so that

honest users offload their puzzle solving tasks to private or commercial clouds which

are spun up on demand with large amounts of parallelization to reduce the wall clock

time before they can access a file.

Table 3.5 shows examples of costs at higher difficulty levels. To provide further

interpretation to these costs, we look not only at the computation time required for

an honest user on our test platform to decrypt a file, but also at the real-world cost

for an adversary, based on the cost of renting computation time on Amazon Web

Services (AWS) Elastic Cloud Compute (EC2) platform. EC2 has many machine types

available; Argon2 is designed to not be substantially accelerated by more sophisticated

54

Ph.D. – Moe Sabry McMaster – Computing and Software

D3 D4 D5 D6
Honest user decrypting 1 file
Local machine, threaded 4 cores, 2.2GHz 0.5min. 7.3min. 2 hrs. 31 hrs.
Cloud server c5.metal, spot pricing �$0.01 <$0.01 $0.05 $0.73
Adversary decrypting 1 million files
Cloud server c5.metal 8 days 130 days 5.7 yrs. 91.4 yrs.
Cloud server c5.metal, spot pricing $178 $2,852 $45,648 $730,364

Table 3.5: Dollar cost and computation time required to unlock
ArchiveSafe files

architectures, GPUs, or ASICs. As such we choose for our pricing example an EC2

instance that minimizes cost per core-GHz-hour; the c5.metal EC2 instance type

has 96 Intel Xeon cores running at 3.6GHz at a cost of USD$0.9122 per hour using

Amazon’s cheapest spot pricing model.3

We can see, for example, that at difficulty D5, an honest user can unlock an archived

file with about 2 hours of work on a local machine, or about 3 minutes of c5.metal

rental costing 4.5 cents at spot pricing (20 cents on-demand pricing). However, an

adversary trying to decrypt 1 million such files from a data breach would need 5.7

years of c5.metal rental at a spot pricing cost of USD$45,648.

3.5 Use Cases

ArchiveSafe could be used alone or in conjunction with a standard secure archiving

system. In this use case, the files will be secured by ArchiveSafe first before being

encrypted and stored by the secure archiving system. Retrieving the files is done

by first decrypting them by the archiving system then have their puzzles solved by

ArchiveSafe before passing them to the requesting application.
3https://aws.amazon.com/ec2/instance-types/,https://aws.amazon.com/ec2/spot/

pricing/; prices as of April 23, 2020.

55

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/spot/pricing/

Ph.D. – Moe Sabry McMaster – Computing and Software

Another use case for ArchiveSafe is to have it as a part of an operating system’s

kernel. In this use case, non-data files such as executables and system files must

be excluded from ArchiveSafe protection by setting their difficulty level to 0. Files

containing sensitive information must be secured with a more difficult puzzles than

other files. The system will have to maintain a mapping table linking each file to its

puzzle difficulty level.

3.6 Summary

ArchiveSafe, using difficulty-based keyless encryption, can add defense-in-depth to

confidentiality of archived data and change the economics of mass leakage attacks via

data breaches. We expect that most uses of ArchiveSafe would be in addition to, not

as a replacement for, traditional keyed encryption; full cryptographic security would

be achieved if encryption keys are properly managed and kept safe, but ArchiveSafe

provides a residual level of protection if traditional encryption keys are also breached.

This means the key management service is no longer a single point of failure.

One target application is IT systems which retain large amounts of archival data,

most of which will be rarely or perhaps never again accessed by legitimate users.

Although honest users have no advantage in difficulty-based decryption compared

to an adversary on a file-by-file basis, if their operational goals are different—an

honest user decrypting 1 file occasionally, versus an adversary decrypting thousands

or millions of files quickly—their costs are different.

Our approach can be applied in a variety of system architectures: local storage and

execution (as demonstrated by our prototype), local storage with private or public

cloud assistance for puzzle solving, or remote (file server / cloud) storage with local or

56

Ph.D. – Moe Sabry McMaster – Computing and Software

assisted puzzle solving. Our approach can also apply to different storage paradigms,

including file systems, cloud “blob” storage, and databases.

Puzzle difficulty can be set as a system-wide policy or with higher granularity

based individual records’ sensitivity. A novel features of our construction is the ability

to degrade puzzle difficulty effectively for free, which could be built into periodic

maintenance or through a heuristic system based on suspicious activity.

In the next chapter, we will study in-depth the challenges facing the adoption of

current state-of-the-art long-term secure archiving systems and propose a solution if

possible.

57

Chapter 4

ArchiveSafe LT: Secure Long-term

Archiving System

In this chapter, we introduce ArchiveSafe LT, a framework for secure long-term digital

archiving systems that provide long-term confidentiality and integrity protection. It

uses a different approach utilizing robust combiners [42] [26] for confidentiality and

multiple secure integrity schemes based on authenticated data structures to ensure

the integrity of the archive in case a scheme is compromised.

ArchiveSafe LT provides long-term confidentiality and integrity that is practically

feasible to implement due to its low setup cost and superior performance compared

to the other systems based on the secret-sharing approaches such as LINCOS [8],

PROPYLA [23], ELSA [35] and SAFE [10]. We eliminate the need for private channels

and significantly decrease the required storage space by using robust combiners rather

than information-theoretic secret sharing. ArchiveSafe LT adopts a cryptographic agile

approach. The approach is built on the idea of utilizing a pool of secure symmetric

and asymmetric encryption schemes and hashing functions to do multi-layer data

58

Ph.D. – Moe Sabry McMaster – Computing and Software

encryption and integrity verification. If a cryptographic component is deemed insecure,

the system initiates an evolution process that wraps the secured data and related

integrity information in an additional secure layer of encryption or integrity protection.

ArchiveSafe LT decreases the time required for key generation from days in the case of

the QKD key generation to seconds by utilizing standard symmetric and asymmetric

key generation methods.

As a digital archiving framework, ArchiveSafe LT considers two main actors, a data

collector and a storage provider, in addition to the adversaries. Similar to current

archiving systems, we assume the storage provider is cloud-based. However, trust in

the storage provider is not presumed. The archive will stay secure even if the storage

provider exhibits adversarial behavior.

We present two designs based on the ArchiveSafe LT framework covering two

types of storage providers, trusted and untrusted non-malicious. In the first design

ASLT-D1, we assume the storage provider either cannot be trusted with performing

the evolution process or is incapable of performing data processing. This design

utilizes symmetric encryption schemes and the data collector performs all processing

needed for all archiving operations. The second design ASLT-D2 assumes the storage

provider can be trusted to perform the evolution process and is capable of performing

data processing. The storage provider is trusted to have at most one key and for

a short period of time, it happens during the evolution process. At this time, and

aside from the scheme that the provider has its key, the archive is still protected by at

least one more secure scheme, so the provider cannot access the archive’s plaintext.

ASLT-D2 utilizes hybrid encryption schemes where the data collector securely sends

the information needed for the evolution process to the storage provider who performs

the process.

59

Ph.D. – Moe Sabry McMaster – Computing and Software

We develop protocols for the archiving processes carried out by ArchiveSafe LT.

We analyze the security of ArchiveSafe LT using an automatic prover to verify its

confidentiality and integrity. We design an experiment to analyze and evaluate the

performance of one of two designs, ASLT-D1. The second design ASLT-D2 is more

performant by design since most of the processing is offloaded to the storage provider.

We start by presenting a background on robust combiners in the next section then

we present the ArchiveSafe LT framework in Section 4.2, and the two designs ASLT-D1

and ASLT-D2 are presented in Section 4.3. We present the system evaluation in

Section 4.4 and finally the summary and future work in Section 4.5.

4.1 Robust Combiners

A robust combiner combines multiple cryptographic schemes into one so the resulting

scheme is robust to the failure of any of the combined ones. Rather than using

information-theoretically secure schemes as used in LINCOS, ELSA, PROPYLA and

SAFE, one can utilize robust combiners to reduce the risk of relying on any single

computational assumption.

A (k, n) robust combiner for a cryptographic primitives is a construction where

combining n primitives is secure if at least k primitives are secure. Robust combiners

are secure against IND-CCA[16].

Definition 3 (Robust Combiner(k,n)). A (k, n) robust combiner for a cryptographic

primitive P is a probabilistic polynomial time machine that gets n candidate schemes

as input and implements P such that:

• The combiner is secure if at least k of the candidates securely implement P .

60

Ph.D. – Moe Sabry McMaster – Computing and Software

• The combiner running time is polynomial in a security parameter n.

Robust combiners are not new; Shannon introduced the idea of encrypting a message

multiple times using different keys to increase confidentiality protection [42]. Herzberg

studied robust combiners [26] and how they can form a tolerant cryptographic scheme

that remains secure even if some subsets of its cryptographic components assumptions

underlying its security become invalid. Robust combiners for symmetric schemes were

studied by Even and Goldreich [20] to answer the question of whether cascading any

cipher systems yields a stronger cipher system or not. They proved cascading ciphers

yield stronger cipher systems in certain cases where compromising a scheme does not

lead to compromising the rest which is the case with robust combiners.

4.2 ArchiveSafe LT Framework

ArchiveSafe LT is a framework for archiving applications providing long-term confi-

dentiality and integrity using robust combiners and Merkle trees respectively. The

framework considers two main actors, the data collector and the storage provider. The

data collector is able to do local processing but has limited local storage space. The

storage provider provides storage space in addition to optional processing capability

that could be utilized by the data collector to offload some of the data processing

needed for the encryption, decryption or hashing. We study ArchiveSafe LT in the

presence of adversaries who are capable of controlling the network, controlling the

storage provider’s environment or both. The adversaries’ powers are detailed in

Section 4.2.3.

61

Ph.D. – Moe Sabry McMaster – Computing and Software

4.2.1 Protocols

The ArchiveSafe LT framework divides archiving systems functionality into six main

protocols, Initialize, Update, Retrieve, Delete, Evolve Confidentiality, and Evolve

Integrity. In this section, we present what these protocols are meant to accomplish.

Initialize is a protocol initiated by the data collector to create a new archive. The

data collector starts by identifying the data to be archived and then initializing

the archive on its own system. The data collector sends a request containing the

archive’s metadata (such as, size and encoding) to the storage provider to initiate the

archive on its side as well. The storage provider sends an acceptance response if the

accommodation is confirmed. Otherwise, the request fails.

Update is a protocol initiated by the data collector when the contents of an archive

file on the data collector’s system have changed from the ones securely stored on the

storage provider’s system. The protocol starts with the data collector sending a request

containing the contents of the changed file and its metadata to the storage provider

to update the file’s contents and its local state with the new associated integrity

information. The storage provider sends an acceptance response if the accommodation

is confirmed. Otherwise, the request fails. If the request succeeds, the data collector

updates the local state of its archive with the new integrity information associated

with the changed file.

Retrieve is a protocol initiated by the data collector when they need to retrieve the

contents of an archive file. The protocol starts with the data collector sending a request

to the storage provider containing the identifier for the needed file. If the storage

provider can accommodate the request, it sends the file contents to the data collector

62

Ph.D. – Moe Sabry McMaster – Computing and Software

along with its associated integrity information. Otherwise, the request fails. The

data collector verifies the integrity of the received file using the integrity information

received from the storage provider and the corresponding integrity information stored

in its local state before accepting the file.

Delete is a protocol initiated by the data collector when they need to delete a file

from the archive. It starts with the data collector identifying the file to be deleted.

The data collector’s system sends a request containing the file identifier to the storage

provider. The storage provider sends an acceptance response if the accommodation

is confirmed. Otherwise, the request fails. If the storage provider can accommodate

the request, it deletes the file and updates the archive’s integrity information. The

storage provider sends the new integrity information to the data collector to update

its integrity information as well.

Evolve Integrity is a protocol initiated by the data collector when they flag an

integrity scheme or a key, as insecure. The protocol starts with the data collector

identifying and flagging the insecure component. The data collector’s system selects a

replacement for the flagged component from a local pool. The replacement component

is then used to secure the integrity information of the archive. The integrity information

and local states on both the data collector and storage provider sides are updated

accordingly.

Evolve Confidentiality is a protocol initiated by the data collector when they

flag a confidentiality component such as an encryption scheme or a key, as insecure.

The protocol starts with the data collector identifying the insecure component. The

data collector’s system selects a replacement for the flagged component from a local

pool. The replacement component is then used to secure the archive. The integrity

63

Ph.D. – Moe Sabry McMaster – Computing and Software

information is updated to reflect the new secured data, and local states on both the

data collector and storage provider sides are updated accordingly.

4.2.2 ArchiveSafe LT Specifications

ArchiveSafe LT-based systems consist of a set of cryptographic suites E , an integrity

object I and a pair of local states for each archive: a local state on the data collector’s

system and another on the storage provider’s system.

Notation: The notation 〈x ; y〉 ← P (〈u ; v〉) denotes the execution of two-party

protocol P , where the first party has input u and receives output x, and the second

party has input v and receives output y. Additionally, we use the parameters with a

subscript o or p to indicate whether the source or destination of the parameter is the

data collector or the storage provider, respectively.

An ArchiveSafe LT-based system consists of the following components:

• E = {§1, ... , §n}: A set of cryptographic suites, where at any point in time at

least two of them are deemed secure.

• LS = (lso, lsp): A pair of local states containing confidentiality and integrity

details of the archive, where lso represents the data collector’s version and lsp

the storage provider’s version, respectively.

• I = (Iv, Id): Integrity information corresponding to the secured data is stored in

Id, typically stored on the storage provider’s side and used by the data consumer

to request integrity verification of the data. Iv contains the integrity verification

values for the secured data, it is usually stored on the data collector’s side and

used to verify the data using Id. I is part of the local state LS.

64

Ph.D. – Moe Sabry McMaster – Computing and Software

Generally, a cryptographic suite § supports four operations, KeyGen, LockConf,

LockInt and Unlock. Both LockConf, LockInt and Unlock utilize symmetric en-

cryption and MAC schemes (Section 2.1.2) together. The operations are defined as

follows:

• (kC , kI)← §.KeyGen(): generates a key pair that is used by the cryptographic suite

in locking and unlocking data.

• (SecuredData)← §.LockConf(kC ,Π, Data): secures the confidentiality of a data

object using a key kC and a symmetric encryption scheme Π. It outputs the secured

data.

• (I ′)← §.LockInt(kI ,∆, Data, I): secures the integrity of a data object using a key

kI and a MAC scheme ∆. It outputs the updated integrity data object I ′.

• Data ← §.Unlock(kC ,Π, SecuredData): retrieves a secured data object to its

original state using the key kC and scheme Π. The operation returns an error if it

fails for any reason.

The ArchiveSafe LT framework utilizes the operations described above in its APIs,

which we present next. We start by presenting the parameters used by the APIs:

• fc: The contents of the file to be updated or retrieved.

• fn: The name of the file to be updated or retrieved.

• arch: The stored archive in its secured state.

• lso: The data collector’s local state of the archive.

• lsp: The storage provider’s local state of the archive.

• algsold: A set of cryptographic schemes used to secure the archive’s confidentiality

and integrity that has been deemed insecure.

65

Ph.D. – Moe Sabry McMaster – Computing and Software

• algsnew: A set of cryptographic schemes used to secure the archive’s confi-

dentiality and integrity that is deemed secure and to be used in the evolution

process.

• algscur: A set of cryptographic schemes currently deemed secure and are used

by the ArchiveSafe LT implementation.

• algsdep: A set of cryptographic schemes currently deemed insecure and are not

used by the ArchiveSafe LT implementation.

We now present the APIs:

• 〈lso ; lsp, arch〉 ← Initialize(): This API is called to perform the initialization

tasks on all parties. It takes no input parameters. The output consists of the

created stored archive arch, the storage provider’s local state lsp, and the data

collector’s local state lso.

• 〈ls′o ; ls′p, arch′〉 ← Update(〈lso, fn, fc ; lsp, arch〉): This API is called to perform the

update task on an archive. It takes the local state lso and the file name fn to be

updated along with the new content fc from the data collector, the local state lsp

from the storage provider, and the archive arch. The API’s output is the updated

archive arch′, the updated storage provider’s local state ls′p, and the updated data

collector’s local state ls′o.

• 〈fc ; 〉 ← Retrieve(〈lso, fn ; lsp, arch〉): This API is called to perform the tasks to

retrieve a file in the archive to its original plain data state. It takes from the data

collector the file’s name to be retrieved fn, the currently stored archive arch from

the storage provider and the local states from both sides lso, lsp. It outputs the

retrieved file contents fc to the data collector.

• 〈ls′o ; ls′p, arch′〉 ← Delete(〈lso, fn ; lsp, arch〉): This API is called to perform the

66

Ph.D. – Moe Sabry McMaster – Computing and Software

tasks required to delete a file from the archive. It takes the file name to be deleted

fn and the local state lso as input from the data collector and the storage provider’s

local state lsp. The outputs are the updated local state to the data collector ls′o,

the local state ls′p and the updated archive arch’ to the storage provider.

