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Lay Abstract

This thesis contains an experimental study of the quantum spin ice candidate Ce2Zr2O7. Quantum spin liquids are a

highly sought-after type of collective magnetic phase in which the magnetic spins remain disordered and fluctuate in

a quantum-entangled manner down to absolute zero temperature, and quantum spin ices are a particular class of

quantum spin liquids in which the spin disorder resembles the proton disorder in water ice. These phases have been

studied across a large amount of theoretical works due to the fact that they provide unique playgrounds for interesting

physics. However, quantum spin liquids are rarely realized in real materials. We have used neutron scattering and

other complementary experimental techniques to provide strong evidence for a novel quantum spin ice phase at low

temperature in Ce2Zr2O7. The low-temperature magnetic behavior of this quantum spin ice candidate is further

investigated through a series of experiments in both zero and nonzero magnetic field.
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Abstract

This thesis focuses on the cerium-based, insulating pyrochlore magnet Ce2Zr2O7. Of particular popularity in the

condensed matter community are insulating rare-earth pyrochlores with chemical formula R2B2O7, with magnetism

based on trivalent rare-earth ions, R3+, and where B4+ is a tetravalent transition metal ion. The magnetic R3+

ions occupy a sublattice of corner-sharing tetrahedra, which is one of the archetypes for geometric frustration and

aids in the promotion of exotic magnetic phases at low temperature. In these rare-earth pyrochlores, the crystal

electric field plays an important role in the description of the magnetic behavior. Our high-energy inelastic neutron

scattering measurements of the crystal electric field excitations in Ce2Zr2O7 reveal a crystal electric field ground state

with dipole-octupole symmetry. This dipole-octupole symmetry is particularly intriguing as it allows for novel types

of quantum spin ice phases, including some which are based off of quantum-correlated magnetic octupoles rather

than magnetic dipoles. Our low-energy neutron scattering measurements provide strong experimental evidence for a

quantum spin ice phase at low temperature in Ce2Zr2O7. We fit the measured heat capacity, magnetic susceptibility,

and neutron scattering signal from Ce2Zr2O7 to yield experimental estimates of the exchange parameters describing

the magnetic interactions between Ce3+ ions in Ce2Zr2O7. The resulting parameter values, in accordance with the

existing theory, provide evidence for a novel octupole-based quantum spin ice ground state in Ce2Zr2O7. Polarized

neutron diffraction measurements were also performed on Ce2Zr2O7 and provide evidence for the significance of

further-than-nearest neighbor interactions. This thesis concludes with an investigation of Ce2Zr2O7 in magnetic fields

along the [1, 1̄, 0] and [0, 0, 1] crystallographic axes, using neutron scattering and heat capacity measurements, with

results revealing a different polarized spin ice phase for each of these field directions.
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Chapter 1
Introduction

Rare-earth pyrochlore magnets have attracted a large amount of attention and notability over the years in the

condensed matter physics community. This popularity is due in large part to the fact that the magnetic ions in

these pyrochlore-structured materials decorate a network of corner-sharing tetrahedra that is vulnerable to magnetic

frustration, together with the fact that magnetic frustration often leads to the promotion of exotic, disordered magnetic

phases over more-ordinary ordered phases. In this chapter, we begin with an introduction to magnetic frustration

and outline the rudiments of insulating rare-earth pyrochlore magnets (Section 1.1) before going into further detail

about the crystal electric field (Section 1.2) and magnetic interactions (Section 1.3) in insulating rare-earth pyrochlore

materials. In Section 1.4, we discuss some of the magnetic phases that can occur in pyrochlores that have a crystal

electric field ground state corresponding to Ising single-ion anisotropy. There we include an introduction to the

concept of spin ice, which is a type of exotic magnetic phase that can exist in many different flavors in the rare-earth

pyrochlores. In Section 1.5, we discuss rare-earth pyrochlores that have a crystal electric ground state corresponding

to dipole-octupole symmetry. These dipole-octupole pyrochlores have Ising single-ion anisotropy but also have a

peculiar mixing of dipolar and octupolar degrees of freedom that leads to the possibility for additional, novel quantum

spin ice ground states distinct from those that arise through pure-dipolar degrees of freedom with Ising anisotropy.

Section 1.6 provides an overview of neutron scattering: The primary experimental method used for investigating

the magnetic properties and quantum spin ice behavior of the dipole-octupole pyrochlore Ce2Zr2O7 throughout this

thesis. To conclude this chapter, we provide an overview of the following chapters in Section 1.7.
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1.1 Magnetic Frustration and Rare-Earth Pyrochlore Magnets

Magnetic frustration is the inability of a system to satisfy all of its pairwise magnetic interactions simultaneously [5–

8]. In some systems, this happens due to the geometry of the lattice resulting in an unsatisfiable competition of

interactions, and such systems are often referred to as geometrically frustrated (as well as magnetically frustrated).

We illustrate the concept of geometric magnetic frustration in Fig. 1.1 using square, triangular, and tetrahedral

arrangements of atoms; The square is not geometrically frustrated while the triangle and tetrahedron are both

shapes that are prone to magnetic frustration [5–8]. While not relevant hereafter in this thesis, it is worth briefly

mentioning that magnetic frustration is also possible due to non-geometric reasons. For example, for a square lattice

with antiferromagnetic nearest-neighbor interactions, ideal magnetic frustration can be generated by introducing an

antiferromagnetic next-nearest-neighbor interaction with strength equal to the nearest-neighbor interaction.

The magnetic rare-earth pyrochlores are a family of materials in which the magnetic ions occupy a network of

corner-sharing tetrahedra and these materials have attracted a large amount of attention over the years, due in

large-part to the likelihood and realization of exotic magnetic phases accompanying frustration in these materials [5–12].

Of high popularity among the magnetic rare-earth pyrochlores are insulators with the chemical formula R2B2O7,

Figure 1.1: A schematic diagram illustrating magnetic frustration using the non-frustrated square lattice and the
frustrated triangular and tetrahedral lattices. (a) For a square lattice of ions with antiferromagnetic interactions
between nearest neighbors, the direction of all spins in the lattice can be determined from the direction of any single
spin. (b) For an equilateral triangle of ions with antiferromagnetic interactions between nearest neighbors, placing one
spin on the triangle gives the direction of the next spin placed on the triangle but does not determine the direction of
the third spin placed on the triangle as both configurations for this third spin have equal energies. Hand-in-hand with
this undetermined spin configuration is the fact that it is not possible to satisfy all interactions between pairs of spins
for any possible arrangement of the spins, which defines magnetic frustration. (c) Magnetic frustration occurs in
three-dimensions for tetrahedral lattices with isotropic antiferromagnetic interactions between nearest neighbors, such
that placing one spin on a tetrahedron gives the direction of second spin placed on the same tetrahedron but does not
determine the directions of the third and fourth spins. (d) When each spin is confined along the three-fold rotation
axis of the corresponding site (towards or away from the center of the tetrahedron), magnetic frustration occurs for
ferromagnetic nearest-neighbor interactions, rather than antiferromagnetic nearest-neighbor interactions as is the
case for the isotropic system of spins in (c). The antiferromagnetic, isotropic case in (c) maps to the ferromagnetic,
anisotropic case in (d) with a down or up spin in (c) mapping to an in or out spin in (d), respectively. This figure was
created using the VESTA visualization software [4].

2



Ph.D. Thesis - E.M. Smith McMaster University - Physics and Astronomy

where R3+ is a magnetic rare-earth ion and B4+ is a nonmagnetic transition metal ion [9]. The conventional cubic unit

cell of the R2B2O7 pyrochlore structure is shown in Fig. 1.2(a) and in Fig. 1.2(b), we show the magnetic sublattice of

corner-sharing tetrahedra formed by the R3+ ions. The B4+ ions also occupy a sublattice of corner-sharing tetrahedra

which can be obtained by shifting the R3+ sublattice by a/2 along any unit-cell edge direction, where a is the cubic

lattice constant. The local environment of the rare-earth site, which has D3d point-group symmetry, is shown in

Fig. 1.2(c).

The magnetic rare-earth pyrochlores are convenient to work with from a theoretical standpoint in the sense that

there typically exists a clear energy hierarchy for the interactions governing the electronic degrees of freedom in the

rare-earth ions, with the Coulomb interactions of the electrons dominating over the spin-orbit coupling interaction

which subsequently dominates over the crystal electric field (CEF) [9–12]. The resulting electronic configurations can

be described using the eigenvalues associated with the vector operators Ĵ, L̂, and Ŝ, which are the angular momentum

operators for the total, orbital, and spin angular momentum, respectively, in units of ℏ. Specifically, Ĵ2, L̂2, Ŝ2, and

Ĵz are eigenvectors for states of definite total angular momentum (J), orbital angular moment (L), spin angular

momentum (S), and total angular momentum projection (mJ ), with corresponding eigenvalues of J(J + 1), L(L+ 1),

S(S + 1), and mJ [13–15]. For a given filling of electron orbitals, the values of S and L are determined from the sums

of the spin and orbital angular momentum projection quantum numbers of the electrons, S = |∑ sz| and L = |∑ lz|,

respectively.

The filling of electron orbitals that minimizes the Coulomb interactions experienced by the electrons is conveniently

summarized using two rules that are commonly referred to as Hund’s rules [13, 14]. Hund’s first rule is used to

minimize the dominant Coulomb interaction and this rule states that the lowest energy states of an ion are those with

Figure 1.2: (a) The conventional cubic unit cell for the R2B2O7 pyrochlore crystal structure. (b) The network of
corner-sharing tetrahedra formed by the magnetic sublattice of R3+ ions in the R2B2O7 pyrochlore crystal structure.
Each R3+ ion is at the corners of two connected tetrahedrons; The outermost ions in this cubic unit cell, which are
not shown as part of two tetrahedra, connect with neighboring unit cells and continue the corner-sharing tetrahedral
network. (c) A pair of corner-sharing R3+-tetrahedra in the R2B2O7 pyrochlore crystal structure. Here we show the
local environment around an R3+ ion in the R2B2O7 pyrochlores and we show this for the center-most R3+ ion in
the figure, including the hexagon formed by the neighboring B4+ ions as well as the distorted cube of neighboring
O2− ions, both centered on the R3+ ion. The arrows in (c) show the local y and z axes for the center-most R3+ ion
in the figure, along one-of-three C2 axes and along the only C3 axis of the corresponding R3+ site, respectively; We
discuss the relevance of these directions in further detail in Section 1.2. This figure was created using the VESTA
visualization software [4].
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the largest S allowable by the Pauli exclusion principle. Hund’s second rule is used to minimize more of the Coulomb

interactions and this rule states that the lowest energy states of an ion are those with the largest L allowable by the

Pauli exclusion principle. In Fig. 1.3 we show the filling of electronic orbitals that results from following Hund’s rules

for the rare-earth ions Ce3+, Nd3+, Dy3+, and Ho3+.

Hund’s first rule is always obeyed while that is not the case for Hund’s second rule, specifically when the crystal

electric field competes with the strength of the Coulomb interaction behind Hund’s second rule, as is common for

transition-metals ions in insulators for example [13]. For rare-earth ions, Hund’s second rule is indeed obeyed as the

screening of the partially-filled 4f shell from the filled 5s and 5p shells renders the strength of the crystal electric field

on 4f shell as much weaker than the Coulomb interactions behind Hund’s rules [13, 14]. This excludes neutral atoms

and cations of the lighter rare-earth elements, scandium, yttrium, and lanthanum, which lack electrons in their 4f

shells; These atoms are naturally excluded from being the magnetic R3+ atoms in rare-earth pyrochlore insulators

anyway as they are nonmagnetic in their 3+ oxidation states.

For rare-earth ions, typically the spin-orbit coupling interaction is the next-strongest electronic interaction

governing the behavior of the magnetism for the ion, second only to the Coulomb interactions behind Hund’s rules, as

is the case in the R2B2O7 pyrochlores. Put simply, the spin-orbit coupling interaction is due to the sum of interactions

between the electronic spins and the magnetic field that results from the charged nucleus due to the fact that the

nucleus is rotating in the inertial reference frame of the electron [14]. The Hamiltonian describing the spin-orbit

Figure 1.3: A schematic diagram showing the filling of electronic orbitals according to Hund’s rules for the rare-earth
ions Ce3+, Nd3+, Dy3+, and Ho3+. In each case, the electron levels are filled as to maximize the total spin S = |∑ sz|,
satisfying Hund’s first rule, as well as maximize is the total orbital angular momentum L = |∑ lz|, which satisfies
Hund’s second rule, where sz and lz denote the spin and orbital angular momentum projection quantum numbers,
respectively, for the individual electrons. Here, sz = ±1/2 and lz = −l, −l+ 1, ... , l− 1, l, with l = 3 for the 4f shell.
Using this diagram, Hund’s rules amount to placing electrons in electronic orbitals one at a time from left-to-right
with spins in the same direction, before filling orbitals with spins of the opposite direction as necessary, again going
from left-to-right, until all spins are placed. This table also shows the value of J and gJ in the spin-orbit ground state
multiplet for each ion, as well as the corresponding size of the free-ion magnetic dipole moment, µfree (see main text).
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coupling interaction is given by [14]:

HSO = λL̂ · Ŝ =
λ

2
[Ĵ2 − L̂2 − Ŝ2] =

λ

2
[J(J + 1)− L(L+ 1)− S(S + 1)] , (1.1)

where the second equality in Eq. (1.1) employs the definition Ĵ = L̂+ Ŝ, and the eigenvalues S and L are given by

Hund’s rules. The parameter λ is called the spin-orbit coupling parameter and is constant in absolute value for each

ion. The spin-orbit coupling parameter is positive for ions that have their partially-filled shell less than half-filled,

and negative for ions that have their partially-filled shell more than half-filled [13, 14]. Accordingly, for ions with

magnetic shells that are less than half-filled (λ < 0), the spin-orbit coupling Hamiltonian [Eq. (1.1)] is minimal in the

states of lowest possible J (with J = |L− S|), with the value of J increasing in steps of one with each further-excited

multiplet up to the highest-energy spin-orbit multiplet of maximum J (with J = L+ S). On the other hand, for

ions with their magnetic shell more than half-filled (λ > 0), the opposite situation occurs and the spin-orbit coupling

Hamiltonian [Eq. (1.1)] is minimal in the states of highest possible J (with J = L+S), with the value of J decreasing

in steps of one with each further-excited multiplet up to the highest-energy spin-orbit multiplet of minimal J (with

J = |L− S|). The values of J in the spin-orbit ground state manifold are shown for Ce3+, Nd3+, Dy3+, and Ho3+ in

Fig. 1.3, given by J = |L− S| for the ions with less than 7 electrons in their magnetic 4f shell (Ce3+ and Nd3+) and

by J = L+ S for the ions with more than 7 electrons in their 4f shell (Dy3+ and Ho3+).

The magnetic dipole moment is related to the total angular momentum within any single spin-orbit multiplet

through the Landé g-factor, gJ , and the equation [13, 14]:

µ̂ = −gJµBĴ , (1.2)

where µ̂ and Ĵ are the magnetic dipole moment and total angular momentum operators, respectively, and µB =

eℏ/(2me) = 9.274× 10−24 JT−1 is the Bohr magneton [13, 14]. The Landé g-factor is given by [13, 14]:

gJ =
3

2
+

1

2

S(S + 1)− L(L+ 1)

J(J + 1)
, (1.3)

where S and L are given by Hund’s rules and J is determined by its value in the respective spin-orbit manifold.

Equations (1.2) and (1.3) are valid within any single spin-orbit multiplet but they are most commonly used for the

ground state spin orbit multiplet. Throughout this thesis, all values of gJ that we discuss are for the spin-orbit

ground state multiplet of the corresponding ion and as is common in the literature, this is implied when the J

value is not specifically mentioned. Using the fact the eigenvalue of Ĵ
2
is J(J + 1), squaring Eq. (1.2) and taking

the expectation value of both sides gives the size of the free-ion magnetic dipole moment, µfree, via the equation:

µ2
free = (gJµB)

2J(J + 1), where J and gJ are given by their values in the spin-orbit ground state. The values of gJ

and µfree for Ce3+, Nd3+, Dy3+, and Ho3+ are shown in Fig. 1.3.

The energy gaps between successive spin-orbit manifolds can also be determined via Eq. (1.1): For ions with

5
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partially-filled shells that are less (more) than half-filled, the gap between the successive spin-orbit manifolds is |λ|J

where J is eigenvalue in manifold of higher (lower) energy. The spin-orbit coupling parameter scales with the atomic

number of the ion as λ ∝ Z4 such that spin-orbit coupling is significantly stronger for heavier ions [14]. For rare-earth

ions, the strength of the spin-orbit coupling interaction typically dominates heavily over the crystal electric field, due

in part to the relatively large values of Z for the rare-earth ions and also in part to the screening of the crystal electric

field by the outermost, nonmagnetic 5s and 5p shells [13, 14]. This is often the case in the R2B2O7 pyrochlores and

in such cases the crystal electric field can be treated as a perturbation to the spin-orbit coupling [9–12]. This clear

energy hierarchy is less likely for ions that are lighter than the rare-earth ions, where closer energy scales of the crystal

electric field and spin-orbit coupling can lead to a large amount of mixing of the spin-orbit manifolds by the crystal

electric field. In fact, for some light ions, the energy hierarchy is reversed in comparison to the rare-earth ions, such

that the spin-orbit coupling can be treated as a perturbation to the crystal electric field. Importantly, Equation (1.2)

and the corresponding equation for µfree describe the magnetic dipole moment in the spin-orbit manifold without any

effects from the crystal electric field. We discuss the crystal electric field in the following section, along with its effect

on the description of the magnetism at low-temperature in R2B2O7 pyrochlores.

1.2 The Crystal Electric Field in Rare-Earth Pyrochlores

1.2.1 The Crystal Electric Field Hamiltonian and Eigenstates

The crystal electric field on the individual electrons in the magnetic, 4f shell of the R3+ ions, resulting from the charges

on the surrounding ions, further splits the degenerate levels in the spin-orbit manifolds in R2B2O7 pyrochlores. For

the magnetic R2B2O7 pyrochlores, the typical splitting between any two CEF manifolds that are adjacent in energy

(δCEF ≲ 100 meV [1, 11, 16–20]) is significantly smaller than the typical splitting between any two spin-orbit manifolds

that are adjacent in energy, |λ|J ≳ 250 meV, especially for heavier rare-earth ions where |λ|J ≫ 250 meV [21]. This

is important as it allows for the treatment of the CEF as a perturbation to the spin-orbit coupling, such that the

resultant CEF states can be described with reasonable accuracy as linear combinations of states with constant J

and mJ , denoted as |J,mJ⟩. Additionally, the typical CEF level splitting (δCEF ≲ 100 meV [1, 11, 16–20]) is small

enough to only induce minor mixing of degenerate spin-orbit manifolds, which is often ignored. The accuracy of these

approximations for R3+ ions generally increases from left to right across the 4f row of the periodic table, with the

weight of the R3+ ions, due to the fact that λ ∝ Z4 (see Section 1.1).

The energy gap, ∆CEF , between the CEF ground state manifold and the first excited-state manifold in the R2B2O7

pyrochlores, is typically within the approximate range 10 meV ≲ ∆CEF ≲ 100 meV [1, 11, 16–20]. Importantly, this

is large enough to provide accuracy to the approximation that the CEF ground state is the only CEF level occupied at

low temperature. To provide some examples, the energy gap between the CEF ground state and the first excited state

is ∆CEF ∼ 55 meV for Ce2Zr2O7 [1, 22], ∆CEF ∼ 25 meV for Nd2Zr2O7 [23], ∆CEF ∼ 20 meV for Dy2Ti2O7 [18],

and ∆CEF ∼ 20 meV for Ho2Ti2O7 [16, 18, 24].
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Ignoring any mixing of the spin-orbit ground state manifold with excited spin-orbit manifolds, induced by the

CEF, the lowest-lying CEF states are linear combinations of |J,mJ⟩ states with J fixed at the value it takes in the

spin-orbit ground state manifold. We use this approximation in Fig. 1.4 to illustrate the energy hierarchy and splitting

of CEF levels for R3+ ions in the R2B2O7 pyrochlores. Under this approximation, the Hamiltonian can be simplified

using the Stevens operator method, in which the CEF Hamiltonian is approximated using the form
∑

nmBm
n Ô

m
n ,

where the operators, Ôm
n , are called Stevens operators and are polynomials of order n in Ĵz, Ĵ+, and Ĵ−, where

Ĵ± = Ĵx ± iĴy. Of course, these can also be written as polynomials of Ĵx, Ĵy, and Ĵz but the convention is to use Ĵz

and Ĵ±. The matrix elements of the Stevens operators between different |J,mJ⟩ states with the same J are tabulated

for −J ≤ mJ ≤ J in Refs. [25, 26], for the various values of J relevant to magnetic rare-earth ions. Here, n and m are

integers which satisfy m,n ≥ 0 with m ≤ n. Additionally, all terms with n > 2l vanish [25–27], where l is the orbital

Figure 1.4: A schematic illustration of the energy hierarchy and corresponding level-splitting associated with Hund’s
rules, spin orbit coupling, and the crystal electric field, for the R3+ single-ion energy levels in R2B2O7 pyrochlores.
The leftmost line represents the (2S + 1)(2L+ 1) degenerate ground states of the coulomb interactions behind Hund’s
rules, with S and L given by Hund’s rules in these states. The center collection of lines represents the spin-orbit
coupling manifolds, with each individual line representing a set of (2J + 1) degenerate eigenstates of the spin-orbit
coupling interaction, with total angular momentum eigenvalue of J in each of these states. We show this for the
case of a rare-earth ion with less than 7 electrons, where the spin-orbit ground state manifold has J = |L− S| and
the manifold of highest energy has J = L+ S, rather than vise versa as would be the case for a rare-earth ion with
more than 7 electrons. The rightmost collection of lines represents the different eigenstates of the crystal electric
field interaction with each state given as a linear combination of |J,mJ⟩ states where −J ≤ mJ ≤ J for each J . We
show this for the case of negligible mixing, of different spin orbit manifolds, induced by the crystal electric field. We
also show this for the case in which the CEF eigenstates are all doublets, which would be relevant for a Kramer’s
ion with maximal CEF level-splitting for example. In this approximation, each spin-orbit coupling manifold is split
into a collection of (2J + 1)/2 doublets which are each linear combinations of |J,mJ⟩ states, where J is given by the
eigenvalue of the spin-orbit manifold and −J ≤ mJ ≤ J for each J .
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quantum number of the magnetic electrons, which gives nonzero terms for n ≤ 6 for the rare-earth ions (l = 3).

The number of nonzero Bm
n parameters in the CEF Hamiltonian for R2B2O7 pyrochlores is further governed

by the symmetry of the R3+ site. Specifically, for the D3d point group symmetry appropriate to the R3+ site, the

description of the CEF Hamiltonian and its eigenstates are simplified by setting the z-axis along the three-fold

rotation (C3) axis of the R3+ site, the y-axes along one of the three two-fold rotation (C2) axes of the R3+ site, and

setting the x-axis via x = y× z [26, 27]. An example of these local axes (one of three options) is shown in Fig. 1.2(c)

and listed in Table 1.1; Because these axes are defined according to the symmetry of the R3+ site, they are defined

locally such that they are different for each of the four ions on a tetrahedron, as shown in Table 1.1. With this choice

of local axes, the CEF Hamiltonian in the Stevens operator approximation is reduced to one with only six nonzero

Bm
n parameters [26, 27]:

HCEF = B0
2Ô

0
2 +B0

4Ô
0
4 +B3

4Ô
3
4 +B0

6Ô
0
6 +B3

6Ô
3
6 +B6

6Ô
6
6. (1.4)

In fact, terms with n > 2J vanish as well [25–27], meaning that for R2B2O7 pyrochlores with R3+ as Ce3+ or

Sm3+, which have J = 5/2 in the spin-orbit ground state manifold, Eq. (1.4) contains only three nonzero coefficients:

B0
2 , B

0
4 , and B

3
4 . This latter restriction provides an additional simplification for the CEF Hamiltonian in the Stevens

operator approximation for the main material of interest in this thesis, Ce2Zr2O7.

In principle, the Bm
n coefficients can be approximated using a simple point charge model [24, 26]. However,

these calculations are not reliable due to the need to account for effects which are not included in a simple point

charge model, such as shielding effects, as well as wavefunction-overlap between neighboring ions, to provide a couple

examples [26, 28, 29]. Instead, the Bm
n parameters are most-often estimated by performing fits to the CEF transitions

measured in inelastic neutron scattering experiments [1, 16–20, 22, 24, 30–34], as we do in Publication I of this thesis

Figure 1.5: A schematic illustration of the energy hierarchy and corresponding level-splitting associated with Hund’s
rules, spin orbit coupling, and the crystal electric field, for the single-ion energy levels of the 4f 1 Ce3+, Kramers ions
in Ce2Zr2O7. The leftmost collection of lines represents the (2S + 1)(2L+ 1) = 14 degenerate ground states of the
coulomb interactions behind Hund’s rules, with S = 1/2 and L = 3 in these states as given by Hund’s rules. The
center collection of lines represents the two spin-orbit coupling manifolds, with J = |L− S| = 5/2 in the spin-orbit
ground state manifold, which contains (2J + 1) = 6 states, and with J = L + S = 7/2 in the excited spin-orbit
manifold, which contains (2J + 1) = 8 states. The rightmost collection of lines represents the different eigenstates of
the crystal electric field interaction, as determined in Ref. [1], ignoring any mixing of different spin orbit manifolds
induced by the crystal electric field and showing only the three doublets arising from the spin-orbit ground-state
manifold. Under this approximation, the ground state is a pure |J = 5/2, mJ = ±3/2⟩ doublet with Ising single-ion
anisotropy and dipole-octupole symmetry (see main text).
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for Ce2Zr2O7, and as we explain further in Section 1.6.3.

Importantly, the CEF splitting often results in a doublet ground state, which allows for a convenient description

of the magnetic interactions at low temperature using pseudospin-1/2 degrees of freedom as we further introduce in

the following subsection. In fact, for Kramers ions, the states are at least doubly-generate, meaning that doublet

ground states are particularly likely for Kramers ions considering that maximal CEF splitting is often the case. The

material of main interest for this thesis, Ce2Zr2O7, has a CEF ground state doublet that is estimated to be a pure

|J = 5/2, mJ = ±3/2⟩ doublet [1, 22], as shown in Fig. 1.5. Similarly, Ho2Ti2O7, Dy2Ti2O7, and Nd2Zr2O7, have

CEF ground state doublets [16, 18, 24, 33], and so a description via pseudospin-1/2 operators is possible for each of

those materials. The two states in the CEF ground state doublet for each material are commonly denoted by |±⟩; Of

course, this leaves two options, based on which of the CEF ground states is denoted as |+⟩ and which is denoted as

|−⟩, and this is settled using the convention that |+⟩ is chosen as the state satisfying ⟨+| Ĵz |+⟩ > 0 and |−⟩ is chosen

as the state satisfying ⟨−| Ĵz |−⟩ < 0, where ⟨−| Ĵz |−⟩ = −⟨+| Ĵz |+⟩.

α 1 2 3 4

xα
1√
6
[2̄, 1, 1] 1√

6
[2̄, 1̄, 1̄] 1√

6
[2, 1, 1̄] 1√

6
[2, 1̄, 1]

yα
1√
2
[0, 1̄, 1] 1√

2
[0, 1, 1̄] 1√

2
[0, 1̄, 1̄] 1√

2
[0, 1, 1]

zα
1√
3
[1, 1, 1] 1√

3
[1, 1̄, 1̄] 1√

3
[1̄, 1, 1̄] 1√

3
[1̄, 1̄, 1]

Table 1.1: The local x, y, and z directions for the four different sublattices (α = 1, 2, 3, 4) composing the tetrahedral
network of rare-earth ions in the R2B2O7 pyrochlores [12, 35]. In this sublattice description, the location of each R3+

ion with respect to the center of its tetrahedron is given by bα = −
√
3
8 zα, and these tetrahedra form a face-centered

cubic lattice with tetrahedra centered on the primitive lattice locations, R = n1a1 + n2a2 + n3a3 for n1, n2, n3 ∈ Z,
where a1 = a

2 [1/2, 1/2, 0], a2 = a
2 [1/2, 0, 1/2], and a3 = a

2 [0, 1/2, 1/2].

1.2.2 The Pseudospin-1/2 Formalism and Single-ion Anisotropy

Magnetic interactions within the CEF ground state doublet, |±⟩, can accurately be described using pseudospin-1/2

degrees of freedom, as is standard in the literature on rare-earth pyrochlores and frustrated rare-earth magnets in

general [2, 3, 12, 30, 35–43]. Specifically, this is an accurate approximation at temperatures low enough as to not

significantly populate any excited CEF states. These pseudospin-1/2 operators are represented in terms of outer

products of the |±⟩ states [12, 39]:

Ŝz =
|+⟩⟨+| − |−⟩⟨−|

2
, (1.5)

and

Ŝ± = |±⟩⟨∓| , (1.6)

where,

Ŝx =
Ŝ+ + Ŝ−

2
, Ŝy =

Ŝ+ − Ŝ−

2i
. (1.7)
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.

These pseudospin-1/2 operators, Ŝx, Ŝy, and Ŝz, act like normal spin-1/2 operators within the CEF ground

state manifold in that their eigenvalues are ±1/2 with corresponding eigenstates |+⟩ ± |−⟩, |+⟩ ± i|−⟩, and |±⟩,

respectively, mimicking the typical spin-1/2 algebra [15]. Similarly, the pseudospin-1/2 ladder operators, Ŝ+ and Ŝ−,

act like normal spin-1/2 operators within the CEF ground state manifold in that Ŝ±|±⟩ = 0 and Ŝ±|∓⟩ = |±⟩. As

we will show in the next section, these pseudospin operators are useful for describing magnetic interactions at low

temperature in pyrochlores with CEF ground states that are doublets. Their relation to the magnetic dipole moment

is also particularly useful, with any CEF-induced single-ion anisotropy for the dipole moments represented in a simple

way through the equation [12, 44]:

µ̂i = −µB[gxy(xiŜ
x
i + yiŜ

y
i ) + gzziŜ

z
i ] , (1.8)

where µ̂i is the magnetic dipole moment operator and xi, yi, and zi are unit vectors along the x, y, and z directions

in the local coordinate system relevant for atom i (see Table 1.1). The anisotropic g-factors, gz and gxy, relating the

relating the magnetic dipole moment to the pseudospin components, are given by [17, 19, 20, 45, 46]:

gz = 2gJ |⟨±| Ĵz |±⟩| , (1.9)

and,

gxy = gJ |⟨±| Ĵ± |∓⟩| , (1.10)

where Ĵ± = Ĵx ± iĴy (see Section 1.1) and gJ is given by Eq. (1.3). The factor of 2 in gz accounts for the fact that

the expectation values of Ŝz are ±1/2 in the CEF ground state doublet, and this factor is missing from gxy as Ĵ±

already includes both Ĵx and Ĵy. The anisotropic g-factors contain the information on the single-ion anisotropy of the

magnetic dipole moment, with three limiting scenarios arising: 1) When gxy = 0 and gz ̸= 0, each magnetic dipole

moment is entirely along its local z-direction and the anisotropy is referred to as Ising single-ion anisotropy, 2) When

gxy ̸= 0 and gz = 0, each magnetic dipole moment lies entirely in the local xy-plane and the anisotropy is referred to

as XY single-ion anisotropy, and 3) When gz = gxy ̸= 0, the magnetic dipole moments are isotropic and are free to

align in whatever directions best-satisfy the interactions in the system. This latter case is referred to as Heisenberg

isotropy.

In fact, these terms for the different anisotropies are used more loosely than in the aforementioned limiting cases

where Ising, XY, and Heisenberg single-ion anisotropy was ideal. While Ising single-ion anisotropy does most often

refer to perfect single-ion anisotropy (gxy = 0 and gz ≠ 0), as will be the case throughout this thesis, the term XY

single-ion anisotropy is often used to describe anisotropies where gxy ≫ gz but gz ≠ 0, and the term Heisenberg

single-ion anisotropy is often used to describe anisotropies where gxy ≈ gz but gxy ̸= gz [11, 19, 24, 47]. The rare-earth

pyrochlore of primary interest for this thesis, Ce2Zr2O7, has a CEF ground state with Ising single-ion anisotropy,

gxy = 0 and gz ̸= 0 [1, 22]. Similarly, Ho2Ti2O7, Dy2Ti2O7, and Nd2Zr2O7, also have CEF ground states with
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Ising single-ion anisotropy, gxy = 0 and gz ≠ 0 [16, 18, 24, 33, 48]; We use Ho2Ti2O7, Dy2Ti2O7, and Nd2Zr2O7 as

alternative examples of R2B2O7 pyrochlores throughout this thesis, to complement our discussions on Ce2Zr2O7, and

in line with the fact that we compare Ce2Zr2O7 to these materials in further detail in Publication III of this thesis.

We end this section by noting that the symmetry properties of the CEF ground state and corresponding pseudospins

play an important role in governing the form of the magnetic interaction Hamiltonian, as we discuss further in

the following section. Importantly, there are three possible symmetry classifications that arise in the rare-earth

pyrochlores, based on how the pseudospin-1/2 degrees of freedom transform under the D3d symmetry operations and

time-reversal symmetry [12, 49–53]. The z-component of pseudospin, Ŝz, transforms like a magnetic dipole in each

case and the classifications are drawn according to the differing behavior of Ŝx and Ŝy. The non-Kramers ground

state doublet occurs for all magnetic rare-earth ions with an even number of electrons, and for these doublets, Ŝx and

Ŝy both transform like electric quadrupoles. The effective spin-1/2 ground state doublet is one of two possibilities for

rare-earth ions with an odd number of electrons and is characterized by x- and y-components of pseudospin that both

transform like magnetic dipoles. The other possibility for Kramers ions is the dipole-octupole doublet for which Ŝx

transforms under the site symmetries and time-reversal symmetry as a magnetic dipole would while Ŝy transforms

like the component of a magnetic octupole tensor. This latter case is the one of most relevance to Ce3+ in Ce2Zr2O7,

which has a CEF ground state doublet that is estimated to be a pure |J = 5/2, mJ = ±3/2⟩ doublet (Refs [1, 22])

with dipole-octupole symmetry [51, 52]. Figure 1.5 illustrates the energy hierarchy and splitting of CEF levels for

Ce3+ in Ce2Zr2O7, as estimated from the work in Publication I of this thesis. This shows the |J = 5/2, mJ = ±3/2⟩,

dipole-octupole, CEF ground state doublet for Ce3+ in Ce2Zr2O7, which is separated from the first excited CEF

state by ∼55 meV [1, 22]. The rare-earth pyrochlores Ho2Ti2O7, Dy2Ti2O7, and Nd2Zr2O7 have CEF ground state

doublets with non-Kramers, dipole-octupole, and dipole-octupole, symmetry, respectively [12, 16, 18, 24, 33].

1.3 Magnetic Interactions in Rare-Earth Pyrochlores

1.3.1 Exchange Interactions

In this section, we discuss magnetic interactions in the R2B2O7 pyrochlores and specifically, how they are described

within the CEF ground state at low temperature for pyrochlores with a CEF ground state doublet that is well-separated

in energy from the excited CEF states. Foremost, it is almost always required that exchange interactions be included in

providing an accurate description of the magnetic interactions in rare-earth pyrochlores, such as the oxygen-mediated

superexchange between rare-earth ions [39, 50]. The most general form of the exchange Hamiltonian, describing all

exchange interactions projected into the CEF ground state doublet, is given by [11, 12, 54, 55]:

HExchange =
∑

ij

∑

u

∑

v

J ij
uvŜ

u
i Ŝ

v
j , (1.11)

where u and v denote the local directions, {x, y, z}, for ions i and j, respectively, and the pseudospins Ŝx
k , Ŝ

y
k ,
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and Ŝz
k (k = i, j) are given by Eqs. (1.5)-(1.7). The first sum in Eq. (1.11) is over all pairs of magnetic atoms in

the lattice, denoted as i and j. In fact, within the CEF ground state doublet, it is possible to write any pairwise

interactions between the total angular momenta of R3+ ions in the pyrochlore lattice using a form similar to Eq. (1.11),

HPairwise,General =
∑

ij

∑
u

∑
vM

ij
uvŜ

u
i Ŝ

v
j [12]. This includes non-exchange-based interactions such as the dipole-

dipole, dipole-octupole, and octupole-octupole interactions [12], to name a few that are particularly relevant to this

thesis. Due to the similarity in the form for the exchange interaction Hamiltonian in Eq. (1.11) and the form for

HPairwise,General, all pairwise magnetic interactions can be absorbed into the definition of the “exchange” parameters

in Eq. (1.11), as is done throughout this thesis, and as is shown in further detail for the dipole-dipole interaction in

the following subsection.

For a given local direction, α = x, y, or z, an exchange constant, J ij
αα, that is less (greater) than zero gives a

ferromagnetic (an antiferromagnetic) interaction with respect to the local α directions for ions i and j, such that,

apart from any competition from other terms in the Hamiltonian, the pseudospin-components Ŝα
i and Ŝα

j perfer to

have their expectation values of the same (opposite) sign to satisfy the J ij
ααŜ

α
i Ŝ

α
j term in the Hamiltonian. Of course,

given local directions, α, β = x, y, or z with α ̸= β, an exchange constant, J ij
αβ , that is less (greater) also dictates that,

apart from any competition from other terms in the Hamiltonian, the pseudospin-components Ŝα
i and Ŝβ

j perfer to

have their expectation values of the same (opposite) sign to satisfy the J ij
αβŜ

α
i Ŝ

β
j term in the Hamiltonian, although

such off-diagonal interactions are not typically referred to as ferromagnetic or antiferromagnetic.

Importantly, a ferromagnetic (an antiferromagnetic) interaction with respect to two local z directions, with

corresponding exchange constant, J ij
zz < 0 ( J ij

zz > 0 ), actually corresponds to an antiferromagnetic (a ferromagnetic)

interaction, with preferred alignment that is non-colinear, with respect to the crystallographic coordinates, due to

how the local z-directions are defined with respect to the crystallographic axes for each rare-earth site, and the

fact that positive z-directions for different sites have negative dot products with each other (see Table 1.1). This

interesting subtlety is the underlying reason that the frustrated tetrahedra with isotropic antiferromagnetic interactions

in Fig. 1.1(c) maps directly onto the frustrated tetrahedra with Ising single-ion anisotropy and ferromagnetic

interactions in Fig. 1.1(d), for example. This subtlety has resulted in conflicting uses of the terms ferromagnetic

and antiferromagnetic throughout the literature on rare-earth pyrochlores (see Refs. [56, 57] for example). Here we

adopt the convention implied by our previous example for the z-direction, and refer to interactions with positive

(negative) exchange constant, J ij
αα, as ferromagnetic (antiferromagnetic) interactions. We do this despite the fact

that the interpretation of a positive or negative exchange constant with respect to the crystallographic axes is more

complicated for the local x and y directions where the sign of the dot product between two positive local x directions

varies in sign depending on which two sites are chosen, and the dot product between two positive local y directions

is zero for some combinations of sites. Nonetheless, our aim is that this choice in nomenclature reduces potential

confusion in discussions of the magnetism with respect to the crystallographic coordinate system for the magnetic

dipole moments in Ce2Zr2O7, which are confined to the z-axes due to the Ising single-ion anisotropy [1, 22]; This

choice in nomenclature is motivated in part by Publication III of this thesis, where we investigate the field-induced
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behavior of the magnetic dipole moments in Ce2Zr2O7 and discuss the results with respect to the crystallographic

coordinate system.

Fortunately, the symmetry of the R3+ site in the pyrochlore lattice reduces the number of nonzero exchange

parameters that are permitted [12, 35, 49, 55]. For example, the symmetry of the rare-earth site reduces the

nine anisotropic nearest-neighbor parameters to only four distinct parameters which are capable of describing the

interactions at the nearest-neighbor level [12, 35, 49, 55]. In the global crystallographic coordinate system, these four

exchange parameters describe the Heisenberg, Kitaev, pseudo-dipolar and Dzyaloshinskii-Moriya exchange [12, 55],

as well as any other pairwise magnetic interactions which contribute to the nearest-neighbor parameters, such as

magnetic multipole-multipole interactions. In the local coordinate system for the R2B2O7 pyrochlores (Table 1.1), the

physical interpretation of the underlying exchange interactions for each of the parameters is more complicated due to

the fact that, in general, each exchange parameter in the local coordinate system has contributions from all four of the

aforementioned exchanges [35, 55]. Nonetheless, the Hamiltonian itself takes a simpler form in the local coordinate

system compared to the crystallographic coordinate system [35, 55]. Specifically, in the local coordinate system for

the R2B2O7 pyrochlores, the pseudospin interaction Hamiltonian at the nearest-neighbor level is given by [12, 35, 55]:

HNN =
∑

<ij>

[
JzŜ

z
i Ŝ

z
j − J±(Ŝ

+
i Ŝ

−
j + Ŝ−

i Ŝ
+
j ) + J±±(γijŜ

+
i Ŝ

+
j + γ∗ijŜ

−
i Ŝ

−
j )

+Jz±
[
ζij(Ŝ

z
i Ŝ

+
j + Ŝ+

i Ŝ
z
j ) + ζ∗ij(Ŝ

z
i Ŝ

−
j + Ŝ−

i Ŝ
z
j )
]]
,

(1.12)

where the sum is over all nearest-neighbor pairs of R3+ ions in the pyrochlore lattice, denoted as i and j, and

the pseudospin operators are as defined in Eqs. (1.5)-(1.7). The exchange parameters Jz, J±, J±±, and Jz± are

material-dependent parameters that depend on the details of the magnetic interactions at a microscopic level [12, 35,

39, 55], which are often estimated for a material via fits to experimental data [2, 3, 35, 37, 38, 58–67], as we do for

Ce2Zr2O7 in Publications II and III of thesis. The bond-dependent factors, γij and ζij , are material-dependent as

well but depend only on the symmetry of the CEF ground state doublet and have been determined previously for

each of the three possible symmetry classifications of CEF ground state doublet possible for the R2B2O7 pyrochlores,

as we now discuss.

The symmetry of the CEF ground state doublet puts restrictions γij and ζij , and can even further reduce the

number of distinct exchange parameters. For the effective spin-1/2 ground state doublet, all terms are present with

γij = −ζ∗ij ; The values of ζij for each distinct bond are given in Refs. [35, 55]. This Hamiltonian is appropriate to the

effective spin-1/2 pyrochlore Yb2Ti2O7 [12, 35, 68], for example. In contrast to this, for the case of a non-Kramers

CEF ground state doublet, the lack of time-reversal symmetry for the CEF ground state doublet and corresponding

pseudospins dictates that Jz± = 0 [12, 44, 49]. This Hamiltonian is appropriate to the non-Kramers pyrochlore

Ho2Ti2O7 [12, 16, 18, 24, 44, 49], for example. Finally, in the case of a dipole-octupole CEF ground state doublet,

each the pseudospin operators transform trivially under C3 rotation about the local z-axis and this dictates that there

can be no bond-dependence at the nearest-neighbor level, such that it suffices to take γij = ζij = 1 [12, 51]. This
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latter Hamiltonian is appropriate to the dipole-octupole pyrochlores Ce2Zr2O7, Nd2Zr2O7, and Dy2Ti2O7 [12, 16, 24,

44], to name a few examples which are particularly relevant to this thesis.

While the general form of the Hamiltonian differs between the non-Kramers pyrochlore Ho2Ti2O7 and the

dipole-octupole pyrochlore Dy2Ti2O7, the lack of significant quantum terms, J±, J±± , and Jz±, for each of these

materials leads to the same, commonly-used approximation for both Ho2Ti2O7 and Dy2Ti2O7 [39, 69–71], which

consists of including only the Ŝz
i Ŝ

z
j terms, but past the nearest-neighbor level due to the significance of the dipolar

interaction well beyond nearest neighbors in these materials (as shown in the following subsection).

We discuss the dipole-octupole pseudospin Hamiltonian at the nearest-neighbor level in Section 1.5, with a

recasting of the nearest-neighbor Hamiltonian in terms of Ŝx, Ŝy, and Ŝz, instead of Ŝ−, Ŝ+, and Ŝz, which leads to

a particularly simple form for the Hamiltonian.

1.3.2 The Dipole-Dipole Interaction

Along with exchange interactions, it is most often required that the magnetic dipole-dipole interaction be included in

providing an accurate description of the magnetic interactions in rare-earth pyrochlores. The Hamiltonian describing

magnetic dipole-dipole interactions is given by [14]:

HDipolar =
µ0

4π

∑

i>j

1

R3
ij

[
(µ̂i · µ̂j)−

3

R2
ij

(µ̂i ·Rij)(µ̂j ·Rij)

]
, (1.13)

where µ̂i is given by Equation (1.8), Rij is the displacement vector connecting the locations of ions i and j, with

magnitude Rij , and the constant µ0 = 1.2566× 10−6 kgm s−2 A−2 is the permeability of free space. The sum is over

all pairs of magnetic atoms i and j, with i > j to avoid double-counting interactions, as is conventional in defining the

dipolar interaction. Notice this is different than the convention used to define the exchange Hamiltonian, where the

sum is instead over all pairs and the definition of the exchange constants accounts for any double counting of pairs.

The 1/R3 dependence of the dipole-dipole interaction dictates that it acts at a long range compared to exchange

interactions. The dipole-dipole interaction between two magnetic dipole moments scales linearly with each of the

moment sizes.

For ions with the same magnetic dipole moment, the strength of the dipole-dipole interaction scales with square

of the magnetic dipole moment, which varies by a large amount across the R2B2O7 pyrochlores. For example, the

long-ranged dipole interaction is significantly reduced in both the Ising pyrochlores Ce2Zr2O7 and Nd2Zr2O7 compared

to other Ising pyrochlores Ho2Ti2O7 and Dy2Ti2O7, as the dipole moments within the CEF ground states doublets in

Ce2Zr2O7 (∼1.29µB [1, 22]) and Nd2Zr2O7 (∼2.65µB [33]) are much smaller than those in Ho2Ti2O7 (∼9.85µB [16,

18, 72]) and Dy2Ti2O7 (∼9.77µB [18, 48]). Accordingly, the dipole-dipole interaction is ∼58 (∼14) times weaker in

Ce2Zr2O7 (Nd2Zr2O7) compared to Ho2Ti2O7 and Dy2Ti2O7. Of course, the exact numbers here also depend on

the different cubic lattice constants in each material, but the lattice constant varies far less than the moment size

across these materials (and in the rare-earth pyrochlore in general); We return to a more detailed calculation shortly,
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using these materials as examples again, and include such finer details as the change in lattice constant between

the materials. In general, the relatively small magnetic dipole moment of Ce2Zr2O7 results in a particularly weak

dipole-dipole interaction strength in Ce2Zr2O7 compared to other R2B2O7 pyrochlores [11, 16, 24, 33, 48, 72].

The sign of the dipole-dipole interaction between two dipole moments depends on the direction of each dipole

moment and the direction of the vector connecting their locations. The strength of the dipole-dipole interaction

depends on these vector directions as well, but also depends on the distance between the magnetic moments and the

moment sizes, as previously mentioned. For the case of Ising single-ion anisotropy, the vector connecting any two R3+

ions can be used to determine sign of the dipole-dipole interaction between the two R3+ ions, and the strength of

this interaction in terms of the magnetic moment size. In further detail, for the case of Ising single-ion anisotropy,

Eq. (1.8) gives µ̂i = −gzµBŜ
z
i zi for each ion i, within the CEF ground state doublet, and the dipole-dipole interaction

can be reduced to the effective form [39, 58, 69, 73, 74]:

HDipolar,Ising =
∑

ij

DijŜ
z
i Ŝ

z
j , (1.14)

which acts within the CEF ground state doublet. The sum is now over all pairs of atoms for better comparison with

the form of the exchange interactions, and the dipole-dipole interaction parameters are given by [58, 69, 73, 74]:

Dij =
µ0(gzµB)

2

8πR3
ij

[
(ẑi · ẑj)− 3(ẑi · R̂ij)(ẑj · R̂ij)

]

=
µ0µ

2

2πR3
ij

[
(ẑi · ẑj)− 3(ẑi · R̂ij)(ẑj · R̂ij)

]
,

(1.15)

where µ is the magnitude of the magnetic dipole moment within the CEF ground doublet for each ion i, with

µ = ⟨ ||µ̂i|| ⟩ = (gz/2)µB giving the expectation value of the magnetic moment size in the CEF ground state. Here the

“hat” symbols on the classical vectors, R̂ij , ẑi, and ẑj , are used to denote the fact that these vectors are unit-length.

We calculate Dij for first-, second-, and third-nearest neighbor R3+ ions in the pyrochlore lattice and this process

shows that, for the case of Ising single-ion anisotropy, the dipole-dipole interaction is ferromagnetic for first-nearest

neighbors, antiferromagnetic for second-nearest neighbors, and multi-valued for third-nearest neighbors. Table 1.2

1st NN 2nd NN 3rd NN

Dij
+ 5µ0µ

2

6πR3
NN

− µ0µ
2

2πR3
NN

(RNN

Rij
)3 ± µ0µ

2

2πR3
NN

(RNN

Rij
)3

Rij
RNN

√
3RNN 2RNN

Table 1.2: The first row of this table shows our calculated expressions for Dij [Eq. (1.15)] for first-, second-, and
third-nearest-neighbor R3+ ions in the pyrochlore lattice, in terms of the magnetic moment size for the ions, µ, and
the distance between ions, Rij , which is shown in the second row of this table in terms of RNN = a/

√
8. Note that the

Dij is equal for all six nearest neighbors, and equal for all twelve second-nearest neighbors, but varies in sign across
the twelve third-nearest neighbors. As pointed out in Ref. [58], this differing trend for the third-nearest neighbors is
due to the fact that for a given ion, i, six of its third-nearest neighbors (denoted at j) have their displacement vector,
Rij , perpendicular to both ẑi and ẑj , while the other six of the third-nearest neighbors have Rij perpendicular to
neither ẑi or ẑj .
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Dij for 1st NN Dij for 2nd NN Dij for 3rd NN

Ce2Zr2O7
5.41 µeV -0.63 µeV ±0.41µeV

0.063 K -0.007 K ±0.005 K

Nd2Zr2O7
0.273 K 0.032 K ±0.020 K

Dy2Ti2O7
4.328 K -0.499 K ±0.325 K

Ho2Ti2O7
4.425 K -0.511 K ±0.332 K

Table 1.3: The calculated values of Dij [Eq. (1.15)] for the first-, second-, and third-nearest neighbors in the Ising
pyrochlores Ce2Zr2O7, Nd2Zr2O7, Dy2Ti2O7, and Ho2Ti2O7 using the expressions for Dij listed in Table 1.2, in units
of temperature (K). Here we use the value of the magnetic dipole moment size in the CEF ground state for each
material, from Refs. [1, 16, 18, 22, 33, 48, 72] as outlined in the main text, and the lattice constant a = 10.73 Å for
Ce2Zr2O7 [1], a = 10.65 Å for Nd2Zr2O7 [1], a = 10.12 Å for Dy2Ti2O7 [75, 76], and a = 10.10 Å for Ho2Ti2O7 [76].
For Ce2Zr2O7, we also show the calculated values in µeV to ease the comparison with the Ce2Zr2O7 interaction
parameters elsewhere in this thesis.

shows the calculated expression for Dij for first-, second-, and third-nearest neighbor R3+ ions in the pyrochlore lattice.

Table 1.3 shows the calculated values of Dij for the first-, second-, and third-nearest neighbors in Ce2Zr2O7, Nd2Zr2O7,

Dy2Ti2O7, and Ho2Ti2O7. We use this latter table to reiterate that the strength of the dipole-dipole interaction

in Ce2Zr2O7 is weak, particularly in comparison to other rare-earth pyrochlores such as Nd2Zr2O7, Dy2Ti2O7, and

Ho2Ti2O7. Table 1.3 also shows that dipole-dipole interactions beyond nearest neighbor in Ce2Zr2O7 are unlikely to

have any significant impact on the magnetic behavior at typical experimentally-accessible temperatures, and certainly

those include in this thesis (above 0.02 K), while that is not the case for Nd2Zr2O7, Dy2Ti2O7, and Ho2Ti2O7.

Due to the similarity in the form for the exchange interaction Hamiltonian in Eq. (1.11) and the form for

the dipole-dipole interaction Hamiltonian for Ising pyrochlores in Eq. (1.14), the dipole-dipole interaction can be

absorbed into the definition of the “exchange” parameters for Eq. (1.11), for the case of Ising single-ion anisotropy,

as is done throughout this thesis. In fact, it is possible to use Eq. (1.8) to write the dipole-dipole interaction

Hamiltonian in terms of the pseudospin operators for any single-ion anisotropy, giving an effective Hamiltonian

of the form HDipolar =
∑

ij

∑
u

∑
vD

ij
uvŜ

u
i Ŝ

v
j , where u and v each denote the local directions, {x, y, z}, for atoms

i and j, respectively, similar to the form in Eq. (1.11) for the exchange Hamiltonian and again the dipole-dipole

interaction parameters, now written as Dij
uv, can be absorbed into the definition of the “exchange” parameters (as

was mentioned for general magnetic multipole-multipole interactions, and all other pairwise magnetic interactions,

in the previous subsection). Returning to the case of Ising single-ion anisotropy as is relevant for Ce2Zr2O7, and

comparing the calculated value of Dij for first-nearest neighbors in Ce2Zr2O7 (Table 1.3) to the estimated value

of the z-component interaction parameter for nearest neighbors in Ce2Zr2O7, Jz (from the work in Publication III

of this thesis), gives the estimate J⋆
z = Jz −Dij = 11.3 µeV − 5.4 µeV = 5.9 µeV, where J⋆

z is the real exchange

parameter for nearest-neighbor z-component interactions (without contribution from the dipole-dipole interaction).

Notably, the exchange interaction (J⋆
z ≈ 5.9 µeV) and dipole-dipole interaction (Dij ≈ 5.4 µeV) are near equal for

the z-components of nearest-neighbors in Ce2Zr2O7, with the z-component exchange interaction slightly stronger
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than the dipole-dipole interaction, according to this analysis.

In fact, the work in Publication III of this thesis also shows evidence for a low-temperature moment-size in Ce2Zr2O7

which is 1.12µB and is slightly reduced from the value of 1.285µB used in calculating Dij in Table 1.3. Re-evaluation

of the previous energies using a moment size of 1.12µB instead yields: J⋆
z = 11.3 µeV − 4.1 µeV = 7.1 µeV, with

the z-component exchange interaction (J⋆
z ≈ 7.1 µeV) dominating more heavily over the dipole-dipole interaction

(Dij ≈ 4.1 µeV) than for the first analysis. This is in contrast to Ho2Ti2O7 and Dy2Ti2O7 for example, where the

dipole-dipole interactions are responsible for the majority of the magnetic interaction between nearest neighbors [70],

which is not so surprising considering the relatively large magnetic dipole moments at the Ho3+ and Dy3+ sites,

∼10 µB [16, 18, 48, 72]. In fact, for the case of Ce2Zr2O7, the Jz parameter is heavily-dominated by the parameters

Jx and Jy, which are each ∼60 µeV and have no contribution from the dipole-dipole interaction [2, 3, 37], as we

discuss further in Section 1.5 as well as Publications II and III of this thesis. Similarly, the nearest-neighbor exchange

parameters for Nd2Zr2O7 have energy scale on the order of 100 µeV [42, 67, 77], which is much larger than the

∼25 µeV (∼0.3 K) calculated for the nearest-neighbor dipole-dipole interaction in Nd2Zr2O7 in Table 1.3.

