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Lay Abstract 

Sociability is an individual’s tendency to associate with other individuals of the same 

species in a non-aggressive manner. Previous work has been conducted to evolve 

lineages of high and low social fruit flies (Drosophila melanogaster) using artificial 

selection. The main goal of this thesis was to integrate analyses of differential gene 

expression, transcript usage and population genomics to investigate the genetic 

architecture of sociability in Drosophila. I developed pipelines to analyze the sequencing 

data and was able to identify genes that are differentially expressed, transcripts that are 

differential used and regions of the genome under selection.  
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Abstract 

Sociability is an individual’s tendency to associate with conspecifics in a non-aggressive 

manner. Sociability can manifest in the formation of social groups that can reduce 

predation risk and increase feeding success. Studies of social behaviour in insects are 

typically through the lens of classically know social insects, however many insect 

species that have been long thought as non-social have been shown to exhibit social 

behaviour, in particular Drosophila. A previous experiment evolved lineages of high and 

low sociable fruit flies (Drosophila melanogaster) following 25 generations of artificial 

selection, after which RNA and DNA was extracted and sequenced. The main goal of 

this thesis was to integrate analyses of differential gene expression, transcript usage 

and population genomics to investigate the genetic architecture of sociability in 

Drosophila. I developed a pipeline to perform differential gene expression analysis by 

modelling gene expression using a generalized linear mixed-effect model. Here I found 

a total of 327 genes differentially expressed and 174 genes differentially expressed 

between the low and high sociable lineages. Next, I developed a pipeline to perform 

differential transcript usage analysis using a generalized linear mixed-effect model to 

model transcript usage. I found 619 genes to have transcripts with differential usage 

and 190 genes to have transcripts with differential usage between the low and high 

sociable lineages. Lastly, I developed a pipeline for population genomics to identify 

regions of the genome under selection. I identified genes that are likely under selection 

and the overlap between these genes and genes/transcripts found to be differentially 

expressed/used. Overall, I identified potential genes that are involved in the genetic 

architecture of sociability and can be further candidate tested.  
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Chapter 1: Social ButterFlies: What is sociability and how do we 

study it? 

Sociability 

Sociability is an individual’s tendency to associate and engage in non-aggressive 

activities with other individuals of the same species (conspecifics). Sociability manifests 

in the formation of social groups that can result in reduction of predation risk, reduced 

time spent to find resources and increased feeding success from cooperative hunting 

(Krause & Ruxton, 2002; Ward & Webster, 2016). We see the formation of social groups 

and sociability in various species of insects, fish, birds and primates and their formation 

of social groups can vary in regard to group size, the timing of when individuals form 

groups, and the formation of sex or age specific groups (Nordell & Valone, 2014). There 

are a number of ways to quantify sociability such as social integration (Kajokaite et al., 

2022), individuals choosing to join each other at a food patch (Scott et al., 2018), 

measures of the proportion of time spent close to conspecifics (Ward & Webster, 2016), 

average distance from conspecifics (Ward & Webster, 2016), or in humans, quantifying 

a sociability score based on a survey assessment (Bralten et al., 2021).  

The evolution of sociability in these various species suggests that an individual 

has a higher fitness when in a group rather than if it would be alone. We do see positive 

correlation between social behaviour and fitness in various mammal species (Snyder-

Mackler et al., 2020) such as in Cebus capucinus (white-faced capuchin monkeys; 

Kajokaite et al., 2022) and baboons (Silk et al., 2003; Silk et al., 2010). Kajokaite et al. 

(2022) measured social integration of white-faced capuchin monkey groups by 

incorporating data related to the behaviours of grooming, joining conflicts, and foraging 
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in proximity of others and modelled survivorship over 18 years as a function of the 

individual social integration metric. They found that females that engaged more with 

their group and with other females had a higher survivorship (Kajokaite et al., 2022). 

Within baboons (Genus: papio) we see evidence of this positive correlation in different 

species. In the wild savannah baboon (Papio cynocephalus), an increase in sociality of 

females led to an increase in infant survival (Silk et al., 2003). The measure of sociality 

here was a sociality index, calculated based on the amount of time a female was within 

5 metres of an adult conspecific, grooming other adults and being groomed by other 

adults (Silk et al., 2003). Within the female chacma baboons (Papio hamadryas 

ursinus), females that displayed strong social bonds with other females were associated 

with living longer than females who formed weaker bonds with other females (Silk et al., 

2010). Social bonds here were measured by creating a composite sociality index for a 

given female, which represents the rate of interactions with others, grooming, grooming 

initiation, and grooming duration, all relative to their averages for all females. While 

those are not explicitly sociability, we do see sociability positively associated with fitness 

in masai giraffes (Giraffa camelopardalis tippelskirchi). Female giraffes were found to 

have higher survival when in groups with a higher number of other females than the 

average (Bond et al., 2021). 

 

Sociability Studies 

Sociability is commonly studied in group living species such as mammals and social 

insects. In humans, many studies examine low sociable individuals and related traits 

such as loneliness (Gao et al., 2017) and social isolation (Holt-Lunstad et al., 2015) that 
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are associated with low sociable individuals. This reduced level of sociability and social 

interaction is associated with mental health related disorders such as bipolar disorder 

(Tiğli Filizer et al., 2016), major depressive disorder (Kupferberg et al., 2016; Saris et 

al., 2017) and schizophrenia (Green et al., 2015). We also see studies that link low 

sociability in mice, with autism observed in humans (Brodkin, 2007). Other studies in 

humans aim to understand the role of the hormone oxytocin, with variation in the 

oxytocin receptor gene OXTR associated with variability in human sociability and social 

behaviour (Bakermans-Kranenburg & van Ijzendoorn, 2014; Pearce et al., 2017). 

Sociability and social behaviour are also commonly studied in insects, as there 

are numerous social species of insects especially those that demonstrate eusociality. 

Eusociality refers to a societal group’s possession of three traits: cooperative care of the 

young; a reproductive division of labour; and an overlap of at least two generations in 

life stages capable of contributing to colony labor (Wilson, 1971). Many of these 

classically known social species exhibit social behaviour such as in ants (Chapman et 

al., 2011), termites (Higashi et al., 2000), and bees (Amsalem et al., 2015; Plateaux-

Quénu, 2008). We can also look at eusocial insects from an evolutionary perspective. 

The independent evolution of eusociality across Hymenoptera proves a powerful tool to 

investigate the evolution of this behaviour (Wilson & Hölldobler, 2005). Here we see 

work that investigates eusocial and non-social species of bees, looking at genes that 

are potentially involved in this evolution (Jones et al., 2023; Woodard et al., 2011). 
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Sociability in Drosophila 

While a majority of studies in social insects are through the lens of the classically known 

social species (ants, termites, and bees), recently many insect species that have been 

long thought as non-social have been shown to exhibit social behaviour (Costa, 2006; 

Prokopy & Roitberg, 2001). Specifically, we can look at the fruit fly (Drosophila 

melanogaster) which has been previously thought to be non-social. Here we see that 

they do in fact form social groups (Dukas, 2020; Schneider et al., 2012) as well as other 

social behaviours like social learning (Sarin & Dukas, 2009) and a group response to 

danger (Ferreira & Moita, 2020). Sociability is prevalent and important in many species; 

however we have a limited knowledge in relation to its genetic architecture, or how 

genes (and what genes) contribute to the observed phenotypic variation of sociability. 

 

How Sociability translates across species 

While the definition of sociability is straightforward, it is much more complicated to think 

how sociability translates across species. Is social or anti-social behaviour in an 

individual the same when you look at two different species? Or are there subtle 

differences between the two? Even measuring sociability or social behaviour varies 

when studying different species. Johnsson et al. (2018) studied an aspect of social 

behaviour, social reinstatement, by removing a chicken from conspecifics and recording 

how long it took for the individual to reinstate itself with conspecifics. Another study 

looked at early life social conditions in Bombus impatiens, in which they raised a single 

generation of bumblebees in three early life conditions (Wang et al., 2022). The three 

conditions were colony-raised, group-raised or isolated and RNA was extracted for 



M.Sc. Thesis – A. Torabi-Marashi; McMaster University – Biology 

 5 

differential gene expression (DGE) analysis following behaviour assays (Wang et al., 

2022). In Apis mellifera, assays were performed to determine if the behaviour of an 

individual bee was unresponsive, guard-like or nurse-like after RNA was extracted for 

DGE (Shpigler et al., 2017). A study in humans surveyed individuals from the UK 

biobank with questions related to their social behaviour, and then a genome wide 

association study (GWAS) was performed (Bralten et al., 2021). Are all of these different 

methods capturing the same latent states in individuals? That is, are we potentially 

capturing similar genes or gene networks that are underlying this behaviour? Or does 

capturing different measures of social behaviour make it difficult to compare between 

species? 

 

Artificial Selection of Sociability 

Looking at fruit flies, we can ask what genes and the regulation of which genes are 

responsible for sociability. While we do observe sociability in fruit flies, we have a limited 

knowledge in relation to its underlying genetic basis. Previous work by Scott et al. 

(2022) worked on quantifying and artificially selecting for high and low sociable fruit 

flies. A sociability arena (Figure 1.1) was designed and constructed where flies would be 

able to congregate with one another on food patches and their behaviour was 

documented (Scott et al., 2022). If there was a low number of flies in a section of the 

arena, they were selected for low sociability in the next generation and conversely, if 

there were a larger number of flies in a section, they were selected for high sociability in 

the next generation. The flies were selected upon for a total of 25 generations after 

which RNA and DNA was extracted from pooled adult heads and sent for sequencing 
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(see detailed methods below). Artificial selection is a beneficial experimental tool that 

has been used in the past to select on behaviour in various species (Doyle & Talbot, 

1986; Dukas et al., 2020; Hämäläinen et al., 2022; Ramos & Gonçalves, 2019; Siegel, 

1972; Vega-Trejo et al., 2020). Studies investigating sociability remain 

underrepresented, and there are little to no studies investigating the behaviour through 

the lens of artificial selection. 

 

Figure 1.1. Sociability Arena A) Image of the arena. B) Schematic of the arena with 

flies and indication of barriers and food patches for the flies. Figures created by Andrew 

Scott for Scott et al. (2022). 

 

How we can use Sociability to address our questions 

One of the more interesting aspects from Scott et al. (2022) was that we saw a 

response to selection (Figure 1.2). Typically, with an artificial selection experiment, say 

for size, selection occurs on an individual and their individual contributions. However, in 
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this study we are capturing a group response, while the selection is happening on an 

individual. Given that we see such a clear response to the selection, we are able to 

study evolutionary changes in this behaviour largely absent of other differences. For 

example, in studies that look at the differences between solitary and eusocial bees, 

there are many inherit differences between the species. While the behavioural 

difference between the two may be captured, other unrelated and confounding factors 

may be present. The same can be thought of in studies that deal with humans. Many 

measures of sociability are investigating and capturing effects associated with disorders 

that may have other contributing factors that don’t involve just the genetic component 

(socioeconomic factors, life history, environment). While it can be argued that this 

response is not necessarily the same sociability we see in other species and can be 

potentially group forming or social aggregation, we are capturing a specific aspect of 

sociability. This allows us to investigate only this aspect of the behaviour, absent of 

other factors, which can prove to be a powerful tool to study the underlying genetic 

architecture of sociability and social behaviour. 
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Figure 1.2. Mean ± SEM sociability scores over 25 generation in females (A) and 

males (B) of the low (blue), high (red) and control (unfilled) lineages (n = 4 

lineages for each of the 3 treatments). Note that we quantified sociability in the 

control lineages only every 5 generations. Values significantly above 1 (dashed lines) 

indicate significant sociability. Data from Scott et al. (2022). 

  



M.Sc. Thesis – A. Torabi-Marashi; McMaster University – Biology 

 9 

Motivation 

With the sequencing data from the previously mentioned artificial selection experiment 

by Scott et al. (2022) we can investigate the underlying genetic architecture of the trait 

and provide valuable insight into a system that remains underrepresented in the 

literature. In total, we will have RNA and DNA sequences that we can use to begin to 

start to understand the genetic architecture and underpinnings of social behaviour. 

Population genomics (with the DNA data) can help us understand evolutionary changes 

associated with the change in behaviour that may be captured within the genomes, and 

differential gene expression and transcript usage (with the RNA data) can help us 

understand if there are any genes or transcripts being differentially expressed or used 

across selection treatments. This study provides us with a large experimental design 

and sample size, which allows us to accurately and appropriately model gene 

expression and transcript usage, which will be covered in depth in Chapter 2.  



M.Sc. Thesis – A. Torabi-Marashi; McMaster University – Biology 

 10 

Thesis Objectives 

With this large genomic dataset, we are able to address the questions of what genes, or 

the regulation of which genes are responsible for the observed variation in sociability. 

The overall objective is to use genomic approaches to investigate the genetic 

architecture of sociability and social behaviour in Drosophila. With this we can identify 

potential genes that mediate the observed response to selection. Specifically, we can 

use the RNA sequencing data to identify the set of genes that are being differentially 

expressed and transcripts that are being differentially used between the low and high 

sociable lineages. With the DNA sequencing we can use a population genomics 

approach and investigate the evolution of the behaviour across the genome and identify 

potential regions under selection and whether or not these regions overlap with genes 

previously identified in either the DGE or DTU analysis. Throughout the analyses, 

potential candidate genes may be identified that can be further tested. We can compare 

our set of genes with orthologous genes linked to social behaviour in other species and 

see if there are in fact common genetic underpinnings across these different species or 

if the underlying genetic architecture is specific to their respective species. 

  



M.Sc. Thesis – A. Torabi-Marashi; McMaster University – Biology 

 11 

Chapter 2: RNA sequencing analyses of artificially selected 

lineages 

Introduction 

As discussed in chapter 1 we have a limited knowledge on the genetic architecture of 

sociability, especially through the lens of D. melanogaster. Other studies have used 

differential gene expression as a method to investigate gene regulation of social 

behaviour in bees (Shpigler et al., 2017; Wang et al., 2022). Building on the work of 

Scott et al. (2022), we have obtained mRNA sequencing reads from 142 samples 

following artificial selection with these samples coming from pooled heads of 16 adults 

across artificially selected treatments (low, control, and high), across sex, and across 

experiential contexts. This study provides us with, to our knowledge, the largest RNA 

sequencing experiment that investigates sociability in D. melanogaster. 

RNA sequencing can be a powerful tool to investigate how genes are being 

expressed differentially in different treatment conditions. We can also utilize transcript 

level information to identify how transcripts are being expressed differentially between 

treatments. In this chapter, we perform differential gene expression (DGE) and 

differential transcript usage (DTU) analysis. DGE lets us identify if a given gene is 

expressed at higher or lower expression values in differing treatments, and if so, how 

large of an effect is this difference in expression. A DTU analysis tests for proportional 

differences in the transcript expression of a gene across conditions (Tekath & Dugas, 

2021). DTU lets us identify if a given transcripts proportion of usage is increasing or 

decreasing across conditions, relative to other transcripts of that gene. We can then 

identify how many transcripts are being differentially used and how large of a difference 
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in usage there is across treatments. There is another analysis regarding transcript 

expression, differential transcript expression (DTE) analysis which examines an 

individual transcripts expression across treatments. Typically, if an individual transcript is 

exhibiting differential expression across treatments, it is either due to a change in a 

genes expression across treatments or a change in a genes relative usage of its 

transcripts, both of which are captured with DGE and DTU (Soneson et al., 2016). 

Because of this reason, we are performing a DTU analysis alongside our DGE analysis, 

rather than a DTE analysis.  

There are many different pipelines and software tools available for both DGE and 

DTU analyses. At nearly each step of the pipeline, a different tool can potentially be 

swapped in and out to achieve similar goals. With the vast number of tools, it may be 

difficult to initially parse through all the available tools to determine what works best for 

a given experiment. For a given RNA sequencing analysis pipeline you may encounter 

different trimming, mapping, DGE and DTU tools as well as different methods of 

extracting estimates. One example of this can occurring during the transcript mapping 

stage. There are tools that calculate transcript abundance like salmon (Patro et al., 

2017) and kallisto (Bray et al., 2016), that are alignment-free and identify what transcript 

or loci the sequencing reads originate from, rather than a base to base alignment with a 

reference genome (Bray et al., 2016; Patro et al., 2017; Srivastava et al., 2016). There 

are also aligners like STAR (Dobin et al., 2013) that align reads base to base to a 

reference genome and produce gene-level counts. STAR is able to take a read from 

mRNA sequencing and match it to a reference genome, by first searching for the 

longest contiguous sequence in a read that matches with the reference and then 
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searching again with the unmapped portion of the read for the longest contiguous 

sequence that matches with the reference (Dobin et al., 2013). This process continues 

until the entire read is accounted for (Dobin et al., 2013). Both have pros and cons, 

namely that salmon and kallisto are quicker and less memory intensive, and STAR has 

the ability to identify novel transcripts. Choosing one of the two methods is appropriate 

for most workflows, but a more inclusive approach is to use both (in separate workflows) 

and compare the two methods to ensure consistency in the results. Ideally, these two 

methods would largely agree with one another, but given the fact that salmon and 

kallisto are not able to identify novel transcripts there may be cases where salmon and 

kallisto incorrectly map transcripts which would lead to different results than a workflow 

using STAR. 

