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Abstract

Model-based clustering is the use of finite mixture models to identify underlying

group structures in data. Estimating parameters for mixture models is notoriously

difficult, with the expectation-maximization (EM) algorithm being the predominant

method. An alternative approach is the evolutionary algorithm (EA) which emulates

natural selection on a population of candidate solutions. By leveraging a fitness

function and genetic operators like crossover and mutation, EAs offer a distinct way

to search the likelihood surface. EAs have been developed for model-based clustering

in the multivariate setting; however, there is a growing interest in matrix-variate

distributions for three-way data applications. In this context, we propose an EA for

finite mixtures of matrix-variate distributions.
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Chapter 1

Introduction

Model-based clustering is the use of finite mixture models to identify underlying

group structures in data. A recent review of model-based clustering can be found in

McNicholas (2016b), while extensive details are available in McNicholas (2016a). Es-

timating parameters for mixture models is notoriously difficult, with the expectation-

maximization (EM) algorithm being the predominant method (Dempster et al., 1977).

Although the EM algorithm is a powerful technique, it is susceptible to becoming

trapped at local maxima, which translates to suboptimal clustering results (Titter-

ington et al., 1985). An alternative approach is the evolutionary algorithm (EA)

which emulates natural selection on a population of candidate solutions. By leverag-

ing a fitness function and genetic operators like crossover and mutation, EAs offer a

distinct way to search the likelihood surface, helping to bypass the limitations of the

EM algorithm.

While EAs have been successful for multivariate model-based clustering (Andrews

and McNicholas, 2013; McNicholas et al., 2020), there remains a paucity of research

in the matrix-variate setting. Matrix-variate or three-way data consists of matrices
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organized in three dimensions. This structure commonly arises in multivariate longi-

tudinal data, with multiple measurements taken at different time points, and greyscale

image data. Model-based clustering has demonstrated its effectiveness in clustering

three-way data by leveraging mixtures of matrix-variate distributions (Viroli, 2011;

Anderlucci and Viroli, 2015; Doǧru et al., 2016; Gallaugher and McNicholas, 2018;

Silva et al., 2023).

In response to the growing interest in matrix-variate data applications, this work

develops an EA for matrix-variate model-based clustering. The algorithm incorpo-

rates both crossover and mutation operations and is applied in the matrix-variate

normal setting. We find that its performance is competitive against the EM algo-

rithm for clustering three-way data in both simulated and real-world datasets.

2



Chapter 2

Background

The following sections provide essential context for this research, covering matrix vari-

ate distributions, types of machine learning algorithms, clustering, and evolutionary

computation. Clustering is presented through the model-based paradigm including

discussions on finite mixtures of matrix-variate distributions, parameter estimation,

convergence criterion, model selection, and model performance. Evolutionary com-

putation is presented with a focus on evolutionary algorithms, the genetic operators

crossover and mutation, and their application to model-based clustering.

2.1 Matrix-Variate Distributions

Three-way data refers to datasets that consist of matrices organized in three di-

mensions. These datasets are characterized by having n units (rows), p variables

(columns), and N occasions (layers). Matrix-variate distributions provide an effective

way to model three-way data, the most mathematically tractable being the matrix-

variate normal distribution (Gupta and Nagar, 1999). An n × p random matrix X

3
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follows an n × p matrix-variate normal distribution, denoted Nn×p(M,Σ,Ψ), if its

density can be written as

ϕn×p(X|M,Σ,Ψ) =
1

(2π)
np
2 |Σ| p2 |Ψ|n2

exp

{
−1

2
tr
(
Σ−1(X−M)Ψ−1(X−M)′

)}
,

where M is the n× p location matrix, Σ is the n× n row covariance matrix, and Ψ

is the p× p column covariance matrix. An equivalent formulation in the multivariate

setting is given by

X ∼ Nn×p(M,Σ,Ψ) ⇐⇒ vec(X ) ∼ Nnp(vec(M),Ψ⊗Σ),

where Nnp(·) is the np multivariate normal distribution, vec(·) is the vectorization

operator, and ⊗ is the Kronecker product. A framework for assessing the matrix-

variate normality of three-way data using both visual and goodness of fit tests is

available in Pocuca et al. (2019).

2.2 Supervised, Unsupervised, and Semi-Supervised

Learning

Machine learning algorithms can be broadly categorized into three varieties: super-

vised, unsupervised, and semi-supervised. The level of supervision indicates the pres-

ence and utilization of labeled data. In regression, labeled data corresponds to the

observed values of the response variable associated with each input, while in classifi-

cation, labels indicate group membership. Unsupervised learning is the most general

case, where no observations are a priori labeled. In contrast, the other varieties

4
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involve some labeled data, which is then used to infer labels for the unlabeled obser-

vations. In supervised learning, only the labeled data is used to infer labels for the

unlabeled data. Semi-supervised learning leverages all available data to infer labels

for the unlabeled data.