• 〈ls′o ; ls′p〉 ← EvolveInt(〈lso, algsold, algsnew ; lsp, arch〉): This API is called to

perform all the tasks required to evolve the archive’s integrity to eliminate the risk

of the compromised cryptographic suite. The API takes as input from the data

collector: the compromised cryptographic suite algsold and its secure replacement

algsnew, and the local state lso. The API takes as input from the storage provider:

the stored archive arch and local state lsp. The output consists of the updated local

state ls′o to the data collector and updated local state ls′p to the storage provider.

• 〈ls′o ; ls′p, arch′〉 ← EvolveConf(〈lso, algsold, algsnew ; lsp, arch〉): This API is called

to perform all the tasks required to evolve the archive’s confidentiality to eliminate

the risk of the compromised cryptographic suite. The API takes as input from

the data collector: the compromised cryptographic suite algsold and its secure

replacement algsnew, and the local state lso. The API takes as input from the

storage provider: the stored archive arch and local state lsp. The output consists

of the updated local state ls′o to the data collector, the evolved stored archive arch′

and updated local states ls′p to the storage provider.

4.2.3 Threat Model

To build our threat model, we start by defining the powers available to the adversaries,

followed by the construction of the adversaries in terms of these powers. An adversary

may have one or more of these powers. The powers are:

P1 - Compromise a Scheme or Keys: This power enables an adversary: 1) to obtain

67

Ph.D. – Moe Sabry McMaster – Computing and Software

a set of keys that are used to secure the archive, 2) to be able to deterministically

decrypt any ciphertext produced by a scheme actively used by the archiving system,

and 3) to alter the contents of an archive while still passing integrity verification of

an integrity scheme actively used by the archiving system. The collection of all the

compromised keys and schemes granted by this power cannot comprise the entirety of

the two most recent Lock() processes.

P2 - Control Communication Channel: This power enables an adversary to control the

communication channel between the data collector and the storage provider, listening

and writing messages to the channel for both entities.

P3 - Control Storage Provider: This power enables an adversary to control the storage

provider’s environment, including being able to read, write and alter files on the

storage.

Our threat model considers the adversary to be active, computationally bound and

has P1, P2, and P3. The goal of the adversary is either to obtain the contents of the

whole content of the archive or parts of it in clear text form or to alter the contents

of the archive without the data collector detecting it through integrity checks. The

model is chosen to address two common real-life attack scenarios on archiving systems

and their adversarial goals: obtaining an archive’s data or altering it.

4.2.4 Limitations

ArchiveSafe LT does not cover the case of an adversary aiming to obtain the plaintext,

who is active and have access to unevolved archives for a long enough time until they

can compromise all the encryption schemes.

68

Ph.D. – Moe Sabry McMaster – Computing and Software

Protecting the archive and files metadata and files access patterns is outside of the

scope of this work.

4.2.5 Security

In this section, we define the security experiments for confidentiality and integrity to

formalize our threat models described in Section 4.2.3.

Confidentiality: The security experiment for confidentiality shown in Figure 4.1,

is based on the adversary’s ability to distinguish between two update operations

applied to the same archive. We define the advantage of such adversary in the security

experiment using an ArchiveSafe LT-based system scheme S as

Advind
S (A) = Pr

[
Expind

S (A)⇒ 1
]
− 1

2

The term Advind
S (A) represents the indistinguishability ind advantage of the adversary

A given the scheme S. This advantage is defined by the probability of the experiment

to output 1 -indicating the success of the adversary- more than 50% of the times.

The confidentiality experiment takes n cryptographic schemes §1, . . . , §n as input. The

archive is initialized and updated with a file fn∗ provided by the adversary and then

secured by n cryptographic suites. The adversary generates two different updates m0

and m1 to the fn∗ contents. The experiment randomly picks one of the updates to

be executed and updates the archive state st. The adversary succeeds if they can

correctly guess which update was executed.

69

Ph.D. – Moe Sabry McMaster – Computing and Software

Expind
n,§1,...,§n(A)

1 : 〈lso ; lsp, arch〉 ← Initialize()
2 : (m, st)← AOAll()
3 : 〈lso ; lsp, arch〉 ← Update(〈lso, fn∗, m ; lsp, arch〉)
4 : for i = 1, . . . , n

5 : 〈lso ; lsp, arch〉 ← EvolveConf(〈lso, algsold, algsnew ; lsp, arch〉)
6 : algsdep ← ∅

7 : corr← ∅
8 : (fn∗, m0, m1, st)← AOAll()
9 : b←$ {0, 1}

10 : 〈lso ; lsp, arch〉 ← Update(〈lso, fn∗, mb ; lsp, arch〉)
11 : algs∗ ← algscur
12 : b′ ← AOAll(st, arch)
13 : if (|m0|6= |m1|) ∨ (algs∗ ⊆ corr) then
14 : r←$ {0, 1}; return r

15 : else return 1 if b′ = b else 0

Figure 4.1: Confidentiality experiment for indistinguishability of
ArchiveSafe LT
*OAll represents access to all oracles

For the security experiments, we provide the adversary with the following oracles

shown in Figure 4.2:

• OUpdate(fn, fc): The oracle allows the adversary to request to update a file fn

in the archive with new content fc.

• ORetrieve(fn): The oracle allows the adversary to request the retrieval of file fn

from the archive in its original insecure state.

• ODelete(fn): Allows the adversary to delete a file fn from the archive.

• OEvolveInt(algsold): Allows the adversary to initiate an evolution on the archive

for a compromised integrity component. The oracle takes as input, the set of

cryptographic schemes used to secure the archive’s confidentiality and integrity

70

Ph.D. – Moe Sabry McMaster – Computing and Software

that has been deemed insecure algsold.

• OEvolveConf(algsold): Allows the adversary to initiate an evolution on the

archive for a compromised confidentiality component. The oracle takes as input,

the set of cryptographic schemes used to secure the archive’s confidentiality and

integrity that has been deemed insecure algsold.

• OCorruptKey(i): Allows the adversary to obtain the encryption key used by

scheme i.

• OGetArchive(): Allows the adversary to obtain a copy of the stored secured

archive.

OUpdate(fn, fc)

if fn = fn∗ then fn∗ ← ⊥
〈lso ; lsp, arch〉 ←

Update(〈lso, fn, fc ; lsp, arch〉)
Files← (fn, fc)
return ⊥

ORetrieve(fn)

〈fc ; 〉 ← Retrieve(〈lso, fn ; lsp, arch〉)
if fn = fn∗ then return ⊥
else return fc

ODelete(fn)

〈lso ; lsp, arch〉 ←
Delete(〈lso, fn ; lsp, arch〉)

return ⊥

OCorruptKey(i)

corr← corr ∪ {i}
return (k(i)

o , k(i)
p)

OEvolveConf(algsold)

〈lso ; lsp, arch〉 ←
EvolveConf(〈lso, algsold, algsnew ; lsp, arch〉)

algsdep ← algsdep ∪ algsold
algscur ← (algscur ∪ algsnew) \ algsdep
return ⊥

OEvolveInt(algsold)

algs← algsdep, algsold, algscur, algsnew
〈lso ; lsp, arch〉 ←

EvolveInt(〈lso, algsold, algsnew ; lsp, arch〉)
algsdep ← algsdep ∪ algsold
algscur ← (algscur ∪ algsnew) \ algsdep
return ⊥

OGetArchive()

return arch

Figure 4.2: ArchiveSafe LT oracles available to the Adversary

71

Ph.D. – Moe Sabry McMaster – Computing and Software

In this experiment, OAll = (OUpdate, ORetrieve, ODelete, OEvolveInt, OEvolveConf,

OCorruptKey, OGetArchive). In some of the oracles, we use the notation fn∗ to represent

the name of the file used to challenge the adversary.

Based on our threat model defined in Section 4.2.3, the adversary’s goal is to obtain

the contents of the archive in clear text format. The experiment is designed to check

the adversary’s ability to achieve their goal. The experiment is not designed to check

the ability of the adversary to obtain the archive’s metadata or access patterns.

Integrity: The security experiment for integrity shown in Figure 4.3, is based on the

adversary’s ability to change the contents of one or more files in the archive while

keeping the stored local state valid. We define the advantage of such an adversary in

the security experiment using an ArchiveSafe LT scheme S as:

Advforge
S (A) = Pr

[
Expforge

S (A)⇒ 1
]

The term Advforge
S (A) represents the forging advantage of the adversary A. The

advantage is defined as the probability of the experiment to output a 1, indicating the

success of the adversary.

The experiment takes n cryptographic schemes §1, . . . , §n as input. The archive is

initialized and updated with a file fn∗ provided by the adversary and then secured

by n cryptographic suites. The adversary obtains the stored archive and forges it by

changing the contents of file fn∗ using the provided oracles. The adversary succeeds if

they can successfully change the contents of fn∗ while still matching the stored local

states to complete the retrieve process.

72

Ph.D. – Moe Sabry McMaster – Computing and Software

Expforge
n,§1,...,§n(A)

1 : 〈lso ; lsp, arch〉 ← Initialize()
2 : (fc∗, st)← AOAll()
3 : 〈lso ; lsp, arch〉 ← Update(〈lso, fn∗, fc∗ ; lsp, arch〉)
4 : for i = 1, . . . , n

5 : 〈lso ; lsp〉 ← EvolveInt(〈lso, algsold, algsnew ; lsp, arch〉)
6 : endfor
7 : algsdep ← ∅

8 : corr← ∅

9 : arch′ ← AOAll′(st, arch)
10 : algs∗ ← algscur
11 : fc∗′ ← Retrieve(〈lso, fn∗ ; lsp, arch′〉)
12 : if algs∗ ⊆ corr then
13 : return 0
14 : else return 1 if fc∗′ 6= fc∗else 0

Figure 4.3: ArchiveSafe LT Integrity Experiment

4.3 System Designs

In this section, we present two system designs based on the ArchiveSafe LT framework

to cover the two types of storage providers, trusted and untrusted. The first design

ASLT−D1 utilizes a non-malicious storage provider who either cannot be trusted with

performing the evolution process or is incapable of performing complex data processing

operations such as encrypting large data files. The second design ASLT −D2 utilizes

a storage provider who is both capable of doing complex data processing operations

and trusted to perform the evolution processes. In both designs, we utilize cascade

combiners, which is a sequential application of two or more cryptographic schemes.

This combiner is robust for block ciphers against message recovery attacks [20].

In both designs, the data collector is responsible for all the processing required

in initially securing the archive and retrieving it. However, these two designs are

73

Ph.D. – Moe Sabry McMaster – Computing and Software

different in taking ownership of performing the evolution process. In ASLT − D1,

the data collector performs the evolution process work; however, in ASLT −D2, the

data collector offloads the evolution process work onto the storage provider. In both

designs, the storage provider is unaware of the real names of the files comprising the

archive. The data collector keeps a map array MapFile that maps each file in the

archive to a code called fcode. The data collector also holds a policy file PolicyFile

containing the encryption schemes used for each layer of encryption applied to the

archive along with their corresponding keys and the two hashing functions used in

the two integrity schemes and their corresponding keys. In both designs, the storage

provider is responsible for providing the storage space for storing the archive. The

storage space must be secured by the provider against unauthorized physical and

network access. We also assume that the communications between the data collector

and the storage provider are carried over a secure channel, that is, authenticated and

encrypted.

Since ArchiveSafe LT allows for individual files update, addition and deletion,

depending on the time a file was added to the archive or updated, it could have a

different number of evolution processes applied to it than the rest of the archive files.

To address this, the MapFile stores the number of the evolution processes applied to

each file, that is, the number of encryption layers l. The structure of the MapFile

records is (fn, fcode, l). The structure of the PolicyFile is (((Π1,kC1),. . . ,(Πn,kCn)),

((∆a, kIa), (∆b,kIb
))) where (Πi,kCi

) is a symmetric scheme and its key, and (∆j, kIj
)

is a MAC scheme and its key.

In both designs, we assume the data collector keeps a list of secure encryption and

MAC schemes. Whenever a new secure scheme emerges, the data collector adds it to

the list. The data collector initiates the system by populating the PolicyFile with two

74

Ph.D. – Moe Sabry McMaster – Computing and Software

secure cryptographic schemes §1 and §2.

ASLT −D1 utilizes symmetric encryption schemes, and the data collector performs

all processing needed for all archiving processes. Since the data collector is responsible

for all data processing because of the storage provider’s limitations, the entire archive

needs to be downloaded from the storage provider to be evolved on the data collector’s

side and then uploaded back to the storage provider, which consumes possibly ample

resources. This drawback is addressed in ASLT −D2.

ASLT −D2 utilizes hybrid encryption schemes where the data collector securely

sends the information needed for the evolution process to the storage provider who

performs the process. The storage provider maintains a public key encryption scheme in

which the data collector uses the public key kpub to encrypt the evolution information

and sends it to the storage provider, who uses the private key kpriv to decrypt

the information and uses it to perform the evolution process. Although ASLT-D2

utilizes a hybrid encryption scheme to exchange the new evolution private key, the

communication of this key could also be done over a confidential channel if available.

To achieve long-term confidentiality, ArchiveSafe LT keeps the archive encrypted

by n encryption schemes at all times where at least two of these n schemes are deemed

secure. ArchiveSafe LT maintains this state by using the evolution process. To achieve

long-term integrity, ArchiveSafe LT maintains two integrity data objects Ia = (Iva , Ida)

and Ib = (Ivb
, Idb

) each of which is built using a different secure hash function. When

one of the used hash functions becomes compromised, its corresponding Merkle tree is

dropped and a new one is generated using a secure hash function through the evolution

process. Id contains the archive integrity data generated by secure integrity schemes,

and Iv contains the information required to verify the integrity of the archive against

75

Ph.D. – Moe Sabry McMaster – Computing and Software

Id.

In these two designs, we utilize Merkle trees [32] as the integrity data objects. The

hash values of the archive files are the tree leaves, Id is the tree, and Iv is the tree

root. For any file in the archive, we define archfcode to be the secured data of the file

corresponding to fcode and Idfcode
to be the set of nodes connecting the tree root to

the leaf representing this file and their siblings.

In both designs, the hash values are calculated based on the encrypted version of

the files to provide immediate verification of the files without the need to download

the file and decrypt all the layers.

The two designs utilize standard Merkle tree algorithms for maintaining the tree.

We use UpdIntObj for updating the tree and its root after a leaf has been added or

changed, ExtIntObj to extracts the nodes in the path from a certain tree leaf to the

root, and VfyIntObj to verify the integrity of the tree by recalculating the root using

the nodes provided and comparing it to the stored root value.

• Idfcode
← ExtIntObj(fcode, Id): The function takes a file code fcode and the

Merkle tree Id as input and returns an array of nodes Idfcode
connecting the fcode

leaf to the tree root.

• (I ′v, I ′dfcode
)← UpdIntObj(Idfcode

, fcode, tag, k, H): The function takes the array

of nodes Idfcode
connecting the fcode leaf to the tree root, the file code fcode, the

new integrity tag tag, a hash function H and its key k as input. It recalculates

the hash values of the nodes in Idfcode
and the root using H and k. It outputs

the updated root I ′v and nodes I ′dfcode
.

• {0, 1} ← VfyIntObj(Iv, Idfcode
, k, H): The function takes the current values of

the Merkle tree root Iv, the array of nodes Idfcode
connecting the fcode leaf to

76

Ph.D. – Moe Sabry McMaster – Computing and Software

the tree root, a hash function H and its key k as input. It outputs true if the

tree integrity check passes or false if it does not.

In the next section, we present the detailed implementation of the two designs,

their security analysis and how they provide long-term confidentiality and integrity.

4.3.1 ASLT-D1

In this design, the data collector side is responsible for all data processing. The

archive’s initial securing, evolution and retrieval processing are all done on the data

collector’s side. The data collector’s implementation of the archive’s local state lso

consists of the policy file, the integrity verification data object Iv, and the map

file. The lso structure is {PolicyFile, MapFile, Iv}. The lsp structure is {Id}. The

implementations of the archiving protocols in ASLT −D1 are described in Figures

4.4, 4.5, 4.6, 4.7, 4.8, and 4.9.