Once the sequencing data has been processed and mapped to count data, DGE 

and DTU analyses can be performed. For these steps there are numerous tools 

available to choose from, with their own use cases. A majority of the tools that perform 

DGE model gene expression using linear models that are fit for every gene using either 

a gaussian (limma; Ritchie et al., 2015) or a negative binomial (DESeq2; Love et al., 

2014; edgeR; Robinson et al., 2010) probability distribution. However, if a study has a 

complex experimental design, it may be appropriate to model gene expression using 

generalized linear mixed-effect models. A larger experimental design might mean that 

there are certain random effects that need to be fit in order to account for statistical 

variance in the design that may not be biologically relevant. This is not possible when 

using linear or generalized linear models, however using linear mixed-effect models 

solves this problem. Tools like limma-Voom also account for technical variation from 
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sequencing (Robinson et al., 2010), and use an empirical bayes approach to shrink and 

account for these sources of variation (McCarthy et al., 2012). DESeq2 and edgeR also 

estimate the dispersion parameter, or the variation between replicates, when fitting the 

negative binomial distribution (Love et al., 2014; McCarthy et al., 2012). Dispersion can 

be difficult to estimate in experiments with lower sample sizes and number of replicates, 

as the estimated dispersion for each gene is highly variable and results in imprecise 

accuracy of differential expression testing (Love et al., 2014). DESeq2 assumes that 

genes with similar average expression have similar dispersion and therefore estimates 

dispersion using a method that shares information across genes (Love et al., 2014). In 

this approach, first gene-wise dispersion is estimate for each gene, and then a curve is 

fit between the gene-wise dispersion estimate and average expression (Love et al., 

2014). Next, an empirical bayes approach is used to shrink the gene-wise dispersion 

estimates toward the fitted line, and the result value is used for the dispersion estimates 

(Love et al., 2014). With large sample sizes this approach is not necessary (Love et al., 

2014) as the estimation of gene-wise dispersion parameters will be more accurate, so 

there is no need to share information across genes with similar average expression 

levels to estimate dispersion. Similar to DGE, DTU tools also use similar approaches to 

account for this source of various (Anders et al., 2012; Nowicka & Robinson, 2016). 

In our experiment we had a large sample size as well as 4 independent lineages 

in each selection treatment that should be appropriately fit as random effects as there is 

variation between lineages which is statistically relevant, but not biologically relevant to 

the objectives of our study. We decided to implement our own method of DGE and DTU 

analysis using linear mixed-effect models. To do so, we used glmmTMB (Brooks et al., 
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2017) to model gene expression or transcript usage per gene or transcript, for DGE and 

DTU respectively. Using this approach, we were able to fit random effects and build our 

models appropriately. With the flexibility of glmmTMB, we were able to implement model 

runs that uses similar approaches to gene filtering, count normalization and outputting 

effect sizes of log2(cpm) as those seen in DESeq2, limma-Voom and DEXseq, but in the 

framework of a linear mixed-effect model. Importantly, we referred to the vignettes of 

DESeq2 and limma-Voom and replicated how counts were normalized or variance 

stabilized, as well as extract normalization factors to input into glmmTMB as offsets 

(Love et al., 2014; Ritchie et al., 2015). By implementing separate runs of DGE that 

used either the gaussian or negative binomial probability distribution, we were able have 

a two pronged approach that is representative of methods used in the literature. With 

both implementations, we are able to compare the results to ensure that the results we 

observe are consistent with one another.  

In large, a motivation for this implementation is that with the cost of sequencing 

decreasing, these larger scale and more complex experimental design RNA sequencing 

studies are becoming more and more common (Metzker, 2010; Pareek et al., 2011). 

While a lot of the commonly used tools are appropriate and highly useful for studies with 

simpler experimental designs, they do not hold as true for more complex experimental 

designs. Here, we present a method that can be implemented and adapted to most 

workflows with large experimental designs and sample sizes. 
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Objectives 

In this chapter specifically we ask the question of what genes and transcripts are being 

differentially expressed and used between the high and low sociability lineages 

previously generated by Scott et al. (2022). We can also compare the set of genes 

identified with orthologous genes in other species that are associated with social 

behaviour, to see if there are common genes that arise across the literature, or if the 

underlying genetic basis is specific to their respective species. 
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Methods 

Artificial Selection 

We previously applied artificial selection on sociability (Scott et al., 2022). For each 

selection treatment, we had 4 independently evolving lineages (4 low sociability 

lineages, 4 high sociability lineages, and 4 control lineages). Each generation, we 

quantified sociability in 12 groups of 16 females, and 12 groups of 16 males, from each 

of the 4 low and 4 high sociability lineages. To quantify sociability, we placed each group 

of 16 flies inside a sociability arena, which had 8 equal sized compartments, each 

containing a food disc (Fig. 1 in Scott et al., 2022). Flies could move freely among the 

compartments for 90 minutes, after which we blocked the fly passage and recorded the 

number of flies in each compartment. From this record, we calculated the sociability 

score as the variance over mean number of flies in each compartment (See Fig. 1 in 

Scott et al., 2018). We then selected 4 flies from each arena. For the low-sociability 

lineages, we selected flies from compartments with the lowest numbers of individuals, 

while for the high-sociability lineages, we selected flies from compartment(s) with the 

highest number of individuals. For the 4 control lineages, we randomly selected 4 flies 

from each of the 12 groups of 16 same-sex flies per lineage. Owing to time constraints, 

we quantified sociability in the control lineages only every 5 generations. We used the 

48 males and 48 females from each lineage to generate the next generation of 

individuals. After 25 generations of selection, the high-sociability lineages showed 

sociability scores about 50% greater compared with low-sociability lineages. (Scott et 

al., 2022; Fig. 1.2).  
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In generation 26, we collected adult fly heads for gene expression analysis. We 

had 2 experience treatments. In the sociability arena treatment, we placed groups of 16 

same-sex flies in the sociability arenas prior to their collection for gene expression. This 

provided the flies with the social dynamics experienced during their evolutionary history 

under artificial selection. When placed in the sociability arenas, flies initially engage in 

exploration and frequent contacts with other flies (Scott et al., 2022). We presumed that 

such social interactions would affect the expression of pertinent genes. In the vial 

treatment, we just moved groups of 16 same-sex flies into fresh vials, so these flies did 

not experience the sociability arenas. After 20 min, we rapidly transferred each group of 

16 individuals into a 1.5 mL tube and submerged it in liquid nitrogen. We had 3 

replicates per lineage x 12 lineages x 2 sexes x 2 experience conditions for a total of 

144 samples. We later separated the flies’ heads and extracted RNA.  

 

RNA Extraction and Sequencing 

We extracted RNA using MagMAX -96 Microarrays Total RNA Isolation Kit (Thermo 

Fisher). We checked purity using a Nanodrop (Thermo Fisher) spectrophotometer and 

checked quantification using Denovix Fluorometer (Denovix) and Qubit RNA high 

sensitivity assay kit (Thermo Fisher). We sent the samples to Génome Québec (Centre 

d'expertise et de services, Génome Québec) for library preparation and sequencing. 

Library preparation used NEBNext dual multiplex oligoes, and sequencing was done 

using an Illumina Novaseq 6000 S4, with a 100 bp paired-end sequencing technology. 

One sample was rejected in the quality control check for poor quality and another 

sample was rejected for low quantity of RNA, so 142 samples were sequenced. A total 
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of approximately 6.2 billion read clusters were generated with an average of 44 million 

read clusters per sample.  

 

Read Processing and Mapping 

All computational analysis was performed using the Digital Research Alliance of Canada 

(formerly Compute Canada; www.alliancecan.ca). We checked quality of reads using 

FASTQC (v0.11.9, Andrews, 2010) and MultiQC (v1.12, Ewels et al., 2016), which 

assessed adapter content, per sequence quality scores and GC content. All samples 

had a mean Phred score value of > 35. We assessed transcript integrity number (TIN) 

using RSeQC (v4.0.0, Wang et al., 2012), and all but two samples had median TIN 

scores > 60, with those two having a median TIN score of 49 and 59. As such, we 

included all samples in the analysis. We trimmed adapters using trimmomatic (v0.36, 

Bolger et al., 2014), with both leading and trailing set to “3” and run parameters set to 

“MAXINFO:20:0.2”. We removed reads shorter than 36 bp from the sample. Following 

trimming, we once again used FASTQC and MultiQC to confirm adapters were trimmed 

while maintaining high quality sequence. We mapped reads to a reference 

transcriptome of D. melanogaster from Flybase (version r6.38, Gramates et al., 2022) 

using Salmon (v1.4.0, Patro et al., 2017) with decoys which produced counts of 

transcripts per sample. To use Salmon, we first generated an index file from a list of 

decoys, a reference transcriptome, and a reference genome (version r6.38, Gramates 

et al., 2022), which we then used for mapping. We also separately used the splice-

aware aligner STAR (v2.7.9a, Dobin et al., 2013) to map reads to a reference genome, 

which produced gene level counts (Figure 2.1, Table A1). 

http://www.alliancecan.ca/
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Figure 2.1. Flowchart detailing steps and software used for differential gene 

expression (DGE) analysis. The flowchart details steps from raw sequenced reads 

until fitting models onto gene counts. Each branch point after the second “FASTQC and 

MultiQC” step is independent of one another. 

 

Principal component analysis (PCA) 

Counts were imported into R (v4.2.0, R Core Team, 2022) using tximport (v1.24.0, 

Soneson et al., 2016). Count data was normalized using the “vst()” function from 

DESeq2 (v1.36.0, Love et al., 2014) which performs a variance stabilizing 

transformation. In the “vst()” call, we set “blind = FALSE”, providing a design matrix 
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consisting of sex, experience, selection and the interaction between selection and sex. 

We also used “nsub = 5000” to filter for only the top 5,000 most variable genes. To 

visualize the PCA results, we used the function “plot_pca()” from RNAseqQC (v0.1.4, 

DeLuca et al., 2012) with “nfeats = 500” to plot the top 500 most variable genes. 

 

Regularized Discriminant Analysis (RDA) 

We performed RDA to examine broad, shared features of transcriptome-wide 

responses. Given the potential influence of small individual changes in gene expression 

across many genes substantially modulating sociability, we also explored a genome-

wide approach to evaluate the degree of shared response. If there is a high degree of 

shared response (i.e. similar sign of effect across treatments) across genes, then we 

should be able to predict specific lineages, given a training set of all other lineages. We 

used the same normalized counts as from our PCA analysis (see above) and we 

modified the code of the function “plot_pca()” from the RNAseQC package (DeLuca et 

al., 2012) to extract the top 500 most variable genes. We then split our data into a 

training set and a test set. The test set contained only samples from the specific lineage 

we aimed to predict, and the training set contained all other samples. We ran two 

separate implementations, one with the classifiers set to only selection and the other 

with both sex and selection included in the classifiers. We then used the function “rda()” 

from the package klaR (v1.7-2, Weihs et al., 2005) on our training set with “crossval = 

TRUE” and “fold = 10” to perform a 10-fold cross-validation. Following this we then used 

the function “predict()” on both our training set and test set. 
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Differential Gene Expression (DGE) Analysis 

To filter out low expressed genes, we used the “filterByExpr()” function from edgeR 

(v3.38.4, Robinson et al., 2010). We removed genes that had lower than 0.3 counts-per-

million (cpm) in at least 8 samples. CPM is used here to avoid overrepresentation of 

genes that are expressed in larger libraries over genes expressed in smaller libraries, 

as detailed in Chen et al. (2016). From a total of 13,701 genes, we removed 2,176 

genes, leaving 11,525 genes. Counts were used directly for the negative-binomial 

GLMM. For the gaussian mixed models, counts were normalized and variance 

stabilized in the form of log2(cpm) using the “voom()” function in the limma package 

(v3.52.4, Ritchie et al., 2015). As we needed to incorporate random effects into our 

generalized linear models, we used glmmTMB (v 1.1.4, Brooks et al., 2017), which 

allowed us to fit the appropriate model. The package let us model our data similarly to 

limma-Voom using a Gaussian distribution and modelled log2(cpm) per gene.  

The full model used lane, sex, experience (sociability arena or vial), and selection 

as main effect terms (Equation 1). We included all 2nd order interactions between 

selection, sex, and experience. Lineage was modelled as a random effect nested within 

selection treatments. Variation for sex and experience was allowed to vary by lineage 

(i.e. random “slopes” for sex by lineage). The full model in glmmTMB syntax is: 

 

𝑙𝑜𝑔!𝑐𝑝𝑚	~	𝑙𝑎𝑛𝑒 + 𝑠𝑒𝑥 + 𝑒𝑥𝑝𝑀𝑎𝑡𝑐ℎ𝑒𝑑 + 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑠𝑒𝑥: 𝑒𝑥𝑝𝑀𝑎𝑡𝑐ℎ𝑒𝑑

+ 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛: 𝑒𝑥𝑝𝑀𝑎𝑡𝑐ℎ𝑒𝑑 + 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛: 𝑠𝑒𝑥

+ 𝑑𝑖𝑎𝑔(0 + 𝑠𝑒𝑥 + 𝑒𝑥𝑝𝑀𝑎𝑡𝑐ℎ𝑒𝑑	|	𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛: 𝑙𝑖𝑛𝑒𝑎𝑔𝑒)	 
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𝑦" 	~	𝑁(𝜇 = 	𝛽#[%] +	𝛽'𝑥'" +	𝛽![%]𝑥!" + 𝛽([%]𝑥(" + 𝛽)𝑥)" +	𝛽*𝑥!"𝑥(" +	𝛽+𝑥)"𝑥("

+	𝛽,𝑥)"𝑥!" , 𝜎!) 

 

With (co)variance due to lineage: 

@
𝛽#[%]
𝛽![%]
𝛽([%]

A = 𝑀𝑉𝑁C
0
0
0
,
𝜎!-! 0 0
0 𝜎!-" 0
0 0 𝜎!-#

D 

 

where yi = log2(cpm), 𝑥' = lane, 𝑥! = sex, 𝑥( = expMatched and 𝑥) = selection. 

If the model failed to converge for a given gene, we adjusted the model to fit a 

slightly less complex random effect, while keeping all other terms identical. The 

adjustment to the random effect was to drop experience, such that the random effect 

was now: 𝑑𝑖𝑎𝑔(0 + 𝑠𝑒𝑥	|	𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛: 𝑙𝑖𝑛𝑒𝑎𝑔𝑒).	We chose to drop experience because it 

had minimal influences on model fits for the reduced model. Importantly, checks with 

fitting models where covariance between the sexes across lineages was set to 0 had 

minimal impacts on model estimates (and associated uncertainties) for coefficients of 

interest (selection treatment and sex) for this study. For our specific contrasts and 

downstream analyses, we utilized estimated marginal means (emmeans) and 

associated contrasts from model fits using the emmeans package (v1.8.1, Lenth, 2022). 

Given that most studies of differential gene expression use modeling tools like limma-

Voom and DESeq2, we confirmed that our model estimates were similar for the 

simplified parameterized models. Comparison of contrasts from our glmmTMB model fit 

to limma-Voom computed estimates (lowest r = 0.896, CI = 0.892 – 0.899; Figure 2.2, 



M.Sc. Thesis – A. Torabi-Marashi; McMaster University – Biology 

 24 

Table 1). While the approach we use is computationally slower than linear model fits 

using limma-Voom or DESeq2 (albeit still quite fast), it has the advantages and flexibility 

enabled by modern mixed modeling approaches (Brooks et al. 2017). 

 

 

Figure 2.2. Estimate comparisons between limma-Voom and glmmTMB (following 

a gaussian distribution) estimates for various coefficients of their respective 

model. Both the x and y axis estimates are in log2(cpm). The difference between the 

two models is that lineage is a main effect in limma-Voom while it is a random effect in 

the glmmTMB run. Both estimates are log2(cpm). From top to bottom and left to right the 

terms we have are intercept (R = 0.99), sex male (R = 0.99), experience vial (R = 0.95), 
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selection low (R = 0.90), selection high (R = 0.95), male:vial interaction (R = 0.93), 

vial:low interaction (R = 0.93), vial:high interaction (R = 0.94), male:low interaction (R = 

0.96) and male:high interaction (R = 0.96).  

 

Table 2.1. Table of Pearson correlation coefficient and corresponding confidence 

intervals of estimates between limma-Voom and glmmTMB (Gaussian 

Distribution) by model term. 

Model Term r Lower Upper 

Intercept 0.99699 0.99688 0.99709 

Male 0.99192 0.99162 0.99220 

Vial 0.94699 0.94507 0.94884 

Selection Low 0.89554 0.89187 0.89910 

Selection High 0.94873 0.94688 0.95053 

Male:Vial 0.93431 0.93195 0.93659 

Vial:Low 0.93121 0.92874 0.93359 

Vial:High 0.93999 0.93783 0.94208 

Male:Low 0.96065 0.95922 0.96204 

Male:High 0.95805 0.95652 0.95953 

 

The approach used by limma-Voom has been shown to generate comparable 

results to approaches based on the negative binominal distribution on “raw” count data, 

especially for experiments with sufficient sample sizes. However, as we re-implemented 
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such modeling strategies, but in the context of generalized linear mixed models, we 

wanted to confirm this.  

As such, we also fit models in glmmTMB using the raw counts as response 

variables, utilizing a natural log link and the negative binomial distribution. We obtained 

the normalization factors from DESeq2 package by using the function 

“estimateSizeFactors()” and extracted them using the function “normalizationFactors()”. 

We then used those extracted normalization factors as model offsets. To account for 

over-dispersion, we used the quadratic parameterization for the variance, “family = 

nbinom2()”, which specifies the variance as 𝑉 = 𝜇(1 +	𝜇 𝜙H ), with 𝜇, the predicted 

mean, and 𝜙, the dispersion parameter. For purposes of comparisons, it is worth noting 

that DeSeq2 uses log2 while glmmTMB uses a natural log scale for the link function. 