2.3 Model-Based Clustering

2.3.1 Historical Perspective

Classification is a paradigm in which group membership labels are assigned to unla-

belled data. Unsupervised classification, or clustering, assumes that all observations

are unlabelled or are treated as such. The groups to which observations are as-

signed are referred to as classes or clusters. Defining a cluster formally is surprisingly

nontrivial. Intuitively, we want observations within a cluster to exhibit shared charac-

teristics, making them more similar to each other than observations in other clusters.

However, this definition is flawed because it elicits a solution where each observation

is assigned to its own cluster McNicholas (2016a).

A more suitable definition can be constructed using finite mixture models. Mc-

Nicholas (2016b) explains that the framing of a cluster in terms of a component of

a mixture model can be traced back to Tiedeman (1955). Consider a population of

G groups where the observations in each group are generated by a Gaussian density

function. By censoring the group membership of each observation, we are left with a

mixture of unknown densities. The reconstruction of the original G densities is known

as clustering (Tiedeman, 1955). Subsequently, Wolfe (1963) considered a cluster to

5
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be a component of a mixture model and pioneered multivariate Gaussian model-

based clustering (Wolfe, 1965). Wolfe (1963) also explored two additional definitions

of a cluster. The first definition characterizes a cluster as a mode in a distribution,

while the second is based on the similarity between observations. McNicholas (2016a)

synthesizes the historical development of a cluster and offers a refined definition as

follows:

A cluster is a unimodal component within an appropriate finite mixture

model.

In this context, an appropriate finite mixture model is one that exhibits the necessary

flexibility and parameterization to effectively fit the data.

2.3.2 Finite Mixture Models

The main objective of model-based clustering is maximize the likelihood of a G-

component finite mixture model. While model-based clustering is typically applied

to two-way data, it can be naturally extended to accommodate three-way data using

matrix-variate distributions. A matrix-variate random variable X arises from a finite

mixture model if its density can be written as

f(X|ϑ) =
G∑

g=1

πgfg(X|θg),

where fg(·) is the gth component density, πg > 0 is the gth mixing proportion with∑G
g=1 πg = 1, and ϑ = (π,θ1,θ2, . . . ,θG) is the vector of parameters with π =

(π1, π2, . . . , πG). In most applications, the component density functions are taken to

6
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be identical conditioned on θg, indicated as

fg(X|θg) = f(X|θg),

for all g. Building on the ideas in Wolfe (1965), Viroli (2011) introduces the use

of finite mixtures of matrix-variate normals for clustering three-way data. In the

subsequent sections, we denote the density of a mixture of matrix-variate normals as

f(X|ϑ) =
G∑

g=1

πgϕ(X|Mg,Σg,Ψg),

where ϑ = (π1, . . . , πg,M1,Σ1,Ψ1, . . . ,MG,ΣG,ΨG).

2.3.3 Parameter Estimation

Estimation of the mixture model parameters is typically performed using the expectation-

maximization (EM) algorithm (Dempster et al., 1977). The EM algorithm is an it-

erative procedure for finding maximum likelihood estimates under incomplete data.

Consider a dataset comprising N unlabelled matrices X1,X2, . . . ,XN of size n × p.

Then the observed-data likelihood for a finite matrix-variate normal mixture is given

by

L(ϑ) =
N∏
i=1

G∑
g=1

πgϕ(Xi|Mg,Σg,Ψg).

Taking the natural logarithm gives us the observed-data log-likelihood

l(ϑ) =
N∑
i=1

log

(
G∑

g=1

πgϕ(Xi|Mg,Σg,Ψg)

)
.

7
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To complete the data, we introduce latent membership indicators zig where

zig =


1 if observation Xi belongs to component g,

0 otherwise,

for i = 1, . . . , N ; g = 1, . . . , G. Under this terminology, the goal of model-based clus-

tering is to accurately predict zig for each observation and each component. Next, the

indicators are organized into row vectors z1, z2, . . . , zN where zi = (zi1, zi2, . . . , ziG)

denotes the membership label for data point i. The collection of all membership

labels can be further condensed into an N ×G solution matrix denoting a clustering

of the data

Z =



z1

z2
...

zN


=



z11 z12 . . . z1G

z21 z22 . . . z2G
...

...
. . .

...

zN1 zN2 . . . zNG


.