Collector Provider
〈〉 〈〉

Initialize

(kC1 , kI1)← §1.KeyGen() arch← ∅
(kC2 , kI2)← §2.KeyGen()
PolicyFile← ((§1.Π, kC1), (§2.Π, kC2),

(§1.∆, kI1), (§2.∆, kI2))
Iv ← ∅ Id ← ∅
MapFile← ∅ lsp ← Id
lso ← (PolicyFile, MapFile, Iv)
〈lso〉 〈lsp, arch〉

Figure 4.4: ASLT −D1 - Initialization Protocol

77

Ph.D. – Moe Sabry McMaster – Computing and Software

Collector Provider
〈lso, fn〉 〈lsp, arch〉
(PolicyFile, MapFile, Iv)← lso Id ← lsp
fcode, l← MapFile[fn]
((kCn−l+1 , Πn−l+1), ..., (kCn , Πn)),

(kIcurr , ∆curr)← PolicyFile
if fcode = ⊥ break

fcode

Idfcode
← ExtIntObj(fcode, Id)

archfcode, Idfcode

if ¬VfyIntObj(Iv, Idfcode
, kIcurr , ∆curr)

Abort
for i = n, . . . , n− l + 1

archfcode ←
§i.Unlock(kCi , Πi, archfcode)

endfor
fc← archfcode
〈fc〉 〈〉

Figure 4.5: ASLT −D1 - Retrieve Protocol

78

Ph.D. – Moe Sabry McMaster – Computing and Software

Collector Provider
〈lso, fn, fc〉 〈lsp, arch〉
(PolicyFile, MapFile, Iv)← lso Id ← lsp
((kC1 , Π1), ..., (kCn , Πn)),

(kIcurr , ∆curr)← PolicyFile
fcode← MapFile[fn]
if fcode 6= ∅ then

fcode

Idfcode
← ExtIntObj(fcode, Id)

Idfcode

if ¬VfyIntObj(Iv, Idfcode
, kIcurr , ∆curr)

Abort
endif

arch← arch \ archfcode
Id ← Id − Idfcode

else
fcode←$ {0, 1}128

endif
archfcode ←
§n−1.LockConf(kn−1, Πn−1, fc)

archfcode ←
§n.LockConf(kn, Πnarchfcode)

MapFile[fn]← fcode
tag ← ∆curr.Sign(kIcurr , archfcode)
(Iv, Idfcode

)← UpdIntObj(Idfcode
,

fcode, tag, kIcurr , ∆curr)

archfcode, Idfcode

arch← arch ∪ archfcode
Id ← Id + Idfcode

lso ← (PolicyFile, MapFile, Iv) lsp ← Id
〈lso〉 〈lsp, arch〉

Figure 4.6: ASLT −D1 - Update Protocol

79

Ph.D. – Moe Sabry McMaster – Computing and Software

Collector Provider
〈lso, fn〉 〈lsp, arch〉
(PolicyFile, MapFile, Iv)← lso Id ← lsp
fcode← MapFile[fn]

fcode

arch← arch \ archfcode
Idfcode

← ExtIntObj(fcode, Id)
Id ← Id − Idfcode

Idfcode

if ¬VfyIntObj(Iv, Idfcode
, kIn , ∆n)

Abort
endif
(Iv, Idfcode

)←
UpdIntObj(Idfcode

, fcode, ∅, kI , ∆)

Idfcode

Id ← Id + Idfcode

lsp ← Id
lso ← (PolicyFile, MapFile, Iv)
〈lso〉 〈lsp, arch〉

Figure 4.7: ASLT −D1 - Delete Protocol

80

Ph.D. – Moe Sabry McMaster – Computing and Software

Collector Provider
〈lso, algsdep, §old, algscur, §new〉 〈lsp, arch〉
(PolicyFile, MapFile, Iv)← lso
(kCnew , kInew)← §new.KeyGen()
Deprecate(PolicyFile, §old.∆)
PolicyFile← PolicyFile‖(kInew , §new.∆)
for each fn in MapFile

fcode← MapFile[fn]

fcode

Idfcode
← ExtIntObj(fcode)

Id ← Id − Idfcode

archfcode, Idfcode

if ¬VfyIntObj(Iv, Idfcode
, kIold

, ∆old)
Abort

endif
(Iv, Idfcode

)←
§new.LockInt(kInew , ∆new, archfcode, Idfcode

)

Idfcode

endfor
lso ← (PolicyFile, MapFile, Iv)

Id ← Id + Idfcode

lsp ← Id
〈lso〉 〈lsp〉

Figure 4.8: ASLT −D1 - Evolve Integrity Protocol

81

Ph.D. – Moe Sabry McMaster – Computing and Software

Collector Provider
〈lso, algsdep, §old, algscur, §new〉 〈lsp, arch〉
(PolicyFile, MapFile, Iv)← lso
(kCnew , kInew)← §new.KeyGen()
Deprecate(PolicyFile, §old.Π)
PolicyFile← PolicyFile‖(kCnew , §new.Π)
((kC1 , Π1), ..., (kCn , Πn)),

(kIcurr , ∆curr)← PolicyFile
for each fn in MapFile

fcode

Idfcode
← ExtIntObj(fcode, Id)

Id ← Id − Idfcode

archfcode, Idfcode

if ¬VfyIntObj(Iv, Idfcode
, kIcurr , ∆curr)

Abort
endif
archfcode ← §new.LockConf(kCnew ,

Πnew, archfcode)
tag ← ∆curr.Sign(kIcurr , archfcode)
(Iv, Idfcode

)← UpdIntObj(Idfcode
,

fcode, tag, kIcurr , ∆curr)

archfcode, Idfcode

Id ← Id + Idfcode

lsp ← Id
endfor
lso ← (PolicyFile, MapFile, Iv)
〈lso〉 〈lsp, arch〉

Figure 4.9: ASLT −D1 - Evolve Confidentiality Protocol

82

Ph.D. – Moe Sabry McMaster – Computing and Software

4.3.2 ASLT-D2

In this design, the data collector side is responsible for the data processing required for

the initial securing of the archive and retrieving it. For evolution, the storage provider

is responsible for the evolution process data processing while the data collector is still

responsible for initiating the process, selecting the schemes and the keys’ generation.

In order for this design to be secure, we assume the provider will follow the defined

protocols for the operations and will not try to learn any information related to the

plaintext or the secret keys.

For the evolution process, the data collector selects the new scheme to be used and

generates the new keys, then uses the storage provider’s secure public-key cryptographic

scheme to encrypt and send this information to the provider to use in the evolution

process.

In this design, the data collector’s implementation of the archive’s local state lso

consists of the list of cryptographic schemes used to secure the archive and their

corresponding keys in addition to the integrity verification data object Iv. The storage

provider’s implementation of the archive’s local state lsp consists of the cryptographic

scheme used to communicate with the data collector and its corresponding keys in

addition to the integrity data object Id. The lso structure on the data collector’s

side is { PolicyFile, MapFile, Iv}. The lsp structure on the storage provider’s side is

{§p,kpriv,kpub,Id}. The Initialization, Update, Retrieve and Delete protocols in this

design are similar to the ones in ASLT −D1. The implementations of the evolution

protocols in ASLT −D2 are described in Figures 4.10 and 4.11.

83

Ph.D. – Moe Sabry McMaster – Computing and Software

Collector Provider
〈lso, §old, §new〉 〈lsp, arch〉
(PolicyFile, MapFile, Iv)← lso
(kCnew , kInew)← §new.KeyGen()
Deprecate(PolicyFile, §old.∆)
PolicyFile← PolicyFile‖(kInew , §new.∆)

Lockp, kpub

EvPck ← (kInew , §new.∆)
EvPck ← Lockp(kpub, EvPck)

EvPck

(kInew , §new.∆)←
Unlockp(kpriv, EvPck)

for each file f in arch
Idf
← ExtIntObj(f)

Id ← Id − Idf

(Iv, Idf
)← §new.LockInt(
kInew , ∆new, archf , Idf

)
Id ← Id + Idf

lsp ← Id
endfor

Iv

PolicyFile← PolicyFile‖(§new.∆, kInew)
lso ← (PolicyFile, MapFile, Iv)
〈lso〉 〈lsp〉

Figure 4.10: ASLT −D2 - Evolve Integrity Protocol

84

Ph.D. – Moe Sabry McMaster – Computing and Software

Collector Provider
〈lso, §old, §new〉 〈lsp, arch〉
(PolicyFile, MapFile, Iv)← lso
(kCnew , kInew)← §new.KeyGen()
Deprecate(PolicyFile, §old.Π)
PolicyFile← PolicyFile‖(kCnew , §new.Π)
((kC1 , Π1), ..., (kCn , Πn)),

(kIcurr , ∆curr)← PolicyFile

Lockp, kpub

EvPck ← (kCnew , §new.Π, kIcurr , ∆curr)
EvPck ← Lockp(kpub, EvPck)

EvPck

(kCnew , §new.Π, kIcurr , ∆curr)←
Unlockp(kpriv, EvPck)

for each file f in arch
Idf
← ExtIntObj(f)

Id ← Id − Idf

archf ← §newLockConf(
kCnew , Πnew, archf)

tag ← ∆curr.Sign(kIcurr , archf)
(Iv, Idf

)← UpdIntObj(
Idf

, f, tag, kIcurr , ∆curr)
Id ← Id + Idf

lsp ← Id
endfor

Iv

PolicyFile← PolicyFile‖
(§new.Π, kCnew)

lso ← (PolicyFile, MapFile, Iv)
〈lso〉 〈lsp, arch〉

Figure 4.11: ASLT −D2 - Evolve Confidentiality Protocol

85

Ph.D. – Moe Sabry McMaster – Computing and Software

4.3.3 Security Analysis

Due to the framework having multiple protocols and in order not to miss any sce-

narios or execution paths, we use an automatic prover to prove the security of the

confidentiality and integrity properties of the ArchiveSafe LT framework against the

threat model described in Section 4.2.3. Using an automatic prover covers all possible

adversarial scenarios and reduces the risk of human errors in the process.

An automatic prover is a verification tool used for formal verification of crypto-

graphic protocols through model checking. It takes as input a security protocol model,

the actions taken by the entities running the protocol, the adversary specifications and

specifications of the protocol’s desired security properties. It either finds an attack

or it automatically constructs a proof that takes into consideration the possibility of

having arbitrarily many instances of the protocol’s roles working in parallel, together

with the actions of the adversary. The protocol is then tested to fulfill the specified

security properties.

In our proof, we use Tamarin prover [31]. Tamarin utilizes the symbolic approach

where cryptographic values are represented as terms and cryptographic primitives as

functions. Functions are applied to terms to produce other terms.

Utilizing an automatic prover definitely provides the advantages mentioned above,

but it comes with a risk: The validity of the proof depends on the accuracy of the

system model developed by the user. To mitigate this risk, we modeled all the system’s

components, their states and transitions, in order to have an accurate model of the

system.

We modeled our system as follows:

86

Ph.D. – Moe Sabry McMaster – Computing and Software

Functions are declared as KeyGen, Lock and Unlock: KeyGen/2, Lock/3, Unlock/3.

The function is defined by a name and the number of parameters it accepts.

Correctness is enforced through the equation:

Unlock(scheme, KeyGen(scheme, secretkey), Lock(scheme, KeyGen(scheme,

secretkey), data)) = data.

which states that if the system unlocks a previously locked data the output must be

identical to the original data.

Oracles OUpdate, ORetrieve, ODelete, OGetArchive, OCorruptKey, OEvolveConf and

OEvolveInt are modeled as Tamarin rules.

Security Experiments. are modeled as rules modeling the adversary’s guessing

processes and lemmas modeling the challenges. For confidentiality, we modeled a

challenge OUpdateChallenge shown in Figure 4.12 to check if the adversary can

break the archive confidentiality by being able to retrieve the contents of the archive.

For integrity, we modeled a challenge ForgeAnswer shown in Figure 4.13 to check

if the adversary can change the contents of the archive while the integrity data ob-

ject stays valid. We finally define the security properties through lemmas. Lemma

confidentiality shown in Figure 4.14 represents our confidentiality experiment

in Figure 4.1 and lemma integrity shown in Figure 4.15 represents our integrity

experiment in Figure 4.3.

We have developed two security theory files, one for checking the confidentiality

property and the other is for checking the integrity property. The two security theories

represents the Expind
n,§1,...,§n(A) and Expforge

n,§1,...,§n(A) experiments from Section 4.2.5 for

confidentiality and integrity challenges, respectively. The theory files are publicly

available1.
1https://github.com/moesabry/ArchiveSafeLT_Prover

87

https://github.com/moesabry/ArchiveSafeLT_Prover

Ph.D. – Moe Sabry McMaster – Computing and Software

We use ASLT −D1 scheme in the theories. We modeled the Lock and Unlock as

a symmetric key authenticated encryption scheme.

OUpdateChallenge

1 : let
2 : lso = <ko1, ko2, ko3>
3 : // Lock using scheme 1 then scheme 2
4 : ctxt1 = Lock(’1’, ko1, fcontents)
5 : ctxt2 = Lock(’2’, ko2, ctxt1)
6 : in
7 : [
8 : In(fname), // File name that adversary wants to store
9 : Fr(fcontents),

10 : !StateOwner(lso)
11 :]–[
12 : ChallengeStored(fname, fcontents) // Record what we stored
13 :]->[
14 : !Archive(fname, ’2’, ctxt2) // Save the ciphertext in the archive
15 :]

Figure 4.12: ASLT-D1 Confidentiality challenge

Tamarin verified the security properties of the design based on the model presented

above. All execution paths were tested and successfully verified.

There are some limitations in our Tamarin analysis that we believe do not affect

the validity of the results. The first limitation is that our confidentiality experiment is

modeled using indistinguishability while our Tamarin rule is modeled using message

recovery. This is due to Tamarin’s use of the Dolev–Yao symbolic model. The second

limitation, since Tamarin does not handle unbounded protocols well, we modeled only

three layers of locking which represents one evolution process not arbitrarily many

as in our experiment. We believe this limitation does not affect the reliability of the

results because the model still gives the adversary the opportunity to initiate an evolve

88

Ph.D. – Moe Sabry McMaster – Computing and Software

ForgeAnswer

1 : rule OForgeAnswer2:
2 : let
3 : lso = <ko1, ko2, ko3>
4 : in
5 : [
6 : !StateOwner(lso),
7 : In(<fname, Lock(’2’, ko2, Lock(’1’, ko1, fcontents))>)
8 :]–[
9 : ForgeAnswer(fname, ’1’, ’2’, fcontents)

10 :]->[
11 :]
12 : rule OForgeAnswer3:
13 : let
14 : lso = <ko1, ko2, ko3>
15 : in
16 : [
17 : !StateOwner(lso),
18 : In(<fname, Lock(’3’, ko3, Lock(’2’, ko2, Lock(’1’, ko1, fcontents)))>)
19 :]–[
20 : ForgeAnswer(fname, ’2’, ’3’, fcontents)
21 :]->[
22 :]

Figure 4.13: ASLT-D1 Integrity challenge

process. We also modeled one design, ASLT-D1. We believe ASLT-D2 should follow

the same proof construction and produce similar results.

4.4 Evaluation

We evaluate ArchiveSafe LT by measuring its performance in real-life imitated scenarios.

We compare its performance in terms of providing long-term confidentiality and

integrity against other systems, such as LINCOS [8], PROPYLA [23], ELSA [35] and

89

Ph.D. – Moe Sabry McMaster – Computing and Software

Confidentiality Lemma

1 : lemma confidentiality:
2 : All fname fcontents #tchallenge
3 : .
4 : ChallengeStored(fname, fcontents) #tchallenge
5 : & not(Ex #tr . RetrievedContents(fname, fcontents) #tr)
6 : & not(
7 : (Ex #tga #tc1 #tc2 . GotArchive(fname, ’2’) #tga & Corrupted(’1’)
8 : #tc1 & Corrupted(’2’) #tc2)
9 : | (Ex #tga #tc2 #tc3 . GotArchive(fname, ’3’) #tga & Corrupted(’2’)

10 : #tc2 & Corrupted(’3’) #tc3)
11 :)
12 : ==>
13 : not(Ex #tk . K(fcontents) #tk)
14 :

Figure 4.14: ASLT-D1 Confidentiality lemma

Integrity Lemma

1 : lemma integrity:
2 : All fname layer1 layer2 fcontents #tforgeanswer
3 : .
4 : ForgeAnswer(fname, layer1, layer2, fcontents) #tforgeanswer
5 : ==>
6 : ((Ex fname2 #tstored . Stored(fname2, fcontents) #tstored)
7 : | (Ex #tc1 #tc2 . Corrupted(layer1) #tc1 & Corrupted(layer2) #tc2)
8 :

Figure 4.15: ASLT-D1 Integrity lemma

SAFE [10]. The experiment’s goal is to capture the system’s performance metrics

related to two areas: 1) how does the system perform compared to other systems,

and 2) how does the system perform in a common real-life setting. The experiment

measures the system’s performance in working with different archives and measures

the time the system requires to perform the main archiving processes: Update, Evolve

90

Ph.D. – Moe Sabry McMaster – Computing and Software

Confidentiality, Evolve Integrity and Retrieve. We did not measure the Initialize

process times due to its negligible values.

4.4.1 Experiment Implementation

The implementation used for the experiment is based on ASLT − D1. In this

implementation, Id is the Merkle tree and Iv is the Merkle tree root. Next, we present

the basic definitions of the integrity schemes used.