1.4 The Basics of Ising Rare-Earth Pyrochlores and Spin Ices

The purpose of this section is to provide a short introduction to the some of the zero-field magnetic phases that

occur in pyrochlores with Ising single-ion anisotropy, before these concepts arise again with added complications in

our discussion of the dipole-octupole pyrochlores in the following section. In this section, we will consider only the

magnetic dipole moments of the system and ignore the possibility that significant higher-order multipoles may be

present and may even have stronger coupling to each other than the dipoles do, and we will consider a case with

significant multipole moments in the following section. As discussed in Section 1.2.2, Ising single-ion anisotropy occurs

for pyrochlores with a CEF ground state that yields gxy = 0 and gz ̸= 0 [11, 19, 24, 72], such that the magnetic dipole

moments [see Eq. (1.8)] are parallel or anti-parallel to the local z-directions.

For dominant antiferromagnetic nearest-neighbor interactions between dipole moments with Ising single-ion

anisotropy, the ground state spin configurations for a single tetrahedron are those in which all of the ions on the

tetrahedron have their magnetic dipole moments pointing directly towards the center of the tetrahedron or all of

the ions on the tetrahedron have their magnetic dipole moments pointing directly away from the center of the

tetrahedron [78, 79]. Fig. 1.6(a) illustrates these all-in, all-out configurations on a pair of corner-sharing tetrahedra.

The degeneracy of the all-in state and all-out state for a single tetrahedron does not propagate to a macroscopic

degeneracy when considering the full pyrochlore lattice, due to the fact that the corner-sharing nature of the tetrahedral

network dictates that neighboring tetrahedra cannot both have all-in configurations or both have all-out configurations,

simultaneously. Accordingly, the configuration of magnetic moments alternates from all-in to all-out or vise versa

with each pair of neighboring tetrahedra in the pyrochlore lattice (except for domain walls), giving magnetic order.

Sm2Ti2O7, Nd2Hf2O7, and Nd2Zr2O7 are each R2B2O7 pyrochlores (as defined in Section 1.1) with Ising single-ion

anisotropy, gxy = 0, in their CEF ground states, and which each display all-in, all-out magnetic dipole order at low
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Figure 1.6: Illustrating the different orientations of magnetic dipole moments that are possible in the Ising pyrochlores.
(a) A pair of corner-sharing tetrahedra with magnetic dipole moments (red) corresponding to the all-in, all-out
magnetic structure. (b) A pair of corner-sharing R3+-tetrahedra with R3+ magnetic dipole moments that satisfy the
two-in, two-out rule for spin ices. (c) The six different ways to satisfy the two-in, two-out rule for a single tetrahedron.
This figure was created using the VESTA visualization software [4].

temperature due to antiferromagnetic coupling between nearest-neighbor dipole moments [23, 33, 34, 80–84].

For heavily-dominant ferromagnetic nearest-neighbor interactions between dipole moments with Ising single-ion

anisotropy, the ground state spin configurations for a single tetrahedron are those in which two of the ions on

the tetrahedron have their magnetic dipole moments pointing directly towards the center of the tetrahedron and

the other two ions on the tetrahedron have their magnetic moments pointing directly away from the center of the

tetrahedron [78, 79]. Fig. 1.6(b) shows a pair of two corner-sharing tetrahedra in the pyrochlore lattice with magnetic

moments satisfying the two-in, two-out configurations on each tetrahedron. This rule for the energy-minimizing

spin configurations is called the two-in, two-out rule [69, 79, 85]. Materials governed by this rule are magnetically

frustrated (see Fig. 1.1) and the six ways to satisfy the two-in, two-out rule for a single isolated tetrahedron are

shown in Fig. 1.6(c). This single-tetrahedron degeneracy leads to a macroscopic degeneracy when considering the

full pyrochlore lattice and the number of degenerate states in this two-in, two-out manifold is (32 )
N
2 , where N is the

number of R3+ ions in the lattice [69, 78, 79, 85, 86]. The corner-sharing nature of the lattice causes this number of

degenerate states, (32 )
N
2 , to be less than six states per tetrahedron, but nonetheless, this degeneracy is macroscopic

due to its exponential dependence on the number of ions in the lattice.

The two-in, two-out rule maps directly onto the rule describing proton disorder in water ice [69, 78, 79, 85–87],

and due to this similarity, materials that obey the two-in, two-out rule are called spin ices. Ho2Ti2O7 and Dy2Ti2O7
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are each R2B2O7 pyrochlores with Ising single-ion anisotropy (gxy = 0 [16, 18, 24, 48]) in their CEF ground states,

and which each display disordered spin ice phases at low temperature due to ferromagnetic coupling between nearest-

neighbor dipole moments in these materials. Ho2Ti2O7 and Dy2Ti2O7 were the first spin ices to be discovered and

are examples of classical spin ices due to the lack of significant quantum fluctuations in these materials [39, 69, 70, 79,

85, 88, 89]. The lack of significant quantum fluctuations and the corresponding, approximately-classical nature of

these spin ices results from the small magnitude of coupling between x- and y- components of pseudospin compared

the coupling between z-components of pseudospin, as mentioned in Section 1.3.1, and we further discuss quantum

fluctuations in spin ice materials in the following section. The classical ground state degeneracy with ( 32 )
N
2 degenerate

two-in, two-out states leads to a prediction for the entropy and gives S0 = R
2 ln 3

2 for the residual entropy in the

low-temperature classical spin ice phase, where R = 8.314 J ·K−1 ·mol−1
R3+ is the molar gas constant with respect to

the R3+ ions. This residual entropy has been detected experimentally, via heat capacity measurements, to within

a few percent for both Dy2Ti2O7 and Ho2Ti2O7 [85, 90], as well as in the analogous case of water ice where the

expected entropy is again R
2 ln 3

2 but with R = 8.314 J ·K−1 ·mol−1
H as the appropriate molar gas constant in that

case.

In general, spin ices have become a very popular topic due to the wealth of interesting physics that accompanies

these disordered phases; Reviews on spin ice are available in Refs. [10, 69, 71] to provide a few examples. In further

detail, the classical spin ices have gained a large amount of acclaim due to the fact that spin-flip excitations resulting in

three-in, one-out, or one-in, three-out, tetrahedra can be described as magnetic monopoles at the center of the excited

tetrahedra [88, 89, 91, 92]. In this emergent electrodynamics description, these monopoles interact via a magnetic

coulomb law with interaction energy ∝ Q1Q2/r where r is the distance between monopoles and Q1 and Q2 are their

“charges” [88, 89, 91, 92]. These monopoles arise as pairs of monopoles with opposite emergent charge, corresponding

to the fact that flipping a spin to generate a three-in, one-out tetrahedra also generates a one-in, three-out tetrahedra

for the second tetrahedron that the spin is a part of, or vise-versa. In the case of quantum spin ices, the significance of

x- and y-based terms in the Hamiltonian leads to a similar, again rare, emergent quantum electrodynamics description

in which the “electric field” associated with the z-component of pseudospin is accompanied by a “magnetic field”

associated with the x- and y-components of pseudospin [10, 47, 51, 93–95], as we discuss in further detail in the

following section.

In terms of the local z-directions, the two-in, two-out rule corresponds to two magnetic dipole moments along their

local +z-directions and two magnetic moments along their local −z-directions for each tetrahedron (see Table 1.1).

Similarly, all-in, all-out magnetic order corresponds to tetrahedra that have all magnetic moments along their local

+z-directions or all magnetic moments along their local −z-directions [52].

The dipole-octupole pyrochlores, which we discuss in the following section, have Ising single-ion anisotropy in their

CEF ground states, but in general, also have significant interactions between higher-order multipoles, beyond dipoles,

such that the phases and concepts discussed in this section also arise in the context of dipole-octupole pyrochlores

but with adjusted and expanded forms.
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‘

1.5 Dipole-Octupole Rare-Earth Pyrochlores

1.5.1 Single-ion Properties in Dipole-Octupole Rare-Earth Pyrochlores

As discussed in Section 1.2.2, when the CEF ground state is a doublet that is well-separated in energy from the

first excited CEF state, the low-temperature magnetism can be accurately-described using the pseudospin-1/2

formalism which approximates the magnetic degrees of freedom of each ion using pseudospin-1/2 operators given by

Eqs. (1.5)-(1.7) [11, 12]. In such cases, the rare-earth pseudospins inherit their symmetry properties from the CEF

ground state doublet and these properties govern the allowed nonzero terms in the Hamiltonian that describes the

interactions between the pseudospins (see Section 1.3.1). As mentioned in Sections 1.2.2 and 1.3.1, there are three

possible symmetry classifications that arise in the rare-earth pyrochlores, based on how the pseudospin-1/2 degrees of

freedom transform under the D3d symmetry operations and time-reversal symmetry [12, 49–53].

The main focus of this thesis is the dipole-octupole pyrochlore Ce2Zr2O7, where the |J = 5/2, mJ = ±3/2⟩

CEF ground state doublet estimated for Ce3+ in Ce2Zr2O7 (Refs. [1, 22]) has dipole-octupole symmetry [51, 52].

Dipole-octupole symmetry corresponds to x- and z-components of pseudospin, Ŝx and Ŝz, that transform like magnetic

dipoles under the R3+ site symmetries and time-reversal symmetry, and a y-component of pseudospin, Ŝy, that

transforms like a magnetic octupole. This difference in symmetry for the pseudospin components in the dipole-octupole

pyrochlores is illustrated in Fig. 1.7(a) using the magnetic charge distributions associated with different directions of

pseudospin in the in yz-plane. More generally, a pseudospin in the xz-plane (±y-direction) of pseudospin-space has

Figure 1.7: A representation of the symmetry of the dipolar and octupolar pseudospin-components in the pyrochlore
lattice using their associated magnetic charge distributions. (a) The magnetic charge distributions associated with
different pseudospin directions in the local yz plane. For pseudospins in the yz-plane, a pseudospin along the ±z
(±y) direction has pure dipolar (octupolar) symmetry and pseudospins that are not directly along ±y or ±z have
mixed dipolar and octupolar symmetry. (b) The magnetic charge distributions for an assortment of dipoles (right)
and octupoles (left) located at R3+ sites of the pyrochlore lattice. This figure has been reproduced from Ref. [2] with
permission copyrighted by the American Physical Society.
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Component Symmetry Magnetic Moment

Ŝx Dipolar Octupolar

T : −Ŝx, µ̂x
Oct ∝ P

(
Ĵ3
x − 1

3 (ĴxĴ
2
y + ĴyĴxĴy + Ĵ2

y Ĵx)
)
P = CxŜx

C3: Ŝx, I: Ŝx, M: −Ŝx

Ŝy Octupolar Octupolar

T : −Ŝy, µ̂y
Oct ∝ P

(
Ĵ3
y − 1

3 (ĴyĴ
2
x + ĴxĴyĴx + Ĵ2

x Ĵy)
)
P = CyŜy

C3: Ŝy, I: Ŝy, M: Ŝy

Ŝz Dipolar Dipolar

T : −Ŝz, µ̂z
Dip ∝ PĴzP = CzŜz

C3: Ŝz, I: Ŝz, M: −Ŝz

Table 1.4: The symmetry and multipolar magnetic moment associated with each of the three pseudospin components,
Ŝx, Ŝy, and Ŝz, for the dipole-octupole pyrochlores [12, 51, 52, 96, 97]. Each pseudospin component transforms
identically under the time-reversal symmetry operation, T . The symmetry elements corresponding to the D3d point
group can be generated by the operations, C3, I, and M, where C3 is a three-fold rotation along the z-direction, I is
the inversion operation, and M is the mirror-plane that takes the +x and +y directions to the −y and −x directions
respectively [51]. Each pseudospin component transforms identically under C3 and I and the transformation under
M is what distinguishes the symmetry of the pseudospin components in this basis for the D3d point group, with Ŝx

and Ŝz transforming like the z-component of a magnetic dipole and Ŝy transforming the component of a magnetic
octupole tensor [51]. The rightmost column in the table shows the multipolar magnetic moments carried by each
pseudospin component, where P = |−⟩⟨−| + |+⟩⟨+| is the projection operator that projects into the basis of the CEF
ground state doublet [15, 31, 53, 97], and Cx, Cy, and Cz are constants with values that depend on the composition

of the CEF ground state doublet, |±⟩, in terms of the |J,mJ⟩ eigenstates of Ĵ2 and Ĵz. The expression for the dipole
moment carried by Ŝz also follows from Eq. (1.8) with gxy = 0.

pure dipolar (octupolar) symmetry, and pseudospins that are not directly along the ±y direction or in the xz-plane

have mixed dipolar and octupolar symmetry. We also use the representation of the symmetry via magnetic charge

distributions to provide an example of pure-dipoles and pure-octupoles on the pyrochlore lattice in Fig. 1.7(b). In

reality, pseudospins do not point along actual directions in real space as the previous phrasing may suggest [see

Eqs. (1.5)-(1.7)], but a visualization as such is permitted if one keeps in mind that, for example, a pseudospin along

the +z direction should be taken to mean that ⟨Ŝz⟩ > 0 and ⟨Ŝx⟩, ⟨Ŝy⟩ = 0 for that pseudospin.

An interesting and important feature to mention about the dipole-octupole pyrochlores is that, while Ŝx has

dipolar symmetry, it carries an octupolar magnetic moment in the x-direction. This is different from both Ŝy and Ŝz

where the multipolar nature of the magnetic moment is the same as the symmetry in each case. That is, Ŝy carries

an octupolar magnetic moment and Ŝz carries a dipolar magnetic moment. The different symmetries and multipolar

magnetic moments for the pseudospin-1/2 components in the dipole-octupole pyrochlores are summarized in Table 1.4.

All dipole-octupole doublets yield an Ising single-ion anisotropy (gxy = 0, gz ̸= 0) with the magnetic dipole moment

along the local ±z-direction, simply due to the fact that only the z-component of pseudospin carries a dipole moment.

1.5.2 Interactions and Phases in Dipole-Octupole Rare-Earth Pyrochlores

Along with the symmetry of the CEF ground state imprinting itself on pseudospin-1/2 degrees of freedom, this

symmetry is also represented in the general form of the microscopic spin Hamiltonian that describes the interactions
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between these pseudospin-1/2 degrees of freedom [12]. In other words, the symmetry of the pseudospins and underlying

CEF ground state doublet governs the allowed nonzero terms in the exchange Hamiltonian, as outlined in Section 1.3.1.

The general form of the exchange Hamiltonian for dipole-octupole pyrochlores at the nearest-neighbor level is given

by [51]:

HDO =
∑

<ij>

[(JxŜ
x
i Ŝ

x
j + JyŜ

y
i Ŝ

y
j + JzŜ

z
i Ŝ

z
j ) + Jxz(Ŝ

x
i Ŝ

z
j + Ŝz

i Ŝ
x
j )]−

∑

i

gzµB(h · ẑi)Ŝz
i , (1.16)

where Ŝα
i (α = x, y, z) are the pseudospin-1/2 components of rare-earth atom i in the local {x, y, z} coordinate

frame as given by Eq. (1.5)-(1.7). The second sum in Eq. (1.16) represents the Zeeman interactions between the

magnetic dipole moments of the R3+ ions and the magnetic field, where the magnetic field is denoted as h and ẑi is

the local z axis for ion i (see Table 1.1). The constant gz is determined via Eq. (1.9) which gives gz = 2.57 for the

pure |J = 5/2, mJ = ±3/2⟩ ground state doublet estimated for Ce3+ in Ce2Zr2O7 [1, 22].

Another form of this dipole-octupole Hamiltonian [Eq. (1.16)] can be arrived at by applying the specific rotation

of local axes that removes the Jxz coupling term, yielding the XYZ Hamiltonian [51, 52]. Specifically, this requires a

rotation of the local frame about the y-axis by an amount θ, where θ is given by [42, 51, 52]:

θ =
1

2
tan−1

(
2Jxz

Jx − Jz

)
, (1.17)

Rotating the local {x, y, z} coordinate frame by θ about the y-axis yields a new coordinate frame which is

commonly denoted as {x̃, ỹ, z̃}. This transformation yields the pseudospin relations [51, 52]:

Ŝx̃
i = Ŝx

i cos θ + Ŝz
i sin θ, (1.18)

Ŝỹ
i = Ŝy

i , (1.19)

Ŝ z̃
i = −Ŝx

i sin θ + Ŝz
i cos θ, (1.20)

The new Hamiltonian in the {x̃, ỹ, z̃} coordinate frame, the XYZ Hamiltonian, is given by [51, 52]:

HXYZ =
∑

<ij>

[Jx̃Ŝ
x̃
i Ŝ

x̃
j + JỹŜ

ỹ
i Ŝ

ỹ
j + Jz̃Ŝ

z̃
i Ŝ

z̃
j ]− gzµB

∑

i

(h · ẑi)(Ŝ z̃
i cos θ + Ŝx̃

i sin θ) , (1.21)

where the nearest-neighbor exchange constants in HXYZ are related to those in HDO through the equations,

Jx̃ =
1

2

(
Jx + Jz +

√
4J2

xz + (Jx − Jz)2
)
, (1.22)

Jỹ = Jy, (1.23)

Jz̃ =
1

2

(
Jx + Jz −

√
4J2

xz + (Jx − Jz)2
)
. (1.24)

The XYZ Hamiltonian in Eq. (1.21) is used throughout this thesis due to the fact that the lack of Jxz-coupling

22



Ph.D. Thesis - E.M. Smith McMaster University - Physics and Astronomy

compared to Eq. (1.16) results in a simpler expression for the Hamiltonian in zero-field. However, the field-dependent

term in the Hamiltonian becomes more complicated in the transformed coordinate system due to the fact that neither

the x̃ or z̃ direction is necessarily along the direction of the magnetic dipole-moment of the ion, whereas the local z

direction is along the direction of the magnetic dipole at that site, making the field-dipole coupling term simpler in

Eq. (1.16) compared to Eq. (1.21).

Transformation to the XYZ Hamiltonian is particularly useful for investigating the zero-field magnetic ground

state phase diagram. The zero-field magnetic ground state phase diagram for the XYZ Hamiltonian is known to

contain six distinct phases with two of which being ordered phases and four of which being U(1) quantum spin liquid

phases with low-energy physics that mimics the theory of quantum electrodynamics [56, 57, 96–98]. The two ordered

phases are distinguishable by the dipolar or octupolar symmetry of their order parameter, and the four quantum spin

liquid phases are distinguishable by the dipolar or octupolar symmetry of their emergent electric field as well as by

their emergent flux on a hexagonal plaquette of the lattice, which can be 0 or π.

The quantum spin liquid ground states occur when the dominant exchange parameter is positive (ferromagnetic)

and much stronger than the largest negative exchange parameter; In the classical phase diagram, the spin liquid

states occur when the dominant exchange parameter is positive and is more than three times the size (in absolute

value) of the largest negative exchange parameter [96, 99]. A spin liquid ground state of the XYZ Hamiltonian

has octupolar nature if |Jỹ| > |Jx̃|, |Jz̃| and dipolar nature if |Jz̃| > |Jỹ| or |Jx̃| > |Jỹ| [2]. A dipolar (octupolar)

spin liquid has the x̃ or z̃ (the ỹ) components of pseudospin, with dipolar (octupolar) symmetry, associated with

the emergent electric field in the emergent quantum electrodynamics description that is often used for quantum

spin ices [56, 96, 98]. These quantum spin liquids are each governed by a “two-plus, two-minus rule” rule for the

component of pseudospin associated with the most dominant exchange parameter and the emergent electric field [56,

96, 98], analogous to the conventional two-in, two-out rule [Fig. 1.6(b,c)] for the dipole moments associated with the

z components of pseudospin in conventional spin ices [39, 69, 70, 79, 85, 88, 89]. Specifically, the two-plus, two-minus

rule governs the behavior of Ŝα, where α = x̃, ỹ, or z̃ and Jα is positive and is the dominant exchange parameter;

The two-plus, two-minus dictates that ⟨Ŝα⟩ is positive for two rare-earth ions in each tetrahedron and negative for the

other two rare-earth ions in each tetrahedron. In further detail, each of these quantum spin liquids can be obtained

by adding quantum fluctuations to a classical phase adhering to the two-plus, two-minus rule for the component

of pseudospin associated with the dominant exchange parameter [51, 52, 56, 57, 96–98], similar to the addition of

quantum fluctuations to the two-in, two-out rule for the z components of pseudospin in conventional spin ices [10,

47, 51, 93–95]. Because of these similarities, we refer to these U(1) quantum spin liquids as quantum spin ice (QSI)

phases. In fact, in the special case of a spin ice with θ = 0 and Jz̃ as the dominant exchange parameter, the relevant

two-plus, two-minus rule is the conventional two-in, two-out rule.

The ordered ground states occur when there exists a negative (antiferromagnetic) exchange parameter that it

is not strongly dominated by some positive exchange parameter; In the classical phase diagram, the ordered states

occur when the most-dominant negative exchange parameter is more than a third of the size (in absolute value) of the
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largest positive exchange parameter [96, 99]. An ordered phase has octupolar nature if Jỹ < Jx̃, Jz̃ and dipolar nature

if Jz̃ < Jỹ or Jx̃ < Jỹ [2]. A dipolar (octupolar) ordered phase has the x̃ or z̃ (the ỹ) components of pseudospin, with

dipolar (octupolar) symmetry, associated with the order parameter [56, 96, 98]. These ordered phases display an

“all-plus, all-minus” ordering of the pseudospin-component associated with the most dominant negative exchange

parameter, analogous to conventional all-in, all-out magnetic order [Fig. 1.6(a)] for the dipole moments associated

with the z components of pseudospin in a conventional all-in, all-out ordered phase. Specifically, in these all-plus,

all-minus ordered phases, the ordered component of the pseudospin is Ŝα, where α = x̃, ỹ, or z̃ and Jα is the largest

negative exchange parameter in terms of absolute value; Ŝα exhibits a magnetic order with ⟨Ŝα⟩ either positive for all

four rare-earth ions in each tetrahedron or negative for all four rare-earth ions in each tetrahedron, with alternation

between positive and negative for neighboring tetrahedra due to the corner-sharing nature of the lattice.

For both the ordered phases and the spin ice phases, the Jx̃- and Jz̃-dominated ground states are smoothly-

connected to one another by the parameter θ and so they do not represent distinct phases. Accordingly, we do not

distinguish between the spin ice phases appearing for large, positive Jx̃ and the spin ice phases appearing for large,

positive Jz̃, or between the ordered phases appearing for large, negative Jx̃ and the ordered phases appearing for

Figure 1.8: The zero-field magnetic ground state phase diagram for the XYZ Hamiltonian [Eq. (1.21)] which is relevant
to dipole-octupole pyrochlores at the nearest-neighbor level, along with illustrations of the different phases present in
the diagram using magnetic charge distributions to represent the symmetry of the pseudospins (see Fig. 1.7). Six
phases in total are present in this ground state phase diagram: two ordered phases which are distinguishable by the
dipolar or octupolar symmetry of their corresponding order parameter, and four QSI phases which are distinguishable
by the dipolar or octupolar symmetry of their corresponding emergent electric field, and by the emergent flux that is
generated when a spinon travels around hexagonal loop in the pyrochlore lattice, which can be 0 or π. The emergent
flux of a spinon around a hexagon is not considered in the phase representations shown in this figure (see Section 1.5.3).
The phase diagram in this figure uses calculations from Ref. [56] and has been adapted from Ref. [3] with permission
copyrighted by the American Physical Society.

24



Ph.D. Thesis - E.M. Smith McMaster University - Physics and Astronomy

large, negative Jz̃.

The magnetic ground state phase diagram for the XYZ Hamiltonian, as determined from Ref. [56], is shown in

Fig. 1.8, which shows the large amount of phase space inhabited by the quantum spin ice ground states. We show

this phase diagram alongside a representation of the ground-state phases using magnetic charge distributions to

illustrate the dipolar and octupolar symmetries of the pseudospin components. The representation using magnetic

charge distributions on a single tetrahedron gives no distinction between 0-flux and π-flux quantum spin ices of the

same symmetry and we instead discuss the distinction between 0-flux and π-flux quantum spin ices further in the

following subsection. We defer our discussion of magnetic phases in dipole-octupole pyrochlores in nonzero magnetic

field until Chapter 3, where we discuss some of the magnetic phases that can exist in magnetic fields along the [1, 1̄, 0]

and [1, 0, 0] crystallographic axes.

1.5.3 The Distinction Between 0-flux and π-flux Quantum Spin Ice Phases

The distinction between the 0-flux and π-flux quantum spin ice phases arises through details of the quantum

fluctuations in these phases. Specifically, the lowest order quantum effects originate through a ring-exchange term

which flips pseudospins on specific hexagons in the pyrochlore lattice and the two possibilities of sign for the effective

exchange constant of this term, geff , ultimately lead to the distinction between the 0-flux and π-flux quantum spin

ice phases [37, 44, 52, 57, 93, 100, 101]. This ring exchange term acts on specific hexagons where the component

of pseudospin associated with the two-plus, two-minus rule has an expectation value with alternating sign around

the hexagon. For these specific hexagons, the ring exchange takes the collection of tetrahedra forming the hexagon

from one state to another within the macroscopically degenerate two-plus, two-minus manifold. In further detail, if

the system is in a spin ice phase and the dominant exchange parameter is Jα, where α = x̃, ỹ, or z̃, then the role

of Jα is to enforce the two-plus, two-minus rule for the Ŝα components of pseudospin and quantum fluctuations

enter in through Jβ and Jγ where β and γ denote the local-axes of x̃, ỹ, and z̃ that are perpendicular to the local

α direction. The spin Hamiltonian can be separated into a classical spin ice term HCSI =
∑

<ij> JαŜ
α
i Ŝ

α
j , with

ground states that correspond to the degenerate, classical manifold of two-plus, two-minus states, and a quantum

term Hβγ =
∑

<ij>(JβŜ
β
i Ŝ

β
j + Jγ Ŝ

γ
i Ŝ

γ
j ). Degenerate perturbation theory (see Ref. [15] for example) can be applied

on the quantum term to yield an effective Hamiltonian which acts within the ground-state manifold of two-plus,

two-minus states [35, 37, 44, 52, 57, 93, 100, 101]:

Hring = geff
∑

7

(
Ŝ+̃
1 Ŝ

−̃
2 Ŝ

+̃
3 Ŝ

−̃
4 Ŝ

+̃
5 Ŝ

−̃
6 + Ŝ+̃

6 Ŝ
−̃
5 Ŝ

+̃
4 Ŝ

−̃
3 Ŝ

+̃
2 Ŝ

−̃
1

)
, (1.25)

where the sum is over the different hexagonal plaquettes in the pyrochlore lattice with j = {1, 2, 3, 4, 5, 6} denoting

the six ions forming a hexagon. The pseudospin ladder operators here are redefined as Ŝ±̃
j = Ŝβ

j ± Ŝγ
j in Eq. (1.25)

and for the discussions in this section due to the convenient form that results for Hring, and in accordance with the

fact that the quantum fluctuations arise through Jβ and Jγ when Jα is dominant. The ring exchange Hamiltonian,

Hring, flips spins on hexagons where ⟨Ŝα⟩ alternates in sign around the hexagon [Fig. 1.9] and yields zero otherwise.
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Figure 1.9: A loop of six corner-sharing tetrahedra in the pyrochlore lattice, shown in a plane perpendicular to
the [1, 1, 1] direction. This is the shortest loop of tetrahedra possible for the pyrochlore lattice. The R3+ triangles
perpendicular to the [1, 1, 1] direction form a Kagome lattice with corner-sharing-triangular geometry that is highly
susceptible to magnetic frustration [7, 8]. The inner-most R3+ ions form a hexagon which supports quantum
fluctuations between different two-plus, two-minus configurations for the dipolar and octupolar U(1) QSIs present
in the phase space of the dipole-octupole pyrochlores, and between different two-in, two-out configurations for
conventional QSIs in non-DO pyrochlores. The positive and negative signs denote the sign of the expectation value of
pseudospin component associated with the two-plus, two-minus rule and we show this for a collection of tetrahedra for
which this pseudospin component has expectation value that is alternating in sign around the inner hexagon, which
permits pseudospin-flipping by the ring exchange Hamiltonian (see main text). The sign of the effective exchange
constant for this ring exchange, geff , governs the flux of the gauge field through this hexagon in the emergent quantum
electrodynamics description used for quantum spin ices, yielding a 0-flux quantum spin ice for geff < 0 and a π-flux
quantum spin ice for geff > 0. This figure was created using the VESTA visualization software [4].

In the emergent quantum electrodynamics description that is often used to describe quantum spin ices, the component

of pseudospin governed by the two-plus, two-minus rule is associated with the emergent electric field such that

HCSI ∝ Jα
∑

<ij> ÊiÊj , where Êi denotes the emergent electric field of the rare-earth ion at site i in the pyrochlore

lattice [44, 51, 52, 56, 102]. Similarly, in this description, the effective Hamiltonian describing the ring exchange can

be written as [37, 44, 51, 52, 93, 102]:

Hring = 2geff
∑

7
cos(∇7 ×A) , (1.26)

where ∇7 ×A represents the emergent gauge flux through a hexagonal loop in the pyrochlore lattice. For geff < 0

(geff > 0), Hring is minimized when ∇7×A has the expectation value of 0 (π) for each hexagon where ⟨Ŝα⟩ alternates

in sign around the hexagon, giving the distinction between 0- and π-flux quantum spin ices based on the value of the

emergent gauge flux through each flippable hexagonal loop and on the underlying sign of geff , which governs the value

of that flux.

Evaluation of Hring to the lowest non-vanishing order via degenerate perturbation theory results in the approxi-

mation: geff = −12J3
±̃/J

2
α, where J±̃ = − 1

4 (Jβ + Jγ) [100]. In this limit, Jβ + Jγ < 0 results in a U(1)0 QSI, and

Jβ +Jγ > 0 gives a U(1)π QSI. This approximation can be improved using a variational extension to cluster mean-field
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theory [56], which leads to the 0- and π-flux phase boundaries shown in Fig. 1.8. This boundary is indeed near the

Jβ + Jγ = 0 boundary that exists in the aforementioned perturbative limit, although this is easier to see from the

reduced ground state phase diagram that we introduce in the following section. The reader is encouraged to find

further details on this phase boundary, and calculations used to investigate it, in Refs. [51, 56, 57, 96–98, 100]. In

fact, this distinction between 0- and π-flux phases exists for effective spin-1/2 (see Ref. [35]) and non-Kramers (see

Ref. [44]) quantum spin ices as well, where degenerate perturbation theory gives analogous results to those for the

dipole-octupole pyrochlores and again, a clear distinction between 0- and π-flux phases exists based on the sign of the

effective ring-exchange constant.

1.5.4 The Reduced Ground State Phase Diagram for Dipole-Octupole Pyrochlores

Since some physical quantities have no directional dependence, such as the heat capacity in zero magnetic field for

example, it can be convenient to introduce a reduced form the XYZ Hamiltonian and a corresponding reduced ground

state phase diagram to be used for fitting directional-independent quantities and interpreting the results. Put simply,

directional-independent quantities depend only on the values of the exchange parameters and not on which parameters

describe which directions. Therefore, the size of the phase space can be reduced by defining axes {a, b, c} to be the

permutation of {x̃, ỹ, z̃} such that |Ja| ≥ |Jb|, |Jc| and Jb ≥ Jc. For the resulting Hamiltonian, the ABC Hamiltonian,

HABC =
∑

<ij>

[JaŜ
a
i Ŝ

a
j + JbŜ

b
i Ŝ

b
j + JcŜ

c
i Ŝ

c
j ] , (1.27)

it is assumed that the permutation relating {a, b, c} and {x̃, ỹ, z̃} is unknown as would be the case without prior

knowledge of the exchange parameters. Accordingly, the values of Ja, Jb, and Jc provide no information on the

dipolar or octupolar symmetry of the corresponding ground state. The result of the transformation is a ground

state phase diagram for the ABC Hamiltonian that is more vague than that of the XYZ Hamiltonian, but over a

smaller phase space in comparison to the XYZ Hamiltonian, as shown in Fig. 1.10. The typical approach in using

the ABC Hamiltonian is to fit directional-independent data to determine values of Ja, Jb, and Jc before fitting

directional-dependent data using the XYZ Hamiltonian with Jx̃, Jỹ, and Jz̃ equal to different permutations of the

best-fit Ja, Jb, and Jc [2, 3, 60].

The fitting of Ja, Jb, and Jc is often done using the magnetic heat capacity [2, 3, 60], as it has significant sensitive

to all pseudospin components such that in general it is not strongly-dominated by the signal from the single component

of pseudospin carrying a magnetic dipole moment, Ŝz, as is the case for many experimental techniques and probes [52,

103]. In further detail, the type of multipolar magnetic moment carried by each pseudospin component dictates

how that component couples to a magnetic field and to experimental probes [52, 103]. This is particularly relevant

for probes with an underlying reliance on the coupling to the magnetic field or on the dipole-dipole interaction,

such as magnetic susceptibility measurements and magnetic neutron scattering respectively, and those with an

underlying reliance on measurement of the magnetic field from the sample (due to the exceedingly short-ranged
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Figure 1.10: The magnetic ground state phase diagram for the ABC Hamiltonian [Eq. (1.27)], which is equivalent
to the XYZ Hamiltonian [Eq. (1.21)] in zero field except that {a, b, c} is the permutation of {x̃, ỹ, z̃} such that
|Ja| ≥ |Jb|, |Jc| and Jb ≥ Jc. We show this phase diagram as a function of the exchange parameters, Ja, J± =
- 14 (Jb + Jc), and J±± = 1

4 (Jb − Jc). The redefinition of axes for the ABC Hamiltonian still allows for quantities with
no directional-dependence to be described by the ABC Hamiltonian and the reduction of parameter space compared
to XYZ Hamiltonian typically makes the ABC Hamiltonian and its corresponding phase diagram more convenient
to use in such cases. We show the phase diagram for the general case when the permutation relating {a, b, c} and
{x̃, ỹ, z̃} is unknown. In this case, the ground-state phase diagram for the ABC Hamiltonian contains three regions:
a region with magnetic order and regions with U(1)0 and U(1)π QSIs. The dipolar or octupolar nature of each region
is undetermined; The dipolar or octupolar nature of the corresponding ground-state phase would be determined from
the permutation giving {x̃, ỹ, z̃} from {a, b, c}. The phase diagram in this figure uses calculations from Ref. [56] and
has been adapted from Ref. [2] with permission copyrighted by the American Physical Society.

nature of the magnetic field of an octupole moment compared to that of a magnetic dipole [104]), such as muon spin

relaxation and rotation measurements, or again magnetic susceptibility measurements, to provide some examples.

For such measurements, it is common for the signal from magnetic dipoles, associated with the z-components of

pseudospin, to completely dominate over the signal from magnetic octupole moments, associated with the x- and

z-components of pseudospin [2, 3, 103]. Another notable exception to this, along with heat capacity measurements, is

neutron scattering measurements focused on probing weak scattering from magnetic octupoles at high-||Q|| where the

octupolar scattering is near its highest and the dipolar scattering is near zero [30, 105]. We discuss neutron scattering

as an experimental technique for probing hard condensed matter systems in the upcoming section, although detailed

discussion of high-||Q|| magnetic scattering from octupoles is beyond the scope of this thesis.

1.6 Neutron Scattering

1.6.1 The Basics of Neutron Scattering

The quark-structure of a neutron, with one up quark and two down quarks, results in a lack of total electric charge

for a neutron and a total neutron mass of mn = 1.6749 × 10−27 kg for the bound pair of three quarks [106–109].

Additionally, the up quark and two down quarks combine to give a neutron spin of 1/2 and a magnetic dipole moment

28



Ph.D. Thesis - E.M. Smith McMaster University - Physics and Astronomy

of −1.913 µN [106–109]. The negative value of the neutron magnetic moment indicates that the moment is in the

opposite direction as the spin, and µN is the nuclear magneton given by µN = eℏ
2mP

= 5.0508× 10−27 JT−1. In fact,

the quark content of the neutron does also allow for a resulting spin of 3/2 but experiments have shown that the

neutron has spin of 1/2 [110].

To understand the topic of neutron scattering, it is important to first consider how a neutron interacts with an

atom: Neutrons primarily interact with the atomic nuclei through short-ranged nuclear forces and with unpaired

(magnetic) electrons through magnetic dipole-dipole interactions [106, 107, 109]. This is different than x-rays for

example, which interact with all electrons via electromagnetic interactions [106, 107, 109]. Some of the advantages

and disadvantages of neutron scattering are conveniently tabulated in Ref. [106]. To highlight some of these, we

begin by mentioning that neutron energies and wavelengths are generally around the same order of magnitude as

inter-atomic distances and excitation-energies in materials, respectively, which is important as this permits for the

measurement of these properties with appropriate resolutions, using neutrons. Additionally, the lack of charge, and

the fact that neutrons are not a form of electromagnetic radiation (like x-rays are for example), allows neutrons

to penetrate into the bulk of samples rather simply probing a small volume of sample near its surface (like x-rays

typically do). One disadvantage of neutron scattering is that large-scale neutron sources (fission reactors and spallation

neutron sources) operate with a much lower flux than synchrotron x-ray sources, for example, such that neutron

scattering investigations generally require larger sample-sizes and longer counting times compared to x-ray scattering

investigations. Nonetheless, neutron scattering from magnetic electrons is a powerful and valuable probe of magnetism

in materials; A point which we hope to make evident to the reader through our work on Ce2Zr2O7 in the following

chapters.

For each neutron scattering event, the initial and final momenta of the neutron are denoted by ℏk0 and ℏkf ,

respectively, where ℏk0 and ℏkf are called the neutron wave vector and Q is called the scattering vector. The incident

and final neutron energy, E0 and Ef , are then given in terms of the corresponding wavevectors by [106, 107, 109]:

E0 =
ℏ2k20
2mn

, Ef =
ℏ2k2f
2mn

. (1.28)

It is convenient to define the scattering vector Q and the neutron energy transfer E as [106, 107, 109]:

Q = k0 − kf , (1.29)

and,

E = E0 − Ef , (1.30)

where ℏQ and E are the momentum and energy transferred to the sample from the neutron. For elastic neutron

scattering events, the energy transfer E is zero while for inelastic scattering, E ̸= 0. Diffraction is another popular

form of neutron measurement and involves both elastic and inelastic scattering but with no measurement of the

energy of the scattered neutrons; It is typically a good approximation to ignore the inelastic scattering for diffraction
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measurements due to the fact that the large majority of scattering is elastic (there is typically ∼100 times more

elastic scattering then inelastic scattering).

Neutron scattering is an experimental technique focused on measuring the neutron scattering cross section

and derivatives of the neutron scattering cross sections in various forms including the differential cross section and

partial differential cross section (also known as the double differential cross section). The cross section is proportional

to the probability of occurrence for a certain collision process, and the total neutron collision cross section includes

both scattering and absorption processes. The scattering cross section and its derivatives depend on both the single-ion

physics through the incoherent scattering and the collective atomic-behavior through the coherent scattering, and

accordingly, measuring such cross sections and identifying the different contributors to the measured signal is a

powerful technique for investigating the properties of different materials. The differential cross section dσ
dΩ is defined as

the number of neutrons scattered per second into a specific infinitesimal solid angle dΩ, divided by both the neutron

flux Φ and the solid angle dΩ; The flux Φ is equal to the number of neutrons that pass through a unit area in one

second and has units of m−2s−1. The partial differential cross section d2σ
dΩdEf

is defined as the number of neutrons

scattered per second into a specific infinitesimal solid angle dΩ and between energy Ef and Ef + dEf , divided by

both the neutron flux Φ and the solid angle dΩ.

The three commonly-used derivatives of the cross section are related by dσ
dΩ =

∫∞
0

d2σ
dΩdEf

dEf =
∫ E0

−∞
d2σ

dΩdE dE

(where the final equality holds for constant incident energy) and σ =
∫
4π

dσ
dΩ dΩ. Neutron diffraction experiments

measure dσ
dΩ due to the fact that scattered neutrons of all energies are measured in diffraction measurements, as

opposed to inelastic neutron scattering experiments which measure d2σ
dΩdEf

for some energy or range of energies, or

elastic experiments, which have E0 = Ef and measure
(

d2σ
dΩdEf

)
E=0

.

It is convenient to further define the differential cross section for a particular transition of the combined neutron and

sample system, ( dσdΩ )k0,S0,Ψ0→kf ,Sf ,Ψf
, using the normal definition of the differential cross section, dσ

dΩ , but including

only scattering events in which the combined system of the neutron and sample transitions from the state |k0,S0,Ψ0⟩

to the state |kf ,Sf ,Ψf⟩, where Ψ corresponds to the state of the sample, S and ℏk correspond to the polarization

(spin) and momentum states of the neutron, respectively, and the subscripts 0 and f are used to denote the states

before and after the scattering event, respectively. In other words, ( dσdΩ )k0,S0,Ψ0→kf ,Sf ,Ψf
is defined as the number of

neutrons scattered per second into a specific infinitesimal solid angle dΩ for scattering events in which the combined

system of the neutron and sample begins in the state |k0,S0,Ψ0⟩ and ends in the state |kf ,Sf ,Ψf⟩, divided by both

the neutron flux Φ and the solid angle dΩ. According to this definition of ( dσdΩ )k0,S0,Ψ0→kf ,Sf ,Ψf
, we then have [106,

107, 109], (
dσ

dΩ

)

k0,S0,Ψ0→kf ,Sf ,Ψf

=
1

ΦdΩ
Wk0,S0,Ψ0→kf ,Sf ,Ψf

, (1.31)

where the transition rate Wk0,S0,Ψ0→kf ,Sf ,Ψf
is the number of transitions per second from the state |k0,S0,Ψ0⟩ to the

state |kf ,Sf ,Ψf⟩ for the combined system of the neutron and sample. At this point it is common to apply “Fermi’s
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golden rule” for Wk0,S0,Ψ0→kf ,Sf ,Ψf
[106, 107, 109]:

Wk0,S0,Ψ0→kf ,Sf ,Ψf
=

2π

ℏ
∣∣〈k0,S0,Ψ0

∣∣V̂
∣∣kf ,Sf ,Ψf

〉∣∣2ρkf ,Sf
(Ef) , (1.32)

where ρkf ,Sf
(Ef) is the density of final states at energy Ef for a neutron in the momentum and polarization states

denoted by kf and Sf , respectively. In other words, ρkf ,Sf
(Ef) is the number of states between Ef and Ef + dEf for a

neutron in the kf and Sf momentum and polarization states, respectively, divided by the energy interval dEf . The

operator V̂ describes the interaction potential, and can be separated into two components: V̂N, describing the nuclear

interaction between the sample and the neutron, and V̂M, describing the magnetic interaction between the sample

and the neutron. The nuclear (magnetic) interaction potential and the nuclear (magnetic) scattering that arise from

it are discussed in Section 1.6.2 (1.6.3).

Fermi’s golden rule in Eq. (1.32) is an application of first-order perturbation theory which is accurate in the case

of neutron scattering due to both the short-ranged nature of the nuclear interaction and the fact that the magnetic

interaction is weak (see Refs. [106, 107, 109] for further details). Also due to the relatively weak and short-ranged

interaction between neutron and sample, an accurate description is obtained using the Born approximation which

treats both the scattered and incident neutrons as plane waves [106, 107, 109]:

∣∣k0,S0

〉
=

1√
V0
eik0·r∣∣S0

〉
, (1.33)

and,
∣∣kf ,Sf

〉
=

1√
V0
eikf ·r∣∣Sf

〉
, (1.34)

for a neutron plane-wave in a box of volume V0 = L3, where e is Euler’s number. Using this box normalization

method, which is arbitrary but convenient (see Refs. [13, 106–109] for further details), the allowed neutron states

are those where periodicity in each direction is a fraction of the box edge-length L; In the case of the scattered

neutrons, this gives, kf = 2πℏ
L (nx, ny, nz) for integers nx, ny, and nz. The number of states between Ef and

Ef + dEf for a neutron with momentum and spin states kf and Sf , respectively, ρkf ,Sf
(Ef) dEf , is then given

by ρkf ,Sf
(Ef) dEf = V0

8π3 dkf = V0

8π3 kf
2 dkf dΩ. Equation (1.28) gives dEf = ℏ2kf

mn
dkf , and by definition we have

Φ = v0⟨kf ,Sf |kf ,Sf⟩ = ℏk0

mn

1
V0
. Putting this all together with Eqs. (1.31) and (1.32) then gives [106, 107, 109]:

(
dσ

dΩ

)

k0,S0,Ψ0→kf ,Sf ,Ψf

= V0
2 kf
k0

(
mn

2πℏ2

)2∣∣〈k0,S0,Ψ0

∣∣V̂
∣∣kf ,Sf ,Ψf

〉∣∣2 , (1.35)

and it is then standard to define:

<k0,S0,Ψ0

∣∣V̂
∣∣kf ,Sf ,Ψf> = V0

〈
k0,S0,Ψ0

∣∣V̂
∣∣kf ,Sf ,Ψf

〉
, (1.36)

where the units of <k0,S0,Ψ0

∣∣V̂
∣∣kf ,Sf ,Ψf> are J·m3 (rather than Joules), and the arbitrary volume V0 cancels
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out in the eventual evaluation of <k0,S0,Ψ0

∣∣V̂
∣∣kf ,Sf ,Ψf> = V0

〈
k0,S0,Ψ0

∣∣V̂
∣∣kf ,Sf ,Ψf

〉
due to the 1/

√
V0 terms

in Eqs. (1.33) and (1.34). This then gives,

(
dσ

dΩ

)

k0,S0,Ψ0→kf ,Sf ,Ψf

=
kf
k0

(
mn

2πℏ2

)2∣∣<k0,S0,Ψ0

∣∣V̂
∣∣kf ,Sf ,Ψf>

∣∣2 . (1.37)

The double differential cross section can then be obtained by summing over all possible final states, and averaging

over all initial states, for both the neutron polarization, S, and the state of the sample Ψ, giving [106, 107, 109]:

(
d2σ

dΩdEf

)

k0→kf

=
kf
k0

(
mn

2πℏ2

)2 ∑

S0,Ψ0

PS0
PΨ0

∑

Sf ,Ψf

[∣∣<k0,S0,Ψ0

∣∣V̂
∣∣kf ,Sf ,Ψf>

∣∣2δ
(
E0−Ef−(EΨf

−EΨ0
)
)]
, (1.38)

where PS0
is the probability of the neutron being in the initial polarization state S0, and PΨ0

is the probability of

the sample being in the initial state Ψ0. Equation (1.38) is called the master formula. The δ-function in Eq. (1.38)

ensures energy conservation; The energy, ℏω = EΨf
− EΨ0 , is equal to zero for the case of elastic measurements,

which probe ground state properties in the sample, and otherwise ℏω is equal to the energy of the excitation being

measured from the sample in a particular inelastic scattering event. With that being said, it is worth mentioning

that the δ-function is essentially a placeholder used in theoretical calculations, and in reality it should be replaced by

a more realistic form appropriate to the peak-broadening (and the corresponding peak-shape) associated with the

experimental apparatus, which must be limited to some nonzero energy resolution.

As we show in Section 1.6.2 and Section 1.6.3, different material properties generally contribute to the value

of d2σ
dΩdEf

with different Q and E dependencies, such that it is possible to identify the different contributions in a

neutron scattering measurement. The signals from the different contributions can then be examined in order to gain

information on the behavior of atoms inside of the material. It is typical to define the dynamic structure factor,

S(Q, ω) [also commonly referred to as S(Q, E) where E = ℏω], and the equal-time structure factor, S(Q), using the

definitions [106, 107, 109]:

d2σ

dΩdEf
= N

kf
k0
S(Q, ω) , (1.39)

and

dσ

dΩ
= N

kf
k0
S(Q) , (1.40)

respectively.

1.6.2 Nuclear Scattering

The nuclear potential can be accurately-approximated using a δ-function due to the fact that its range is much

smaller (∼3 orders of magnitude) than the typical incident neutron wavelength λ0 = 2π
k0

[106, 107, 109]. Under such

an approximation, for a single atom denoted as atom i, we then have the nuclear potential [106, 107, 109]:

V̂N =

(
2πℏ2

mn

)
bi δ(r−Ri) , (1.41)
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which is commonly known as the Fermi pseudopotential, where r is the position of the neutron and Ri is the position

of atom i. The constant bi is the nuclear scattering length for atom i, and bi
2 is a measure of the relative scattering

power of the individual atom and is dependent on its isotopic state, the nuclear spin, and the neutron spin.

In general, bi is a complex number, bi = b′i − ib′′i with its imaginary part describing the neutron absorption. The

real part of the nuclear scattering length b′i is positive for ions that repel the neutron and negative for ions which

provide an attractive potential, while the imaginary part of the nuclear cross section is always negative when nonzero

(b′i ≥ 0) [106]. Unlike the atomic form factor used for x-ray scattering (for example), bi does not vary systematically

across the periodic table [106, 107, 109].

As eluded to in Section 1.6.1, the total collision cross section σ can be separated into parts describing the

scattering and absorption, σ = σScattering + σAbsorption [106, 107]. Additionally, the total scattering cross section can

be separated into one part describing the coherent scattering and a second part describing the incoherent scattering,

σScattering = σCoherent+σIncoherent, where σCoherent contains all correlations between different ions at equal or different

times, and σIncoherent contains all correlations between each ion and itself at equal or different times [106, 107, 109].

Substitution of the single-ion nuclear potential [Eq. (1.41)] into the master formula for neutron scattering [Eq. (1.38)]

gives a cross section for unpolarized nuclear scattering, from a single ion, which is constant and is proportional

to the square of the scattering length, σScattering = 4π
k0
|bi|2, where the averages are taken over the isotopic states,

the nuclear spin states, and the neutron spin states [106, 107, 109]. Additionally, this gives a neutron absorption

cross section for a single ion that scales with 1/k0 and is proportional to the negative of the imaginary part of the

scattering length σAbsorption = 4π
k0
b′′i [106, 107, 109]. It is typical to use the single-ion neutron scattering cross section

to define cross sections for particular elements: σScattering = σCoherent+σIncoherent =
4π
k0
|bi|2, where σCoherent =

4π
k0
|bi|2

and σIncoherent =
4π
k0
(|bi|2 − |bi|2). Similarly, one can define σAbsorption = 4π

k0
b′′i where the average here need only be

taken over the different isotopes of the element [106, 107]. The scattering lengths do not depend on the incident or

final neutron-energy for the vast majority of isotopes but there does exist some rare cases, highlighted in Ref. [107]

for example, of scattering lengths that have a significant energy dependence due to the isotope having a neutron

absorption process with resonant energy that is obtainable or near-obtainable in neutron scattering experiments.

Scattering lengths and cross sections are typically on the order of femtometres (10−15 m) and barns (10−28 m2),

respectively [106, 107, 109]. In all following discussions, we consider only the scattering cross section, σScattering, and

contributions to its corresponding differential and double differential cross sections; In doing so, we omit the subscript

“Scattering” from the neutron scattering cross section.

For a macroscopic sample of some material of interest, the appropriate nuclear potential is given by summing the

single-ion nuclear potential in Eq. (1.41) over all ions in the sample [106, 107, 109]:

V̂N,i =

(
2πℏ2

mn

)∑

i

bi δ(r−Ri) , (1.42)

where i denotes the different ions in the sample. The potential operator in Eq. (1.42) can then be used in the master

formula for neutron scattering [Eq. (1.38)] to investigate the different contributions to the nuclear scattering.
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In neutron scattering experiments on crystalline materials, one is often interested in the contribution to the

scattering from elastic Bragg peaks arising from the long-ranged order of the crystal structure in the sample. For the

case of unpolarized neutron scattering from a crystalline sample with reciprocal lattice vectors τ , the differential cross

section for the nuclear contribution to the coherent elastic scattering is given by [106, 107, 109]:

(
dσ

dΩ

)

N, Coherent, Elastic

=
N(2π)3

v

∑

τ

|FN(τ )|2 δ(Q− τ ) , (1.43)

where v is the volume of the nuclear unit cell, N is the number of unit cells in the sample, and the nuclear unit cell

structure factor, FN(τ ), is given by [106, 107, 109],

FN(τ ) =
∑

d

bd e−Wd(τ )ei(τ ·Rd) , (1.44)

where the sum is over all atoms within the nuclear unit cell, denoted as d. The vector Rd corresponds to the position

of atom d within the nuclear unit cell, bd is the nuclear scattering length for atom d, averaged over the nuclear spin

and isotope distributions of the type d atoms. Values of bd are tabulated for different atoms in Refs. [106, 107, 111]

for example. The term Wd(τ ) is known as the Debye-Waller factor for atom d and is a temperature-dependent term

that describes the reduction in scattered intensity due to atomic vibrations, which become more prevalent at higher

temperatures; The Debye-Waller factors Wd(τ ) increase with temperature leading to a reduction in scattered intensity

at higher temperatures. The Debye-Waller factors, Wd(τ ), are tabulated at different temperatures for different atoms

in common materials in works like Refs. [112–114] for example, and can be calculated in more complex cases following

the methods outlined in Ref. [115] for example. However, at low temperature, it is often sufficient to employ the

approximation Wd(τ ) ≈ 0.

Equation (1.43) describes the occurrence of nuclear Bragg peaks in the elastic scattering due to the long-ranged

order of a crystal structure. Specifically, these peaks occur at reciprocal lattice positions, τ , with intensities that are

proportional to |FN(τ )|2. Similar to the δ-function in energy in Section 1.6.1, the δ-function here is essentially a

placeholder used in theoretical calculations and in reality it should be replaced by a more realistic form appropriate

to the peak shape of the experimental apparatus. A collection of nuclear Bragg peak locations and their relative

scattering intensities can be used to determine the crystal structure responsible for the nuclear Bragg peaks, similar

to the x-ray scattering refinement performed in Publication I of this thesis except there b̄d would be replaced by the

atomic form factor relevant to x-ray scattering [13].

We end this subsection with a brief discussion of neutron scattering from phonon excitations. While the scattering

from phonons is not the contribution to the measured-signal of main focus for most magnetic investigations, it is

important to be able to distinguish phonon excitations from other contributions to the signal which are of higher focus.

For unpolarized neutrons, the contribution to the inelastic scattering from scattering events that create single-phonon
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excitations can be described by the double-differential cross section [106, 107, 109]:

(
d2σ

dΩdEf

)

+1Phonon

=
kf
k0

(2π)3

v

1

2

∑

τ

∑

j,q

ℏ|Fj(Q, q)|2
ωj(q)

⟨nj(q) + 1⟩ δ
(
E0 − Ef − ℏωj(q)

)
δ(Q− τ − q) , (1.45)

where ωj(q) is phonon frequency for the j’th phonon branch at reduced wavevector q, and the sum is over all reciprocal

lattice vectors for the nuclear cell (denoted as τ ), all phonon branches (denoted as j), and all reduced wavevectors

within the first Brillouin zone, quantized according to the Born-von Karman boundary conditions (denoted as q) [13,

106, 107, 109]. The term ⟨nj(q)⟩ is the Bose factor giving the average number of phonons with wavevector q in

branch j, with,

⟨nj(q) + 1⟩ = ⟨nj(q)⟩+ 1 =
e

ℏωj(q)

kBT

e
ℏωj(q)

kBT − 1

. (1.46)

The term Fj(Q, q) is called the one-phonon structure factor and is given by:

Fj(Q, q) =
∑

d

bd√
Md

e−Wd(Q) ei(Q ·Rd)[Q · ϵd,j(q)] , (1.47)

where the sum is over all atoms within the nuclear unit cell, Md is mass of atom d, and ϵd,j(q) is the polarization

vector of atom d for the j’th phonon branch at reduced wavevector q [13, 106, 107, 109]. As shown in Eq. (1.45),

single-phonon excitations follow dispersion relations Ej = ℏωj(q), where each branch has intensity that scales with

|Fj(Q, q)|2 along with other various factors. Importantly, this dependence on |Fj(Q, q)|2 dictates that single-phonon

excitations have intensity that increases with Q approximately as Q2, due to the Q · ϵd,j(q) term in Eq. (1.47), and it

is this Q-dependence that makes phonon excitations easily distinguishable from CEF transitions as we discuss further

in the following section and in Publication I of thesis.