Using the data and membership labels, we obtain the complete-data likelihood and

complete-data log-likelihood as follows

Lc(ϑ) =
N∏
i=1

G∏
g=1

[πgϕ(Xi|Mg,Σg,Ψg)]
zig ,

lc(ϑ) =
N∑
i=1

G∑
g=1

zig [log πg + log ϕ(Xi|Mg,Σg,Ψg)] .

For each iteration of the EM algorithm, the E-step replaces the zig indicators with

their conditional expected values given the data and the current parameter estimates

ẑig = E[zig|Xi, ϑ̂] = P[zig = 1|Xi, ϑ̂] =
π̂gϕ(X̂i|M̂g, Σ̂g, Ψ̂g)∑G
h=1 π̂hϕ(X̂i|M̂h, Σ̂h, Ψ̂h)

.

8
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The predictions can be reported as either soft or hard classifications. In soft classi-

fication, the values of ẑig remain as probabilities in (0, 1), as computed during the

E-step. Alternatively, hard classification reports the maximum a posteriori (MAP)

classification i.e, MAP{ẑig}, where

MAP{ẑig} =


1 if g = argmaxh{ẑih},

0 otherwise.

In the M-step, the parameters are updated. Viroli (2011) derives the matrix-variate

normal maximum likelihood estimates as

π̂g =
Ng

N
, Ng =

N∑
i=1

ẑig,

M̂g =

∑N
i=1 ẑigXi

Ng

,

Σ̂g =

∑N
i=1 ẑig(Xi − M̂g)Ψ̂

−1
g (Xi − M̂g)

′

pNg

,

Ψ̂g =

∑N
i=1 ẑig(Xi − M̂g)Σ̂

−1
g (Xi − M̂g)

′

nNg

,

for g = 1, . . . , G. The E and M steps iterate until some convergence criterion is

satisfied.

2.3.4 Convergence Criterion

To determine convergence of the EM algorithm, we use a criterion based on the Aitken

acceleration (Aitken, 1926) defined by

a(t) =
l(t+1) − l(t)

l(t) − l(t−1)
,

9
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where l(t) is the observed log-likelihood at iteration t. From this, Lindsay (1995)

and Böhning et al. (1994) calculate the asymptotic estimate of the log-likelihood at

iteration t+ 1 as

l(t+1)
∞ = l(t) +

1

1− a(t)
(l(t+1) − l(t)).

In accordance with McNicholas et al. (2010), the EM algorithm terminates when

0 < l(t+1)
∞ − l(t) < ε,

for some pre-specified tolerance ε > 0.

2.3.5 Model Selection

In general, the number of underlying components or clusters is a priori unknown.

To select the appropriate number, we use the Bayesian information criterion (BIC;

Schwarz, 1978) defined as

BIC = 2l(ϑ̂)− 2ρ logN,

where l(ϑ̂) is the maximized log-likelihood, N is the number of observations, and ρ is

the number of free parameters. The model with the largest BIC value is considered

the most appropriate. The use of the BIC for mixture-models has theoretical support

in Leroux (1992) and Keribin (2000) where under certain regularity conditions, the

correct number of components is consistently estimated. Dasgupta and Raftery (1998)

also demonstrates BIC’s value in selecting the appropriate number of components for

multivariate Gaussian mixture models.

10
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2.3.6 Model Performance

In the subsequent clustering, labeled datasets are treated as if they were unlabelled.

Accordingly, we can assess model performance by comparing MAP classifications to

the ground truth. The Rand index (RI; Rand, 1971) serves as a metric for quantifying

the agreement between two sets of class assignments and is defined by

RI =
number of pairwise agreements

total number of pairs
.

Pairwise agreement occurs when two observations are correctly assigned labels in

relation to each other. If they belong to the same cluster, they should be labeled

identically, while if they belong to different clusters, they should receive distinct

labels. Conversely, a pairwise disagreement indicates inconsistent labels assigned to

two observations. Together, pairwise agreements and disagreements encompass all

possible pairs. The RI ranges between 0 and 1, with a value of 1 indicating a perfect

match in the assigned classes. Under random assignment, the RI has positive expected

value. To address this, Hubert and Arabie (1985) proposed the adjusted Rand index

(ARI), which scales the RI to correct for the expected number of random pairwise

agreements. The ARI is defined as

ARI =
RI− E[RI]

max(RI)− E[RI]
.

Consequently, the ARI has an expected value of 0 under random assignment and

achieves a value of 1 for perfect assignment. It is important to note that the ARI

permits negative values, indicating worse than random assignment.