We present next how the LockConf, LockInt and Unlock() APIs are implemented in

this experiment.

• LockConf takes the confidentiality key kC , the encryption scheme Π and the

contents of the file to be secured fc as input. It uses the kC and Π to encrypt fc

into archfn. The algorithm is shown in Figure 4.16.

• LockInt takes as input the integrity key kI , the MAC scheme ∆, the data to

be secured fc and the list of internal nodes Idfcode
connecting the root to the

leaf corresponding to the file to be secured. It uses the integrity kI and ∆ to

generate the new integrity tags for archfn. Next, it updates the internal nodes

and the roots based on the newly generated tags and outputs the updated nodes

Idfcode
and roots Iv for both trees. The algorithm is shown in Figure 4.17.

• Unlock takes the confidentiality key kC , the encryption scheme Π and the secured

archive data arch as input. It uses kC and Π to decrypt the secured file archfn

into fc. It outputs the file contents fc. The algorithm is shown in Figure 4.18.

91

Ph.D. – Moe Sabry McMaster – Computing and Software

LockConf((kC ,Π, fc)

1 : archfn ← Π.Enc(kC , fc)
2 : return archfn

Figure 4.16: The LockConf API

LockInt(kI ,∆, fc, Idfcode
)

1 : (kIa , kIb
)← kI

2 : (Iva , Ivb
)← Iv

3 : (Ida , Idb
)← Idfcode

4 : (∆a, ∆b)← ∆
5 : taga ← ∆a.Sign(kIa , fc)
6 : (Iva , Ida)← UpdIntObj(Ida , fc, taga, kIa , ∆a)
7 : taga ← ∆a.Sign(kIa , fc)
8 : (Ivb

, Idb
)← UpdIntObj(Idb

, fc, tagb, kIb
, ∆b)

9 : Iv ← (Iva , Ivb
)

10 : Idfcode
← (Ida , Idb

)
11 : return (Idfcode

, Iv)

Figure 4.17: The LockInt API

Unlock(kC ,Π, archfn)

1 : fc← Π.Dec(kC , archfn)
2 : return fc

Figure 4.18: The Unlock API

4.4.2 Experimental Setup

To measure the system’s performance in a real-life mimicking scenario, we designed

the experiment to mimic the evolution of an archive with common properties such as

the size, structure and the schemes used in the archive evolution process. Our scenario

assumes the archive was initially built in 1992 and is still being kept secure till 2022

92

Ph.D. – Moe Sabry McMaster – Computing and Software

through an ArchiveSafe LT system. Based on the following release timelines for the

available encryption schemes and hashing functions:

• 1992: Archive was created using DES and 3DES for confidentiality and MD2

and MD5 for integrity.

• 2001: Archive was evolved by combining another pair of schemes AES-128 and

SHA-256 for confidentiality and integrity respectively.

• 2004: Archive was evolved by combining another pair of schemes AES-192 and

SHA-384 for confidentiality and integrity respectively.

• 2015: Archive was evolved by combining another pair of schemes AES-256 and

SHA3-512 for confidentiality and integrity respectively.

Measurements. We measure the time used by the system to perform the archiving

processes on three archive sizes 1 MB, 1 GB and 10 GB to show how the system

performs with common files sizes. We also measure the system performance on a 158

GB archive to compare its performance with LINCOS [8] and ELSA [35] since this is

the only file size measured by these system experiments. Each archive consists of 1000

equal-sized files. File sizes are 1 KB for the 1 MB archive, 1 MB for the 1 GB archive,

and 10 MB for the 1 GB and 158 GB archives. For the archive creation process, we

measure the time used to read the data files, generate new encryption and integrity

keys, double encrypt the files, double sign them and generate the Merkle tree from

the integrity tags, then write the files to the disk. For Evolve Confidentiality process,

we measure the time used to read the encrypted files, generate new encryption and

integrity keys, apply an extra layer of encryption and generate two integrity tags

for each file, write the files to the disk, update the two Merkle trees with the new

leaves and update all internal nodes. For the Evolve Integrity process, we read the

93

Ph.D. – Moe Sabry McMaster – Computing and Software

encrypted files, generate new hashes using the new secure hash function, build a new

Merkle tree using these new hashes as leaves then replace the compromised tree with

the new one. For the archive retrieval process, we measure the time used to retrieve

archives with a different number of evolution processes applied to them. We measure

the time for retrieving the archive while having two layers of encryption, meaning

its confidentiality was never evolved, up to five layers of encryption corresponding to

three confidentiality evolution processes. All processing is performed locally and not

over a network.

Test Environment. The experiment was performed on a single-user Linux machine

with no other processes running. The computer was an HP Z420 running Ubuntu

Linux 20.04.3 LTS with an 8-core Intel Xeon CPU E5-1620 processor with a frequency

of 3.6 GHz. The computer had 32 GiB of RAM. The hard drive was a 1 TB solid-state

drive with 512-byte logical sectors and 512-byte physical sectors. The experiment

program was written in Python and used the Cryptodome library for cryptographic

functions.

Execution. We performed 100 repetitions of the following tasks. Sample files were

created with randomly generated alphanumeric characters using a non-cryptographic

random number generator to form the archives. The files generation times are not

measured. Update Archive, Evolve Archive and Retrieve Archive processes were

performed on the archives and time was measured as detailed above. We use Merkle

trees formed from the files’ integrity tags as the integrity data objects.

94

Ph.D. – Moe Sabry McMaster – Computing and Software

4.4.3 Results

Table 4.1 shows the time used by the system to perform the initial creation of the

archives. The processes include the keys generation, the double encryption and the

creation of Merkle trees. We compared our system performance versus LINCOS and

SAFE. The algorithms used in each stage are described in Section 4.4.2.

Archive Size 1MB 10MB 1GB 10GB 158GB
ArchiveSafe LT 0.53s 3.3s 3.18m 31.54m 7.7h
LINCOS N.A. N.A. N.A. N.A. 2.3d
SAFE 1s 10s N.A. N.A. N.A.

Table 4.1: ArchiveSafe LT archive creation time using DES + 3DES

Table 4.2 shows the time measured in seconds used by the system to retrieve the

archive to its plaintext state. The results show the time used to retrieve the same

archive from 2-layer encryption up to 5-layer encryption. These layers correspond to

no confidentiality evolution processes applied to the archive up to three confidentiality

evolution processes applied to the archive.

Archive Size 1MB 1GB 10GB
Post Initial Creation 0.32 185.14 1838.4
Post 1st Evolution 0.17 69.91 690.62
Post 2nd Evolution 0.17 70.58 704.53
Post 3rd Evolution 0.20 79.33 785.39

Table 4.2: ArchiveSafe LT archive retrieval time in seconds

Table 4.3 shows the time measured in seconds used by the system to perform a

confidentiality evolution process on the archive. This includes the keys generation, the

encryption, new integrity tags generation and the creation of Merkle trees. Table 4.4

shows the time measured in seconds used by the system to perform an integrity

95

Ph.D. – Moe Sabry McMaster – Computing and Software

evolution process on the archive. This includes the keys generation, new integrity tags

generation and the Merkle tree creation.

Archive Size 1MB 1GB 10GB 158GB
1st Evolution 0.18s 11.53s 2.02m 32.59m
2nd Evolution 0.20s 14.03s 2.69m 43.23m
3rd Evolution 0.24s 20.26s 3.29m 49.19m
LINCOS (Any Evolution) N.A. N.A. N.A. 4.6d

Table 4.3: Confidentiality evolution time

Archive Size 1MB 1GB 10GB 158GB
SHA256 0.15s 6.36s 1.52m 24.34m
SHA384 0.20s 7.51s 73.29s 16.18m
SHA3-512 0.20s 12.26s 2.07m 29.43m
LINCOS N.A. N.A. N.A. 4.6d

Table 4.4: Integrity evolution time

For individual file processes such as delete and update, we measure the time needed

to update the Merkle trees’ leaves and all affected internal nodes against the number

of files in the archive. The number of files in the archive affects the Merkle trees’ sizes

which in turn affects the time needed to update the affected nodes. Table 4.5 shows

the time needed versus the number of files in the archive.

Number of Files 100 1,000 1,000,000
0.41ms 0.54ms 0.98ms

Table 4.5: Merkle trees update times for one node change

4.4.4 Discussion

The results show consistent performance across the file sizes and evolution processes.

The variation between retrieval times is due to the difference in speed of decryption

between the different encryption algorithms.

96

Ph.D. – Moe Sabry McMaster – Computing and Software

In comparison to LINCOS [8], PROPYLA [23], and ELSA [35], a 158 GB archive

requires 2.3 days to exchange keys initially and 4.6 days for every reshare by these

systems. The main time consuming task performed by these systems is the key sharing

through a 40 Kb/sec QKD network. ArchiveSafe LT requires 7.7 hours for the archive

creation, including all operations and between 33 to 50 minutes for every evolution

process. The performance superiority of ArchiveSafe LT comes at the cost of sacrificing

information-theoretic security for computational assumptions, but we mitigate that

by utilizing robust combiners and the novel evolution protocol.

Table 4.6 shows a comparison between the systems discussed above and ArchiveSafe

LT in terms of key generation. Moreover, ArchiveSafe LT does not require any private

channels for the system to operate. The comparison parameters are: scheme, key

generation speed, storage space needed compared to the original data size x, number

of private channels in terms of data collectors number (d), storage servers (n) and

reconstructing threshold (t). We use the archive size of 158 GB in the comparison

because it is the size of the sample archive used in the evaluation of the other systems.

System Scheme Speed Storage Size
(/158 GB) Requirements

LINCOS* Secret Sharing 2.3 Days > 3x
ArchiveSafe LT Robust Combiners 7.7 Hours 1x

Table 4.6: ArchiveSafe LT comparative analysis showing confiden-
tiality Scheme used, key generation speed and the size of the resulting
archive compared to the original data size x

The retrieval process, for a 1 GB archive after 30 years of secure archiving and

evolution, requires 79.33 seconds which is acceptable for an archive retrieval process

compared to the currently available archiving systems. These results confirm the

ArchiveSafe LT performance in a practical scenario.

97

Ph.D. – Moe Sabry McMaster – Computing and Software

Space Usage: Since our design utilizes standard symmetric encryption schemes, the

encrypted archives’ sizes are in the same order as the original files with minor possible

increases for practical processes such as padding. In order for our design to handle

individual files operations such as addition and deletion, it keeps a map file. The

minor overhead per file is the map file record size plus the hash values stored in the

Merkle trees. Based on our proposed map file structure in Section 4.3, the record size

is 266 bytes for each file.

4.5 Summary

In this chapter, we presented ArchiveSafe LT, a framework for archiving systems

providing long-term confidentiality and integrity. The framework utilizes robust com-

biners of standard cryptographic suites to achieve its goal instead of the secret-sharing

techniques used by currently available systems. This approach makes the system feasi-

ble for industrial adoption due to its independence from any private channels or QKD

systems. Requiring minutes instead of days to create secure archives and evolving them

in the future makes the framework more feasible to be implemented. The performance

superiority of ArchiveSafe LT comes at the cost of sacrificing information-theoretic

security for computational assumptions, but we mitigate that by utilizing robust

combiners and the novel evolution protocol.

In the next chapter, we are looking to utilize a more robust and independent

solution for long-term integrity. A more robust and secure data structure is needed to

hold the integrity information to eliminate the need for redundant Merkle trees.

98

Chapter 5

Hybrid Merkle Trees

In this chapter, we introduce the Hybrid Merkle Tree, an authenticated data structure

based on the Merkle tree. In a Hybrid Merkle tree, not all the nodes are generated

by the same hash function. Through its lifetime, the tree evolves to a secure hashing

function if its current state becomes insecure, making it suitable for integrity schemes

used by long-term secure archiving systems. A sample hybrid Merkle tree using two

hash functions H1 and H2 is shown in Figure 5.1. In this figure, the hybrid Merkle

tree represents four data items: d1, d2, d3 and d4. Similar to a standard Merkle tree,

the leaves are the hash values of the data items the tree represents, and the internal

nodes contain the hash value of the concatenation of its two children’s hash values.

The difference between the hybrid and the standard Merkle tree is shown through

data item d4. In a standard Merkle tree, all leaves and internal nodes are generated

by one hash function, in this case it would be H1, but in this hybrid Merkle tree, the

leaf representing d4 and all internal nodes connected to it including the root were

generated using a second hash function H2.

99

Ph.D. – Moe Sabry McMaster – Computing and Software

root = H2(h1,2|h3,4)

h1,2 = H1(h1|h2)

h1 = H1(d1)

d1

h2 = H1(d2)

d2

h3,4 = H2(h3|h4)

h3 = H1(d3)

d3

h4 = H2(d4)

d4

Figure 5.1: Hybrid Merkle tree example

Merkle trees are used for authentication in many areas. Certificate Transparency

logs [25], public key signatures [4] and file systems [29][43] are some examples. These

systems build and maintain significantly large trees, for example, Certificate Trans-

parency logs have around 1.9 billion entries.

When a weakness is discovered in the underlying hash function used by the Merkle

tree, it could affect the integrity of the whole tree and all the hashes must be

recalculated using a secure hash function. The process of recalculating the hashes is

costly in terms of needed computing resources and time. Also, during this process,

the whole tree’s integrity is questionable.

In ArchiveSafe LT, we overcame the problem of hash functions becoming insecure

by utilizing more than one Merkle tree where each tree is built using a different hash

function. Although this solution addresses the problem of the function becoming

insecure overtime, it introduces other issues, such as multiplying the space required to

store the integrity information and the processing needed to perform any updates on

it. A better solution is to use a different data structure for the integrity information.

100

Ph.D. – Moe Sabry McMaster – Computing and Software

A structure that can be used to provide proofs for inclusion in an ordered list and its

own integrity, while eliminating the need for excessive space and processing power.

In this chapter, we construct a succinct updatable proof structure. We start by

presenting a formal definition of the structure. We present an instantiation of the

structure as a Merkle tree and prove the security of this instantiation under existential

unforgeability against a chosen message attack (EUF-CMA).

Next, we construct an evolving version of the structure which is suitable to address

the aforementioned problem. It is similar to the first structure but has the ability to

evolve its security by utilizing multiple compression functions simultaneously. When

the currently used compression function is deemed insecure, the structure evolves by

switching to use a secure compression function and deprecating the insecure one.

We present a formal definition of this structure and introduce the Hybrid Merkle

tree as an instantiation of it. We prove the security of this instantiation under

existential unforgeability against a chosen message attack (EUF-CMA).

5.1 sStruct: Succinct Updatable Proof Structure

In this section, we present a succinct updatable proof structure sStruct. The structure

represents a finite ordered list of data values D = (d1, d2, d3...). The structure consists

of three types of data objects: 1) data digest objects DOs representing the stored

data, 2) a verification object V O used to verify the inclusion of the data objects in the

list, 3) intermediate objects IOs containing information connecting the data digests

and the verification object, they are used in the verification process. The data values,

data objects and intermediate objects are stored in ordered lists.

101

Ph.D. – Moe Sabry McMaster – Computing and Software

An sStruct data structure has the following algorithms:

• (V O′, IO′i, DO[i]) ← Add(V O, IOi, d): This algorithm adds to the structure a

data object representing a data value d. It takes as input the verification object

V O, the list of intermediate objects connecting the new node to the root IOi,

and the data value to be added d. The algorithm starts by verifying the list of

the intermediate objects against the verification object, it exits with an error

if the verification fails. If the verification passes, the algorithm updates the

intermediate objects’ list with the new objects added to accommodate the newly

added data item and updates the rest of the intermediate objects accordingly in

addition to the verification object. It outputs the updated verification object

V O′, the updated list of intermediate objects IO′i, and the data object DO[i]

representing the data value d.

• (V O′, IO′i, DO[i]′)← Update(V O, IOi, d
′
i, i): This algorithm updates the struc-

ture by assigning a new value d′i to position i. It takes as input the verification

object V O, the list of intermediate objects IOi related to i, the new value d′i

to be assigned to data item i, and the index of the item to be updated i. The

algorithm starts by verifying the list of the intermediate objects against the

verification object, it exits with an error if the verification fails. If the verification

passes, the algorithm updates the value of data object DOi to reflect the new

value d′i, calculates the new values for all intermediate objects IO′i related to item

i and the new verification object value V O′. It outputs the updated verification

object V O′, the updated list of intermediate objects IO′i related to i and the

updated data object DO[i]′.

• {0, 1} ← Verify(V O, IOi, di, i): This algorithm verifies whether a data value di

represents the correct value of item i. It takes as input the verification object

102

Ph.D. – Moe Sabry McMaster – Computing and Software

V O, the list of intermediate objects IOi related to item i, and di, the data

value for i. The algorithm uses the intermediate objects and the data value to

verify against the verification object. It outputs 1 for verification success or 0

for failure.

