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Abstract

In this thesis we describe and relate various representations of 3-dimensional vector valued

modular forms. In particular, we give algebraic formulas for families of 3-dimensional vec-

tor valued modular forms on Γ0(2), a subgroup of the modular group Γ = SL2(Z). These

formulas enable us to compute CM values of the 3-dimensional vector valued modular

forms at CM points in the upper half plane.

We also define families of Eisenstein series corresponding to one-dimensional represen-

tation, χ, on Γ0(2). This gives a different description of the algebraic family discussed in

the preceding paragraph. For Eisenstein series of weight 4 and 6, we evaluate their Fourier

series expansion and compute their Fourier coefficients. The constant term in the Fourier

series expansion of Eisenstein series of weight 4 and 6 is then expressed using Bessel func-

tion of the first kind and Kloosterman sums.
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Chapter 1

Introduction

1.1 Motivation

Modular forms hold significant importance in the sphere of Number Theory. Andrew Wiles

in [29] proved Fermat’s Last Theorem using theories related to the modular forms.

These functions are known to establish profound interconnections not only between

different areas of mathematics, but also between mathematics and physics. Gannon in

[17] explores these connections and explains how modular forms are closely related to

the finite simple groups and vertex operator algebras. He also discusses applications of

modular forms to conformal field theory, string theory, etc. in physics. Franc and Mason

in [16] conduct thorough examination of connections and applications of modular forms

to quantum physics and conformal field theory. The interested reader is referred to their

research paper [16] and its references for further exploration of the topic.

In the applications of modular forms in physics, these appear as different types of fam-

ilies. We are looking at one such family of modular forms of dimension 3. We used [10] as

the main reference for the background on modular forms in chapter 2.

Franc and Mason in [14] identified the connections between vector valued modular

forms of dimension 3 and hypergeometric series. In chapter 3, we are trying to extend

this relationship further to polynomials. We give algebraic formulas for families of 3-

dimensional vector valued modular forms on Γ0(2), a subgroup in SL2(Z) using Bailey’s

1
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classical cubic transformations ([4], [21]) and Vidunas’ elementary expressions of hyper-

geometric functions in [28].

Every vector valued modular form corresponds to a Fourier series. In chapter 4, we

define a series related to vector valued modular forms in chapter 3 and show that it be-

haves similar to Eisenstein series. We compute Fourier coefficients of these analogues of

Eisenstein series and express the constant terms in their Fourier series expansion in terms

of Bessel function of the first kind and Kloosterman sums.

In the next section, we lay down notations that have not been defined in the later chap-

ters. This is then followed by backgound on vector valued modular forms and ordinary

differential equations in chapter 2.

2



Ph.D. Thesis - G.Virk; McMaster University - Mathematics and Statistics

1.2 Notations

ℜ: Real part of complex number

ℑ: Imaginary part of complex number

3
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Chapter 2

Background

2.1 Vector valued modular forms (vvmfs)

The upper half plane, H is defined as the set of complex numbers with strictly positive

imaginary part.

H = {τ ∈ C | Im(τ) > 0}.

The Modular Group, Γ = SL2(Z) is defined as the group of 2x2 matrices with integer

0

C

Figure 2.1: Upper half plane.

4
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entries and determinant 1,

Γ = SL2(Z) =


a b

c d

 | a, b, c, d ∈ Z; ad− bc = 1

 .

The group Γ is generated by T =

1 1

0 1

 and S =

0 −1

1 0

. The order of T is

infinite because T n =

1 n

0 1

 for n ∈ Z and order of S is 4 because S2 =

 0 −1

−1 0

.

To express convenient descriptions of representations of Γ, we define another generator of

Γ, R = ST =

0 −1

1 1

. The order of R = 6 because R3 = −I . So,

Γ = < R,S | R3 = S2 = −I, R6 = S4 = I > .

Next, we define the action of Γ on H. For

a b

c d

 ∈ Γ,

a b

c d

 (τ) =
aτ + b

cτ + d
, ∀τ ∈ H.

Note that if γ ∈ Γ and τ ∈ H, then γ(τ) ∈ H. This happens because

Im(γ(τ)) =
Im(τ)

|cτ + d|2
. (2.1)

Definition 2.1. A representation, ρ, of Γ is a group homomorphism

ρ : Γ → GLd(C)

5
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where d gives the dimension of ρ.

Definition 2.2. A vector valued modular form (vvmf) of weight k ∈ Z with respect to ρ is

a meromorphic function f : H → Cd such that:

• f = (f1, f2, ....., fd)
t is holomorphic on H,

• f(γ(τ)) = (cτ + d)kρ(γ)f(τ), ∀ γ =

a b

c d

 ∈ Γ, τ ∈ H and,

• f is holomorphic at the “cusp” (∞).

For a detailed discussion of what it means for a vector-valued modular form to be holo-

morphic at the cusp, see [6].

Example 2.3. For trivial ρ : Γ → C×, i.e. ρ(γ) = 1 for all γ ∈ Γ, we define modular

forms of weight k of level 1 over ρ as follows:

f(γ(τ)) = (cτ + d)kf(τ), τ ∈ H, γ ∈ Γ = SL2(Z).

Example 2.4. An example of level 1 modular forms are the Eisenstein series. For even

k > 2, the Eisenstein series are defined as

Gk(τ) =
∑

(c,d)∈Z2−(0,0)

1

(cτ + d)k
τ ∈ H.

The Eisenstein series are modular forms of weight k over Γ. Using these, we also define

normalized Eisenstein series as follows:

Ek(τ) =
Gk(τ)

2ζ(k)

where ζ(k) =
∞∑
k=1

1

dk
for Re(k) > 1 is the Riemann zeta function.

6
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Example 2.5. For dim ρ = 2, consider ρ : Γ → GL2(C) to be the Identity map. Then,

f(τ) =

τ
1


is a VVMF of weight −1.

Idea for proof: Since T =

1 1

0 1

 and S =

0 −1

1 0

 are generators of Γ, it suffices

to check that f(γ(τ)) = (cτ + d)−1ρ(γ)f(τ) for γ = S, T for all τ ∈ H. These two

conditions can be checked directly by a simple finite computation.

The set of modular forms of weight k over group Γ is denoted by Mk(Γ). Note that for

f1, f2 ∈ Mk(Γ), we have αf1 + βf2 ∈ Mk(Γ) for all α, β ∈ C. Therefore, Mk(Γ) is a

vector space over C.

Also, for f ∈ Mk(Γ) and g ∈ Ml(Γ), we have fg ∈ Mk+l(Γ). Hence, we define the

space of all modular forms over the group Γ by the sum

M(Γ) =
⊕
k∈Z

Mk(Γ),

which forms a graded ring.

We can also denote these spaces with respect to the representation ρ (over Γ). The set

of vvmfs of weight k ∈ Z for ρ is denoted by Mk(ρ). Similarly, we can denote the set of

all vvmfs over ρ by the sum

M(ρ) =
⊕
k∈Z

Mk(ρ).

The following theorem informs us about the structure of this sum.

Theorem 2.6 [The Free-Module Theorem] ([22], [14]) Let ρ denote an n-dimensional

complex representation of Γ. Then, M(ρ) is free of rank n as a C[E4, E6]-module.

Next, we will define some important subgroups of Γ = SL2(Z).

7
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Definition 2.7. For N ∈ Z+. We define the principal congruence subgroup of level N as

Γ(N) =


a b

c d

 ∈ SL2(Z)
∣∣∣∣
a b

c d

 ≡

1 0

0 1

 (mod N)

 .

Definition 2.8. A subgroup X ⊂ SL2(Z) is called a congruence subgroup of level N , if

Γ(N) ⊆ X for some N ∈ Z+ and N is the least such positive integer.

An important congruence subgroup that we will be studying in this thesis is Γ0(N).

Example 2.9. We define Γ0(N) as:

Γ0(N) =


a b

c d

 ∈ SL2(Z)
∣∣∣∣
a b

c d

 ≡

∗ ∗

0 ∗

 (mod N)

 .

Note that the index of Γ0(N) in SL2(Z) is given by N
∏
p|N

(1 +
1

p
), where the product is

taken over the prime divisors of N. ([10], p. 14)

Another important notation that we need to introduce is that of the weight-k operator,

also known as the slash operator.

Definition 2.10. Let f be a vvmf of weight k. Then for any γ ∈ SL2(Z), we define the

slash operator |γ as

f |γ(τ) =
f(γ(τ))

(cτ + d)k
.

The slash operator is generally denoted with respect to the weight k as f |kγ, but for

simplicity we will suppress the weight k from the notation and symbolize the operator as

f |γ . It can be easily observed that the definition of vvmfs can be re-written using the slash

operator as

f |γ(τ) = ρ(γ)f(τ),

where γ ∈ SL2(Z) and τ ∈ H.

Following are the definitions of some of the important functions that we will use in

calculations for vvmf formulae in Chapter 3.

8
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Definition 2.11. The modular function j : H → C is defined as:

j(τ) =
1728(g2(τ))

3

∆(τ)
, (2.2)

where g2(τ) = 60G4(τ), g3(τ) = 140G6(τ) and ∆(τ) = (g2(τ))
3 − 27(g3(τ))

2 is the

Discriminant function.

The j-function is also known as the modular invariant and plays a crucial role in the

theory of modular forms. It should be noted that the j-function is not a modular form.

Even though it is holomorphic on H and is Γ-invariant i.e. j(γ(τ)) = j(τ) for all γ ∈ Γ

and τ ∈ H, but it is not holomorphic at ∞.

Definition 2.12. The Dedekind eta function, denoted by η, is defined as

η(τ) = q
1
24

∞∏
n=1

(1− qn),

where q = e2πiτ and τ ∈ H. This function is a weight 1/2 modular form of level 1.

Definition 2.13. For a complex number s with positive real part, we define the gamma

function of s as the integral

Γ(s) =

∫ ∞

t=0

ts−1e−tdt.

It can be easily shown that Γ(1) = 1 and that the Gamma function satisfies the functional

equation

Γ(s+ 1) = sΓ(s).

Therefore, Γ(n) = (n+ 1)! for all n ∈ Z+.1

Definition 2.14. Let v and t be complex variables with ℑ(t) > 0. Then, we define the theta

function for v and t as follows:

θ(v, t) =
1

i

∞∑
n=−∞

(−1)nq(n+1/2)2e(2n+1)πiv,

1 We are using the same notation Γ for the modular group SL2(Z) and the Gamma function. The meaning
of the notation will be based on the context in which it is used.

9
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where q = eπit. For fixed t, the theta function is a holomorphic function of v on H ([7], p.

58). Similarly, we can define special cases of theta functions for complex variables v and t

as follows:

θ2(v, t) =
∞∑

n=−∞

q(n+1/2)2e(2n+1)πiv,

θ4(v, t) =
∞∑

n=−∞

(−1)nqn
2

e2nπiv,

θ3(v, t) =
∞∑

n=−∞

qn
2

e2nπiv,

where q = eπit and ℑ(t) > 0. Like the theta function θ(v, t), the above mentioned functions

are also holomorphic functions of v on H for fixed t ([7], p. 58).

We will now use the above mentioned special theta functions to define the modular

lambda function.

Definition 2.15. The modular lambda function, denoted by λ, is defined with respect to the

theta function as follows:

λ(τ) =
θ2

4(0, τ)

θ3
4(0, τ)

where τ ∈ H. The λ-function is a holomorphic function on the upper half plane, H, and its

q-expansion is given by:

λ(τ) = 16q − 128q2 + 704q3 − 3072q4 + 11488q5 − 38400q6 + · · ·

[1].

The formulas in chapter 3 enable us to compute the CM values of the 3-dimensional

vector valued modular forms at CM points in the upper half plane. So, it is useful to define

the terms CM points and CM values.

Definition 2.16. A point τ ∈ H is a complex multiplication (CM) point if it belongs to a

quadratic field Q(
√
d) where d ∈ Z−. For example, i, 1

2
+

√
3
2
i, etc. We define CM values

as the values of modular forms at CM points.

10
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In chapter 4, we will use the fact that each component of VVMF f has a Fourier series

expansion([10], [13]), so, it is important to lay down some basic definitions from Fourier

Analysis.

Definition 2.17. ([27], p.34) Let F be an integrable function given on an interval [a, b] of

length L (that is, b− a = L), then the nth Fourier coefficient of F is defined by

F̂ (n) =
1

L

∫ b

a

F (x)e−2πinx/Ldx, n ∈ Z.

Note that if the function F is periodic on R of length b − a, then it is determined by its

values on the interval [a, b].

The Fourier series of F is given by

F (x) =
∞∑

n=−∞

F̂ (n)e2πinx/L.

Each component of VVMF f has Fourier series expansion of the form:

fj(τ) = qmj

∞∑
l=0

tnl
qnl

where q = e2πiτ and τ ∈ H ([13]). The tnl
are the Fourier coefficients.