11
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2.3.7 Benefits Over Vectorization

A common approach to tackling complex problems is to transform them into a domain

that is better understood. When dealing with matrix-variate clustering, it is tempting

to revert to the multivariate setting through vectorization, permitting the use of well-

established techniques. However, matrix-variate analysis often offers a substantial

reduction in the number of free scale parameters. Gallaugher and McNicholas (2018)

demonstrates a free scale parameter reduction from (n2p2 + np)/2 to (n2 + p2 + n+

p)/2, which simplifies and speeds up the procedure for almost all values of n and p.

Therefore, it is profitable to remain in the matrix-variate setting when dealing with

three-way data.

2.4 Evolutionary Computation

Evolutionary computation (EC) is a paradigm inspired by the principles of biological

evolution for global optimization. It explores the solution space without assuming any

prior knowledge of its structure making it remarkably effective against challenging

optimization problems. As an interdisciplinary enterprise, EC has many possible

approaches. This treatment focuses on the perspective detailed in Ashlock (2010).

2.4.1 Evolutionary Algorithms

An evolutionary algorithm (EA) is a particular form of EC that exploits the concepts

of reproduction and natural selection. The goal is to maximize a fitness function

by evolving a population of candidate solutions. In contrast to other optimization

techniques that yield only a single solution, EAs offer the advantage of obtaining a

12
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population of optimal solutions.

To begin, the first generation of candidate solutions is initialized. For each gen-

eration, genetic operators such as crossover and mutation are applied to the popula-

tion members giving rise to new individuals. Only the fittest individuals among the

population survive, ensuring the propagation of advantageous traits. This process

continues until the population stagnates to a collection of maximally fit solutions.

In terms of natural selection, the traits of the final population have been selected

due to their reproductive success. Note that the fitness of a particular solution is

determined entirely by the fitness function under consideration. There can be several

viable fitness functions, each potentially resulting in distinct optimal populations.

2.4.2 Genetic Operators

For reproduction, the principal mechanism is the genetic operator known as crossover.

Crossover is the exchange of genetic material between two or more parent solutions

to create at least one offspring. The genetic material is exchanged randomly at a

single or multiple crossover points giving the offspring different trait combinations.

This promotes exploration of the solution space by creating new and diverse candi-

date solutions. Over many generations, the offspring inherit favourable traits from

their parents leading to fitter solutions. Mutation is a genetic operator that acts on

individual population members by randomly introducing slight genetic modifications.

This prevents premature convergence to suboptimal populations that may result from

crossover alone.

The balance between these two operators is crucial for the efficacy of an EA.

Natural processes indicate that crossover is to be the principal driving force of the

13
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evolutionary process, while mutations are to be applied sparingly. Nonetheless, deter-

mining the precise ratio between these operators necessitates hyperparameter tuning

to optimize the EA’s performance.

2.4.3 Evolutionary Algorithms For Model-Based Clustering

Early applications of EAs for model-based clustering can be found in Mart́ınez and

Vitrià (2000) and Pernkopf and Bouchaffra (2005). To address the local maximum

problem associated with the EM algorithm, the original works focused on evolving the

parameters of a multivariate Gaussian mixture model. That is, they applied crossover

and mutation directly to the parameters in ϑ. The fitness of potential solutions was

assessed using the minimum description length (MDL).

More recently, Andrews and McNicholas (2013) and McNicholas et al. (2020)

introduced a slightly different approach. Instead of evolving the parameter space, they

applied crossover and mutation to a population of latent cluster membership matrices

Zk. In this case, the fitness function was the observed-log likelihood calculated at the

parameter updates. The main advantage of evolving the cluster membership labels

instead of the model parameters lies in the size of the respective spaces. The total

number of possible classifications of N observations into G groups is finite, in contrast

to the infinite parameter space (Andrews and McNicholas, 2013).

McNicholas et al. (2020) developed an EA for multivariate Gaussian model-based

clustering, using two-point crossover and a greedy mutation function. In this work,

we aim to extend this algorithm to the matrix-variate setting, allowing for broader

applicability.

14



Chapter 3

Methods

The following sections introduce an EA for matrix-variate model-based clustering.

First, the underlying model, population, and fitness function are described. Next is a

presentation of the algorithm design, including a detailed discussion of the implemen-

tations of crossover and mutation. Finally, a procedure for applying the algorithm is

provided.

3.1 Model and Fitness Function

The underlying model for our EA is a mixture of matrix-variate normal distributions.

