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Abstract

Inventory management of perishable products has seen extensive study over the years; the

perishable nature capturing the real-world phenomena of expiration after a limited shelf

life. Such problems are challenging as they involve balancing demand fulfillment with

minimal wastage. An added dimension to such problems, given the rise of machine learn-

ing, is to estimate future demand. Demand forecasts can be helpful for decision making,

in particular they can be used for finding the optimal ordering quantity for the products.

The central thesis of this dissertation is that by forecasting the demand and utilizing it in

the inventory management process, we can build a more robust inventory system that takes

additional information into consideration when making decisions.

Firstly, five different demand forecasting methods, ARIMA (Auto Regressive Inte-

grated Moving Average), Prophet, lasso regression (least absolute shrinkage and selec-

tion operator), random forest and LSTM (Long Short-Term Memory) networks are utilized

and evaluated via a rolling window method. Subsequently, we study the structural prop-

erties of the optimal ordering policy for perishable products with fixed shelf lives in a

periodic-review single-item inventory system over a finite horizon, where demand fore-

casts are available. The objective is to find the optimal ordering policy that minimizes the

total expected cost, consisting of a linear ordering cost, inventory holding cost, wastage
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cost, and shortage cost, over a finite horizon. We show that the optimal policy is a state-

dependent base-stock policy in which the base-stock values are a function of the system’s

state, the inventory level, a vector of current and previous demand forecasts, and previous

demand values. Moreover, we explore the monotonicity properties of the optimal policy.

The monotonicity properties motivate us to propose a heuristic in which the order quantity

is an affine function of the inventory level and forecast-dependent target inventory lev-

els. We evaluate the performance of the proposed heuristic on platelet transfusion data for

hospitals in Hamilton, Ontario. Experimental results show that the proposed heuristic is

effective in minimizing the total cost while maintaining low on-hand inventory levels.
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Chapter 1

Introduction

Perishable products include a wide range of items, from everyday grocery products to

healthcare items that are critical to human health but less frequently used than everyday

staples. Perishable products are subject to wastages owing to their limited shelf lives. In

many cases, such as with healthcare products, the production cost of perishable products is

high (Kaur et al., 2022; Stokes et al., 2018). Therefore, wastages not only result in wastage

costs, but also lead to the loss of production costs for the wasted products, and the high

wastage rates can impose a significant cost on the system. For instance, the global cost of

food waste is projected to be around 1 trillion USD annually (Everitt et al., 2022). Fur-

thermore, wastages have adverse effects on climate change in several ways. Firstly, food

wastage decomposes and releases greenhouses gases which are approximately 28 times

stronger than carbon dioxide (Everitt et al., 2022). Secondly, certain perishable products

wastages such as the majority of healthcare product wastage cannot be recycled and reused

(Jemai et al., 2020). Thirdly, the transportation of waste to landfills or incinerators can

also contribute to climate change by emitting greenhouse gases from trucks and other vehi-

cles. Shortages of perishable products can also have significant costs for the system, such

1



Ph.D. Dissertation—M. Motamedi McMaster University—Computer Science

as missed revenue opportunities, decreased customer satisfaction in retail, and limited ac-

cess to or delays in essential treatments in healthcare that can lead to detrimental health

outcomes.

The main underlying cause of wastages and shortages in a perishable inventory system

is the unknown demand. This makes managing perishable inventory systems a challenging

task from both the theoretical and computational perspectives. However, in today’s data

rich environment, demand history can be used to estimate future demand values, which can

then be incorporated into the inventory system to determine ordering quantities. Demand

estimates may be accurate, with a low forecast error, or less accurate with higher forecast

error. In both cases, including them in the inventory model gives organizations access to

added demand information. This dissertation is concerned with the problem of forecast-

ing demand for perishable products and determining the optimal ordering quantities for a

periodic-review single-item inventory system, with a focus on platelet products.

1.1 Practical Motivation: Demand Forecasting

In a supply chain, when demand fluctuations are significant, retailers often hold excess

inventory to deal with high demand variation. However, holding surplus inventory makes

demand forecasting even more challenging for distribution centres. This can result in the

bullwhip effect, the increased variation in demand as a result of moving upstream in the

supply chain (Croson and Donohue, 2006). This effect arises in a number of domains,

including grocery supply chains (Dejonckheere et al., 2004) as well as in healthcare service-

oriented supply chains (Samuel et al., 2010; Rutherford et al., 2016). Apart from this

bullwhip effect, there are many uncertainties faced by suppliers due to the high demand

variation. Since perishable products have a limited shelf life, high inventory levels result in

2
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excessive wastage, something that could be mitigated with better demand forecasting. On

the other hand, low inventory levels increase the risk of shortages. Accordingly, accurately

forecasting the demand for perishable products is a core requirement of a robust demand

and supply management system.

This research was originally motivated by the platelet management problem confronted

by Canadian Blood Services (CBS). CBS is responsible for providing blood products in

Canada, excluding the province of Québec. Currently, there is a yearly wastage rate of

about 9% for hospitals in Hamilton, Ontario (with an approximate cost of $400,000 per

year) and about 15% for CBS with seasonal variation (Office of the Auditor General of

Ontario, 2020). The current frequent same-day urgent orders, considered as shortages, are

about 14% of the total orders in Hamilton, Ontario. Given the high wastage and shortage

rates, forecasting short-term demand for platelets is of particular value.

In this dissertation, we forecast demand to overcome the mentioned challenges. In par-

ticular, we utilize multiple demand forecasting methods, including univariate analysis (time

series methods) and multivariate analysis (regression and machine learning methods), and

evaluate the performance of these models for platelet demand forecasting. The literature on

platelet demand forecasting is limited, where forecasts are mostly based on demand history

(Critchfield et al., 1985; Silva Filho et al., 2012, 2013; Kumari and Wijayanayake, 2016;

Volken et al., 2018; Fanoodi et al., 2019). Platelet demand is determined by clinical char-

acteristics and procedures such as product expiry guidelines and revisions in transfusion

medicine protocols for platelet transfusion (Alcaina, 2020). These clinical characteristics

and procedures may change over time. For example, there was an increase in platelet shelf

life from five to seven days in September 2017 in Canada. Additional factors affecting

demand can be captured by external predictors. Although the forecasting models in this

3
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dissertation are developed for platelet demand forecasting, we believe that they are gener-

alizable for other perishable products when appropriate predictors are used.

1.2 Theoretical Motivation: Inventory Management with

Forecasting

Consider a supply chain with one manufacturer and multiple retailers. The manufacturer

produces a single perishable product with fixed shelf life. At the beginning of each day

(period), an order is placed and received immediately. Then, demand is realized and it

is satisfied. However, since demand is not known in advance, the inventory may not be

sufficient to fulfill the demand. On the other hand, the inventory may be at a high level

in comparison to realized demand, resulting in wastages of the product. Thus, as we can

see inventory management is one of the major challenges in a perishable product supply

chain since it directly affects the shortage and wastage rates. Consequently, it has received

extensive attention in recent years, yet much remains to be done. For products with ex-

tremely short shelf lives and highly variable daily usage, managing the demand and supply

is even more challenging. The primary challenge in perishable product inventory manage-

ment is the unknown demand. Since demand is not known beforehand, the current system

is very sensitive to demand fluctuations. High unexpected demand could result in several

shortages, while consecutive low demands can result in wastage. As a result, the core of in-

ventory management of perishable products is the ordering and issuing decisions to request

the products and allocate them to customers.

A key issue when modelling (and analyzing) an inventory system is the choice of de-

mand model. A large number of existing studies in the perishable inventory literature
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mostly assume that there is no information about the demand beyond its distribution. They

are concerned with making ordering decisions assuming an independent and identically

distributed (i.i.d.) sequence of demands, where the demand distribution could be estimated

using historical demand data. Some include additional demand information, but in an indi-

rect way. One approach is to estimate the distributional parameters and adjust the ordering

policy to include the error in estimating the demand distribution (Prak et al., 2017; Trapero

et al., 2019; Saoud et al., 2022). In practical settings, the i.i.d. assumption can be problem-

atic (future demand may depend on previous demand) and there may be additional factors

that may influence demand. Therefore, taking into account today’s data-rich environment,

it is possible to make forecasts about demand, based on historical demand and additional

quantities that influence demand. Some recent studies consider data features in addition

to previous demand values for forecasting the demand in the inventory model (Drackley

et al., 2012; Khaldi et al., 2017; Guan et al., 2017; Li et al., 2021; Abouee-Mehrizi et al.,

2022). In this dissertation, we use daily demand forecasts that are generated from a sepa-

rate process and include them in the inventory model. The main goal of this dissertation is

to design effective ordering policies for perishable products with short shelf life and highly

variable demand by utilizing demand information in the inventory management process in

a direct manner. From a research perspective, integration of forecasts in the inventory prob-

lem of perishable products is intriguing and can result in a richer framework for addressing

the ordering problem. In this dissertation, we study the structural properties of the optimal

ordering policy when demand forecasts are incorporated into ordering decisions. This is in

contrast with recent work that includes factors that influence demand, but does not make

explicit demand forecasts.
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1.3 Summary of Main Contributions

A summary of the main results and contributions of this dissertation are:

• Demand forecasting for perishable products with a focus on platelet products: In

Chapter 4, we study the platelet demand forecasting problem confronted by CBS.

We progressively build five demand forecasting models (of increasing complexity)

to forecast platelet demand. The proposed methods are applied to determine the in-

fluence of demand history as well as clinical predictors on demand forecasting. The

first two models are univariate time series that only consider the demand history,

while the remaining three methods, multivariate regression, random forest, and arti-

ficial neural networks, consider clinical predictors. These five methods are utilized

to pursue the following goals: i) more precise platelet demand forecasting for the

benefit of both CBS and hospitals, ii) reducing the bullwhip effect, as a consequence

of effective demand forecasting; and iii) investigating the impact of predictors on the

forecasting accuracy. More specifically:

1. We analyze the time series of platelet transfusion data by decomposing it into

trend, seasonality and residuals, and detect meaningful patterns such as week-

day/weekend and holiday effects that should be considered in any platelet de-

mand predictor.

2. We utilize five different demand forecasting methods from univariate time series

methods to multivariate methods including regression and machine learning.

Since CBS has no access to recipients’ demographic data, our first method,

Autoregressive Integrated Moving Average (ARIMA), only considers demand

history for forecasting, while the second model, Prophet, includes seasonalities,

6
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trend changes and holiday effects. We found that these models have issues with

respect to accuracy, in particular when a limited amount of data are available,

accordingly we apply a lasso regression method to include clinical predictors

for demand forecasting. Finally, random forests and Long Short-Term Memory

(LSTM) networks are used for demand forecasting to explore the nonlinear

dependencies among the clinical predictors and the demand.

3. We utilize predictors in the demand forecasting process, and select those that

are most impactful by using lasso regression for structural variable selection

and regularization. Results show that incorporating the predictors in demand

forecasting enhances the forecasting accuracy while increases the interpretabil-

ity of the models.

4. We investigate the effect of different amounts of data on the forecasting accu-

racy and model performance and provide a holistic evaluation and comparison

for different forecasting methods to evaluate the effectiveness of these models

for different data types, providing suggestions on using these robust demand

forecasting strategies in different circumstances. Results show that when hav-

ing a limited amount of data (two years in our case), multivariate models out-

perform the univariate models, whereas having a large amount of data (eight

years in our case) results in the ARIMA model performing nearly as well as the

multivariate methods.

To the best of our knowledge, this study is the first that utilizes and evaluates dif-

ferent demand forecasting methodologies from univariate time series to multivariate

models for platelet products and explores the effect of the amount of available data
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on these approaches. By conducting a thorough data analysis and appropriately se-

lecting model parameters, the suggested models can be extended to other perishable

products, making them generalizable.

• Structural properties of the optimal ordering policy: In Chapter 5, we analyze the

structural properties of optimal ordering policies in a periodic-review single-item

inventory system over a finite horizon when demand forecasts are incorporated in

the inventory model. The demand forecast in each period depends on the previous

demand forecast value. The objective is to minimize the total cost which consists

of per unit ordering cost, per unit holding cost, per unit shortage cost, and per unit

wastage cost. We demonstrate that the optimal cost satisfies a structural property

called L\-convexity, meaning that it is convex and submodular. We use this property

to show that the optimal ordering policy is a state-dependent base-stock policy that

depends on the inventory levels, current and previous demand forecast values. To the

best of our knowledge, this study is the first that shows the optimal ordering policy

is a state-dependent base-stock policy by considering demand forecasts that have

correlation with previous demand forecast values.

• A heuristic to approximate the optimal policy: Due to the complexity of the optimal

policy, we propose a heuristic as a simpler alternative. The proposed heuristic is

motivated by the structural results for the optimal ordering policy, in which the order

quantity is an affine function of the inventory level and forecast-dependent order-up-

to levels. Despite the simplicity of the proposed heuristic, our experimental results

suggest that its performance is comparable to that of the optimal policy. Specifically,

the heuristic yields low shortages and wastages, while keeping the on-hand inventory

close to the actual demand. As a result, it is unnecessary to incorporate a large

8
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set of past forecast values into the ordering decisions. Moreover, in Chapter 6, we

implement a data-driven version of the heuristic by considering just wastage and

shortage costs. The proposed policy is simple and easy to interpret while allowing us

to comment on the impact of the forecast accuracy. Moreover, a range of sensitivity

analyses are presented to investigate the generalizability of the proposed heuristic.

1.4 Overview of Dissertation

This dissertation is organized as follows. Chapter 2 provides an overview of inventory

management fundamentals, along with a review of the literature on demand forecasting,

inventory management, and blood supply chain. In Chapter 3, we give a brief overview of

the structure of the CBS supply chain and describe the data used for this study. Chapter

4 presents five forecasting models used for forecasting the demand and how they are ap-

plied and evaluated on platelet data. Chapter 5 provides structural analysis of an inventory

model for a periodic-review single-item inventory system over a finite horizon when de-

mand forecasts are incorporated. We explore the structural properties of the optimal policy

for this system and develop an effective heuristic policy. In Chapter 6, we provide a holistic

evaluation of the proposed heuristic and compare its performance with that of a base-stock

policy. Finally, Chapter 7 concludes the dissertation and outlines directions for future work

related to the inventory management of perishable products.

9



Chapter 2

Background and Literature

In this chapter, an overview of the literature related to the proposed research is presented.

The review consists of four parts. Firstly, we review previous work on demand forecast-

ing, with a focus on blood products. Secondly, we analyze the body of work on inventory

management of perishable products. The literature on perishable inventory management

is quite extensive and so our review is not intended to be exhaustive. We exclude mathe-

matical details and proofs, but attempt to provide a high-level view of the relevant material.

Thirdly, we provide an overview of work on blood supply chain and platelet inventory man-

agement. Lastly, we discuss the recent stream of research on data-driven inventory models.

We conclude the chapter by presenting our view on how this work contributes to the current

literature.

2.1 Forecasting Methods

Demand forecasting for perishable products has gained significant attention in recent years

due to their limited shelf life, which leads to potential wastage or discarding of unused

10
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items. We review the underlying literature on perishable demand forecasting using both

univariate models and multivariate models, and discuss our contributions in comparison to

the existing literature.

2.1.1 Univariate vs. Multivariate Models

Current work on demand forecasting for perishable products can be grouped into two main

streams. Many studies use univariate time series models to forecast future demand. In

these studies, forecasts are based solely on previous demand values, without considering

other features that may affect the demand. Auto Regressive Integrated Moving Average

(ARIMA) is one of the most popular univariate models that is used for forecasting de-

mand. Da Veiga et al. (2014) use ARIMA and Holt-Winters (HW) models for forecasting

the demand for perishable food products. Huber et al. (2017) propose a hierarchy for fore-

casting demand for perishable products at different organizational levels, from company

level to store level. For that, first a hierarchy is built based on organizational structure.

Next, they cluster products’ demands based on their features using k-means clustering. Fi-

nally, an ARIMA model (and an extended version) are used that allow for inclusion of

variables in the forecasting model. Taylor and Letham (2018) propose a novel forecasting

model, Prophet, which is designed to forecast events created on Facebook. The forecasts

take into account typical characteristics of business time series: trends, seasonality, holi-

day effects, and outliers. Puchalsky et al. (2018) study time series demand forecasting of

perishable food products in agribusiness. They analyze the performance of Wavelet Neu-

ral Networks (WNNs) in combination with five optimization methods. Mor et al. (2019)

assess and compare the performance of moving average, regression, multiple regression,

and Holt–Winters models for forecasting dairy products demand. Priyadarshi et al. (2019)
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apply different forecasting methods, ARIMA, Gradient Boosting Regression (GBR), ex-

treme GBR (XGBoost/XGBR), random forest regression, and a Long Short-Term Memory

(LSTM) network to forecast daily demand for three vegetables. Based on their data and

considering only previous demand values, an LSTM network and random forest regres-

sion produce the best results in comparison to other models. Huber and Stuckenschmidt

(2020) propose a large-scale demand forecasting model for a bakery chain by focusing on

special calendar days (special occasions). They use Artificial Neural Networks (ANN),

Recurrent Neural Networks (RNN), and Gradient-Boosted Regression Trees (GBRTs) to

forecast daily demand at the store level.

Several recent studies include additional features other than demand history for demand

forecasting. Du et al. (2013) propose an algorithm based on Support Vector Machines

(SVM) to forecast demand of perishable farm products. Their model considers historical

sales data and uses fuzzy methods to generate inputs for the SVM model. The inputs of

the model are historical demand data and weather information that impact the demand.

Van Donselaar et al. (2016) analyze the effect of promotions on a product’s sales, and de-

velop and assess different regression models and a moving average model to forecast the

demand for these perishable products during promotions. Yang and Sutrisno (2018) apply

a regression model and ANN on perishable products in a franchise business to forecast the

short-term demand. Müller et al. (2020) consider a multi-product newsvendor problem with

unknown demand distributions. They forecast the demand using an Exponential Smooth-

ing (ES) model, and solve the traditional multi-product newsvendor problem based on the

forecasts generated by the forecasting model. Furthermore, they propose a data-driven so-

lution by using an ANN to calculate the optimal order quantities from data, streamlining

the process into a single step.
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2.1.1.1 Blood Products

In this section, we focus on demand forecasting for blood products in terms of univariate

and multivariate models. Most studies on demand forecasting for blood products focus

on univariate models (Frankfurter et al., 1974; Fortsch and Khapalova, 2016; Lestari et al.,

2017). In terms of platelet products, there is a limited literature on platelet demand forecast-

ing; most investigate univariate time series methods. In these studies, forecasts are based

solely on previous demand values, without considering other features that may affect the

demand. Critchfield et al. (1985) develop models for forecasting platelet usage in a blood

centre using several time series methods including Moving Average (MA), Winter’s method

and Exponential Smoothing (ES). Silva Filho et al. (2012) develop a Box-Jenkins Seasonal

Autoregressive Integrated Moving Average (BJ-SARIMA) model to forecast weekly de-

mand for blood components, including platelets, in hospitals. They later extend this work

in (Silva Filho et al., 2013). Kumari and Wijayanayake (2016) propose a blood inventory

management model for the daily supply of platelets focusing on reducing platelet shortages

by applying three time series methods, MA, Weighted Moving Average (WMA) and ES.

Volken et al. (2018) use generalized additive regression and time-series models with ES

to predict future whole blood donation, including platelets, and Red Blood Cells (RBC)

transfusion trends. Fanoodi et al. (2019) use artificial neural networks and ARIMA models

to forecast platelet demand by considering daily demands for eight types of blood platelets.

They consider different demand data lags, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 1

week, 15 days, 30 days, 90 days, 120 days, and 365 days, as the input data for the artificial

neural networks.

In terms of including additional features for demand forecasting of blood products,

there are a few papers that include additional information to forecast the demand. Drackley
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et al. (2012) estimate long-term blood demand for Ontario, Canada using age and sex-

specific patterns derived from the historical transfusion records of patients. They forecast

blood supply and demand for Ontario by considering demand and supply patterns, and de-

mographic forecasts, with the assumption of fixed patterns and rates over time. Khaldi et al.

(2017) apply Artificial Neural Networks (ANNs) to forecast the monthly demand for three

blood components, RBCs, platelets, and plasma, for a case study in Morocco. Guan et al.

(2017); Li et al. (2021); Abouee-Mehrizi et al. (2022) forecast the demand for blood prod-

ucts but they focus mainly on inventory management of blood products, not the forecast it-

self. Guan et al. (2017) propose an optimization ordering strategy in which they forecast the

platelet demand for several days into the future and build an optimal ordering policy based

on the predicted demand, concentrating on minimizing the wastage. Their main focus is

on an optimal ordering policy and they integrate their demand model in the inventory man-

agement problem, meaning that they do not try to precisely forecast the platelet demand.

Li et al. (2021) develop a hybrid model consisting of seasonal and trend decomposition us-

ing Loess (STL) time series and eXtreme Gradient Boosting (XGBoost) for RBC demand

forecasting and incorporate it in an inventory management problem. Abouee-Mehrizi et al.

(2022) estimate future platelet order quantities based on demand features and by using

a lasso regression model. Twumasi and Twumasi (2022) apply K-Nearest Neighbour re-

gression (KNN), Generalised Regression Neural Network (GRNN), Neural Network Auto-

regressive (NNAR), Multi-Layer Perceptron (MLP), Extreme Learning Machine (ELM),

and an LSTM network for forecasting and backcasting blood demand to predict future and

lost past demand data respectively, by using a rolling-origin procedure.

Table 2.1 provides an overview of the reviewed literature on blood demand forecasting.
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Table 2.1: Literature review on forecasting methods (Blood products: RBC(Red Blood
Cell) - PLT (platelet). For donation: WB (Whole Blood))

Author Blood product Real data Demand forecasting Supply forecasting Criteria for evaluating
Critchfield et al. (1985) PLT X X Min total cost
Drackley et al. (2012) RBC X X X -

Silva Filho et al. (2012) RBC - PLT X Min shortage cost
Silva Filho et al. (2013) PLT X Min wastage cost

Kumari and Wijayanayake (2016) PLT X X Min shortage level
Guan et al. (2017) PLT X X Min wastage level

Khaldi et al. (2017) RBC - PLT - Plasma X X Min total cost
Fortsch and Perera (2018) WB X X Min wastage and shortage level

Volken et al. (2018) WB - Not Specified X X X Min shortage level
Fanoodi et al. (2019) PLT X X Min wastage and production cost

Li et al. (2021) RBC X X Min total cost
Abouee-Mehrizi et al. (2022) PLT X X Min total cost
Twumasi and Twumasi (2022) Not Specified X X Min wastage and shortage level

2.1.2 Discussion

As we have seen, the literature related to perishable demand forecasting is extensive, but

mainly focuses on demand history. Although univariate models like ARIMA generally per-

form well, when future demand patterns are likely to change or there is uncertainty in future

demand patterns, these models may not perform well. Some studies consider data features

that influence the demand in addition to demand history, but they do not perform a holistic

data analysis to consider the most relevant features for demand forecasting. Most of the

proposed models consider only a few additional features along with demand for previous

weeks/months as predictors in the forecasting models. Moreover, various measures are

used in different studies for evaluating the forecasting models. Some studies evaluate the

forecasts based on minimizing the wastage or shortage or both. Others consider additional

costs such as inventory costs or production costs. Also, different metrics have been used

in papers for evaluating the forecasting accuracy. While employing a pooled error statistic

proves intriguing for quantifying the comprehensive forecasting error during model com-

parisons, distributional exploration of errors helps with providing a comprehensive and nu-

anced forecast evaluation. In general, there is a lack of standardized or consistent metrics
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for reporting and comparing errors among forecasting models.