In the expansion of Fourier series of certain families of vvmfs in chapter 4, we will

observe that the constant term can be expressed using Kloosterman sums, Bessel functions

of the first kind and Modified Bessel functions of the first kind. So, it is important that we

define these functions. We will discuss Bessel functions in section 2.2 after introducing

differential equations. For now, we define Kloosterman sums.

Definition 2.18. ([11]. [18], [19]) Let u, v, n be natural numbers. Then the Kloosterman

sums are defined by the formula

K(u, v, n) =
n−1∑
d=1

gcd(d,n)=1

e
2πi
n

(ud+vd)

11
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where d is the multiplicative inverse of d modulo n.

12
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2.2 Ordinary Differential Equations

A field, K, is called a differential field if there exists a map ∂ : K −→ K, such that:

• ∂(a+ b) = ∂a+ ∂b for all a, b ∈ K,

• ∂(ab) = a∂b+ b∂a for all a, b ∈ K.

Definition 2.19. An ordinary differential equation of order n over differential field K is an

equation of the form

∂ny + p1∂
n−1y + p2∂

n−2y + · · ·+ pn−1∂y + pny = 0,

where p1, p2, · · · pn ∈ K.

Example 2.20. For n = 2 and K = C(z), the field of rational functions, we define the

hypergeometric differential equation as

(z)(z − 1)
dy2

dz2
+ ((a+ b+ 1)z − c)

dy

dz
+ aby = 0, (2.3)

where a, b, c ∈ C.

Definition 2.21. Consider the linear differential equation of order n,

dyn

dzn
+ p1(z)

dyn−1

dzn−1
+ · · ·+ pn−1(z)

dy

dz
+ pn(z)y = 0 (2.4)

where pi(z) ∈ C(z). Assume that the coefficients pi(z) share no common factor (z− p) for

p ∈ C.

We say that a point p ∈ C is a singular point of equation 2.4, if it is a pole of some

coefficient pi(z), otherwise we call it a regular point. The point p ∈ C is called a regular

singularity of equation 2.4, if the coefficient pi(z) has a pole of order at most i at p for

i = 1, 2, · · · , n. The point ∞ is said to be a regular singularity of equation 2.4, if we can

get 0 as a regular singularity of the equation obtained by writing 2.4 in terms of w = 1/z.

13



Ph.D. Thesis - G.Virk; McMaster University - Mathematics and Statistics

Example 2.22. Equation 2.3 in example 2.20 has three regular singular points at z = 0, 1

and ∞.

We are mainly interested in solutions of equation 2.3. When c is non-integral, the

hypergeometric differential equation has two linearly independent solutions given by

y1(z) =
∞∑
k=0

(a)k(b)kz
k

(c)kk!

and

y2(z) = z1−c

∞∑
k=0

(a+ 1− c)k(b+ 1− c)kz
k

(2− c)kk!

([5], p.19).

The above two equations lead us to the next definition of this section, which is that of

the Gauss Hypergeometric functions.

Definition 2.23. Let a, b, c ∈ C and c /∈ Z≤0. Then, the Gauss hypergeometric function is

given by the following sum

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)kz
k

(c)kk!
,

where (x)k is the Pochhammer symbol defined by

(x)k =

 1, k = 0

(x)(x+ 1)(x+ 2) · · · (x+ k − 1), k ∈ Z+

for all x ∈ C.

Definition 2.24. A differential equation over C(z) is called Fuchsian if all points on P1 are

either regular or a regular singularity.

Example 2.25. Let α1, · · · , αn, β1, · · · , βn ∈ C with βi /∈ Z≤0. Also, define θ-operator as

14



Ph.D. Thesis - G.Virk; McMaster University - Mathematics and Statistics

θ = z d
dz

. Then, the generalized hypergeometric equation in one variable

z(θ + α1) · · · (θ + αn)y = (θ + β1 − 1) · · · (θ + βn − 1)y (2.5)

is a Fuchsian equation of order n with singularities at 0, 1 and ∞.

We are interested in the special type of functions which show up in solutions of equation

2.5. We define these functions in the following definition.

Definition 2.26. Let α1, · · · , αn, β1, · · · , βn−1 ∈ C with βi /∈ Z≤0. Then, the generalized

hypergeometric function is given by:

nFn−1(α1, · · · , αn; β1, · · · , βn−1; z) =
∞∑
k=0

(α1)k · · · (αn)kz
k

(β1)k · · · (βn−1)kk!
(2.6)

where (x)k is the Pochhammer symbol (as defined in Definition 2.23) for all x ∈ C.

Recall from section 2.1 that Mk(ρ) is the set of vector valued modular forms of weight

k ∈ Z for a representation ρ. Let F ∈Mk(ρ). Then, by Definition 2.2, we have that

F

(
aτ + b

cτ + d

)
= (cτ + d)kρ(γ)F (τ),

∀γ =

a b

c d

 ∈ Γ, τ ∈ H. Differentiating both sides of the above equation with respect to

τ , we get:

F ′
(
aτ + b

cτ + d

)
= kc(cτ + d)k+1ρ(γ)F (τ) + (cτ + d)k+2ρ(γ)F ′(τ)

Clearly, F ′ does not satisfy the definition of vvmfs unless k = 0. The question that

arises with this differentiation is that what happens when k ̸= 0? How do we adjust F ′ so

that we get a modular form? This question leads us to the notion of Modular Derivative.
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Definition 2.27. Let F ∈Mk(ρ), then the Modular Derivative of F is defined as follows:

DF =
1

2πi

dF

dτ
− k

12
E2F

Note that the modular derivative DF ∈ Mk+2(ρ) and increases the weight of modular

forms by 2.

Combining the modular derivative with Theorem 2.6, Franc and Mason in [14] worked

out the basis for vvmfs of dimension 3 in terms of hypergeometric functions. In their work,

they consider ρ : Γ → GL3(C) to be an irreducible representation such that ρ(T ) has a

finite order. By these assumptions and the Free Module Theorem, they show that ρ(T )

must have distinct eigenvalues and that these eigenvalues are each distinct root of unity.

Definition 2.28. Let ρ : Γ → GL3(C) be an irreducible representation with diagonalized

ρ(T ) as discussed in [14]. Then, ρ(T ) is conjugate to the matrix


e2πir1 0 0

0 e2πir2 0

0 0 e2πir3


where 0 ≤ ri < 1 for all 1 ≤ i ≤ 3. The ri’s here are called exponents of eigenvalues of

ρ(T ).

Let r1, r2, r3 be the exponents of eigenvalues of ρ(T ). Then the coordinates of a non-

zero VVMF of lowest weight,

k = 4(r1 + r2 + r3)− 2 (2.7)

over ρ are given by

η2kK
al+1

6 3F2

(
al + 1

6
,
al + 3

6
,
al + 5

6
; rl − rm + 1, rl − rm + 1;K

)
(2.8)

for l = 1, 2, 3, where al = 4rl − 2rm − 2rn for {l,m, n} = {1, 2, 3} and K = 1728
j

([14], p.
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23).

We will use equations 2.7 and 2.8 throughout chapter 3 to compute our algebraic for-

mulas for vvmfs of dimension 3.

As mentioned earlier in section 2.1, the constant term in the Fourier series expansion

of certain families of vvmfs in chapter 4 can be expressed using different types of Bessel

functions. So, we conclude this section with a brief discussion around the Bessel functions

of the first kind and the Modified Bessel functions of the first kind.

Definition 2.29. ([2], p.358, 360 (Definition 9.1.10)) The Bessel functions of the first kind

are solutions to the differential equations of the form

z2
d2w

dz2
+ z

dw

dz
+ (z2 − v2)w = 0.

These functions are given by the sum:

Jv(z) =
∞∑
k=0

(−1)k

k!Γ(k + v + 1)

(z
2

)2k+v

, (2.9)

where Γ(z) is the Gamma function, as defined in Definition 2.13.

It should be noted that in Equation (2.9) that if v is not an integer then none of the

coefficients vanish. For integer values of v, we have

1

Γ(k + v + 1)
= 0 for k + v + 1 ≤ 0,

and
1

Γ(k + v + 1)
=

1

(k + v)!
for k + v + 1 > 0

([9], p.484).

Definition 2.30. ([2], p.374, 375 (Definition 9.6.10)) The Modified Bessel functions of the

first kind are solutions to the differential equations of the form

z2
d2w

dz2
+ z

dw

dz
− (z2 + v2)w = 0.

17
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These functions are given by the sum:

Iv(z) =
∞∑
k=0

1

k!Γ(k + v + 1)

(z
2

)2k+v

(2.10)

where Γ(z) is the Gamma function, as defined in Definition 2.13.

We can easily deduce from equations 2.9 and 2.10 that

Iv(z) = i−vJv(iz) (2.11)

The modified Bessel functions of the first kind can also be expressed in terms of the

hypergeometric functions as follows ([2], p. 377 (Result 9.6.47)):

Iv(z) =

(
z
2

)v
Γ(v + 1)

0F1

(
; v + 1,

z2

4

)
. (2.12)

We will use equations 2.11 and 2.12 to derive results in chapter 4.
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Chapter 3

Formulas for families of vvmfs on Γ0(2)

In this chapter, we are looking at vvmfs evaluated at CM points in the upper half plane. We

focus on the family that has already been looked at by Franc and Mason in [14] and [15].

The new ingredient that will allow us to compute these values are algebraic formulas for

vvmfs.

The group Γ0(2) is the smallest index subgroup in Γ that has infinitely many 1-dimensional

representations ([15]). We will study two families of unitary character χ for two reasons.

One, we can get all 1-dimensional representations on Γ0(2) using these two families; and

two, 1-dimensional representation χ on Γ0(2) helps us to get 3-dimensional representation

ρ on Γ. Then using this ρ, we will give algebraic expressions for vvmfs on Γ.

Define

U = ST−1S−1 =

1 0

1 1

 ,

V =

−1 1

−2 1

 = TU−2 = TST 2S−1,
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It is well known that Γ0(2) is generated by U2 = ST−2S−1 =

1 0

2 1

 and V = TST 2S−1

([15]).

Define a unitary character χ : Γ0(2) → C× by setting

χ

1 0

2 1

 = e2πiα, χ

−1 1

−2 1

 = ϵ,

where α ∈ [0, 1) and ϵ = ±1. Let M(χ) denote the space of holomorphic forms transform-

ing under χ, i.e. M(χ) =
⊕
k∈Z

Mk(χ) where for each k, Mk(χ) represents the set of vvmfs

of weight k over Γ0(2) holomorphic at 0 and ∞.

Note that if α ∈ Q, then χ is of finite order; When χ is of finite order, for all but finitely

many α one can show that kerχ is noncongruence ([15], Theorem 5).1

Since the formulae for ϵ = ±1 will be different, we will treat these two cases differently.

1

Remark In this thesis, we will restrict our computations to the case α ∈ (0, 1). This helps us keep the
exponents of the eigenvalues of the induced representation on Γ in the range of (0, 1), which further ensures
that the induced representation on Γ is irreducible. Changing this range of exponents would make the induced
representation reducible and this would entail adjusting dimension formulas for the corresponding spaces of
modular forms. Also, the forms themselves would now possibly vanish at cusp or have a pole there. In addition
to this, α ̸= 1

3 ,
2
3 and α ̸= 1

2 by Lemma 4 and 18 respectively in [15]. For values of α = 1
n where n|3, the

induced representation ρ becomes reducible. Since our formulas make use of irreducible representations, we
let α ∈ (0, 1) and α ̸= 1

3 ,
2
3 ,

1
2 to simplify this discussion.
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3.1 The case ϵ = 1

Since ϵ = 1 and V = TU−2, we have that χ(U2) = χ(T ). Given f ∈ M(χ), consider the

vector valued function

ϕ(f) =


f

f |S

f |U

 .

Notice that since ST = T−1U and UT = V S, we have

ϕ(f)|T =


f |T

f |ST

f |UT

 =


f |T

f |T−1U

f |V S

 =


χ(T )f

χ(T−1)f |U

f |S

 =


χ(T ) 0 0

0 0 χ(T−1)

0 1 0

ϕ(f)

Similarly, since χ(V ) = 1, V 2 = S2 = −1, and US = V −1U , we have

ϕ(f)|S =


0 1 0

1 0 0

0 0 1

ϕ(f).

Below we will see that it is possible to diagonalize the action of T without changing the first

coordinate f of the corresponding vvmf on Γ. This is important because our 3F2 formulas

in (2.8) have a diagonalized T . So, to apply this result, we need to diagonalize the action

of T. To this end, define

ψ(f) =
1

2


2 0 0

0
√
2

√
2χ(T )−1

0 −
√
2
√

2χ(T )−1

ϕ(f) =
1

2


2f

√
2f |S +

√
2χ(T−1)f |U

−
√
2f |S +

√
2χ(T−1)f |U

 .
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Then one finds that

ψ(f)|T =


χ(T ) 0 0

0 χ(T )−1/2 0

0 0 −χ(T )−1/2

ψ(f),

ψ(f)|S =
1

2


0

√
2 −

√
2

√
2 1 1

−
√
2 1 1

ψ(f)

Call this representation ρ : Γ → GL3(C), i.e.,

ρ(T ) =


χ(T ) 0 0

0 χ(T )−1/2 0

0 0 −χ(T )−1/2

 ,

ρ(S) =
1

2


0

√
2 −

√
2

√
2 1 1

−
√
2 1 1

 .