Otherwise, model specification was identical. These different approaches produced 

comparable estimates (lowest r = 0.729, CI = 0.720 – 0.737; Figure 2.3, Table 2), 

although as expected the standard errors of the estimates differ substantially. 
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Figure 2.3. Estimate comparisons between negative binomial and gaussian 

implementation estimates produced from glmmTMB for various coefficients of 

their respective model. The gaussian is fitting log2(cpm) while the negative binomial is 

fitting log2Fold-Change. Both are fitting the same model, the difference between the two 

models is that one uses the negative binomial distribution and the other uses gaussian. 

Both estimates are log2(cpm). From top to bottom and left to right the terms we have are 

intercept (R = 0.99), sex male (R = 0.92), experience vial (R = 0.81), selection high (R = 

0.87), selection low (R = 0.94), male:vial interaction (R = 0.78), vial:low interaction (R = 

0.73), vial:high interaction (R = 0.80), male:low interaction (R = 0.76) and male:high 

interaction (R = 0.77).  
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Table 2.2. Table of Pearson correlation coefficient and corresponding confidence 

intervals of estimates between gaussian and negative binomial implementations 

from glmmTMB by model term. 

Model Term r Lower Upper 

Intercept 0.99594 0.99579 0.99608 

Male 0.91959 0.91672 0.92236 

Vial 0.80832 0.80189 0.81455 

Selection Low 0.94311 0.94106 0.94510 

Selection High 0.88382 0.87976 0.88776 

Male:Vial 0.78077 0.77354 0.78780 

Vial:Low 0.72860 0.71992 0.73706 

Vial:High 0.79972 0.79305 0.80621 

Male:Low 0.77100 0.76349 0.77831 

Male:High 0.77962 0.77235 0.78668 

 

Gene Curation 

After fitting the models, we used the “Anova()” function from the R package car (Fox & 

Weisberg, 2019) to perform a Wald test on our fitted model, which we then extracted the 

associated gene and p-value from. From here we ended up with a list of genes and their 

p-values, which we then applied a p-value adjustment to, using the R function 

“p.adjust()” with “method = ‘BY’ (Benjamini & Yekutieli, 2001) for controlling false 

discovery rate. After adjustment, we filtered out genes with FDR < 0.05, and subsetted 

emmeans contrast list to include only those that fit this criterion. From here, we split 
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emmeans contrast lists into three lists, which corresponded to our three contrasts, low 

versus high, low versus control and control versus high. In each of these three lists, we 

pulled out genes with a p-value < 0.05 to obtain a list of genes in each of the three 

contrasts that potentially mediate sociability. We investigated these genes using the 

Drosophila specific database, Flybase (vFB2023_01), focusing on whether previous 

work indicated expression in the head tissue, links to social behaviour, and orthologous 

human genes. 

 

Differential Transcript Usage (DTU) Analysis 

We followed the recommendations for DTU analysis as outlined in Love et al. (2018). 

We generated transcript level counts from Salmon and imported them into R. We 

normalized the counts to scale to library size during import. We filtered transcripts using 

the “dmFilter()” function from DRIMseq (v1.24.0, Nowicka & Robinson, 2016). For a 

gene to be retained through filtering, the gene had to be expressed in a minimum of 28 

samples (out of 142 total) with a minimum expression of 10 counts per sample in those 

samples. For a given transcript to be retained, it had to be expressed in a minimum of 

20 samples, with the transcript representing at least 5% of the gene’s total expression in 

those samples. This removes rare transcripts (within sample) or genes with limited 

expression (across samples), as a priori we would not expect sufficient statistical power 

to estimate these coefficients with sufficient precision. Prior to filtering, there were 6,559 

genes with at least two transcripts and 21,143 transcripts representing those genes. 

Post filtering, we had 4,761 genes and 12,335 transcripts representing those genes 

(Figure 2.4). 
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Figure 2.4. Bar plot of the distribution of the number of transcripts per gene. A) 

Pre filtering where all genes with at least two transcripts are represented. B) Post 

filtering of genes and their transcript. For a gene to be retained through filtering, the 

gene had to be expressed in a minimum of 28 samples (out of 142 total) with a 

minimum expression of 10 counts per sample in those samples. For a given transcript to 

be retained, it had to be expressed in a minimum of 20 samples, with the transcript 

representing at least 5% of the gene’s total expression in those samples. 
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For model fitting, we used an approach analogous to that used in DEXseq 

(Anders et al., 2012). However, as we did for total gene expression, we modified this 

approach to allow for the inclusion of random effects in the model. Importantly, this 

approach focuses on examining transcript-treatment interactions to assess DTUs (Love 

et al., 2018). For computational efficiency, DEXseq (v1.5.3) implemented a change 

(relative to earlier versions of the software) in how the design matrix is coded (Reyes et 

al., 2013), and thus how contrasts between transcripts are estimated (Reyes et al., 

2013). This was done to deal with the computational overhead for situations where the 

number of exons (or transcripts) per gene was very high (Anders et al., 2012). However, 

for our purposes this was not a constraint, as such we retained treatment contrast 

coding for our design matrix during estimation, and, as discussed below, used 

emmeans to extract specific estimates and contrasts. 

For all genes that passed filtering, we used glmmTMB to fit a model that 

predicted counts for each individual transcript of a gene. For a given gene, we modelled 

the counts of all transcripts against each other. For a few genes, we observed complete 

separation (where a transcript was completely absent in one treatment but varying in 

others). To account for this, we added a count of one to all transcripts. Thus, changes in 

transcript usage will be slightly underestimated. We fit both full and “null” models using 

the negative binomial distribution with glmmTMB. The full model was: 

 

𝑐𝑜𝑢𝑛𝑡𝑠	~	1 + 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 + 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡: 𝑠𝑒𝑥 + 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡: 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

+ 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡: 𝑠𝑒𝑥: 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

+ 𝑑𝑖𝑎𝑔(𝑠𝑒𝑥 + 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡	|𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛: 𝑙𝑖𝑛𝑒𝑎𝑔𝑒) + (1	|	𝑠𝑎𝑚𝑝𝑙𝑒_𝑖𝑑) 
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The null model was: 

 

𝑐𝑜𝑢𝑛𝑡𝑠	~	1 + 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 + 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡: 𝑠𝑒𝑥 + 𝑑𝑖𝑎𝑔(𝑠𝑒𝑥|𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛: 𝑙𝑖𝑛𝑒𝑎𝑔𝑒) 	

+ (1	|	𝑠𝑎𝑚𝑝𝑙𝑒_𝑖𝑑) 

 

The full reduced model, in case the full model failed to converge was: 

 

𝑐𝑜𝑢𝑛𝑡𝑠	~	1 + 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 + 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡: 𝑠𝑒𝑥 + 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡: 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

+ 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡: 𝑠𝑒𝑥: 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 + (1	|	𝑠𝑎𝑚𝑝𝑙𝑒_𝑖𝑑)	 

 

The null reduced model was:  

 

𝑐𝑜𝑢𝑛𝑡𝑠	~	1 + 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 + 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡: 𝑠𝑒𝑥 + (1	|	𝑠𝑎𝑚𝑝𝑙𝑒_𝑖𝑑)	 

 

Following this, we again used the “Anova()” function from the car package to 

perform a Wald test on our fitted model. We also obtained the emmeans contrast for low 

versus high sociability. We then p adjusted our p-values using the BY method, and 

subsetted the anova results to only include transcripts with an adjusted p-value < 0.05. 

From here we subsetted our emmeans list to only include the genes that passed the 

previous cut-off for the anova. 
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Go Analysis 

We performed gene ontology (GO) analysis using topGO (v2.48.0, Alexa & 

Rahnenfuhrer, 2022) on the set of genes extracted from the linear mixed models. We 

separately performed the GO analysis on the total set of genes from the DGE analysis 

and from the total set of genes from the DTU analysis. Here we wished to identify 

enriched GO terms in our gene list produced. We set the number of genes per GO term 

to 5 and used Fisher's exact test. We then adjusted the resulting p-values for multiple 

comparisons using the Benjamini-Hochberg method of multiple comparisons correction. 

 

Simulations to assess overlap 

As we are comparing and identifying the intersection between sets of gene lists, 

we also set up a simulation to assess whether the number of overlapping genes 

identified between two sets of gene lists were more or less common than expected by 

random chance alone. We did this for the sets of genes that overlapped between the 4 

glmmTMB implementations, the comparison between DGE and DTU gene lists, 

between our lists of DE genes and when we compare to orthologs in different species. 

Each run was between two contrasts and consisted of 1,000 simulations in which we 

randomly sampled two sets of genes (one for each contrast or species) without 

replacement and independently of each other that corresponded with the total number 

of genes identified in each contrast. We sampled from the total number of genes that we 

mapped to (or were shared between two species) and observed how many genes would 

be common between the two. For the simulations where we looked at the number of 

genes between species we had an estimate of the number of shared genes, but we also 
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performed the simulation with +/- 10% of shared genes (which can be found in the script 

sharedDEGenes.R at the GitHub repository linked in the appendix). From the 

simulations we report the maximum number of genes overlapping and the number of 

overlapping genes in the 95th percent quantile. 
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Results 

Principal Component Analysis (PCA) 

To examine broad scale patterns of variation in gene expression, we used PCA on the 

samples (Figure 2.5). Sexually dimorphic gene expression accounts for much of the 

(co)variation that loads on the second principal component accounting for ~25% of the 

variation in gene expression, consistent with large scale sex-biased gene expression in 

the adult head (Arbeitman et al., 2016; Khodursky et al., 2020; Nanni et al., 2023). 

Interestingly, PC1 (accounting for ~36% of the variation), shows that the lineages 

artificially selected for reduced sociability (low) tend to have positively valued scores on 

PC1, while the samples from the control and high lineages are more variable along 

PC1. This variation (for high and control treatments) in gene expression is a result of 

lineage specific effects (i.e., replicate lineages within each selection treatment; Figure 

2.6). 
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Figure 2.5. Principal component analysis (PCA) plots showing the variance 

associated with samples. Points on each plot are coloured by selection treatment with 

low in red, control in green, and high in blue. Different shaped points represent sex. 

PC1 (36.4% of variance) on the x axis and PC2 (25.6% of variance) on the y axis. 
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Figure 2.6. Principal component analysis (PCA) plots showing the variance 

associated with samples. Points on each plot are coloured by lineage with lineage 1 in 

red, lineage 2 in green, lineage 3 in blue and lineage 4 in purple. Different shaped 

points represent different selection treatments associated with the sample. A) PC1 

(36.4% of variance) on the x axis and PC2 (25.6% of variance) on the y axis. B) PC2 on 

the x axis and PC3 (5.9% of variance) on the y axis. 

 

Regularized Discriminant Analysis (RDA) 

The first implementation of RDA was to predict lineages with classifiers including both 

sex and selection information. For all lineages we predicted, we found that we were able 

to predict the training set as well as the sex of the test set every time. However, we 

often failed to predict selection treatment. To ensure that our results were not due to sex 

effects, we split our dataset by sex and ran RDA separately. Again here, we found that 

we were not able to predict selection. We also extracted the top 1,000 most variable 
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genes and performed the same analysis. We saw that we were unable to predict even 

the training set, let alone the test set. 

 

Differential Gene Expression (DGE) Analysis 

Following DGE analysis, we had results between all four possible combinations of using 

Salmon or STAR and using the gaussian (log2 cpm) and negative binomial distributions 

(counts with offsets). Results presented will be in reference to the Salmon-mapped 

counts fit with the gaussian distribution (All other contrasts and gene lists are provided 

in the Appendix; Figure 2.7). As a check, we first extracted differentially expressed (DE) 

genes between females and males. Previous studies have shown that within D. 

melanogaster, there are a large number of genes that show sex-biased gene 

expression differences (Parisi et al., 2004; Ranz et al., 2003) and relevant to our study, 

within the head (Arbeitman et al., 2016; Khodursky et al., 2020; Nanni et al., 2023). We 

found 5,331 genes that are DE between females and males (Figure 2.8).  
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Figure 2.7. Upset plot showing overlapping genes between differentially 

expressed gene lists for the selection contrast of low versus high sociability. The 

four gene lists here are the four different ways we modelled differential gene expression. 

There are two mapping approaches of using STAR or salmon. There are two probability 

distributions we used to model gene expression with glmmTMB, those being the 

gaussian and negative binomial distribution. The points below the bars indicate which of 

the sets of genes are overlapping. Between the gaussian salmon and gaussian STAR 

we see 127 genes overlapping (simulation max 10 overlapping genes, 95% quantile of 6 

genes). Between the gaussian salmon and negative binomial salmon we see 112 

overlapping genes (simulation max 9 overlapping genes, 95% quantile of 5 genes). 
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Between the gaussian salmon and negative binomial STAR we see 109 overlapping 

genes (simulation max 9 overlapping genes, 95% quantile of 5 genes). Between the 

gaussian STAR and negative binomial salmon we see 99 overlapping genes (simulation 

max 10 overlapping genes, 95% quantile of 5 genes). Between the gaussian STAR and 

negative binomial STAR we see 132 overlapping genes (simulation max 11 overlapping 

genes, 95% quantile of 5 genes). Between the negative binomial salmon and negative 

binomial STAR, we see 102 overlapping genes (simulation max 9 overlapping genes, 

95% quantile of 4 genes). 
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Figure 2.8. Mean-Average (MA) Plot for female versus male emmeans contrast. X 

axis is the mean average in log2(cpm) for each gene obtained from emmeans. Y axis is 

the mean difference between the female and male expression in log2(cpm), also 

obtained from emmeans. Red points are differentially expressed genes that have an 

adjusted p value < 0.05 when looking at the contrast (low versus high) estimate, and 

blue points are genes that have an adjusted p value > 0.05.  

 

Within the three selection contrasts, we examined the distribution of effects and 

observed that a majority of them fell between a log2(cpm) of -1 to 1 (Figure 2.9). In the 

low versus control selection contrast, we saw 271 DE genes (Figure 2.10A). In the low 

versus high selection contrast, we saw 174 DE genes (Figure 2.10B). In the control 

versus high selection contrast, we saw 194 DE genes (Figure 2.10C). We saw a total of 

327 DE genes across the three selection contrasts. A subset of the 12 genes with the 

largest effect size in the low versus high selection contrast were observed and 

visualized (Figure 2.11). The maximum and minimum change in gene expression was 

3.98 and -6.59 respectively in log2(cpm), the majority (159/174) of differentially 

expressed genes show more modest changes between -1 to 1 log2(cpm) (Figure 

2.12A). For full gene lists and plots of all genes see the Appendix section. Additionally, 

we found 213 genes differentially expressed between the vial and social arena 

experience contrast. We also examined if either sex or experience had an interacting 

effect with selection and found no evidence of genes altering gene expression in either 

the sex by selection interaction or the experience by selection interaction.  
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Figure 2.9. Density plots for three selection contrasts. The x axis represents the 

estimate of gene expression in log2(cpm). The y axis represents the sociability 

contrast. In blue there is low versus high sociability, in green we have low versus control 

sociability, and in red we have control versus high sociability. Note that this figure only 

shows the bounds of -2 to 2 in order to observe overlap of estimates between the three 

contrasts, as a majority of the estimates fall between a log2(cpm) of -1 to 1. 
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Figure 2.10. Mean-Average (MA) Plot for a given selection contrast. X axis is the 

mean average in log2(cpm) for each gene obtained from emmeans. Y axis is the 

mean difference between the low and high sociability expression in log2(cpm), also 

obtained from emmeans. Red points are differentially expressed genes that have an 

adjusted p value < 0.05 when looking at the given contrast, and blue points are genes 

that have an adjusted p value > 0.05. A) Low versus Control sociability emmeans 

contrast. B) Low versus High sociability emmeans contrast. C) Control versus High 

sociability emmeans contrast.  
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Figure 2.11. Reaction norms of the top 12 genes by log2(cpm) difference in the low 

versus high sociability contrast. Each plot shows fitted gene expression in log2(cpm) 

as obtained by emmeans with their 95% confidence interval. The individual points 

indicate the log2(cpm) of each sample, where the 4 colours are the 4 lineages of each 

treatment.  
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Figure 2.12. Density plots for the low versus high selection contrasts following 

differential gene expression (DGE) analysis or differential transcript usage (DTU) 

analysis. Estimates here are only those with an adjusted p value < 0.05. The x axis 

represents the estimated effect size (log2(cpm) for DGE and log2(Counts) for DTU). The 

y axis is the density of genes at a given estimate. Vertical lines are at an estimate of -1 

and 1 of the respective axis units. A) Density plot for genes with DGE. B) Density plot 

for genes with DTU. 

 

Gene Curation 

Using the low versus high selection contrast gene list, we manually curated the genes. 

We found 33 genes that had supporting evidence of expression in the adult head and 

had a relevant phenotype associated. The relevant phenotypes included anything 

involved in abnormal neuroanatomy, neurophysiology, locomotor behaviour or circadian 
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rhythm (Table 1). A subset of the 12 genes with largest effect size were observed and 

visualized (Figure 2.13). 

 

Table 2.3. Manually curated list of genes with relevant phenotypes. The list 

contains Flybase ID (FBgnID), gene name, low versus high sociability contrast estimate, 

p value and a brief description of phenotypes reported on Flybase for different alleles of 

the gene.  