Our problem of interest is different from the literature on forecasting demand for per-

ishable products in several aspects. Firstly, to our knowledge, it is the first research that

utilizes different demand forecasting methods for forecasting platelet demand by includ-

ing predictors in the demand forecasting process. Secondly, we investigate the effect of

different amounts of data for training and the frequency of retraining for univariate and

multivariate models. Thirdly, we provide holistic evaluation of the forecasting models and

provide managerial insights for blood centres.

2.2 Perishable Inventory Management

In this section, we provide a foundation for the investigation of the integration of demand

forecasting and inventory management by surveying the relevant literature. First, we pro-

vide an overview of inventory management fundamentals, followed by a review of the

literature on the inventory management of perishable products. The literature on inventory

management of perishable products is extensive, and so we have chosen to exclude certain

mathematical details and proofs, but attempt to provide a high-level review of the relevant

material.

2.2.1 Inventory Management Fundamentals

A supply chain as defined by Beamon (1998) is “a structured manufacturing process wherein

raw materials are transformed into finished goods, then delivered to end customers”. Figure

2.1 shows the general structure of a supply chain. As we can see in the figure, a supply
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chain has different levels, typically commencing with suppliers and ending with the con-

sumers. Also, as we see in the figure, a retailer orders products from a manufacturer and

so there may be an amount of time between when an order is placed to replenish products

and when the order is received, called the “lead time”. Inventory management is a criti-

cal element of the supply chain and is performed at various levels throughout the supply

chain, encompassing activities that span from supplier to the retailer. According to the

American Production and Inventory Society (APICS), inventory management is defined

as “the branch of business management concerned with planning and controlling invento-

ries” (Toomey, 2000). The main objective of inventory management is to ensure that the

inventory (stock) level of a product is kept at a desired level. Inventory management is a

challenging task since the system should plan based on customer demand and system costs.

When the product is perishable, this task becomes even more challenging. Perishable prod-

ucts are products that have a limited shelf life and normally are wasted after their shelf life

is passed. As a result, this should be considered in managing the inventory of perishable

products and wastages must be avoided as much as possible.

Inventory management problems normally consist of minimizing a cost function (max-

imizing a profit function). In general, there are five cost types in a perishable inventory

management problem:
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Figure 2.1: General structure of a supply chain

• purchase/production cost: the cost of producing or purchasing an item. When pur-

chasing multiple items, a typical assumption is that this is the cost per unit multiplied

by the order quantity.

• ordering cost: a fixed ordering cost related to the order. These costs are normally

independent of size of the order, and are mainly related to transportation costs.
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• holding cost: the cost of keeping an item in the inventory. It consists of the storage

costs and material handling costs needed for products with special storage require-

ments. A typical assumption is that this is a per-unit cost.

• shortage cost: arises only when an item is unavailable upon demand. In this case,

there are two possible outcomes. One possibility is that the order is backlogged,

which incurs additional costs to the system. This is called a backlogging/backorder

inventory system. If backlogging is not possible (e.g. the customer cannot wait), the

order is lost which results in the loss of profit and customer dissatisfaction. The latter

is called a lost-sales inventory system.

• wastage cost: arises only when an item’s shelf life is passed. This cost is only re-

lated to perishable products and usually is considered equal to the product’s pro-

duction/purchase cost. If disposal of the item needs proper management, additional

disposal cost of the wasted item would be added to the system.

In the literature, different ordering policies have been proposed for perishable (and

nonperishable) products. A well-known ordering policy is called the (s,S) model, in which

the inventory level is continuously reviewed, and an order is placed when the inventory

level reaches a reorder level, s. The order quantity brings the inventory level back up to

the order-up-to level, S. Figure 2.2 is a representation of the (s,S) inventory model. Some

studies consider an (r,Q) model, which is similar to the (s,S) model. In an (r,Q) model,

when the inventory position reaches the reorder level r, a consistent order quantity Q is

placed. A special case of the (s,S) model is the base-stock policy in which the inventory

level is continuously reviewed so that an order is placed when the inventory level drops to

below S. The order quantity brings the inventory level back up to S.
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Figure 2.2: The (s,S) inventory model

The inventory ordering systems examined in the literature can be categorized from dif-

ferent views. For instance, in the literature, a differentiation is made between single-period

models and multi-period models. A single-period model, also known as the newsvendor

problem, is a periodic-review model in which inventory planning is performed for one pe-

riod. At the end of the period, remaining products are usually disposed. This is a typical

model for seasonal products, bakery items, and newspapers (this is of course only a partial

list). It is also widely used as an approximation for multi-period models. A multi-period

inventory problem refers to the management of inventory over multiple time periods, taking

into account various factors such as demand, order lead times, and inventory costs. More-

over, unlike the single-period problem, remaining inventory is carried over from one period

to the next, which makes the inventory management task more complicated.

In the remainder of this chapter, we explore the literature on inventory management of

perishable products from different perspectives. For a more detailed review of the literature

20



Ph.D. Dissertation—M. Motamedi McMaster University—Computer Science

on inventory management we refer the reader to Karaesmen et al. (2011); Nahmias (2011);

Perera and Sethi (2023a,b).

2.2.2 Periodic-review vs. Continuous-review Models

The literature on inventory management problems classifies them into two main categories:

periodic-review systems and continuous-review systems. In a continuous-review system,

the inventory is continuously tracked and its status is always known (Silver et al., 2016).

However, in practice, it is not always necessary to continuously monitor the inventory,

and the inventory is tracked at specific periods of time such as daily, upon demand, upon

shipment, etc. This approach is referred to as a periodic-review inventory model.

2.2.2.1 Periodic-review Models

The literature on periodic-review perishable inventory systems is quite extensive. We re-

view periodic-review models for perishable products based on a fixed or a random shelf

life. Most studies focus on products with deterministic shelf life; such models are called

fixed shelf life models. On the other hand, models in which the shelf life is not determin-

istic are called random shelf life models. Unlike products with a fixed shelf life, in models

considering a random shelf life, the shelf life of product is not known before arrival, which

makes the inventory management of such products more challenging.

Fixed Shelf Life

Inventory management and structural analysis of optimal policies for fixed shelf life per-

ishable products for periodic-review models were pioneered by Fries (1975) and Nahmias

(1975), and were revisited later by Nandakumar and Morton (1993). Minner and Transchel

(2010) study a periodic-review inventory model for perishable products by considering
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different service-level constraints. They consider a lost-sales system under both First In

First Out (FIFO) and Last In First Out (LIFO) issuing policies. Haijema (2011) proposes

a stochastic model for calculating the optimal issuing policy for perishable products with a

short shelf life. The model is formulated and solved as a Markov Decision Problem (MDP).

Chen et al. (2014) study a joint pricing and inventory control problem for a perishable prod-

uct with a fixed shelf life for both backlogging and lost-sales cases by considering linear

ordering, backlogging or lost-sales penalty, holding, and disposal costs over a finite hori-

zon. They show monotonicity properties of the optimal policies and calculated bounds for

the optimal ordering policy. They also propose a heuristic as an alternative for the optimal

policy. Muriana (2016) studies the Economic Order Quantity (EOQ) model and proposes

a stochastic model for perishable food products by considering wastage and shortage costs

along with the incorporation of the shelf life as a parameter to detect the number of wasted

units in the inventory. Fu et al. (2019) focus on a periodic-review inventory model for

newly manufactured or remanufactured perishable products and develop policies to find

the optimal ordering amounts for both products. They show that as the age of units in the

inventory increases, the order quantity converges to a fixed value.

Random Shelf Life

The literature on periodic-review inventory models with random shelf life is limited. Chen

et al. (2014) extend their work on fixed shelf life periodic-review inventory (explained in

the previous subsection) to random shelf life, under the condition that the inventories be-

come wasted in the same sequence as they enter the system. Kouki et al. (2014) examine a

periodic-review inventory problem for perishable products under a (T,S) inventory policy

and consider both lost-sales and backlogging cases. In a (T,S) model, orders are scheduled
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at regular intervals of T periods, with each order quantity setting the inventory to the order-

up-to-level, S. They assume that demand follows a Poisson process, and the products’

shelf lives are exponentially distributed. They model their problem as a Markov process

and optimize the expected cost for the system. In a later work, Kouki et al. (2015) ana-

lyze a base-stock inventory system for perishable products with Markovian demand and

general shelf life and lead time distributions. They show monotonicity properties of the

optimal cost and calculate the optimal base stock for the problem. Ketzenberg et al. (2018)

consider a periodic-review inventory problem with random shelf life and determine the

optimal expiration date, derived from the shelf life distribution, which affects the optimal

order quantities. Abouee-Mehrizi et al. (2022) study a periodic-review perishable inventory

problem with a random shelf life and zero lead time over a finite horizon. They propose

two different models, one with a fixed shelf life and one that considers the random shelf

life. For the random shelf life model, they examine the worst-case scenario when variabil-

ity in the remaining shelf life is not included the model. Clarkson et al. (2023) consider a

periodic-review model of a single product with a random and age-dependent shelf life over

a finite horizon. They model the problem as an MDP and show that convexity holds in the

penultimate period.

2.2.2.2 Continuous-review Models

The literature on continuous-review inventory models is extensive and diverse, most of

which analyze inventory models for perishable products with random shelf life. In this

section, similar to the periodic-review models, we review the continuous-review models

based on product’s shelf life being fixed or random.
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Fixed Shelf Life

Continuous-review inventory models emerged as extensions of periodic-review models.

There is a substantial body of literature on continuous-review inventory dedicated to the

(s,S) inventory model. Weiss (1980) presents an extension of the continuous-review (s,S)

policy for a perishable inventory system with fixed self life and zero lead time. They as-

sume that demand follows a Poisson process. Subsequently, researchers extended their

model to various settings. For instance, Liu and Lian (1999a) and Liu and Lian (1999b)

present models with general renewal demand processes. Ravichandran (1995) investigate

a continuous review (S− 1,S) inventory model with lost sales. They consider a random

lead time, fixed shelf life, and a Poisson demand process and explore the optimal ordering

policy. Perry and Posner (1998) study the continuous review (S− 1,S) inventory model

for a system with fixed shelf life and constant lead times, where demand is modelled as a

Poisson process. Olsson (2010) studies three variations of the continuous review (S−1,S)

model, penalizing backorders by quantity, penalizing backorders by both quantity and du-

ration, and imposing a service level constraint. The optimal S value is obtained for the

first and third model, while an approximation is provided for that for the second model.

Baron et al. (2010) study a continuous review (s,S) inventory model of perishable prod-

ucts arriving in batches. They consider deterministic and exponentially distributed shelf

lives, and two types of compound Poisson processes for demand. Using the Queueing and

Markov Chain Decomposition methodology, Barron and Baron (2020) investigate a con-

tinuous review (s,S) policy. Their analysis consists of stochastic lead time, perishability,

and state-dependent Poisson demand process. In a related study, Barron (2019) expand

the work of Barron and Baron (2020) by incorporating demand uncertainty and stochastic

batch demands into the model.
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Some studies explore variations of the classic (s,S) model. Berk and Gürler (2008)

analyze the (r,Q) ordering policy for a product with constant shelf life and lead time. They

consider a lost-sales system and model the system’s dynamics under an (r,Q) policy us-

ing an embedded Markov process. Kouki et al. (2016) consider multiple perishable items

with random lifetimes under a continuous review (s,c,S) policy. This policy is a variation

of the classic (s,S) model that considers two reorder points, s as a “must order” reorder

point and c as a “potential” reorder point. They model the system as a Markov process

and calculate the optimal parameters for the model using a decomposition approach under

zero lead time. Rajendran and Srinivas (2020) propose two variants of review policies for

platelet inventory management that are based on an (s,S,Q) policy. By considering addi-

tional inventory thresholds, either an order quantity of Q is placed or the inventory is filled

to S. The policies are determined using stochastic mixed integer programming. Current

work employing stock-level policies consider static base stock levels. Such policies are

easy to implement, but they can result in large on-hand inventory levels. Benjaafar et al.

(2011) consider a single-product production-inventory system that uses advanced demand

information in the form of customers’ preannouncements of their orders. They model their

system as a continuous-time MDP and prove that the optimal policy is a state-dependent

base-stock policy. Moreover, they show the monotonicity properties of the ordering policy

and build four heuristics as approximations of the optimal policy.

Random Shelf Life

Considering a random shelf life for continuous-review inventory management is very com-

mon in the literature and there is a large stream on continuous-review inventory models for

perishable products with random shelf life. One of the main reasons is that some papers

consider a Markovian shelf life which simplifies the problem. For instance, Kalpakam and
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Sapna (1994), Liu and Shi (1999) study the optimal (s,S) ordering policy for products with

exponentially distributed shelf life and order lead time, Poisson demand process, and lost

sales. Gürler and Özkaya (2008) analyze a continuous-review perishable inventory system

under an (s,S) ordering policy. Products are assumed to have a random shelf life with a

general distribution and the lead time is zero. The work of Kouki et al. (2015) described

under the periodic-review models also deals with continuous-review models. Baron et al.

(2020) analyze an (s,S) continuous-review model for perishable inventory with exponential

shelf life and order lead time. They consider a lost-sales model under two types of demand

distribution, Poisson and compound Poisson with general sizes. Kouki et al. (2020) analyze

a base-stock perishable inventory system with general shelf life and order lead time under

a continuous-review model. They model the system by using a queueing network model

and show the optimal cost’s monotonicity properties.

2.2.3 Single-echelon vs. Multi-echelon Models

In the literature, inventory models usually either consider a single facility (level) within a

supply chain network or consider multiple facilities (levels) within the supply chain net-

work. If the inventory model is focused on determining the optimal inventory levels of a

single facility, it is called a single-echelon inventory model. On the other hand, if the model

considers the optimization of inventory levels across multiple facilities in a supply chain, it

is called a multi-echelon inventory model.

Single-echelon models are generally simpler to implement and manage in comparison

to multi-echelon models since they are focused on optimizing the inventory at a single

location. They do not consider the communication between different levels of the supply

chain. Moreover, focusing on one facility can be advantageous since it allows decision
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makers to only consider specific constraints and requirements of that particular facility.

Most of the papers in this area only consider a single facility in a supply chain. Duong

et al. (2018) provide a review for single-echelon continuous review inventory management

models of perishable products.

Multi-echelon models allow for optimization of inventory levels across multiple loca-

tions within the supply chain. Such models are closer to real life scenarios since they con-

sider coordination and collaboration between different units in a supply chain. However,

modelling a multi-echelon inventory system is more complex since the decision for one

facility affects the total system performance. Most research on multi-echelon perishable in-

ventory models focuses on two-echelon models. Weraikat et al. (2016) study a two-echelon

pharmaceutical reverse supply chain in which wasted products are collected by a third-party

company. They model the coordination between a producer and the companies responsible

for collecting wasted medications from customers. They introduce incentives to customers

for returning leftover products. Mahmoodi et al. (2016) propose approximation models for

optimization of base-stock values in a two-echelon continuous-review perishable products

inventory system consisting of a warehouse and a retailer. Tiwari et al. (2018) consider

a two-echelon supply chain with deteriorating items that have price-dependent and stock-

dependent demand, and analyze integrated and non-integrated policies for the joint opti-

mization model. Hamdan and Diabat (2019) study a two-stage stochastic problem for RBC

products to minimize wastages, supply chain costs, and product delivery time by consid-

ering production, inventory, and location decisions. Their model considers four echelons,

mobile blood facilities, local blood banks, regional blood banks, and hospitals. The prob-

lem is solved as a Mixed Integer Programming (MIP) problem for a real case study from

27



Ph.D. Dissertation—M. Motamedi McMaster University—Computer Science

Jordan. Amiri et al. (2020) propose a model for calculating the optimal sales level of per-

ishable products in a two-echelon supply chain with one vendor and multiple buyers. They

optimize the sales profit by an exact model and three heuristics, Particle Swarm Optimiza-

tion (PSO), Co-evolutionary Particle Swarm Optimization (CPSO) and Genetic Algorithm

(GA). Moshtagh et al. (2022) optimize the operational interaction between blood centers

and hospitals within a two-echelon blood supply chain. To that end, they study three chan-

nel structures, including centralized, decentralized, and coordinated systems, and compare

their performance.

Some studies consider multi-echelon models with more than two echelons. Xu et al.

(2019) combine simulation and an improved particle swarm algorithm to develop a simulation-

based optimization model for a three-level agricultural products inventory system. Shen

et al. (2020) study the collaborative inventory management of agricultural products in a

three-echelon system: farmers’ professional cooperatives, distribution centers, and super-

markets. They use an improved genetic algorithm to maximize the profit by adjusting

supply and ordering decisions across different levels of the supply chain.

2.2.4 Theoretical Models vs. Ordering Heuristics

Inventory models can be studied by explicitly computing the optimal ordering policy, or

failing that, to identify structural properties that the optimal policies satisfy. This stream

of work, although intriguing and valuable, is often quite challenging. Specifically, consid-

ering dynamics of the inventory system along with the necessity to account for the age of

perishable products results in a fairly complex problem. Some papers study the structure

of the optimal policy. However, the complexity of the optimal policy may make it diffi-

cult to give the optimal policy explicitly. Even if that were possible, the policy may be so
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complex that it is problematic to implement. Thus, optimal policies are often approximated

using insights on their structure. Our work is closely related to the stream of literature on

the structure of optimal ordering decisions and the development of ordering heuristics in

perishable inventory management.

2.2.4.1 Theoretical Models

Work on analysis of the optimal policy dates back to Fries (1975) and Nahmias (1975),

where they characterize the structure of the optimal policy for perishable products with

multiperiod shelf life and zero lead time. They show that the optimal order quantity is

decreasing in the inventory levels of different ages. However, due to the complexity of

their analysis, their results are difficult to generalize. Subsequent works include the work

of Cohen (1976) that studies the complexity of the optimal policy and shows that finding

the optimal policy is quite complex, even for a very simple problem of a two-period shelf

life product. Williams and Patuwo (1999) determine the optimal order quantity for a single

period, periodic-review, two-period shelf life product system with lost sales. Zipkin (2008)

introduced a new method for analyzing the structural properties of the standard lost-sales

inventory system, which is more convenient in comparison to the existing methods, and

establishes new bounds for the optimal policy. Haijema (2014) explores optimal ordering,

issuing, and disposal policies for perishable products by considering age in the inventory

problem. They show that optimal ordering, issuing, and disposal policies are all stock-age

dependent. Fang et al. (2021) propose a model for dynamic pricing and ordering decisions

for multi-period perishable and substitutable products, and study the structural properties

of the optimal decisions. Zhang et al. (2022) study platelet inventory management for a

hospital in the US. They prove that a myopic transshipment policy is optimal for their case
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study, which exhibits short shelf life and asymmetric demand. Furthermore, they show that

myopic transshipment is a lower bound for more general cases. For a more comprehensive

review of the literature on analysis of optimal policies for perishable inventory models, we

refer readers to (Perera and Sethi, 2023b,a; Goldberg et al., 2021).

One direction for characterizing the structure of optimal policies for discrete-time discrete-

state periodic review problems is exploring L\-convexity and multimodularity. Multimod-

ularity was first introduced by Hajek (1985). L\-convexity is closely related to the concept

of multimodularity in discrete-time systems and was first developed by Murota (1998). It

was used as one of the techniques to analyze the structural properties of optimal policies

in discrete-time systems. Lu and Song (2005) use L\-convexity to explore optimal poli-

cies in an assemble-to-order inventory system and to develop an exact algorithm for an

order-based model. Gong and Chao (2013) use L\-convexity to examine the optimal ex-

pected total discounted cost for periodic-review inventory systems with remanufacturing

and finite capacities. They show that the optimal policies are a modified remanufacture-

down-to policy and modified total-up-to policy for systems with remanufacturing and with-

out remanufacturing, respectively. Chen et al. (2018) develop a transformation technique

for converting a nonconvex minimization problem to its equivalent convex problem. This

transformation allows for the preservation of some desirable structural properties like con-

vexity, L\-convexity, and submodularity. Li and Yu (2014) explore structural properties of

optimal policies in perishable inventory systems by using multimodularity. Following their

work, several recent studies have also employed the concept of multimodularity to derive

structural properties of optimal decisions (Liu et al., 2019; Chen et al., 2019). Among the

papers discussed in the previous paragraph, Zipkin (2008) and Chen et al. (2014) study

structural properties of the optimal policy by proving the L\-convexity of the cost function
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in their inventory problems. Using a similar approach to that used in these two papers, we

explore the structural properties of the optimal policy for our problem. For a more detailed

study of the properties and applications of L\-convexity, we refer readers to (Topkis, 1998;

Simchi-Levi et al., 2005; Chen, 2017).

2.2.4.2 Ordering Heuristics

Due to the complexity of finding the optimal policy for perishable inventory problems and

the curse of dimensionality, some studies focus on heuristics as an alternative for the opti-

mal policy. For example, Nahmias (1976); Deniz et al. (2010) focus on reducing state vari-

able dimensions by aggregating state variables. On the other hand, several papers propose

approximation approaches. A base-stock policy is a well-known widely-used heuristic,

see Nahmias (1977); Nandakumar and Morton (1993); Cooper (2001). Gürler and Özkaya

(2008) propose a heuristic for a continuous-review perishable inventory system under an

(s,S) ordering policy and by considering a strictly positive lead time. The heuristic adjusts

the reorder level, s, and the order-up-to level, S, based on the expected demand during

the lead time. Deniz et al. (2010) develop a heuristic that considers substitution between

age-dependent demand for issuing and ordering policies for perishable products. Li et al.