Representing individual clusterings of the data, matrices Zk consisting of indicator

variables zig serve as population members. Unlike the EM algorithm which uses

soft clustering, the EA estimates zig using hard clustering. For clarity, we denote

ẑig ∈ [0, 1] for the EM estimates and z̃ig ∈ {0, 1} for the EA estimates. To compute

the fitness of an individual solution, we first update the matrix-variate normal model

15
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parameters, replacing ẑig with z̃ig, that is,

π̃g =
Ng

N
, Ng =

N∑
i=1

z̃ig,

M̃g =

∑N
i=1 z̃igXi

Ng

,

Σ̃g =

∑N
i=1 z̃ig(Xi − M̃g)Ψ̃

−1
g (Xi − M̃g)

′

pNg

,

Ψ̃g =

∑N
i=1 z̃ig(Xi − M̃g)Σ̃

−1
g (Xi − M̃g)

′

nNg

,

for g = 1, . . . , G. Then we calculate the observed log-likelihood at the current EA

estimates

fitness(Z̃k) =
N∑
i=1

log

(
G∑

g=1

πgf(Xi|M̃g, Σ̃g, Ψ̃g)

)
.

3.2 Algorithm Design

The EA starts by initializing the first generation with a population of K parent

solutions, denoted as Z̃1, . . . , Z̃K . In general, the parent solutions are randomly

generated matrices representing random hard clusterings of the data. Alternatively,

one can provide initial solutions, such as a hardened k-means or other handpicked

solutions, to inform the evolutionary process.

Reproduction in the EA involves cloning the parents J times and performing

crossover on each parent and clone. Crossover randomly exchanges two distinct rows

between the parent solution and its clone creating an offspring with identical member-

ship labels except for two observations. It’s worth noting that this exchange can also

be viewed as a single parent operation in which two distinct rows of a single parent

are swapped. While this differs from the exploratory aspect of biological crossover,
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it offers the advantage of monotonically increasing the fitness of the population. To

illustrate this operation, suppose we randomly select labels z̃2 and z̃N from the parent

in Figure 3.1. Since the rows are distinct, we swap them to create offspring Z̃kj with

the same genetic material except for those two labels.

Z̃k =



z̃11 z̃12 . . . z̃1G

0 0 . . . 1

...
...

. . .
...

0 1 . . . 0


crossover−−−−−→ Z̃kj =



z̃11 z̃12 . . . z̃1G

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1


Figure 3.1: Illustration of the crossover operator, randomly swapping distinct rows
z̃2 and z̃N from the parent solution to create a child with similar genetic material.

If the labels are identical, we continue randomly selecting rows until two distinct

labels are found. After crossover, the population size grows to K + KJ , including

the original parents and their offspring. The population is then organized into a list

of descending fitness, from which we select the top K solutions to become the next

generation of parents. This crossover step helps avoid stopping at local maxima of

the fitness surface, i.e., the observed log-likelihood.

Because swapping alone does not guarantee better clustering results, we now in-

troduce a greedy mutation step. For each of the survivingK individuals, we randomly

swap the unit-element in a random row until their fitness improves. Suppose label z̃2

is randomly selected from the parent in Figure 3.2. Within this row, we may swap

the unit-element z̃2G = 1 with randomly selected zero-element z̃22 = 0.
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Z̃k =



z̃11 z̃12 . . . z̃1G

z̃21 0 . . . 1

...
...

. . .
...

z̃N1 z̃N2 . . . z̃NG


mutation−−−−−→ Z̃k =



z̃11 z̃12 . . . z̃1G

z̃21 1 . . . 0

...
...

. . .
...

z̃N1 z̃N2 . . . z̃NG


Figure 3.2: Illustration of the mutation operator, swapping unit-element z̃2G with
zero-element z̃22 in a random row of a surviving parent for a slightly modified solution.

If the mutation increases fitness, the swap remains; otherwise, the swap is reverted.

This process continues until either a profitable mutation is found or all rows have

been exhausted leaving the parent unchanged. If a generation remains unchanged

after applying both crossover and mutation, it is considered a stagnation. After a

predetermined number of consecutive stagnations, the algorithm terminates, resulting

in a population of K fit solution matrices.

18



M.Sc. Thesis - Thomas J. Flynn McMaster - Mathematics and Statistics

Algorithm 1 EA for matrix-variate model-based clustering.
Input:
X = [X1, . . . ,XN ]← n× p×N array of observations
Z̃ = [Z̃1, . . . , Z̃K ]← N ×G×K array of membership labels ▷ random if not
specified
G← number of clusters
K ← number of parents
J ← number of clones
S ← max number of stagnations