FBgnID Gene Estimate P-value Phenotype 

FBgn0010222 Nmdmc 0.68608 
1.45 x 

10-5 

Abnormal locomotor behaviour 

and stress response 

FBgn0015773 NetA 0.65412 0.0011 
Abnormal neuroanatomy and 

involved in axon guidance 

FBgn0033885 DJ-1α -0.62460 
1.47 x 

10-4 

Abnormal locomotor behaviour, 

neuroanatomy, and 

dopaminergic neuron 

FBgn0036150 Ir68a -0.51839 0.0021 
Abnormal behaviour and 

involved in sensory neurons 

FBgn0030795 ppk28 0.38051 5.3 x 10-4 

Abnormal memory, 

neurophysiology, taste 

perception 

FBgn0037217 CG14636 0.34868 0.0016 Abnormal auditory perception 

FBgn0031435 Elba2 0.31115 0.0488 Abnormal locomotor behaviour 

FBgn0027783 SMC2 -0.28518 0.0015 Abnormal neuroanatomy 
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FBgn0016672 Ipp -0.25391 
8.82 x 

10-6 

Abnormal learning in males, and 

abnormal neurophysiology 

FBgn0261563 wb 0.24136 0.0093 Abnormal Neuroanatomy 

FBgn0003174 pwn -0.22274 1.4 x 10-4 Abnormal neurophysiology 

FBgn0266670 Sec5 -0.21897 1.5 x 10-4 
Abnormal developmental rate, 

neuroanatomy and size 

FBgn0000565 MsrA 0.21552 0.0170 Involved in neuron projection 

FBgn0032701 CG10341 -0.19039 0.0120 Abnormal neuroanatomy 

FBgn0003654 sw 0.18939 0.0007 

Abnormal neuroanatomy, 

paralytic, dendritic arborizing 

neuron 

FBgn0035464 PIG-B -0.18849 
1.22 x 

10-5 
Abnormal locomotor behaviour 

FBgn0030932 Ggt-1 -0.18690 0.0018 Abnormal Behaviour 

FBgn0030969 Usp39 -0.17637 
2.95 x 

10-5 
Abnormal locomotor behaviour 

FBgn0266418 wake 0.16675 0.0017 
Abnormal locomotor, courtship 

behaviour, abnormal sleep 

FBgn0003301 rut -0.14431 0.0208 

Abnormal Behaviour, locomotor 

behaviour, neurophysiology, and 

neuroanatomy 

FBgn0034585 Rbpn-5 -0.14072 
2.36 x 

10-5 

Abnormal Developmental rate 

and locomotor behaviour 
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FBgn0052982 CG32982 0.13876 9.9 x 10-4 Abnormal locomotor behaviour 

FBgn0029992 Upf2 0.13765 0.0011 Abnormal neurophysiology 

FBgn0260635 Diap1 -0.13093 
5.37 x 

10-7 

Abnormal neuroanatomy, 

oxidative stress response, larval 

neurons, peptidergic neurons, 

abnormal size, and cell death 

FBgn0030352 sicily -0.13038 
1.27 x 

10-4 

Abnormal neuroanatomy and 

neurophysiology 

FBgn0026083 tyf -0.1136 
1.28 x 

10-5 

Abnormal Circadian behaviour 

and rhythm, abnormal locomotor 

rhythm 

FBgn0001316 klar 0.10995 0.0153 Abnormal locomotor 

FBgn0023095 caps 0.10796 0.0201 
Abnormal neuroanatomy and 

axon guidance 

FBgn0039861 pasha -0.09879 0.0088 
Abnormal neuroanatomy and 

neurophysiology 

FBgn0037574 Coq2 -0.09574 0.0016 Abnormal locomotor rhythm 

FBgn0024179 wit -0.08577 0.0303 
Abnormal neurophysiology and 

neuroanatomy 

FBgn0032222 Cox10 -0.07619 0.0183 Abnormal locomotor behaviour 

FBgn0039635 Pdhb -0.07284 0.0232 Abnormal locomotor behaviour 
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Figure 2.13. Reaction norms of the top 12 genes with relevant phenotypes by 

log2(cpm) difference in the low versus high sociability contrast. See table 2.3 for 

phenotypes. Each plot shows fitted gene expression in log2(cpm) as obtained by 

emmeans with their 95% confidence interval. The individual points indicate the 

log2(cpm) of each sample, where the 4 colours are the 4 lineages of each treatment.  
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Differential Transcript Usage (DTU) Analysis 

Following DTU analysis we obtained gene list for genes (and their corresponding 

transcripts) that were differentially transcribed. As a check, we looked at DTU between 

females and males and saw 2,631 genes with differential transcript usage. In the low 

versus high selection contrast, we saw 190 genes with differential transcript usage 

(Figure 2.14; Figure 2.15). In the low versus control selection contrast, we saw 384 

genes with differential transcript usage and in the control versus high selection contrast 

we saw 252 genes with differential transcript usage. In total we saw 619 genes overlap 

between all three selection contrasts. When looking at a sex by selection interaction we 

found 14 genes with differential transcript usage. When comparing our DTU results 

back to the DGE results, we see 39 genes that appear in both the overall DGE list and 

overall DTU list (Simulation maximum of 32 overlapping genes, 95% quantile of 21 

genes; Figure 2.16). For full gene lists and plots of all genes that have transcripts with 

DTU in the selection contrasts, see the Appendix. 
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Figure 2.14. Reaction norms of the top 9 genes by log2(cpm) difference in the low 

versus high sociability contrast within the differential transcript usage gene list. 

Three genes with a large number of transcripts are depicted in Fig. 2.15. Each plot 

shows expression of the given gene and its associated transcripts. Along the x axis is 

the transcript of a given gene and the y axis is log2(counts). Each transcript is coloured 

by selection, with blue representing low sociability, black representing control, and red 

representing high sociability. The large points are the fitted expression values of a 

transcript as obtained by emmeans with their 95% confidence intervals. The small 

points are the log2(counts) of each sample.  
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Figure 2.15. Reaction norms of three of the top 12 genes by log2(cpm) difference 

in the low versus high sociability contrast within the differential transcript usage 

gene list. These genes have a large number of transcripts associated with them (See 

figure 2.14 for the rest of the top 12). Each plot shows expression of the given gene and 

its associated transcripts. Along the x axis is the transcript of a given gene and the y 

axis is log2(counts). Each transcript is coloured by selection, with blue representing low 

sociability, black representing control, and red representing high sociability. The larger 

points are the fitted expression values of a transcript as obtained by emmeans with their 

95% confidence intervals. The more transparent points behind the fitted values are the 

log2(counts) of raw expression for the given transcript and selection combination. 
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Figure 2.16. Upset plot showing overlapping genes between differentially 

expressed gene lists and the list of genes corresponding to transcripts that were 

differentially used. We see 39 genes overlap between the two lists (simulation max 32 

overlapping genes, 95% quantile of 21 genes). 

 

GO Analysis 

Following GO analysis, we identified GO terms that are deemed as significantly 

overrepresented in our gene list of differentially expressed and differentially transcribed 
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genes. When looking at all DE genes in our gene list, we found 60 GO terms 

overrepresented (Table A2). These terms included sensory perception of mechanical 

stimulus and synaptic assembly at neuromuscular junction. When looking at the DTU 

gene set, we found 43 GO terms overrepresented (Table A3) including photoreceptor 

cell axon guidance, regulation of neuron synaptic plasticity and regulation of compound 

eye photoreceptor development. 

 

Comparison to Other Social Behaviour Studies 

We compared differentially expressed genes from our study with those represented in 

the literature. Bralten et al. (2021) performed a GWAS study using 342,461 people from 

the UK Biobank and identified 56 genes and 18 independent loci associated with 

sociability. We took their list of 56 genes and identified orthologous genes in Drosophila. 

While no specific Drosophila orthologs appeared in our list of “differentially expressed” 

genes, the family of Solute Carrier genes did appear in both lists. We also took the 

orthologs of the 18 independent loci and identified the corresponding 8 orthologs (as 

some were SNP locations with no corresponding Drosophila orthologs). We did not find 

any of them in our gene list, and the expression of these 8 orthologs did not appear to 

be changing across selection conditions in our data (Figure 2.17). In our simulations we 

found a maximum overlap of 15 genes with a 95% quantile of 7 overlapping genes. 
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Figure 2.17. Reaction norms of a subset of orthologous genes representing the 

gene list in Bralten et al. (2021) of independent loci in humans associated with 

social behaviour. The first three plots represent the orthologs to the human genes 

ELAVL2, ARNTL, DRD2, which were the most associated genes in their study. Each 

plot shows fitted gene expression in log2(cpm) as obtained by emmeans with their 95% 

confidence interval. The individual points indicate the log2(cpm) of each sample, where 

the 4 colours are the 4 lineages of each treatment. We identified 0 overlapping genes 

with our study (simulation max 15 overlapping genes, 95% quantile of 7 genes). 

 

Another study, by Wang et al. (2022) examined early life social experience in the 

bumblebee, Bombus impatiens. They performed RNA sequencing to look for genes 

differentially expressed between three separate early life conditions, colony-housed, 

group-housed (with others but outside of the colony) and isolation (Wang et al., 2022). 

They ended up with a list of 94 DE genes between isolated and colony reared bees and 

27 DE genes between isolated and group-housed bees, with six genes overlapping 

between the two contrasts (Wang et al., 2022). We identified orthologs of 68 out of the 

115 total genes in Drosophila and found two genes that appeared in our DE gene list, 

yellow-c and CG43066 (Figure 2.18). In our simulations we found a maximum overlap of 

17 genes with a 95% quantile of 10 overlapping genes. 
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Figure 2.18. Reaction norms of orthologous genes in Drosophila that overlapped 

between the differentially expressed genes found in Wang et al. (2022) and 

differentially expressed genes found in our study. Each plot shows fitted gene 

expression in log2(cpm) as obtained by emmeans with their 95% confidence interval. 

The individual points indicate the log2(cpm) of each sample, where the 4 colours are the 

4 lineages of each treatment. We identified 2 overlapping genes with our study 

(simulation max 17 overlapping genes, 95% quantile of 10 genes). 

 

A study by Woodard et al. (2011) examined the convergent evolution of 

eusociality across bee species. They looked across nine socially diverse bee species 

which included eusocial and non-eusocial bees and identified 212 genes that evolved 

more rapidly in eusocial lineages compared to non-eusocial lineages (Woodard et al., 

2011). Of the 212 genes they identified, we found four orthologs in Drosophila that 

appeared to be differentially expressed among our contrasts (Figure 2.19). In our 
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simulations we found a maximum overlap of 25 genes with a 95% quantile of 16 

overlapping genes. 

 

 

Figure 2.19. Reaction norms of orthologous genes in Drosophila that overlapped 

between the differentially expressed genes found in Woodard et al. (2011) and 

differentially expressed genes found in our study. Each plot shows fitted gene 



M.Sc. Thesis – A. Torabi-Marashi; McMaster University – Biology 

 59 

expression in log2(cpm) as obtained by emmeans with their 95% confidence interval. 

The individual points indicate the log2(cpm) of each sample, where the 4 colours are the 

4 lineages of each treatment. We identified 4 overlapping genes with our study 

(simulation max 25 overlapping genes, 95% quantile of 16 genes). 

 

Shpigler et al. (2017) performed differential gene expression analysis on Apis 

mellifera. They performed assays and classified individuals as either guards, nurses or 

unresponsive and then performed DGE analysis on RNA obtained from the mushroom 

body of the brain (Shpigler et al., 2017). They identified 1,057 DE genes between all 

three groups of social responsiveness (Shpigler et al., 2017). From that list of 1,057, we 

identified 14 orthologs in Drosophila that appeared in any of our Low versus High, Low 

versus control or control versus high DE gene lists (Figure 2.20). In our simulations we 

found a maximum overlap of 81 genes with a 95% quantile of 66 overlapping genes. 
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Figure 2.20. Reaction norms of orthologous genes in Drosophila that overlapped 

between the differentially expressed genes found in Shpigler et al. (2017) and 
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differentially expressed genes found in our study. Each plot shows fitted gene 

expression in log2(cpm) as obtained by emmeans with their 95% confidence interval. 

The individual points indicate the log2(cpm) of each sample, where the 4 colours are the 

4 lineages of each treatment. We identified 14 overlapping genes with our study 

(simulation max 81 overlapping genes, 95% quantile of 66 genes). 

 

When comparing to other study’s findings, we did not necessarily see the same 

genes appear. Perhaps because this is a group response, it is more difficult to “capture” 

or assess the genomics of the trait consistently across studies. We measure sociability 

within Drosophila in a specific manner (Methods in Scott et al., 2022) and while we are 

capturing some form of group or social behaviour, it may not be the exact same 

sociability or behaviour that other studies are capturing. Different studies assess social 

behaviour in different manners which make interpretation and comparisons to the 

literature more difficult. For example, Bralten et al. (2021) performed a genome wide 

association study in humans from the UK biobank database who answered survey 

questions. In Woodard et al. (2011) expressed sequence tags (ESTs) were mapped to 

transcriptomes to identify regions of the genome evolving at higher rates. Also, in 

studies look at social behaviour in A. mellifera and B. impatiens, behavioural assays 

were performed and then RNA was extracted from a single generation for RNA 

sequencing (Shpigler et al., 2017; Wang et al., 2022). Those four studies produced lists 

of 56, 115, 212 and 1,057 genes that played a role in influencing social behaviour 

(Bralten et al., 2021; Shpigler et al., 2017; Wang et al., 2022; Woodard et al., 2011). 

Between the four of those lists, we see 22 genes that overlap with the genes we 
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identified. While we are observing sets of genes influencing social behaviour across 

these species, we are not seeing a consistent influence of certain genes at a larger 

scale. It seems that different species use different genes to evolve this behaviour. Or 

perhaps, because of the different approaches to capturing social behaviour, we are 

seeing different genes come up in these gene lists. 
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Discussion 

The main objective of this chapter was to identify what genes and transcripts are being 

differentially expressed and used between the high and low sociability lineages. 

Following our DGE and DTU analyses we have identified lists of genes and transcripts 

between the high and low sociable lineages that are differentially expressed and used. 

We have also identified lists of genes and transcripts in other contrasts such as 

between the low versus control and between the control versus high that are 

differentially expressed and used. We also asked the question of if there are genes that 

influence sociability in Drosophila that are shared in other species as well. Here, we did 

not find evidence of a shared response or a common underlying genetic basis.  

In total we identified 327 genes showing differential expressed across all three 

selection contrast, with 174 genes differentially expressed between the low versus high 

selection contrast. While the maximum and minimum change in gene expression was 

3.98 and (-6.59) log2(cpm), the majority (159 out of 174) of differentially expressed 

genes showed more modest changes between (-1) to 1 log2(cpm) (Figure 2.12A). We 

also see overlap between the sets of contrasts, with 146 genes overlapping between 

the control versus high and low versus control DE gene list (simulation max 14 

overlapping genes, 95% quantile of 8 genes) as well as 122 genes overlapping between 

the low versus high and low versus control gene lists (simulation max 13 overlapping 

genes, 95% quantile of 8 genes; Figure 2.21). Given the consistent changes in gene 

expression, association with distinct biological functions, the size of each contrasts’ 

gene lists and the number of overlapping genes between contrasts, the genetic 

response we observe may be polygenic. Unfortunately, this is only a suggestion 
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because we cannot be certain that this response in gene expression is not from an 

overarching regulatory gene or gene pathway. 

 

 

Figure 2.21. Upset plot showing the overlap between the gene lists obtained from 

differential gene expression analysis. Gene lists are selection contrasts of Low 

Versus High, Control Versus High and Low versus Control. Between the low versus high 

and low versus control we see 122 overlapping genes (simulation max 13 overlapping 

genes, 95% quantile of 8 genes). Between the low versus high and control versus high 

we see 57 overlapping genes (simulation max 11 overlapping genes, 95% quantile of 6 
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genes). Between the low versus control and control versus high we see 146 overlapping 

genes (simulation max 14 overlapping genes, 95% quantile of 8 genes). 

 

We identified transcripts showing differential transcript usage across all three 

selection contrasts. In total, we identified 619 genes that coded for transcripts that were 

differentially used across all three selection contrasts, with 190 genes found between 

the low versus high contrast. Similar to the DE gene list, we see a majority (159 out of 

190) of estimates falling between the range of -1 to 1 log2(cpm) (Figure 2.12B). In this 

case it was 159 genes of the total set of 190 genes falling between that range. The 

smallest effect size in this list was a log2(cpm) difference of -4.71 and the largest was a 

log2(cpm) difference of 2.19. This again is similar to the response we observed with the 

DE genes, which gives us evidence that the genetic response following artificial 

selection acts both on the regulation of gene expression, but also on the regulation of 

transcript usage of certain genes. 

We also compared the list of DE genes that we identified with orthologs of 

previously identified genes associated with Hymenoptera sociality and human 

sociability. When looking across studies in Hymenoptera we saw few genes overlap with 

our gene list (Figures 2.18 – 2.20). Of the 20 genes that overlapped, only 7 genes were 

from the low versus high contrast, while the rest were from the low versus control or 

control versus high contrast. From the 8 Drosophila orthologs we could identify from the 

set of genes associated with changes in sociability in humans, we found that none of 

them showed a substantial change in gene expression across our selection treatments 

(Figure 2.17).  