(2016) study ordering and clearance sales decisions for perishable products selling under

a LIFO issuing policy and develop two myopic heuristic policies that reduce state variable

dimensions. Chao et al. (2015) develop approximation approaches based on worst-case

performance by considering features that make demand nonstationary, such as seasonality,

to characterize their heuristic algorithm. Chao et al. (2018) propose an easy-to-compute ap-

proximation algorithm for perishable inventory systems with positive lead times and finite

ordering capacities, and demonstrate that it offers a theoretical worst-case performance
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guarantee. Chen et al. (2019) apply a lookahead heuristic method to obtain an approxi-

mation for optimal platelet collection, production, issuing, and disposal decisions. Chen

et al. (2021) investigate inventory management of perishable products by considering dif-

ferent types of demand, various lost-sale costs, and freshness level requirements. Based

on the structure of the optimal policy, they develop a novel approximation technique called

the adaptive approximation approach, which is nearly optimal with an average optimal-

ity gap of 0.30% for the example that they consider. Clarkson et al. (2023) develop two

new heuristic policies, a newsvendor heuristic and periodic-review heuristic, for a single

product periodic-review model. Products are perishable with random age-dependent shelf

lives. In a recent study, Bu et al. (2023) perform asymptotic analysis for a periodic-review

perishable inventory system with zero lead time over an infinite horizon, and show that a

base-stock policy is asymptotically optimal when using a FIFO issuing policy.

2.2.5 Age-dependent Models

In some applications, perishable products with different freshness levels are required. For

instance, in a healthcare system, there may be different demands that require products with

different ages. Some studies consider these different demand types in the supply chain and

study age-differentiated demands that require products with different freshness levels.

There are several inventory models considering age-differentiated demands in the blood

supply chain. Haijema (2013) proposes a novel stock-level ordering policy, (s,S,q,Q),

which is a variant of the periodic review (s,S) policy that restricts the order quantity by

a minimum, q, and a maximum, Q. Two types of issuing policies, LIFO and FIFO, are

considered and the optimal ordering policy is calculated by formulating an MDP and ap-

proximating its solution using simulation. In a subsequent work, Haijema (2014) considers
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both the stock level and product’s age for inventory management and uses stochastic dy-

namic programming for defining ordering, issuing, and disposal policies. Civelek et al.

(2015) discuss the optimal ordering and allocation policies for a platelet supply chain by

considering different demands requiring platelet units with different ages. In addition to

classical inventory costs, they consider a mismatch cost for satisfying demand with a prod-

uct of an age that differs from the required age. Gunpinar and Centeno (2015) propose an

inventory management model for RBC and platelets to control shortage and wastage. In

their paper, they consider two types of demands, blood items with different freshness. In

addition, unlike most papers in the literature, they consider the crossmatch-to-transfusion

ration (C/T ratio) and release period. Ensafian et al. (2017) develop a two-stage stochas-

tic inventory management model to minimize shortage, wastage, and other platelet supply

chain costs. They consider three types of demand based on the age of blood units and blood

group compatibility rules. In addition, they consider apheresis as well as whole blood col-

lection methods. However, they only focus on platelets although apheresis yields different

products. In addition, they do not consider differences between these two methods in terms

of availability and the amount of blood yielded. Kara and Dogan (2018) propose two in-

ventory management policies for perishable products, a stock-age dependent policy and a

quantity dependent policy. The policies are derived using reinforcement learning. Rajen-

dran and Ravindran (2019) propose a platelet inventory management model by considering

two types of demand, regular and emergency. They develop a stochastic integer program-

ming model under an (s,S) ordering policy and use a variant of a genetic algorithm to

solve it. By considering two demand types requiring platelet units with different freshness,

Chen et al. (2019) develop a joint collection and production model for the platelet supply

chain. They model their problem using stochastic dynamic programming and address their
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extended problem using a lookahead heuristic. By considering different types of patients,

Ensafian and Yaghoubi (2017) develop a bi-objective platelet supply chain under both FIFO

and LIFO policies to determine the best inventory and production decisions. Unlike most

works in the literature, their model assumes the apheresis method as an alternative to whole

blood decomposition for the production of platelets. They optimize the cost and freshness

of platelets using a robust mixed integer program and demonstrate the applicability of their

model in a case study. Larimi et al. (2019) discuss lateral transshipment in a platelet supply

chain in which different collection methods including apheresis, platelet-rich plasma, and

buffy coat methods are investigated for obtaining typical, irradiated and washed platelets

for different demand types requiring platelets with different age. They discuss the risk

of production under the different collection methods and develop a bi-objective robust

optimization problem to explore inventory decisions in collection, test, production, and

distribution processes. Chen et al. (2021) study periodic-review single-product inventory

management with multiple demand classes, each having specific freshness requirements.

They consider perishable products with fixed shelf lives under lost sales and assume zero

lead time and fixed costs. They characterize several monotonicity properties of the optimal

policy and propose an ordering heuristic.

2.3 Blood Supply Chain Management

A Blood Supply Chain (BSC) consists of the collection, testing, production, and distri-

bution of blood from donors to patients. These patients can be either routine (regular)

patients who require blood products as a part of their treatment or emergency patients such

as patients with the need of a blood product for surgeries or emergency trauma treatment.

Therefore, there is a vital need to have a sufficient supply of blood products; otherwise,
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loss of lives may result. The subject of BSC management has attracted a vast amount of

attention from researchers in different areas. Different BSC configurations ranging from

internal collection centres inside of hospitals to multiple mobile and permanent donation

centres have been studied. Consequently, the structure of blood supply chains may differ

from country to country. Generally, a blood supply chain consists of three main facilities

(levels), including collection (donation) centres, blood centres, and hospitals. There are

various aspects to a blood supply chain such as designing the system, decision-making

about the process such as collection, transportation and inventory management, and fore-

casting.

The work of Jennings (1973) is one of the earliest works explicitly considering the

structure of a blood supply chain. It was followed by several works considering differ-

ent aspects of a blood supply chain. Or and Pierskalla (1979) study the transportation

location-allocation problem of blood banks by determining the optimal number and loca-

tion of blood banks, optimal allocation of hospitals to the blood banks and optimal routing

of blood products with respect to the system costs. Cohen and Pierskalla (1979) propose

an ordering policy for the red blood cell supply chain as a base-stock value that depends

on daily demand, the average transfusion to cross match ratio, and the cross-match re-

lease period. Prastacos (1984) provides an overview of blood inventory management from

both theoretical and practical perspectives. Pierskalla (2004) studies supply chain man-

agement practices and challenges of blood banks. The author discusses various aspects

including inventory management, distribution, transportation, and quality control, and sug-

gests strategies to improve the efficiency and effectiveness of blood supply chains. For

more comprehensive literature reviews on blood supply chain management, see (Beliën

and Forcé, 2012; Pirabán et al., 2019).
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Some studies focus on the design issues of a BSC (Ensafian and Yaghoubi, 2017; Za-

hiri and Pishvaee, 2017; Ramezanian and Behboodi, 2017; Osorio et al., 2018; Eskandari

and Sharifi, 2018; Samani et al., 2019; Hamdan and Diabat, 2020; Khalilpourazari and

Hashemi Doulabi, 2022). There is a large number of studies in the literature addressing lo-

cation, allocation and inventory management policies in a blood supply chain. Zahiri et al.

(2015) study location and allocation issues in a blood supply chain with both mobile and

fixed donation centres by using a robust mixed-integer programming method for modelling

the problem. A case study is applied to illustrate their model in a real-world situation. Dil-

lon et al. (2017) formulate a two-stage inventory model to specify periodic review policies

for RBC (Red Blood Cell) inventory management. The uncertain demand is dealt with by

forecasting the demand for the next 12 weeks by producing a sample of 100 scenarios us-

ing a Monte Carlo sampling approach. Attari et al. (2018) propose a stochastic bi-objective

design problem to make decisions about location, allocation, and inventory in the collec-

tion and distribution phases of the blood supply chain, and apply Benders decomposition

for solving their large-scale optimization problem. Bruno et al. (2019) explore a reorgani-

zation of a regional blood system in Italy by developing a facility location model to make

the collection process more efficient. By considering both costs and maximum unsatisfied

demand, Zahiri and Pishvaee (2017) develop a multi-product uncertain blood supply chain

network design model. They consider different ABO blood types and ABO-substitution

in their model. Robust optimization is used for handling the uncertainty of the model and

solving the fuzzy mathematical programming problem.

Several studies develop Markov chain models for ordering and issuing problems in a

blood supply chain. Pegels and Jelmert (1970) propose a discrete time Markov chain model

and explore the impact of two issuing policies, modifications of FIFO and LIFO policies, on
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the age of the transfused units as well as on average inventory levels, and consequently on

the shortage and wastage probabilities. Brodheim et al. (1975) model a number of inventory

and distribution policies for blood products as discrete-time Markov chains. They assume

that orders are for fixed quantities that are added to the inventory at regular intervals. Their

results indicate that the FIFO policy has better performance compared to other issuing

policies. Bar-Lev et al. (2017) propose a stochastic model for blood inventory management

by considering supply and demand as Poisson processes. A Level Crossing Technique

(LCT) is used for calculating the steady-state inventory level, but due to the complexity

of LCTs for general underlying distributions, fluid and diffusion limits for the steady state

inventory level are obtained. Sarhangian et al. (2018) study the performance of several

issuing policies for RBC using a continuous-time Markov chain model. They propose a

new threshold-based issuing policy to decrease the age of transfused RBCs which is a two-

stage process and a combination of FIFO and LIFO policies. The model is an M/M/1+D

Markov queue in which blood units expire after D days. To formulate their threshold-based

policy, they used the results of Parlar et al. (2011) to obtain the Laplace Transform of

sojourn time of blood units in inventory, and ultimately the performance of their threshold-

based policy compared with that of FIFO and LIFO in terms of average age of transfused

units, and proportion of wastages and lost demand. The main critique of the papers that are

based on Markov models is that they assume that order arrivals follow a Poisson process

rather than being under control of the hospitals. However, in real-world problems, hospitals

place orders for blood products, and as a result, the arrivals do not follow a Poisson process.
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2.3.1 Platelet Inventory Management

There are a number of works focusing on platelet inventory management. Sirelson and

Brodheim (1991) propose a predictive model for the inventory control of platelets by as-

sociating a base-stock level with the shortage and wastage rates using a linear regression

method. Blake (2010) presents an overview of platelet inventory and ordering problems

from the perspective of both producers and customers. He also gives a literature review of

perishable inventory models related to blood products followed by a discussion of current

challenges. In a separate work, Blake (2009) discusses work by Van Dijk et al. (2009) and

the use of operational research for managing platelet inventory and ordering. Van Dijk et al.

(2009) formulate a platelet inventory problem as a dynamic programming problem and find

a nearly optimal order-up-to production policy. Zhou et al. (2011) develop a dynamic pro-

gramming model to study the optimal order-up-to ordering policy for a platelet supply chain

by considering regular and optional orders. Haijema (2014) considers the stock level and

product age and uses stochastic dynamic programming for defining ordering, issuing, and

disposal policies. They consider FIFO and LIFO policies and provide a comparison for the

model under these two policies. Abdulwahab and Wahab (2014) study an inventory model

for platelets with stochastic supply and demand, and deterministic lead time. They develop

their model using dynamic programming, and the optimal ordering policy is approximated

by a newsvendor model. Rajendran and Ravindran (2017) develop a stochastic integer pro-

gramming problem to determine ordering policies for platelets focusing on minimizing the

wastage. They propose three heuristic ordering strategies and compare their performances

with a base-stock policy. Abouee-Mehrizi et al. (2023) propose an Approximate Dynamic

Programming (ADP) model to study the optimal ordering quantity for platelet inventory

management under endogenous uncertainty of shelf life. They evaluate performance of the
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proposed policy with real data for hospital in Hamilton, Ontario.

While platelet demand is determined by clinical factors that are not included in an i.i.d.

demand sequence, the discussed works mainly consider an i.i.d. demand sequence and do

not include additional demand information in the inventory management process.

2.4 Data-driven Models

There is a recent stream of studies that incorporate additional demand information in the

inventory management process. These studies can be categorized into two main groups: (i)

prediction and optimization as a single step, (ii) predict then optimize. The second group

is close to the work of this dissertation presented in Chapter 5.

In the first group, demand forecasts are included in the inventory optimization problem,

rather than being a separate process. These models include additional demand informa-

tion in the inventory model indirectly. In other words, there is no separate process for

forecasting the demand, and demand is predicted inside the inventory model. Guan et al.

(2017) propose a convex optimization problem in which they forecast the platelet demand

for several days into the future and build an optimal ordering policy based on the predicted

demand, concentrating on minimizing the wastage while maintaining a minimum inventory

level. Ban and Rudin (2019) study a data-driven newsvendor model that considers differ-

ent observations of features that influence the demand. They propose algorithms based on

Empirical Risk Minimization (ERM) and Kernel-weights Optimization (KO) approaches.

Closely related to the work of Guan et al. (2017), Abouee-Mehrizi et al. (2022) consider a

periodic review, perishable inventory control problem over a finite horizon, with zero lead-

time and propose two models, a fixed age model and a robust model, for platelet inventory

management. The objective is to determine daily ordering quantities while minimizing
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the wastage and shortage costs over this finite horizon. Demand is satisfied according to

the Oldest-Unit-First-Out (OUFO) allocation policy, and unsatisfied demand is lost. The

demand forecasts are included in the inventory optimization problem, rather than being a

separate process. These models include additional demand information in the inventory

model indirectly. In other words, there is no separate process for forecasting the demand,

and demand is predicted inside the inventory model.

The second group that utilize data in the inventory model follow a two step process of

first forecasting the demand and next using demand forecasts for optimizing inventory deci-

sions. A classical example of this approach is presented in Elmachtoub and Grigas (2022).

Li et al. (2021) propose a data-driven multi-period inventory problem for RBC products

that includes RBC demand predictions. They forecast the RBC demand and incorporate

the forecasts in the inventory model. Since forecast errors exist, they introduce two extra

decision variables, target inventory and reorder constraints, to control these errors in the

ordering policies. Their model is a variation of the classical (s,S) policy in which they de-

fine S to compensate for demand overestimations, and define s to compensate for demand

underestimations. Both s and S are calculated based on the data and the predicted demand.

Closely related to this stream, we follow a two-step process of first forecasting the demand

for perishable products, and then utilizing demand forecasts in the inventory management

process. We believe that by considering demand forecasting as a separate process, suppli-

ers can strategically make decisions in various parts of the supply chain, such as production

planning and resource allocation.
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2.5 Summary

Most studies on perishable inventory consider an i.i.d. demand sequence assumption for

their models. Many of the papers we reviewed in this dissertation assume that the demand

follows a Poisson process. Some studies criticize the i.i.d. demand sequence assumption in

inventory models. In classical inventory management theory, safety stocks are established

based on the standard deviation of past demand forecasting errors over a lead time. Some

recent studies provide solutions for adjusting the ordering policy to include the error in

estimating the demand distribution. Prak et al. (2017) show when the i.i.d. assumption is

violated, it may lead to significantly underestimated safety stock levels. They present cor-

rected lead time demand variance expressions and reorder levels for correcting the lead time

forecast errors when the lead time is constant. Trapero et al. (2019) use a non-parametric

kernel density estimation and parametric GARCH (Generalised AutoRegressive Condi-

tional Heteroscedastic) models to estimate the distribution of lead time forecast errors, and

use them to generate inventory safety stock levels. Saoud et al. (2022) suggest estimating

the lead time variance of forecast errors, rather than estimating the point forecast error vari-

ance, and extending it over the lead time interval. This new research stream suggests an

estimation of demand distribution. Our work is in a similar direction as we do not consider

an i.i.d. demand sequence since such distributions cannot capture the underlying factors

that affect the demand.

Some recent studies include additional demand information in the inventory problem.

Abouee-Mehrizi et al. (2022); Guan et al. (2017) incorporate additional factors that influ-

ence demand in the inventory problem, but do not explicitly forecast the demand. Demand

forecasting and inventory management are considered as a single process. In (Benjaafar
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et al., 2011) additional demand information is in the form of additional information pro-

vided by the customers. Levi et al. (2015); Zheng et al. (2016); Huber et al. (2019); Keskin

et al. (2021) present data-driven solutions for the newsvendor problem by considering the

empirical forecast error distribution rather than a demand distribution assumption. Given

the abundance of data available today, it is possible to construct demand forecasts that can

be incorporated into the inventory system as additional demand information for determin-

ing ordering quantities. Many organizations perform demand forecasting as part of their

decision-making processes, and incorporating these forecasts into the inventory model can

be beneficial. Thus, when demand data are available, one can benefit from including addi-

tional information in the inventory management process. From the practical point of view,

accurate demand forecasting itself is important for supply chain management purposes.

Accurate demand forecasting can be used for decision making in many parts of the supply

chain such as production planning and resources and staff management. Since there may

be some fundamental limit to how accurate the forecasts can be, one important challenge

would be how to use the demand forecasts in an effective manner that can take into account

how good the forecasts are.

In this dissertation, we study the problem of inventory management of perishable prod-

ucts in the presence of previous demand information. We forecast the future demand based

on demand history and explore the structural properties of the optimal ordering policy when

demand forecasts are incorporated into ordering decisions. Unlike previous works, in this

research demand forecasting and inventory management are considered as two different

processes. In practice, demand forecasts can be generated from time series estimators such

as ARIMA models or LSTM networks, in which forecasts are generated based on the cor-

relation to previous demand and demand forecast values. Thus, in this dissertation, we
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consider these correlations in the inventory model for studying the structural properties of

the optimal policy. We show that there exists an optimal ordering policy that is a base-

stock policy that depends on the state, i.e. inventory levels, current and previous forecast

values, and (indirectly) previous demand values. Moreover, by using the structural results,

we propose a heuristic that integrates demand forecasts in the ordering policy in a simple

and intuitive manner.
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Chapter 3

Data Description and Analysis

In this chapter, we provide a description of the data used for this study, constructed by

processing Canadian Blood Services (CBS) shipping data and the TRUST (Transfusion

Research for Utilization, Surveillance and Tracking) database at the McMaster Centre for

Transfusion Research (MCTR) for platelet transfusion in hospitals in the city of Hamilton,

Ontario. The study is approved by the Canadian Blood Services Research Ethics Board

and the Hamilton Integrated Research Ethics Board (HiREB number 7293).

Two organizations, CBS and Héma-Québec, are responsible for providing blood prod-

ucts and services in transfusion and transplantation for Canadian patients. The former

operates within all Canadian provinces and territories excluding Québec, while the latter

is in charge of the province of Québec. The current blood supply chain for CBS is an in-

tegrated network consisting of a regional CBS distribution centre and several hospitals, as

illustrated in Figure 3.1. Currently, there are nine regional blood centres operating for CBS,

each covering the demand for several hospitals (Hospital Liaison Specialists, 2020). Hospi-

tals request blood products from the regional blood centres for the next day, yet the regional

blood centres are not aware of the actual demands as each hospital has its own blood bank.
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Furthermore, recipient demographics and hospital inventory management systems are not

disclosed to CBS or the regional blood centres.
 

Figure 3.1: CBS blood supply chain with one regional blood centre and multiple hospitals

We consider a blood supply system consisting of CBS and four major hospitals op-

erating in Hamilton, namely, Hamilton General Hospital, Juravinski Hospital, McMaster

University Medical Centre (MUMC), and St. Joseph’s (STJ) Healthcare Hamilton. These

hospital blood banks operate with a Transfusion Medicine (TM) laboratory team to man-

age blood product transfusions to patients. We study platelet transfusions in the described

blood supply system.

Platelet products are a vital component of patient treatment for bleeding problems, can-

cer, AIDS, hepatitis, kidney or liver diseases, traumatology and in surgeries such as car-

diovascular surgery and organ transplants (Kumar et al., 2015). In addition, miscellaneous

platelet usage and supply are associated with several factors such as patients with severe

bleeding, trauma patients, aging population and emergence of a pandemic like COVID-19

(Stanworth et al., 2020). The first two factors affect the uncertain demand pattern, while

the latter two factors result in donor reduction. Platelet products have a shelf life of five
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to seven days before considering test and screening processes that typically last two days

(Fontaine et al., 2009), so the remaining shelf life of the platelets that arrive at the hospitals

is typically between three to five days. The extremely short shelf life along with the highly

variable daily platelet usage makes platelet demand and supply management a highly chal-

lenging task, invoking a robust blood product demand and supply system. Platelet products

are collected and produced at CBS and after testing for viruses and bacteria (a process

which lasts two days), platelets are ready to be shipped to hospitals and transfused to pa-

tients.

As a result of internal inventory management practices, these four hospitals are con-

sidered as one entity. At the beginning of the day, hospitals receive platelet products that

were ordered on the previous day, from CBS. In the case of shortages, hospitals can place

expedited (same-day) orders at a higher cost. Prior to September 2017, platelets had five

days of shelf life, while after this date, the shelf life of platelets was increased to seven

days. After exceeding the shelf life, platelet products are expired and discarded.

3.1 Data Description

We study a large clinical database with 61377 platelet transfusions for 47496 patients in

hospitals in Hamilton, Ontario from 2010 to 2018. We analyze the database to extract

trends and patterns, and find relations between the demand and clinical predictors. The

data are high dimensional, with more than 100 variables that can be divided into four main

groups: 1. the blood inventory data such as product name and type, received date, expiry

date, 2. patient characteristics such as age, gender, patient ABO Rh blood type, 3. the trans-

fusion location such as intensive care, cardiovascular surgery, hematology, and 4. available

laboratory test results for each patient such as platelet count, hemoglobin level, creatinine
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level, and red cell distribution width. The laboratory tests are prescribed by physicians

based on clinical needs and can help to decide whether a patient needs platelet transfusion.

In this research, the laboratory test results are processed and used along with other infor-

mation to forecast future platelet demand. A summary of the data collection and cleaning

process is presented in Appendix A.