• (V O, IO,DO)← Build(D): This algorithm builds a complete sStruct from an

ordered list of data values D. It takes the list of data values D as input and

outputs the verification object V O, the intermediate objects list IO and the

data objects list DO forming the sStruct. It uses a simple approach to build the

tree by calling the Add algorithm for each data value in D.

5.1.1 Security Property

For sStruct to be secure, it must not allow a data object DO[i] to be successfully

verified unless its corresponding data value di belongs to the honest ordered list D.

We call such a secure structure unforgeable. Proving that sStruct is unforgeable is not

simple since we have to accommodate for the update functionality of the structure.

We define the unforgeable security property through the experiments in Figure 5.2 and

Figure 5.3. The security experiment Expverify-real(A) lets the adversary operate in a

real environment where the experiment does not keep track of all objects belonging to

sStruct but rather uses V O for verification. Expverify-ideal(A) on the other hand, lets

the adversary operate in an ideal environment where the experiment keeps track of all

objects belonging to sStruct. All internal objects are stored by the experiment in IOE.

Running these two experiments shows if and how the adversary behaves differently

running in a real setup of our structure versus an ideal one where they cannot win. If

the adversary does not behave differently, then the structure is secure. We define the

unforgeable security property as follows:

103

Ph.D. – Moe Sabry McMaster – Computing and Software

unforgeable: Expverify-real(A) is indistinguishable from Expverify-ideal(A).

The experiment provides the adversary with the following oracles:

• OAdd(IOi, d): Allows the adversary to add a new data item to the structure.

It takes as input the list of intermediate objects connecting the new node to

the root IOi, and the data value to be added d. In Expverify-real(A), the oracle

uses the Add algorithm to add the data item to the structure with no additional

verification. In Expverify-ideal(A), the oracle verifies first if the provided inter-

nal nodes list IOi matches what is stored in the oracle memory. It fails the

experiment if they do not match. If the two lists match, the oracle continues in

the same manner as Expverify-real(A).

• OUpdate(IOi, d
′
i, i): Allows the adversary to update the value of a data item

and update the structure accordingly. It takes as input the list of intermediate

objects IOi related to i, the new value d′i to be assigned to data item i, and

the index of the item to be updated i. In Expverify-real(A), the oracle uses the

Update algorithm to update the data item in the structure with no additional

verification. In Expverify-ideal(A), the oracle verifies first if the provided inter-

nal nodes list IOi matches what is stored in the oracle memory. It fails the

experiment if they do not match. If the two lists match, the oracle continues in

the same manner as Expverify-real(A).

• OVerify(IOi, di, i): Allows the adversary to verify a data item. In Expverify-real(A),

the item is verified using the internal objects IOi provided by the adversary and

the verification object V O provided by the experiment. In Expverify-ideal(A),

104

Ph.D. – Moe Sabry McMaster – Computing and Software

the item is verified using the internal objects IOEi
stored by the experiment and

the verification object V O provided by the experiment.

The experiments and the oracles available to the adversary are shown in Figure 5.2
and Figure 5.3.

Expverify-real(A)

1 : V O ← ⊥
2 : b←$AOAdd,OUpdate,OVerify()
3 : return b

OAdd(IOi, d)

1 : (V O, IOi, DO[i])←$ Add(V O, IOi, d, PolicyFile)
2 : return (IOi, DO[i])

OUpdate(IOi, d
′
i, i)

1 : (V O, IOi, DO[i])←$ Update(V O, IOi, d′i, i)
2 : return (IOi, DO[i])

OVerify(IOi, di, i)

1 : return Verify(V O, IOi, di, i)

Figure 5.2: sStruct unforgeable Real Security experiment and oracles

105

Ph.D. – Moe Sabry McMaster – Computing and Software

Expverify-ideal(A)

1 : D ← []
2 : IO ← ⊥
3 : b←$AOAdd,OUpdate,OVerify()
4 : return b

OAdd(IOi, d)

1 : IOEi ← GetIO(IOE , |D|)
2 : // Check if the nodes provided by A matches the ones kept by the experiment
3 : if IOi 6= IOEi then return ⊥
4 : (V O, IOi, DO[i])←$ Add(V O, IOi, d, PolicyFile)
5 : IOEi ← GetIO(IO, i) // Store the new values in the experiment
6 : D[|D|]← di

7 : return (IOi, DO[i])
OUpdate(IOi, d

′
i, i)

1 : IOEi ← GetIO(IOE , i)
2 : // Check if the nodes provided by A matches the ones kept by the experiment
3 : if IOi 6= IOEi then return ⊥
4 : (V O, IOi, DO[i])←$ Update(V O, IOi, d′i, i)
5 : IOEi ← GetIO(IO, i) // Store the new values in the experiment
6 : D[i]← d

7 : return (IOi, DO[i])
OVerify(IOi, di, i)

1 : IOEi ← GetIO(IOE , i)
2 : // Check if the nodes provided by A matches the ones kept by the experiment
3 : if IOi 6= IOEi then return ⊥
4 : return D[i] = di

Figure 5.3: sStruct unforgeable Ideal security experiment and oracles

5.1.2 Merkle Tree as an sStruct

We present now MT [H], an sStruct instantiation as a Merkle tree with a hash function

H. H is used to generate the hash values of all the tree’s nodes and root. MT [H] is

106

Ph.D. – Moe Sabry McMaster – Computing and Software

a Merkle tree system where V O is the Merkle tree root rT , the intermediate objects

IOs are the tree’s internal nodes represented by the ordered list inodes and the data

objects DOs are the tree leaves represented by the ordered list leaves.

Our Merkle tree implementation uses a balanced weighted binary tree where the

weight of any node is the number of leaves under its subtree. An example is shown in

Figure 5.4.

w = 6

w = 4

w = 2

w = 0 w = 0

w = 2

w = 0 w = 0

w = 2

w = 0 w = 0

Figure 5.4: Weighted Merkle tree example

To add a new leaf, the algorithm follows the path with the lesser weight until it

reaches the point of insertion. An example is shown in Figure 5.5. Since we only insert

leaves and not internal nodes, we do not do rotations to balance the tree so the leaves

do not get mixed with the internal nodes.

root

w = 2

1 3

w = 2

2 4

root

w = 2

1 3

w = 2

2 4

root

w = 3

w = 2

1 5

3

w = 2

2 4

root

w = 3

w = 2

1 5

3

w = 3

w = 2

2 6

4

Figure 5.5: Weighted Merkle tree insertion example. Leaf 5 is inserted
first followed by leaf 6.

107

Ph.D. – Moe Sabry McMaster – Computing and Software

Balancing the tree only through weights and not rotations leads to the tree losing

the node ordering property. Node ordering allows searching for a node to be performed

in time O(log(n)). To overcome this problem, we utilize a supplementary AVL

balanced tree structure for leaves to hold the values and locations of the original tree

T leaves. In an update operation, the function Find would query the values of the

field dataindex in the leaves of an AVL tree to get the location of the leaf in T in

O(log(n)) then update the original tree in O(log(n)) time. In an Add operation, the

new leaf is added to the Merkle tree then a node is inserted in the AVL tree containing

the hash value of the leaf along with its index from the Merkle tree. In an update

operation, the algorithm searches for the hash value in the AVL tree in O(log(n)) time

then uses the corresponding index value to locate the leaf in the Merkle tree in O(n)

time.

In our tree, each node stores the hash value of the concatenation of its two

children nodes’ hashes in node.hash, two pointers to each of its children node.left and

node.right, a pointer to its parent node.parent, node.weight, which is the number

of all leaves in its subtree, and finally node.dataindex, which is null for all internal

nodes but has the value i for the leaves. To avoid possible collisions between leaves

and subtrees of internal nodes, we separate their domains by adding a prefix of 0 to

each leaf and 1 to each internal node when we are calculating their hashing values.

The algorithms for MT [H] are as follows:

• (r′T , inodes′i)← Add(rT , inodesi, d): This algorithm adds a new leaf to the tree

corresponding to a data item d. It takes as input the tree root rT , the internal

tree nodes inodesi, and the data value d. The algorithm starts by verifying the

list of the internal nodes against the root, it exits with an error if the verification

108

Ph.D. – Moe Sabry McMaster – Computing and Software

fails. If the verification passes, the algorithm calculates the hash value of the

new data item, then adds it as a new leaf to the tree after setting its weight to 0

to ensure it ends as a leaf in the tree. Next, the algorithm updates all internal

nodes values connecting the new leaf to the root to reflect the newly added leaf

through the UpdateIO function. The algorithm outputs the newly calculated

tree root r′T and the updated internal tree nodes inodes′i. An illustration of the

leaf addition is shown in Figure 5.5. The algorithm is shown in Figure 5.6.

• (r′T , inodes′i, leaves[i])← Update(rT , nodesi, d′i, i): This algorithm updates the

value of an existing leaf to reflect a change in the data value of a data item i

from di to d′i. It takes as input the tree root rT , the internal tree nodes inodesi

connecting the root to the leaf i, the new data value d′i, and the position i. The

algorithm starts by verifying the list of the internal nodes against the root, it

exits with an error if the verification fails. If the verification passes, the algorithm

calculates the hash value of the new data value d′i, then updates all internal

nodes values connecting this leaf to the root to reflect the new value. It outputs

the updated root r′T and the updated subset of nodes inodes′i connecting the

leaf to the root. The algorithm is shown in Figure 5.8.

• {0, 1} ← Verify(rT , inodesi, di, i): This algorithm verifies whether a data value

di is the correct value in leaf i. It takes as input the tree root rT , the list of

internal nodes connecting the i’s leaf to the root of the tree inodesi, the data

value to be verified di and the position i. First, it locates the position of the

item in the tree by using the standard AVL tree Find then calculates the value

of the tree root r′T using the provided values of the internal nodes and value di.

The algorithm compares the calculated root to the provided root rT and outputs

1 if the two roots match, that is, the verification succeeded and 0 otherwise. The

algorithm is shown in Figure 5.10.

109

Ph.D. – Moe Sabry McMaster – Computing and Software

Add(rT , inodesi, d)

1 : if ¬(VerifyIO(rT , inodesi)) then Abort
2 : k = (|inodesi|+1)/2
3 : h = H(0|d), j = 0
4 : for level = 1 . . . k

5 : if inodesi[j].weight = 0
6 : newdataindex = inodesi[j].dataindex + 1
7 : inodesi, NewLeaf ← InsertNode(j, h, inodesi, newdataindex)
8 : else
9 : if inodesi[inodesi[j].left].weight ≤ inodesi[inodesi[i].right].weight

10 : j = inodesi[j].left

11 : else
12 : j = inodesi[j].right

13 : endif
14 : endif
15 : endfor
16 : rT , inodesi ← UpdateIO(inodesi, j)
17 : return (rT , inodesi, NewLeaf)

Figure 5.6: The sStruct Add algorithm

(rT , nodes)← Build(D): This algorithm builds the complete tree from a set of data

values. It takes an ordered list of data values D as input, and outputs the root of the

tree rT and an ordered list of internal nodes inodes forming the tree. It builds the

tree by calling Add for each data value in the set D.

5.1.3 Security Analysis

For the Merkle tree, we define the unforgeable security property as the ability of the

tree to prevent a data object DO[i] to be successfully verified unless its corresponding

data value di is part of the honest list D, that is, di = D[i].

Lemma 1: If H is collision resistant, then MT [H] is unforgeable.

110

Ph.D. – Moe Sabry McMaster – Computing and Software

InsertNode(j, h, inodesi, newdataindex)

1 : NewNode.parent = inodesi[j].parent

2 : NewNode.left = j

3 : NewNode.right = j + 2
4 : NewNode.weight = 2
5 : NewNode.index = j + 1
6 : NewNode.dataindex = null

7 : NewNode.hash = H(1|inodes[j].hash|h)
8 : inodesi.Append(NewNode)
9 : NewLeaf.index = j + 2

10 : NewLeaf.dataindex = newdataindex

11 : NewLeaf.parent = NewNode.index

12 : NewLeaf.hash = h

13 : return (inodesi, NewLeaf)

Figure 5.7: The sStruct InsertNode algorithm

Update(rT , inodesi, d′i, i)

1 : if ¬(VerifyIO(rT , inodesi)) then Abort
2 : h← H(0|d′i)
3 : j ← Find(i)
4 : inodesi ← UpdateIO(inodesi, j, rT)
5 : return (rT , inodesi, h)

Figure 5.8: The sStruct Update algorithm

Proof of Lemma 1: If the adversary A can distinguish between Expverify-ideal(A) and

Expverify-real(A), then they were able to find a collision by finding a data value that

passes Expverify-real(A) and fails Expverify-ideal(A). The algorithm BA shown in

Figure 5.12 finds the collision in H by identifying two lists D1 and D2 where D1 6= D2,

but MT[H](D1) = MT[H](D2). BA oracles identify the collision event when A behaves

differently during the two experiments. At this time, BA passes the data lists causing

the collision to F , which loops through the subtrees forming D1 and D2 bottom to

top until it finds the collision.

111

Ph.D. – Moe Sabry McMaster – Computing and Software

UpdateIO(inodesi, j, rT)

1 : while inodesi[j].parent 6= 0
2 : l = inodesi[inodesi[j].parent].left

3 : r = inodesi[inodesi[j].parent].right

4 : if l 6= ∅ ∧ r 6= ∅
5 : p = inodesi[l].hash|inodesi[r].hash

6 : if l 6= ∅ ∧ r = ∅ : p = inodesi[l].hash

7 : if l = ∅ ∧ r 6= ∅ : p = inodesi[r].hash

8 : inodesi[inodesi[j].parent].hash = H(1|p)
9 : j = inodesi[j].parent

10 : endwhile
11 : rT .hash = H(1|inodesi[rT .left].hash|inodesi[rT .right].hash)
12 : return (rT , inodesi)

Figure 5.9: The sStruct UpdateIO algorithm

The OAdd, OUpdate and OVerify oracles for BA are shown in figures 5.13, 5.14 and

5.15, respectively. The code added to the basic oracles specifically for BA is color

coded in blue.

5.2 esStruct: Evolving Updatable Succinct Proof

Structure

In this section, we present an evolving succinct updatable proof structure esStruct.

This structure is similar to sStruct but with the additional capability of evolving

when the compression function it uses becomes insecure. When the compression

function is deemed insecure, the leaves and internal nodes created using it are deemed

insecure. Initially, all the data object digests in the structure are generated using

a single function Fa, whether it is for a new object or to update an existing one.

If during the structure’s lifetime a more secure function Fb emerges, esStruct stops

112

Ph.D. – Moe Sabry McMaster – Computing and Software

Verify(rT , inodesi, di, i)

1 : j = nodesi.Find(i)
2 : currnode← inodesi[j].parent

3 : if (i mod 2 = 0) then
4 : inodesi[currnode].hash← H(0|inodesi[left].hash|di)
5 : else
6 : inodesi[currnode].hash← H(0|di|inodesi[right].hash)
7 : currnode← currnode.parent

8 : while inodesi[currnode].parent 6= ∅
9 : left← inodesi[currnode].left

10 : right← inodesi[currnode].right

11 : nodesi[currnode].hash← H(1|inodesi[left].hash|inodesi[right].hash)
12 : currnode← currnode.parent

13 : endwhile
14 : r′T ← currnode

15 : return (rT = r′T)

Figure 5.10: The sStruct Verify algorithm

using Fa, and starts using Fb to generate the digests for new objects and updates for

existing ones. The rest of the existing unchanged objects keep their values generated

by Fa. The evolution process is continuous, the object evolves every time a function

is deemed insecure. Similar to sStruct, the structure represents a finite ordered list of

data values D = (d1, d2, d3...). The structure consists of three types of data objects:

1) Data digest objects DOs representing the stored data, 2) a verification object

V O used to verify the authenticity of the data objects, 3) intermediate objects IOs

containing information about the data digests and the verification object to be used

in the verification process.

To implement the evolution process, the structure must have a set of compression

functions F and a PolicyFile file containing the functions used in the structure and

which ones are deemed secure to use. Due to the structure evolution, at any time,

113

Ph.D. – Moe Sabry McMaster – Computing and Software

VerifyIO(rT , inodesi)

1 : j = nodesi.FindLeaf()
2 : currnode← inodesi[j].parent

3 : while inodesi[currnode].parent 6= ∅
4 : left← inodesi[currnode].left

5 : right← inodesi[currnode].right

6 : nodesi[currnode].hash← H(1|inodesi[left].hash|inodesi[right].hash)
7 : currnode← currnode.parent

8 : endwhile
9 : r′T ← currnode

10 : return (rT = r′T)

Figure 5.11: The sStruct VerifyIO algorithm

B() :

1 : IOE ← []
2 : IO ← []
3 : D ← []
4 : b←$AOAdd,OUpdate,OVerify()

Figure 5.12: The B algorithm for sStruct

the structure could have objects generated using several functions. To identify which

function is used to generate a certain object, we store the identifier of the function

used to generate the node value in the node as an additional field.