M.Sc. Thesis – A. Torabi-Marashi; McMaster University – Biology 

 66 

There are many reasons we see little overlap between the studies, with one 

being that we are simply capturing different aspects of social behaviour. We are 

comparing measures of social aggregation (our study), the evolution of eusociality 

(Woodard et al., 2011), early life experience (Wang et al., 2022) and responsiveness to 

social stimuli (Shpigler et al., 2017). While they are all social behaviours, there may not 

be too much overlap between them and our study. An interesting, yet unlikely reason 

that we do not see a shared response of gene expression differences across species 

may be due to a potential overarching regulatory gene or gene pathway that is 

conserved across species. The genetic underpinnings of the behaviour could also be 

extremely polygenic or perhaps different species use different genes to regulate social 

behaviour, but neither can be for certain without further research.  

This chapter is not without caveats. The experiment was 25 generations of 

artificial selection from an initial population. It is possible that given the relatively low 

number of generations, the response we see from selecting upon sociability is largely 

from the segregating genetic variation that was present in the initial population, rather 

than new mutations arising in the populations. This is further compounded with the 

constrained population size as well as the effects of lab domestication and genetic drift. 

Alleles may have been lost or fixed in populations because of the stochastic effects of 

genetic drift. Larger population sizes can better deal with genetic drift as there is more 

genetic variation in the population. Additionally, the RNA sequencing samples consist of 

pooled heads of 16 individuals across all levels of our experimental design (selection 

treatments, sex, and experience). However, the gene expression we observe is an 

aggregated response across all 16 of these individuals and not at an individual-level 
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resolution. We also sampled heads of adults, and we are not capturing developmental 

timepoints. There may be differential expression between the selection treatments 

earlier in development that we cannot capture but may be playing a large role in 

sociability. 

Future work of the results in this chapter would be testing candidate genes 

identified in the DGE or DTU analyses, and this is currently taking place within the 

Dukas lab with promising results so far. If the work in candidate testing results in 

potential genes that, when knocked out result in a large reduction in sociability, there 

are potential experiments that can use artificial selection to restore the level of 

sociability found in the ancestral population. Given the evidence that there are many 

genes and transcript that show differential expression and usage, it would be interesting 

to see what the genetic response would be to go back to the ancestral state, and if the 

same genes were involved.  

Overall, we identified genes and transcripts that are differentially expressed and 

used across selection treatments. We compared the set of genes identified with 

orthologous genes in other species associated with social behaviour and found little 

overlap. We also developed flexible pipelines to perform DGE and DTU analyses using 

linear mixed-effect models that can be customized for RNA sequencing experiments 

with complex experimental designs. 
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Chapter 3: Population Genomic analysis of artificially selected 

lineages 

Introduction 

In chapter 1 we discussed sociability and studies related to social behaviour, and in 

chapter 2 we examined the genetics of sociability and differences in gene regulation 

between treatments following artificial selection. While this may explain some of the 

underlying genetics associated with the evolution of sociability, it may not be the entire 

picture. Gene expression experiments and analyses provide information at a specific 

timepoint. In our experiment we sequenced adult heads, and there may be key 

developmental genes that are differentially expressed earlier in development which 

would not be captured in our sequencing. Additionally, there are cases where a new 

mutation arises in one population causing a change in protein function related to 

sociability, but the expression of the gene remains similar to across populations. A 

previously posed question by Robinson and Ben-Shahar (2002) is whether the changes 

in social behaviour is the result of changes in gene sequence, changes in gene 

expression, or both. Here we can ask similar questions in relation to D. melanogaster 

and the evolution of sociability as a result of artificial selection focusing on intraspecific 

variation. Is the response we see here largely due to differences in expression, 

differences in alleles or are they both contributing? It seems likely that they are both 

contributing as both can work together, for instance in a situation where alleles are 

changing in the population resulting in gene expression differences between the 

populations. In chapter 2, we have found evidence of differential gene expression and in 

this chapter, we wish to investigate if there are alleles in the population that are under 



M.Sc. Thesis – A. Torabi-Marashi; McMaster University – Biology 

 69 

selection in response to artificial selection. Building on the work of Scott et al. (2022), 

we obtained DNA sequencing reads of 16 samples following artificial selection and are 

using them to understand the genetic architecture of sociability, through a population 

genomics lens.  

The evolution of social behaviour has been studied for decades (Hamilton, 

1964a, 1964b; Queller, 1985), and as discussed in chapter 1, social behaviour is 

studied in various known social species. Some of these studies use population 

genomics approaches to better understand the evolution of social behaviour (Woodard 

et al., 2011). Here, Woodard et al. (2011) examined the rate of nonsynonymous to 

synonymous nucleotide substitutions between species of bees to identify genes that 

have a likely accelerated evolution in eusocial species relative to non-eusocial species. 

Another approach that we can take to understand the evolution of sociability between 

populations of fruit flies is looking at FST. FST is a measure of genomic differentiation 

between two populations that describes the reduction in heterozygosity due to 

differences between subpopulations (Cutter, 2019). We can use FST to measure 

genomic differentiation between two populations from the level of a single nucleotide 

polymorphism (SNP) all the way to entire genomes. If we were looking at a single 

polymorphic position, an FST measure of 1 indicates that the populations are diverged, 

where one of the two populations has entirely one nucleotide at the position, and the 

other population does not have that specific nucleotide at that position. Conversely, a 

value of 0 indicates that both populations have the exact same nucleotide at that 

position. While FST can be calculated at the level of individual SNP all the way to entire 

genomes, to identify positions in the genome under selection a genomic scan approach 
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of calculating FST across predefined window sizes may be more appropriate as you are 

either losing too much information (at the level of the genome) or introducing noise to 

the results (at the level of individual SNP). There are also different approaches to 

defining what a region with high FST is. For example, high FST can be defined as values 

greater than three standard deviations higher than the mean FST for that population 

(Porto-Neto et al., 2013), or choosing a more outlier based approach and extracting the 

list of the highest 5% of FST values. 

There are other population based statistics that can be considered to be 

analyzed for this chapter. One potential statistic that can be calculated is nucleotide 

diversity (θπ or π) which is defined as the average proportion of nucleotide differences 

between all possible pairs of sequences (Hartl & Clark, 2007). Nucleotide diversity can 

help identify hard selective sweeps and regions under strong selection. Low nucleotide 

diversity in a region can indicate a hard selective sweep, as an allele rising fast to 

fixation will bring along nearby nucleotides and alleles, result in a lower nucleotide 

diversity. However, in our experiment, given the low number of generations and 

relatively low effective population size, it is unlikely that a new mutation or rare allele in 

the ancestral population has a large enough selection coefficient to fix rapidly in the 

population, and so an analysis of π may not be meaningful. 

Other factors can also play a role in our analyses such as genetic drift. Drift is a 

stochastic force that can cause alleles to be lost or fixed, regardless of selective 

pressures. With an artificial selection experiment with relatively low populations sizes, 

drift can be a large factor. To combat that we have sequenced ancestral populations that 



M.Sc. Thesis – A. Torabi-Marashi; McMaster University – Biology 

 71 

we can compare with control lineages to determine sites that are affected by drift and 

omit those from sites under selection. 

There are other approaches to account for drift in downstream analyses. For 

example the package ACER (Spitzer et al., 2020), implements a modified Cochran–

Mantel–Haenszel (CMH) test to account for drift by adjusting assumptions in the null 

hypothesis (where no selection is occurring). Typically, it is assumed that the probability 

of sampling a given allele is the same when comparing allele frequencies between 

populations (Spitzer et al., 2020). However genetic drift can also cause allele frequency 

changes when selection is not happening, leading to alleles to be deemed as under 

selection when this is not the case, and so Spitzer et al. (2020) incorporate this increase 

in variation due to genetic drift in their test. To be cost effective, the sequencing for our 

study was done via pooled sequencing, where individuals are pooled together and then 

sequenced (Anand et al., 2016; Cutler & Jensen, 2010; Futschik & Schlötterer, 2010). 

Many downstream tools and programs (SNP callers) are designed for sequencing of 

individuals, so specific tools must be used to account for pooled sequencing samples. 

There are many different commonly used tools, but for our analyses we chose to use a 

new implementation for examining FST, called grenedalf (Czech et al., 2023). Grenedalf 

uses the same functionality and input data structures that are well established and used 

in the field but corrects for a number of software bugs that likely produced erroneous 

estimates of FST in common tools like popoolation2 (Kofler et al., 2011). Further, it is 

implemented in C++, greatly reducing the speed and computational cost required. On 

top of identifying potential regions of the genome under selection, a large motivation for 

this chapter is to provide a framework for performing population genomics analyses 
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using pooled sequencing data. With the tools in this workflow (as well as scripts written 

by us) we present a flexible pipeline that can be easily adapted to include further 

downstream analyses. 

 

Objectives 

The objectives of this chapter are to identify genes that have responded to artificial 

selection for sociability and represent candidate genes influencing sociability. 

Specifically, we want to identify the genes and genomic regions that are under selection 

following artificial selection between the low and high sociable lineages. We will also 

compare the set of genes identified in this chapter to the list of differentially used 

transcripts and expressed genes to see if there are overlapping genes between the 

studies. With this, we can answer the question of whether the evolution of sociability is 

due to differential expression or differences in alleles?  
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Methods 

Artificial Selection 

Flies from the low, control and high sociable lineages were also sequenced after 25 

generations of artificial selection, as well as ancestral flies that were not subjected to the 

arena or selection. DNA was extracted from the heads of flies and samples were 

pooled, consisting of 96 individuals per sample that were then sent to Génome Québec 

for sequencing. There were four lineages in each of the four groups (including four 

distinct replicates of the ancestor), for a total of 16 unique samples representing a total 

of 1,536 individuals. Each of the lineages were independent of one another, meaning 

that the first high lineage had no relation with the first low lineage (neither with control 

nor ancestor). We used four distinct replicates of the ancestor to increase our 

sequencing depth, in order to better represent the variation in our ancestral population. 

This allows us to capture any potential rare alleles that exist naturally in the population, 

and if that allele was found to be influencing sociability, we would know that it existed in 

the population and was not a new mutation. 

 

Quality Checking 

All the following computational analyses were performed using the Digital Research 

Alliance of Canada (formerly Compute Canada; www.alliancecan.ca). Please refer to 

table A4 (Appendices) for a list of software, scripts and parameters used for this 

chapter. From the sequencing, raw reads were obtained that underwent processing and 

alignment. We first used FASTQC (v0.11.9, Andrews, 2010) and MultiQC (v1.12, Ewels 

et al., 2016), to check quality of reads, and ensured that all samples had a mean Phred 

http://www.alliancecan.ca/
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quality score of > 35. Adapters were trimmed using trimmomatic (v0.36, Bolger et al., 

2014), with the parameters of leading and trailing set to “3” and run parameters set to 

“MAXINFO:20:0.2”. After trimming, samples were once again run through FASTQC via 

MultiQC to check for quality.  

 

Read Mapping and Processing 

Next, in preparation for aligning reads we indexed our reference D. melanogaster 

genome (version r6.38, Gramates et al., 2022) with bwa (v0.7.17, Li & Durbin, 2009), 

and proceeded to map our reads with bwa-mem (Heng, 2013). Following this step, we 

were left with 16 aligned samples in SAM file format. From the resulting SAM files, we 

convert them to the BAM file format and filtered for only reads with a MAPQ (map 

quality) score of > 30 with the command “samtools view”, using samtools (v1.15, 

Danecek et al., 2021). Using awk and samtools (v1.15, Danecek et al., 2021), the core 

genome was extracted (chromosomes 2L, 2R, 3L, 3R, 4 and X) and then duplicate 

alignments were marked and removed using the commands “samtools fixmate” and 

“samtools markdup”. Next, we used Picard (v2.26.3, Broad Institute, 2019) to add read 

groups to our samples and then used GATK (v3.8, McKenna et al., 2010) to mark and 

realign around indels. We merged the replicate lineages of each treatment into a single 

file with the command “samtools merge”, which resulted in 4 total files (Ancestor, Low, 

Control and High). From here we created a single mpileup containing all the samples 

using the command “samtools mpileup”. The full pipeline of steps up until the creation of 

the mpileup can be visualized in figure 3.1. The full samtools pipeline can be visualized 

in figure 3.2.  
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Figure 3.1. Flowchart detailing steps and software used for population genomics 

analysis. The flowchart details steps from raw sequenced reads until the mpileup is 

made. Samtools refers to figure 3.2, detailing all samtools commands used. 
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Figure 3.2. Flowchart detailing steps and software used for population genomics 

analysis using the samtools package. The flowchart details steps from mapped .SAM 

files until replicates are merged. The full pipeline can be observed in figures 3.1 and 3.3. 

 

SNP Calling 

With the mpileup, single nucleotide polymorphisms (SNPs) were called using PoolSNP 

(Kapun et al., 2020), which is a heuristic SNP caller designed to be used with pooled 

sequencing samples. In order for a position to be called, the position had to have a 

minimum coverage of 25, a maximum coverage within the 98% percentile of coverage 

for a given sample (to account for repetitive regions), a minimum cumulative minor allele 

count of 10 and minimum minor allele frequency of 1%. Following SNP calling, we were 

left with a VCF (variant call format) file. At this stage we filtered out repetitive regions 

and indels from the VCF. We did this by using RepeatMasker to identify repetitive 

regions in the genome from a reference genome and list of known transposons, and 

then used a script used in Kapun et al. (2020) to identify indels from the mpileup. Then, 

we filtered out the indels and repetitive regions using another script from Kapun et al. 

(2020). We filter out indels as there may be gaps in the alignment around indels which 

can cause false-positive SNPs to be called (Li & Homer, 2010) and repetitive regions 

can result in incorrect mapping to the reference genome, creating false-positive SNPs 

(Shen et al., 2010). The last step of filtering was to remove problematic regions of the 

genome known as the ENCODE blacklist (Amemiya et al., 2019) with bedtools (v2.30.0, 

Quinlan & Hall, 2010). The blacklist includes regions of the Drosophila genome that are 

potentially unannotated repeats in the genome that can bias results towards these 
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regions (Amemiya et al., 2019). If these sites were not filtered out, results from these 

sites may have been attributed to biological variation (Amemiya et al., 2019). 

 

FST 

Next, we went to calculate genomic differentiation across the genomes using the 

statistics FST. We used the command “grenedalf sync” to convert our unfiltered mpileup 

into a sync file. A sync file (synchronized file) is a file that essentially contains positional 

information, the reference allele at that position and allele frequencies of each group. In 

order to filter out indels and repetitive regions that we had previously filtered out, we 

wrote a script that subsets a sync file based on positional information from a VCF. We 

used this with the above mentioned sync file and filtered VCF to end up with a sync file 

that has filtered out indels and repetitive regions and only has identified SNPs. From 

here we used the command “grenedalf fst” to calculate pairwise FST for all contrasts of 

ancestor, low, control and high in 5,000 basepair sliding windows. For a given contrast 

of interest (Low versus Control and Low versus High) we chose an outlier based 

approach of extracting the windows with the top 5% of FST values within the contrast. 

We did this separately for windows in the X chromosome and for windows in the 

autosomes. We did this to account for the increased variation in the X chromosome 

results due to sampling (as we are sampling 3/4 of the X chromosomes compared to the 

autosomes) which can influence and bias the outliers to the X chromosome. Following 

this, we merged the outliers for the X chromosome and autosomes back together in 

each contrast. This outlier approach is less stringent than looking for FST values greater 

than 3 standard deviations from the mean, and we chose this because we are also 
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comparing these regions to SNPs identified by a CMH test and do not want to 

potentially exclude important SNPs. Given that the there was no artificial selection 

acting upon the control lineages, the FST between the ancestor and control is the 

combination of genetic drift and lab domestication (selection occurring as a result of 

being in the lab versus in the wild) which we can use to account for lab domestication in 

our low versus control and control versus high comparisons. To account for this lab 

domestication, we identified the windows with the top 5% of FST values in the Ancestor 

versus Control contrast and subsetted those windows out of initial list of windows in the 

low versus control and control versus high lineages. Given that the comparisons 

between the ancestor and low/high are not entirely due to lab domestication and genetic 

drift, we cannot take a similar approach for the low versus high contrast. 

 

Cochran–Mantel–Haenszel (CMH) Test 

To identify positions that are potentially under selection, we utilized a modified CMH 

test. The CMH test is an extension of the	𝜒! test (Cochran, 1954; Mantel & Haenszel, 

1959) that is used in population genomics to compare allele frequencies and identify 

positions in the genome under selection between two populations (Wiberg et al., 2017). 

However, in pooled sequencing experiments one of the assumptions that allele counts 

are independent draws is violated (Wiberg et al., 2017), and due to genetic drift, the 

assumption that the probability of sampling an allele is the same between populations is 

violated (Spitzer et al., 2020). To account for these violations of assumptions, Spitzer et 

al. (2020) implemented a modified CMH test that accounts for genetic drift and pooled 

sequencing in the R package that we used, ACER. Rather than using the sync file 
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obtained previously from the merged replicates, we needed to generate a new sync file 

where replicates are not merged. To do so, we went through our pipeline as usual but 

omitted the merging step. For a given contrast, we first split our dataset into two groups, 

allele frequencies from the X chromosome and allele frequencies from the autosomes. 