Additionally, we add new calculated predictors such as the number of platelet transfu-

sions in the previous day and previous week, the number of received units in the previous

day, and day of the week. Table 3.1 gives the set of predictors that are used in this study

along with their descriptions. These predictors are selected by a lasso regression model

(Tibshirani, 1996) which is explained in detail in Section 4.1.2.1. As we can see from

Table 3.1, predictors have different ranges, and hence are standardized by z-score normal-

ization. All data processing and analysis and model implementations are carried out using

the Python 3.7 programming language.
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Table 3.1: Data variable definition and description

Name Description

abnormal ALP Number of patients with abnormal alkaline phosphatase

abnormal MPV Number of patients with abnormal mean platelet volume

abnormal hematocrit Number of patients with abnormal hematocrit

abnormal PO2 Number of patients with abnormal partial pressure of oxygen

abnormal creatinine Number of patients with abnormal creatinine

abnormal INR Number of patients with abnormal international normalized ratio

abnormal MCHb Number of patients with abnormal mean corpuscular hemoglobin

abnormal MCHb conc Number of patients with abnormal mean corpuscular hemoglobin concentration

abnormal hb Number of patients with abnormal hemoglobin

abnormal mcv Number of patients with abnormal mean corpuscular volume

abnormal plt Number of patients with abnormal platelet count

abnormal redcellwidth Number of patients with abnormal red cell distribution width

abnormal wbc Number of patients with abnormal white cell count

abnormal ALC Number of patients with abnormal absolute lymphocyte count

location GeneralMedicine Number of patients in general medicine

location Hematology Number of patients in hematology

location IntensiveCare Number of patients in intensive care

location CardiovascularSurgery Number of patients in cardiovascular surgery

location Pediatric Number of patients in pediatrics

Monday Indicating the day of the week

Tuesday Indicating the day of the week

Wednesday Indicating the day of the week

Thursday Indicating the day of the week

Friday Indicating the day of the week

Saturday Indicating the day of the week

Sunday Indicating the day of the week

lastWeek Usage Number of units transfused in the previous week

yesterday Usage Number of platelet units transfused in the previous day

yesterday ReceivedUnits Number of units received by the hospital in the previous day
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3.2 Exploratory Analysis for Trends, Seasonality and Hol-

iday Patterns

In order to propose a short-term demand forecasting model, we first explore the data for

identifying temporal (daily/monthly) patterns that can inform our demand forecasting tech-

niques. In particular, we investigate seasonality, day of the week, non-stationarity ef-

fects, and correlations among the predictors. The data analysis ranges from 2010/01/01

to 2018/12/31. An initial observation is that the demand is highly variable, with a trans-

fused daily average of 17.90 units and a standard deviation of 7.05 units.

Observations for non-stationarity: The Augmented Dickey-Fuller (ADF) test (Che-

ung and Lai, 1995) is applied on the time series data to examine the stationarity. The results

of the ADF test show that the data is not stationary (P value = 0.085) before 2016, but it

becomes stationary from 2016 onwards (P value <0.001).

Observations for seasonality: We apply the Seasonal and Trend decomposition using

Loess (STL) model to decompose the time series data into trend, seasonality, and residuals.

We also apply the one-way Analysis of Variance (ANOVA) test to compare the means

of the transfused units in different months, and the means of the transfused units during

weekdays and weekends. Moreover, we explore the trend, holidays, weekly seasonality,

and yearly seasonality using the Prophet model, explained in detail in Section 4.1.1 (such

detailed understanding is not required at this point).

Figure 3.2 shows the time series data decomposition using the STL model. As we can

see in the seasonal part, there are recurring temporal patterns in the data. The results of the

one-way ANOVA test also show that there is a significant difference between the means of

the daily transfusions during weekdays and weekends (F = 5.13, P value <0.001) and the
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means of daily transfusions in different months (F = 3.94, P value <0.001), which provide

strong evidence in favour of the presence of weekly and monthly seasonalities.
10

15
20

25
30

35

dat
a

−4
−2

0
2

4

sea
son

al
16

17
18

19

tre
nd

−5
0

5
10

15

2010 2012 2014 2016 2018

res
idu

al

time

Figure 3.2: Time series decomposition using STL method

Since the data becomes stationary from 2016 onwards, we also explore the trend, hol-

idays, weekly seasonality, and yearly seasonality (seasonality within a year) starting from

2016 using the Prophet model. As we can see from Figure 3.3, there is a downward trend

from the beginning of 2016 to July 2017 and an upward trend from July 2017 to the end

of 2018. Almost all holidays have a negative effect on the model, except for July 1st. This

means that the demand is lower than regular weekdays for almost all of the holidays, except

for July 1st.
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Figure 3.3: Prophet model for exploring trends, holiday effects, weekly and yearly
seasonality - since these components are combined through a generalized additive model,
the values of y-axes in the plots represent the quantity to be added to or subtracted on a

specific day

We can also see that there is weekly seasonality in which Wednesdays have the highest

demand while the weekends have the lowest demand. Moreover, the yearly seasonality,

captured by Fourier series in the Prophet model, depicts three cycles: 1. January to May

in which March has the highest demand while May has the lowest demand; 2. May to

September in which the demand is highly variable. July has the highest demand in this

cycle and the highest demand of all months while May has the lowest demand in the cycle

and also the lowest demand of all months; 3. September to January with a slight variation

in demand - November with the highest and January with the lowest demands.

Observations for day of the week effect: We also compare the mean daily units trans-

fused based on day of the week by plotting the mean against day of the week, and also

by applying the t-test to compare the mean daily units transfused during weekdays and

weekends.

Figure 3.4 compares the mean daily units transfused and the mean daily units received

based on day of the week, month, and year. Reviewing the figures, it can be concluded that

generally, the range of the daily units received is greater than the range of total transfused
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units in a given, day, month, or year which suggests higher variability for the total number

of received units (standard deviation of 9.33) compared to transfused units (standard devia-

tion of 7.04). Indeed, this has its roots in the bullwhip effect, that is hospitals tend to order

more than their actual demand. We see an opportunity to better coordinate supply (number

of units received) with demand (number of units transfused) through the development of a

daily demand predictor.

Figure 3.4(a) shows that the number of received units is more than the transfused units

over the years. However, there does not appear to be any pattern between the number of

received and transfused units, suggesting that there is no yearly impact on platelet demand.

Figure 3.4(b) indicates that there is a near-uniform pattern for the number of received and

transfused units by month.

Finally, in Figure 3.4(c), it can be noted that on Mondays the number of received units

tends to be significantly larger than for the weekend. It is also noticeable that on weekends

the number of received and transfused units clearly differ from the weekdays due to lower

staffing levels over the weekends. On Saturday, on average, the number of transfused units

is lower than the number of received units, but on Sunday, the total number of received units

drops considerably, resulting in a large gap between the number of received and transfused

units. This appears to be compensated for by the total number of received units on Monday.

This is an additional effect that could be mitigated by better coordination between supply

and demand. Moreover, there is a significant difference in the mean daily platelet usage

when comparing weekdays to weekends (weekday = mean [sd]: 21.20 [6.22], weekend

= mean [sd]: 12.37 [4.60], t-test: 95% confidence interval for the difference in means:

(7.97, 10.34), P value <0.001). Consequently, there is a clear weekday/weekend effect, in

agreement with Figure 3.3, which appears to be caused by various reasons including lower
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staffing levels and operating hours over the weekends and prophylactic platelet transfusions

to cancer patients on Fridays to ensure that their platelet counts remain sufficiently high

over the weekend.
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Figure 3.4: Mean daily units transfused vs. mean daily units received
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Observations for highly correlated predictors: One of the data characteristics is that

clinical predictors are highly correlated. These high correlations can affect the performance

of a regression model, mainly because of the violation of model assumptions. Moreover, it

can reduce the interpretablity of the model, a small change in the model or data may result

in unexpected changes in the predictors’ coefficients.

We calculate the Pearson correlation between the selected predictors. The Pearson cor-

relation measures the linear relationship between two variables, ranging from -1 to 1, where

-1 corresponds to a perfect negative correlation and 1 corresponds to a perfect positive cor-

relation. As shown in Figure 3.5, the predictors, in particular the daily numbers of patients

with abnormal laboratory test results, are highly correlated. These high correlations give

rise to some challenges when the predictors are considered in the demand forecasting pro-

cess, as discussed in Table B.1 of Appendix B.
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Figure 3.5: Pearson correlation among variables
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Chapter 4

Demand Forecasting: from Univariate

Time Series to Multivariate Models

In this chapter, we provide a description of multiple demand forecasting methods, including

univariate analysis and multivariate analysis for forecasting the demand in general, and

evaluate the performance of these models for platelet demand forecasting by using a rolling

window analysis for retraining the models. First, we discuss the forecasting models used

for forecasting the demand. After that, we conduct a comprehensive evaluation of these

models when applied to different amounts of data. Lastly, we compare and analyze the

models based on different metrics, and offer overall recommendations.

4.1 Demand Forecasting Models

This section explains the five forecasting models used for forecasting the platelet demand in

Hamilton hospitals. The Autoregressive Integrated Moving Average (ARIMA) and Prophet

models are univariate models that forecast the demand based on demand history. Univariate
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models can be used to forecast the demand for other blood products since they only use

previous demand values. Lasso regression (least absolute shrinkage and selection operator),

random forest, and Long Short-Term Memory (LSTM) networks are multivariate models

that consider various predictors in addition to demand history for forecasting the demand.

These models can also be extended to other blood products since the variable selection is

carried out through an automated process. The training of these models is not contingent

on a specific blood product.

4.1.1 Univariate Models

The univariate models, ARIMA and Prophet, forecast the demand solely based on the pre-

vious demand values. The ARIMA model does not consider seasonality in data and is

considered as a baseline model. The Prophet model, on the other hand, considers trend,

seasonality, and holidays for forecasting the demand.

4.1.1.1 ARIMA Model

An autoregressive integrated moving average model consists of three components, an au-

toregressive (AR) component that considers a linear combination of lagged values as the

predictors, a moving average (MA) component of past forecast errors (white noise), and an

integrated component where differencing is applied on the data to make it stationary. Let

y1,y2, . . . ,yt be the demand values over time period t; the time series data can be written as:

yt = f (yt−1,yt−2,yt−3, . . . ,yt−n)+ εt (4.1.1)

An ARIMA model assumes that the value of demand is a linear function of a number of

previous past demand values and previous error values. Thus, the ARIMA model can be
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written as:

ŷt = µ +ϑ1yt−1 +ϑ2yt−2 +ϑ3yt−3 + · · ·+ϑpyt−p + εt

−φ1εt−1−φ2εt−2−φ3εt−3−·· ·−φqεt−q (4.1.2)

where ŷt is the response variable (the predicted demand), µ is a constant, ϑi and φ j are

model parameters in which i= 1,2, . . . , p and j = 0,1,2, . . . ,q, p and q are the model orders

and define the number of autoregressive terms and moving average terms, respectively.

In order to fit an ARIMA model, first the ADF test is applied on the time series data

to examine the stationarity, and the standard auto arima() function in Python is used for

hyperparameter tuning and determining the optimal model order. A function is developed

in Python to implement the ARIMA model via a rolling-origin strategy.

4.1.1.2 Prophet Model

Prophet is a time series model introduced by Taylor and Letham (2018) that considers

common features of business time series: trends, seasonality, holiday effects and outliers.

The Prophet model was developed for forecasting events created on Facebook and is im-

plemented as an open source software package in both Python and R. Let gt be the time

series trend function which shows the long-term pattern of data, st be the seasonality which

captures the periodic fluctuations in data such as weekly, monthly or yearly patterns, and

finally ht be the non-periodic holiday effect. These features are combined through a gen-

eralized additive model (GAM) (Hastie and Tibshirani, 1987), and the Prophet time series

model can be written as:

ŷt = gt + st +ht + εt (4.1.3)
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The normally distributed error εt is added to model the residuals. We use the Prophet library

in Python for implementing the Prophet model and develop a function for implementation

via a rolling-origin strategy.

4.1.2 Multivariate Models

In order to explore the effect of including clinical predictors in the forecasting process, in

the next step we introduce three multivariate models that incorporate clinical predictors:

lasso regression, random forest, and LSTM networks. These machine learning models

are implemented to forecast the demand based on demand history and multiple predictors.

Lasso regression is used as a forecasting model and a variable selection method to select

the most relevant predictors for the multivariate models.

4.1.2.1 Lasso Regression

We use lasso regression (Tibshirani, 1996) since it allows predictors to be included in the

demand forecasting process. Lasso uses an L1 penalty, which tends to push some coef-

ficients towards exactly zero, hence it performs variable selection by reducing the impact

of irrelevant or less important predictors. This leads to a reduction in model complex-

ity while improving the prediction accuracy. By considering the actual demand on day t

(t = 1,2, ...,N) as yt and the predicted demand on day t as the product of the clinical predic-

tors (zt j) and their corresponding coefficients β j, where j = 1,2, ...,M specifies the clinical

predictor, the lasso regression model is the solution to the following optimization problem:

argmin
N

∑
t=1

(yt−∑
j

β jzt j)
2 +λ

M

∑
j=1
|β j| (4.1.4)
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subject to
M

∑
j=1
|β j| ≤ τ. (4.1.5)

The optimization problem defined in (4.1.4)-(4.1.5) chooses the coefficients, β , that mini-

mize the sum of squares of the errors between the actual values (y) and the response variable

values, with a sparsity penalty (λ ) on the sum of the absolute values of the model coeffi-

cients. Constraint (4.1.5) forces some of the coefficients (that have a minor contribution

to the estimate) to be zero. Predictors that have non-zero coefficients are selected in the

model, and the response variable is calculated as follows:

ŷt = β zt (4.1.6)

In this study, lasso regression is used as a variable selection method to find important pre-

dictors for platelet demand. Subsequently, this information is used for demand forecasting.

We use the LassoCV function from the sklearn package in Python to implement the lasso

regression. The penalty coefficient λ is chosen through five-fold cross-validation. A func-

tion is developed to implement the lasso regression via a rolling-origin strategy.

4.1.2.2 Random Forest

Random forests, first proposed in Ho (1995), are ensemble methods that use decision trees.

We chose to explore random forests as they can capture nonlinear relationships between

predictors while also being interpretable, as what a decision tree does can be understood by

simply looking at it. Decision trees in a forest are trained using bootstrapped samples and

are only allowed to consider a subset of the predictors when choosing splits. Considering

the actual demand on day t as yt , and the set of days in the bootstrap samples as D, a tree

starts with a root node that has an attached value µ:
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µ =
1
|D| ∑t∈D

yt (4.1.7)

This node creates two child nodes that separate data points based on a clinical predic-

tor, u, where one node gets data with the value of u on day t (ztu) less than a value

v and the other node gets data with ztu greater than or equal to v. These child nodes

have attached values calculated in the same way as the root, µ1 =
1

|{t|ztu<v}|∑t:ztu<v yt and

µ2 =
1

|{t|ztu≥v}|∑t:ztu≥v yt .

The split measures, u and v, are chosen by minimizing the variance of the model. A random

forest grows a number of these trees, K, and produces a prediction for a set of clinical

predictors, zt , by averaging together the predictions of each of the trees:

ŷt =
K

∑
i=1

Ti(zt) (4.1.8)

where each tree Ti takes a set of clinical predictors and traverses the nodes of tree i using

the splits found as described above. Forecasting problems can have linear or nonlinear

relationships among the model predictors. Random forests can work on both linear and

nonlinear data, and are able to capture nonlinear dependencies among the predictors. We

use the RandomForestRegressor function from the scikit-learn package in Python to im-

plement the random forest. Hyperparameter tuning is achieved by using grid search on the

number of trees, maximum tree depth, and the number of features to consider when look-

ing for the best split. The best split in a tree is chosen by minimizing MSE (Mean Square

Error) and five-fold cross-validation is used to reduce overfitting. We developed a function

in Python to implement the random forest model via a rolling-origin strategy.
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4.1.2.3 LSTM Network

LSTM networks are a class of Recurrent Neural Networks (RNN) that were introduced by

(Hochreiter and Schmidhuber, 1997) and are capable of learning long-term dependencies

in sequential data. In theory, RNNs should be capable of learning long-term dependencies,

however they suffer from the so-called vanishing gradient problem. Consequently, LSTM

networks are designed to resolve this issue. An LSTM network maps a set of input neurons

(also called units) to a set of output neurons through a hidden layer. A neuron or unit in

an LSTM network consists of an input gate (it), a forget gate ( ft), a cell state (ct), and an

output gate (ot).

The hidden layer output can be written as a function of the gates, the model input (here

the clinical predictors (zt)), and the previous output of the hidden layer:

ht = σh(it , ft ,ct ,ot ,zt ,ht−1) (4.1.9)

The output of the LSTM network, here the demand forecasts, is calculated as a weighted

sum of the hidden layer outputs plus a bias, b:

ŷt = wht +b (4.1.10)

Like random forests, LSTM networks are able to capture nonlinear dependencies among

the predictors. We implement the LSTM network using the TensorFlow package (Abadi

et al., 2016). The LSTM network is trained by using the ADAM optimizer (Kingma and

Ba, 2014), and MSE is used as the loss function for this optimizer. For hyperparameter

tuning, grid search is performed to find the best model parameters (including the number

of epochs, batch size, and number of hidden layers) toward the minimum MSE. Moreover,
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10-fold cross-validation is used to reduce overfitting. A function is developed in Python to

implement the LSTM network model via a rolling-origin strategy.

4.2 Rolling Window Evaluation

We fit the forecasting models multiple times in order to collect multiple out-of-sample

one-step ahead forecast errors by using a rolling window. The rolling window is used as

part of the demand forecasting process to periodically retrain the models and use more

recent data. The flowchart of the proposed demand forecasting system is given in Figure

4.1. We retrain each model periodically, according to two parameters, the training window

and the retraining period. When we retrain a model, we use a training window of the

most recent data. For evaluation, we consider a rolling-origin evaluation, similar to the

one presented in (Tashman, 2000). Many studies consider a fixed-origin evaluation, but

we consider a rolling-origin evaluation to improve the efficiency and reliability of out-

of-sample tests (Tashman, 2000). In a rolling-origin evaluation, the forecasting origin is

successively updated and new forecasts are produced from each new origin. We set the

forecasting window and rolling steps to be the same as the retraining period.
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Figure 4.1: Proposed forecasting process

Here we consider two training windows, two years (starting from 2016) and eight years

(starting from 2010), to explore the impact of data volume. The forecasting horizon is one

year (2018) in which next day forecasts are generated for each of the retraining periods.

We consider retraining periods of 1, 7, 30, and 90 days, to examine the trade-off between

the accuracy and the overhead of retraining. The forecasting accuracy is computed by aver-

aging the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute

Percentage Error (MAPE), and Symmetric Mean Absolute Percentage Error (SMAPE) over

the forecasting horizon for each rolling origin.
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4.3 Results

This section presents demand forecasting comparisons for univariate and multivariate mod-

els, and the forecasting performance of the models trained with training window sizes of

two and eight years and retraining periods of 1, 7, 30, and 90 days. We implement the

models to forecast the daily demand aggregated over four hospitals for one day ahead via a

rolling-origin strategy. We consider the aggregated demand as a result of internal inventory

management practices. The hospitals work together to share inventory, so we considered

all four hospitals as one entity. We periodically retrain our models based on the rolling

window analysis explained in Section 4.2.

4.3.1 Demand Forecasting Comparisons for Univariate Models

Figure 4.2 compares the forecasts generated by the univariate models, with a training win-

dow of two years and by retraining every day, and the actual demand. The actual demand

has a large variance (mean [sd]: 19.28 [7.36]). The ARIMA model’s forecasts have sig-

nificantly lower variance (mean [sd]: 18.89 [3.09]) in comparison to the actual demand,

meaning that the forecasts cannot capture the wide range of the actual demand. Despite

having a larger variance than the ARIMA model, Prophet shows a similar behavior (mean

[sd]: 19.35 [4.40]).
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Figure 4.2: Comparison of the actual demand and the predicted demand from univariate
models

Next, we examine the univariate models’ residuals via the ACF (Autocorrelation Func-

tion). Figure 4.3 gives the coefficients of correlation between a value and its lag for ARIMA

and Prophet. As we can see in Figure 4.3(a), there is an autocorrelation at time seven (and

multiples of seven) due to weekly seasonality that is not incorporated in the model. Since

seasonality is one of the primary features of our time series data, we include seasonality

directly in the forecasting process by using the Prophet model. As we can see in Figure

4.3(b), there is no repeated autocorrelation pattern for Prophet residuals.

We also perform a pairwise t-test to compare the univariate models’ residuals. The

results show a statistically significant difference between the ARIMA residuals (mean [sd]:

0.39 [6.80]) and Prophet residuals (mean [sd]: -0.07 [5.90], t-test: 95% confidence interval

for the difference in means: (0.08, 0.85), P value = 0.018), indicating higher residuals in

the ARIMA model.
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Figure 4.3: ACF plots for ARIMA and Prophet residuals with a training window of two
years and by retraining every day

4.3.2 Demand Forecasting Comparisons for Multivariate Models

We begin this section with an examination of selecting the clinical predictors for the mul-

tivariate models. Next, we compare the forecasts generated by the multivariate models and

the actual demand.

4.3.2.1 Selecting the Predictors Using Lasso Regression

As discussed in Section 3.1, the data has more than 100 features, and we select predictors

via lasso regression. The 29 clinical predictors that are introduced in Section 3.1 are se-

lected by lasso regression and used for training the multivariate models. More specifically,

we consider clinical indicators, consisting of laboratory test results, patient characteristics

and hospital census data as well as operational related indicators, including the previous

week’s platelet usage and previous day’s received units with the aim of accurate demand

forecasting.

We calculate the confidence intervals for these clinical predictors (also referred to as the

model predictors). There are multiple methods for calculating a confidence interval for the
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predictors; one of the most popular is the bootstrap method (Efron and Tibshirani, 1994).

The bootstrap method is used in the experiments for calculating the confidence intervals

for the predictors used in the multivariate models. As shown in Figure 4.4, the predictors’

coefficients have a wide range, so we see high values (abnormal plt = 0.23) as well as low

values (Friday = -0.39) for the lab tests and day of the week. Overall, we can see that

the range of the predictors’ coefficients for the 95% confidence interval is narrow. Detailed

information about the predictors and their corresponding coefficients are given in Table B.1

of Appendix B.
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Figure 4.4: Confidence interval for predictors’ coefficients - Lasso regression

4.3.2.2 Comparisons of Multivariate Models Forecasts

Figure 4.5 shows the actual daily units transfused and the forecasts generated by the multi-

variate models, lasso regression, random forest and LSTM network, with a training window

of two years and by retraining every day. The forecast means of lasso regression (mean [sd]:

19.12 [3.62]) and random forest (mean [sd]: 19.72 [4.28]) are very close to the actual mean

demand, but forecast standard deviations are much lower than the actual demand standard

variation. LSTM network forecasts have a slightly lower mean (mean [sd]: 18.01 [3.55])

68



Ph.D. Dissertation—M. Motamedi McMaster University—Computer Science

but significantly lower standard deviation than the actual demand.
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Figure 4.5: Comparison of the actual demand and the predicted demand from multivariate
models

Next, a repeated measures ANOVA test is performed for comparing the multivariate

models’ residuals with each other. The results of the test show a statistically significant

difference between the lasso regression, random forest, and LSTM network residuals (F

= 35.86, P value <0.001). To show which models’ residuals are significantly different,

we perform pairwise comparisons by using a pairwise t-test. Table 4.1 gives the results of

the pairwise t-test for the models’ residuals, showing that they are significantly different

from each other. The P values are adjusted using the Bonferroni multiple testing correction

method.
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Table 4.1: Comparison of multivariate models residuals using a pairwise t-test

Model
Descriptive statistics T-test

Mean Standard Deviation Model
95% confidence interval

for the difference in means
P value

Lasso Regression 0.16 6.39 Random Forest (0.09, 1.12) 0.020

Random Forest -0.44 8.77 LSTM Network (1.60, 1.83) <0.001

LSTM Network 1.27 8.34 Lasso Regression (-1.57, -0.65) <0.001

4.3.3 Performance Comparisons

The performance of the forecasting models is computed based on a rolling-origin evalua-

tion and by four error measures, RMSE, MAE, MAPE, and SMAPE. The first two error

measures, RMSE and MAE, are absolute measures while the remaining ones, MAPE and

SMAPE, are relative measures. The errors are measured for each rolling origin for the test

data and reported in Figures 4.6-4.9 and Table 4.2. Table 4.2 gives the mean and standard

deviation of the errors for different training window sizes and retraining periods.