The exponents (as defined for equation 2.7) for ρ(T ) are α, (2 − α)/2 and (1 − α)/2.

Notice that if α is contained in the interval (0, 1), then all three exponents are contained in

the interval (0, 1). If ρ is irreducible then the minimal weight whereMk0(ρ) ̸= 0, and hence

the minimal weight where Mk0(χ) ̸= 0, is given by (2.7), which in this case is

k0 = 4(sum of exponents)− 2 = 4(α + 2−α
2

+ 1−α
2
)− 2 = 4 + 2− 2 = 4.

Using Theorem 2.6, we compute the dimensions of the modular spaces for different k. This

is documented in Table 3.1.
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k dimMk(χ)
< 4 0
4 1
6 1
8 2
10 2

k ≥ 12 dimMk−12(χ) + 3

Table 3.1: Dimensions of modular spaces for k.

Let a non-zero vvmf of weight 4 be denoted by Fχ. Then, Fχ is contained in M4(χ)

and by theorem 2.6, we have that a free basis for M(χ) as an C[E4, E6]-module is Fχ, DFχ

and D2Fχ where D is the modular derivative ([14]). In particular, Fχ spans M4(χ,Q) and

DFχ spans M6(χ,Q) where Mk(χ,Q) denotes the space of weight k vvmfs over Γ0(2) that

transform under χ. Therefore, the Eisenstein series of weight 4 and 6 for χ are unique up

to scaling by a complex number, and in fact we can write down an analytic family for them

varying with α. Using (2.8), we define

Fχ := η8j
1−3α

3 3F2

(
3α− 1

3
, α,

3α + 1

3
;
3α

2
,
3α + 1

2
;
1728

j

)
. (3.1)

Similarly, using (2.8) we can define 2nd and 3rd co-ordinate of vvmf with respect to ρ

and Γ, namely, F2 and F3, respectively, as follows:

F2 := η8j
3α−4

6 3F2

(
4− 3α

6
,
2− α

2
,
8− 3α

6
;
3

2
,
4− 3α

2
;
1728

j

)
, (3.2)

F3 := η8j
3α−1

6 3F2

(
1− 3α

6
,
1− α

2
,
5− 3α

6
;
3− 3α

2
,
1

2
;
1728

j

)
. (3.3)

Then (Fχ, F2, F3) is a vvmf for ρ. The following theorem describes the coordinates of

these vvmfs as algebraic expressions that are useful for evaluating these vvmfs at quadratic

imaginary points of the upper half plane. It is the first of our main results. Our formulas

reduce the calculations to evaluating the j-function at these points and the eta function at

these points, which is a classical result using Chowla-Selberg Formula.
2

2
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Theorem 3.1 Let x ∈ Q(j) denote a solution to the equation 27x2

(4−x)3
= 1728

j
. Then

1. Fχ = η8
(

x2

512(1+
√
1−x)3

) 3α−1
3

,

2. F2 = η8
(
64
x

) 3α−4
6

(
4

(1−3α)x

((
1+

√
1−x
2

)3α−1

− 1

))
,

3. F3 = η8 4
3αx

−3α−2
3

(−3α−2)

((
1+

√
1−x
2

)3α+2

− 1

)
− x

7−3α
3

2α(3α+2)
×[

d
dx

(
1
x2

((
(1− x) + 1

2−3α
x+ 2(1−x)x

2−3α
d
dx

)(
1+

√
1−x
2

)3α))
+ 2

x3 − 3α+2
4x2

]
.

Proof. Before beginning the proof, we will state some results that will be used below. The

following cubic transformation for 3F2 due to Bailey ([4], [21]):

3F2

[
a
3
, a

3
+ 1

3
, a

3
+ 2

3
3
4
+ a

2
+ b

2
, 3

4
+ a

2
− b

2

;
27x2

(4− x)3

]
= (1− x

4
)a 3F2

[
a, 1

4
+ a

2
− b

2
, 1

4
+ a

2
+ b

2
1
2
+ a+ b, 1

2
+ a− b

;x

]
.

(3.4)

We shall also use the following formula from Vidunas’ paper [28]:

2F1

[
a
2
, a+1

2

a+ 1
;x

]
=

(
1 +

√
1− x

2

)−a

. (3.5)

The formula for the change of a parameter in denominator of 3F2 by 1 [25]:

(θ + b1 − 1)3F2

[
a1, a2, a3
b1, b2

;x

]
= (b1 − 1)3F2

[
a1, a2, a3
b1 − 1, b2

;x

]
, (3.6)

where θ is the theta operator defined in example 2.25 in chapter 2, and

θ

(
3F2

[
a1, a2, a3
b1, b2

;x

])
= x

∞∑
k=0

(a1)k+1(a2)k+1(a3)k+1

(b1)k+1(b2)k+1

xk

k!
. (3.7)

Remark Please note that the expression 27x2

(4−x)3 = 1728
j in Theorem 3.1 has been well known since the time

of Klein to define modular forms on Γ0(2) and its conjugates. This equation arises for us via applications of
Bailey’s transformations, which are discussed in the proof of the theorem. Also, we are only interested in the
solutions of equation 27x2

(4−x)3 = 1728
j that arise on Γ0(2). We can ignore the other solutions as those arise on

conjugates of Γ0(2).

.
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We shall also use the formula for change of a parameter in the numerator of 2F1 by 1 due

to Franc, Gannon and Mason [12]:

2F1

[
a− 1, b

c
;x

]
=

(
(1− x)− (a+ b− c)x

c− a
+

1− x

c− a
θ

)
2F1

[
a, b

c
;x

]
. (3.8)

The following fact about rising factorials will also be used in the calculations at some

point:

(x)k =
(x− 1)k+1

x− 1
. (3.9)

We are now ready to begin the proof. We first examine the coordinate Fχ. By equation

(3.1), we have that
Fχ

η8
= j

1−3α
3 3F2

[ 3α−1
3
, α, 3α+1

3
3α
2
, 3α+1

2

;
1728

j

]
.

Using Bailey’s result in (3.4) and 27x2

(4−x)3
= 1728

j
, the above equation can be written as

Fχ

η8
=

(
x2

64(4− x)3

) 3α−1
3 (

1− x

4

)3α−1

3F2

[
3α− 1, 3α

2
, 3α−1

2

3α− 1, 3α
;x

]

which simplifies to
Fχ

η8
=

(
x2

4096

) 3α−1
3

2F1

[
3α
2
, 3α−1

2

3α
;x

]
.

Applying formula (3.5), we get the desired result

Fχ = η8
(

x2

512(1 +
√
1− x)3

) 3α−1
3

.

Equation (3.2) gives F2 as follows:

F2

η8
= j

3α−4
6 3F2

[ 4−3α
6
, 2−α

2
, 8−3α

6
3
2
, 4−3α

2

;
1728

j

]
.
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Using the result in (3.4) and 27x2

(4−x)3
= 1728

j
, the above equation can be written as

F2

η8
=

(
64(4− x)3

x2

) 3α−4
6 (

1− x

4

) 4−3α
2

3F2

[
4−3α

2
, 3−3α

2
, 1

2, 3− 3α
;x

]

which implies
F2

η8
=

(
64

x

) 3α−4
3

∞∑
k=0

((
4−3α

2

)
k

(
3−3α

2

)
k
xk

(3− 3α)k(k + 1)!

)
.

Using formula (3.9), the above equation simplifies to

F2

η8
=

(
64

x

) 3α−4
3
(

4

(1− 3α)x

(
2F1

[
2−3α

2
, 1−3α

2

2− 3α
;x

]
− 1

))
.

Applying formula (3.5), we get the desired result

F2 = η8
(
64

x

) 3α−4
3

(
4

(1− 3α)x

((
1 +

√
1− x

2

)3α−1

− 1

))
.

Using the same strategy as above, we have F3 from equation (3.3) as follows:

F3

η8
= j

3α−1
6 3F2

[ 1−3α
6
, 1−α

2
, 5−3α

6
3−3α

2
, 1

2

;
1728

j

]
.

Using 27x2

(4−x)3
= 1728

j
and formulas (3.6) and (3.7), the above equation simplifies to

F3

η8
=

(
64(4− x)3

x2

) 3α−1
6

×(
3F2

[ 1−3α
6
, 1−α

2
, 5−3α

6
1−3α

2
, 1

2

;
27x2

(4− x)3

]
−
(
x2(5− 3α)

(4− x)3

)
3F2

[ 7−3α
6
, 3−α

2
, 11−3α

6
5−3α

2
, 3

2

;
27x2

(4− x)3

])
.

We use Bailey’s transformations from (3.4) for both hypergeometric functions in the
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right hand side of the above equation, which simplifies the equation to:

F3

η8
=

(
64(4− x)3

x2

) 3α−1
6

×
((

1− x

4

) 1−3α
2

3F2

[
1−3α

2
, 1, −3α

2

2, − 3α
;x

]
−
(
x2(5− 3α)

(4− x)3

)(
1− x

4

) 7−3α
2

3F2

[
7−3α

2
, 4−3α

2
, 2

4− 3α, 4
;x

])
.

Using formula (3.9) and (3.5), the above equation simplifies to:

F3

η8
=

43αx
−3α−2

3

(−3α− 2)

((
1 +

√
1− x

2

)3α+2

− 1

)

− (5− 3α)x
7−3α

3 26α−8
3F2

[
7−3α

2
, 4−3α

2
, 2

4− 3α, 4
;x

]

which implies

F3

η8
=

43αx
−3α−2

3

(−3α− 2)

((
1 +

√
1− x

2

)3α+2

− 1

)

− (5− 3α)x
7−3α

3 26α−8

∞∑
k=0

6
(
7−3α

2

)
k

(
4−3α

2

)
k
xk

(4− 3α)k(k + 2)(k + 3)k!
.

Using (3.9), we can further simplify the above equation to:

F3

η8
=

43αx
−3α−2

3

(−3α− 2)

((
1 +

√
1− x

2

)3α+2

− 1

)

− x
7−3α

3

2α(3α + 2)

(
d

dx

(
1

x2
2F1

[
1−3α

2
, −3α−2

2

1− 3α
;x

])
+

2

x3
− 3α + 2

4x2

)
.
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We apply (3.8) formula to the 2F1 hypergeometric function, which gives us:

F3

η8
=

43αx
−3α−2

3

(−3α− 2)

((
1 +

√
1− x

2

)3α+2

− 1

)
− x

7−3α
3

2α(3α + 2)
×[

d

dx

(
1

x2

((
(1− x) +

1

2− 3α
x+

2(1− x)x

2− 3α

d

dx

)(
2F1

[
1−3α

2
, −3α

2

1− 3α
;x

])))
+

2

x3
− 3α + 2

4x2

]
.

Applying formula (3.5), we get the desired result:

F3

η8
=

43αx
−3α−2

3

(−3α− 2)

((
1 +

√
1− x

2

)3α+2

− 1

)
− x

7−3α
3

2α(3α + 2)
×[

d

dx

(
1

x2

((
(1− x) +

1

2− 3α
x+

2(1− x)x

2− 3α

d

dx

)(
1 +

√
1− x

2

)3α
))

+
2

x3
− 3α + 2

4x2

]
.

This completes the proof.

Now, we will demonstrate how we use the above formulae to compute exact formulas

for CM values of these vvmfs. We shall evaluate Fχ, F2 and F3 at τ = i.

Example 3.2. Compute Fχ, F2 and F3 at τ = i.

Proof. Since j(i) = 1728 ([10], pg. 7), equation (3.1) simplifies to:

Fχ = η(i)8(1728)
1−3α

3 3F2

(
3α− 1

3
, α,

3α + 1

3
;
3α

2
,
3α + 1

2
; 1

)
,

Maier computed values of general hypergeometric functions in [20]. The hypergeomet-

ric function on the right hand side of the above equation can be computed using Theorem

7.1 in [20]. Building on Maier’s work, Milgram in [23] used Maier’s index l = 0 and

computed a particular value of this theorem for 3F2(· · · |1) as follows:

3F2

(
2a, 2a− 1

3
, 2a+

1

3
; 3a, 3a+

1

2
; 1

)
=

(
3

2

)6a−1

. (3.10)
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Using a = α
2

in (3.10), we find that

3F2

(
3α− 1

3
, α,

3α + 1

3
;
3α

2
,
3α + 1

2
; 1

)
=

(
3

2

)3α−1

.

Therefore,

Fχ = η(i)8(1728)
1−3α

3

(
3

2

)3α−1

= η(i)8(2)3−9α.