1.6.3 Magnetic Scattering

The most dominant magnetic interaction between a neutron and a magnetic ion is the dipole-dipole interaction

between the neutron and the electrons in the magnetic shell of the ion. This dipole-dipole interaction can be described

by the potential [106, 107, 109]:

V̂M =
∑

i

V̂M,i =
−2γµNµBµ0

4π

∑

i

Ŝ ·
[
∇×

(
ŝi × r

r3

)
+

1

ℏ

(
p̂i × r

r3

)]
, (1.48)

where γ = 1.913 is the reduced gyromagnetic ratio for a neutron, µN = 5.0508× 10−27 JT−1 is the nuclear magneton,

µB = 9.274 × 10−24 JT−1 is the Bohr magneton, and µ0 = 1.2566 × 10−6 kgm s−2 A−2 is the permeability of free

space. The vectors r and Ŝ are the position and spin operators of the neutron, respectively, and the vectors ŝi and p̂i

correspond to the spin and momentum operators of electron i, respectively. The sum in Eq. (1.48) is carried out over

all magnetic electrons in the sample, denoted as i. Nonmagnetic electrons do not contribute as the sum is zero over a

full (nonmagnetic) electronic shell. The potential operator in Eq. (1.48) can then be used in the master formula for
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neutron scattering [Eq. (1.38)] to investigate the different contributions to the magnetic scattering.

In neutron scattering experiments on magnetic materials, one is often interested in the contribution to the

scattering from elastic, magnetic Bragg peaks arising from long-ranged magnetic order in the sample. For the case of

unpolarized neutron scattering from a magnetically ordered sample with magnetic reciprocal lattice vectors denoted

as τM, the differential cross section for the magnetic contribution to the coherent elastic scattering is given by [106,

107, 109]: (
dσ

dΩ

)

M, Coherent, Elastic

=

(
γr0
2µB

)2
NM(2π)3

vM

∑

τM

|FM,⊥(τM)|2 δ(Q− τM) , (1.49)

where vM is the volume of the magnetic unit cell, NM is the number of magnetic unit cells in the sample, and

r0 = µ0e
2

4πme
= 2.818× 10−15 m is the classical electron radius. The term FM,⊥(τM) is the component of the magnetic

unit cell structure factor that is perpendicular to Q, evaluated at τM,

FM,⊥(τM) =
Q× FM(τM)×Q

|Q|2 . (1.50)

The magnetic unit cell structure factor, FM(τ ), is given by the equation [106, 107, 109],

FM(τ ) =
∑

d

fd(Q)µ̄d e−Wd(τ )ei(τ ·Rd) , (1.51)

where the sum here is over all magnetic atoms with the magnetic unit cell, denoted as d, and the vector µ̄d is the

ordered component of the magnetic moment for site d, which is given by the expectation value of the magnetic

moment for a specific atom at site d in a specific unit cell, ⟨µ̂d⟩, averaged over all unit cells. The term Wd(τ ) is the

Debye-Waller factor defined in Section 1.6.2. The magnetic form factor fd(Q) describes the effect on the scattering

due to the spatial dependence of the magnetic electrons around atom d, and is given by [106, 107, 109],

fd(Q) =

∫
ρd(r)e

i(Q · r)dr , (1.52)

where the integral is over all real-space and ρd is the normalized density of unpaired electrons for atom d. A useful

approximation for the magnetic form factor approximates the scattering as arising only from the dipolar component of

the magnetic moment, ignore higher order multipoles such as octupoles which couple much weaker to the neutrons [106,

107, 109]. Under the dipole-approximation, the magnetic form factor may be given by [106, 107, 109],

f(Q) = f(Q) = j̄0(Q)− 2− gJ
gJ

j̄2(Q) , (1.53)

where the d subscript has been dropped for clarity, gJ is given by Equation (1.1), and j̄n(Q) is the weighted-average

of the nth spherical Bessel function, jn(Q), over the ionic wave function, ψ, given by j̄n(Q) =
∫
jn(Qr)|ψ|2dr; This

can be well-approximated by the analytical expressions that are given for different ions in Ref. [116].

Equation (1.49) describes the occurrence of magnetic Bragg peaks in the elastic scattering due to the long-ranged
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order of a magnetic structure. Specifically, these peaks occur at magnetic reciprocal lattice positions, τM, with

intensities that are proportional to |FM,⊥(τM)|2. Similar to the δ-function in energy in Section 1.6.1, the δ-function

here is essentially a placeholder used in theoretical calculations and in reality it should be replaced by a more realistic

form appropriate to the peak shape of the experimental apparatus. A collection of magnetic Bragg peak locations

and their relative scattering intensities can be used to determine the magnetic structure responsible for the magnetic

Bragg peaks, as we do in Publication III of this thesis for Ce2Zr2O7 in a magnetic field. Furthermore, the dependence

of FM on the ordered-moment size can be used to determine the ordered-moment size for specific magnetic structures

by comparing measured nuclear and magnetic Bragg peak ratios to calculated nuclear and magnetic Bragg peak

ratios. We do this in Publication II of this thesis to place an upper limit on the size of the ordered magnetic moment

of Ce2Zr2O7 in zero magnetic field, for all-in, all-out magnetic order (see Section 1.4).

Along with collective magnetic behavior, such as the aforementioned magnetic order, the single-ion magnetic

properties are also often focused on in neutron scattering experiments. As shown in Section 1.2, the single-ion

magnetic properties at low temperature are governed by the CEF ground state, which can be inferred from refinement

of the CEF Hamiltonian [Eq. (1.4)] to the CEF transition energies and intensities measured in an inelastic neutron

scattering experiment, as we now describe further.

The powder-averaged double differential cross section for a general CEF transition, describing the intensity of the

specific transition from the CEF state denoted as |i⟩ to the CEF state denoted as |j⟩, as would be measured from a

powder sample using unpolarized neutrons, is given by [17, 72]:

(
d2σ

dΩdEf

)

CEF, (i→ j)

= C
kf
k0

[f(Q)]2
∑

α |⟨i|Ĵα|j⟩|2 e
−Ei
kBT

Z
δ(E0 − Ef − ℏω) , (1.54)

where C is a constant, α = x, y, z, and ℏω = Ei −Ej . Here we give the double differential cross section with powder

averaging as neutron scattering experiments which are focused on CEF transitions are most often performed on powder

samples, as is the case for CEF-focused experiment in Publication I of this thesis. As mentioned more generally in

Section 1.6.1, the δ-function here is essentially a placeholder used in theoretical calculations and in reality it should

be replaced by a more realistic form appropriate to the peak shape of the experimental apparatus. Here, f(Q) is the

powder average of magnetic form factor for the relevant magnetic ion, and the partition function Z is defined as,

Z =
∑

k

e
−Ek
kBT , (1.55)

where the sum is over all CEF states, denoted here as k. As shown in Equation (1.54), a CEF transition from state

|i⟩ to |j⟩ has nonzero intensity when any of the total angular momentum components has a nonzero matrix element

between states |i⟩ and |j⟩. Furthermore, Equation (1.54) shows that CEF transitions are dispersionless an appear at

isolated energies (apart from peak-broadening of the δ-function induced by experimental considerations), in accordance

with CEF transitions being a single-ion property rather than collective behavior. Importantly, the intensity of the

CEF transitions intensity falls off with increasing Q as [f(Q)]2, which makes these transitions easily-differentiable
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from single-phonon excitations [Eq. (1.45)] due to the fact that single-phonons excitations have intensity that increases

with Q approximately as Q2.

It is worth mentioning that the intensities from different degenerate states should be summed together in

determining the total intensity of the corresponding transition involving the degenerate state. For example, if states

|0A⟩ and |0B⟩ are degenerate, and so are |1A⟩ and |1B⟩, then to calculate the total intensity for the transition from

the |0A⟩ and |0B⟩ doublet to the |1A⟩ and |1B⟩ doublet, one should sum the intensities for the transitions from |0A⟩ to

|1A⟩, |0A⟩ to |1B⟩, |0B⟩ to |1A⟩, and |0B⟩ to |1B⟩, with each of these individual intensities calculated using Eq. (1.54).

The constant C in Eq. (1.54) cancels out when calculating ratios of transition intensities, which is important because

measured intensity ratios and transition energies are often compared with calculated intensity ratios and transition

energies to refine the parameters in the CEF Hamiltonian as we do in Publication I of this thesis.

Finally, we end this subsection with a discussion of diffuse neutron scattering, which can be loosely defined as

coherent scattering arising from short-ranged correlations. For unpolarized neutrons, the diffuse scattering arising

from disordered short-ranged correlations, for a system with one type of magnetic ion, can be described by the

differential cross section [97, 106]:

(
dσ

dΩ

)

M, Diffuse

=

(
γr0
2µB

)2

[f(Q)]2e−2W (Q)
∑

ij

e−iQ · (Ri−Rj)

(
n̂i · n̂j −

(n̂i ·Q)(n̂j ·Q)

|Q|2
)
⟨ ||µ̂i|| ||µ̂j || ⟩ , (1.56)

whereW (Q) and f(Q) are the Debye-Waller factor and magnetic form factor for the ion, defined in Sections 1.6.2 and 1.6.3

respectively. Here it is assumed that there exists a magnetic anisotropy which allows the magnetic moment of each

atom i to be confined to some direction denoted by the normalized vector n̂i; For example, n̂i is either the positive

or negative local z-axis, ±ẑi, for a pyrochlore with Ising single-ion anisotropy. It is important to reiterate that this

is valid for diffuse scattering from disordered short-range correlations and further considerations must be taken to

accurately account for the diffuse scattering from short-ranged ordered dipole moments [106]. Nonetheless, such

disorder is the case for a quantum spin ice and accordingly, we use Eq. (1.56) to calculate unpolarized diffuse neutron

scattering signals in Publication II of this thesis.

1.6.4 Neutron Sources and Neutron Scattering Instrumentation

This subsection is intended to provide a brief introduction to some experimental aspects of neutron scattering,

including neutron sources and two types of neutron scattering instrument which are particularity relevant to this

thesis: The triple-axis spectrometer and the time-of-flight chopper spectrometer.

In this thesis, we use both reactor neutron sources and spallation neutron sources for our experiments on Ce2Zr2O7.

Nuclear reactors produce neutrons through fission chain reactions, most-often involving uranium-235 as the starting

point in the reaction, which is a fissionable isotope of uranium that is unstable to the capture of a neutron [106, 107,

117]. When a uranium-235 atom captures a neutron, it spends a very short amount of time as a uranium-236 isotope

before decaying into fission products. For example, one of the main fission processes is one in which the short-lived
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uranium-236 atom decays to form one barium-141 atom, one krypton-92 atom, and three neutrons [117]. When this

occurs, the neutrons produced in one fission process are then able to be captured by other fissile uranium-235 atoms,

forming a fission chain reaction. The high-energy neutrons leaving the fission processes are slowed down by thermal

moderation [106, 107]. For example, thermal neutrons are neutrons with energies in the range from 5 to 100 meV, and

sources of thermal neutrons most often use water as the moderating medium, with the water continuously cycled to

maintain a temperature near room temperature [107, 109]. The outcome is that the neutrons leaving the moderator

have energies within a certain range, such as 5 to 100 meV for neutrons moderated using a room temperature medium

(thermal neutrons). The fission chain reaction occurs on a large scale in the uranium-235 fuel rods that are housed

in a reactor’s core, and the large number of neutrons produced through these reactions can be focused and guided

towards neutron scattering instruments, as is done at reactor-source neutron scattering facilities.

Spallation neutron sources produce neutrons through proton-bombardment of a neutron-rich target material [107,

109]. Protons are accelerated to high energies and led towards a target which is typically a heavy metal. The protons

excite the nuclei in the target material and neutrons are released in the deexcitation of the nuclei. Unlike reactors,

spallation neutron sources typically produce pulses of neutrons rather than continuous neutron beams [107, 109].

This is done intentionally using a pulsed time-structure for the proton beam generating the neutrons, and this is

done because pulsed time-structures with short pulse widths in time can be used for determining the energy of the

scattered neutrons in time-of-flight neutron scattering experiments. It is worth mentioning that the pulses generated

by spallation neutron sources have a relatively large peak flux compared to the flux of reactor sources, resulting in a

higher total flux for typical spallation sources compared to typical reactors [107, 109].

In Publications I and III of this thesis, we report neutron scattering data collected using a triple-axis spectrometer.

The defining feature of the triple-axis spectrometer is that, along with sample and detector rotation, this instrument

allows the user to rotate one crystal called the monochromator, which selects the incident energy of the neutrons, and

a second crystal called the analyzer, which selects the energy of the neutrons that are measured by the detector [107,

109]. Both the monochromotor and analyzer select the neutron energy by using Bragg scattering from a set of atomic

planes with known interplanar spacing in a high-quality crystal; Different wavelengths will scatter at different angles

according to Bragg’s law [13, 106, 107, 109], and so the wavelength can be chosen by the isolating the neutrons that

have a certain scattering angle, for both the monochromator and analyzer. A schematic diagram of a triple axis

spectrometer is shown in Fig. 1.11. We omit the collimation and neutron guides in this simplified diagram but note

that neutron guide systems and linear collimators are used to transport the neutrons over longer distances and to

control the divergence of the beam, respectively [106, 107].

In Publications I, II, and III of this thesis, we report neutron scattering data collected using a time-of-flight

spectrometer. For time-of-flight neutron scattering instruments, rotating disk choppers are used to select the incident

energy of the neutrons and prevent any “frame-overlap” of separate neutron pulses being detected within the same

pulse channel of the detector [107, 109]. Rotating disk choppers can also be used to introduce a pulsed time-structure

to a steady-state neutron source [118]. These neutrons are moderated, focused, and guided towards the sample, and
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scattering from the sample is measured by a position- and time-sensitive detector which typically covers a large range

of scattering angles. The positional information in combination with the pulsed time-structure of the neutrons is used

to determine the scattered energy of each neutron according to simple kinematics [107, 109]. A schematic diagram of

a time-of-flight chopper spectrometer is shown in Fig. 1.12.

1.7 Overview of Thesis

In this thesis we use neutron scattering and complementary experimental techniques to build an understanding of the

magnetic properties and magnetic behavior of the rare-earth pyrochlore Ce2Zr2O7 at low temperature in both zero

and nonzero external magnetic field:

• Chapter 2 contains two publications focused on the basic magnetic properties of Ce2Zr2O7 and its magnetic

behavior in zero magnetic field. The first of which establishes Ce2Zr2O7 as a dipole-octupole pyrochlore and

quantum spin ice candidate. The second of which provides further evidence for quantum spin ice behavior in

Ce2Zr2O7 at low temperature as well as estimates of the exchange parameters for Ce2Zr2O7, which also point

towards a quantum spin ice ground state.

• Chapter 3 contains one publication focused on the magnetic behavior of Ce2Zr2O7 in magnetic fields along the

[1, 1̄, 0] and [0, 0, 1] crystallographic directions. This paper also focuses on further-refining previous estimates of

Figure 1.11: A simplified diagram of a neutron triple-axis spectrometer. This is drawn from viewpoint that is
looking downward on the scattering plane containing k0 and kf , and is shown for thermal neutrons moderated
via water. Neutrons exit the moderating medium with neutrons wavelengths in some specific range determined by
the temperature of the moderator (λ ≈ 1 to 4 Å for thermal neutrons for example). Bragg scattering from the
monochromotor crystal then directs neutrons of wavevector k0 (and wavelength λ0 = 2π/k0) towards the sample.
The analyzer crystal and detector rotate together around the sample in the scattering plane, in order to measure
the scattering from the sample for different directions of kf . The analyzer and detector also rotate separately in the
scattering plane about an axis through the analyzer’s center. This latter rotation corresponds to changing the value
of θa in the diagram by some amount and rotating the detector about the analyzer by twice that amount to ensure
that the Bragg scattering from the analyzer is still being measured. This technique, of adjusting θa and moving
the detector accordingly, allows the user to change the wavelength of neutrons being measured, λf = 2π/kf . The
wavevectors k0 and kf give the energy transfer E and scattering vector Q for each orientation via Eqs. (1.29)-(1.31),
and neutrons are counted over time by the detector for each desired Q and E combination.
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Figure 1.12: A simplified diagram of a neutron time-of-flight chopper spectrometer. Neutrons are led by a neutron
guide system through a series of rotating disk choppers, which only allow full-passage for neutrons of the desired
incident energy, E0 = ℏ2k20/(2mn), within resolution. The monochromatic neutron beam is directed towards the
sample in the direction of k0 and neutrons then scatter from the sample in all directions (only shown for some of the
scattering towards the detector). Scattering from any sample-environment equipment that is far from the center of
sample-rotation is largely captured by a radial collimator designed for removing this scattering before the detector.
Neutrons scattered from the sample pass through the radial collimator before striking a position- and time-sensitive
detector composed of an array of He3 tubes. The position on the detector gives the direction of kf and together
with this direction, the time measured by detector gives the magnitude kf . Using the measured kf with the known
k0 then gives the energy transfer E and scattering vector Q for each scattered neutron via Eqs. (1.29)-(1.31). The
neutrons are counted over time by the detector for each measured Q and E, and often the sample is rotated to access
additional Q directions with respect to the reciprocal space lattice.

the nearest-neighbor exchange parameters for Ce2Zr2O7.

• Chapter 4 contains concluding remarks on the current understanding of Ce2Zr2O7 and future directions of

research which may help better the understanding of Ce2Zr2O7 and related dipole-octupole pyrochlores.
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Chapter 2
Ce2Zr2O7 in Zero Magnetic Field

Despite the large popularity of the rare-earth pyrochlores in the condensed matter community, and especially of those

with chemical formula R2B2O7 where R3+ is a magnetic rare-earth ion and B4+ is a nonmagnetic transition metal

ion, the Ce3+-based pyrochlores, Ce2B2O7, remained largely unstudied until the late 2010s. This is likely due to the

added-difficulty in synthesis and growth of Ce2B2O7 samples due to the instability of the Ce3+ oxidation state in

favor of the Ce4+ state, which we further discuss in Publication I of this thesis.

The availability of powder and single crystal samples of the Ce2B2O7 pyrochlores, beginning with powder samples

of Ce2Sn2O7 in 2015 [119], has presented a new avenue for investigating rare magnetic phases and exotic excitations,

which appear to be relatively plentiful in the rare-earth pyrochlores [5–10, 12]. In fact, our initial focus on Ce2Zr2O7

was motivated in large-part by the previous work in Ref. [119] on Ce2Sn2O7, where muon spin relaxation and magnetic

susceptibility measurements show a lack of magnetic order and a lack of spin freezing in Ce2Sn2O7 down to the lowest

measured temperatures of T = 0.02 K and T = 0.07 K respectively, which is also corroborated by heat capacity

measurements down to T = 0.3 K. This lack of both magnetic order and spin freezing is suggestive of a spin liquid

phase at low temperature in Ce2Sn2O7 and the implied-likelihood of similar spin liquid behavior in Ce2Zr2O7 helped

draw our attention to Ce2Zr2O7 as an interesting new material to study. Fortunately, the synthesis and crystal-growth

efforts of our collaborators (listed in the following section) have allowed for such a study of Ce2Zr2O7 to include both

powder and single crystal samples.

This chapter contains Publications I and II of this thesis as well as prefaces to these publications on Ce2Zr2O7,

which provide an initial summary of each publication, and place each publication in the context of other relevant

work and theoretical expectations. We also outline the contributions of the co-authors involved in each of these

collaborative works. Specifically, the following publications are contained in this chapter:
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Publication I:

“Quantum Spin Ice Dynamics in the Dipole-Octupole Pyrochlore Magnet Ce2Zr2O7”,

J. Gaudet, E. M. Smith, J. Dudemaine, J. Beare, C. R. C. Buhariwalla, N. P. Butch, M. B. Stone, A. I. Kolesnikov,

G. Xu, D. R. Yahne, K. A. Ross, C. A. Marjerrison, J. D. Garrett, G. M. Luke, A. D. Bianchi, and B. D. Gaulin,

Physical Review Letters 122, 187201 (2019).

Reproduced from Reference [1] with permission, copyrighted by the American Physical Society.

Publication II:

“Case for a U(1)π Quantum Spin Liquid Ground State in the Dipole-Octupole Pyrochlore Ce2Zr2O7”,

E. M. Smith, O. Benton, D. R. Yahne, B. Placke, R. Schäfer, J. Gaudet, J. Dudemaine, A Fitterman, J. Beare,

A. R. Wildes, S. Bhattacharya, T. DeLazzer, C. R. C. Buhariwalla, N. P. Butch, R. Movshovich, J. D. Garrett,

C. A. Marjerrison, J. P. Clancy, E. Kermarrec, G. M. Luke, A. D. Bianchi, K. A. Ross, and B. D. Gaulin,

Physical Review X 12, 021015 (2022).

Reproduced from Reference [2] with permission, copyrighted by the American Physical Society.

2.1 Preface to Publication I: Evidence for a Dipole-Octupole Crystal

Electric Field Ground State and Quantum Spin Ice Correlations in

the Cerium-Based Pyrochlore Magnet Ce2Zr2O7

In this work we report high-energy inelastic neutron scattering data measured on a powder sample of Ce2Zr2O7 and

we fit the data in order to determine the parameters in the CEF Hamiltonian [see Eq. (1.4)] which best reproduce the

measured CEF transition energies and intensities [see Eq. (1.54)] according to the Stevens operator approximation

including only the J = 5/2 states. The results show that the CEF ground state for Ce3+ in Ce2Zr2O7 can be

approximated by a |J = 5/2, mJ = ±3/2⟩ doublet, which is separated in energy from the first excited CEF state

by ∼55 meV. This is an important starting point for forming an accurate understanding and description of the

magnetism at low temperature in Ce2Zr2O7. For example, the |J = 5/2, mJ = ±3/2⟩ doublet corresponds to an

Ising single-ion anisotropy where the magnetic moments point along the local z directions. The anisotropic g-factors,

gxy = 0 and gz = 2.57, for this doublet yield a magnetic moment size of µCEF = 1.29 µB in the CEF ground state

[see Eq. (1.8)], which is relatively small compared to the value of value of µCEF ≈ 10 µB in the classical spin ices

Ho2Ti2O7 and Dy2Ti2O7 for example [16, 18, 48, 72]. Furthermore, since the CEF ground state is a doublet that is

well-separated in energy from the first excited CEF state, the low-temperature magnetic behavior can be accurately

described using pseudospin-1/2 degrees of freedom [Eqs. (1.5)-(1.7)]. As elucidated in Refs. [51, 52], the pseudospin-1/2

description is particularly interesting for the case of the |J = 5/2, mJ = ±3/2⟩ doublet due to the fact that this

doublet has dipole-octupole symmetry with a peculiar splitting of dipolar and octupolar properties between the

different pseudospin components (see Section 1.5). In fact, similar investigations on Ce2Sn2O7 in Ref. [30, 119] and on
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Ce2Hf2O7 in Ref. [61] also conclude a CEF ground state doublet which is dominated by the |J = 5/2, mJ = ±3/2⟩

states, however the refinements to the inelastic neutron scattering spectra in Ref. [30, 119] for Ce2Sn2O7 and in

Ref. [61] for Ce2Hf2O7 each include minor contributions to the CEF ground state doublet from states with J = 7/2,

which we discuss in further detail in Chapters 3 and 4.

Here we also report new magnetic susceptibility measurements on Ce2Zr2O7, which show a lack of both magnetic

order and spin freezing down to the lowest measured temperature of T = 0.5 K. This is corroborated by our time-of-

flight neutron scattering measurements which show a lack of magnetic order down to the lowest measured temperature

of T = 0.06 K, and a snowflake-like pattern of diffuse magnetic scattering at low energy which is typical for spin ice

correlations [71, 93]. For example, the classical spin ices Ho2Ti2O7 (Refs. [69, 88]) and Dy2Ti2O7 (Refs. [120, 121]),

as well as the quantum spin ice candidates Pr2Zr2O7 (Refs. [43, 122, 123]) and Pr2Hf2O7 (Ref. [66]), each show a

snowflake-like pattern of diffuse scattering in the (H,H,L) scattering plane similar to Ce2Zr2O7, with the finer details

of the signals giving further information on the magnetic interactions at play in the corresponding materials [71, 93].

In Publication I we compare the measured snowflake-like diffuse scattering signal from Ce2Zr2O7 to predictions

for emergent photon excitations in a quantum spin ice. However, it is worth mentioning that in Publication II of this

thesis, we show that the emergent photon excitations in Ce2Zr2O7 are not expected to give a significant neutron

scattering signal within the Q range of these measurements due to the dipole-octupole nature of the Ce3+ pseudospins

in combination with the exchange parameters relevant for Ce2Zr2O7, and instead, spinon excitations should dominate

the signal and generate a snowflake-like pattern of diffuse scattering that is also consistent with measurements.

During the publication process for Publication I, we became aware of a separate work on Ce2Zr2O7 in Ref. [22]

which also estimates a |J = 5/2, mJ = ±3/2⟩ CEF ground state doublet, a lack of magnetic order down to the lowest

measured temperature, and a diffuse scattering signal at low energy, with the latter being less informative than ours

due to the lessened Q-coverage in their time-of-flight neutron scattering experiment compared to our experiment.

Importantly, the data and interpretation in Ref. [22] is consistent with that presented in our work. While the results

are similar, the work in Ref. [22] has less focus on controlling the oxidation level in their samples compared our

significant focus on controlling this issue as much as possible in Publication I (and all following publications to date).

In further detail, we report the sample oxidation as function of time for a powder sample of Ce2Zr2O7 and show that

significant sample oxidation occurs at room temperature in just the first couple hours of exposure to air, meaning it

is important to store samples in an inert atmosphere or vacuum, while no mention is made of such considerations

in Ref. [22]. Along with this storage procedure, we anneal our samples in hydrogen gas after synthesis and crystal

growth to reduce any undesired sample oxidation and Ce4+ content remaining after initial synthesis or growth of each

sample, as discussed further in Publications I, II, and III.

While quantum spin ice correlations are reported in neutron scattering data on Ce2Sn2O7 in Refs. [30, 60, 124]

and for Ce2Hf2O7 in Refs. [61], the first reports of quantum spin ice correlations in a cerium-based pyrochlore were for

Ce2Zr2O7 in 2019 in Publication I of this thesis and in Ref. [22]; Of course, this is not including the initial report for

a lack of magnetic order and lack of spin freezing in Ce2Sn2O7 at low temperature in 2015 (Ref. [119]). With that in
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mind, the neutron scattering measurements that we present in Publication I of this thesis, along with those in Ref. [22],

represent a significant breakthrough in the elucidation of quantum spin ice behavior in the cerium-based pyrochlores.

Furthermore, this snowflake-like pattern of diffuse scattering measured from single crystal Ce2Zr2O7 has additional

importance considering that all neutron scattering data published on Ce2Sn2O7 and Ce2Hf2O7 to date has been

measured on powder samples, and the powder-averaging of the neutron signal leads to a far less robust comparison

between measurement and theory in such cases, with all directional information lost in these measurements on powder

samples.

Fits of the magnetic susceptibility measured from Ce2Zr2O7 in Publication I and in Ref. [22] each yield a negative

Curie-Weiss temperature around -0.5 K, characteristic of antiferromagnetic interactions and typically suggestive of an

all-in, all-out magnetically ordered ground state for Ising pyrochlores such as Ce2Zr2O7. However, these magnetic

susceptibility measurements only have significant sensitivity to the z components of the pseudospins and their

magnetic dipole moments, and lack significant sensitivity to the x and y components of pseudospins and their magnetic

octupoles. It is now well-understood in the literature that Jx-dominant and Jy-dominant quantum spin ice ground

states are possible even for Jz < 0, and so a negative Curie-Weiss temperature does not imply an all-in, all-out phase

for the dipole-octupole pyrochlores (see Section 1.5 for further details, for example). Moreover, we now understand

that the curvature of the inverse susceptibility (shown in Publication I) results in a Curie-Weiss temperature that gives

an inaccurate representation of the correlations in the low-temperature ground state. This point is elucidated by our

fits to the heat capacity measured from Ce2Zr2O7 at low temperature in Publications II and III of this thesis, which

each give a more-accurate estimate of Jz compared to estimates using the Curie-Weiss temperature, and which each

give Jz > 0. In fact, our diffuse neutron scattering data in Publication III also gives strong evidence for Jz > 0. With

all of this in mind, we reiterate that the Curie-Weiss temperature and its usual implications are far less significant for

Ce2Zr2O7 than we were aware of at the time of writing Publication I.

I contributed to Publication I by leading two single-crystal neutron scattering experiments and the corresponding

preparation, preparing a sample for magnetic susceptibility measurements, as well as taking part in the corresponding

measurement process for the magnetic susceptibility. I characterized both the crystallinity and phase purity of the

single crystal samples used in this work using x-ray diffraction and I performed the x-ray characterization included

in the supplemental material. I analyzed all of the experimental data presented in this paper and supplemental

material except for the high-energy inelastic neutron scattering measurements focused on probing the CEF levels. I

was responsible for annealing the single crystal samples used in this work, in hydrogen gas, before storing each sample

in an inert atmosphere until measurement. Finally, I designed and generated all-but-two of the figures included in

this work and wrote ∼50% of the text. The contributions of each author are summarized below.
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Author Contributions for Publication I:

Experimental Concept:

J. Gaudet, E. M. Smith, B. D. Gaulin

Sample Preparation:

J. Dudemaine, E. M. Smith, J. Gaudet, C. A. Marjerrison, J. D. Garrett, B. D. Gaulin, A. D. Bianchi

Neutron Scattering Experiments:

E. M. Smith, J. Gaudet, C. R. C. Buhariwalla, N. P. Butch, M. B. Stone, A. I. Kolesnikov, Guangyong Xu,

B. D. Gaulin

Magnetic Susceptibility Measurements:

J. Beare, E. M. Smith, B. D. Gaulin, G. M. Luke

X-Ray Scattering Characterization:

E. M. Smith, B. D. Gaulin

Data Analysis:

E. M. Smith, J. Gaudet, B. D. Gaulin

Calculations and Modeling:

J. Gaudet, B. D. Gaulin

Manuscript :
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Neutron scattering measurements on the pyrochlore magnet Ce2Zr2O7 reveal an unusual crystal field
splitting of its lowest J ¼ 5=2 multiplet, such that its ground-state doublet is composed of mJ ¼ �3=2,
giving these doublets a dipole-octupole (DO) character with local Ising anisotropy. Its magnetic
susceptibility shows weak antiferromagnetic correlations with θCW ¼ −0.4ð2Þ K, leading to a naive
expectation of an all-in, all-out ordered state at low temperatures. Instead, our low-energy inelastic neutron
scattering measurements show a dynamic quantum spin ice state, with suppressed scattering near jQj ¼ 0,
and no long-range order at low temperatures. This is consistent with recent theory predicting symmetry-
enriched U(1) quantum spin liquids for such DO doublets decorating the pyrochlore lattice. Finally, we
show that disorder, especially oxidation of powder samples, is important in Ce2Zr2O7 and could play an
important role in the low-temperature behavior of this material.

DOI: 10.1103/PhysRevLett.122.187201

The rare-earth pyrochlore oxidesR2B2O7, whereR3þ and
B4þ consist generally of rare-earth and transition-metal ions,
respectively, display a wealth of both exotic and conven-
tional magnetic ground states. Their R3þ ions decorate a
network of corner-sharing tetrahedra, one of the archetypes
for geometrical frustration in three dimensions. Because of
strong crystal electric field (CEF) effects, the nature of the
magnetic interactions in such materials are strongly influ-
enced by their single-ion physics [1–3]. A naive theoretical
description of the magnetic interactions in rare-earth pyro-
chlores is generally performed by introducing an ad hoc
effective single-ion term in addition to Heisenberg exchange
interactions. For example, Heisenberg antiferromagnetism
with an effective Ising anisotropy leads to nonfrustrated all-
in, all-out (AIAO) magnetic order, as seen in several heavy
rare-earth iridate pyrochlores [4,5] and illustrated in the
insert of Fig. 1(a). Heisenberg ferromagnetism and
an effective Ising anisotropy give rise to a classical spin
ice ground state [6], as seen in ðHo;DyÞ2Ti2O7 [7,8]
and illustrated as the two-in, two-out (2I2O) local structure
in the inset of Fig. 1(a). However, the magnetic interactions
should be projected into pseudospin operators acting
solely on the low-energy CEF states [3,9–13]. This pro-
cedure has been applied, e.g., in the Yb3þ [11,14,15] and

Er3þ [12,16–18] XY pyrochlores, where CEF effects give
rise to effective S ¼ 1=2 quantum degrees of freedom that
interact via anisotropic exchange interactions.
More recently, it has been realized that the precise

composition of the ground-state crystal field doublets in
rare-earth pyrochlores is crucial in determining the form of
the microscopic Hamiltonian, and in itself, diversifies the
possibility of quantummagnetic states [3,19]. This has been
appreciated for some time in the case of non-Kramers
doublets, based on magnetic ions with an even number of
electrons, such as the 4f2 configuration in Pr3þ. Only the
local z component of the spin operators transforms as a
dipole, with the transverse components transforming as
quadrupoles [20–22]. This restricts the form of the effective
spin Hamiltonian and can stabilize quadrupolar phases that
are not present in the phase diagram for dipolar doublets
[23,24]. For Kramers ions with an odd number of electrons,
such as 4f1 in Ce3þ, 4f3 in Nd3þ, and 4f5 in Sm3þ, a crystal
field ground-state doublet with dipole-octupole (DO) char-
acter can be realized where the local z and x components
transform as a dipole, but the local y component transforms
as an octupole [19,25–27]. After a rotation of the pseudo-
spins about the y axis, the DO exchange Hamiltonian on the
pyrochlore lattice can be reduced to an XYZ model with
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three independent exchange parameters (Jx̃,Jỹ,Jz̃) [19,25].
ThisHamiltonian allows formultiple phases to emerge, such
as an AIAO order, octupolar ordered phases, and also for
moment fragmentation, as observed in Nd2Zr2O7, where
static AIAO order coexists with dynamic spin ice fluctua-
tions [19,25,28,29]. In the limit of dominant antiferromag-
netic interactions and strong easy-axis exchange anisotropy,
a dipolar quantum spin ice is stabilized so long as the easy
axis is along one of the dipolar components of the DO
doublet (Jx̃ ≫ Jz̃,Jỹ or Jz̃ ≫ Jx̃,Jỹ). An octupolar quantum
spin ice is favored if the easy axis is along the octupole
component (Jỹ ≫ Jx̃,Jz̃) [19,25].
A promising family of candidate materials for dipolar or

octupolar quantum spin ice physics originating from DO
doublets are the cerium pyrochlores Ce2B2O7. The Ce3þ
ions in the pyrochlore Ce2Sn2O7 are believed to have a DO
CEF ground state and to interact via dominant antiferro-
magnetic interactions, but do not magnetically order down
to T ¼ 20 mK [25,30]. The low-energy spin dynamics of
the cerium pyrochlores remains unexplored and their
characterization is key in determining the nature of their
possible spin liquid states. In this Letter, we report new
inelastic neutron scattering experiments on powder and
single crystal samples of Ce2Zr2O7. Using high-energy
inelastic neutron scattering, we first confirmed the DO
nature of the Ce3þ single-ion ground-state wave functions
in Ce2Zr2O7. We also present low-energy inelastic neutron
scattering measurements performed on a single crystal of
Ce2Zr2O7 and observe diffuse, inelastic magnetic scatter-
ing that emerges at low temperatures. TheQ dependence of
this diffuse scattering is consistent with a symmetry-
enriched U(1) quantum spin ice state at low but finite
temperatures. Furthermore, we show the quantum spin-ice
correlations remain dynamic down to at least 60 mK with

no sign of static magnetic order. Our results demonstrate Q
signatures of a dynamic quantum spin ice ground state in
Ce2Zr2O7, with associated emergent quantum electrody-
namics and elementary excitations based on magnetic and
electric monopoles, as well as emergent photons [31–34].
Single crystal and powder samples of Ce2Zr2O7 have

been grown using floating zone techniques and solid-state
synthesis. Stabilizing the Ce3þ oxidation state in Ce2Zr2O7

is not simple and requires growth and annealing in strong
reducing conditions to minimize Ce4þ [35]. As discussed
in the Supplemental Material [36], which includes
Refs. [37–44], this is a serious issue, especially in powder
samples, where oxidization is observed to occur in powders
exposed to air on a timescale on the order of minutes,
complicating the exact characterization of the material’s
stoichiometry. The oxidization process can be tracked
through high-resolution x-ray diffraction measurements
of the lattice parameter, and it is much slower for single
crystal samples. There we can make an estimate of the
stoichiometry of the single crystal used in our experiments
as Ce2Zr2O7þδ with δ ∼ 0.1.
We first present high-energy inelastic neutron scattering

measurements, which probe the single-ion properties of the
Ce3þ ions. To do so, we used the SEQUOIA high-resolution
inelastic chopper spectrometer [45] at the Spallation
Neutron Source of Oak Ridge National Laboratory and
employed neutrons with incident energies (Ei) of 150 and
500meV. TheEi ¼ 150 meV instrument settingwas chosen
to resolve the CEF states that belong to the spin-orbit
ground-state manifold (J ¼ 5=2). The CEF interaction
lifts the Ce3þ spin-orbit ground-state degeneracy into
three different eigenstates that are each doubly degenerate.
We also estimated a CEF Hamiltonian for Ce2Zr2O7 using a
scaling procedure based on the Er3þ pyrochlore CEF

FIG. 1. (a) The inverse magnetic susceptibility of a powder sample of Ce2Zr2O7. The red curve is the Van Vleck susceptibility
calculated with the CEF Hamiltonian of Ce2Zr2O7. (Top left inset) The AIAO and 2I2O magnetic ground-state spin configurations on a
pair of tetrahedra. (Bottom right inset) The low-temperature magnetic susceptibility that yields θCW ¼ −0.4ð2Þ K and a paramagnetic
moment of 1.3ð1Þ μB and shows no signature of magnetic order or spin freezing down to 0.5 K. (b) Inelastic neutron scattering spectra of
Ce2Zr2O7 at T ¼ 5 K with incident neutron energy Ei ¼ 150 meV. Two strong excitations can be identified as magnetic in origin at
E ∼ 56 and ∼112 meV, as their intensity decreases as a function of jQj, consistent with the Ce3þ magnetic form factor. (c) The energy
eigenvalues corresponding to the CEF states belonging to the spin-orbit ground-state manifold of Ce2Zr2O7. The composition of the
CEF eigenfunctions are also presented in (c), revealing the DO nature of the ground-state doublet—that is, it corresponds to pure
mJ ¼ �3=2 states.
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scheme [46]. This predicts two CEF excited states near 80
and 100 meV with similar inelastic neutron scattering
intensity at T ¼ 5 K. As seen in Fig. 1(b), this scenario is
in qualitatively good agreement with our 150 meV inelastic
neutron experimental spectra, where two strong magnetic
excitations are observed at∼56 and∼112 meV. The relative
scattered intensity of these CEF transitions can be obtained
giving I56 meV=I112 meV ¼ 1.2ð1Þ, in good agreement with
our expectations based on this scaling argument.
Additionalweak inelastic scatteringwhoseQdependence

is inconsistent with phonons is also visible in the spectra,
e.g., weak scattering near ∼100 meV in Fig. 1(b). It is not
clear if thisweak inelastic scattering is due to the influence of
Ce3þ or Zr3þ in defective sites [47], on residual Ce4þ, or on
the possible presence of hybridized phonon-crystal field
excitations known as vibronic bound states, as has been
recently observed in holmium and terbium pyrochlores
[48,49]. In any case, this unidentified contribution to the
inelastic scattering yields a small fraction of the spectral
weight and we conclude the features at 56 and 112 meVare
the CEF excitations corresponding to the main Ce3þ site.
The details of the crystal field analysis determining the

full set of eigenvalues and eigenfunctions for Ce3þ are
summarized in Fig. 1(c) and further discussed in the
Supplemental Material [36]. The key conclusion is that
the ground-state Kramers doublet appropriate to Ce3þ is
well separated from all excited crystal field states (by
∼56 meV) and is composed of pure mJ ¼ �3=2 states.
A large CEF gap is consistent with the high-temperature
heat capacity of Ce2Zr2O7 measured in Ref. [50], where no
Schottky anomaly is observed between 5 and 300 K. These
pure mJ ¼ �3=2 states have a dipole-octupole character
with a dipolar moment whose anisotropy is purely Ising
and whose magnitude must be 1.286 μB. This result does
not originate from a fine-tuning of the CEF parameters, but
is instead a property protected by the point-group sym-
metry of the A site in the pyrochlore lattice.
Figure 1(a) shows the inverse magnetic susceptibility of

a 107 mg powder sample of Ce2Zr2O7 measured with a
Quantum Design magnetic property measurement system
magnetometer equipped with a 3He insert. The main panel
of Fig. 1(a) shows the high-temperature susceptibility of
Ce2Zr2O7 and reveals strong nonlinearity. Assuming a
dilution of the Ce3þ moments by nonmagnetic Ce4þ ions at
the ∼8% level in this powder sample, the Van Vleck
susceptibility calculated with the CEF Hamiltonian of
Ce2Zr2O7 reproduces the high-temperature susceptibility
data well and yields an antiferromagnetic Curie constant of
−0.4ð2Þ K.We expect conventional and unfrustrated AIAO
order in Ce2Zr2O7 based on the effective antiferromagnetic
interactions and the Ising anisotropy associated with its
magnetism. However, our magnetic susceptibility measure-
ments [inset of Fig. 1(a)], as well as both powder and single
crystal neutron diffraction experiments, show no indication
of long-range magnetic order down to T ¼ 0.06 K.

In particular, and as shown in the Supplemental Material
[36], no new Bragg scattering or enhancement of the Bragg
scattering associated with any k ¼ 0 magnetic structure is
observed, including at those wave vectors characteristic of
the AIAO, Γ3 structure. Ce2Zr2O7 therefore remains dis-
ordered to T ¼ 0.06 K, our lowest temperature measured.
We examined the low-temperature spin dynamics in

Ce2Zr2O7 using the low energy disk chopper spectrometer
(DCS) neutron instrument at NCNR with Ei ¼ 3.27 meV
incident neutrons giving an energy resolution of∼0.09 meV
at the elastic line. One experiment was performed on a ∼6 g
powder sample and a second one was performed on a ∼5 g
single crystal, which was mounted with its [HHL] plane
coincident with the horizontal plane of the spectrometer.
Figure 2(a) shows the DCS measurements on our powder,
where the integration in jQj is 0.35 − 0.85 Å−1. This
integration in momentum transfer jQj corresponds to inte-
grating over the jQj ¼ jð001Þj position (∼0.59 Å−1), where
quantum spin ice correlations are expected to be strongest
[34]. A buildup of inelastic spectralweight below∼0.4 meV
is observed on decreasing the temperature.
Low-energy inelastic neutron scattering from our single

crystal is shown in Figs. 2(b)–2(d) and 3(a). All this data
were acquired using the same Ei ¼ 3.27 meV instrument
configuration of DCS, and Figs. 2(b)–2(d) shows powder-
averaged single crystal data. Figure 2(b) shows the full

FIG. 2. (a) The onset of dynamic spin ice correlations with
decreasing temperature in an annealed Ce2Zr2O7 powder sample.
(b) The powder-averaged difference neutron scattering spectra for
an annealed single crystal sample of Ce2Zr2O7. A dataset at
T ¼ 2 K has been subtracted from that at T ¼ 0.06 K. (c) A cut
along jQj through this difference spectra showing that the
dominant quasielastic signal, integrated in energy between 0
and 0.15 meV, is centered on jQj ¼ jð001Þj (∼0.59 Å−1) and
(d) a comparison of two cuts in energy through the difference
spectra shown in (b), with one of these cuts taken with a jQj
integral centered on jð001Þj (0.35–0.85 Å−1), and one removed
from jð001Þj, integrating between 1.3 and 1.8 Å−1. For all these
panels, the error bars correspond to 1 standard deviation.
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powder-averaged spectrum at T ¼ 0.06 K with a T ¼ 2 K
dataset subtracted from it. This result shows enhanced
inelastic scattering at low temperature, which peaks up at
jQj ∼ 0.59 Å−1, that is, the magnitude of the Q ¼ ð001Þ
position in reciprocal space. This is explicitly shown via the
jQj cut of the data presented in Fig. 2(c). Importantly,
Fig. 2(c) shows no enhancement of the low-energy inelastic
scattering around jQj ¼ 0, consistentwith expectations for a
U(1) quantum spin ice. Finally, Fig. 2(d) shows energy cuts
through the full difference spectrum shown in Fig. 2(b),
taken by integrating in jQj from 0.35 to 0.85 Å−1, so around
jQj ¼ jð001Þj, and also well away from jQj ¼ jð001Þj,
integrating from 1.3 to 1.8 Å−1. This clearly shows the
quantum spin ice correlations to be dynamic in nature,
characterized by an energy less than ∼0.15 meV.
With the energy range of the dynamic quantum spin ice

correlations identified, we can look explicitly at this
scattering from the single crystal, but now comparing Q
maps of these correlations to the expectations of both
classical near-neighbor spin ice (without dipolar inter-
actions) and a U(1) quantum spin ice. Figure 3(a) shows
T ¼ 0.06–2 K data integrated between 0 and 0.15 meV,
folded into a single quadrant of the [HHL] map and further
symmetrized. The details of this data symmetrization are in
the Supplemental Material [36]. For reference, a theoretical
simulation of the structure factor expected for classical
near-neighbor spin ice [34] is shown in Fig. 3(b) and that
for a U(1) quantum spin ice at low but finite temperature
[34] is shown in Fig. 3(c). While these theoretical pre-
dictions have similarities, the structure factor for U(1)
quantum spin ice has minima in intensity nearQ ¼ 0, while
the intensity of the structure factor is maximal there for
classical near-neighbor spin ice.
Clearly, the measured dynamic SðQÞ shows a qualita-

tively stronger resemblance to the expectations of the

symmetry-enriched U(1) quantum spin ice [31–34]. The
quantum spin ice ground state is one of various spin liquids
that are supported by a model of well isolated DO CEF
doublets on the pyrochlore lattice [19,25]. A similar
dynamic SðQÞ is expected in the case of classical dipolar
spin ice (here dipolar refers to long-range dipolar inter-
actions between magnetic dipoles), which also shows the
suppression of diffuse scattering near jQj ¼ 0 [51,52].
Although a definitive conclusion can only be reached once
a full spin Hamiltonian is parametrized, the Ce3þ ions in
Ce2Zr2O7 have a moment of 1.286 μB, which is roughly a
factor 8 smaller than those associated with Ho3þ or Dy3þ in
the classical dipolar spin ices Ho2Ti2O7 and Dy2Ti2O7. The
resulting long-range dipole terms are expected to be ∼64
times weaker in Ce2Zr2O7, making such a scenario unlikely.
This suggests the spin-ice correlations in Ce2Zr2O7 origi-
nate fromquantum effects. An octupolar ordered state is also
consistent with the lack of magnetic dipole order in
Ce2Zr2O7. However, the neutron scattering spectra associ-
ated with such an octupolar ordered phase has yet to be
calculated; thuswe cannot compare it to our data in Fig. 3(a).
The effect of disorder inCe2Zr2O7 is still an open question

as we are aware that our single crystals have some low levels
of oxidation. Furthermore, stuffing [53–56] (site mixing) is
expected to be important in Ce2Zr2O7, because both unde-
sired Ce4þ and Zr3þ ions are chemically stable. It is known
that small amounts of disorder can have a drastic impact on
the physical properties of frustrated pyrochlore magnets
[53,54,56]. It will then be important to further optimize the
growth procedure and annealing techniques of Ce2Zr2O7.
However, we believe that our inelastic neutron scattering
results rule out the scenario of a sensitive AIAO order.
Indeed, the conventional impact of quenched disorder on a
pyrochlore antiferromagnet would be spin glass physicswith
diffuse scattering peaked forQ’s corresponding to the Bragg

FIG. 3. Comparison of the measured low-energy inelastic neutron scattering from (a) an annealed single crystal sample of Ce2Zr2O7

with the calculated quasielastic neutron scattering for (b) the classical near-neighbor spin ice model at T ¼ 0 K and (c) a quantum spin
ice at finite T. Data in (a) are the symmetrized difference between inelastic scattering at T ¼ 0.06 K and T ¼ 2 K, integrated between 0
and 0.15 meV. (b),(c) Simulations taken from Benton et al. [34]. The lack of intensity around Q ¼ ð000Þ and the fact that the ring of
diffuse inelastic scattering peaks along ð00LÞ provides evidence for Ce2Zr2O7 displaying a dynamic quantum spin ice state at these low
temperatures. Also, the observed diffuse inelastic scattering at Q ¼ ð003Þ is more pronounced than that at Q ¼ ð3

2
3
2
3
2
Þ, again consistent

with the expectations of quantum spin ice, and not consistent with classical near-neighbor spin ice. Note the extra features centered at the
Bragg peak positions such as (111) likely originate from leakages of the structural Bragg peaks, due to the subtraction of two large
intensities.
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positions of the AIAO state. Here, we observe strong diffuse
scattering atQ ¼ ð001Þ, which is not only strictly zero for an
AIAO state, but also forbidden for all k ¼ 0 long-range
ordered magnetic structures allowed by symmetry of the
pyrochlore lattice. We thus conclude that our Letter dem-
onstrates Ce2Zr2O7 to be one of a very few candidates for
quantum spin ice physics. Other candidates for quantum spin
ice physics are based on Pr3þ and Tb3þ pyrochlores [57–61].
However, in contrast to Pr3þ andTb3þ, Ce3þ is aKramers ion
and its magnetism is thus further protected against disorder,
which in and of itself can drive a spin liquid state for non-
Kramers doublets [22,62–64]. Furthermore, Tb3þ and Pr3þ
pyrochlores display low-lying CEF field states, which
complicate their theoretical understanding due to multipolar
interactions [24,65,66]. For all these reasons, the cerium
pyrochlores are an excellent theoretical and experimental
template to investigate quantum spin ice physics.
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POWDER SYNTHESIS AND SINGLE CRYSTAL
GROWTH

The polycrystalline and powder samples of Ce2Zr2O7

used in this work were first prepared by arc melting stoi-
chiometric amounts of CeO2, Zr, and ZrO2 in an argon
atmosphere, followed by a regrinding and firing at 1000◦C
for two days in flowing hydrogen. Prior to any mea-
surements, the powder samples were further annealed
in flowing hydrogen at 1000◦C for several hours. An x-
ray refinement against the Fd3m space group is shown in
Fig.S1(a) for one of the Ce2Zr2O7 powder samples, synthe-
sized and annealed using this protocol. Previous studies
have characterized the level of oxidation of Ce2Zr2O7+δ

powder samples using the value of the lattice parameter,
a, refined from x-ray diffraction measurements. For ex-
ample, the values a ∼ 10.735 Å has been refined for δ = 0
and a ∼ 10.66 Å has been refined for δ = 0.5. A linear
relationship has been observed between these limits [1–3].
Our materials synthesis and powder x-ray diffraction is
consistent with these previous works, and, as shown in
Fig.S1(a), our stoichiometric powder sample has a lattice
parameter of a = 10.735(5) Å. As we will discuss, we
observe the oxidation of the powder sample left exposed
to air to begin to occur on the order of minutes. There
is an obvious colour change which occurs between the
stoichiometric (annealed) and oxidized samples, wherein
a light green/yellow sample is obtained for the δ = 0
annealed sample, and a black powder is obtained for the
δ = 0.5 oxidized sample.

Single crystals of Ce2Zr2O7 were obtained using optical
floating zone growth, with Xe lamps, from polycrystalline
feed stock. The powder rods were first prepared through
a solid state reaction using high purity materials. Stoi-
chiometric mixtures of Ce2O3 (99.995%) and ZrN (99.5%)
were mixed in a ball mill and pressed into rods. The rods

FIG. 1. (a) Powder x-ray refinement of a typical powder sample
of Ce2Zr2O7 synthesized for this work. A lattice parameter of
10.735(5) Å has been refined. (b) A photograph of an annealed
single crystal sample of Ce2Zr2O7, broken with an exposed
surface, and showing a bright yellow color on the inside and a
thin black oxidized surface on the outside. (c) Powder x-ray
refinement of a crushed single crystal of Ce2Zr2O7 against the
pyrochlore structure. (d) The time dependence of the lattice
parameter is shown for a polycrystalline sample of Ce2Zr2O7,
annealed in hydrogen at 1200◦C for 6 hours, and then left
exposed to air. The exposure to air produces oxidation of the
sample over time and a decreasing lattice parameter. The
inset shows typical x-ray diffraction scans collected at different
times of exposure to air, following the annealing protocol.

were heated in air to 900◦C in a covered alumina crucible
for 5 h. The solidified rods were then re-ground in a ball
mill, repressed into rods 8 cm and 6 cm in length to be
used as the feed and seed rods for the optical floating
zone growth. These rods were then heated to 1550◦C
for 3 h in an atmosphere containing a ratio of 95/5 ar-
gon to hydrogen. During the actual optical floating zone
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FIG. 2. (a) Inelastic neutron scattering spectra obtained for an incident energy of 150 meV for Ce2Zr2O7, and integrated between
|Q| = 4.5 and 5.5 Å−1 (this is a cut of the data shown in Fig.1(a) of the main manuscript). The two black arrows indicate the
energy position of the CEF transitions originating from the main Ce3+ site. (b) High energy inelastic neutron scattering spectra
of Ce2Zr2O7 obtained with an incident energy of 500 meV. The arrow highlights the relatively weaker magnetic excitations near
275 meV. c) A constant energy cut of the data shown in b), integrated in |Q| between 7 and 10 Å−1, is shown, along with data
from the empty sample can. We identify three CEF transitions from the ground state to the highest J manifold at ∼ 270 meV,
310 meV and 340 meV. These energies are sufficiently high, such that no optic phonons are expected to be nearby in energy.

growth, we employed a growth rate of 2.5 mm/hour while
counter-rotating feed and seed rods at 15 rpm in an argon
atmosphere containing 5% hydrogen. Further annealing
of the single crystals for 36 hours at 1200◦C was also
performed prior to all experiments. A photograph of
a typical single crystal of Ce2Zr2O7 obtained through
this protocol is shown in Fig.S1(b). A broken surface
is shown and one can see that the inside of the single
crystal piece is bright yellow while the surface exposed
to air is black, indicating some remaining oxidation at
the surface after the annealing process. Refinement of a
yellow single crystal piece from the unexposed inner layer
of the crystal is shown in Fig.1(c). Such x-ray diffraction
measurements on crushed single crystals give a lattice
parameter refinement of a = 10.718(5) Å for the bulk
inner layer of the crystal, as shown in Fig.1(c), and this
can be use to estimate the oxidation state of our annealed
single crystal sample, Ce2Zr2O7+δ, to be δ ∼ 0.1.

Finally, we characterized the time dependence of
Ce2Zr2O7+δ by collecting several powder diffraction pat-
terns from a broken, ceramic rod of material, for differing
exposure times in air following a 1200◦C, 6 hour hydrogen
annealing protocol. The lattice parameter extracted from
x-ray diffraction measurements is shown as a function of
time in Fig.S1(d) for this polycrystalline sample, whose ox-
idation rate should be between the fast rate of the powder
samples of Ce2Zr2O7+δ and slow rate of the relatively-well
behaved single crystal samples of Ce2Zr2O7+δ. The inset
shows x-ray diffraction scans of the Q = (222) Bragg peak
as a function of scattering angle and exposure time. Not
only do the Bragg peaks shift higher in 2θ with expo-
sure (sample oxidation), they also significantly broaden
and eventually split into multiple distinguishable peaks.
This broadening and splitting corresponds to a distri-
bution of oxidation in the sample, and to the eventual
formation of separate majority and minority phases with

different levels of oxidation, such as the bulk inner and
thin outer layers of differing color in the case of single
crystal Ce2Zr2O7+δ. The x-ray intensity at the Q = (222)
Bragg position for each data set was fit to Lorentzian
peak shapes according to the number of peaks present
around that Bragg position. The average lattice constant
for each data set with multiple distinguishable peaks (>
29.5 hours) was determined by using a weighted average
of the lattice constants determined from these peaks, with
the integrated intensity of the peaks used as the weights
for this average. Figure S1(d) should then give the time
dependence of the volume-averaged lattice constant in
this polycrystalline sample.