Figures 4.6 and 4.7 compare the RMSE and MAE of the models trained with differ-

ent training window sizes and retraining periods. As we can see in these figures and in

Table 4.2, increasing the size of the training window mostly affects the univariate models,

ARIMA and Prophet. ARIMA’s performance improves when moving from two years to

eight years of data. Since ARIMA’s forecasts are only based on the previous demands,

and the seasonality in data has not changed significantly during the eight years, the model

parameters, p and q, are more robust for longer time series data (including 5 lagged val-

ues and a moving average of 2), resulting in more accurate forecasts. In general, when a

limited amount of data are available, the ARIMA model has a high forecast error not only

because its forecasts are solely based on the previous demands, but also due to the fact that
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it cannot capture the seasonality in the data. Prophet’s accuracy is also improved as the

amount of data increases. However, unlike ARIMA, the forecast errors are similar for dif-

ferent retraining periods. The results for lasso regression and the LSTM network indicate

that there is not much difference for these methods when there is a large amount of data

for training, or when different retraining periods are considered. Random forest does see

a slight improvement with eight years of data, and it is the only multivariate model to see

this improvement. Its forecast errors are very close for different retraining periods.

In terms of the retraining periods, retraining the models less frequently reduces the

variability of the error. If we compare Figure 4.6(a) with Figure 4.6(g), we see that the

RMSE error is less variable in Figure 4.6(g) for all the models, similarly for MAE in Figure

4.7. This can also be verified from the results in Table 4.2, where we see lower standard

deviations as we move down to retraining every 90 days.
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(b) 8 years rolling window, retraining every day
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(c) 2 years rolling window, retraining every 7
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(d) 8 years rolling window, retraining every 7
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(e) 2 years rolling window, retraining every 30
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(f) 8 years rolling window, retraining every 30
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(g) 2 years rolling window, retraining every 90
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(h) 8 years rolling window, retraining every 90
days

Figure 4.6: RMSE with different training window sizes and retraining periods
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(g) 2 years rolling window, retraining every 90
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(h) 8 years rolling window, retraining every 90
days

Figure 4.7: MAE with different training window sizes and retraining periods
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Figures 4.8 and 4.9 compare the MAPE and SMAPE of the models trained with dif-

ferent training window sizes and retraining periods. As we can see from these figures and

from Table 4.2, increasing the training window size does not necessarily decrease the er-

rors. There is similar behavior for the retraining periods, especially for the multivariate

models, but we see that retraining less frequently results in less variable errors.
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(b) 8 years rolling window, retraining every day
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(c) 2 years rolling window, retraining every 7
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(h) 8 years rolling window, retraining every 90
days

Figure 4.8: MAPE with different training window sizes and retraining periods

75



Ph.D. Dissertation—M. Motamedi McMaster University—Computer Science

ARIMA Prophet Lasso Random Forest LSTM Networks
Model

0

10

20

30

40

50

S
M

A
P

E
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(b) 8 years rolling window, retraining every day
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(g) 2 years rolling window, retraining every 90
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(h) 8 years rolling window, retraining every 90
days

Figure 4.9: SMAPE with different training window sizes and retraining periods
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Overall, the results indicate that while univariate models can benefit from a larger train-

ing window size and frequent retraining, the performance of the multivariate models is not

affected by a larger training window, meaning that these models have robust performance

with different data volumes.
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4.4 Comparison and Discussion

In this section, we compare the models and provide recommendations for using these mod-

els in various scenarios. In Section 4.4.1 we compare the models based on a training win-

dow of two years, in Section 4.4.2 we discuss the impact of an increased amount of data

on the forecasting models, and in Section 4.4.3 we discuss the effect of different retraining

periods on the models. Finally, in Section 4.4.4 we provide the overall methodological

implications of the study and in Section 4.4.5 discuss managerial implications.

4.4.1 Univariate versus Multivariate Models

We have presented five different models for platelet demand forecasting that can be divided

into two groups: univariate and multivariate. Univariate models, ARIMA and Prophet,

forecast future demand based only on the demand history. Although the ARIMA model

only considers a limited number of previous values for forecasting the demand, retraining

it every day, week or month leads to a slight performance improvement. The Prophet model

incorporates the historical data, seasonality and holiday effects into the demand forecasting

model which results in an improvement in the forecasting accuracy by approximately 10%

compared to ARIMA. This highlights the impact of weekday/weekend and holiday effects

in the platelet demand variation. As we discussed in Chapter 3, there is a weekday/weekend

effect for platelet demand, which is not (directly) captured in the ARIMA model.

Multivariate models, on the other hand, incorporate clinical predictors as well as histor-

ical demand data for demand forecasting. We use lasso regression to select the dominant

clinical predictors that affect the demand. Lasso regression examines the linear relationship

among the clinical predictors and their influence on the demand. However, as presented in
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Figure 3.5, there are correlations among the clinical predictors. There may also be nonlin-

ear relationships among these clinical predictors that cannot be captured by a linear regres-

sion model. These issues motivated us to use two machine learning approaches, random

forest and LSTM network. Random forest is capable of capturing nonlinearities among

variables and its forecasting method of averaging past values provides some contrast to the

LSTM network’s modelling approach. An LSTM network can also account for nonlineari-

ties among variables. Moreover, an LSTM network is capable of retaining past information

while forgetting some parts of the historical data. As we can see from Table 4.2, in general,

random forest, LSTM network and lasso regression have low forecast errors for different

training window sizes, owing to the inclusion of the clinical predictors.

4.4.2 Two Years versus Eight Years of Data

As discussed in Section 4.1, we train our models for two training window sizes, with two

years and eight years of data, respectively. Since there is no trend in the data from 2016

onwards (see Figure 3.2), in the first scenario the models are trained for two years (training

window size of two years, starting from 2016). With this amount of data and by retraining

every year, forecasts are not accurate for univariate time series approaches, and one needs to

include the clinical predictors in the forecasting model. However, by considering a training

window of eight years, the ARIMA model’s performance improves by approximately 20%,

compared to the case of a two year training window. The Prophet model’s performance also

improves when more data are available, specifically when it is trained less frequently (30

and 90 day retraining windows).

In general the multivariate models result in small forecasting errors for two years of

data for training, and do not perform significantly better as the amount of data increases,
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which shows that there is not much sensitivity to the training window size. This highlights

the importance of including the clinical predictors in the forecasting process.

4.4.3 Different Retraining Periods

We also compare different retraining periods and provide insight on how to choose the ap-

propriate retraining period for this data (and in general). Our results show that considering

different retraining periods does not affect the models in the same manner. While in general

all the models benefit from retraining more frequently, univariate models benefit more. For

the univariate models, the greatest performance increase is for the ARIMA model when

retrained every day, resulting in a decrease of 50% in MAPE and SMAPE. For the mul-

tivariate models, lasso regression has an impressive performance increase when retrained

every day, while random forest and LSTM networks show less sensitivity to the retraining

period. So, by considering the overhead of retraining these models more frequently, one

may decide to use a larger retraining window for random forest and LSTM networks.

Generally, if the retraining period is small, meaning that the models are retrained more

frequently, the mean forecast accuracy representing the long-term overall performance is

improved.

4.4.4 Methodological Implications of the Study

In general, when there is access only to previous demand values, using a univariate model

and retraining it frequently is effective. In practice, applying forecasting models to real-

world healthcare systems can be challenging. One common concern is data accessibility,

especially in small or rural hospitals. In such healthcare facilities, laboratory test results

may not be available or may be limited. In these systems, we recommend employing a
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simple model such as a univariate time series that forecast the demand based on the his-

torical demand of platelets. Results show that using a simple univariate time series model

can yield results comparable to those of more complicated models. Moreover, in resource-

limited settings where access to data scientists and statisticians is limited, a straightforward

univariate model like ARIMA or Prophet can be employed. These models do not demand

extensive expertise for training and usage, making them more accessible and suitable for

such environments. Notably, the World Health Organization (WHO) suggests that along-

side the requirement for robust blood forecasting models, there is also a growing need for

simple models that can be employed in all settings. Univariate models align well with these

requirements (Organization et al., 2010).

In the case that several data variables are available, lasso regression, random forest

models, and LSTM networks can forecast the demand with higher accuracy even when a

small amount of data is available and without frequent retraining. Forecasting problems

can have linear or nonlinear relationships among the model variables. Due to the fact that

LSTM networks are appropriate for both linear and nonlinear time series, and are able to

capture nonlinear dependencies, they can outperform linear regression models when long

term correlations exist in the time series. Based on the LSTM results, we conclude that

long term correlations and nonlinearity are not major issues for our data since the LSTM

model does not significantly outperform lasso regression.

While LSTM networks perform well even with a limited amount of data and they can

capture nonlinear relationships, they lack interpretability. Interpretability is an important

feature of any prediction model used in a safety critical setting like blood product distribu-

tion. Considering the time and memory complexity, and interpretability of these models,

lasso regression has lower time and memory complexity while it is also very interpretable.
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Random forest models maintain interpretability while also having the ability to capture

nonlinear relationships. Random forests do well when their training data has good cover-

age of the different feature combinations the model is forecasting. This is because random

forest models make forecasts for a set of features by averaging together similar data points

from the training data. This allows random forest models to extract nonlinear relationships

but also means they cannot extract trends effectively and may need a large amount of data

in order to work well. This can be seen in our model (see Table 4.2), a training window

of eight years, with more training data points to reference, has a small improvement in the

error measures over a training window of two years for different retraining periods.

Training random forest models and LSTM networks requires expertise in the machine

learning area since poor training will cause low-precision results. It is also worth men-

tioning that the LSTM network is a robust learning model and is capable of learning linear

and nonlinear relationships among the model variables even in very short time series data

(Boulmaiz et al., 2020; Lipton et al., 2015). However, as the number of inputs increases,

both the data variables that make data wide and the data rows that make data tall, LSTM

performance tends to decrease because it is highly dependent on the input size. Moreover,

wide data results in model overfitting (Lai et al., 2018). Having wide data, one can apply

a feature selection method such as lasso regression to reduce the number of variables and

regularize the input.

One limitation of forecasting models is that they cannot capture sharp peaks in demand.

Figure 4.10 depicts the actual and predicted demands for the second half of 2018 with a

training window of two years and a retraining period of 7 days (retraining weekly) using

lasso regression. It appears that the model does some degree of smoothing and thus cannot

detect the sharp peaks. One possible explanation is that regression models are regressed
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on the expectation of the outcome, and are not good at capturing the extreme deviations

from this expectation. However, as shown in Figure 4.10, smoothing mostly occurs for

the maxima rather than the minima. In other words, the model potentially has large errors

when there is excess demand, for example in emergency situations. The results presented

in Sections 4.3.1 and 4.3.2 support that all the models struggle with capturing the peaks in

demand.
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Figure 4.10: Demand forecasting with lasso regression with a training window of two
years and a retraining period of seven days

To sum up, when a sufficient amount of data is available, using a univariate model

results in a low forecast error, particularly in the case that it is retrained every day. Specif-

ically, when there is only access to the previous demand (as is currently the case for CBS)

and adequate historical data are available, one can benefit from a simple univariate model

like ARIMA or Prophet, since univariate models are simpler than the multivariate models.

Multivariate models are useful when there is access to a limited amount of data. Also, they

do not necessarily require frequent retraining, which may be an important implementation

concern.
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4.4.5 Managerial Implications of the Study

The short shelf life of platelets results in wastages which not only incur large costs but also

affect the environment since they cannot be reused, recycled, or recovered (Jemai et al.,

2020). Moreover, since platelet demand is highly variable, urgent same-day deliveries

are placed frequently. Apart from the high cost of urgent orders, platelet shortage can

increase the risk of putting patients’ lives in danger. Currently, blood suppliers are not

aware of the demand at the hospitals since hospitals hold excess inventory to manage the

highly variable platelet demand. Indeed, this has its roots in the bullwhip effect, that is

hospitals tend to order more than their actual demand. We see an opportunity to better

coordinate supply (number of units received) with demand (number of units transfused)

through the development of a daily demand predictor. Forecasting the demand improves

the transparency between blood suppliers and hospitals, and helps blood suppliers to make

better-informed decisions.

From the clinical perspective, accurate demand forecasting is important for clinical and

supply chain management purposes. Demand forecasting can be used for placing optimal

platelet orders and for decision making in many parts of the supply chain such as donation

planning, and resource and staff management. As we can see in Section 4.3, there appears

to be a limit to how accurate the demand forecasts can be, so one important challenge

would be how to use the demand forecasts to inform an ordering policy in an effective

manner. Clearly, forecasts themselves do not reflect an optimal ordering decision but they

can be used as additional information in building effective ordering/inventory management

policies, which is the focus of the remainder of this dissertation.

Moreover, this research provides a holistic analysis of the predictors that affect the

platelet demand, including the clinical predictors, hospital locations, day of the week and
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demand history. This can help blood suppliers with adapting clinically relevant factors into

the decision making process, like decisions regarding the assignment of transfusion-related

staff/resources (beds or equipment).

Overall, there is a significant caveat with all of these approaches in that there are still

forecasting errors, in particular they all struggle with capturing peaks. These underestima-

tions may cause significant concerns for using such forecasts directly as there is the danger

of severe underestimation. Therefore, some adjustments may be required for using these

forecasts according to specific objectives. In the next chapter, we propose an optimization

model to incorporate demand forecasts in the inventory model.

4.5 Conclusion

In this chapter, we utilized two types of methods for platelet demand forecasting, univariate

and multivariate methods. Univariate methods, ARIMA and Prophet, forecast platelet de-

mand only by considering the historical demand information, while multivariate methods,

lasso regression, random forest and LSTM networks, also consider clinical predictors. The

error levels for the univariate models, particularly in the case that a small amount of data

is available, motivate us to utilize clinical predictors to investigate their ability to improve

the accuracy of forecasts. Results show that lasso regression, random forest and LSTM

networks outperform the univariate methods when a limited amount of data are available.

Moreover, since they include clinical predictors in the forecasting process, their results can

aid in building a robust decision making and blood utilization system. However, their ap-

plication is not limited to platelet products. We believe that they can be used in various

areas when data features are available, including healthcare in general, finance and climate

studies. On the other hand, when there is access to a sufficient amount of data, the marginal
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improvement for a simple univariate model such as ARIMA is higher than for multivariate

models. In such scenarios, univariate models can be applied to historical data for demand

forecasting, regardless of the product, which makes these models generalizable and widely

applicable.
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Chapter 5

Inventory Management of Perishable

Products by Incorporating Demand

Forecasts

In this chapter, we analyze the optimal ordering policy in a periodic-review single-item

inventory system when demand forecasts are included in the inventory model. Demand

forecasts are considered as a function of previous forecast value. We provide a mathe-

matical characterization of the optimal ordering policy in terms of the structural properties

under such assumptions. Also, we propose a heuristic as an alternate for the optimal policy.

Our experiments suggest that by including forecasts in the inventory model, we can keep

the cost at a very low level while keeping the on-hand inventory close to the actual demand.

We start this chapter with a formal description of the inventory problem. In Section

5.2, structural properties of the optimal ordering policy are explored. Next, we explain our

proposed heuristic in Section 5.3. Finally, Section 5.4 concludes the chapter.
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5.1 Problem Description and Model Formulation

We consider a periodic-review single-item inventory system over a finite horizon of T pe-

riods. We consider both lost-sales and backlogging cases. The product is perishable with

a fixed shelf life of R periods. At the beginning of each period t, an order is placed and

is received immediately (the lead time is zero). The per unit ordering cost is denoted by

c. The inventory is described by a vector of size R, xt = [x1
t ,x

2
t , ...,x

R
t ], in which xr

t is the

number of items in inventory with a remaining shelf life of r periods. We assume that the

new arrivals, qt , are fresh products with a remaining shelf life of R periods. Next, demand

dt occurs and is satisfied based on the FIFO policy. This is a common assumption in the

literature, specifically when the suppliers control the inventory issuing policy (Chen et al.,

2014). Demand takes an additive form, which is also a common assumption in the literature

(Chen and Simchi-Levi, 2004; Chen et al., 2014):

dt = f̂t + e( f̂t) (5.1.1)

where f̂t is the predicted demand in period t and e( f̂t) is the forecast error, whose distribu-

tion is dependent on f̂t . If there are any shortages, a penalty cost, p per unit of shortage,

is incurred. At the end of the period, the expired units are disposed of and considered as

wastage with a cost of w per each wasted unit. Finally, the inventory, xt , is updated based on

the consumed units, and a holding cost, h per unit, is incurred based on the items remaining

in the inventory. Figure 5.1 is a representation of the problem.
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Order and add 𝑞𝑡 to stock

𝑥𝑡
𝑅 = 𝑞𝑡

𝒙𝑡 = [𝑥𝑡
1, 𝑥𝑡

2, … , 𝑥𝑡
𝑅]

Demand 𝑑𝑡 Usage

𝒂𝑡 = {𝑎𝑡
1, 𝑎𝑡

2, … , 𝑎𝑡
𝑅}

Wastage

𝑊𝑡 = (𝑥𝑡
1- 𝑎𝑡

1)+

Update the inventory

𝒙𝑡+1 = {𝑥𝑡+1
1 , 𝑥𝑡+1

2 , … , 𝑥𝑡+1
𝑅−1}

𝑥𝑡+1
𝑟 = 𝑥𝑡

𝑟+1 −  𝑎𝑡
𝑟+1

Figure 5.1: Inventory update process

The predicted demand, f̂t , is calculated as a function of f̂t−1, the previous period’s

predicted demand, plus an error εt as follows:

f̂t = θ f̂t−1 + εt (5.1.2)

The errors εt are independently and identically distributed. We will also discuss a more

general forecast function in which the forecast value is a more complex function of previous

demand forecast values and demand values.

5.1.1 The Lost-Sales Case

In the lost-sales case, unmet demand is lost. To implement the FIFO policy, we fol-

low a similar approach to Chen et al. (2014) and consider inventory as a vector st =

[s1
t ,s

2
t , . . . ,s

R−1
t ], where

s1
t = x1

t , s2
t = s1

t + x2
t , . . . , sR−1

t = sR−2
t + xR−1

t , (5.1.3)

and sR
t = sR−1

t +qt . Finally, the next state is:

st+1 = [(s2
t −dt)

+,(s3
t −dt)

+, . . . ,(sR
t −dt)

+] (5.1.4)
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Now, using the relation dt = f̂t + e( f̂t), we can write the expected cost for period t as:

E[c(sR
t − sR−1

t )+h(sR
t − ( f̂t + e( f̂t)))++w(s1

t − ( f̂t + e( f̂t)))++ p(sR
t − ( f̂t + e( f̂t)))−] (5.1.5)

The objective is to find an optimal ordering policy to minimize the total expected dis-

counted cost over a finite planning horizon:

min
sR
t ≥sR−1

t


T

∑
t=1

γ
t−1E[c(sR

t − sR−1
t )+h(sR

t − ( f̂t + e( f̂t)))+

+w(s1
t − ( f̂t + e( f̂t)))++ p(sR

t − ( f̂t + e( f̂t)))−]

 (5.1.6)

subject to:

sr
t+1 = (sr+1

t −dt)
+ ∀ t ≥ 1,1≤ r ≤ R−1 (5.1.7)

dt = f̂t + e( f̂t) (5.1.8)

where γ ∈ [0,1] is the discount factor. The optimal cost from day t onward, ût(st, f̂t , f̂t−1),

can be written as follows:

ût(st , f̂t , f̂t−1) = min
sR
t ≥sR−1

t

{ĝt(st ,sR
t , f̂t , f̂t−1)} (5.1.9)

where

ĝt(st ,sR
t , f̂t , f̂t−1) = E

c(sR
t − sR−1

t )+h(sR
t − ( f̂t + e( f̂t)))++w(s1

t − ( f̂t + e( f̂t)))+

+ p(sR
t − ( f̂t + e( f̂t)))−+ γE[ût+1(st+1, f̂t+1, f̂t)]

 (5.1.10)
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5.1.2 The Backlogging Case

In this section, we analyze the backlogging case where shortages are backordered. In the

backlogging case, the on-hand inventory can be a negative value; sr
t ≤ 0 denotes that there

is a backlog of |sr
t | items with shelf life of at most r periods. The next state is expressed as:

st+1 = [s2
t −dt ,s3

t −dt , . . . ,sR
t −dt ] (5.1.11)

We can rewrite the expected cost for period t as:

E[c(sR
t − sR−1

t )+h(sR
t − ( f̂t + e( f̂t)))++w(s1

t − ( f̂t + e( f̂t)))++b(sR
t − ( f̂t + e( f̂t)))−] (5.1.12)

where b is the backorder cost per item. The assumption c≤ b/(1−γ) implies that buying a

unit in the current period has a lower cost than buying a unit in the next period, which pre-

vents the model from intentionally holding backorders. Next, we rewrite the cost function

for this case as:

min
sR
t ≥sR−1

t


T

∑
t=1

γ
t−1E[c(sR

t − sR−1
t )+h(sR

t − ( f̂t + e( f̂t)))+

+w(s1
t − ( f̂t + e( f̂t)))++b(sR

t − ( f̂t + e( f̂t)))−]

 (5.1.13)

subject to:

sr
t+1 = sr+1

t −dt ∀ t ≥ 1,1≤ r ≤ R−1 (5.1.14)

dt = f̂t + e( f̂t) (5.1.15)
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Similar to the lost-sales case, the optimal cost from day t onward, ût(st, f̂t , f̂t−1), can be

written as follows:

ût(st , f̂t , f̂t−1) = min
sR
t ≥sR−1

t

{ĝt(st ,sR
t , f̂t , f̂t−1)} (5.1.16)

where

ĝt(st ,sR
t , f̂t , f̂t−1) = E

c(sR
t − sR−1

t )+h(sR
t − ( f̂t + e( f̂t)))++w(s1

t − ( f̂t + e( f̂t)))+

+b(sR
t − ( f̂t + e( f̂t)))−+ γE[ût+1(st+1, f̂t+1, f̂t)]

 (5.1.17)

5.2 Structural Properties of the Optimal Policy

In this section, we explore structural properties of the optimal ordering policy for the lost-

sales case. This structural analysis can be easily extended to the backlogging case. First,

we characterize the form of the optimal policy. We show that the cost function satisfies the

L\-convexity property, which characterizes the optimal ordering policy. Next, we explore

monotonicity properties of the optimal policy. The results presented in this section offer

valuable perspectives on the optimal ordering policy, which motive us to propose easy to

implement intuitive heuristics in the next section. L\-convexity is a combination of convex

analysis and lattice structure, so we start by introducing the definition of lattice structure.