1: s = 0
2: while s < S do
3: for k = 1 to K do ▷ crossover step
4: for j = 1 to J do
5: Crossover: randomly swap two distinct labels from parent Z̃k to get

offspring Z̃kj

6: Fitness: update model parameters and calculate log-likelihood of Z̃kj

7: end for
8: end for
9: Survival: sort parents and offspring by descending fitness and take top K as

new parents
10: for k = 1 to K do ▷ mutation step
11: for r in random permutation of 1 to N do
12: Mutate: randomly swap unit-element with zero-element in row r
13: if fitness increases then
14: break for
15: else
16: revert the unit-element and zero-element swap
17: end if
18: end for
19: end for
20: if parents are identical to last generation then
21: s ← s+ 1
22: else
23: s ← 0
24: end if
25: end while

Return final population Z̃
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3.3 Procedure

The subsequent data analysis adopts the clustering paradigm, treating all membership

labels as unknown. For each dataset, two matrix-variate normal mixtures are applied:

one using the EM algorithm for parameter estimation and the other using our EA.

Both algorithms are initialized with a random start. Let G be the true number of

classes, then the algorithms are run for G = 2, . . . ,G+1. The value of G which yields

the largest BIC is selected. In addition to selecting G, the EA must also determine

the number of parents K ∈ {1, 2, 3}, and the number of clones J ∈ {4, 8, 12}. The

number of parents is relatively low to ensure that mutations are applied sparingly,

while the number of children is large to encourage crossover. For convergence, the

EM algorithm uses the Aitken’s based criterion with a tolerance of ε = 10−6, while

the EA uses S = 3 stagnations. Model performance is based on the final converged

log-likelihood, AIC, total runtime, and EA to EM likelihood ratio. The EM algorithm

is implemented using the R package Tomarchio et al. (2023) and the EA is available

in Julia at Flynn (2023) (R Core Team, 2023; Bezanson, Jeff and Edelman, Alan

and Karpinski, Stefan and Shah, Viral B., 2023).
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Chapter 4

Simulation

In the following sections, two simulations are conducted by clustering a collection

of datasets generated from mixtures of matrix-variate normals. In each simulation,

a total of 25 datasets are created from the same set of arbitrarily selected model

parameters. Simulation 1 involves 3 × 4 data consisting of G = 2 true classes and

a total of N = 300 observations. The data is drawn to be balanced, with equal

proportions in each class π = (1
2
, 1
2
). Simulation 2 considers 4×3 data generated from

G = 3 true classes, totalling N = 300 observations. Similarly, the data is balanced,

with equal proportions in each class π = (1
3
, 1
3
, 1
3
). The groups in Simulation 1 are well-

separated, whereas the groups in Simulation 2 are more challenging to distinguish.
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4.1 Simulation 1

In Simulation 1, the location parameters set to

M1 =


1 0 1 −1

−1 −1 1 0

0 0 1 −1

 , M2 =


0 −1 1 0

−1 0 0 1

1 0 1 −1

 ,

and the scale parameters are given by

Σ1 =


1 0.4 0.75

0.4 1 0

0.75 0 1

 , Σ2 =


1 0.6 0.25

0.6 1 0.1

0.25 0.1 1

 ,

Ψ1 =



1 0 0.35 0.15

0 1 0 0.85

0.35 0 1 0

0.15 0.85 0 1


, Ψ2 =



1 0.2 0 0.6

0.2 1 0.55 0

0 0.55 1 0.3

0.6 0 0.3 1


.

The optimal number of components for the EM algorithm was G = 2 and the

optimal EA consisted of G = 2, K = 1, and J = 12. Table 4.1 presents the mean

and standard deviation for ARI, runtime, and EA to EM likelihood ratio of the

optimal models across the 25 runs. The results indicate that both the EM and EA

exhibited nearly identical performance. While the EA found slightly superior maxima,

as evidenced by the average likelihood ratio, the EM achieved slightly better ARI

scores. We acknowledge that the EA is generally slower than the EM; however, the

runtimes appear comparable in this case since the number of parents is quite low.
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Table 4.1: Mean and standard deviation of ARI, runtime, and likelihood ratio for EA
and EM associated with Simulation 1.

ARI Runtime (sec) Likelihood Ratio

EA 0.992 (0.010) 1.56 (0.19)
1.001 (0.005)

EM 0.993 (0.008) 0.77 (0.06)

4.2 Simulation 2

The location parameters for simulation 2 are given by

M1 =



0 0.5 1

0.5 1 0.5

0.5 1 0.5

0 1 0


, M2 =



1 0.5 0

1.5 1 2

0 2 0.5

1.5 0.5 1


, M3 =



1.5 2.5 2

1 3 1.5

0.5 3 1.5

1.5 0.5 1


,

and the scale parameters configured to

Σ1 = Σ3 =



1 0.1 0.45 0.1

0.1 1 0.25 0.35

0.45 0.25 1 0.1

0.1 0.35 0.1 1


, Σ2 =



1 0.2 0 0.6

0.2 1 0.55 0

0 0.55 1 0.3

0.6 0 0.3 1


,

Ψ1 =


1 0.4 0.75

0.4 1 0

0.75 0 1

 , Ψ2 = Ψ3 =


1 0.5 0.5

0.5 1 0

0.5 0.5 1

 .