We can compute the value of Dedekind eta function for i using Chowla-Selberg formula

([8]). This value is known to be as follows:

η(i) =
Γ(1

4
)

2π
3
4

. (3.11)

Using this value of the eta function for τ = i, we deduce that

Fχ =
Γ
(
1
4

)8
π625+9α

.

Next, we work on F2. Using j(i) = 1728, equation (3.2) simplifies to:

F2 = η(i)8(1728)
3α−4

6 3F2

(
4− 3α

6
,
2− α

2
,
8− 3α

6
;
3

2
,
4− 3α

2
; 1

)
,

The hypergeometric function on the right hand side of the above equation can be com-

puted using Theorem 7.3 in [20]. Particular value of this theorem for 3F2(· · · |1) is given in

[23] as follows:

3F2

(
a, a+

1

3
, a+

2

3
; 3a,

3

2
; 1

)
= −(3)3a(81−2a − 1)/(12a− 6). (3.12)

Using a = 4−3α
6

in (3.12), we find that

3F2

(
4− 3α

6
,
2− α

2
,
8− 3α

6
;
3

2
,
4− 3α

2
; 1

)
= −(3)

4−3α
2 (23α−1 − 1)/(2− 6α).
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Therefore,

F2 = −η(i)8(1728)
3α−4

6
(3)

4−3α
2 (23α−1 − 1)

(2− 6α)
= −η(i)8

(
26α−5 − 1

2− 6α

)
.

Using the value of η(i) from (3.11), we get that F2 for τ = i is given by:

F2 = −
Γ
(
1
4

)8
(26α−5 − 1)

π629(1− 3α)
.

Similarly, we compute F3. For j(i) = 1728, equation (3.3) simplifies to:

F3 = η(i)8(1728)
3α−1

6 3F2

(
1− 3α

6
,
1− α

2
,
5− 3α

6
;
3− 3α

2
,
1

2
; 1

)
.

The hypergeometric function on the right hand side of the above equation can be com-

puted using result 1.2 from [20]. Milgram in [23] computed the value of 3F2(· · · |1) as

follows:

3F2

(
a, a+

1

3
, a+

2

3
; 3a+ 1,

1

2
; 1

)
=

33a(1 + 4−3a)

2
. (3.13)

.

Using a = 1−3α
6

in (3.13), we find that

3F2

(
1− 3α

6
,
1− α

2
,
5− 3α

6
;
3− 3α

2
,
1

2
; 1

)
=

3
1−3α

2 (1 + 4
3α−1

2 )

2
.

Therefore,

F3 = η(i)8(1728)
3α−1

6
3

1−3α
2 (1 + 4

3α−1
2 )

2
= η(i)823α−2(1 + 23α−1).

Using the value of η(i) from (3.11), we get that F3 for τ = i is given by:

F3 =
Γ
(
1
4

)8
23α−10(1 + 23α−1)

π6
.
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Combining the results from the above computations, we find that the value of the vvmf

over ρ and Γ evaluated at τ = i is:

F =
Γ
(
1
4

)8
25π6

(
2−9α,

1− 26α−5

24(1− 3α)
, 23α−5(1 + 23α−1)

)t

where t denotes transpose of the matrix.
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3.2 The case ϵ = −1

The details for these cases are similar to the first case, but we include them for completeness.

For ϵ = −1, we have χ(U2) = −χ(T ) because V = TU−2 and χ(V ) = −1. Given

f ∈M(χ), consider the vector valued function

ϕ(f) =


f

f |S

f |U

 .

Since ST = T−1U and UT = V S, we have

ϕ(f)|T =


f |T

f |ST

f |UT

 =


f |T

f |T−1U

f |V S

 =


χ(T )f

χ(T−1)f |U

−f |S

 =


χ(T ) 0 0

0 0 χ(T−1)

0 −1 0

ϕ(f)

Similarly, since χ(V ) = −1, V 2 = S2 = −1, and US = V −1U , we have

ϕ(f)|S =


0 1 0

1 0 0

0 0 −1

ϕ(f)

As we did in the first case, we now diagonalize the action of T . We define

ψ(f) =
1

2


2χ(T ) 0 0

0 i
√
χ(T−1) χ(T−1)

0 −i
√
χ(T−1) χ(T−1)

ϕ(f) =
1

2


2χ(T )f

i
√
χ(T−1)f |S + χ(T−1)f |U

−i
√
χ(T−1)f |S + χ(T−1)f |U

 .
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Then one finds that

ψ(f)|T =


χ(T ) 0 0

0 iχ(T )−1/2 0

0 0 −iχ(T )−1/2

ψ(f),

ψ(f)|S =
1

2


0

√
2

√
2

√
2 −1 1

√
2 1 −1

ψ(f)

Call this representation ρ : Γ → GL3(C) i.e.

ρ(T ) =


χ(T ) 0 0

0 iχ(T )−1/2 0

0 0 −iχ(T )−1/2

 ,

ρ(S) =
1

2


0

√
2

√
2

√
2 −1 1

√
2 1 −1

 .

The exponents (as defined for equation 2.7) for ρ(T ) are α, (5 − 2α)/4 and (3 − 2α)/4.

Notice that if α is contained in the interval (0, 1), then two of the three exponents are

contained in the interval (0, 1), namely, α and (3 − 2α)/4. To accommodate the third

exponent (5 − 2α)/4, we will consider two cases. One, when α ∈ (0, 1/2) and two, when

α ∈ (1/2, 1).
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3.2.1 Case α ∈ (0, 1/2)

For this case, our exponents are α, 5−2α
4

− 1 = 1−2α
4

and 3−2α
4

. Using equation (2.7), we

find that the minimal weight where Mk0(χ) ̸= 0 in this case is

k0 = 4(sum of exponents)− 2 = 4(α + 1−2α
4

+ 3−2α
4

)− 2 = 4(4
4
)− 2 = 2.

We know by equation (2.8) that the coordinates of non-zero vvmf of lowest weight for

ρ are given in terms of generalized hypergeometric series by the following equations:

Fχ := η4j
1−6α

6 3F2

(
6α− 1

6
,
6α + 1

6
, α+

1

2
;
6α + 3

4
,
6α + 1

4
;
1728

j

)
(3.14)

F2 := η4j
6α−1
12 3F2

(
1− 6α

12
,
5− 6α

12
,
3− 2α

4
;
1

2
,
5− 6α

4
;
1728

j

)
(3.15)

F3 := η4j
6α−7
12 3F2

(
7− 6α

12
,
11− 6α

12
,
5− 2α

4
;
7− 6α

4
,
3

2
;
1728

j

)
(3.16)

Then (Fχ, F2, F3) is a vvmf for ρ. The following result is useful for evaluating the

coordinates of these vvmfs at quadratic imaginary points of the upper half plane. It is the

second of our main results.

Theorem 3.3 Let x ∈ Q(j) denote a solution to the equation 27x2

(4−x)3
= 1728

j
. Then

1. Fχ = η4
(

512(1+
√
1−x)3

x2

) 1−6α
6

,

2. F2 = η4 2
6α+2x

−6α−5
6

(−6α−5)

((
1+

√
1−x
2

) 6α+5
2 − 1

)
− x

13−6α
6 26α+23

(1+6α)(6α+5)
×[

d
dx

(
1
x2

((
(1− x) + 2

3−6α
x+ 4(1−x)x

3−6α
d
dx

)(
1+

√
1−x
2

) 1+6α
2

))
+ 2

x3 − 6α+5
8x2

]
,

3. F3 = η4
(
64
x

) 6α−7
6

(
8

(1−6α)x

((
1+

√
1−x
2

)−( 1−6α
2 )

− 1

))
.

Proof. To prove this theorem, we will use the formulas mentioned in equations (3.4) - (3.9).
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First, we examine the coordinate Fχ. By equation (3.14), we have that

Fχ

η4
= j

1−6α
6 3F2

[ 6α−1
6
, 6α+1

6
, α + 1

2
6α+3

4
, 6α+1

4

;
1728

j

]
.

Using Bailey’s result in (3.4) and 27x2

(4−x)3
= 1728

j
, the above equation can be written as

Fχ

η4
=

(
x2

64(4− x)3

) 6α−1
6 (

1− x

4

) 6α−1
2

3F2

[ 6α−1
2
, 6α−1

4
, 6α+1

4
6α+1

2
, 6α−1

2

;x

]

which simplifies to
Fχ

η4
=

(
64

x

)1−6α

2F1

[ 6α−1
4
, 6α+1

4
6α+1

2

;x

]
.

Applying formula (3.5), we get the desired result

Fχ = η4
(
512(1 +

√
1− x)3

x2

) 1−6α
6

.

Equation (3.15) gives F2 as follows:

F2

η4
= j

6α−1
12 3F2

[ 1−6α
12

, 5−6α
12

, 3−2α
4

1
2
, 5−6α

4

;
1728

j

]
.

Using 27x2

(4−x)3
= 1728

j
and formulas (3.6) and (3.7), the above equation simplifies to

F2

η4
=

(
64(4− x)3

x2

) 6α−1
12

×
(

3F2

[ 1−6α
12

, 5−6α
12

, 3−2α
4

1−6α
4
, 1

2

;
27x2

(4− x)3

]
−
(
3x2(3− 2α)

2(4− x)3

)
3F2

[ 13−6α
12

, 17−6α
12

, 7−2α
4

9−6α
4
, 3

2

;
27x2

(4− x)3

])
.

We use Bailey’s transformations from (3.4) for both hypergeometric functions in the
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right hand side of the above equation, which simplifies the equation to:

F2

η4
=

(
64(4− x)3

x2

) 6α−1
12

×
((

1− x

4

) 1−6α
4

3F2

[ 1−6α
4
, 1, −1−6α

4

2, −1−6α
2

;x

]
−
(
3x2(3− 2α)

2(4− x)3

)(
1− x

4

) 13−6α
4

3F2

[ 13−6α
4

, 7−6α
4
, 2

7−6α
2
, 4

;x

])
.

Using formula (3.9) and (3.5), the above equation simplifies to:

F2

η4
=

26α+2x
−6α−5

6

(−6α− 5)

((
1 +

√
1− x

2

) 6α+5
2

− 1

)

− 3(3− 2α)x
13−6α

6 26α−8
3F2

[ 13−6α
4

, 7−6α
4
, 2

7−6α
2
, 4

;x

]

which implies

F2

η4
=

26α+2x
−6α−5

6

(−6α− 5)

((
1 +

√
1− x

2

) 6α+5
2

− 1

)

− 3(3− 2α)x
13−6α

6 26α−8

∞∑
k=0

6
(
13−6α

4

)
k

(
7−6α

4

)
k
xk(

7−6α
2

)
k
(k + 2)(k + 3)k!

.

Using (3.9), we can further simplify the above equation to:

F2

η4
=

26α+2x
−6α−5

6

(−6α− 5)

((
1 +

√
1− x

2

) 6α+5
2

− 1

)

− x
13−6α

6 26α+23

(1 + 6α)(6α + 5)

(
d

dx

(
1

x2
2F1

[ 1−6α
4
, −6α−5

4
1−6α

2

;x

])
+

2

x3
− 6α + 5

8x2

)
.
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We apply (3.8) formula to the 2F1 hypergeometric function, which gives us:

F2

η4
=

26α+2x
−6α−5

6

(−6α− 5)

((
1 +

√
1− x

2

) 6α+5
2

− 1

)
− x

13−6α
6 26α+23

(1 + 6α)(6α + 5)
×[

d

dx

(
1

x2

((
(1− x) +

2

3− 6α
x+

4(1− x)x

3− 6α

d

dx

)(
2F1

[ 1−6α
4
, −1−6α

4
1−6α

2

;x

])))
+

2

x3
− 6α + 5

8x2

]
.

Applying formula (3.5), we get the desired result:

F2

η4
=

26α+2x
−6α−5

6

(−6α− 5)

((
1 +

√
1− x

2

) 6α+5
2

− 1

)
− x

13−6α
6 26α+23

(1 + 6α)(6α + 5)
×[

d

dx

(
1

x2

((
(1− x) +

2

3− 6α
x+

4(1− x)x

3− 6α

d

dx

)(
1 +

√
1− x

2

) 1+6α
2

))

+
2

x3
− 6α + 5

8x2

]
.

Using the same strategy as above, we have F3 from equation (3.16) as follows:

F3

η4
= j

6α−7
12 3F2

[ 7−6α
12

, 11−6α
12

, 5−2α
4

7−6α
4
, 3

2

;
1728

j

]
.

Using the result in (3.4) and 27x2

(4−x)3
= 1728

j
, the above equation can be written as

F3

η4
=

(
64(4− x)3

x2

) 6α−7
12 (

1− x

4

) 7−6α
4

3F2

[ 7−6α
4
, 1, 5−6α

4
5−6α

2
, 2

;x

]

which implies
F3

η4
=

(
64

x

) 6α−7
6

∞∑
k=0

((
7−6α

4

)
k

(
5−6α

4

)
k
xk(

5−6α
2

)
k
(k + 1)!