DETERMINATION OF THE CEF
HAMILTONIAN

As discussed in the main manuscript, the CEF eigen-
states for Ce3+ in Ce2Zr2O7 were expressed in the
|J = 5/2,mJ〉 manifold and fitted using the low energy
CEF transitions observed in the Ei = 150 meV neutron
scattering spectra. We refined a CEF Hamiltonian for
Ce2Zr2O7 by constraining the relative scattered intensi-
ties and energies of the CEF transitions observed in our
Ei = 150 meV spectra (Fig.1(a) of the main letter). The
following CEF Hamiltonian was used in this work:

HCEF = B0
2Ô

0
2 +B0

4Ô
0
4 +B3

4Ô
3
4 (1)

The protocol and the expression of the CEF Hamilto-
nian in terms of Stevens operators used in this work is
identical to ref. [4, 5] and we refer the reader to these
works for further details. It is worthwhile mentioning that
the CEF Hamiltonian appropriate for the R3+(D3d) site
of the pyrochlore lattice includes six Stevens operators
(B0

2, B0
4, B3

4, B0
6, B3

6, B6
6), however the three Bn6 terms are

zero for Ce3+.
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The B0
2, B0

4 and B3
4 terms of the CEF Hamiltonian were

refined using the observed energies and scattered neu-
tron intensities of the magnetic excitations near 58 and
110 meV. It was possible to extract this information using
a constant |Q|-cut from the 150 meV data. We obtain this
by integrating the 150 meV spectra (Fig.1(a) of the main
letter) between |Q| = 4.5 and 5.5 Å−1. The resulting in-
tegration is shown in Fig.S2(a). The two CEF transitions,
so-identified by their |Q|-dependence, are indicated by the
black arrows in Fig.S2(a), while other features observed
in Fig.S2(a) are likely optical phonon excitations. The
CEF transitions as well as the phonon excitations were
fitted using a Lorentzian function in energy. The result-
ing fit of the 150 meV data set is plotted in Fig.S2(a).
From this fit, we determined that the energies of the CEF
levels within the spin-orbit J-manifold are E1 = 55.9(1)
and E2 = 110.5(1) meV. The relative intensity of the
CEF transitions between the CEF ground state to the
first (I1) and the second (I2) excited state is found to
be I1/I2 = 1.2(1). Using these three constraints (E1, E2,
I1/I2), we refined B0

2 = 0.835 meV, B0
4 = 0.299 meV and

B3
4 = 2.875 meV. Comparison between the calculation and

data is shown in Table.S1. The calculated eigenstates and
eigenfunctions using this CEF Hamiltonian are reported
in Table.S2.

In the main letter, we also reported a weaker magnetic
excitation near 100 meV, so just below E2. It is possible
that magneto-elastic coupling between the CEF ground
state and the 2nd excited CEF state (E2) is sufficiently
strong to drive a vibronic bound state, which would effec-
tively split the single-ion CEF excitation at E2 into two
different excitations [6]. Here, these two excitations would
correspond to the one at 110 meV and the one at 100 meV.
Thus, within the scenario of a vibronic bound state as the
origin of the inelastic scattering at 100 meV, we under-
estimated I2. We can compensate for this by adding the
integrated intensity of the 100 meV transition. By doing
so, a new optimization of the CEF Hamiltonian could
be refined, leading to B0

2 = 0.455 meV, B0
4 = 0.295 meV

and B3
4 = 2.582 meV. Table.S1 also shows the compari-

son between the data and the calculation within such a
scenario. This scenario in which a vibronic bound state
is responsible for the weak inelastic intensity near 100
meV also leads to a CEF ground state that is a pure
mJ = ±3/2 state. Thus the conclusion that the CEF
ground state doublet for Ce2Zr2O7 is a pure mJ = ±3/2
doublet with dipolar octupolar character is robust.

We also present the Ei = 500 meV inelastic neutron
scattering spectra of Ce2Zr2O7 in Fig.S2(b). This in-
elastic scattering data shows a clear magnetic feature
near 275 meV that corresponds to a transition originating
from the CEF ground state to the highest J-manifold
(J = 7/2). Two additional, albeit weaker, excitations can
be identified by taking appropriate |Q| cuts of this data
and comparing to the measured empty can, background
scattering. This is shown in Fig.S2(c), where a |Q| inte-

TABLE I. Comparison between the observed (Obs1,Obs2) and
calculated (Calc1,Calc2) energies and intensities of the CEF
excitations in Ce2Zr2O7. Scenario 1 refers to the case where
no vibronic bound state is present, while Scenario 2 is the case
where weak inelastic scattering near 100 meV is identified as
arising due to a vibronic bound state.

Obs1 Calc1 Obs2 Calc2
E1

(meV)
55.9(2) 55.92 55.9(1) 56.06

E2

(meV)
110.5(3) 110.55 106.1(4) 105.97

I1/I2
(arb.units)

1.2(1) 0.98 0.99(15) 0.92

TABLE II. Eigenstates and eigenfunctions of the spin-orbit
ground state manifold written within the |J = 5/2,mJ〉 basis.
These eigenfunctions correspond to the scenario of no vibronic
bound-state. A mJ = ±3/2 CEF ground state is stabilized
for both scenarios (without and with a vibronic bound state).

E(meV) -5/2 -3/2 -1/2 1/2 3/2 5/2
E1 0 1 0 0 0 0
E2 0 0 0 0 1 0
E3 0.725 0 0 0.688 0 0
E4 0 0 -0.688 0 0 0.725
E5 0 0 -0.725 0 0 -0.688
E6 0.688 0 0 -0.725 0 0

gration from |Q| = 7 to 10 Å−1 is performed. This reveals
three CEF transitions ∼ 260, 310 and possibly 340 meV.
The location in energy of these highest J = 7/2 states
is consistent with estimates of the spin-orbit coupling
strength (λ) for Ce3+ [7, 8].

Finally, the determination of our CEF Hamiltonian
appropriate for Ce2Zr2O7 was further validated via cal-
culation of its Van-Vleck susceptibility that can be com-
pared with the temperature dependence of its measured
magnetic susceptibility. The following Van-Vleck suscep-
tibility term (ref.[9]) was computed for a powder sample:

χCEF =
NAg

2
Jµ

2
BX

kBZ

∑

α

(
∑

n

|〈n|Jα|n〉|2e−En/T

T
+ (2)

∑

n

∑

m 6=n

|〈m|Jα|n〉|2(e−En/T − e−Em/T )

Em − En
)

where α = x, y, z, NA is the Avogadro constant, gJ is
the Landé g-factor, kB is the Boltzman constant, µB is
the Bohr magneton and Z =

∑
n e
−En/T is the partition

function. The factor X was used to parametrize the
dilution of the Ce3+ ions into non-magnetic Ce4+ and
was refined to 0.92(2), which is in good agreement with
our estimate of the oxidation level in our samples using
the refined lattice parameters (see section 1 of the SM).
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DETAILS ON THE LACK OF MAGNETIC
ORDER IN CE2ZR2O7

An orange cryostat with a dilution refrigerator insert
was used for both of our DCS experiments. The powder
sample was wrapped in of a copper foil inside a copper
can sealed under 10 atm of He. For the single crystal
experiment, the sample was aligned and mounted on
a copper mount. For the data collection of our single
crystal DCS experiment, the single crystal was rotated
for a total of 270◦ with steps of 0.5 ◦ and we counted for
5 minutes per angle at T = 0.06 K and 3 minutes per
angle at T = 2 K. The data was analyzed and plotted
using DAVE [10].

We demonstrate the evidence for no magnetic order in
Ce2Zr2O7 to temperatures as low as T = 0.06 K using
our single crystal DCS experiment. We do this by noting
that no new Bragg peaks are observed at T = 0.06 K
compared with T = 2 K, and by explicitly isolating the
elastic scattering for each k = 0 Bragg peak accessible
in our experiment. This elastic scattering is shown in
Fig.S3 at both T = 0.06 K and T = 2 K for the Q =
(220),(113),(111),(222) and (002) positions of reciprocal
space, with Ei = 3.27 meV incident neutrons and energy
integration in the range from -0.1 to 0.1 meV. None of
these selected k = 0 positions in reciprocal space show any
significant changes in intensity with temperature as can
be seen by the subtraction of the T = 2 K data set from
the T = 0.06 K data set in each plot of Fig.S3. The elas-
tic cuts through the Q = (220),(113) and (111) positions
were taken along the (HH0) direction with integration
in (00L) from L = -0.1 to 0.1 r.l.u., 2.9 to 3.1 r.l.u., and
0.9 to 1.1 r.l.u. respectively and the elastic cuts through
the Q = (222) and (002) positions were taken along the
(00L) direction with integration in (HH0) from H = 1.9
to 2.1 r.l.u. and -0.1 to 0.1 r.l.u. respectively. Figure
S3(f) shows a table qualitatively outlining which of these
positions is expected to show magnetic intensity for each
k = 0 magnetic structure permitted by the pyrochlore
lattice [11]. A green check mark indicates the presence of
magnetic intensity at that location due to the correspond-
ing ordered structure, while the red symbol indicates that
the corresponding structure results in no magnetic in-
tensity at that location. For example, the Γ3 structure
corresponding to AIAO order generates magnetic intensity
at the (220) and (113) positions only. As can be seen from
this Table, the fact that we have measured no magnetic
intensity at each of the (220), (111), (113), (222) and
(002) positions, signifies a lack of k = 0 magnetic order in
Ce2Zr2O7 down to T = 0.06 K. Furthermore, the whole
elastic Q map within the (HHL) plane can be plotted for
0.06 K and this is shown in Fig.S3(g). Only the expected
structural Bragg peaks are visible in Fig.S3(g), which
confirms the lack of k=0 magnetic order.

We note that our powder and single crystal DCS experi-
ments that both show no magnetic order in Ce2Zr2O7 are

further corroborated with cold neutron triple-axis experi-
ment using the SPINS instrument, also at NIST. For this
experiment, the sample was also mounted on a copper
mount and aligned within the (HHL) plane. An orange
cryostat with an He3 insert was used for this experiment.
Figure S4 shows θ-2θ scans for several Bragg peaks at
both 5.2 K and 0.3 K collected with neutron incident ener-
gies of 5 meV. It is clear from the temperature difference
data that our triple-axis experiment also does not support
the existence of k = 0 magnetic order in Ce2Zr2O7 down
to 0.3 K.

Finally, low temperature magnetic susceptibility mea-
surements of Ce2Zr2O7 were performed in several fields
with both field cooled (FC) and zero field cooled (ZFC)
protocol. As seen in Fig.S5, our low temperature suscep-
tibility measurements do not reveal any sign of magnetic
ordering or spin freezing down to ∼ 0.5 K. Furthermore,
the general behaviour of the susceptibility is not impacted
by the field value used for these measurements.

DETAILS OF THE SYMMETRIZATION
PROCESS IN OUR LOW ENERGY INELASTIC
NEUTRON SCATTERING (DCS) EXPERIMENT

ON A SINGLE CRYSTAL

In this section, we outline the symmetrization process
used to average the Q-dependence of the inelastic tem-
perature difference data from an annealed single crystal
sample of Ce2Zr2O7 using the DCS instrument, shown
in Fig.3 of the main manuscript. Figure S6(a) displays
the subtraction of a T = 2 K data set from a T = 0.06 K
data set, integrated in energy over the range from 0 to
0.15 meV , with Ei = 3.27 meV incident neutrons. This
is the unsymmetrized data that was used to produce the
symmetrized data shown in Fig.3(a) of the main letter.
The intermediate steps in this symmetric averaging are
shown in Fig.S6(b) and Fig.S6(c) where the data has been
folded upon itself and averaged with respect to the (00L)
and (HH0) lines of symmetry. The fully symmetrized data
is displayed in Fig.S6(d) to further illustrate the process.
Only one quadrant of this data set is truly independent;
the other three quadrants are required to impose the sym-
metry of the reciprocal lattice. No other constraints are
imposed on the data. This data set corresponds to sym-
metric averaging with respect to both the (00L) and (HH0)
lines of symmetry. This symmetrization helps to bring
out relatively weak signals, as such signals are measured
at more than one equivalent Q position, and averaged
over. Non-symmetric features in the scattering, resulting
from, for example self-absorption, are also averaged over
and hence diminished in the process.
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FIG. 3. Elastic neutron scattering data from an annealed single crystal of Ce2Zr2O7 collected using a time-of-flight neutron
spectrometer. Elastic cuts in reciprocal space are shown at T = 0.06 K (blue) and T = 2 K (red) as well as the T = 2 K data
set subtracted from the T = 0.06 K data set (black). This elastic data has been integrated from -0.1 meV to 0.1 meV in energy.
No significant changes in intensity were measured at the (a) (220), (b) (111), (c) (113), (d) (222), or (e) (002) positions of
reciprocal space. (f) A table qualitatively outlining which of these Q positions is expected to show magnetic intensity for the
different k = 0 magnetic structures permitted by the pyrochlore lattice [11]. The green check marks indicate the presence of
magnetic intensity at that location due to the corresponding ordered structure while the red symbols indicate that the structure
results in no magnetic intensity at that location. As can be seen from this table, the fact that the measured positions showed no
systematic change of intensity with temperature indicates a lack of k = 0 magnetic order down to T = 0.06 K. (g) A T = 0.06 K
map showing the elastic scattering for momentum transfer within the (HHL) plane, which rules out the possible presence of
magnetic Bragg peaks with non k = 0 ordering vector.

FIG. 4. θ-2θ scans for (a) Q = (220), (b) Q = (111), (c) Q = (113), (d) Q = (222), (e) Q = (004) and (f) Q = (331) collected
on an annealed single crystal of Ce2Zr2O7. These measurements were performed using a neutron triple-axis instrument at a
temperature of 5.2 K (red) and 0.3 K (blue). The difference plots between the two data sets at different temperatures are also
shown in each panels (black line) and further confirmed that our single crystal of Ce2Zr2O7 does not magnetically order at low
temperature.
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FIG. 5. The DC magnetic susceptibility measurements on annealed single crystals of Ce2Zr2O7 collected in fields of 0.1 T,
0.01 T and 0.001 T for both field cooled (FC) and zero field cooled (ZFC) protocol. The absence of features in any of these
measurements indicates that our single crystal of Ce2Zr2O7 does not undergo a transition to long range magnetic order, or spin
freezing down to T ∼ 0.5 K.

FIG. 6. The low energy inelastic neutron scattering difference from an annealed single crystal sample of Ce2Zr2O7. This
displays the subtraction of a T = 2 K data set from a T = 0.06 K difference data set integrated in energy over the range from
0 to 0.15 meV , with Ei = 3.2 meV incident neutrons. (b) The same neutron scattering difference after being symmetrically
averaged about the line of symmetry along the (00L) axis of reciprocal space. The data is folded across the (00L) axis and
averaged at points where this results in an overlap of the data with itself. (c) The same neutron scattering difference after being
symmetrically averaged across the line of symmetry along the (HH0) axis of reciprocal space. (d) The same neutron scattering
difference after being fully symmetrized in accordance with both the (00L) and (HH0) lines of symmetry in reciprocal space (also
shown in Fig.3(a) of the main letter). This symmetrization brings out relatively weak signals measured in multiple, equivalent
Q positions and can help minimize non-symmetric features, such as self-absorption effects. (e) A cut through the symmetrized
data of (d) along the [H,H,0] direction is shown. This cut integrates [-0.4,0.4] in the perpendicular [00L] direction. (f) A cut
through the symmetrized data of (d) along the [0,0,L] direction is shown. This cut integrates [-0.4,0.4] in the perpendicular
[HH0] direction.
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2.2 Preface to Publication II: Estimating the Nearest-Neighbor Ex-

change Parameters and Further Evidence for a Quantum Spin Ice

Ground State in the Dipole-Octupole Pyrochlore Ce2Zr2O7

In Publication II we extend our previous work in Publication I by showing further evidence for a lack of both magnetic

order and spin freezing combined with quantum spin ice correlations at low temperature in Ce2Zr2O7. We also

perform estimates of the nearest-neighbor exchange parameters for Ce2Zr2O7 in the XYZ Hamiltonian relevant for

dipole-octupole pyrochlores at the nearest-neighbor level [Eq. (1.21)], with the results pointing towards a quantum

spin ice ground state.

Our heat capacity measurements show a lack of magnetic order down to the lowest measured temperature,

T = 58 mK. This not only confirms the findings of the neutron scattering and magnetic susceptibility measurements

in Publication I, but this also provides evidence for an absence of octupolar magnetic order down to ∼58 mK, which

the previous neutron scattering and magnetic susceptibility measurements lack sensitivity towards [52, 103, 105].

Our measured heat capacity data are consistent with that reported for Ce2Zr2O7 in Ref. [22], but we perform a

separate, more-sophisticated analysis than performed in Ref. [22], which involves showing that the low-temperature

extrapolation used in Ref. [22] is inappropriate to the form of the measured heat capacity. The zero-field magnetic

heat capacity measurements that we present in our work are similar to measurements reported on Ce2Sn2O7 in

Refs. [30, 60, 66, 119] and on Ce2Hf2O7 in Refs. [32, 61], where in each case the zero-field magnetic heat capacity

shows a broad hump below T ≈ 10 K with the finer details of this anomaly, such as the exact height and width of the

hump, differing with the values of the exchange parameters in each material [2, 37, 60, 61].

We estimate the nearest-neighbor exchange parameters by fitting the measured heat capacity and magnetic

susceptibility using the numerical linked cluster (NLC) method in order to determine the set of nearest-neighbor

exchange parameters which best-describe the measured data. The temperature dependence of the integrated neutron

scattering signal is used to definitively rule out a locally optimal set of nearest-neighbor exchange parameters from

our fitting to the heat capacity and magnetic susceptibility. This sub-optimal set of parameters describes the heat

capacity and magnetic susceptibility reasonably well over the range of measured temperatures but clearly fails to

describe the neutron scattering. Importantly, the best-fitting nearest-neighbor exchange parameters from our analysis

correspond to a quantum spin ice ground state according to the zero-field magnetic ground state phase diagram

predicted for dipole-octupole pyrochlores at the nearest-neighbor level [56, 57, 96–98]. In further detail, our estimates

predict that Jx and Jy are approximately equal and are much stronger than Jz, corresponding to a quantum spin ice

ground state that is near the boundary between dipolar and octupolar symmetry [56, 57, 96–98]. Much work is spent

in fitting extrapolations and interpolations to the measured heat capacity and the corresponding recovered-entropy in

order to show the measurements can be simultaneously consistent with the expected recovered-entropy for a CEF

ground state doublet and the form of the specific heat expected at low temperature for a U(1) quantum spin ice [52,

93, 98, 125, 126].
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Our new polarized neutron diffraction measurements provide further evidence for quantum spin ice correlations at

low temperature in Ce2Zr2O7 and elucidate the significance of further-than-nearest neighbor magnetic interactions.

Specifically, the spin-flip channel of the measured scattering shows a snowflake-like signal that agrees reasonably-well

with predictions using our best-fitting nearest-neighbor exchange parameters, while the non-spin-flip channel shows

increased scattering at the Brillouin zone boundaries which is not present in calculations at the nearest-neighbor level.

We compare our new polarized neutron diffraction measurements on Ce2Zr2O7 with well-acclaimed polarized neutron

diffraction measurements that were taken on the classical spin ice Ho2Ti2O7 in Ref. [88] using the same diffraction

instrument.

Typically exchange parameters are estimated in the rare-earth pyrochlores by fitting the spin-wave spectra obtained

in inelastic neuron scattering experiments (see Refs. [35, 38, 59, 62–64] for examples), which requires the application of

a magnetic field in cases where the zero-field magnetic ground state is disordered and shows no well-defined spin waves.

In the case of Ce2Zr2O7, no well-defined spin waves (no sharp single-magnon excitations) are detected in either zero

or nonzero magnetic field as we mention in Publication II and show further in Publication III, and so the exchange

parameters must be estimated through other means as is done using the measured heat capacity and magnetic

susceptibility in Publication II, and extended in Publication III using higher-order calculations that yield best-fitting

exchange parameters that are near-identical to those in Publication II. Importantly and as mentioned in these works,

no well-defined spin waves are expected for the best-fitting exchange parameters obtained in Publications II and III

due to the partially-octupolar character of the Ce3+ pseudospins, consistent with our measurements on Ce2Zr2O7.

This paper was published two weeks before a similar work on Ce2Zr2O7 (Ref. [37]) in which the authors fit

the measured heat capacity and magnetization from Ref. [22] in order to yield separate estimates for the exchange

parameters than what we achieve through our work. The exchange parameters suggested in Ref. [37] are near to ours

in magnitude and in phase space but are clearly within the octupolar quantum spin ice region of the corresponding

ground state phase diagram [56, 57], whereas our parameters reside near the boundary separating quantum spin ices

with octupolar symmetry (of the emergent electric field) from those with dipolar symmetry. Despite this difference in

the estimates, the separate estimates in Ref. [37] and in Publication III complement each other well in that they both

suggest a π-flux quantum spin ice which is novel in the sense that the underlying two-in, two-out rule is a rare two-plus,

two-minus rule associated with the configurations of magnetic octupoles rather than dipoles (see Section 1.5.2). In

Publication III we plot our estimates for the nearest-neighbor exchange parameters and those from Ref. [37] on the

ground state phase diagram predicated for dipole-octupole pyrochlores at the nearest-neighbor level [56, 57]. In fact,

the nearest-neighbor exchange parameters suggested in Ref. [37] were arrived at through averaging parameter sets

determined using different fitting schemes, and one of the individual parameter sets from Ref. [37] agrees remarkably

well with our exchange parameters, as we further discuss in Chapter 3. We also compare our parameter estimates for

Ce2Zr2O7 to available estimates of the exchange parameters for Ce2Hf2O7 (Ref. [61]) and Ce2Sn2O7 (Refs. [30, 60,

124]) in Publication III of this thesis.

In addition to this estimation of the nearest-neighbor exchange parameters for Ce2Zr2O7, Bhardwaj et al.
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(Ref. [37]) also calculate the equal-time neutron scattering structure factor in the (H,H,L) plane and show that a

weak second-nearest neighbor interaction between magnetic dipole moments is able to generate the majority of the

finer details from the measured signals in Publication I and Ref. [22], which are unaccounted-for via calculations at the

nearest-neighbor level. This finding in Ref. [37], and our analysis of the polarized neutron diffraction signals measured

from Ce2Zr2O7 in Publication II, complement each other well in that they both point towards the significance of weak

further-than-nearest neighbor interactions at low temperature. The second-nearest-neighbor interaction parameter

estimated in Ref. [37] is antiferromagnetic as expected for the dipole-dipole interaction between second-nearest

neighbors in the pyrochlore lattice. However, this next-nearest-neighbor interaction estimated in Ref. [37] is ∼4

times stronger than the second-nearest-neighbor coupling predicted for the dipole-dipole interaction in Ce2Zr2O7

(see Table 1.3). This latter point highlights the remaining need for a further understanding of interactions beyond

nearest-neighbors in Ce2Zr2O7, which we discuss further in Section 4.2.

In this paper we discuss the different U(1) quantum spin liquid ground states known to be available to the

dipole-octupole pyrochlores and we do so while avoiding the terminology “quantum spin ice”. After gaining a better

appreciation for the implications of the dipole-octupole CEF ground state than we had in Publication I, we chose

this wording to avoid causing confusion between the U(1) quantum spin liquids that arise in the dipole-octupole

pyrochlores (described in Section 1.5) and the U(1) quantum spin ices that can be associated with the conventional

two-in, two-out rule described in Section 1.4. With that being said, the nomenclature used in the literature has since

evolved to accept these multipolar U(1) quantum spin liquids as new quantum spin ices [3, 30, 32, 52, 57, 61, 96, 99,

124], due to the many similarities between these multipolar U(1) quantum spin liquids and conventional quantum

spin ices, as outlined in Sections 1.5.2 and 1.5.3.

I contributed to Publication II by leading a polarized neutron scattering experiment and the corresponding prepa-

ration, cutting a single crystal sample for heat capacity measurements, preparing a sample for magnetic susceptibility

measurements, as well as taking part in the corresponding measurement process for the magnetic susceptibility. I

analyzed the entirety of the experimental data presented in the paper and appendices, which included writing a code

using the Python coding language in order to extract the recovered entropy from the measured heat capacity. I

performed cubic and exponential extrapolations to the measured heat capacity and further theoretical calculations

were performed by our collaborators as listed below. I synthesized powder samples of Ce2Zr2O7 and La2Zr2O7 and

performed x-ray characterization measurements on each sample used in this work. I was responsible for annealing

the Ce2Zr2O7 samples in hydrogen gas before each experiment and storing the samples in an inert atmosphere until

measurement. Finally, I designed and generated all-but-one of the figures included in this work and wrote ∼70% of

the text. The contributions of each author are summarized below.
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The Ce3þ pseudospin-1=2 degrees of freedom in the pyrochlore magnet Ce2Zr2O7 are known to possess
dipole-octupole character, making it a candidate for novel quantum spin liquid ground states at low
temperatures. We report new polarized neutron diffraction at low temperatures, as well as heat capacity
(Cp) measurements on single crystal Ce2Zr2O7. The former bears both similarities and differences with that
measured from the canonical dipolar spin ice compound Ho2Ti2O7, while the latter rises sharply at low
temperatures, initially plateauing near 0.08 K, before falling off toward a high temperature zero beyond
3 K. Above ∼ 0.5 K, the Cp dataset can be fit to the results of a quantum numerical linked cluster
calculation, carried out to fourth order, that allows estimates for the terms in the near-neighbor XYZ
Hamiltonian expected for such dipole-octupole pyrochlore systems. Fits of the same theory to the
temperature dependence of the magnetic susceptibility and unpolarized neutron scattering complement this
analysis. A comparison between the resulting best-fit numerical linked cluster calculation and the polarized
neutron diffraction shows both agreement and discrepancies, mostly in the form of zone-boundary diffuse
scattering in the non-spin-flip channel, which are attributed to interactions beyond near neighbors. The lack
of an observed thermodynamic anomaly and the constraints on the near-neighbor XYZ Hamiltonian
suggest that Ce2Zr2O7 realizes a Uð1Þπ quantum spin liquid state at low temperatures, and one that likely
resides near the boundary between dipolar and octupolar character.

DOI: 10.1103/PhysRevX.12.021015 Subject Areas: Condensed Matter Physics, Magnetism,
Strongly Correlated Materials

I. INTRODUCTION

The rare-earth pyrochlore oxides, R2B2O7, where R3þ is
a trivalent rare-earth ion and B4þ is a nonmagnetic
tetravalent transition-metal ion, display a wealth of both
exotic and conventional magnetic ground states. Their R3þ

ions decorate a network of corner-sharing tetrahedra, one of
the archetypes for geometrical frustration in three dimen-
sions, and this crystalline architecture underlies many of
their exotic properties [1]. A separation of energy scales,
with crystal electric field (CEF) effects dominating over
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exchange interactions, often results in a well-separated
CEF ground-state doublet for the R3þ ion and interacting
pseudospin-1=2 degrees of freedom at low temperatures
[2–4].
It is well appreciated that the CEF Hamiltonian deter-

mines both the size of the magnetic moment at the R3þ site
and its anisotropy, but less well appreciated that the
symmetry of the CEF ground state can imprint itself on
the exchange Hamiltonian [4–6]. The possible symmetries
of the ground-state doublets then lead to an important
classification of the rare-earth pyrochlores, which depends
on how their CEF doublet transforms under time-reversal
symmetry and the point group symmetry of the R3þ site.
Three classes of doublets arise, one for non-Kramers ions
with an even number of electrons and two for Kramers ions
with an odd number of electrons. The non-Kramers case
gives rise to a pseudospin wherein one component of the
pseudospin transforms as a magnetic dipole and two
transform as quadrupoles. For Kramers ions, we have
the familiar case where all three components of the
pseudospin in the ground-state doublet transform as mag-
netic dipoles, as well as the more exotic one where two
components transform as magnetic dipoles and one trans-
forms as an octupole. This latter case is known to describe
the CEF Kramers ground state of 4f1 Ce3þ in Ce2Zr2O7

[7,8], a dipole-octupole (DO) ground-state doublet, and
also that of its sister pyrochlore, Ce2Sn2O7 [9]. Figure 1(a)
pictorially displays the magnetic charge distributions asso-
ciated with both magnetic dipoles and octupoles decorating
the tetrahedra on part of a cubic pyrochlore lattice. As
discussed above, for the dipole-octupole doublets relevant
to Ce2Zr2O7, a single component of the pseudospin-1=2
degree of freedom (the y component) behaves as an
octupole, while the x and z components behave as dipoles

under the symmetry of the lattice and time-reversal sym-
metry, as schematically illustrated in Fig. 1(b).
Such DO doublets decorating pyrochlore lattices are

theoretically known to allow for at least six distinct
quantum disordered and ordered ground states, with three
in each of the dipole and octupole sectors [10–12]. Recent
neutron scattering measurements on single crystal
Ce2Zr2O7 have uncovered a signal that strongly resembles
predictions for the energy integration of emergent photon
excitations in a U(1) quantum spin ice [7], while recent
experiments on powder samples of Ce2Sn2O7 have been
interpreted in terms of a U(1) quantum spin ice ground state
in the octupole sector [9].

II. OUTLINE OF THE PAPER

In this paper, we present new polarized neutron diffrac-
tion and heat capacity measurements on single crystal
Ce2Zr2O7. The former bears both similarities and
differences with that measured from the canonical dipolar
spin ice compound, Ho2Ti2O7, while the latter shows no
sign of a thermodynamic phase transition above
T ¼ 0.06 K. Cp rises sharply at low temperatures, initially
plateauing near 0.08 K, before falling off toward a high
temperature zero beyond 3 K, consistent with previous
measurements [8]. We have modeled the high temperature
Cp and the powder-averaged magnetic susceptibility using
quantum numerical linked cluster (NLC) expansions. This
allows us to estimate and constrain the parameters of the
anticipated near-neighbor XYZ Hamiltonian. To the extent
that interactions beyond near neighbor do not alter ground
state selection, we constrain the nature of the ground state
itself, with the results indicating a Uð1Þπ quantum spin
liquid (QSL) ground state is selected at low temperature.
We use the resulting near-neighbor exchange parameters

to calculate the equal-time spin-flip (SF) and non-spin-flip
(NSF) structure factors in the ½HHL� scattering plane. This
calculation resembles the new polarized neutron diffraction
measurements in the SF channel from single crystal
Ce2Zr2O7, but cannot account for the observed zone-
boundary diffuse scattering in the NSF channel. We
attribute this discrepancy to interactions beyond near
neighbor in the Hamiltonian, which are expected to be
small, and a full study of which is beyond the scope of our
present work. The same discrepancy exists for spin-polar-
ized neutron diffraction from Ho2Ti2O7, where it was
ascribed to expected long-range dipolar interactions [13].
NLC calculations using the same near-neighbor exchange
Hamiltonian were also carried out to seventh order. While
these agree with the fourth-order calculations above
∼0.5 K, they depart from the measured Cp at lower
temperatures. We interpret this as arising from the same
interactions beyond near neighbor in Ce2Zr2O7 that were
revealed by the NSF zone-boundary scattering. As these are
relatively weak, they only manifest themselves at low
temperatures.

FIG. 1. (a) The magnetic charge distributions associated with
octupoles (left) and dipoles (right) are depicted at the vertices of
five corner-sharing tetrahedra, making up part of the pyrochlore
lattice. (b) Octupolar and dipolar components inhabit the same
Ce3þ pseudospin-1=2 degrees of freedom in Ce2Zr2O7, such that
y components behave as octupoles, while the x and z components
of each pseudospin-1=2 behave as dipoles, as schematically
illustrated here using the magnetic charge distributions associated
with different directions of pseudospin in the yz plane.

E. M. SMITH et al. PHYS. REV. X 12, 021015 (2022)

021015-2

Ph.D. Thesis - E.M. Smith McMaster University - Physics and Astronomy

65



A further consistency check is carried out via semi-
classical Monte Carlo and molecular spin dynamics using
the best-fit near-neighbor Hamiltonian. This calculation
accounts for the energy dependence of the inelastic spectral
weight making up the diffuse scattering at low temperatures
without further adjustment of the NLC-determined near-
neighbor Hamiltonian. We further show that the full R lnð2Þ
entropy of the DO ground-state doublet can be accounted
for to 10 K with a smooth extrapolation of Cp from the
lowest temperature data point at T ¼ 0.06 K, to zero at
T ¼ 0 K, using a theoretical form which is simultaneously
consistent with both the expected behavior of a U(1) QSL at
low temperature and the high temperature limit of the NLC
calculations. Interestingly, the Pauling, classical spin ice
entropy R lnð2Þ less ðR=2Þ lnð3

2
Þ is recovered from the peak

in the Cp data at ∼0.08 K, to 10 K.

III. POLARIZED NEUTRON DIFFRACTION

We have carried out new polarized diffraction measure-
ments on single crystal Ce2Zr2O7 using the D7 diffrac-
tometer at the Institute Laue Langevin [14]. This
diffractometer employs a spin-polarized monochromatic
incident beam, which was Ei ¼ 3.47 meV for this experi-
ment. This configuration effectively integrates over
−15 meV ≲ E< 3.47 meV during the course of a diffrac-
tion measurement, giving a signal that is directly propor-
tional to the equal-time structure factor. A single
polarization direction, perpendicular to the ½HHL� scatter-
ing plane, was employed, and as such the spin-flip and non-
spin-flip diffuse scattering profiles can be independently
measured. The diffuse scattering associated with these two
cross sections, SF and NSF, are shown in the ½HHL�
scattering plane for Ce2Zr2O7 in Figs. 2(a) and 2(b), res-
pectively for the temperature-difference dataset T ¼
0.045 K − T ¼ 10 K. For comparison, the corresponding
SF and NSF diffuse scattering patterns as measured on
single crystal Ho2Ti2O7 at T ¼ 1.7 K are shown in
Figs. 2(c) and 2(d), respectively [13]. These earlier spin-
polarized diffuse scattering measurements on Ho2Ti2O7

(Ref. [13]) played a formative role in the development of
classical spin ice physics, as they drew clear attention to
“pinch point” scattering within the SF cross section at
(0,0,2) and (1,1,1) and equivalent wave vectors, due to the
presence of a classical Coulomb phase at low temperature.
These measurements on Ho2Ti2O7 also observed zone-
boundary diffuse scattering in the NSF channel, which was
later attributed to the long-range dipolar interactions
relevant to the large Ho3þ dipole moments.
The comparison between the spin-polarized diffuse

scattering from Ce2Zr2O7 and Ho2Ti2O7 in Fig. 2 is
interesting both in what is similar and where the discrep-
ancies between the two materials lie. One may note,
however, that the comparison is made at quite different
temperatures, 0.045 K for Ce2Zr2O7 but only 1.7 K for

Ho2Ti2O7. In fact, the large Ho3þ moments and effective
ferromagnetic coupling cause Ho2Ti2O7 to depolarize the
beam at lower temperatures, whereas no such issue is
present for Ce2Zr2O7 due to its much smaller Ce3þ
moments. Quasi-pinch-point SF scattering is observed near
(0,0,2) Bragg positions for Ce2Zr2O7, but it is not as
constricted as that observed at (0,0,2) for Ho2Ti2O7, even
though the earlier measurements on Ho2Ti2O7 were taken
at much higher temperature. Furthermore, while diffuse SF
scattering extends out in (1,1,1) and equivalent directions in
a snowflakelike pattern for Ce2Zr2O7, pinch points appear
to be absent in these directions.
In contrast, and somewhat surprisingly, the observed

NSF diffuse scattering from Ce2Zr2O7 is quite similar to
that measured from Ho2Ti2O7. In both cases the diffuse
scattering tends to follow the face-centered cubic Brillouin
zone boundaries, outlined in gray in Fig. 2(b). For
Ho2Ti2O7, this was ascribed to interactions beyond near
neighbor [13], which was not surprising, given that dipolar
interactions are expected to dominate over exchange
interactions even for near neighbors in Ho2Ti2O7.
However, the Ce3þ moments are ∼8 times smaller than
those of Ho3þ and hence dipolar interactions are expected
to be ∼64 times smaller in Ce2Zr2O7. We revisit our new
polarized neutron diffraction data in Sec. V, where we

FIG. 2. The symmetrized T ¼ 45 mK − T ¼ 10 K tempera-
ture-difference neutron signal measured in the (a) SF and (b) NSF
channels of our polarized neutron diffraction experiment on
Ce2Zr2O7 . The (c) SF and (d) NSF scattering signals in the
½HHL� plane measured in a polarized neutron scattering experi-
ment on Ho2Ti2O7 at T ¼ 1.7 K [13]. The data in this figure are
shown in arbitrary units.
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compare the measured SF and NSF signals to NLC
calculations using the near-neighbor exchange parameters
yielded in this work.

IV. ESTIMATING THE NEAR-NEIGHBOR
EXCHANGE PARAMETERS IN THE SPIN

HAMILTONIAN

The gold standard for determining the microscopic spin
Hamiltonian of magnetic materials is inelastic neutron
scattering studies of spin wave spectra. This technique
can and has been successfully applied to pyrochlore
magnets with pseudospin-1=2 degrees of freedom arising
from well-separated ground-state CEF doublets, including
Yb2Ti2O7 and Er2Ti2O7 [15–20]. For disordered ground
states, it is necessary to perform measurements in a
sufficiently strong magnetic field, so as to polarize the
ground state, thus giving rise to well-defined spin wave
spectra. However, this is not always possible. For example,
the classical spin ice ground state as appears in Ho2Ti2O7

does not allow transverse spin fluctuations; hence, no well-
defined spin wave excitations are observed due to Ho3þ’s
non-Kramers CEF doublet eigenvectors [21]. No evidence
for well-defined spin waves has been observed to date in
either zero or nonzero magnetic field in Ce2Zr2O7, a likely
consequence of the form of Ce3þ ’s DO CEF ground-state
doublet and spin Hamiltonian. Hence estimates for the
microscopic spin Hamiltonian parameters for such materi-
als can only come from sophisticated modeling of other
data, such as the high temperature thermodynamic data
presented here. We note that a related work has appeared
coincident with this paper which performs independent
modeling of heat capacity, magnetization, and neutron
scattering measurements on Ce2Zr2O7, and reaches similar
conclusions [22].

A. Introduction to the exchange parameters
in the XYZ Hamiltonian

The near-neighbor XYZ Hamiltonian appropriate
to DO pyrochlores in a magnetic field may be written
as [5,6]

HXYZ ¼
X
hiji

½Jx̃Six̃Sjx̃ þ JỹSiỹSjỹ þ Jz̃Siz̃Sjz̃�

− gzμB
X
i

h · ẑiðSiz̃ cos θ þ Six̃ sin θÞ: ð1Þ

In this equation, Siα̃ (α ¼ x̃, ỹ, z̃) are the pseudospin
components of atom i in the local x̃, ỹ, z̃ coordinate frame.
This coordinate frame arises from rotation of the local x, y,
z coordinate frame, with the z anisotropy axis connecting
near-neighbor tetrahedra in the pyrochlore structure, by θ
about the y axis [5,6]. The magnetic field is denoted as h,
and ẑi is the local anisotropy axis for the site i. The g factor
gz is fixed by the wave functions of the lowest CEF doublet,

giving gz ¼ 2.57 for Ce3þ [7–9]. Sx̃i and Sz̃i are distin-
guished from Sỹi by how they transform under the point
group of the lattice and time-reversal symmetry. Sx̃i and Sz̃i
transform like a magnetic dipole while Sỹi transforms like a
component of the magnetic octupole tensor, as schemati-
cally illustrated in Fig. 1.
The nearest-neighbor exchange Hamiltonian in Eq. (1)

has only three independent exchange parameters
ðJx̃; Jỹ; Jz̃Þ in zero magnetic field. Theory has predicted
the ground-state phase diagram for such a zero-field XYZ
Hamiltonian, uncovering both quantum spin liquid as well
as ordered ground states [10,11]. Each of these can have
either dipolar or octupolar nature. A QSL phase has
octupolar nature if jJỹj > jJx̃j; jJz̃j and dipolar nature if
jJz̃j > jJỹj or jJx̃j > jJỹj. An ordered phase has octupolar
nature if Jỹ < Jx̃; Jz̃ and dipolar nature if Jz̃ < Jỹ or
Jx̃ < Jỹ. One final classification comes about for U(1)
QSL ground states, based on whether the U(1) flux that
penetrates the hexagonal plaquettes embedded in the
pyrochlore structure is equal to 0 or π. This leads to a
distinction between Uð1Þ0 and Uð1Þπ QSLs. The afore-
mentioned theoretical studies then uncover six phases
within the ground-state phase diagram: all-in, all-out
(AIAO) order, Uð1Þ0 QSL, and Uð1Þπ QSL, each of which
can have dipolar or octupolar nature. A separate theory
study has provided evidence for a small portion of the
ground-state phase diagram corresponding to a Z2 QSL
phase [12]. It is worth noting that inter-Ce3þ interactions
beyond near neighbor are allowed, but are expected to be
weak. Long-range, three-dimensional dipolar interactions
must be present in Ce2Zr2O7; however, they are expected to
be weak due to the small dipole moment associated with
the Ce3þ CEF ground-state doublet in Ce2Zr2O7 [7,8].
Exchange interactions beyond near neighbor are also
expected to be weak due to the localized nature of 4f
electron wave functions in rare-earth insulators.

B. Heat capacity and numerical linked
cluster calculations

The single crystal and powder samples of Ce2Zr2O7 used
in this study are from the same growth and synthesis
employed in Ref. [7]. As reported there, stabilizing the
Ce3þ oxidation state in Ce2Zr2O7 requires growth and
annealing in strong reducing conditions to minimize the
Ce4þ content. The amount of sample oxidation (the value of
δ in Ce3þ2−2δCe

4þ
2δ Zr2O7þδ) can be tracked through x-ray

diffraction measurements of the lattice parameter [23], and
we estimate an oxidation level of δ ∼ 0.05 for the single
crystal samples in the present work. Heat capacity mea-
surements on a polished single crystal were carried out on a
Quantum Design PPMS with dilution insert using the
conventional quasiadiabatic thermal relaxation technique.
Heat capacity measurements were performed on our

single crystal Ce2Zr2O7 sample, along with a polycrystalline
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sample of La2Zr2O7 (see the Appendix A), which is used as
a 4f0 analog of Ce2Zr2O7. The results are shown in Fig. 3,
where the temperature axis is logarithmic. Cp results on
another Ce2Zr2O7 single crystal from Ref. [8] are also
overlaid for ease of comparison. One can see that the phonon
contribution to Cp, as measured from the La2Zr2O7 sample,
is negligible below ∼10 K, and thus Cmag is easily isolated.
These results show thatCmag rises on decreasing temperature
below ∼3 K, and then drops off sharply below ∼0.08 K,
consistent with the earlier measurements (Ref. [8]) and a
disordered ground state, as no sharp features associated with
a phase transition can be identified.
The order of the quantum NLC calculations, which were

used to model the experimental results, refers to the
maximum number of tetrahedra considered in a cluster.
We have carried out NLC calculations for orders of 7 and
less to model the magnetic heat capacity at temperatures
above an order-dependent threshold. This threshold is set
by the temperature above which the nth-order calculation
for a particular set of near-neighbor exchange parameters is
consistent with the corresponding (n − 1)th-order calcula-
tion. NLC calculations become progressively more time-
consuming to carry out at higher order. For this reason,
calculations of the high temperature Cmag with varying
exchange parameters were carried out only to order 4, while
calculations of other observables [integrated SðQ; TÞ and
susceptibility] were calculated at lower order. NLC calcu-
lations at order 7, the highest order reported here, were
carried out for Cmag with a single set of exchange couplings

only. Going beyond sixth order is significant, because this
is the first order at which the expansion contains non-
trivial loops.
At temperatures of T ∼ 0.5 K and above, the measured

Cmag data can be compared with fourth-order NLC (NLC-
4) calculations for Cmag in order to model and constrain
Ce2Zr2O7’s microscopic near-neighbor Hamiltonian. As
the zero-field heat capacity contains no directional infor-
mation, we define a new set of axes, fa; b; cg, to be the
permutation of fx̃, ỹ, z̃g such that jJaj ≥ jJbj; jJcj and
Jb ≥ Jc. This allows for a unique fit to Cmag but does not
specify which values correspond to which exchange con-
stants. Accordingly, the fit does not distinguish between
the octupolar or dipolar nature of the ground state.
Nonetheless, knowledge of Ja, Jb, and Jc suffices to
determine whether the ground state is an ordered phase
or a QSL phase [10].
This Ja, Jb, Jc Hamiltonian can also be written in terms

of raising and lowering operators with respect to Sia, giving

HABC ¼
X
hiji

½JaSiaSja þ JbSibSjb þ JcSicSjc�

¼
X
hiji

½JaSiaSja − J�ðSiþSj− þ Si−SjþÞ

þ J��ðSiþSjþ þ Si−Sj−Þ� ð2Þ
in zero field, where J� ¼ − 1

4
ðJb þ JcÞ, J�� ¼ 1

4
ðJb − JcÞ.

The set of exchange parameters ðJa; Jb; JcÞ best repro-
ducing Cmag was obtained from a fourth-order NLC
calculation with an Euler transformation to improve con-
vergence. Heat capacity curves were calculated for values
of −1 ≤ Jb ≤ 1 and −1 ≤ Jc ≤ Jb in increments of 0.01,
with Ja ¼ 1. Each curve was then rescaled for best
agreement with experiment to determine the value of Ja,
according to the goodness-of-fit measure hδ2=ϵ2iCmag ∝Pf½CNLC

mag ðTexptÞ − Cexpt
magðTexptÞ�2=ϵðTexptÞ2g, where the

sum is over measured temperatures Texpt above the low
temperature threshold ð0.7JaÞ=kB, restricting the fit to the
regimewhere the NLC calculations converge, and ϵðTexptÞ is
the experimental uncertainty on the heat capacity at temper-
ature Texpt. The values of hδ2=ϵ2iCmag over the entire phase
space, after optimization of the scale Ja for each parameter
set, are shown in Fig. 4(a). This displays two extended
regions in which there is good agreement with the exper-
imental Cmag. Both regions are entirely within one single
phase in the predicted ground-state phase diagram for the
near-neighbor XYZ model Hamiltonian [Fig. 4(b)] [10].
Some parameter sets within these regions can however

be excluded due to their inability to describe the exper-
imental magnetic susceptibility data. This is shown in
Fig. 5 and explained in further detail in Sec. IV C. The
best fits within each region which are also consistent with
the susceptibility data are found at the points ðJa; Jb; JcÞ ¼
ð0.064; 0.063; 0.011Þ and ð0.089;−0.007;−0.027Þ meV,

FIG. 3. The magnetic contribution to the heat capacity (Cmag)
for the Ce2Zr2O7 single crystal measured in the present work
(blue) and in previous work by Gao et al. (red) [8]. The phonon
contribution to the heat capacity, estimated from measurements
on a La2Zr2O7 sample (green), was removed from Cp to obtain
Cmag. The inset shows the best-fit simple exponential and cubic
extrapolations to T ¼ 0 K for the present Ce2Zr2O7 Cmag. An
exponential extrapolation, with an energy gap of ∼0.035 K, can
smoothly connect to the finite temperature data, while a cubic
extrapolation cannot.
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which we label as A and B, respectively. In Fig. 4(b) we
overplot the optimal exchange parameters on top of the
predicted ground-state phase diagram for the near-neighbor
XYZ model Hamiltonian [10]. The set A (B) exchange
parameters reside within the region corresponding to the
π-flux U(1) QSL (ordered phase). Of these two parameter
sets, parameter set A gives a better fit to the heat capacity.
The calculated Cmag’s using the fourth-order NLC with sets
A and B are shown in Fig. 6.
The fourth-order NLC Cmag calculation and fit was

redone assuming 5% vacancies, and hδ2=ϵ2iCmag again
shows two locally optimal regions of parameter space. The
best-fitting parameter sets that are also able to describe the
measured susceptibility, A0 and B0, are very near to A and B
in parameter space, respectively (see Appendix B). The
global (local) minima at A0 (B0) lies within the region
corresponding to the π-flux U(1) QSL (ordered phase). We
therefore conclude that these results are robust to the
presence of at least 5% Ce4þ in Ce2Zr2O7.
Seventh-order NLC (NLC-7) calculations for Cmag con-

verge above∼0.2 K, and these have been carried out for the

FIG. 4. (a) The goodness-of-fit parameter (hδ2=ϵ2iCmag) for the
fourth-order NLC calculation compared to the measured Cmag, as
a function of the exchange parameters, Ja, J� ¼ − 1

4
ðJb þ JcÞ,

and J�� ¼ 1
4
ðJb − JcÞ. This displays two local minima of

hδ2=ϵ2iCmag. The best-fit parameters are labeled as parameter
set A and parameter set B. The global minimum corresponds to
set A while set B is only locally optimal. (b) The best-fit
parameters from the NLC calculations (A and B) overlaid on
the zero-field ground-state phase diagram predicted for the XYZ
model Hamiltonian and DO pyrochlores [10]. The set A
exchange parameters are well within the region of the phase
diagram that is attributed to the Uð1Þπ QSL, while the set B
parameters are well within the region attributed to an ordered
ground state.

FIG. 5. The regions of the XYZ phase diagram for which it is
possible to obtain simultaneous reasonable NLC descriptions of χ
and Cmag are indicated in green and yellow for ðJx̃; Jỹ; Jz̃Þ equal
to the different permutations of ðJa; Jb; JcÞ. We define the
thresholds for reasonable χ and Cmag descriptions in Appendix C.
Specifically, we show the regions of simultaneous χ and Cmag

descriptions for the permutation in which ðJx̃; Jỹ; Jz̃Þ is equal to
(a) ðJa; Jb; JcÞ, (b) ðJc; Ja; JbÞ, (c) ðJb; Ja; JcÞ, and
(d) ðJa; Jc; JbÞ. The overall best-fit A parameters require that
ðJx̃; Jỹ; Jz̃Þ is equal to ðJa; Jb; JcÞ or ðJb; Ja; JcÞ; that is, Jz̃ ¼ Jc.

FIG. 6. The results of the fourth-order NLC Cmag calculation
for zero sample oxidation, using the near-neighbor exchange
parameters Ja ¼ 0.064 meV, Jb ¼ 0.063 meV, Jc ¼ 0.011 meV
(set A) and Ja ¼ 0.089 meV, Jb ¼ −0.007 meV, Jc ¼
−0.027 meV (set B), overlaid on top of the measured Cmag for
our Ce2Zr2O7 sample. The inset shows the results of the seventh-
order NLC Cmag calculation for zero sample oxidation, using the
set A near-neighbor exchange parameters.
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optimal, set A, near-neighbor exchange parameters, as
shown in the inset of Fig. 6. These higher-order calcu-
lations are consistent with the NLC-4 calculations above
∼0.5 K. However, at temperatures between ∼0.2 and
∼0.5 K, the NLC-7 calculations do not quantitatively
describe the measured Cmag. We attribute this to inter-
actions not included in the XYZ Hamiltonian [Eqs. (1) and
(2)], those beyond near neighbor, which are relatively weak
and therefore only manifest themselves at the lowest tem-
peratures. This is also consistent with the zone-boundary
diffuse scattering observed in the NSF structure factor
discussed above and shown in Fig. 2. Including the next-
nearest-neighbor part of the dipole-dipole interaction in the
NLC-7 calculation did not significantly improve the agree-
ment between theory and experiment, suggesting that either
dipole-dipole interactions beyond next-nearest-neighbor or
additional exchange interactions are important.

C. DC magnetic susceptibility

While the zero-field Cmag contains no directional
information, the temperature-dependent dc magnetic sus-
ceptibility (χ) does because it is sensitive to the magnetic
moment, which distinguishes between pseudospin compo-
nents. Specifically, χ is dependent on the values of Jx̃, Jỹ,
Jz̃, and θ. A second-order NLC expansion (NLC-2) is
used to calculate χ (see Appendix C). Specifically, we use

NLC-2 to fit measurements of χ from a powder sample of
Ce2Zr2O7 in order to narrow down the possible parameter
sets and to distinguish between possible permutations of
the exchange parameters.
As mentioned above, some parameter sets within the

region of good agreement for Cmag cannot be made to agree
with χ, for any choice of θ or permutation of parameters,
and are therefore excluded. Figure 5 shows the regions of
the phase diagram for which it is possible to obtain
simultaneous agreement with Cmag and χ, for ðJx̃; Jỹ; Jz̃Þ
equal to the different permutations of ðJa; Jb; JcÞ.
For the B parameters, we can rule out the possibility of Jz̃

being the largest exchange parameter, and we find different
optimal values of θ for the remaining permutations. For the
A parameter set, and all nearby parameter sets for which a
good fit can be found, the results of the NLC-2 fitting to χ
suggest that θ ∼ 0 and that Jz̃ is the weakest exchange
parameter, as Figs. 5 and 7 demonstrate. Accordingly, the
only allowed permutations of exchange parameters from
the A set satisfy Jx̃ ∼ Jỹ, implying that Ce2Zr2O7 resides
near the boundary between dipolar and octupolar nature.

V. CONSISTENCY OF ESTIMATED EXCHANGE
PARAMETERS WITH NEUTRON

SCATTERING RESULTS

The combined analyses of the measured Cmag and χ give
experimental estimates for the near-neighbor exchange
constants for Ce2Zr2O7, yielding θ ∼ 0 and ðJx̃; Jỹ; Jz̃Þ ¼
ð0.064; 0.063; 0.011Þ meV or ðJx̃; Jỹ; Jz̃Þ ¼ ð0.063; 0.064;
0.011Þ meV. While neutron scattering measurements were
not modeled in order to constrain the microscopic spin
Hamiltonian for Ce2Zr2O7, it is interesting and important to
see to what extent the measured neutron scattering from
Ce2Zr2O7 is consistent with calculations using the near-
neighbor spin Hamiltonian so derived.

A. Elastic neutron scattering

The Uð1Þπ ground state, determined by these best-fitting
near-neighbor exchange parameters, is consistent with the
nature of the previously reported diffuse inelastic neutron
scattering from single crystals of Ce2Zr2O7 [7,8].
Additionally, the earlier neutron scattering work is incon-
sistent with an ordered state, at least in the dipolar sector, as
magnetic Bragg peaks would be expected. We have
revisited our earlier elastic neutron scattering data to place
an upper limit on possible AIAO dipole order in the ground
state of Ce2Zr2O7, the form expected to reside within the
XYZ DO pyrochlore phase diagram. We conclude that no
such AIAO dipole order occurs in Ce2Zr2O7, with an upper
limit on the Ce3þ ordered moment of μordered ≤ 0.04μB (see
Appendix D).