The number of components selected for the EM algorithm was G = 3, while the

optimal EA was identified with G = 3, K = 3, and J = 12. Table 4.2 presents the

mean and standard deviation for ARI, runtime, and EA to EM likelihood ratio of the
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optimal models across the 25 runs. The results are similar to the previous simulation,

with the EA exhibiting marginally superior performance in terms of likelihood, while

the EM slightly outperformed in ARI scores. Notably, the larger number of parents

resulted in significantly longer runtimes due to the greedy nature of the mutation

step.

Table 4.2: Mean and standard deviation of ARI, runtime, and likelihood ratio for EA
and EM associated with Simulation 2.

ARI Runtime (sec) Likelihood Ratio

EA 0.930 (0.032) 14.72 (1.82)
1.041 (0.101)

EM 0.942 (0.026) 1.83 (0.42)
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Chapter 5

Application

The following sections detail an investigation of two real-world datasets. First is the

Landsat satellite dataset, which involves 3×3 digital images of the same regions taken

in four different spectral bands. The pixels are arranged into matrices of size 4 × 9

and three classes are used. The second dataset contains 16× 16 greyscale images of

handwritten digits. We focus on clustering digits 1 and 7.

5.1 Landsat Satellite Dataset

This dataset is a collection of digital images captured by the Landsat program, which

is a series of Earth-observing satellites managed by NASA and the United States Geo-

logical Survey (USGS). The original data was purchased from NASA by the Australian

Centre for Remote Sensing and subsequently donated to the UCI machine learning

repository in a preprocessed form (Srinivasan, 1993). The preprocessing includes la-

belling the data based on site visits, removing data to prevent image reconstruction,

and partitioning the data into training and testing sets.
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Four digital images of size 3×3 were taken of the same region in different spectral

bands, corresponding to random matrices of size 4 × 9. Two of the bands were in

the visible spectrum, while the other two were in the infrared spectrum. The pixel

intensities range from 0 to 255. The researchers identified seven classes of images

based on the central pixels which are described in Table 5.1. Notably, class 6 was

removed by the researchers due to doubts of the validity of the class.

Table 5.1: Description of the Landsat test set classes and observation count.

Class Description Count

1 Red soil 461
2 Cotton crop 224
3 Grey soil 396
4 Damp grey soil 211
5 Soil with vegetation stubble 237
6 Mixture of all classes 0
7 Very damp grey soil 470

Originally, this dataset was used for multivariate clustering by considering only a

vector of the 4 central pixels, which is what the labels are based on. However, this

approach neglects a significant amount of information along the borders which can

be leveraged by matrix-variate distributions. Although we possess more information,

the regions along the boundaries between classes are less distinct and pose a greater

challenge to separate.

For our analysis, we focused on the first three classes from the test set: red soil,

cotton crop, and grey soil, resulting in a dataset of size N = 1081 observations with

true proportions approximately π = (0.43, 0.21, 0.37). Surprisingly, both the EM

and EA resulted in G = 4 components. The presence of this extra class could be

attributed to the lack of distinct borders between classes of images, as the images
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were labeled based on their central pixels. In fact, it is possible that these bordering

regions should have been assigned to class 6, which was later removed. The optimal

EA also comprised K = 2 parents and J = 8 clones. Table 5.2 showcases the

results, including the log-likelihood, ARI, total runtime, and the EA to EM likelihood

ratio. Additionally, Tables 5.3 and 5.4 present the cross-tabulation of the MAP

classifications for the EA and EM, respectively. The results demonstrate that, despite

an increase of approximately 5 minutes in runtime, the EA discovered a superior

maximum. Specifically, we have an EA to EM likelihood ratio of approximately 1.55

which translated to an approximate 0.01 increase in ARI. Notably, both algorithms

exhibit a similar clustering pattern in the cross-tabulations.
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Table 5.2: Converged log-likelihood, ARI, runtime, and EA to EM likelihood ratio
associated with the Landsat dataset.