A esStruct consists of the following components:

• F = {F1,F2,F3,...}: A set of compression functions, where at any point in time

at least one of them is deemed secure.

• PolicyFile: A file containing all the functions used in the structure and the

currently active ones. The file structure is {(F1,Obsolete), (F2,Obsolete),

(F3,Secure),...}.

114

Ph.D. – Moe Sabry McMaster – Computing and Software

OAdd(IOi, d)

1 : IOi ← GetIO(IO, |D|)
2 : IOEi ← GetIO(IOE , |D|)
3 : if IOi 6= IOEi∧Verify(V O, IOi, ∅, |DO|) then
4 : Exit to B (F(IOEi , IOi))
5 : (V O, IO, DO)←$ Add(V O, IO, DO, d, PolicyFile)
6 : IOEi ← GetIO(IO, i)
7 : D[|D|]← di

8 : return (IOi, DO[i])

Figure 5.13: The B OAdd oracle for sStruct

OUpdate(IOi, d
′
i, i)

1 : if H(di) = H(d′i) ∧ di 6= d′i then
2 : Exit to B (di, d′i)
3 : IOEi ← GetIO(IOE , i)
4 : if IOi 6= IOEi∧Verify(V O, IOi, d′i, i) then
5 : Exit to B (F(IOEi , IOi))
6 : (V O, IOi)←$ Update(V O, IOi, d′i, i)
7 : IOEi ← GetIO(IO, i)
8 : D[i]← d

9 : return (IOi, DO[i])

Figure 5.14: The B OUpdate oracle for sStruct

An esStruct has the following algorithms:

• (V O′, IO′i, DO[i]) ← Add(V O, IOi, d,PolicyFile): This algorithm adds to the

structure a data object representing a data value d. It takes as input the

verification object V O, the list of intermediate objects connecting the new node

to the root IOi, the data value to be added d, and the policy file PolicyFile

to extract the current secure compression function. The algorithm starts by

verifying the list of the intermediate objects against the verification object, it

exits with an error if the verification fails. If the verification passes, the algorithm

115

Ph.D. – Moe Sabry McMaster – Computing and Software

OVerify(IOi, di, i)

1 : IOEi ← GetIO(IOE , i)
2 : if IOi 6= IOEi∧Verify(V O, IOi, di, i) then
3 : Exit to B (F(IOEi , IOi))
4 : return D[i] = di

Figure 5.15: The B OVerify oracle for sStruct

F(D1,D2) :

1 : n1 = |D1|, n2 = |D2|
2 : k1 = 2dlog(n1)/2e, k2 = 2dlog(n2)/2e

3 : if n1 = 1 ∧ n2 = 1 then return (D1[0],D2[0])
4 : elseif n1 = 1 ∧ n2 > 1 then
5 : return (D1[0], MT[H].Build(D2[0 : k2])||MT[H].Build(D2[k2 : n2]))
6 : elseif n1 > 1 ∧ n2 = 1 then
7 : return (MT[H].Build(D1[0 : k1])||MT[H].Build(D1[k1 : n1]),D2[0])
8 : elseif n1 > 1 ∧ n2 > 1 then
9 : if (MT[H].Build(D1[0 : k1]) 6= MT[H].Build(D2[0 : k2]))∨

10 : ((MT[H].Build(D1[k1 : n1]) 6= MT[H].Build(D2[k2 : n2]))) then
11 : return (MT[H].Build(D1[0 : k1])||MT[H].Build(D1[k1 : n1]),
12 : MT[H].Build(D2[0 : k2])||MT[H].Build(D2[k2 : n2]))
13 : elseif D1[0 : k1] 6= D2[0 : k2]
14 : return F(D1[0 : k1],D2[0 : k2])
15 : elseif D1[k1 : n1] 6= D2[k2 : n2]
16 : return F(D1[k1 : n1],D2[k2 : n2])

Figure 5.16: The F algorithm

updates the internal nodes’ list with the new nodes added to accommodate the

newly added data item and updates the rest of the internal nodes accordingly in

addition to the verification object. It outputs the updated verification object V O′,

the updated list of internal nodes IO′i, and the data object DO[i] representing

the data value d.

• (V O′, IO′i, DO[i]′)← Update(V O, IOi, d
′
i, i,PolicyFile): This algorithm updates

the structure by assigning a new value d′i to position i. It takes as input the

116

Ph.D. – Moe Sabry McMaster – Computing and Software

verification object V O, the list of intermediate objects IOi related to i, the new

value d′i to be assigned to position i, the index of the item to be updated i,

and the policy file PolicyFile. The algorithm starts by verifying the list of the

intermediate objects against the verification object, it exits with an error if the

verification fails. If the verification passes, the algorithm extracts the current

secure compression function from PolicyFile, updates the value of position i

with the new data value d′i, calculates the new values for all intermediate objects

IO′i and the new verification object value V O′ using the current secure function.

It outputs the updated verification object V O′, the updated list of intermediate

objects IO′i related to i and the updated data object DO[i]′.

• {0, 1} ← Verify(V O, IOi, di, i,PolicyFile): This algorithm verifies whether a

data value di represents the correct value of item i. It takes as input the

verification object V O, the list of intermediate objects IOi related to item i,

and di, the data value for i, and the PolicyFile file. It outputs 1 for verification

success or 0 for failure.

• (V O, IO,DO) ← Build(D,PolicyFile): This algorithm builds a complete es-

Struct from an ordered list of data values using the current secure function

extracted from PolicyFile. It takes the list of data values D and the PolicyFile

file as input and outputs the V O, IO and DO forming the esStruct. It uses a

simple approach to build the tree by calling the Add algorithm for each data

value in D.

• (PolicyFile′, V O′)← Evolve(PolicyFile, Fnew, V Ol, V Or): This algorithm evolves

the structure by setting the current compression function to Fnew and recal-

culating the V O using Fnew. It takes as input the PolicyFile, the new secure

function Fnew and the root’s two children V Ol and V Or. It outputs the updated

PolicyFile file and the updated V O′.

117

Ph.D. – Moe Sabry McMaster – Computing and Software

5.2.1 Threat Model

Our threat model considers the adversary to be active, computationally bound and

is able to obtain a copy of the Hybrid Merkle tree. The goal of the adversary is to

alter the contents of the archive protected by a Hybrid Merkle tree without the data

collector detecting it through integrity checks. The model is chosen to address a

common real-life attack scenario on archiving systems and their adversarial goal of

altering its data.

5.2.2 Limitations

The conditions and timing for rebuilding the parts of the tree that were built using

insecure hash functions are not covered in this work.

5.2.3 Security Property

For esStruct to be secure, it must not allow a data object DO[i] generated by a

currently deemed secure compression function to be successfully verified unless its

corresponding data value di belongs to the ordered list D. Proving that sStruct is

unforgeable is not simple since we have to accommodate for the update functionality

of the structure and the fact that it is built using multiple compression functions.

Similar to what we did with sStruct in Section 5.1.1, we define the unforgeable security

property for esStruct through two experiments, Expverify-real(A) runs in a real setup

and Expverify-ideal(A) runs in an ideal setup where it tracks all the correct objects

in its memory. The experiments for the esStruct are different from the sStruct ones

due to the fact that esStruct utilizes multiple compression functions at the same

time, some of them might be insecure at a given time. We accommodate this case by

challenging the adversary to forge one of the functions from the secure set. We keep

118

Ph.D. – Moe Sabry McMaster – Computing and Software

track of which data objects have been generated by a secure compression function

in Dsec and their related internal objects in IOE, and we challenge the adversary to

forge a data object belonging to this secure objects’ list.

Experiment Expverify-real(A) and its oracles are shown in Figure 5.17 and exper-

iment Expverify-ideal(A) and its oracles are shown in Figures 5.18, 5.19, 5.20, 5.21

and 5.22. The security experiment Expverify-real(A) lets the adversary operate in a

real environment where the experiment does not keep track of all objects belonging

to esStruct but rather uses V O for verification. Expverify-ideal(A) on the other hand

lets the adversary operate in an ideal environment where the experiment keeps track

of all objects belonging to esStruct. Running these two experiments shows if and how

the adversary behaves differently when running in a real setup of our structure versus

an ideal one where they cannot win. If the adversary does not behave differently, then

the structure is secure. If the adversary behaves differently, this means they were able

to find a collision.

The security experiments Expverify-real(A) and Expverify-ideal(A) provide the adver-

sary with the following oracles:

• OAdd(IOi, d): Allows the adversary to add a new data item to the structure.

It takes as input the list of intermediate objects connecting the new node to

the root IOi, and the data value to be added d. In Expverify-real(A), the oracle

uses the Add algorithm to add the data item to the structure with no additional

verification. In Expverify-ideal(A), the oracle verifies first if the provided list of

internal nodes IOi matches what is stored in the oracle memory. It fails the

experiment if they do not match. If the two lists match, the oracle continues in

the same manner as Expverify-real(A).

119

Ph.D. – Moe Sabry McMaster – Computing and Software

• OUpdate(IOi, d
′
i, i): Allows the adversary to update the value of a data item

and update the structure accordingly. It takes as input the list of intermediate

objects IOi related to i, the new value d′i to be assigned to data item i, and

the index of the item to be updated i. In Expverify-real(A), the oracle uses the

Update algorithm to update the data item in the structure with no additional

verification. In Expverify-ideal(A), the oracle verifies first if the provided inter-

nal nodes list IOi matches what is stored in the oracle memory. It fails the

experiment if they do not match. If the two lists match, the oracle continues in

the same manner as Expverify-real(A).

• OVerify(IOi, di, i): Allows the adversary to verify a data item. In Expverify-real(A),

the item is verified using the internal objects IOi, provided by the adversary, and

the verification object V O provided by the experiment. In Expverify-ideal(A),

the item is verified using the internal objects IOEi
, stored by the experiment,

and the verification object V O provided by the experiment.

• OEvolve (): Allows the adversary to evolve esStruct.

In Expverify-ideal(A), we keep track of the correct values of nodes and leaves in ordered

lists. IOE stores the internal nodes objects, IOsec stores the internal nodes generated

by secure compression functions, IOinsec stores the internal nodes generated by insecure

compression functions, Dsec stores the leaves generated by secure compression functions,

and Dinsec stores the leaves generated by insecure compression functions.

120

Ph.D. – Moe Sabry McMaster – Computing and Software

Expverify-real(A)

1 : V O ← ⊥
2 : b←$AOAdd,OUpdate,OVerify,OEvolve()
3 : return b

OAdd(IOi, d)

1 : (V O, IOi, DO[i])←$ Add(V O, IOi, d)
2 : return (IOi, DO[i])

OUpdate(IOi, d
′
i, i)

1 : (V O, IOi)←$ Update(V O, IOi, d′i, i)
2 : return (IOi, DO[i])

OVerify(IOi, di, i)

1 : return Verify(V O, IOi, di, i)
OEvolve()

1 : (PolicyFile, V O)← Evolve(PolicyFile, Fnew, V O)
2 : return ⊥

Figure 5.17: esStruct unforgeable Real Security experiment and
oracles

Expverify-ideal(A)

1 : DEsec , Dinsec, IOE , IOsec, IOinsec ← []
2 : b←$AOAdd,OUpdate,OVerify,OEvolve()
3 : return b

Figure 5.18: esStruct unforgeable Ideal Security experiment

5.2.4 Hybrid Merkle Tree as an esStruct

We present now HMT [H], an esStruct instantiation using a Merkle tree and a set of

hash functions H. The hash functions are used to generate the data digests DOs from

the data values belonging to D. The HMT [H] is a hybrid Merkle tree system where

V O is the root of the tree rT , the intermediate objects IOs are the tree internal nodes

and the data objects DOs are the tree leaves.

121

Ph.D. – Moe Sabry McMaster – Computing and Software

OAdd(IOi, d)

1 : IOi ← GetIO(IO, |D|)
2 : IOEi ← GetIO(IOE , |D|)
3 : sec← 0
4 : if (for each k = 0 to |IOEi |: IOEi [k] = IOsec[k]) then
5 : // Check if the nodes provided by A matches the ones kept by the experiment
6 : if IOi 6= IOEi then return ⊥
7 : sec← 1
8 : (V O, IO, DO)← Add(V O, IO, DO, d, PolicyFile)
9 : i = |D|, D[i]← d

10 : IOEi ← GetIO(IO, i) // Store the new values in the experiment
11 : if sec← 1 then
12 : for each node k in IOEi

13 : IOsec[k.index]← k

14 : Dsec[k.index]← k

15 : endfor
16 : return (IOi, DO[i])

Figure 5.19: Ideal Security experiment OAdd oracle for esStruct
unforgeable

Similar to our Merkle tree implementation in Section 5.1, our hybrid Merkle tree

implementation uses a balanced weighted binary tree and utilizes a supplementary

AVL balanced tree structure for leaves to hold the values and locations of the original

tree T leaves.

Hybrid Merkle trees are similar to Merkle trees with one difference, the hash values

of their leaves and internal nodes are not all generated using the same hash function.

Initially, the tree is generated using a single hash function Ha. New or updated leaves

and nodes continue to be generated using Ha until a more secure hash function Hb

emerges. The tree will adopt Hb to be used for the generation of new nodes and

processing any updates for existing ones. The rest of the existing unchanged nodes

keep their hash values generated by Ha.

122

Ph.D. – Moe Sabry McMaster – Computing and Software

OUpdate(IOi, d
′
i, i)

1 : IOEi ← GetIO(IOE , i)
2 : sec← 0
3 : if (for each k = 0 to |IOEi |: IOEi [k] = IOsec[k]) then
4 : // Check if the nodes provided by A matches the ones kept by the experiment
5 : if IOi 6= IOEi then return ⊥
6 : sec← 1
7 : (V O, IOi)← Update(V O, IOi, d′i, i)
8 : D[i]← di

9 : IOEi ← IOi // Store the new values in the experiment
10 : if sec← 1 then
11 : for each node k in IOEi

12 : IOsec[k.index]← k

13 : Dsec[k.index]← k

14 : endfor
15 : return (IOi, DO[i])

Figure 5.20: Ideal Security experiment OUpdate oracle for esStruct
unforgeable

OVerify(IOi, di, i)

1 : IOEi ← GetIO(IOE , i)
2 : if (for each k = 0 to |IOEi |: IOEi [k] = IOsec[k]) then
3 : // Check if the nodes provided by A matches the ones kept by the experiment
4 : if IOi 6= IOEi then return ⊥
5 : return D[i]← di

Figure 5.21: Ideal Security experiment OVerify oracle for esStruct
unforgeable

In our tree, we store the hash function identifier used to generate the node’s hash

value in node.h, a pointer to its parent node.parent, in addition to two pointers to

each of its children node.left and node.right, and finally node.weight which is the

number of all leaves in its subtree. To avoid a possible attack where the adversary

changes the hash function identifier node.h and compromises the verification process,

123

Ph.D. – Moe Sabry McMaster – Computing and Software

OEvolve()

1 : PolicyFile← Evolve(PolicyFile, Fnew, V Ol, V Or)
2 : Dinsec.Append(Dsec)
3 : IOinsec.Append(IOsec)
4 : return ⊥

Figure 5.22: Ideal Security experiment OEvolve oracle for esStruct
unforgeable

in node.hash, each node stores the hash value of the concatenation of its two children

nodes’ hashes and the identifiers of the hash functions used to generate its two children

hash values. To avoid possible collisions between leaves and subtrees of internal nodes,

we separate their domains by concatenating 0 to each leaf and 1 to each internal node

when we are calculating their hash values.

The algorithms for HMT [H] are as follows:

• (r′T , inodes′i, leaves[i])← Add(rT , inodesi, d,PolicyFile): This algorithm adds a

new leaf to the tree corresponding to a data item di. It takes as input the

tree root rT , the internal tree nodes inodesi connecting the leaf i to the root,

and the data value d. The algorithm starts by verifying the list of the internal

nodes against the root, it exits with an error if the verification fails. If the

verification passes, the algorithm extracts the current secure hash function from

the PolicyFile then calculates the hash value of the new data item. Next, the

algorithm adds the hash value as a new leaf to the tree after setting its weight to

0 to ensure it ends as a leaf in the tree. Next, it updates all internal nodes values

connecting the new leaf to the root to reflect the newly added leaf through the

UpdateIO function. It outputs the newly calculated tree root r′T , the updated

internal tree nodes inodes′i, and the new leaf leaves[i]. The algorithm is shown

124

Ph.D. – Moe Sabry McMaster – Computing and Software

in Figure 5.23.