We did this to account for the increased variation in the X chromosome results due to 

sampling (as we are sampling 3/4 of the X chromosome compared to the autosome) as 

well as since we are calculating effective population size, this value will change between 

the X chromosome and autosomes. For both the dataset with the X chromosome allele 

frequencies and the autosomal allele frequencies we used ACER to identify positions in 

the genome that are under selection between the low versus control, control versus high 

and low versus high sociability contrasts. Each of the contrasts were run separately and 

the output was p-values associated with positions along the genome. We then applied a 

p-value adjustment, using the R function “p.adjust()” with “method = ‘BY’ ”, referring to 

the Benjamini and Yekutieli method of controlling false discovery rate (Benjamini & 

Yekutieli, 2001). We then subsetted the list for the lowest 1% of adjusted p-values, 

which left us with positions of the genome under selection. Following this subset, we 

then merged our results for the X chromosome and autosomal chromosomes back 

together. We chose the lowest 1% of adjusted p-values as this provided us with a large 

list ( > 20,000) of outlier positions that are potentially under selection that we could 

compare back to our windows with the top 5% of FST values. 
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SNP annotation and extraction 

We chose to compare the list of top 5% FST values with the positions from the CMH test 

that corresponded to the lowest 1% of adjusted p-values. In both cases we chose an 

outlier based approach to identify regions/positions, which if used exclusively, may not 

be the most sensible approach as there is a chance you are introducing noise in the list 

by solely choosing the highest (or lowest) values. Instead, we chose to see what 

positions are identified by both analyses (FST and CMH) as the intersection between the 

two methods should in theory result in largely positions that are under selection. We 

created a list of SNPs that overlapped between the two lists of high FST and statistically 

significant CMH. To do so, we took the previously generated lists of FST and CMH and 

manually converted them into bed files. Then, using the command “bedtools intersect” 

(Quinlan & Hall, 2010), we generated a bed file that included only the regions of the 

genome where the FST window and CMH position overlapped. We then annotated this 

list using SnpEff (Cingolani et al., 2012). In order to use SnpEff, we needed to input a 

VCF file, so similarly to subsetting our sync file from a VCF, we created a script that 

subsetted our initial VCF with only positions from our bed file. Another benefit of 

performing this subsetting is to filter out positions identified in the CMH test that do not 

appear in the merged replicate VCF, as the positions in the CMH list come from the 

unmerged VCF. SnpEff also provides an assessment of impact of the variant identified 

which are low, moderate, and high impact. We extracted the SNPs that had both high 

and moderate impact variants. If a given contrast had no SNPs labelled as high effect 

variants, we used the list of moderate and vice versa. We then created a list of the 

genes associated with the overlapping SNPs in a given contrast and compared that list 
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to the list of differentially used transcripts or expressed genes (see Chapter 2) of the 

same contrast to see if any genes overlapped between the two analyses. We also 

created a list of genes associated with the SNPs with predicted high and moderate 

impact variants for a given contrast and compared that list to the list of differentially 

used transcripts or expressed genes of the same contrast. The full pipeline of all steps 

following the creation of the mpileup can be observed in figure 3.3. 
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Figure 3.3. Flowchart detailing steps and software used for population genomics 

analysis following the creation of the mpileup. The flowchart details steps from 
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mpileup until FST and CMH are calculated. Branch points are independent of one 

another.  

We also compared the overlapping genes between three contrasts (low versus 

high, low versus control, and control versus high) and set up a simulation to evaluate 

whether the number of overlapping genes between our lists of genes from the three 

contrasts were more or less common than expected by random chance alone. Each run 

was between two contrasts and consisted of 1,000 simulations in which we randomly 

sampled two sets of genes (one for each contrast) without replacement and 

independently of each other that corresponded with the total number of genes identified 

in each contrast. We sampled from the total number of genes that we mapped to, and 

observed how many genes would be common between the two. The three runs we 

performed were between the low versus high and low versus control contrast, the low 

versus high and control versus high contrast, as well as the low versus control and 

control versus high contrast. 

We extracted the list of genes associated with the positions identified following 

both of the FST and CMH analyses for all contrasts. We used the previously mentioned 

bed file containing FST and CMH positions and intersected each with the initial VCF, 

using the bedtools command “intersect”. Following this, we annotated the resulting VCF 

using SnpEff to identify the genes associated with the positions in the VCF. 
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GO Analysis 

We performed a gene ontology (GO) analysis using the package topGO (v2.48.0, Alexa 

& Rahnenfuhrer, 2022) on the set of genes identified from SNPs that overlapped 

between the list of high FST and significant CMH. We performed this gene enrichment 

separately for all three sociability contrasts (low versus high, low versus control and 

control versus high). Here, we set the minimum number of genes per GO term to 5 and 

used Fisher's exact test. We then adjusted the resulting p-values for multiple 

comparisons by using the function “p.adjust” with “method = ‘BH’”, for the Benjamini-

Hochberg method of multiple comparisons correction. 
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Results 

FST Results 

We generated Manhattan plots to visualize the genomics patterns observed FST in the 

Ancestor versus Control (Figure 3.4), Ancestor versus Low (Figure 3.5), Ancestor 

versus High (Figure 3.6), Low versus High (Figure 3.7), Low versus Control (Figure 3.8) 

and Control versus High (Figure 3.9) contrasts. When accounting for lab domestication 

and drift by subsetting out the windows that overlap in the ancestor versus control with 

either of the low versus control and control versus high contrasts, we see a resulting 

826 and 776 windows remain, respectively. Given that there are the same number of 

windows in all of our contrasts, we see that the top 5% of FST values represent 1,236 

windows (221 windows for the X and 1,015 windows for the rest of the autosomes) in all 

contrasts. Using solely these windows by themselves may not be meaningful, as there 

will always be a set amount of outlier windows even if there is nothing meaningful about 

the outliers. However, when these windows are intersected with positions of the genome 

under selection (CMH results; see below) we are able to potentially identify SNPs and 

genes in the genome under selection. The full list of genes identified to be associated 

with the top 5% of FST values for all contrasts can be found in the GitHub repository that 

is linked in the appendices. 
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Figure 3.4. Manhattan plot of genomic differentiation (FST) in 5,000 basepair 

windows across the genome for Ancestor versus Control contrast. X axis is the 

genomic position with chromosome denoted. Y axis is genomic differentiation (FST) in 

5,000 basepair windows. Red lines are smoothed trendlines using a GAM of FST for a 

given chromosome. 
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Figure 3.5. Manhattan plot of genomic differentiation (FST) in 5,000 basepair 

windows across the genome for Ancestor versus Low contrast. X axis is the 

genomic position with chromosome denoted. Y axis is genomic differentiation (FST) in 

5,000 basepair windows. Red lines are smoothed trendlines using a GAM of FST for a 

given chromosome. 
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Figure 3.6. Manhattan plot of genomic differentiation (FST) in 5,000 basepair 

windows across the genome for Ancestor versus High contrast. X axis is the 

genomic position with chromosome denoted. Y axis is genomic differentiation (FST) in 

5,000 basepair windows. Red lines are smoothed trendlines using a GAM of FST for a 

given chromosome. 
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Figure 3.7. Manhattan plot of genomic differentiation (FST) in 5,000 basepair 

windows across the genome for Low versus High contrast. X axis is the genomic 

position with chromosome denoted. Y axis is genomic differentiation (FST) in 5,000 

basepair windows. Red lines are smoothed trendlines using a GAM of FST for a given 

chromosome. 
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Figure 3.8. Manhattan plot of genomic differentiation (FST) in 5,000 basepair 

windows across the genome for Low versus Control contrast. X axis is the 

genomic position with chromosome denoted. Y axis is genomic differentiation (FST) in 

5,000 basepair windows. Red lines are smoothed trendlines using a GAM of FST for a 

given chromosome. 
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Figure 3.9. Manhattan plot of genomic differentiation (FST) in 5,000 basepair 

windows across the genome for Control versus High contrast. X axis is the 

genomic position with chromosome denoted. Y axis is genomic differentiation (FST) in 

5,000 basepair windows. Red lines are smoothed trendlines using a GAM of FST for a 

given chromosome. 
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CMH Results 

Following the CMH test between the low versus high contrast, we found 21,479 base 

positions (2,661 on the X chromosome and 18,818 on the autosomes) in the top 1% of 

adjusted p-values. In the control versus high contrast, we found 21,779 positions (2,702 

on the X chromosome and 19,077 on the autosomes) in the top 1%, and in the low 

versus control contrast we found 21,541 positions (2,639 on the X chromosome and 

18,902 on the autosomes) in the top 1%. The full list of genes identified to be 

associated with the top 1% of adjusted p-values for all contrasts can be found in the 

GitHub repository that is linked in the appendices. 

 

Overlapping Results 

Full comparisons of all overlapping results can be found in Table 3.1. After intersecting 

with bedtools for the low versus high comparison, we found 1,132 overlapping positions 

between the high FST list and lowest 1% of adjusted p-values (CMH test). After 

subsetting our merged VCF with the intersecting positions, we were left with 1,084 

SNPs that were identified in our VCF. Following annotation of the SNPs we found 64 

SNPs with a predicted moderate effect variant and 4 SNPs with a predicted high effect 

variant. In total we found 333 genes associated with the 1,084 positions and of those 

333 genes, 9 genes were found to overlap with our DE genes and 0 genes with an 

associated moderate effect variant were found in the DE gene list. When comparing the 

transcripts associated with the 1,084 SNPs, we found that 13 transcripts overlap with 

our list of differentially used transcripts. We also plotted the non-reference allele 

frequency changes across selection treatments for two genes with a SNP with a 
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predicted moderate effect, CG34049 and stv (Figure 3.10). In CG34049, we see a 

missense mutation causing an amino acid change from an asparagine to lysine. In stv, 

we also see a missense mutation causing an amino acid change from a valine to an 

alanine.  

 

Table 3.1. Overlapping results follow FST and CMH analysis. For each contrast of 

treatments, we report the number of positions overlapping between FST and CMH lists, 

the number of moderate and high predicted effect variants, number of genes associated 

with overlapping positions, the number of genes found to overlap with the appropriate 

DE gene list, the number of transcripts found to overlap with the appropriate DTU 

transcript list. 

Contrast 

Overlap 

between 

FST and 

CMH 

Moderate 

and (high) 

effect SNPs 

Genes 

Overlapping 

DE genes 

(moderate 

or high) 

Overlapping 

transcripts 

Low vs High 1,084 64 (4) 333 9 (0) 13 

Low vs Control 1,027 55 (0) 244 4 (2) 16 

Control vs High 523 58 (1) 179 2 (0) 6 

Ancestor vs Low 1,418 83 (1) 379 8 (1) 13 

Ancestor vs High 956 80 (0) 316 6 (1) 13 
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FIGURE 3.10. Non-reference allele frequency plot for two SNPs associated with a 

predicted moderate effect variant in the low versus high contrast. A) The SNP 

associated with the gene CG34049, which causes a missense mutation changing an 

asparagine to a lysine. B) the SNP associated with the gene stv, which causes a 

missense mutation changing a valine to an alanine. The X axis represents the selection 

treatment of either Ancestor, Control, Low or High. The Y axis is the non-reference allele 

frequency. The value for the ancestor is the mean non-reference allele frequency for all 

4 ancestral pools, with the standard error plotted as well. The values for the Control, 

Low and High are the non-reference allele frequency for each of the 4 independent 

lineages associated with the selection treatment. Each plot title includes the location of 

the SNP, the nucleotide substitution, and the resulting amino acid change. 
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For the low versus control comparison, we found 1,027 overlapping positions 

between the high FST list and lowest 1% of adjusted p-values (CMH test), with 977 

SNPs remaining after subsetting the merged VCF with the overlapping positions. 

Following SNP annotation, 55 SNPs were predicted to be moderate effect variants and 

0 SNPs were predicted to be a high predicted effect variant. In total 244 genes were 

associated with the 977 positions, and 4 were found to overlap with our DE genes and 2 

genes were associated with a moderate effect variant that were found in the DE list. 

When comparing the transcripts associated with the 977 SNPs, we found that 16 

transcripts overlap with our list of differentially used transcripts. 

For the control versus high comparison, we found 545 overlapping positions 

between the high FST list and lowest 1% of adjusted p-values (CMH test), with 523 

SNPs remaining after subsetting the merged VCF with the overlapping positions. 

Following SNP annotation, 58 SNPs were predicted to be moderate effect variants and 

1 SNP was predicted to be a high predicted effect variant. In total 179 genes were 

associated with the 523 positions, and 2 were found to overlap with our DE genes and 

no genes that were associated with either moderate or high effect variants were found 

in the DE list. When comparing the transcripts associated with the 523 SNPs, we found 

that 6 transcripts overlap with our list of differentially used transcripts. 

For the ancestor versus low comparison, we found 1,486 overlapping positions 

between the high FST list and lowest 1% of adjusted p-values (CMH test), with 1,418 

SNPs remaining after subsetting the merged VCF with the overlapping positions. 

Following SNP annotation, 83 SNPs were predicted to be moderate effect variants and 
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1 SNP was predicted to be a high predicted effect variant. In total 379 genes were 

associated with the 1,418 positions, and 8 were found to overlap with our DE genes and 

1 gene was associated with moderate effect variants that was also found in the DE list, 

CG14200. When comparing the transcripts associated with the 1,418 SNPs, we found 

that 18 transcripts overlap with our list of differentially used transcripts. 

For the ancestor versus high comparison, we found 989 overlapping positions 

between the high FST list and lowest 1% of adjusted p-values (CMH test), with 956 

SNPs remaining after subsetting the merged VCF with the overlapping positions. 

Following SNP annotation, 80 SNPs were predicted to be moderate effect variants and 

no SNPs were predicted to be a high effect variant. In total 316 genes were associated 

with the 956 positions, and 6 were found to overlap with our DE genes and 1 gene that 

was associated with a moderate effect variant that was also found in the DE list, rdog. 

When comparing the transcripts associated with the 1,266 SNPs, we found that 13 

transcripts overlap with our list of differentially used transcripts. 

We also performed simulations to see if the number of overlapping genes 

between the three gene lists of low versus high, low versus control, and control versus 

high were more or less common than by chance alone. For the overlapping genes 

between the low versus high and low versus control contrast, we randomly selected 333 

and 244 genes and found that after 1,000 simulations, a maximum of 17 overlapping 

genes (95% quantile of 10). Between the low versus high and control versus high we 

randomly sampled 333 and 179 genes and found a maximum of 14 overlapping genes 

(95% quantile of 8). Between the low versus control and control versus high we 
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randomly sampled 244 and 179 genes and found a maximum of 12 overlapping genes 

(95% quantile of 6). 

 

GO Analysis 

Following GO analysis, we found 95 GO terms that are deemed significantly 

overrepresented in our gene list from SNPs identified between the high FST and 

significant CMH lists in the low versus high sociability contrast (Table A5), including 

terms like motor neuron axon guidance, olfactory learning, visual perception as well as 

long and short-term memory. Between the low versus control sociability contrast, we 

found 85 GO terms that were overrepresented (Table A6), with enrichment of terms 

such as motor neuron axon guidance, visual behaviour, and olfactory learning. Between 

the control versus high sociability contrast, we found 33 GO terms overrepresented 

(Table A7) with terms such as synapse organization, synaptic signaling and regulation of 

axonogenesis being enriched. 
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Discussion 

The main objective of this chapter was to identify genes and regions of the genome that 

are under selection following artificial selection of sociability. Following our analyses, we 

found no regions of the genome with genes of large effect that contribute to the change 

in sociability (Figures 3.4 – 3.9). Specifically, we found no genomic windows with a large 

enough FST that would suggest there is a gene or region of large effect contributing to 

the divergence in sociability. While the next logical step may be to suggest the response 

that we see is polygenic, we cannot claim that for certain, as the response we see can 

also be attributed to low population size coupled with genetic drift and lab 

domestication. We may only be seeing segregating alleles from the initial population 

rather than new mutations and genetic drift can be acting upon those alleles, resulting in 

the response that we see. 

In total, we identified lists of genes associated with SNPs under selection in our 

contrasts between artificial selection treatments. In the low versus high contrast, we 

identified 324 genes, in the low versus control we found 245 genes, and in the control 

versus high we found 184 genes. Between the three lists of genes there was a total 646 

genes represented, but only 14 genes overlapping between the three lists (Figure 3.11). 

The largest overlap between any two lists was 51 genes, which was between the low 

versus high and the control versus low contrasts (Figure 3.11). When comparing the 

number of overlapping genes to the simulation we performed to see the number of 

overlapping genes by random chance alone, we see that the overlapping genes we 

identified are all higher than the 95% quantile. This is in line with (Scott et al., 2022) 

showing that there was a larger response to selection in the low sociable lineages 
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compared to the high sociable lineages (Figure 1.2), which would explain why we see 

more shared genes between the low versus high and low versus control, compared to 

the control versus high contrast. 

 

Figure 3.11. Upset plot showing the overlap between the gene lists obtained from 

the overlap between high FST and statistically significant CMH within a selection 

contrast of interest. Gene lists are selection contrasts of Low Versus High, Control 

Versus High and Low versus Control. 
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In addition to the fact that we see more genes in common between our lists than 

by random chance, we see evidence that we are identifying genes involved in sociability 

in the list of enriched gene ontology terms. We see many terms related to the neuron 

and behaviour, such as visual behaviour, circadian behaviour, motor neuron axon 

guidance and synaptic signalling. 

We also compared our list of differentially used transcripts and expressed genes 

to the gene lists of genes associated with SNPs under selection for all three of our 

contrasts. Between the list of differentially expressed genes and genes associated with 

SNPs under selection, we identified 11, 8 and 3 genes overlapping between the low 

versus high, low versus control and control versus high contrasts, respectively. 

To compare between the lists of genes and differentially used transcripts, we compared 

between the genes that the transcripts came from, and the list of genes associated with 

SNPs under selection. Between those two lists, we identified 9, 17 and 7 genes 

overlapping between the low versus high, low versus control and control versus high 

contrasts, respectively. 