Let F be either the real space, R, or the integer space, Z. We define R= R∪+∞ and F n

as n-tuples of real or integer numbers. Now, we introduce two operations in Rn named join

(∨) and meet (∧). For any x = (x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn) in Rn, their join is

defined as:

x∨y = (max{x1,y1},max{x2,y2}, . . . ,max{xn,yn}) (5.2.1)
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and their meet is defined as:

x∧y = (min{x1,y1},min{x2,y2}, . . . ,min{xn,yn}) (5.2.2)

A set X ⊆ Rn is called lattice if for any x,y ∈ X , x∨ y,x∧ y ∈ X . Also, X is called a

sublattice of Rn since it takes the supremum and infimum from Rn.

The concept of L\-convexity was first introduced by Murota (1998) for functions de-

fined on integer spaces.

Definition 1 (L\-convexity) A function f : F n→R is L\-convex, if for any x,y ∈F n and

any α ∈F+:

f (x)+ f (y)≥ f ((x+αe)∧y)+ f (x∨ (y−αe)) (5.2.3)

where e is the all-ones vector.

Definition 2 (Submodularity) A function f : Rn→ R is submodular, if for any x,y ∈ Rn:

f (x)+ f (y)≥ f (x∧y)+ f (x∨y) (5.2.4)

We can present an equivalent definition of L\-convexity based on submodularity as follows.

Proposition 1 A function f : F n→ R is L\-convex if and only if for ξ in the intersection

of F and any unbounded interval in R, g(x,ξ ) = f (x−ξ e) is submodular on (x,ξ ).

The proof of this proposition is provided in Simchi-Levi et al. (2005).

Now, in order to establish the L\-convexity property, it is necessary to obtain several

lemmas. We start by showing that L\-convexity is preserved for specific changes in the

state. Lemma 1 and Lemma 2 are developed using results from Zipkin (2008).
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Lemma 1 If v : F n→ R is an L\-convex function, then the function

υ(s1,s2) = v(s1− s2e)

is also L\-convex.

Proof. The function υ(s1,s2) is L\-convex if ω(s1,s2,ξ ) = υ [(s1,s2)−ξ (e,1)] is submod-

ular:

υ [(s1,s2)−ξ (e,1)] = υ(s1−ξ e,s2−ξ ) = v[(s1−ξ e)−(s2−ξ )e] = v(s1−s2e) = υ(s1,s2)

The function υ(s1,s2) is submodular and so L\-convex. �

Lemma 2 Let v(s1,s2) : F n×F → R be an L\-convex function. The function υ(s1) =

mins2 v(s1,s2) is also L\-convex over F n.

Proof. If v(s1,s2) is L\-convex, then ω(s1,s2,ξ ) = v[(s1,s2)−ξ (e,1)] is submodular. We

can write:

υ(s1− s2e) = min
ξ

v(s1− s2e,ξ ) = min
ξ

v[(s1,s2 +ξ )−ξ (e,1)] = min
ξ

ω[(s1,s2 +ξ ,ξ )]

= min
I≤ξ

ω(s1,I,ξ )

Since the constraint on the minimum is a sublattice of F ×F , using Theorem 2.7.6 of

(Topkis, 1998), submodularity is preserved. �

Lemma 3 If v is L\-convex and is nondecreasing in its variables, then the function

v̂(s1,s2, . . . ,sn) = v((s1−a)+,(s2−a)+, . . . ,(sn−a)+)
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is L\-convex for all (s1,s2, . . . ,sn).

Proof. Let

ṽ(s1,s2, . . . ,sn) = v(s+1 ,s
+
2 , . . . ,s

+
n )

Since v is nondecreasing in its variables, we can define Ii ≥ si and write:

ṽ(s1,s2, . . . ,sn) = minIi≥si,0≤I1≤···≤Inv(I1,I2, . . . ,In)

Since the set associated with the constraints is lattice and the function v is L\-convex,

using Lemma 2, ṽ(s1,s2, . . . ,sn) is also L\-convex. Using Lemma 1, we can conclude that

v̂(s1,s2, . . . ,sn) = ṽ(s−ae) is L\-convex. �

Now, we show that the cost function is L\-convex.

Theorem 1 The cost function ût(st , f̂t , f̂t−1) is L\-convex.

Proof. We prove the L\-convexity of ût(st , f̂t , f̂t−1) and ĝt(st ,sR
t , f̂t , f̂t−1) by induction.

For a finite horizon, we consider ûT (sT , f̂T , f̂T−1) = 0, so the result certainly holds for

ûT (sT , f̂T , f̂T−1). Assume that ût+1(st , f̂t , f̂t−1) is L\-convex. Again, we can rewrite the

cost-to-go function using the fulfilled demand:

k̂t(st ,sR
t , f̂t , f̂t−1|e( f̂t),εt+1)= min

sR
t ≥sR−1

t


ψt = c(sR

t − sR−1
t )+h(sR

t − ( f̂t + e( f̂t)))++w(s1
t − ( f̂t + e( f̂t)))+

+ p(sR
t − ( f̂t + e( f̂t)))−+ γ ût+1(st+1, f̂t+1, f̂t)) : f̂t+1 = θ f̂t + εt+1


(5.2.5)

The first four terms in the objective function ψt are L\-convex. Since εt+1 is given, the con-

straint is lattice. By Lemma 3, L\-convexity of ût+1(st , f̂t , f̂t−1) implies that ût+1(st+1, f̂t+1, f̂t)

is L\-convex. Since ût+1(st+1, f̂t+1, f̂t) is L\-convex, by using Lemma 2, k̂t is L\-convex be-

cause of the L\-convexity of ψt . Now, we can calculate the expected value of
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k̂t(st ,sR
t , f̂t , f̂t−1|e( f̂t),εt+1) over the forecast error distribution, Fe( f̂ ), and the predicted de-

mand residuals, Fε :

ĝt(st ,sR
t , f̂t , f̂t−1) = EFe( f̂ ),Fε

[k̂t(st ,sR
t , f̂t , f̂t−1|e( f̂t),εt+1)] (5.2.6)

ût(st , f̂t , f̂t−1) = min
sR
t ≥sR−1

t

{ĝt(st ,sR
t , f̂t , f̂t−1)} (5.2.7)

Using Corollary 2.6.2 of (Topkis, 1998), L\-convexity is preserved by expectation, so ĝt is

L\-convex. Also, by using Lemma 2, ût is L\-convex. �

Theorem 1 verifies the L\-convexity of the cost function. We conjecture that the the-

orem holds in more generality for the forecast function (5.1.2), in particular when f̂t is

a linear function of i previous forecast values and j previous demand values. The L\-

convexity property of the cost function allows us to prove that the optimal ordering policy

is a base-stock policy in which the order-up-to level is a function of the state. We define f̂−

as the predicted demand value in the previous period.

We next explore monotonicity properties of the optimal order-up-to level sR. Due to

the dependence of the forecast error on the forecast, the order quantity is in general not

monotone in the demand forecasts. For example, a demand forecast may lead to a lower

order-up-to quantity than a lower demand forecast that exhibits higher variance in its error

distribution. To address this, we assume that the forecast error is a multiplicative function

of the forecast as follows:

e( f̂t) = Zt f̂t (5.2.8)

The random multipliers Zt are assumed to be independently and identically distributed with

bounded support on [-1, ∞). Next, we rewrite the demand as a function of the predicted
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demand and the forecast error as:

dt = f̂t +Zt f̂t = f̂t(1+Zt) = ζt f̂t (5.2.9)

where the random variable ζt = 1+Zt . Hence, demand takes the form of a multiplicative

function of the expected demand, which is a common assumption in the literature (Bern-

stein et al., 2016; Simchi-Levi et al., 2005).

Theorem 2 (Monotonicity properties of the model) The cost functions ĝt(st ,sR
t , f̂t , f̂t−1)

and ût(st , f̂t , f̂t−1) are L\-convex. Thus, the optimal order-up-to level sR is nondecreasing

in the current inventory level s and current and previous demand forecasts, f̂ , f̂−.

Proof. Due to the L\-convexity of the cost function ût , and based on Lemma 2.3.5 in

(Simchi-Levi et al., 2005), the optimal solution sR is nondecreasing in the inventory values

s, the current forecast value f̂ , and previous predicted demand value f̂−. �

Theorem 2 establishes a monotonicity result for the optimal order-up-to level in the

demand forecasts. It states that the optimal order-up-to level is a nondecreasing function

of each element of the state, including demand forecasts. Since order quantity is the differ-

ence between order-up-to and inventory levels, the order quantity is nondecreasing in the

demand forecasts and nonincreasing in the inventory levels.

5.3 A Proposed Heuristic

In the previous section, we have shown L\-convexity of the cost function. L\-convexity

of the cost function guarantees that a local optimum is the global optimum. Thus, we

have shown that the optimal policy is a state-dependent order-up-to level, sR, that depends
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on the inventory values, and current and previous demand forecast values. We have also

proved that the order-up-to levels sR are nondecreasing in the forecast values. Motivated

by this property and due to the dependence of the optimal policy on the state, we propose a

heuristic as a substitute for the optimal policy. The ordering quantity is chosen as follows:

in each period t, the inventory is filled up to an order-up-to level, St . The order-up-to levels

are defined as an affine function of the current period’s forecasts, f̂t , as follows:

St( f̂t) = α f̂t +β (5.3.1)

The coefficient of the predicted demand, α , captures the dependence of the order-up-to

level on the demand forecast. One can intuitively think of this heuristic as one in which

there is a fixed base-stock level (β ) that is adjusted depending on the demand forecast

(through the coefficient α). At one extreme, α = 0 would correspond to a fixed base-stock

policy, while α = 1 and β = 0 would correspond to the policy where orders are equal to

the forecasts. This heuristic is consistent with the monotone nature of the optimal policy.

Given that demand forecasts are generated by models such as ARIMA or LSTM networks,

which determine the forecasts based on previous demand and demand forecasts, we can

infer that f̂ contains a combination of the past history. Thus, only f̂ is included in (5.3.1)

for computing the order quantity. In the next chapter, we will evaluate the heuristic and

compare it with other ordering policies.
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5.4 Conclusion

In this chapter, we studied the structural properties of the optimal ordering policy for a per-

ishable product with a fixed shelf life over a finite horizon for both lost-sales and backlog-

ging cases when demand forecasts are included in the inventory model. Using a property

called L\-convexity, we showed that the optimal ordering policy is state-dependent, de-

pending on the current inventory level and the forecast history. Moreover, we showed the

monotonicity properties of the optimal policy in the state which motivated us to propose a

heuristic in which the order-up-to levels are an affine function of demand forecasts. These

results show that incorporating demand forecasts in the inventory model results in the state-

dependent optimal policy being dependent on demand forecasts. This is in contrast with

recent work that includes factors that influence demand, but does not make explicit de-

mand forecasts (Guan et al. (2017); Abouee-Mehrizi et al. (2022)). This dynamic approach

to inventory management offers several advantages, such as allowing the inventory level

to adjust based on demand fluctuations and generating order quantities that closely align

with actual demand. This not only reduces the wastage rate but enhances the transparency

of suppliers and retailers, thereby aiding suppliers in their planning. Moreover, it gives

freedom to managers to choose suitable demand estimators which can be plugged into our

proposed ordering policy (these demand estimators may serve other purposes beyond in-

ventory management). In the next chapter, we evaluate the performance of the heuristic

by implementing it for a real dataset. We also consider the cases when more history is

included in the heuristic (as the constructed estimators include more history than (5.1.2))

to further investigate our conjecture.
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Chapter 6

Experiments and Results

In this chapter, we evaluate the performance of the heuristic proposed in Chapter 5. As

was the case for our forecasting models, we consider the daily demand aggregated over

four hospitals due to internal inventory management procedures. Firstly, we compare the

performance of the heuristic with the case that more history is included in the heuristic. As

discussed in the previous chapter, this would be appropriate if the constructed estimators

use more history, which will be the case for the estimators constructed as per the approaches

in Chapter 4. This will help us to further explore our conjecture numerically. Secondly,

we perform sensitivity analysis to explore the generality of the heuristic. Thirdly, we in-

vestigate a special case of the general inventory problem by considering just shortage and

wastage costs. For platelet products, the key cost factors revolve around shortages (given

their impact on human health) and wastage costs (due to their price). This concept can be

extended to other perishable items, leading us to contemplate the use of a simplified cost

function. We evaluate this case for three different forecasts and compare it with a classic

base-stock policy and the policy that is currently used at the hospitals. Different sensitivity

analyses are done for this case as well. Finally, we explore the possibility of reducing the
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ordering frequency.

6.1 Results for the Proposed Heuristic

This section includes the experimental results for the heuristic proposed in Chapter 5. For

all evaluations, we use the platelet transfusion data described in Chapter 3. Forecasts are

generated based on models described in Chapter 4. The current inventory management

that Hamilton hospitals use for their blood supply chain is similar to a base-stock policy.

In a base-stock policy (Glasserman and Tayur, 1994), a replenishment order is placed to

increase the inventory level up to the base-stock level, S, when the inventory level at the

end of a period is below S. Base-stock policies are known to perform well, especially when

the shortage cost is much higher than the holding cost. However, they can result in high

inventory levels, in particular when the base-stock level is high. This can be problematic in

systems with limited inventory capacities. The base-stock level should be sufficiently large

to prevent shortages, but at the same time should not result in significant wastages (van

Sambeeck et al., 2022). In this section, we evaluate the performance of the heuristic and

compare it with that of a classic base-stock policy and the current practice at the hospitals.

6.1.1 Training the Heuristic

The values of α and β are trained using historical data. With the current time denoted by

t, we choose α and β using historical data from a time window of length T (the training

window), i.e., data from time t0− T + 1 to t0, where T < t0 < t. In our case, α and β

are updated weekly, with a training window of the most recent two years of data. The

historical data consists of the realized demands du and the corresponding estimates f̂u over
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the training window u = t0−T + 1, ..., t0, where t0 is the end of a training window. The

chosen values of α and β are then used to determine the base-stock function (5.3.1).

The values of α and β are determined by solving the following optimization problem:

min
α,β

t0

∑
u=t0−T+1

cqu +h(
R

∑
r=1

xr
u−du)

++ p(du−
R

∑
r=1

xr
u)

++w
(
x1

u−du
)+

(6.1.1)

subject to:

xR
u = qu, u = t0−T +1, . . . , t0 (6.1.2)

qu = α f̂u +β − (
R

∑
r=1

xr
u−1−du−1)

+, u = t0−T +1, . . . , t0 (6.1.3)

xr−1
u = xr

u−1−ar
u−1, u = t0−T +1, . . . , t0; r = 1,2, . . . ,R (6.1.4)

ar
u =

 du−∑
r−1
j=1 x j

u if du−∑
r−1
j=1 x j

u < xr
u

xr
u otherwise

(6.1.5)

qu ≥ 0, α ≥ 0 (6.1.6)

The cost function, (6.1.1), consists of ordering, holding, shortage and wastage costs. The

ordering cost is the product a constant ordering cost (c) and the number of ordered units on

day u, qu. The holding cost is the product of a constant holding cost (h) and the number

of units in the inventory on day u. The shortage cost is the product of a constant shortage

cost for each shortage (p) and the number of shortages, defined as the difference between

the actual demand, du, and the inventory level on day u, if the inventory level is lower than

the actual demand. Finally, the wastage cost is the product of a constant wastage cost (w)

and the number of expired units on day u,
(
x1

u−du
)+. In (6.1.2), the inventory update is
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defined based on new arrivals, qu (note that in the solution to this optimization problem, the

quantities qu will in general be different than the historical order quantities). New arrivals

(the ordering quantity) are the difference between the target inventory level, S( f̂u), and the

inventory level at the end of the previous day, as shown in (6.1.3). The inventory values, xr
u,

are updated based on new arrivals and the number of consumed units on day u, ar
u, as stated

in (6.1.4). The consumed units of r remaining days after withdrawing all products having

remaining days from 1 to r− 1 using the FIFO withdrawal policy is denoted by ar
t . The

usage of each unit with r remaining days based on the FIFO policy is calculated in (6.1.5).

We also compare the heuristic with policies that have the order-up-to level as a linear

function of current and previous demand forecasts. Considering that forecasts are generated

by models that have in themselves a history of demand and demand forecasts, like ARIMA,

including the current period’s forecast has in itself demand history. To evaluate the effect

of directly including forecast history in the order-up-to level function, we redefine it as:

St = Σ
M
k=1αk f̂t−k+1 +β M = 1,2, . . . ,T (6.1.7)

where M = 1 corresponds to the proposed heuristic. As M grows, the correlation between

the order-up-to level and previous forecasts increases. This would allow us to evaluate our

conjecture that the optimal ordering policy depends on a history of forecasts and demand

values.1 Demand forecasts are generated from an LSTM network (forecast MAPE (Mean

Absolute Percentage Error) = Mean [sd]: 26.45 [8.39] and forecast RMSE (Root Mean

Squared Error) = Mean [sd]: 4.32 [2.01]) as presented in Chapter 4.

1Since forecasts are generated by models such as ARIMA or LSTM networks, they are derived based on
previous demand and demand forecasts. So, one can infer that they contain a combination of the past history.
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6.1.2 Results

To compare the performance of the proposed heuristic and the cases when previous fore-

casts are considered in the order-up-to function, we use a data-driven approach; values of

α and β are obtained by minimizing the total cost over a planning horizon of one year

(2017) in the data. These values are used to calculate the cost over a six month period,

from January 2018 to June 2018. The initial inventory is 20. Given that the actual costs

are not a determining factor (only the relative cost values matter), the ordering cost is set at

1 per unit, the holding cost at 0.25 per unit, the wastage cost at 1 per wasted unit, and the

shortage cost at 5 per unit. Shortages are handled by placing backorders so no demand is

lost. The inventory is updated based on the FIFO policy.

Table 6.1 gives the total cost, number of wastages and backorders for the proposed

heuristic, order-up-to functions with history, a data-driven base-stock policy and the policy

that is currently used at the hospitals. To train the data-driven base-stock policy, we force

α to be zero in the optimization problem in Section 6.1.1. We train the base-stock model

for one year (2017), similar to how the heuristic is trained, and update the inventory for

January 2018 to June 2018. The policy currently used at the hospitals is a base-stock

policy in which the base-stock value (S) is chosen based on the assessment of clinical staff.

The first five rows correspond to (6.1.7), where M = 1 represents the proposed heuristic.

As we see in Table 6.1, including more history in the order-up-to-level function results in a

slight decrease in total cost and the number of backorders.
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Table 6.1: Costs of the proposed heuristic, an order-up-to function with history, a
base-stock policy and the current practice

Model Total cost Number of wastages Number of backorders

M = 1 4250 0 37

M = 2 4187 0 35

M = 3 4166 0 33

M = 4 4162 0 32

M = 5 4156 0 30

The base-stock policy 4397 0 42

The actual policy at hospitals unknown 231 unknown

Figure 6.1 illustrates cost improvements of the order-up-to functions with history and

base-stock policy compared to the proposed heuristic. As we see in Figure 6.1, as more

forecast history is added to the order-up-to-level function, in general there is a cost im-

provement which becomes smaller as more history is added to the model. These results

support our conjecture in Chapter 5 that the forecasts can depend on more than one previ-

ous forecast value.

Figure 6.1: Cost improvement for different policies in comparison to the proposed
heuristic
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Table 6.2 shows the mean and standard deviation of the inventory, ordering quantities,

and actual demands for the proposed heuristic, order-up-to functions with history, a base-

stock policy, and the actual policy at the hospitals. The proposed heuristic and order-up-to

functions with history result in significantly lower inventory levels compared to a base-

stock policy. That reduces not only the ordering, wastage, and holding costs but also keeps

the shortages low. The proposed policy with/without previous history and data-driven base-

stock policy have a significantly lower inventory level than the actual policy at the hospitals.

Furthermore, the mean daily order quantity is very close to the actual demand for all the

models, including the base-stock policy. The mean order quantity of the actual policy is

slightly larger than the actual demand and has high variability.

Table 6.2: Inventory levels of the proposed heuristic, an order-up-to function with history,
a base-stock policy and the current practice

Model Inventory (mean ± std) Order Quantity (mean ± std) Demand (mean ± std)

M = 1 7.52 ± 5.52 19.82 ± 8.61 20.55 ± 7.34

M = 2 7.26 ± 5.38 19.71 ± 9.10 20.55 ± 7.34

M = 3 7.26 ± 5.38 19.71 ± 9.10 20.55 ± 7.34

M = 4 7.07 ± 5.13 19.73 ± 8.64 20.55 ± 7.34

M = 5 6.20 ± 5.06 19.43 ± 8.66 20.55 ± 7.34

The base-stock policy 11.23 ± 6.99 20.21 ± 7.02 20.55 ± 7.34

The actual policy at the hospitals 43.35 ± 7.49 22.08 ± 9.95 20.55 ± 7.34

6.1.2.1 Sensitivity to the Shelf Life

We investigate the sensitivity of our proposed heuristic to different shelf lives of 2, 3, 4,

and 5 days and compare it with a base-stock policy. Figure 6.2 illustrates the total cost,

wastages, shortages, and inventory levels for different shelf lives. We see in Figure 6.2 (a)

that shorter shelf life leads to an increase in total cost, primarily due to a lower inventory
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level (see Figure 6.2 (c)) that increases shortages. As shown in Figure 6.2 (b), shorter shelf

lives increase shortages as a result of decreased on-hand inventory. Additionally, shorter

shelf lives lead to significantly higher wastage as their shelf life is comparatively smaller.