• (r′T , inodes′i, leaves[i]) ← Update(rT , inodesi, d′i, i,PolicyFile): This algorithm

updates the value of an existing leaf to reflect a change in the data value of

a data item i from di to d′i. It takes as input the tree root rT , the internal

tree nodes inodesi connecting the root to the leaf i, the new data value d′i, the

position i, and the PolicyFile. The algorithm starts by verifying the list of the

internal nodes against the root, it exits with an error if the verification fails. If

the verification passes, the algorithm extracts the current secure hash function

from the PolicyFile then calculates the hash value of the new data value d′i,

calculates the updated leaf leaves[i] and then updates all internal nodes values

connecting this leaf to the root to reflect the new value. It outputs the updated

root r′T , the updated subset of nodes inodes′i connecting the leaf to the root and

the updated leaf leaves[i]. The algorithm is shown in Figure 5.25.

• 0, 1← Verify(rT , inodesi, di,PolicyFile): This algorithm verifies whether a data

value di is the correct value in leaf i. It takes as input the tree root rT , the

list of internal nodes connecting the leaf i to the root of the tree inodesi, the

position i and the policy file PolicyFile. First, it locates the position of the

item in the tree by using the standard AVL tree Find, then calculates the value

of the tree root r′T using the provided values of the internal nodes, the hash

functions extracted from PolicyFile and the value di. The algorithm compares

the calculated root to the provided root rT and outputs 1 if the two roots match,

that is, the verification succeeded, and 0 otherwise. The algorithm is shown in

Figure 5.28.

• (rT , nodes) ← Build(D,PolicyFile): This algorithm builds the complete tree

from a set of data values. It takes the set of data values D as input and outputs

the root of the tree rT and the internal nodes forming the tree. It builds the

125

Ph.D. – Moe Sabry McMaster – Computing and Software

tree by calling Add for each data value in the set D.

• (PolicyFile, rT)← Evolve(PolicyFile, Hnew, lchild, rchild): This algorithm evolves

the HMT [H] by setting the current hash function to a Hnew. It takes as input

the PolicyFile file, the new secure function Hnew and the root’s two children

nodes lchild and rchild. It outputs the updated PolicyFile file and the new root

value calculated by Hnew. The algorithm is shown in Figure 5.29.

Add(rT , inodesi, d,PolicyFile)

1 : if ¬(VerifyIO(rT , inodesi)) then Abort
2 : H ← GetCurrentFunction(PolicyFile)
3 : h← H(0|d)
4 : k = (|inodesi|+1)/2
5 : j = 0
6 : for level = 1 . . . k

7 : if inodesi[j].weight = 0
8 : newdataindex = inodesi[j].dataindex + 1
9 : inodesi, NewLeaf ← InsertNode(H, j, h, inodesi, newdataindex)

10 : else
11 : if inodesi[inodesi[j].left].weight ≤ inodesi[inodesi[i].right].weight

12 : j = inodesi[j].left

13 : else
14 : j = inodesi[j].right

15 : endif
16 : endif
17 : endfor
18 : rT , inodesi ← UpdateIO(inodesi, j)
19 : return (rT , inodesi, NewLeaf)

Figure 5.23: The esStruct Add algorithm

5.2.5 Security Analysis

For a hybrid Merkle tree, built using a set of hash functionsH, we define the unforgeable

security property as the ability of the tree to prevent a data object DO[i], generated

126

Ph.D. – Moe Sabry McMaster – Computing and Software

InsertNode(H, j, h, inodesi, newdataindex)

1 : NewNode.parent = inodesi[j].parent

2 : NewNode.left = j

3 : NewNode.right = j + 2
4 : NewNode.weight = 2
5 : NewNode.index = j + 1
6 : NewNode.dataindex = null

7 : NewNode.hash = H(1|inodesi[NewNode.left].h|
8 : inodesi[NewNode.left].hash|inodesi[NewNode.right].h|h)
9 : inodesi.Append(NewNode)

10 : NewLeaf.index = j + 2
11 : NewLeaf.dataindex = newdataindex

12 : NewLeaf.parent = NewNode.index

13 : NewLeaf.hash = h

14 : return (inodesi, NewLeaf)

Figure 5.24: The esStruct InsertNode algorithm

Update(rT , inodesi, d′i, i)

1 : if ¬(VerifyIO(rT , inodesi)) then Abort
2 : H ← GetCurrentFunction(PolicyFile)
3 : h← H(0|H|d′i)
4 : j ← Find(i)
5 : inodesi ← UpdateIO(inodesi, j, rT , H)
6 : return (rT , inodesi, h)

Figure 5.25: The esStruct Update algorithm

by a collision-resistant hash function Hm ∈ H, to be successfully verified unless its

corresponding data value di is part of the honest list D, that is, di = D[i]. This holds

true even if the adversary is able to compromise all other hash functions in H.

Lemma 2: If Hm ∈ H is collision resistant and used in generating leaf i, then HMT[H]i

is unforgeable. HMT[H]i is the subtree from HMT[H] containing all nodes connecting

leaf i to the root.

127

Ph.D. – Moe Sabry McMaster – Computing and Software

UpdateIO(inodesi, j, rT , H)

1 : while inodesi[j].parent 6= 0
2 : l = inodesi[inodesi[j].parent].left

3 : Hl = inodesi[l].h
4 : r = inodesi[inodesi[j].parent].right

5 : Hr = inodesi[r].h
6 : if l 6= ∅ ∧ r 6= ∅
7 : p = Hl|inodesi[l].hash|Hr|inodesi[r].hash

8 : if l 6= ∅ ∧ r = ∅ : p = Hl|inodesi[l].hash

9 : if l = ∅ ∧ r 6= ∅ : p = Hr|inodesi[r].hash

10 : inodesi[inodesi[j].parent].hash = H(1|p)
11 : inodesi[inodesi[j].parent].h = H

12 : j = inodesi[j].parent

13 : endwhile
14 : rT .hash = H(1|inodesi[rT .left].h|inodesi[rT .left].hash|
15 : inodesi[rT .right].h|inodesi[rT .right].hash)
16 : return (rT , inodesi)

Figure 5.26: The esStruct UpdateIO algorithm

Proof of Lemma 2: If the adversary A can distinguish between Expverify-ideal(A) and

Expverify-real(A), then the adversary A was able to find a collision by finding a data

value that passes Expverify-real(A) and fails Expverify-ideal(A). The algorithm BA

shown in Figure 5.30 finds the collision in H by identifying two datasets D1 and

D2 where D1 6= D2, but HMT[H](D1) = HMT[H](D2). BA identifies the collision

through its oracles presented to A and the recursive algorithm F shown in Figure 5.16.

BA oracles identify the collision event when A behaves differently during the two

experiments. At this time, BA passes the data lists causing the collision to F , which

loops through the subtrees forming D1 and D2, bottom to top, until it finds the

collision.

The OAdd, OEvolve, OVerify, and OUpdate oracles for BA are shown in Figures

128

Ph.D. – Moe Sabry McMaster – Computing and Software

Verify(rT , inodesi, di, i)

1 : j = inodesi.Find(i)
2 : currnode← inodesi[j]
3 : Hp ← currnode.h

4 : Hl ← inodesi[currnode.left].h
5 : Hr ← inodesi[currnode.right].h
6 : if (i mod 2 = 0) then
7 : inodesi[currnode.index].hash← Hp(0|Hl|inodesi[currnode.left].hash|Hr|Hr(di))
8 : else
9 : inodesi[currnode.index].hash← Hp(0|Hl|Hl(di)|Hr|inodesi[currnode.right].hash)

10 : currnode.index← currnode.parent

11 : while inodesi[currnode.index].parent 6= 0
12 : l← inodesi[currnode.index].left

13 : r ← inodesi[currnode.index].right

14 : Hp ← currnode.h

15 : Hl ← inodesi[currnode.left].h
16 : Hr ← inodesi[currnode.right].h
17 : inodesi[currnode.index].hash← Hp(1|Hl|inodesi[l].hash|Hr|inodesi[r].hash)
18 : currnode.index← currnode.parent

19 : endwhile
20 : r′T ← currnode

21 : return (rT = r′T)

Figure 5.27: The esStruct Verify algorithm

5.31, 5.32, 5.33 and 5.34, respectively. The code added to the basic oracles specifically

for BA is color coded in blue.

5.3 Discussion

In this section, we discuss the impact of using hybrid Merkle trees in some real-life

applications, such as archiving systems and certificate transparency logs. Generically,

using a hybrid Merkle tree decreases the time and processing needed to rebuild a

Merkle tree, when its hash function becomes insecure. During the lifetime of a hybrid

Merkle tree, more advanced and secure hash functions get utilized in building and

129

Ph.D. – Moe Sabry McMaster – Computing and Software

VerifyIO(rT , inodesi)

1 : j = inodesi.FindLeaf()
2 : currnode← inodesi[j]
3 : currnode.index← currnode.parent

4 : while inodesi[currnode.index].parent 6= 0
5 : l← inodesi[currnode.index].left

6 : r ← inodesi[currnode.index].right

7 : Hp ← currnode.h

8 : Hl ← inodesi[currnode.left].h
9 : Hr ← inodesi[currnode.right].h

10 : inodesi[currnode.index].hash← Hp(1|Hl|inodesi[l].hash|Hr|inodesi[r].hash)
11 : currnode.index← currnode.parent

12 : endwhile
13 : r′T ← currnode

14 : return (rT = r′T)

Figure 5.28: The esStruct VerifyIO algorithm

Evolve(PolicyFile, Hnew, rchild, rchild)

1 : PolicyFile.Append(Hnew, Secure)
2 : PolicyFile.SetCurrToObsolete()
3 : rT = Hnew(1|lchild.h|lchild.hash|rchild.h|rchild.hash)
4 : return (PolicyFile, rT)

Figure 5.29: The esStruct Evolve algorithm

updating parts of the tree. When a hash function is deemed insecure, only the nodes

generated by it need to be regenerated, not the whole tree. Any update of a leaf value

uses the most recent secure hash function and subsequently secures log(n) internal

nodes in the tree, including the root. Each new leaf added or a leaf value updated,

secures more tree nodes by regenerating them using the most recent secure hash

function.

130

Ph.D. – Moe Sabry McMaster – Computing and Software

B() :

1 : D ← []
2 : IO ← []
3 : IOE ← []
4 : b←$AOAdd,OUpdate,OVerify,OEvolve()

Figure 5.30: The B algorithm for esStruct

5.3.1 CT Logs

The CT logs hold the records for all certificates generated. The logs are used to verify

authentic sites versus malicious ones. The CT logs currently contain around 1.9 billion

records1 and they are stored in a Merkle tree system. The system is append-only and

no updates are allowed.

In the current implementation of CT logs, if the hash function used for this system

becomes insecure, the whole tree structure needs to be rebuilt which requires a long

time and a sizeable amount of processing. Additionally, during this build process, the

system is insecure. Utilizing a hybrid Merkle tree system will reduce the number of

nodes to be regenerated in such cases to be only the ones generated by the compromised

hash function and the system is only partly insecure during the nodes update.

The drawback of utilizing our system in the CT logs application is the need to

maintain a PolicyFile and add the hash function identifier to the node structure.

5.3.2 Digital Archiving Systems

Digital archiving systems need a mechanism to ensure the authenticity and integrity

of the archived files. One way of achieving this goal is to implement a Merkle tree

where the leaves are the hash values of the archived files, as described in the previous
1https://sslmate.com/labs/ct_growth/

131

https://sslmate.com/labs/ct_growth/

Ph.D. – Moe Sabry McMaster – Computing and Software

OAdd(IOi, d)

1 : IOi ← GetIO(IO, |D|)
2 : IOEi ← GetIO(IOE , |D|)
3 : sec← 0
4 : if (for each k = 0 to |IOEi |: IOEi [k] = IOsec[k]) then
5 : if IOi 6= IOEi∧Verify(V O, IOi, ∅, |DO|) then
6 : Exit to B (F(IOEi , IOi))
7 : endif
8 : sec← 1
9 : endif

10 : (V O, IO, DO[i])← Add(V O, IOi, d, PolicyFile)
11 : i← |D|
12 : D[i]← di

13 : IOEi ← GetIO(IO, i)
14 : if sec← 1 then
15 : for each node k in IOEi

16 : IOsec[k.index]← k

17 : endfor
18 : endif
19 : return (IOi, DO[i])

Figure 5.31: The B OAdd oracle for esStruct

chapter. When a user requests verification of a file, the system uses the hash value

of the file to verify if it will generate the root value stored with the archive as the

verification value.

In such systems, to ensure the integrity of the archived files in the long term,

the utilized Merkle tree must be kept secure by ensuring that its hash function is

secure. Due to advancements in computational power and cryptanalysis techniques,

the hash function might become insecure. To overcome this problem, digital archiving

systems utilize multiple Merkle trees built with different hash functions to ensure

the integrity is never compromised. In case a hash function becomes insecure, the

132

Ph.D. – Moe Sabry McMaster – Computing and Software

OEvolve()

1 : PolicyFile← Evolve(PolicyFile, Fnew, V Ol, V Or)
2 : Dinsec.Append(Dsec)
3 : IOinsec.Append(IOsec)
4 : Dsec ← []
5 : IOsec ← []
6 : return ⊥

Figure 5.32: The B OEvolve oracle for esStruct

OVerify(IOi, di, i)

1 : IOEi ← GetIO(IOE , i)
2 : if (for each k = 0 to |IOEi |: IOEi [k] = IOsec[k]) then
3 : if (IOi 6= IOEi)∧Verify(V O, IOi, di, i) then
4 : Exit to B (F(IOEi , IOi))
5 : endif
6 : endif
7 : return D[i] = di

Figure 5.33: The B OVerify oracle for esStruct

corresponding tree is discarded and a new one is rebuilt using a currently deemed

secure hash function. During this time, the integrity of the system is not fully secured.

Utilizing a hybrid Merkle tree eliminates the need to have multiple Merkle trees

and decreases the time needed to update the nodes generated by an insecure function.

When one of the hash functions utilized in the hybrid Merkle tree becomes insecure,

only the nodes generated by this function need to be regenerated by the most recent

secure hash function.

5.3.3 ArchiveSafe LT: Case Study

In this section, we study the effect of using a hybrid Merkle tree in the ArchiveSafe

LT system presented in Chapter 4. ArchiveSafe LT uses two Merkle trees generated

133

Ph.D. – Moe Sabry McMaster – Computing and Software

OUpdate(IOi, di, i)

1 : if H(di) = H(d′i) ∧ di 6= d′i then
2 : Exit to B (di, d′i)
3 : endif
4 : IOEi ← GetIO(IOE , i)
5 : sec← 0
6 : if (for each k = 0 to |IOEi |: IOEi [k] = IOsec[k]) then
7 : if IOi 6= IOEi∧Verify(V O, IOi, d′i, i) then
8 : Exit to B (F(IOEi , IOi))
9 : endif

10 : sec← 1
11 : endif
12 : (V O, IOi)← Update(V O, IOi, di, i)
13 : D[i]← di

14 : IOEi ← IOi

15 : if sec← 1 then
16 : for each node k in IOEi

17 : IOsec[k.index]← k

18 : endfor
19 : endif
20 : return (IOi, DO[i])

Figure 5.34: The B OUpdate oracle for esStruct

using two different hash functions to ensure the system is resilient to the failure of any

of the hash functions. Utilizing a hybrid Merkle tree eliminates the need to maintain

multiple Merkle trees, which simplifies some of the system’s maintenance processes

such as the integrity evolution, and eliminates the space and maintenance required for

keeping the second tree. The integrity evolution process in the current implementation

of ArchiveSafe LT involves rebuilding a new full Merkle tree with a currently deemed

secure hash function, but by utilizing a hybrid Merkle tree, the integrity evolution

process will be reduced to rebuilding only the nodes generated by the insecure function

and switching the tree to use a newer more secure hash function going forward.

134

Ph.D. – Moe Sabry McMaster – Computing and Software

Utilizing a hybrid Merkle tree simplifies the structure of the integrity verification

object Iv to be the root of one tree and the integrity data object Id which will consist

of the nodes of one tree instead of two. On the other hand, it adds a slight complexity

of maintaining the PolicyFile. This change reduces the amount of data exchanged

between the data collector and the storage provider during the update, evolve and

delete processes, since the size of Id will be cut in half. For the same reason, the time

and processing needed to update Id during the update, evolve and delete processes

will also be cut in half.

We utilized a hybrid Merkle tree in ArchiveSafe LT and reran the file update

experiment. The results showed improvement in performance as expected since we are

updating one tree instead of two. The new results show 42% - 48% reduction in tree

updates processing time compared to the original results. The reason the reduction

was not 50% even though we cut the number of trees in half, is that in the Hybrid

Merkle tree case, there is the slight overhead of maintaining the PolicyFile.