)
.
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Using formula (3.9), the above equation simplifies to

F3

η4
=

(
64

x

) 6α−7
6
(

8

(1− 6α)x

(
2F1

[ 3−6α
4
, 1−6α

4
3−6α

2

;x

]
− 1

))
.

Applying formula (3.5), we get the desired result

F3 = η4
(
64

x

) 6α−7
6

 8

(1− 6α)x

(1 +
√
1− x

2

)−( 1−6α
2 )

− 1

 .

This completes the proof.

Now, we will demonstrate how we can compute exact formulas for the CM values of

these vvmfs. We shall evaluate Fχ, F2 and F3 at τ = i.

Example 3.4. Compute Fχ, F2 and F3 at τ = i.

Proof. Since j(i) = 1728 ([10], pg. 7), equation (3.14) simplifies to:

Fχ = η(i)4(1728)
1−6α

6 3F2

(
6α− 1

6
,
6α + 1

6
, α+

1

2
;
6α + 3

4
,
6α + 1

4
; 1

)
.

We compute the hypergeometric function on the right hand side of the above equation

by (3.10). Using a = 6α+1
12

in equation (3.10) we find that

3F2

(
6α− 1

6
,
6α + 1

6
, α+

1

2
;
6α + 3

4
,
6α + 1

4
; 1

)
=

(
3

2

) 6α−1
2

.

Therefore,

Fχ = η(i)4(1728)
1−6α

6

(
3

2

) 6α−1
2

= η(i)4(2)
3−18α

2 .

Using the value of the eta function at i from equation (3.11), we deduce that for τ = i,

Fχ =
Γ
(
1
4

)4
π32

5+18α
2

.
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Next, we work on F2. Using j(i) = 1728, equation (3.15) simplifies to:

F2 = η(i)4(1728)
6α−1
12 3F2

(
1− 6α

12
,
5− 6α

12
,
3− 2α

4
;
1

2
,
5− 6α

4
; 1

)
.

We compute the hypergeometric function on the right hand side of the above equation

by (3.13). Using a = 1−6α
12

in equation (3.13), we find that

3F2

(
1− 6α

12
,
5− 6α

12
,
3− 2α

4
;
1

2
,
5− 6α

4
; 1

)
=

3
1−6α

4 (1 + 4
6α−1

4 )

2
.

Therefore,

F2 = η(i)4(1728)
6α−1
12

3
1−6α

4 (1 + 4
6α−1

4 )

2
= η(i)42

6α−3
2

(
1 + 2

6α−1
2

)
.

Using value of η(i) from (3.11), we get that F2 for τ = i is given by:

F2 =
Γ
(
1
4

)4
2

6α−11
2 (1 + 2

6α−1
2 )

π3
.

Similarly, we compute F3. For j(i) = 1728, equation (3.19) simplifies to:

F3 = η(i)4(1728)
6α−7
12 3F2

(
7− 6α

12
,
11− 6α

12
,
5− 2α

4
;
7− 6α

4
,
3

2
; 1

)
.

Hypergeometric functions on the right hand sides of the above equation can be com-

puted by (3.12). Using a = 7−6α
12

in (3.12), we find that

3F2

(
7− 6α

12
,
11− 6α

12
,
5− 2α

4
;
7− 6α

4
,
3

2
; 1

)
=

−(3)
7−6α

4 (8
6α−1

6 − 1)

1− 6α
.

Therefore,

F3 = η(i)4(1728)
6α−7
12

−(3)
7−6α

4 (8
6α−1

6 − 1)

1− 6α
= η(i)42

6α−7
2

(8
6α−1

6 − 1)

6α− 1
.

Using value of η(i) from (3.11), we get that F3 for τ = i is given by:
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F3 =
Γ
(
1
4

)4
2

6α−15
2 (2

6α−1
2 − 1)

π3(6α− 1)
.

Combining the results from the above computations, we find that the value of the vvmf

over ρ and Γ evaluated at τ = i is:

F =
Γ
(
1
4

)4
25/2π3

(
2−9α, 23α−3(1 + 2

6α−1
2 ),

23α−5(2
6α−1

2 − 1)

(6α− 1)

)t

where t denotes the transpose of the matrix.

3.2.2 Case α ∈ (1/2, 1)

The exponents (as defined in equation 2.7) for ρ(T ) for this case are α, 5−2α
4

and 3−2α
4

.

Using equation (2.7), we find that the minimal weight when Mk0(χ) ̸= 0 in this case is

k0 = 4(sum of exponents)− 2 = 4(α + 5−2α
4

+ 3−2α
4

)− 2 = 4(8
4
)− 2 = 6.

As mentioned in the case for ϵ = 1, Eisenstein series for weight 6 are unique up to scaling

by a complex number, and we know from equation (2.8) that the coordinates of non-zero

vvmf of lowest weight for ρ are given in terms of generalized hypergeometric series by the

following equations:

Fχ := η12j
1−2α

2 3F2

(
2α− 1

2
,
6α− 1

6
,
6α + 1

6
;
6α− 1

4
,
6α + 1

4
;
1728

j

)
(3.17)

F2 := η12j
2α−3

4 3F2

(
3− 2α

4
,
13− 6α

12
,
17− 6α

12
;
3

2
,
9− 6α

4
;
1728

j

)
(3.18)
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F3 := η12j
2α−1

4 3F2

(
1− 2α

4
,
7− 6α

12
,
11− 6α

12
;
7− 6α

4
,
1

2
;
1728

j

)
(3.19)

Then (Fχ, F2, F3) is a vvmf for ρ. The following result is useful for evaluating the

coordinates of these vvmfs at quadratic imaginary points of the upper half plane. It is the

third of our main results.

Theorem 3.5 Let x ∈ Q(j) denote a solution to the equation 27x2

(4−x)3
= 1728

j
. Then

1. Fχ = η12
(

512(1+
√
1−x)3

x2

) 1−2α
2

,

2. F2 = η12
(
64
x

) 2α−3
2

(
8

(3−6α)x

((
1+

√
1−x
2

)−( 3−6α
2 )

− 1

))
,

3. F3 = η12 2
6αx

−2α−1
2

(−6α−3)

((
1+

√
1−x
2

) 6α+3
2 − 1

)
− x

5−2α
2 26α

(α−1)(1+2α)
×[

d
dx

(
1
x2

((
(1− x) + 2

5−6α
x+ 4(1−x)x

5−6α
d
dx

)(
1+

√
1−x
2

) 6α−1
2

))
+ 2

x3 − 6α+3
8x2

]
.

Proof. To prove this theorem, we will use formulas mentioned in equations (3.4) - (3.9).

First, we examine the coordinate Fχ. By equation (3.17), we have that

Fχ

η12
= j

1−2α
2 3F2

[ 2α−1
2
, 6α−1

6
, 6α+1

6
6α−1

4
, 6α+1

4

;
1728

j

]
.

Using Bailey’s result in (3.4) and 27x2

(4−x)3
= 1728

j
, the above equation can be written as

Fχ

η12
=

(
x2

64(4− x)3

) 2α−1
2 (

1− x

4

) 6α−3
2

3F2

[ 6α−3
2
, 6α−1

4
, 6α−3

4
6α−3

2
, 6α−1

2

;x

]

which simplifies to
Fχ

η12
=

(
64

x

)1−2α

2F1

[ 6α−1
4
, 6α−3

4
6α−1

2

;x

]
.

Applying formula (3.5), we get the desired result

Fχ = η12
(
512(1 +

√
1− x)3

x2

) 1−2α
2

.
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Equation (3.18) gives F2 as follows:

F2

η12
= j

2α−3
4 3F2

[ 3−2α
4
, 13−6α

12
, 17−6α

12
3
2
, 9−6α

4

;
1728

j

]
.

Using the result in (3.4) and 27x2

(4−x)3
= 1728

j
, the above equation can be written as

F2

η12
=

(
64(4− x)3

x2

) 2α−3
4 (

1− x

4

) 9−6α
4

3F2

[ 9−6α
4
, 7−6α

4
, 1

2, 7−6α
2

;x

]

which implies
F2

η12
=

(
64

x

) 2α−3
2

∞∑
k=0

((
9−6α

4

)
k

(
7−6α

4

)
k
xk(

7−6α
2

)
k
(k + 1)!

)
.

Using formula (3.9), the above equation simplifies to

F2

η12
=

(
64

x

) 2α−3
2
(

8

(3− 6α)x

(
2F1

[ 5−6α
4
, 3−6α

4
5−6α

2

;x

]
− 1

))
.

Applying formula (3.5), we get the desired result

F2 = η12
(
64

x

) 2α−3
2

 8

(3− 6α)x

(1 +
√
1− x

2

)−( 3−6α
2 )

− 1

 .

Using the same strategy as above, we have F3 from equation (3.19) as follows:

F3

η12
= j

2α−1
4 3F2

[ 1−2α
4
, 7−6α

12
, 11−6α

12
7−6α

4
, 1

2

;
1728

j

]
.
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Using 27x2

(4−x)3
= 1728

j
and formulas (3.6) and (3.7), the above equation simplifies to

F3

η12
=

(
64(4− x)3

x2

) 2α−1
4

×
(

3F2

[ 1−2α
4
, 7−6α

12
, 11−6α

12
3−6α

4
, 1

2

;
27x2

(4− x)3

]
−
(
x2(11− 6α)

2(4− x)3

)
3F2

[ 5−2α
4
, 19−6α

12
, 23−6α

12
11−6α

4
, 3

2

;
27x2

(4− x)3

])
.

We use Bailey’s transformations from (3.4) for both hypergeometric functions in the

right hand side of the above equation, which simplifies the equation to:

F3

η12
=

(
64(4− x)3

x2

) 2α−1
4

×
((

1− x

4

) 3−6α
4

3F2

[ 3−6α
4
, 1, 1−6α

4

2, 1−6α
2

;x

]
−
(
x2(11− 6α)

2(4− x)3

)(
1− x

4

) 15−6α
4

3F2

[ 15−6α
4

, 9−6α
4
, 2

9−6α
2
, 4

;x

])
.

Using formula (3.9) and (3.5), the above equation simplifies to:

F3

η12
=

26αx
−2α−1

2

(−6α− 3)

((
1 +

√
1− x

2

) 6α+3
2

− 1

)

− (11− 6α)x
5−2α

2 26α−10
3F2

[ 15−6α
4

, 9−6α
4
, 2

9−6α
2
, 4

;x

])

which implies

F3

η12
=

26αx
−2α−1

2

(−6α− 3)

((
1 +

√
1− x

2

) 6α+3
2

− 1

)

− (11− 6α)x
5−2α

2 26α−10

∞∑
k=0

6
(
15−6α

4

)
k

(
9−6α

4

)
k
xk(

9−6α
2

)
k
(k + 2)(k + 3)k!

.
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Using (3.9), we can further simplify the above equation to:

F3

η12
=

26αx
−2α−1

2

(−6α− 3)

((
1 +

√
1− x

2

) 6α+3
2

− 1

)

− x
5−2α

2 26α

(α− 1)(1 + 2α)

(
d

dx

(
1

x2
2F1

[ 3−6α
4
, −3−6α

4
3−6α

2

;x

])
+

2

x3
− 6α + 3

8x2

)
.

We apply (3.8) formula to the 2F1 hypergeometric function, which gives us:

F3

η12
=

26αx
−2α−1

2

(−6α− 3)

((
1 +

√
1− x

2

) 6α+3
2

− 1

)
− x

5−2α
2 26α

(α− 1)(1 + 2α)
×[

d

dx

(
1

x2

((
(1− x) +

2

5− 6α
x+

4(1− x)x

5− 6α

d

dx

)(
2F1

[ 1−6α
4
, 3−6α

4
3−6α

2

;x

])))
+

2

x3
− 6α + 3

8x2

]
.

Applying formula (3.5), we get the desired result:

F3

η12
=

26αx
−2α−1

2

(−6α− 3)

((
1 +

√
1− x

2

) 6α+3
2

− 1

)
− x

5−2α
2 26α

(α− 1)(1 + 2α)
×[

d

dx

(
1

x2

((
(1− x) +

2

5− 6α
x+

4(1− x)x

5− 6α

d

dx

)(
1 +

√
1− x

2

) 6α−1
2

))

+
2

x3
− 6α + 3

8x2

]
.

Now, we will demonstrate how we can compute exact formulas for CM values of these

vvmfs. We shall evaluate Fχ, F2 and F3 at τ = i.

Example 3.6. Compute Fχ, F2 and F3 at τ = i.

Proof. Since j(i) = 1728, equation (3.17) simplifies to:

Fχ = η(i)12(1728)
1−2α

2 3F2

(
2α− 1

2
,
6α− 1

6
,
6α + 1

6
;
6α− 1

4
,
6α + 1

4
; 1

)
.
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We compute the hypergeometric function on the right hand side of the above equation

by (3.10). Using a = 6α−1
12

in equation (3.10) we find that

3F2

(
2α− 1

2
,
6α− 1

6
,
6α + 1

6
;
6α− 1

4
,
6α + 1

4
; 1

)
=

(
3

2

) 6α−3
2

.