Log-
Likelihood

ARI Runtime (sec) Likelihood Ratio

EA -108118.26 0.878 348.48
1.55

EM -108118.7 0.869 36.89

Table 5.3: Cross-tabulation of the EA MAP classifications associated with the Land-
sat dataset.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Red Soil 452 0 0 9
Cotton Crop 0 140 0 84
Grey Soil 7 0 368 21

Table 5.4: Cross-tabulation of the EM MAP classifications associated with the Land-
sat dataset.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Red Soil 450 0 0 11
Cotton Crop 0 150 0 74
Grey Soil 7 0 363 26
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5.2 Handwritten Digits Dataset

The final dataset comprises greyscale images of handwritten digits, which were ob-

tained by scanning envelopes from the U.S postal service. The original data is in

binary format, and the images vary in size and orientation. To facilitate analysis, the

Elements of Statistical Learning provides preprocessed training and test sets by cen-

tering, reorienting, resizing to 16× 16, and normalizing the pixel intensities between

-1 and 1 (Hastie et al., 2009).

Since the writing is mostly concentrated in the center, the outer rows and columns

primarily contain white space, resulting in a value of -1. Consequently, the lack of

variation along the borders leads to singular updates in the scale matrices Σg and Ψg.

To address this sparsity, we introduced small random noise to the images. However,

to preserve the signal integrity, a constant is applied to all entries greater than -1

before adding the noise.

Our analysis focused on clustering digits 1 and 7 from the dataset. There were a

total of N = 411 observations from the test set, with 264 belonging to digit 1 and

147 to digit 7, corresponding to true proportions of approximately π = (0.64, 0.36).

The optimal number of components for the EM algorithm was G = 2, while the

optimal EA consisted of G = 2, K = 2, and J = 4. In Table 5.5, we present the

log-likelihood, ARI, runtime, and EA to EM likelihood ratio. Additionally, Tables

5.6 and 5.7 display the cross-tabulation of EA and EM results, respectively.

Remarkably, both algorithms showed identical clustering results in terms of like-

lihood and ARI. The cross-tabulations for EA and EM were also identical. However,

we note that the EA required significantly more runtime to achieve the same results

as the EM algorithm.
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Table 5.5: Converged log-likelihood, ARI, runtime, and EA to EM likelihood ratio
associated with the handwritten digits dataset.

Log-
Likelihood

ARI Runtime (sec) Likelihood Ratio

EA -97320.28 0.904 43.75
1.00

EM -97320.28 0.904 2.95

Table 5.6: Cross-tabulation of the EA MAP classifications associated with the hand-
written digits dataset.

Cluster 1 Cluster 2

Digit 1 256 8
Digit 7 2 145

Table 5.7: Cross-tabulation of the EM MAP classifications associated with the hand-
written digits dataset.

Cluster 1 Cluster 2

Digit 1 256 8
Digit 7 2 145
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Chapter 6

Conclusions

6.1 Discussion

This work has extended the current literature on EAs for model-based clustering

by incorporating mixtures of matrix-variate distributions. In particular, an EA was

developed for matrix-variate normal mixtures using crossover and mutation. The EA

was applied to simulated and real-world datasets and its performance was compared

against the EM algorithm.

Simulation 1 featured datasets with well-separated groups generated by predeter-

mined matrix-variate normal distributions. In Simulation 2, the datasets comprised

additional groups that were more challenging to separate. Both the EA and EM

algorithm performed similarly well on these datasets, with the EA showing a slightly

superior likelihood performance and the EM algorithm having slightly better ARI

performance.

Moving to real-world datasets, the Landsat satellite dataset presented a more dif-

ficult clustering problem due to the lack of distinct borders between images. Here, the
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EA outperformed the EM algorithm in terms of both likelihood and ARI, showcasing

its potential to handle complex and ill-defined problems more effectively. The second

real-world dataset, containing handwritten digits of 1s and 7s, had a much larger

dimension than the previous datasets. In this case, both the EA and EM performed

equally well based on likelihood and ARI, although the EA struggled with runtime.

Overall, the EA proves to be a competitive alternative for fitting model parameters

in matrix-variate normal mixtures, consistently performing at least as well as the

EM algorithm in terms of likelihood and ARI. However, its limitation lies in its

runtime, which is understandable given its approach of finding multiple solutions and

the nature crossover and mutation operators. Considering the results obtained, it

is recommended to deploy the EM algorithm in most cases, as it is computationally

more efficient. The EA should be reserved for scenarios where the problem complexity

is particularly high.

6.2 Future Work

Future research could focus on improving the EA’s runtime performance, either by

exploring more optimal implementations of the genetic operators, or by leveraging

parallel computing. Additionally, extending the investigation to non-Gaussian dis-

tributions could broaden the applicability of the proposed method. Lastly, exploring

modified versions of crossover and mutation could lead to further enhancements in

the EA’s performance.
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