Number of Files 100 1,000 1,000,000
Hybrid Merkle Tree 0.23ms 0.30ms 0.51ms
Merkle Tree 0.41ms 0.54ms 0.98ms

Table 5.1: Tree update time comparison for one node change

135

Chapter 6

Conclusion

In this chapter, we summarize the thesis contributions and present future directions

for research.

6.1 Summary of Contributions

This thesis is focused on addressing two main challenges facing digital archiving

systems, mass data breaches and long-term security. We had two objectives: 1)

finding a solution to the mass data breaches challenge without the need for managing

keys or the risk of depending on a single master key, and 2) finding a solution to

support long-term confidentiality and integrity of digital archiving systems, with better

performance and lower cost and complexity compared to the current state-of-the-art

systems.

6.1.1 Mass Data Leakage

Our proposed mass-leakage resistant system ArchiveSafe, achieves the goal of prevent-

ing mass data breaches without the need to store any keys. ArchiveSafe’s performance

136

Ph.D. – Moe Sabry McMaster – Computing and Software

is acceptable according to conventional users’ standards. The system adds a 140–

520ms overhead when writing a file, and a customizable overhead when reading a

file, ranging from 510ms to 110 seconds depending on the difficulty level chosen. The

overhead is acceptable for honest users who are accessing one or few files at a time

but it is strongly hindering an adversary aiming for mass data acquisition. Different

difficulty levels could be set to different groups of files depending on how sensitive is

the information they contain. Difficulty levels settings is configurable and left to the

system administrators to adopt based on their needs.

6.1.2 Long-Term Security

Our proposed archiving system ArchiveSafe LT achieves the goal of providing long-

term confidentiality and integrity while eliminating the high cost and complexity

needed by the current state-of-the-art systems. It also outperforms these systems and

significantly reduces the storage space needed for archiving. These advantages over

state-of-the-art systems comes at the cost of sacrificing information-theoretic security

for computational assumptions, but we mitigate that by utilizing robust combiners

and the novel evolution protocol.

ArchiveSafe LT requires only 14% to 33% of the time needed by current systems to

process the same archives’ sizes and utilizes less than one-third of the storage space

required by these systems. The system’s performance and space utilization improves

significantly with larger file sizes.

6.1.3 Succinct Updatable Proof Structure

Building on our work on the long-term secure archiving system, we introduced a new

evolving succinct updatable proof data structure, esStruct, that can be used to hold

137

Ph.D. – Moe Sabry McMaster – Computing and Software

the integrity information for archiving systems. esStruct is updated in O(log(n)) time

without the need to rebuild it from scratch. We instantiate it as a Hybrid Merkle tree

and prove the security of this instantiation. The structure is capable of evolving to a

secure scheme if the scheme it uses becomes insecure.

We presented a more efficient version of ArchiveSafe LT that utilizes a Hybrid

Merkle tree for long-term integrity. We measured the performance compared to the

original implementation and showed 42% - 48% reduction in tree updates processing

time.

6.2 Future Work

There are multiple directions for future research based on the work done in this thesis

for digital archiving systems.

For the mass data breach protection area, future research should investigate how

to make ArchiveSafe adaptable to the user’s behavior. ArchiveSafe should be able

to increase the puzzles’ difficulty if a user is acting suspiciously, for example, trying

to access large number of files in a short time span or using an untrusted hosting

service. The system should increase the puzzles’ difficulty of the files once it detects a

suspicious behavior. The increase in difficulty should be dynamic, it should increase

proportionally with how suspicious the user’s behavior is until it reaches a level of

difficulty that is impossible for an attacker to obtain large number of files. Since this

difficulty increase will affect the honest users, it should be temporary until the system

shuts down the attacker. The research goals should be to:

• Identify and formulate the different types of suspicious users’ behavior.

138

Ph.D. – Moe Sabry McMaster – Computing and Software

• Develop methods to detect such behaviors.

• Develop appropriate system responses to such behaviors.

For the long-term security area, one direction is to incorporate updatable encryption

[7] [21] in ASLT-D2 to eliminate the risk of sharing a key with the storage provider.

This leads to more secure storage outsourcing in the cloud. In updatable encryption

schemes, an update key k∆ could be generated using two keys ka and kb. k∆ could be

used with the scheme’s Update function to change the encryption key for a ciphertext

from ka to kb without the need to obtain either. Utilizing updatable encryption will

allow the data collector in case of a compromised key, to send the storage provider only

the k∆ to perform the evolution. Throughout the archive life-cycle, there will never

be a time where the storage provider possesses the full keys’ set needed to completely

decrypt the archive. The possible future research goals would be to:

• Investigate how updatable encryption could be best utilized in ArchiveSafe LT.

• Update the ArchiveSafe LT protocols to incorporate updatable encryption.

• Prove the security of the updated system.

For the Hybrid Merkle tree, two of the main remaining open questions are 1) when

to update the nodes that were generated using insecure hash functions, and 2) how to

efficiently update them. The possible future research goals would be to:

• Identify events or hash functions utilization ratios that should trigger an update

for the nodes generated by insecure hash functions.

• Develop an efficient algorithm to update these nodes using the most recent

secure hash function with minimal processing and storage overhead.

139

Bibliography

[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately hard, memory-

bound functions. ACM Transactions on Internet Technology (2005), 299–327.

[2] R. Alleaume, F. Roueff, E. Diamanti, and N. Lütkenhaus. Topological op-

timization of quantum key distribution networks. New Journal of Physics

(2009), 075002.

[3] T. Aura, P. Nikander, and J. Leiwo. DOS-resistant authentication with client

puzzles. In: Security Protocols: 8th International Workshop Cambridge. 2000, 170–

177.

[4] G. Becker. Merkle signature schemes, Merkle trees and their cryptanalysis.

Ruhr-University Bochum, Technical Report (2008), 19.

[5] A. Biryukov, D. Dinu, and D. Khovratovich. Argon2: new generation of memory-

hard functions for password hashing and other applications. In: IEEE European

Symposium on Security and Privacy. 2016, 292–302.

[6] M. Blaze. A cryptographic file system for UNIX. In: ACM Conference on

Computer and Communications Security. 1993, 9–16.

[7] D. Boneh, K. Lewi, H. Montgomery, and A. Raghunathan. Key homomorphic

PRFs and their applications. In: Advances in Cryptology–CRYPTO. 2013, 410–

428.

140

Ph.D. – Moe Sabry McMaster – Computing and Software

[8] J. Braun, J. Buchmann, D. Demirel, M. Geihs, M. Fujiwara, S. Moriai, M. Sasaki,

and A. Waseda. LINCOS: A Storage System Providing Long-Term Integrity,

Authenticity, and Confidentiality. In: ACM on Asia Conference on Computer

and Communications Security. 2017, 461–468.

[9] J. Braun, J. Buchmann, C. Mullan, and A. Wiesmaier. Long term Confidentiality:

A survey. Designs, Codes and Cryptography (2014), 459–478.

[10] J. Buchmann, G. Dessouky, T. Frassetto, Á. Kiss, A.-R. Sadeghi, T. Schneider, G.

Traverso, and S. Zeitouni. SAFE: A Secure and Efficient Long-Term Distributed

Storage System. In: ACM International Workshop on Security in Blockchain

and Cloud Computing. 2020, 8–13.

[11] A. Buldas, P. Laud, and H. Lipmaa. Accountable certificate management using

undeniable attestations. In: ACM Conference on Computer and Communications

Security. 2000, 9–17.

[12] Cashapp.com. Over 8 million Cash App users possibly affected by data breach

from a former employee. https://www.usatoday.com/story/money/2022/04/

06/cash-app-data-breach/9490327002. 2022.

[13] G. Cattaneo, L. Catuogno, A. Del Sorbo, and P. Persiano. The design and

implementation of a Transparent Cryptographic File System for UNIX. In:

USENIX Annual Technical Conference. 2001, 10–3.

[14] Crypto.com. Crypto.com Admits 35 Dollars Million Hack. https://www.forbes.

com/sites/thomasbrewster/2022/01/20/cryptocom-admits-35-million-

hack/?sh=69a360357513. 2022.

[15] D. Dean and A. Stubblefield. Using Client Puzzles to Protect TLS. In: USENIX

Security Symposium. 2001.

141

https://www.usatoday.com/story/money/2022/04/06/cash-app-data-breach/9490327002
https://www.usatoday.com/story/money/2022/04/06/cash-app-data-breach/9490327002
https://www.forbes.com/sites/thomasbrewster/2022/01/20/cryptocom-admits-35-million-hack/?sh=69a360357513
https://www.forbes.com/sites/thomasbrewster/2022/01/20/cryptocom-admits-35-million-hack/?sh=69a360357513
https://www.forbes.com/sites/thomasbrewster/2022/01/20/cryptocom-admits-35-million-hack/?sh=69a360357513

Ph.D. – Moe Sabry McMaster – Computing and Software

[16] Y. Dodis and J. Katz. Chosen-ciphertext security of multiple encryption. In:

Theory of Cryptography Conference–TCC. 2005, 188–209.

[17] C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions for fighting

spam. In: Advances in Cryptology-CRYPTO. 2003, 426–444.

[18] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In:

Advances in Cryptology—CRYPTO. 1993, 139–147.

[19] eHealth. Retention Policy: Electronic Health Record. https://ehealthontario.

on.ca/files/public/support/EHR_Retention_Policy_EN.pdf?v=20201023.

2016.

[20] S. Even and O. Goldreich. On the power of cascade ciphers. ACM Transactions

on Computer Systems–TOCS (1985), 108–116.

[21] A. Fabrega, U. Maurer, and M. Mularczyk. A fresh approach to updatable

symmetric encryption. Cryptology ePrint Archive (2021).

[22] I. Gassko, P. S. Gemmell, and P. MacKenzie. Efficient and fresh certification.

In: International Workshop on Public Key Cryptography. 2000, 342–353.

[23] M. Geihs, N. Karvelas, S. Katzenbeisser, and J. Buchmann. PROPYLA: Privacy

Preserving Long-term Secure Storage. In: International Workshop on Security

in Cloud Computing. 2018, 39–48.

[24] M. T. Goodrich and R. Tamassia. Efficient authenticated dictionaries with skip

lists and commutative hashing. Johns Hopkins Information Security Institute,

Technical Report (2000).

[25] Google.com. Certificate Transparency. https://sites.google.com/site/

certificatetransparency/log-proofs-work. 2023.

142

https://ehealthontario.on.ca/files/public/support/EHR_Retention_Policy_EN.pdf?v=20201023
https://ehealthontario.on.ca/files/public/support/EHR_Retention_Policy_EN.pdf?v=20201023
https://sites.google.com/site/certificatetransparency/log-proofs-work
https://sites.google.com/site/certificatetransparency/log-proofs-work

Ph.D. – Moe Sabry McMaster – Computing and Software

[26] A. Herzberg. On tolerant cryptographic constructions. In: Topics in Cryptology–

RSA. 2005, 172–190.

[27] M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols. In:

IFIP TC6/TC11 Joint Working Conference on Communications and Multimedia

Security–CMS. 1999, 258–272.

[28] A. Juels and J. Brainard. Client Puzzles: A Cryptographic Countermeasure

Against Connection Depletion Attacks. In: Network and Distributed Systems

Security Symposium. 1999.

[29] J. Kan and K. S. Kim. MTFS: Merkle-tree-based file system. In: IEEE Interna-

tional Conference on Blockchain and Cryptocurrency–ICBC. 2019, 43–47.

[30] P. C. Kocher. On certificate revocation and validation. In: International confer-

ence on financial cryptography. 1998, 172–177.

[31] S. Meier, B. Schmidt, C. Cremers, and D. Basin. The TAMARIN prover for

the symbolic analysis of security protocols. In: International Conference on

Computer Aided Verification. 2013, 696–701.

[32] R. C. Merkle. Secrecy, authentication, and public key systems. 1979.

[33] Microsoft. Microsoft Data Breach. https : / / msrc . microsoft . com / blog /

2022/10/investigation-regarding-misconfigured-microsoft-storage-

location-2/. 2022.

[34] F. Moghimifar. Securing Database Using Client Puzzles. Master’s report. Queens-

land University of Technology, 2015.

[35] P. Muth, M. Geihs, T. Arul, J. Buchmann, and S. Katzenbeisser. ELSA: efficient

long-term secure storage of large datasets. The European Association for Signal

Processing–EURASIP (2020), 1–20.

143

https://msrc.microsoft.com/blog/2022/10/investigation-regarding-misconfigured-microsoft-storage-location-2/
https://msrc.microsoft.com/blog/2022/10/investigation-regarding-misconfigured-microsoft-storage-location-2/
https://msrc.microsoft.com/blog/2022/10/investigation-regarding-misconfigured-microsoft-storage-location-2/

Ph.D. – Moe Sabry McMaster – Computing and Software

[36] R. Poddar, T. Boelter, and R. A. Popa. Arx: A strongly encrypted database

system. IACR Cryptology ePrint Archive (2016).

[37] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB: protect-

ing confidentiality with encrypted query processing. In: ACM Symposium on

Operating Systems Principles. 2011, 85–100.

[38] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release

crypto. MIT, Technical Report (1996).

[39] M. Sabry and R. Samavi. ArchiveSafe LT: Secure Long-term Archiving System.

In: Annual Computer Security Applications Conference–ACSAC. 2022, 936–948.

[40] M. Sabry, R. Samavi, and D. Stebila. ArchiveSafe: Mass-Leakage-Resistant

Storage from Proof-of-Work. In: Data Privacy Management Workshop–DPM.

2020, 89–107.

[41] A. Shamir. How to share a secret. Communications of the ACM (1979), 612–613.

[42] C. E. Shannon. Communication theory of secrecy systems. The Bell System

Technical Journal (1949), 656–715.

[43] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea. Iris: A scalable cloud file

system with efficient integrity checks. In: Annual Computer Security Applications

Conference–ACSAC. 2012, 229–238.

[44] L. Vargas, G. Hazarika, R. Culpepper, K. R. Butler, T. Shrimpton, D. Szajda,

and P. Traynor. Mitigating risk while complying with data retention laws.

In: ACM Conference on Computer and Communications Security–SIGSAC.

2018, 2011–2027.

144

Ph.D. – Moe Sabry McMaster – Computing and Software

[45] B. Waters, A. Juels, J. A. Halderman, and E. W. Felten. New client puzzle

outsourcing techniques for DoS resistance. In: ACM conference on Computer

and communications security. 2004, 246–256.

[46] C. Wright, M. Martino, and E. Zadok. NCryptfs: A Secure and Convenient

Cryptographic File System. In: USENIX Annual Technical Conference. 2003, 197–

210.

[47] E. Zadok, I. Badulescu, and A. Shender. Cryptfs: A Stackable vnode Level

Encryption File System. Computer Science Deptartment, Columbia University,

Technical Report (1998).

145

	Lay Abstract
	Abstract
	Acknowledgements
	Introduction
	Challenges & Motivation
	Contributions & Thesis Outline

	Literature Review
	Cryptographic Concepts and Building Blocks
	Cryptographic Concepts
	Cryptographic Components

	Mass Data Leakage
	Database and Filesystem Protection
	Cryptographic Puzzles Systems
	Cryptographic Puzzles Systems for Confidentiality

	Long-Term Security
	Authenticated Data Structures & Merkle Trees

	ArchiveSafe: Mass-Leakage-Resistant Storage from Client Puzzles
	ArchiveSafe Overview
	Requirements
	Design Criteria
	Choice of Puzzle
	Threat Model
	Limitations

	Difficulty-Based Keyless Encryption
	Generic Construction of DBKE
	Hash-Based Construction of Difficulty-Based Keyless Key Wrap
	Security of Hash-Based Keyless Key Wrap Scheme P
	Puzzle Degradation
	Additional Considerations

	Evaluation
	Prototype Implementation
	Experimental Setup
	Results
	Discussion

	Use Cases
	Summary

	ArchiveSafe LT: Secure Long-term Archiving System
	Robust Combiners
	ArchiveSafe LT Framework
	Protocols
	ArchiveSafe LT Specifications
	Threat Model
	Limitations
	Security

	System Designs
	ASLT-D1
	ASLT-D2
	Security Analysis

	Evaluation
	Experiment Implementation
	Experimental Setup
	Results
	Discussion

	Summary

	Hybrid Merkle Trees
	sStruct: Succinct Updatable Proof Structure
	Security Property
	Merkle Tree as an sStruct
	Security Analysis

	esStruct: Evolving Updatable Succinct Proof Structure
	Threat Model
	Limitations
	Security Property
	Hybrid Merkle Tree as an esStruct
	Security Analysis

	Discussion
	CT Logs
	Digital Archiving Systems
	ArchiveSafe LT: Case Study

	Conclusion
	Summary of Contributions
	Mass Data Leakage
	Long-Term Security
	Succinct Updatable Proof Structure

	Future Work

	Bibliography