Therefore,

Fχ = η(i)12(1728)
1−2α

2

(
3

2

) 6α−3
2

= η(i)12(2)
9−18α

2 .

Using value of the eta function at i from equation (3.11), we deduce that for τ = i,

Fχ =
Γ
(
1
4

)12
π92

15+18α
2

.

Next, we work on F2. Using j(i) = 1728, equation (3.18) simplifies to:

F2 = η(i)12(1728)
2α−3

4 3F2

(
3− 2α

4
,
13− 6α

12
,
17− 6α

12
;
3

2
,
9− 6α

4
; 1

)
.

We compute hypergeometric function on the right hand side of the above equation by

(3.12). Using a = 3−2α
4

in equation (3.12) we find that

3F2

(
3− 2α

4
,
13− 6α

12
,
17− 6α

12
;
3

2
,
9− 6α

4
; 1

)
= −(3)

5−6α
4 (2

2α−1
2 − 1)/(1− 2α).

Therefore,

F2 = −η(i)12(1728)
2α−3

4 (3)
5−6α

4 (2
2α−1

2 − 1)/(1− 2α).

Using value of η(i) from (3.11), we get that F2 for τ = i is given by:

F2 = −
Γ
(
1
4

)12
2

6α−33
2 (2

2α−1
2 − 1)

3π9(1− 2α)
.

Similarly, we compute F3. For j(i) = 1728, equation (3.19) simplifies to:
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F3 = η(i)12(1728)
2α−1

4 3F2

(
1− 2α

4
,
7− 6α

12
,
11− 6α

12
;
7− 6α

4
,
1

2
; 1

)
.

Hypergeometric functions on the right hand sides of the above equation can be com-

puted by (3.13). Using a = 1−2α
4

in (3.13), we find that

3F2

(
1− 2α

4
,
7− 6α

12
,
11− 6α

12
;
7− 6α

4
,
1

2
; 1

)
=

3
3−6α

4 (1 + 4
6α−3

4 )

2
.

Therefore,

F3 = η(i)12(1728)
2α−1

4
3

3−6α
4 (1 + 4

6α−3
4 )

2
= η(i)122

6α−5
2 (1 + 2

6α−3
2 ).

Using value of η(i) from (3.11), we get that F3 for τ = i is given by:

F3 =
Γ
(
1
4

)12
2

6α−29
2 (1 + 2

6α−3
2 )

π9
.

Combining the results from the above computations, we find that the value of the vvmf

over ρ and Γ evaluated at τ = i is:

F =
Γ
(
1
4

)12
π9

(
2

−15−18α
2 ,

2
6α−33

2 (1− 2
2α−1

2 )

3(1− 2α)
, 2

6α−29
2 (1 + 2

6α−3
2 )

)t

where t denotes the transpose of the matrix.

Tables 3.2 - 3.4 summarize the results for all the formulas computed in all the cases.

Table 3.5 summarizes results for vvmfs for τ = i, and leads us to the following proposition.

Proposition 3.7 Let F be one of the family of vvmfs discussed above, then the transcenden-

tal part of CM value for τ = i is locally constant in the following sense:

1. If ϵ = 1, then π6Fχ

Γ(1/4)8
∈ Q(

√
3) for all α ∈ Q ∩ (0, 1),
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Fi ϵ = 1

Fχ η8
(

x2

512(1+
√
1−x)3

) 3α−1
3

F2 η8
(
64
x

) 3α−4
3

(
4

(1−3α)x

((
1+

√
1−x
2

)3α−1

− 1

))
F3 η8 4

3αx
−3α−2

3

(−3α−2)

((
1+

√
1−x
2

)3α+2

− 1

)
− x

7−3α
3

2α(3α+2)
×[

d
dx

(
1
x2

((
(1− x) + 1

2−3α
x+ 2(1−x)x

2−3α
d
dx

)(
1+

√
1−x
2

)3α))
+ 2

x3 − 3α+2
4x2

]

Table 3.2: Coordinates of vvmfs for ϵ = 1.

Fi ϵ = −1, α ∈ (0, 1/2)

Fχ η4
(

512(1+
√
1−x)3

x2

) 1−6α
6

F2 η4 2
6α+2x

−6α−5
6

(−6α−5)

((
1+

√
1−x
2

) 6α+5
2 − 1

)
− x

13−6α
6 26α+23

(1+6α)(6α+5)
×[

d
dx

(
1
x2

((
(1− x) + 2

3−6α
x+ 4(1−x)x

3−6α
d
dx

)(
1+

√
1−x
2

) 1+6α
2

))
+ 2

x3 − 6α+5
8x2

]

F3 η4
(
64
x

) 6α−7
6

(
8

(1−6α)x

((
1+

√
1−x
2

)−( 1−6α
2 )

− 1

))
Table 3.3: Coordinates of vvmfs for ϵ = −1 and α ∈ (0, 1/2).

2. If ϵ = −1, then π3Fχ

Γ(1/4)4
∈ Q(

√
3) for all α ∈ Q ∩ (0, 1/2),

3. If ϵ = −1, then π9Fχ

Γ(1/4)12
∈ Q(

√
3) for all α ∈ Q ∩ (1/2, 1).

In fact, all of these values are algebraically dependent on α ∈ (0, 1) except for α = 1/2.

Let λ denote the elliptic modular lambda invariant from chapter 2. Our algebraic for-

mulas for the first coordinate Fχ take a simpler expression if we express them in terms of

λ function. Let x0, x1, and x2 denote the solutions of the equation 27x2

(4−x)3
= 1728

j
. Thus we

have the minimal polynomial for x as follows:

0 = X3 + ( 1
64
j − 12)X2 + 48X − 64 = (X − x0)(X − x1)(X − x2).

Note that the λ is a function on Γ(2) and x is a function on Γ0(2). Since Γ(2) ⊂ Γ0(2),
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Fi ϵ = −1, α ∈ (1/2, 1)

Fχ η12
(

512(1+
√
1−x)3

x2

) 1−2α
2

F2 η12
(
64
x

) 2α−3
2

(
8

(3−6α)x

((
1+

√
1−x
2

)−( 3−6α
2 )

− 1

))
F3 η12 2

6αx
−2α−1

2

(−6α−3)

((
1+

√
1−x
2

) 6α+3
2 − 1

)
− x

5−2α
2 26α

(α−1)(1+2α)
×[

d
dx

(
1
x2

((
(1− x) + 2

5−6α
x+ 4(1−x)x

5−6α
d
dx

)(
1+

√
1−x
2

) 6α−1
2

))
+ 2

x3 − 6α+3
8x2

]

Table 3.4: Coordinates of vvmfs for ϵ = −1 and α ∈ (1/2, 1).

Case F

ϵ = 1
Γ( 1

4)
8

25π6

(
2−9α, 1−26α−5

24(1−3α)
, 23α−5(1 + 23α−1)

)t
ϵ = −1, α ∈ (0, 1/2)

Γ( 1
4)

4

25/2π3

(
2−9α, 23α−3(1 + 2

6α−1
2 ), 2

3α−5(2
6α−1

2 −1)
(6α−1)

)t

ϵ = −1, α ∈ (1/2, 1)
Γ( 1

4)
12

π9

(
2

−15−18α
2 , 2

6α−33
2 (1−2

2α−1
2 )

3(1−2α)
, 2

6α−29
2 (1 + 2

6α−3
2 )

)t

Table 3.5: vvmfs for τ = i.

we can write x in terms of λ. We know from [7] and [26] that j = 256(1−λ+λ2)3

λ2(1−λ)2
. We

substitute this value of the j-function into the the minimal polynomial for x and obtain that

(up to permutation) the xj’s are equal to:

4(λ− 1)

λ2
, − 4λ

(λ− 1)2
, −4λ(λ− 1).

Let y = x2

512(1+
√
1−x)3

. Then (Fχ/η
8)(τ) lies in a Kummer extension of Q(τ, j, x, y). We

now compute the minimal polynomial for y over Q(j). We have that

(1 +
√
1− x)3 = (4− 3x) + (4− x)

√
1− x.

Therefore we find that

512(4− x)y
√
1− x = x2 − 512(4− 3x)y.
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Γ0 Γ1 Γ2

xj
4(λ−1)

λ2 −4λ(λ− 1) − 4λ
(λ−1)2

yj − λ2

256(λ−1)
1

256λ(λ−1)
(λ−1)2

256λ

Table 3.6: Conjugates of x and y.

A straightforward but somewhat lengthy calculation then shows that y satisfies the equation

218xy2 + 210 (3x− 4) y + x2 = 0.

Hence the minimal polynomial of y over Q(j) divides

2∏
i=0

(
218xiY

2 + 210 (3xi − 4)Y + x2i
)
∈ Q(j)[Y ].

Using a computer one sees that this degree six polynomial is the square of an irreducible

cubic. Thus, in this way, one deduces that the minimal polynomial of y over Q(j) is:

P (Y ) = Y 3 + 3
256
Y 2 −

(
1

224
j − 3

216

)
Y +

1

224
.

We substitute the identity j = 256(1−λ+λ2)3

λ2(1−λ)2
into the linear term in P (Y ) to find that the roots

of P (Y ) are:

− λ2

256(λ− 1)
,

(λ− 1)2

256λ
,

1

256λ(λ− 1)

Now let us set some notation so that we can work explicitly with modular forms and

their groups. Set Γj = R−jΓ0(2)R
j where R = ST . Hence if f is modular for Γi then

f |Rj is modular for Γi+j . With this notation, the roots above are defined on these groups

according to Table 3.6 on page 49. In each case xj and yj satisfy 64xjyj + 1 = 0.

The next theorem shows that the first coordinates Fχ of vvmfs over ρ and Γ = SL2(Z)
for different values of ϵ take a simpler expression if we express them in terms of λ function

as claimed above. Since all the coordinates of vvmfs live in the same space, it makes sense

to only check their first coordinates.
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Theorem 3.8 With notation as above,

1. Fχ = η8
(

λ2

256(1−λ)

) 3α−1
3

for ϵ = 1,

2. Fχ = η4
(

λ2

256(1−λ)

) 6α−1
6

for ϵ = −1 and α ∈ (0, 1/2),

3. Fχ = η12
(

λ2

256(1−λ)

) 2α−1
2

for ϵ = −1 and α ∈ (1/2, 1).

Proof. The Fourier expansions of the yj for j ∈ {0, 1, 2} are as follows:

y0 = q + 24q2 + 300q3 + · · · ,

y1 = − 1

4096
q−

1
2 − 3

512
− 69

1024
q
1
2 + · · · ,

y2 =
1

4096
q−

1
2 − 3

512
+

69

1024
q
1
2 + · · · .

For ϵ = 1, we have shown that Fχ

η8
= y

3α− 1
3

j for some j ∈ {0, 1, 2}. From equation (3.1),

we have that

Fχ

η8
= j

1−3α
3 3F2

[ 3α+1
3
, α, 3α+1

3
3α
2
, 3α+1

2

;
1728

j

]
= q

3α−1
3 (1 +O(q)).

Thus, y
3α−1

3
j = q

3α−1
3 (1 + O(q)). From the Fourier expansions of the y′js, we can see that

the only yj for which y
3α−1

3
j = q

3α−1
3 (1 +O(q)) is y0. Therefore, we conclude that

Fχ

η8
= y

3α−1
3

0 =

(
λ2

256(1− λ)

) 3α−1
3

.

Similarly, for ϵ = −1 and α ∈ (0, 1/2), we have shown that Fχ

η4
= y

6α−1
6

j for some

j ∈ {0, 1, 2}. From equation (3.14), we have that

Fχ

η4
= j

1−6α
6 3F2

[ 6α−1
6
, 6α+1

6
, α + 1

2
6α+3

4
, 6α+1

4

;
1728

j

]
= q

6α−1
6 (1 +O(q)).
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Thus, y
6α−1

6
j = q

6α−1
6 (1 + O(q)). From the Fourier expansions of the y′js, we can see that

the only yj for which this holds true is y0. Therefore, we conclude that

Fχ

η4
= y

6α−1
6

0 =

(
λ2

256(1− λ)

) 6α−1
6

.

Similar argument follows for the third case as well. For ϵ = −1 and α ∈ (1/2, 1), we

have shown that Fχ

η12
= y

2α−1
2

j for some j ∈ {0, 1, 2}. From equation (3.17), we have that

Fχ

η12
= j

1−2α
2 3F2

[ 2α−1
2
, 6α=1

6
, 6α+1

6
6α−1

4
, 6α+1

4

;
1728

j

]
= q

2α−1
2 (1 +O(q)).

Thus, y
2α−1

2
j = q

2α−1
2 (1 + O(q)). From the Fourier expansions of the y′js, we can see that

the only yj for which this holds true is y0. Therefore, we conclude that

Fχ

η12
= y

2α−1
2

0 =

(
λ2

256(1− λ)

) 2α−1
2

.