B. Polarized neutron diffraction

We can also compute the spin-flip and non-spin-flip
structure factors using this best-fitting A parameter set and

FIG. 7. The measured powder magnetic susceptibility data
plotted alongside the second-order NLC-calculated susceptibility
for values of θ between 0 and π=4, and for ðJx̃; Jỹ; Jz̃Þ equal
to the two permutations of the A parameters that are
able to provide a reasonable fit to the data. Specifically, we
show calculations for values of θ given by θ ¼ 0 (red), θ ¼ π=8
(yellow), and θ ¼ π=4 (green). This shows that the NLC calcu-
lations for the magnetic susceptibility agree well with the data
when ðJx̃; Jỹ; Jz̃Þ ¼ ð0.064; 0.063; 0.011Þ meV, or ðJx̃; Jỹ; Jz̃Þ ¼
ð0.063; 0.064; 0.011Þ meV, so long as the value of θ is near
θ ¼ 0. The ðJx̃;Jỹ; Jz̃Þ ¼ ð0.063;0.064;0.011ÞmeV calculations
are shifted upward by 0.1 emu Oe−1 ðmolCeÞ−1 for visibility.
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compare with the polarized neutron diffraction measure-
ments on an annealed single crystal sample of Ce2Zr2O7

shown in Sec. III. The calculations are carried out at
T ¼ 0.5 K (see Appendix E), as that is the lowest tem-
perature for which the NLC-3 calculation converges,
while the new polarized neutron diffraction measurements
were performed at lower temperatures, T ¼ 0.045 K.
Nonetheless, we assume that this calculation will capture
most of the features at lower temperatures, as the ground
state is disordered.
The measured (NLC-calculated) SF scattering in the

½HHL� scattering plane is shown in Fig. 8(a) [Fig. 8(b)] and
the measured (NLC-calculated) NSF scattering in the
½HHL� scattering plane is shown in Fig. 8(c) [Fig. 8(d)].
The comparison between measurement and theory for the
SF channel in Figs. 8(a) and 8(b) is good, although sharper
features are present in the lower temperature, SF polarized
diffraction, such as the broad pinch point scattering near
(0,0,2). The measured NSF structure factor in the ½HHL�
scattering plane [Fig. 8(c)] shows intensity that is maximal

along Brillouin zone boundaries [shown as gray lines in
Fig. 8(c)] and minimal at zone centers. As discussed in
Sec. III, this zone-boundary scattering is similar to that
measured in the NSF channel of polarized neutron dif-
fraction measurements on Ho2Ti2O7, shown in Fig. 2(d)
[13], and associated with interactions beyond the nearest
neighbor. The calculated NSF structure factor is feature-
less for the near-neighbor-only XYZ spin Hamiltonian
employed here, with a Q dependence originating from the
Ce3þ magnetic form factor only, as Fig. 8(d) illustrates.

C. Inelastic neutron scattering from
powder samples

Low energy, unpolarized inelastic neutron scattering
measurements were performed on powder samples of
Ce2Zr2O7 as shown in Figs. 9(a)–9(c); this shows the
temperature-difference neutron scattering spectra measured
for a T ¼ 0.06, 0.5, and 3 K dataset with a T ¼ 9.6 K
dataset used as background. These measurements were
taken on the low energy disk chopper spectrometer neutron
instrument at NIST Center for Neutron Research with Ei ¼
3.27 meV incident neutrons giving an energy resolution of
∼0.09 meV at the elastic line. This larger dataset was

FIG. 8. (a) The symmetrized T ¼ 45 mK − T ¼ 10 K temper-
ature-difference neutron signal measured in the SF channel of our
polarized neutron diffraction experiment. (b) The NLC-calculated
equal-time structure factor for SF scattering in the ½HHL� plane at
T ¼ 0.5 K with a T ¼ 10 K temperature subtraction. (c) The
symmetrized T ¼ 45 mK − T ¼ 10 K temperature-difference
neutron signal measured in the NSF channel of our polarized
neutron diffraction experiment. The gray lines show the Brillouin
zone boundaries. (d) The NLC-calculated equal-time structure
factor for NSF scattering in the ½HHL� plane at T ¼ 0.5 K with a
T ¼ 10 K temperature subtraction. Both (b) and (d) are calcu-
lated using the experimental estimates for the A near-neighbor
exchange parameters yielded in this work (see main text).

FIG. 9. The measured inelastic neutron scattering from an
annealed powder sample of Ce2Zr2O7 is shown in panels (a)–(c)
for temperature-subtracted data relative to T ¼ 9.6 K. The
corresponding powder-averaged neutron scattering structure
factors [SðjQj; E; TÞ] calculated from semiclassical molecular
dynamics calculations based on Monte Carlo simulations
using near-neighbor exchange parameters from the A regime,
ðJx̃; Jỹ; Jz̃Þ ¼ ð0.064; 0.063; 0.011Þ meV, are shown in panels
(d)–(i). The temperatures of the measured and calculated datasets
(T ¼ 0.06, 0.5, and 3 K) and the θ values used in the calculations
(θ ¼ 0 and π=2) are as indicated in the individual panels.
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previously discussed in Ref. [7] and we perform two sets of
analyses with this dataset. First, in Fig. 10, we examine the
temperature dependence of the measured and calculated
integrated intensities for the T ¼ 9.6 K temperature sub-
traction, with integration in energy transfer over the range
E ¼ ½−0.2; 0.4� meV and integration in scattering vector
over the range jQj ¼ ½0.46; 0.93� Å−1. This integration
range was chosen to enclose the dominant portion of the
measured magnetic intensity, while avoiding nuclear Bragg
peaks. The NLC calculations are carried out to third order
(see Appendix F). For the A (B) exchange parameters, we
use θ ¼ 0 (0.561 rad), but it is important to note that there is
no choice of θ for which the calculations using the B
parameters agree with the temperature dependence of the
experimental data over the range jQj ¼ ½0.46; 0.93� Å−1.
We also compare these measurements with the corre-

sponding spectra obtained via semiclassical molecular
dynamics (MD) calculations based on Monte Carlo
simulations (see Appendix H) using the near-neighbor
exchange parameters from the A regime, ðJx̃; Jỹ; Jz̃Þ ¼
ð0.064; 0.063; 0.011Þ meV, for θ ¼ 0 [Figs. 9(d)–9(f)] and
θ ¼ π=2 [Figs. 9(g)–9(i)].
The temperature dependence of the measured signal is

most consistent with that obtained from the semiclassical
MD and Monte Carlo simulations using ðJx̃; Jỹ; Jz̃Þ ¼
ð0.064; 0.063; 0.011Þ meV when θ ¼ 0. Furthermore, the
energy dependence of the predicted signal is only

consistent with the measured data for values of θ near
θ ¼ 0; as θ increases from θ ¼ 0 to θ ¼ π=2, the spectral
weight in the simulated signal shifts from E ∼ 0.1 meV to
E ∼ 0 meV, as illustrated in Figs. 9(d) and 9(g).

VI. DISCUSSION

A. Low temperature heat capacity and entropy

The new Cp measurements also provide better definition
of the low temperature Cmag, below ∼0.1 K, where Cmag

falls off sharply toward zero. The lowest-temperature data
points can be used to model how Cmag approaches zero at
T ¼ 0 K. This is interesting to do because an extrapolation
of Cmag below experimentally accessible temperatures to
T ¼ 0 K allows us to evaluate the entropy SmagðTÞ ¼R
T
0 ðCmag=TÞdT.
The two simple forms for the low temperature Cmag, an

exponential form and a cubic form, are shown in the inset of
Fig. 3. Both forms are too simple to be related to the spin
Hamiltonian or Uð1Þπ ground state in any sophisticated
manner; however, one can smoothly extrapolate the low
temperature Cmag data to zero using an exponentially
activated form. A simple power law, such as the cubic
form in the inset of Fig. 3, does not smoothly meet up with
the low temperature data at the lowest measured temper-
ature, T ¼ 0.058 K; doing so would require a nonphysical
sublinear Cmag at the lowest temperatures. A cubic extrapo-
lation was used in the previous work on the Cmag of
Ce2Zr2O7 (Ref. [8]); however, our new results, consistent
with the previous measurements, show that such a low
temperature extrapolation is inappropriate.
The cubic form would be appropriate for emergent

gapless photon excitations associated with U(1) QSLs
[5,12,24]. However, depending on the speed of light for
these emergent photons, their T3 contribution may only
enter at very low temperatures [25]. Furthermore, the
bending of the photon dispersion toward the zone boun-
dary, combined with contributions from gapped spinons
and visons, can easily mimic the exponentially activated
form at intermediate temperatures. Interactions between
visons and photons can also cause the photons to develop
an effective temperature-dependent gap [26]. To address
these subtleties, we use a low T form for Cmag which is
based on an interpolation scheme connecting the T >
∼0.5 K Cmag regime described by the NLC calculations,
and hence consistent with the proposed spin Hamiltonian,
to a low temperature form consistent with a T3 Cmag from
U(1) emergent photons at sufficiently low temperatures.
This involves an interpolation scheme for Cmag and Smag

following the method of Padé approximants in Ref. [27]
(see Appendix I). The resulting theoretical curve, now
covering all temperatures, is shown as the solid line in
Figs. 11(a) and 11(b). Clearly the low temperature portion
of this curve smoothly connects to the low temperature

FIG. 10. The results of the NLC SðQ; TÞ calculation to third
order using the A and B exchange parameters, overlaid on top of
the measured neutron scattering intensity from our Ce2Zr2O7

sample. Here we compare the temperature dependence of the
measured and calculated integrated intensities for the T ¼ 9.6 K
temperature subtraction, with integration over the energy-transfer
range E ¼ ½−0.2; 0.4� meV and integration in wave vector over
the range jQj ¼ ½0.46; 0.93� Å−1. The temperature dependence of
the NLC-calculated integrated SðQ; TÞ agrees well with that of
the measured data when using parameter set A, but clearly does
not for set B.
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Cmag data. The point of this exercise is to provide a
physically motivated form of Cmag which extrapolates
smoothly between the lowest-temperature Cmag data point
and zero at T ¼ 0 K.
With a good minimal description of Cmag for Ce2Zr2O7

at the lowest temperatures in place, we can look to
account for the entropy associated with the DO doublet,
which must be R lnð2Þ, as this ground-state doublet is
well separated, by ∼55 meV, from the first excited CEF
state [7,8]. Figure 11(b) shows the integration of theCmag=T
data to give the entropy Smag to ∼10 K. The experimental
entropy of R lnð2Þ is recovered, to within 5%, which may be
associatedwith 4f0 Ce4þ impurities. Interestingly, Fig. 11(b)
also shows that accounting for the entropy from the
only feature in the temperature dependence of Cmag, the
beginning of the Cmag plateau at T ¼ 0.08 K, to 10 K gives
∼R½lnð2Þ − 1

2
lnð3

2
Þ�, the Pauling entropy associatedwith both

spin ice and proton disorder in solid ice. Note that this latter
argument is independent of the low temperature extrapola-
tion of Cmag.

B. Implications of small θ

In the case where Jx̃ is the largest exchange parameter in
the XYZ Hamiltonian, the resulting Uð1Þπ QSL is dipolar
from a symmetry perspective. Its emergent electric field
transforms like a magnetic dipole. However, the small value
of θ suppresses coupling between the emergent field and
external magnetic fields. Therefore, for this case, we expect
weak coupling between neutrons and emergent photons at
low jQj. In the case of Jỹ > Jx̃, there would be no low-jQj
coupling between photons and neutrons regardless of the
value of θ. It is therefore unlikely that the inelastic neutron
scattering signal observed at low energy in Refs. [7,8] (and
in this work) originates from an integration over emergent
photons, despite the similarity to predictions in Ref. [25].
The dominant neutron scattering signal should then come
from gapped spinons.
A further implication of the small value for θ is that

spin waves in finite magnetic field will be difficult to
observe. This may be important to note as modeling spin
wave dispersion and intensity in a field-polarized state
has been effectively applied to understanding the micro-
scopic ground state in several pyrochlore magnets based
on Kramers doublet CEF ground states [15–20]. It may
also underlie the lack of observation of well-defined spin
waves in studies of Ce2Zr2O7 published to date. A finite
value of θ implies that the local magnetic moment
operator possesses components transverse to the expect-
ation value of the pseudospins in the high field state. It is
the finite transverse matrix elements which allow the
observation of single spin waves by inelastic neutron
scattering. In contrast, when θ ¼ 0, the magnetic moment
operator is parallel to the pseudospin directions in the
high field state, and the matrix element connecting the
ground state to single spin wave excitations is zero.

VII. SUMMARY AND CONCLUSIONS

To conclude, we report new spin-polarized neutron
diffraction and Cmag measurements on single crystal
Ce2Zr2O7 in zero magnetic field. Our modeling of Cmag,
χ, and SðQ; TÞ with NLC calculations provides strong
constraints on the exchange terms in the microscopic
near-neighbor XYZ Hamiltonian. We arrive at best-
fit Hamiltonian parameters θ ∼ 0 and ðJx̃; Jỹ; Jz̃Þ ¼
ð0.064; 0.063; 0.011Þ meV or ðJx̃; Jỹ; Jz̃Þ ¼ ð0.063; 0.064;
0.011Þ meV, which indicates that a Uð1Þπ QSL ground
state is selected near the boundary between dipolar and
octupolar character.

FIG. 11. (a) The measured Cmag and best-fit Cmag interpolation
for the Ce2Zr2O7 sample of the present work. The data are
divided into high and low T regimes around T ¼ 0.08 K, which
separates the plateau regime from the rapidly decreasing Cmag

regime. (b) The magnetic entropy recovered from Smag ¼R
T
T0
ðCmag=TÞdT over the full temperature range (T0 ¼ 0 K)

and above the onset of the plateau (T0 ¼ 0.08 K) are shown.
This is derived from the integration of Cmag shown in (a), and
employs the Cmag interpolation below the lowest measured
temperature, accounting for gapless photons as well as gapped
spinons and visons. R lnð2Þ in entropy is recovered over the full
temperature range, to within 5%, which is the approximate
deficiency expected for Ce4þ in this sample. The Pauling spin
ice entropy R½lnð2Þ − 1

2
lnð3

2
Þ� is recovered from the onset of the

plateau, T ¼ 0.08 K, to T ¼ 10 K to within approximately the
same tolerance.
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The best-fitting exchange parameters from this work
largely describe the SF neutron diffraction signal measured
from single crystal Ce2Zr2O7, while zone-boundary scat-
tering in the NSF channel indicates the significance of
interactions beyond near neighbor, including long-ranged
dipolar interactions. The seventh-order NLC calculations
for Cmag evaluated at the best-fit Hamiltonian parameters
do not describe the measured Cmag at the lowest temper-
atures, again consistent with weak interactions in
Ce2Zr2O7’s Hamiltonian beyond near neighbor and beyond
the scope of the present calculations.
The new Cmag data extend to temperatures as low as

T ¼ 0.058 K and can be smoothly extrapolated to zero
temperature using a form consistent both with the XYZ
spin Hamiltonian estimated from fitting the NLC calcu-
lations to the data and with a T3 form for Cmag at suf-
ficiently low temperatures, appropriate to emergent gapless
photons. With such a low T form for Cmag in place we show
the R lnð2Þ entropy associated with Ce3þ’s DO doublet
ground state is recovered to 10 K. Phenomenologically, we
observe that the Pauling entropy for spin ice is recovered
above the onset of the T ∼ 0.08 K plateau in Cmag.
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APPENDIX A: SYNTHESIS AND
CHARACTERIZATION

The powder and single crystal samples of Ce2Zr2O7 used
in this work were prepared and characterized as described
in Ref. [7]. La2Zr2O7 was synthesized in order to estimate

the phonon contribution to the Cp of Ce2Zr2O7. The
powder samples of La2Zr2O7 measured in this work were
first prepared by mixing stoichiometric amounts of La2O3

(Alfa Aesar 99.99%) and ZrO2 (Alfa Aesar 99.7%). The
La2O3 (ZrO2) powder was precalcined (dried) at 800 °C
(200 °C) prior to mixing. The stoichiometric mixture was
pelletized and sintered in air at 1350 °C for 36 h, 3 times,
with regrinding and repelletization between sinterings.
Figure 12 shows an x-ray Rietveld refinement against
the Fd3̄m space group for a typical powder sample of
La2Zr2O7 synthesized for this work.

APPENDIX B: HEAT CAPACITY AND
NUMERICAL LINKED CLUSTER

CALCULATIONS WITH 5% OXIDATION

We provide further details on the results of our fourth-
order NLC calculations for Cmag with a 5% oxidation level
included in the calculations. The calculated Cmag with 5%
oxidation using the globally (locally) best-fitting exchange
parameters that are also able to describe the measured
susceptibility, A0 (B0), is shown in Fig. 13(a) [Fig. 13(b)].
To improve convergence of the NLC calculations, we used
the Euler transformation to the third (Euler 3) and fourth
(Euler 4) orders (see Appendix J). While the parameter sets
A0 and B0 are both locally optimal, the A0 description of the
Cmag data is clearly superior.

FIG. 12. Powder x-ray refinement of the La2Zr2O7 sample
synthesized for this work. The difference between the measured
and calculated diffraction patterns is shown in green and indicates
phase purity; this line has been shifted downward by 0.25 units
for visibility.
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The inset of Fig. 13(b) shows the two locally optimal
regions of parameter space for the fourth-order NLC
calculations of Cmag, for both a 0% oxidation level and
a 5% oxidation level, defined by loghδ2=ϵ2iCmag < 2.7 for
the purposes of the visualization. From the similarity of
these regions and their local minima (A and A0, B and B0),
we conclude that the results of the NLC calculations for
Cmag are robust to the sample oxidation up to oxidation
levels of at least 5%. In Table 1 we summarize the results of
our NLC fittings to Cmag and list the best-fitting exchange
parameters corresponding to each fitting.

APPENDIX C: NLC FITTING TO χ

In this Appendix, we discuss the results of the NLC
fitting to the magnetic susceptibility measured from a
powder sample of Ce2Zr2O7. The magnetic susceptibility
is dependent on the values of Jx̃, Jỹ, Jz̃, and θ. The
exchange parameters ðJx̃; Jỹ; Jz̃Þ are given by some per-
mutation of ðJa; Jb; JcÞ. We allow θ to vary in the range
from 0 to π=4. This is enough to cover all distinguishable
scenarios, since changing the sign of θ does not affect any
quantity considered here, and shifting θ to θ þ π=2 is the
same as reversing the sign of θ and swapping the values of
Jx̃ and Jz̃, which is already covered by considering all six
permutations of exchange parameters.
NLC calculations up to second order were performed to

compute the powder-averaged magnetic susceptibility and
to compare the calculations to the corresponding measure-
ment on Ce2Zr2O7. A constant term was added to the NLC
calculations to account for the effect of mixing in higher
crystal-field levels due to an applied magnetic field. This
term is calculated from the low temperature limit of single
ion susceptibility using the crystal-field scheme of Ce3þ
in Ce2Zr2O7 reported in Ref. [7]. The level of sample
oxidation for the measured powder sample had an upper
limit of ∼14%. This upper limit was estimated from fits to
the single ion susceptibility at high temperature using the

TABLE I. A summary of the different sets of near-neighbor
exchange constants discussed throughout this work. Each set of
exchange constants was determined according to the minimiza-
tion of the goodness-of-fit parameter hδ2=ϵ2iCmag corresponding
to fourth-order NLC calculations for Cmag with a low temperature
threshold of 0.7Ja=kB in the evaluation of hδ2=ϵ2iCmag. We also
list the level of sample oxidation considered in each calculation.

Set Oxidation Ja (meV) Jb (meV) Jc (meV)

A 0% 0.064 0.063 0.011
A0 5% 0.067 0.067 0.012
B 0% 0.089 −0.007 −0.027
B0 5% 0.089 0.006 −0.037

FIG. 13. (a) The results of the fourth-order NLC Cmag calculation for 5% sample oxidation, using the near-neighbor exchange
parameters Ja ¼ 0.067 meV, Jb ¼ 0.067 meV, and Jc ¼ 0.012 meV (set A0), overlaid on top of the measured Cmag for our Ce2Zr2O7

sample. (b) The results of the fourth-order NLC Cmag calculation for 5% sample oxidation, using the near-neighbor exchange parameters
Ja ¼ 0.089 meV, Jb ¼ 0.006 meV, and Jc ¼ −0.037 meV (set B0), overlaid on top of the measured Cmag for our Ce2Zr2O7 sample. We
have used Euler transformations to the third (Euler 3) and fourth (Euler 4) orders to improve convergence of the NLC Cmag calculations
(see Appendix J). The inset of (b) shows a comparison of the locally optimal fitting regions obtained from NLC calculations with an
oxidation level of 0% (blue) and 5% (red). For visualization purposes, the optimal fitting regions in this plot are defined by
loghδ2=ϵ2iCmag < 2.7, where hδ2=ϵ2iCmag is the goodness-of-fit parameter for the NLC calculations as described in the main text. We
overplot this on the predicted ground-state phase diagram for the XYZ model Hamiltonian [10], but omit the labels for aesthetic
purposes [see Fig. 4(b) for labels]. Conclusions from fitting the NLC calculations to the data are robust to at least a 5% oxidation level.
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crystal-field scheme of Ce3þ in Ce2Zr2O7 reported in
Ref. [7]. Accordingly, a 14% oxidation level is included
in our NLC calculations of the magnetic susceptibility.
NLC calculations of the magnetic susceptibility were

performed for parameter sets throughout the A and B
regions identified by the Cmag fittings. The calculations
were compared with experimental data between 1 and
10 K. Figure 5 shows the regions of the phase diagram
for which it is possible to obtain simultaneous agree-
ment with Cmag and χ, for ðJx̃; Jỹ; Jz̃Þ equal to the dif-
ferent permutations of ðJa; Jb; JcÞ. We define these regions
by the simultaneous satisfaction of loghδ2=ϵ2iCmag < 2.7
and loghδ2=ϵ2iχ <12.1. The goodness-of-fit measure
hδ2=ϵ2iCmag is defined in the main text, and hδ2=ϵ2iχ ∝Pf½χNLCðTexptÞ − χexptðTexptÞ�2=ϵðTexptÞ2g, where the sum
is over measured temperatures Texpt between 1 and 10 K
and ϵðTexptÞ is the experimental uncertainty on the mag-
netic susceptibility at temperature Texpt. We allow θ to vary
in the range from 0 to π=4 in finding the best agreement
with the susceptibility data for each permutation. The
relatively small experimental uncertainties on the mag-
netic susceptibility contribute to the larger upper limit
for hδ2=ϵ2iχ in comparison to the upper limit used
for hδ2=ϵ2iCmag.

APPENDIX D: ELASTIC NEUTRON
SCATTERING

In this Appendix, we discuss the analysis of our elastic
neutron scattering data, measured on an annealed powder
sample of Ce2Zr2O7 and used to place an upper limit of
μordered ≤ 0.04μB on the ordered moment corresponding to
any all-in, all-out dipole order in Ce2Zr2O7’s magnetic
ground state. The strongest magnetic Bragg peaks asso-
ciated with AIAO order are expected to reside at the Q ¼
ð2; 2; 0Þ and Q ¼ ð1; 1; 3Þ positions of reciprocal space.
Accordingly, we can examine the temperature dependence

of the scattered intensity at these locations in order to look
for increases of intensity with decreasing temperature,
which would signal the onset of a magnetic Bragg peak
and associated magnetic order. As shown in Fig. 14(a), no
such increase in intensity is detected upon lowering
temperature.
In Fig. 14(b), we show the measured intensity around the

Q ¼ ð2; 2; 0Þ (left) and Q ¼ ð1; 1; 3Þ (right) positions at
T ¼ 0.06 K (blue) and as averaged over the temperatures
T ¼ 0.25 K, T ¼ 0.5 K, T ¼ 0.75 K, T ¼ 1 K, and T ¼
1.5 K (red). Gaussian fits to the peak at each of the
locations are also shown for each temperature (or temper-
ature average) and the area underneath of these Gaussian
peaks was used in order to determine the corresponding
integrated intensity for each peak. From these values for the
integrated intensity, we place an upper limit of μordered ≤
0.04μB for the Ce3þ ordered moment corresponding to any
AIAO magnetic dipole ordering in Ce2Zr2O7.
For each selected Bragg peak position Q, an upper limit

is calculated in accordance with the equation

μordered ¼
�
Iexptmag

Iexptnuc

�
1=2 jFðQÞj

jFmag
⊥ ðQÞ=μj ; ðD1Þ

where Iexptmag and I
expt
nuc are the measured magnetic and nuclear

contributions to the integrated Bragg intensity, respectively.
FðQÞ is the nuclear structure factor and Fmag

⊥ ðQÞ=μ is the
component of the magnetic structure factor that is
perpendicular to Q, after dividing out the magnitude of
the ordered moment (μ) from the calculation [28].

APPENDIX E: POLARIZED NEUTRON
SCATTERING MEASUREMENTS AND

CALCULATIONS

We have used third-order NLC calculations to compute
the energy-integrated scattering signals corresponding to
a polarized neutron scattering experiment with sample

FIG. 14. (a) The temperature dependence of the integrated intensity for the Bragg peaks at the Q ¼ ð2; 2; 0Þ (red) and Q ¼ ð1; 1; 3Þ
(blue) positions. No significant temperature dependence is discernible. (b) Elastic Q cuts through the Q ¼ ð2; 2; 0Þ (left) and Q ¼
ð1; 1; 3Þ (right) positions at T ¼ 0.06 K (blue) and averaged over the higher temperature data points T ¼ 0.25, 0.5, 0.75, 1, 1.5 K (red).
The Gaussian fitting to each of these datasets, used to determine a corresponding integrated intensity, is also shown for each Bragg peak
in (b). From these integrated intensities, we conclude that no AIAO dipole order occurs in Ce2Zr2O7, with an upper limit on the Ce3þ
ordered moment of μordered ≤ 0.04μB.
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alignment in the ½HHL� scattering plane. The ex-
change parameters are set to θ ¼ 0 and ðJx̃; Jỹ; Jz̃Þ ¼
ð0.064; 0.063; 0.011Þ meV for the calculation and we
perform the NLC-3 calculation with T ¼ 0.5 K, as that
is the lowest temperature for which the NLC expansion
converges. Specifically, we compute

SSFðQÞ ¼ 1

N
jfðjQjÞj2

X
ij

feiQ·ðri−rjÞ½ûðQÞ · ẑi�½ûðQÞ · ẑj�

× ½sin2ðθÞhSx̃i Sx̃ji þ cos2ðθÞhSz̃i Sz̃ji�g ðE1Þ

and

SNSFðQÞ ¼ 1

N
jfðjQjÞj2

X
ij

feiQ·ðri−rjÞðn̂ · ẑiÞðn̂ · ẑjÞ

× ½sin2ðθÞhSx̃i Sx̃ji þ cos2ðθÞhSz̃i Sz̃ji�g; ðE2Þ

where SSFðQÞ [SNSFðQÞ] denotes the energy-integrated
structure factor for SF (NSF) scattering. N is the number
of spins in the lattice, fðjQjÞ is the magnetic form factor for
Ce3þ (calculated using the analytical approximation in
Ref. [29]), n̂ is the neutron polarization direction, ẑi is the
local anisotropy axis for the site i, and

ûðQÞ ¼ n̂ ×Q
jn̂ ×Qj : ðE3Þ

We compute SSFðQÞ and SNSFðQÞ at T ¼ 0.5 K, and
in each case we subtract the corresponding calculation at
T ¼ 10 K for better comparison with the temperature-
subtracted experimental data. In Figs. 8(a) and 8(b)
[Figs. 8(c) and 8(d)] of the main text, we compare the
NLC-calculated SSFðQÞ [SNSFðQÞ] to polarized neutron
scattering measurements performed on an annealed ∼1.5 g
single crystal sample of Ce2Zr2O7 using the D7 diffrac-
tometer at the Institut Laue-Langevin with an incident
energy of Ei ¼ 3.47 meV and a dilution refrigerator
sample environment. The sample was aligned in a copper
sample holder in the ½HHL� scattering plane with the
uniaxial polarization direction perpendicular to the ½HHL�
plane, and the sample was rotated in 0.5° steps over a total
of 250°. The data are subsequently folded into a single
quadrant of the ½HHL� plane and further symmetrized. We
have further discussed this symmetrization process in the
Supplemental Material of Ref. [7]. For each dataset, we
reduce the data in a manner that avoids adding artifacts
arising from the subtraction of strong nuclear Bragg
peaks. Allowed nuclear Bragg peaks are located at
Q¼ ð1;1;1Þ; ð2;2;2Þ; ð1;1;3Þ;ð2;2;0Þ; ð0;0;4Þ, and sym-
metrically equivalent locations. The intensity at each Bragg
peak location is masked in performing the temperature
subtraction, and we then show the intensity at these masked
Bragg peak locations as the average intensity of the
surrounding points in reciprocal space.

APPENDIX F: NLC FITTING TO
INTEGRATED SðQ;TÞ

The microscopic spin Hamiltonian parameters A and B
can be employed in third-order NLC calculations to
calculate equal-time (energy-integrated) structure factors,
and these can be compared to inelastic neutron scattering
measurements on Ce2Zr2O7. The energy-integrated struc-
ture factor is

SðQÞ ¼ jfðjQjÞj2
X
ij

�
ẑi · ẑj −

ðẑi ·QÞðẑj ·QÞ
jQj2

�

½cos2ðθÞhSx̃i ð−QÞSx̃jðQÞi þ sin2ðθÞhSz̃i ð−QÞSz̃jðQÞi�; ðF1Þ

where i, j, are sublattice indices and fðjQjÞ is the magnetic
form factor for Ce3þ. Averaging over directions at fixed
magnitude jQj ¼ Q gives the powder structure factor
SðQÞ. We integrate over Q ¼ ½0.46; 0.93� Å−1 and the
result represents the energy-integrated neutron scattering
response of a powder sample integrated over that momen-
tum range, as a function of T. The structure factor at T ¼
9.6 K is subtracted to replicate the background subtraction
used in the experiment. Lines in Fig. 10 of the main text
represent the powder integrated equal-time structure factor
calculated in third-order NLC using parameter sets A with
θ ¼ 0 and B with θ ¼ 0.561 rad.
We compare the NLC calculations to the experimentally

measured neutron scattering response of a powder sample,
integrated over the energy range ½−0.2; 0.4� meV. This
integration range is chosen to enclose the low-lying
excitations of the system while avoiding unnecessary
contamination to the temperature-subtracted signal, which
often becomes more prevalent at higher energies. To further
reduce the effect of noise on the experimental data, we
integrate in momentum transfer over the range jQj ¼ ½0.46;
0.93� Å−1. This integration range is chosen to avoid nuclear
Bragg peaks while still enclosing the dominant portion of the
measured magnetic signal. We find that parameter sets from
region A correctly predict the observed increase in scattering
over the range jQj ¼ ½0.46; 0.93� Å−1 with decreasing tem-
perature, while parameter sets from regionB do not, as shown
in Fig. 10 of the main text.
Figure 15(a) [Figs. 15(b)–15(g)] shows the temperature-

difference neutron scattering spectra measured from an
annealed powder sample of Ce2Zr2O7 for a T ¼ 0.06 K
[0.25, 0.5, 0.75, 1, 1.5, 3 K] dataset with a T ¼ 9.6 K dataset
used as background. The data in Fig. 15(a) [Figs. 15(c) and
15(g)] are also shown in Figs. 9(a) [Figs. 9(b) and 9(c)] with
different jQj range and jQj,E pixel size. These datasets were
used to compute the measured integrated intensity over the
energy range ½−0.2; 0.4� meV and the momentum range
½0.46; 0.93� Å−1, forming the data points shown in Fig. 10 of
the main text.
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APPENDIX G: COMPARISON OF
TEMPERATURE DEPENDENCE OF Cmag
WITH POWDER-AVERAGED INELASTIC

NEUTRON SCATTERING

The new measuredCmag data also allow for a comparison
with the temperature-dependent inelastic neutron scattering
signal measured on an annealed powder sample of
Ce2Zr2O7 [7]. Specifically, we compare the Cmag data with
the imaginary part of the dynamic spin susceptibility
χ00ðQ; EÞ calculated from our previously reported neutron
data. As shown in Figs. 15(a)–15(g), a signal with the
approximate energy range E ¼ ½0; 0.15� meV is seen to
onset in the inelastic neutron scattering spectra with
decreasing temperature. The dominant intensity within this
signal was used to calculate hχ00ðQ; EÞi for each temper-
ature, giving rise to the data points shown in Fig. 16 and

allowing us to further examine the temperature dependence
of the measured neutron scattering signal. χ00ðQ; EÞ
was calculated via χ00ðQ; EÞ ¼ S0ðQ; E; TÞð1 − e−E=kBTÞ,
where S0ðQ; E; TÞ ¼ SðQ; E; TÞ − SðQ; E, T ¼ 9.6 K).
This subtraction is used to isolate the magnetic contribution
to the measured neutron scattering spectra, and assumes
that χ00ðQ; EÞ ¼ 0 at T ¼ 9.6 K. This was used to calculate
the average of χ00ðQ; EÞ over jQj ¼ ½0.46; 0.93� Å−1,
E ¼ ½0; 0.15� meV, denoted as hχ00ðQ; EÞi. As shown in
Fig. 16, the temperature onset of hχ00ðQ; EÞi coincides well
with that of the broad hump in Cmag, and hχ00ðQ; EÞi
continues to grow, separating from Cmag, below T ∼ 0.3 K.
Recent theory work on the XYZmodel Hamiltonian with

Jx̃ ¼ Jỹ (which is a relevant approximation for the best-
fitting exchange parameters found in this work) has
predicted that a U(1) quantum spin ice ground state can
be realized upon decreasing temperature through a classical
spin ice regime [12,24,30]. Furthermore, these works
predict that a broad hump inCmag onsets slowly on entrance
into the classical spin ice regime upon decreasing temper-
ature. This prediction is consistent with the coincidence of
the temperature onsets of hχ00ðQ; EÞi and Cmag shown
in Fig. 16.

APPENDIX H: SEMICLASSICAL MOLECULAR
DYNAMICS CALCULATION OF SðjQj;E;TÞ

Here we discuss the semiclassical molecular dynamics
calculations of SðjQj; E; TÞ that lead to the calculated
spectra shown in Figs. 9(d)–9(i) of the main text. First,
classical Monte Carlo simulations were performed using
the best-fit A exchange parameters, to obtain an ensemble
of spin configurations sampled at temperature T. We then
use these configurations as initial configurations and solve
the semiclassical Landau-Lifshitz equation ½d=ðdtÞ�Si ¼
−Si × hi, where hi is the effective magnetic field on the

FIG. 15. The temperature evolution of the low energy inelastic neutron scattering from a powder sample of Ce2Zr2O7. A dataset
measured at 9.6 K has been subtracted from a dataset measured at T ¼ 0.06 K (a), 0.25 K (b), 0.5 K (c), 0.75 K (d), 1 K (e), 1.5 K (f),
and 3 K (g). (h) The powder-averaged neutron scattering signal measured at T ¼ 0.06 K from a single-crystal sample of Ce2Zr2O7, with
a T ¼ 2 K dataset subtracted, is shown for comparison.

FIG. 16. The low energy dynamic susceptibility χ00ðQ; EÞ,
averaged over jQj ¼ ½0.46; 0.93� Å−1 and E ¼ ½0; 0.15� meV,
is plotted alongside the measured Cmag for the Ce2Zr2O7 sample
of the present work.
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spin Si. The dynamical structure factor is obtained as the
time-space Fourier transform of the time-evolved magnetic
moments, averaged over the ensemble of initial states.
The molecular dynamics solution computes the classical

dynamics. That is, it treats the spins as classical magnetic
moments precessing in their local field. To compare this
to the (quantum) experiment or a theoretical method such
as linear spin wave theory, one has to rescale the classical
calculation. This is because the classical dynamical struc-
ture factor is symmetric with respect to neutron energy
transfer E, and it vanishes as T approaches zero for all
E > 0. Neither of these is the case for the dynamical
structure factor of the quantum system. Another, more
quantitative, way to think about this is via the fluctuation-
dissipation theorem by comparing the version for classical
and quantum systems [31]. In particular, for a classical
system we get ðβEÞSclassicalðQ; E; TÞ ¼ χ00ðQ; E; TÞ, while
for the quantum system it reads ð1−e−βEÞSquantumðQ;E;TÞ¼
χ00ðQ;E;TÞ, where β ¼ 1=ðkBTÞ. It is then reasonable to
equate the imaginary part of the susceptibility, χ00ðQ; E; TÞ,
as this quantity is real and symmetric for both the classical
and the quantum system. Furthermore, as shown inRef. [32],
χ00quantum ¼ χ00classical within linear spin wave theory. Using the
quantum and classical fluctuation dissipation theorem for the
respective sides then yields

SquantumðQ; E; TÞ ¼ βE
1 − e−βE

SclassicalðQ; E; TÞ; ðH1Þ

which is what we use to estimate the dynamical structure
factor of the (quantum) experiment using our classical
simulation. The dynamical structure factor is then powder
averaged to obtain SquantumðjQj; E; TÞ, and convolved with
the experimental resolution. In Figs. 9(d)–9(i) of the main
text, we show the calculated powder-averaged dynamical
structure factor at 0.06, 0.5, and 3 K, with the powder-
averaged dynamical structure factor at T ¼ 9.6 K subtracted
from the result.
Note that Eq. (H1) accounts for detailed bala-

nce, SquantumðQ;−E; TÞ ¼ e−βESquantumðQ; E; TÞ, since
SclassicalðQ; E; TÞ ¼ SclassicalðQ;−E; TÞ. Zhang et al. [32]
derive the conversion factor βE by comparing the classical
spin wave theory at finite temperature with the quantum
spin wave theory at zero temperature. It is thus valid in the
case βE ≫ 1, which is well fulfilled in their case, but not
applicable to a large part of our energy and temperature
range. However, note that our factor ½βE=ð1 − e−βEÞ�
reduces to βE for βE ≫ 1, so our calculation is entirely
consistent with this argument.

APPENDIX I: HEAT CAPACITY
MEASUREMENTS AND LOW TEMPERATURE

Cmag EXTRAPOLATIONS

Heat capacity measurements were performed on
our single crystal Ce2Zr2O7 sample, along with a

polycrystalline sample of La2Zr2O7, which is used as a
4f0 analog of Ce2Zr2O7. Heat capacity measurements on a
polished single crystal of Ce2Zr2O7 (smooth-surfaced
pressed powder pellet of La2Zr2O7) were carried out on
a Quantum Design PPMS down to T ¼ 0.058 K
(T ¼ 2.5 K) using the conventional quasiadiabatic thermal
relaxation technique. The heat capacity of La2Zr2O7 is very
small at ∼2.5 K, and there was no need to pursue
measurements at lower temperatures.
We provide further details on the analysis of Cmag’s

approach to zero at T ¼ 0 K. Figure 17(a) shows the results
of fitting simple cubic and exponential extrapolations to
the measured Cmag data, as well as the low temperature
extrapolation to Cmag which is based upon an interpolation
between the results of NLC calculations at T > ∼0.5 K and
a T3 low temperature form appropriate to emergent photons
in a U(1) QSL. These extrapolations are also shown in
Figs. 3 and 11(a) of the main text, respectively. We label
the latter extrapolation as “interpolation” in Fig. 17 and
the following discussion. This interpolation method is
introduced in Ref. [27] and discussed for the current
context below.
The interpolation method first involves performing a

high temperature expansion of the magnetic heat capacity
CmagðTÞ corresponding to the XYZ Hamiltonian and the A
set exchange parameters, and then turning this into an
expansion for the entropy density as a function of energy
density sðeÞ around e ¼ 0. If CmagðTÞ ∝ T3 at low tem-
perature, then for e close to the ground-state energy density
e0, sðeÞ ∝ ðe − e0Þ3=4. A Padé approximant is used to
interpolate between those two limits, to obtain sðeÞ over
the region e ¼ ½e0; 0�, which can then be converted to
CmagðTÞ over the range T ¼ ½0;∞�. This approach requires
an estimate of the ground-state energy per site, e0. We
treat this estimate as an adjustable parameter and set
e0 ¼ −0.385Ja for best agreement with experiment, which
is in a physically plausible range.
The approach based on sðeÞ is generally better behaved

than performing the interpolation on CmagðTÞ directly, and
it obeys the physical constraints on the total energy and
entropy

R
∞
0 CmagðTÞdT ¼ −e0,

R
∞
0 f½CmagðTÞ�=TgdT ¼

R lnð2Þ, respectively, by construction. The choice of
Padé approximant Pðm; nÞ is constrained to mþ n ≤ k,
where k is the maximum order obtained for the high
temperature expansion of CmagðTÞ. In our case k ¼ 13,
and we take the approximant Pð7; 6Þ, again guided by
best agreement with experiment. The estimate of e0 and
the choice of m, n are the only adjustable parameters
in the comparison, with the exchange parameters equal to
the set A parameters (see main text or Table 1). The
comparison between theory and experiment is good,
particularly for the entropy curve SmagðTÞ, when one
considers that the experimental entropy is missing ∼5%
of the expected R lnð2Þ, due to Ce4þ substitution which is

E. M. SMITH et al. PHYS. REV. X 12, 021015 (2022)

021015-16

Ph.D. Thesis - E.M. Smith McMaster University - Physics and Astronomy

79



not incorporated in the interpolation calculation. This demo-
nstrates that the observed CmagðTÞ can be consistent with a
smooth crossover to a T3 form, even though we do not reach
the T3 regime with the present experimental data.
As shown in Fig. 17(a), the cubic extrapolation cannot

be made to connect smoothly to the data at the lowest-
temperature data points, while the best-fitting exponential
extrapolation and the interpolation both meet the data in a
smooth manner. The inset of Fig. 17(a) shows the best-
fitting simple exponential extrapolation when locking the
gap energy to the values Δ ¼ 20, 30, 40, and 50 mK,
and a gap of Δ ¼ 35ð5Þ mK results from such a naive
analysis.
Using each of these extrapolations for Cmag in order

to describe the data below the lowest-temperature data
point, we calculate the entropy recovered via Smag ¼R
T
0 ðCmag=TÞdT and show the results in Fig. 17(b). As shown
in Fig. 17(b), the best-fitting cubic extrapolation grossly
underestimates the R lnð2Þ entropy associated with the CEF
ground-state doublet, while the exponential extrapolation
and the interpolation both saturate toR lnð2Þwithin the∼5%
tolerance associated with the sample oxidation.

APPENDIX J: NLC CALCULATIONS AND
DISORDER AVERAGING

We use the NLC method to calculate thermodynamic
quantities throughout this work. The method is described in
Refs. [33–35] (for example). Extensive quantities per site
hOi=N are represented as sums over contributions from
clusters c:

1

N
hOi ¼

X
c

McWc; ðJ1Þ

where Mc is the cluster multiplicity, defined as the number
of times c can be embedded in the lattice, per site N. Wc is
the cluster weight:

Wc ¼ hOic −
X
s⊂c

Ws; ðJ2Þ

where hOic is the expectation value of the quantityO taken
from exact diagonalization on cluster c with open boundary
conditions. The second term in Eq. (J2) is a sum over the
weights of all subclusters of c. The sum in Eq. (J1) is
arranged in order of increasing cluster size. At high
temperatures, terms from larger clusters vanish faster with
increasing temperature and the series converges in the same
manner as high temperature expansion. At sufficiently high
temperature, one can then justify truncating the sum at
finite cluster size.
We employ a series of clusters starting with a single site

and then all further clusters are constructed from full
tetrahedra. The nth order of the expansion incorporates
clusters of size up to n tetrahedra. We denote the nth-order
calculation as “NLC-n.” For the heat capacity we have
performed calculations up to fourth order (NLC-4). For
the A parameter set we additionally performed NLC
calculations of Cmag up to seventh order (see inset of
Fig. 6). The methodology for these seventh-order calcu-
lations is described in Ref. [36]. For SðQÞ and SðQÞ we
have performed calculations up to third order (NLC-3).

FIG. 17. (a) The best-fitting naive cubic and exponential extrapolations to the measured Cmag data, as well as the low temperature
extrapolation which is consistent with the NLC fit for T > ∼0.5 K and a T3 Cmag at sufficiently low temperature, as described in the text.
A simple best-fitting cubic extrapolation forms a sharp cusplike connection with the data while the simple best-fitting exponential
extrapolation and the interpolation (as discussed in the text) both run smoothly through the lowest-temperature data points. The inset of
(a) shows the simple exponential extrapolations for different values of the gap energy. Such an analysis yields an estimate of Δ ¼
35ð5Þ mK for the gap energy. (b) A comparison of the entropy recovered via Smag ¼

R
T
0 ðCmag=TÞdT using the different low temperature

extrapolation schemes of Cmag that are shown in (a).
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For the susceptibility we have performed calculations up to
second order (NLC-2).
For example, to estimate SðQÞ using Eq. (F1) and the

NLC method, we define for each cluster c entering the
expansion, the extensive quantities:

CcðQÞ ¼ jfðjQjÞj2
X
i;j∈c

�
ẑi · ẑj −

ðẑi ·QÞðẑj ·QÞ
jQj2

�

½cos2ðθÞhSx̃i ð−QÞSx̃jðQÞi þ sin2ðθÞhSz̃i ð−QÞSz̃jðQÞi�; ðJ3Þ

The NLC estimate of SðQÞ is then
SNLCðQÞ ¼

X
c

McWcðQÞ; ðJ4Þ

where in this case (third-order NLC) we truncate the sum at
a maximum cluster size of three tetrahedra. Mc are the
cluster multiplicities and WcðQÞ are the cluster weights,

WcðQÞ ¼ CcðQÞ −
X
s⊂c

WsðQÞ; ðJ5Þ

where the sum on the right-hand side is over sub-
clusters of c.
To improve convergence of the Cmag calculations, we

have used Euler transformation to the third and fourth
orders [35]. The Euler transformed results at third and
fourth order are

hOiEuler 3 ¼
1

2
hOiNLC-2 þ

1

2
hOiNLC-3 ðJ6Þ

and

hOiEuler 4 ¼
1

4
hOiNLC-2 þ

1

2
hOiNLC-3 þ

1

4
hOiNLC-4; ðJ7Þ

where hOiNLC-n is the estimate of hOi up to nth order
in NLC.
For the susceptibility calculations we included a popu-

lation of 14% vacancies in the calculation, with disorder
averaging. The disorder average can be taken as order by
order in NLC. Since vacancy disorder is binary, the disorder
average can be done exactly [34]. We have also performed
heat capacity calculations with 5% vacancy disorder, as a
point of comparison to the calculations with the clean
model. The fits of these calculations to the experimental
data produce very similar results to those found for the
clean model, as shown in Fig. 13.
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Chapter 3
Ce2Zr2O7 in a Magnetic Field

The following publication is contained in this chapter:

Publication III:

“Quantum Spin Ice Response to a Magnetic Field in the Dipole-Octupole Pyrochlore Ce2Zr2O7”,

E. M. Smith, J. Dudemaine, B. Placke, R. Schäfer, D. R Yahne, T. DeLazzer, A. Fitterman, J. Beare, J. Gaudet,

C. R. C. Buhariwalla, A. Podlesnyak, Guangyong Xu, J. P. Clancy, R. Movshovich, G. M. Luke, K. A. Ross,

R. Moessner, O. Benton, A. D. Bianchi, and B. D. Gaulin.

Reproduced from Reference [3] with permission, copyrighted by the American Physical Society.

3.1 Preface to Publication III: Polarized Spin Ice Phases and Quasi-1D

Quantum Spin Chains in the Dipole-Octupole Pyrochlore Ce2Zr2O7

at Low Temperature in a Magnetic Field

In Publication III, we use neutron scattering and heat capacity measurements to probe single crystal samples of

Ce2Zr2O7 at low temperature in magnetic fields along the [1, 1̄, 0] and [0, 0, 1] directions and we show that the

measurements are consistent with the presence of partially-polarized and polarized spin-ice phases in Ce2Zr2O7 at

low-temperature in magnetic fields along [1, 1̄, 0] and [0, 0, 1] directions, respectively. We use a collection of calculation

methods in order to help put this data further into context with the relevant theory, which is particularly important

for dipole-octupole pyrochlores as such where the different components of pseudospin give significantly different

contributions to the neutron scattering [52, 103]. Specifically, we use three-dimensional semiclassical molecular

dynamics and one-dimensional quantum calculations for the Bragg, diffuse, and inelastic neutron scattering signals

and comparison of the measured neutron scattering data with these calculations provides further evidence that θ is

near zero in Ce2Zr2O7, corroborating estimates from Publication II and Ref. [37].

Additionally, we use the numerical-linked-cluster method to perform three-dimensional quantum calculations of

the magnetic heat capacity at low-temperature for a magnetic field along the [1, 1̄, 0] direction, and compare the
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results with our data in order to estimate the exchange parameters relevant for Ce2Zr2O7 in the XYZ Hamiltonian

[Eq. (1.21)]. Specifically, we use sixth order NLC calculations of the magnetic heat capacity for zero-field and fifth

order NLC calculations of the magnetic heat capacity for nonzero magnetic field along the [1, 1̄, 0] direction in order

to estimate the values of Jx̃, Jỹ, Jz̃, and gz for Ce2Zr2O7 in the XYZ Hamiltonian relevant for dipole-octupole

pyrochlores at the nearest-neighbor level. Our estimates of Jx̃, Jỹ, and Jz̃ are in strong agreement with our estimates

in Publication II and provide further evidence for a U(1)π quantum spin ice ground state in Ce2Zr2O7, and one

residing near the Jx̃ = Jỹ boundary between dipolar and octupolar symmetry. While the same zero-field heat capacity

data from Ce2Zr2O7 was fit to estimate the values of Jx̃, Jỹ, and Jz̃ in Publications II and III, it is important to note

that the consistency in estimated-parameters between Publications II and III is indeed nontrivial given the difference

in fitting procedures used (now using only the heat capacity without including the magnetic susceptibility) and the

higher order NLC calculations used in Publication III compared to Publication II. In addition to this, we compare

NLC calculations using the exchange parameters determined in Publication III, with those using the different sets of

exchange parameters suggested in Ref. [37], and we show that the exchange parameters from Publication III and a

very similar parameter set from Ref. [37] provide better descriptions of the measured data compared to the other

three parameter sets suggested in Ref. [37]. We perform a similar comparison of these five parameter sets using our

semi-classical molecular dynamics calculations for the diffuse scattering in [1, 1̄, 0] magnetic field and again show the

exchange parameters from Publication III and the one similar parameter set from Ref. [37] describe the measured

data better than the other three parameter sets suggested in Ref. [37].

Our fitting to the heat capacity of Ce2Zr2O7 in a magnetic field along the [1, 1̄, 0] direction yields a best-fit value of

gz = 2.24 for the anisotropic g-factor, which is only ∼87% of the value of associated with a pure |J = 5/2, mJ = ±3/2⟩

ground state doublet, gz = 2.57. Some reduction of this g-factor is due to its dependence on the oxidation level;

The oxidation level was not included in the fitting procedure and in such cases, the fit value of gz takes on the

oxidation-level dependence of the Zeeman term in Eq. (1.21), which at first-approximation amounts to a simple

absorbed-scaling of gz by the ratio of Ce3+ to the combined amount of Ce3+ and Ce4+, or by 1− δ in terms of the

oxidation level δ. Nonetheless, the estimated oxidation level of our smaller single crystal samples (δ ∼ 5% [1, 2])

does not fully account for the reduction in gz from the pure |J = 5/2, mJ = ±3/2⟩ value, and accordingly, this

reduction is indicative towards a small amount of the mixing of the |J = 5/2, mJ = ±3/2⟩ states with other states in

the CEF ground state doublet. While the existing estimates for the CEF states in Publication I and Ref. [22] are

good approximations and much-needed starting points, especially due to the importance of the CEF ground state in

determining the magnetic behavior in rare-earth pyrochlores, the reduced value of gz from our study in Publication III

elucidates the need for CEF studies of Ce2Zr2O7 that extend those in Publication I and Ref. [22], as we discuss in

detail in Section 4.2.

In Publication III, we also put our measurements into context with the large amount of experimental literature

existing on the renowned classical spin ices Ho2Ti2O7 and Dy2Ti2O7 in [1, 1̄, 0] and [0, 0, 1] magnetic fields, as well as

the popular, dipole-octupole pyrochlore Nd2Zr2O7 for the [1, 1̄, 0] magnetic field direction. In further detail, Ho2Ti2O7
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and Dy2Ti2O7 are each known to display a polarized spin ice phase in [0, 0, 1] magnetic field that is similar to that

observed for Ce2Zr2O7 in [0, 0, 1] magnetic field [127, 128]. Similarly, Ho2Ti2O7, Dy2Ti2O7, and Nd2Zr2O7 are each

known to display a partially-polarized spin ice phase in [1, 1̄, 0] magnetic field that are similar to that observed for

Ce2Zr2O7 in [1, 1̄, 0] magnetic field [79, 83, 127–130]. The similar partially-polarized spin ice phases observed in

[1, 1̄, 0] magnetic field for the four materials provides a particularly interesting point of comparison. For the [1, 1̄, 0]

field direction, it is convenient to decompose the pyrochlore lattice into two sublattices, with the first containing the

R3+ ions in the lattice which form chains along the [1, 1̄, 0] direction (conventionally called α chains), and with the

second containing the R3+ ions in the lattice which form chains along the [1, 1, 0] direction (conventionally called β

chains). For the partially-polarized spin ice phases in Ce2Zr2O7, Ho2Ti2O7, Dy2Ti2O7, and Nd2Zr2O7, the α chains

exhibit a non-collinear polarization induced by the magnetic field, and the β chains, which are decoupled from the

magnetic field and the α chains, display short ranged ferromagnetic order [79, 83, 99, 127–130]. We compare the

correlation length for the short-ranged ferromagnetic order in the β chains of each of these materials and discuss

likely reasons for the shorter intrachain correlation lengths in Ce2Zr2O7 and Nd2Zr2O7 compared to Ho2Ti2O7 and

Dy2Ti2O7.

For the best-fitting exchange parameters determined for Ce2Zr2O7 in Publications II and III, the expectation for

a moderate-strength magnetic field along the [1, 1̄, 0] direction is that the correlations between magnetic octupoles in

the field-decoupled β chains should dominate over the coupling between magnetic dipoles and should even lead to a

long-ranged, octupolar-ordered chain-phase for each β-chain at zero temperature [99]. With that in mind, it is worth

mentioning that the diffuse scattering signal we measure from Ce2Zr2O7 in a [1, 1̄, 0] magnetic field in Publication III,

attributed to correlations between magnetic dipole moments in the β chains, likely arises due to fluctuations and

deviations away from any octupolar order which is expected to be more prevalent in Ce2Zr2O7 in a [1, 1̄, 0] magnetic

field [99], but also more elusive to the measurements [105], in comparison to dipole-dipole correlations. In fact, as

we discuss in Publication III, this is due to the dominance of Jx̃ and Jỹ over Jz̃, which has some other interesting

implications that we point out in Publication III, including contributing to the weakness of the diffuse scattering from

the β chains and to the relatively small size of the interchain correlation length for the β chains.

Reference [99] shows that the ground state degeneracy of the different interchain orderings for the β chains is

lifted by quantum order by disorder, such that quantum fluctuations provide an effective coupling between β chains.

However, Ref. [99] shows that these quantum fluctuations occur on an energy scale that is only 0.01% of the energy scale

set by Jx̃, Jỹ, and Jz̃, or less, corresponding to a temperature scale of T ≲ 0.1 mK for the magnitude of the exchange

parameters determined from the estimates in Publications II and III as well as in Ref. [37]. Therefore this quantum

order by disorder is not expected to be relevant at any realistic temperature for experiments. When considering this

result from Ref. [99], along with the fact that the small dipole-moment in Ce2Zr2O7 results in a magnetic dipole-dipole

interaction for neighboring β chains that is on the order of only 5 mK, it is not particularly surprising that we found

a lack of interchain correlations between the β chains; In fact, the closest R3+ ions from neighboring β chains are

third-nearest-neighbors in general and the value of 5 mK was determined via the third-nearest-neighbor dipole-dipole
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interaction parameter in Table (1.3). While not surprising, this result in Publication III and the analogous result for

Nd2Zr2O7 in Ref. [83] are still important to show, as they provide some experimental confirmation to the lack of

significant inter-β-chain correlations predicted in Ref. [99]. Albeit this is only partial confirmation in each case due to

the insensitivity of the neutrons to the magnetic octupoles in these particular experiments [30, 105], and we return to

this latter point in Section 4.2.

As mentioned in Section 2.2, in Publication III we return to using the quantum spin ice terminology in describing the

U(1) quantum spin liquids known to be available to the dipole-octupole pyrochlores, due to the growing acceptance of

these spin liquids as novel quantum spin ices throughout the collection of literature on dipole-octupole pyrochlores (see

Refs. [3, 30, 32, 52, 57, 61, 96, 99, 124] for examples). On a similar note, we take the opportunity in the introduction

of Publication III to summarize the growing work on the existing cerium-based pyrochlores Ce2Zr2O7, Ce2Sn2O7,

and Ce2Hf2O7; This helps put Publication I and II of this thesis into the context of related experimental work.