Products with a shelf life of 3, 4, and 5 days have zero wastage, while a product with a shelf

life of 2 days has a wastage of around 45 and 110 for the proposed heuristic and the base-

stock policy, respectively. This can be attributed to the fact that longer shelf lives allow for

items to be stored for longer periods, allowing for higher on-hand inventory, which leads

to lower wastages and shortages.

(a) (b) (c)

Figure 6.2: Sensitivity to the shelf life for the proposed heuristic

6.1.2.2 Sensitivity to the Costs

We also explore the sensitivity of the heuristic and the base-stock policy to ordering, hold-

ing, wastage, and shortage costs. As we change the wastage cost, the wastages remain

zero for both the heuristic and the base-stock policy. This is mainly due to the ordering

quantities being close to the actual demand and keeping the on-hand inventory low, which

may result in shortages but keeps the wastage zero. Figure 6.3 represents the sensitivity of

the total cost, mean daily number of units in the inventory, and mean daily order quantities

to the ordering, holding, and shortage costs. We see in Figure 6.3 (a) that as the ordering
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cost increases, the total cost increases for both the heuristic and the base-stock policy, with

a small gap between the costs for the heuristic and the base-stock policy. As we expect,

by increasing the ordering cost, the mean daily ordering quantity reduces for both models

(Figure 6.3 (c)), but the reduction has a gradual slope. Similarly, the mean daily number of

units in inventory decreases gradually as the ordering cost increases.

Figures 6.3 (d) - 6.3 (f) illustrate sensitivity to the holding cost. As the holding cost

rises, the total cost for both models rises with a constant gap. The mean daily number

of units in the inventory has a significant decrease for a slightly larger holding cost, an

increase of 20%. Figure 6.3 (f) shows that by increasing the holding cost, the gap between

the base-stock and the heuristic increases while both models see a decrease in the number

of ordered units.

Finally, Figures 6.3 (g) - 6.3 (i) depict the sensitivity to the shortage cost. As mentioned

earlier, we consider the backlogging case, meaning that the shortages are backordered. We

see in Figure 6.3 (g) that increasing the shortage (backorder) cost leads to a larger gap

between the total cost of the heuristic and the base-stock policy. For a shortage cost of

2.5, the total costs of both models are very close, but for a shortage cost of almost 10

times larger, there is a significant gap between the costs of the two models. Moreover, as

shown in Figure 6.3 (h), as the shortage cost increases, while the on-hand inventory for the

heuristic and the base-stock policy rises, the gap between the heuristic and the base-stock

policy widens. The increase in the inventory level shows an initial steep slope, followed by

a gradual slope from a shortage cost of 10 per unit. The on-hand inventory for the base-

stock policy is almost 50% higher than the heuristic when the shortage cost is 20 per unit.

Similarly, as the shortage cost increases, there is a sudden increase in the mean daily order

quantity followed by a gentle slope.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.3: Sensitivity to the costs for the proposed heuristic

6.1.2.3 Impact of Forecast Error on the Heuristic

In this section, we investigate the impact of forecast error on the performance of the pro-

posed heuristic and order-up-to functions with history. Specifically, we examine the effect
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of two different forecast errors on shortages, wastages, order-up-to levels, and inventory

levels. Table 6.3 presents the results for two forecasting models, an LSTM network (fore-

cast MAPE = Mean [sd]: 26.45 [8.39] and forecast RMSE = Mean [sd]: 4.32 [2.01]) and

an ARIMA model (forecast MAPE = Mean [sd]: 33.19 [8.33] and forecast RMSE = Mean

[sd]: 6.81 [2.09]), and the actual policy at the hospitals.

First, we explore the Coefficient of Variation (CV) of the order-up-to levels, inventory

mean and standard deviation, and subsequently the CV of order quantities. As we see in

Table 6.3, when the forecast error is lower, the order-up-to levels exhibit lower variation.

Inventory mean and standard deviation are comparable for both forecast errors and signif-

icantly lower than the current inventory level. Also, the order quantity has larger variation

when the forecast error is higher, which is a direct cause of the higher inventory level. Addi-

tionally, as we can see in Table 6.3, when the forecast error is large, including more history

results in an increase in the CV of the order-up-to levels and consequently an increase in

the inventory mean and standard deviation.

Regarding shortages and wastages, we observe that regardless of the forecast error, the

rates of shortages and wastages consistently remain low (almost the same for this dataset).

When the forecast error is lower, the inclusion of additional history leads to a slight reduc-

tion in the average daily shortage. However, when the forecast error is higher, incorpo-

rating more history results in the opposite effect, causing a small increase in the average

daily shortage. Overall, the proposed heuristic demonstrates consistent performance across

different forecast errors.
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Table 6.3: Impact of forecast error on the order-up-to level, inventory level, shortages, and
wastages

Model
CV of

Order-up-to levels

Inventory

(mean + std)
CV of order quantity

Average wastage

per period

Average shortage

per period

Forecast Error: RMSE = 4.32

M = 1
7.71 7.52 ± 5.52 43.44 0 0.20

Forecast Error: RMSE = 4.32

M = 2
7.86 7.26 ± 5.38 46.16 0 0.19

Forecast Error: RMSE = 4.32

M = 3
7.86 7.26 ± 5.38 46.16 0 0.18

Forecast Error: RMSE = 6.81

M = 1
11.24 8.51 ± 6.07 39.37 0 0.20

Forecast Error: RMSE = 6.81

M = 2
14.06 9.99 ± 7.80 38.37 0 0.21

Forecast Error: RMSE = 6.81

M = 3
14.06 9.99 ± 7.80 38.37 0 0.21

The actual policy at the hospitals unknown 43.35 ± 7.49 45.06 1.27 unknown

6.2 A Special Case for Platelet Data - Shortage and Wastage

Costs

In Section 6.1.1, we trained a data-driven optimization model to obtain α and β values. In

this section, we consider a scenario when only shortage and wastage costs are considered,

which closely matches the practical use case for platelet inventory management. The ex-

perimental results are presented as follows. Firstly, performance of the proposed heuristic

in terms of cost, inventory levels, and ordering quantities is explored. Secondly, in Sec-

tion 6.2.2 we compare the proposed heuristic’s performance with a base-stock policy and

the current ordering policy. Next, sensitivity analyses are done for the proposed model’s

behaviour in different scenarios. Finally, different ordering frequencies are explored.
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6.2.1 Results for the Proposed Policy

We present and investigate the results acquired from the experiments where the model

is trained with the assumption that the initial inventory is 20. The cost ratio (shortage to

wastage cost) is five, with the wastage cost set to one (Haijema, 2013). The model is trained

considering demand forecasts from an ARIMA model (forecast MAPE = Mean [sd]: 33.19

[8.33] and forecast RMSE = Mean [sd]: 6.81 [2.09]), a lasso regression (forecast MAPE

= Mean [sd]: 31.70 [7.50] and forecast RMSE = Mean [sd]: 6.22 [1.59]), and an LSTM

network (forecast MAPE = Mean [sd]: 26.45 [8.39] and forecast RMSE = Mean [sd]: 4.32

[2.01]), as presented in Chapter 4. The optimization model is retrained every week using a

rolling window method with a training window size of two years of the most recent data,

including demand forecasts, starting from 2016. The inventory is updated for 2018 by

retraining every week.

Training the model results in a range of α and β values with a zero cost over the training

window. Selecting from multiple α and β values is challenging. One way to force unique

optimal α and β values is adding a holding cost, but that may reduce inventory levels and

induce shortages. We choose α and β values that would result in less variant inventory

levels, since in real situations highly variable inventory levels may be seen as problem-

atic. Highly variable inventory levels are more likely to lead to shortages and wastages, so

we propose a heuristic to find (sub)optimal α and β values with the minimum inventory

variations. Since α is the coefficient of demand forecasts in the base-stock function (see

(5.3.1)), the base-stock level standard deviation and the inventory standard deviation are

controlled by α , and so the optimal α value can be obtained by minimizing the inventory

standard deviation over the training window. Since β is the constant in the base-stock level

function (5.3.1), it impacts the mean of the base-stock levels and consequently the mean
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of the inventory. We introduce a measure, combined variation (ψ), which considers both

inventory standard deviation and coefficient of variation, and select the α and β values that

result in the minimum value of ψ over the training window. First, we define I as the total

inventory over the training window.

I =
t0

∑
u=t0−T+1

(
R

∑
r=1

Ir
u

)
(6.2.1)

Using (6.2.1), we define Iµ as the inventory mean, Iσ as the inventory standard deviation,

and ICV = Iσ

Iµ
as the inventory coefficient of variation over the training window. Since the

inventory standard deviation and coefficient of variation have different ranges, we use z-

score normalization to have both variables on the same scale. The combined variation, ψ ,

is then defined as the combination of the square of the scaled inventory standard deviation

and the square of the scaled inventory coefficient of variation:

ψ = (scale(Iσ ))
2 +(scale(ICV ))

2 (6.2.2)

When the inventory standard deviation is large, minimizing ψ is driven by minimizing

the variation. So, to choose the (sub)optimal α value, the minimum ψ value can be used.

On the other hand, when the inventory standard deviation is small, the coefficient of vari-

ation is also small, minimizing ψ is driven by maximizing inventory mean, which can be

used to choose the (sub)optimal β value. Thus, the two terms in (6.2.2) can be used to

find the (sub)optimal α and β pair. We use the StandardScaler() function in the sklearn

package in Python to scale inventory standard deviation and coefficient of variation to have

unit variance.

To calculate the order-up-to levels, the order-up-to level function (5.3.1) is used, and
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the order-up-to levels are computed based on the selected α and β values. The ordering

quantity for the next period is the difference of the base-stock level and the inventory level

at the end of the current period.

For the data used in this study, a wide range of α and β values result in zero shortage and

wastage. We then restrict α to be between 0 and 1, to take a subset that can be interpreted

as a forecast-adjusted base-stock policy. The optimal [α,β ] values for the proposed model

when it is retrained every week and by using ARIMA forecasts for 2018 are [0.6, 37] for

weeks 1 to 14, and [0.4, 39] for weeks 15 to 52. Using lasso regression forecasts, the

optimal [α,β ] values are [0.4, 36] for weeks 1 to 33, and [0.8, 34] for weeks 34 to 52.

For LSTM network forecasts, the optimal [α,β ] values are [0.6, 35.5] for weeks 1 to 13,

and [0.6, 34] for weeks 15 to 52. Figure 6.4 is a representation of choosing optimal α and

β values for LSTM network forecasts based on ψ . In Figure 6.4 (a), for each α value,

each point corresponds to a specific β value. The optimal α value is the one that gives the

minimum ψ value, α = 0.6, which can directly be obtained from the first term in (6.2.2).

Figure 6.4 (b) shows ψ as a function of β for α = 0.6. The optimal β value is obtained as

the minimum point in the graph, 35.5.
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Figure 6.4: Calculating optimal α and β values

Using forecasts from any of the considered methods results in a zero cost, meaning

zero shortage and wastage, which shows that the performance does not highly depend on

forecast quality. The mean ordering quantity for all methods is 19.39, which is very close to

the mean actual demand, 19.49, and much smaller than the mean actual ordering quantity,

21.54. The mean actual ordering quantity is calculated from the hospital data. Figure

6.5 compares the order quantities for the proposed heuristic trained with data from each

forecasting model for 2018. As we can see from this figure, the order quantities of these

models are quite similar, which means that using the proposed heuristic results in having

order quantities close to the actual demand, regardless of the forecast quality.
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Figure 6.5: Order quantities for the proposed heuristic trained with data from ARIMA,
lasso regression and LSTM network for 2018

Next, we explore the inventory level of the proposed heuristic using the ARIMA, lasso

regression and LSTM network demand forecasts for 2018. As we can see in Figure 6.6, the

mean inventory level using the ARIMA model forecasts is 29.67 and the standard deviation

is 7.52 for 2018. By using the lasso regression forecasts, the mean inventory level is 28.85

and the standard deviation is 7.23, and by using the LSTM network forecasts, the inventory

mean and standard deviation are 26.96 and 6.82, respectively. These values imply that

having a smaller forecast error results in a lower mean inventory level and variation (as a

reminder using forecasts from either of the forecasting approaches resulted in no shortages

or wastages).
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Figure 6.6: Inventory levels of the proposed model trained with data from ARIMA, lasso
regression and LSTM network for 2018

6.2.2 Comparative Analysis

In this section, we compare the results for the proposed heuristic with the policy currently

used in hospitals (which we call the actual case), and a data-driven base-stock policy. We

train a data-driven base-stock model with two years of data (2016-2017) with a cost ratio

of five (shortage to wastage cost), similar to how the proposed heuristic is trained. The

base-stock policy results in a cost of four with four wasted units for 2018.

Figure 6.7 gives a comparison of the inventories of five methods for 2018: i) the actual

inventory with the current policy in hospitals, ii) order under actual demand and consume

using the FIFO withdrawal policy, iii) the proposed heuristic using LSTM network fore-

casts, iv) the proposed heuristic using ARIMA forecasts, and v) the base-stock policy. The

minimum inventory mean and standard deviation are when the order quantity is equal to the

actual demand, and as we see in Figure 6.7, the mean inventory is equal to the initial inven-

tory, 20, and the inventory standard deviation is 0. For the actual case, the inventory mean

and standard deviation are mean[sd]: 42.60[7.30]. The high inventory level, almost twice
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as large as the actual demand, can be considered as a reason for the current high wastage

rate. The inventory levels in the proposed model for the LSTM network and ARIMA fore-

casts are mean[sd]: 26.90[6.74] and mean[sd]: 28.82[8.11], respectively. Finally, the mean

and standard deviation for the base-stock policy are mean[sd]: 31.58[7.66]. These results

show that using a forecast-dependent base-stock policy not only leads to a zero cost for our

data, but keeps the on-hand inventory much lower. Less on-hand inventory for perishable

products is important for the following reasons: i) it results in fresh inventory; and ii) it

can be beneficial when there exists a high holding cost or when the inventory capacity is

limited.
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Figure 6.7: Comparison of the inventory levels for the proposed heuristic using LSTM
network and ARIMA forecasts, base-stock policy, actual inventory, and ordering by actual

demand (FIFO withdrawal policy)

We also compare the ordering quantities for the proposed heuristic with the actual case

and the actual demand. Figure 6.8 is a representation of the ordering quantities for the pro-

posed heuristic using LSTM forecasts, the actual ordering quantities, and ordering by actual

demand. As we can see in Figure 6.8, ordering quantities for the proposed heuristic are very

close to the actual demand, with a mean[sd]: 19.39[7.95], and mean[sd]: 19.36[7.65] for

ordering by actual demand. For the actual case, the order quantities mean and standard
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deviation are mean[sd]: 21.54[9.90].
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Figure 6.8: Comparison of the ordering quantities for the proposed heuristic using LSTM
network, the actual case, and ordering by actual demand (FIFO withdrawal policy)

6.2.3 Sensitivity Analysis

In this section, we explore sensitivity of the proposed model to three different factors, the

minimum inventory level, the cost ratios in the cost function, and the remaining shelf life

of the product. Sensitivity analysis to the minimum inventory level is done due to the fact

that in practice, low inventory levels may trigger manual orders. This is understandable

because having a low inventory in case of an emergency can put patients’ lives in danger.

As a result, it may be desirable to ensure that the inventory remains above a certain value.

Sensitivity analysis to the cost ratios shows the generalizability of the proposed model in

different systems with different shortage and wastage costs. Last but not least, by doing

a sensitivity analysis to the remaining shelf life, we explore how the model behaves when

the shelf life of received products differs from our assumption. It is important because

the received platelet units may vary with respect to their remaining shelf lives. For all the

results presented in this section, we use demand forecasts from the LSTM network.
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6.2.3.1 Sensitivity to the Minimum Inventory Level

We first explore sensitivity of the proposed heuristic to the minimum inventory level. No

minimum inventory was considered for the results presented in Section 6.1. Here, we

consider minimum inventory levels of five, ten and fifteen units when training the model

with LSTM forecasts. Table 6.4 gives the results for different minimum inventory values.

As we can see from Table 6.4, as the minimum inventory level increases, the number of

wastages rises while the number of shortages remains zero. Furthermore, as we expect,

by incrementing the minimum inventory level, the mean inventory level increases, which

is mainly due to the fact that the order-up-to level is set to a higher value. The mean

ordering quantity is, however, quite similar for all three minimum inventory values, being

very close to the mean actual demand, 19.49. This implies that when the shortage cost

is much higher than the wastage cost, one can ensure a certain minimum inventory level

without a significant increase in ordering quantities and associated wastages. This may be

helpful in practice to avoid manual interventions as a result of low inventory levels.

Table 6.4: Sensitivity to the minimum inventory level for 2018 using LSTM network
forecasts

Minimum Inventory Level Cost No. of Shortages No. of Wastages Inventory Mean Inventory Std Mean Ordering Quantity

5 0 0 0 30.32 6.75 19.40

10 6 0 6 33.30 6.73 19.42

15 9 0 9 34.70 6.73 19.44

6.2.3.2 Sensitivity to the Cost Ratio

In order to explore the generalizability of the proposed heuristic under different shortage

and wastage costs, we perform a sensitivity analysis for the cost ratio. The results presented

so far are based on a cost ratio of five (shortage to wastage cost). However, in different
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systems, this ratio may be different. In fact, the proposed model’s performance depends on

the cost ratio rather than the absolute values of the costs. We consider different cost ratios

(shortage to wastage cost) equal to 5, 1
5 , 1, 1

10 and 10. The results show that the number of

shortages and wastages are zero for all the cost ratios. The optimal α and β values are the

same for the cost ratios, and consequently the inventory mean and standard deviation are

the same (mean[sd]: 27.32[6.74]). The results show that the proposed model is not highly

sensitive to the cost ratio, and so changing the cost ratio does not have significant impact

on the performance of the policy.

6.2.3.3 Sensitivity to the Remaining Shelf Life

We begin by considering different remaining shelf lives upon arrival. Since platelet prod-

ucts have five to seven days shelf life and spend two days in test and screening processes,

the remaining shelf life of the platelets used for transfusion is three to five days. As a result,

we investigate the sensitivity of our model to the product’s shelf life by considering five,

four, three, and two days of remaining shelf life upon arrival.

First, we consider a scenario in which the model is trained for a product with five days

of shelf life, but the shelf life of received units can be different from what the model is

trained for. Table 6.5 gives the results for different shelf life values by considering a cost

ratio of five (shortage to wastage cost). Each row of the table considers a constant shelf life

for received units, five, four, three and two days. As the shelf life of platelets decreases, the

total cost increases. This is mainly due to the large increase in the number of wastages. As

a result of these wastages, the ordering quantity compensates by increasing as the shelf life

decreases.
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Table 6.5: Sensitivity to the remaining shelf life when the model is trained for five days
shelf life and is tested for different shelf lives (for 2018 using LSTM network forecasts)

Remaining Shelf Life Cost No. of Shortage No. of Wastage Inventory Mean Inventory Std Mean Ordering Quantity

Five 0 0 0 27.32 6.74 19.39

Four 16 0 16 27.27 6.71 19.45

Three 253 0 253 26.60 6.45 20.11

Two 1913 0 1913 22.04 5.50 24.65

Second, we consider a scenario for training the model for products with four days re-

maining shelf life and explore the sensitivity to remaining shelf lives of five, four, three,

and two days when updating the inventory. As we can see in Table 6.6, having a shelf life

of five days results in no wastage and 20 units of shortage. However, smaller shelf lives

result in a large number of wasted units because the order-up-to level is set for a larger shelf

life than actual. The number of shortages is the same in all of the scenarios.

Table 6.6: Sensitivity to the remaining shelf life when the model is trained for four days
shelf life and is tested for different shelf lives (for 2018 using LSTM network forecasts)

Remaining Shelf Life Cost No. of Shortage No. of Wastage Inventory Mean Inventory Std Mean Ordering Quantity

Five 100 20 0 19.82 6.52 19.32

Four 102 20 2 19.81 6.52 19.33

Three 155 20 55 19.65 6.45 19.49

Two 1076 20 976 17.11 5.65 22.02

Considering the results in the above tables, the main issue of training for constant shelf

life is that if the shelf life of received units is smaller than what the model is trained for, the

wastage rate increases.
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6.2.4 Ordering Frequency

The inventory policy that has been used throughout this paper places an order at the end

of every day. In this section the performance of the proposed heuristic when only placing

orders at the end of certain days is explored.

Up to this point, different forecasting models have been used, all of them achieving

similar performance. For this section, we focus on a lasso model. This model is trained

with data where the target for each order is the cumulative demand of all days from the day

following the order up to and including the day of the next order. For example, if there is

no order on Monday the forecast on Sunday will cover demand for Monday and Tuesday

combined. In addition, the model is fed all features from the previous few days before the

order, with the exact number of days being the longest period the schedule goes without

ordering. For example, if the schedule skips two days in a row, creating a gap of three days,

the model will be fed three days worth of features, from the day when an order is placed

and the two days before.

The ordering policy is the same as defined in the previous chapter (Chapter 5) but (5.3.1)

is modified to be:

St( f̂t) =

 α f̂t +β if weekday(t) ∈ schedule

0 otherwise,
(6.2.3)

where weekday gives the day of the week of a period t, and schedule is the set of weekdays

that the current schedule places orders on:

schedule⊂ ({Mo,Tu,We,T h,Fr,Sa,Su}) (6.2.4)
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The notation used to denote an ordering schedule is as follows: MoTuWeThFrSaSu

is the notation used to represent daily ordering, MoTuThFrSu is the notation for order-

ing on all days except Saturday and Wednesday, etc. In this section eight schedules are

explored, one six-day schedule: MoTuWeThFrSu; four five-day schedules: MoTuWeThFr,

TuWeThFrSu, MoTuThFrSu, and MoTuWeThSa; and three four-day schedules: MoTuThSa,

MoWeThSa, and TuThFrSu.