To answer the previously posed question on whether the evolution of sociability is 

due to differential expression or differences in alleles, we see both. We see little overlap 

between the two gene lists, indicating that the response we see is likely due to both. It is 

not surprising that we see genes that are under selection that were not observed our list 

of differentially expressed genes. The RNA sequencing is of adult heads, and we are 

not capturing developmental timepoints. There may be genes that are differentially 

expressed between sociability lineages earlier in development that are playing a large 

role in sociability but are not being captured. However, this information can still be 
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preserved in the population genomics analysis as there may be different allele 

frequencies between the sociability lineages for developmental genes. We can see 

evidence of this, as some of the enriched gene ontology terms identified in the 

population genomics analysis are developmental, such as regulation of axonogenesis, 

nervous system development, central nervous system development and positive 

regulation of neuron differentiation. 

There are some caveats with the results obtained in this section. As we 

mentioned in chapter 1, we are capturing a specific aspect of sociability. This aspect of 

sociability may not translate to other species or even other studies that look at 

sociability or social behaviour in Drosophila as different studies use different 

experimental protocols that can capture other aspects of the behaviour. However, the 

response to selection that we see (Figure 1.2) indicates that we are still capturing at 

least an aspect of sociability, which is supported by the results of this chapter. Another 

caveat is that compared to the DGE/DTU analyses in chapter 2, we lose lineage specific 

resolution as we merge our replicates. With this, we are unable to observe potential 

parallel evolution of lineages within either the low or high sociable treatments. We are 

also unable to know if potential genes or regions that were identified to be under 

selection showed similar results in all lineages, or were present in only one, two or three 

of the lineages, and was a strong enough effect to be observed in the merged samples.  

The work in this chapter can easily be expanded upon. As previously mentioned, 

nucleotide diversity (θπ or π) may not be the best indicator to identify selection in our 

experiment, given the fact that we do not see regions of the genome under strong 
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selection from our FST results. However, investigating regions of low π may still provide 

information on regions under purifying selection (Cvijović et al., 2018).  

There are also supervised learning approaches that can take advantage of both 

the SNP data and the sociability scores of the lineages as recorded in Scott et al. 

(2022). Methods such as random forest algorithm can be used with the SNP data and 

sociability scores of lineages to predict loci that best explain the variation in the trait, as 

described in Brieuc et al. (2018) and implemented in Brieuc et al. (2015). 

Overall, we found no evidence of gene regions under strong selection but did find 

genes that are associated with SNPs that are most likely under weak selection and 

show genomic differentiation between selection contrasts. We also developed a pipeline 

that can be adapted to future studies that wish to perform population genomics analyses 

with pooled sequencing data, as well as a pipeline to process and SNP call pooled 

sequencing data. The pipeline is flexible and can be used in combination with other 

downstream analyses that are appropriate for a given study.  
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Chapter 4: Conclusions and Final Remarks 

As evident throughout this thesis, sociability is a complex phenotype. As previously 

mentioned in chapter 1, we have limited knowledge of the underlying genetic 

architecture of the trait, particularly in Drosophila melanogaster. In this thesis, I 

investigated the genetic architecture of sociability in D. melanogaster following artificial 

selection of lineages evolved for low and high sociability. I also developed pipelines to 

perform differential gene expression, transcript usage and population genomics 

analyses from pooled sequencing data. 

In chapter 2, I investigated the genetic architecture of sociability using DGE and 

DTU analyses. Here, I developed a method to perform differential gene expression and 

transcript usage analysis in an uncommon manner, by fitting gene expression and 

transcript usage with linear mixed-effect models. The main goal in this chapter was to 

identify genes that showed differential transcript usage or gene expression between the 

low and high sociable lineages. I found a total of 190 genes with transcripts indicating 

differential usage and 174 genes that showed differential expression, and with the latter 

I manually curated to identify genes with phenotypes associated with sociability that can 

be further tested.  

In chapter 3, we investigated what genes are under selection between the 

sociability lineages, using a population genomics approach. Using downstream tools 

designed for pooled sequencing data, I developed a pipeline to process and analyze the 

genomes as well as identify SNPs under selection. The main goal in this chapter was to 

find genes associated with SNPs under selection between the low and high sociable 

lineages. While I did not observe strong selection, I still identified 324 genes that we 
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compared back to the results of chapter 2. When looking at the results from both 

chapter 2 and 3, we see that the variation and change in the sociability phenotype is 

most likely a result of differential gene expression, differential transcript usage and 

differences in alleles between selection treatments. 

The work in this thesis does not come without specific caveats. The artificial 

selection experiment to evolve the lineages of high and low sociable flies most likely 

captures a specific aspect of sociability. Given that experimental protocols and 

methodologies to assess sociability vary between species and even within studies of the 

same species, the results here may not perfectly translate comparatively to other 

studies. When comparing our results to the literature in chapter 2, we did not see a 

shared list of differentially expressed genes between studies which can be for a number 

of reasons. Perhaps it is because we are capturing a specific aspect of sociability that is 

not being captured in other social behaviour studies for a number of methodological 

reasons. In that case, it would not be a surprise that we do not see similar genes arise 

in different studies. Or perhaps the evolution of sociability and social behaviour is 

polygenic in nature and involves different genes in different studies. Regardless, we are 

supplementing the field with additional knowledge of the underlying genetic architecture 

of the sociability phenotype within Drosophila. 

This thesis helps build our knowledge of the underlying genetics of sociability 

within Drosophila. The identified gene lists, as well as the pipeline can be easily 

integrated in future Drosophila sociability studies. The gene lists produced in this thesis 

can serve as useful candidate genes for further study. Given the noise and lack of 

evidence for strong selection in the DNA analysis, perhaps testing candidate genes from 
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the list of differentially expressed genes or genes that code for the differentially used 

transcripts may serve as more powerful candidates. In fact, there are some promising 

results coming from testing candidate genes identified in the differential gene 

expression analysis from the Dukas lab. Additionally, a long term artificial selection 

experiment that goes longer than this study would be intriguing, perhaps with more 

generations we might observe a stronger phenotypic response and evidence of stronger 

selection in the analyses.  

I also developed pipelines for the DGE, DTU and population genomics analyses. 

The DGE and DTU pipelines offers a unique method of modelling gene expression and 

transcript usage, by fitting a linear mixed-effect model. The majority of studies that 

perform differential gene expression analysis use linear models to model gene 

expression, and our pipeline offers an alternative method for studies with large enough 

sample sizes and experimental designs. The population genomics pipeline provides 

tools to process, analyze and variant call pooled sequencing data, as well as 

incorporating the new tool grenedalf (Czech et al., 2023) which resolves bugs and 

issues with other population genomics analyses software. Both pipelines can be 

adapted in other studies to incorporate more downstream analyses or modifications to 

parameters to fit their need. Overall, we are adding to the body of work to elucidate the 

genetic architecture of sociability. 
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Appendix 

All links to supplemental figures, gene lists and code can be found at: 

https://github.com/ArteenTorabiMarashi/ThesisLinks 

 

Supplemental figures on the GitHub include plots of all differentially expressed genes 

and differentially used transcripts in the low versus high sociability contrast. Full gene 

lists for both differentially expressed genes and differentially used transcripts for all 

three selection contrasts can also be found in the above GitHub repository. Full GO 

tables of all terms can also be found in the GitHub repository. 

 

 

Table A1. Table detailing all software used during analyses with corresponding 

version numbers and references for the DGE and DTU analysis. The Notable 

parameters column provides certain parameters that were different than the default 

settings with either a code chunk, or the entire code that was used with the software. 

Default parameters denotes that no additional parameters were used besides 

input/output flags and those detailed in their respective documentation’s base use. 

Software / Step Version Notable parameters Reference 

FASTQC 0.11.9 Default parameters (Andrews, 

2010) 

MultiQC 1.12 Default parameters (Ewels et 

al., 2016) 

https://github.com/ArteenTorabiMarashi/ThesisLinks
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trimmomatic 0.36 ILLUMINACLIP:/adapter_dir/:2:30:10 

\ 

LEADING:3 TRAILING:3 

MAXINFO:20:0.2 MINLEN:36 

 

 

(Bolger et 

al., 2014) 

Salmon Index 1.4.0 Default parameters 

Transcriptome version r6.38 

Using decoys.txt in order to account 

for decoys 

(Patro et 

al., 2017) 

Salmon 

Mapping 

1.4.0 salmon quant -i /index_dir/ -l A \ 

 -1 

/trimmed/dir/R1_PE.fastq.gz \ 

 -2 

/trimmed/dir/R2_PE.fastq.gz \ 

 -p 6 --validateMappings --

rangeFactorizationBins 4 \ 

 --seqBias --gcBias \ 

 -o /counts_dir/sample_quant 

(Patro et 

al., 2017) 

STAR Index 2.7.9a Default parameters 

Genome version r6.38 

(Dobin et 

al., 2013)  

STAR Mapping 2.7.9a STAR --runThreadN 16 \ 

--quantMode TranscriptomeSAM 

(Dobin et 

al., 2013) 
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 GeneCounts \ 

--genomeDir /genome/dir \ 

--readFilesIn  

/trim/sample_name/R1_PE.fastq.gz \ 

/trim/sample_name/ 

_R2_PE.fastq.gz \ 

--readFilesCommand zcat \ 

--outFileNamePrefix 

/out_dir/sample_name \ 

--outSAMtype BAM 

SortedByCoordinate 

edgeR:: 

FilterByExpr() 

v3.38.4  d0 <- DGEList(raw.counts) 

keep2 <- filterByExpr(d0, design) 

d0 <- d0[keep2, ] 

# with keep2 acting as indices of 

counts to keep 

(Robinson 

et al., 

2010) 

DRIMseq:: 

dmFilter() 

1.24.0 dex_filtered_subset <- 

dmFilter(dex_pre_filter, 

                                

min_samps_feature_prop = 20, 

                                

min_feature_prop = 0.05, 

(Nowicka 

& 

Robinson, 

2016) 
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min_samps_gene_expr = 28, 

min_gene_expr = 10) 
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Table A2. Biological GO terms that were found to be significantly enriched in the 

differential gene expression analysis as determined by topGO. We extracted all the 

genes and p values from the anova for the term of selection. We chose to cut off the 

table for only GO terms with a p value < 0.03, the full list can be found in the GitHub 

repository linked in the appendix. 

GO.ID Term Annot. Sig. Exp. p.val p.adj 

GO:0002181 cytoplasmic 

translation 

123 74 37.11 4.6e-16 1.90578e-

12 

GO:0040003 chitin-based 

cuticle 

development 

189 86 57.03 4.2e-06 0.0087003 

GO:0003333 amino acid 

transmembrane 

transport 

41 23 12.37 0.00019 0.26239 

GO:0006171 cAMP 

biosynthetic 

process 

5 5 1.51 0.00249 1 

GO:0018345 protein 

palmitoylation 

16 8 4.83 0.00250 1 

GO:0009065 glutamine family 

amino acid 

catabolic 

process 

15 10 4.53 0.00380 1 
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GO:0090254 cell elongation 

involved in 

imaginal disc-

derived wing 

morphogensis 

11 8 3.32 0.00444 1 

GO:0006486 protein 

glycosylation 

87 29 26.25 0.00459 1 

GO:0001737 establishment of 

imaginal disc-

derived wing hair 

orientation 

25 14 7.54 0.00628 1 

GO:0065003 protein-

containing 

complex 

assembly 

444 145 133.97 0.00744 1 

GO:0007450 dorsal/ventral 

pattern formation 

imaginal disc 

54 22 16.29 0.00824 1 

GO:0006030 chitin metabolic 

process 

106 46 31.98 0.00925 1 

GO:0051028 mRNA transport 43 16 12.97 0.01094 1 

GO:0060232 delamination 11 7 3.32 0.01120 1 
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GO:0051036 regulation of 

endosome size 

6 5 1.81 0.01121 1 

GO:0006627 protein 

processing 

involved in 

protein targeting 

to mitochondrion 

6 5 1.81 0.01121 1 

GO:0050714 positive 

regulation of 

protein secretion 

21 8 6.34 0.01124 1 

GO:0045571 negative 

regulation of 

imaginal disc 

growth 

17 10 5.13 0.01318 1 

GO:0035317 imaginal disc-

derived wing hair 

organization 

47 26 14.18 0.01434 1 

GO:0072659 protein 

localization to 

plasma 

membrane 

46 21 13.88 0.01454 1 

GO:0018401 peptidyl-proline 

hydroxylation to 

13 8 3.92 0.01882 1 
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4-hydroxy-L-

proline 

GO:0035002 liquid clearance 

open tracheal 

system 

18 10 5.43 0.02174 1 

GO:0001666 response to 

hypoxia 

62 24 18.71 0.02497 1 

GO:0007349 cellularization 98 27 29.57 0.02561 1 

GO:0009952 anterior/posterior 

pattern 

specification 

168 58 50.69 0.02578 1 

GO:0042659 regulation of cell 

fate specification 

27 14 8.15 0.02585 1 

GO:0043984 histone H4-K16 

acetylation 

9 6 2.72 0.02597 1 

GO:0006414 translational 

elongation 

30 15 9.05 0.02729 1 

GO:0034982 mitochondrial 

protein 

processing 

9 8 2.72 0.02736 1 

GO:0014902 myotube 

differentiation 

55 19 16.6 0.02744 1 
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GO:1904747 positive 

regulation of 

apoptotic 

process involved 

in development 

8 4 2.41 0.02746 1 

GO:0050000 chromosome 

localization 

29 9 8.75 0.02750 1 

GO:0000398 mRNA splicing 

via spliceosome 

244 81 73.62 0.02927 1 

GO:0001706 endoderm 

formation 

7 5 2.11 0.02947 1 

GO:0006465 signal peptide 

processing 

7 5 2.11 0.02947 1 

GO:0006528 asparagine 

metabolic 

process 

7 5 2.11 0.02947 1 

GO:0090251 protein 

localization 

involved in 

establishment of 

planar polarity 

7 5 2.11 0.02947 1 

GO:0050884 neuromuscular 

process 

7 5 2.11 0.02947 1 
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controlling 

posture 

GO:0051124 synaptic 

assembly at 

neuromuscular 

junction 

136 46 41.04 0.030 1 

 

 

Table A3. Biological GO terms that were found to be significantly enriched in the 

differential transcript usage analysis as determined by topGO. We extracted all the 

genes and p values from the anova for the term of selection. We chose to cut off the 

table for only GO terms with a p value < 0.03, the full list can be found in the GitHub 

repository linked in the appendix. 

GO.ID Term Annot. Sig. Exp. p.val p.adj 

GO:0006413 translational initiation 26 19 9.65 0.0023 1 

GO:0001736 establishment of planar 

polarity 

63 31 23.39 0.0026 1 

GO:0072499 photoreceptor cell axon 

guidance 

21 14 7.8 0.0056 1 

GO:0007297 ovarian follicle cell 

migration 

75 36 27.84 0.0069 1 

GO:0045132 meiotic chromosome 

segregation 

27 14 10.02 0.0070 1 
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GO:0046660 female sex 

differentiation 

10 7 3.71 0.0070 1 

GO:0016226 iron-sulfur cluster 

assembly 

5 5 1.86 0.0070 1 

GO:0001731 formation of translation 

preinitiation complex 

5 5 1.86 0.0070 1 

GO:0033500 carbohydrate 

homeostasis 

26 12 9.65 0.0070 1 

GO:0016325 oocyte microtubule 

cytoskeleton 

organization 

20 11 7.42 0.0073 1 

GO:0046843 dorsal appendage 

formation 

28 17 10.39 0.0093 1 

GO:0035317 imaginal disc-derived 

wing hair organization 

32 19 11.88 0.0102 1 

GO:0048168 regulation of neuronal 

synaptic plasticity 

7 6 2.6 0.0124 1 

GO:0006605 protein targeting 34 15 12.62 0.0125 1 

GO:0006672 ceramide metabolic 

process 

9 7 3.34 0.0159 1 

GO:0050803 regulation of synapse 

structure or activity 

117 46 43.43 0.0160 1 
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GO:0035147 branch fusion open 

tracheal system 

11 8 4.08 0.0179 1 

GO:0006633 fatty acid biosynthetic 

process 

21 13 7.8 0.0181 1 

GO:0045451 pole plasm oskar 

mRNA localization 

26 17 9.65 0.0187 1 

GO:0007392 initiation of dorsal 

closure 

10 7 3.71 0.0189 1 

GO:0032007 negative regulation of 

TOR signaling 

11 6 4.08 0.0190 1 

GO:0051453 regulation of 

intracellular pH 

12 6 4.45 0.0190 1 

GO:0007298 border follicle cell 

migration 

70 31 25.98 0.0262 1 

GO:0045498 sex comb development 6 5 2.23 0.0291 1 

GO:0060232 delamination 6 5 2.23 0.0291 1 

GO:1902410 mitotic cytokinetic 

process 

6 5 2.23 0.0291 1 

GO:0006941 striated muscle 

contraction 

6 5 2.23 0.0291 1 

GO:0032233 positive regulation of 

actin filament bundle 

assembly 

6 5 2.23 0.0291 1 
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GO:0000184 nuclear-transcribed 

mRNA catabolic 

process, nonsense-

mediated decay 

6 5 2.23 0.0291 1 

GO:0007362 terminal region 

determination 

6 5 2.23 0.0291 1 

GO:0046716 muscle cell cellular 

homeostasis 

22 13 8.17 0.0295 1 

 

Table A4. Table detailing all software used during analyses with corresponding 

version numbers and references for the population genomics analysis. The 

Notable parameters column provides certain parameters that were different than the 

default settings with either a code chunk, or the entire code that was used with the 

software. Default parameters denotes that no additional parameters were used besides 

input/output flags and those detailed in their respective documentation’s base use. 