As is also discussed in Section 2.2, in-field inelastic neutron scattering data would typically be fit using a relevant

exchange Hamiltonian to determine the exchange parameters that best-reproduce the measured spectra. However,

this is not a reliable method of parameter-refinement when broad and largely-non-dispersive excitations are the only

excitations that are detected, as is the case for our measurements on Ce2Zr2O7 in Publication III and in contrast

to the sharp spin waves typically used for refining exchange parameters using inelastic neutron scattering data (see

Refs. [35, 38, 59, 62–64] for examples).

Publication III was published (as a preprint) shortly after a similar work on Ce2Zr2O7 by Gao et al. (Ref. [131])

in which the authors investigate the low-temperature magnetic behavior of Ce2Zr2O7 in magnetic fields along the

[0, 0, 1], [1, 1̄, 0], and [1, 1, 1] directions using neutron scattering and magnetization measurements. With that being

said, the work in Publication III presents a more-thorough and more-sophisticated analysis of Ce2Zr2O7 in [0, 0, 1]

and [1, 1̄, 0] magnetic fields than that presented in Ref. [131]. Specifically, Gao et al. (Ref. [131]) do not report diffuse

neutron scattering or inelastic neutron scattering signals in their work, or corresponding calculations for such signals,

which are key pieces in the comprehensive analysis presented in our work. The Bragg scattering and corresponding

interpretation for the [0, 0, 1] magnetic field direction presented by Gao et al. (Ref. [131]) is largely consistent with

that presented in our work apart from the fact that Ref. [131] reports a suspicious magnetic Bragg peak at a position

which is not expected to contain significant magnetic Bragg scattering for the [0, 0, 1]-polarized spin ice phase. On the

other hand, we show that no magnetic Bragg scattering is present at this location in our data and speculate that

the reported magnetic Bragg intensity at this location in Ref. [131] actually arises from the imperfect subtraction

of nuclear Bragg peaks in their data. Furthermore, the measured magnetic Bragg scattering for a [1, 1̄, 0] magnetic

field direction in our work is consistent with that reported in Ref. [131], however, Ref. [131] incorrectly claims that

a three-in, one-out magnetic structure is expected for Ce2Zr2O7 in [1, 1̄, 0] magnetic field and they interpret their

data as such, while we show that a partially-polarized spin ice phase is expected and is consistent with the measured

Bragg scattering, elastic diffuse scattering, inelastic scattering, and the heat capacity that we present for a [1, 1̄, 0]

magnetic field direction. In short, our work extends the measured data on Ce2Zr2O7 at low-temperature in magnetic
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fields along the [0, 0, 1] and [1, 1̄, 0] directions, while also correcting multiple misconceptions regarding the existing

data and reported expectations for Ce2Zr2O7. This is an additional importance considering the fact that our work in

Publication III and the work in Ref. [131] are the only in-field neutron scattering studies published to date for any of

the existing cerium-based pyrochlores, Ce2Zr2O7, Ce2Hf2O7, and Ce2Sn2O7.

I contributed to this work by leading three separate neutron scattering experiments and the corresponding

preparation, cutting an aligned single crystal sample for heat capacity measurements, and analyzing the entirety of

the experimental data presented in the paper and appendices. I synthesized the powder sample of La2Zr2O7 used in

this work and was responsible for annealing the Ce2Zr2O7 samples in hydrogen gas before storing these samples in

inert atmosphere until measurement. I characterized both the crystallinity and phase purity of each sample used in

this work using x-ray diffraction. I designed and generated the figures included in this work and wrote ∼80% of the

text. The contributions of each author are summarized below.

Author Contributions for Publication III:

Experimental Concept:

E. M. Smith, J. Gaudet, B. D. Gaulin

Sample Preparation:

J. Dudemaine, E. M. Smith, J. Gaudet, A. Fitterman, J. Beare, G. M. Luke, B. D. Gaulin, A. D. Bianchi

Neutron Scattering Experiments:

E. M. Smith, J. Gaudet, C. R. C. Buhariwalla, A. Podlesnyak, Guangyong Xu, J. P. Clancy, B. D. Gaulin

Heat Capacity Measurements:

D. R. Yahne, T. DeLazzer, E. M. Smith, R. Movshovich, B. D. Gaulin, K. A. Ross

Data Analysis:

E. M. Smith, B. D. Gaulin

Theoretical Calculations and Modeling:

B. Placke, R. Schäfer, R. Moessner, O. Benton

Manuscript :

E. M. Smith, O. Benton, B. Placke, R. Schäfer, B. D. Gaulin

87



PHYSICAL REVIEW B 108, 054438 (2023)

Quantum spin ice response to a magnetic field in the dipole-octupole pyrochlore Ce2Zr2O7

E. M. Smith ,1,2 J. Dudemaine,3,4 B. Placke ,5 R. Schäfer ,5,6 D. R. Yahne,7 T. DeLazzer,7 A. Fitterman,3,4 J. Beare,1

J. Gaudet ,8,9 C. R. C. Buhariwalla ,1 A. Podlesnyak ,10 Guangyong Xu,8 J. P. Clancy,1,2 R. Movshovich,11

G. M. Luke ,1,2 K. A. Ross,7,12 R. Moessner,5 O. Benton ,5 A. D. Bianchi ,3,4 and B. D. Gaulin1,2,12

1Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
2Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada

3Département de Physique, Université de Montréal, Montréal, Quebec H2V 0B3, Canada
4Regroupement Québécois sur les Matériaux de Pointe (RQMP), Quebec H3T 3J7, Canada

5Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, Dresden 01187, Germany
6Department of Physics, Boston University, Boston, Massachusetts 02215, USA

7Department of Physics, Colorado State University, 200 West Lake Street, Fort Collins, Colorado 80523-1875, USA
8NIST Center for Neutron Research, National Institute of Standards and Technology, MS 6100 Gaithersburg, Maryland 20899, USA

9Department of Materials Science and Eng., University of Maryland, College Park, Maryland 20742-2115, USA
10Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

11Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
12Canadian Institute for Advanced Research, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada

(Received 23 June 2023; accepted 7 August 2023; published 28 August 2023)

The pyrochlore magnet Ce2Zr2O7 has attracted much attention as a quantum spin ice candidate whose novelty
derives in part from the dipolar-octupolar nature of the Ce3+ pseudospin-1/2 degrees of freedom it possesses. We
report heat capacity measurements on single crystal samples of Ce2Zr2O7 down to T ∼ 0.1 K in a magnetic field
along the [1, 1̄, 0] direction. These measurements show that the broad hump in the zero-field heat capacity moves
higher in temperature with increasing field strength and is split into two separate humps by the [1, 1̄, 0] magnetic
field at ∼2 T. These separate features are due to the decomposition of the pyrochlore lattice into effectively
decoupled chains for fields in this direction: One set of chains (α chains) is polarized by the field while the
other (β chains) remains free. This situation is similar to that observed in the classical spin ices Ho2Ti2O7 and
Dy2Ti2O7, but with the twist that here the strong transverse exchange interactions produce substantial quantum
effects. Our theoretical modeling suggests that the β chains are close to a critical state, with nearly-gapless
excitations. We also report elastic and inelastic neutron scattering measurements on single crystal Ce2Zr2O7

in [1, 1̄, 0] and [0, 0, 1] magnetic fields at temperatures down to T = 0.03 K. The elastic scattering behaves
consistently with the formation of independent chains for a [1, 1̄, 0] field, while the [0, 0, 1] field produces a
single field-induced elastic magnetic Bragg peak at (0, 2, 0) and equivalent wavevectors, indicating a polarized
spin ice state for fields above ∼3 T. For both [1, 1̄, 0] and [0, 0, 1] magnetic fields, our inelastic neutron scattering
results show an approximately-dispersionless continuum of scattering that increases in both energy and intensity
with increasing field strength. By modeling the complete set of experimental data using numerical linked cluster
and semiclassical molecular dynamics calculations, we demonstrate the dominantly multipolar nature of the
exchange interactions in Ce2Zr2O7 and the smallness of the parameter θ , which controls the mixing between
dipolar and octupolar degrees of freedom. These results support previous estimates of the microscopic exchange
parameters and place strong constraints on the theoretical description of this prominent spin ice candidate.

DOI: 10.1103/PhysRevB.108.054438

I. INTRODUCTION

The rare-earth pyrochlores have been of great interest
within the condensed matter physics community due to the
wealth of exotic magnetic ground states displayed throughout
this large family of materials [1–4]. Many rare-earth py-
rochlores have the chemical formula R2B2O7, where R3+ is
a trivalent rare-earth ion and B4+ is a tetravalent transition
metal ion. Much attention has focused on the subset of the py-
rochlore family where the B4+ site is nonmagnetic, allowing
the physics to be driven by interacting multipolar moments at
the R3+ sites. These form a network of corner-sharing tetrahe-
dra that is one of the archetypes for geometric frustration in

three dimensions and which promotes exotic magnetic phases
at low temperature [1,2,4–8].

The typical energy hierarchy in rare-earth pyrochlores is
such that spin-orbit coupling is the highest energy scale apart
from the coulomb interactions that dictate the filling of atomic
levels, followed by the crystalline electric field (CEF) at
the R3+ sites, which then dominates over the exchange and
related intersite interactions between the R3+ ions [3,4]. Con-
sequently, when the CEF ground state is a doublet that is well
separated in energy from the first excited state, which is often
the case for the R3+ ions in rare-earth pyrochlores, the low-
temperature magnetic behavior can be accurately described in
terms of interacting pseudospin-1/2 degrees of freedom [3,4].

2469-9950/2023/108(5)/054438(33) 054438-1 ©2023 American Physical Society

Ph.D. Thesis - E.M. Smith McMaster University - Physics and Astronomy

88



E. M. SMITH et al. PHYSICAL REVIEW B 108, 054438 (2023)

In such cases, the symmetry of the CEF ground state imprints
itself on the R3+ pseudospin-1/2 degrees of freedom and the
exchange Hamiltonian that describes the interactions between
them. This leads to three possible scenarios for the rare-earth
pyrochlores, based on how the pseudospin-1/2 degrees of
freedom transform under the R3+ site symmetries and time-
reversal symmetry [4,9–12]. The three scenarios for the CEF
ground-state doublets are (1) the “non-Kramers” ground-state
doublet, relevant for R3+ ions with an even number of elec-
trons, (2) the “effective spin-1/2” dipole doublet, and (3) the
“dipolar-octupolar” ground-state doublet, with the latter two
being relevant for Kramers R3+ ions with an odd number of
electrons. Along with governing the form of the nonzero terms
allowed in the exchange Hamiltonian, the nature of the CEF
ground-state doublet also determines the size and single-ion
anisotropy of the magnetic moments at low temperature [4].

In the case of Ce2Zr2O7, the Ce3+ CEF ground state is
well separated in energy from the first excited CEF state,
by ∼55 meV, and it is a dipolar-octupolar doublet [13,14],
which corresponds to x and z components of pseudospin
that transform like magnetic dipoles, and y components that
transform like magnetic octupoles, under the point group sym-
metries of the R3+ site and time-reversal symmetry [4,11,12].
This dipolar-octupolar symmetry is accompanied by an Ising
single-ion anisotropy in which the magnetic dipole moments
are aligned along the local C3 axes of the R3+ sites, labeled
as the local z directions. This Ising single-ion anisotropy is
the case for all dipolar-octupolar pyrochlores. While the x
and z components of pseudospin both transform like magnetic
dipoles, the x component carries an octupole moment similar
to the y component, and the z component carries a dipole
moment [4,15].

The dipolar-octupolar symmetry of the CEF ground-state
doublet governs the relevant nonzero terms in the general
exchange Hamiltonian appropriate for Ce2Zr2O7 and other
dipolar-octupolar pyrochlores, and at nearest-neighbor level
this yields the exchange Hamiltonian [4,11,12],

HDO =
∑
〈i j〉

[
JxSi

xS j
x + JySi

yS j
y + JzSi

zS j
z

+ Jxz
(
Si

xS j
z + Si

zS j
x
)] − gzμB

∑
i

(h · ẑi )Si
z, (1)

where Si
α (α = x, y, z) are the pseudospin-1/2 components of

rare-earth atom i in the local {x, y, z} coordinate frame. The
{x, y, z} coordinate frame is the local coordinate frame that is
typically used for the rare-earth pyrochlores, with the y and
z axes along the C2 and C3 axes of the R3+ site, respectively
[4,11,12]. As described above, Sz

i carries a magnetic dipole
moment while Sx

i and Sy
i each carry magnetic octupole mo-

ments [4,15]. However, both Sx
i and Sz

i transform under the
R3+ site symmetries and time-reversal symmetry like mag-
netic dipoles, while only Sy

i transforms like a component of
the magnetic octupole tensor. The second sum in Eq. (1)
represents the Zeeman interaction between the R3+ ion and the
magnetic field, where the magnetic field is denoted as h and
ẑi is the local z axis for ion i. The constant gz is determined
by the CEF ground-state doublet, which gives gz = 2.57 for
the pure |mJ = ±3/2〉 ground-state doublet estimated for
Ce3+ in Ce2Zr2O7 [13,14]. This nearest-neighbor exchange
Hamiltonian [Eq. (1)] can then be simplified to the “XYZ”

exchange Hamiltonian via rotation of the local {x, y, z} coor-
dinate frame by θ about the y axis [11,16],

HXYZ =
∑
〈i j〉

[
Jx̃Si

x̃S j
x̃ + JỹSi

ỹS j
ỹ + Jz̃Si

z̃S j
z̃
]

− gzμB

∑
i

h · ẑi
(
Si

z̃ cos θ + Si
x̃ sin θ

)
. (2)

Theoretical studies of this XYZ Hamiltonian [Eq. (2)] for
zero field have shown that it permits at least four distinct U(1)
quantum spin liquids, with low-energy physics mimicking
the theory of quantum electromagnetism, and at least two
magnetically-ordered ground states [15,17–20]. We refer to
these spin liquids as quantum spin ice (QSI) phases, as they
can be obtained from the addition of quantum fluctuations to
a classical spin ice model with local “2-in-2-out” constraints
on the spins [11,21–24]. Recent studies [25,26] have focused
on estimating the exchange parameters, Jx̃, Jỹ, Jz̃, and θ , for
Ce2Zr2O7 by fitting collections of experimental data, and both
analyses yield parameters that correspond to a quantum spin
ice ground state for the XYZ Hamiltonian. A quantum spin
ice ground state of the XYZ Hamiltonian has octupolar nature
if |Jỹ| > |Jx̃|, |Jz̃| and dipolar nature if |Jz̃| > |Jỹ| or |Jx̃| > |Jỹ|
[25]. We do not distinguish here between the spin ices appear-
ing for large Jx̃ and the spin ices appearing for large Jz̃. This
is because these ground states can be smoothly deformed into
one another, by variation of the parameter θ , so they do not
represent distinct phases. In general, the Jx̃ or Jz̃ dominated
spin ices are of mixed dipolar-octupolar character, but we refer
to them here as “dipolar” to distinguish them from the purely
octupolar spin ices appearing for large Jỹ.

The work in Ref. [25] finds experimental estimates for the
exchange parameters of Ce2Zr2O7 that correspond to a quan-
tum spin ice ground state near the boundary between dipolar
and octupolar character, while Ref. [26] also fits next-near-
neighbor terms in the Hamiltonian, beyond those contained in
Eqs. (1) and (2), and finds exchange parameters for Ce2Zr2O7

that correspond to a quantum spin ice ground state with oc-
tupolar character. It is worth mentioning that a QSI ground
state is also consistent with the lack of evidence for phase
transitions in the measured heat capacity and magnetic sus-
ceptibility, as well as the snowflake-like pattern of magnetic
diffuse scattering and the lack of magnetic Bragg scattering
measured in neutron scattering experiments [13,14,19,25,26].

Similarly, recent experiments on powder samples of the
dipolar-octupolar pyrochlore Ce2Sn2O7 at low temperature
have been interpreted in terms of an octupole-based QSI
phase [27–29]. However, new results on hydrothermally-
grown powder and single crystal samples of Ce2Sn2O7

suggest that the magnetic ground state is an “all-in, all-out”
ordered phase that is proximate in phase space to a QSI
phase whose dynamics persist down to very low temperature
[30]. In a recent study on the third existing cerium-based,
dipolar-octupolar pyrochlore, Ce2Hf2O7 [31], a collection of
experimental data was fit to constrain the nearest-neighbor
exchange parameters and this analysis concluded that the
corresponding ground state is a quantum spin ice ground
state [32]. The work in Ref. [32] was unable to constrain the
nearest-neighbor exchange parameters further to distinguish
between a dominant Jx or a dominant Jy for the proposed
quantum spin ice ground state in Ce2Hf2O7.
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FIG. 1. (a) The magnetic rare-earth ions composing five corner-
sharing tetrahedra within the pyrochlore crystal structure, illustrating
the magnetic structure expected in a [1, 1̄, 0] magnetic field for a spin
ice with ferromagnetic coupling of dipole moments. The magnetic
moments of the rare-earth ions are confined by the Ising single-ion
anisotropy to point directly towards or away from the center of
neighboring tetrahedra. The magnetic sublattice can be decomposed
into α chains along the [1, 1̄, 0] magnetic field direction and β chains
perpendicular to the field. The red (blue) colors highlight the α (β)
chains along the [1, 1̄, 0] ([1, 1, 0]) direction parallel (perpendicular)
to the magnetic field. The α chains are polarized by the [1, 1̄, 0] mag-
netic field while the β chains show short-ranged ferromagnetic order,
which locally establishes the 2-in-2-out spin ice rule for dipoles.
There are two possible directions for the short-ranged ferromagnetic
order of the β chains due to the fact that the magnetic moments on
each β chain can be collectively flipped at zero cost in energy. (b) The
magnetic structure for spin ice in the presence of a [0, 0, 1] magnetic
field is illustrated. Each tetrahedron takes on a 2-in-2-out configu-
ration, but the component of the magnetic dipole moment along the
[0, 0, 1] magnetic field direction is positive for each rare-earth ion,
giving rise to a polarized spin ice state.

In this paper, we report heat capacity and neutron scat-
tering studies focused on probing the magnetic behavior of
the Ce3+ ions in Ce2Zr2O7 at low temperature in magnetic
fields along the [1, 1̄, 0] and [0, 0, 1] directions. Fields along
the [1, 1̄, 0] direction are of particular interest, because the
local anisotropy of the g tensor of the Ce3+ ions means two of
the four sites in the unit cell are decoupled from fields in this
direction, while the other two sites couple to the field strongly.
These two sets of spins form chains in the pyrochlore structure
[see Fig. 1(a)], conventionally labeled α and β. The α chains
are polarized by the field, while the β chains are decoupled
from it.

Moreover, the geometry of the interactions on the py-
rochlore lattice means that once the α chains are polarized,
the exchange field they produce on the sites of the β chains
cancels, and the system is thus reduced to a set of indepen-
dent, quantum, spin chains [33,34]. Reference [34] further
shows that any effective interaction between β chains, me-
diated by quantum fluctuations on the α chains, is extremely
small in the nearest-neighbor model. The decoupling of the
α and β chains in [1, 1̄, 0] magnetic fields has been observed
previously in the classical spin ices Ho2Ti2O7 [35–37] and
Dy2Ti2O7 [36,38,39] and in the dipolar-octupolar pyrochlore
Nd2Zr2O7 [40]. In each of these cases it was found that the
β chains develop short-range ferromagnetic intrachain cor-
relations. For Nd2Zr2O7, no obvious correlations between β

chains were reported [40], while for Ho2Ti2O7 [35–37] and
Dy2Ti2O7 [36,38,39], short-ranged antiferromagnetic correla-

tions develop between the β chains, attributed to long-range
dipolar interactions [33].

The ferromagnetic coupling detected within β chains in
Nd2Zr2O7 [40] is consistent with the dominant ferromagnetic
coupling between dipole moments in Nd2Zr2O7 [16,40,41],
despite the fact that frustration of this dominant ferromagnetic
coupling leads to an antiferromagnetic all-in, all-out ground
state in zero field [40,42–46]. The short-range ferromagnetic
intrachain correlations detected in Ho2Ti2O7 [35–37] and
Dy2Ti2O7 [36,38,39] are consistent with the ferromagnetic
coupling of dipole moments that governs the conventional
“2-in-2-out” rule for these classical spin ices in zero field
[35,47–52].

The results we report here for Ce2Zr2O7 also show short-
range ferromagnetic intrachain correlations, in agreement
with the ferromagnetic coupling between dipole moments
(Jz > 0) determined from estimates of the exchange param-
eters in this paper and Refs. [25,26], as well as very weak or
vanishing correlations between β chains. However, we also
find important differences, compared to previously studied
materials. In particular, the intrachain correlation length we
observe is much shorter in Ce2Zr2O7 than in the classical
spin ices, a fact that we attribute both to stronger quan-
tum fluctuations and to the strong multipolar interactions in
Ce2Zr2O7. The situation here is also somewhat different to
that in Nd2Zr2O7, where neutron scattering probes the dom-
inant correlations on the β chains, whereas here we find that
the dominant multipolar correlations are hidden. We reach this
conclusion via fits of the in-field heat capacity data to numeri-
cal linked cluster (NLC) calculations based on Eq. (2), finding
that Jx̃ and Jỹ dominate over Jz̃, and that θ ≈ 0, reaffirming our
conclusions from [25]. We find that the values of Jx̃ and Jỹ are
closely matched, which in turn implies that the β chains are
tuned to the vicinity of a critical point and have nearly gapless
excitations.

For fields in the [0, 0, 1] direction we observe the field-
induced structure shown in Fig. 1(b). For this magnetic
structure, each of the rare-earth magnetic moments are aligned
along the local easy-axis direction that has a positive com-
ponent along [0, 0, 1], so as to collectively minimize the
interaction energies of the rare-earth ion with both the crystal
electric field and the magnetic field. This corresponds to a
field-induced selection of the 2-in-2-out spin ice state that has
a net moment along [0, 0, 1], for each tetrahedron, and as such
forms a Q = 0 magnetic structure [36,38,53]. This Q = 0
magnetic structure is known to occur in the classical spin
ices Ho2Ti2O7 and Dy2Ti2O7 at low temperature in moderate
magnetic fields along the [0, 0, 1] direction [36,38].

Inelastic neutron scattering performed in both [1, 1̄, 0] and
[0, 0, 1] does not show any sharp spin wave excitations. This
supports the conclusion of a small or vanishing value of θ , as
it is this parameter which controls the matrix element to excite
spin waves from the high-field polarized state. Modelling the
inelastic scattering using molecular dynamics simulations, we
find good general agreement. The suite of data presented
here, across thermodynamic, static and spectroscopic mea-
surements, strongly constrains any theoretical description of
Ce2Zr2O7. As such this paper represents an important step
in the understanding of this promising spin ice candidate
material.
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II. OUTLINE

We first present heat capacity measurements of Ce2Zr2O7

in a magnetic field along the [1, 1̄, 0] direction for field
strengths between 0 and 2 T. These measurements are fit to
the results of numerical linked cluster (NLC) calculations
to further examine experimental estimates of the parame-
ters (Jx̃, Jỹ, Jz̃ ) and gz for Ce3+ in Ce2Zr2O7. The results
of this fitting are largely consistent with previous estimates
for the nearest-neighbor-exchange parameters in Ref. [25],
and importantly, with a U(1)π quantum spin ice ground state
in Ce2Zr2O7 according to the ground-state phase diagrams
predicted for dipolar-octupolar pyrochlores at the nearest-
neighbor level [15,17–20].

We next present elastic neutron scattering results from our
time-of-flight and triple-axis neutron scattering measurements
on single crystal Ce2Zr2O7 in a [1, 1̄, 0] magnetic field. These
measurements reveal magnetic Bragg peaks characteristic of
field-polarized α chains, as well as sheets of diffuse mag-
netic scattering characteristic of loosely-correlated β chains
that are short-ranged-ordered ferromagnetically within each
chain and disordered between the chains, as illustrated in
Fig. 1(a). Our elastic neutron scattering measurements in a
[0, 0, 1] magnetic field show only the appearance of magnetic
Bragg intensity at Q = (2, 0, 0) and symmetrically-equivalent
positions, with no magnetic Bragg intensity at Q = (2, 2, 0), a
signature of the [0, 0, 1]-polarized spin ice state, illustrated in
Fig. 1(b). These elastic neutron scattering results are then put
into the context of the results on the classical dipolar spin ices,
Ho2Ti2O7 and Dy2Ti2O7 as well as the quantum pyrochlore
Nd2Zr2O7.

Finally, for both [1, 1̄, 0] and [0, 0, 1] magnetic field
directions, our time-of-flight inelastic neutron scattering mea-
surements reveal a continuum of relatively dispersionless
inelastic scattering, which breaks off from the quasielastic
scattering that is characteristic of the zero-field quantum spin
ice state, with increasing magnetic field strength.

We compare our neutron scattering measurements with
semiclassical molecular dynamics calculations based on
Monte Carlo simulations, as well as one-dimensional quantum
calculations, using the experimental estimates for (Jx̃, Jỹ, Jz̃ )
and gz obtained from our fitting to the heat capacity. These
calculated neutron scattering intensities are largely consistent
with the experimental data and the strong θ dependence of the
calculated scattering further suggests that θ is near zero for
Ce2Zr2O7.

III. EXPERIMENTAL DETAILS

Neutron scattering and heat capacity measurements were
performed on three different high-quality single crystal sam-
ples of Ce2Zr2O7, each grown by floating zone image furnace
techniques as described in Ref. [13]. As described in earlier
studies, nonstoichiometric oxygen content and the presence of
nonmagnetic Ce4+ impurities can complicate measurements
on as-grown Ce2Zr2O7 samples and samples that have been
exposed to air after growth [13]. Accordingly, our crystals
were subsequently annealed at 1450 C for 72 hours in H2

gas to reduce the as-grown oxygen content and maximize the
Ce3+ to Ce4+ ratio, and care was taken to store the samples in
inert gas after annealing.

Heat capacity measurements were performed on a sin-
gle crystal piece of Ce2Zr2O7 that was removed from one
of our larger crystals, along with a polycrystalline sample
of La2Zr2O7, which is used as a 4 f 0 analog of Ce2Zr2O7.
Heat capacity measurements on a polished single crystal
of Ce2Zr2O7 (smooth-surfaced pressed powder pellet of
La2Zr2O7) were carried out using a Quantum Design PPMS
to temperatures as low as T = 0.058 K (T = 2.5 K) using the
conventional quasiadiabatic thermal relaxation technique. The
heat capacity of La2Zr2O7 is very small at ∼2.5 K, and there
was no need to pursue measurements at lower temperatures.
The heat capacity of our single crystal Ce2Zr2O7 sample was
measured in a magnetic field along the [1, 1̄, 0] direction at
field strengths between 0 and 2 T. Our zero-field heat capacity
measurements on Ce2Zr2O7 and La2Zr2O7 are also presented
and analyzed in Ref. [25].

Our triple-axis elastic neutron scattering measurements
employed the SPINS instrument at the NIST Center for Neu-
tron Research, with a constant incident neutron energy of
Ei = 5 meV. For this experiment, a ∼1.5-gram single crystal
of Ce2Zr2O7 was aligned in the (H, H, L) scattering plane in
a magnetic field along the [1, 1̄, 0] direction. The (0, 0, 2)
Bragg reflection from pyrolytic graphite was employed for
both the monochromator and analyzer of this instrument and
a liquid nitrogen cooled beryllium filter was used after the
sample to remove higher-order neutrons. The collimation was
0.7◦ in both the incident and scattered beams, and the overall
energy resolution was ∼0.22 meV. The single crystal sample
was mounted in an aluminum sample holder, and a 3He insert
was used in a vertical-field superconducting magnet cryostat
with a maximum field strength of 7 T.

Our time-of-flight neutron scattering experiments em-
ployed the Cold Neutron Chopper Spectrometer (CNCS)
instrument at the Spallation Neutron Source of Oak Ridge Na-
tional Laboratory [54,55]. We employed an incident neutron
energy of Ei = 3.27 meV using the high-flux configuration
with 300 Hz chopper frequency, yielding an energy resolu-
tion of ∼0.1 meV at the elastic line. For one experiment,
a ∼5-gram single crystal sample of Ce2Zr2O7 was mounted
in a copper sample holder and aligned in the (H, H, L)
scattering plane in a magnetic field along the [1, 1̄, 0] di-
rection. For the second neutron scattering experiment using
the CNCS instrument, a ∼1.7-gram single crystal Ce2Zr2O7

sample was mounted in a copper sample holder and aligned
in the (H, K, 0) scattering plane in a magnetic field along the
[0, 0, 1] direction.

For each chosen temperature and field strength of our
CNCS experiment with a [1, 1̄, 0] magnetic field, the sam-
ple was rotated in the (H, H, L) plane in 1◦ steps through
a total of 220◦ and the data was subsequently symmetrized.
We have further discussed this symmetrization process in the
supplemental material of Ref. [13]. We reduce the diffuse
scattering data in Figs. 4–6 (see below) in a manner that avoids
adding artefacts to the diffuse scattering signal arising from
the imperfect subtraction of Bragg peaks: The intensity at each
Bragg peak location is masked in performing the subtraction
of the h = 0 T data and we subsequently show the intensity
at these masked Bragg peak locations as the average intensity
of the surrounding points in reciprocal space. For each cho-
sen temperature and field strength of our CNCS experiment
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FIG. 2. (a) The temperature dependence of the heat capacity of single crystal Ce2Zr2O7 in a [1, 1̄, 0] magnetic field is shown for field
strengths of 0 T (blue), 0.5 T (orange), 1 T (green), and 2 T (brown), as well as the heat capacity of a La2Zr2O7 powder sample in
zero magnetic field (purple). The lines in (a) show the magnetic contribution to the heat capacity in a [1, 1̄, 0] magnetic field calculated
using sixth- and seventh-order NLC calculations for zero magnetic field and fifth-order NLC calculations at each nonzero-field strength
of measurement (as labeled). The calculation is shown using θ = 0 and our best-fitting set of nearest-neighbor-exchange parameters
(Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV obtained in this paper by fitting the sixth-order NLC calculations to the zero-field Ce2Zr2O7 CP

data in this figure. The calculations in this figure use the value gz = 2.24 for the effective g factor, which provides the best-fit to the in-field
data for (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV and θ = 0 according to the fifth-order NLC calculations. (b) The best fit parameters from
the NLC calculations in this paper overlaid on the zero-field ground-state phase diagram predicted for the XYZ model Hamiltonian and
dipole-octupole pyrochlores [17,30]. We also plot the experimental estimates for the exchange parameters determined in Refs. [25,26]. Part
(b) of this figure was adapted from Ref. [30].

with [0, 0, 1] magnetic field, the sample was rotated in the
(H, K, 0) plane in 0.5◦ steps through a total of 280◦ and
the data was subsequently symmetrized. The Data Analysis
and Visualization Environment (DAVE) software suite for the
reduction, visualization, and analysis of low-energy neutron
spectroscopic data [56] was used in analyzing the neutron
scattering data presented in this paper.

IV. RESULTS: HEAT CAPACITY AND
NUMERICAL-LINKED-CLUSTER CALCULATIONS

New heat capacity measurements taken on a Ce2Zr2O7

single crystal in a [1, 1̄, 0] magnetic field complement those
previously reported from Ce2Zr2O7 single crystals in zero
magnetic field and in [1, 1, 1] magnetic fields [14,25,26,57].
As discussed previously, the [1, 1̄, 0] magnetic field direction
is particularly interesting to investigate for Ce2Zr2O7 due to
the lack of coupling between the magnetic field and the β

chains in the pyrochlore lattice for this field direction. Fig-
ure 2(a) shows the temperature dependence of heat capacity
measured from our single crystal sample of Ce2Zr2O7 in a
[1, 1̄, 0] magnetic field for field strengths between h = 0 T
and h = 2 T, as well as the heat capacity measured from
a powder sample of La2Zr2O7 down to 2 K. La2Zr2O7 is
a nonmagnetic analog of Ce2Zr2O7 and the measured data
from La2Zr2O7 in Fig. 2(a) (purple) provides an estimate for
the phonon contribution to the heat capacity in Ce2Zr2O7.
This shows that this lattice contribution to the heat capacity
is approximately zero below T ∼ 6 K, and accordingly, the
magnetic contribution to the heat capacity (Cmag) is easily
isolated below T ∼ 6 K. Figure 2(a) shows that the broad

hump in the zero-field heat capacity, due to Cmag, increases
in temperature and width with increasing field strength before
splitting into two distinct humps, which are visible as separate
features by 2 T.

The field-dependent hump at higher temperature has the
form of a Schottky anomaly at h = 2 T and we attribute
this feature to the phase crossover into the low-temperature
ordered regime for the α chains, which interact strongly with
the magnetic field. On the other hand, the low-temperature
shoulder of this peak, most visible in the 2 T data of Fig. 2(a),
is attributed to the phase crossover into the low-temperature
short-ranged ordered regime for the β chains, which lack
significant coupling to the magnetic field. This is similar to
the splitting of Cmag observed in Ref. [58] for the classical
spin ice Dy2Ti2O7, where a [1, 1̄, 0] magnetic field again splits
the hump in the zero-field heat capacity into a field-dependent
hump associated with the α chains, which takes the form of
a Schottky anomaly for higher fields, and a field-independent
phase crossover at lower temperature associated with the β

chains, consistent with predictions for Dy2Ti2O7 in Ref. [33].
We compare the measured heat capacity of Ce2Zr2O7 with

Cmag calculations using the NLC method [59–63], which al-
lows further refinements of the nearest-neighbor-exchange
parameters in the XYZ Hamiltonian relevant to Ce2Zr2O7

[25,30]. The NLC method employs a process of calculating
Cmag (or other physical quantities) by generating a series ex-
pansion from the exact diagonalization of clusters containing
increasing numbers of tetrahedra. The sum is truncated at
some maximum cluster size, and the calculation is expected
to be accurate for temperatures such that the correlation length
does not exceed that maximum size. The order of these quan-
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tum NLC calculations refers to the maximum number of
tetrahedra considered in a cluster, and the low-temperature
cutoff for the nth-order calculation, using a particular set of
exchange parameters, is set by the temperature above which
the nth-order calculation is equal to the (n − 1)th-order calcu-
lation up to some small tolerance. We have carried out NLC
calculations up to seventh order to model the magnetic heat
capacity at temperatures above a low-temperature threshold
for each calculation, and below T = 6 K where the phonon
contribution to the heat capacity is insignificant.

In the following, we use sixth-order NLC and fifth-order
NLC to fit the heat capacity in zero and nonzero field, re-
spectively. The reduced order for nonzero field is due to the
reduced symmetry of the Hamiltonian in that case, which
increases the cost of the exact diagonalization. In addition
to that, the number of topologically invariant clusters in the
NLC expansion is also increased in the nonzero-field case
making calculations even more demanding. We first used
sixth-order NLC calculations in order to fit the zero-field
heat capacity measured from Ce2Zr2O7 and determine the
best-fitting nearest-neighbor-exchange parameters Jx̃, Jỹ, and
Jz̃ up to permutation of the x̃, ỹ, and z̃ axes. This is similar
to the sixth-order NLC fitting of the zero-field heat capacity
measured from Ce2Sn2O7 in Ref. [30], and provides improve-
ment to the fourth-order NLC fitting of the zero-field heat
capacity measured from Ce2Zr2O7 in Ref. [25]. We then use
fifth-order NLC calculations to fit the in-field heat capacity
measured from Ce2Zr2O7 using the best-fitting values of Jx̃,
Jỹ, and Jz̃ determined from our zero-field fitting, in order to
determine which permutations of these exchange parameters
fit the measured data best, as well as to estimate the effective
anisotropic g factor, gz.

The zero-field heat capacity contains no directional infor-
mation and as such it does not depend on θ or the permutation
of x̃, ỹ, and z̃ that is chosen. We compare sixth-order NLC
calculations for Cmag between T = 0.3 K and T = 4 K to the
measured heat capacity from Ce2Zr2O7 in zero field in order
to fit the values of (Jx̃, Jỹ, Jz̃ ) up to permutation. Specifically,
the set of Hamiltonian parameters, (Jx̃, Jỹ, Jz̃ ), best reproduc-
ing Cmag was obtained from a sixth-order NLC calculation
with an Euler transformation to improve convergence (see
Appendix A), and the best-fitting exchange parameters up
to permutation are (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV.
The blue lines in Fig. 2(a) shows the magnetic contribution
to the heat capacity calculated in zero field via the NLC
method at sixth and seventh order, using the best-fitting ex-
change parameters obtained from our Cmag-fitting procedure.
These exchange parameters, regardless of their permutation,
correspond to a U(1)π QSI in the ground-state phase diagram
predicted for dipolar-octupolar pyrochlores [17,19]. However,
the nature of the U(1)π QSI ground state (dipolar or octupolar)
depends on the permutation of the exchange parameters.

Unlike in zero magnetic field, the magnetic contribution to
the heat capacity in nonzero field depends on the permutation
of (Jx̃, Jỹ, Jz̃ ), as well as the parameters θ and gz, which only
become relevant in the Hamiltonian of Eq. (2) for nonzero-
field strength. We compare fifth-order NLC calculations for
Cmag between T = 0.2 K and T = 6 K to the measured heat
capacity from Ce2Zr2O7 in a [1, 1̄, 0] magnetic field for field
strengths of h = 0.5 T, h = 1 T, and h = 2 T, in order to

fit the value of gz and the best-fitting permutation of the
exchange parameters estimated from our fitting to Cmag in
zero field using higher-order calculations. The goodness-of-fit
parameter for this comparison lacks a significant θ depen-
dence in the region of good agreement for each measured field
strength (see Appendix A), and so θ has been set to zero for
our fitting of the heat capacity in nonzero magnetic field, in
accordance with value of θ estimated in Refs. [25,26] and
consistent with the neutron scattering results that we present
in Sec. V.

Our fifth-order NLC fitting to the measured heat capac-
ity from Ce2Zr2O7 in a [1, 1̄, 0] magnetic field yields the
estimated value for the effective g factor, gz = 2.24, and
signifies that the permutations (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062,

0.011) meV and (Jx̃, Jỹ, Jz̃ ) = (0.062, 0.063, 0.011) meV are
the best-fitting permutations and fit much better than the four
other possible permutations of (0.063, 0.062, 0.011) meV
(see Appendix A). These two best-fitting permutations
provide equal fits to the heat capacity due to the interchange-
ability of x̃ and ỹ in Eq. (2) for θ = 0. Both sets of these
best-fitting exchange parameters have Jx̃ ≈ Jỹ, which implies
that the corresponding quantum spin ice ground state is proxi-
mate to the boundary between dipolar and octupolar character.
Furthermore, the near-equality of Jx̃ and Jỹ implies that the
β chains within Ce2Zr2O7 in a [1, 1̄, 0] magnetic field are
near the critical point (Jx̃ = Jỹ) where the excitations on the
β chains become gapless (see Appendix B).

The orange, green, and brown lines in Fig. 2(a) show the
magnetic contribution to the heat capacity calculated via the
NLC method at fifth order for [1, 1̄, 0] magnetic field strengths
of h = 0.5 T, h = 1 T, and h = 2 T, respectively, using
the best-fitting exchange parameters obtained from our Cmag-
fitting procedure, (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV
and gz = 2.24, with θ set to zero. Figure 2(a) shows that
the best-fitting nearest-neighbor exchange parameters from
this paper are able to accurately describe the temperature
dependence of heat capacity measured from Ce2Zr2O7 in a
[1, 1̄, 0] magnetic field up to field strengths of 2 T, at modest
and elevated temperatures where the NLC method is expected
to be accurate. Specifically, these NLC calculations capture
the shifting, widening, and splitting of the broad hump in the
measured heat capacity of Ce2Zr2O7 in a [1, 1̄, 0] magnetic
field.

While these NLC calculations provide an accurate quali-
tative description of the measured data over their respective
regions of convergence where they are reliable (above T ∼
0.15 K for the zero-field calculations and over the full range
shown for the nonzero-field calculations), it is clear that the
quantitative descriptions could be improved at lower tem-
peratures within the regions of convergence. This is most
evident for zero field, where the hump in calculated heat
capacity peaks at a significantly higher temperature than that
in the measured data, and for h = 2 T, where the calcula-
tion suggests a second, distinctive hump at low temperature
rather than the broadened feature that resembles more of a
low-temperature shoulder to the high-temperature hump in
the measured data [Fig. 2(a)]. These inconsistencies suggest
the significance of effects beyond the ideal nearest-neighbor
Hamiltonians in Eqs. (1) and (2), which are weak effects and
hence, only become relevant at the lowest measured tempera-
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tures, as would occur, for example, with further-than-nearest
neighbor interactions.

Figure 2(b) shows the best-fitting exchange parameters
obtained in this paper and the exchange parameters deter-
mined in Refs. [25,26] overlaid on the zero-field ground-state
phase diagram predicted for dipolar-octupolar pyrochlores at
the nearest-neighbor level [17,30]. As shown in Fig. 2(b),
the current understanding is that there are six phases in the
nearest-neighbor ground-state phase diagram predicted for
dipolar-octupolar pyrochlores: Four U(1) spin ice phases,
which may be distinguished by an emergent flux of 0 or π

on the hexagonal plaquettes of the lattice, and by the dipolar
or octupolar nature of the emergent electric field, and two
ordered phases distinguished by dipolar and octupolar order
parameters [15,17,18]. Each of the estimated exchange pa-
rameter sets for Ce2Zr2O7 are well within the region of the
ground-state phase diagram corresponding to U(1)π quantum
spin ice ground states in zero field, with the set from Ref. [26]
being within the octupolar regime and the sets from this work
and Ref. [25] being on the border between octupolar and
dipolar nature.

Our best-fitting exchange parameters are nearly identical to
those determined in Ref. [25] but with a reduced anisotropic
g factor given by gz ∼ 2.24, which is 87% of the value
corresponding to a pure |mJ = ±3/2〉 ground-state doublet.
The experimental estimates of the exchange parameters in
Ref. [26] also yield a reduced g factor value of gz ∼ 2.4,
while the experimental estimates of the exchange parameters
in Ref. [25] did not allow for a variation of gz from the value
of 2.57 corresponding to a pure |mJ = ±3/2〉 ground-state
doublet. It is also worth mentioning that our estimated value
of gz ∼ 2.24 for Ce2Zr2O7 is very near the value of gz ∼ 2.2
estimated for Ce2Sn2O7 in Ref. [30], and attributed to mixing
of the |mJ = ±3/2〉 states with states from the J = 7/2 spin-
orbit manifold in the CEF ground-state doublet for Ce2Sn2O7,
rather than a pure |mJ = ±3/2〉 ground state [28]. References
[13,14] both perform their CEF analysis on Ce2Zr2O7 within
the J = 5/2 spin-orbit ground-state manifold.

V. RESULTS: ELASTIC AND QUASIELASTIC
NEUTRON SCATTERING

Here we present our elastic and quasielastic neutron scat-
tering results on single crystal Ce2Zr2O7 at low temperature
for both [1, 1̄, 0] and [0, 0, 1] magnetic fields. We begin with
the [1, 1̄, 0] field direction where we first analyze the mag-
netic Bragg scattering from the field-polarized α chains before
discussing the quasielastic diffuse scattering in a [1, 1̄, 0]
magnetic field, which is dominated by scattering from the
field-decoupled β chains. We end this section with an analysis
of the magnetic Bragg scattering detected from the polarized
spin ice phase in a magnetic field along [0, 0, 1]. It is worth
mentioning that the neutron scattering experiments we present
here directly probe only correlations from the z components of
the pseudospins, Sz (which equals Sz̃ for θ = 0). This is due
to the fact that x and y components of pseudospin each carry
octupolar magnetic moments and accordingly, give significant
scattering signals only at much higher Q than the maximum Q
of our measurements [64]. Nonetheless, this paper establishes
a clear understanding for the behavior of the magnetic dipole

moments in Ce2Zr2O7 at low temperature in both [1, 1̄, 0]
and [0, 0, 1] magnetic fields. Furthermore, and as shown in
Ref. [19], the correlation function for z components of the
pseudospins indeed depends on the relative values of Jx̃, Jỹ,
and Jz̃, and so our neutron scattering experiments are sensitive
to all exchange parameters despite only having sensitivity to
Sz correlations.

A. Magnetic Bragg peaks from polarized α chains
in a [1, 1̄, 0] magnetic field

As discussed above, the effect of a moderate [1, 1̄, 0] mag-
netic field on a disordered spin ice ground state is to polarize
the α chains to the extent consistent with the Ising single-ion
anisotropy [33,35–40,53], which constrains the magnetic mo-
ments to point along local [1, 1, 1] and equivalent directions.
Accordingly, and as shown in Fig. 1(a), the Zeeman term in
Eq. (2) will couple only to two of the four sites in the unit
cell (those with easy axes along [1, 1̄, 1] and [1, 1̄, 1̄]) while
the other two sites will not couple to the external field. The
sites which couple to the field form the α chains, while those
that do not form the β chains. The α chains polarize in the
magnetic field, which then allows the perpendicular β chains
to decouple. In the absence of residual β-chain–β-chain in-
teractions, the β chains themselves are expected to behave
as one-dimensional spin systems, but weak β-chain–β-chain
interactions will tend to induce short-ranged correlations be-
tween them [33–39,53].

The field-polarized α chains are then expected to display
long-ranged order with magnetic Bragg peaks as a conse-
quence. While all the Q = 0 Bragg positions for the FCC
pyrochlore structure [all even or all odd h, k, l indices in
Q = (h, k, l )] are expected to show nonzero magnetic Bragg
intensity, it is the Q = (0, 0,±2) Bragg positions at which this
is immediately obvious, as there is no nuclear contribution to
this Bragg peak.

Figures 3(a)–3(d) show the elastic neutron scattering data
in the (H, H, L) plane of reciprocal space measured in our
time-of-flight neutron scattering experiment using CNCS.
Comparison of Fig. 3(a) with Fig. 3(b) shows that there is
no discernible change in Bragg peak intensity or appearance
of new Bragg peaks in zero field between T = 30 K and T =
0.03 K in this plane of reciprocal space. This is consistent with
the lack of zero-field magnetic order at temperatures above
∼0.03 K, as previously reported for Ce2Zr2O7 [13,14,25].
Comparison of the T = 0.03 K data in Figs. 3(b)–3(d) shows
that magnetic Bragg peaks at Q = (0, 0,±2) appear at low
magnetic field and grow in intensity with increasing field
strength.

Figure 3(e) shows the field strength and temperature de-
pendence of the Q = (0, 0, 2) magnetic Bragg peak measured
in our triple-axis elastic neutron scattering experiment using
SPINS. This is the strongest magnetic Bragg peak corre-
sponding to α-chain polarization within the range of the
measurements [40]. We show the Q = (0, 0, 2) magnetic
Bragg peak intensity as a function of magnetic field strength
for field strengths between h = 0 T and h = 2.6 T, at T =
0.30 K, T = 0.65 K, T = 0.90 K, and T = 1.45 K. The
T = 0.30 K (blue) data shows that the Q = (0, 0, 2) magnetic
Bragg peak intensity is saturated for field strengths above
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FIG. 3. The symmetrized elastic neutron scattering signal measured from Ce2Zr2O7 in the (H, H, L) plane of reciprocal space with
integration in the out-of-plane direction, (K, K̄, 0), from K = −0.1 to 0.1, and over energy-transfer from E = −0.2 to 0.2 meV. (a) and (b) show
the elastic neutron scattering signals measured in zero magnetic field at T = 30 K and T = 0.03 K, respectively. (c) and (d) show the elastic
neutron scattering signals measured in a [1, 1̄, 0] magnetic field at T = 0.03 K for field strengths of h = 0.35 T and h = 1.5 T, respectively.
The intensity here is shown on a logarithmic scale. (e) and (f) show the magnetic field-strength dependence and temperature dependence of the
Q = (0, 0, 2) and Q = (2, 2, 0) magnetic Bragg peaks, respectively, measured in our triple-axis neutron scattering experiment. Specifically,
the data in blue (green, yellow, red) shows the field strength dependence of the magnetic Bragg peak intensity measured at T = 0.30 K
(T = 0.65 K, T = 0.90 K, T ≈ 1.45 K). The lines in (e) show the corresponding semiclassical molecular dynamics calculations (broken
lines) and one-dimensional quantum calculations (solid line) for the magnetic Bragg peak intensity as a function of field strength using
the experimental estimates of the nearest-neighbor-exchange parameters obtained from this paper, (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV,
gz = 2.24, and θ = 0, where Jz̃ is approximated as zero for the one-dimensional quantum calculations. We show the semiclassical and
one-dimensional quantum calculations at T = 0.30 K (red lines) and we also show the semiclassical calculations at a lower temperature
(blue line) where the calculations agree better with the measured data at T = 0.30 K. For each data set and calculation, the arbitrary units are
such that the average intensity is equal to 100 in the saturated regime at low temperature and high field.

h ∼ 1.5 T at low temperature. The Q = (0, 0, 2) magnetic
Bragg peak intensity measures the level of α-chain polariza-
tion and the intensity saturation indicates full noncollinear
polarization for the α chains by h ∼ 1.5 T at T = 0.3 K.

Figure 3(f) shows the field strength and temperature de-
pendence of the Q = (2, 2, 0) magnetic Bragg peak measured
in our triple-axis elastic neutron scattering experiment. The
α-chain polarization yields a significant magnetic intensity
at the Q = (2, 2, 0) magnetic Bragg peak, which is second
only to Q = (0, 0,±2) within the range of these measure-
ments. As the (2, 2, 0) nuclear Bragg peak is allowed, this
elastic scattering data has had a zero-field high-temperature
(T = 1.5 K) data set subtracted from it to isolate the magnetic
Bragg intensity. We show the Q = (2, 2, 0) magnetic Bragg
peak intensity as a function of magnetic field strength for field
strengths between h = 0 T and h = 2.6 T, at T = 0.30 K
(blue) and T = 1.5 K (red). Like the Q = (0, 0, 2) mag-
netic Bragg peak, the intensity of the Q = (2, 2, 0) magnetic
Bragg peak is saturated beyond field strengths of h ∼ 1.5 T at
T = 0.30 K. Similar elastic neutron scattering measurements
of the (0, 0, 2) and (2, 2, 0) Bragg peaks from Ce2Zr2O7 in
a [1, 1̄, 0] magnetic field have recently been reported [57],

and our measurements are consistent with these. However,
Ref. [57] incorrectly claims that a three-in-one-out magnetic
structure is expected for Ce2Zr2O7 in a [1, 1̄, 0] magnetic
field, in disagreement with the estimated exchange parameters
in this paper and in Refs. [25,26], as we show in Appendix C.

In Fig. 3(e), we compare the measured field depen-
dence of the magnetic Bragg intensity to two separate
calculations: Semiclassical molecular dynamics calculations
based on Monte Carlo simulations (see Appendix D)
using the experimental estimates of the nearest-neighbor-
exchange parameters obtained from this paper, (Jx̃, Jỹ, Jz̃ ) =
(0.063, 0.062, 0.011) meV, gz = 2.24, and θ = 0, as well as
one-dimensional quantum calculations (see Appendix B) that
approximate Jz̃ as zero and use the best-fitting parameters
from this paper otherwise. The approximation of Jz̃ as zero
is justified as the z̃ components of the α-chain pseudospins
interact much more strongly with the magnetic field than with
each other except at low fields. This one-dimensional quantum
problem is exactly solvable for θ equal to zero using a Jordan-
Wigner transformation (further details in Appendix B).

The comparison in Fig. 3(e) shows that quantum calcu-
lations are indeed necessary to adequately account for the
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simultaneous field and temperature dependencies of the mag-
netic Bragg intensity measured from Ce2Zr2O7 in a [1, 1̄, 0]
magnetic field. Specifically, the semiclassical molecular dy-
namics calculations, based on Monte Carlo simulations, at
T = 0.30 K do not account for the measured saturation
at ∼1.5 T, and much lower temperature is required for
these semiclassical calculations to describe the measured data
adequately (shown for T = 0.03 K). On the other hand,
the one-dimensional quantum calculations at T = 0.30 K
provide a good description for the measured saturation at
∼1.5 T at that temperature [Fig. 3(e)], despite the fact that
the one-dimensional quantum calculations underestimate the
measured intensity at lower field where the approximation of
isolated β chains is less accurate.

B. Quasielastic diffuse scattering from β chains
in a [1, 1̄, 0] magnetic field

The easy-axes directions for magnetic moments on the β

chains are perpendicular to the [1, 1̄, 0] magnetic field, result-
ing in a lack of coupling between the β chains and the [1, 1̄, 0]
magnetic field at low temperature. In addition to this decou-
pling with the magnetic field, the β chains are also decoupled
from the polarized α chains at the nearest-neighbor level due
to a cancellation of the effective exchange field within the
polarized state of the α chains [34]. Experimental estimates
of the nearest-neighbor exchange parameters for Ce2Zr2O7

from this paper and Refs. [25,26], θ ∼ 0 and Jz̃ > 0, are
consistent with ferromagnetic interchain correlations for the
dipole moments in the β chains (see Appendix C). Placke
et al. [34] show that interchain correlations between ferromag-
netic β chains can be described by a triangular lattice model
where each point on the lattice represents a ferromagnetic β

chain with one Ising degree of freedom corresponding to the
direction of the chain’s net magnetic moment. Furthermore,
they show that quantum fluctuations mediate an effective in-
teraction between β chains, which can lead to different forms
of inter-β-chain magnetic correlations [34]. However, these
interactions mediated by fluctuations are extremely weak and
therefore not likely to be relevant for the physics here.

The α chains contribute primarily to the elastic scattering
through Bragg scattering, and the quasielastic diffuse scat-
tering originates almost entirely from the β chains. We first
examine the quasielastic diffuse neutron scattering measured
in the (H, H, L) plane with the time-of-flight neutron chopper
spectrometer CNCS, and compare this with that predicted for
possible magnetic correlations of the β chains. This diffuse
β-chain scattering is weak for multiple reasons. First, the
one-dimensional magnetic order of the β chains naturally
results in planes of diffuse scattering, which will be relatively
weak, as it will be distributed over planes perpendicular to
the β chains. Furthermore, the small magnetic dipole mo-
ment associated with Ce3+ in Ce2Zr2O7 (∼1 μB [13,14,26],
compared to ∼10 μB in Ho2Ti2O7 for example [65–67]) also
leads to weak magnetic scattering, as well as the fact that
the dominant intrachain correlations are between octupolar
magnetic moments rather than dipoles (as further discussed
below). The result is that the diffuse scattering intensity is
similar in magnitude to that associated with the background
scattering from the magnet cryostat. For that reason, it is

necessary to subtract otherwise identical data sets in zero field
(where there is no distinction between α and β chains) from
data sets in finite [1, 1̄, 0] magnetic field. This is what is shown
in Figs. 4(a)–4(c), where the (H, H, L) plane of reciprocal
space is displayed with a (K, K̄, 0) integration normal to the
scattering plane, from K = –0.3 to 0.3, and an integration in
energy-transfer over the elastic position and any low-lying
excitations in the range from E = −0.2 meV to 0.2 meV, for
h = 0.35 T, 1.5 T, and 4 T, all at T = 0.03 K.

Figures 4(a)–4(c) clearly show rods of scattering along
(0, 0, L) and (±1,±1, L), with less-extended distributions of
scattering near (±2,±2, L). While the rod-like scattering due
to the β chains is clearly present, its relative weakness gives
rise to some degree of interference between it and the un-
dersubtracted and oversubtracted Al powder lines associated
with the background from the magnet cryostat. Nonetheless,
the overall pattern of diffuse rod-like scattering resembles
expectations for the diffuse neutron scattering signal from
β chains that are ordered ferromagnetically at short-range
within the chains and disordered between the chains, that is,
with the most intense rod of scattering along the (0, 0, L)
and with no significant peaks in diffuse scattering along the
rod. While some patches of increased intensity are detected
along the rod, these occur at locations where the rod intersects
with an undersubtracted powder ring that accounts for the
increase in intensity. As we discuss shortly, the measured rods
of scattering extend in the out-of-plane, (K, K̄, 0), direction to
form planes of scattering. In other words, the rods of scatter-
ing in the (H, H, L) plane are cross-sectional slices through
planar scattering.