In chapter 4 below, we will introduce Eisenstein series for weight 4 and 6 for χ living

in the same space. Since these spaces are 1−dimensional, the Eisenstein series for weight

4 and 6 will be equal up to a scalar. Our goal in the next chapter will be to compute the

coefficients of these series.
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Chapter 4

Eisenstein families for vvmfs on Γ0(2)

In chapter 3, we defined unitary characters, χ, on Γ0(2). In our discussion of Eisenstein

series below table 3.1, we had deduced that Eisenstein series of weight 4 and 6 for χ are

unique up to scaling by a complex number.

In this chapter, we define gχ,k, an analogue of Eisenstein series ([10]), for varying χ.

Since gχ,4 and gχ,6 are contained in 1-dimensional spaces of modular forms, they are unique

up to a complex scalar. So, we explore their Fourier series expansions and compute coeffi-

cients in these expansions. Discussion in this chapter is concluded by expressing the con-

stant term in the Fourier series expansion of gχ,4 and gχ,6 using Bessel functions of the first

kind and Kloosterman sums. This then allows us to compare these families of Eisenstein

series to the hypergeometric expressions given previously, since they necessarily differ by

this constant term.

For simplicity and to keep the calculations manageable, we will restrict our discussion

in this section to the case for ϵ = 1. Similar computations can be done for when ϵ = −1.

We plotted results for the ϵ = −1 case and present them in figures 4.3 and 4.4.

Let us now introduce gχ,k.

Recall that in Chapter 3, we observed that T = V U2, where

U =

1 0

1 1

 , V =

−1 1

−2 1

 .
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So for ϵ = 1, we have that χ(T ) = e2πiα.

Define

gχ,k(τ) =
∑

a b

c d

∈⟨±T ⟩\Γ0(2)

χ

a b

c d


−1

e
2πiα

aτ+b
cτ+d

(cτ + d)k
.

Let us first discuss the elements of ⟨±T ⟩\Γ0(2). Here, we are looking at the cosets

of Γ0(2) in ⟨±T ⟩. So, for any matrix

a b

c d

 ∈ Γ0(2), the entries a, b, d could be any

integers but the c will be an even integer such that ad− bc = 1. Therefore, we can say that

gχ,k(τ) =
∑

 a b

2c d

∈⟨±T ⟩\Γ0(2)

χ

 a b

2c d


−1

e
2πiα

aτ+b
2cτ+d

(2cτ + d)k
,

where ad− 2bc = 1. Also, note that

1 1

0 1


 a b

2c d

 =

a+ 2c 2c

b+ d d

 .

Therefore,

⟨±T ⟩

 a b

2c d

 =


±a± 2nc ±b± nd

±2c ±d

 ∈ Γ0(2), n ∈ Z

 .

For any given c, d ∈ Z, we can always choose a, b ∈ Z depending on ad− 2bc = 1. So,

gχ,k is well-defined. In the following lemma, we discuss the convergence of gχ,k(τ) on H.

Lemma 4.1 Let k ≥ 4, then gχ,k(τ) converges uniformly on compact subsets of H.
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Proof. Since χ is unitary, ∣∣∣∣∣∣∣χ
 a b

2c d


−1∣∣∣∣∣∣∣ = 1. (4.1)

Also, by properties of the complex exponential,

∣∣∣e2πiαℜ( aτ+b
2cτ+d)

∣∣∣ = 1. (4.2)

So,

|gχ,k(τ)| ≤
∑

 a b

2c d

∈⟨±T ⟩\Γ0(2)

e
−2παℑ

(
aτ+b
2cτ+d

)
|2cτ + d|k

=
∑

 a b

2c d

∈⟨±T ⟩\Γ0(2)

e
−2πα

ℑ(τ)

|2cτ+d|2

|2cτ + d|k
(4.3)

by equation (2.1). Since ℑ(τ) > 0 in H, notice that for α ≥ 0,

e
−2πα

ℑ(τ)

|2cτ+d|2 ≤ 1. (4.4)

Hence, combining results from equations (4.1) - (4.4), we have that

|gχ,k(τ)| ≤
∑

 a b

2c d

∈⟨±T ⟩\Γ0(2)

1

|2cτ + d|k
.

The sum on the right hand side of the above equation is absolutely convergent for k ≥
4 and hence gχ,k(τ) converges uniformly on compact subsets of H. Then, by Morera’s

theorem ([3], p.122), gχ,k(τ) is holomorphic on H.

As we mentioned earlier in Chapter 2, every vvmf has a Fourier q-expansion. We will

now compute the coefficients of the Fourier expansion of gχ,k. We will need the following

lemma for the computation of the Fourier coefficients.
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−R R

ℜ(z)

ℑ(z)

C

CR

Figure 4.1: Contour C for Lemma 4.2.

Lemma 4.2 Let m, k ∈ Z with k ≥ 2. Let x, y ∈ R with y > 0, then

∫ ∞

−∞

e−2πimxdx

(x+ iy)k
=


0 m ≤ 0,

mk−1

(k−1)!
(−2πi)ke−2πmy m > 0.

Proof. For m, k ∈ Z with k ≥ 2 and y ∈ R, y > 0, consider the function

f(z) =
e−2πimz

(z + iy)k
, z ∈ C.

For m > 0, we will compute integral of this function, i.e.
∮
C

f(z)dz, over C, where C is

a closed curve consisting of real-axis from R to −R and the semi-circle CR of radius R in

the lower half plane. The contour is displayed in figure 4.2.

The function f has one pole of order k at z = −iy, which lies inside the contour C.

Hence, by the residue theorem, we have that

∮
C

f(z)dz = 2πiResz=−iyf(z)

= 2πi
1

(k − 1)!
lim

z→−iy

dk−1

dzk−1
[(z − (−iy))kf(z)]z=−iy

= 2πi
1

(k − 1)!
lim

z→−iy

dk−1

dzk−1
[e−2πimz]

=
(2πi)k

(k − 1)!
(−m)k−1e−2πmy. (4.5)
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Also, note that ∮
C

f(z)dz =

∫ −R

R

f(z)dz +

∮
CR

f(z)dz

Since ℑ(z) = 0 on the real-axis, and by properties of the integrals, we can re-write the

above equation as ∮
C

f(z)dz = −
∫ R

−R

f(x)dx+

∮
CR

f(z)dz (4.6)

Using properties of complex numbers, we observe that for R > 0,

∣∣∣∣∣∣
∮
CR

f(z)dz

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∮
CR

e−2πimz

(z + iy)k
dz

∣∣∣∣∣∣ ≤
∮
CR

|e−2πimzdz|
|(z + iy)k|

=

∮
CR

|e−2πimz||dz|
|(z + iy)|k

=

∮
CR

|e2πmy||dz|
|(z + iy)|k

=

∫ π

0

1.|Rdθ|
(
√
R2 + y2)

k
(since |e2πmy| → 0 as y → 0)

≤
∫ π

0

Rdθ

R2 + y2
(since k ≥ 2)

=

∫ π

0

1/R2dθ

1 + (y/R)2

Clearly, ∣∣∣∣∣∣
∮
CR

f(z)dz

∣∣∣∣∣∣→ 0 as R → ∞. (4.7)

Therefore, by equations 4.5, 4.6 and 4.7, we get that for m > 0,

∫ ∞

−∞

e−2πimxdx

(x+ iy)k
dx = lim

R→∞

∫ R

−R

e−2πimxdx

(x+ iy)k
dx =

mk−1

(k − 1)!
(−2πi)ke−2πmy.

For m ≤ 0, we can let p = −m and redo the calculations as above for contourC ′, where
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C ′ is a closed curve consisting of real-axis from −R to R and the semi-circle C ′
R of radius

R in the upper half plane. As there are no poles of f(z) inside the contour C ′, the integral,

therefore, evaluates to 0.

This completes the proof.

Notice that we can re-write the expression for gχ,k as follows:

gχ,k(τ) = qα +
∞∑
c=1

∑
d∈Z

gcd(2c,d)=1

χ

 a b

2c d


−1

e
2πiα

aτ+b
2cτ+d

(2cτ + d)k
.

The term qα in the above equation corresponds to the identity coset in ⟨±T ⟩\Γ0(2).

Since gcd(2c, d) = 1, by Division Algorithm, we have that

d = d0 + 2ct

where t ∈ Z and 1 ≤ d0 < 2c. Using the fact that the matrices are coming from Γ0(2), so

their determinant has to be 1, we can re-write the definition of gχ,k as follows:
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gχ,k(τ) = qα +
∞∑
c=1

2c∑
d=1

gcd(2c,d)=1

∑
t∈Z

χ

 a b+ at

2c d+ 2ct


−1

e
2πiα

aτ+b+at
2cτ+d+2ct

(2cτ + d+ 2ct)k

= qα +
∞∑
c=1

2c∑
d=1

gcd(2c,d)=1

∑
t∈Z

χ


 a b

2c d


1 t

0 1




−1

e
2πiα

aτ+b+at
2cτ+d+2ct

(2cτ + d+ 2ct)k

= qα +
∞∑
c=1

2c∑
d=1

gcd(2c,d)=1

∑
t∈Z

χ


 a b

2c d

T t


−1

e
2πiα

aτ+b+at
2cτ+d+2ct

(2cτ + d+ 2ct)k

= qα +
∞∑
c=1

2c∑
d=1

gcd(2c,d)=1

∑
t∈Z

χ

 a b

2c d


−1

χ(T t)−1 e
2πiα

aτ+b+at
2cτ+d+2ct

(2cτ + d+ 2ct)k

= qα +
∞∑
c=1

2c∑
d=1

gcd(2c,d)=1

∑
t∈Z

χ

 a b

2c d


−1 ((

e2πiα
)t)−1 e

2πiα
aτ+b+at
2cτ+d+2ct

(2cτ + d+ 2ct)k

= qα

1 +
1

2k

∞∑
c=1

1

ck

2c∑
d=1

gcd(2c,d)=1

χ

 a b

2c d


−1∑

t∈Z

e−2πiα(τ+t)e
2πiα

a(τ+t)+b
2c(τ+t)+d

(τ + t+ d
2c
)k


(4.8)

Notice that the function

f(τ) =
∑
t∈Z

e−2πiα(τ+t)e
2πiα

a(τ+t)+b
2c(τ+t)+d

(τ + t+ d
2c
)k

in the equation (4.8) satisfies the translation law f(τ +1) = f(τ) because we are summing

over t ∈ Z:

f(τ + 1) =
∑
t∈Z

e−2πiα(τ+1+t)e
2πiα

a(τ+1+t)+b
2c(τ+1+t)+d

(τ + 1 + t+ d
2c
)k

=
∑
t∈Z

e−2πiα(τ+t)e
2πiα

a(τ+t)+b
2c(τ+t)+d

(τ + t+ d
2c
)k

= f(τ).
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So, we will now work on the Fourier expansion of f(τ). Let f(τ) =
∑
n∈Z

tnq
n. Then, gχ,k

can be re-written as

gχ,k = qα

1 +
∑
n∈Z

1

2k

 ∞∑
c=1

1

ck

2c∑
d=1

gcd(2c,d)=1

χ

 a b

2c d


−1

tn

 qn

 . (4.9)

Let us work out the formula for all tn. Recall that α ∈ [0, 1). So, by definition 2.17, we

have that

tn =

∫ 1

0

f(x+ iy)e−2πin(x+iy)dx

=

∫ 1

0

∑
t∈Z

e−2πiα(x+iy+t)e
2πiα

a(x+iy+t)+b
2c(x+iy+t)+d

(x+ iy + t+ d
2c
)k

e−2πin(x+iy)dx

= e2πny
∫ 1

0

∑
t∈Z

e−2πiα(x+iy+t)e
2πiα

a(x+iy+t)+b
2c(x+iy+t)+d

(x+ iy + t+ d
2c
)k

e−2πinxdx

= e2πny
∫ ∞

−∞

e−2πiα(x+iy)e
2πiα

a(x+iy)+b
2c(x+iy)+d

(x+ iy + d
2c
)k

e−2πinxdx

= e2π(α+n)y

∫ ∞

−∞

e−2πi(α+n)xe
2πiα

a(x+iy)+b
2c(x+iy)+d

(x+ d
2c
+ iy)k

dx

Let u = x+ d
2c

. Then, du = dx; and hence the integral above becomes:

tn = e2π(α+n)y

∫ ∞

−∞

e−2πi(α+n)(u− d
2c

)e
2πiα

a(u− d
2c+iy)+b

2c(u− d
2c+iy)+d

(u+ iy)k
du

= e2π(α+n)ye2πi(α+n) d
2c

∫ ∞

−∞

e−2πi(α+n)ue2πiα
a(u+iy)−ad+2bc

2c
2c(u+iy)

(u+ iy)k
du

= e2π(α+n)ye2πi(α+n) d
2c e2πiα

a
2c

∫ ∞

−∞

e−2πi(α+n)ue2πiα
−1
2c

2c(u+iy)

(u+ iy)k
du

= e2π(α+n)ye2πi(α+n) d
2c e2πiα

a
2c

∫ ∞

−∞

e−2πi(α+n)ue
−2πiα 1

4c2(u+iy)

(u+ iy)k
du. (4.10)
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Let the integral in equation (4.10) be denoted by ck(α, n). So,

ck(α, n) =

∫ ∞

−∞
e−2πi(α+n)u e

−2πiα 1
4c2(u+iy)

(u+ iy)k
du. (4.11)

Let r ≥ 1. We differentiate the above equation r times with respect to α. We can allow

interchange of the differentiation and integration for this step because of the Leibniz integral

rule ([24] p. 422, Theorem 1). Differentiating equation (4.11) r times with respect to α

gives us

c
(r)
k (α, n) =

(
−2πi

4c2

)r ∫ ∞

−∞
e−2πi(α+n)u e

−2πiα 1
4c2(u+iy)

(u+ iy)k+r
du (4.12)

=

(
−2πi

4c2

)r

ck+r(α, n)

So, we can write ck(α, n) as a power series of the form

ck(α, n) =
∑
r≥0

br(α− ζ)r

where br =
c
(r)
k (ζ,n)

r!
. Expanding the above power series about ζ = 0, we get

ck(α, n) =
∑
r≥0

c
(r)
k (0, n)

r!
αr (4.13)

Substituting the value of c(r)k (0, n) from equation (4.12) into equation (4.13), we get

ck(α, n) =
∑
r≥0

1

r!