MoTuWeThFr is current practice, staff levels are low over the weekend and placing

routine orders is not feasible. The other schedules are included to compare the proposed

heuristic to a base-stock policy. Table 6.7 shows statistics for schedules both with the

proposed heuristic and with a base-stock policy. All schedules see an improvement in

performance with the proposed heuristic, with the current schedule half the cost of a base-

stock policy. In a number of schedules this improvement is achieved by greatly reducing

wastage and slightly increasing shortage. This trade-off can be controlled by changing the

shortage to wastage cost ratio, but this is not explored here, only a ratio of 5 is tested. Based

on these schedules the base-stock policy and the proposed heuristic struggle when they go

two or more days without ordering. This can be seen with the four day schedules, which do

better than MoTuWeThFr despite ordering on fewer days, as they keep gaps in the schedule

to one day only. The base-stock policies keep around 5-15 more units in inventory than the

proposed heuristic with the current schedule keeping 15 fewer units under the proposed

heuristic.
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Table 6.7: Performance of scheduled order policies

Schedule Cost No. of Shortage No. of Wastage Inventory Mean Inventory Std Mean Ordering Quantity

Performance of

proposed heuristic

MoTuWeThFr 129 20 29 31.18 17.6 28.94

MoTuWeThFrSu 0 0 0 29.85 9.09 23.56

TuWeThFrSu 44 7 9 35.84 13.06 28.44

MoTuThFrSu 20 1 15 31.37 11.17 28.29

MoTuWeThSa 39 5 14 32.88 12.17 28.31

MoTuThSa 51 5 26 36.02 13.01 35.31

MoWeThSa 72 12 12 35.92 14.43 35.91

TuThFrSu 124 22 14 35.06 12.9 35.23

Performance of

base-stock policy

MoTuWeThFr 269 37 84 46.66 13.14 28.31

MoTuWeThFrSu 29 1 24 35.93 10.68 23.52

TuWeThFrSu 168 22 58 46.27 12.19 28.35

MoTuThFrSu 46 0 46 43.85 12.4 28.37

MoTuWeThSa 41 1 36 42.39 11.11 28.31

MoTuThSa 53 0 53 41.66 13.98 35.48

MoWeThSa 78 4 58 42.58 14.09 35.49

TuThFrSu 173 20 73 44.31 14.6 35.52

Figure 6.9 displays how the number of units ordered each day in a schedule are dis-

tributed. Of note is that the proposed heuristic tends to place large orders before a multi-day

gap while the base-stock policy places larger orders after a gap. Including forecasts in the

proposed heuristic helps smooth over gaps by predicting them and preemptively ordering

extra inventory while the base-stock policy keeps more inventory and recovers from the

gap after it has passed.
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(a) Order quantities for
ordering MoTuWeThFr

with the proposed heuristic

(b) Order quantities for
ordering MoTuWeThFr
with a base-stock policy

(c) Order quantities for
ordering MoTuWeThSa

with the proposed heuristic

(d) Order quantities for
ordering MoTuWeThSa
with a base-stock policy

(e) Order quantities for
ordering MoWeThSa with

the proposed heuristic

(f) Order quantities for
ordering MoWeThSa with a

base-stock policy

Figure 6.9: Distribution of order quantities by day for select schedules

6.3 Discussion

In this section, we provide some discussion of our results for the heuristic and when it is

trained with a cost function consisting of only shortage and wastage costs.

6.3.1 The Heuristic

As discussed in Chapter 5, calculating the optimal policy may become difficult as the op-

timal policy is state-dependant, and so the proposed heuristic provides a simpler and more

practical alternative. While we cannot compare the proposed heuristic to the optimal policy,
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the fact that the wastages and shortages are not high suggest that the heuristic is near opti-

mal. We evaluate the heuristic with forecasts generated from two different forecast models

to explore the impact of forecasting accuracy on the heuristic. Results show that regardless

of the quality of the forecasts, both wastage and shortage rates remain consistently low.

Thus, one can still make effective decisions with lower quality forecasts. These findings

highlight that the proposed heuristic can be an effective alternative to the optimal policy.

The proposed heuristic adopts an affine function of the next time period’s demand forecast

to set the order-up-to level, which makes it intuitively explainable and easy to implement.

We also explored variations of the heuristic that include more forecast history. Numerical

results of such cases suggest that the forecast value can be considered as a more complex

function of previous history, rather than simply a function of the previous value.

Sensitivity analysis conducted on the product’s shelf life shows that both the proposed

heuristic and the base-stock policy perform well with products that have a shelf life of 3,

4, and 5 days, but their performance degrades as the shelf life becomes smaller. However,

the proposed heuristic shows relatively lower sensitivity to the cost function than the base-

stock policy. Additionally, the heuristic has lower on-hand inventory levels than the base-

stock policy in all the considered cases. This suggests that by including additional demand

information in the inventory model, order quantities close to the actual demand can be

achieved while keeping the on-hand inventory low. This approach has several benefits such

as low on-hand inventory levels that are beneficial when there is limited inventory capacity

or a high holding cost. It also results in fresher inventory and reduces wastage.
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6.3.2 Heuristic Trained for Shortages and Wastages

In the second part of this chapter, we evaluated a special case of the heuristic for the platelet

transfusion data, when it is trained by only considering shortage and wastage costs. It is

trained by using forecasts from three different forecasting models with different forecast

accuracy. Results show that due to non-uniqueness of the optimal policy from the training

data, it is important to carefully choose the most suitable policy to use for the test data.

Besides that, the proposed heuristic is an efficient alternative for the optimal policy even

by considering just shortages and wastages in cost function, which not only leads to a zero

cost for the platelet data, but keeps the on-hand inventory very close to the actual demand.

Moreover, there is no need for the forecasts to be of great quality, even a simple forecasting

model with large error can be used. The reason is that the proposed ordering policy has

forecast-dependent order-up-to levels that hedge against forecast inaccuracies.

We also consider various ordering frequencies using the proposed ordering policy and

the base-stock policy, to explore the possibility of reducing the ordering frequency. Using

the proposed heuristic and ordering six days a week, skipping Saturday, does not affect the

performance, and can be considered as an alternative choice for daily ordering. Ordering

five days a week results in a moderate performance decrease, but still appears to be a

feasible option. Results show that when orders are placed less frequently, considering

forecast-dependent base-stock levels, large orders are placed before a multi-day gap while

with a classic base-stock policy these orders are placed after the gap. That being the case,

demand forecasts compensate for demand over gaps by ordering extra inventory before

the gap while the policies without forecasts generally keep more inventory and place large

orders after the gap is passed. This suggests that if a blood centre were to move to less

frequent ordering, it is important to include demand forecasts.
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The proposed heuristic offers benefits throughout the supply chain, beyond benefits for

the hospitals. Considering forecast-dependent order-up-to levels benefits suppliers of the

blood products in several ways. First, incorporating additional information about the actual

demand in the inventory management process results in close-to-actual-demand ordering

quantities. This not only reduces the wastage rate in hospitals, but increases the trans-

parency of blood utilization between blood suppliers and hospitals which can help blood

suppliers in their planning. Second, the on-hand inventory tends to be low, which is not

only helpful when there is limited inventory capacity or a high holding cost but results in

fresher inventory. Third, the wastage is very low since the order-up-to level varies as the

predicted demand (and consequently the actual demand) changes. By comparing the actual

mean inventory (42.60) and the proposed heuristic’s mean inventory using LSTM network

forecasts (26.96), we see that the on-hand inventory is reduced significantly. One of the

consequences of this is the wastage rate being reduced from 9% to zero.

The current inventory management practice is very similar to a base-stock policy, which

is simple and easy to implement, but can result in large on-hand inventory, high wastage

rate, and frequent shortages. The current base-stock levels being used are very high, caus-

ing the current high wastage rate. According to the results presented here, a base-stock

policy can be effective, but the base-stock level should be chosen in a data-driven manner.

Base-stock levels in a base-stock policy can be reduced using data, and one can further

improve the inventory model by including demand forecasts in the model. Since platelet

products are very expensive ($504 per unit), and hospitals have limited inventory capacities

to store them, using a smart ordering policy (forecast, then order) can considerably reduce

costs. Furthermore, forecasting the demand can help blood centres to make decisions in

other parts of a blood supply chain, such as the clinical management for staff and resource
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allocation. Thus, by incorporating demand forecasts in the inventory management problem,

specifically for products with short shelf lives, one can benefit from both the advantages

of demand forecasting and including additional demand information in the inventory man-

agement process. As the results show, there is no need for high quality, highly accurate

forecasts for generating the forecast-dependent base-stock levels, even a simple forecast-

ing model is sufficient for incorporating additional information in the inventory model.

6.4 Conclusion

In this chapter, we evaluated a data-driven inventory management policy for platelet prod-

ucts, which can be generalized to perishable products. The data we used for evaluation

is for platelet transfusion in Hamilton hospitals. The numerical results showed that even

with the forecasts not being highly accurate, the proposed heuristic resulted in a cost close

to the policies that consider history. It achieved significant improvements over the actual

wastages in the data. Moreover, in comparison to the base-stock policy, the heuristic re-

sulted in lower shortage rates while keeping the on-hand inventory much lower. Overall, it

achieved a 3.45% reduction in the total cost compared to the base-stock model. Also, by

adding more history of demand forecasts in the order-up-to-level function, the wastage cost

remained zero, and the number of shortages decreased slightly. The total cost improvement

for the case when the current and four previous forecasts were included in the inventory

model was 2.21%. Considering the negligible reduction in the total cost when one, two,

three, and four previous forecasts were included in the order-up-to-level function, we con-

cluded that it is not necessary to include a large amount of forecast history to calculate the

order-up-to levels and only considering the current forecast is sufficient.
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We also considered a cost function consisting of only shortage and wastage costs. Ex-

perimental results show that while our model does not require highly accurate forecasts,

it results in a lower inventory, resulting in a reduction of the wastage rate by 9%. It also

reduces same-day urgent orders by 14%. Furthermore, the proposed ordering policy im-

proves the transparency between blood suppliers and hospitals which has the potential to

improve the overall efficiency of the platelet blood supply chain. We also explored different

ordering frequencies for the proposed model and the base-stock policy. For this particular

application, reducing the ordering frequency to five days a week is feasible and does not

impact the performance. Moreover, based on the presented results, incorporating forecasts

in the inventory model increases the viability of reduced ordering frequencies.
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Chapter 7

Conclusions and Future Work

In this final chapter, we summarize the work presented in previous chapters, re-state the

major contributions of this dissertation and state directions for future work that are based

on combinations of ideas from Chapters 4 and 5.

7.1 Summary and Contributions

In this dissertation, we utilized five forecasting models to forecast demand for perish-

able blood products at hospitals. The forecasting models included two univariate models,

ARIMA and Prophet, and two multivariate models, lasso regression, random forest, and

LSTM networks. We compared these models in terms of forecast accuracy, different re-

training periods, and the amount of data used for training. Next, we used these forecasts

as additional demand information in the inventory model with fixed costs to determine the

optimal ordering policy. Lastly, based on structural results for the optimal policy, we pro-

posed a heuristic that is a variation of the base-stock policy. The heuristic considered the

order-up-to levels as an affine function of the current period’s forecasts.
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7.2 Future Work

In order to further progress in the development of models of real perishable inventory prob-

lems, in future work it is necessary to study:

1. more systematic ways for selecting predictors for demand forecasting models

2. inventory management models under uncertainty in the remaining shelf life of prod-

ucts or lead time

3. optimality of the ordering policy for a more general forecast function, under different

issuing policies, and for worst-case scenarios

4. generalizability of the demand forecasting and inventory management models

We will provide a more comprehensive explanation of these topics in the subsequent sec-

tions.

7.2.1 Selection of Predictors for Demand Forecasting

In Chapter 4, we utilized multivariate forecasting models that use predictors for forecast-

ing the demand. For the data used in this study, predictors are selected based on lasso

regression. We also add additional predictors that affect the platelet demand based on the

exploratory analysis done for detecting trends, seasonality or holiday patterns. We see this

step as necessary for selecting the most appropriate predictors for the forecasting model.

However, this approach might not always be practical, necessitating a more automated

solution for predictor selection. Another issue is that selected predictors should be inter-

pretable to allow users to determine the effect of different predictors on demand values.

134



Ph.D. Dissertation—M. Motamedi McMaster University—Computer Science

This is not only helpful for more robust demand prediction, but can help the decision mak-

ers/suppliers to plan for the future. Thus, we see an important next step as further exploring

the lasso regression approach to enhance variable selection, with a particular focus on inter-

pretability. This will not only affect the lasso regression itself, but also may improve other

multivariate forecasting models such as LSTM forecasting since we selected the LSTM

inputs using lasso regression. Moreover, it would be interesting to apply other variable-

selection techniques such as recursive feature selection, stepwise forward and backward

regression, genetic algorithms, or Support Vector Machines (SVM). While lasso regression

works well for this data, it may be of benefit to explore nonlinearity or multicollinearity

among features for other datasets.

7.2.2 Modelling Uncertainty

For the inventory management part of this study, we consider perishable products with a

fixed shelf life. Also, we assume that received products are fresh products with a remain-

ing shelf life equal to the product’s shelf life. While this is a reasonable assumption, in

real problems, parameters like the remaining shelf life of received units or the lead time

could be subject to uncertainty. Thus, we see as a next step the examination of worst-case

scenarios when variability in the remaining shelf life of the products is ignored. This can

be helpful to assess the impact of that ignoring uncertainty in the inventory model. Sec-

ondly, it would be interesting to explore ordering policies that are robust to the uncertainty

in the remaining shelf life or lead time. For example, see the work of Abouee-Mehrizi et al.

(2022) for uncertainty in the remaining shelf life and the work of Hansen et al. (2023) for

uncertainty in the lead time. A challenge for future work, then, is to model the effect of

such uncertainties on ordering decisions and the optimal policy.
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7.2.3 Further Investigation of the Optimal Ordering Policy

In Chapter 5, we explored the structural properties of the optimal ordering policy when

demand forecasts are included in the inventory model. The forecasts are considered as

an affine function of previous forecast and (indirectly) demand values, like in an ARIMA

model. However, in real systems, forecasts from models such as an ANN may be used

that do not follow this linearity assumption. In future work, we would therefore like to

investigate more complex forecasts such as nonlinear, nonconvex functions and explore

how they affect the ordering decisions.

In a perishable inventory system, assuming a FIFO ordering policy is a common as-

sumption due to the limited shelf life of products. For products with a short shelf life,

this assumption becomes even more reasonable. However, certain systems, like the platelet

transfusion system, may require products with varying levels of freshness. In the red blood

cell transfusion system, due to a requirement for matching blood types, demand is satisfied

from different product groups. Additionally, the presence of priority demand classes within

the system highlights the significance of incorporating other issuing policies, such as LIFO

(Last In, First Out) or priority queues. This would contribute significantly to achieving the

objective of effectively managing realistic perishable inventory systems.

Another future extension of this work would involve studying the asymptotic optimality

of the inventory model when demand forecasts are incorporated into the model. Given the

complexity of large scale systems, analyzing properties of the system as it grows in size in

one or more aspects is of interest (Goldberg et al., 2016; Xin and Goldberg, 2016; Zhang

et al., 2020; Bu et al., 2023). This would render the inventory model applicable to larger

systems or scenarios where one parameter becomes large. Specifically asymptotic optimal-

ity results by considering the following asymptotic regimes of the system parameters are
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interesting for this problem: (i) large demand size, (ii) large per unit shortage cost, (iii)

large per unit wastage cost, and (iv) large per unit holding cost.

In Chapter 5, we proposed a heuristic motivated by the structure of the optimal policy.

Our results show that the heuristic is an efficient alternate for the optimal policy. It would

be interesting to calculate the gap between the optimal policy and the proposed heuristic to

formally demonstrate robustness of the results.

7.2.4 Exploring Generalizability of Forecasting and Inventory Models

For the demand forecasting part of this research, we use data for platelet transfusion in

Hamilton hospitals. We observe that multivariate models that include additional predic-

tors in the model perform more efficiently than univariate models that only use previous

demand values. In future work, it would be of interest to utilize these models on differ-

ent platelet transfusion datasets (outside of Hamilton) to explore generality of the results.

Moreover, it is of interest to perform time series analysis and train the models for gen-

eral perishable products. This can be helpful not only for the demand forecasting part, but

also can be useful for investigating effect of different forecast accuracies on the proposed

heuristic. Another direction for future work is to apply and evaluate the proposed heuristic

on different datasets to explore the generalizability of the heuristic.

As discussed in Chapter 2, there are two general data-driven inventory management

approaches, (1) prediction and optimization as a single step, (2) predict then optimize (the

work in this study). In Chapter 5, we provide a brief comparison between these two models

and the reason that the second approach is used in this research. However, a more extensive

comparison of the two approaches would be of interest.
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7.3 Conclusions

The central thesis of this dissertation is that by including additional demand information

in the inventory model, we can better model, understand and solve real-world perishable

inventory problems. In the presence of abundant data, one can benefit from using historical

data to estimate future demand values which can in turn be used in the inventory model for

determining order quantities. The work of this dissertation followed a similar manner as

the data-driven predict then optimize approach. Firstly, a holistic data analysis was done

and the demand was predicted. This is helpful not only for decision makers to make better-

informed decisions, but can be used as added information for determining future ordering

quantities. Next, the structure of the optimal policy when these forecasts are incorporated

in the inventory model was explored. Lastly, motivated by the structure of the optimal

ordering policy, a forecast-dependent base-stock policy was proposed. We presented an

extensive evaluation of the heuristic. Experimental results showed that while the heuristic

is simple and intuitive, it worked well for different forecasting accuracies. Thus, it can be

considered as an effective alternative for the optimal policy. To our knowledge, this disser-

tation is the first work that studies structure of the optimal policy when demand forecasts

are incorporated in the inventory model.
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Appendix A

Supplement to Chapter 3

The data cleaning process is an essential step aimed at extracting relevant information from

the TRUST database. The TRUST database consists of various tables for different blood

transfusion products. We extract data from the inventory table within the database that

holds information regarding transfusions. Each row in this table corresponds to a single

blood product unit. We extract more than 200 variables that can be grouped into four main

categories:

• Product data: product name, product ABO group, Rh type, collection date and time,

issue date and time, issue volume, expiry date

• Patient data: gender, age, ABO group, Rh type

• Admission data: admission date and time, discharge date and time, transfusion loca-

tion

• Laboratory test data: Complete Blood Count (CBC) such as RBC count, hemoglobin

count, platelet count, hematocrit count
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Our data collection and cleaning procedure can be divided into two main phases. Ini-

tially, we focus on retrieving data specific to platelet transfusions. Next, we collaborate with

medical professionals to identify and select the relevant variables from the platelet trans-

fusion data. We consider more than 100 potential clinical variables during the selection

process for model variables. Variables with more than 70% missing values are excluded

from variable selection. The techniques used for handling missing values in individual

variables rely on both clinical definitions and the practical application of the respective

variable. For instance, in cases a specific test such as daily platelet count lacks its value,

we make the assumption that the patient had normal platelet counts on that specific day.

Furthermore, we employ the min-max method to normalize the variables. Finally, the data

is aggregated to a daily dataset using a structured data processing framework (Li et al.,

2022).

Furthermore, our discussions with physicians have revealed that most of the outliers

in the dataset are not random occurrences; they have specific underlying reasons. For in-

stance, we note some extremely large values for transfusion volumes. These outliers arise

from situations where small bags are used for transfusions but are recorded as standard

transfusions in the inventory database. To rectify this, we standardize these values accord-

ingly.

Another data-related concern involves the lack of consistent data types for certain vari-

ables across different entries. For instance, when examining specific laboratory test results,

we encounter both integer values and comparative values (e.g., UREA ≤ 0.5). To address

this inconsistency, we standardize these values by referencing either the maximum or min-

imum allowable value for the test or by utilizing the mean value for the test, depending on

the specific test itself. Other cases involve data types that are initially integers but include
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non-integer values (e.g., 300ML for transfusion volume); we opt to retain only the integer

part while discarding the non-integer components.
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Appendix B

Supplement to Chapter 4

Table B.1 gives the selected predictors using lasso regression. Considering the coefficients

for the predictors and their corresponding confidence intervals in Table B.1, and based on

(Ranstam, 2012), variables that have a coefficient of zero and confidence intervals that are

symmetric around zero are candidates to be eliminated. As we can see from Table B.1,

abnormal plt has the highest coefficient. The predictors abnormal hb and abnormal red-

cellwidth can be considered as two other important lab tests for forecasting the demand.

Day of the week, last week’s platelet usage and yesterday’s platelet usage also have no-

table impact on the platelet demand. As we can see in Table B.1, unexpectedly, some of

the predictors have a negative coefficient in the demand forecasting model. The reason is

that, as we can see from Figure 3.5, there are high correlations among the predictors that

result in interactions among the model predictors, which may cause multicollinearity is-

sues. Specifically, the predictors abnormal hb, abnormal INR, abnormal hematocrit, and

abnormal MPV are correlated with abnormal plt. The predictors abnormal hematocrit and

abnormal hb also have high correlations with most of the other abnormal laboratory test

results. The coefficients for lab tests are high. This is consistent with the observation that
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Table B.1: Predictors and their corresponding coefficients for lasso regression

predictors Coefficients 95% Confidence Interval
abnormal ALP -0.02 (-0.08 , 0.04)
abnormal MPV 0.01 (-0.06 , 0.11)
abnormal hematocrit 0.00 (-0.11 , 0.14)
abnormal PO2 -0.11 (-0.19 , 0.00)
abnormal creatinine 0.03 (-0.03 , 0.11)
abnormal INR 0.06 (-0.02 , 0.22)
abnormal MCHb -0.03 (-0.10 , 0.04)
abnormal MCHb conc -0.03 (-0.10 , 0.04)
abnormal hb 0.05 (-0.04 , 0.19)
abnormal mcv -0.03 (-0.11 , 0.04)
abnormal plt 0.23 (0.02 , 0.36)
abnormal redcellwidth 0.07 (0.00 , 0.15)
abnormal wbc -0.02 (-0.09 , 0.03)
abnormal ALC 0.01 (-0.05 , 0.08)
location GeneralMedicine -0.11 (-0.21 , 0.00)
location Hematology 0.04 (-0.02 , 0.16)
location IntensiveCare 0.05 (-0.01 , 0.15)
location CardiovascularSurgery 0.04 (-0.03 , 0.11)
location Pediatric 0.04 (-0.02 , 0.10)
Monday 0.07 (0.00 , 0.16)
Tuesday 0.07 (0.00 , 0.14)
Wednesday 0.00 (-0.04 , 0.07)
Thursday 0.01 (-0.03 , 0.09)
Friday -0.39 (-0.46 , -0.31)
Saturday -0.31 (-0.39 , -0.23)
Sunday 0.10 (0.03 , 0.18)
lastWeek Usage 0.12 (0.05 , 0.19)
yesterday Usage 0.10 (0.02 , 0.17)
yesterday ReceivedUnits 0.06 (0.00 , 0.14)
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the lab test results are significant indicators for platelet transfusion. The predictors ab-

normal plt, abnormal hb, abnormal ALC and abnormal wbc have higher coefficients and

consequently higher impact on platelet demand. For day of the week, Friday and Saturday

have negative coefficients due to the fact that they cover the weekend (Friday: -0.39 and

Saturday: -0.31). For hospital census data, except for location GeneralMedicine, all the

coefficients are in a similar range to the lab tests.
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