We compare the measured neutron scattering signal in the
(H, H, L) plane to the corresponding prediction according
to semiclassical molecular dynamics calculations based on
Monte Carlo simulations (see Appendix D). These Monte
Carlo simulations use the experimental estimates of the
nearest-neighbor-exchange parameters obtained from this pa-
per, (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV, gz = 2.24, and
θ ∼ 0, and are consistent with field-polarized α chains and β

chains that are short-ranged ordered ferromagnetically within
the chains and disordered between the chains. Specifically, we
show the calculations using θ = 0 (θ = 0.1π ) for a [1, 1̄, 0]
magnetic field strength of h = 0.35 T, h = 1.5 T, h = 4 T in
Figs. 4(d)–4(f) [4(g)–4(i)], respectively. Both the θ = 0 and
θ = 0.1π calculations are consistent with the data in that the
most dominant feature is a rod of scattering along (0, 0, L)
direction for each field strength. However, the θ = 0.1π cal-
culations predict a sharp and intense centerpiece to the rod
of scattering, which has an intensity that increases with field
strength, while the θ = 0 calculations do not, and show much
better agreement with the measured data for this reason. No-
tably, the θ = 0 calculations [Figs. 4(d)–4(f)] predict that the
rod-like scattering is weaker at 1.5 T and 4 T compared to
0.35 T, and weaker at 1.5 T compared to 4 T, in agreement
with the measured data [Figs. 4(a)–4(c)] and in contrast to
the θ = 0.1π calculation [Figs. 4(g)–4(i)], which predicts a
rod-like signal with intensity that increases monotonically
with field strength.

For the best-fitting exchange parameters obtained in this
paper, (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV, an intense
center piece to the calculated neutron scattering signal
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FIG. 4. The symmetrized quasielastic diffuse neutron scattering signal measured at T = 0.03 K from a single crystal sample of Ce2Zr2O7

aligned in the (H, H, L) scattering plane in a [1, 1̄, 0] magnetic field of strength h = 0.35 T (a), h = 1.5 T (b), and h = 4 T (c). In each case, a
corresponding data set measured at h = 0 T has been subtracted, a (K, K̄, 0) integration range from K = –0.3 to 0.3 was used, and integration in
energy-transfer was employed over the range –0.2 meV � E � 0.2 meV. We compare this with the corresponding diffuse neutron scattering
signal in the (H, H, L) scattering plane predicted at T = 0.03 K according to our semiclassical molecular dynamics calculations using the
nearest-neighbor-exchange parameters estimated in this paper. The calculated neutron scattering signal using the exchange parameters θ = 0,
(Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV, and gz = 2.24, is shown for a [1, 1̄, 0] magnetic field of strength h = 0.35 T (d), h = 1.5 T (e), and
h = 4 T (f). The calculated neutron scattering signal using the exchange parameters θ = 0.1π and (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV,
and gz = 2.24 is shown for a [1, 1̄, 0] magnetic field of strength h = 0.35 T (g), h = 1.5 T (h), and h = 4 T (i).

becomes visible for nonzero θ , with intensity that increases
with θ for 0 � θ � π/2, as we show in Figs. 4(d)–4(i) for
θ = 0 and 0.1π . This intense center-piece is not detected in
the measured data [Figs. 4(a)–4(c)] and in general, the lack
of intense centerpiece to the scattering signal is a signature
of correlations between octupolar moments (or Sx and Sy

in terms of pseudospin) heavily dominating those between
dipole moments (Sz). For example, and as shown in Ap-
pendix D, it is possible for this intense centerpiece to be
absent even for nonzero θ when Jỹ heavily dominates both
Jx̃ and Jz̃. Accordingly, we reiterate that this lack of intense
centerpiece in the measured data is consistent with heavily
dominant octupolar correlations.

It is worth mentioning that our one-dimensional quantum
calculations for infinite field agree remarkably well with the
high-field semiclassical calculations in that the quantum cal-
culations also predict a sharp rod at the center of a broader
rod, both along (0, 0, L), for θ = 0.1π , and the absence of
the sharp and intense centerpiece for θ = 0 (see Appendix B).
In contrast to the measured and predicted signals displayed

in Fig. 4, the diffuse scattering pattern predicted for a β

chain with antiferromagnetically ordered dipole moments has
the most intense rods along the (±1,±1, L) directions of
the (H, H, L) plane, with intensities that increase towards
larger L for our measurement range, rather than towards
L = 0 [40].

Figure 5 shows the measured quasielastic diffuse scatter-
ing signal in the (H + K, H − K, 1.5) plane of reciprocal
space, at T = 0.03 K and h = 0.35 T (a), h = 1.5 T (b), and
h = 4 T (c), for a (0, 0, L) integration range from L = 1.25
to 1.75 [illustrated in Fig. 6(a)]. From Figs. 5(a)–5(c), it
is clear that the rod-like feature of diffuse scattering along
the (0, 0, L) direction in the (H, H, L) plane also extends
out in the perpendicular (K, K̄, 0) direction at each mea-
sured field strength, forming the expected plane of scattering
perpendicular to the (H, H, 0) direction of the β chains,
which is consistent with one-dimensional magnetic corre-
lations for the β chains. We again compare the measured
neutron scattering signal in the (H, H, L) plane to the corre-
sponding prediction using semiclassical molecular dynamics
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FIG. 5. The symmetrized quasielastic neutron scattering signal measured in our time-of flight neutron scattering experiment at T = 0.03 K
in the (H + K, H − K, 1.5) plane of reciprocal space for field strengths of h = 0.35 T (a), h = 1.5 T (b), and h = 4 T (c), with the (0, 0, L)
integration range from L = 1.25 to 1.75 and an energy-transfer integration over the range –0.2 meV � E � 0.2 meV. In each case, a data set
measured at h = 0 T has been subtracted. We compare this with the corresponding diffuse neutron scattering signal in the (H + K, H − K, 1.5)
scattering plane with (0, 0, L) integration range from L = 1.25 to 1.75, predicted via our semiclassical molecular dynamics calculations using
the experimental estimates of the nearest-neighbor-exchange parameters obtained from this paper, (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV,
gz = 2.24, and θ = 0. The calculated signal is shown for T = 0.03 K and a [1, 1̄, 0] magnetic field of strength h = 0.35 T (d), h = 1.5 T (e),
and h = 4 T (f).

calculations based on Monte Carlo simulations. We show
the calculations using the experimental estimates of the
nearest-neighbor-exchange parameters obtained from this pa-
per, (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV, gz = 2.24, and
θ = 0, for a [1, 1̄, 0] magnetic field strength of h = 0.35 T,
h = 1.5 T, h = 4 T in Figs. 5(d)–5(f), respectively. Figure 5
shows that these calculations, using the estimated exchange
parameters from this paper, capture the planar nature of the
measured diffuse scattering signal associated with the one-
dimensional nature of the β-chain correlations, and provide
a reasonable description for the field dependence of the inten-
sity of this planar scattering.

We do not expect our semiclassical molecular dynamics
calculations to capture all of the features of the quasielastic
diffuse scattering measured from Ce2Zr2O7, due in part to
weak further-than-nearest neighbor interactions not included
in Eqs. (1) and (2), which were shown to be relevant in
describing finer features of the zero-field diffuse scattering
signal measured from Ce2Zr2O7 [25,26], and also due in part
to the semiclassical nature of the calculations. Nonetheless,
the main, most-dominant features of the measured diffuse
scattering are accurately described by these calculations for
both zero and nonzero magnetic field as shown in Figs. 4, 5,
and Appendix D. Furthermore, since our conclusions based
on comparisons with these calculations are drawn from com-
paring the main features in the diffuse scattering data and
calculations, we expect these conclusions, including the es-
timation of θ ∼ 0, to be robust to any finer features missed by
the calculations.

We further examine the quasielastic diffuse scattering
signal detected in our time-of-flight neutron scattering exper-
iment using cuts along the (H, H, 0) direction of reciprocal
space, perpendicular to the rod-like signal detected in the
(H, H, L) plane. Figure 6(c) shows the measured diffuse scat-
tering intensity along the (H, H, 0) direction of reciprocal
space, for a (0, 0, L) integration range from L = 1.25 to 1.75
[illustrated in Fig. 6(a)] and a (K, K̄, 0) integration from K =
–0.1 to 0.1 [illustrated in Fig. 6(b)], for field strengths of
h = 0.35 T (blue), h = 1.5 T (orange), and h = 4 T (green).
Figures 5 and 6(c) show that the intensity of the rod-like
feature along (0, 0, L) is more intense in comparison to the
scattering elsewhere at h = 0.35 T and h = 1.5 T than it is at
h = 4 T. We shall revisit this point shortly.

We fit the (H, H, 0) width of the diffuse scattering around
H = 0 to a Lorentzian form for the purpose of estimating the
correlation length along the β chains, ξ . This fitting assumed
a constant background and is shown by the solid-line fits in
Fig. 6(c). The reorientation of diffuse scattering at 4 T results
in two symmetrically equivalent peaks, which are not present
in the cuts along (H, H, 0) direction at 0.35 T and 1.5 T,
which we discuss in further detail in the following paragraph.
We fit these additional peaks at 4 T to two Gaussian forms,
which captured the trend of this measured H �= 0 scattering
better than Lorentzian lineshapes. The focus of this analy-
sis is the width of the central peak around H = 0, which
was fit for each field strength using a resolution-convoluted
Lorentzian function (see Appendix E), resulting in a relatively
short, ferromagnetic, correlation length of ξ = 15(2) Å for
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FIG. 6. The symmetrized quasielastic neutron scattering signal
measured at T = 0.03 K from a single crystal sample of Ce2Zr2O7

aligned in the (H, H, L) scattering plane in a [1, 1̄, 0] magnetic field.
(a) The quasielastic neutron scattering signal in the (H, H, L) plane
for a field strength of h = 0.35 T, with a (K, K̄, 0) integration from
K = –0.3 to 0.3, also shown in Fig. 4(a). The black line illustrates the
(0, 0, L) integration range from L = 1.25 to 1.75. (b) The quasielas-
tic neutron scattering signal in the (H + K, H − K, 1.5) plane of
reciprocal space for a field strength h = 0.35 T, with (0, 0, L) in-
tegration range from L = 1.25 to 1.75 [illustrated in (a)]. (c) The
quasielastic neutron scattering intensity along the (H, H, 0) direction
of reciprocal space, for a (0, 0, L) integration range from L = 1.25
to 1.75 [illustrated in (a)], and a (K, K̄, 0) integration from K = –0.1
to 0.1 [illustrated in (b)], for field strengths of h = 0.35 T (blue),
h = 1.5 T (orange), and h = 4 T (green). The lines in (c) show
fits to the intensity that were used to extract the correlation length
ξ = 15(2) Å associated with the ferromagnetic intrachain coupling
for the z components of the pseudospins within β chains (see main
text). In each case, a data set measured at h = 0 T has been subtracted
and integration over the energy-transfer range −0.2 meV � E �
0.2 meV was employed.

the β chains, which varies little as a function of field over
the measured field strengths of 0.35 T, 1.5 T, and 4 T. As
previously mentioned, this correlation length corresponds to
only the correlations for the z components of the pseudospins
within the β chains, Sz, due to the fact that x and y components
of pseudospin each carry octupolar magnetic moments.

Returning to the magnetic field dependence of the diffuse
scattering shown in Figs. 4(a)–4(c), 5(a)–5(c), and 6(c), it is
clear the measured diffuse scattering is similar at h = 0.35 T

and 1.5 T and different at h = 4 T, with relatively more diffuse
scattering near H = ±1 and relatively less near H = 0 for
h = 4 T compared to 0.35 T and 1.5 T. This is most apparent
in Figs. 5(a)–5(c), and 6(c), which show that the planes of
scattering normal to the β chains redistribute to some extent
for [1, 1̄, 0] magnetic field between h = 1.5 T and 4 T, such
that stronger planes of scattering develop containing H = −1
and H = 1 [see Fig. 5(c)], with a relatively weaker plane of
scattering at H = 0 in comparison to the scattering elsewhere
in reciprocal space. This redistribution of the spectral weight
between between h = 1.5 T and 4 T is not shown by our semi-
classical molecular dynamics calculations in Figs. 5(d)–5(f).

C. Magnetic Bragg peaks from Q = 0 structure
in a [0, 0, 1] magnetic field

The anticipated magnetic structure of a spin ice in a moder-
ate [0, 0, 1] magnetic field is illustrated in Fig. 1(b). Here the
system takes on a Q = 0 structure (the magnetic structure as-
sociated with each tetrahedron is the same) with the 2-in-2-out
ice rules satisfied on each tetrahedron and with all magnetic
moments canted along the [0, 0, 1] field direction [36,38,53].
This expected Q = 0 structure is a polarized spin ice state.

Figure 7 shows the elastic neutron scattering signal in the
(H, K, 0) plane of reciprocal space measured in our time-
of-flight neutron scattering experiment on CNCS, with a
[0, 0, 1] magnetic field applied perpendicular to this plane.
Comparison of Fig. 7(a) with Fig. 7(b) shows that there is no
discernible change in Bragg peak intensity or appearance of
new Bragg peaks in zero field between T = 10 K and T =
0.09 K in this plane of reciprocal space, again consistent with
the lack of zero-field magnetic order reported for Ce2Zr2O7

[13,14,25].
As can be seen from Fig. 7, there are only two Q = 0

Bragg positions (all even or all odd h, k, l indices) in the
field of view of this elastic scattering measurement in the
(H, K, 0) plane. These are (2, 0, 0) and equivalent positions, as
well as (2, 2, 0) and equivalent positions. Comparison of the
T = 0.09 K data in Figs. 7(b)–7(e) clearly shows that mag-
netic Bragg peaks appear at the Q = (±2, 0, 0) and (0,±2, 0)
positions in low-magnetic fields and grow in intensity with
field strength. This is obvious as there is no Bragg intensity at
(2, 0, 0) and equivalent wavevectors in zero magnetic field, as
also observed within the (H, H, L) scattering plane in Fig. 3.
This is not the case at (2, 2, 0) and equivalent wavevectors, so
differences between data sets in [0, 0, 1] magnetic field and in
zero field must be examined for (2, 2, 0).

Figure 7 shows exactly these differences in the form of
line scans through the (0, 2, 0) Bragg position [Fig. 7(f)] and
through the (2, 2, 0) Bragg position [Fig. 7(g)] at T = 0.09 K.
As can be seen, only the elastic scattering at the (0, 2, 0)
Bragg position shows any [0, 0, 1] magnetic field depen-
dence. The magnetic field dependence of Bragg intensity at
(0, 2, 0) in this polarized spin ice state is shown in Fig. 7(h),
which shows saturation of the (0, 2, 0) magnetic Bragg peak
beyond ∼3 T. We compare this to the field dependence
of the integrated intensity for the (0, 2, 0) magnetic Bragg
peak calculated for T = 0.09 K using semiclassical molec-
ular dynamics calculations based on Monte Carlo simulations
using the experimental estimates of the nearest-neighbor-
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FIG. 7. The symmetrized elastic neutron scattering signal measured in the (H, K, 0) plane of reciprocal space with integration in the
out-of-plane direction, (0, 0, L), from L = –0.1 to 0.1, and over the energy-transfer range –0.2 meV � E � 0.2 meV. (a) and (b) show the
elastic neutron scattering signals measured in zero magnetic field at T = 10 K and T = 0.09 K, respectively. (c), (d), and (e) show the elastic
neutron scattering signals measured in a [0, 0, 1] magnetic field at T = 0.09 K for field strengths of h = 0.75 T, h = 1.5 T, and h = 3 T,
respectively. The intensity here is shown on a logarithmic scale. (f) and (g) show the field strength dependence of the magnetic intensity at
T = 0.09 K for the Q = (0, 2, 0) and Q = (2, 2, 0) reciprocal space positions, respectively. Specifically, the data in dark blue (blue, light
blue, green) shows the intensity measured at h = 0.75 T (h = 1.5 T, h = 3 T, h = 6 T). In each case, a data set measured at T = 0.09 K
and h = 0 T has been subtracted and integration over (0, K, 0) and (0, 0, L) from K = 1.9 to 2.1 and L = –0.1 to 0.1 was employed, along
with integration over the energy-transfer range –0.2 meV � E � 0.2 meV. (h) The integrated intensity of the Q = (0, 2, 0) magnetic Bragg
peak at T = 0.09 K as a function of magnetic field strength. The line in (h) shows the calculated integrated intensity at T = 0.09 K using
the experimental estimates of the nearest-neighbor exchange parameters obtained from this paper, (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV,
gz = 2.24, and θ = 0, according to semiclassical molecular dynamics calculations based on Monte Carlo simulations. For both the data and
calculation in (h), the arbitrary units are such that the average intensity is equal to 100 in the saturated regime at low temperature and high
field.

exchange parameters obtained from this paper, (Jx̃, Jỹ, Jz̃ ) =
(0.063, 0.062, 0.011) meV, gz = 2.24, and θ = 0. This com-
parison shows that field dependence of the Bragg intensity in
a [0, 0, 1] magnetic field is well accounted for by the semi-
classical calculations used throughout this paper, in contrast
to the field dependence of the Bragg intensity in a [1, 1̄, 0]
magnetic field. This suggests that quantum fluctuations are
more prevalent in the [1, 1̄, 0]-polarized α chains compared
to the three-dimensional [0, 0, 1]-polarized spin ice phase, as
is expected theoretically.

A simple magnetic structure factor calculation for the
[0, 0, 1]-polarized spin ice structure is consistent with these
results: Magnetic Bragg intensity at (2, 0, 0) and equivalent
positions, but not at (2, 2, 0). In fact, the only magnetic struc-
tures that are consistent with both the local Ising anisotropy
and the measured magnetic Bragg peaks are the [0, 0,±1]-
polarized spin ice structures. Examination of the h = 0 T
subtracted data yields no convincing signs of diffuse scatter-
ing, consistent with expectations for this long-ranged ordered
phase. We therefore conclude that Ce2Zr2O7 in both [0, 0, 1]
and [1, 1̄, 0] magnetic fields responds as expected for a mate-
rial that has a spin ice ground state in zero field.

The [0, 0, 1]-field-induced onset of the magnetic Bragg
peak at Q = (0, 2, 0) is consistent with the data reported
in Ref. [57]. However, this previous study [57] claims to

detect a [0, 0, 1]-field-induced magnetic Bragg peak at the
Q = (2, 2, 0) position that we do not observe here. Only a
single nonzero field value was measured in the previous study
and the net intensity surrounding the Q = (2, 2, 0) position is
both positive and negative in the temperature subtraction of
the previously reported data. This suggests that the reported
increase in intensity may simply be due to an imperfect sub-
traction of nuclear Bragg peaks at the Q = (2, 2, 0) position,
rather than a field-dependent magnetic Bragg peak.

VI. RESULTS: INELASTIC NEUTRON SCATTERING

In this section, we present our inelastic time-of-flight
neutron scattering measurements on single crystal Ce2Zr2O7

in magnetic fields oriented along [1, 1̄, 0] and [0, 0, 1]
directions. For both field directions, a roughly dispersion-
less narrow band of inelastic scattering is observed, which
increases in energy and separates from a quasielastic com-
ponent with increasing magnetic field strength, in agreement
with appropriate theoretical predictions. We compare the
field-dependent inelastic scattering to that predicted us-
ing semiclassical molecular dynamics calculations based
on Monte Carlo simulations. The Monte Carlo simulations
apply the experimental estimates of the nearest-neighbor ex-
change parameters obtained from this paper, (Jx̃, Jỹ, Jz̃ ) =
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FIG. 8. The magnetic field dependence of the powder-averaged neutron scattering spectra measured at T = 0.03 K from our single crystal
sample of Ce2Zr2O7 aligned in the (H, H, L) scattering plane in a [1, 1̄, 0] magnetic field of strength h = 0.35 T (a), h = 1.5 T (b), and h = 4 T
(c). We also show the magnetic field dependence of the powder-averaged neutron scattering spectra measured at T = 0.09 K from our single
crystal sample of Ce2Zr2O7 aligned in the (H, K, 0) scattering plane in a [0, 0, 1] magnetic field of strength h = 0.75 T (d), h = 1.5 T (e),
h = 3 T (f), and h = 6 T (g). In each case, a data set measured at h = 0 T has been subtracted.

(0.063, 0.062, 0.011) meV and gz = 2.24, with θ ∼ 0, which
are consistent with a quantum spin ice ground state in
zero field, with a partially-polarized spin ice ground state
[Fig. 1(a)] in [1, 1̄, 0] magnetic fields, and with a [0, 0, 1]-
polarized spin ice ground state [Fig. 1(b)] in [0, 0, 1] magnetic
fields.

Figures 8(a)–8(c) show the inelastic neutron scattering
measured at T = 0.03 K from a single crystal sample of
Ce2Zr2O7 aligned in the (H, H, L) scattering plane in a
magnetic field along the [1, 1̄, 0] direction for field strengths
of h = 0.35 T (a), h = 1.5 T (b), and h = 4 T (c), with a
zero-field data set taken at T = 0.03 K subtracted in each
case. Similarly, Figs. 8(d)–8(g) show the inelastic neutron
scattering measured at T = 0.09 K from a single crystal
sample of Ce2Zr2O7 aligned in the (H, K, 0) scattering plane
in a magnetic field along the [0, 0, 1] direction for field
strengths of h = 0.75 T (d), h = 1.5 T (e), h = 3 T (f), and
h = 6 T (g), with a zero-field data set taken at T = 0.09 K
subtracted in each case. In each case, the data has been
powder averaged within the scattering plane so as to use all
the available scattering as a function of ‖Q‖. This was done as
the resulting powder-averaged signal from these experiments
is similar to measured signal plotted as a function of Q (see
Appendix F), including the lack of any obvious dispersion,
but with better statistics. The isolated signal centered on
‖Q‖ = 1.75 Å−1 and slightly above (below) E = 1 meV in
the net scattering measured for [1, 1̄, 0] ([0, 0, 1]) field is due
to an imperfect subtraction of scattering from the magnet
cryostat (superfluid helium) and is not part of the measured
signal from the sample.

Figure 8 shows net negative quasielastic scattering is ob-
served at all finite fields in the zero-field-subtracted data, and

a narrow band of inelastic scattering with energy of E ∼
0.5 meV onsets with increasing field strength and becomes
clear at and above h = 1.5 T (h = 3 T) for a magnetic field in
the [1, 1̄, 0] ([0, 0, 1]) direction. The lack of significant disper-
sion, and specifically sharp spin waves, in our measurements
is consistent with expectations for a small value of θ (see
Appendix D).

Figure 9 shows the Q dependence of the calculated inelas-
tic neutron scattering signal according to our semiclassical
molecular dynamics calculations, at T = 0.03 K for Q along
different high-symmetry directions in the (H, H, L) scatter-
ing plane: (H, H, 0), (0, 0, L), and (H, H, H ). Specifically,
we show the calculated signal for a [1, 1̄, 0] magnetic field
of strength h = 0 T, h = 0.35 T, h = 1.5 T, and h = 4 T.
The calculation is shown for both logarithmic intensity scale
[Figs. 9(a)–9(d)], and for linear intensity scales [Figs. 9(e)–
9(h)] with the h = 0 T calculation subtracted from the in-field
calculations [Figs. 9(f)–9(h)]. The calculated spectra are con-
voluted with a Gaussian lineshape with energy resolution of
�E = 0.25 meV for best agreement with the measured data
from Ce2Zr2O7. This resolution is larger than the instrumental
resolution of ∼0.1 meV, consistent with the fact that viewing
the weak signal in the measured data from Ce2Zr2O7 requires
a smoothing of the data that artificially expands the energy
resolution.

As shown in Fig. 9, the quasielastic scattering associated
with spinons in the zero-field quantum spin ice ground state
is separated by the [1, 1̄, 0] magnetic field into three dis-
tinct scattering signals: (1) the Bragg scattering due to the
long-ranged magnetic order of the polarized α chains, (2)
a quasielastic signal centered on E ∼ 0.1 meV associated
with β-chain elastic diffuse scattering, the β-chain spinon
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FIG. 9. The calculated inelastic neutron scattering signal, via semiclassical molecular dynamics calculations (see main text) at
T = 0.03 K using the experimental estimates of the nearest-neighbor-exchange parameters obtained from this paper, (Jx̃, Jỹ, Jz̃ ) =
(0.063, 0.062, 0.011) meV, gz = 2.24, and θ = 0, is shown for a [1, 1̄, 0] magnetic field of strength h = 0 T [(a),(e)], h = 0.35 T [(b),(f)],
h = 1.5 T [(c),(g)], and h = 4 T [(d),(h)] on both logarithmic [(a)–(d)] and linear [(e)–(h)] scales. The h = 0 T calculation has been subtracted
from the in-field calculation for plots [(f)–(h)].

continuum, and thermally excited magnons, whose signals are
merged-together for energy resolutions above ∼0.05 meV,
and (3) a signal whose energy center increases with field
strength such that the signal is lifted from the quasielastic scat-
tering with increasing field, associated with the two-magnon
continuum of the polarized α chains.

Similarly, Fig. 10 shows the Q dependence of the cal-
culated inelastic neutron scattering signal according to our
semiclassical molecular dynamics calculations, at T = 0.09 K
for Q along different high-symmetry directions in the
(H, K, 0) scattering plane: (H, 0, 0), (0, K, 0), and (H, H, 0).
Specifically, we show the calculations for a [0, 0, 1] magnetic
field of strengths h = 0 T, h = 0.75 T, h = 1.5 T, h = 3 T,
and h = 6 T, and using both a logarithmic intensity scale
[Figs. 10(a)–10(e)], and a linear intensity scales [Figs. 10(f)–
10(j)] with the h = 0 T data subtracted from the in-field
data [Figs. 10(g)–10(j)]. The calculated spectra are convo-
luted with a Gaussian lineshape with energy resolution of
�E = 0.25 meV for best agreement with the measured data
from Ce2Zr2O7. The magnetic field along the [0, 0, 1] direc-
tion separates the zero-field scattering into Bragg scattering,
a field-dependent two-magnon continuum, and low-lying ex-
citations, which consist only of thermally-excited magnons
for the [0, 0, 1] field direction. As with the [1, 1̄, 0] field
direction, sharp single-magnon modes are only expected to
be visible in the neutron scattering signal for nonzero θ .
However, it is worth mentioning that single-magnon modes,
resulting from weak scattering of neutrons off the octupolar
moments, are indeed present for θ = 0 but it would require a
significantly higher signal-to-noise ratio than achieved here in

order to detect these low-intensity octupolar spin waves (see
Appendix D).

As shown in Figs. 9(a)–9(d) [10(a)–10(e)], our
semiclassical molecular dynamics calculations, using the
exchange parameters estimated in this work, predict that
a [1, 1̄, 0] ([0, 0, 1]) magnetic field induces the observed
decrease in the quasielastic scattering, concomitant with
the appearance of magnetic Bragg scattering centered on
E = 0 meV, and the appearance of an inelastic signal near
E ∼ 0.5 meV that emerges from the quasielastic scattering
at h = 1.5 T (h = 3 T). Figures 9(f)–9(h) [10(g)–10(j)] show
the same semiclassical molecular dynamics calculations with
the zero-field calculation subtracted in each case, for better
comparison with the zero-field-subtracted data shown in
Figs. 8(a)–8(c) [8(d)–8(g)].

Comparison of our calculations in Figs. 9(f)–9(h) [10(g)–
10(j)] with our measured neutron scattering data in Figs. 8(a)–
8(c) [8(d)–8(g)] shows that our semiclassical molecular dy-
namics calculations using the exchange parameters estimated
in this paper indeed predict the net-negative quasielastic
scattering in the zero-field-subtracted signal, as well as the
field-induced emergence of an approximately-dispersionless
signal at energies above this net-negative quasielastic scat-
tering. The magnetic Bragg peaks shown in Fig. 9 (Fig. 10)
are those associated with the polarized α chains (the
[0, 0, 1]-polarized spin ice structure) expected for a [1, 1̄, 0]
([0, 0, 1]) magnetic field, and are consistent with the col-
lection of magnetic Bragg peaks detected in our neutron
scattering experiment in a [1, 1̄, 0] ([0, 0, 1]) magnetic
field.
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FIG. 10. The calculated inelastic neutron scattering signal, via semiclassical molecular dynamics calculations (see main text) at T = 0.09 K
using the experimental estimates of the nearest-neighbor-exchange parameters obtained in this paper, (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV,
gz = 2.24, and θ = 0, is shown for a [0, 0, 1] magnetic field of strength h = 0 T [(a),(f)], h = 0.75 T [(b),(g)], h = 1.5 T [(c),(h)], h = 3 T
[(d),(i)], and h = 6 T [(e),(j)] on both logarithmic [(a)–(e)] and linear [(f)–(j)] intensity scales. The h = 0 T calculation has been subtracted
from the in-field calculation for plots [(g)–(j)].

While our semiclassical molecular dynamics calculations
capture the main features in our measured data, there are
features in the comparison between theory and experiment
which could be improved. For example, the calculated sig-
nals near E ∼ 0.5 meV in Figs. 9 and 10 show a small
amount of dispersion that we were unable to convincingly
detect in our measured inelastic data. This may be because
of the data averaging and smoothing required to view the
weak-magnetic signals associated with the small magnetic
moment in Ce2Zr2O7. This dispersion is also shown in
our calculations convoluted with a higher energy-resolution
in Appendix D. Also, the field dependence of the mea-
sured signal near E ∼ 0.5 meV in a [0, 0, 1] magnetic field
[Figs. 8(d)–8(g)] is not well described by the calculations
in [Figs. 10(g)–10(j)], specifically at h = 6 T, where the
measured signal is most intense, having grown in inten-
sity with increasing field strength. In contrast to this, the
calculation for h = 6 T shows relatively small intensity at
E ∼ 0.5 meV. This inconsistency between the calculations
of the inelastic scattering and the corresponding neutron
measurements at h = 6 T is currently unexplained, and
may point towards additional terms in the Hamiltonian be-
yond those contained in the ideal nearest-neighbor models
of Eqs. (1) and (2), which are relevant for pyrochlores

with pure dipolar-octupolar CEF ground states. These
discrepancies notwithstanding, we reiterate that our semi-
classical molecular dynamics calculations capture the main
features associated with each of the Bragg, quasielastic, and
inelastic scattering signals presented here on Ce2Zr2O7, and
in and of itself this is a significant success.

VII. DISCUSSION

Our neutron scattering results on Ce2Zr2O7 in magnetic
fields oriented along [1, 1̄, 0] and [0, 0, 1] directions are
consistent with the expectations for a material that has a
disordered spin ice ground state in zero field.

We compare the field-induced structures in Ce2Zr2O7 with
those in the three pyrochlore magnets, Ho2Ti2O7, Dy2Ti2O7,
and Nd2Zr2O7, each having Ising anisotropy. The classical
dipolar spin ices Ho2Ti2O7 and Dy2Ti2O7 display disordered
spin ice states at low temperatures that can be modelled clas-
sically [35,47–52], and have intersite interactions which are
dominated by long-ranged dipolar interactions. The dipolar
interactions in these materials are responsible for most of the
near-neighbor intersite interactions [51], due to the relatively
large magnetic dipole moments at the Ho3+ and Dy3+ sites,
∼10 μB [65–68].
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Their similarities to the behavior reported here for
Ce2Zr2O7 include both the evidence for the polarized α chains
and decoupled β chains in a [1, 1̄, 0] field, as well as the
polarized spin ice state in a [0, 0, 1] magnetic field [35–39].
However, there is an interesting difference, in that the intra-β-
chain correlation length in a [1, 1̄, 0] field at low temperatures
is relatively short, ξ = 15(2) Å in Ce2Zr2O7 (∼4 nearest-
neighbor separations), much smaller than the corresponding
ξ � 100 Å correlation lengths measured in the classical spin
ices Ho2Ti2O7 and Dy2Ti2O7 [36,37].

The case of Nd2Zr2O7 is also an interesting comparator,
as the CEF ground state for J = 9/2 Nd3+ in the pyrochlore
environment is also a dipole-octupole doublet [43]. This sys-
tem has also been well studied in single crystal form. Its
ground-state magnetic structure is a noncollinear all-in, all-
out structure [40,42–45], but it shows low-energy fluctuations
appropriate to spin ice suggesting that these two states (all-in,
all-out, and spin ice) are close in energy [16,41,46,69].

The response of Nd2Zr2O7 to a [1, 1̄, 0] magnetic field [40]
is very similar to Ce2Zr2O7 and to other spin ices [35–39],
in that planes of scattering associated with approximately
decoupled β chains are observed in diffuse neutron scattering
measurements. Furthermore, the measured correlation length
along the β-chain direction (H, H, 0) in a [1, 1̄, 0] magnetic
field is ξ ∼ 10 Å in Nd2Zr2O7 [40], similar to what we
report here for Ce2Zr2O7, and much smaller than the ξ �
100 Å correlation lengths measured in the classical spin ices
Ho2Ti2O7 and Dy2Ti2O7 [36,37].

Reference [40] has noted that quantum fluctuations in
Nd2Zr2O7 are likely responsible for its relatively small ξ .
In fact, the relatively short correlation lengths along the β

chains in [1, 1̄, 0] magnetic fields would seem to be a distin-
guishing feature between the quantum spin ice states proposed
for Ce2Zr2O7 and Nd2Zr2O7 and the classical spin ice states
established for Ho2Ti2O7 and Dy2Ti2O7. However, a subtlety
arises when including Ce2Zr2O7 in that comparison due to the
fact the measured correlation lengths correspond to correla-
tions between the z components of the pseudospins, which for
Ce2Zr2O7, have corresponding exchange constant (Jz̃ for θ =
0) that is by far the weakest of the three exchange constants,
(Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV. While the Sz̃-Sz̃ cor-
relation function does depend on the each of these exchange
parameters, the dominant dependence arises from Jz̃ [19].
With that in mind, and specifically because Jz̃ is much smaller
than Jx̃ and Jỹ, it is likely that octupolar correlations between x
components (y components) of pseudospin have significantly
longer correlation length than the z-component correlations,
which are probed by our neutron scattering. In fact, accord-
ing to our estimated exchange parameters for Ce2Zr2O7, at
zero temperature the octupolar correlations in the β chains
should dominate to form an octupolar ordered phase close to
criticality (with Jx̃ ≈ Jỹ), at the expense of ordering of the
magnetic dipole moments associated with the z components
of pseudospin [34]. Therefore, the relatively small value of
ξ in Ce2Zr2O7 is not due just to quantum fluctuations, but
also due to the fact that the corresponding neutron scattering
measurements primarily probe the pseudospin component that
has the weakest magnetic correlations.

In contrast to this, the value of θ ∼ 1 rad estimated for
Nd2Zr2O7 suggests that the dominant contribution to the

neutron scattering comes from the correlations between x̃
components of pseudospin, which have a corresponding ex-
change parameter Jx̃ that is the largest by a significant amount
in that case [16,70,71]. Similarly, the correlation lengths
measured in Ho2Ti2O7 and Dy2Ti2O7 include significant con-
tribution from the most-dominant magnetic interaction, which
is the long-ranged dipolar interaction in that case [51].

For Ho2Ti2O7 and Dy2Ti2O7 in a [1, 1̄, 0] magnetic field,
the short-ranged antiferromagnetic correlations between β

chains lead to peaks in the diffuse scattering in the (H, H, L)
plane, centered on (0, 0, 1) and (0, 0, 3) with broadened
widths along the (0, 0, L) direction of the underlying rod of
scattering and corresponding interchain correlation lengths of
ξ⊥ � 10 Å [36,37]. These diffuse scattering peaks at (0, 0, 1)
and (0, 0, 3) were not observed in our time-of-flight neutron
scattering experiment on Ce2Zr2O7 in a [1, 1̄, 0] magnetic
field, as is discussed in Sec. V B and shown in Figs. 4(a)–4(c).
Similarly, Nd2Zr2O7 in a [1, 1̄, 0] magnetic field [40] shows
no obvious signs for these peaks in the diffuse scattering at
(0, 0, 1) and (0, 0, 3).

Both Ce2Zr2O7 and Nd2Zr2O7 [40] in a [1, 1̄, 0] mag-
netic field show no clear interchain correlations between
their β chains (ξ⊥ ≈ 0) while both Ho2Ti2O7 and Dy2Ti2O7

in a [1, 1̄, 0] magnetic field exhibit significant short-ranged
antiferromagnetic interchain correlations in their β chains,
with ξ⊥ � 10 Å [36,37]. These interchain correlations are
thought to arise via long-ranged dipole-dipole interactions
[33], which scale with the square of the magnetic moment.
The long-ranged dipole interaction is significantly reduced
in both Ce2Zr2O7 and Nd2Zr2O7 compared to Ho2Ti2O7

and Dy2Ti2O7, as the dipole moments within the CEF
ground-states doublets in Ce2Zr2O7 (∼1.29 μB [13,14]) and
Nd2Zr2O7 (∼2.65 μB [43]) are much smaller than those
in Ho2Ti2O7 (∼9.85 μB [65–67]) and Dy2Ti2O7 (∼9.77 μB

[66,68]).

VIII. SUMMARY

Our heat capacity measurements on single crystal
Ce2Zr2O7 show that a [1, 1̄, 0] magnetic field splits the broad
hump in the zero-field heat capacity into two humps that
are visible as separate features at h = 2 T, with one feature
remaining at T ∼ 0.15 K near the lowest measured temper-
atures, and the other clearly increasing in amplitude and
temperature with increasing field strength, being centered on
T = 1.1 K at h = 2 T. The separation of energy scales implied
by the development of these separate features, corresponds
to the separate energy scales for the polarized α chains and
unpolarized β chains, which emerge in a [1, 1̄, 0] field. Fitting
the heat capacity measurements to NLC calculations yields
results consistent with previous studies [25,26]. In particular,
we affirm that the multipolar interactions are strong and frus-
trated. Of particular interest is the near equality of Jx̃ and Jỹ,
which in turn implies that the β chains are close to a critical
state.

We also report triple-axis and time-of-flight elastic neutron
scattering measurements on single crystal Ce2Zr2O7 at low
temperatures in both [1, 1̄, 0] and [0, 0, 1] magnetic fields.
The measurements in a [1, 1̄, 0] magnetic field are consistent
with the decoupling of the system into separate quantum spin
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chains. The field evolution of the Bragg peaks due to the
polarized α chains is shown to be consistent with expectations
for a 1D quantum system. The magnetic dipole moments
in the β chains exhibit short-ranged (ξ ∼ 15 Å) ferromag-
netic intrachain correlations. These intrachain correlations are
much shorter ranged than those in classical spin ices, which
is a consequence of both quantum fluctuations and dominant
multipolar interactions. Direct confirmation of the nearly-
gapless excitations predicted for the β chains was not possible
with our present experiment, but would be an interesting goal
for future high resolution spectroscopic measurements. In a
[0, 0, 1] magnetic field, we observe a field-polarized spin ice
ground state, with magnetization along the field direction.

Our elastic scattering results are largely consistent with
those recently reported in Ref. [57] on a different Ce2Zr2O7

single crystal. Gao et al. [57] reported [1, 1̄, 0]-field-induced
Bragg peaks at the (0, 0, 2) and equivalent positions, asso-
ciated with the polarization of the α chains. In a [0, 0, 1]
magnetic field, they reported field-induced Bragg peaks at
both the (0, 0, 2) and (2, 2, 0) positions. Our study, Fig. 7,
shows that there is no field-induced Bragg scattering at
(2, 2, 0) and equivalent positions in a [0, 0, 1] magnetic field,
a result which is consistent with the expected polarized spin
ice state illustrated in Fig. 1(b). We speculate that the rela-
tively weak (2, 2, 0) Bragg scattering reported recently [57] is
due to the incomplete cancellation of two large nonmagnetic
Bragg signals. Our inelastic scattering results show that both
[1, 1̄, 0] and [0, 0, 1] magnetic fields result in a separation
of the quasielastic scattering, such that a weak and nearly-
dispersionless continuum of inelastic scattering emerges from
the quasielastic signal with increasing field strength.

We compare our neutron scattering results to both semi-
classical molecular dynamics calculations and one dimen-
sional quantum calculations using the best-fitting exchange
parameters inferred from the heat capacity. The calculated
predictions are largely consistent with the measured elastic
scattering, and the θ dependence of the predicted planar scat-
tering from β chains in a [1, 1̄, 0] magnetic field provides
further evidence that the mixing of the dipolar and octupolar
degrees of freedom through the parameter θ [see Eq. (2)],
is weak, and importantly, that the correlations between oc-
tupolar magnetic moments strongly dominate over dipolar
correlations. Furthermore, this means that if Jx̃ is the largest
exchange parameter, the low-energy fluctuations will be dom-
inantly octupolar, even though the ground state has the same
symmetry properties, and can be smoothly deformed into,
a dipolar quantum spin ice. The calculated inelastic signal
shows field-induced separation of the quasielastic signal that
is similar to that detected in the measured data. By modeling
the structure factor beyond the dipole approximation we also
show that multipolar spin waves in the high-field state can in
principle be detected, even though the signal is too weak to
detect with the present experiment.

Taken as a whole, the complete set of in-field data provides
strong constraints on the theoretical description of Ce2Zr2O7.
The best description within the nearest-neighbor XYZ model
[Eq. (2)] is found for parameters very close to those already
proposed in [25]. Future theoretical studies should seek to
close the remaining discrepancies between theory and exper-
iment, such as the increase in inelastic scattering intensity

at large applied fields and the shape of the low-temperature
feature in the heat capacity in [1, 1̄, 0] field.
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APPENDIX A: NUMERICAL LINKED CLUSTER
CALCULATIONS OF THE HEAT CAPACITY

1. Further Details on Numerical Linked Cluster Calculations
of the Heat Capacity

Here we discuss the numerical linked cluster (NLC) cal-
culations for the magnetic contribution to the heat capacity,
and the fitting analysis that was performed using the data
measured from our single crystal sample of Ce2Zr2O7 in a
[1, 1̄, 0] magnetic field. The basic details of the NLC method
are outlined in the main text and in Refs. [25,30], and further
details are provided in Refs. [59–63]. The methodology spe-
cific to the seventh-order calculations is described in Ref. [62].

Throughout this paper, we compare the magnetic heat ca-
pacity calculated using nth-order NLC calculations CNLC,n

mag
(n = 4, 5, 6) to the heat capacity measured from Ce2Zr2O7,
Cexp

P , using the goodness-of-fit measure,

〈
δ2

ε2

〉
=

∑
Texp

[
CNLC,n

mag (Texp) − Cexp
P (Texp)

]2

εNLC,n(Texp)2 + εexp(Texp)2
, (A1)

where εexp(Texp) is the experimental uncertainty on the mea-
sured heat capacity at temperature Texp, and εNLC,n(Texp) is the
uncertainty associated with the nth-order NLC calculations at
temperature Texp,

εNLC,n(Texp) = maxT �Texp

∣∣CNLC,n
mag (T ) − CNLC,n−1

mag (T )
∣∣.

(A2)

We first used sixth-order NLC calculations, with Euler
transformations to improve convergence (see Ref. [25], for
example), in order to fit the zero-field heat capacity measured
from Ce2Zr2O7 and determine the best-fitting exchange pa-
rameters Jx̃, Jỹ, and Jz̃ up to permutation of the exchange
parameters as discussed in Sec. III. Heat capacity curves
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FIG. 11. The goodness-of-fit parameter 〈δ2/ε2〉 for our sixth-
order NLC fits to the measured Cmag of Ce2Zr2O7 in zero magnetic
field. Here the goodness-of-fit parameter is plotted over the avail-
able phase space as a function of the exchange parameters Ja,
J± = – 1

4 (Jb + Jc ), and J±± = 1
4 (Jb – Jc ), where the axes {a, b, c} are

defined as the permutation of {x̃, ỹ, z̃} such that |Ja| � |Jb|, |Jc|
and Jb � Jc (see Refs. [25,30] for further details). The best-
fitting exchange parameters obtained in this fitting, (Ja, Jb, Jc ) =
(0.063, 0.062, 0.011) meV are show as the red point. We also show
the phase boundaries and corresponding phases in the ground-state
phase diagram predicted at the nearest-neighbor level for dipolar-
octupolar pyrochlores [17]. Each phase in this diagram can be dipolar
or octupolar in nature and this depends on the permutation giving
(Jx̃, Jỹ, Jz̃ ) from (Ja, Jb, Jc ). The best-fitting exchange parameters and
the entire surrounding region of good agreement (dark-colored) are
within the region of the phase diagram corresponding to a U(1)π QSI
ground state.

were calculated for values of (Jx̃, Jỹ, Jz̃ ) over the entire avail-
able parameter space, and we compare the NLC-calculated
heat capacity for each parameter set to the heat capacity
measured from Ce2Zr2O7 using the goodness-of-fit measure
〈 δ2

ε2 〉 in Eq. (A1). The overall energy scale of the exchange
parameters was fit to the high-temperature tail of the heat
capacity so as to minimize 〈 δ2

ε2 〉 summed over the range
from Texp = 1.9 K to 4 K (see Ref. [30], for example). The
exchange parameters Jx̃, Jỹ, and Jz̃ are then determined up
to permutation according to minimization of 〈 δ2

ε2 〉 summed
over the range from Texp = 0.3 K to 1.9 K. For most pa-
rameter sets, and specifically those corresponding to a QSI
ground state in the nearest-neighbor ground-state phase di-
agram [Fig. 2(b)], this restricts the fit to the regime where
the NLC calculations converge. The results of this fitting
procedure yield (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV up
to permutation. Figure 11 shows the goodness-of-fit measure
〈 δ2

ε2 〉 for our sixth-order NLC calculations compared to the
measured heat capacity of Ce2Zr2O7 in zero magnetic field
for Texp = 0.3 K to 1.9 K, as well as the best-fitting exchange
parameters that we obtain. We also overplot the ground-state
phase diagram predicted for dipolar-octupolar pyrochlores at
the nearest-neighbor level [17], showing the regions of phase
space corresponding to U(1)0 and U(1)π QSIs as well as a
large region corresponding to all-in, all-out magnetic order,
where each phase in the diagram of Fig. 11 can be dipolar or
octupolar in nature as discussed in the caption of Fig. 11.

We then use NLC calculations to fit the in-field heat
capacity for (Jx̃, Jỹ, Jz̃ ) equal to different permutations of
(0.063, 0.062, 0.011) meV, and for η = gz/2.57 between 0.5
and 1.5. Figure 12 shows the η and θ dependencies of 〈 δ2

ε2 〉
for our fourth-order NLC calculations using (Jx̃, Jỹ, Jz̃ ) =
(0.063, 0.062, 0.011) meV, compared to measured heat ca-
pacity from Ce2Zr2O7 in a [1, 1̄, 0] magnetic field of strength
h = 0.5 T (a), h = 1 T (b), and h = 2 T (c). Here we use a
field-dependent low-temperature cutoff for our evaluation of
〈 δ2

ε2 〉 in order to restrict each fitting to its regime of reasonable
convergence, as well as a high-temperature cutoff of 6 K in
each case. Specifically, we fit the h = 0.5 T (h = 1 T, h =
2 T) data between T = 0.40 K (T = 0.36 K, T = 0.29 K)
and 6 K.

Figure 12 shows the lack of significant θ dependence
for 〈 δ2

ε2 〉 within the dark colored region of best agree-
ment for each measured field strength. While we use
(Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV as representative
values in Fig. 12, it is worth mentioning that other permu-
tations of (0.063, 0.062, 0.011) meV and nearby parameters
also show a lack of significant θ dependence for 〈 δ2

ε2 〉 in re-
gions of good agreement. Accordingly, we find it appropriate
to set the value of θ to zero consistent with our estimate in
Sec. V and with the estimates in Refs. [25,26]. With θ set to
zero, we use fifth-order NLC calculations to fit the measured
heat capacity from Ce2Zr2O7 according to the goodness-of-
fit parameter 〈 δ2

ε2 〉 evaluated between 0.2 K and 6 K. The
low-temperature cutoff used here is lower than that used for
the NLC fitting of the zero-field heat capacity due to the
fact that our NLC calculations are convergent (εNLC,n = 0)
down to lower temperatures for h = 0.5 T, h = 1 T, and
h = 2 T compared to zero field. Furthermore, in contrast
to the NLC fitting of the heat capacity in zero field, Euler
transformations were not used to fit the heat capacity from
Ce2Zr2O7 for nonzero magnetic field as the bare NLC cal-
culations are more robust than the Euler transformations for
h = 0.5 T, h = 1 T, and h = 2 T, and are fully converged
for each of these field strengths down to our low-temperature
cutoff of T = 0.2 K as opposed to the corresponding Euler
transformations.

Figure 13 shows the goodness-of-fit parameter 〈 δ2

ε2 〉 for
our fifth-order NLC calculations compared to the heat ca-
pacity measured from Ce2Zr2O7 over the fitting range from
T = 0.2 K to T = 6 K, for a [1, 1̄, 0] magnetic field of
strength h = 0.5 T (a), h = 1 T (b), and h = 2 T (c). For
each measured field strength, we show 〈 δ2

ε2 〉 for (Jx̃, Jỹ, Jz̃ )
equal to different permutations of (0.063, 0.062, 0.011) meV,
and for η between 0.75 and 1 as to highlight the minima in
〈 δ2

ε2 〉. As shown by the collection of minima in Fig. 13, the
best global fit occurs for (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011)
or (0.062, 0.063, 0.011) meV at η ∼ 0.87 (g ∼ 2.24).

Permutations (0.011, 0.062, 0.063), (0.011, 0.063, 0.062),
(0.063, 0.011, 0.062), and (0.062, 0.011, 0.063) meV are
sub-optimal and provide near equal values of 〈 δ2

ε2 〉 due to
both similarity of the exchange constants 0.062 meV and
0.063 meV, and due to the interchangeability of x̃ and ỹ in
Eq. (2) for θ = 0, which results in equal fits for (Jx̃, Jỹ, Jz̃ ) =
(Ja, Jb, Jc) and (Jb, Ja, Jc).

054438-19

Ph.D. Thesis - E.M. Smith McMaster University - Physics and Astronomy

106



E. M. SMITH et al. PHYSICAL REVIEW B 108, 054438 (2023)

FIG. 12. The η and θ dependencies of the goodness of fit parameter 〈 δ2

ε2 〉 for our fourth-order NLC calculations compared to the measured
heat capacity from our Ce2Zr2O7 sample for [1, 1̄, 0] field strengths of h = 0.5 T (a), h = 1 T (a), and h = 2 T (c). The parameter η is defined
as η = gz/2.57, and we use the best-fitting parameters from this work, (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV. This plot shows the lack of

significant θ dependence for 〈 δ2

ε2 〉 in the region of best agreement for each field strength.

2. Numerical linked cluster calculations of the heat capacity
with other exchange parameters

Here we present our NLC calculations using the
different sets of nearest-neighbor-exchange param-
eters suggested in Ref. [26]: Set (1) (Jx̃, Jỹ, Jz̃ ) =
(0.044, 0.087, 0.015) meV, gz = 2.4, θ = 0; set (2)
(Jx̃, Jỹ, Jz̃ ) = (0.039, 0.088, 0.02) meV, gz = 2.36, θ =
−0.03π ; set (3) (Jx̃, Jỹ, Jz̃ ) = (0.041, 0.081, 0.027) meV,
gz = 2.27, θ = 0.08π ; and set (4) (Jx̃, Jỹ, Jz̃ ) =
(0.069, 0.068, 0.013) meV, gz = 2.4, θ = 0. Figure 14
shows these calculations along with the calculations using the
best-fitting nearest-neighbor-exchange parameters obtained
in this study, and the measured data from Ce2Zr2O7, for a
[1, 1̄, 0] magnetic field of strength h = 0 T, 1 T, and 2 T. Each
of these parameter-sets provides a reasonable description to
the measured data, specifically for h = 1 T and 2 T. However,
it is worth noting that the exchange parameters obtained in
this study and parameter-set 4 from Ref. [26] (which is quite
similar to the parameter set obtained in this study) clearly
provide better description of the h = 0 T data than the other
parameter sets.

APPENDIX B: ONE-DIMENSIONAL QUANTUM
CALCULATIONS

1. Magnetic Bragg peak intensity

At large magnetic fields along the [1, 1̄, 0] direction, the
Ising pyrochlore system should be well described by two sets
of effectively decoupled one-dimensional chains, called α and
β chains [see Fig. 1(a)]. We set θ to zero in accordance with
the estimated value in Refs. [25,26] and to simplify the treat-
ment, we neglect the weakest exchange parameter Jz (which
is equal to Jz̃ for θ = 0). In this case, the Hamiltonian for both
α and β chains reduces to the XY model in a staggered field,

H =
∑

j

JxSx
j S

x
j+1 + JySy

j S
y
j+1 + (−1) jh0Sz

j . (B1)

with h0 = 0 for the β chains and h0 = 2μBgzh/
√

6 for the α

chains, where h is the experimentally applied field strength
and 2/

√
6 is a geometrical factor arising from the projection

of the external field on the local easy axis. Here we have used
that (x, y, z) = (x̃, ỹ, z̃) for θ = 0. Rotating the local basis on
every second site (sites with odd j) by π around the local x

FIG. 13. The η dependence of the goodness of fit parameter 〈 δ2

ε2 〉 for our fifth-order NLC calculations compared to the measured heat
capacity from our Ce2Zr2O7 sample for [1, 1̄, 0] field strengths of h = 0.5 T (a), h = 1 T (b), and h = 2 T (c), for (Jx̃, Jỹ, Jz̃ ) equal to different
permutations of (0.063, 0.062, 0.011) meV, and with θ set to zero as discussed in the main text. The parameter η is defined as η = gz/2.57
(see main text).
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FIG. 14. The temperature dependence of the heat capacity of single crystal Ce2Zr2O7 in a [1, 1̄, 0] magnetic field is shown for field
strengths of 0 T (a), 1 T (b), and 2 T (c). The lines show the magnetic contribution calculated using sixth- and seventh-order NLC calculations
for zero magnetic field and fourth- and fifth-order NLC calculations at each nonzero field strength of measurement (as labeled). We show the
calculations using the best-fit exchange parameters from this paper, (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV, gz = 2.24, and θ = 0, as well as
the different sets of nearest-neighbor-exchange parameters obtained in Ref. [26]: Set (1) (Jx̃, Jỹ, Jz̃ ) = (0.044, 0.087, 0.015) meV, gz = 2.4,
θ = 0; set (2) (Jx̃, Jỹ, Jz̃ ) = (0.039, 0.088, 0.02) meV, gz = 2.36, θ = −0.03π ; set (3) (Jx̃, Jỹ, Jz̃ ) = (0.041, 0.081, 0.027) meV, gz = 2.27,
θ = 0.08π ; and set (4) (Jx̃, Jỹ, Jz̃ ) = (0.069, 0.068, 0.013) meV, gz = 2.4, θ = 0.

axis yields Sy → −Sy0 and Sz → −Sz0 on these sites (with
odd j), with the local basis remaining the same with Sy → Sy0

and Sz → Sz0 for the other sites (with even j). This transforms
Eq. (B1) into the equation for a chain in uniform field but with
flipped sign of the Jy exchange term,

H =
∑

j

JxSx
j S

x
j+1 − JySy0

j Sy0
j+1 + h0Sz0

j . (B2)

This Hamiltonian can now be solved straightforwardly by
using the Jordan-Wigner transformation and subsequent Bo-
golyubov transformation [72],

H =
∑

k

ω(k)

(
η

†
kηk + 1

2

)
, (B3)

ω(k) =
√

(γ cos k + h0)2 + J2 sin2 k, (B4)

where ηk are Fermionic operators, J = 1
2 (Jx + Jy), and γ =

1
2 (Jx − Jy). Note that J and γ have switched places in the
expression for the dispersion ω compared to the usual re-
sult, because of the flipped sign in front of Jy in Eq. (B2).
Importantly, inserting h0 = 0 into Eq. (B4) shows that the
β chain excitations are gapless with ω(0) = 0 at the critical
point where the anisotropy γ vanishes (Jx = Jy). We note that
the same critical point occurs for Jx̃ = Jỹ in the general case
where θ is not set to zero.