(
−2πiα

4c2

)r ∫ ∞

−∞

e−2πi(α+n)u

(u+ iy)k+r
du

Using results from lemma 4.2 for the integral in the above equation, we find that

ck(α, n) =


0 n ≤ −α,∑

r≥0
1
r!

(−2πiα
4c2

)r (α+n)k+r−1

(k+r−1)!
(−2πi)k+re−2π(α+n)y n > α.

(4.14)
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Now, using equations (4.10), (4.11) and (4.14), we find that tn = 0 for n ≤ −α and for

n > α, we have

tn = e2π(α+n)ye2πi(α+n) d
2c e2πiα

a
2c

∑
r≥0

1

r!

(
−2πiα

4c2

)r
(α + n)k+r−1

(k + r − 1)!
(−2πi)k+re−2π(α+n)y

= (−2πi)k(n+ α)k−1e2πi(α+n) d
2c e2πiα

a
2c

∑
r≥0

1

r!(k + r − 1)!

(
−4π2α(n+ α)

4c2

)r

.

Recall that α ∈ [0, 1) for our case, hence we can say that the constant term in the

Eisenstein series gχ,k is as follows:

C0 = 1+αk−1(−πi)k
∞∑
c=1

1

ck

2c∑
d=1

gcd(2c,d)=1

χ

 a b

2c d


−1

e2πiα
a+d
2c

∑
r≥0

1

r!(k + r − 1)!

(
πiα

c

)2r

.

(4.15)

Define the Kloosterman sum

K(α, c) =
2c∑
d=1

gcd(2c,d)=1

χ

 a b

2c d


−1

e2πiα
a+d
2c (4.16)

and

F (z) =
∑
r≥0

1

r!(k + r − 1)!
z2r (4.17)

By equations (4.15) (4.16) and (4.17), we can say that the constant term in gχ,k is as

follows:

C0 = 1 + αk−1(−πi)k
∞∑
c=1

F
(
πiα
c

)
K(α, c)

ck
. (4.18)

Theorem 4.3 Let Jα(z) denote the Bessel function of the first kind as defined in Definition
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2.29, and let K(α, c) denote the Kloosterman sum. Then, for α ∈ [0, 1), we have:

gχ,4 =

(
1− π

∞∑
c=1

J3
(−2πα

c

)
K(α, c)

c

)
Fχ.

Proof. We will use equations 2.11 and 2.12 to prove this result.

Note that the function in equation (4.17) can be expressed in terms of the Modified

Bessel functions of the first kind using equation (2.12) as follows:

F (z) =
∑
r≥0

1

r!(k + r − 1)!
z2r

=
1

(k − 1)!

∑
r≥0

1

k(k + 1) · · · (k + r − 1)

z2r

r!

=
1

(k − 1)!
0F1

(
; k, z2

)
=

z1−k

(k − 1)!
Γ(k)Ik−1(2z).

Therefore,

F

(
πiα

c

)
=

(
πiα
c

)1−k

(k − 1)!
Γ(k)Ik−1

(
2πiα

c

)
.

Using the above result in equation (4.18), we get

C0 = 1 + αk−1(−πi)k
∞∑
c=1

(
πiα
c

)1−k

(k − 1)!
Γ(k)Ik−1

(
2πiα

c

)
K(α, c)

ck

= 1 + (−1)kπi
∞∑
c=1

Ik−1

(
2πiα
c

)
K(α, c)

c

= 1 + (−1)kπi
∞∑
c=1

i1−kJk−1

(
i2πiα

c

)
K(α, c)

c
(by equation (2.11))

= 1 + π(−1)ki2−k

∞∑
c=1

Jk−1

(−2πα
c

)
K(α, c)

c
.
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Using k = 4 in the above equation, we get that the constant term of gχ,4 is

C0 =

(
1− π

∞∑
c=1

J3
(−2πα

c

)
K(α, c)

c

)

Since Fχ is a one-dimensional modular form with its constant term in its Fourier series

expansion as 1. So, gχ,4/Fχ gives us the constant term of gχ,4. Hence, we can say that

gχ,4/Fχ =

(
1− π

∞∑
c=1

J3
(−2πα

c

)
K(α, c)

c

)
.

This proves the result.

We can now define a function γ on (0, 1) as γ(α) is the constant term in the Fourier

expansion of gχ,k. Since Fχ is a one-dimensional modular form with its constant term in its

Fourier series expansion as 1, hence,

gχ,k = γ(α)Fχ.

This relates our computations with Eisenstein series to our preceding discussion of hy-

pergeometric series formulae. Note that one obtains an analogous formula for gχ,6.

Figures 4.2 - 4.4 illustrate values of γ for different values of α for different cases of ϵ.

Remark Graphs in figures 4.2 - 4.4 were evaluated by sampling 200 points for 60 coefficients in Fourier
series expansion of gχ,4.
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Figure 4.2: Values of γ for ϵ = 1 and α ∈ (0, 1).

Figure 4.3: Values of γ for ϵ = −1 and α ∈ (0, 1/2).
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Figure 4.4: Values of γ for ϵ = −1 and α ∈ (1/2, 1).
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Chapter 5

Conclusions

This chapter summarizes the main results presented in this thesis.

5.1 Summary of thesis

In Chapter 3, we computed coordinates of vvmfs over Γ and 3-dimensional ρ for different

values of α ∈ (0, 1) and ϵ = ±1. Tables 5.1 - 5.3 summarize those results:

Fi ϵ = 1

Fχ η8
(

x2

512(1+
√
1−x)3

) 3α−1
3

F2 η8
(
64
x

) 3α−4
3

(
4

(1−3α)x

((
1+

√
1−x
2

)3α−1

− 1

))
F3 η8 4

3αx
−3α−2

3

(−3α−2)

((
1+

√
1−x
2

)3α+2

− 1

)
− x

7−3α
3

2α(3α+2)
×[

d
dx

(
1
x2

((
(1− x) + 1

2−3α
x+ 2(1−x)x

2−3α
d
dx

)(
1+

√
1−x
2

)3α))
+ 2

x3 − 3α+2
4x2

]

Table 5.1: Coordinates of vvmf for ϵ = 1. (Replicated from Table 3.2)
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Fi ϵ = −1, α ∈ (0, 1/2)

Fχ η4
(

512(1+
√
1−x)3

x2

) 1−6α
6

F2 η4 2
6α+2x

−6α−5
6

(−6α−5)

((
1+

√
1−x
2

) 6α+5
2 − 1

)
− x

13−6α
6 26α+23

(1+6α)(6α+5)
×[

d
dx

(
1
x2

((
(1− x) + 2

3−6α
x+ 4(1−x)x

3−6α
d
dx

)(
1+

√
1−x
2

) 1+6α
2

))
+ 2

x3 − 6α+5
8x2

]

F3 η4
(
64
x

) 6α−7
6

(
8

(1−6α)x

((
1+

√
1−x
2

)−( 1−6α
2 )

− 1

))
Table 5.2: Coordinates of vvmf for ϵ = −1 and α ∈ (0, 1/2). (Replicated from Table 3.3)

Fi ϵ = −1, α ∈ (1/2, 1)

Fχ η12
(

512(1+
√
1−x)3

x2

) 1−2α
2

F2 η12
(
64
x

) 2α−3
2

(
8

(3−6α)x

((
1+

√
1−x
2

)−( 3−6α
2 )

− 1

))
F3 η12 2

6αx
−2α−1

2

(−6α−3)

((
1+

√
1−x
2

) 6α+3
2 − 1

)
− x

5−2α
2 26α

(α−1)(1+2α)
×[

d
dx

(
1
x2

((
(1− x) + 2

5−6α
x+ 4(1−x)x

5−6α
d
dx

)(
1+

√
1−x
2

) 6α−1
2

))
+ 2

x3 − 6α+3
8x2

]

Table 5.3: Coordinates of vvmf for ϵ = −1 and α ∈ (1/2, 1). (Replicated from Table 3.4)
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Case F

ϵ = 1
Γ( 1

4)
8

25π6

(
2−9α, 1−26α−5

24(1−3α)
, 23α−5(1 + 23α−1)

)t
ϵ = −1, α ∈ (0, 1/2)

Γ( 1
4)

4

25/2π3

(
2−9α, 23α−3(1 + 2

6α−1
2 ), 2

3α−5(2
6α−1

2 −1)
(6α−1)

)t

ϵ = −1, α ∈ (1/2, 1)
Γ( 1

4)
12

π9

(
2

−15−18α
2 , 2

6α−33
2 (1−2

2α−1
2 )

3(1−2α)
, 2

6α−29
2 (1 + 2

6α−3
2 )

)t

Table 5.4: vvmfs for τ = i. (Replicated from Table 3.5)

We also computed CM values of vvmfs for τ = i, we present these CM values as

column vectors in the table 5.4.

In proposition 3.7, we made some observations about the transcendental part of CM

value for τ = i. We present these observations below.

Proposition 5.1 Let F be one of the family of vvmfs discussed above, then the transcenden-

tal part of CM value for τ = i is locally constant in the following sense:

1. If ϵ = 1, then π6Fχ

Γ(1/4)8
∈ Q(

√
3) for all α ∈ Q ∩ (0, 1),

2. If ϵ = −1, then π3Fχ

Γ(1/4)4
∈ Q(

√
3) for all α ∈ Q ∩ (0, 1/2),

3. If ϵ = −1, then π9Fχ

Γ(1/4)12
∈ Q(

√
3) for all α ∈ Q ∩ (1/2, 1).

In fact, all of these values are algebraically dependent on α ∈ (0, 1) except for α = 1/2.

In chapter 3, we also computed the first coordinates Fχ of vvmfs over ρ and Γ in terms

of λ, the elliptic modular lambda invariant from chapter 4. We have summarized the results

from theorem 3.8 in the table 5.5.
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Case Fχ

ϵ = 1 η8
(

λ2

256(1−λ)

) 3α−1
3

ϵ = −1, α ∈ (0, 1/2) η4
(

λ2

256(1−λ)

) 6α−1
6

ϵ = −1, α ∈ (1/2, 1) η12
(

λ2

256(1−λ)

) 2α−1
2

Table 5.5: Fχ for vvmfs over ρ and Γ in terms of modular λ-invariant.

In chapter 4, we defined an analogue of Eisenstein series as follows:

gχ,k(τ) =
∑

 a b

2c d

∈⟨±T ⟩\Γ0(2)

χ

 a b

2c d


−1

e
2πiα

aτ+b
2cτ+d

(2cτ + d)k
,

where ad − 2bc = 1. Theorem 4.3 explained a result related to the constant term of this

series. We present this theorem here again.

Theorem 5.2 Let Jα(z) denote the Bessel function of the first kind as defined in Definition

2.29, and let K(α, c) denote the Kloosterman sum. Then, for α ∈ [0, 1), we have:

gχ,4 =

(
1− π

∞∑
c=1

J3
(−2πα

c

)
K(α, c)

c

)
Fχ.

We also defined a function γ on (0, 1) as γ(α) is the constant term in the Fourier expan-

sion of gχ,k. Figures 4.2 - 4.4 illustrated values of γ for different values of α for different

cases of ϵ. We present these graphs here in figures 5.1 - 5.3.
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Figure 5.1: Values of γ for ϵ = 1 and α ∈ (0, 1). (Replicated from Figure 4.2)

Figure 5.2: Values of γ for ϵ = −1 and α ∈ (0, 1/2). (Replicated from Figure 4.3)
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Figure 5.3: Values of γ for ϵ = −1 and α ∈ (1/2, 1). (Replicated from Figure 4.4)
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