Software / 

Step 

Version Notable Parameters Reference 

FastQC  0.11.9 Default parameters (Andrews, 

2010) 

MultiQC 1.12 Default parameters (Ewels et al., 

2016) 

trimmomatic 0.36 ILLUMINACLIP:/adapter_dir/:2:30:10 \ (Bolger et 

al., 2014) 
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LEADING:3 TRAILING:3 MAXINFO:20:0.2 

MINLEN:36 

 

bwa indexing 0.7.17 Default parameters (Li & Durbin, 

2009) 

bwa mapping 0.7.17 Default parameters (Heng, 2013) 

samtools sam 

to bam 

1.15 Default parameters (Danecek et 

al., 2021) 

samtools 

quality filtering 

1.15 samtools view -b -q 30 -@ 8 (Danecek et 

al., 2021) 

samtools sort 

by name 

1.15 Default parameters (Danecek et 

al., 2021) 

samtools add 

quality tags 

1.15 samtools fixmate -m -u -@ 12 (Danecek et 

al., 2021) 

samtools sort 

by coordinate 

1.15 Default parameters (Danecek et 

al., 2021) 

samtools 

deduplicate 

1.15 samtools markdup -l 150 -r -s -f stats.txt -d 

2500\ 

 -@ 12 

(Danecek et 

al., 2021) 

picard add 

read groups 

2.26.3 Default parameters of 

AddOrReplaceReadGroups function 

(Broad 

Institute, 

2019) 
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GATK mark 

indels 

3.8 Default parameters (McKenna et 

al., 2010) 

GATK realign 

indels 

3.8 Default parameters (McKenna et 

al., 2010) 

samtools 

merge 

1.15 Default parameters (Danecek et 

al., 2021) 

samtools 

create 

mpileup 

1.15 samtools mpileup -Q 20 -q 20 -d 1200  (Danecek et 

al., 2021) 

grenedalf 

mpileup to 

sync 

0.2.0 Default parameters (Czech et al., 

2023) 

poolSNP 1.0 max-cov=0.98 \ 

min-cov=25 \ 

min-count=10 \ 

min-freq=0.01 \ 

miss-frac=0.2 

(Kapun et 

al., 2020) 

Identify indels 1.0 --minimum-count 20 \ 

--mask 5  

(Kapun et 

al., 2020) 

RepeatMasker 

ID repeats 

4.1.1 Default parameters (Smit et al., 

2013-2015) 

Filter VCF for 

indel and 

 

1.0 

Default parameters (Kapun et 

al., 2020) 
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repeat 

positions 

bedtools 

blacklist 

2.30.0 Default parameters (Quinlan & 

Hall, 2010) 

Filter sync for 

VCF positions 

Personal 

script 

Default parameters Personally 

written 

Grenedalf FST 0.2.0 --window-type sliding \ 

--window-sliding-width 5000 \ 

--method unbiased-nei \ 

--pool-sizes 96  

(Czech et al., 

2023) 
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Table A5. Biological GO terms that were found to be significantly enriched of 

genes identified from SNPs between high FST and significant CMH, in the low 

versus high contrast. All genes were extracted following SnpEff variant prediction. We 

chose to cut off the table for only GO terms with a p value < 0.0222, the full list can be 

found in the GitHub repository linked in the appendix. 

GO.ID Term Annot. Sig. Exp. p.val. p.adj 

GO:2000289 regulation of 

photoreceptor cell 

axon guidance 

5 3 0.12 0.00012 0.27365 

GO:0007528 neuromuscular 

junction 

development 

176 12 4.12 0.00013 0.27365 

GO:0045892 negative 

regulation of 

transcription 

DNA-templated 

transcription 

291 17 6.81 0.00039 0.49584 

GO:0007615 anesthesia-

resistant memory 

17 4 0.4 0.00055 0.49584 

GO:0046339 diacylglycerol 

metabolic process 

8 3 0.19 0.00065 0.49584 

GO:0022008 neurogenesis 894 46 20.93 0.00072 0.49584 
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GO:0008016 regulation of heart 

contraction 

29 6 0.68 0.00093 0.49584 

GO:0051017 actin filament 

bundle assembly 

34 7 0.8 0.00102 0.49584 

GO:0006812 cation transport 286 12 6.69 0.00106 0.49584 

GO:0034332 adherens junction 

organization 

39 5 0.91 0.00179 0.75359 

GO:0007632 visual behavior 24 4 0.56 0.00215 0.82286 

GO:0030708 germarium-

derived female 

germ-line cyst 

encapsulation 

12 3 0.28 0.00238 0.83498 

GO:0007043 cell-cell junction 

assembly 

63 6 1.47 0.00311 1 

GO:0007476 imaginal disc-

derived wing 

morphogenesis 

273 23 6.39 0.00341 1 

GO:0007190 activation of 

adenylate cyclase 

activity 

5 2 0.12 0.00521 1 

GO:0097688 glutamate 

receptor 

clustering 

5 2 0.12 0.00521 1 
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GO:0042066 perineurial glial 

growth 

5 2 0.12 0.00521 1 

GO:0007212 dopamine 

receptor signaling 

pathway 

5 2 0.12 0.00521 1 

GO:0007216 G protein-coupled 

glutamate 

receptor signaling 

pathway 

5 2 0.12 0.00521 1 

GO:0045494 photoreceptor cell 

maintenance 

16 3 0.37 0.00566 1 

GO:0007291 sperm 

individualization 

52 5 1.22 0.00717 1 

GO:0019344 cysteine 

biosynthetic 

process 

6 2 0.14 0.00769 1 

GO:0006751 glutathione 

catabolic process 

6 2 0.14 0.00769 1 

GO:0031532 actin cytoskeleton 

reorganization 

34 4 0.8 0.00783 1 

GO:0007479 leg disc 

proximal/distal 

pattern formation 

18 3 0.42 0.00797 1 
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GO:0008355 olfactory learning 45 5 1.05 0.00859 1 

GO:0045214 sarcomere 

organization 

35 4 0.82 0.00868 1 

GO:0007601 visual perception 19 3 0.44 0.00931 1 

GO:0035002 liquid clearance 

open tracheal 

system 

19 3 0.44 0.00931 1 

GO:0007630 jump response 7 2 0.16 0.01060 1 

GO:0045823 positive regulation 

of heart 

contraction 

7 2 0.16 0.01060 1 

GO:0007475 apposition of 

dorsal and ventral 

imaginal disc-

derived wing 

surfaces 

20 3 0.47 0.01076 1 

GO:0042461 photoreceptor cell 

development 

111 6 2.6 0.01376 1 

GO:0046661 male sex 

differentiation 

31 3 0.73 0.01387 1 

GO:0007415 defasciculation of 

motor neuron 

axon 

8 2 0.19 0.01392 1 
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GO:0097320 plasma 

membrane 

tubulation 

8 2 0.19 0.01392 1 

GO:0071880 adenylate 

cyclase-activating 

adrenergic 

receptor signaling 

pathway 

8 2 0.19 0.01392 1 

GO:0090278 negative 

regulation of 

peptide hormone 

secretion 

8 2 0.19 0.01392 1 

GO:0016332 establishment or 

maintenance of 

polarity of 

embryonic 

epithelium 

8 2 0.19 0.01392 1 

GO:0035317 imaginal disc-

derived wing hair 

organization 

48 4 1.12 0.01399 1 

GO:0007435 salivary gland 

morphogenesis 

98 6 2.29 0.01673 1 
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GO:0008078 mesodermal cell 

migration 

20 3 0.47 0.01753 1 

GO:0032958 inositol phosphate 

biosynthetic 

process 

9 2 0.21 0.01763 1 

GO:0010496 intercellular 

transport 

9 2 0.21 0.01763 1 

GO:0016204 determination of 

muscle 

attachment site 

9 2 0.21 0.01763 1 

GO:0048047 mating behavior 

sex discrimination 

9 2 0.21 0.01763 1 

GO:0007155 cell adhesion 211 10 4.94 0.01861 1 

GO:0061320 pericardial 

nephrocyte 

differentiation 

10 2 0.23 0.02170 1 

GO:0043153 entrainment of 

circadian clock by 

photoperiod 

10 2 0.23 0.02170 1 

GO:0045186 zonula adherens 

assembly 

10 2 0.23 0.02170 1 
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GO:0045937 positive regulation 

of phosphate 

metabolic process 

72 3 1.69 0.02177 1 

GO:0048736 appendage 

development 

340 26 7.96 0.02180 1 

GO:0044719 regulation of 

imaginal disc-

derived wing size 

26 3 0.61 0.02215 1 

 

Table A6. Biological GO terms that were found to be significantly enriched of 

genes identified from SNPs between high FST and significant CMH, in the low 

versus control contrast. All genes were extracted following SnpEff variant prediction. 

We chose to cut off the table for only GO terms with a p value < 0. 0124, the full list can 

be found in the GitHub repository linked in the appendix. 

GO.ID Term Annot. Sig. Exp. p.val p.adj 

GO:0090630 activation of 

GTPase activity 

28 6 0.49 7.2e-06 0.03031 

GO:0043113 receptor 

clustering 

12 4 0.21 1.0e-04 0.19647 

GO:0007630 jump response 7 3 0.12 0.00017 0.19647 

GO:0042059 negative 

regulation of 

epidermal growth 

33 5 0.58 0.00025 0.19647 
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factor receptor 

signaling pathway 

GO:0031623 receptor 

internalization 

8 3 0.14 0.00028 0.19647 

GO:0097120 receptor 

localization to 

synapse 

8 3 0.14 0.00028 0.19647 

GO:0007520 myoblast fusion 53 6 0.93 0.00085 0.46836 

GO:0097090 presynaptic 

membrane 

organization 

11 3 0.19 0.00089 0.46836 

GO:0008016 regulation of 

heart contraction 

29 4 0.51 0.00164 0.65144 

GO:0045433 male courtship 

behavior veined 

wing generated 

song production 

14 3 0.24 0.00166 0.65144 

GO:0016203 muscle 

attachment 

41 5 0.72 0.00219 0.65144 

GO:0045434 negative 

regulation of 

female 

16 3 0.28 0.00249 0.65144 
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receptivity, post-

mating 

GO:0007608 sensory 

perception of 

smell 

128 8 2.24 0.00277 0.65144 

GO:0007391 dorsal closure 108 7 1.89 0.00283 0.65144 

GO:2000289 regulation of 

photoreceptor cell 

axon guidance 

5 2 0.09 0.00294 0.65144 

GO:0051496 positive 

regulation of 

stress fiber 

assembly 

5 2 0.09 0.00294 0.65144 

GO:0007205 protein kinase C-

activating G 

protein-coupled 

receptor signaling 

pathway 

5 2 0.09 0.00294 0.65144 

GO:0051928 positive 

regulation of 

calcium ion 

transport 

5 2 0.09 0.00294 0.65144 
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GO:0051899 membrane 

depolarization 

5 2 0.09 0.00294 0.65144 

GO:0045214 sarcomere 

organization 

35 4 0.61 0.00311 0.65466 

GO:0007271 synaptic 

transmission 

cholinergic 

18 3 0.31 0.00354 0.69973 

GO:0016200 synaptic target 

attraction 

6 2 0.1 0.00436 0.69973 

GO:0046834 lipid 

phosphorylation 

6 2 0.1 0.00436 0.69973 

GO:1900242 regulation of 

synaptic vesicle 

endocytosis 

6 2 0.1 0.00436 0.69973 

GO:0007298 border follicle cell 

migration 

124 8 2.17 0.00446 0.69973 

GO:0006807 nitrogen 

compound 

metabolic 

process 

4660 81 81.49 0.00453 0.69973 

GO:0051017 actin filament 

bundle assembly 

34 6 0.59 0.00463 0.69973 
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GO:0035556 intracellular 

signal 

transduction 

648 21 11.33 0.00470 0.69973 

GO:0000132 establishment of 

mitotic spindle 

orientation 

20 3 0.35 0.00482 0.69973 

GO:0007266 Rho protein 

signal 

transduction 

53 5 0.93 0.00544 0.74666 

GO:0001738 morphogenesis of 

a polarized 

epithelium 

118 5 2.06 0.00596 0.74666 

GO:0001941 postsynaptic 

membrane 

organization 

14 3 0.24 0.00598 0.74666 

GO:0048172 regulation of 

short-term 

neuronal synaptic 

plasticity 

7 2 0.12 0.00603 0.74666 

GO:0006359 regulation of 

transcription by 

RNA polymerase 

III 

7 2 0.12 0.00603 0.74666 
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GO:0008586 imaginal disc-

derived wing vein 

morphogenesis 

44 4 0.77 0.00713 0.85568 

GO:0008355 olfactory learning 45 4 0.79 0.00772 0.85568 

GO:0046339 diacylglycerol 

metabolic 

process 

8 2 0.14 0.00795 0.85568 

GO:0016332 establishment or 

maintenance of 

polarity of 

embryonic 

epithelium 

8 2 0.14 0.00795 0.85568 

GO:0007632 visual behavior 24 3 0.42 0.00813 0.85568 

GO:0070983 dendrite guidance 24 3 0.42 0.00813 0.85568 

GO:0046330 positive 

regulation of JNK 

cascade 

25 3 0.44 0.00912 0.91417 

GO:2000331 regulation of 

terminal button 

organization 

25 3 0.44 0.00912 0.91417 

GO:0008045 motor neuron 

axon guidance 

75 5 1.31 0.00997 0.96734 

GO:0007602 phototransduction 57 4 1 0.01011 0.96734 
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GO:0030866 cortical actin 

cytoskeleton 

organization 

61 4 1.07 0.01124 1 

GO:0007480 imaginal disc-

derived leg 

morphogenesis 

79 5 1.38 0.01232 1 

 

Table A7. Biological GO terms that were found to be significantly enriched of 

genes identified from SNPs between high FST and significant CMH, in the control 

versus high contrast. All genes were extracted following SnpEff variant prediction. 

GO.ID Term Annot. Sig. Exp. p.val. p.adj 

GO:0061541 rhabdomere 

morphogenesis 

5 2 0.06 0.0014 1 

GO:0051017 actin filament 

bundle assembly 

34 4 0.41 0.0016 1 

GO:0007475 apposition of 

dorsal and 

ventral imaginal 

disc-derived 

wing surfaces 

20 3 0.24 0.0017 1 

GO:0016199 axon midline 

choice point 

recognition 

25 3 0.3 0.0032 1 
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GO:0050808 synapse 

organization 

293 8 3.52 0.0036 1 

GO:0016332 establishment or 

maintenance of 

polarity of 

embryonic 

epithelium 

8 2 0.1 0.0038 1 

GO:0007157 heterophilic cell-

cell adhesion via 

plasma 

membrane cell 

adhesion 

molecules 

27 3 0.32 0.0040 1 

GO:0018401 peptidyl-proline 

hydroxylation to 

4-hydroxy-L-

proline 

27 3 0.32 0.0040 1 

GO:0043087 regulation of 

GTPase activity 

89 7 1.07 0.0042 1 

GO:0090630 activation of 

GTPase activity 

28 3 0.34 0.0045 1 

GO:0045186 zonula adherens 

assembly 

10 2 0.12 0.0061 1 
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GO:0045214 sarcomere 

organization 

35 3 0.42 0.0084 1 

GO:0030036 actin 

cytoskeleton 

organization 

281 16 3.38 0.0097 1 

GO:0035023 regulation of 

Rho protein 

signal 

transduction 

32 3 0.38 0.0152 1 

GO:0045886 negative 

regulation of 

synaptic 

assembly at 

neuromuscular 

junction 

44 3 0.53 0.0157 1 

GO:0045176 apical protein 

localization 

17 2 0.2 0.0173 1 

GO:0099536 synaptic 

signaling 

295 11 3.55 0.0227 1 

GO:0008078 mesodermal cell 

migration 

20 2 0.24 0.0237 1 

GO:0046390 ribose 

phosphate 

86 2 1.03 0.0239 1 
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biosynthetic 

process 

GO:0048489 synaptic vesicle 

transport 

21 2 0.25 0.0259 1 

GO:0051491 positive 

regulation of 

filopodium 

assembly 

23 2 0.28 0.0308 1 

GO:0006816 calcium ion 

transport 

66 3 0.79 0.0331 1 

GO:0098813 nuclear 

chromosome 

segregation 

183 6 2.2 0.0349 1 

GO:0060078 regulation of 

postsynaptic 

membrane 

potential 

9 2 0.11 0.0354 1 

GO:0050802 circadian 

sleep/wake cycle 

sleep 

38 2 0.46 0.0355 1 

GO:0030866 cortical actin 

cytoskeleton 

organization 

61 3 0.73 0.0369 1 
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GO:0007605 sensory 

perception of 

sound 

63 3 0.76 0.0400 1 

GO:0007455 eye-antennal 

disc 

morphogenesis 

42 3 0.5 0.0437 1 

GO:0050770 regulation of 

axonogenesis 

46 3 0.55 0.0438 1 

GO:0008064 regulation of 

actin 

polymerization 

or 

depolymerization 

45 2 0.54 0.0471 1 

GO:0035149 lumen formation 

open tracheal 

system 

29 2 0.35 0.0471 1 

GO:0007614 short-term 

memory 

29 2 0.35 0.0471 1 

GO:0010883 regulation of lipid 

storage 

41 3 0.49 0.0495 1 

 

 