The magnetic Bragg peak intensity is entirely dominated
by the contribution from the α chains, and in particular, the
intensity of any nonvanishing magnetic Bragg peak is approx-
imately proportional to the staggered magnetization squared
on a single chain, 〈mz

staggered〉2. In the rotated basis of Eq. (B2),
this is just the magnetization squared, which is a four-Fermion
operator and can be computed exactly according to

〈
mz

staggered

〉 = 〈mz0〉 (B5)

= 1

2π

∫ π

0
tanh

(
1

2
βω(k)

)
γ cos(k) + h0

ω(k)
dk .

(B6)

We use Eq. (B6) to compute 〈mz
staggered〉 and we plot

〈mz
staggered〉2 in Fig. 3(e) using the arbitrary units that are de-

scribed in the caption of Fig. 3(e).

2. Hidden second-order transition in [1, 1̄, 0]
magnetic field

In Ref. [34], it was discovered that if exchange in dipolar-
octupolar pyrochlores is dominantly octupolar (between
octupolar magnetic moments), then the XYZ Hamiltonian
undergoes a second-order transition into the high-field chain
phase as a function of field strength for fields along the
[1, 1̄, 0] direction, as opposed to the crossover behavior
observed in all other cases. Exchange can be dominantly
octupolar for two reasons. First, the case mainly considered
in Ref. [34] is the case where Jy > Jx, Jz. In the case of θ = 0,
as seems to be realized in Ce2Zr2O7, this can also occur for
Jx > Jy, Jz.

In these cases, there is significant competition between
the polarization of the magnetic dipole moments, which are
coupled to the magnetic field, and the ordering of the oc-
tupolar magnetic moments associated with the components of
pseudospin which have the strongest exchange coupling. The
α chains ground state remains twofold degenerate for some
finite field range h0 < hc, where in this range, the α chains are
expected to show noncollinear ferromagnetic octupolar order
with one effective degree of freedom per chain corresponding
to the two directions of the octupolar order, which are equiva-
lent in energy. As an additional subtlety, the critical field is set
by the anisotropy hc = γ = (Jx − Jy)/2, and hence we expect
it to be small. This is the case because the transition is a gap
closing and the spinon gap is set by the anisotropy as shown
in Eq. (B4). Since this low-field phase occurs in competition
with the polarization of the z components of pseudospin, this
indeed affects the value of 〈mz

staggered〉 and accordingly, the
measured Bragg intensity from the α chains even at low Q
where direct contributions from the octupolar components are
insignificant to the Bragg intensity.
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FIG. 15. The staggered magnetization for the α chains 〈mz
staggered〉

and its derivative with respect to field strength are shown in (a) and
(b) respectively as a function of field strength for a [1, 1̄, 0] mag-
netic field at T = 0.03 K, calculated via Eq. (B6) using J = 1

2 (Jx +
Jy ) = 0.0625 meV and different values of the anisotropy param-
eter, γ = 1

2 (Jx − Jy ), as labeled. The position of the kink in the
magnetization marks the transition from the low-field phase to high-
field phase (see main text), and corresponds to the position of the
peak in ∂〈mz

staggered〉/∂h. We overplot the values of 〈mz
staggered〉 and

∂〈mz
staggered〉/∂h obtained experimentally at T = 0.3 K by assum-

ing the magnetic Bragg peak intensity at Q = (0, 0, 2) [shown in
Fig. 3(e)] is proportional to 〈mz

staggered〉2. For both the calculations and
measured data, we use the arbitrary units described in the caption of
Fig. 3(e).

In Fig. 15, we show the calculated value of 〈mz
staggered〉 for

the α chains, as well as its derivative with respect to field, as
a function of field for θ = 0 and J as estimated for Ce2Zr2O7

in this paper, for different values of the anisotropy parameter
γ . These curves were calculated using Eq. (B6). We show
the curves in Fig. 15 for γ � 0 only as Eq. (B6) is invariant
under γ → −γ . One way to see this invariance is by using
the substitution k = π − k0 in Eq. (B6) (with dk = −dk0, and
changing the integration limits accordingly).

As shown in Fig. 15, the transition can be diagnosed
by a kink in the magnetization curve, or equivalently by
a cusp in its derivative, which would be sharp for T → 0.
Also in Fig. 15, we overplot the values of 〈mz

staggered〉 and
∂〈mz

staggered〉/∂h obtained by setting the magnetic Bragg peak

FIG. 16. The β-chain contribution to the energy-integrated
dynamical structure factor obtained from our Jordan-Wigner calcu-
lations following the numerical procedure in Ref. [73]. Specifically,
we show the calculation using the nearest-neighbor-exchange param-
eters obtained in this paper, (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV,
with θ = 0 (a) and θ = 0.1π (b), for a temperature of T =
0.03 K and for a magnetic field in the [1, 1̄, 0] direction of infinite
strength. The energy-integration for each is over the range E =
[−0.2, 0.2] meV.

intensity of the Q = (0, 0, 2) peak at T = 0.3 K [see Fig. 3(e)]
equal to 〈mz

staggered〉2. We note that the measured data at
T = 0.3 K is described well by the calculations performed at
the lower temperature of T = 0.03 K for small values of the
anisotropy, but noise in the measured ∂〈mz

staggered〉/∂h means
that a relatively large anisotropy would be needed in order to
observe a transition definitively.

3. Dynamical structure factor for β chains

We follow the numerical procedure in Ref. [73] to compute
the correlations within a single β chain that is 1000 ions long,
using the nearest-neighbor-exchange parameters obtained in
this paper, (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV. Incorpo-
rating the necessary geometrical factors, one can then obtain
the full dynamical structure factor S(Q, E ) of the 3D material,
in the infinite field limit H → ∞. In Fig. 16, we show the
integrated dynamical structure factor in the (H, H, L) plane
obtained from these calculations at T = 0.03 K for both θ =
0 and θ = 0.1π , integrated in energy over the range from
E = −0.2 to 0.2 meV. Remarkably, the result is extremely
similar to that of the semiclassical Monte Carlo molecular
dynamics simulations [Figs. 4(e) and 4(h)], even though the
chain is close to criticality at Jx ≈ Jy. Importantly, both our
one-dimensional quantum calculations and our semiclassical
molecular dynamics calculations show a sharp and intense
centerpiece to the rod of scattering along (0, 0, L) for θ =
0.1π , which is not present for θ = 0 and also not present in
our measurements.
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APPENDIX C: CONSISTENCY BETWEEN
EXPERIMENTALLY-ESTIMATED EXCHANGE

PARAMETERS AND FERROMAGNETIC β -CHAIN
CORRELATIONS IN A [1, 1̄, 0] FIELD

We employ the experimental estimates for the exchange
parameters of Ce3+ in Ce2Zr2O7 from this paper and Ref. [25]
to conclude that the ferromagnetic intrachain correlations be-
tween magnetic dipole moments detected in our time-of-flight
neutron scattering experiment are consistent with the expected
β-chain correlations in a [1, 1̄, 0] magnetic field at finite
temperature. We first point out that the estimated exchange
parameters give Jx̃ > max(−3Jλ, Jλ) for λ = ỹ and z̃, or Jỹ >

max(−3Jλ, Jλ) for λ = x̃ and z̃, and so at zero temperature
all pseudospins in the β chains should be aligned along the
local x̃ or local ỹ directions respectively [34], forming a phase
of ordered octupolar magnetic moments with two possible
directions for the order corresponding to the fact that all pseu-
dospins can be flipped at zero cost in energy. This corresponds
to ordering of the octupolar magnetic moments as Sỹ always
carries a purely octupolar magnetic moment and the magnetic
moment associated with Sx̃ is also purely octupolar for θ = 0.
This occurs at the expense of any ordering of the z̃ components
of pseudospin and their corresponding dipole moments.

However, at nonzero temperature, significant correlations
are still expected between the magnetic dipole moments
and these expected correlations can be determined from the
portion of the Hamiltonian involving the z components of
pseudospin. Using θ = 0, and (x, y, z) = (x̃, ỹ, z̃) for θ =
0, the portion of the exchange Hamiltonian [Eq. (2)] con-
taining the z components of pseudospin is given by Hz =∑

〈i j〉[JzSi
zS j

z], where the term in Eq. (2) representing the
interaction with the magnetic field vanishes due to the fact
that a [1, 1̄, 0] magnetic field gives h ⊥ ẑi for each atom i
within the β chains. Each ion in the β chains has four nearest
neighbors in α chains and two nearest neighbors in the same
β chain. The polarization of the α chains dictates that two of
the neighboring α-chain pseudospins are along their local +z
direction and two are along their local −z direction. Accord-
ingly, this gives a vanishing exchange field produced from the
α chains on the sites of the β chains [33,34]. Furthermore,
Ref. [34] further shows that even quantum fluctuations of the
α chains are not expected to result in any significant coupling
between α and β chains within the nearest-neighbor model.
The estimates for the exchange parameters in Refs. [25] and
in this paper give Jz > 0 and accordingly, the minimum en-
ergy state of Hz corresponds to β chains with noncollinear
ferromagnetic order as we discuss in the following paragraph.

Employing Jz > 0 to the isolated β chain shows that Hz is
minimized for two neighboring atoms in the β chain when
one atom has its magnetic moment in the +zi (−zi) direc-
tion and the other atom has its magnetic moment in the −z j

(+z j) direction. These preferred alignments for a β chain then
correspond to neighboring magnetic moments aligned along
the [1, 1, 1] and [1, 1, 1̄] directions, or along the [1̄, 1̄, 1̄] and
[1̄, 1̄, 1] directions [11,12], which corresponds to noncollinear
ferromagnetism for the β chain, with net dipole moment for
the chain in the [1, 1, 0] or [1̄, 1̄, 0] direction, respectively.
These ferromagnetic correlations between dipole moments
in the β chains establish the 2-in-2-out rule locally at finite

temperature in [1̄, 1̄, 0] magnetic fields. We note that these
correlations are also consistent with the estimated nearest-
neighbor-exchange parameters in Ref. [26] (see Appendix A,
Subsection 2), although for the parameter sets of Ref. [26]
with nonzero θ , the ferromagnetic interchain correlations be-
tween magnetic dipole moments would involve both the z̃ and
x̃ components of pseudospin.

APPENDIX D: SEMICLASSICAL MOLECULAR
DYNAMICS CALCULATIONS BASED ON MONTE

CARLO SIMULATIONS

1. Further details on semiclassical molecular dynamics
calculations based on Monte Carlo simulations

Here we further discuss the semiclassical molecular dy-
namics calculations based on Monte Carlo simulations, which
we have used to calculate Bragg intensities in Figs. 2(e)
and 7(g), the quasielastic diffuse scattering signals in the
(H, H, L) scattering plane in Figs. 4(d)–4(i) and in the (H +
K, H − K, 1.5) scattering plane in Figs. 5(d)–5(f), as well
as the inelastic neutron scattering spectra shown in Figs. 9
and 10. The details of these calculations are outlined in Ap-
pendix H of Ref. [25].

Figure 17 shows the temperature and [1, 1̄, 0]-field-
strength dependencies of the diffuse neutron scattering
signal calculated via our semiclassical molecular dynam-
ics calculations using the experimental estimates of the
nearest-neighbor-exchange parameters obtained from this pa-
per, (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV, gz = 2.24, and
θ = 0. The calculated signal for the (H, H, L) scattering plane
uses an integration in energy transfer over –0.2 meV � E �
0.2 meV and an integration in the (K, K̄, 0) direction over
–0.3 � K � 0.3, consistent with the integration ranges for
the experimental data in Figs. 4(a)–4(c). Figure 17 shows that
the predicted diffuse neutron scattering possesses essentially
the same field dependence for each temperature, and that for
each field strength the signal grows in intensity with decreas-
ing temperature.

The snowflake-like pattern of diffuse scattering in the
(H, H, L) plane predicted at low temperature in zero field in
Fig. 17 is consistent with the corresponding signals measured
from Ce2Zr2O7 in Refs. [13,14,25]; however, as discussed
in Sec. V B, the calculations miss finer features of the dif-
fuse scattering due to approximations used in Eq. (2) and
the semiclassical molecular dynamics calculations themselves
(outlined in Appendix H of Ref. [25]). Specifically, previous
measurements in Ref. [13] show a snowflake pattern like
the one predicted in Fig. 17 but with an increase in scatter-
ing centered on (0, 0, 1), less scattering along the (H, H, H )
direction compared to the (0, 0, L) direction, and broad-
ened pinch-point features near (1, 1, 1) and (0, 0, 2). None of
these are captured by the semiclassical molecular dynamics
calculations. Nonetheless, the main features of the diffuse
scattering are accurately predicted by these calculations for
both zero and nonzero magnetic field as was mentioned in
Sec. V.

In Figs. 18 and 19 we show the calculated inelastic neu-
tron scattering spectra via semiclassical molecular dynamics
for a higher-energy resolution than used in Sec. V. Here

054438-23

Ph.D. Thesis - E.M. Smith McMaster University - Physics and Astronomy

110



E. M. SMITH et al. PHYSICAL REVIEW B 108, 054438 (2023)

FIG. 17. The temperature and field-strength dependencies of the diffuse neutron scattering signal calculated via semiclassical molecular
dynamics calculations using the experimental estimates of the nearest-neighbor exchange parameters obtained from this work, (Jx̃, Jỹ, Jz̃ ) =
(0.063, 0.062, 0.011) meV, gz = 2.24, and θ = 0, for the (H, H, L) scattering plane with an integration in the (K, K̄, 0) direction from -0.3 to
0.3, and with the [1, 1̄, 0] magnetic field strength and temperature as labeled for each column and row, respectively.

we show the calculated spectra convoluted with a Gaussian
lineshape with energy resolution of �E = 0.02 meV. In
further detail, Figs. 18 and 19 shows the calculated disper-
sion for high symmetry directions in the (H, H, L) [(H, K, 0)]
plane at T = 0.03 K (T = 0.09 K) for a [1, 1̄, 0] ([0, 0, 1])
magnetic field. Our calculations again use the nearest-

neighbor-exchange parameters obtained from this paper,
(Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV and gz = 2.24, and
we show the calculations for both θ = 0 (left) and θ = 0.1π

(right). As shown in Figs. 18 and 19, sharp single-magnon ex-
citations have extremely weak intensity for θ = 0 and become
more visible for nonzero θ .
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FIG. 18. The calculated inelastic neutron scattering signal, via semiclassical molecular dynamics calculations (see main text) using the
experimental estimates of the nearest-neighbor exchange parameters obtained from this work, (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV, and
gz = 2.24, for θ = 0 [(a)–(d)] and θ = 0.1π [(e)–(h)]. Specifically, we show the calculated dispersion along high symmetry directions in the
(H, H, L) plane at T = 0.03 K for a [1, 1̄, 0] magnetic field of strength h = 0 T [(a), (e)], h = 0.35 T [(b), (f)], h = 1.5 T [(c), (g)], and
h = 4 T [(d), (h)]. The intensity is shown on a logarithmic scale and the calculated spectra are convoluted with a Gaussian lineshape with
energy resolution of �E = 0.02 meV.

In order to understand why inelastic scattering from single
magnon excitations is not expected to be observed in the
high-field regime when θ = 0, we must consider both how the
neutrons couple to spin waves, and the form of the magnetic
ground states. In the dipole approximation, the neutrons cou-
ple to the magnetic moment, which in the pseudospin picture
means they couple only to Sz = Sz̃ cos θ + Sx̃ sin θ . At the
same time, single-spin waves are excited by spin operators
transverse to the direction of the ground-state expectation
value of the spin. This means that in order to see single-spin
wave scattering in the dipole approximation, the ground-state
expectation value of the pseudospin must not be fully aligned
with the pseudospin z axis (meaning Sz). For θ = 0, we find
that the ground-state energy is minimised by spins aligned
with the z axis for all h strong enough to be in the polarized
phase. On the other hand, for θ �= 0, the ground-state expec-
tation value is canted away from the z axis for all fields, only
becoming fully aligned as h → ∞. It is this canting which
allows for a matrix element for the scattering from single-spin
waves in the dipole approximation. Moving beyond the dipole
approximation, the scattering becomes sensitive to the Sx and
Sy pseudospin components, and single magnons contribute
a finite, but small, intensity even for θ = 0. However, the
intensity due to octupolar contributions is suppressed by an
octupolar form factor and is therefore only expected to be
observable at large Q. This effect is visible for example in
Figs. 19(d) and 19(e), where a weak sharp magnon dispersion
is visible even for θ = 0 at the largest wave vectors plotted.

Nonetheless, due to its low intensity, this weak-but-visible
signal in the calculations (shown on a logarithmic scale in
Fig. 19) is not expected to be observable in the inelastic
neutron scattering experiments included in this paper.

We include contributions from all higher-order multipoles
relevant to the J = 5/2 manifold in our semiclassical molec-
ular dynamics calculations. However, we show the calculated
Bragg scattering in Fig. 10 in the dipole approximation for
aesthetic purposes and include the higher-order multipole
contributions elsewhere. In further detail, our calculations in-
cluding higher-order multipoles for a [0, 0, 1] magnetic field
find a magnetic Bragg peak at Q = (2, 2, 0) (see Fig. 19),
which is ∼50 000 times weaker than the magnetic Bragg peak
at Q = (0, 0, 2) and is far from being detectable in experiment
due to its weak intensity, especially considering there is a large
nuclear Bragg peak at the same position.

2. Monte Carlo molecular dynamics calculations with other
exchange parameters

Here we discuss our Monte Carlo molecular dynam-
ics calculations for the neutron scattering signal using
the different sets of nearest-neighbor exchange parameters
obtained in Ref. [26] through different fitting processes
applied to the heat capacity and magnetization measured
[57] from Ce2Zr2O7 in a [1, 1, 1] magnetic field: Set (1)
(Jx̃, Jỹ, Jz̃ ) = (0.044, 0.087, 0.015) meV, gz = 2.4, θ = 0;
set (2) (Jx̃, Jỹ, Jz̃ ) = (0.039, 0.088, 0.02) meV, gz = 2.36,
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FIG. 19. The calculated inelastic neutron scattering signal, via semiclassical molecular dynamics calculations (see main text) using the
experimental estimates of the nearest-neighbor-exchange parameters obtained from this paper, (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV, and
gz = 2.24, for θ = 0 [(a)–(e)] and θ = 0.1π [(f)–(j)]. Specifically, we show the calculated dispersion along high symmetry directions in the
(H, K, 0) plane at T = 0.09 K for a [0, 0, 1] magnetic field of strength h = 0 T [(a),(f)], h = 0.75 T [(b),(g)], h = 1.5 T [(c),(h)], h = 3 T
[(d),(i)], and h = 6 T [(e),(j)]. The intensity is shown on a logarithmic scale and the calculated spectra are convoluted with a Gaussian lineshape
with energy resolution of �E = 0.02 meV.

θ = −0.03π ; set (3) (Jx̃, Jỹ, Jz̃ ) = (0.041, 0.081, 0.027)meV,
gz = 2.27, θ = 0.08π ; and set (4) (Jx̃, Jỹ, Jz̃ ) = (0.069,

0.068, 0.013) meV, gz = 2.4, θ = 0. The corresponding point
shown in Fig. 2(b) was obtained in Ref. [26] as the ap-
proximate center point of these four different parameter sets.
However, it is worth noting that parameter set 4 from Ref. [26]
agree particularly well with the best-fitting exchange param-
eters obtained in this work. For a nonzero [1, 1̄, 0] magnetic
field, each of these parameter sets shows quasielastic diffuse
scattering which forms a rod along (0, 0, L) in the (H, H, L)
scattering plane and is extended in the out-of-plane, (K, K̄, 0)
direction as we show in Figs. 4(d)–4(f) and Figs. 5(d)–5(f)
for the best-fitting exchange parameters obtained in this pa-
per. Furthermore, each of these parameter sets gives similar
inelastic scattering spectra for the energy resolution of our
inelastic neutron scattering experiment, shown in Figs. 9 and
10 for the best-fitting exchange parameters obtained in this
paper.

Figure 20 shows the diffuse neutron scattering signal in
the (H, H, L) scattering plane predicted at T = 0.03 K in
a [1, 1̄, 0] magnetic field for each of these parameter sets

and for the exchange parameters estimated in this paper, for
an integration in energy over E = [−0.2, 0.2] meV and an
integration in the out-of-plane direction over K = [−0.3, 0.3].
Each of these parameter sets provides a reasonable descrip-
tion to the measured data in Figs. 4(a)–4(c), specifically for
h = 1.5 T and 4 T. However, it is worth noting that the
exchange parameters obtained in this paper and parameter
set 4 from Ref. [26] (which is quite similar to the parameter
set obtain in this paper) clearly provide a better description
of the h = 0.35 T data [Fig. 4(a)] than the other parameter
sets, as well as the relative intensity between the signals at
h = 0.35 T, h = 1.5 T, and h = 4 T [see Figs. 4(a)–4(c)].

APPENDIX E: ESTIMATING THE CORRELATION
LENGTH FOR THE FERROMAGNETIC CORRELATIONS

WITHIN β CHAINS

We fit the (H, H, 0) width of the diffuse scattering around
H = 0 to a Lorentzian form for the purpose of estimating
the correlation length along the β chains, ξ . This fitting as-
sumed a constant background and is shown by the solid line
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FIG. 20. The diffuse neutron scattering signal in the (H, H, L) scattering plane predicted at T = 0.03 K according to our semiclassical
molecular dynamics calculations using the nearest-neighbor-exchange parameters estimated in Ref. [26]. Specifically, we show the calculated
neutron scattering signal using the best-fit exchange parameters from this paper, (Jx̃, Jỹ, Jz̃ ) = (0.063, 0.062, 0.011) meV, gz = 2.24, and θ =
0, as well as the different sets of nearest-neighbor-exchange parameters obtained in Ref. [26]: Set (1) (Jx̃, Jỹ, Jz̃ ) = (0.044, 0.087, 0.015) meV,
gz = 2.4, θ = 0; set (2) (Jx̃, Jỹ, Jz̃ ) = (0.039, 0.088, 0.02) meV, gz = 2.36, θ = −0.03π ; set (3) (Jx̃, Jỹ, Jz̃ ) = (0.041, 0.081, 0.027) meV,
gz = 2.27, θ = 0.08π ; and set (4) (Jx̃, Jỹ, Jz̃ ) = (0.069, 0.068, 0.013) meV, gz = 2.4, θ = 0. For each parameter set, we show the calculated
signals for a [1, 1̄, 0] magnetic field of strength h = 0 T, h = 0.35 T, h = 1.5 T, and h = 4 T (as labeled).

fits in Fig. 6(c). The interest in this analysis is the width
of the central peak around H = 0, which was fit for each
field strength using a resolution-convoluted Lorentzian func-
tion with the correlation length along the (H, H, 0) direction
calculated using the equation ξ = a/(

√
2�signal ), where a =

10.7 Å is the cubic lattice constant for Ce2Zr2O7 and �signal =√
�2

total − �2
res. In this second equation, �total is the full width

at half-maximum of the Lorentzian function, and �res is the
experimental resolution along the (H, H, 0) direction deter-
mined by fitting the full-width at half-maximum for nuclear
Bragg peaks. This analysis yields correlation lengths of ξ =

17, 13, and 14 Å at h = 0.35 T, 1.5 T, and 4 T, respectively,
which we describe in the main text using the average value
ξ = 15(2) Å. As discussed in Sec. V, this corresponds to the
correlations between the z components of the pseudospins in
the β chains.

APPENDIX F: INELASTIC SCATTERING DATA WITHOUT
POWDER AVERAGING

Here we show the inelastic neutron scattering signal along
specific high-symmetry directions of reciprocal space in the
scattering plane, measured at low temperature from our sin-
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FIG. 21. The symmetrized neutron scattering signal measured at T = 0.03 K from a single crystal sample of Ce2Zr2O7 aligned in the
(H, H, L) scattering plane in a [1, 1̄, 0] magnetic field. The energy dependence of the neutron scattering signal along the (H, H, 0) and (0, 0, L)
directions of reciprocal space are shown in (a)–(c) and (d)–(f), respectively, for field strengths of h = 0.35 T [(a),(d)], h = 1.5 T [(b),(e)], and
h = 4 T [(c),(f)]. The (0, 0, L) and (H, H, 0) integration ranges for (a)–(c) and (d)–(f) are L = [−0.5, 0.5] and H = [−0.5, 0.5], respectively.
In each case, an integration in the out-of-plane direction, (K, K̄, 0), from K = –0.3 to 0.3 was used and a data set measured at h = 0 T has
been subtracted.

FIG. 22. The symmetrized neutron scattering signal measured at T = 0.09 K from a single crystal sample of Ce2Zr2O7 aligned in the
(H, K, 0) scattering plane in a [0, 0, 1] magnetic field. The energy dependence of the neutron scattering signal along the (H, 0, 0) and (H, H, 0)
directions of reciprocal space are shown in (a)–(d) and (e)–(h), respectively, for field strengths of h = 0.75 T [(a),(e)], h = 1.5 T [(b),(f)],
h = 3 T [(c),(g)], and h = 6 T [(d),(h)]. The (0, K, 0) integration range for (a)–(d) is K = [−0.5, 0.5] and the (K, K̄, 0) integration range for
(e)–(h) is K = [−0.5, 0.5]. In each case, an integration in the out-of-plane direction, (0, 0, L), from L = –0.3 to 0.3 was used and a data set
measured at h = 0 T has been subtracted.
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FIG. 23. The neutron scattering signal measured at T = 0.03 K from a single crystal sample of Ce2Zr2O7 aligned in the (H, H, L) scattering
plane in a [1, 1̄, 0] magnetic field. (a), (b), and (c) show the quasielastic neutron scattering signal in the (H, H, L) plane for a field strength
of h = 0.35 T, also shown in Figs. 4(a) and 5(a). The black rectangle in (a) shows the combined integration range for (0, 0, L) and (H, H, 0)
defined by L = [0.75, 1.75] and H = [−0.25, 0.25]. The black rectangle in (b) shows the combined integration range for (0, 0, L) and (H, H, 0)
defined by L = [0.5, 1.5] and H = [0.25, 0.75]. The black rectangle in (c) shows the combined integration range for (0, 0, L) and (H, H, 0)
defined by L = [−0.5, 0.5] and H = [0.75, 1.25]. (d), (e), and (f) show the energy dependence of the integrated neutron scattering intensity
within the boxes of reciprocal space depicted in (a), (b), and (c), respectively, for magnetic field strengths of h = 0.35 T (blue), h = 1.5 T
(orange), and h = 4 T (green). In each case, a data set measured at h = 0 T has been subtracted. (g), (h), and (i) show the energy dependence
of the integrated neutron scattering intensity within the boxes of reciprocal space depicted in (a), (b), and (c), respectively, for h = 0 T.
Integration in (K, K̄, 0) over the range −0.3 � K � 0.3 was employed for each plot in this figure. (j) shows the subtraction of the energy-cut
in (e) centered between the planes, from the energy-cut in (d) centered on the plane at H = 0, for each field-subtraction (as labeled). (k)
shows the subtraction of the energy-cut in (e) centered between the planes, from the energy-cut in (f) centered on the plane at H = 1, for each
field-subtraction (as labeled).

054438-29

Ph.D. Thesis - E.M. Smith McMaster University - Physics and Astronomy

116



E. M. SMITH et al. PHYSICAL REVIEW B 108, 054438 (2023)

gle crystal sample of Ce2Zr2O7 for magnetic fields along
the [1, 1̄, 0] and [0, 0, 1] directions. This compliments the
powder-averaged inelastic neutron scattering shown in Fig. 8,
which utilizes the entire data set acquired and possesses a
better signal-to-noise ratio than the inelastic neutron scatter-
ing along specific high-symmetry directions.

Figures 21(a)–21(c) [21(d)–21(f)] show the energy de-
pendence of the measured inelastic neutron scattering signal
along the (H, H, 0) [(0, 0, L)] direction of reciprocal space
at T = 0.03 K for a [1, 1̄, 0] magnetic field of strength
h = 0.35 T, h = 1.5 T, and h = 4 T. For Figs. 21(a)–21(c)
[21(d)–21(f)] we use an integration in (0, 0, L) [(H, H, 0)]
from L = −0.5 to 0.5 (H = −0.5 to 0.5) and in (K, K̄, 0)
from K = −0.3 to 0.3, with a zero-field data set taken at
T = 0.03 K subtracted in each case.

Figures 22(a)–22(d) [22(e)–22(h)] shows the energy de-
pendence of the measured inelastic neutron scattering signal
along the (H, 0, 0) [(H, H, 0)] direction of reciprocal space
at T = 0.09 K for a [0, 0, 1] magnetic field of strength h =
0.75 T, h = 1.5 T, h = 3 T, and h = 6 T. For Figs. 22(a)–
22(d) [22(e)–22(h)] we use an integration in (0, K, 0)
[(K, K̄, 0)] from K = −0.5 to 0.5 (K = −0.5 to 0.5) and in
(0, 0, L) from L = −0.3 to 0.3, with a zero-field data set taken
at T = 0.09 K subtracted in each case.

As shown in Fig. 21 (Fig. 22) for the [1, 1̄, 0] ([0, 0, 1])
field direction, the inelastic scattering along different high-
symmetry directions in the scattering plane shows the same
general features as the powder-averaged data in Figs. 8(a)–
8(c) [8(d)–8(g)]. For both field directions, a continuum of
scattering, with no obvious dispersion, separates from the
net-negative quasielastic scattering and increases in energy
and intensity with increasing field strength. As mentioned in
Sec. VI, the lack of sharp spin waves in these measurements
is consistent with expectations for a small value of θ (see
Appendix D).

APPENDIX G: THE ENERGY-DEPENDENCE OF DIFFUSE
SCATTERING IN A [1, 1̄, 0] MAGNETIC FIELD

As our time of flight neutron scattering measurements pro-
vide energy resolution on a ∼0.1 meV scale, it is also possible
to examine the energy dependence of the diffuse planes of
scattering originating from the β chains. This is particularly
interesting and important to examine in this case of Ce2Zr2O7

in a [1, 1̄, 0] magnetic field, as the planes of diffuse scattering
are only evident in subtractions of zero-field data sets from
finite-field data sets at T = 0.03 K, and this difference is
negative (as can be seen in Figs. 4–6) meaning that the zero-
field quasielastic scattering is more intense than the finite-field
quasielastic diffuse scattering (this is clearly not the case for
the elastic scattering associated with field-induced magnetic
Bragg peaks). This negative quasielastic net scattering that we
measure is consistent with the calculations shown in Fig. 9,
where the zero-field quasielastic scattering is more intense
than the in-field quasielastic scattering everywhere except at
magnetic Bragg peak positions.

Figures 23(a), 23(b), and 23(c) show three integration
ranges in reciprocal space that we use to examine the en-

ergy dependence of the measured diffuse scattering signal:
One centered on the plane of β-chain scattering at H = 0,
which appears as a rod along (0, 0, L) in Fig. 23(a), one
between the rods of scattering and centered on (0.5, 0.5, L) in
Fig. 23(b), and one centered on the second plane of β-chain
scattering at H = 1, which appears as a rod along (1, 1, L) in
Fig. 23(c). Specifically, the black rectangle of integration in
Fig. 23(a) is defined by L = [0.75, 1.75], H = [−0.25, 0.25],
the black rectangle of integration in Fig. 23(b) is defined
by L = [0.5, 1.5], H = [0.25, 0.75], and the black rectangle
of integration in Fig. 23(c) is defined by L = [−0.5, 0.5],
H = [0.75, 1.25]. Each of these employ the same integration
normal to the (H, H, L) plane, which is a (K, K̄, 0) integration
from K = –0.3 to 0.3. The varying L range employed over
the three black rectangles of integration results from avoiding
both the oversubtracted (blue intensity) powder ring, and the
region near Q = 0.

Figures 23(d)–23(f) shows the energy dependence of the
measured diffuse scattering for the net data in the integration
range in Figs. 23(a)–23(c). Clearly Figs. 23(d)–23(f) show an
easily observable decrease in elastic and quasielastic scatter-
ing in a magnetic field compared to zero field as previously
discussed. The negative net intensities in the field-subtracted
data, both centered on the planes of scattering [Figs. 23(d),
and 23(f)] and centered between planes [Fig. 23(e)], have
energy dependencies that peak at slightly positive energies
even though the zero-field data sets themselves are centered on
E = 0 meV, as shown in Figs. 23(g)–23(i). This is consistent
with the fact that the quasielastic scattering from the QSI
phase in zero field, that is, the scattering being subtracted
and leading to negative net-scattering, is centered at slightly
positive energies. Furthermore, as shown in Figs. 23(j) and
23(k), a subtraction of the net intensities centered on a plane of
scattering, from that centered between the planes of scattering,
shows that the planes of scattering due to the β chains are
approximately elastic with center at E ≈ 0 meV within reso-
lution of the measurements. We refer to this diffuse scattering
as quasielastic in the main text as higher-resolution measure-
ments would be needed to definitively determine whether the
measured scattering is elastic or inelastic (or more precisely,
to decompose any elastic and inelastic portions of the mea-
sured quasielastic signal).

Figure 23(j) shows that the elastic intensity associated with
the plane of scattering at H = 0 is approximately constant
in intensity at h = 0.35 T and 1.5 T, but then decreases in
intensity by a factor of ∼3 at h = 4 T, in comparison to
the intensity of the scattering between the planes of diffuse
scattering. On the other hand, Fig. 23(k) shows that the elastic
intensity associated with the plane of scattering at H = 1 is
weaker at h = 0.35 T and h = 1.5 T than at h = 4 T. Com-
parison of Figs. 23(j) and 23(k) shows that the decrease in
scattering at h = 4 T, for the plane at H = 0 in comparison
to the scattering between the diffuse planes, is met with an
approximately equal increase in scattering for the plane at
H = 1 in comparison to the scattering between the diffuse
planes. This migration of intensity between the planes at H =
0 and H = 1 is consistent with conclusions drawn from the Q
dependence of the diffuse scattering shown in Figs. 4(a)–4(c),
5(a)–5(c), and 6(c).
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Chapter 4
Summary and Closing Remarks

4.1 Summary, Conclusions, and Closing Discussions

The collection of measurements presented in Publications I, II, and III of this thesis are consistent with a quantum

spin ice ground state for the dipole-octupole pyrochlore Ce2Zr2O7 in zero-field. The lack of both magnetic order and

spin freezing shown in the magnetic susceptibility, zero-field heat capacity, and zero-field elastic neutron scattering

measured from Ce2Zr2O7, combined with the snowflake pattern of diffuse scattering measured from Ce2Zr2O7 in zero

field at low temperature, is consistent with expectations for a material with a low-temperature spin ice phase. These

results are consistent with a separate study on Ce2Zr2O7 in Ref. [22] and together such results form the basis for the

general spin ice candidacy of Ce2Zr2O7 at a qualitative level. It is worth mentioning that these results on Ce2Zr2O7

have since been further corroborated by our new muon spin relaxation measurements on single crystal Ce2Zr2O7 in

Ref. [132], which also show a lack of both magnetic order and spin freezing, down to the lowest measured temperature

of T = 0.02 K.

The spin ice candidacy of Ce2Zr2O7 is further established and specified by fits of the nearest-neighbor exchange

parameters for Ce2Zr2O7. These fits use the XYZ Hamiltonian appropriate to the dipole-octupole symmetry of the

|J = 5/2, mJ = ±3/2⟩ CEF ground-state doublet estimated for Ce2Zr2O7 in Publication I and Ref. [22]. These

exchange-parameter fits also suggest a spin ice phase at low temperature in Ce2Zr2O7, but further specify this phase

as the low temperate ground state, and as a novel U(1)π quantum spin ice phase. In further detail, our estimates of the

nearest-neighbor exchange parameters for Ce2Zr2O7 in Publications II and III of this thesis yield near identical results

and in each case point towards a U(1)π quantum spin ice ground state in zero field with Jx̃ and Jỹ approximately

equal to one another at Jx̃, Jỹ ≈ 0.063 meV and much stronger than Jz̃ ≈ 0.011 meV, similar to one of the parameter

sets suggested in the separate work on Ce2Zr2O7 in Ref. [37]. Each of these studies yield an estimation of θ ≈ 0 for

the rotation parameter θ, which mixes Ŝz-dipoles with Ŝx-octupoles and reduces the dipole-octupole Hamiltonian to

the XYZ form. In other words, {x, y, z} ≈ {x̃, ỹ, z̃} for Ce2Zr2O7 such that Ŝ z̃ carries a significant magnetic dipole

moment and insignificant octupole moment, while Ŝx̃ and Ŝỹ each carry a significant magnetic octupole moment
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and insignificant dipole moment. This is particularly intriguing as it means that the proposed quantum spin ice

ground state for Ce2Zr2O7 is a novel one in which the underlying ice rule is a two-plus, two-minus rule for magnetic

octupoles. In terms of pseudospins, this corresponds to a two-plus, two-minus rule for Ŝx̃ if Jx̃ > Jỹ, or a two-plus,

two-minus rule for Ŝỹ if Jỹ > Jx̃.

Our estimates of the nearest-neighbor exchange parameters for Ce2Zr2O7 in Publications II and III of this thesis

suggest a quantum spin ice ground state, consistent with the full suite of measurements presented on Ce2Zr2O7 in this

thesis and in Refs. [22, 37, 132]. In contrast to this, for Ce2Sn2O7, a lack of both magnetic order and spin freezing,

combined with potential quantum spin ice correlations, has been reported at low temperature but experimental

estimates of the exchange parameters for Ce2Sn2O7 in Ref. [60] point towards a ground state with all-in, all-out

order of magnetic dipoles and a long-ranged ordering temperature (∼0.05 K) below the lowest-measured temperature

for the vast majority of measurements performed on Ce2Sn2O7 [30, 60, 119, 124]. Albeit, a different group has

interpreted their measurements on Ce2Sn2O7 in terms of an octupolar quantum spin ice ground state (Refs. [30,

124]), and these conflicting interpretations raise further question of the true magnetic ground state in Ce2Sn2O7 and

elucidate the possibility that the magnetic ground state may vary with how the Ce2Sn2O7 samples are synthesized.

Nonetheless, this alternative scenario for Ce2Sn2O7 highlights the importance of our experimental estimates of the

exchange parameters for Ce2Zr2O7 in Publications II and III (and those in Ref. [37]), and specifically the fact that

the estimates each correspond to a quantum spin ice ground state in the magnetic phase diagrams available in the

literature for dipole-octupole pyrochlores [56, 57, 96–98]. Not only is this important due to the possibility of dipole

ordering at very low temperature, as the situation for Ce2Sn2O7 highlights, but also because octupolar ordering

at any temperature would be elusive to the vast majority of measurement techniques typically used to investigate

magnetic systems, as was discussed in Section 1.5.4 and is elaborated on in the following section.

The fact that our estimates yield Jx̃ ≈ Jỹ for Ce2Zr2O7 is a fortunate convenience that allows for further

computation of directional-dependent quantities at finite temperature without knowledge of whether Jx̃ or Jỹ is

larger; While the magnetic ground state does depends on which one of these exchange parameters is larger, thermal

fluctuations lead to near identical calculation results for our Jx̃ ≳ Jỹ and Jỹ ≲ Jx̃ parameter sets at realistic

temperatures, meaning these parameter sets are indistinguishable for almost all practical purposes. The current

constraints placed on the nearest-neighbor exchange parameters of Ce2Hf2O7 in Ref. [124] are also unable to determine

whether Jx̃ or Jỹ is larger, but with the constrains also suggesting that one of these exchange parameters is the

dominant one by a significant amount for Ce2Hf2O7, in contrast to our estimates for Ce2Zr2O7. This amounts to

multiple, significantly-distinct possibilities for the exchange parameters of Ce2Hf2O7 based off the current constraints

in Ref. [124]. This alternative scenario for Ce2Hf2O7 highlights the convenience of having Jx̃ ≈ Jỹ for Ce2Zr2O7;

Otherwise, additional measurements would need to complement those in Publication II, for example, in attempt

to further constrain the exchange parameters of Ce2Zr2O7, similar to how additional measurements will need to

complement those in Ref. [124] for Ce2Hf2O7 before estimates are arrived at beyond the level of constraints that leave

multiple distinct options.
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This fortunate near-equality of Jx̃ and Jỹ for Ce2Zr2O7 also has some interesting implications for the implied

magnetic ground state which are worth highlighting. Along with implying that the quantum spin ice ground state

is on the border of dipolar and octupolar character with regard to the symmetry of the emergent electric field, the

near-equality of Jx̃ and Jỹ for Ce2Zr2O7 also leads to relatively large quantum fluctuations. One can see this quickly

by examining the ring-exchange term using the same perturbation theory applied in Section 1.5.3, which for the

values of Jx̃, Jỹ, and Jz̃ estimated for Ce2Zr2O7 in this work, gives geff ∼ 12 (0.011+0.062)3

64·0.0632 meV = 0.018 meV which is

∼ 30% of the largest exchange parameter. We use this perturbation theory here only to highlight the general size of

the quantum fluctuations with a very rough approximation, as in fact, the quantum fluctuations are large enough

that such a perturbation theory is not well-justified for actual use. For a magnetic field along the [1, 1̄, 0] direction,

the constraint Jx̃ ≈ Jỹ for Ce2Zr2O7 dictates that the field-decoupled β chains in [1, 1̄, 0] field have nearly gapless

excitations, so that the short-ranged ferromagnetic order of these quasi-one-dimensional chains is highly-dynamic.

More generally, the β chains in Ce2Zr2O7 in a [1, 1̄, 0] magnetic field are intriguing simply due to the fact that they

possess the rare combination of quasi-one-dimensionality, field-decoupling, and a high degree of quantum fluctuations.

Along with that, and other finer details, our study on Ce2Zr2O7 in [1, 1̄, 0] magnetic field shows clear evidence for

tunability between the zero-field quantum spin ice ground state of two-plus, two-minus octupoles, and the long-ranged

magnetic order of dipole moments in the polarized α chains. Similarly, our study on Ce2Zr2O7 in [0, 0, 1] magnetic

field shows clear evidence for tunability between the zero-field quantum spin ice ground state and the [0, 0, 1]-polarized

spin ice phase.

4.2 Future Directions

The non-spin-flip channel of our polarized neutron diffraction measurements in Publication II of this thesis, as well

as the investigation of the finer features in our unpolarized diffuse scattering signal (Ref. [37]), show the clear need

for a further understanding of interactions beyond the nearest-neighbor level in Ce2Zr2O7. This is corroborated by

our fits to the heat capacity in Publications II and III of this thesis, which show good agreement for all but the

lowest measured temperatures, with clear room for improvement at these lowest measured temperatures where weak

further-than-nearest neighbor interactions would begin to become significant. In fact, a similar trend is shown in our

comparison in Ref. [132], of the Knight shift measured in muon spin rotation measurements on Ce2Zr2O7, with the

susceptibility calculated using the nearest-neighbor exchange parameters estimated in Publication III. Again, this

comparison shows a high-level of agreement for all but the lowest temperatures measured. With all of this in mind,

we reiterate that future directions of research on Ce2Zr2O7 should include further investigation of interactions beyond

nearest neighbors.

In Publication III of this thesis, we estimate a gz value for Ce2Zr2O7 which suggests mixing of the CEF ground

state doublet beyond the pure |J = 5/2, mJ = ±3/2⟩ doublet that was estimated for Ce2Zr2O7 in Publication I of

this thesis and in Ref. [22] by using the Stevens operator formalism for only the J = 5/2 states. References [30, 32]

on Ce2Sn2O7 and Ce2Hf2O7 each include the J = 7/2 states in their CEF analysis and show evidence for a CEF
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ground state doublet that includes mixing of the dominant |J = 5/2, mJ = ±3/2⟩ states with small amounts of

the |J = 7/2, mJ = ±3/2⟩ states, which also have dipole-octupole symmetry [51, 52]. However, introduction of

|J = 7/2, mJ = ±3/2⟩ states does not affect the value of gz, and in fact, for an ideal pyrochlore structure, these

are the only states that can be mixed with the dominant |J = 5/2, mJ = ±3/2⟩ states in the approximation that

the CEF is a perturbation to the spin-orbit coupling. This is because the action of the CEF Hamiltonian raises or

lowers mJ by multiples of 3 for states of constant J and mJ [24], leaving only different mJ = ±3/2 states mixed

with each other in the approximation that CEF states are linear combinations of states with well-define J and mJ ,

because |mJ | ≤ 7/2 for Ce3+. Accordingly, the introduction of non-dipole octupole terms comes from beyond the

aforementioned approximation. Along with reducing gz, such terms could be responsible for inducing a small nonzero

gxy, and weak non-DO pseudospin-pseudospin interaction terms in the Hamiltonian. In fact, this is particularly

important for cerium-pyrochlores due to the relatively small spin orbit gap for the light rare-earth ion, Ce3+, compared

to other heavier rare-earth ions [21], and future investigations of Ce2Zr2O7 should include studies which focus on

estimating the CEF ground state past the aforementioned approximation. Additionally, deviations from perfect

three-fold symmetry at the Ce3+ sites, due to small amounts of sample oxidation for example, could also introduce

terms beyond mJ = ±3/2 states, as this introduces more terms into the CEF Hamiltonian and loosens the restriction

that the CEF Hamiltonian typically raises or lowers mJ by multiples of 3 for pyrochlores [26, 27, 30].

Future investigation of additional terms beyond the XYZ Hamiltonian for Ce2Zr2O7, such as any weak further-than-

nearest neighbor or non-DO interactions for example, should make an effort to resolve some of the known discrepancies

between calculations using the XYZ Hamiltonian and experiment, that have been outlined in Publications II and III

of this thesis and in Refs. [37, 132]. This includes the non-spin-flip diffuse scattering and the finer features in

the unpolarized diffuse scattering, which are related issues, the low-temperature inaccuracies of the heat capacity

calculations, the peculiar field dependence of the inelastic neutron scattering signal in a [0, 0, 1] magnetic field at high

fields, and the reorientation of diffuse scattering at ∼4 T in a [1, 1̄, 0] magnetic field.

Further studies focused solely on sample preparation, characterization, and optimization aspects for both powder

and single crystal Ce2Zr2O7 would be worthwhile studies given the rare quantum spin liquid phase that seems

to exist at low temperature according to the current suite of measurements on Ce2Zr2O7, and the corresponding

analyses [1–3, 22, 37, 131, 132]. In short, it is known that sample oxidation levels are small but nonzero, as outlined

in Publications I, II, and III of this thesis and in Refs. [22, 37, 132], and further efforts to reduce this oxidation level

(the value of δ in Ce3+2−2δCe
4+
2δ Zr2O7+δ) should be included in further investigations of this material. Additionally,

theoretical investigations into the effect of small amounts of oxidation on the magnetic behavior and phase diagrams

for dipole-octupole pyrochlores would be worthwhile; For Ce2Zr2O7, this oxidation appears as nonmagnetic dilution

in form of nonmagnetic Ce4+ ions being in place of the Ce3+ ions at random sites affected by the oxidation.

The majority of measurements presented in this thesis have insignificant direct sensitivity to the magnetic

octupole moments in Ce2Zr2O7, with our heat capacity measurements being a notable exception [3, 103]. For these

measurements without direct sensitivity to the octupolar moments, an indirect sensitivity to the octupole moments and
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their exchange constants, Jx̃ and Jỹ, can be established in accordance with existing theory and relevant calculations,

due to the fact that the behavior of the dipole moment will depend on the magnetic phase of the material and its

corresponding behavior at the temperature of interest. This latter point may seem rather obvious taken on its own,

but it is important to note that it is this dependence on the magnetic phase of the material and its corresponding

behavior at the temperature of interest, which allows for theory to infer the behavior of the octupole moments from

the phase implied by the behavior of the dipole moments. Nonetheless, future directions on Ce2Zr2O7 should include

more measurements with significant direct sensitivity to the octupolar magnetic moments. This could include neutron

scattering measurements with a higher incident energy and larger Q range, planned specifically for good coverage over

the high Q region around 8 Å−1 where scattering from dipoles begins to become insignificant, and scattering from

octupoles begins to become significant (due to the different magnetic form factors for dipoles and octupoles) [30, 105].

In Publication I of this thesis we identify a weak dispersionless excitation at E ∼ 100 meV with intensity that

decreases with increasing Q, which we attribute to a possible vibronic bound state between CEF excitation and

phonon. This feature is also present at E ∼ 100 meV in the inelastic neutron scattering data reported for Ce2Zr2O7

in Ref. [22], and a similar feature is present in the high-energy inelastic neutron scattering data reported for Ce2Hf2O7

in Ref. [32]. In contrast to this, the high-energy inelastic neutron scattering data reported for Ce2Sn2O7 in Ref. [30]

shows no signs for a potential vibronic bound state near E ∼ 100 meV. Significant magnetoelastic coupling leading to

the formation of a clear vibronic bound state has been reported for other rare-earth pyrochlore materials such as

Ho2Ti2O7 [72, 133], Tb2Ti2O7 [134], and Pr2Zr2O7 [135], for example, as well as other cerium-based magnets [136–142].

Interestingly, magnetoelastic coupling can have an effect on the dynamics of monopoles in spin ice materials [133].

Further investigation of the magnetoelastic coupling in cerium-based pyrochlores would be important and beneficial

research, especially considering the currently-unknown origin of the feature at E ∼ 100 meV in the inelastic neutron

scattering signals measured from Ce2Zr2O7 and Ce2Hf2O7, which may be a vibronic bound state in each of these

materials.

To end on a positive note, we finish by reiterating that initial studies on Ce2Zr2O7, such as those included in this

thesis, provide the crucial starting points that lay both the groundwork and motivation for pursing the aforementioned

future-directions and beyond.
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[132] J. Beare, E. M. Smith, J. Dudemaine, R. Schäfer, M. R. Rutherford, S. Sharma, A. Fitterman, C. A. Marjerrison,

T. J. Williams, A. A. Aczel, S. R. Dunsiger, A. D. Bianchi, B. D. Gaulin, and G. M. Luke, µSR Study of the

Dipole-Octupole Quantum Spin Ice Candidate Ce2Zr2O7, arXiv: 2308.02800 [cond-mat.str–el] (2023).

[133] M. Ruminy, S. Chi, S. Calder, and T. Fennell, Phonon-Mediated Spin-Flipping Mechanism in the Spin Ices

Dy2Ti2O7 and Ho2Ti2O7, Phys. Rev. B 95, 060414 (2017).

[134] T. Fennell, M. Kenzelmann, B. Roessli, H. Mutka, J. Ollivier, M. Ruminy, U. Stuhr, O. Zaharko, L. Bovo,

A. Cervellino, M. K. Haas, and R. J. Cava, Magnetoelastic Excitations in the Pyrochlore Spin Liquid Tb2Ti2O7,

Phys. Rev. Lett. 112, 017203 (2014).

[135] Y. Xu, H. Man, N. Tang, S. Baidya, H. Zhang, S. Nakatsuji, D. Vanderbilt, and N. Drichko, Importance of

Dynamic Lattice Effects for Crystal Field Excitations in the Quantum Spin Ice Candidate Pr2Zr2O7,

Phys. Rev. B 104, 075125 (2021).

[136] P. Thalmeier and P. Fulde, Bound State between a Crystal-Field Excitation and a Phonon in CeAl2,

Phys. Rev. Lett. 49, 1588–1591 (1982).

[137] P. Thalmeier, Theory of the Bound State Between Phonons and a CEF Excitation in CeAl2,

Journal of Physics C: Solid State Physics 17, 4153 (1984).

[138] R. Schedler, U. Witte, M. Loewenhaupt, and J. Kulda, Coupling Between Crystal Field Transitions and

Phonons in the 4f-Electron System CeCu2, Physica B: Condensed Matter 335, Proceedings of the Fourth

International Workshop on Polarised Neutrons for Condensed Matter Investigations, 41–43 (2003).

[139] M. Loewenhaupt and U. Witte, Coupling Between Electronic and Lattice Degrees of Freedom in 4f-Electron

Systems Investigated by Inelastic Neutron Scattering, Journal of Physics: Condensed Matter 15, S519 (2003).

[140] L. Chapon, E. Goremychkin, R. Osborn, B. Rainford, and S. Short, Magnetic and Structural Instabilities in

CePd2Al2 and LaPd2Al2, Physica B: Condensed Matter 378-380, Proceedings of the International Conference

on Strongly Correlated Electron Systems, 819–820 (2006).

138

https://doi.org/10.1103/PhysRevB.106.094425
https://doi.org/10.48550/arXiv.2308.02800
https://doi.org/10.1103/PhysRevB.95.060414
https://doi.org/10.1103/PhysRevLett.112.017203
https://doi.org/10.1103/PhysRevB.104.075125
https://doi.org/10.1103/PhysRevB.104.075125
https://doi.org/10.1103/PhysRevLett.49.1588
https://doi.org/10.1103/PhysRevLett.49.1588
https://doi.org/10.1088/0022-3719/17/23/015
https://doi.org/10.1088/0022-3719/17/23/015
https://doi.org/https://doi.org/10.1016/S0921-4526(03)00187-X
https://doi.org/https://doi.org/10.1016/S0921-4526(03)00187-X
https://doi.org/10.1088/0953-8984/15/5/307
https://doi.org/https://doi.org/10.1016/j.physb.2006.01.300
https://doi.org/https://doi.org/10.1016/j.physb.2006.01.300


Ph.D. Thesis - E.M. Smith McMaster University - Physics and Astronomy

[141] D. T. Adroja, A. del Moral, C. de la Fuente, A. Fraile, E. A. Goremychkin, J. W. Taylor, A. D. Hillier,

and F. Fernandez-Alonso, Vibron Quasibound State in the Noncentrosymmetric Tetragonal Heavy-Fermion

Compound CeCuAl3, Phys. Rev. Lett. 108, 216402 (2012).

[142] V. K. Anand, A. Fraile, D. T. Adroja, S. Sharma, R. Tripathi, C. Ritter, C. de la Fuente, P. K. Biswas,

V. G. Sakai, A. del Moral, and A. M. Strydom, Crystal Electric Field and Possible Coupling with Phonons in

Kondo Lattice CeCuGa3, Phys. Rev. B 104, 174438 (2021).

139

https://doi.org/10.1103/PhysRevLett.108.216402
https://doi.org/10.1103/PhysRevB.104.174438

	Introduction
	Magnetic Frustration and Rare-Earth Pyrochlore Magnets
	The Crystal Electric Field in Rare-Earth Pyrochlores
	The Crystal Electric Field Hamiltonian and Eigenstates
	The Pseudospin-1/2 Formalism and Single-ion Anisotropy

	Magnetic Interactions in Rare-Earth Pyrochlores
	Exchange Interactions
	The Dipole-Dipole Interaction

	The Basics of Ising Rare-Earth Pyrochlores and Spin Ices
	Dipole-Octupole Rare-Earth Pyrochlores
	Single-ion Properties in Dipole-Octupole Rare-Earth Pyrochlores
	Interactions and Phases in Dipole-Octupole Rare-Earth Pyrochlores
	The Distinction Between 0-flux and -flux Quantum Spin Ice Phases
	The Reduced Ground State Phase Diagram for Dipole-Octupole Pyrochlores

	Neutron Scattering
	The Basics of Neutron Scattering
	Nuclear Scattering
	Magnetic Scattering
	Neutron Sources and Neutron Scattering Instrumentation

	Overview of Thesis

	Ce Zr O  in Zero Magnetic Field
	Preface to Publication I: Evidence for a Dipole-Octupole Crystal Electric Field Ground State and Quantum Spin Ice Correlations in the Cerium-Based Pyrochlore Magnet Ce2Zr2O7
	Preface to Publication II: Estimating the Nearest-Neighbor Exchange Parameters and Further Evidence for a Quantum Spin Ice Ground State in the Dipole-Octupole Pyrochlore Ce2Zr2O7

	Ce Zr O  in a Magnetic Field
	Preface to Publication III: Polarized Spin Ice Phases and Quasi-1D Quantum Spin Chains in the Dipole-Octupole Pyrochlore Ce2Zr2O7 at Low Temperature in a Magnetic Field

	Summary and Closing Remarks
	Summary, Conclusions, and Closing Discussions
	Future Directions

	Bibliography

